AN INVESTIGATION OFIHE FORCE FIELDS IN TRIBORINE TRIAMINE AND IN BENZENE

by
Shih-Chuan Chang

Thesis submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of the requirements for the degree of Doctor of Philosophy

1952

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI DP70084
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKiNOULEDGEMEINT

The author wishes to express his hearty appreciation to Dr. Robert A. Spurr for counsel and guidance vithout which this investigation would be impossible, to Dr. Shih-I Pai of the Institute of Fluid Dynamics and Applied Mathematics for advice in mathematics, and to all professors in this university from whom the author has received advanced instructions in physical science.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENT
INTRODUCTION 1
THEORY OF SMALL VIBRATIONS 2
FORCE FIELDS 4
OUT-OF-PLANE HYDROGEN VIBRATIONS IN TRIBORINE TRTAMINE. 8
SYMIETRY PROPERTIES OF BENZENE. 18
CALCULATION OF F MATRIX. 22
EVALUATION OF FOROE CONSTANTS 38
DISCUSSION. 51
CONCLUSIONS 53
APPENDIX I
APPENDIX II
APPENDIX III
BIBLIOGRAPHY

INTRODUCTION

Various methods have been employed in the study of molecular structure: dipole moments, Kerr effect, X-ray diffraction, electron diffraction, infrared absorption, and Raman scattering. Each method has its advantages and disadvantages, and the kinds of information obtained from these varicus methods are complementary to each other. Due to the limitation of the magnitude of energy concerned, only vibrational and rotaticnal spectra are covered by the infrared region of spectra, with the rotational spectra appearing as fine structure of the near infrared spectra. This research deals with the vibrational spectra only.

When a molecule is excited by a beam of electromagnetic radiation, the nuclei of atoms in the molecule absorb energy and change their amplitudes of vibration about the equilibrium position. The absorption frequencies corresponding to the energy changes are the frequencies of change in electric moment of the molecule. In addition, the incidental radiation applies an electric field at the molecule, and thus polarizes the molecule. This change in polarization gives rise to Raman frequencies. A study of the symmetry properties of the normal vibrations will show that some of the normal vibrations of the molecule involve a change in electric moment. Others involve a change in polarization, while the rest of normal vibrations do not alter these properties. Hence some of the normal frequencies appear in the infrared spectrum, some in the Raman spectrum, and some are inactive in both infrared and Raman spectra.

From the experimental data information about the arrangement of atoms in the molecule and the electric fields between nuclei can be obtained by mathematical analysis of the observed frequencies.

The investigation of force fields in a molecule consists of
(1) obtaining the infrared and Raman spectra of the purest compound
available;
(2) assignment of frequencies obtained to individual normal vibra. tions;
(3) assuming a suitable force field, i.e., a potential energy function;
(4) With the assumed force field, setting up the secular equation for the vibrational frequencies of the compound; and
(5) calculating the force constants with part of the experimental data and using the rest of the data as a check of the adequacy of the force field assumed.

In the case of the compounds investigated in this research the assignment of frequencies has been extensively studied by other workers(15) and is not here considered.

THEORY OF SMALI VIBRATIONS
A molecule consisting of n atoms will, in general, have $3 n-6$ degrees of vibrational freedom ${ }^{1}$; hence 3 n . 6 coordinates are required to specify the vibrational state of the molecule. If the number $3 n-6$ is represented by s, then there may be chosen a set of coordinates, q_{i}, $(i=1,2,3, \ldots . . s)$ which give the displacements of the atoms from their equilibrium positions as a result of vibration. The potential energy, V, may be expanded in the form of a Taylor series in terms of these coordinates; for small vibrations, all terms beyond the quadratic may be neglected.

$$
V=V_{0}+\sum f_{i}^{\prime} q_{i}+\frac{1}{2} \sum f_{i j} q_{i} q_{j}
$$

where

$$
f_{i}^{\prime}=\left(\frac{\partial V}{\partial q_{j}}\right)_{0} \quad \text { and } \quad f_{i j}=\left(\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right)_{0}
$$

$I_{\text {In case of }}$ linear molecules, the number of the degrees of freedora is $3 n-5$.

The choice of standard energy level is arbitrary; thus V_{0} may be assunted to have the value zero. The symbol $f_{i}^{\prime \prime}$ represents the force between nuclei at their equilibrium positions and is also assumeci to be zerc, i.e., the potential function, plotted against a displacement, has zero slope at equilibrium. Hence, the potential energy function contains only the quadratic terms and can be written as $2 V=q^{\prime} \underline{q} q$, where \underline{q} is the column matrix of coordinates, \underline{q}^{\prime} the transposed matrix of \underline{q}, a row matrix, and \underline{F} the matrix of force constants $f_{i j}$. Similarly the kinetic energy function is $2 T=\underline{\dot{q}}^{\prime} \underline{G}^{-l} \underline{\dot{q}}$, where $\underline{\dot{q}}$ is the column matrix of \dot{q}_{i}, the time rate of change of q_{i}, \dot{q}^{\prime} the transpose of $\dot{\underline{q}}$, and \underline{G}^{-1} the matrix of masses of atoms in the molecule.

The Lagrangian equation of motion is

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=0
$$

where L is the Lagrangian function, equal to T - V. Applying this equation to the potential energy and kinetic energy functions we have

$$
\begin{equation*}
\underline{G}^{-l} \underline{\underline{q}}+\underline{F q}=0 \tag{I}
\end{equation*}
$$

If the nuclei are treated as simple harmonic oscillators, i.e.,

$$
q_{i}=Q_{i} \sin \sqrt{\lambda} t
$$

where $\lambda=4 \pi^{2} \nu^{2}$, in which ν stands for frequency, equation I becomes

$$
\left(\underline{F}-\underline{G}^{-1} \lambda\right) \underline{q}=0
$$

Premultiplication by G gives

$$
(\underline{G P}-\lambda \underline{E}) \underline{q}=0
$$

where E is the unit matrix, a matrix in which all diagonal members are unity and all other members are zero. For the non-trivial solutions, i.e., those for which the q_{i} 's are not all equal to zero at the same time, the determinant \|GF - $\boldsymbol{\lambda} \underline{\underline{E} \|}$ must be zero. This is the so-called secular determinant.

It is clear that when the number of atoms in the molecule is large
the order of the determinant will be too high for convenient handling. A transformation of the matrices \underline{G} and $\underset{F}{ }$ with a suitable set of symmetry coordinates will change the determinant into several diagonal blocks. The value of the determinant is equal to the product of these blocks. Since the value of the determinant is zero, each block can be taken as a determinant having the value zero. Hence the original determinant of high order is resolved into several determinants of lower order, and the treatment is simplified.

The method of the calculation of symmetry coordinates has been fully treated by Nielsen and Berryman (2). Although a discussion of these methods is beyond the scope of this research, the operation of transformation (8) is a simple one. Suppose the symmetry coordinates have been obtained as $\underline{S}=\underline{C q}, \underline{S}$ being the column matrix of symmetry coordinates, and \underline{C} the transformation matrix. The \underline{G} and \underline{F} matrices in symmetry coordinates are CGC' and CFC', respectively, in which \underline{C}^{\prime} is the transposed matrix of \underline{C}.

A method for setting up the G matrix in symmetry coordinates, or any coordinates, is given by Wilson (30). James and Coolidge (16) give a formula for calculating the value of the determinant. By this method, using a trial-and-error procedure, the value is set equal to zero and the frequencies are found. Wilson (29) gives a method of developing the determinant into an equation. The scheme of finding the value of the determinant given by Frazer and Duncan (8) is preferred in this investigation for its clarity and ease of handling with a calculator.

FORCE FIELDS

The potential energy function in its most general form is

$$
V=\sum_{q} \sum_{i}\left(\frac{\partial V}{\partial q_{i}}\right)_{0} \Delta q_{i}+\frac{1}{2} \sum_{q} \sum_{i} \sum_{j}\left(\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}\right)_{0} \Delta q_{i} \Delta q_{j}
$$

taking the arbitrary zero level at the equilibrium condition, the q_{i} being
the general coordinates. The simplest force fields assume that there are no forces in the bonds at the equilibrium position and no interactions between changes of coordinates, i.e., all first derivatives and second derivatives with $i \not \neq j$ vanish. Thus the simple valence force field assumes the form **

$$
2 V=\sum_{r} \sum_{i}\left(\frac{\partial^{2} V}{\partial r_{i}^{2}}\right)_{0}\left(\Delta r_{i}\right)^{2}+\sum_{\alpha} \sum_{i}\left(\frac{\partial^{2} V}{\partial \alpha_{i}^{2}}\right)_{0}\left(\Delta \alpha_{i}\right)^{2}
$$

where $r_{i} 2 V=\sum \sum\left(\frac{\partial^{2} V}{\partial r^{2}}\right)_{0}\left(\Delta r_{i}\right)^{2}+\sum \sum\left(\frac{\partial^{2} V}{\partial p^{2}}\right)_{0}\left(\Delta p_{i}\right)^{2^{e}}$ between bonds. Another sim-

$$
2 V=\sum_{r} \sum_{i}\left(\frac{\partial^{2} V}{\partial r_{i}^{2}}\right)_{0}\left(\Delta r_{i}\right)^{2}+\sum_{P} \sum_{i}\left(\frac{\partial^{2} V}{\partial p_{i}^{2}}\right)_{0}\left(\Delta p_{i}\right)^{2}
$$

where p_{i} is the distance between the unbonded atoms. These two force fields have been used by various investigators to calculate the vibrational frequencies of simple polyatomic molecules. Concerning the limitation of the application of these simple force fields, Linnett (18) concluded that the simple valence force field accounts for the vibrations of CH_{4} fairly well, but not for CCl_{4}, while the simple central force field becomes more successful in going from hydride to halides, so far as the tetrahedral model is concerned. This suggests that the forces between the non-bonded halogen atoms are more important than those between the nonbonded hydrogen atoms, as would be expected. A further objection to the simple central force field is that it does not account for the bending vibrations of linear molecules since no interatomic distances change in such vibrations. Also it fails to account for the out-of-plane vibrations of planar molecules, e.g., $\mathrm{H}_{2} \mathrm{O}$. However, in the last case, the simple valence force field only accounts for such vibrations if some rather more complicated bending terms are included. The conclusion has been that we should base any improvements or refinements on fields of simple valence force field type rather than of those of the simple central force field type.

Various attempts have been made by investigators to improve these simple force fields (1a) by introducing more terms into the potential energy function. However, the number of parameters, i.e., force constants which can be used is limited by the number of frequencies obtained experimentally, or their values cannot be obtained experimentally. Furthermore, the less the number of parameters used, the greater is the number of frequencies left to serve as a check of the force field assumed. Although in the case of some compounds, when isotopic molecules are available, additional experimental data can be obtained to allow the introduction of more terms, there is always present the question as to which cross-terms should be included or neglected.

For the out-of-plane vibrations of benzene, Bell (3) has successfully introduced torsion terms into the simple valence force field, and has suggested the application of this improved force field to the molecule of triborine triamine. The first part of this research carries out this suggestion.

Urey and Bradley (27) suggest a combination of valence force field and central force field

$$
\begin{aligned}
2 V= & 2 \sum_{r} \sum_{i}\left(\frac{\partial V}{\partial r_{i}}\right)_{0} \Delta r_{i}+\sum_{r} \sum_{i}\left(\frac{\partial^{2} V}{\left.\partial r_{i}\right)_{0}}\left(\Delta r_{i}\right)^{2}+2 \sum_{p} \sum_{i}\left(\frac{\partial V}{\partial p_{i}}\right)_{0} \Delta p_{i}\right. \\
& \left.\left.+\sum_{p} \sum_{i}\left(\frac{\partial^{V} V}{\partial P_{i}^{2}}\right)_{0}\left(\Delta p_{i}\right)^{2}+2 \sum_{\alpha} \sum_{i}\left(\frac{\partial V}{\partial \alpha_{i}}\right)_{0} \Delta \alpha_{i}+\sum_{\alpha} \sum_{i}\left(\frac{\partial^{2} V}{\partial \alpha_{i}^{k}}\right)\right)_{d} \Delta \alpha_{i}\right)^{2}
\end{aligned}
$$

with all symbols having the same meaning as before. It may be noted that although no cross-terms are introduced, all possible interaction terms are included after the non-bonded distances p_{i} are expressed in terms of the independent variables r_{i} and α_{i}. It is assumed that, in contrast to the concepts of the simple force fields, there are forces along the bonds and the non-bonded distances between atoms in the equilibrium position but
these forces balance each other and the resultant is zero around each atcm at the equilibrium position. Mathematically speaking, the assumptions are: (1) In a plane section of the multi-dimensional space of coordinates, the potential energy of the system may not be a minimum at the origin, but at some point near the origin. For example, in the plane along the axis of coordinate Δr_{i}, the potential energy is minimum when $\frac{\partial V}{\partial r_{i}}=\left(\frac{\partial V}{\partial r_{i}}\right)_{0}+\frac{H}{4}\left(\frac{\partial^{2} V}{\partial r_{i}^{2}}\right)_{0} \Delta r_{i}=0$, i.e., at the point $\Delta r_{i}=-\Delta\left(\frac{\partial V}{\partial r_{i}}\right)_{0} /\left(\frac{\partial^{2} V}{\partial r_{i}^{2}}\right)_{0}$ And (2) The individual first derivatives do not all vanish, though the coefficients of the first power terms of independent variables vanish. For example, in $X Y_{4}$ type molecules, $\left(\frac{\partial V}{\partial r_{i}}\right)_{0} \neq 0,\left(\frac{\partial V}{\partial p_{i}}\right) \neq 0$, while $\left(\frac{\partial V}{\partial r_{i}}\right)_{0}+\sqrt{6}\left(\frac{\partial V}{\partial p_{i}}\right)_{0}=0$, which is the equilibrium condition around the corner atom Y.

These assumptions reduce the number of parameters necessary and at the same time eliminate the difficulty of predicting the importance of individual cross-terms. It is advantageous that, as Simanouti (25) has show, the force constants can be transferred from molecule to molecule, provided the electronic environment is the same in both molecules, i.e., they are of the same type, so far as the non-bonded distances are concerned.

As a further reduction of the number of force constants required, Urey and Bradley (27) and Heath and Linnett (19) assume a relation $V=a / p^{n}$, a being a constant and n a parameter. By differentiation of this equation the relation between $\partial V / \partial p_{i}$ and $\partial^{2} V / \partial p_{i}^{2}$ can be found. The former workers find that the value of n may vary from 5 to 9 without any appreciable influence on the calculated results. The latter group prefers 4.5 as the value of n.

From the chemical viewpoint, this force field has the advantage of giving physical meaning to each force constant, and thus providing knowledge of the electric fields between both bonded and unbonded atoms. The second part of this research is devoted to applying this force field to the benzene
molecule with the intention that the force constants obtained may be used for the calculation of vibrational frequencies of other similar molecules, since all the previous applications of this force field have been confined to simpler molecules.

OUT-OF-PLANE HYDROGEN VIBRATIONS

IN TRIBORINE TRIAMINE.
Crawford and Edsall (5) have investigated the vibrational spectra of triborine triamine. The large discrepancy between the calculated and observed frequencies of the out-of-plane hydrogen vibrations was attributed to the interactions between hydrogen bonds attached in the meta positions, by analogy with a conclusion drawn by Lord and Andrews (17) in an investigation of benzene.

Bell (3) has suggested the use of a simple force field for the outof -plane vibrations in triborine triamine. He had previously used a field of the same type for benzene. This calculation has been carried out in this research in the following way:

There are six out-of-plane normal vibrations in triborine triamine, three of which belong to symmetry group $A^{\prime \prime}$ and three to symmetry group E "; as shown in the following figure:

Hence, among these four coordinates, one is redundant, and is left in the calculation with the expectation that one root of the determinant will be zero.

The potential function assumed has the following form:

$$
\begin{equation*}
2 V=\sum h_{B}(r \theta)^{2}+\sum h_{N}(s \mu)^{2}+\Sigma K c^{2}\left(\phi_{R}+\otimes_{H}\right)^{2} \tag{I}
\end{equation*}
$$

where h_{B}, h_{N}, and k are force constants and r and s are the internuclear distances of the $\mathrm{B}-\mathrm{H}$ and the $\mathrm{N}-\mathrm{H}$ bonds. The symbols, θ and μ represent the bending angle of these bonds. The quantities ϕ_{R} and ϕ_{H} are the angles of twist of the $B-\mathbb{N}$ bond due to ring distortion and hydrogen bending, respectively, and the quantity c is the distance from the center of the ring to the $B-N$ bond. The bending angle is defined as the angle that $\mathrm{X}-\mathrm{H}$ bond makes with the plane of the atom X and the neighboring two Y atoms, where X and Y may be either B or N. In terms of the out-of-plane displacement, the bending angle and the twist are expressed as follows: (4)

where w, x, y, z, q^{\prime} and q are the out-of-plane displacements of the corresponding atoms as indicated in the diagrams.

The calculation was carried out separately for the symmetry groups $A^{\prime \prime}$ and $E^{\prime \prime}$. External coordinates were used to represent the displacements.

