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Policy analysis of nonmarket goods requires accurate knowledge about the 

behavior of economic agents. This dissertation explores several facets of behavior models 

in recreational angling for three New England groundfish species. 

Stated preference methods are used frequently for nonmarket applications because 

data are scarce, but survey design can affect the results of behavior models via changes in 

respondents’ cognitive processes. Methodological biases due to task complexity, 

measured by survey length, number of alternatives, and the degree of information overlap 

are observed in discrete choice experiment questionnaires, evidenced by differences in 

estimated model parameters and error variances. Additionally, ignoring task complexity 

increases mean marginal willingness-to-pay estimates. Information processing and 

decision heuristics should be considered in survey design and accounted for in estimated 

models. 



Empirical specifications for utility models of recreational angling are also 

explored because numerous variants are employed in analyzing stated preference data. 

Inclusion of responses from different survey subpopulations affect estimated utility 

function parameters and mean marginal willingness-to-pay values. Utility models that are 

nonlinear in catch are as statistically robust as their linear counterparts but allow for 

diminishing marginal utility in fish, which is more consistent with recreational angling 

behavior. Failure to account for sources of heterogeneity such as angler avidity, species 

familiarity, and demographic information affect behavioral interpretations considerably. 

Recreational fisheries are commonly managed using bag (creel) and minimum 

size restrictions. Many surveys include regulations as attributes in choice experiments, 

but models of angler behavior should not contain regulatory variables explicitly because 

they rarely factor into angler participation decisions directly. Because catch is random, 

regulations affect angler decisions indirectly by changing the underlying distributions for 

keep and release. A framework for understanding the effect of regulations on angler 

behavior given the stochastic nature of catch is developed. Short-run and long-run fishery 

implications are evaluated using a bioeconomic simulation. 
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Chapter 1: Dissertation Overview and Background 

Introduction 

Understanding the behavior of economic agents and having accurate estimates of 

demand are important elements in constructing natural resource policy. These issues are 

more difficult to address in the context of nonmarket goods because behavior is often 

unobservable and researchers must resort to using stated preference approaches for 

analysis. The three analytical chapters in this dissertation explore survey design and 

model construction in natural resource and environmental economics. 

The first analytical chapter examines the impact of task complexity on survey 

responses in choice experiment (CE) surveys, which are also known as discrete choice 

experiment (DCE), discrete choice analysis (DCA), stated choice (SC), and choice based 

conjoint (CBC) surveys. The method is flexible and suitable for many applications where 

existing data are either inadequate or nonexistent; however, there are concerns regarding 

the effect of survey design elements on outcomes. Sophisticated, off-the-shelf 

commercial packages enable economists to generate CEs easily, but arbitrarily choosing a 

survey administration design may result in bias from unwanted cognitive responses, with 

broader implications for policy analysis. Questionnaire design affects a respondent’s 

perception of task complexity and can result in adverse behaviors that violate standard 

axioms of consumer behavior (completeness, reflexivity, transitivity, continuity, and 

monotonicity), thereby affecting quantitative outcomes via changes in estimated model 

parameters and variance dispersion. Though some sources of task complexity were 

investigated in other studies (Adamowicz, Louviere, & Swait, 1998; Arentze, Borgers, 

Timmermans, & DelMistro, 2003; Bradley & Daly, 1994; Brazell & Louviere, 1998; 
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Carlsson & Martinsson, 2001, 2008; Chung, Boyer, & Han, 2011; DeShazo & Fermo, 

2002, 2004; Hensher, 2006a, 2006b; Hensher, Stopher, & Louviere, 2001; Johnson & 

Orme, 1996; Kits, Adamowicz, & Swait, 2009; Maddala, Phillips, & Johnson, 2003; 

Malhotra, 1982; Ryan & Bates, 2001; Ryan & San Miguel, 2000; Sælensminde, 1998; 

Stopher & Hensher, 2000), very few examine multiple complexity types in a single 

nonmarket mail application. Questionnaire length, number of alternatives, degree of 

information overlap, and overall task complexity effects on model parameters and 

valuation estimates are examined for the New England recreational groundfishery. 

The second analytical chapter attempts to recover preferences for attributes of 

recreational angling behavior using stated preference data. The framework for estimating 

recreational fishing demand has changed over the years and many theoretical and 

empirical specifications are currently in use. Different opinions exist about the inclusion 

of regulatory attributes (Aas, Haider, & Hunt, 2000; Dorow, Beardmore, Haider, & 

Arlinghaus, 2010; Hicks, 2002; Oh & Ditton, 2004; Oh, Ditton, Gentner, & Reichers, 

2005; Paulrud & Laitila, 2004; Roehl, Ditton, Holland, & Perdue, 1993) and angler 

heterogneity (Breffle & Morey, 2000; Johnston, Arlinghaus, & Dieckmann, 2010; 

Provencher & Bishop, 2004) in econometric models, and nested (Hicks, 2002; Kaoru, 

1995; Milon, 1988; Morey, Waldman, Assane, & Shaw, 1995) versus non-nested (Oh et 

al., 2005) models. Such diversity is problematic when direct comparisons of results are 

required due to differences in assumptions and estimation techniques. The effect of 

model specification on estimated parameters and willingness-to-pay (WTP) are explored. 

The third analytical chapter constructs a framework for understanding responses 

to changes in recreational fishery policy. Management analyses using stated preference 



 

 3 

choice data often ignore the stochastic nature of catching fish. Further, the impact of fish 

size distributions on angler behavior is not well known, even among revealed preference 

studies. Economic outcomes under different regulatory scenarios are evaluated using a 

simulation driven by preferences derived from the CE survey. The simulation 

incorporates biological factors, generating realistic assessments that align more closely 

with ecosystem-based management goals.  

The remainder of this chapter describes the application and survey data. 

Fishery Overview 

Groundfishing in New England has been in practice for over 400 years and 

continues to define communities such as Gloucester and New Bedford, Massachusetts, 

economically and socially. Though the North Atlantic Ocean was once abundant with 

cod, haddock, pollock, redfish, flounders, and other bottom-dwelling fish, advances in 

technology, the development of new markets, and failure of the management system to 

adequately control fishing effort have depleted the resource (Northeast Fisheries Science 

Center, 2004). Thirteen of the nineteen groundfish stocks assessed in 2007 show such 

diminished numbers that the biomass will remain permanently reduced despite any 

rebuilding efforts (Northeast Fisheries Science Center, 2008a). Figure 1 shows the status 

of the groundfish stocks based on the ratio of 2007 harvest (F2007) and biomass (B2007) 

levels to the harvest and biomass levels that produce the maximum sustainable yield 

(FMSY, BMSY). The maximum sustainable yield (MSY) is the highest level of harvest that 

can be taken from a species’ stock without affecting the population’s ability to reproduce. 

