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Flying insects achieve flight stabilization and control in a manner that re-

quires only small, specialized neural structures to perform the essential components

of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on

limited computational resources. An engineering mechanism to replicate these con-

trol strategies could provide a dramatic increase in the mobility of small scale aerial

robotics, but a formal investigation has not yet yielded tools that both quantita-

tively and intuitively explain flapping wing flight as an “input-output” relationship.

This work uses experimental and simulated measurements of insect flight to cre-

ate reduced order flight dynamics models. The framework presented here creates

models that are relevant for the study of control properties. The work begins with

automated measurement of insect wing motions in free flight, which are then used to

calculate flight forces via an empirically-derived aerodynamics model. When paired

with rigid body dynamics and experimentally measured state feedback, both the

bare airframe and closed loop systems may be analyzed using frequency domain



system identification. Flight dynamics models describing maneuvering about hover

and cruise conditions are presented for example fruit flies (Drosophila melanogaster)

and blowflies (Calliphorids). The results show that biologically measured feedback

paths are appropriate for flight stabilization and sexual dimorphism is only a mi-

nor factor in flight dynamics. A method of ranking kinematic control inputs to

maximize maneuverability is also presented, showing that the volume of reachable

configurations in state space can be dramatically increased due to appropriate choice

of kinematic inputs.
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Chapter 1

Introduction

1.1 Motivation and Technical Challenges

Flying insects represent simultaneously the highest standard of performance in

aerial mobility and the animals that achieve robust flight control with the smallest

neurological structures. The prospect of agile control performance that requires

small, specialized, computational structures is very attractive from the perspective

of micro air vehicle (MAV) design. An understanding of the dynamic properties that

insect flight leverages to achieve aerial mobility on a limited computational budget

would provide insight into the flapping wing MAV control problem.

Measurements of insect sensory systems has revealed that insects stabilize

flight by sensing composite states measured along highly non orthogonal axes, then

fusing those inputs into a control law. The directionality of such measurements, as

seen in Fig 1.1, is in opposition to traditional engineering measurement of vehicle

states. A popular hypothesis has been that the particular combinations insects mea-

sure are more important for flight stabilization than traditional isolated, orthogonal

measurements like roll or pitch rate (Taylor and Krapp, 2007). If this is the case,

then dynamic models should show that insect sensing is most responsive to mo-

tions (or directions) that have the highest feedback requirements. Dynamic models

are necessary to determine the feedback requirements along different axes, which
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Figure 1.1: Directions in which insect compound eyes and ocelli (rudimentary eyes)
are most sensitive (Parsons et al., 2010) may correspond to dynamic properties of
the airframe.

would allow researchers to determine if the sensor outputs correspond to charac-

teristic flight modes that require feedback. While full-scale aircraft actuators often

excite along orthogonal axes, insects do not necessarily do so and actuation along

non-orthogonal axes is equally possible. The insect sensory systems may be tuned

not only to the motions requiring stabilization feedback, but also to the effects of

its non-orthogonal actuation capabilities, such that the insect’s sensors provide it

with feedback on the effects of its actuation. An insect with access to measurements

describing the directions resulting from its actuation would be exceptionally able

to regulate this actuation. Again, testing this hypothesis requires a dynamic model

that describes the motion resulting from each actuator, in order to evaluate whether

the sensory systems are tuned to the results of non-orthogonal actuation.

A concise dynamic model would allow researchers to evaluate whether insect

sensory systems are specifically tuned to dynamic properties such as insect flight

modes or actuator results. Despite the need for a concise model, previous investi-

gations have shown that the flight regime is complicated by complex aerodynamic

effects, nonlinear wing kinematics and body dynamics, and small perturbations in-
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tegrated over many wingstrokes, as well as adaptive sensing and feedback. Detailed

modeling and simulation of the aerodynamic effects alone is an involved process

that typically requires several weeks for each simulated case. The need for tractable

insect flight dynamics modeling leads directly to the problem statement of this dis-

sertation:

Problem Statement: Find reduced-order dynamics models for small-

scale dipteran flapping flight, and determine a path for creating mod-

els useful for estimating sensing and feedback requirements. The

derived models should be appropriate for control analysis, in partic-

ular, answer questions of stability, rates of convergence or instability,

modal participation, and feedback requirements, as well as quantify

actuation results (eg, maneuverability).

1.2 Background

In recent years, researchers have made much progress into the task of under-

standing the aerodynamic basis for and the control architecture involved in insect

flight, in particular the fruit fly Drosophila melanogaster. Advances in the field

of flapping wing aerodynamics have largely relied on the ability of researchers to

make detailed observations of the insects’ flapping behavior. Early observations of

tethered Drosophila by Vogel (1967) began to observe variations in certain “stroke

parameters” defining wing kinematic patterns and variations in wing contour. Sev-

eral years later, Weis-Fogh (1972) used Vogel’s observations in the development of
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the “quasi-steady” form first introduced by Osborne (1951). Briefly, this approach

uses curve fits to experimental data to allow the instantaneous lift and drag forces

of an insect to be represented by drawing analogy to a similar wing translating

at the same angle of attack and the same (steady) velocity. The quasi-steady ref-

erences found in insect aerodynamics literature are in contrast to the aero-elastic

concept, which refers to ignoring unsteady effects by retaining only terms dependent

steady quantities and does not employ curve fits to experimental data. Because of

this, we consider the aerodynamic modeling presented in insect flight literature an

experimental aerodynamics model presented in quasi-steady form.

The quasi-steady form has been extensively used as a foundation by researchers

beginning with Ellington and Dickinson (Ellington, 1984a) to develop the aerody-

namic theory used in contemporary understanding and prediction of insect flight. A

major use of the theory is in the prediction of baseline forces in order to elucidate

the contributions of additional aerodynamic mechanisms, predominantly unsteady

effects (Dickinson and Gotz, 1999). The concept has been applied to determine aero-

dynamic contributions by mechanisms such as “clap and fling” movements (Sped-

ding and Maxworthy, 1986) and dynamic stall (Dickinson et al., 1999). Even so, the

chief contribution of the quasi-steady form to the field of insect flight understanding

has been as a means to reduce kinematic and force data taken from both tethered

and in-flight recordings of wing kinematics, allowing reduction of in-flight data to

nondimensional coefficients that may be interpreted from the perspective of more

traditional aerodynamic mechanisms (Fry et al., 2003).

The computational workload an insect must perform to support flapping wing
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flight is still an active area of research. Experimental evidence has indicated phys-

iological components involved in flight stabilization, such as tangential cells and

descending neurons that translate optic flow estimates to flight motor commands.

Despite the measurements made on the sensing and control components, the flight

stabilization demands that these structures must support are unknown, but must

be addressed via an analysis of the plant they are responsible for controlling (ie,

the insect dynamics). Recently, Taylor and Thomas (2003a,b) used measurements

of tethered locusts to estimate the stability and control properties associated with

dipteran insect flapping flight, while Hesselberg and Lehmann (2007) and Hedrick

et al. (2009) addressed the yaw dynamics of flapping flight. Aerodynamics inves-

tigations using computational fluid dynamics (CFD) (Sun and Xiong, 2005) have

also addressed the longitudinal (motion in the insect’s plane of symmetry) flapping

flight. A concise understanding of how the control inputs available to a dipteran

insect (in the form of kinematic variables) affect the long term motion of the insect

(flight control) is expected to provide insight into why insects tend to use particular

control inputs more readily than others and indicate how coupled control inputs

can lead to particular motions. A large body of knowledge exists to provide control

analysis on state-space dynamics models (Ogata, 2002), meaning that a process that

simplifies the relatively complex nonlinear dynamics of dipteran flapping wing insect

flight is desirable. State-space models and the process to generate them are goals of

this study. The simplified linear time invariant dynamics models may then be used

to evaluate controllability and design control laws for hovering micro-air-vehicles

near hover.
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Despite the widespread usage of the experimental aerodynamics model and

the information that it can provide regarding insect aerodynamics, the theory is

normally applied as a model operating at a single point. Placing the model in

the context of perturbations from that operating point provides insight into the

fundamental dynamic behavior, which can then be used to understand the sensing

and feedback requirements for stable flight. These are precisely the goals of this

research.

This research examines the implication of passive aerodynamic stability mech-

anisms associated with flapping flight. Euler rigid body dynamics are paired with

quasi steady aerodynamcs modeling that includes effects of perturbations from the

hover equilibrium. Results are based on analysis of the analytical equations as well

as frequency-based system identification of the non-linear simulation. The goal is a

set of linearized state-space models valid for small motions about hover that may be

used to understand sensing and feedback requirements (and directly provide modal

insight as in Taylor and Thomas (2003c); Sun and Xiong (2005)). Such models

are derived under the fundamental assumption that it is the averaged forces and

moments over the wingstroke that are important up to timescales of the rigid body

dynamics, an assumption which is examined by direct comparison to a simulator

includes the effects of force and moment changes throughout a winstroke. Other

key assumptions are the use of rigid (planar) wings that do not deform, rigid in-

sect bodies (fixed abdomen and leg angles). Additionally, aerodynamic effects such

as reverse flow and spanwise flow are ignored as a side effect of the experimental

aerodynamics model used (the effect of this assumption is examined in Chapter 5).
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Results from fruit flies (Drosophila) and blowflies (Calliphoridae) are presented

in this dissertation. Wing kinematics and aerodynamics measurements are available

for fruit flies, while sensory system measurements are available for blowflies. From

the perspective of understanding sensing and feedback requirements of insect flight,

these measurements are essential. Though the example insects used in the simulation

use fruit fly and blowfly parameters, the theoretical approach is derived for a general

insect exhibiting a timescale separation in hover and the qualitative results are

applicable to the translational effects of dipteran flapping wing flight.

1.3 Previous Modeling Work

Previous research has attempted to generate models appropriate for estimating

the dynamic properties and feedback requirements of dipteran flight. Experimen-

tal work includes Taylor and Thomas (2003c,a,b), who used measurements taken

of tethered locusts in forced airflow to quantify the locusts’ response to body pitch

angle and velocity perturbations, and more recent work by Hesselberg and Lehmann

(2007) identifying body drag as a dominant effect, as well as the experimental iden-

tification of yaw damping by Dickson et al. (2010). High fidelity aerodynamic mod-

eling has been applied for perturbations about trim to quantify the system dynamics

of several diptera (craneflies, droneflies, and hawkmoths in hovering flight) through

linear modeling (Sun et al., 2010; Sun and Xiong, 2005; Gao et al., 2009). Mod-

els that may be developed without intensive computational solvers or experimental

modeling are now of interest, as exemplified by recent analytic modeling efforts
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(Cheng et al., 2010).

1.4 Approach

This research approaches the flight dynamics problem by quantifying the fol-

lowing:

1. Wing Kinematics: Automated reconstruction of an insect filmed under high

speed videography is used to measure wing motions of freely-flying insects, and

stereotyped wing kinematics patterns determined.

2. Reduced Order Aerodynamics: Aerodynamics at the insect scale are a

subject of active research. Rather than explicitly solve the Navier Stokes equa-

tions, an experimentally derived reduced order aerodynamic model is posed in

the context of insect egomotion (body translation and rotation).

3. Rigid Body Dynamics: The frequency separation between the insect body

modes and high frequency excitation is exploited to allow classical Euler rigid

body dynamics to be applied.

4. System Identification: The inputs and outputs of a nonlinear insect flight

simulation built using the above components is analyzed in the frequency

domain to assess linearity and measure experimental transfer functions. Be-

ginning with analytical guesses, state space models are then fitted to derive

reduced order models.

5. High Fidelity Aerodynamics: The reduced order models are directly com-
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pared to the result of a high fidelity numerical solution to the Navier Stokes

aerodynamics equations.

1.5 Dissertation Contributions

This dissertation presents the following contributions to insect flight:

� The first detailed measurement of trim and maneuvering wing kinematics for

Calliphorid flies.

� Implementation of planar wing fitting and body exclusion rules to automated

wing motion digitization.

� The first quantification of full path measurement error in automated wing

motion digitization routines.

� A definition of biologically inspired control inputs that can be used for flight

control.

� A method of placing the contemporary insect aerodynamics models in the

context of insect body translation and rotation

� Transfer functions for longitudinal and lateral-directional hovering flight dy-

namics of Drosophila.

� The indication that linear time invariant modeling is sufficient to describe

Drosophila flight dynamics about hover.
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� State space dynamics models representing Drosophila flight dynamics about

hover.

� The use of a biologically inspired feedback path to determine that sensing of

insect body angular rates is sufficient for flight stabilization.

� An investigation of how Drosophila hovering flight dynamics are affected by

rate feedback and morphological changes.

� Longitudinal and lateral-directional transfer functions for Calliphorid flies ma-

neuvering about forward (cruise) flight.

� Application of control theory to determine all reachable states for bounded

inputs to wing kinematics programs.

� A method of ranking wing kinematic input programs in terms of maneuver-

ability.

1.6 Dissertation Organization

The organization of this dissertation is as follows. Chapter 2 presents an

experimental method of determining the wing motions for dipteran (two-winged)

insects. The method is an automated method that uses high speed videography

of insects in free flight to generate time histories of the wing orientations. The

digitization method is validated against at scale manufactured reference models,

and the results are used to identify stereotypical kinematics for insect cruise and

maneuvering flight. Digitized results are presented for Calliphorid flies.
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Chapter 3 defines biologically inspired control inputs for the measured wing

kinematics, and applies these to published Drosophila kinematics. These inputs

are paired with an experimentally derived hovering aerodynamics model placed in

the context of insect egomotion. The aerodynamics are paired with rigid body

dynamics and system identification performed to determine a longitudinal flight

dynamics model for an example Drosophila-like insect maneuvering about hover.

Uncertainty estimates and dynamic properties for the model are determined, as

well as the effect of mechanosensory feedback measured in previous work. Chapter

4 presents a similar study, but this time for the lateral-directional dynamics of

the insect about hover. In both cases, the system is found to contain both stable

subsidence modes and an unstable oscillatory mode that may be stabilized under

the addition of mechanosensory feedback.

Chapter 5 examines the effect of additional un-modeled aerodynamic mech-

anisms via comparison to a numerical solution of the Navier Stokes equations of

motion. The dynamic properties show qualitative agreement (with translational

agreement much better than rotational), but the unmodeled aerodynamics increase

the speed of response, in both convergence and divergence.

Chapter 6 further examines the effects of feedback on both the reduced order

model and the full aerodynamic solution, and studies how the sexual dimorphism

prevalent in many species affect the dynamic properties of the reduced order flight

dynamics model. Feedback in the reduced order model shows a smooth progres-

sion from bare airframe unstable to feedback stabilized, while the full aerodynamic

solution shows that the unmodeled dynamics increase the feedback required for an
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equivalent performance specification. Finally, the flight dynamics of the female and

male contain the same dynamic modes, with small changes in the actual magnitudes,

suggesting that flight stabilization requirements for the two sexes is not significantly

different.

Chapter 7 is an application of the reduced order model to compute and max-

imize the maneuverability of a micro aerial vehicle. Control theory is applied to

determine the reachable states under a given set of inputs, and a method of rank-

ing kinematic programs in terms of maneuverability is presented. The ranking is

applied to the hovering fruit fly model developed in Chapter 3, showing dramatic

differences in the size of reachable space. The method is applicable to micro air vehi-

cle design studies, where the reduction of actuation count and effort is an important

consideration

Finally, Chapter 8 extends the reduced order modeling method developed for

diptera in hover to forward flight, using the Calliphorid kinematics presented in

Chapter 2.
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Chapter 2

Wing Kinematics Measurement

An essential component of a quantitative insect flight mechanics analysis is a

detailed description of the wing motions an insect uses to effect motion throughout

its environment. This chapter is concerned with measuring and parameterizing

motion throughout an insect’s wingstroke. The goal of the parameterization is to

define intuitive control terms that may later be used as inputs for the insect flight

control problem.

2.1 Previous Work

Previous research into recording kinematics began with Vogel (1967), who

began to record gross stroke parameter variations in tethered Drosophila, such as

stroke plane angle or amplitude. Both Ellington (1984b) and Zanker and Gotz

(1990) continued this work for several insects, using high speed photography with

a single camera and a side view to record the wingtip trajectory as projected in

the longitudinal frame. Later work by Gotz (1987) introduced a wingbeat analyzer,

the working principle of which was a photodiode measuring light levels underneath

the insect’s wings to infer both amplitude and frequency. Single camera analysis

predominated kinematics recording for some time, such as Ennos (1989) work with

dipterans (two-winged insects). Such an approach allows estimation of wingbeat
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frequency, the amplitude of the wingstroke (as measured peak-to-peak), and the

orientation of the plane1 in which the insect flaps (not necessarily simultaneously).

Digitization was primarily a manual and tedious process, though attempts were

eventually made to use software to digitize wing markers and record wing steering

muscle inputs as well (Balint and Dickinson, 2004; Sherman and Dickinson, 2003).

Much of the work focused on tethered insects for ease of filming, though in some

cases the motion of the tether was prescribed to determine the kinematic response

to such motion (Sherman and Dickinson, 2003, 2004).

Eventually, multiple cameras were used to allow determination of the wing

orientation (assumed rigid) in three dimensional space (Fry et al., 2003). Detailed

kinematic measurements enabled replay through robotic apparatus (Balint and Dick-

inson, 2004). Once the robotic apparatus was equipped to record forces and moments

generated by the motions, the first basis of an aerodynamics model could be gen-

erated. The manual three-camera setup became the standard method of recording

kinematics, though modeling was limited to either the gross stroke parameters as

above or directly replaying the measured kinematics through a robotic apparatus

or simulator (Altshuler et al., 2005; Vance et al., 2005; Vance and Humbert, 2010;

Vance et al., 2010). The next major upgrade was to apply an automated method

to digitizing Drosophila kinematics (Ristroph et al., 2009; Fontaine et al., 2009;

Ristroph et al., 2010).

1The actual flap pattern is rarely a plane, but a plane is typically defined, using either the
peak-to-peak wing positions or a linear regression to the wingstroke points.
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2.2 Insect Subjects and Experimental Apparatus

Fruit fly (Drosophila) kinematics are available from previous literature (due to

their ubiquitous presence in genetic research labs) (Dickinson et al., 1999), but de-

tailed free flight kinematics for Calliphorid flies had not yet been recorded. Though

fruit fly wing kinematics and aerodynamics have previously been characterized, their

visual and mechanical sensing capabilities are not yet well known, which would be

necessary to understand the flight dynamics model developed in the context of insect

sensing. In contrast, sensory feedback measurements for blowflies (Calliphoridae)

are readily available, but kinematic and aerodynamic data are not.

An experimental test rig shown in Fig 2.1 was constructed to allow detailed

measurements of free flight maneuvering in Calliphorid species. The experimental

apparatus consists of three Vision Research Phantom V710 high speed video cameras

and lighting array, orthogonally-mounted about a 10in x 10in x 8in Plexi-Glass test

section into which insects are introduced. A calibrated low speed wind tunnel has

been constructed around the test section in order to allow steady wind conditions to

be applied, and a regulated supply of compressed air allows repeatable gusts to be

introduced through a port in the chamber as well. Calliphorid insects captured at

the University of Maryland horse farm were allowed to freely fly within the chamber,

and a trigger mechanism was built to automatically record sequences when an insect

flew within the focal volume. Images were recorded at a resolution of 1280 x 800

pixels with a 30 µs exposure and 7002 Hz framerate.

A library of Calliphorid flight sequences incorporating maneuvering free flight
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Figure 2.1: Experimental test rig and free flight chamber.

behavior in both quiescent air and gusting conditions has been collected. Digitiza-

tion is traditionally accomplished by manually aligning a wireframe model of the

insect to each of the three views, a labor-intensive task that can take weeks or

months for a single sequence. Research on Drosophila flight at Cornell University

has demonstrated success using automated tracking techniques such as Hull Recon-

struction Motion Tracking (HRMT) (Ristroph et al., 2009), and this study used a

modified version of the Drosophila tracking code.