For symmetry group A",

$$
\begin{aligned}
\theta & =\frac{2\left(q_{4}-q_{3}\right)}{R}+\frac{q_{1}-q_{3}}{r} \\
r \theta & =2 \alpha q_{4}-(2 \alpha+1) q_{3}+q_{1}
\end{aligned}
$$

$$
\text { where } \quad \alpha=r / R
$$

$$
\mu=\frac{2}{R}\left(q_{3}-q_{4}\right)+\left(q_{2}-q_{4}\right) / 5
$$

$$
s \mu=q_{2}+2 \beta q_{3}-(2 \beta+1) q_{4}
$$

$$
\text { where } \quad \beta=5 / R
$$

$$
\begin{aligned}
\phi & =\frac{2}{C}\left(q_{4}-q_{3}\right)-\frac{R}{r c}\left(q_{1}-q_{3}\right)+\frac{R}{s C}\left(q_{2}-q_{4}\right) \\
c \Phi & =-q_{1} / \alpha+q_{2} / \beta+(1 / \alpha-2) q_{3}+(2-1 / \beta) q_{4}
\end{aligned}
$$

Substitute $r \theta, s \mu$, and $C Q$ into (I);

$$
\begin{aligned}
\frac{2}{3} V= & h_{B}\left\{q_{1}-(2 \alpha+1) q_{3}+2 \alpha q_{4}\right\}^{2}+h_{N}\left\{q_{2}+2 \beta q_{3}-(2 \beta+1) q_{4}\right\}^{2} \\
& +2 k\left\{-q_{1} / \alpha+q_{2} / \beta+(1 / \alpha-2) q_{3}+(2-1 / \beta) q_{4}\right\}^{2}
\end{aligned}
$$

Collect terms and put in matrix form;

$$
2 V=3 q^{\prime} E q
$$

Where q is the colvan matrix of the coordinates, q_{1}, q_{2}, qu, and q_{4}, g^{\prime} is the transposed matrix of g, and

$$
\underline{F}=\left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{12} & a_{22} & a_{23} & a_{24} \\
a_{13} & a_{23} & a_{33} & a_{34} \\
a_{14} & a_{24} & a_{34} & a_{44}
\end{array}\right|
$$

$a_{11}=h_{B}+2 k / \alpha^{2}$

$$
a_{12}=-k z / \alpha \beta
$$

$$
a_{13}=-(2 \alpha+1) h_{B}-2 k(1 / \alpha-2) / \alpha
$$

$$
\begin{aligned}
& a_{22}=h_{N}+2 k / \beta^{2} \\
& a_{23}=2 \beta h_{N}+2 k(1 / \alpha-2) / \beta \\
& a_{24}=-(1+2 \beta) h_{N}-2 k(1 / \beta-2) / \beta
\end{aligned}
$$

$$
a_{14}=2 \alpha h_{B}+2 k(1 / \beta-2) / \alpha
$$

$$
a_{33}=(1+2 \alpha)^{2} h_{B}+4 \beta^{2} h_{M}+2 k(1 / \alpha-2)^{2}
$$

$$
a_{34}=-2 \alpha(1+2 \alpha) h_{B}-2 \beta(1+2 \beta) h_{N}-2(1 / \alpha-2)(1 / \beta-2) k
$$

$$
a_{44}=4 \alpha^{2} h_{B}+(1+2 \beta)^{2} h_{N}+2(2-1 / \beta)^{2} K
$$

The kinetic energy, T, has the formi

$$
\begin{aligned}
\frac{2}{3} T & =m_{H} \dot{q}_{1}^{2}+m_{H} \dot{q}_{Z}^{2}+m_{B} \dot{q}_{3}^{2}+m_{N} \dot{q}_{4}^{2} \\
\underline{G}^{-1} & =\left|\begin{array}{llll}
m_{H} & & \\
& m_{H} & & \\
& & m_{B} & \\
& & & m_{N}
\end{array}\right|
\end{aligned}
$$

The secular determinant is

$$
\begin{aligned}
& \left\|E-\lambda G^{-1}\right\|=\left\|\begin{array}{cccc}
a_{11}-m_{H} \lambda & a_{12} & a_{13} & a_{14} \\
a_{12} & a_{22}-m_{H} \lambda & a_{23} & a_{24} \\
a_{13} & a_{23} & a_{33}-m_{B} \lambda & a_{34} \\
a_{14} & a_{24} & a_{34} & a_{14}-m_{N} \lambda
\end{array}\right\|=0 . \\
& \lambda=4 \pi^{2} c^{2} A r^{2}=5.889 \times 10^{-2} \times r^{2}, \\
& c=\text { velocity of light, } \\
& A=1 / 16 \text { of the wass of ol6 eton, } \\
& r=\text { frequency of the vibration. }
\end{aligned}
$$

Ine nunerical values $0^{\prime \prime}$ constants used in this calculation ares
r, internuclear distances between B and H ators $=1.00 \AA$
S, internuclear distances betwean $\%$ and H atoms $=1.02 \AA$
R, internuclear distances between in and B atoms $=1.44 \%$
$\alpha=r / R=0.833$
$\beta=S / R=0.709$
$m_{H}=1.008$
$m_{B}=10.820$
$m_{N}=14.008$

Put these into the secular determinant;

$$
\begin{array}{ll}
a_{11}=h_{B}+2.880 \mathrm{~K} & a_{22}=h_{N}+3.987 \mathrm{k} \\
a_{12}=-3.388 \mathrm{~K} & a_{23}=1.416 h_{N}-2.259 \mathrm{~K} \\
a_{13}=-2.666 h_{B}+1.920 \mathrm{~K} & a_{24}=-2.416 h_{N}+1.661 \mathrm{~K} \\
a_{14}=1.666 h_{B}-1.411 \mathrm{~K} & \\
a_{33}=7.111 h_{B}+2.005 h_{N}+1.280 \mathrm{~K} & \\
a_{34}=-4.441 h_{B}+3.421 h_{N}-.941 \mathrm{~K} & \\
a_{44}=2.775 h_{B}+5.837 h_{N}+.691 \mathrm{~K} &
\end{array}
$$

For syadetry group E",

$$
\begin{aligned}
\theta & =\frac{1}{r}\left(q_{1}-q_{3}\right)+\frac{1}{R}\left(q_{4}-2 q_{3}\right) \\
r \theta & =q_{1}-(1+2 \alpha) q_{3}+\alpha q_{4} \quad \alpha=r / R \\
s \mu & =q_{2}+\beta q_{3}-(1+2 \beta) q_{4} \quad \beta=s / R \\
c \otimes_{3-4} & =R q_{1} / r-R q_{2} / s-(R-r) q_{3} / r+(R-s) q_{4} / s \\
& =q_{1} / \alpha-q_{2} / \beta+(1-1 / \alpha) q_{3}+(1 / \beta-1) q_{4} \\
C \Phi_{0-4} & =R q_{2} / s-q_{3}-q_{4}-(R-5) q_{4} / s \\
& =q_{2} / \beta-q_{3}-q_{4} / \beta \\
C Q_{0-3} & =-q_{1} / \alpha+q_{3} / \alpha+q_{4}
\end{aligned}
$$

$$
\begin{aligned}
2 V= & h_{B} \sum_{2}(r \theta)^{2}+h_{N} \sum_{2}(s \mu)^{2}+k \sum_{6}(c \phi)^{2} \\
V= & h_{B}\left\{q_{1}-(1+2 \alpha) q_{3}+\alpha q_{4}\right\}^{2}+h_{N}\left\{q_{2}+\beta q_{3}-(1+2 \beta) q_{4}\right\}^{2} \\
& +k\left\{q_{1} / \alpha-q_{2} / \beta+(1-1 / \alpha) q_{3}-(1-1 / \beta) q_{4}\right\}^{2} \\
& +k\left\{q_{2} / \alpha-q_{3}-q_{4} / \beta\right\}^{2}+k\left\{-q_{1} / \alpha+q_{3} / \alpha+q_{4}\right\}^{2}
\end{aligned}
$$

Collect teriss end put into mateix formy

$$
V=2 q^{\prime} \underline{E}
$$

 wetrixotgeart

$$
E=\left|\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{12} & b_{22} & b_{23} & b_{24} \\
b_{13} & b_{23} & b_{33} & b_{34} \\
b_{14} & b_{24} & b_{34} & b_{44}
\end{array}\right|
$$

$$
b_{11}=h_{B}+2 k / \alpha^{2}
$$

$$
b_{12}=-k / \alpha \beta
$$

$$
b_{13}=-(1+2 \alpha) h_{B}+(1-2 / \alpha) k / \alpha
$$

$$
b_{14}=\alpha h_{B}-(2-I / \beta) k / \alpha
$$

$$
b_{22}=h_{N}+2 k / \beta^{2}
$$

$$
b_{23}=\beta h_{N}+(1 / \alpha-2) k / \beta
$$

$$
b_{24}=-(1+2 \beta) h_{N}+(1-2 / \beta) K / \beta
$$

$$
b_{33}=(1+2 \alpha)^{2} h_{B}+\beta^{2} h_{N}+2\left(1-1 / \alpha+1 / \alpha^{2}\right) k
$$

$$
b_{34}=-\alpha(1+2 \alpha) h_{B}-\beta(1+2 \beta) h_{N}-(1-2 / \alpha-2 / \beta+1 / \alpha \beta) k
$$

$$
b_{44}=\alpha^{2} h_{B}+(1+2 \beta)^{2} h_{N}+2\left(1-1 / \beta+1 / \beta^{2}\right) K
$$

Ih: kimitio energy has the fora:

$$
\begin{aligned}
\frac{2}{3} T & =m_{H} \dot{q}_{1}^{2}+m_{H} \dot{q}_{2}^{2}+m_{B} \dot{q}_{3}^{2}+m_{N} \dot{q}_{4}^{2} \\
\underline{G}^{-1} & =\left|\begin{array}{llll}
m_{H} & & \\
& m_{H} & & \\
& & m_{B} & \\
& & & m_{N}
\end{array}\right|
\end{aligned}
$$

The seculer detgrainarig
$\left\|E-\underline{G}^{-1} \lambda\right\|=\left\|\begin{array}{cccc}b_{11}-m_{1} \lambda & b_{12} & b_{13} & b_{14} \\ b_{12} & b_{22}-m_{H} \lambda & b_{23} & b_{24} \\ b_{13} & b_{23} & b_{33}-m_{B} \lambda & b_{34} \\ b_{14} & b_{24} & b_{34} & b_{44}-m_{N} \lambda\end{array}\right\|=0$.
Fut the values of α and β into it;

$$
b_{11}=h_{B}+2.880 k
$$

$$
b_{12}=-1.694 k
$$

$$
b_{13}=-2.667 h_{B}-1.680 \mathrm{~K}
$$

$$
b_{14}=0.833 h_{B}-0.706 k
$$

$$
b_{22}=h_{N}+3.986 k
$$

$$
b_{23}=0.708 h_{N}-1.130 K
$$

$$
b_{24}=-2.417 h_{N}-2.574 K
$$

$$
b_{33}=7.111 h_{B}+0.502 h_{N}+2.480 \mathrm{~K}
$$

$$
b_{34}=-2.222 h_{B}-1.712 h_{N}+2.530 k
$$

$$
b_{44}=0.694 h_{B}+5.842 h_{N}+3.162 K
$$

Note:- If it is desired to remove the redundant coordinate, it can be readily done by aatrix transforaation by use of tre conditions of conservation of linese and angular nonentus for $A^{4 \prime}$ and E^{4}, $r e s-$ pectively. The new metrices ere L"L and $\underline{L}^{\prime \prime} \underline{L}^{-1}$, bnere \underline{L}^{\prime} is the transpoeed matrix $0:=$ and

$$
\begin{aligned}
L & =\left|\begin{array}{ccc}
1 & & \\
& 1 & \\
-\frac{m_{H}}{m_{N}} & -\frac{m_{H}}{m_{N}} & -\frac{m_{B}}{m_{N}}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 1 \\
-(1+\alpha) m_{H} / m_{N} & -(1+\beta) m_{H} / m_{N} & -m_{B} / m_{N}
\end{array}\right|
\end{aligned}
$$

A trial-and-error method was used to evaluate the values of the force constants. The evaluation was started with a set of arbitrarily assumed values. Using these values and one frequency of the vibrations belonging to the determinant, the value of the determinant was found, which is at first usually quite different from the correct value zero. Then two of the force constants were assumed to be correct, and the value of the third one was adjusted to make the determinant vanish.

In the next step this force constant was assumed to be correct, and another force constant was adjusted in the same fashion to fit another frequency. After three steps are completed, a new set of force constants are obtained. A second cycle of trials serves to readjust the force constants a second time. This process was repeated until a set of force constants was obtained which fit all three frequencies simultaneously, i.e., when any one of the frequencies is put into the determinant, the determinant vanishes.

Table I gives the results of this evaluation and explains the method in detail.

A knowledge of the force constants from various sources, e.g., Crawford and Edsall's calculation (5), a table of force constants of various bonds (11), etc., will give a good set of values to begin with, and thus save labor, since the process of trial and error might give divergent results if the assumed set is too far from the correct values.

With the knowledge of the nature of the vibration it is not difficult to find which frequency should be chosen to adjust a particular force constant. For example, the vibration of the frequency $1070 \mathrm{~cm}^{-1}$ involves mainly the $N-H$ bending, and should be used to adjust the force constant $h_{\text {IN }}$. On the other hand, after several trials it will be plain which frequency is sensitive to the value of one particular force constant. It follows that

TABLE I.* EVALUATION OF FORCE CONSTANTS FOR TRIBORINE TRIAMIIEE.

Symmetry group	Frequency used	$\begin{array}{r} \mathrm{h}_{\mathrm{B}}-4 \\ \times \quad 10-4 \\ \hline \end{array}$	$\begin{array}{r} h_{\mathrm{N}}-4 \\ \times \quad 10-4 \\ \hline \end{array}$	$\begin{array}{r} k= \\ \times 10^{-4} \\ \hline \end{array}$	Value of determinant
$\mathrm{E}^{\prime \prime}$	288	2.00	2.00	0.00	1227.
				0.20	148.6
				0.30	9.99
				0.40	-102.5
	1070	2.00	2.00	0.30	$\begin{aligned} & 44288 . \\ & -1641 . \end{aligned}$
			3.70		
	798	2.00	3.70	0.30	-689.
	288	2.00	3.70	0.28	1.93
	1070	2.00	3.70	0.28	649.
			3.72		-0.42
	798	2.00	3.72	0.28	-690.
		2.10			55.22.38
		2.09			
	288	2.09	3.72	0.28	. 004
	1070	2.09	3.72	0.28	$\begin{array}{r} -553 . \\ 71.1 \end{array}$
			3.70		
			3.71		-176.7
	798	2.09	3.70	0.28	16.4815.
		2.20			
	288	2.09	3.70	0.28	-5.33
$A^{\prime \prime}$	415	2.09	3.70	0.280.14	-448.8624.
				0.22	7.43
	622	2.30 -	3.70	0.22	1287.
					1818.
		1.54			-104.6
		1.57			45.0
	1098	1.56	$\begin{aligned} & 3.70 \\ & 3.30 \end{aligned}$	0.22	1133.
					20150.
			3.72	0.22	173.9-50.2
	622288	1.56	3.72		
		1.56	3.72	0.22	14.53

Final results:

	h_{B}		$h_{\text {N }}$			
		BRL value				
$A^{\prime \prime}$	1.56	1.58037	3.72	3.71177	0.22	0.22285
$F^{\prime \prime}$	$\underline{2.09}$	2.09651	$\underline{3.70}$	3.70103	$\underline{0.28}$	0.27975
Average	1.83		3.71		0.25	

* All force constants are in dyne/cm.
this Irequency should be used to adjust this particular force constant.
Theoretically the value of the determinant should be zero when the correct values of the force constants are used. But it seldom becomes zero in actual calculation due to the limited number of significant figures used. Therefore the set of force constants that gives the value of the determinant closest to zero is the most suitable set.

The trial-and-error process was carried out to the second decimal place of the largest force constant in this research, since the frequencies are experimentally determined to three significant figures. The author is indebted to the Computing Division of the Ballistics Research Laboratory, Aberdeen Proving Ground, Maryland, for checking the evaluation of the force constants. Their results are included in Table I as a comparison.

Two different sets of force constants were obtained from the frequencies of symmetry groups $A^{\prime \prime}$ and $E^{\prime \prime}$. The average values of the constants are listed in Table III in comparison with those of benzene and ethylene. The frequencies calculated from these average values are listed in Table II.

TABIE II.

Observed frequency cm^{-1}	Calculated frequency (5) cm^{-1}	\% Deviation	Calculated frequency $\mathrm{cm}^{-\mathrm{I}}$ (this research)	$\begin{gathered} \% \text { Deviation } \\ \text { this } \\ \text { research } \\ \hline \end{gathered}$
1098	1278	16.4	1117	1.7
622	756	21.6	661	6.3
415	403	2.9	437	5.3
1070	1086	1.5	1054	1.5
798	790	1.0	753	5.6
288	283	1.7	270	6.3
		Mean 7.5		Mean 4.5

The satisfactory agreement obtained between the calculated frequencies and the observed frequencies renders unnecessary Crawford and Fdsall's assumption of interactions between hydrogen bonds attached in the meta positions. Their lack of success in predicting the frequencies of the

- out-of-plane vibrations may be laid to neglect of the influence of the hydrogen atoms on the twisting of the carbon-carbon bonds. When this effect is included, as has been done in this research, the agreement between calculated and observed values is satisfactory.

TABLE III. FORCE CONSTANTS FOR IRIBORINE TRIAMINE, BENZENE, AND ETHYLENE.

Type of constant	Value
B - H bending, h_{B}	$1.83 \times 10^{4 .} \mathrm{dyne} / \mathrm{cm}$
$N-H$ bending, h_{N}	3.71×10^{4} dyne $/ \mathrm{cm}$
B - N twisting, k^{\prime}	0.39×10^{-12} dyne-cm
benzene C - C twistind ${ }^{(3)}$	$0.77 \times 10-12$ dyne-cin
ethylene C - C twisting ${ }^{(3)}$	1.7×10^{-12} dyne-cm

$$
k^{1}=k c^{2}
$$

The value of the twisting force constant obtained by Crawford and Edsall (5) without introduction of $\phi \mathrm{H}$ in the potential function corresponds to 1.6×10^{-12} dyne-cm for k^{\prime}. The value given here of 0.39 x 10^{-12} dyne-cm is more reasonable, since one would expect the ring bonds in triborine triamine to have less resistance to twisting than those in benzene añ̃ ethylene.

If it is assumed that k^{\prime} varies linearly with double-bond character for different bonds, the double-bond character of the $B-\mathbb{N}$ bond in triborine triamine is $39 / 77 \times 1 / 2$ or 28 percent, taking that of benzene as 50 percent. This assumption can be tested by calculating the double-bond character of benzene by the use of the ethylene twisting constant. The value obtained is 45 percent. Since the double-bond character in benzene is known to be 50 percent, the agreement is good. The double-bond character of a bond can also be estimated by the empirical formula of Pauling (23). The $\mathrm{B}-\mathbb{N}$ distance in triborine triamine has been measured in two investigations (2, 26) by electron diffraction as $1.47 \pm 0.07 \mathrm{~A}$ and $1.44 \pm 0.02 \mathrm{~A}$. These values in--serted in the formula give 27 percent and 40 percent, respectively, for the
double-bond character of the $B-N$ bond, and the first value is in agreement with the value given above. It appears, therefore, that the $B-N$ bond in triborine triamine has a 28 percent double-bond character.

SYMMETRY PROPERTIES OF BENZENE

Considerations of the Raman and infrared spectra of benzene, deuterobenzenes, and substituted benzenes indicate that the benzene molecule is planar and hexagonal, with all atoms symmetrically placed. Considerable work has been done on benzene spectra. Probably the most comprehensive work is that of Ingold and coworkers (15). Other work involves fluorescence the Raman effect, and the near infrared spectrum (24, 17, 1, 7). For previous references see Herzberg (13). The point group of this model, i.e., the set of symmetry operations of the benzene molecule, is Doh. This group consists of twelve classes (13, 30), namely, E or identity; C_{2} rotation by π about the six-fold axis; C_{3} rotation by $\pm 2 \pi / 3$ about the six-fold axis; C_{6} rotation by $\pi / 3$ about the six-fold axis; C_{2}^{\prime} rotation by π about axes P, Q, R, as shown in the following figure; $C_{2}^{\prime \prime}$ rotation by π about axes T, U, V; inversion through the center of symmetry; σ_{h} reflection through the plane of symmetry in the plane of the molecule; S_{6} rotatory reflection about the six-fold axis by $\pm \pi / 3, S_{3}$ rotatory-reflection about the six-fold axis by $\pm 2 \pi / 3 ; \sigma_{V}^{\prime \prime}$ reflection through planes $D, F, G ; \sigma_{V}^{\prime}$ reflection through planes A, B, C.

If a symmetry operation is denoted by R and a normal coordinate by Q_{k}, there are three possibilities when a symmetry operation R is applied to Q_{k} :

$$
\begin{array}{ll}
R Q_{k} \rightarrow Q_{k} & \left(Q_{k} \text { is symmetric to } R\right) \\
R Q_{k} \rightarrow-Q_{k} & \left(Q_{k} \text { is antisymmetric to } R\right) \\
R Q_{k} \rightarrow R_{n k} Q_{n} & \text { (degenerate) } \tag{3}
\end{array}
$$

The sumation is over all the Q_{n} with the same frequency, i.e., over all the degenerate normal vibrations in the same class. When translations and rotations are eliminated, (1), (2), and (3) give the irreducible representations of the types of symmetry allowed in the molecule. The symmetry operations allowed for benzene molecule and their characters, i.e., the sum of the diagonal coefficients $R_{k k}$ of the irreducible representation matrices, are given in Table IV.