Theoretically, species that are harvested at or below MSY will maintain the same 

population levels indefinitely, barring any environmental disasters. 
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Figure 1. Status of 19 groundfish stocks in 2007 with respect to FMSY and BMSY or their 

proxies from the GARMIII review (Northeast Fisheries Science Center, 2008a). 
 

Prior to the 1920s, cod was the primary species of interest for most commercial 

and recreational fishermen in the North Atlantic. The species was widely abundant 

between the Northeast shores of the US (north of New Jersey) and the banks of 

Newfoundland, and the flaky white flesh of this fish stood up well to the preservation 

methods of the time, mostly drying and curing the product with salt. The average size of 

the species was much larger in the past (currently ranges from 11 to 26 pounds), which 

made it an economical fish to harvest using baited lines and schooners. The fishery was 

so well known that many popular authors including Rudyard Kipling wrote stories based 

on the lives of these fishermen. 

Haddock did not become popular until the Industrial Revolution because of the 

small size (three to five pounds on average) and difficulty in preserving the flesh using 

the methods available at the time. Steam-powered trawlers and technological advances in 
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cold storage made fresh fillet distribution possible and the product became extremely 

popular as a lighter substitute for cod as evidenced by its status in many places as the 

staple ingredient in the popular dish “fish and chips.” 

Atlantic pollock is traditionally popular only among certain ethnicities and poorer 

populations due to the strong flavor and a gray, veiny appearance when cooked. The 

appearance and fattiness of the fish make it most suitable for use in stews and chowders. 

Though it is considered a delicacy in Northern European countries, pollock is generally a 

weak substitute for cod in American markets; however, rapid declines in cod and 

haddock stocks have increased pollock fishing in recent years and it is often caught as 

bycatch in the bottom trawls and gillnets of commercial fishermen targeting the other two 

species. Commercially, Atlantic pollock comprises less than 2% of all pollock landed in 

the US and is mainly used in the manufacturing of fish sticks and fillet sandwiches. 

Recreational anglers in New England on party boats, head boats, and charter boats 

target these species more than anglers in other modes because the fish prefer deep, cold 

water. This sector of the recreational fishery is considered a “meat fishery” because the 

anglers keep their catch to supplement their supper tables and are reluctant to discard any 

fish. The annual recreational harvest of these species is estimated to be between 7% and 

13% of commercial landings based on landings values reported in Fisheries of the United 

States 2008 (National Marine Fisheries Service, 2010). Cod appears to be the most 

popular recreational angling target, with haddock a close second. Some anglers consider 

pollock a nuisance fish that interferes with their ability to catch cod or haddock, but 

others enjoy the flavor and fishing experience. Though all three species respond to the 

same bait, pollock fishing is more flexible as these fish can be caught with still or trolling 
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lines whereas cod and haddock respond mostly to still lines, a limiting factor on some 

for-hire trips. Pollock is also more accessible to near-shore anglers than the other species. 

Rapidly advancing harvesting technology and steady consumer demand have 

continued to deplete stocks at an unsustainable rate. Cod is currently considered 

overfished overall with overfishing still occurring in the Georges Bank stock, and 

regulations will probably become stricter in the coming years, particularly for 

recreational fishermen (see Table 1 for current management levels). Haddock was 

recently elevated to not overfished with no overfishing. Pollock is overfished. 

Table 1. 2010 Regulations by Species and State 
Species State Minimum Size Daily Bag Limit Fishing Season 

Cod GOM RMA† 
Federal 

24” 
22” 

10/angler 
10/angler 

Apr 1 – Oct 31 
Year Round 

CT 22” 10/angler Year Round 
MA, Spring CCZ‡ 
MA, Winter CCZ‡ 

N/A 
N/A 

No Keep 
No Keep 

May 1 – Jun 30 
Dec 1 – Jan 31 

MA, N of Cape Cod 
MA, S & E of Cape Cod 

24” 
22” 
22” 

10/angler 
2/angler or 75lbs./boat 

10/angler 

Apr 1 – Oct 31 
Nov 1 – Mar 31 

Year Round 
ME 24” 

N/A 
10/angler 
No Keep 

Apr 16 – Oct 31 
Nov 1 – Apr 15 

NH 24” 10/angler Apr 1 – Oct 31 
NJ 21” None Year Round 
NY 22” 10/angler Year Round 
RI 22” 10/angler Year Round 

Haddock Federal 18” None Year Round 
CT 19” None Year Round 
MA 18” None Year Round 
ME 18” None Year Round 
NH 18” None Year Round 
NJ 21” None Year Round 
NY 18” None Year Round 
RI 19” None Year Round 

Pollock Federal 19” None Year Round 
CT 19” None Year Round 
MA None None Year Round 
ME 19” 6/angler/day under 19" Year Round 
NH None None Year Round 
NJ 19” None Year Round 
NY 19” None Year Round 
RI 19” None Year Round 

† “GOM RMA” denotes the Gulf of Maine Restricted Management Area (Federal). 
‡ “CCZ” denotes the Cod Conservation Zone. 
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New management amendments and recent policy proposals have caused a great 

deal of concern among recreational anglers and fishing communities because current 

policies are already considered fairly restrictive. Many fishermen allege that severe 

reductions in quota, changes to size and bag limits, and shorter fishing seasons for the 

recreational sector lead to significant losses for anglers. Additionally, fishing 

communities that rely on angling related expenditures such as bait, tackle, and chartered 

fishing trips worry that more stringent regulations have broader implications through 

impacts on local economies. 

The Northeast Fisheries Science Center (NEFSC) in the National Marine 

Fisheries Service (NMFS) initiated the survey research underlying this dissertation to 

evaluate the economic consequences of altering current regulations. Though there is 

interest all New England groundfish species, cod and its substitutes are the primary 

species of interest in this study. The NMFS Office of Science and Technology provided 

funding for the data collection. 