2.3 Kinematics Digitization

2.3.1 Coordinate Definitions

The description of the insect flapping motion requires a family of axes centered

at the insect wing hinge. Approximating the wings as rigid bodies, measured insect

kinematics exhibit a roughly planar flap motion which is represented using 2-3-2

Euler angles. Define by reference to Fig. 2.2a a set of stability axes S = {ŝx, ŝy, ŝz}

passing through the insect center of mass G, the stroke plane angle β as the angle
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about the pitch axis to an idealized planar stroke motion, and a coordinate axes

set aligned with this plane the stroke plane axes P =
{
p̂x, p̂y, p̂z

}
. Define R =

{r̂x, r̂y, r̂z} a set of axes that move along with the right wing, with r̂z = p̂z and r̂y to

extend toward the wing tip as in Fig. 2.2b. Similarly, define L =
{
l̂x, l̂y, l̂z

}
for the

left wing, with l̂y extending inboard along the left wing spanline. The additional

definition of the geometric angle with respect to the stroke plane as wing pitch angle

η provides the notation necessary to describe the orientation of two rigid wings at

an instant in time.

G

ξ

β

ŝx

ŝz

p̂x
p̂z

(a) Stroke plane axes/angle β, body
hovering angle ξ

G

ŝyp̂y

p̂x

r̂y

φr

r̂x

(b) Stroke angle φr and R axes

Figure 2.2: Axes and angle definitions.

2.3.2 Digitization Algorithm

Once a flight sequence has been captured, kinematics digitization consists of

three major components: image processing, volume pixel (voxel) extraction, and

feature identification/model fitting.

In the image processing stage, the fly is isolated from the background and
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noise in a cropped version of the image (400 by 400). The techniques used in

this are background subtraction and masking by a thresholded version of the image.

Each of the images is then corrected for alignment and magnification errors to create

orthogonal profiles of the animal.

In the voxel identification stage, a search space is identified for the insect,

and the pixels in each camera are compared to determine the three dimensional

volume obscured by the fly in the capture volume. Mathematically, this approach

is analogous to a computer-aided-drawing program taking the intersection of each

of the animal’s orthogonal profiles to reconstruct its volume.

In the model fitting stage, the voxels are grouped into head, body, and wing

groups by an iterative distance-minimizing approach. The head and body groups

are combined and the centroid of the group used to estimate the body center of mass

location. The body orientation is determined by the identified semi-minor and semi-

major axes of a principal component analysis conducted on the body voxels. The

wing orientations are estimated by first isolating the wings from their hinges, then

conducting principal component analysis and a planar fit to the outboard section of

the wing voxels.

The above three steps begin with three-view images like those shown in Fig

2.3(a-c) and generate as output volume reconstructions like those shown in Fig

2.3(d-f) and Fig 2.4.
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Figure 2.3: Example images versus voxel reconstructions.
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Figure 2.4: Visual hull reconstruction.
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(a) Straight/Level (b) Left turn

(c) Climb (d) Yaw

Figure 2.5: Digitized flight sequences include a (a) straight and level sequence, (b)
level left turn, (c) climb initiation (d) yaw motion (sideslip). All images are top
views shown at 70Hz except for (c), which is a side view shown at 140Hz.

2.3.3 Digitization Results

Digitization was conducted for flight sequences including straight and level

flight, a level left turn, initiation of climbing flight, and a yaw motion (saccade)

(Bender and Dickinson, 2006b), as seen in Fig 2.5. All of the flight sequences start

in forward flight and are in quiescent air.

Principal component analysis works quite well for stroke and deviation angle

identification, shown in Fig 2.6. A number of modifications were necessary to the

automated HRMT approach in order to yield accurate results for Calliphorid wing

pitch angles. Previously, wing pitch angle was unreliable, due to body voxels that

20



0 1 2 3 4 5 6 7
-90

-60

-30

0

30

60

90

Wingstroke

St
ro

ke
 a

ng
le

, d
eg

 

 

φ
r

Fit

Figure 2.6: Stroke angle is well detected by principal component analysis, and mul-
tiple wingstrokes in straight and level flight provide ample measurement of the
nominal kinematic pattern.

were assigned to the wing grouping and errors in the method of determining a chord

vector.

A spherical body exclusion rule dramatically reduced the body pixels incor-

rectly assigned to wings, as seen in Fig 2.7. The wing angle detection method was

also revised. Wing angle estimation previously estimated the wing chord vector from

points having the most distance to each other. Instead, each wing is now modeled

as a plane and the algorithm computes a least-squares best fit to the function

x = b0 + b1y + b2z. (2.1)

Both modifications markedly improved the wing angle detection, as seen in Fig 2.8.
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Figure 2.7: A spherical exclusion rule dramatically reduces the number of body vox-
els incorrectly assigned to the wings. Blue indicates body voxels that were previously
detected as wing voxels.
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Figure 2.8: Modifications to the wing angle detection algorithm improved the results
dramatically.
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Figure 2.9: A reconstruction of the 45◦ insect model reconstruction shows an occlusal
defect on the left wing.

2.3.4 Digitization Accuracy

Previous work has estimated accuracy of a digitizing method using synthetic

views of a computer graphics insect (Ristroph et al., 2009). A series of rapid-

prototype insect models with wings in known positions were manufactured and ac-

curacy of the technique estimated by placing the model in the capture volume and

digitizing the resulting images. The advantage of such a technique over a typical

calibration with synthetic images is that it provides a very realistic estimate of the

error in the entire measurement system, including imaging errors, lens distortion,

camera misalignment. These effects are not quantified with a synthetic image cali-

bration, which provides an error estimate that only includes the digitization method.

A calibration sequence showing an occlusion (a portion of space obscured in all three

cameras) is shown in Fig 2.8. The occlusal defect on the left wing raises the error

in the wing angles from a mean of 7◦ to a mean of 8.3◦.
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Figure 2.10: Time synchronous averaging is used to identify a nominal stroke pattern
associated with a reference condition (straight and level flight shown).

2.4 Kinematics Reduction

2.4.1 Time Synchronous Averaging

For insects in an established flight condition, repeated wingstrokes (see Fig

2.6) offer a method of improving the wing kinematics angle estimation by offering

multiple measurements of the nominal wingstroke. This improvement was realized

through time synchronous averaging, a method (often used for geartrain diagnosis)

which aligns each waveform of a periodic signal and averages each wingstroke at

each point during the wingstroke (Dalpiaz et al., 2000). Time synchronous averaging

allowed curve fits to be applied to a single stereotypical curve fit with a standard

error of less than 2◦, as seen in Fig 2.10.
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2.4.2 Curve Fitting

Previous Drosophila kinematics work had assumed a planar stroke, sinusoidal

wing motion in φ, and a smoothed square wave for ηg. The assumption of planar

stroke was retained for Calliphora, but both stroke angle and wing angle showed

deviations from this pattern, as seen in Fig 2.10, and sinusoidal curve fits often

resulted in a fit with an unacceptably low coefficient of determination R2. Adding

a “stretch parameter” d to the φ sinusoid as

φ(t) = Φ cos(2πft+ ψ1)(d cos(πft+ ψ2)2 + 1) + φoff (2.2)

and modeling η as a combination of a sinusoid and smoothed square wave

η(t) = A1[.5 tanh(b1 sin[2πft+ e]) + .48] sin(2πft+ π + e)2

+A2[.5 tanh(b2 sin[2πft+ c]) + .48] tanh(3 sin(2πft+ c)) + d (2.3)

improved fit quality to yield R2 > 0.9. Wing stroke angle and wing pitch angle fits

are shown in Fig 2.6 and 2.11.

2.5 Summary

In this chapter, an automated approach was used to extract kinematics from

high speed videography. A body exclusion rule and planar wing fitting was added to

improve the quality of the wing orientation estimates. The method was validated us-

ing manufactured reference models, representing the first published uncertainty data
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Figure 2.11: Wing pitch angle in forward flight is more complex than a smoothed
square wave.

for three-camera insect wing orientation measurement to include the full extraction

path. Trim (stabilized forward flight) and maneuvering kinematics were identified

for Calliphorid flies, a genus for which detailed kinematic data was previously un-

available. Time synchronous averaging was used to determine stereotyped reference

kinematics, and curve fits were populated with biologically inspired kinematic pa-

rameters which are used as inputs to a reduced order flapping flight dynamics model

developed in the remainder of this dissertation.
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Chapter 3

Longitudinal Hover Dynamics

3.1 Introduction and Background

We first analyze longitudinal flapping flight mechanics about hover, using as

an example Drosophila melanogaster, or the common fruit fly. Fruit flies are abun-

dant in research settings, owing to their rapid lifecycle that allows tractable genetic

studies. Correspondingly, they have one of the most well-understood genetic struc-

ture amongst insects. For the goal of flight dynamics research, they are easy to

keep and induce to fly, so that both hovering kinematics and experimental aerody-

namic measurements may be found in published literature (Dickinson et al., 1999).

Additionally, there is a large phenotypic variation amongst differing communities

and for differing sexes. This variation will enable the study of the effects of large

morphological variations in Chapter 6.

This section presents the hovering Drosophila wing kinematics used in sim-

ulation, a review of the experimental aerodynamics model, and other governing

equations used for analysis and simulation.

3.1.1 Wing Kinematics

Section 2.3.1 defined wing stroke plane inclination β, stroke angle φ, and a

wing pitch angle αg for each wing, and introduced the coordinate frames used in
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this study, and Fig 3.1 is repeated here for clarity. For a flapping Drosophila in or

G

ξ

β

ŝx

ŝz

p̂x
p̂z

(a) Stroke plane axes/angle β, body
hovering angle ξ

G

ŝyp̂y

p̂x

r̂y

φr

r̂x

(b) Stroke angle φr and R axes

Figure 3.1: Axes and angle definitions.

near hover, the flap angle φr undergoes a harmonic motion sufficiently represented

as a sinusoid (Dickinson et al., 1999)

φr(t) = −Φr cos(2πfrt) + φoff,r , (3.1)

where Φr gives the amplitude of each wingstroke, φoff,r the deviation of the point

about which the wing oscillates, and fr the right wing flap frequency. The geometric

angle of attack αg exhibits a harmonic motion roughly resembling a modified square

wave, which allows the advancing and retreating strokes to both share a positive

angle of attack.
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3.1.2 Control Parameters

As postulated by Vogel (1967) and later quantified experimentally by Fry

et al. (2003), insects modulate the time forces and moments applied to wingstrokes

by modification of several wingstroke parameters. The control inputs considered in

this chapter are the biologically-motivated choice of flap frequency f in Hz, the flap

amplitude Φ as defined in section 3.1.1, stroke plane angle β, and the mean position

(center) of wing oscillation φoff. In addition to the mathematical definitions in

section 3.1.1, several control parameters may be seen graphically in Fig. 3.2. Right

and left wing variables may be interpreted as longitudinal and lateral control inputs

using the transformation



Φc

Φd

βc

βd


=



0.5 0.5 0 0

0.5 −0.5 0 0

0 0 0.5 0.5

0 0 0.5 −0.5





Φr

Φl

βr

βl


, (3.2)

where [ ]c represents a collective (symmetric) input and [ ]d represents a differential

(lateral-directional) input. Parameter variations are generally small, and the varia-

tions remain remarkably small even for aggressive maneuvers such as fast 90◦ colli-

sion avoidance maneuvers known as saccades (Fry et al., 2003), but are nonetheless

fundamental for the control of the insect. As an example, Table 3.1 and 3.2 shows

nominal and maneuvering parameters for Calliphorid flies maneuvering throughout

the sequences in Fig 2.5. Since this chapter addresses longitudinal motion, we de-
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Sequence (βr, βl) (βc, βd)
S+L (19.5, 21.4) (20.5,−0.9)
Turn (15.3, 24.0) (19.7,−4.4)

Table 3.1: Stroke plane inclination in a turning Calliphorid shows differential stroke
plane inclination perturbation and constant collective stroke plane inclination

.

Parameter Collective Differential
Frequency 211-215 Hz 0 Hz
Amplitude 107-112◦ 0.8-21◦

Offset 0.3-6◦ 16-17◦

Table 3.2: Range of parameter variation observed in Calliphorid flies throughout
maneuvering flight.

scribe the behavior of the right wing and assume symmetry in the left wing frame

and the subscripts [ ] may be suppressed until Chapter 4.

(a) Stroke plane angle input β (b) Stroke offset φoff and amplitude Φ

Figure 3.2: Insect flapping kinematics parameters are used as control inputs to
model.

3.1.3 Aerodynamics

A variety of effects, predominantly unsteady, are known to be active during

an insect’s flight. A thorough treatment of these effects is outside the scope of

this section and may be found in Ansari et al. (2006); Sane (2003). Instead, this
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treatment reviews the largest contribution to in-flight insect forces: “translational”

lift and drag.

3.1.3.1 Translational Lift and Drag

Wing “translational lift” is the largest component (approximately 65-85%) of

an insect’s lift production in hover and the most straightforward of the lift mecha-

nisms known to be active, but includes a number of unsteady effects via experimen-

tal coefficients. The translational component of insect lift can be represented using

(Ellington, 1984a)

L(t) =
1

2
ρS|ut(t)|2r̂2

2CL[α(t)], (3.3)

where the instantaneous lift force L is written as a function of the air density ρ,

the wing area S, tip velocity ut, nondimensional second moment of area r̂2
2, and an

experimentally-determined lift curve slope (Sane and Dickinson, 2002)

CL[α(t)] = 0.225 + 1.58 sin(2.13αg − 7.2). (3.4)

The second moment of area r̂2
2 may be defined in terms of the normalized chord

ĉ = 1/2A c/R and normalized radius r̂ = r/R as r̂2
2 =

∫ 1

0
ĉ r̂2 dr̂ (Ellington, 1984c).

This model is referred to in the insect flight community as “quasi-steady”

because the only time dependent variables in this equation form are the kinematic

variables ut(t) and α(t), yet we know that insect aerodynamics are intrinsically

unsteady (Dickinson and Gotz, 1999). Consequently, the nondimensional CL[α(t)]
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is a curve fit to experimental data that hides a number of unsteady effects, such as

the effect of starting and stopping vortices (Wagner effect) (Dickinson, 1996) and

the mechanism of delayed stall. Though these are unsteady effects, the CL[α] curve

fit is considered to be a function purely of the instantaneous angle of attack, hence

the equations appear in the same form as an aeroelastic analysis that neglects such

effects. Because of this, an aerodynamic model presented in quasi-steady form may

either neglect unsteady effects or treat them via modification of the CL[α(t)] as done

in this dissertation. The other nondimensional term, r̂2
2, addresses the nonuniform

spanwise lift distribution and is a function of the wing’s shape (Ellington, 1984c).

A key feature of the aerodynamic model is the reduction of forces by the dynamic

pressure 1
2
ρu2

t , where the tip velocity ut = φ̇R is a function of the wing flap angle

derivative φ̇ and the wing length R.

Translational drag is the component of force production acting opposite the

direction of wing motion (in the stroke plane) and has a parallel representation to

the translational lift described above. Introducing the experimentally-determined

nondimensional coefficient CD[α] to describe this force, one may model translational

drag as (Dickinson et al., 1999)

D(t) =
1

2
ρS|ut(t)|2r̂2

2CD[α(t)], (3.5)

CD[α(t)] = 1.92− 1.55 cos (2.04αg − 9.82) . (3.6)
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3.1.4 Wingstroke-Averaged Forces and Moments

Flight dynamics often involves a system (airframe) forced by high frequency

forces, creating small high frequency motions (vibration) which are typically ignored

and gross translation/rotation (the flight path). The solution of interest is the flight

path, or asymptotic solution, the speed of which is limited by the airframe inertia.

By reference to results from “two-timing” averaging theory (Cole, 1968), one can

represent the asymptotic solution of a system whose response is on slow timescales

with periodic excitation on fast timescales as the effect of the excitation averaged

over the fast timescale, subject to specific constraints on the system (Kevorkian,

1966; Cole, 1968), an approach that works well for systems with body dynamics

slower than 1/10th the dynamics of the forcing function (Deng et al., 2006a). Deng

et al. applied this concept to the design of flight control for a mechanical flapper

(Deng et al., 2006b; Schenato, 2004) by viewing the averaging process as a nonlinear

map from wrench efforts to state outputs. In this study, we investigate the details

of creating a map from kinematic input parameters (controls) to state outputs and

the dynamic properties of the resulting system, determining the modal (asymptotic)

airframe response time scales via computed frequency responses.

Under the assumption that the aerodynamic timescales are an order of magni-

tude faster than the body dynamics, the wing aerodynamic forces are averaged over

one wingstroke to determine the motion of the insect body. Moreover, finding the ef-

fective force over each wingstroke provides a mathematically straightforward means

to impose the constraint of the control variables being fixed over each wingstroke.
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Such a constraint is useful because insects, unlike larger animals such as birds or fly-

ing mammals, do not posses the computational bandwidth to control wing motions

more than once per wingstroke (Autrum, 1958).

The effective, or mean, lift force over one wingstroke is

Lavg(t) =
1

T

∫ T

0

L(t)dt, (3.7)

where T is the period of the wingstroke given by T = 1/f . An analytic solution

to this lift integral would provide an algebraic expression for the effective lift force

acting over a wingstroke, dependent on: the wing geometry (size and shape), the

environment (density), the wing aerodynamic performance (via lift curve slope), the

longitudinal state variables, and a subset of the control inputs. The general inte-

gration is a numerical task due to the numerous “nested” trigonometric functions.

Restricted solutions to the integral may be found by recognition that the lineariza-

tion performed later does not require a global solution to this integral, but rather

the exact solution at a point and its functional dependence on the state and wing

flap coordinates (partial derivatives). The drag equation must similarly be averaged

over one wingstroke.

3.2 Derivation of Linearized Flight Dynamics about Hover

In this section, the experimental aerodynamics model is extended to include

perturbation velocities and the local and instantaneous forces are approximated by

wingstroke-averaged forces to provide estimates of the vehicle stability and control
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derivatives.

3.2.1 Governing Equations

Assuming a rigid insect body B, the motion of the body-fixed stability frame

S is a function of the applied forces and moments and can be written as a system

of ordinary differential equations (Nelson, 1989). The longitudinal portion of these

equations are

X = m (u̇+ qw − rv) +mg sin(θ) (3.8a)

Z = m (ẇ + pv − qu)−mg cos(θ) cos(φ) (3.8b)

M = Iyy q̇ − Ixz(ṙ + pq)− (Iyy − Izz) qr, (3.8c)

where X, Z, and M are the aerodynamics forces and moment, ωB = pŝx+ qŝy + rŝz

the rotation rate of frame S, and vG = uŝx + vŝy + wŝz the inertial velocity of the

center of mass G as seen in Fig. 3.3.

3.2.2 Hover Equilibrium Trim Solutions

Using the wingstroke averaged forces and moments, under the assumption of

longitudinal motion (p0 = 0, r0 = 0,v0 = 0,φ0 = 0), and writing each variable as

a nominal condition (notated as [ · ]0 and a small perturbation ∆[ · ], the general

equation for motion along the sx axis may be written for hover (where the nominal
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Figure 3.3: Definitions of stability frame velocities vG = uŝx + vŝy + wŝz, rotation
rates ωB = pŝx + qŝy + rŝz, forces F = Xŝx + Y ŝy + Zŝz, and moments M =
Lŝx +Mŝy +Nŝz.

w0 = 0 and q0 = 0) as

X0 + ∆X −mg [sin(θ0) + cos(θ0) sin(∆θ)] = m [∆u̇] . (3.9)

At the trim condition, the small perturbation terms ∆[ · ] = 0, so eqn (3.9) becomes

X0 = mg sin(θ0). (3.10)

Calculation of a trim condition requires specification of a nominal hovering trim

angle θ0. Without restriction, we can define the stability axes such that θ0 = 0.