TABLE IV. SYMMETRY CHARACTERS OF POINT GROUP Dh

Symmetry class	$\mathrm{R}=$	E	C_{2}	C_{3}	${ }^{C} 6$	C_{2}^{1}	C_{2}^{11}	i	σ_{n}	S_{6}	S_{3}	$\sigma_{v}^{\prime \prime}$	σ_{v}^{\prime}
$\mathrm{A}_{1 g}$		1	1	1	1	1	1	1	1	1	1	1	1
$A^{\perp g}$		1	1	1	1	-1	-I	1	1	1	1	-1	-1
$\mathrm{B}^{2 \mathrm{~g}}$		1	-I	1	-1	1	-1	1	-1	1	-1	1	-1
B^{-8}		1	-1	1	-1	-1	1	1	-1.	1	-1	-1	1
$\mathrm{E}_{2 \mathrm{~g}}^{2 g}$		2	2	-1	-1	0	0	2	2	-1	-1	0	0
$\mathrm{E}^{2 g}$		2	-2	-1	1	0	0	2	-2	-1	1	0	0
Alg		1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
A		1	1	1	1	-1	-1	-1	-1	-1	-1	1	1
${ }^{\text {B }}$ lu		1	-1	1	-1	1	-1	-1	1	-1	1	-1	1
B 20		1	-1	1	-1	-1	1	-1	1	-1	1	1	-1
$\mathrm{E}^{2 \mathrm{U}}$		2	2	-1	-1	0	0	-2	-2	1	1	0	0
$\mathrm{E}_{\mathrm{lu}}^{2 u}$		2	-2	-1	1	0	0	-2	2	1	-1	0	0
h_{j}		1	1	2	2	3	3	1	1	2	2	3	3
${ }^{x}{ }_{j}^{\prime}$		36	0	0	\bigcirc	-4	0	0	12	0	0	0	4

The symbol h_{j} is the number of operations in each class and the character x_{j} ' is obtained from the operations on coordinates other than normal coordinates in the same way as x_{j} is obtained from normal coordinates. The values for X_{j} ' shown in Table IV were obtained by Wilson (30) from 36 external coordinates.

The number of normal vibrations in the ith class may be calculated from the following formula:

$$
n_{i}=(1 / N) \sum_{j} h_{j} x_{j}^{(i)} x_{j}^{\prime}
$$

where N is the total number of operations, $x_{j}{ }^{(i)}$ is the value of x_{j} in the ith class. Applied to the benzene molecule, the result is

$$
2 A_{l g}+A_{2 g}+2 B_{2 g}+4 E_{2 g}+E_{l g}+A_{2 u}+2 B_{l u}+2 B_{2 u}+2 E_{2 u}+3 E_{l u}
$$

The same result can be obtained by the method of counting the number of sets of equivalent atoms in each element of symmetry (14). This result shows there are 20 different fundamental frequencies, of which 10 are degenerate. Therefore the secular determinant may be factored by the use of symmetry into four linear factors, of which two are equal $\left(A_{2 g}, A_{2 u}, E_{I_{g}}(2)\right)$, six quadratic factors of which two are equal ($A_{l g}, B_{2 g}, B_{1 u} E_{2 u}(2)$), two equal cubic factors ($E_{I_{u}}(2)$), and two equal quartic factors $\left(E_{2 g}(2)\right)$. The modes of normal vibration determined from these considerations are shown in Figure 1.

The symmetry coordinates required to factor the secular determinant may be derived by the method given by Nielsen and Berryman (22). Different sets of symmetry coordinates $(13,30)$ may be calculated. The set which was used in this research is taken from the work of Crawford and Miller and is shown in Table VII.

Fig. 1

Calculation of F Matrices.
Of the 30 normal modes of vibration shown in Figure 1,21 are planar,
in which all atoms move in the plane of the molecule, and 9 are out-of-plane, in which all atoms vibrate in the direction perpendicular to the plane of the molecule. These two groups of vibrations are usually treated separately. This research deals with planar vibrations.

The potential energy function was assumed as follows:

$$
\begin{aligned}
2 V= & 2 F_{s}^{\prime} \sum_{6} R_{0} \Delta R_{i}+F_{s} \sum_{6}\left(\Delta R_{i}\right)^{2}+2 f_{s}^{\prime} \sum_{6} r_{0} \Delta r_{i}+f_{s} \sum_{i}\left(\Delta r_{i}\right)^{2} \\
& +2 F_{b}^{\prime} \sum_{0} R_{0}^{2} \Delta \alpha_{i}+F_{b} \sum_{6}\left(R_{0} \Delta \alpha_{i}\right)^{2}+2 f_{b}^{\prime} \sum_{0} r_{0}^{2} \Delta \theta_{i}+f_{b} \sum_{6}\left(r_{0} \Delta \theta_{i}\right)^{2} \\
& \left.+2 f_{m}^{\prime} \sum_{6} p_{0} \Delta p_{i,}++\Delta p_{i,-}\right)+f_{m} \sum_{6}\left(\left(\Delta p_{i,+}\right)^{2}+\left(\Delta p_{i}-\right)^{2}\right\} \\
& +2 f_{p}^{\prime} \sum_{6} d_{0} \Delta d_{i}+f_{p} \sum_{6}\left(\Delta d_{i}\right)^{2}+2 F_{m}^{\prime} \sum_{6} P_{0} \Delta P_{i}+F_{m} \sum_{6}\left(\Delta P_{i}\right)^{2} \\
& +F_{p}^{\prime} \sum_{6}^{6} D_{0} \Delta D_{0}+F_{p} \sum_{6}\left(\Delta D_{i}\right)^{2} / 2
\end{aligned}
$$

The coordinates were defined as follows, the symbols in parantheses being the corresponding force constants:

$$
\begin{aligned}
& \begin{array}{ll}
r_{i} & \left(f^{\prime}, f_{i}\right), ~ d i s t a n c e \\
R_{i} & -H_{i} \\
R_{i}^{\prime}, & \left.F_{S}\right), ~ d i s t a n c e \\
C_{i}-C_{i}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{i}\left(F_{b}^{i}, F_{b}^{b}\right) \text {, angle } C_{i-1} C_{i} C_{i+1} \text {; }
\end{aligned}
$$

\rightarrow The nonbonded distances p, d, P, and D were taken as dependent variables and expressed in terms of the independent variables r, R, θ, and α :

$$
\begin{aligned}
& p_{0} \Delta p_{i,}=R_{0}(1+\rho / 2) \Delta R_{i-1}+R_{0}(\rho+1 / 2) \Delta r_{i}+\frac{\sqrt{3}}{2} R_{0} r_{0} \Delta \theta_{i} \\
& +\frac{1}{2 P_{0}^{2}}\left\{\frac{3}{4} r_{0}^{2}\left(\Delta R_{i-1}\right)^{2}+\frac{3}{4} R_{0}^{2}\left(\Delta r_{i}\right\}^{2}-\frac{1}{2} R_{0} r_{0}\left(R_{0}^{2}+r_{0}^{2}+\frac{5}{2} R_{0} r_{0}\right)\left(\Delta \theta_{i}\right)^{2}\right. \\
& -\frac{3}{2} R_{0} r_{0} \Delta R_{i-1} \Delta r_{i}+\sqrt{3} r_{0}\left(r_{0}^{2}+\frac{1}{2} R_{0} r_{0}\right) \Delta R_{i-1} \Delta \theta_{i} \\
& \left.+\sqrt{3} R_{0}\left(R_{0}^{2}+\frac{1}{2} R_{0} r_{0}\right) \Delta r_{i} \Delta \theta_{j}\right\} \\
& P_{0} \Delta P_{i}=\frac{R_{0}}{2}\left\{3 \Delta R_{i}+3 \Delta R_{i-1}+\sqrt{3} R_{0} \Delta \alpha_{i}\right\} \\
& +\frac{R_{0}^{2}}{2 \rho_{0}^{2}}\left\{\frac{3}{4}\left(\Delta R_{i}\right)^{2}+\frac{3}{4}\left(\Delta R_{i-1}\right)^{2}-\frac{g}{4}\left(R_{0} \Delta \alpha_{i}\right)^{2}-\frac{3}{2} \Delta R_{i} \Delta R_{i-1}+\frac{3 \sqrt{3}}{2} \Delta R_{i} R_{0} \Delta \alpha_{i}\right. \\
& \left.+\frac{3 \sqrt{3}}{2} \Delta R_{i-1} R_{0} \Delta \alpha_{i}\right\} \\
& d_{0} \Delta d_{i}=\frac{d_{0}}{2}\left\{\Delta r_{i}+\Delta r_{i+1}+2 \Delta R_{i}+\sqrt{3} r_{0}\left(-\Delta \theta_{i}+\Delta \theta_{i+1}-\Delta \alpha_{i}\right)\right. \\
& +\frac{3}{8}\left(\Delta r_{i}^{2}\right)^{2}+\frac{3}{8}\left(\Delta r_{i+1}\right)^{2}-\frac{3}{4} \Delta r_{i} \Delta r_{i+1}+\frac{5}{4}\left(d_{0}+R_{0}\right)\left(\Delta r_{i+1} \Delta \theta_{i+1}-\Delta r_{i-1} \Delta \theta_{i+1}-\Delta r_{i} \Delta \alpha_{i}\right) \\
& +\frac{\sqrt{3}}{4} r_{0}\left(\Delta r_{i} \Delta \theta_{i+1}-\Delta r_{i+1} \Delta \theta_{i}-\Delta r_{i+1} \Delta \alpha_{i}\right)+\frac{1}{4} r_{0}^{2}\left(\Delta \theta_{i} \Delta \theta_{i+1}+\Delta \theta_{i+1} \Delta \alpha_{i}\right) \\
& -\frac{1}{4} r_{0}\left(R_{0}+r_{0} / 2\right)\left[\left(\Delta \theta_{i}\right)^{2}+\left(\Delta \theta_{i+1}\right)^{2}+\left(\Delta \alpha_{i}\right)^{2}+2 \Delta \theta_{i} \Delta \alpha_{i}\right] \\
& D_{0} \Delta D_{i}=R_{0}\left\{\Delta R_{i+1}+\Delta R_{i-1}+2 \Delta R_{i}+\sqrt{3} R_{0}\left(\Delta \alpha_{i}+\Delta \alpha_{i+1}\right)\right\} \\
& +\frac{3}{8}\left(\Delta R_{i-1}\right)^{2}+\frac{3}{8}\left(\Delta R_{i+1}\right)^{2}-\frac{3}{4} \Delta R_{i-1} \Delta R_{i+1} \\
& +\frac{3 \sqrt{3}}{4} R_{0}\left(\Delta R_{i-1} \Delta \alpha_{i}+\Delta R_{i+1} \Delta \alpha_{i+1}\right)+\frac{B}{4}\left(\Delta R_{i-1} \Delta \alpha_{i+1}+\Delta R_{i+1} \Delta \alpha_{i}\right) \ldots \\
& -\frac{3}{8} R_{0}^{2}\left[\left(\Delta \alpha_{i}\right)^{2}+\left(\Delta \alpha_{i+1}\right)^{2}\right]-\frac{1}{4} R_{0}^{2} \Delta \alpha_{i} \Delta \alpha_{i+1}
\end{aligned}
$$

The calculation of these expressions iscarried out in Appendices I and II. When these expressions are put in, the potential energy function in matrix form is given on next page. The quantities $\underline{R}, \underline{r}, \underline{\theta}$, and $\underline{\alpha}$ are the column matrices of individual species of coordinates, e.g.,
$\underline{R}=\left|\begin{array}{c}\Delta R_{1} \\ \Delta R_{2} \\ \Delta R_{3} \\ \Delta R_{2} \\ \Delta R_{4} \\ \Delta R_{5}^{5}\end{array}\right|$
E is the unit matrix and the leading rows of M_{i} 's are given in Table V.

$$
\begin{align*}
& 2 V=2 F_{s}^{\prime} R_{0} \underline{e} \underline{R}+2 f_{s}^{\prime} r_{0} \underline{e} \underline{r}+2 f_{b}^{\prime} r_{0}^{2} \underline{e} \theta+2 F_{b}^{\prime} R_{o}^{2} \underline{e} \underline{\alpha} \\
& +2 f_{m}^{\prime} R_{0}\left\{2\left(\rho+\frac{1}{2}\right) \underline{e} \underline{r}+(2+\rho) \underline{e} \underline{R}-\frac{\sqrt{3}}{2} r_{0} \underline{e} \underline{\alpha}\right\} \\
& +f_{p}^{\prime} d_{0}\left(2 \underline{e} \underline{r}+2 \underline{e} \underline{R}-\sqrt{3} r_{0} \underline{e} \underline{\alpha}\right\} \\
& +3 F_{m}^{\prime} R_{0}\left\{2 \underline{e} \underline{R}+\frac{1}{\sqrt{3}} R_{o} \underline{\mathbf{e}} \underline{\alpha}\right\} \\
& +2 F_{P}^{\prime} R_{0}\left\{2 \underline{e} \underline{R}+\sqrt{3} R_{0} \underline{e} \underline{\alpha}\right\} \\
& +f_{s}^{\prime} \underline{r^{\prime}} \underline{E} \underline{r}+F_{s} \underline{R}^{\prime} \underline{E} \underline{R}+F_{b} R_{o}^{2} \underline{\alpha}^{\prime} \underline{E} \underline{\alpha}+f_{b} r_{0}^{2} \underline{\theta}^{\prime} \underline{E} \underline{\theta} \\
& +\sigma f_{m}^{\prime}\left\{a_{1} \underline{R}^{\prime} \underline{E} \underline{R}+b_{1} r^{\prime} \underline{E} \underline{r}+c_{1} r_{0}^{2} \underline{\theta}^{\prime} \underline{E} \underline{\theta}+d_{1} R_{0}^{2} \underline{\alpha}^{\prime} \underline{E} \underline{\alpha}\right. \\
& +2 e_{1} \underline{R}^{\prime} \underline{M}_{0} r+2 f_{1} \underline{R}^{\prime} \underline{M}_{9} r_{0} \underline{\theta}+2 g_{1} \underline{R}^{\prime} \underline{E} \underline{\alpha} R_{0} \\
& \left.+2 k_{1} \underline{I}^{\prime} \underline{E} R_{0} \underline{\alpha}+2 p_{1} r_{0} \underline{\theta}^{\prime} \underline{E} R_{o} \underline{\alpha}\right\} \\
& +\sigma f_{m}\left\{a_{2} \underline{R}^{\prime} \underline{E} \underline{R}+b_{2} \underline{r}^{\prime} E \underline{E}+c_{2} r_{0}^{2} \underline{\theta}^{\prime} E \underline{\theta}+d_{2} R_{o}^{2} \underline{\alpha}^{\prime} \underline{E} \underline{\alpha}\right. \\
& +2 e_{2} \underline{R}^{\prime} \underline{M}_{8} \underline{r}+2 f_{2} r_{0} \underline{R}^{\prime} \underline{M}_{9} \underline{\theta}+2 g_{2} R_{0} \underline{R}^{\prime} \underline{E} \underline{\alpha} \\
& \left.+2 k_{2} R_{0} \underline{r}^{\prime} \underline{\underline{\alpha}} \underline{\alpha}+2 p_{2} R_{0} r_{0} \underline{\theta}^{\prime} \underline{E} \underline{\alpha}\right\} \\
& +f_{p}^{\prime}\left\{b_{3} \underline{r}^{\prime} \underline{M}_{2} \underline{r}+c_{3} r_{0}^{2} \underline{\theta}^{\prime} \underline{M}_{7} \underline{\theta}+d_{3} R_{0}^{2} \underline{\alpha}^{\prime} \underline{\underline{\alpha}} \underline{\alpha}\right. \\
& \left.+2 h_{3} r_{0} \underline{r}^{\prime} \underline{M}_{10} \underline{\theta}+2 k_{3} R_{0} \underline{r}^{\prime} \underline{M}_{12} \underline{\alpha}+2 p_{3} R_{0} r_{0} \underline{\theta}^{\prime} \underline{M}_{13} \underline{\alpha}\right\} \\
& +f_{P}\left\{a_{4} \underline{R}^{\prime} \underline{E} \underline{R}+b_{4} \underline{r}^{\prime} \underline{M}_{1} \underline{r}+c_{4} r_{0}^{2} \underline{\theta}^{\prime} \underline{M}_{2} \underline{\theta}+d_{4} R_{0}^{2} \underline{\alpha}^{\prime} \underline{E} \underline{\alpha}\right. \\
& +2 e_{4} \underline{R}^{\prime} M_{8} r+2 f_{4} r_{0} \underline{R}^{\prime} M_{9} \underline{\theta}+2 g_{4} R_{0} \underline{R}^{\prime} E \underline{\alpha} \\
& \left.+2 h_{4} r_{0} \underline{\underline{V}}^{\prime} \underline{M}_{10} \underline{\theta}+2 k_{4} R_{0} \underline{r}^{\prime} \underline{M}_{8}^{\prime} \underline{\alpha}+2 p_{4} R_{0} r_{0} \underline{\theta}^{\prime} M_{9}^{\prime} \underline{\alpha}\right\} \\
& +\epsilon F_{m}^{\prime}\left\{a_{5} \underline{R}^{\prime} \underline{M}_{2} \underline{R}+d_{5} R_{0}^{2} \underline{\alpha}^{\prime} \underline{\underline{\alpha}} \underline{\underline{\alpha}}+2 g_{5} R_{6} \underline{R}^{\prime} \underline{M}_{8} \underline{\alpha}\right\} \\
& +\epsilon F_{m}\left\{a_{6} \underline{R}^{\prime} \underline{M}_{1} \underline{R}+d_{6} R_{0}^{2} \underline{\alpha^{\prime}} \underline{\underline{\alpha}} \underline{\alpha}+2 g_{6} R_{0} \underline{R}^{\prime} \underline{M}_{8} \underline{\alpha}\right\} \\
& +F_{p}^{\prime}\left\{a_{7} \underline{R}^{\prime} \underline{M}_{6} \underline{R}+d_{7} R_{0}^{2} \underline{\alpha}^{\prime} \underline{M}_{3} \underline{\alpha}+2 g_{7} R_{0} \underline{R}^{\prime} \underline{M}_{11} \underline{\alpha}\right\} \\
& +F_{p}\left\{a_{8} \underline{R}^{\prime} \underline{M}_{5} \underline{R}+d_{8} R_{0}^{2} \underline{\alpha}^{\prime} \underline{M}_{1} \underline{\alpha}+2 g_{8} R_{0} \underline{R}^{\prime} \underline{M}_{11} \underline{\alpha}\right\} \tag{III}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{e}=|1,1,1,1,1,1| \\
& \sigma=R_{0}^{2} / \rho_{0}^{2}=\left(1+\rho+\rho^{2}\right)^{-1}=0.4200 \\
& \boldsymbol{\epsilon}=R_{0}^{2} / \rho_{0}^{2}=1 / 3
\end{aligned}
$$

TABLE V. Leading rows of submatrices M.

$$
\begin{array}{ll}
M_{1}=(1,1 / 2,-,-,-1 / 2) & M_{8}=(1,1,-,-,-,-) \\
M_{2}=(1,-1 / 2,-,-,-,-1 / 2) & M_{9}=(1,-1,-,-,-,-) \\
M_{3}=(3,1 / 2,-,-,-, 1 / 2) & M_{10}=(-, 1,-,-,-,-1) \\
M_{4}=(3,1,-,-,-, 1) & M_{11}=(3,3,1,-,-, 1) \\
M_{5}=(3,2,1 / 2,-, 1 / 2,2) & M_{12}=(2+\rho,-,-,-,-, \rho) \\
M_{6}=(1,-,-1 / 2,-,-1 / 2,-) & M_{13}=(2+\rho,-,-,-,-,-\rho) \\
M_{7}=(2+\rho,-\rho / 2,-,-,-,-\rho / 2) & M_{14}=(2+\rho, \rho / 2,-,-,-, \rho / 2)
\end{array}
$$

The rest of the matrices can be readily obtained by permuting the members in the leading rows. For example, M_{8} is shown in Table V as $M_{8}=$ (1, I, -, -, -, -) which means $\quad \mathbb{M}_{8}=\left|\begin{array}{llllll}1 & I & & & & \\ & I & 1 & & & \\ & & 1 & 1 & & \\ & & & 1 & 1 & \\ 1 & & & & 1 & 1 \\ 1 & & & & 1\end{array}\right|$.