Survey Motivation  

The NMFS has collected data on recreational angling since 1979 via dual-mode 

complementary phone and in-person interviews since the passage of the Magnuson 

Fishery Conservation and Management Act (16 USC §§ 1801-1882). Throughout the 

year, hundreds of trained field staff conduct several hundred thousand interviews at 

various sites along the US coastline, Hawaii, and Puerto Rico following a complex 

proportional random statistical sampling process stratified by fishing mode, geographic 

location, and time. Anglers are intercepted at boat ramps, marinas, beaches, piers, and 

other fishing access points to collect data about the species, length, weight, and number 
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of fish caught, and other angler-specific fishing trip information. In 1994, this effort was 

expanded to include periodic collection of social and economic information to support 

characterization of recreational fisheries and fishermen for fisheries management. 

Intercepted anglers are occasionally asked to voluntarily participate in follow-up mail 

surveys to obtain more detailed information regarding specific topics of management 

interest. The data used in this dissertation were obtained from one such mail survey. 

Survey Administration 

The mail survey was distributed using information collected from the Marine 

Fisheries Recreational Statistics Survey (MRFSS) administered by NMFS. From March 

through December 2009, anglers intercepted at select fishing access sites from the coastal 

Northeastern states between Maine and New Jersey were asked to voluntarily participate 

in a follow-up mail survey. Recreational anglers intercepted in other states were not 

included in the sample population because the primary species of management interest, 

cod, does not typically inhabit waters south of New Jersey. 

Sampling Strategy 

The number of anglers included in the sample varied by month and state due to 

seasonal fluctuations in recreational fishing activity, cultural attitudes towards 

government surveys in certain states, and the NMFS intercept sampling strategy. The 

sample of intercepted anglers agreeing to the follow-up mail survey was stratified into 

two populations based on expected per trip expenditures. Sample A contained individuals 

perceived to have small average angling expenditures per trip, which were anglers 

intercepted in shore mode. Anglers in Sample A were randomly assigned a version of the 

Shore treatment only. Sample B included all individuals who were intercepted from 



 

 9 

private or rental boat mode, head boat or party boat mode, and charter boat mode, and 

any anglers that reported having purchased at least one charter trip in the previous 12 

months. Sample B also included half of the shore mode anglers from New York and New 

Jersey. Though some Atlantic anglers switch fishing modes (Salz, Loomis, Ross, & 

Steinback, 2001), anecdotal evidence suggests this behavior is most likely to occur in 

wealthier coastal states, namely New York and New Jersey (personal communication, E. 

Zlokovitz, October 15, 2008). Therefore, a random sample of shore-mode anglers from 

these two states was included in Sample B. Anglers in Sample B were randomly assigned 

a version of the non-Shore treatments. See Chapter 2 for a more detailed explanation of 

the respondent samples and survey treatments. 

Mailing Schedule 

The address data was compiled on a monthly basis resulting in the mail survey 

being administered in a series of 10 waves. The intercept interview process prevented the 

surveys from being mailed immediately following intercept data collection, so addresses 

were collected over the course of each month and surveys mailed out in batches at the 

beginning of the following month. The original survey administration plan was a 

modified Dillman Tailored Design (Dillman, 2000). The entire administration process 

was to take no more than a month so that respondents could easily recall the connection 

between the mail survey and the intercept interview; however, some difficulties were 

encountered during the mailing process that prevented strict adherence to this timeline in 

all but one wave. Additionally, mailings scheduled to take place during the 2009 winter 

holidays (Christmas and New Year’s Day) were purposely delayed to avoid being lost 

amid holiday correspondence. Table 2 outlines the mailing schedule in detail and Table 3 
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lists the actual mailing dates. The inconsistencies in the mailing schedule may have 

affected response rates, but the extent of this problem is unknown. 

Table 2. Original Mailing Schedule 
Activity Scheduled Time 

Pre-contact: Brochure At time of intercept interview 
First Mailing 3 to 6 weeks after intercept interview 
Postcard Reminder 2 weeks (14 days) after First Mailing 
Second Mailing 4 weeks (28 days) after First Mailing 
 
Table 3. Actual Mailing Schedule 
Intercept Month First Mailing Postcard Second Mailing Explanation 
March 2009 5/17/09 5/27/09 6/16/09 Contractor Delay 
April 2009 5/17/09 5/27/09 6/16/09 Contractor Delay 
May 2009 7/9/09 7/17/09 9/02/09 Contractor Delay 
June 2009 8/14/09 8/21/09 10/07/09 Contractor Delay 
July 2009 9/8/09 9/30/09 10/07/09 Contractor Delay 
August 2009 10/26/09 11/02/09 12/04/09 Contractor Delay 
September 2009 11/16/09 11/23/09 12/16/09 Contractor Delay 
October 2009 1/15/10 1/22/10 2/22/10 Held for Holidays 
November 2009 1/20/10 1/27/10 2/24/10 Held for Holidays 
December 2009 3/05/10 3/16/10 4/6/10 Contractor Delay 
 
Survey Instrument 

The survey instrument has five components: a species information page, screener 

questions, the CE questions, and some demographic questions. The species page provided 

respondents with a picture of each of the species in the survey as well as some basic 

information about the species and current management. Because of difficulties in 

effectively pre-screening candidate respondents, it was necessary to include questions 

that assessed a respondent’s familiarity with and avidity for the species in the survey. The 

demographic questions followed standard US Census groupings for income, age, 

ethnicity, and education. The instrument and cover letters were designed based on 

recommendations and critique from members of the NMFS Office of Science and 

Technology at NMFS Headquarters, staff at NMFS Science Centers, various state 

representatives, participants from focus groups held in New Hampshire and 

Massachusetts, and Dr. Rebecca Hamilton, Associate Professor of Marketing from the 



 

 11 

Robert H. Smith School of Business at UMCP. Sample pages from the survey instrument 

and the pre-contact brochure can be found in Appendix A. 