To do so, define the pitch angle through which the body axes (aligned with the

insects longitudinal morphological axis) must be pitched through in order to become

coincident with the stability axes as the “body hovering angle” ξ (shown in Fig. 3.1),

then project the moment of inertia tensor through the single axis rotation, and define

the distance from G to thorax as rG/t = dxŝx+dzŝz, where a symmetrically-located
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mass center is chosen to preserve longitudinal motion.

The hover condition along ŝx reduces to X0 = 0. A similar derivation of the

hover condition along ŝz and about ŝy gives Z0 = mg and M0 = 0.

Hover equilibrium now reveals multiple solutions for trim inputs. In unac-

celerated hover with a level stroke plane, vertical force equilibrium requires that

Z0 = 2Lavg(t) = mg, which may be trimmed via either flap frequency or stroke am-

plitude inputs. Moment equilibrium reveals that an insect similarly has redundant

control inputs via stroke plane angle, stroke angle offset, or a coupled input of both.

For a given stroke plane angle input β0, the insect may enforce pitch axis trim via

φoff,0 = sin−1

(
sin β0 dz − cos β0 dx

ra cos(2β0)

)
, (3.11)

where ra is the spanwise distance outboard to the point at which the lift and drag

forces may be considered to act. Eqn (3.11) demonstrates that a solution can only

exist for β0 6= ± (2n−1)π
4

, n = 1, 2, 3.... The dependence on body hovering angle ξ

may be seen in Fig. 3.4.

A detailed estimation of the distance ra, which is involved only in the pitch

dynamics, may be addressed via computational fluid dynamics studies and is outside

the scope of this investigation. The point has been shown experimentally to be

roughly constant with respect to changes in angle of attack (Dickson et al., 2008).

Initially, the centroid may seem a wise choice, but since lift forces are proportional

to the square of the local velocity, the actual location of this point is more subtle.

Application of blade element theory with a fixed spanwise blade pitch yields ra =
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Figure 3.4: Trim inputs β0 and φoff,0 as functions of body hovering angle ξ.

3/4R, a value commonly used in helicopter results (and the reason why the twist of

a linearly twisted helicopter blade is specified at this point), which has been used

as a first approximation for this point.

3.2.3 Inclusion of Perturbation States in the Quasi-Steady Form

The current practice of posing the aerodynamics model without any state

dependency is useful from a data reduction standpoint but does not provide insight

into how perturbations of each of the state variables from the operating point affect

the aerodynamic forces and moments produced on the vehicle. The recent discovery

of “flapping counter-torque” (Hedrick et al., 2009) as a means to arrest a turning

maneuver is a result of the consideration of perturbation velocities for yaw rotation,

which is now examined for the general longitudinal case.

We consider inclusion of the perturbation velocities vG = uŝx + vŝy + wŝz,
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and rotation ωB = pŝx + qŝy + rŝz. Intuitively, one would expect no aerodynamic

dependency on inertial position or orientation.1 Both vG and ωB have two major

effects on the wing lift and drag production: (a) they change the local velocity (and

hence dynamic pressure) at an airfoil section, and (b) they also change the local

angle of attack at each airfoil section.

3.2.4 Velocity Components

In order to determine the incremental lift and drag acting on an elemental

wing section, one must consider the total velocity incident that wing, defined as v =

vφ+vG+vω, where vφ, vG, and vω are the velocity components due to flapping, body

translational rate, and body rotational rate, respectively. To facilitate numerical

simulation, the components are resolved in the wing frame as v = vxr̂x+vyr̂y+vz r̂z.

3.2.4.1 Local Velocity Component due to Flapping

The component of velocity due to wing flapping at a distance r along the wing

spanline is φ̇r acting along the r̂x axis or vφ = φ̇ r r̂x. The original model evaluates

this function only at the wing tip for ut = φ̇R.

1Note that aircraft are occasionally modeled (in reduced order models used for control design)
with a dependency on roll angle φ that arises due to the sideslip velocity v ensuing from such an
angle, as a φ estimate is often more readily available from an instrumentation system and is then
used to effectively estimate v. Theoretically, a formulation including v is well-posed.

39



3.2.4.2 Local Velocity Component due to Body Velocity

In the rotating right wing frame R, the body translation velocity vG has the

components
[
vG
]
R = urr̂x+vrr̂y +wrr̂z, related by the rotation matrix RRS defined

in eqn (3.13). [
vG
]
R = RRS

[
vG
]
S (3.12)

RRS =


cφrcβ −sφr cφrsβ

sφrcβ cφ sφrsβ

−sβ 0 cβ

 (3.13)

Similarly, the velocities seen on the left wing are given by RLS, the compliment

of RRS. Though a function of the flap angle φr and stroke plane angle β,
[
vG
]
R is

constant with respect to wing spanwise distance.

3.2.4.3 Local Velocity Component due to Rotation Rates

The body rotation rate ωB enters in a slightly more complicated fashion. The

velocity of a point P due to rotation rate ωB about the center of mass G can be

expressed as vω = ωB × rG/p, where rG/p is the vector from G to P . Unlike the

velocity components due to body translation, the velocity components due to body

rotation are functions of the distance r outboard. The choice of stability axes as

a basis for ω requires a transformation RRS to express it in the wing frame for

numerical computation.
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3.2.5 Effects of Modified Velocity

The original aerodynamics model (Sane and Dickinson, 2002) made the as-

sumption that vG and vω were both negligible in comparison to the flapping veloc-

ity vφ, The inclusion of the additional components formulated as a modification of

the wing’s 2D angle of attack and local wing frame velocity forms the basis for the

dipteran flapping wing dynamics analysis.

3.2.5.1 Angle of Attack Modification

The local velocity components have a marked effect on the local angle of attack

on each wing’s airfoil section. The change in the 2D angle of attack may be written

as

αadd = arctan

(
vz
vx

)
. (3.14)

The effect of the angle of attack modification is shown graphically in Fig. 3.5a and

3.5b, which demonstrates that an imposed (positive) heave velocity (descent) in 3.5b

corresponds to an increase in angle of attack of the wings and corresponding increase

in lift acting to oppose the motion, while the converse is also true. Then, heave

velocity damping is found by consideration of the perturbation velocities, in much

the same manner as flapping countertorque provides yaw damping via differential

velocities.
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Figure 3.5: Wing angle of attack is increased in a descent perturbation and reduced
in a climb perturbation, so a flapping wing system in axial climb/descent exhibits
damping in heave velocity w.

3.2.5.2 Effect on Dynamic Pressure

Modification of velocity components also affect the dynamic pressure 1
2
ρv2 at

each location. For example, any forward speed u results in an increase in dynamic

pressure during the advancing stroke and a movement outboard of the location of

zero dynamic pressure during the retreating stroke. Moreover, the wing component

velocities are functions of both r and φ and consequently this spanwise location

shifts throughout the wingstroke.

The total dynamic pressure under addition of velocity components is

qtotal =
1

2
ρ
(
v2
x + v2

y + v2
z

)
. (3.15)

For the flight conditions of many dipteran insects (Vogel, 1967), the dynamic pres-

sure in eqn (3.15) is dramatically affected, up to several times the nominal dynamic

pressure calculated using the wing kinematics, while the angle of attack as calculated

by eqn (3.14) is affected by several degrees.
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3.2.6 Perturbation Equations

Having found trim conditions, one may subtract eqn (3.10) from eqn (3.9) and

solve for ∆u̇ to obtain

∆u̇ =
∆X

m
− g cos(θ0)∆θ, (3.16)

where ∆X has the physical interpretation of being the perturbation force due to

state or control perturbations from equilibrium (trim) values.

For traditional linearized analysis, a control model is developed by separating

out the linear effects of each of the longitudinal variables u, w, θ, q, as

∆X

m
= Xu∆u+Xw∆w +Xθ∆θ +Xq∆q +

Xc

m
, (3.17)

where X[ · ] is defined to be X[ · ] = 1
m
∂X
∂[ · ] . Similarly, the control term Xc may be

expressed in terms of each of the input controls as

∆Xc

m
= Xf∆f +Xβ∆β +Xφoff

∆φoff . (3.18)

By expressing the perturbation forces in the form, a (time-invariant) linear sys-

tem can now be written in standard state space form ẋ = Ax + Bu where x =
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[ ∆u ∆w ∆q ∆θ ]T , u = [ ∆f ∆Φ ∆β ∆φoff
]T , and

A =



Xu 0 0 −g

Zu Zw 0 0

Mu Mw Mq 0

0 0 1 0


, B =



0 0 Xβ Xφ,off

Zf ZΦ 0 0

0 0 Mβ Mφ,off

0 0 0 0


. (3.19)

3.2.7 Homogeneous System Dynamics (the A matrix)

Basic dynamics analysis begins with the unforced differential equation ẋ = Ax.

Without consideration of the perturbation velocities, differentiation with respect to

u, w, and q of the effective X term yields that the stability terms Xu, Xw, and

Xq are identically zero for any flight configuration because the wing’s lift and drag

components are functions of the kinematics, wing shape, and environment, not the

state variables. All higher derivatives also do not contain any dependence on the

state variables so the conclusion is not limited to a linear analysis. The experimental

aerodynamics model in absence of perturbation velocities suggests that some form

of feedback is necessary for an insect to possess stability, which would significantly

increase the computational workload the insect must support.

3.2.8 Control Derivatives (the B matrix)

The insect aerodynamic forces and moments at hover equilibrium depend ex-

plicitly on the wing kinematic functions, so the control derivative estimates may
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be found analytically. Intuitively, for perturbations about the nominal hover case

θ0 = 0, the magnitude of the lift vector (via ∆f or ∆Φ) does not affect the X force

while a change in direction of the lift vector via ∆β does. Mathematically: as the X

aerodynamic force contains a sin β0 term and β0 = 0 for the hovering insect, the u̇

equation has a nonzero Xβ term shown in eqn (3.20), which evaluates to g because Z

force equilibrium for the trim condition has already specified that the nominal value

of the lift vector must be Z = −W = −mgcθ0 , and Xβ = 1
m
∂X
∂β

, where cθ0 = cos θ

and sθ0 = sin θ.

Xβ =
1

m

∂

∂β

[
2π2ρ(r̂2

2SR
2)(f 2Φ2 sin β)CL,avg

]
=

2π2ρ(r̂2
2SR

2)(f 2
0 Φ2

0)CL,avg
m

= gcθ0

(3.20)

3.2.8.1 Heave and Pitch Dynamics

The derivation has focused on the ŝx axis, but the heave ŝz and pitch θ dy-

namics parallel the ŝx results. The control input matrix B found by this method

is shown in eqn (3.21), where the nominal integral lift L0 has been defined in eqn

(3.22).

B =



2g
cθ0
f0

tan(β0) 2g
cθ0
Φ0

tan(β0) gcθ0 0

−2g
cθ0
f0

−2g
cθ0
Φ0

gcθ0 tan(β0) 0

0 0 2
Iyy

L0 dz
2
Iyy

L0 cos
[
sin−1(−dx

ra
)
]

0 0 0 0


(3.21)

L0 = π2(r̂2
2SR

2)(f 2
0 Φ2

0)Cl (3.22)
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For the biologically-motivated choice of a level stroke plane angle β0 = 0 and hov-

ering at θ0 = 0, eqn (3.21) can be simplifed to

B =



0 0 g 0

−2g
f0

−2g
Φ0

0 0

0 0 2
Iyy
L0dz

2
Iyy
L0 cos

[
sin−1(−dx

ra
)
]

0 0 0 0


. (3.23)

3.2.8.2 Significance of the Control Matrix B

The control matrix B provides direct insight into the physics of how control

inputs affect insect flight motion. In particular, the control matrix exhibits a decou-

pling which both suggests a means of control and is consistent with the biological

intuition formed by dipteran insect observations.

The first row implies that an insect in hover uses its stroke plane angle to

modulate its fore/aft movements, necessitating a coupled adjustment in the input

φoff to maintain equilibrium. This coupled behavior is exactly as observed in free

flight insects (Taylor, 2001). Moreover, by appropriate choice of wing length, the

insect may lose the use of the input φoff. Initially it appears that extending/trimming

an insect’s wings (to affect ra) could force an insect to hover at a differing pitch angle

and that the insect would lose the ability to generate pitch moments at a particular

wing length. However, since ra is normally several times larger than dx, the insect’s

wings would have to be drastically shortened to achieve the dx = ra condition and

the lift generated by the trimmed wings would be severely impaired before the
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capability to generate pitch moments is destroyed.

Forward Velocity u: The control affecting the forward velocity u is the

inclination of the stroke plane angle, suggesting a “helicopter-like” mode of regulat-

ing forward velocity is physically reasonable. The Xβ term reflects inclination of the

lift vector–the g term is related to the trim input solution for equilibrium in hover.

Note there is some cross-coupling into the pitch rate via nonzero Mβ.

Heave velocity w: A hovering insect has at least two means of controlling

its vertical velocity w, both of which are related to changing the magnitude of the

lift vector: wingbeat frequency f and flap amplitude Φ. Both of these terms enter

in a complementary fashion, and show the expected effect: an increase in frequency

or amplitude causes the insect to rise.

Pitch angle θ: No direct control over the pitch axis is provided; instead

control of the pitch is through integration of the pitch rate, as a direct consequence

of Eulerian mechanics.

Pitch Rate q: Pitch rate is primarily controlled by the offset (mean) term in

the harmonic flap function. As expected, deflecting the mean position of the wings

forward results in a positive (nose-up) pitch rate. Moreover, the strength of the

term is related to the ratio of the distance along the ŝx from thorax to the center of

mass as compared to the wing length R. Among other things, this provides a means

to immediately estimate via a photograph the pitch control authority a particular

insect has, much like a fixed-wing aircraft’s wing loading gives an immediate means

to estimate its velocity. The simple insect pitch control estimate is particularly useful

for small insects where characterizing the insect’s pitch inertia is difficult. Pitch
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rate is also secondarily controlled by the stroke plane angle term which primarily

generates a response in the forward velocity, so the offset term is an appropriate

choice for controlling pitch rate and is a trend observed in nature (Taylor, 2001).

3.3 Simulation and System Identification

In this section, a simulator is created using the perturbation velocities aero-

dynamics model developed in Section 3.2 and a frequency-based model parameter

identification approach for a simulated insect parameters described.

3.3.1 Simulation

A simulation environment seen in Fig. 3.6 has been created including the aero-

dynamics model developed in Section 3.2 and the 6 degree-of-freedom rigid body

equations of motion (the longitudinal portions of which are seen in eqn (3.8a) to

eqn (3.8c)) in order to capture the most essential rigid body motion of the insect

forced by translational lift dynamics. The aerodynamic model was derived using

Drosophila data, so the simulator is populated with parameters from this species.

Wing mass is an order of magnitude smaller than body mass, and research by Sun

and Xiong (2005) and Taylor and Thomas (2003c) has indicated that the effects of

high-frequency wing mass oscillations are small. Accordingly, the simulator repre-

sents the inertial properties of the overall insect by the insects body mass and inertia

tensor matrix, and body forces with a constant gravitational field and traditional

aerodynamics modeling (Full and Koehl, 1992).
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Figure 3.6: Simulator used for haltere-on and bare-airframe input/output studies,
showing (highlighted path) the critical modification: consideration of rigid body
state in wing aerodynamics functions.

The simulation includes synthesis of physically realistic wing kinematics tra-

jectories, using the bio-inspired analytic expressions presented earlier to solve for

the position of a wing at simulation time. The kinematics engine’s bio-inspired pa-

rameters are then viewed as the control inputs and used to drive the insect motion

as desired.

The wing used in the simulation is a symmetric planar wing with a planform

characterized nondimensionally via a second-order shape model. The use of such a

wing is justified analytically and by reference to experimental data and high-speed

imagery (Fry et al., 2003). (Flexibility effects in the species studied are an active

area of research and not included in the simulation at this time but will be included

when significant results appear.)

3.3.1.1 Haltere Modeling

Experimental evidence has repeatedly demonstrated that components of the

insect’s control system, particularly the portions concerning vision, do not have
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bandwidths that would allow them to actively stabilize high-frequency behavior aris-

ing from the wing. Instead, the higher frequency angular rate loops have been closed

using haltere-based rate feedback. Halteres are a pair of oscillating aerodynamically-

ineffective “hind wings” that have been shown to be theoretically (Thompson et al.,

2008) and experimentally (Derham, 1714; G Nalbach, 1993) capable of acting as a

biological rate gyro (Nalbach, 1994). Previous work has characterized the haltere

frequency response patterns in both equilibrium (Sherman and Dickinson, 2003)

and aggressive flight motions known as saccades (Bender and Dickinson, 2006a) and

shown that they can be modeled as bandpass filters with their outputs summed with

visual feedback (Sherman and Dickinson, 2004; Bender and Dickinson, 2006b). In

the simulation, simple bandpass filters on the angular rates are used in a feedback

loop to model the haltere angular rate feedback

3.3.2 System identification method

We would like to characterize the rigid body motions about hover in a model

amenable to control analysis and design tools. In this section, we present a frequency-

based linear system identification that was conducted on the simulation using Com-

prehensive Identification from FrEquency Responses (CIFER) (developed by NASA-

Ames (Tischler, 1992)). Frequency-based system identification identifies a system

model only over a range of frequencies so care must be taken to select the frequencies

that are relevant for the desired application. The desired application is understand-

ing sensing and feedback requirements for flight control design, so capturing the
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Figure 3.7: This study considered the haltere-stabilized insect mapping inputs at
point A to outputs at point B. A low gain controller was included that modified the
frequency sweep inputs to keep the system near hover.

basic rigid body motions (i.e., up to ∼20Hz) is desired. The haltere-on airframe

motion was the primary system to be identified, or the high frequency system in

Fig. 3.7 (shown in a dashed box) with inputs taken at point A and outputs taken

at point B. The identification procedure for the haltere-on system via simulations

conducted with the controller and mechanosensory feedback running was designed

by considering the haltere feedback as a stability augmentation system (SAS). By

considering the halteres as a SAS system, procedures for bare-airframe identifica-

tion from SAS-on flight tests (Tischler and Cauffman, 1999) could be used. In most

simulated flight test cases, open loop design of the frequency sweeps was sufficient

to keep the insect near hover, but a low-gain external feedback loop was used pri-

marily for haltere-off (bare airframe) identifications, where the controller-modified

frequency sweeps were considered as the input.

With a flap frequency of approximately 200 Hz (1256 rad/s), Drosophila have

dynamic motions at such frequencies. Obviously, wing motion predominates at

this frequency, but in a simulation with little or no viscous damping effects on the
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body, small body motions can be observed, relating to the force dependence on

this flap frequency. In particular, the flap frequency and potentially higher order

harmonics of it (2/flap, 3/flap, and so on) appear in the state history output. The

movement of the center of pressure fore and aft generates a pitching moment that

leads to oscillatory behavior. The addition of rotational damping could partially

mitigate this effect, but the smaller oscillatory motions observed at these frequencies

elicit haltere responses since the vision-based control system response trails off at

high angular rates. Significant statistical correlations from input to output was not

observed above approximately 30 Hz (188rad/s) and frequency responses above 90

Hz were discarded. Limiting the frequencies identified has the advantage of removing

the high frequency noise and numerical artifacts during the identification process.

Low frequency identification is limited by the length of the time history pre-

sented. In theory, the lowest frequency that could be identified in a time history of

length Tmax is fmin = 1/(2Tmax). In practice, accurate identification requires several

cycles of the longest mode. All expected or observed frequencies were faster than

the lowest possible frequency in the 14 second (2800 wingbeat) trials used in this

study: fmin = 0.04Hz (0.22 rad/s). Instead, based on observed modes and numerical

capability, the search for a model was restricted to above 0.1 Hz (0.6 rad/s).