The geometrical coefficients $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots . \mathrm{s}$ are given in Table VI. It may be noted here that in the summation

$$
\begin{aligned}
& \sum_{6}\left(\Delta R_{i}+\Delta R_{i-1}+\Delta R_{i+1}\right)=\sum_{6} 3 \Delta R_{i} \\
& \sum_{6}\left\{\left(\Delta R_{i}\right)^{2}+\left(\Delta R_{i-1}\right)^{2}+\left(\Delta R_{i+1}\right)^{2}\right\}=\sum_{6} 3\left(\Delta R_{i}\right)^{2} \\
& \sum_{6} \Delta R_{i} \Delta R_{i-1}=\sum_{6} \Delta R_{i} \Delta R_{i+1} \neq R_{i}-1 \Delta R_{1}+1 .
\end{aligned}
$$

By assumption of this force field the coefficients of the linear terms, which represent the equilibrium conditions, must vanish. Therefore,

$$
\begin{gather*}
F_{s}^{\prime}+(2+\rho) f_{m}^{\prime}+(1+\rho) f_{P}^{\prime}+3 F_{m}^{\prime}+2 F_{p}^{\prime}=0 \tag{III}\\
\rho f_{s}^{\prime}+(2 \rho+1) f_{m}^{\prime}+(1+\rho) f_{p}^{\prime}=0 \\
f_{b}^{\prime}=0 \quad \rho=r_{0} / R_{0}
\end{gather*}
$$

Thus, Equation (II) has the following form, after collecting terms and simplifying:

$$
\begin{align*}
& 2 V=R^{\prime}\left\{\left[F_{s}+\sigma\left(a_{1} f_{m}^{\prime}+a_{2} f_{m}\right)\right\rangle E+\frac{a_{5}}{3} F_{m}^{\prime} \underline{M}_{2}+\frac{a_{6}}{3} F_{m} \underline{M}_{1}\right. \\
& \left.+a_{7} F_{p}^{\prime} M_{6}+a_{8} F_{p} M_{5}\right\} \underline{R} \\
& +\underline{r}^{\prime}\left\{\left[f_{s}+\sigma b_{1} f_{m}^{\prime}+\sigma b_{2} f_{m}\right] \underline{E}+b_{3} f_{p}^{\prime} \underline{M}_{2}+b_{4} f_{p} \underline{M}_{1}\right\} \underline{r} \\
& +r_{0} \underline{\theta}^{\prime}\left\{\left[\mathscr{F}_{0}+\sigma c_{1} f_{m}^{\prime}+\sigma c_{2} f_{m}\right] \underline{E}+c_{3} f_{p}^{\prime} \underline{M}_{7}+c_{4} f_{p} \underline{M}_{2}\right\} r_{0} \underline{\theta} \\
& +R_{0} \underline{\alpha}^{\prime}\left\{\left[F_{b}+\sigma d_{1} f_{m}^{\prime}+\sigma d_{2} f_{m}\right] \underline{E}+\left[d_{3} f_{p}^{\prime}+d_{4} f_{p}+\frac{d_{5}}{3} F_{m}^{\prime}+\frac{d_{6}}{3} F_{m}\right] \underline{E}\right. \\
& \left.+d_{7} F_{p}^{\prime} \underline{M}_{3}+d_{B} F_{p} \underline{M}_{1}\right\} R_{0} \underline{\alpha} \\
& +2 \underline{R}^{\prime}\left\{\sigma e_{1} f_{m}^{\prime}+\sigma e_{2} f_{m}+e_{4} f_{p}\right\} \underline{M}_{8} r \\
& +2 \underline{R}^{\prime}\left\{\sigma f_{1} f_{m}^{\prime}+\sigma f_{2} f_{m}+f_{4} f_{p}\right\} \underline{M}_{g} r_{0} \underline{\theta} \\
& +2 \underline{R}^{\prime}\left\{\left[g_{1} f_{m}^{\prime}+\sigma g_{2} f_{m}+g_{4} f_{p}\right] \underline{E}+\frac{1}{3}\left[g_{5} F_{m}^{\prime}+g_{6} F_{m}\right] \underline{M}_{8}\right. \\
& \left.+\left[g_{7} F_{p}^{\prime}+g_{8} F_{p}\right] M_{11}\right\} R_{0} \underline{\alpha} \\
& +2 r^{\prime}\left\{h_{3} f_{p}^{\prime}+h_{4} f_{p}\right\} \underline{M}_{10} r_{0} \underline{\theta} \\
& +2 r^{\prime}\left\{\left[\sigma k_{1} f_{m}^{\prime}+\sigma k_{2} f_{m}\right] E+k_{3} f_{p}^{\prime} \underline{M}_{12}+k_{4} f_{p} \underline{M}_{8}^{\prime}\right\} R_{0} \underline{\alpha} \\
& +2 r_{0} \underline{\theta}^{\prime}\left\{\left[\sigma p_{1} f_{m}^{\prime}+\sigma p_{2} f_{m}\right] \underline{E}+p_{3} f_{p}^{\prime} \underline{M}_{13}+p_{4} f_{p} \underline{M}_{9}^{\prime}\right\} R_{0} \underline{\alpha} \tag{IV}
\end{align*}
$$

Crawford and Miller define the angle for $C-H$ bending as the angle between $\mathrm{C}-\mathrm{H}$ bond and the bisector of the C-C-C angle, which is different from the angle θ as shown in F gure 2.

$$
\begin{aligned}
\Delta \theta_{i} & =\Delta \beta_{i}-\Delta \alpha_{i} / 2 \\
r_{0} \Delta \theta_{i} & =r_{0} \Delta \beta-\frac{\rho}{2} R_{0} \Delta \alpha_{i} \\
r_{0} \underline{\theta} & =E \underline{\beta} r_{0}-\frac{\rho}{2} R_{0} E \underline{\alpha}
\end{aligned}
$$

In order to utilize their symmetry coordinates, it is necessary to change θ into β. If the potential matrix is divided into submatrices, $\underline{A}, \underline{B}, \underline{C}$,?

$$
\begin{aligned}
& \underline{G}^{*}=\underline{G}-\frac{p}{2} E \\
& =\left[\frac{\sigma}{2} g_{1} f_{m}^{\prime}+\frac{\sigma}{2} g_{2} f_{m}+\frac{1}{2} 9_{a} f_{p}+g_{5} F_{m}^{\prime}+\frac{1}{3} g_{6} F_{m}\right] M_{8}+\left[g_{7} F_{p}^{\prime}+g_{8} F_{p}\right] M_{11} \\
& \underline{K}^{*}=K-\frac{R}{2} \underline{H} \\
& =\left(\sigma K_{1} f_{m}^{\prime}+\sigma K_{2} f_{m}\right) E+K_{3} f_{p}^{\prime} \underline{M}_{14}+K_{4} f_{P} \underline{M}_{1} \\
& P^{*}=\underline{P}-\frac{p}{z} \underline{C} \\
& =-\frac{f}{2} f_{b} E-\frac{f}{8} f_{p}^{\prime} M_{10}+\frac{1}{2} p_{4} f_{p} M_{10} \\
& \underline{D}^{*}=\underline{Q}+\frac{p^{2}}{4} \underline{C}-\frac{p}{2} \underline{Q}-\frac{p}{2} \mathbb{P}^{\prime} \\
& =\left[F_{b}+\frac{\frac{1}{4}_{2}^{2}}{} f_{b}+\frac{d_{5}}{3} F_{m}^{\prime}+\frac{1}{3} d_{6} F_{m}+\frac{1}{2} \sigma d_{1} f_{m}^{\prime}+\frac{1}{2} d_{2} f_{m}\right] E \\
& -\frac{P}{8} f_{P}^{\prime} \underline{M}_{7}+\frac{1}{2} d_{4} f_{P} M_{1}+d_{7} F_{P}^{\prime} M_{3}+d_{8} F_{P} M_{1}
\end{aligned}
$$

Therefore, the final form of potential energy function in terms of β is:

$$
\begin{aligned}
& 2 V=\underline{R}^{\prime}\left\{\left[F_{5}+\sigma a_{1} f_{m}^{\prime}+\sigma a_{2} f_{m}+a_{4} f_{P}\right] \underline{E}+\frac{1}{3} a_{5} F_{m}^{\prime} \underline{M}_{2}+\frac{1}{3} a_{6} F_{m} \underline{M}_{1}\right. \\
& 2 V=\underline{R}^{\prime}\left\{\left[F_{s}+\sigma a_{1} f_{m}^{\prime}+\sigma a_{2} f_{m}+a_{4} f_{p}\right] \underline{E}+\frac{1}{3} a_{5} F_{m}^{\prime} \underline{M}_{2}+\frac{1}{3} a_{6} F_{m} \underline{M}_{1}\right. \\
& \left.+a_{7} F_{p}^{\prime} M_{6}+a_{8} F_{p} M_{5}\right\} \underline{R} \\
& +\underline{r}^{\prime}\left\{\left[f_{s}+\sigma b_{1} f_{m}^{\prime}+\sigma b_{2} f_{m}\right] \underline{E}+b_{3} f_{p}^{\prime} \underline{M}_{2}+b_{4} f_{p} \underline{M}_{1}\right\} r \\
& +r_{0} \boldsymbol{\beta}^{\prime}\left\{\left[f_{b}+\sigma c_{1} f_{m}^{\prime}+\sigma c_{2} f_{m}\right] \underline{E}+c_{3} f_{p}^{\prime} M_{7}+c_{4} f_{P} M_{2}\right\} r_{0} \beta \\
& +R_{o} \underline{\alpha}^{\prime}\left\{\left[F_{b}+\frac{p^{2}}{4} f_{b}+\frac{\sigma}{2} d_{1} f_{m}^{\prime}+\frac{\sigma}{2} d_{2} f_{m}+\frac{1}{3} d_{5} F_{m}^{\prime}+\frac{1}{3} d_{6} F_{m}\right] E\right. \\
& \left.-\frac{p}{8} f_{P}^{\prime} \underline{M}_{7}+\frac{1}{2} d_{4} f_{P} \underline{M}_{1}+d_{7} F_{P}^{\prime} \underline{M}_{3}+d_{8} F_{P} \underline{M}_{1}\right\} R_{0} \underline{\alpha} \\
& +2 \underline{R}\left\{\sigma e_{1} f_{m}^{\prime}+\sigma e_{2} f_{m}+e_{4} f_{p}\right\} M_{s} \underline{R} \\
& +2 \underline{R}^{\prime}\left\{\sigma f_{1} f_{m}^{\prime}+\sigma f_{2} f_{m}+f_{4} f_{p}\right\} M_{9} r_{0} \beta \\
& +2 \underline{R}^{\prime}\left\{\left\{\frac{\sigma}{2} g_{1} f_{m}^{\prime}+\frac{\sigma}{2} g_{2} f_{m}+\frac{1}{2} g_{4} f_{p}+\frac{1}{3} g_{5} F_{m}^{\prime}+\frac{1}{3} g_{6} F\right] \underline{M}_{8}\right. \\
& \left.+\left[g_{7} F_{p}^{\prime}+g_{8} F_{p}\right] M_{11}\right\} R_{0} \underline{\alpha} \\
& +2 \underline{r}^{\prime}\left\{n_{3} f_{p}^{\prime}+h_{4} f_{p}\right\} \underline{M}_{10} r_{0} \beta \\
& +2 \underline{\underline{r}}^{\prime}\left\{\left[\sigma k_{1} f_{m}^{\prime}+\sigma k_{2} f_{m}\right] \underline{E}+k_{2} f_{P}^{\prime} \underline{M}_{14}+k_{4} f_{P} \underline{M}_{1}\right\} R_{0} \underline{\alpha} \\
& +2 r_{0} \boldsymbol{\beta}^{\prime}\left\{-\frac{f}{2} f_{0} E-\frac{p}{8} f_{p}^{\prime} M_{10}+\frac{1}{2} p_{4} f_{p} M_{10}\right\} R_{0} \underline{\alpha}
\end{aligned}
$$

The set of symmetry coordinates used to factor the potential matrix is listed in Table VII, which has the characteristic that each symmetry coordinate involves only one internal coordinate. Hence, in each row of the transformation matrix only six members are nonvanishing and the rest are null. From the fundamental principal of matrix operation, in the operation $\underline{F}=$ $\underline{S} \underline{V} \underline{S}^{\prime}, F_{i j}=\sum_{m} \sum_{n} S_{i m}{ }^{V}{ }_{m n}{ }^{j}{ }_{j n}$. Since part of row \underline{S}_{i} and column \underline{S}_{j} are null, one may ignore the corresponding part of matrix V. Thus, the operation of premultiplication by a matrix $1 x 24$ and postmultiplication by a matrix $24 x 1$ of a matrix 24×24 is simplified to an operation of premultiplication by a matrix $1 x 6$ and postmultiplication by a matrix $6 x$ of a matrix $6 x 6$. For example, the internal coordinate involved in the symmetry coordinate S_{1} is \underline{R}. Then, $F_{11}=\sum_{24} \sum_{24} S_{1 m} V_{r n} S_{1 n}=\sum_{6} \sum_{6} S_{1 R} V_{R R} S_{1 R}$. So in the calculation of F_{11}, the only part concerned is the first term of Equation V.

The factorization is further simplified by another principle of matrix operation. Since $\underline{S}_{i}\left(\underline{M}_{i}+\underline{M}_{j}\right) \underline{S}_{j}^{\prime}=\underline{S}_{i} \underline{M}_{i} \underline{S}_{j}{ }^{\prime}+\underline{S}_{i} \underline{M}_{j} \underline{S}_{j}{ }^{\prime}$, each component matrix in individual term of Equation V can be treated separately. For emple, to find F_{11} one may calculate $\underline{S}_{1}{\underline{E} \underline{S}_{1}}^{\prime}, \underline{S}_{1} \underline{M}_{1} \underline{S}_{1}{ }^{\prime}, \underline{S}_{1} \underline{M}_{2} \underline{S}_{1}^{\prime}, \underline{S}_{1} \underline{M}_{5} \underline{S}_{1}{ }^{\prime}$, and $\mathrm{S}_{1} \mathrm{M}_{6} \underline{S}_{1}^{\prime}$ separately. The calculation was carried out and the results are listed in the columns $\underline{S}_{i} M \underline{S}_{j}$ ' under their corresponding force constant symbols. Each of these products multiplied by its corresponding geometrical coefficient contributes one term to the expression for F_{11}.

$$
\begin{aligned}
\therefore \quad F_{1,1}= & {\left[F_{s}+\sigma a_{1} f_{m}^{\prime}+\sigma a_{2} f_{m}+a_{4} f_{p}\right] S_{1} E S_{1}^{\prime} } \\
& +\frac{1}{3} a_{5} F_{m}^{\prime} S_{1} \underline{M}_{2} \underline{S}_{1}^{\prime}+\frac{1}{3} a_{6} F_{m} S_{1} \underline{M}_{1} \underline{S}_{1}^{\prime} \\
& +a_{7} F_{p}^{\prime} \underline{S}_{1} \underline{M}_{6} \underline{S}_{1}^{\prime}+a_{8} F_{p} \underline{S}_{1} \underline{M}_{5} \underline{S}_{1}^{\prime}
\end{aligned}
$$

The coefficients for individual force constants are listed along under SCGC, symmetry coordinate geometrical coefficient, in Table VIII.

Among the 23 symmetry coordinates used there are two redundant coordinates which represent rotation. These redundant cocrdinates were eliminated
by another transformation operation. The transformation matrix L has the form

$$
\left|\begin{array}{ccc}
1 & & \\
& 1 / \sqrt{2} & 1 / \sqrt{2} \\
& -1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right|
$$

and
$\underline{L}^{\prime} \underline{E}_{2 u} L=\left|\begin{array}{ccc}1 & & \\ & 1 / \sqrt{2} & \\ & -1 / \sqrt{2} & \left\|\begin{array}{llll}c & f & h & p \\ f & a & e & g \\ h & e & b & k \\ p & g & k & d\end{array}\right\| \\ & 1 / \sqrt{2} & 1 \\ & 1 / \sqrt{2} & \\ & -1 / \sqrt{2} & \\ & 1 / \sqrt{2}\end{array}\right|$

$$
=\left\lvert\, \begin{array}{clcl}
c & (f-p) \sqrt{2} & h & (f+p) / \sqrt{2} \\
(f-p) / \sqrt{2} & (a-2 g+d) / 2 & (e-k) / \sqrt{2} & (a-d) / \sqrt{2} \\
h & (e-k) / \sqrt{2} & b & (e+k) / \sqrt{2} \\
(f+p) / \sqrt{2} & (a-d) / \sqrt{2} & (e+k) / \sqrt{2} & (a+2 g+d) / 2
\end{array}\right.
$$

$F_{i, j}$	F_{s}	f_{s}	F_{b}	f_{b}	f_{m}^{\prime}	f_{m}
18,18				1	σc_{1}	σc_{2}
18,19					$\sigma f_{1} / \sqrt{2}$	$\sigma f_{2} / \sqrt{2}$
18,20				ρ^{2}		
19,19	$1 / 2$		$1 / 2$	$\rho^{2} / 8$	A^{*}	B^{*}
19,20					$\sqrt{\frac{3}{8}} \sigma(1-\rho)$	$\sqrt{\frac{\sqrt{2}}{2} \sigma(\rho+1 / 2)(1+\rho)}$
20,20		1			σb_{1}	σb_{2}

$$
{ }^{*} A=\frac{\sigma \rho}{16}\left(10 \rho^{2}+13 \rho+2\right) \quad B=\frac{\sigma}{16}\left(16+28 \rho+13 \rho^{2}\right)
$$

TABLE VI. Geometrical Coefficients.

Patic Vi. Bymetry Coordinates of Eerzene.