CE Alternatives 

Every CE in all versions of the survey contained two or three alternatives plus an 

opt-out (“Do something other than saltwater fishing.”). The number of alternatives 

included in the CE depended on the treatment group (see Chapter 2 for further 

explanation). An opt-out alternative was included in each CE based on strong suggestions 

from the literature (Banzhaf, Johnson, & Mathews, 2001; Batsell & Louviere, 1991; 

Freeman, 1991; Huber & Pinnell, 1994; Louviere, Hensher, & Swait, 2000; Olsen & 

Swait, 1997). Neglecting to provide respondents with an opt-out will limit the 

researcher’s information on preferences as the respondents can only provide a choice 

conditional on choosing one of the alternatives present. Such forced choices are not 

reflective of most choice situations that individuals face and the researcher is unable to 

discern whether the individual would in fact choose any of the available alternatives. Opt-

out alternatives give insight on participation and total demand, which are important for 

policy analysis. 

CE Attributes 

The attributes included in the CE were bag and size limits for each species, the 

number of legal-sized fish, the number of illegal-sized fish, the number of fish of the 

other species that could be legally kept, the trip length, and the trip cost. Separate 

categories for legal-sized versus illegal-sized fish were included to allow respondents to 

infer the current biological status of the stocks and the “catchability” of the species on 
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any particular trip and to assess fishermen’s preferences for trips with many discards 

versus trips with few discards. 

Attribute levels were assigned to include historical and potential future values.  

The regulation levels chosen reflect management scenarios used in the past, and some 

potential future alternatives. The minimum size limits also account for the biological 

parameters of each species because the average species size made some lengths 

unreasonable. For example, haddock larger than 26” are rare, so a 26” minimum size is 

not realistic. The price and trip length vectors in the survey were constructed using an 

informal Internet and phone survey of nearly 100 party and charter boat companies from 

Maine to New Jersey conducted independently by the author. Trip packages were 

evaluated for amenities, the number of individuals included in the price, and the number 

of hours at sea to arrive at a representative range of trip costs per hour that approximated 

a observed total trip costs for one-day trips ($30 – $1,080). Feedback from focus group 

participants and interviews with fishermen at various docks verified the suitability of the 

chosen price and trip length vectors. Table 4 summarizes the attribute levels used in the 

survey. 

Table 4. Attributes and Levels Used in Choice Experiments 
Attribute Level 

Bag limits 2, 4, 8, 10 
Size limits: 

Cod 
Haddock 
Pollock 

 
18”, 20”, 22”, 23”, 24”, 26” 
12”, 16”, 17”, 19”, 21”, 22” 
17”, 19”, 20”, 21”, 23”, 26” 

Number of legal sized fish 1, 3, 6, 10 
Number of undersized fish 1, 3, 6 
Number of other fish 1, 3, 6, 10 
Trip length (hours) 2, 4, 6, 8, 10, 12 
Trip cost, shore mode only ($/trip) $15, $35, $60, $90, $120, $150 
Trip cost, all other modes: 

Hourly trip cost ($/hr.) 
Total trip cost ($/trip=$/hr. x # hrs.) 

 
$15, $35, $60, $90 
$30-$1080 
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Experimental Design 

The experimental design was constructed to optimize the statistical stability of the 

model results based on the maximum sample size allowed by the contract budget for the 

project and contractor printing specifications. All of the surveys were printed on sheets of 

11”x17” paper folded in half, so the number of choice experiment questions asked in 

each survey needed to be in increments of four. The initial mailing sample size had to be 

reduced because the number of survey versions and the structure of the survey 

instruments (package weight) required to test the different task complexity treatments 

(see Chapter 2) increased administration costs significantly. 

Additionally, response rates for the sample were difficult to estimate. The NMFS 

had not previously surveyed anglers about the three fish species in this survey using 

stated preference methods, and few economic studies had been conducted in the 

Northeast. Moreover, the results of other economic studies revealed state-specific 

idiosyncrasies in response type and response rates. The number of anglers agreeing to 

follow-up economic mail surveys from the intercept interviews ranged from 7% to 32% 

of the total MRFSS intercept sample in each state. 

Consultations with experts familiar with the recreational fishery suggested that 

approximately 30% of the total saltwater angling population in the Northeast targets at 

least one of three groundfish species. Given that mail surveys usually have a 50% 

response rate, the original estimated response rate for this survey was 15% of the mail 

survey sample. The expected number of completed surveys after factoring in estimated 

levels of cooperation from MRFSS for each state was approximately 500. Candidate 

designs requiring sample sizes greater than the conservative estimate were eliminated 
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from the list of possibilities. The experimental designs used in the survey were generated 

using SAS 9.2 Kuhfeld Macros and had the highest relative D-efficiency scores (! 73) of 

all candidate designs meeting the sample size requirements (see Appendix B for further 

explanation of experimental designs and efficiency scores). 

Survey Responses 

Response Rates 

From March through December of 2009, 22,740 anglers were intercepted in the 

study’s geographic area with 5,667 agreeing to participate in the follow-up survey, but 

only 4,579 surveys were mailed due to contractor error. The response rate for the mail 

survey was 37%, which was much higher than originally anticipated. The response rate 

relative to the total number of intercepted anglers was 7.5%. Tables 5 through 7 give 

detailed breakdowns of the return rates by month, geographic location, and mode. The 

total number of surveys mailed and received in Table 5 will not match the total number 

mailed and received in subsequent tables because the intercept data for two of the 

respondents were “lost” during the subcontractor’s data cleaning process. 

Table 5. Response Rates by Month and Status 

Intercept 
Month # Mailed 

Non- 
Deliverable† Refused‡ 

Completed 
after 

1st Mailing 
Total 

Completed 
Completion 

Rate 
March 57 3 0 14 19 33% 
April 316 21 18 65 94 30% 
May 612 37 31 155 229 37% 
June 722 47 30 132 221 31% 
July 803 40 33 106 249 31% 
August 806 57 33 173 256 32% 
September 629 33 22 147 222 35% 
October 382 25 31 89 134 35% 
November 219 30 22 32 62 28% 
December 33 3 3 2 7 21% 
Total 4,579 296 223 915 1,493 33% 
† Non-deliverable responses are surveys mailed to invalid addresses. 
‡ Refusals are respondents that returned blank surveys or called stating that they were not participating in 
the survey. 
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Table 6. Response Rates by State and Residency 

Intercept State Mailed 
Resident 

Completed 
Non-resident 
Completed 

Total 
Completed 

Completion 
Rate 

Connecticut 34 10 3 13 38% 
Maine 265 67 58 125 47% 
Massachusetts 1238 272 168 440 36% 
New Hampshire 536 124 66 190 35% 
New Jersey 1421 310 124 434 31% 
New York 725 157 7 164 23% 
Rhode Island 358 48 77 125 35% 
Total 4,577 988 503 1491 33% 
 
Table 7. Respondents by Fishing Mode 

Fishing Mode No. Respondents % Sample 
Shore 288 19.4% 
Head boat 515 34.5% 
Charter boat 96 6.4% 
Private/Rental boat 592 39.7% 
 

Over 93% of the responses came from the anglers intercepted by MRFSS; other 

household members filled out the remaining surveys. Participation rates have historically 

varied across states due to cultural attitudes and species availability, resulting in uneven 

geographic representation. States where the survey species did not comprise a large 

portion of available fish tended to have lower response rates than the states where the fish 

were much more prevalent. Most of the non-residents in the survey came from the same 

states included in the intercept sampling. Only 2% of the completed surveys were from 

residents of the West Coast or Midwest regions of the United States, and 9% came from 

the South and Mid-Atlantic states south of New Jersey. 