3.3.3 Model structure

In consideration of linearized longitudinal dynamics about hover, a traditional

flight dynamics model takes the form ẋ = Ax +Bu (Franklin, 2002), where A and
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B are most generally defined as in eqn (3.19). Applied to a helicopter or fixed-wing

airplane, several of the terms in the A matrix are zero. For example, the term Mw

may usually be discarded in hover. In forward flight, linearization of the disc angle

of attack shows that Mw is related to the body angle of attack via the forward

velocity u0 and may not be discarded.

3.4 Discussion

3.4.1 Non-Parametric Handling Qualities Identification

One way to characterize the control requirements of the haltere-on airframe

dynamics is from the perspective of a human tasked with piloting the vehicle, since

determing the computational capabilities of the insect not yet established. Several

metrics pertinent to human-piloted rotorcraft small-perturbation handling qualities

analysis have been quantified and evaluated from calculated frequency responses

shown in Fig 3.8-3.11 without the need for a state-space model. Table 3.3 shows

the properties important for control and handling qualities evaluation, from which

it is clear that the pitch and heave dynamics have higher bandwidths than the

fore/aft dynamics. As specified in ADS-33 (US Handling Qualities Requirements

for Rotorcraft), a gain margin of 6dB and phase margin of 45◦ was used to calculate

the bandwidths (Aviation Engineering Directorate, 2000). Care must be exercised

in interpreting the gain and phase margins as the calculation of several of these

items involves frequencies beyond the range of good coherence.

ADS 33 specifies a number of maneuvers known as mission task elements
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Figure 3.8: Identified transfer functions to pitch rate q.

(MTEs) for which the helicopter is evaluated. With respect to pitch control, the

relatively high bandwidth (compared with full scale rotorcraft) of the system means

ADS-33 meets Level 1 handling qualities requirements for the hover and low speed

small amplitude pitch-related MTEs, including target acquisition and tracking.

However, were the insect airframe to be humanly piloted, the indeterminate gain

bandwidth values are a cause for concern because they indicate a susceptibility to

pilot-induced-oscillation. With respect to forward motion, recall that β was recom-

mended as fore/aft control. In general, forward speed regulation is shown to be the

slower bandwidth output, which is likely related to the fact that fore/aft motion is

primarily accomplished by tilting the insect’s thrust vector, followed by its body.

Such a behavior is analogous to a helicopter tilting its rotor disc, followed by its

fuselage, and is slower than other dynamics modes.

Experimental evidence indicates that an insect’s neural structure responds

with a small time delay, about 3-4ms (Autrum, 1958), and a detailed model of wing
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Figure 3.9: Identified transfer functions to pitch angle θ.

structural dynamics could add an additional delay. While the low phase margin

in the primary β to u transfer function suggests that introducing a time delay on

the order of 5-10ms could affect the stability of the system, the coherence in this

frequency range is degraded and further investigation is necessary.

Function GM PM Gain BW Phase BW Delay

β to θ ∞ 37◦ ∞ 6.2Hz 0
φoff to θ ∞ 23◦ ∞ 4.5Hz 0
Φ to w ∞ 106◦ ∞ ∞ 0
β to u 5dB 4◦ 3.5Hz 2.2Hz n/a
φoff to u ∞ 36◦ 2.2Hz 2.2Hz 18 ms

Table 3.3: Control and handling qualities properties used to evaluate the system in
reference to rotorcraft handling qualities requirements. GM and PM represent gain
and phase margins, resctively.

3.4.2 Heave Dynamics

By observation that axial flight testing is decoupled from the other inputs, the

system was modeled as a 1D system representing the heave dynamics and a system
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Figure 3.10: Identified transfer functions to forward velocity u.

in R3 and the heave dynamics identified first in standalone axial simulations. For

an insect in hover at some pitch angle θ0, with an equilibrium stroke plane angle

of β0, vertical force equilibrium provided a means to solve for vertical trim and a

corresponding heave model of the form

ẇ = Zww + Zf (f − f0) + ZΦ(Φ− Φ0) + Zβ(β − β0) + Zφoff
(φoff − φoff,0). (3.24)

Analytic linearization of the quasi-steady form yielded an expression for the terms

in the B matrix,

B =

[
−2g cos θ0

f0

−2g cos θ0
Φ0

g tan β0 cos θ0 0

]
. (3.25)
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Figure 3.11: Identified transfer function from stroke amplitude Φ to heave velocity
w.

For the example Drosophila-like insect, the numerical evaluation of the B matrix

using the trim parameters shown in Table (3.4) yields

B =

[
−0.098 −14.584 0 0

]
. (3.26)

control input value
f0 200 Hz

Φ0 77.08◦

β0 0◦

ξ 90◦

ra 1.6mm

Table 3.4: Nominal input parameters used in evaluating B for the hover lineariza-
tion.

Frequency-based system identification of the heave dynamics under excitation

via modulating the flapping amplitude Φ by 1 degree about the nominal (trim) value

Φ yields

ẇ = [−4.862]w + [−17.1941]∆Φ. (3.27)
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Visible in eqn (3.27) is an aerodynamic damping term Zw which is of aerodynamic

origin and was predicted due to the modified angle of attack due to the perturbation

velocities. (See Fig (3.5) for a physical explanation of this effect.) A simulation with-

out consideration of perturbation velocities does not exhibit positive Zw damping,

indicating the effect is due to the modification.

3.4.2.1 Effect of Flap Amplitude

The identified system in eqn (3.27) includes a control term reflecting the fact

that heave control in hover is achieved through direct modulation of the aerody-

namic thrust. Experimental evidence indicates that insects do have the capability

to measure angular rates and they respond to a mechanical disturbance in pitch

rate with a change in stroke plane amplitude ∆Φ and stroke offset φoff that is nearly

linear (Thompson et al., 2008). It is theorized that at high angular rates the am-

plitude response falls off, but physical limitations mean measurements have not yet

been conducted involving a disturbance faster than approximately 800◦/s to verify

this conclusion. For this reason, the nonlinear simulation models a high frequency

cutoff on hatere rate feedback.

3.4.2.2 Effect of Flap Frequency

In contrast to flap amplitude, an insect’s flap frequency response to a pitch rate

is not a linear relationship and there is dispute over how insects use flap frequency

as an input. In the linear analysis presented earlier, flap frequency enters in the
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same functional manner as flap amplitude, but insects often choose to modulate

wingbeat frequency independently of the wingbeat amplitude, commonly varying

it in conjunction with other control inputs (Dudley, 1995) (Altshuler et al., 2005)

(Vance et al., 2005) . Experimental work has indicated that the dependence of lift

on Φ is linear and nearly quadratic on f , but insects decrease flap frequency when

approaching peak force outputs. The response exhibits a maximum near 200◦/s, and

decreases as the angular rate increases from that point (Sherman and Dickinson,

2003), which is presumed to be a physiological limitation (Taylor, 2001).

The frequency ranges appropriate for a linear system model are determined

by reference to the coherence γ ε [0, 1] of the input/output pair, which quantifies

the degree to which an input-output pair are related by linear system dynamics.

Coherence is defined via

γ(ω) =
|Gxy(ω)|2

Gxx(ω)Gyy(ω)
, (3.28)

where 1 indicates entirely linear system dynamics and 0 indicates an input/output

pair with no linear correlation. For the stroke plane amplitude to heave relation,

the frequency band of linearity covers much of the range of frequencies expected in

an insect control problem. Conversely, the frequency range of acceptable coherence

in the flap frequency to heave velocity relation is limited to the higher frequency

regions shown in Fig. 3.13. The reduction in linear effectiveness for stroke plane

amplitude modulation (indicated by the negative slope in the Bode magnitude plot)

and the complementary increase in flap frequency modulation linear effectiveness

(indicated by the coherence increase from 0 to near 1 and the positive slope in the
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Bode magnitude plot) may explain why insects tend to use frequency and amplitude

in a different manner. A complementary set of control inputs mirrors a paradigm

observed in insect vision sensing, where visual and mechanical (haltere) feedback

mechanisms cover differing portions of the frequency spectrum. Complementary

actuation dynamics are often observed in nature, but this means that a transfer

function fit that includes both control inputs is a compromise between accuracy of

the two.
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Figure 3.12: As noted in experimental observations of insects, stroke plane amplitude
Φ shows a linear correlation to perturbations.

The input controls were chosen based on biological observations, but the lim-

ited flap frequency band of acceptable coherence restricts its linear application to

relatively fast inputs. Any vehicle, including biological structures, must also be de-

signed for optimal operation at or near a particular frequency, limiting the ability

to use flap frequency as a control term. For these reasons, flap frequency is not

recommended as a primary control term but is included in this study to illustrate

its complementary control effect. Under the restriction of high frequency excitation,
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Figure 3.13: The use of flap frequency f as an input is correlated linearly over a
smaller region than Φ.

the system can be re-identified including the effect of the control input f . During

this identification, the ZΦ term was fixed to the analytic result and the system was

determined to be

ẇ = [−4.7888]w +

[
−114.4228 −14.584

] f

Φ

 . (3.29)

Such a system still shows acceptable fit from stroke amplitude to heave velocity, as

seen in Fig. 3.14. A time domain comparison of the nonlinear and identified system

appears later in Figure 3.15(b).

3.4.3 Longitudinal Dynamics

While the axial climb (heave) dynamics may be adequately described in iso-

lation from the other state variables, an accurate description of the insect’s motion

along its ŝx axis and pitch motion requires consideration of the coupled system. In
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Figure 3.14: The identified system fits the stroke plane amplitude to heave velocity
relation.

this section, system identification tools are used to reduce the nonlinear Drosophila-

like dynamics in θ, u, and q to a linearized system (about hover) that may be directly

applied to control design.

For the system identification, simulated flight tests were conducted including

frequency sweeps applied to each of the channels in turn with off-axis controller

portions turned off (or the entire controller off) to prevent cross-correlated inputs

that can interfere with identification. Frequency as an input was discarded for the

reasons discussed earlier.

The identified longitudinal system dynamics matrix for the haltere-on system
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is identified to be

Aid =



−12.33 0 0 −9.810

0.0 −4.651 0 0

547.0 0.0 −33.26 0

0 0 1 0


. (3.30)

The system dynamics matrix Aid has the eigenvalues λ1 = −38.56, λ2,3 = −3.51 ±

11.26i, λ4 = −4.65, and the eigenvectors seen in eqn (3.31), confirming the observa-

tion that the heave dynamics are uncoupled from the pitch/translational dynamics.

ν1 =



−.0097

0

.9996

−.0259


, ν2,3 =



0.0578 ∠± 0.3619

0

0.9948

0.0843 ∠∓ 1.8730


, ν4 =



0

1

0

0


(3.31)

The control input matrix is identified to be

Bid =



0 20.67 12.69

−17.36 0 0

0 −2826.0 6020.0

0 0 0


. (3.32)

Each of Aid’s diagonal elements (Xu, Zw, and Mq) are negative, indicating
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viscous damping along/about that axis. Thus, the experimentally-derived aerody-

namics model applied to rigid body dynamics predicts viscous damping in the ab-

sence of body drag forces, i.e., as a fundamental part of flapping wing flight. Such

a passive stabilization mechanism is highly advantageous for reducing the computa-

tional and energetic workload, and parallels the recent work characterizing “flapping

counter-torque” (Hedrick et al., 2009), or damping about the ŝz axis.

3.4.3.1 Pitch Dynamics

The most relevant stability derivatives for pitch dynamics are Mβ, Mφoff
, and

Mq. A single axis pitch dynamics model involving these terms can help illustrate

the role of the pitch stiffness and control terms. For the linear system, apply the

principle of superposition to write the pitch rate output as the sum of two SISO

systems with step inputs applied to β and φoff such that

q(t) = (1− eMq t)

[
−Mβ

Mq

∆β +
−Mφoff

Mq

∆φoff

]
. (3.33)

Much of helicopter handling qualities analysis and control design is focused

on increasing the magnitude of Mq, because Mq describes the rate at which a pitch

rate reaches a steady-state value for a given step input, or the “quickness” of the

vehicle’s pitch response to a pilot input. A major advantage of a modern “hingeless”

rotor design is the resulting larger bare airframe |Mq|, from about 0.5 for a UH-60

to 5-6 for an aerobatic Bo-105 (Heffley et al., 1979b). The addition of a flight

control system increases |Mq| and is desired for a UH-60 to maintain a reasonable
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pilot workload. The estimation of Mq = −33.3 indicates that the insect pitch

response is largely kinematic rather than dynamic. Such a finding implies that

mechanosensory feedback mechanisms can markedly reduce the neural demands of

insect flight control, which may help explain how insects are able to achieve high

levels of maneuverability on a very small computational budget.

The control terms Mβ and Mφoff
affect the magnitude of the steady-state pitch

rate reached for a given input. A relative comparison of the two derivatives shows

that a perturbation in the φoff input is more than twice as effective at creating a

pitch rate. This fact, coupled with the fact that the input β also leads to a forward

speed response twice the size of a φoff input, verifies the theoretical conclusion that

φoff is the appropriate primary control term for pitch dynamics. Direct comparison

of analytic versus identified Mφoff
is complicated high sensitivity to parameter vari-

ations in the estimated term ra, but Mβ has the analytical estimate (using the ra

approximation) −4660, as compared to the identified value −2826.

The pitch response to forward speed defined by Mu is an important result, as it

leads to a nose-up motion in the presence of a forward velocity, and hence a restoring

force to resist the increase in speed. Mu > 0 is a criteria for static stability. In a

helicopter, a positive Mu is created by rotor blade excursions from the disc plane,

but the positive Mu result indicated here was reached without providing the wings

the ability to move out of the stroke plane defined by the input.
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3.4.3.2 Forward and Heave Velocity Dynamics

The forward velocity dynamics are represented by the identified Xu, Xφoff
,

Xβ and an additional inertial term formed by inclination of the gravity vector that

remains −g throughout this analysis. Xu indicates that flapping wing kinematics

provide static speed stability even in the absence of body drag forces. The Xβ

control effectiveness term was estimated analytically as g but identified to be 20.7.

The Xβ and Xφoff
terms were the derivatives identified with the most uncertainty,

with insensitivities of 3 and 5.5%, respectively, indicating that additional dynamic

effects not considered in this analysis may be relevant for the description of this

degree of freedom.

3.4.4 Identified Longitudinal Dynamics Verification

To verify the model structure used, additional candidate dependencies not

included in the analytic model were included, such as Zu and Mw and delays in

the input channels to allow for unmodeled states. In all cases, the added terms

were identified to zero, small, or had only minor effects on the transfer function and

simulated time histories.

The responses of the identified and nonlinear systems to a variety of inputs

were compared. The identified system shows tracking during parallel simulations,

and a test involving simultaneous actuation in all input controls is shown in Fig.

3.15.
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Figure 3.15: Time domain comparison of the linear and nonlinear systems.

3.4.5 Accuracy of Identified Model

Besides evaluating the accuracy of the identified model via how well the iden-

tified and experimental transfer functions agree (see Figs 3.8-3.11) and through

comparison of simulation results in section 3.4.4, the accuracy of the each of the

parameters in the identified model may be estimated as part of the system identi-

fication procedure. One method for comparing the quality of identification of each

parameter is via investigation of how variation in that parameter affects the global
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Parameter Value Standard Dev. σ Insensitivity

Xu -12.3 4.0% 1.1%
Zw -4.7 9.1% 3.8%
Mu 547 3.6% 0.9%
Mq -33.3 4.6% 1.1%
Xφoff

12.7 12.2% 5.9%
Xβ 20.7 7.6% 3.0%
ZΦ -17.4 4.8% 2.0%
Mφoff

6028 3.6% 1.2%
Mβ -2826 3.8% 1.1%

Table 3.5: Uncertainty estimates for identified dynamics model.

cost function describing the difference of the transfer function fit and calculated

frequency response, a relative estimate known as the “insensitivity.” Values of in-

sensitivity less that 10% are considered reasonable, and the identified values ranged

from less than 1% for Mu to 5.9% for Xφoff
. A good estimate of the standard de-

viation in each parameter to be expected in repeated flight tests and identification

sequences may be determined through Cramer-Rao (CR) bounds. Table 3.5 shows

uncertainty estimates for the estimated parameters, where the standard deviation

upper bounds are derived from the lower bounds provided by CR bounds (Tischler

and Cauffman, 1999). The uncertainty does not destroy the qualitatitive behavior

of the eigenvalue map, shown in Fig. 3.16, which shows the presence of a fast and

subsidence mode and an oscillatory pair. The slow subsidence mode associated with

the smaller real root is the heave damping pole, while the other three reflect coupled

motion of the pitch and fore/aft dynamics.
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Figure 3.16: Map of haltere-on system poles with uncertainty perturbations as listed
in Table (3.5) preserves the qualitative behavior.

3.4.6 Bare Airframe System Identification

An identification of the haltere-on system revealed a decoupled, stable system

that indicated a control system would not need to provide stabilization feedback.

Identification of the bare-airframe system may also be conducted, which reveals a

decoupled heave pole, a fast subsidence mode, and an unstable oscillatory pair, as

seen in Fig. 3.17. The finding that haltere-based rate damping is sufficient to sta-

bilize the unstable oscillatory pair associated with pitch dynamics has experimental

support (Fraenkel, 1939; Casas and Simpson, 2007). Since the oscillations are at

approximately 2 Hz, the stability of the pair is important from the perspective of

quantifying the control requirements–for example, an oscillatory instability at 2 Hz

would be unacceptable for a human-piloted aircraft. The bare airframe pole struc-

ture seen in Fig. 3.17 is the most common pole structure associated with hovering
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Figure 3.17: Map of haltere-off system (the bare-airframe) poles including un-
certainty perturbations indicates the traditional VTOL modal structure (Sun and
Xiong, 2005).

vertical takeoff and landing (VTOL) aircraft, including a hovering Harrier VTOL

aircraft (Franklin, 2002), many helicopters which exhibit a lightly unstable Phugoid

mode in hover (Heffley et al., 1979a,b), and the CFD-based analysis (Sun and Xiong,

2005) of a bumblebee. That the same pole structure results from complex computa-

tional fluid dynamics analysis and from a relatively simple application of curve-fitted

aerodynamics to a rigid body simulation is significant, but the observation of the

same pole structure across differing scales and vehicle configurations (rotorcraft,

fixed wing VTOL, and dipteran flapping wing) is even more remarkable, because

dynamic similarity of the two systems is not suggested by traditional scaling argu-

ments such as Froude number comparison (Wolowicz et al., 1979). Instead, linear

system analysis has been used in this study to reveal similar passive aerodynamic

mechanisms on different scales.
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3.5 Summary

In this chapter, the curve-fitted insect aerodynamics model (in quasi-steady

form) was posed in the context of body translation and rotation by adding the con-

cept of perturbation velocities to formulate the wing aerodynamics as functions of

the insect (or vehicle) state. The resulting aerodynamic forces and moments were

applied to 6 DOF rigid body equations of motion. The equations were first analyzed

via a wingstroke-averaged force and linearization method in analytic form to give

controllability term estimates. A numerical simulation of a dipteran insect was then

constructed. Geometric, aerodynamic, and inertial properties of a Drosophila-like

insect were used in the simulator to create time histories that were then analyzed

in the frequency domain, and two linear systems identified from the frequency re-

sponses, showing that heave dynamics and fore/aft/pitch models are decoupled in

the neighborhood of hover.

The perturbation velocity analysis indicates that, for the purpose of controlling

velocity along the ŝz axis, flap frequency and flap amplitude are complementary

inputs, but that frequency has only a limited band of linear controllability and is

more difficult to use in a linear controls context, while amplitude is much more

readily used and is well captured by a linear first order model. It also indicates

that an insect modulating the bio-inspired input parameters suggested may effect

motion in each longitudinal state (excepting pitch angle, controlled via integration

of pitch rate). The identified system indicates a dipteran insect of these dimensions

and wing motions has ample control authority over its longitudinal motion, including
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pitch dynamics control that significantly exceeds modern full scale helicopter results.