Clase${ }^{\text {h }} \mathrm{g}$	$\begin{aligned} & \text { yumetry } \\ & \text { coordinate } \end{aligned}$	Nonvani bing mambers of transformation atatrix						$\begin{aligned} & \text { Horualizing } \\ & \text { factor } \end{aligned}$	Internal coordinates
	S_{1}	1	1	1	1	1	1	$6^{-1 / 2}$	R
	s_{2}	1	1	1	1	1	1	$6^{-1 / 2}$	\underline{r}
${ }^{4} 2 \mathrm{~g}$	s_{3}	1	1	1	1	1	1	$6^{-1 / 2}$	$r_{\text {O }}$
B_{10}	3_{12}	-1	1	-1	1	-1	1	$6^{-1 / 2}$	$\mathrm{R}_{0} \underline{\alpha}$
	${ }^{3} 3$	-1	1	-1	1	-1	1	$6^{-1 / 2}$	\underline{r}
$\mathrm{B}_{2 \mathrm{u}}$	314	-1	1	-1	1	-1	1	$6^{-1 / 2}$	R
	S_{15}	-1	1	-1	1	-1	1	$6-1 / 2$	$r_{0} \boldsymbol{\beta}$
$\mathrm{E}_{1 \mathrm{ga}}$	362	-2	1	1	-2	1	1	$12^{-1 / 2}$	$\mathrm{R}_{0} \underline{\underline{\alpha}}$
	$\mathrm{S}_{7 a}$	-2	1	1	-2	1	1	$12^{-1 / 2}$	\underline{r}
	38 a	-1	2	-1	-1	2	-1	12-1/2	\underline{R}
	39 a	0	-1	1	0	-1	1	1/2	$\mathrm{r}_{\circ} \boldsymbol{\beta}$
$\mathrm{s}_{1 \mathrm{gb}}$	S6b	0	-1	1	0	-1	1.	1/2	$\mathrm{R}_{0} \underline{\alpha}$
	${ }^{5} 76$	0	-1	1	0	-1	1	1/2	\underline{r}
	$\mathrm{S}_{8 \mathrm{~b}}$	-1	0	1	-1	0	1	1/2	R
	$\mathrm{S}_{9 \mathrm{~b}}$	2	-1	-1	2	-1	-1	$12^{-1 / 2}$	$\mathrm{r}_{\circ} \beta$
$E_{\text {2ua }}$	$\mathrm{S}_{13 \mathrm{Ba}}$	0	1	1	0	-1	-1	1/2	$r_{\circ} \beta$
	S19a	-1	0	\downarrow	1	0	-1	1/2	Ii
	3208	-2.	-1	1.	2	1	-1	$1,-1 / 2$	\underline{r}
	$3_{\text {ra }}$	-2	-1	1	2	1	-1	$12^{-1 / 2}$	Ro $\underline{\alpha}$
$\mathrm{E}_{2 \mathrm{ub}}$	${ }^{5} 18 \mathrm{~b}$	2	1	-1	-2	-1	1	$1=-1 / 2$	$r_{\text {of }}$
	3_{196}	1	2	1	-1	-2	-1	$12^{-1 / 2}$	$\underline{\sim}$
	5200	0	1	1	0	-1	-1	1/2	\underline{T}
	$3_{x} \mathrm{~b}$	0	1	1	0	-1	-1	$1 / 2$	$F_{0} \underline{\alpha}$

TABLE VIII. Members of F Matrix.

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Class} \& \multirow[t]{2}{*}{\(F_{i j}\)} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Internal } \\
\& \text { coordin- } \\
\& \text { ates in- } \\
\& \text { volved }
\end{aligned}
\]} \& \multicolumn{2}{|r|}{\(F_{s}\)} \& \multicolumn{2}{|r|}{fs} \& \multicolumn{2}{|r|}{\(F_{b}\)} \& \multicolumn{2}{|r|}{\(f\)} \& \multicolumn{2}{|r|}{\(f_{m}^{\prime}\)} \& \multicolumn{2}{|r|}{\(f_{m}\)} \& \multicolumn{2}{|r|}{\(f_{p}^{\prime}\)} \& \multicolumn{2}{|r|}{\(f_{p}\)} \& \multicolumn{2}{|r|}{\(F_{m}^{\prime}\)} \& \multicolumn{2}{|r|}{\(F_{m}\)} \& \multicolumn{2}{|c|}{\(F_{p}^{\prime}\)} \& \multicolumn{2}{|c|}{\(F_{p}\)} \& \multirow[t]{2}{*}{\(F_{i j}\)} \& \multirow[t]{2}{*}{Class} \\
\hline \& \& \& \(S_{i} M S_{j}^{\prime}\) \& SCGC \& \(S_{1} M S_{j}^{\prime}\) \& SCGC \& SiMS \({ }^{\prime}\) \& SCGC \& SMS \({ }^{\prime}\) \& SCGC \& SiMS \({ }^{\prime}\) \& SCGC \& SiMS \({ }_{\text {j }}^{\prime}\) \& SCGC \& \(S_{i} M S_{j}^{\prime}\) \& SCGC \& SiMS \({ }_{\text {j }}\) \& SCGC \& \& \\
\hline \(A_{19}\) \& \[
\begin{aligned}
\& F_{1,1} \\
\& F_{1,2} \\
\& F_{2,2} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { RR } \\
\& R r
\end{aligned}
\]
\[
r r
\] \& 1 \& 1 \& 1 \& 1 \& \& \& \& \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 1
\end{aligned}
\] \& \(\sigma a_{1}\) 2oe, \(\sigma b_{1}\) \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 1
\end{aligned}
\] \& \[
\begin{gathered}
\sigma a_{2} \\
2 \sigma e_{2} \\
\sigma b_{2} \\
\hline
\end{gathered}
\] \& 0 \& - \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 2
\end{aligned}
\] \& \[
\begin{aligned}
\& a_{4} \\
\& 22 e_{4} \\
\& 2 b_{4} \\
\& \hline
\end{aligned}
\] \& 0 \& - \& 2 \& 2a/3 \& 0 \& Sce \& 8 \& \(8 a_{8}\) \& \[
\begin{aligned}
\& F_{1,1} \\
\& F_{1,2} \\
\& F_{2,2}
\end{aligned}
\] \& \(A_{19}\) \\
\hline \(\mathrm{A}_{29}\) \& \(F_{3,3}\) \& \(\beta \beta\) \& \& \& \& \& \& \& 1 \& 1 \& 1 \& \(\sigma c_{1}\) \& 1 \& \(\sigma c_{2}\) \& 2 \& \(2 C_{3}\) \& 0 \& - \& \& \& \& \& \& \& \& \& \(\mathrm{F}_{3,3}\) \& \(A_{29}\) \\
\hline \(B_{1 u}\) \& \[
\begin{aligned}
\& F_{12,12} \\
\& F_{12,13} \\
\& F_{13,33}
\end{aligned}
\] \& \[
\begin{aligned}
\& \alpha \alpha \\
\& \alpha r \\
\& r r
\end{aligned}
\] \& \& \& 1 \& 1. \& 1 \& 1 \& 1 \& \(\rho^{2} / 4\) \& 1 \& \(\sigma d_{1} / 2\) \(\sigma k_{1}\) \(\sigma b_{1}\) \& 1 \& \[
\begin{gathered}
\sigma d_{2} / 2 \\
\sigma K_{2} \\
\sigma b_{2} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
2(1+f) \\
2 \\
2
\end{gathered}
\] \& \[
\begin{array}{|c|}
\hline-\frac{1}{4}(1+\rho) \\
2 k_{3} \\
2 b_{3} \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& - \& 1 \& \(d^{5} / 3\) \& 1 \& d/3/3 \& 2 \& \(2 d_{7}\) \& 0 \& - \& \[
\begin{aligned}
\& F_{12,12} \\
\& F_{12,13} \\
\& F_{13,13}
\end{aligned}
\] \& \(B_{14}\) \\
\hline \(\mathrm{B}_{2 u}\) \& \[
\begin{aligned}
\& F_{\mu, 14} \\
\& F_{14,15} \\
\& F_{15,15}
\end{aligned}
\] \& \[
\begin{aligned}
\& R R \\
\& R \beta \\
\& \frac{\beta \beta}{\alpha \alpha}
\end{aligned}
\] \& 1 \& 1 \& \& \& \& \& 1 \& 1 \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 1 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
\(\sigma a_{1}\) \\
\(20 f_{1}\) \\
\(\sigma C_{1}\)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 1
\end{aligned}
\] \& \& \(2^{\prime 2}(1+\rho)\) \& \(2(1+p) c_{3}\) \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 2 \\
\& 21
\end{aligned}
\] \& \[
\begin{aligned}
\& a_{4} \\
\& 2 f_{4} \\
\& 2 c_{4} \\
\& \hline
\end{aligned}
\] \& 2 \& \(2 a_{5} / 3\) \& 0 \& - \& 0 \& - \& 0 \& - \& \begin{tabular}{l}
\(F_{1,14}\) \\
\(F_{1,15}\) \\
\(F_{15,15}\)
\end{tabular} \& \(B_{2 u}\) \\
\hline \(E_{19}\) \& \(F_{6,6}\)
\(F_{6,7}\)
\(F_{6,8}\)
\(F_{6,9}\)
\(F_{7,7}\)
\(F_{7,8}\)
\(F_{7,9}\)
\(F_{8,8}\)
\(F_{8,9}\)
\(F_{9,9}\) \& \(\alpha \beta\)
\(\alpha \alpha\)
\(\alpha R\)
\(\alpha \beta\)
\(\gamma r\)
\(r R\)
\(r \beta\)
\(R R\)
\(R \beta\)
\(\beta \beta\) \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& \begin{tabular}{l}
\[
\rho^{2} / 4
\]
\[
-
\] \\
1
\end{tabular} \& \[
\begin{gathered}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
-\sqrt{3} \\
1
\end{gathered}
\] \& \(\sigma d_{1} / 2\)
\(\sigma k_{1}\)
\(\sigma g_{1} / 2\)
\(\sigma b_{1}\)
\(\sigma e_{1}\)
\(\sigma a_{1}\)
\(-\sqrt{3} \sigma f_{1}\)
\(\sigma c_{1}\) \& \[
\begin{gathered}
1 \\
1 \\
1 \\
1 \\
1 \\
-\sqrt{3} \\
1
\end{gathered}
\] \& \(\sigma d_{2} / 2\)
\(\sigma k_{2}\)
\(\sigma g_{2} / 2\)
\(\sigma b_{2}\)
\(\dot{\sigma} e_{2}\)
\(\sigma a_{2}\)
\(-\sqrt{3} \sigma f_{2}\)
\(\sigma c_{2}\) \& \begin{tabular}{l}
\(2+\frac{3}{2} \rho\) \\
\(2+\frac{f}{2}\) \\
\(-\sqrt{3}\). \\
\(3 / 2\) \\
\(\sqrt{3}\) \\
\(2+\frac{3}{2} p\)
\end{tabular} \& \begin{tabular}{l}
\(-\frac{f}{3}\left(2+\frac{3}{2}\right)\) \(\left(2+f_{2}\right) k_{3}\) \\
\(\sqrt{3} 9 / 8\) \\
\(3 b_{3} / 2\) \\
\(\sqrt{3} h_{3}\) \\
\(\left(2+\frac{3}{2} p\right) C_{3}\)
\end{tabular} \& \[
\begin{gathered}
1 / 2 \\
1 / 2 \\
1 \\
-\sqrt{3} \\
1 / 2 \\
1 \\
\sqrt{3} \\
1 \\
-\sqrt{3} \\
3 / 2
\end{gathered}
\] \& \[
\begin{array}{|c|}
\hline c_{4} / 4 \\
k_{4} / 2 \\
s_{4} / 2 \\
-\sqrt{3} p_{4} / 2 \\
b_{4} / 2 \\
e_{4} \\
\sqrt{3} h_{4} \\
a_{4} \\
-\sqrt{3} f_{4} \\
3 c_{4} / 2 \\
\hline
\end{array}
\] \& 1
\[
3 / 2
\] \& \begin{tabular}{l}
\(d_{5} / 3\) \\
95/3 \\
\(a_{5} / 2\)
\end{tabular} \& 1
1

$1 / 2$ \& $d_{6} / 3$
$g_{6} / 3$

$a_{6} / 6$ \& $5 / 2$
1

$3 / 2$ \& $5 d_{7} / 2$
g_{7}

$3 a_{7} / 2$ \& $1 / 2$
1

$1 / 2$ \& $d_{8} / 2$
g_{8}

$a_{8} / 2$ \& $$
\begin{aligned}
& F_{6,6} \\
& F_{6,7} \\
& F_{6,8} \\
& F_{6,9} \\
& F_{7,7} \\
& F_{7,8} \\
& F_{7,9} \\
& F_{8,8} \\
& F_{8,9} \\
& F_{9,9} \\
& \hline
\end{aligned}
$$ \& E_{19}

\hline $E_{2 u}$ \& $$
\begin{aligned}
& F_{18,18} \\
& F_{18,19} \\
& F_{18,20} \\
& F_{18, r} \\
& F_{19,19} \\
& F_{19,20} \\
& F_{19, r} \\
& F_{20,20} \\
& F_{20, r} \\
& F_{r, r}
\end{aligned}
$$ \& $\beta \beta$

βR
βr
$\beta \alpha$
$R R$
$R r$
$R \alpha$
$r r$
$r \alpha$
$r \alpha$
$\alpha \alpha$ \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1
0

1 \& 1
-

$\rho^{2} / 4$ \& | 1 |
| :--- |
| 1 $\sqrt{3}$ $\sqrt{3}$ |
| 1 |
| 1 |
| 1 | \& σc_{1}

σf_{1}
σa_{1}
$\sqrt{3} \sigma e_{1}$
$\sqrt{3} \sigma g_{1} / 2$
σb_{1}
σk_{1}

$\sigma d_{1} / 2$ \& $$
1
$$

$$
\begin{array}{r}
1 \\
\sqrt{3} \\
\sqrt{3} \\
1 \\
1 \\
1
\end{array}
$$ \& σc_{2}

σf_{2}
σa_{2}
$\sqrt{3} \sigma e_{2}$
$\sqrt{3} \sigma g_{2} / 2$
σb_{2}
σk_{2}

$\sigma d_{2} / 2$ \& \[
$$
\begin{gathered}
2+\frac{\pi}{2} \\
-\sqrt{3} \\
\sqrt{3} \\
\\
1 / 2 \\
2+\frac{3}{2} \rho \\
2+\frac{9}{2} \\
\hline
\end{gathered}
$$

\] \& | $\left(2+\frac{f}{1}\right) c_{3}$ |
| :--- |
| $-\sqrt{3} h_{3}$ |
| $-\sqrt{3} \rho / 8$ |
| $b_{3} / 2$ $\left(2+\frac{3}{2} f\right) k_{3}$ - $\frac{f}{8}\left(2+\frac{t}{2}\right)$ | \& \[

$$
\begin{gathered}
1 / 2 \\
1 \\
-\sqrt{3} \\
\sqrt{3} \\
1 \\
\sqrt{3} \\
\sqrt{3} \\
3 / 2 \\
3 / 2 \\
3 / 2
\end{gathered}
$$
\] \& $\bar{c}_{4} / 2$

f_{4}
$-\sqrt{3} h_{4}$
$\sqrt{3} p_{4} / 2$
a_{4}
$\sqrt{3} e_{4}$
$\sqrt{3} g_{4} / 2$
$3 b_{4} / 2$
$3 k_{4} / 2$

$3 d_{4} / 4$ \& $$
\begin{aligned}
& 1 / 2 \\
& \sqrt{3}
\end{aligned}
$$

$$
1
$$ \& \[

$$
\begin{aligned}
& a_{5} / 6 \\
& g_{5} / \sqrt{3} \\
& d_{5} / 3
\end{aligned}
$$
\] \& $3 / 2$

$\sqrt{3}$

1 \& $$
\begin{aligned}
& a_{6} / 2 \\
& g_{6} / \sqrt{3} \\
& d_{8} / 3
\end{aligned}
$$ \& $3 / 2$

$3 \sqrt{3}$
$7 / 2$ \& $3 a_{7} / 2$
$3 \sqrt{3} g_{7}$

$7 d_{7} / 2$ \& $9 / 2$
$3 \sqrt{3}$
$3 / 2$ \& $9 a_{8} / 2$
$3 \sqrt{3} g_{8}$

$3 d / 2$ \& | $\mathrm{F}_{18,10}$ |
| :--- |
| $F_{18,19}$ |
| $F_{18,20}$ |
| $\mathrm{F}_{18, \mathrm{r}}$ |
| $F_{19,19}$ |
| $F_{19,20}$ |
| $F_{19, r}$ |
| $F_{20,20}$ |
| $F_{20, r}$ |
| Fr,r | \& $E_{2 u}$

\hline
\end{tabular}

SCGC $=$ Symmetry coordinate geometrical coefficient
$\rho=r_{0} / R_{0}=0.7770$
$\sigma=\left(1+\rho+\rho^{2}\right)^{-1}=0.4200$

Example: $\quad F_{12}=2 \sigma e_{1} f_{m}^{\prime}+2 \sigma e_{2} f_{m}+2 e_{4} f_{p}$

The final form of the F matrix given is Table IX and Table X lists the numerical values of the coefficients of the force constants which are involved in the members of the F matrix. Table XI gives the reciprocal of the dynamic matrix, G matrix, while the numerical values of its members are given in Table XII.