Respondent Characteristics 

Demographic information for the respondents is listed in Table 8. The majority of 

the respondents are Caucasian males and 45 years or older. This sample had a higher 

incidence of persons 65 years old or older than in US Census estimates for the 2009 

population (12.9%). The respondents in this survey are also better educated with higher 

income levels compared to the US median income of $52,029 and 24.4% with a 
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bachelor’s degree or higher (US Census Bureau, 2010). The survey sample’s 

socioeconomic properties are consistent with other studies of recreational anglers.  

Table 8. Respondent Demographics 
Variable Percentage 

Age of respondent 
     18-24 years old 
     25-44 years old 
     45-64 years old 
     65 years old or older 
     Refused/no answer 

 
3% 

24% 
56% 
16% 
1% 

Gender of respondent 
     Male 
     Female 
     Refused/no answer 

 
94% 
5% 
1% 

Educational attainment 
     Some high school 
     High school graduate or GED completion 
     Some college 
     2-year degree or trade school graduate 
     4-year degree 
     Some graduate school 
     Master’s degree 
     Doctorate degree 
     Refused/no answer 

 
4% 

25% 
19% 
14% 
20% 
4% 
8% 
5% 
1% 

Ethnic background 
     Caucasian 
     Black or African-American 
     Hispanic or Latino 
     Asian or Pacific Islander 
     American Indian or Other (specify) 
     Refused/no answer 

 
91% 
3% 
2% 
1% 
1% 
2% 

Household income (USD before taxes) 
     Less than $20,000 
     $20,000-39,999 
     $40,000-59,999 
     $60,000-79,999 
     $80,000-99,999 
     $100,000-149,999 
     $150,000-199,999 
     $200,000 and over 
     Refused/no answer 

 
4% 

10% 
16% 
16% 
14% 
20% 
8% 
7% 
5% 
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Chapter 2: Complexity and Survey Design 

Introduction 

Resource values are often obtainable through stated preference or hypothetical 

surveys only because other nonmarket valuation methods capture partial resource values 

or are unsuitable. Consideration of potential sources of bias is crucial for making 

appropriate policy decisions. Despite many advances in nonmarket valuation techniques, 

experimentally induced biases in valuation estimates may occur when evident variations 

WTP estimates are due to characteristics of the applied research method and not 

systematically to attributes of the environmental good or policy in question (Johnston, 

Ranson, Besedin, & Helm, 2006). In particular research has demonstrated the dependence 

of preferences on the framing of choice tasks and complexity of decisions (Tversky, 

1996), and the implications of CE questionnaire structure must be considered. 

Few nonmarket studies explicitly examine potential sources of methodological 

bias in valuation from using a choice-modeling framework. Additionally, most studies 

examine only one or two sources of task complexity using a given application. Because 

every application has unique qualities that may produce exogenous behavioral variations, 

combining results from different studies to derive conclusions about the relationship 

between survey responses and task complexity may not be advisable. Furthermore, the 

structures of some surveys in the literature make it difficult to parse out design effects 

and conclusions about the presence or absence of behavioral anomalies are not 

necessarily definitive (e.g., the two treatments in Kits et al., 2009, differ in both survey 

length and number of alternatives, yet conclude that the number of alternatives has no 

significant effect on survey responses). 
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Given that the perceived value of an environmental good is often “nebulous, 

complex, and ill-considered” (Shapansky, Adamowicz, & Boxall, 2002, p. 4), care must 

be taken in constructing such studies to ensure that results accurately reflect participant 

preferences, not decision heuristics based on task difficulty. Effective, well-designed 

surveys are especially critical in nonmarket studies considering that many target 

populations necessitate the use of mail surveys, which suffer from a lack of respondent 

monitoring, high printing and mailing costs compared to other survey modes (Kaplowitz, 

Hadlock, & Levine, 2004), high item nonresponse rates when compared to face-to-face 

interviews (Nicholaas, Thomson, & Lynn, 2000) and telephone interviews (de Leeuw & 

van der Zouwen, 1988; Harris, Weinberger, & Tierney, 1997), and the researcher’s 

inability to modify survey instruments or design during the administration process. 

This chapter addresses the effect of different CE designs on modeling outcomes 

and WTP estimates for nonmarket goods, and the degree of tradeoff associated with 

particular survey design choices in mail surveys. Specifically, this study examines the 

consequences of different forms of task complexity that can be easily changed within an 

experimental design, namely the number of questions, number of alternatives per CE, and 

degree of information overlap. By comparing response rates, response type, model 

parameters, variances, and WTP estimates between a controlled base survey and variants 

of the base incorporating different types of task complexity, adjustments in respondent 

behavior induced by different CE structures can be measured. 

Discrete Choice Experiments and Experimental Design 

The CE method asks individuals to choose between several alternatives (or 

profiles) depicting decompositions of the goods or policies in question. This exercise is 
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usually repeated several times with different levels of each attribute. When specified 

correctly, CEs simulate actual choice decisions, allowing the researcher to use the choice 

selection probabilities for estimating taste parameters. Figure 2 depicts a sample CE. 

 
Figure 2. Example of a CE. 

 
The challenge in constructing a CE survey lies in finding an efficient 

experimental design (see Appendix B for further explanation of experimental designs) 

that addresses the fundamental questions of the research project, caters to the resource 

limitations of the study (e.g., budget or sample size), and reduces adverse respondent 

behaviors. Unlike data collected via other methods, the researcher using CEs has full 

control over the selection of vectors in each choice set; that is, the researcher is free to 

determine the number of levels (values) and range for each attribute selected so long as 

attribute levels adhere to study objectives and reality constraints. 