Though the system is highly maneuverable, haltere-on pitch control is predicted to

qualify for full scale Level 1 small perturbation analysis, indicating the insect is

presented with a relatively low computational workload. The implication is that

a flapping wing micro air vehicle design strategy may leverage inherent dynamic

properties of the flapping wing aerodynamics to reduce size, weight, and power

requirements.

Frequency based system identification of the haltere-on system revealed a sta-

bilized system with a slow and fast subsidence mode, and a stable oscillatory mode.

Identification of the haltere-off (bare airframe) system revealed a slow and fast sub-

sidence mode, and an unstable oscillatory mode. In both cases, the slow subsidence

mode was associated with the decoupled heave dynamics. While this is the first look

at the haltere-on modal structure, the bare-airframe modal structure is consistent

with the previous CFD estimate of a dipteran insect bare-airframe modal struc-

ture. The implication that rate damping due to halteres is sufficient to stabilize the

unstable oscillatory pair significantly reduces the computational workload expected

for flapping wing insects and provides insight into how insects achieve unparalleled

maneuverability with limited neural processing.
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Chapter 4

Lateral-Directional Hover Dynamics

4.1 Introduction

Chapter 3 analyzed the longitudinal dynamics of a flapping wing insect about

hover using curve-fitted aerodynamics models (Dickinson, 1996) and Euler rigid

body dynamics applied to fruit flies. The results indicated slow and fast subsidence

modes, as well as an unstable oscillatory mode that could be stabilized via halteres

providing pitch rate feedback. This chapter continues to examine the implication

of passive aerodynamic stability mechanisms associated with flapping flight, again

using hovering fruit flies, but characterizing instead lateral-directional motion. The

goal is a simplified dynamics model of flapping flight lateral motion about hover,

which may be readily interpreted via traditional full scale aircraft dynamics and

linear control analysis techniques. The underlying mechanics are again posed as

nonlinear Euler rigid body dynamics paired with quasi steady aerodynamics model-

ing that includes the effects of perturbations from the equilibrium. The results show

that the insect aerodynamics model placed in context of state perturbations is able

to predict dynamic behavior without the use of a more detailed and computationally

intensive 3D CFD study such as (Ramamurti and Sandberg, 2002, 2007).

The organization of the chapter is as follows. Section 4.2 briefly reviews wing

kinematics and aerodynamics with asymmetric inputs. Section 4.3 describes the sys-
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tem identification procedure using a nonlinear simulation environment encoding the

perturbation velocities concept. Section 4.4 shows how the perturbation velocities

concept can be used to develop estimates of the stability and control derivatives, and

Section 4.5 presents identified models and shows how these results suggest passive

aerodynamic mechanisms that may reduce an insect’s flight control requirements

about hover.

4.2 Background

The insect aerodynamic theory and the governing equations for the analysis

and simulation used for lateral dynamics analysis are analogous to Chapter 3 and

reviewed only briefly here.

4.2.1 Wing Kinematics

As in Chapter 3, the right and left wing motion is quantified through a set of

2-3-2 Euler angles. Each wing stroke is planar, with βr and βl being the inclination

of this plane on the right and left sides. The wing position within this plane is

notated as φr and φl, and the inclination (twist) of each wing relative to this plane

is the geometric angle of attack αg. The right and left wing variables seen in Fig.

4.1 are interpreted as longitudinal and lateral control inputs [ ]c and [ ]d using the

transformation in Section 3.1.1. Asymmetric inputs were zero for the symmetric

motion analysis in Chapter 3 and the subscripts suppressed, but both collective and

differential inputs are relevant for lateral-directional motion.
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(a) Right and left flap amplitude Φr and Φl.

Stroke Plane Tilt

(b) Right and left stroke plane amplitude βr
and βl.

Figure 4.1: Control input definitions.

4.2.2 Aerodynamics

The aerodynamics used in this analysis is the insect aerodynamics model de-

veloped using experimental fits to Drosophila and Robofly data (Dickinson et al.,

1999). While this model proposes lift and drag purely as functions of the instan-

taneous wing motion without inflow effects, the aerodynamic forces are also func-

tions of the body motion throughout the surrounding fluid. Chapter 3 extended

the quasi-steady formulation via a revised definition of the wing tip speed to be

v = vφ + vG + vω, where vφ, vG, and vω are the velocity components due to flap-

ping, body translation, and body rotation, respectively. The wing angle of attack

must also be modified as α = αg + arctan
(
vz
vx

)
, where v = vxr̂x + vyr̂y + vz r̂z is the

total velocity expressed in the right wing frame.

4.3 System Identification

To facilitate the identification of an equivalent linear system, the simulator

developed in Chapter 3 was used in conjunction with Comprehensive Identification
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from FrEquency Responses (CIFER). The goal of this process was to identify a linear

system that would allow predictions of the flapping wing flight control properties.

Frequency sweeps (“chirp” signals) were applied to the inputs βd and Φd to excite

the lateral/directional dynamics of the insect. Based on the spectral response of the

input Gxx(ω) and output Gyy(ω) (calculated by the chirp z transform), the transfer

function G may be found via

G(ω) =
Gyy(ω)

Gxx(ω)
. (4.1)

As a linearity measurement, coherence γ ∈ [0, 1] was introduced in Section 3.4.2(de-

fined in eqn (3.28)) to quantify the degree to which the magnitude and phase of an

input/output pair may be described by linear system dynamics.

Our desired result is a model of the form ẋ = Ax+Bu (Franklin, 2002), where

A is most generally taken to be

A =



Yv 0 g 0

L′v L′p 0 L′r

0 1 0 0

N ′v N ′p 0 N ′r


(4.2)
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and

B =



YΦd 0

LΦd 0

0 0

0 Nβd


. (4.3)

4.4 Wingstroke Averaged Forces and Moments

In this section, the process of wingstroke averaging developed in Chapter 3 is

applied to demonstrate how linearization of rigid body equations of motion forced

by experimentally-derived insect aerodynamics can provide estimates of the control

input terms and also indicate physical mechanisms providing aerodynamic damp-

ing. The linear systems representing rigid body motion were derived with the un-

derstanding that we are concerned only with the low frequency rigid body modes

describing the flight path of the vehicle, i.e., that the averaged forces and moments

(over a wingstroke) were the essential part of the external forcing function. Ap-

plication of this principle provides insight into what physical mechanisms provide

passive aerodynamic damping.

4.4.1 Control Sensitivity

A system identification requires an initial estimate of the relevant parameters.

The control sensitivity terms, or the entries of the B matrix (eqn (4.3)), were es-

timated via the wingstroke averaging procedure. The roll sensitivity to the inputs

Φd, φoff,d, and βd is derived here; other terms may be found in like manner.
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4.4.1.1 Roll Moment due to Differential Stroke Amplitude Φd

For the case of zero stroke plane angle β = 0, the roll moment can be written

in terms of the left and right wing lifts as Lroll = (Ll − Lr)ra, where Ll and Lr are

defined as Lx = π2(r̂2
2 S R

2)(f 2
x Φ2

x)Cl with x = l, r. Though the angle of attack

on each wing is different in general, they share the same lift coefficient during a

perturbation of Φd while hovering. Using Φd as defined in eqn (3.2), the roll moment

is

Lroll = π2ρ(r̂2
2SR

2)ra [(fc − fd)2(Φc − Φd)
2 cos(φoff,c − φoff,d)

−(fc + fd)
2(Φc + Φd)

2 cos(φoff,c + φoff,d)]CL

(4.4)

Linearizing with respect to Φd and substituting in the nominal conditions

Φd = fd = φoff,d = 0 to obtain

∂Lroll

∂Φd

= −4π2ρ(r̂2
2SR

2)CL ra cos(φoff,c)f
2
c Φc. (4.5)

Using the nominal conditions for Drosophila in Table 4.1, ∂Lroll

∂Φd
= −8.84 ×

10−9CL N m/rad. For αg = 45, CL = 1.8, and a roll inertia of 5.9 × 10−13Nms2,

LΦd = −26, 969 rad/s2.

control input value
f0 200 Hz

Φ0 77.08◦

β0 0◦

ξ 90◦

ra 1.6mm

Table 4.1: Nominal input parameters used in evaluating B for the hover lineariza-
tion.
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4.4.1.2 Roll Moment due to Differential Stroke Bias φoff,d

Similarly, computation of the derivative with respect to φoff,d and substitution

of the nominal conditions yields

∂Lroll

∂φoff,d

= 2π2ρ(r̂2
2SR

2)raf
2
c Φ2

c sin(φoff,c), (4.6)

indicating that for a nominal collective stroke offset of 0, a differential stroke offset

does not lead to a roll moment via changing lift.

4.4.1.3 Roll Moment due to Differential Stroke Plane Inclination βd

The body frame Z force due to right wing lift is Zr = Lr cos(β) (and similarly

for the left side). Thus, the roll moment may be found after replacing Lr with

Lr cos(β) to get Lroll = (Ll cos(βl) − Lr cos(βr))ra. Defining βd and βc as in eqn

(3.2) such that βr = βc + βd and βl = βc − βd, one may rewrite the roll moment as

Lroll = [Ll cos(βc − βd)− Lr cos(βc + βd)]ra. (4.7)

By recognition that Ll and Lr are invariant under β perturbations, eqn (4.7)

may be differentiated with respect to βd directly to get

∂Lroll

∂βd
= raLr sin(βd + βc) + raLl sin(βd − βc), (4.8)
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and evaluated at βc = 0,

∂Lroll

∂βd
βc=0 = ra sin(βd)(Lr − Ll). (4.9)

Equation (4.9) is zero at the reference βd = 0, revealing that differential stroke plane

inclination about βc = βd = 0 does not create a roll moment.

4.4.2 Physical Basis for Passive Aerodynamic Mechanisms

Wingstroke averaging applied to rigid body equations of motion and the insect

aerodynamics model including perturbations indicates several physical mechanisms

that provide aerodynamic damping. Sideslip damping is used as an example, and

the other terms can be found via a similar process.

4.4.2.1 Sideslip Damping

Consideration of imposed velocities has led to the prediction of a flap damping

term (Hedrick et al., 2009). In this section, an imposed sideslip velocity is expressed

via the velocity and angle of attack perturbations to predict sideslip damping, or

static stability in this degree of freedom.

Consider the case of positive sideslip along ŝy (a relative wind from the right).

The total motion of the wing is now the sum of flapping and vehicle translation

motions. Figure 4.2 shows that sideslip velocity increases the airflow over some

portions of the wingstroke (darker) and decreases it over other portions (lighter),

where the inboard region of reverse flow has been neglected. For the nominal case
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of a level stroke plane with no heave velocity, a sideslip component of velocity does

not change the angle of attack.
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Figure 4.2: An imposed sideslip increases and decreases relative airflow over regions
of the wingstroke.

The translational model of drag accounts for velocity via a quadratic depen-

dence on the local velocity. The drag is increased in those regions of increased flow

and reduced in those regions of reduced flow as seen in Fig. (4.3), which shows that

in both the advancing and retreating strokes, the perturbation in drag leads to a

net force in the ŝy direction, acting to oppose the motion.

Analytically, instantaneous right wing drag force under a sideslip motion ex-
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ŝy

Advancing stroke

ŝx
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Figure 4.3: An imposed sideslip increases and decreases drag forces during the
advancing and retreating strokes in a manner leading to damping in sideslip v about
hover.

pressed in stability frame, with βr = 0 and φoff,r = 0, is

[FD,r]S =



−1/2 ρ S r̂2
2 CD (2 Φr sin (2π fr t) π fr R

+ sin (Φr cos (2π fr t)) v)2 cos (Φr cos (2π fr t))

−1/2 ρ S r̂2
2 CD (2 Φr sin (2π fr t) π fr R

+ sin (Φr cos (2π fr t)) v)2 sin (Φr cos (2π fr t))

0


S

(4.10)

for the advancing stroke and the negative of eqn (4.10) for the retreating stroke.

The left wing has a similar expression. The wingstroke averaged side force is

d

dv
[Yavg]S =

d

dv

∫ T

0

[FD,r]S + [FD,l]S dt. (4.11)

Interchanging the order of integration and differentiation, the right and left wing

terms contribute equally. Define sideslip damping Yv = 1
m

∂Yavg
∂v

to write
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Yv =
4ρ S r̂2

2 RCD
m

[cos (Φc) sin (Φc)− Φc] (4.12)

The values given by eqn (4.12) directly compare against other air vehicles as

in Fig. (4.4).
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Figure 4.4: Comparison of calculated Yv with Boeing 747, UH-1 Huey, BO-105
helicopter, and XC-142 tactical transport. All values normalized by Froude number.

4.4.3 Active Feedback Mechanisms

The flight stabilization systems of many dipteran insects include halteres,

aerodynamically-ineffective hind wings that are used as angular feedback sensors

(Nalbach, 1994). The kinematic response Φd due to mechanosensory feedback has

been characterized for tethered Drosophila (Sherman and Dickinson, 2003). The

measurements were used to model the mechanosensory feedback as a bandpass filter

on linear roll rate feedback to Φd, in a similar manner to the pitch rate feedback used

in Chapter 3, The yaw rate feedback to βd output has not been characterized exper-
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imentally and was not included in the simulated insect. In general, rate feedback

acting on a system may be written as u = Kx, where the gain matrix K has only

terms dependent on angular rates. While rate feedback alone will not stabilize an

unstable system, rate feedback has the effect of additional damping in the system.

Application of yaw rate feedback would further reduce the bandwidth demands for

the flight stabilization and control task via the increase in the yaw damping term

N ′r due to the additional damping.

4.5 Results and Discussion

4.5.1 Yaw Dynamics

In this section, the yaw dynamics results are compared to previous modeling

work. Consider the yaw dynamics case previously discussed in Hedrick et al. (2009),

where a linear yaw dynamics model of the form

ṙ = −a r

was calculated, where a is formed from the wing’s geometric and kinematic param-

eters as

a =
ρR4 c̄ r̂3

3 2Φ f CF sin(α)(dφ̂/dt̂)

I ′zz
.

Here, the term formed by the force coefficient CF , geometric wing angle αg, and

nondimensional flap speed dφ̂/dt̂ has the mean value CF sin(αg)(dφ̂/dt̂) ≈ 6.0. Using

parameters from the simulated insect, the FCT model predicts an aerodynamic
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damping coefficient of N ′r = −167 /s, somewhat higher than both the analytic and

the system identification results. When the simulated insect was tethered with only

a yaw degree of freedom, an equivalent linear system was identified as

ṙ = −73.0 r − 28, 100 βd. (4.13)

Despite the differences in the stability derivative, the associated transfer functions

from βd to r as calculated from the simulation, FCT (Hedrick et al., 2009), and

identified models may be seen to have very good spectral agreement in Fig. 4.5.
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Figure 4.5: Yaw input βd is well correlated linearly to yaw rate r and the 3 available
models show excellent spectral agreement.
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4.5.2 Roll Dynamics

4.5.2.1 Linear System

Application of Φd sweeps confirms that Φd is the roll input control as seen in

Fig. 4.6,1 with no linear component to the yaw output (as indicated by the low

coherence). The degradation in coherence seen in the other plots at approximately

4-5 Hz is related to a resonant phenomenon in the roll axis that yielded motion

outside a linear region. This motion appears in the identified system as a lightly

damped oscillatory pair.

A linear roll dynamics system may be identified as


v̇

ṗ

φ̇

 =



−9.86 0 9.81

−9830 −177 0

0 1 0




v

p

φ

+



16.5 0

−12200 0

0 0



 Φd

βd

 . (4.14)

4.5.2.2 Physical Mechanism Predicting Roll Damping

The quasi steady model with perturbations predicts roll damping via differen-

tial angle of attack consideration. The angle of attack modification is similar to the

heave damping case discussed in the longitudinal analysis, and is seen in Fig. 4.7.

1Identified system shown in transfer function plots is the final full lateral/directional coupled
system in section 4.5.3.
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(b) Φd to φ
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(c) Φd to v
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(d) Φd to r

Figure 4.6: Roll input Φd drives the roll/sideslip dynamics, but not yaw.

4.5.3 Full Lateral Dynamics

The two identified systems in eqn (4.13) and (4.14) describe the behavior of

the isolated systems, but the general system included in eqn (4.2) and (4.3) includes

numerous cross coupling terms that may be important. The inclusion of the cross
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Net moment acts to 
oppose the motionRoll motion Lift perturbation due to local

change in angle of attack

A B C

Figure 4.7: The applied roll motion in (a) creates a counter-moment in (c) via the
difference in angle of attacks imposed by the velocity distribution in (b).

coupled terms does change the state space representation of the system to be



v̇

ṗ

φ̇

ṙ


=



−9.69 0 9.81 0

−9720.0 −177.0 0 −2.07

0 1 0 0

−167.0 462.0 0 −71.0





v

p

φ

r


+



8.24 0.0

−12300.0 0

0 0

0 −28100.0



 Φd

βd

 .

(4.15)

During this identification, the earlier terms were allowed to vary freely as well,

which results in slight changes in the numerical values. As an example, N ′r shifts

from -73 in the yaw-only model to -71 in the full lateral model. One may com-

pare these changes to the error bounds calculated later in Table 4.2 to determine

if the changes are significant. Despite the change in state space appearance, model

structure determination applied to the system indicates that the additional cross

terms are poorly identified and should not be included in this model. The system

pole structure (which determines the qualitative nature of the body motion) is also

remarkably consistent between the decoupled (eqn (4.13) and (4.14)) and coupled

(eqn (4.15)) system, as indicated by Fig. 4.8, which represents the first formal inves-
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Figure 4.8: Comparison of the poles identified for the coupled and uncoupled system.

tigation of the lateral dynamics poles of a Drosophila-like insect. Both cases show a

fast and slow subsidence mode, and an oscillatory mode close to instability, which

suggests significantly reduced insect neural dependence for flight control. The pole

structure observed in Fig. 4.8 is also consistent with other manned flight vehicles,

such as the UH1 Huey helicopter (Franklin, 2002). The fact that qualitatively sim-

ilar stability behavior (pole structure) is observed between two vehicles where both

the scale and the lift production mechanisms are quite different is remarkable: there

is no dynamic reason to expect such similarity, and the term that would normally

be matched for dynamic similitude (Froude number) is not matched in this case

(Wolowicz et al., 1979).

While the eigenvalues (system poles) of a linear system determine the qual-

itative nature of the body response, the eigenvectors indicate the direction of this

response. For the union of the roll/sideslip and yaw system (eqn (4.13) and (4.14)),
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Parameter Value Standard Dev. σ Insensitivity

Yv -9.69 5.1% 1.8%
L′v -9720 6.3% 1.2%
L′p -177 7.1% 1.3%
N ′r -73 9.0% 2.1%
LΦd -12,300 5.9% 1.2%
Nβd -28,100 7.8% 1.8%

Table 4.2: Uncertainty estimates for parameters in the identified dynamics model.

the poles (λ1, λ2,3, λ4) = (−73,−3.4± 22.9i,−180.5) have the eigenvectors

ν1 =



0

0

0

1


ν2,3 =



0.018,∓173◦

0.999

0.043,∓98◦

0


ν4 =


0.000

1.000

0.006

 , (4.16)

indicating roll and yaw subsidence modes ν1 and ν4 along with an oscillatory roll-

dominated roll/sideslip mode ν2, ν3.

An estimate of the uncertainty in the identified stability derivatives may be

derived from the Cramer-Rao bounds using the methods in Tischler and Remple

(2006). The resulting uncertainties, shown in Table 4.2, do not quantitatively change

the identified system pole structure, as indicated in Fig. 4.9, which shows the

nominal poles and the poles perturbed by normally-distributed noise corresponding

to the uncertainty predictions.
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Figure 4.9: The identified system pole structure is preserved under uncertainty
perturbations.

4.6 Summary

In this chapter, the insect aerodynamics model including perturbations was

analyzed to determine reduced order control models that may be used to estimate

the control properties associated with lateral-directional flight. The models were

derived with the goal of describing the low order rigid body motion of an insect,

(not high frequency structural dynamics), so frequency-based system identification

tools and wingstroke-based averaging were both used in deriving them. In each case,

a curve fitted aerodynamics was used in the context of untethered dynamic motion of

the insect body, rather than a detailed 3D flow solution found during a prescribed

body motion, such as three-dimensional flowfields computed in (Ramamurti and

Sandberg, 2007) or in the Model Validation of Chapter 5.