Table IX. F Matrix.

$$
\begin{aligned}
& \underline{E}=\left\lvert\, \begin{array}{lll}
\underline{P}\left(A_{1 g}\right) & & \\
& \underline{E}\left(A_{2 g}\right) & \\
& & \underline{E}\left(B_{l u}\right)
\end{array}\right. \\
& F\left(B_{2 u}\right) \\
& F\left(E_{1 g a}\right) \\
& \mathrm{F}\left(\mathrm{E}_{1 \mathrm{~g} \mathrm{~g}}\right) \\
& \underline{E}\left(\mathbb{L}_{\text {Lu }}\right) \\
& \underline{E}\left(E_{2 u i}\right) \\
& F\left(A_{1 g}\right)=\left|\begin{array}{ll}
F_{1,1} & F_{1,2} \\
F_{1,2} & F_{2,2}
\end{array}\right| \\
& E\left(A_{2 g}\right)=F_{3,3} \\
& E\left(B_{1 u}\right)=\left|\begin{array}{ll}
F_{12,12} & F_{12,13} \\
F_{12,13} & F_{13,13}
\end{array}\right| \\
& E\left(3_{2 u}\right)=\left|\begin{array}{ll}
F_{14,14} & F_{14,15} \\
F_{14,15} & F_{15,15}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
F_{6,7} & F_{7,7} & F_{7,8} & F_{7,9}
\end{array} \\
& \begin{array}{llll}
\mathrm{F}_{6,3} & \mathrm{~F}_{7,8} & \mathrm{~F}_{3,8} & \mathrm{~F}_{3,9}
\end{array} \\
& \begin{array}{llll}
F_{6,9} & F_{7,9} & F_{8,9} & F_{9,9}
\end{array} \\
& E\left(E_{2 u a}\right)=E\left(\mathrm{~b}_{2 \mathrm{ub}}\right)=\left|\begin{array}{lll}
F_{18,18} & F_{18,19} & F_{18,20} \\
F_{18,19} & F_{19,19} & F_{19,20} \\
F_{13,20} & F_{19,20} & F_{20,20}
\end{array}\right|
\end{aligned}
$$

```
Tart in Kmerieal iembe of wid.
```

herber

we trix

2105 fl

$F_{1,1}$	1		. 3204	1.619	1
F1,			-.aye	1.4805	1
$P_{2,2}$		1	.6531	1.3637	1

Dlass 8
$\mathrm{F}_{3,3} \quad 1-1.9171 \quad .6301-1.2870$

Cless $5_{1 u}$

Ciass $\mathrm{B}_{2 \mathrm{u}}$

$F_{14,14}$	1.3804	1.6196	1	1	
$F_{14}, 15$		-.7219	-1.0101	-1.7520	
$F_{25}, 15$	1	-1.3171	0.6301	-2.2870	3

$\mathrm{Olesa}_{51} \mathrm{~F}_{6}$

F6,5			1.1509	-. 2393	. 2951	-. 3074	.1132	$-2 / 4$	1/4-.6<50	3/4
56,7				-. 5051	-. 6.609	-1.0342	-. 1132			
F6, 8				-. 1402	-. 1962		-. 3304	$\sqrt{1 / 1} / 4$	$\sqrt{3 / 4} \cdot 4165$	$\sqrt{3} \cdot 4$
F6,9						. 1682	-. 3047			
${ }^{8} 7.7$		1		.6301	1.3699	$\therefore .2500$	-500			
$\mathrm{F}_{7}, 3$				-.0448	. 7443		. 50%			
87.7						. 7500	.750			
F3,	1			-3,304	1.5196		1	3/4	3/41.1<50	1/4
F8, ${ }^{\text {F }}$. 6251	- 748		1.5000			
F9,9			1	-1. 2171		-2.3370	. . $0^{\text {ju0 }}$			

Olass Equ

$F_{13,13}$			-	-1.9171	. 6301	-1.5370	. 7500			
$\mathrm{F}_{19,19}$				-058<	-. 2571	. 1190	-. 3642			
Fio,20						-. 7500	-.7,00			
$\mathrm{F}_{19} 1919$	1/2	1/:	. 0755	- 2884	1.1972	-. 119	1.2505	-1	2	-1
$\square_{19} 920$				-2,14	1.1 .074	- 092	- 6			
F23,20	1			- 301	1.3699	- 150	. 7500			

TABLE XI. G Matrix.

$$
\underline{G}=\left|\begin{array}{llllll}
\underline{j}\left(A_{1 g}\right) & & & & & \\
& \underline{G}\left(A_{2 g}\right) & & & & \\
& & \underline{G}\left(B_{1 u}\right) & & & \\
& & & \underline{G}\left(B_{2 u}\right) & & \\
& & & \underline{G}\left(E_{1 g a}\right) & & \\
& & & & \underline{G}\left(E_{1 g b}\right) & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & \left(E_{2 u b}\right)
\end{array}\right|
$$

$$
\begin{aligned}
& \underline{G}\left(A_{1 g}\right)=\left|\begin{array}{cc}
1 / M & -1 / M \\
-1 / M & 1 / M+1 / m
\end{array}\right| \\
& \underline{G}\left(A_{2 g}\right)=(P+1)^{2 / M+1 / m} \\
& \underline{g}\left(B_{1 u}\right)=\left|\begin{array}{cc}
12 / M & 12^{1 / 2} / M \\
12^{1 / 2 / M} & 1 / M+1 / m
\end{array}\right| \\
& \underline{a}\left(B_{2 u}\right)=\left|\begin{array}{cc}
3 / M & -3^{1 / 2 / M} \\
-3^{1 / 2} / M & 1 / M+1 / m
\end{array}\right|
\end{aligned}
$$

$$
G\left(E_{b^{G}}\right)=G\left(E_{1 g b}\right)=\left|\begin{array}{cccc}
15 / 2 M & 2 \frac{1}{2} / 2 M & -27^{\frac{1}{2}} / 2 M & -3^{\frac{1}{2}}(5 \rho+2) / 4 M \\
27^{\frac{1}{G} / 2 M} & 1 / M+1 / m & -1 / 2 M & -3 \rho / 4 M \\
-27^{\frac{1}{2}} / 2 M & -1 / 2 M & 5 / 2 M & 3(\rho+2) / 4 M \\
-3^{\frac{2}{2}}(5 \rho+2) / 4 M & -3 / 4 M & 3(\rho+2) 4 M & \left(5 \rho^{2}+4 \rho+8\right) / 8 M+1 / \mathrm{M}
\end{array}\right|
$$

$$
\underline{G}\left(E_{2 u \mathrm{a}}\right)=\underline{G}\left(\mathrm{E}_{2 \mathrm{ub}}\right)=\left|\begin{array}{ccc}
\left(9 \rho^{2}+12 \rho+8\right) / 8 \mathrm{M}+1 / \mathrm{m} & -6^{\frac{1}{2}}(3 \rho+2) / 4 \mathrm{M} & 3 \rho / 4 \mathrm{M} \\
-6^{\frac{1}{2}}(3 \rho+2) / 4 \mathrm{M} & 3 / M & -6^{\frac{3}{2}} / 2 \mathrm{M} \\
3 \rho / 4 \mathrm{M} & -6^{\frac{1}{2}} / 2 i 4 & 1 / M+1 / \mathrm{m}
\end{array}\right|
$$

$$
M=\text { mas of } C \text { atom }
$$

$$
m=\text { mass of H or D atom }
$$

$$
\rho=r_{0} / R_{0}
$$

Table XII. Numerical Values of Members of G Matrix.

$$
\begin{aligned}
& G\left(A_{1 g}\right)=\left|\begin{array}{rr}
.0833 & -.0833 \\
-.0833 & 1.0753 *
\end{array}\right| \\
& \underline{G}\left(A_{2 g}\right)=1.2550 * \\
& G\left(B_{1 u}\right)=\left|\begin{array}{cc}
.9992 & .2884 \\
.2884 & 1.0753 *
\end{array}\right| \\
& G\left(B_{2 u}\right)=\left|\begin{array}{rr}
.2498 & -.1442 \\
-.1442 & 1.0753 *
\end{array}\right| \\
& G\left(E_{1 g a}\right)=G\left(E_{1 g b}\right)=\left|\begin{array}{cccc}
.6245 & .2163 & -.2163 & -.2122 \\
.2163 & 1.0753 * & -.0416 & -.0485 \\
-.2163 & -.0416 & .2082 & .1734 \\
-.2122 & -.0485 & .1734 & 1.1391 *
\end{array}\right| \\
& \underline{G}\left(E_{2 u a}\right)=\underline{G}\left(E_{2 u b}\right)=\left|\begin{array}{lrr}
1.2289 * & -.2208 & .0485 \\
-.2208 & .2498 & -.1020 \\
.0485 & -.1020 & 1.0753^{*}
\end{array}\right|
\end{aligned}
$$

* For $\mathrm{C}_{6} \mathrm{D}_{6}$ the number 0.4960 is to be deducted from the values of these members.

From the calculations of the previous chapter, it may be seen that there are 16 force constants in the potential energy function of planar vibrations, but that only 12 appear in the symmetry coordinate F matrix. In all there are 14 different force constants to be evaluated, namely, f_{s}^{\prime}, $f_{s}, F_{s}^{\prime}, F_{s}, f_{m}^{\prime}, f_{m}, f_{p}^{\prime}, f_{p}, F_{m}^{\prime}, F_{m}, F_{p}^{\prime}, F_{p}, f_{b}$, and F_{b}. The equilibrium condition gives two equations relating some of the constants (Eq. III, p. 23). Therefore 12 frequencies are required to calculate the remaining constants.

Of the 21 planar vibrations of benzene, classes $E_{1 g}$ and $E_{2 u}$ are double degenerate and classes $B_{1 g}, B_{l u}$ and $A_{2 g}$ are inactive in both infrared and Raman spectra. Various investigators have calculated the inactive frequencies from the product rule or from the force constants obtained from the active frequencies by the use of force fields different from the one used in this investigation. It was felt preferable not to use these calculated values of inactive frequencies for the calculation of force constants for a new force field. Thus, benzene spectra give only 9 frequencies. Additional data must be obtained before the determinants can be solved for all force constants; these data are obtained from the spectra of hexadeuterobenzene.

If the frequencies were put into the determinants and the determinants were developed, there would be a set of equations containing 12 unknown to the 4 th power, which are too complicated for a rigorous algebraic solution. The trial-and-error method which had been used conveniently in the triborine triamine case is to be preferred.

Before starting the calculation, a literature survey was made to obtain as much information as possible from previous work. Heath and Linnett (19) assume that the Lennard-Jones relation for the repulsive
force between molecules of an inert gas can be applied to the repulsive force between nonbonded atoms. The relation is $V=a q^{-12}-b q^{-6}$. Furthermore, they argue that the contribution of the second term to the values of derivatives of V is small as compared to the first term and can be neglected. If this assumption can be accepted, then

$$
\frac{1}{q 0}\left(\frac{\partial V}{\partial q}\right)_{0}=\frac{1}{13}\left(\frac{\partial^{2} V}{\partial q^{2}}\right)_{0}
$$

or

$$
f_{k}^{\prime}=f_{k} / 13
$$

It is interesting to note that, although this relation has not been used in Simanouti's work (25), the force constants given by him fit fairly well into the relation, as shown in Table XIII.

Table XIII**

k	$\mathrm{P}_{\mathrm{k} *}$	- $\mathrm{r}_{\mathrm{K}} / 13$	$\mathrm{f}^{\prime}{ }^{*}$
$\mathrm{H}-\mathrm{H}$	0.1	-. 008	-0.0
F-F	1.35	-. 104	-0.3
$\mathrm{c}^{\text {c-Cl }}$	0.65 .	-. 05	-0.1
$\mathrm{Br}-\mathrm{Br}$	0.5	-. 038	-0.1
C - H	0.4	-. 031	-0.05
C-F	1.3	-. 1	-0.1
$\mathrm{C}-\mathrm{Cl}$	0.6	-. 046	-0.1
$\mathrm{C}-\mathrm{Br}$	0.5	-. 038	-0.1
$\mathrm{H}-\mathrm{Cl}$	0.8	-. 062	-0.05
$\mathrm{Cl}-\mathrm{Br}$	0.55	-. 042	-0.1

* taken from reference 14.
** all quantities are in 105 dyne/cm.
Although one can not take the thirteen-fold relation in magnitude very seriously, since Simanouti's data for f_{k}^{\prime} give only one significant figure, it would be safe to assume that f_{k} is greater and f_{k}^{\prime} is smaller than zero. An inspection of Table X will reveal that, with a set of assumed nonbonded force constants, frequencies of class $A_{1 g}$ can be used to adjust the values of f_{s} and F_{s}, and that frequencies of class $E_{2 u}$ will then be suitable for the adjustment of f_{b} and F_{b}. As a first approximation, $f_{m}^{\prime}, f_{p}^{\prime}, F_{m}^{\prime}$, and
F_{p}^{\prime} were assumed to be zero, f_{p}^{\prime}, F_{m}, and F_{p} were given the values cf 0.07 , 0.07 , and 0.06, respectively (all figures are in units of 10^{5} dyne/cm.), and the five frequencies were used to adjust $f_{s}, F_{s}, f_{b}, F_{b}$, and f_{m}, since they are the five largest.

After several cycles of trial and error, it was found that the frequencies were conveniently fitted by the five force constants with the exception of ${ }^{\mathrm{V}} 19$, a hybrid of $\mathrm{C}-\mathrm{C}$ stretching and $\mathrm{C}-\mathrm{C}$ bending. A drastic change in the value of $\operatorname{Fl9} 19$ would not greatly improve the agrement. In order to fit this frequency the value of $\mathrm{F}_{18}, 19$ would have to be greater than zero, which contradicts to the predicted value of force constants based on the above-mentioned assumption. This point was confirmed by another series of calculations, shown in Table XVII, series 26-44.

In this series of calculations a somewhat different scheme was employed. Benzene and hexadeuterobenzene give six experimentally observed fundamentals in the symmetry class $E_{2 u}$. As Crawford and Miller point out, one of the six equations obtained by inserting the frequencies into the determinants cannot be used for the evaluation of force constants, because of dependency among the six equations. However there are six members in the F matrix block of class $E_{2 u}$. A value for one of the six members will have to be assumed. One can predict that the value of $\mathrm{F}_{18}, 20$ is small, and with an assumed value of $\mathrm{F}_{1} 8,20$ one can use the five frequencies to adjust the other five members.

The results given in series $26-44$ show that the value of $F_{18}, 20$ is rather unimportant compared to the other five members, and that a positive value for $\mathrm{F}_{18}, 19$ fits the frequency better.

Crawford and Miller (6) have given a positive value for $\mathrm{F}_{18}, 19$, though they obtain this positive value by assuming $F_{18,20}$ and $F_{19,20}$ to be zero. The disagreements between their values for the members of the F matrix and
and the signs of these members predicted by the above reasoning are listed in Table XIV for comparison.

Table XIV

Class	Member of F matrix	$C \& M$ symbol	C \& M value	Sign predicted
${ }^{A_{1 g}}$	$\mathrm{F}_{1,2}$	ξ	-0.420	-
$\mathrm{B}_{2 \mathrm{u}}$	$\mathrm{F}_{14,15}$	μ_{2}	$\begin{gathered} 1.30 \\ (\text { or }-0.203) \end{gathered}$)
$\mathrm{B}_{1 \mathrm{u}}$	$\mathrm{F}_{12,13}$	Ψ_{2}	0.106	- small
$\mathrm{E}_{2 \mathrm{u}}$	$\begin{aligned} & \mathrm{F}_{18,19} \\ & \mathrm{~F}_{18,20} \\ & \mathrm{~F}_{19,20} \end{aligned}$	μ_{4} τ_{4} ξ_{4}	1.40 $0 *$ $0 *$	- small
$\mathrm{E}_{1 \mathrm{~g}}$	$\begin{aligned} & \mathrm{F}_{6}, 7 \\ & \mathrm{~F}_{6}, 8 \\ & \mathrm{~F}_{6}, 9 \\ & \mathrm{~F}_{7}, 8 \\ & \mathrm{~F}_{7}, 9 \\ & \mathrm{~F}_{8}, 9 \end{aligned}$	$\begin{aligned} & \psi_{3} \\ & x_{3} \\ & \pi_{3} \\ & \xi_{3} \\ & \tau_{3} \\ & \mu_{3} \end{aligned}$	$\begin{aligned} & 0 * \\ & 0.181 \\ & 0.241 \\ & 0 * \\ & 0 * \\ & 0 \end{aligned}$	small - small

Since Crawford and Miller assume that some members are zero, it is not surprising that there are some disagreements in classes $E_{l g}$ and $E_{2 u}$. However, there are four frequencies in class $A_{l g}$, two from benzene spectra and two from hexadeuterobenzene spectra. Discounting one for the dependency, there should be enough information to solve for the values of all three members in the block concerned. One would expect the solution to be unique, and that no two valid setsof values can be obtained. But in the actual numerical approximation several points have to be considered.

First, in the normal coordinate treatment of molecular vibrations it is usually assumed that the vibrators can be treated as harmonic oscillators, and unless in the case where the anharmonicity data are complete, the correction for anharmonicity is ignored. Secondly, when the frequencies of isotopic molecule are used, the product rule is assumed to be exact. Thirdly,
the errors in experimental data are uncertain. And lastly, since the precision of experimental data limits the number of significant figures in the force constants calculated from them, one can not expect exact fit from the force constants. For instance, three significant figures are usually given for large force constants, such as $\mathrm{C}-\mathrm{H}$ stretching and $\mathrm{C}-\mathrm{C}$ stretching constants, but for smaller force constants, only one significant figure is given. Due to this limitation one would be satisfied when the agreement between the calculated frequencies and the observed data turns out to be within $l \%$, even in the case of the frequency which has been used to calculate the force constants. In other words, one may always expect some disagreement between calculated and observed frequencies.

There are, therefore, four factors which influence the value of force constants; namely, the anharmonicity of molecular vibrations, the agreement between product rule and the experimentally observed frequencies of isotopic molecules, the experimental error and the error in numerical approximation. Since no distinction can be made between the last two factors, it seems to be proper to combine them together and call it combined error.

The individual influence of these factors on the values of members in F matrix block of class $A_{2 g}$ had been studied by a rigorous algebraic analysis, the results of which are shown in Table XV. For the anharmonicity, the definition by Herzberg for diatomic molecules was used, i.e. $r=W_{e}$ ($1-2 x_{e}$) where W_{e} is the corrected frequency, and x is the percentage of anharmonicity and \boldsymbol{V} is the observed frequency. In columns I and II, combined errors of 1 and 0.5% were introduced respectively, but the difference between the predictions of the product rule and the actually observed frequencies had not been removed. In order to show the effect the extreme case
where the error in the benzene frequencies is taken to be positive and that in deuterobenzene frequencies negative was used. Column III shows the result of the calculation with no combined error in $\mathrm{C}-\mathrm{H}$ or $\mathrm{C}-\mathrm{D}$ stretching vibration, but an assumed error of 0.4% in $\mathrm{C}-\mathrm{C}$ stretching frequencies. In column IV it was assumed there is no error in the frequencies, but the anharmonicity of $\mathrm{C}-\mathrm{H}$ vibration was assumed to be 2.5% and the anharmonicity in $C-D$ vibration of hexadeuterobenzene was obtained by the use of product rule. In columns V and $V I$, a small error was assumed along with the anharmonicity which is treated in the same way as in the calculation in column IV. It may be seen from the results of these calculations:
(1) In the extreme case where the combined error in benzene frequencies is positive and that in hexadeuterobenzene is negative, the value of $F_{1,2}$ can shift from -0.420 to 1.3704 ;
(2) The values of $\mathrm{F}_{1,1}$ and $\mathrm{F}_{2,2}$ remain almost constant; and
(3) The consideration of anharmonicity in $\mathrm{C}-\mathrm{H}$ vibration and $\mathrm{C}-\mathrm{D}$ vibration increases the value of $\mathrm{F}_{1,2}$.

Table XV.

	I	II	III	IV	V	VI	$\begin{aligned} & \text { C \& M } \\ & \text { value } \end{aligned}$
$\mathrm{x}_{\mathrm{C}-\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	---	---	---	. 025	. 025	. 025	
${ }_{2}{ }_{C-C}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$. 01	. 005	. 004	---	. 005	. 005	
$\mathrm{z}_{\mathrm{C}-\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$. 01	. 005	---	---	. 005	. 0006	
${ }^{2} \mathrm{C}-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$	-. 01	-. 005	-. 004	---	-. 005	-. 005	
$\mathrm{z}_{\mathrm{C}-\mathrm{D}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$	-. 01	-. 005	---	---	-. 005	-. 0006	
$\mathrm{y}_{\mathrm{C}-\mathrm{C}}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	1.0201	1.0100	1.0080	1.0000	1.0100	1.0100	
$\mathrm{yC}_{\mathrm{CH}}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	1.0201	1.0100	1.0000	1.1080	1.1191	1.1093	
$\mathrm{y}_{\mathrm{C}-\mathrm{C}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$. 9801	. 9900	. 9920	1.0000	. 9900	. 9900	
$\mathrm{y}_{\mathrm{C}-\mathrm{D}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$. 9801	. 9900	1.0000	1.0933	1.0824	1.0920	
$\mathrm{Fl}_{1} \mathrm{l}^{*}$	7.8212	7.6286	7.8031	7.6384	7.6369	7.6320	7.83
$\mathrm{F}_{1,2 *}$	1.3704	. 3765	-. 3482	-. 0967	. 8808	. 1121	-. 420
F2, ${ }^{*}$	5.3943	5.1980	5.0198	5.6218	5.8357	5.6667	5.00

$z_{i}=$ assumed combined factor in ith vibration.
$y=(1-z)^{2} /(1-2 x)^{2}$

$$
\left(\frac{\lambda_{\mathrm{C}-\mathrm{C}} \lambda_{\mathrm{C}-\mathrm{H}^{\mathrm{YC}}-\mathrm{C}_{\mathrm{C}-\mathrm{H}}}^{\|\mathrm{G}\|}}{\|}\right)_{\mathrm{C}_{6} \mathrm{H} 6}=\left(\frac{\left.\lambda_{\mathrm{C}-\mathrm{C}} \lambda_{\mathrm{C}-\mathrm{D}^{\mathrm{y}} \mathrm{C}_{\mathrm{C}} \mathrm{Y}_{\mathrm{C}-\mathrm{D}}}^{\|G\|}\right)_{\mathrm{C}_{6} \mathrm{D} 6}}{}\right.
$$

* All in 10^{5} dyne/cm.