Using preliminary preference models as guides, the researcher characterizes the 

decision problem for the respondent by defining the amount and type of information 

communicated via the attributes and alternatives presented in each choice set. CEs with 

many attributes and alternatives convey a lot of information, allowing the researcher to 

address many pertinent questions, but may exceed a respondent’s cognitive capabilities 

resulting in nonsensical or non-utility-theoretic behaviors. Long surveys may affect 

response rates and result in respondent fatigue, but short surveys typically require more 
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questionnaire versions and tend to increase administration costs and the potential for 

sampling issues (e.g., too few observations per survey version).  

Task Complexity and Behavioral Outcomes 

Though some studies have been conducted to test the statistical significance of 

changes in a survey’s experimental design (e.g., the effect of different efficiency scores 

or search algorithms on parameter estimates), the behavioral implications are much more 

important. Whereas problems with statistical properties of a given design can be rectified 

using appropriate corrections in the final estimation model through the use of probability 

weights from the design matrix to eliminate design effects or increasing the sample size 

(see for example Lusk & Norwood, 2005), it is difficult to correct for respondent 

behavior. The source of the issue is rarely identifiable and may differ depending on the 

application or even a particular question within a survey. 

Psychologists acknowledge that processing more than six pieces of information is 

difficult (Miller, 1956) and CEs often approach the limits of “how much information can 

be successfully evaluated before respondents quit, glaze over, or start to employ sub-

optimal shortcut methods for making choices” (Orme, 1999). Respondents may ignore 

certain attributes, consider alternatives only if select attributes lie within certain ranges, 

reject alternatives on the basis of a single flaw, choose the first satisfactory alternative 

rather than the best alternative, or choose an alternative at random (Harris, 1998; Payne, 

Bettman, Coupey, & Johnson, 1992). Additionally, the respondent may not be consistent 

in his strategy. The respondent may not have well-formed preference structures a priori 

and may learn or adapt internal utilities to the survey while completing the survey. Or, 

the respondent may have an adaptive technique where different amounts of information 
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are contemplated depending on the alternatives presented or the context of the question 

(Payne et al., 1992). Though any combination of a priori preference structures, 

behaviors, and outcomes is theoretically possible, certain preference structures and levels 

of task complexity predispose respondents towards particular behaviors. Respondents 

may feel more inclined to avoid decision-making or use simplification strategies with 

highly complex tasks, which may lead to anomalous responses and poorly estimated or 

biased results. 

Coping strategies employed by individuals to deal with complex choice 

environments are inconsequential to stated preference studies only if they do not induce 

response biases and respondents continue to choose rationally; that is, respondents’ 

preferences follow the axioms for completeness, transitivity, monotonicity, and 

continuity, and outcomes remain consistent through the entire survey regardless of the 

decision-making processes employed. Observed behaviors that violate any of these 

axioms invalidate the standard economic assumption of rational, utility-maximizing 

consumers that consider every attribute and alternative in each choice set required for 

using CEs and may have serious consequences for any valuation estimates generated 

using such data. Estimated model parameters may be confounded with design effects or 

other variables, may lose explanatory power, or have significantly larger error terms (De 

Palma, Meyers, & Papageorgiou, 1994; Heiner, 1983). It is also possible that WTP 

estimates are unaffected by changes in estimated model parameters, in which case task 

complexity is unimportant. Table 9 outlines respondent behavior and survey outcome 

scenarios.  
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Table 9. Summary of Possible Respondent Behaviors and Outcomes 
Behavioral Antecedents Initial Response Strategy Secondary Response Strategy Response Outcomes 

Well-formed preferences with 
concrete values (external scale) 

Well-formed internal scale, 
anchor/adjust external values 
using first (several) CEs 

Partially-formed preferences 
(may have some general internal 
scale) 

Ill-formed preferences (no scale, 
has some small idea of 
preferences or is vaguely familiar 
with the survey subject) 

No preferences a priori 

Consider all attributes and 
alternatives 

Consider some attributes and all 
alternatives 

Consider all attributes and some 
alternatives 

Consider some attributes and some 
alternatives 

Consider alternatives only if 
attributes fall in certain ranges 

Select best alternative 

Select the first acceptable alternative 

Select alternative based on additional 
information inferred from attribute 
values or alternatives presented 

Decide task too difficult, select first 
alternative 

Decide task too difficult, select “opt-
out” alternative 

Decide task too difficult, select 
alternative at random 

Consistent with initial response 
strategy 

Consistent with initial response 
strategy, but become fatigued and 
make errors 

Preferences become more refined 
with task repetition 

Learn how to perform task and 
become more efficient (choices more 
closely reflect preference function) 

Change decision-making strategy 
based on fatigue 

Change decision-making strategy 
based on learning 

Change decision-making strategy 
based on context 

Change decision-making strategy 
based on exogenous factors 

Change overall preferences 

Change preferences regarding 
specific attributes 

Change preferences depending on 
context 

Random 

Any combination of the above 

Observed behavior: 
Consistent responses 

Inconsistent responses based on question order 

Inconsistent responses based on context 

Inconsistent responses, no clear pattern 

Lexicographic preference structure 

Some “irrational” responses 

All “irrational” responses 

Unreasonable proportion of certain types of 
responses (“status quo”/“opt-out” effect) 

Other anomalies 

Statistical ramifications: 
Well-estimated utility function (no effect) 

Confounded parameter estimates 

Some parameters statistically insignificant 

All parameters statistically insignificant 

Greater dispersion in estimated parameters, no 
effect on WTP means or dispersion 

Greater dispersion in estimated parameters, 
affects WTP means or dispersion 

Shifts in estimated parameters, no effect on 
WTP means or dispersion 

Shifts in estimated parameters, affects WTP 
means or dispersion 
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DeShazo and Fermo (2004) found that increasing cognitive costs increased choice 

inconsistency, and acknowledging the presence of rationally adaptive choice behaviors 

resulted in significantly higher WTP estimates for all attributes, some by more than 

100%. Hensher and Rose (2005) and Hensher, Rose, and Bertoia (2007) also found that 

ignoring attribute processing strategies deflates the means and variances obtained for 

Value of Time Travel Savings (VTTS); however, Hensher (2006a) reported 18-62% 

inflation of mean VTTS from overlooking task complexity effects. Chung et al. (2011) 

also found significant inflation in mean WTP when ignoring task complexity. Though the 

direction of bias is unclear, task complexity does affect estimated values.  