For the example insect considered (Drosophila-like insect), the analysis indi-

cates two stable real poles, and two very lightly-damped and nearly unstable complex
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poles. One of the real poles is found to correspond to the yaw dynamics of the insect,

showing a decoupling of motion about this axis near hover, allowing comparison to

Hedrick et al. (2009). The other three poles describe a coupled roll/sideslip motion

that may be excited by a roll input, defined in this study as a differential modulation

of the wingstroke amplitude. The yaw dynamics input was found to be a differential

stroke plane angle (inclination). The models were also used to estimate the effect of

pole additional off-axis dynamic cross-coupling and uncertainties, which show that

the dynamic structure is preserved in these cases. Haltere-based roll rate feedback

was integral to restraining the modeled insect near equilibrium and was included in

these models, which allows the models to be driven directly via the control compo-

nents that have significantly higher latencies (and thus lower bandwidth), such as

the visual feedback system Humbert and Hyslop (2010).

The dynamic analysis suggests that mechanosensory rate feedback is an inte-

gral part of the animal’s control strategy. The study’s analysis also suggests that

inherent passive aerodynamic mechanisms due to differences in angle of attack and

dynamic pressure, can act to stabilize the vehicle and thus reduce the flight stabi-

lization/control requirements. From the perspective of developing robotic flapping

wing micro air vehicles, the ability to leverage passive aerodynamic mechanisms

to assist in flight stabilization is attractive to reduce the size, weight, and power

requirements of the control system that must be carried onboard.
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Chapter 5

Model Validation

5.1 Introduction

An important problem in flapping micro air vehicle (MAV) design is a method

of rejecting wind gusts and maneuvering through unknown wind gradients in a

rapidly changing environment. Fundamental to solving this problem is the level

of sensing and feedback requirements inherent in flapping wing flight. This dis-

sertation has derived reduced order models of flapping wing flight using simplified

aerodynamics, and this chapter compares reduced order modeling results against

more traditional modeling, using computational fluid dynamics (CFD) modeling

in collaboration with Mac MacFarlane and Brandon Bush (Bush, B. et al., 2010).

The high fidelity CFD solutions incorporate more complex aerodynamics such as

unsteady flow, wing/wake interaction, and wake capture effects.

The reduced order longitudinal dynamics model for a hovering Drosophila

(fruit fly) presented in Chapter 3 had bare airframe instabilities but could be stabi-

lized with the addition of a biological pitch rate feedback. The model was developed

using a comparatively simple aerodynamics model. Euler rigid body dynamics were

then used to simulate a hovering insect and a system identification performed to

model the inputs and outputs. A CFD-derived solution could significantly improve

the fidelity of the aerodynamics model, at the expense of dramatically increased
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complexity. The goal of this chapter is to directly compare stability derivatives as

well as pole locations derived using each method.

The longitudinal dynamics of the insect are described in the standard state

space form ẋ = Ax +Bu, where x = [∆u ∆w ∆q ∆θ]T is the vector of longitudinal

perturbation states and u is the vector of inputs to the system. The stability matrix,

A, is comprised of stability derivatives: linear changes in a stroke-averaged force or

moment due to perturbations from hover.

A =



Xu 0 0 −g

Zu Zw 0 0

Mu Mw Mq 0

0 0 1 0


(5.1)

To calculate the stability derivatives, the stroke-averaged body forces, X and

Z, and pitching moment, M , were measured for various perturbations from hover.

As before, only the forces and moments averaged over the course of a wingstroke are

considered important to the rigid body dynamics, due to the high frequency of the

wingstroke with respect to the frequency of the body dynamics.(Deng et al., 2006b;

Kevorkian, 1966) The stroke-averaged forces and moments can be calculated using

both the curve-fitted aerodynamics model of aerodynamics and CFD, providing a

stability matrix derived from each method. This allows a direct comparison of

the linearized system generated by curve-fitted aerodynamics to the linear system

produced by fully unsteady aerodynamics, as given by CFD.
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5.2 Unmodeled Aerodynamics and Velocity Perturbations

5.2.0.1 Rotational Lift and Other Aerodynamic Models

There are aerodynamic effects not adequately represented in the translational

model in Section 3.1.3. In particular, force peaks appear at the start and end of

the wing strokes where the translational representation shows only small forces due

to the small velocities while the wing is reversing direction. Wing incidence rapidly

reverses at these instants, so a convenient representation is to write this additional

lift peak as a function of the wing incidence derivative α̇g. While rotational effects

can account for up to 35% of the lift generated(Dickinson et al., 1999), modeling lift

in this manner requires a theoretical or experimental determination of the wing axis

of rotation that has not been demonstrated with the precision necessary for accurate

predictive capability in the general case of dipteran insect flight (Bennett, 1970).

Other force production models involve a variety of unsteady effects such as added

mass effects (approximately 5% of lift forces). This study addressed the effects of

translational lift, which applies to dipteran insect flight in general.

5.2.0.2 Reverse Flow

In contrast to the curve-fitted model’s ut, the total flow incident on the wing v

is no longer necessarily opposite to the flap direction. An example is in forward flight

during the retreating stroke where inboard sections of the wing generate negative lift.

A region of reverse flow is a common problem encountered on helicopter rotors where

the magnitude of its effects are quantified using a nondimensional speed known as the
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advance ratio µ = u/ut = u
φ̇R

. For a Drosophila-like insect flapping at f = 200Hz,

the peak angular rate is max(φ̇) = Φ(2πf) ≈ 1755rad/s, leading to a peak wing

velocity at the tip of max(ut) = 3.7m/s, and hence a minimal advance ratio at the

insect’s preferred forward speed of 2m/s (Vogel, 1967), the corresponding advance

ratio of 0.54 for a level stroke plane angle is the lowest advance ratio in “cruise.” For

comparison, a typical helicopter can fly no faster than approximately µmax = 0.35

to 0.40 (Johnson, 1994) and reverse flow effects are likely a significant factor in

forward flight. In this analysis, the insect is restricted to motions less than ˜10 cm/s

or µ < 0.03 at peak angular velocity. Helicopter analysis routinely discards reverse

flow below µ = 0.1, so reverse flow effects are expected to be secondary and this

effect was assumed negligible in the reduced order aerodynamic model presented in

Chapter 3.

5.2.0.3 Spanwise Flow

Where the traditional quasi-steady aerodynamics formulation assumed vy = 0,

vy is now a periodic function of φ. Spanwise flow is a term that is often neglected in

the wing frame airfoil lift and drag calculations, even in extensive detailed numerical

simulations of traditional helicopters via blade element theory, because published

airfoil data is commonly in 2D and one may invoke the “independence principle”

(Jones and Cohen, 1957). In performance calculations, an estimate of the rotor’s

profile drag along this axis is usually included (Leishman, 2006). As a consequence of

the 2D nature of the airfoil lift and drag representation, spanwise flow was neglected
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in the reduced order aerodynamic model presented in Chapter 3..

5.3 Methodology

5.3.1 Kinematics

Wing kinematics are defined about each hinge as in Section 3.1.1, flapping in a

plane inclined from body axes by β. Motion of the wing within the plane is termed

stroke angle φ, and rotation relative to the plane is the geometric angle of attack

αg.

φ(t) = Φ cos(2πft) + φoff (5.2)

αg(t) = αmax tanh[2.7 sin(2πft+ ψ
π

180
)] (5.3)

where Φ and αmax are stroke and wing pitch amplitudes, f the flapping frequency,

φoff a stroke bias term, and ψ is a relative phase difference between φ and αg. In

the nominal stereotyped Drosophila hovering kinematics, β and φoff are both zero,

Φ = 74.9◦, f = 200 Hz, αmax = 45◦, and ψ = 66◦ (Dickinson et al., 1999).

5.3.2 Reduced-Order Aerodynamic Model

While flapping wing aerodynamics are both complex and unsteady, the reduced

order aerodynamic model presented in Section 3.1.3 and used to develop the models

presented approximates wing forces as functions of the wing tip speed and angle of
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attack. Lift L is defined by

L =
1

2
ρU2

tipSr̂
2
2CL(α) (5.4)

where ρ is air density, S is the surface area of the wing, and r̂2 is the non-dimensional

second moment of wing area as defined in (Ellington, 1984c). Drag is defined simi-

larly in Section 3.1.3, and the lift and drag coefficients are measured experimentally

by Dickinson and Gotz (1999) for a Drosophila wing. Other terms suggested by

Sane and Dickinson (2002), such as Kramer effect, added mass, or wake capture

are not included in the present calculation. Perturbations from hover affect the tip

speed and angle of attack.

5.3.3 Computational Methodology

Detailed flow computations around the hovering Drosophila are provided by

an immersed boundary incompressible Navier-Stokes solver (IBINS) previously val-

idated for flapping Drosophila wings via experimental comparison (Bush, B. and

Baeder, J., 2008; Bush, B. et al., 2010). The insect is modeled as three bodies

moving through a Cartesian mesh with hyperbolic grid spacing, as seen in Fig. 5.1.

During the computational solution, similtude requirements require both the

Reynolds’ numberRe = 120 and reduced frequency f̂ = 0.19 to be maintained.(Shyy,

W. et al., 2008) Reynolds number consistency is necessary for aerodynamic simil-

tude and is determined by the mean wing chord c̄, average wing tip speed Uref, and
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Figure 5.1: The model drosophila in the computational domain used for IBINS
calculations.

viscosity µ.

Re =
c̄Uref
ν

= 120 (5.5)

Reduced frequency (related to Strouhal number) is introduced if the Navier-Stokes

equations are nondimensionalized via flapping frequency. Reduced frequency de-

scribes vortex shedding (unsteadiness) and can be shown to be a geometric ratio

involving stroke amplitude and aspect ratio, as in eqn (5.6).

k =
πfc̄

Uref
=

πc̄

4RΦ
= 0.19 (5.6)

5.4 Computational Results

State perturbations were applied to the model for the longitudinal states, and

stroke-averaged forces and moments were calculated. The trim force along the body

frame ŝx (fore-aft) axis is similar, while discrepancies exist along the body-frame

ŝz axis, most likely a function of the previously unmodeled unsteady aerodynamics.
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For example, wake capture effects shown in Fig 5.5 have a significant effect on the

flow structure surrounding the wing while maneuvering. For each force or moment,

the derivatives with respect to states u,w, and q are estimated via a linear regression

(shown as a slope) and scaled by mass or inertia to calculate the stability derivatives

populating the A matrix.
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Figure 5.2: Stroke-averaged forces (a) and moments (b) as given by the curve-fitted
experimental model (red) and IBINS (blue) for various perturbations in u.

Table 5.1 summarizes the stability derivatives for the curve-fitted insect aero-

dynamics model and the IBINS aerodynamic calculation. Comparison of the deriva-

tives all shows the same sign. The magnitudes of the translational derivatives agree
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Figure 5.3: Stroke-averaged forces (a) and moments (b) as given by the curve-fitted
experimental model (red) and IBINS (blue) for various perturbations in w.

well, as seen in Figs 5.2–5.4. Xu in particular shows only a 6% difference.

However, the moment derivatives show significant deviations, suggesting that

the unmodeled aerodynamic effects influence the rotational dynamics more than

the translational dynamics. Rotational lift, in particular, is known to be a signifi-

cant component of flight forces and causes force peaks that occur at stroke reversal

where the wing has the largest moment arm and is most able to effect pitch mo-

tions (Dickinson et al., 1999). Mu is most poorly estimated (a factor of 6) by the

experimentally-fitted model.
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Figure 5.4: Stroke-averaged forces (a) and moments (b) as given by the curve-fitted
experimental model (red) and IBINS (blue) for various perturbations in q.

A comparison of each of system pole locations may be found by reference to

Fig 5.6, showing again fast and slow subsidence modes with an unstable oscillatory

pair. The decoupled pole Zw shows excellent agreement. However, the deviations

in the moment derivatives have doubled both the rate of convergence in the fast

subsidence mode and the rate of instability in the unstable oscillatory pair. The

change in rate is due to the deviation in Mu, and is particularly significant because

the speed of the unstable pair dictates the level of feedback required to stabilize the

system.
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Stability
Derivative Curve-Fitted CFD

Xu -5.49 -5.55
Zu 0.0 -0.285
Mu 730.1 4554.4
Xw 0.00122 -0.736
Zw -2.49 -3.70
Mw 931.4 1730.6
Xq 0.00310 0.0148
Zq 5.40e-4 -0.00105
Mq -6.37 -15.74

Table 5.1: Stability derivatives as calculated by the curve-fitted model and IBINS.

5.5 Summary

In this chapter, the curve-fitted insect aerodynamics model used to derive

reduced order flight dynamics models was compared to a numerical solution of the

Navier-Stokes equations for incompressible flow, which includes unsteady and other

unmodeled aerodynamic effects. Finite differencing through 5 points was used to

estimate the derivatives with respect to the states u, w, and q and thus obtain

stability derivatives for the derivatives. Translational stability derivatives agree well,

while there are significant deviations in the moment derivatives. The system pole

locations again show both a fast and slow subsidence mode and an unstable pair.

However, the un-modeled aerodynamics increase the rate of both convergence and

divergence in the system. In particular, the increased rate of divergence increases

the feedback requirements for flight stabilization, the implications of which will be

addressed in the next chapter.
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Figure 5.5: Isosurfaces of Q-criterion of the model Drosophila in hover (a), surge
∆u = 0.38 m/s (b), heave ∆w = 0.38 m/s (c), and pitch ∆q = 2.1 rad/s (d) just
after pronation. The disturbed flow due to the previous wingstroke remains only a
single chord length away from the returning stroke in all cases, and influences the
loads on the wing.
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Figure 5.6: Longitudinal poles of the model Drosophila in hover as calculated using
the curve-fitted experimental aerodynamics model (red) and CFD (blue). Poles
found via system identification with the experimentally-derived model in Faruque
and Humbert (2010) are plotted alongside for reference (green).
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Chapter 6

Feedback Effects and Parameter Variation

The longitudinal and lateral models developed in Chapters 3 and 4 are derived

for a nominal Drosophila and for both bare airframe and haltere mediated dynam-

ics. Section 6.1 explores the dynamic properties of a model with varying levels of

feedback between these two extreme cases. Chapter 5 showed that differences in

the reduced-order model are primarily in rate of divergence, which increases the

feedback requirements. Section 6.2 applies mechanosensory feedback to the haltere

model to determine the magnitude of additional feedback required.

While the model’s dynamic properties were shown to be preserved under the

estimated uncertainty within the stability and control derivatives, morphological

differences between individuals of a species also affect the dynamic properties of

the model. Section 6.3 quantifies this variation by exploiting Drosophila’s sexual

dimorphism to allow comparison of models derived for the nominal male insect and

a dramatically larger female.

6.1 Mechanosensory Feedback Variation

6.1.1 Feedback Variation Study

The desired outcome of this chapter is an understanding of how mechanosen-

sory feedback can affect reduced order insect flight dynamics models. First, analytic

106



functions were written for the stereotyped wing kinematics of a dipteran insect. The

kinematic functions were used along with an insect aerodynamics model in quasi-

steady form in order to predict the instantaneous forces and moments applied to

an insect body (Dickinson et al., 1999). The quasi-steady aerodynamics form, nor-

mally taken to be operating at a point, was extended to apply in the presence of

egomotion. The equations of motion were posed as classical rigid body equations of

motion, and linearized solutions determined.

To investigate the effect of mechanosensory feedback and the resulting control

requirements, the insect models were derived both with and without control feedback

provided by aerodynamically ineffective “hind wings” known as halteres, which are

thought to encode rate information (Thompson et al., 2008). The haltere model

used was the angular rate feedback with bandpass filtering used in Chapters 3 and

4.

6.1.2 Gain Variation Results

The results of Chapters 3 and 4 include reduced order models of the insect

flight dynamics. The longitudinal motion of the example Drosophila-like insect was

written as ẋ = Ax + Bu, where x is the vector of longitudinal states composed

of forward flight velocity u, heave motion w, pitch rate q, and pitch angle θ; and

u is the vector of kinematic inputs composed of stroke amplitude Φ, stroke plane

inclination β, and stroke bias φoff as defined in Figure (6.1) The system dynamics
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(a) Stroke plane angle

Control Input Sensitivity

Drosophila longitudinal control inputs about hover:

Controllability:

Pitch rate driven by 

Independent heave control input

Fully 
Controllable

Fore/aft motion driven by  

φoff

Φ

β

(b) Stroke angle amplitude, offset.

Figure 6.1: Kinematic inputs definitions.

and control input matrices A and B may be written for the haltere-on case as

A =



−12.33 0 0 −9.81

0.0 −4.651 0 0

547.0 0.0 −33.26 0

0 0 1 0


(6.1)

B =



0 20.67 12.69

−17.36 0 0

0 −2826.0 6020.0

0 0 0


. (6.2)

The same procedure applied to the haltere-off dynamics also reduces the longitudinal

motion to a linear time invariant system.

The ease with which a dynamic system (in this case an insect) naturally returns

or diverges to a reference flight condition is described mathematically via the rigid

body modes (characteristic motions) of the system and the associated modal poles.
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Figure 6.2: The stability properties of the insect dynamics are improved by haltere
feedback, and a root locus plot over haltere gain shows pole movement to connect
the systems.

In a pole-zero diagram, pole locations along the x-axis (real axis) represent the

speed with which the particular motion either returns to the reference trajectory

or diverges from it, and the y-axis (imaginary axis) locations quantify the amount

of oscillation in the motion. The pole locations of the longitudinal system, seen in

Fig 6.2, show that the insect with no haltere feedback (seen in red) has an unstable

mode, but the pole locations of the haltere-on system (seen in blue) are stable.

The nonlinear haltere model used in simulation was a band pass filter fitted to

data by Sherman and Dickinson (2004), but a simplified model of the haltere pitch

rate feedback is u = −kq, where k is the gain of the haltere. Given the haltere

off system dynamics Aoff, the system dynamics matrix under increasing gain on the
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halteres may be written as Aon = Aoff −BK, where

K =


0 0 0 0

0 0 0 0

0 0 k 0

 (6.3)

and the haltere-on matrix A is recovered at full haltere gain. In Fig 6.2, the simpli-

fied model for pole locations for under varying haltere gains indicates the progression

from the unstable haltere-off system to the stable haltere-on system, and that the os-

cillation in the pitch and fore/aft degrees of freedom is reduced, while the decoupled

pole (corresponding to heave damping) is unaffected by rate feedback.

Given that unstable systems are inherently more difficult to control than sta-

ble systems, linear systems analysis indicates that the addition of mechanosensory

feedback in the form of haltere rate feedback can significantly reduce the insect’s

sensing and feedback requirements by providing a stabilizing effect on the motion

in the pitch and fore/aft degrees of freedom.

6.2 Mechanosensory Feedback on CFD model

Section 6.1 investigated the effect of gain reduction on a linear system, showing

a progression from stabilized (haltere-on) to the bare airframe instability. Dipteran

insects possess mechanosensory feedback beyond the haltere feedback that has been

measured experimentally and was modeled in the nonlinear simulation of Section

3.3. Since the computational fluid dynamics investigation in Chapter 5 suggests
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Figure 6.3: Stabilization of the CFD-derived system (in red) requires a higher pitch
rate gain than than originally modeled (in blue). Equivalent convergence rate re-
quires a gain 2.45 times larger (in black).

that reduced-order modeling underestimates the instability, the feedback required

to stabilize the CFD-derived system could significantly exceed the feedback investi-

gated for reduced order modeling. More recent work has suggested that other forms

of sensing are thought to provide rate feedback as well, in particular ocelli (Rowell

and Pearson, 1983). Ocelli are rudimentary eyes (illumination level detectors) that

are well-suited for high angular rate measurement.