Since the results shown in Table XV prove that the combined error, which can not be avoided in numerical approximation, has a large influence on the value of $F_{1,2}$, it would be advisable not to use frequencies in class $A_{l g}$ to ascertain the value of force constant. Unfortunately the large number of members in other blocks makes a rigorous algebraic analysis impossible. However, it is interesting to introduce the anharomonicity to the frequencies in other classes to investigate the effect.

Little work has been done on the anharmonicity in benzene vibration. Ellis (7) has recorded some absorption bands of benzene in near infrared region. Based on his data the following calculation was made on the assumption that these bands are all C-H stretching vibration.

Table XVI.

n	wavelength	frequency cm^{-1}	```lst difference cm```	$\begin{gathered} \text { 2nd difference } \\ \mathrm{cm} \mathbf{0}^{-1} \end{gathered}$
0		----		
1		3080	3080	
2	1.66	6024	2944	-136
3	1.145	8734	2710	-234
4	0.885	11300	2566	-144

If the fundamental $3099 \mathrm{~cm}^{-1}$ is taken as the first frequency of the series, x_{e}, the anharmonicity would have a value of 2.64%. The assignment of the bands as the $\mathrm{C}-\mathrm{H}$ stretching vibrations is by no means certain. The introduction of anharmonicity is only for the purpose of studying its effect on the value of force constants. Hence, the actual value of x_{e} used in the calculation is rather unimportant because one would not intend to use the calculated force constants for other purposes. In the following calculation the average value of 2.6% for x_{e} was used for the $C-H$ vibration in class $E_{2 u}$. The anharmonicity in $a l l$ other types of vibration was assumed to be negligible. The results obtained from the calculation of classes $E_{2 u}$ and $E_{1 g}$ are listed in Table XVII, serial No. 46-70. The effect of anharmonicity in these two classes is not so prominent as that in class $A_{2 g}$, possibly because the anharmonicity of other vibrations than the $C-H$ stretching vibration cannot be ignored in these classes. But, roughly speaking, the general trend is the consideration of anharmonicity increases the calculated values of the off-diagonal members of the F matrix.
$l_{\text {Ellis (}}(7)$ and Barnes and Fulweilergive the corresponding value of x_{e} as 1.9 and 1.8% respectively, on the basis of the same assumption that had been made for the calculation of Table XVI. Although the numerical value is somewhat different from that used in this research, it has no effect on the conclusion reached in this research.

Since the complete anharmonicity data are not available, precise value of force constants, especially those for the nonbonded distances, cannot be obtained. A set of approximate force constants was therefore calculated by the use of some of the inactive frequencies obtained by Wilson by consideration of product rule. Table XVIII shows the value of force constants and the calculated frequencies of benzene and hexadeuterobenzene.

TABLE XVII. Evaluation of members of F matrix. class $\mathrm{E}_{2 \mathrm{u}}$

Serial
$\xrightarrow{\mathrm{NO}_{-}}$
Member of F matrix $F_{18,18} \mathrm{~F}_{18,19} \mathrm{~F}_{18,20} \mathrm{~F}_{19,19} \mathrm{~F}_{19,20} \mathrm{~F}_{20,20}$

Value of determinant
D (V18) D (V19) D (V20)

TABLE XVII. (Continued)

Serial Nos. $45-70$ with 2.6% anharmonicity in $\mathrm{C}-\mathrm{H}$ vibration.

LABLE XVII. (Continued)

TABLE XVIII. FORCE CONSTANTS OF BENZENE AND THE CALCULATED FREQUENCIES.

Force Constants
10^{5} dyne/cm.
0.07
5.47
0.60
7.94
0.33
0.87
-0.06
-0.33
0.05
0.04
0.74
0.48
-1.37
-0.26

O-H stretching,	f_{s}
f_{s}	

0.07
5.47
$\mathrm{C}-\mathrm{C}$ stretching, $\mathrm{F}_{\mathrm{g}}{ }^{\prime} \quad 0.60$
$\mathrm{C}-\mathrm{C}-\mathrm{C}$ bending, $\mathrm{F}_{\mathrm{b}} \quad 0.33$
$\mathrm{H}-\mathrm{C}-\mathrm{C}$ bending, $\mathrm{f}_{\mathrm{b}} \quad 0.87$
$\mathrm{C} \rightarrow$ H nonbonded distance, $\mathrm{f}_{\mathrm{m}}{ }^{\prime} \quad-0.06$
f_{n}
-0.33
$\begin{array}{ll}H-H \text { nonbonded distance, } f_{p}^{\prime} & 0.05 \\ f_{p}^{\prime} & 0.04\end{array}$
C-C nonbonded distance, meta, $F_{m}^{\prime} \quad 0.74$
0.48

C-C nonbonded distance, para, F_{p} (-1.37
-0.26

Calculated Frequenciee

Class	C6H6				C6D6		
	Frequency number	Calculated frequency cm^{-1}	Assigned frequency $\mathrm{cm}-1$	$\begin{gathered} \% \\ \text { Diff } \end{gathered}$	Calculated frequency $\mathrm{c}-1$	Assigned frequency $\mathrm{cm}-\mathrm{I}$	$\%$ Diff
$A_{1 g}$	1	995	(992)	0.3	939	(943)	-0.4
	2	3066	3062	0.1	2298	2293	0.2
$\begin{aligned} & A_{2 g} \\ & B_{1 u} \end{aligned}$	3	1232	1326		958	1037	
	12	1018	(1010)	0.8	961	(903)	-0.2
	13	3096	3060	1.2	2320	2290	1.4
B_{24}	14	1853	1648		1800	1571	
	15	1145	1110		810	825	
$E_{1 g}$	6	622	(606)	2.6	573	(577)	-0.1
	7	3081	3047	1.1	2257	2265	-0.3
	8	1600	(1596)	0.3	1542	1552	-0.6
	9	1128	1178	-4.3	843	867	-2.8
E_{24}	18	1012	(1037)	-2.5	795	(813)	-2.2
	19	1499	(1485)	0.9	1316	(1333)	-1.1
	20	3072	(3080)	-0.3	2279	(2294)	-0.5

()--- Used to evaluate force constants.

DISCUSSION
Anharmonicity and Force Constants.
The calculation of force constants serves for two purposes, namely, the reproduction of the observed frequencies by calculation and the knowledge of the forces among atoms in the molecule concerned. Chemists are interested in the latter rather than the former in seeking an understanding of the nature of bonds. From the calculation of force constants of benzene in the previous chapter it may be seen that the anharmonicity in vibrations has a large influence on the values of the off-diagonal members of the F matrix, so that the influence is prominent and cannot be ignored on the value of those force constants representing the forces between nonbonded atoms. A set of force constants calculated from the observed frequencies without consideration of anharmonicity will not give a real picture of the forces among the atoms. Therefore, evaluation of the force constants for the nonbonded distances would have to await complete anharmonicity data for benzene vibrations.

Urey-Bradley Force Field.
This force field is a combination of the valence force field and the central force field, or rather a valence force field with further interpretation of the valence force constants. It may be seen from a comparison of Equations I and III that the coefficients of various terms in Equation IV are equivalent to ordinary valence force constants, though in this force field they are interpreted as linear combinations of force constants, instead of considering them individually as the force constants of any bond or the interactions between coordinates. Treated in the manner, the force constants are independent to surroundings if intermolecular forces are neglected. Therefore one can expect to be able to transfer these force
constants from molecule to molecule, and to use them as representative of the forces among atoms. It seems proper to say that these force constants should be used for the correlation of force constants with bond lengths and the nature of chemical bonds, while the ordinary valence force constants should be used in the comparison of bond energies of various bonds, since the rupture of bonds are accompanied by changes in nonbonded distances.

Furthermore, it is assumed that the forces among atoms are not zero in the equilibrium position. Since the nuclear charge and the electronic cloud do not vanish when nucleus are at their equilibrium positions, it is more reasonable to assume forces do exist there.

Physical Meaning of Negative Force Constant.
In the valence force field the first derivatives of potential energy are assumed to be zero, while the second derivatives must be positive. Otherwise the frequency would be imaginary and the compound would be unstable. In the calculations of this research some of the force constants acquire negative values. The sign of the first derivative indicates whether the force is a repulsive or an attractive force. The negative values of second derivatives are puzzling at first sight. However these force constants represent the forces in nonbonded distances and the nonbonded distances are dependent variables. None of these distances can be changed without some variation in one of the independent coordinates. For instance, one cannot change the distance between two C atoms occupying meta positions without producing some change in one $\mathrm{C}-\mathrm{C}$ bond or in the angle between these two C-C bonds. Therefore a change in the nonbonded distance not only produces a force with respect to this distance change, but also with respect to changes in other bonds or angles, and the sum of potential energy changes is greater than zero. It would imply instability if the sum of potential energy
changes were negative, i.e., if the linear combination of force constants in Equation III had a negative value.

CONCLUSIONS

1. The introduction of the influence of hydrogen displacements on the $\mathbb{N}-B$ twisting in triborine triamine improves the agreement between the calculated and observed frequencies of out-of-plane hydrogen vibrations, and the twisting force constant thus obtained is more reasonable.
2. If the twisting force constant varies linearly with double-bond character, the double-bond character of $B-N$ bond in triborine triamine is 28 percent, taking that of benzene as 50 percent. A double-bond character of 27 percent is calculated from considerations of bond lengths.
3. The anharmonicity in benzene vibrations has a large influence on the value of the force constants for the nonbonded distances. A precise solution of the secular determinant would have to await complete anharmonicity data for benzene vibrations. A more thorough study of benzene vibrations in the near infrared region is indicated.
4. Ordinary valence force constants may be used for the comparison of bond energies of different bonds in different molecules. However, the force constants obtained by the use of the Urey-Bradley field, which are independent of surroundings, are more suitable for the purpose of correlating force constants with bond lengths and for studying the nature of bonds.
5. Negative values for second derivatives in the potential energy function suggested by Urey and Bradley are explained.

APPENDIX I

Calculation of Δp

$$
p_{i}^{2}=R_{i}^{2}+r_{i}^{2}-2 R_{i} r_{i} \cos \theta_{i}
$$

$$
p_{i} \frac{\partial p_{i}}{\partial R_{i}}=R_{i}-r_{i} \cos \theta_{i} \quad \quad p_{0}\left(\frac{\partial p_{i}}{\partial R_{i}}\right)_{0}=R_{0}+r_{0} / 2
$$

since $\quad \theta_{0}=2 \pi / 3$.
Similarly,

$$
p_{0}\left(\frac{\partial p_{i}}{\partial r_{i}}\right)_{0}=r_{0}+R_{0} / 2 .
$$

$$
p_{i} \frac{\partial p_{i}}{\partial \theta_{i}}=R_{i} r_{i} \sin \theta_{i}
$$

$$
p_{0}\left(\frac{\partial p_{i}}{\partial \theta_{i}}\right)_{0}=\frac{\sqrt{3}}{2} R_{0} r_{0}
$$

$$
\left(\frac{\partial p_{i}}{\partial R_{i}}\right)^{2}+p_{i} \frac{\partial^{2} p_{i}}{\partial R_{i}^{2}}=1 \quad p_{0}\left(\frac{\partial^{2} p_{i}}{\left.\partial R_{i}^{2}\right)_{0}}=3 r_{0}^{2} / 4 p_{0}^{2}\right.
$$

since $p_{0}^{2}=R_{0}^{2}+r_{0}^{2}+R_{0} r_{0}$.
Similarly,

$$
p_{0}\left(\frac{\partial^{2} p_{i}}{\partial r_{i}^{2}}\right)_{0}=3 R_{0}^{2} / 4 p_{0}^{2} .
$$

$$
\left(\frac{\partial p_{i}}{\partial \theta_{i}}\right)^{2}+p_{i} \frac{\partial^{2} p_{i}}{\partial \theta_{i}^{2}}=R_{i} r_{i} \cos \theta_{i}, \quad p_{0}\left(\frac{\partial^{2} p_{i}}{\partial \theta_{i}^{2}}\right)_{0}=-\frac{R_{0} r_{0}}{2 p_{0}^{2}}\left[R_{0}^{2}+r_{0}^{2}+\frac{5}{2} R_{0} r_{0}\right]
$$

$$
\frac{\partial p_{i}}{\partial R_{i}} \frac{\partial p_{i}}{\partial r_{i}}+p_{i} \frac{\partial^{2} p_{i}}{\partial R_{i} \partial r_{i}}=-\cos \theta_{i}, p_{0}\left(\frac{\partial^{2} p_{i}}{\partial R_{i} \partial r_{i}}\right)_{0}=-3 R_{0} r_{0} / 4 p_{0}^{2}
$$

$$
\frac{\partial p_{i}}{\partial R_{i}} \frac{\partial p_{i}}{\partial \theta_{i}}+p_{i} \frac{\partial^{2} p_{i}}{\partial R_{i} \partial \theta_{i}}=r_{i} \sin \theta_{i}, \quad p_{0}\left(\frac{\partial^{2} p_{i}}{\partial R_{i} \partial \theta_{i}}\right)_{0}=\frac{\sqrt{3} r_{0}}{2 p_{0}^{2}}\left[r_{0}^{2}+R_{0} r_{0} / 2\right]
$$

$$
\frac{\partial p_{i}}{\partial r_{i}} \frac{\partial p_{i}}{\partial \theta_{i}}+p_{i} \frac{\partial^{2} p_{i}}{\partial r_{i} \partial \theta_{i}}=R_{i} \sin \theta_{i}, \quad p_{0}\left(\frac{\partial^{2} p_{i}}{\partial r_{i} \Delta \theta_{i}}\right)_{0}=\frac{\sqrt{3} R_{0}}{2 p_{0}^{2}}\left[R_{0}^{2}+R_{0} r_{0} / 2\right]
$$

$$
\Delta p_{i}=\left(\frac{\partial p_{i}}{\partial R_{i}}\right)_{0} \Delta R_{i}+\left(\frac{\partial p_{i}}{\partial r_{i}}\right)_{0} \Delta r_{i}+\left(\frac{\partial p_{i}}{\partial \theta_{i}}\right)_{0} \Delta \theta_{i}
$$

$$
+\frac{1}{2}\left(\frac{\partial^{2} p_{i}}{\partial R_{i}}\right)_{0}\left(\Delta R_{i}\right)^{2}+\frac{1}{2}\left(\frac{\partial^{2} p_{i}}{\partial r_{i}}\right)_{0}\left(\Delta r_{i}\right)^{2}+\frac{1}{2}\left(\frac{\partial^{2} p_{i}}{\partial \theta_{i}}\right)\left(\Delta \theta_{i}\right)^{2}
$$

$$
+\left(\frac{\partial^{2} p_{i}}{\partial R_{i} \partial r_{i}}\right)_{0} \Delta R_{i} \Delta r_{i}+\left(\frac{\partial^{2} p_{i}}{\partial r_{i} \partial \theta_{i}}\right)_{0} \Delta r_{i} \Delta \theta_{i}+\left(\frac{\partial^{2} p_{i}}{\partial R_{i} \partial \theta_{i}}\right)_{o} \Delta R_{i} \Delta \theta_{i}
$$

$\therefore \quad p_{0} \Delta p_{i}=R_{0}(1+\rho / 2) \Delta R_{i}+R_{0}(\rho+1 / 2) \Delta r_{i}+\frac{\sqrt{3}}{2} R_{0} r_{0} \Delta \theta_{i}$

$$
+\frac{1}{2 p_{0}^{2}}\left[\frac{3}{4} r_{0}^{2}\left(\Delta R_{i}\right)^{2}+\frac{3}{4} R_{0}^{2}\left(\Delta r_{i}\right)^{2}-\frac{R_{0} r_{0}}{2}\left(R_{0}^{2}+r_{0}^{2}+\frac{5}{2} R_{0} r_{0}\right)\left(\Delta \theta_{i}\right)^{2}\right.
$$

$$
-\frac{3}{2} R_{0} r_{0} \Delta R_{i} \Delta r_{i}+\sqrt{3} r_{0}\left(r_{0}^{2}+R_{0} r_{0} / 2\right) \Delta R_{i} \Delta \theta_{i}
$$

$$
\left.+\sqrt{3} R_{0}^{2}\left(R_{0}+r_{0} / 2\right) \Delta r_{i} \Delta \theta_{i}\right]
$$

APPENDIX III

CALCULATION OF, ΔD

$$
\begin{aligned}
& D_{i}^{2}=\left(\ell_{j}+a\right)^{2}+\left(l_{i}+b\right)^{2}-2\left(f_{j}+a\right)\left(l_{i}+b\right) \cos \omega \\
& \frac{a}{\sin \left(\pi-\xi_{i}\right)}=\frac{b}{\sin \left(\pi-\phi_{j}\right)}=\frac{R_{i}}{\sin \omega} \\
& \frac{a}{\sin \xi_{i}}=\frac{b}{\sin \phi_{j}}=\frac{R_{i}}{\sin \omega} \\
& a=A R_{i} \quad b=B R_{i}
\end{aligned}
$$

where

$$
A=\frac{\sin \xi_{i}}{\sin \omega} \quad B=\frac{\sin \phi_{j}}{\sin \omega}
$$

$$
\begin{align*}
& D_{i}^{2}=\left(\ell_{j}+R_{i} A\right)^{2}+\left(\ell_{i}+R_{i} B\right)^{2}-2\left(\ell_{j}+R_{i} A\right)\left(\ell_{i}+R_{i} B\right) \cos \omega \\
&=\ell_{j}^{2}+\ell_{i}^{2}-2 \ell_{i} \ell_{j} \cos \omega+2 R_{i}\left\{\ell_{j} A+l_{i} B-\left(\ell_{i} A+l_{j} B\right) \cos \omega\right\} \\
&+R_{i}^{2}\left\{A^{2}+B^{2}-2 A B \cos \omega\right\} \tag{I}
\end{align*}
$$

$$
\left.\begin{array}{rl}
D_{i}=D_{0}+\Delta D_{i} & \omega=\omega_{0}+\Delta \omega \\
l_{i}=l_{0}+\Delta l_{i} & =\xi_{i}-\left(\pi-\phi_{j}\right) \\
l_{j}=l_{0}+\Delta l_{j} & \tag{II}\\
R_{i}=R_{0}+\Delta R_{i} & \Delta \omega=\Delta \phi_{j}-\pi \\
\xi_{i}=\xi_{0}+\Delta \xi_{i} & \xi_{0}=\phi_{0}=2 \omega_{j}=\frac{2}{3} \pi \\
\phi_{j}=\phi_{0}+\Delta \phi_{j} & D_{0}=R_{0}+l_{0}
\end{array}\right\}
$$

$$
\begin{align*}
& A^{2}+B^{2}-2 A B \cos \omega=\sin ^{-2} \omega\left\{\sin ^{2} \phi_{j}+\sin ^{2} \xi_{i}-2 \sin \phi_{j} \sin \xi_{i} \cos \omega\right\} \\
&=\sin ^{-2} \omega\left\{\sin ^{2} \phi_{j}+\sin ^{2} \xi_{i}+2 \sin \phi_{j} \sin \xi_{i} \cos \left(\phi_{j}+\xi_{i}\right)\right\} \\
&=\sin ^{-2} \omega\left\{\sin ^{2} \phi_{j}+\sin ^{2} \xi_{i}+2 \sin \phi_{j} \sin \xi_{i} \cos \phi_{j} \sin \right. \\
&\left.\quad-2 \sin ^{2} \phi_{j} \sin ^{2} \xi_{i}\right\} \\
&=\sin ^{-2} \omega\left(\sin \phi_{j} \cos \xi_{i}+\cos \phi_{j} \sin \xi_{i}\right\}^{2} \\
&=\sin ^{-2} \omega \sin ^{2}\left(\phi_{j}+\xi_{i}\right) \\
&=1 \tag{III}\\
& \sin \phi_{j}=\sin \left(\phi_{0}+\Delta \phi_{j}\right) \\
&=\sin \phi_{0} \cos \Delta \phi_{j}+\cos \phi_{0} \sin \Delta \phi_{j} \\
&=\frac{1}{2}\left\{\sqrt{3}-\Delta \phi_{j}-\frac{\sqrt{3}}{2}\left(\Delta \phi_{j}\right)^{2}\right\}
\end{align*}
$$