Recognizing anomalous outcomes can be difficult because the source of the issue 

is rarely identifiable and highly dependent on the particular application and survey 

design. Any assumptions about root causes are not likely to be global, but it is necessary 

to either account for “irrational” behaviors1 in cases where it is predominant or design 

surveys to minimize these effects. Concerns about possible altered observed behaviors 

due to changes in a respondent’s cognitive strategies have led to recommendations of 

using shorter, more concise CE tasks (Jedidi, Kohli, & DeSarbo, 1996; Malhotra, 1986); 

however, following these recommendations usually requires the researcher to 

compromise with either the statistical properties of the survey or the research questions 

that can be addressed in the study. The benefits of such compromises will be evaluated in 

the nonmarket valuation mail survey context. 

                                                
1 Some anomalous behaviors are utility-theoretic. Individuals may exhibit lexicographic 
or intransitive preferences that are entirely rational, or read additional information into 
the attribute levels presented, such as the inference that higher-priced alternatives are of 
higher quality; however, responses that do not exhibit trading between attributes (non-
compensatory behavior) cannot be adequately measured using the CE method. 
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Types of Task Complexity 

Though there are many sources of task complexity, this study only addresses a 

few that are easily altered through changes in the CE design. 

Survey Length 

One difficulty in designing CE surveys occurs when selecting the number of CEs 

to ask each respondent, or the length of the survey. Sampling error is inversely related to 

the square root of sample size and is minimized by increasing the number of responses 

per respondent and the number of respondents. Reducing sampling error is usually 

accomplished by lengthening the survey instrument when sample size is a constraint; 

however, efficiency gains can only be realized if there are no subsequent cognitive 

reactions (Green & Srinivasan, 1990). The tradeoff between statistical precision and the 

number of choice tasks per respondent is not mathematically straightforward when 

cognitive burden is taken into consideration.  

Survey Length Consideration: Fatigue Effect 

Respondents may experience task overload and be either unwilling or unable to 

respond, resulting in inconsistent preferences over time. There are several different 

theories regarding this matter. One school of thought believes that exposing respondents 

to numerous sets of stimuli to evaluate incurs the risk of a fatigue effect or irrational 

behaviors resulting from weariness (Alriksson & Öberg 2008) that exacerbate response 

error and result in inconsistent model estimates (Greene, 2000). Behavioral psychology 

has shown that the quality and accuracy of a subject’s response deteriorates toward the 

end of long experiments (Dong, 1983; Melles, Holling, & Reiners, 1998). Though early 

economic studies found no preference inconsistencies based on the number of choice 
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situations (Bradley & Daly, 1994), more recent studies have shown that individuals do 

exhibit erratic behaviors, such as choosing dominated options or selecting the least 

preferred alternative (Ryan & Bates, 2001; Ryan & San Miguel, 2000). Maddala et al. 

(2003) examined preferences for HIV testing methods using intercept interviews in 

California. A fatigue effect, interpreted as statistically different parameter estimates, was 

noted when modeling the first six questions and the last six questions separately. 

Weariness may also be expressed simply as an unwillingness to respond. A meta-analysis 

by Johnson and Orme (1996) could not identify any parameter differences from surveys 

of varying lengths but the authors did observe more frequent usage of the “neither” 

alternative in later tasks, and individuals spent approximately 14% less time on questions 

where “neither” was the preferred alternative, which may be interpreted as an alternate 

symptom of survey fatigue. 

Survey Length Consideration: Learning Effect 

Another school of thought suggests the presence of learning effects based on 

psychological literature asserting that respondents learn over the course of repeated trials 

(Morrison, 2000). Sælensminde (1998) found inconsistent answers in the first CEs shown 

to respondents and postulated this phenomenon occurred because respondents are 

inexperienced in answering the exercise and spend time learning the task as opposed to 

having ill-formed preferences. Carlsson and Martinsson (2001) also suggested the 

presence of a learning effect. Responses were inconsistent among repeated questions 

when the questions occurred early in the survey; however, empirical analysis did not 

confirm the result. If learning effects exist, longer survey lengths are needed to 

compensate for possible increased randomness in response. 
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Survey Length Consideration: No Effect 

Other studies insist that preferences are stable regardless of survey length. 

Louviere (2004) argued, “It is widely believed that ‘modeling’ individuals requires 

‘smallish designs,’ but in contrast to the equivalent of widely held ‘academic urban 

myths’ in marketing and transport research, there is considerable evidence that humans 

will ‘do’ dozens (even hundreds) of [CEs].” Several studies conclude that longer surveys 

have negligible decreases in response rates, and differences in estimated parameters and 

error variances are not statistically significant (Arentze et al., 2003; Brazell & Louviere, 

1998; Hensher et al., 2001; Stopher & Hensher, 2000). Carlsson and Martinsson (2008) 

argued that longer surveys are more efficient because the longest version of their survey 

resulted in 65% more completed CEs than the shortest version; however, the study did 

not use equal sample sizes, so this is theoretical and not actual gain. Additionally, the 

survey response rate for the longest version was 33% less than for the shortest version, so 

selection effects may be present, and calculations based on the published regression 

results reveal 3 to 47% differences in mean marginal WTP estimates for different length 

treatments. No clear direction of bias was detected. 

Number of Alternatives 

The number of alternatives (or profiles) in a choice set may increase the difficulty 

of the task and affect respondent behavior. Having more alternatives increases the 

statistical efficiency of a design (Zwerina, Huber, & Kuhfeld, 2005) but increases the 

amount of information a respondent must face simultaneously. Having more options 

increases the risk of choice overload and the possibility that respondents become 
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paralyzed and unable to make decisions (Diehl & Poynor, 2007; Gourville & Soman, 

2005; Iyengar & Lepper, 2000; Mogilner, Rudnick, & Iyengar, 2008). 