In order to quantify the additional mechansensory feedback required to sta-

bilize the CFD system, a similar approach to section 6.1 was taken, using the lon-

gitidunal dynamics model with the haltere gain modeled as a linear feedback law

u = −Kq such that Acfd,on = Acfd − BK. Eigenvalue computation then shows that

the modeled haltere pitch rate gain is insufficient to stabilize the CFD-derived sys-

tem, and is only sufficient to move the unstable pole locations from Re(λ) = +12.1

to +3.5, as seen in Figure 6.3.
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In particular, achieving marginal stability (Re(λ) = 0) requires a gain 1.57

times greater, but marginal stability is rarely implemented in practice. To achieve an

equivalent convergence rate as the reduced order model (Re(λ) = −3.5), the CFD-

derived system requires a pitch rate gain 2.45 times the originally modeled gain.

This additional feedback suggests that the experimental measurements of haltere-

mediated feedback have only quantified 41% of the mechanosensory feedback that

is active on the insect, and that further experimentation to isolate other forms of

feedback is necessary.

6.3 Parameter (Phenotypic) Variation

The genotypic limits on species such as Drosophila allow remarkable pheno-

typic plasticity. Environmental factors (e.g. ambient temperature) are relevant both

during development and while mature, and morphology is highly dependent on both

genetic limits and environmental factors. In animals kept at temperatures of 14 to

21◦C, body mass varied from .9 mg to 1.8mg (Karan et al., 1998). The insect used for

hover modeling, with its mass of m = 1.02 mg and wing length of R = 2.12 mm, uses

parameters based on the males presented in the results of Karan et al. (1998); Crill

et al. (1996). To compare how the results are affected by the larger (approximately

150%) morphology presented by a female insect, lateral-directional hover dynamics

for a female Drosophila-like insect having a mass mf = 1.70 mg and Rf = 2.355

mm was also system identified, and the results, shown in Table 6.1, indicate that

the parameter variation generated by this relatively large morphological change is
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Parameter Value Standard Dev σ Insensitivity

Yv -13.44 6.63% 2.95%
L′v -9658 .07% .03%
L′p -178 0.2053% .09%
N ′r -70.55 0.1648% 0.08%
LΦd -340.73 2.9% 1.3%
Nβd -28,080 3.9% 1.9%

Table 6.1: Control and stability derivative results for female Drosophila.

−200 −150 −100 −50 0
−25

−20

−15

−10

−5

0

5

10

15

20

25

Real

Im
ag

in
ar

y

 

 

Nominal (male) poles
Larger (female) poles

Figure 6.4: Comparison of the lateral-directional poles identified for the nominal
(male) and larger (female) insect.

contained primarily in the control derivatives. Accordingly, the modal behavior of

the system shows a relatively minor variation, as exhibited by the pole shift from

(λ1, λ2,3, λ4) = (−73,−3.4 ± 22.9i,−180.5) to (−70.6,−5.2 ± 22.2i,−181.1), seen

graphically in Fig. 6.4.

6.4 Summary

In this chapter, the effect of a gradual reduction in mechanosensory feedback

was considered, showing a progression from the stable haltere on system to the
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unstable bare aiframe system. The feedback requirements of a system including

detailed aerodynamic models were shown to be greater, requiring an increase in

feedback gain by 2.45 times to achieve an equivalent convergence rate specification.

Finally, the degree to which individual morphological differences within a species

affect the dynamic properties of flapping flight were addressed by using the species’

sexual dimorphism to consider insects at either end of the commonly observed size

range for Drosophila. Differences were found primarily in the size of the control

derivatives, but the modal structure was retained.
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Chapter 7

Reachability Analysis

This dissertation has developed a set of kinematic programs suitable for ma-

neuvering an insect or flapping wing micro air vehicle (MAV), and flight dynamics

models to relate those inputs to the rigid body motion of the vehicle. In several cases,

multiple inputs exist to effect the same desired trajectory. MAV design presents size,

weight, and power limitations that reduce actuation capability. Given more inputs

than necessary to control a dynamic model, one may consider the question of which

inputs are “optimal” in some sense, either from the perspective of minimizing actu-

ation effort for a given motion, or maximizing the set of all reachable states under

a restricted input.

This chapter introduces a control theoretic framework to quantify the reach-

able states for a given set of inputs, and applies it to the hovering fruit fly model

developed in Chapter 3. Controllability as an application of operator theory is the

basis for determining the reachable configurations under a class of inputs. The ex-

pressions for reachable states may then be used to solve a least-squares optimization

problem over all possible function inputs.

Previous analysis of insect-inspired flapping wing locomotion has examined

wing kinematic trajectories from the perspective of maximizing lift(Avadhanula

et al., 2003; Ansari et al., 2008) or minimizing required power (Berman and Wang,
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2007). With the introduction of new tools to extract the detailed wingstroke to

wingstroke kinematics of insects from high speed videography (Fontaine et al., 2009;

Ristroph et al., 2009), a number of species-specific control strategies for maneuvering

have been identified. In addition, with the development of micro-scale vehicles that

can potentially generate lift forces greater than their weight (Wood, 2008), stability

and control aspects of the problem have become an important research need.

Despite the critical need, the inherent complexity of small-scale flapping flight

aerodynamics has obscured a control-theoretic analysis of both biologically relevant

and engineered wing kinematic perturbation strategies. While the detailed aerody-

namic mechanisms involved in small-scale flight are still an area of active research

(Ramamurti and Sandberg, 2007), recent efforts have in fact yielded several ap-

proaches for extraction of reduced-order linear time-invariant flight dynamics, either

for single degree of freedom experimental cases (Hesselberg and Lehmann, 2007),

direct analytic methods (Doman et al., 2010a), or more general computationally

(Sun et al., 2010) and spectrally derived models as presented in Chapters 3 and 4.

Such formulations are amenable to application of linear control analysis tools, and

should provide the next level of insight.

Reachability (or more traditionally, controllability) characterizes the amount

of control one has over the state of a system through the choice of the input. This

is an important topic for small-scale flapping wing MAV designers for several rea-

sons. Size, Weight, and Power (SWaP) constraints are very stringent at this scale,

and reductions in complexity that promote weight reduction or robustness are en-

couraged. In addition, these vehicles are intended to operate in gusty and possibly
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cluttered environments, and a high level of platform maneuverability and actuation

authority will be crucial to achieving robust flight path control in the face of these

uncertainties.

This chapter explores the reachable state space associated with biologically-

inspired kinematic control strategies seen in fruit fly longitudinal motion about hover

(see Chapter 3 for development of the model). In Section 7.1 a frequency-based

system identification methodology for identifying the stability derivatives of a small-

scale flapping microsystem about hover is outlined, along with the control derivatives

for biologically relevant wing kinematic perturbations for maneuvering. Section 7.2

applies controllability analysis tools to interpret these biologically-relevant control

strategies for micro-air vehicle design, using the example of an MAV with Drosophila-

like parameters.

7.1 Longitudinal Flight Dynamics Model

Previous chapters have outlined a method to formulate linear time invariant

(LTI) flight dynamics models of the form

ẋ = Ax+Bu. (7.1)

In this case A ∈ Rn×n and B ∈ Rn×p represent the state and input matrices,

u(t) ∈ U ⊂ Lp2[0,∞) the input time history and x(t) ∈ X ⊂ Ln2 [0,∞) the state

history of the model.

The nominal (trim) kinematics are assumed to be a periodic oscillation φ(t)
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contained in a stroke plane inclined an angle β from horizontal, with the wing in-

tersecting the stroke plane at an angle αg(t). Biologically relevant control inputs

considered in this study are shown in Fig 7.1 and defined as (a) Stroke plane incli-

nation (Fry et al., 2003) βc: a tilting of the stroke plane generating pitch moment

and forward force, (b) Stroke plane offset (Fry et al., 2003; Oppenheimer et al.,

2010; Doman et al., 2010b) φoff: a fore/aft shift of the wing sweep used primarily to

generate pitch moment, and (c) Asymmetric wing angle (Ristroph et al., 2009) αud:

an upstroke/downstroke asymmetry in the angle of the wing relative to the stroke

plane used primarily to generate forward force.

¯c =
1

2
(¯r + ¯l ) ®ud =

1

2
(®u ¡ ®d)Áo® =

1

2
(Áo®r + Áo®l )

Áo®l

Áo®r

®d

®u

¡¯r
+¯l

CBA

Figure 7.1: Longitudinal control inputs used in reachability analysis. (A) Stroke
plane inclination βc, (B) Stroke plane offset φoff, and (C) Differential wing angle
αud.

The stability and control derivatives in the flight dynamics model from Chapter

3 were selected to maximize coherence in the low frequency regions (up to 20 Hz),

while discarding the small periodic high frequency motion. Note that with the

haltere feedback about the pitch axis, the longitudinal system is stable and the

matrix A is Hurwitz.

The general state space model structure for the longitudinal dynamics includ-
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ing the control inputs listed above is given by



∆u̇

∆ẇ

∆q̇

∆θ̇


=



Xu 0 0 −g

0 Zw 0 0

Mu 0 Mq 0

0 0 1 0





∆u

∆w

∆q

∆θ


+



0 Xβ Xφoff
Xαud

ZΦ 0 0 0

0 Mβ Mφoff
Mαud

0 0 0 0





Φc

βc

φoff

αud


.(7.2)

The general state space model includes an additional input, stroke amplitude Φc.

Stroke amplitude affects only heave (∆w) dynamics and is decoupled from the other

states and inputs.

7.2 Reachability Analysis

For the longitudinal flight dynamics (7.2), the goal is to have a rigorous frame-

work in which to quantify the effectiveness of the biologically relevant control strate-

gies (Fry et al., 2003; Ristroph et al., 2009) that have been described in the previous

section. As the heave (∆w) dynamics and the collective stroke amplitude control

input (Φc) are decoupled from the remaining states in the linearized model, the

pitch/fore/aft dynamics (∆u,∆q,∆θ) and control inputs (βc, φoff, αud) are consid-

ered without loss of generality.

Application of the controllability rank test for all possible combinations of

control inputs reveals that the pitch/fore/aft system is fully controllable with any

pair of the remaining control inputs, which motivates the examination of three input
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pairs:

u1 =

 βc
φoff

 , u2 =

 βc
αud

 , u3 =

φoff

αud

 . (7.3)

In order to minimize actuator effort and maintain a small number of controls, we

desire the pair of inputs that maximize the span of reachable states x0 resulting

from any arbitrary input u(t) ∈ Lp2(−∞, 0] of unit norm.

7.2.0.1 Controllability operator

Consider the linear system

ẋ = Ax+Bu, (7.4)

with A ∈ R3x3 and B ∈ R3x3.

Definition 7.2.1 (Reachability) The system {A,B} is defined as reachable over

the interval [t0, t1], t1 > t0 if for every pair of states x0, x1 ∈ X , there exists a

control u(t) ∈ Lp2[0,∞) such that the solution of

ẋ = Ax+Bu, x(t0) = x0

satisfies x(t1) = x1.

Following Corless and Frazho (2003); Dullerud and Paganini (2000) for a time invari-

ant system, t0 may be chosen arbitrarily. Choosing t0 = −∞, t1 = 0, the solution
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to eqn (7.4) is

x(0) = e−A∞x0 +

∫ 0

−∞
e−AτBu(τ) dτ . (7.5)

Define the operator Ψ from U = Lp2[0,∞) to X as

Ψu =

∫ t1

t0

eA(t1−τ)Bu(τ) dτ

and for our choice of integration limits, Ψ operates from Lp2[0,∞) to X as

Ψu =

∫ 0

−∞
e−AτBu(τ) dτ (7.6)

Operator Ψ takes as an input a time history u(t) and outputs a state x0. More

specifically, it returns the final state x(0) corresponding to eqn (7.4) with initial

condition x(−∞) = 0 and forced by u(t).

This view motivates a consideration of what input u(t) returns a particular

desired state x(0) = x1. If the system is controllable, then u(t) exists by direct ap-

plication of the definition. However, Ψ maps an infinite dimensional space Lp2[0,∞)

onto a finite dimensional space X , thus its kernel has infinite dimension and u(t) is

not unique.

Given the non-uniqueness, one may consider the case of what u(t) is “optimal.”

Consider the following least squares optimization problem for a (not necessarily

controllable) system: Given the initial condition x(−∞) = 0 and a desired final

state x1, find an input û(t) that satisfies

121



||û(t)||2 = inf

{∫ 0

−∞
||u(t)||2dt : x̂(0) =

∫ t1

−∞
e−AτBudτ

}
where x̂(0) is the unique vector in X satisfying (7.7)

||x1 − x̂(0)|| = inf {||x1 − x(t1)|| : ẋ = Ax+Bu and x(−∞) = 0} .

In the general case, the minimization problem is to find the input of least norm

that drives the system as close as possible to the final state. The terminal condition

in eqn (7.7) is always satisfied for a controllable system, where a u(t) is known to

exist and thus x̂(0) = x1.

For the controllable pair {A,B}, then

(i) the matrix ΨΨ∗ =: Xc is nonsingular, and

(ii) for any x1 ∈ X , the input û(t) = Ψ∗cX
−1
c x1 is the element of minimum norm

in the set

{u ∈ Lp2[0,∞),Ψu = x1} .

For a detailed proof of (i) and (ii), see Dullerud and Paganini (2000).

7.2.1 Reachable space under unit norm input

In the process of MAV control design, a measure of how “far” inputs may drive

the system in the configuration space can assist the choice of a control strategy.

Mathematically, the configuration space that is reachable under unit norm input,
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expressed as

{Ψu : u ∈ Lp2[0,∞) and ||u(t)|| ≤ 1}

is equivalent to

Ec =
{
X

1
2
c xc : xc ∈ X and ||xc|| ≤ 1

}
.

To verify the equivalence, one may show that each set is contained in the other. Ec

defines an ellipse in Cn whose geometric properties are determined by the infinite-

time controllability gramian Xc for the system (7.2),

Xc = ΨcΨ
∗
c =

∫ ∞
0

eAτBB∗eA
∗τ dτ ≥ 0, (7.8)

which can be computed given the matrix pair (A,B) via the Lyapunov equation,

AXc +XcA
∗ +BB∗ = 0. (7.9)

The principle axes and lengths of Ec are given by the eigenvectors and eigenvalues

of X
1
2
c , respectively, which motivates two control input ranking criteria. The first is

the Frobenius norm of X
1
2
c ,

||X
1
2
c ||F =

√
trace

[
(X

1
2
c )∗X

1
2
c

]
, (7.10)

whose geometric interpretation is the square root of the summed squares of the axes

lengths of Ec. Second, since Xc ≥ 0, one can also consider the volume det(X
1
2
c )

of Ec as a non-negative measure of its size. Choosing control degrees of freedom
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that maximize either of these measures then corresponds to maximizing the set of

reachable states over the choice of control degrees of freedom.

The controllability ellipsoids of the input pairs are shown in Fig. 7.2A-C,

indicating that the reachable space for a unit norm input increases significantly

from input pair u1 through u3. For comparison, the reachable configuration space

for a unit norm input on all three control terms (βc, φoff, αud) is shown as u4 in

Fig. 7.2D. The results of applying the two ranking criteria to the control input

selections u1 through u4 are shown in Table 7.1 and plotted in Fig. 7.3. Out of the

three pairs, clearly u3 = (φoff, αud) provides the most authority over the longitudinal

dynamics. In terms of the reachable volume measure, u3 provides a 672% increase

over u1 and a 38% increase over u2. In addition, utilizing all three control inputs

u4 only provides for a modest 6% increase in reachable volume over u3. Similar

conclusions follow from the Frobenius norm ranking criteria; u3 provides 94% and

11% increases over u1 and u2 respectively, whereas u4 adds a 2% improvement over

u3.

The ellipsoidal interpretation also yields important information regarding the

resulting system’s controllability along particular directions in state space. In the

case of Fig. 7.2, the rotational dominance of the control inputs (and modes) is

evident in the larger reachable configuration space along the pitch rate/angle axes,

while the range of forward speed is more limited.
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Figure 7.2: Controllability ellipsoids for the input combinations illustrate the reach-
able configurations under the restriction ||ui|| ≤ 1. Input combinations u1 through
u3 are pairs of control terms, while u4 considers all 3 control terms (βc, φoff, αud).
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Figure 7.3: Controllability of input combinations u1 through u4, as ranked by the
determinant or Frobenius norm of the square root of the controllability gramian.

125



Input u1 u2 u3 u4

det(X
1
2
c ) 5.87 32.65 45.31 48.06

||X
1
2
c ||F 17.04 29.80 33.03 33.69

Table 7.1: Control input performance ranking criteria for u1 though u4.

7.3 Summary

This chapter introduces a control-theoretic framework and two performance

measures to quantify the state reachability for a given choice of biologically inspired

wing kinematic control parameters, allowing for a set of candidate control strategies

to be ranked. The work presented here leverages the Drosophila melanogaster linear

time-invariant (LTI) flight dynamics models previously developed in this disserta-

tion.

For the example insect-size micro air vehicle (MAV) considered, all four of the

input combinations provided full controllability, but the reachable space is dramat-

ically improved through proper selection of the input combinations. The kinematic

set that provided the most controllability involved a stroke bias term (φoff) and an

angle of attack difference in the upstroke and downstroke (αud), which improved the

reachable volume of state space 672% over the least controllable set. Moreover, while

the reachable space is dramatically improved over each of the input pairs, only a

slight advantage is found by combining all three inputs; adding a stroke plane angle

degree of freedom (βc) to the most effective pair resulted in only a modest increase

(6%) in the volume of reachable state space.

The framework and performance measures introduced in this note provide a

means to appropriately choose kinematic inputs that minimize the required control
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energy and maximize the achievable state space of the system. These tools can be

applied to reduce actuator complexity to promote robustness and weight reduction,

resulting in improved size, weight, and power (SWaP) requirements for micro-air

vehicle flight stability and control. For MAV design, factors other than control

energy (such as actuator geometry) may be the limitation on kinematic actuation,

and a system-level approach must be used to determine the limiting factor. The

framework introduced in this chapter is directly applicable for a systems level model

to be used in MAV design studies.
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Chapter 8

Forward Flight Dynamics

This chapter uses the Calliphorid kinematic measurements of Chapter 2 and

the approach developed in Chapter 3 and 4 to determine forward flight dynamics

models for dipteran flight, as opposed to the hover-oriented fruit fly models presented

previously.

8.1 Background

This dissertation has investigated hovering flight dynamics for dipteran flap-

ping flight. An example Drosophila melanogaster was built up using nominal kine-

matics for hover, an experimentally-derived aerodynamic model, and frequency-

based system identification on a rigid body dynamics simulation. Analysis of the

models led to conclusions about sensing and feedback requirements in hover. How-

ever, considerable research has been conducted on insect visuomotor responses in an

effort to understand insect navigation and guidance algorithms. A concise forward

flight dynamics model would allow researchers to place the feedback measurements

into the context of navigation and guidance, and to understand why insects mea-

sure non orthogonal quantities. With experimental models under development that

include rigid body rotation and translation (Dickson et al., 2010), researchers are

approaching the capability to compare forward flight data with modeling results.
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Chapters 3 and 4 presented a method of deriving flight dynamics models about

hover, and a natural extension of this work could be to look at the flight dynamics

about another reference condition. This chapter uses the same approach to in-

vestigate the longitudinal and lateral-directional dynamics of blowflies in forward

flight, and present an expectation for the results of high fidelity experimental and

computational measurements.