NEGLECTING TERMS HIGHER THAN QUADRATIC. SIMILARLY,

$$
\begin{aligned}
& \sin \xi_{i}=\frac{1}{2}\left\{\sqrt{3}-\Delta \xi_{i}-\frac{\sqrt{3}}{2}\left(\Delta \xi_{i}\right)^{2}\right\} \\
& \sin \omega=\frac{1}{2}\left\{\sqrt{3}+\Delta \phi_{j}+\Delta \xi_{i}-\frac{\sqrt{3}}{2}\left(\Delta \phi_{j}+\Delta \xi_{i}\right)^{2}\right\}
\end{aligned}
$$

HENCE,

$$
\left.\begin{array}{rl}
A=\frac{\sin \xi_{i}}{\sin \omega}=1 & -\frac{1}{\sqrt{3}} \Delta \xi_{i}-\frac{2}{\sqrt{3}} \Delta \phi_{j}+\frac{5}{6}\left(\Delta \xi_{i}\right)^{2}+\frac{2}{3}\left(\Delta \phi_{j}\right)^{2} \\
& +2 \Delta \xi_{i} \Delta \phi_{j} \\
B= & \frac{\sin \phi_{i}}{\sin \omega}=1-\frac{1}{\sqrt{3}} \Delta \phi_{j}-\frac{2}{3} \Delta \xi_{i}+\frac{5}{6}\left(\Delta \phi_{j}\right)^{2} \\
& +\frac{2}{3}\left(\Delta \xi_{i}\right)^{2}+2 \Delta \xi_{i} \Delta \phi_{j} \tag{IV}\\
\cos \omega= & \frac{1}{2}\left\{1-\sqrt{3}\left(\Delta \phi_{j}+\Delta \xi_{i}\right)-\frac{1}{2}\left(\Delta \phi_{j}+\Delta \xi_{i}\right)^{2}\right\}
\end{array}\right\} \text { (IV) }
$$

PUT (II), (III), AND (IV) INTO (I), AND COLLECT TERMS

$$
\left(\Delta D_{i}\right)^{2}+2 D_{0} \Delta D_{i}=H
$$

SOLVE. AND DEVELOP

$$
D_{0} \Delta D_{i}=\frac{H}{2}-\frac{H^{2}}{8 D_{0}^{2}}
$$

where

$$
\begin{aligned}
& \frac{1}{2} H=\frac{1}{2}\left\{D_{0}\left[\Delta l_{j}+\Delta \ell_{i}+2 \Delta R_{i}+\sqrt{3} \ell_{0}\left(\Delta \phi_{j}+\Delta \xi_{i}\right)\right]\right. \\
& \left.+\left(\Delta \ell_{j}\right)^{2}+\left(\Delta \Lambda_{i}\right)^{2}+\Delta R_{i}\right)^{2}-\Delta l_{i} \Delta \ell_{j}+\Delta R_{i}\left(\Delta \ell_{i}+\Delta \ell_{j}\right) \\
& +\sqrt{3} D_{0}\left(\Delta l_{j} \Delta \phi_{j}+\Delta l_{i} \Delta \xi_{i}\right)+\sqrt{3} l_{0}\left(\Delta l_{i} \Delta \phi_{j}+\Delta l_{j} \Delta \xi_{i}\right) \\
& +\sqrt{3} l_{0} \Delta R_{i}\left(\Delta \Phi_{j}+\Delta \xi_{i}\right)-\frac{1}{2} l_{0}\left(R_{0}-l_{0}\right)\left[\left(\Delta \phi_{j}\right)^{2}+\left(\Delta \xi_{i}\right)^{2}\right] \\
& \left.+l_{0}^{2} \Delta \phi_{j} \Delta \xi_{i}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{H^{2}}{8 D_{0}^{2}}=\frac{1}{8}\left\{\left(\Delta \ell_{j}\right)^{2}+\left(\Delta R_{i}\right)^{2}+2 \Delta \ell_{i} \Delta \ell_{j}+4\left(\Delta R_{i}\right)^{2}\right. \\
& +3 \ell^{2}\left[\left(\Delta \phi_{j}\right)^{2}+\left(\Delta \xi_{j}\right)^{2}+2 \Delta \phi_{j} 4 \xi_{i}\right] \\
& +4 \Delta R_{i}\left(\Delta l_{i}+\Delta l_{j}\right)+2 \sqrt{3} l\left(\Delta l_{i}+\Delta l_{j}\right)\left(\Delta \Delta_{j}+\Delta \xi_{i}\right) \\
& \left.+4 \sqrt{3} l_{0} \Delta R_{i}\left(\Delta \phi_{j}+\Delta \xi_{i}\right)\right\} \text {. } \\
& \therefore \quad D_{0} \Delta D_{i}=\frac{D_{0}}{2}\left\{\Delta \ell_{i}+\Delta \ell_{j}+2 \Delta R_{i}+\sqrt{3} \ell_{0}\left(\Delta \phi_{j}+\Delta \xi_{i}\right)\right\} \\
& +\frac{3}{8}\left(\Delta l_{i}\right)^{2}+\frac{3}{B}\left(\Delta \rho_{j}\right)^{2}-\frac{3}{4} \Delta l_{i} \Delta l_{j} \\
& +\left(D_{0}+R_{0}\right) \frac{\sqrt{3}}{4}\left(\Delta l_{j} \Delta \phi_{j}+\Delta l_{i} \Delta \xi_{i}\right) \\
& +\frac{\sqrt{5}}{4} l_{0}\left(\Delta l_{1} \Delta \phi_{j}+\Delta l_{j} \Delta \xi_{j}\right) \\
& -\frac{1}{4} l_{0}\left(R_{0}+\frac{1}{2} l_{0}\right)\left[\left(\Delta \Delta_{j}\right)^{2}+\left(\Delta \xi_{j}\right)^{2}\right]-\frac{1}{4} l_{0}^{2} \Delta \Phi_{j} \Delta \xi_{i}^{*}
\end{aligned}
$$

For Δd_{i}, the variation of the nonbonded distance between H_{i} and $H_{i-1}, D_{i}=d_{i}, R_{i}=R_{i}, l_{j}=r_{i}, l_{i}=r_{i-1}, E=\pi-\theta_{i-1}-\alpha_{i-1}$, and $\boldsymbol{\phi}_{\boldsymbol{j}}=\theta_{i}$.

$$
\begin{aligned}
d_{0} \Delta d_{i}= & \frac{d_{0}}{2}\left\{\Delta r_{i}+\Delta r_{i+1}+2 \Delta R_{i}+\sqrt{3} r_{0}\left(\Delta \theta_{i}+\Delta \theta_{i+1}-\Delta \alpha_{i-1}\right)\right\} \\
& \left.+\frac{3}{8}\left(\Delta r_{i}\right)^{2}+\frac{3}{8} \Delta \Delta r_{i+1}\right)^{2}-\frac{3}{4}\left(\Delta r_{i}\right)\left(\Delta r_{i+1}\right) \\
& +\frac{\sqrt{3}}{4}\left(d_{b}+R_{0}\right)\left(-\Delta r_{i j} \Delta \theta_{i+1}+\Delta r_{i+1} \Delta \theta_{i+1}-\Delta r_{i} \Delta \alpha_{i}\right) \\
& +\frac{\sqrt{3}}{4} r_{0}\left(-\Delta r_{i+1} \Delta \theta_{i}+\Delta r_{i} \Delta \theta_{i+1}-\Delta r_{i+1} \Delta \alpha_{i}\right) \\
& -\frac{1}{4} r_{0}\left(R_{0}+\frac{\left.r_{0}\right)}{2}\left[\left(\Delta \theta_{i}\right)^{2}+\left(\Delta \theta_{i+1}\right)^{2}+\left(\Delta \alpha_{i}\right)^{2}+2 \Delta \theta_{i} \Delta \alpha_{i}\right]\right. \\
& +\frac{1}{4} r_{0}^{2}\left(\Delta \theta_{i} \Delta \theta_{i+1}+\Delta \theta_{i+1} \Delta \alpha_{i}\right)
\end{aligned}
$$

*This result can be readily verified by a Taylor's expansion of ΔD_{i}, while $D_{i}^{2}=\left[l_{i} \sin \xi_{i}-\beta_{i} \sin \phi_{i}\right]^{2}+\left[R_{i}-\ell_{i} \cos \xi_{i}-\rho_{j} \cos \phi_{j}\right]^{2}$.

For ΔD_{i}, the variation of the nonbonded distance between C_{i+1} and $C_{i-2}, D_{i}=D_{i}, D_{0}=2 R_{0}, R_{0}=l_{0}, l_{i}=R_{i-1}, l=R_{i+1}$, $\xi_{i}=\alpha_{i}$, and $\phi_{j}=\alpha_{i+1}$.

$$
\begin{aligned}
D_{\varphi} \Delta D_{i}= & R_{0}\left\{\Delta R_{i-1}+2 \Delta R_{i}+\Delta R_{i+1}+\sqrt{3} R_{0}\left(\Delta \alpha_{i+1}+\Delta \alpha_{i}\right)\right\} \\
& +\frac{3}{8}\left(\Delta R_{i-1}\right)^{2}+\frac{3}{8}\left(\Delta R_{i+1}\right)^{2}-\frac{3}{4} \Delta R_{i-1} \Delta R_{i+1} \\
& +\frac{3 \sqrt{3}}{4} R_{0}\left(\Delta R_{i-1} \Delta \alpha_{i}+\Delta R_{i+1} \Delta \alpha_{i+1}\right) \\
& +\frac{\frac{1}{4}}{4} R_{0}\left(\Delta R_{i-1} \Delta \alpha_{i+1}+\Delta R_{i+1} \Delta \alpha_{i}\right) \\
& -\frac{3}{8} R_{0}^{2}\left[\left(\Delta \alpha_{i}\right)^{2}+\left(\Delta \alpha_{i+1}\right)^{2}\right]-\frac{1}{4} R_{0}^{2} \Delta \alpha_{i} \Delta \alpha_{i+1} .
\end{aligned}
$$

APPENDIX III

Reprinted from The Journal of Chemical Physics, Vol. 19, No. 4, 518, April, 1951

Printed in U. S. A.

Out-of-Plane Hydrogen Vibrations in Triborine Triamine

Robert A. Spurr and Shin-Chuan Chang
Department of Chemistry, University of Maryland, College Park, Maryland
(Received February 8, 1951)

CRAWFORD and Edsall ${ }^{1}$ have investigated the infrared and Raman spectra of triborine triamine. The discrepancy between the calculated and observed frequencies of the out-ofplane hydrogen vibrations was attributed to the interactions between hydrogen bonds attached in the meta positions. Bell ${ }^{2}$ has suggested the use of a simple potential function for the out-ofplane vibrations in triborine triamine, which he has applied successfully to benzene. We have carried out the calculations and have obtained satisfactory agreement with the observed frequencies, as is shown in Table I.
The potential function assumed has the following form:

$$
2 V=\Sigma h_{B} r^{2} \lambda^{2}+\Sigma h_{N S} s^{2} \mu^{2}+\Sigma k^{\prime}\left(\phi_{R}+\phi_{H}\right)^{2},
$$

where h_{B} is the bending force constant for the $\mathrm{B}-\mathrm{H}$ bond, r is the internuclear distance, and λ is the angle which the bond makes with the plane of the ring. The symbols h_{N}, s, and μ denote the corresponding quantities for the $\mathrm{N}-\mathrm{H}$ bond. The constant k^{\prime} expresses a resistance to twisting of the $\mathrm{B}-\mathrm{N}$ bond. The quantities ϕ_{R} and ϕ_{H} represent the twist of the $\mathrm{B}-\mathrm{N}$ bond due to ring distortion and hydrogen bending, respectively. ${ }^{3}$ This potential function differs from that assumed by Crawford and Edsall ${ }^{1}$ by the introduction of ϕ_{H}. The fairly satisfactory agreement obtained by this potential function renders unnecessary the assumption of interactions between hydrogen bonds attached in the meta positions.
The force constants were fitted to the three $A^{\prime \prime}$ frequencies and

Table I.

$\begin{aligned} & \text { Observed } \\ & \text { frequency } \\ & \mathrm{cm}^{-1} \end{aligned}$	Calculated frequency ${ }^{1}$ cm^{-1}	\% Deviation	Calculated frequency cm^{-1} (this research)	\% Deviation (this research)
1098	1278	16.4	1117	1.7
622	756	21.6	661	6.3
415	403	2.9	437	5.3
1070	1086	1.5	1054	1.5
798	790	1.0	753	5.6
288	283	1.7	270	6.3
		Mean 7.5		Mean 4.5

Table II. Force constants for triborine triamine, benzene, and ethylene

Type of constant	Value
$\mathrm{B}-\mathrm{H}$ bending, h_{B}	1.83×10^{4} dyne/cm
$\mathrm{N}-\mathrm{H}$ bending, h_{N}	3.71×10^{4} dyne $/ \mathrm{cm}$
$\mathrm{B}-\mathrm{N}$ twisting, k^{\prime}.	0.39×10^{-12} dyne-cm
benzene $\mathrm{C}-\mathrm{C}$ twisting ${ }^{2}$	0.77×10^{-12} dyne-cm
ethylene $\mathrm{C}-\mathrm{C}$ twisting ${ }^{2}$	1.7×10^{-12} dyne-cm

also to the three $E^{\prime \prime}$ frequencies. For the calculation of the frequencies in Table Υ, average values of the constants were used. These are given in Table II, together with the constants corresponding to k^{\prime} for benzene and ethylene. The value of the twisting force constant obtained by Crawford and Edsall ${ }^{1}$ without introduction of ϕ_{H} in the potential function corresponds to 1.6×10^{-12} dyne-cm for k^{\prime}. The value given here of 0.39×10^{-12} dyne-cm is more reasonable, since one would expect the ring bonds in triborine triamine to have less resistance to twisting than those in benzene and ethylene.
If it is assumed that k^{\prime} varies linearly with double-bond character for different bonds, the double-bond character of the $\mathrm{B}-\mathrm{N}$ bond in triborine triamine is $39 / 77 \times 1 / 2$ or 28 percent, taking that of benzene as 50 percent. This assumption can be tested by calculating the double-bond character of benzene by the use of the ethylene twisting constant. The value obtained is 45 percent. The double-bond character of a bond can also be estimated by the empirical formula of Pauling. ${ }^{4}$ The $\mathrm{B}-\mathrm{N}$ distance in triborine triamine has been measured in two investigations ${ }^{5,6}$ by electron diffraction as $1.47 \pm 0.07 \mathrm{~A}$ and $1.44 \pm 0.02 \mathrm{~A}$. These values inserted in the formula give 27 percent and 40 percent, respectively, for the double-bond character of the $\mathrm{B}-\mathrm{N}$ bond, in rough agreement with the value given above.
Thanks are due to the Computing Division of the Ballistics Research Laboratory, Aberdeen Proving Ground, Maryland, for checking our calculations.
${ }^{1}$ B. L. Crawford and J. T. Edsall, J. Chem, Phys. 7, 223 (1939).
${ }_{2}$ R. P. Bell, Trans. Faraday Soc. 41 i, 293 (1945).
${ }^{3}$ Bell, Thompson, and Vago, Proc. Roy. Soc. (London) A192, 498 (1948),
-L. Pauling, Nature of the Chemical Bond (Cornell University Press,
Ithaca, New York, 1940), ${ }^{\mathrm{D}}, 175$.
${ }^{\circ} \mathrm{A}$. Stock and . Wher , , anorg. u. allgem. Chem. 203, 228 (1931),
© S. H. Bauer, J. Am. Chem. Soc. 60,524 (1938).

BIBITOGRAPEY

1. Barnes, J. and W. H. Fulweiler, Phys. Rev. 32, 618 (1928).
2. Baurr, S. H., J. Am. Chem. Soc. 60, 524 (1938).
3. Bell, R. P., Trans. Faraday Soc. 41, 293 (1945).
4. Bell, R. P., H. W. Thompson, and E. E. Vago, Proc. Royal Soc. (London) A 192, 498 (1948).
5. Crawford, B. L. and J. T. Edsall, J. Chem. Phys. 7, 223 (1939).
6. Crawford, B. L. and F. A. Miller, J. Cheri. Phys. 17, 249 (1949).
7. Ellis, J. W., J. Am. Chem. Soc. 49, 347 (1927); Phys. Rev. 33, 29 (1929).
8. Frazer, R. A., W. J. Duncan, and A. R. Collar, Elementary Natrices. facMillan Co., New York (1947) p. 27.
9. ibid, p. 106.
10. Herzberg, G., Infrared and Raman Spectra. D. van Nostrand Co., New York (1949) p. 186.
11. Ibid, p. 193.
12. Ibid, p. 363.
13. Ibid, p. 116.
14. Ibid, p. 138 .
15. Ingold, C. K. et al., d. Chem. Soc. (Iondon) 1946, 222-333.
16. James, H. M., and A. S. Coolidge, J. Chem. Phys. 1, 834 (1933).
17. Kohlrausch, K. W. F., Der Smekel-Raman-Effekt. Verlag von Julius Springer. Berlin. (1931).
18. Iinnett, J. W., guart. Rev. I, 73 (1947).
19. Linnett, J. W., and D. F. Heath, Trans. Faraday Soc. 4., 561, 873 , 878, 884 (1948).
20. Lord, R. C., and D. H. Andrews, J. Phys. Chem. 4 , II9 (1937).
21. wair, R. D. et al., J. Chem. Phys. 17, 1236 (1949).
22. Hielsen, J. R. and L. H. Berrymen, J. Chem. Phys. 17, 659 (1949).
23. Pauling, L., lature of the Chemical Bond. Cornell University Press. Ithaca, ivew York. (1940). p. 175 .
24. Shul1, H., J. Chem. Phys. 17, 295 (1949).
25. Simanouti, 1. et al., $\frac{J_{0}}{}$ Chem. Phys. $17,245,734, \frac{848}{}$, 1102 (19149); BulI. I. P. C. . . (Japan) 21, 825 (194, 2); 23, 133 (1944).
26. Stock, A., and R. Wierl, Z. Anorg. n. Allgen. Chem. 203, 228 (1931).
27. Urey, H. C., and C. A. Bradley, Phys. Rev. 38, 1969 (1931).

28. Wilson, E. B., d. Cheme Phys. 7, 1047 (1939).
29. Wilson, E. B., Phys. Rev. 45, 706 (1934).

［504 1052．