Biological kinematics may also play a significant role in flight stabilization. Ex-

perimental evidence has indicated that dipteran insects in forward flight may have

turn rate limitations that are theorized to be correlated to aerodynamic mechanisms

(Buelthoff et al., 1980). While fixed-wing flight is governed by aerodynamic mecha-

nisms such as wing, fuselage, and tail interaction (Nelson, 1989), a dipteran flapping

vehicle’s primary aerodynamic component is its wings and small changes in wing

kinematics have a dramatic effect on the maneuvering of the vehicle. In forward

flight, many insects employ differing wing pitch angles in the fore and aft strokes,

typically reducing the morphological angle of attack in the forward stroke and in-

creasing it in the retreating stroke (Zanker and Gotz, 1990; Taylor and Thomas,

2003a,b). This upstroke/downstroke asymmetry may be an attempt to preserve a

constant angle of attack or a physiological limitation (Zanker, 1990), but it may also

have ramifications on the control requirements of forward flight. This chapter will

also examine the effect of the wingstroke perturbation in lateral-directional flight.
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8.1.1 Previous Work

Previous work on forward flight dynamics modeling has been limited. Data

were collected for tethered Orthoptera over which airflow was forced (Taylor and

Thomas, 2003a,b), to simulate forward flight. Linear time invariant system theory

was used to analyze the resulting behavior but the effect of the insect’s control

structures (which were active) were not addressed. Experimental apparatus capable

of both flapping and egomotion are under current development, and this is expected

to soon become a research focus. There is a need for reduced order models with

which to interpret the data collected in this emerging research area.

8.2 Longitudinal Flight Dynamics Modeling

This section presents the longitudinal flight dynamics modeling, including the

effect of the more complex αg function defined in Chapter 2.

8.2.1 Kinematics

For this study, untethered Calliphorid flies in straight and level forward flight

at a mean cruise of 2.17 m/s were used to determine stereotypical forward flight

wing kinematics, as measured in Chapter 2. Note that the wingstroke has differing

wing pitch on the fore and aft strokes. Mean αg values in each stroke are 58.7◦ and

54.0◦, shown in Fig 8.1. These kinematics are defined as trim inputs, and pertur-

bations about those kinematics are used to maneuver a simulated insect in forward

flight. Again, symmetry allows right and left wing motions to be parameterized by
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Figure 8.1: Kinematics in forward and aft strokes.

longitudinal (collective) motions.

8.2.2 Aerodynamics

There are indications that forward flight will require further modifications to

the experimental aerodynamics model (Dickson and Dickinson, 2004). In this dis-

sertation, the aerodynamics model has been placed in the context of insect body

translation and rotation. Here we derive control-oriented models under the assump-

tion that the aerodynamics model including egomotion is valid for cruise flight.

When high fidelity data is available, either via computational solutions like those

in Chapter 5 or experimental equipment, the validity of this assumption will be

investigated and a similar aerodynamics model validated in forward flight may be

applied.
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8.2.3 Rigid Body Dynamics and System Identification

Rigid body dynamics and system identification is not affected by the lineariza-

tion about a different reference flight condition, thus simulation and system identi-

fications may be conducted as before.

The Calliphorid insect was first trimmed at φoff,c = 14.375◦, Vnorth = 2.18m/s, Vup =

.06m/s, γ = 1.58◦, u = 2.18m/s,. Then, 60 second frequency sweeps were applied

including frequency content up to 50 Hz. Longitudinal input sweeps were conducted

for βc,φoff,c, and Φc. However, system identification of the unstable system dynam-

ics was complicated by the need to apply high gain feedback to stabilize the pitch

dynamics, which reduces the signal to noise ratio of the identified transfer function

by introducing correlated signals into the input.

The identified forward flight longitudinal dynamics model is

A =



−1.32 0 0 −9.81

25.2 −24.7 0 0

1011.0 −341.0 −12.6 0

0 0 1.0 0


(8.1)

B =



71.9 13.7 −2.86

320.0 60.9 0

−0.0357 −2211.0 5955.0

0 0 0


. (8.2)

This system has poles at 4.8072± 17.0857i, -32.6466, and -15.5768, mirroring
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Figure 8.2: The pole structure of is similar to those in hover, with a real heave mode,
and a coupled rotationally dominated triple that includes an unstable oscillatory
pair.

the previous structure, with two real subsidence modes and unstable oscillatory

pair, as seen in Fig. 8.2. The transfer function plots (see Fig 8.3 and 8.4) and fit

convergence criteria indicate that the traditional model structure leads to error in

the heave w dynamics. Table 8.1 presents state-space derivatives for the plots,

uncertainties lower than 10% for all but the heave and Φ axes, indicating again that

model structure refinements will be necessary.

8.3 Lateral-Directional Forward Flight Dynamics

In this section, lateral models are derived for forward flight. The models

include differing wing pitch angles on the advancing and retreating wingstrokes,

an input strategy observed in experimental studies (Zanker, 1990). This section

introduces reduced order models for roll and yaw dynamics in forward flight and
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Figure 8.3: A 4 state linear system φoff transfer function shows good agreement for
all but the heave direction, which shows model structure error.
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Figure 8.4: A 4 state longitudinal linear system β transfer function shows good
agreement for all but the heave direction, which shows model structure error.
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Parameter Value Cramer Rao %
Xu -1.605 5.638
Zu -8.590 5.756
Zw -7.433 7.300
Mu 569.1 1.749
Mw 17.29 87.98
Mq -12.39 4.110
Xβ 13.20 5.267

Xφoff
-2.945 4.469

XΦ 33.04 11.46
Zβ -44.06 5.315

Zφoff
-55.00 2.763

ZΦ -4.661E+03 177.0
Mβ -2.175E+03 5.492

Mφoff
6.129E+03 1.462

MΦ 2.816E+03 17.58

Table 8.1: Uncertainty values in the parameters are acceptable, with the exception
of the w derivatives that poorly identified.

investigates how the upstroke/downstroke kinematic asymmetry can act to reduce

the sensing and control requirements in forward flight by appropriately coupling

lift and drag components in a turn. To derive the equations of motion, the insect

body was modeled as rigid, allowing Euler rigid body dynamics to be applied. After

a trim solution was determined that would provide a forward flight condition, the

aerodynamic forces and moments as calculated by the experimental aerodynamics

model were applied to the vehicle, which was constrained to motion at varying

forward speeds from u = 0m/s to 2m/s but allowed to move about the axis of

interest (roll or yaw) as dictated by aerodynamics to yield linear models. In contrast

to earlier studies, no visual or mechanosensory feedback terms were included and

the modeling represents bare airframe response.
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8.3.1 Kinematics and System Identification

The nominal angle of attack pattern used to derive a lateral-directional flight

modely is a modified square wave. Insects in forward flight commonly apply a

decrease in wing pitch in the forward stroke and an increase in the aft stroke, which

is modeled as a bias (or offset) term αud applied to the angle of attack pattern in

forward flight. Experimental studies (Zanker, 1990; Zanker and Gotz, 1990) have

indicated that diptera typically use negative values of αud in forward flight. The

wing pronation/supination for this study is given by

αg,r(t) = 45◦ tanh [2.7 sin (2π ft+ ψ)] + αud,r (8.3a)

αg,l(t) = 45◦ tanh [2.7 sin (2π ft+ ψ)] + αud,l, (8.3b)

where r and l subscripts correspond to right and left wings.

With suitable parameterizations for stroke φ and wing pitch α angles, the

control inputs may be considered the stroke amplitude Φ, offset φoff, and pitch

asymmetry αud. As before, right and left inputs are decomposed into collective and

differential inputs using eqn (3.2).

To facilitate reduced order modeling, linear models were generated from time

histories created by the simulation described in Chapter 3. The time histories used

for analysis were generated by application of frequency sweeps from 0.1 Hz to 32

Hz to the Φd and βd inputs to excite roll and yaw dynamics, respectively. The

spectral content of the input Gxx(ω) and output Gyy(ω) (calculated by the chirp z
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transform may be used to find the transfer function G describing the input/output

relationship. The linear models generated represent the relationship between the

signals in Fig 3.7 and are directly applicable to estimating the sensing and control

feedback requirements of dipteran forward flight.

8.3.2 Results and Discussion

8.3.2.1 Roll dynamics

Passive aerodynamic mechanisms act to damp out roll rate via changes in

angle of attack, as discussed in Section 4.5.2.2. Application of equation (4.1) to the

chirp signals simulated for the example Calliphora insect allows computation of the

transfer function seen in Fig 8.5, computed for the trimmed forward flight speed of

2m/s. Our desired result for roll dynamics is a model of the form ẋ = Ax+Bu:

d

dt

p
φ

 =

Lp 0

1 0


p
φ

+

 LΦd

0

[Φd

]
. (8.4)

The excellent coherence over a large portion of the frequency range of interest (0.1

to 32 Hz) indicates largely linear behavior, and a linear system has been fit to the

transfer function in Fig 8.5. Time domain verification conducted using repeated

doublets, typically a demanding input signal, shows excellent agreement, seen in

Fig 8.6.

The roll dynamics terms are only slightly changed when the identification was

repeated at differing forward velocities. Table 8.2 summarizes the small variations
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Figure 8.5: In forward flight u = 2 m/s, first order linear roll damping is an accept-
able spectral description of the roll transfer function.
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Figure 8.6: Time-domain agreement of the response to Φd input doublets in forward
flight is excellent.

139



Speed u Parameter Value Standard Dev. σ Insensitivity
0m/s Lp -7.07 8.0% 3.0%

L′Φd -13400 5.0% 1.9%
1m/s Lp -7.37 8.0% 3.0%

L′Φd -13692 5.0% 1.9%
2m/s Lp -7.72 8.0% 3.0%

L′Φd -13822 5.0% 1.9%

Table 8.2: Uncertainty estimates for parameters in the identified dynamics model
show that roll damping and roll authority is only weakly affected by increasing u.

Speed u Parameter Value Standard Dev. σ Insensitivity
0m/s Lr -5.71 8.6% 3.5%

L′βd -2995 4.8% 1.9%

1m/s Lr -5.26 8.7% 3.6%
L′βd -3160 4.7% 1.9%

2m/s Lr -6.16 8.2% 3.2%
L′βd -4294 4.8% 1.9%

Table 8.3: Yaw control authority increases slightly with forward speed, while yaw
damping is relatively unaffected.

in forward flight and uncertainty estimates.

8.3.2.2 Yaw dynamics

Experimental evidence has indicated that yaw damping is well modeled by a

first order linear relationship (Dickson et al., 2010; Hedrick et al., 2009). A similar

procedure to part 8.3.2.1 was applied to find transfer functions for yaw motions in

forward flight, seen in Fig 8.7. Equivalent linear damping and control effectiveness

terms were also found for the three reference flight speeds (Table 8.3). The results

indicate that while yaw damping is relatively unaffected by forward flight speed,

yaw control effectiveness increases with speed.
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Figure 8.7: Yaw dynamics transfer function fit at u = 0m/s.

8.3.2.3 Roll/Yaw Coupling (Proverse Yaw)

While single input single output models can yield significant insight into how

roll and yaw damping change with forward speed, aerodynamic roll/yaw coupling

may exist in forward flight. As an example, the adverse yaw tendencies of fixed-wing

aircraft increase pilot workload, which has motivated the development of differential

ailerons and mechanical or electrical interconnections to reduce adverse yaw tenden-

cies. In particular, an insect that must support additional neurological structure to

counter adverse yaw tendencies may be less able to survive robustly in the wild.

If passive aerodynamics can assist in turn coordination, the sensing and control

feedback necessary for dipteran flapping wing flight is reduced.

Roll/yaw coupling in forward flight shows that a roll motion in forward flight

induces a yaw motion in the same direction, acting to coordinate the turn, as seen in

Fig 8.8. Furthermore, the magnitude of the induced yaw motion varies from 1/500

of the roll rate at αud = 6◦ to 1/3 the roll rate as a function of the input αud = −6◦.
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The physical mechanism of turn coordination can be understood by reference to the

lift and drag polars of the quasi-steady aerodynamics form (Sane and Dickinson,

2002), where a differential change in angle of attack on each wing also affects the

drag components of each wing to create a yaw moment in the same direction.

The finding that an insect with negative αud values (wing pitch reduced on

the forward stroke) in forward flight receives turn coordination from passive aero-

dynamic behavior suggests that the kinematic perturbations seen in forward flight

also act to reduce the control requirements during turning behavior.
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Figure 8.8: Roll rate to yaw rate coupling at 2m/s for differening wing pitch input
αud. Roll motions in forward flight induce smaller yet potentially significant yaw
rates. The magnitude of the induced yaw rate is a function of αud.

8.4 Summary

This chapter investigated the longitudinal and lateral-directional flight dynam-

ics of dipteran forward flight. Due to instabilities, the identification was conducted
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while a stabilizing controller was running. The longitudinal model showed good

agreement for the rotational inputs, but the model structure that was appropriate

for hover did not meet convergence criteria in forward flight, particularly in the

heave dynamics. Nonetheless, the pole structure associated with the longitudinal

dynamics was qualitatively similar to that in hovering flight, with two stable real

poles and an unstable oscillatory pair.

Lateral-directional studies examined roll and yaw dynamics during constrained

forward flight. In agreement with previous work, linear models were found to be

sufficient to describe the roll and yaw dynamics for the example Calliphora insect

(Dickson et al., 2010; Hedrick et al., 2009). Roll and yaw damping were similar

for the three flight cases considered, u = 0, 1, 2m/s, while yaw control authority

increased with forward speed. The study also examined the upstroke/downstroke

asymmetry seen in the wing pitch angle during forward flight. The insect aero-

dynamics model predicts that the kinematic input provides a roll-to-yaw coupling

through passive aerodynamic mechanisms. The roll-to-yaw coupling can assist in

providing turn coordination, reducing the active control that an insect’s neurological

structure must support. The kinematic input αud may be similarly used in design

to reduce the flight control demands of a dipteran flapping wing micro air vehi-

cle (MAV) operating in forward flight, and thus reduce its size, weight, and power

requirements.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this dissertation, a path for developing reduced order flight dynamics mod-

els for dipteran flapping wing insects was presented. The analysis began with ex-

perimental measurement and characterization of wing kinematic motions through

automated processing of high speed video. The wing kinematic motions were used

with an empirically derived insect-scale aerodynamics model including state pertur-

bations. Rigid body dynamics and system identification were applied to generate

reduced order models for insects in hover and in forward flight, using as examples

Drosophila melanogaster and Calliphorid flies. The effects of mechanosensory feed-

back on the flight dynamics were also determined, showing that biologically observed

rate feedback paths are appropriate for flight stabilization. Results were compared

to a numerical Navier-Stokes aerodynamic solution to determine the effect of the un-

modeled aerodynamics, finding that the unmodeled aerodynamics increase the rate

of response, and thus the required control. Within-species morphological differences

were studied, finding very similar flight dynamics between large females and small

males. A framework for determining the reachable configuration space associated

with kinematic input programs, and methods for ranking the input programs in

terms of highest maneuverability was presented.
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The work presented is both relevant to understanding the sensing and feed-

back paths that are active in flying insects and to the design of micro air vehicles.

Insects solve the flight stabilization and control problem in a manner that requires

only small, specialized control structures that perform the essential feedback require-

ments by measuring composite quantities along non-orthogonal axes. An engineering

means to replicate this on micro air vehicles will provide a dramatic increase in the

mobility of small scale aerial robotics.

9.2 Dissertation Contributions

This dissertation examines insect flight dynamics modeling and contributes

the following to the field:

� Kinematics: The first detailed measurement of both trim and maneuvering

wing kinematics for Calliphorid flies were made. Curve fits to the nominal

kinematics provide stereotyped kinematics, while perturbations to the kine-

matic parameters serve as control inputs for flight dynamics modeling. While

previous research quantified only errors inherent in the digitization measure-

ment, reference models were used to quantify the accuracy of the full measure-

ment path. A kinematic perturbation αud was quantified in forward flight.

� Aerodynamics: This dissertation introduced a method of placing the con-

temporary insect aerodynamics models in the context of insect body transla-

tion and rotation. Previously, the aerodynamics models were posed in quasi-

steady form and did not include any state dependence, which prevents dynamic
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analysis. When placed in the context of insect egomotion, the aerodynamic

model now allows estimation of dynamic behavior.

� Flight Dynamics Models: Transfer functions for longitudinal and lateral-

directional hovering flight dynamics of Drosophila were generated by spectral

transformation of input and output time histories of a nonlinear simulation.

Linear time-invariant (LTI) state space models were fitted to the transfer func-

tions as well, allowing convenient analysis and simulation, and directly identify

the form and rate of feedback required for stabilization. The use of LTI mod-

eling was supported by linearity measures (coherence). Models were fitted

up to 500 rad/s (89 Hz) for both fruit and blow flies, though coherence was

degraded in many transfer functions over 200 rad/s (30Hz).

� Model Validation: Collaborative work with the authors of Bush, B. et al.

(2010) compares the results of the dynamics modeling with the numerical so-

lutions to the Navier-Stokes equations of motion, finding excellent agreement

in translational derivatives, while improvement is suggested in rotational mod-

eling.

� Feedback: The dynamic properties of the flight dynamics models under

biologically-modeled rate feedback was investigated, finding that haltere feed-

back is sufficient to stabilize the insect, but that unsteady aerodynamics intro-

duce instabilities that require 2.45 times the gain originally modeled to achieve

an equivalent level of stability.
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� Morphology: Hovering flight dynamics are found to be similar for large and

small Drosophila, suggesting that individual morphological changes, which are

commonly observed, do not present significantly different control demands.

� Forward Flight: This dissertation presents transfer functions for longitudinal

and lateral-directional Calliphorid flies maneuvering about forward (cruise)

flight. The pole structure for Calliphorid longitudinal forward fright dynamics

is qualitatively similar to hovering Drosophila, with two stable real poles (one

of which is a decoupled heave pole) and an unstable oscillatory pair. The

kinematic perturbation αud gives rise to proverse roll/yaw coupling in forward

flight, which can reduce feedback requirements.

� Reachability: Results from control theory are applied to calculate the reach-

able states with a given choice of inputs. Quantifying the reachable space

leads to a method of ranking inputs and allows for intelligent choice of inputs

for an MAV to maximize the reachable space.

9.3 Future Work

This research has led to several additional paths. Several are obvious continu-

ations of the current research, such as the continued work on the numerical Navier

Stokes solver to compare the remainder of the longitudinal and lateral models, and

more general forward flight dynamics models.

Many dipterans are rarely found hovering (Ellington, 1984b), and previous

work has already demonstrated forward flight does affect the aerodynamics (Dickson
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and Dickinson, 2004). Changes in the dynamic properties of flapping wing flight as

an insect transitions to forward flight may be analogous to the changes observed as

rotorcraft transition to forward flight. Kinematics have recently been collected for

Drosophila in untethered forward flight and Asilidae and Tabanidae are also under

investigation.

Several ongoing MAV designs incorporate the controllability measures devel-

oped to reduce the actuation requirements, including an at-scale robotic flapping

wing platform incorporating all the required degrees of freedom for controlled flight.

Perhaps the most significant impact on MAV design is the finding that a biologi-

cal form of rate feedback is appropriate for flight stabilization, which has not only

guided the development of a haltere-based sensor for flight stabilization, but has

suggested control readily manufactured using micro-electro-mechanical machines

(MEMS) technology in tandem with at-scale robotic flight platforms. Work is

underway to implement a biologically inspired controller for flapping wing flight

stabilization on an integrated circuit, an accomplishment that will unlock a level

of aerial mobility that was previously not yet possible on such minimal processing

hardware.

Analytic work on the ocelli and compound eye sensitivity functions are under-

way and will allow researchers to perform an analysis to uncover the configurations

which best encode flight modes and actuation results. Biologically relevant time

delays and phase characteristics for each of the sensor models will be included in

this formulation, allowing the frequency range fractionation observed in sensing to

be represented. Once a comprehensive model for the combined compound eye/ocelli
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system has been built, an accurate control-theoretic observability analysis may be

conducted, including the effects of the differing frequency properties of the sensing

modalities. The hypothesis that insects measure quantities that take advantage of

the airframe dynamic properties can then be evaluated via determining the pointing

directions that minimize measures of the stat estimate quality, such as the norm of

the estimate covariance.
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