Malhotra (1982) found that increasing the number of choice profiles only affects 

the dispersion of parameter estimates when the number of attributes is high; however, 

respondents reported higher degrees of information overload when forced to evaluate 

more attributes. Arentze et al. (2003) tested two and three alternative choice sets for work 

transport modes. They did not find any increase in error variance or parameter estimates 

with more alternatives, but did caution that their results could be due to transport mode-

type dominance effects. Kits et al. (2009) examine the demand for carbon offsets using 

two different surveys. One version contained two alternatives and fifteen CEs, whereas 

the other had three alternatives and ten CEs. The coefficients for their complexity 

measures were only weakly significant or insignificant, and the authors conclude that 

there is no strong evidence that increasing the number of alternatives influences 

decisions; however, the analysis in this study is not robust because the authors fail to 

consider the unequal number of tasks between the two surveys. There may be implicit 

behavioral tradeoffs presently unaccounted for in the model. 

Degree of Information Overlap 

Another way of controlling the amount of information in each CE is with 

information overlap, which occurs when several alternatives in the same choice set have 

identical values for certain attributes. The chosen number of levels and value range for 

each attribute most frequently influences the degree of information overlap. Researchers 

using large numbers of levels and broad attribute ranges often construct experimental 

designs using the principle of minimal overlap because the greatest efficiency comes 
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from comparing alternatives that differ across all attributes; however, the degree of 

information overlap may affect a respondent’s perception of task complexity and 

attribute-processing strategy. Studies of decision quality and information load have 

shown that increases in the diversity of information presented have a detrimental effect 

on decision quality (Chewning & Harrell, 1990; Iselin, 1988), with lower mean accuracy 

and higher standard deviations in responses (Hwang & Lin, 1999). 

Mazzotta and Opaluch (1995) suggested that individuals have difficulty making 

choices when more than three attributes vary between alternatives, and that individuals 

simplify their decision heuristic as decisions become more complex. Maddala et al. 

(2003) found that though the mean perceived difficulty score was statistically equivalent 

between surveys with differing levels of information overlap, attribute-level parameter 

estimates and model fit were unequal. Respondents in the group with higher degree of 

information overlap had higher price sensitivity. Additionally, mean WTP estimates were 

higher with narrower confidence intervals for the survey with less information overlap. 

Summary of Previous Findings 

Theory and empirical evidence from other applications provide little guidance 

regarding how much consideration should be given to task complexity when designing 

CE surveys. The results of other studies are inconclusive for almost all forms of task 

complexity. Because previous findings do not agree on the existence or the direction of 

bias from choice of CE design, predictions regarding the effect of task complexity on 

survey responses are not possible based on current information. This study adds to the 

quantitative knowledge on CE design available to survey researchers. 
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Methods 

The CE method is based on Lancaster’s approach to consumer theory (1966, 

1971) and random utility theory. The basic assumptions are that the utility of a good 

consists of the utility of the attributes characterizing the good and the researcher is only 

able to observe a component of the consumer’s utility function. Classically, the utility 

function is assumed to be a linear-in-parameters function of product attributes and net 

income, 

Vjn = V (Mn, pjn, xjn, !jn) = !xjn +" (Mn – pjn) + !jn, (2.1) 

where Vjn is the indirect utility of individual n for choosing alternative j, Mn is the 

respondent’s annual household income, pjn is the price of alternative j shown to 

individual n, xjn is a vector of attribute levels, and the taste parameters or “part-worths” of 

the individual’s utility function attributable to particular aspects of an environmental 

good or policy are represented by the vector !. Whether Mn represents a respondent’s 

annual household income or individual income is immaterial here because all choices are 

based on the difference between price and income, so Mn drops out of the choice equation 

because it is constant across choices for an individual. Although it is possible for the 

marginal utility of income to vary across individuals, this model assumes that all 

respondents have the same marginal utility of income because prices are relatively small 

compared to income and income effects are negligible. The random component or error 

term !jn may include characteristics of the alternative omitted by the researcher, 

measurement errors, unobserved characteristics of the individual, or the choice context. 

Individual n is assumed to choose alternative j if the utility of that alternative exceeds the 
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utility associated with any other alternative in the choice set S, which can be expressed as 

a probability: 

!" !!!! ! ! ! !"#! !!"
!"#! !!"!!!

! !"#! !"!"!! !!!!!"
!"#! !"!"!! !!!!!"!!!

. (2.2) 

Depending on the assumptions made about the distribution of the random component, the 

parameter estimates can be derived from several different probabilistic choice models, 

including probit models, multinomial logit (MNL) models, conditional logit (CL) models, 

nested logit (NL) models, and mixed logit (MXL) models. Typically, MNL or CL model 

specifications are used with the assumption that the error terms are independent and 

identically distributed (i.i.d.) according to Gumbel’s distribution. The i.i.d. assumption 

implies that all choice scenarios have independent irrelevant alternatives (IIA) and errors 

are uncorrelated across alternatives. IIA assumes that the ratio of probabilities of 

choosing an alternative remains constant regardless of the contents of other alternatives in 

the choice set. 

To compute welfare measures for the random utility function, let 

! !!!!! ! ! !"#
!

!!"  

be the maximum random utility for an individual n facing J choice occasions. The 

expected compensating variation (CV) for a change in prices and attributes from (pa, xa) 

to (pb, xb)is defined as 

! ! !!!!! ! !! ! ! ! !! ! !"!!! ! !!  (2.3) 

from Hanemann (1982), where the CV represents the expected maximum amount of 

money required to compensate individual n for a change to present conditions. For unit 

changes in x, holding price constant, the marginal WTP (MWTP) is simply 

!"#$ ! !!!
! . (2.4) 
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Qualitative Measures: Response Rates and Type 

Qualitative evaluation provides the most basic measure for evaluating reactions to 

survey complexity. Most studies regarding mail survey length and response rates show 

that longer surveys produce lower response rates (Adams & Gale, 1982; Burchell & 

Marsh, 1992; Dillman, Sinclair & Clark, 1993; Heberlein & Baumgartner, 1978), result 

in underrepresentation of respondents who place a high value on their time in the survey 

sample, and increased rates of item nonresponse (Anderson, Basilevsky, & Hum, 1983). 

Item nonresponse is particularly problematic for CE surveys because low variances in 

parameter estimates obtained through statistically efficient design are only realized when 

all items in the design structure are completed. Additionally, respondents who wish to 

avoid making difficult decisions may select the opt-out or “neither” alternative even if the 

option does not provide the highest utility level among all possible choices (Huber & 

Pinnell, 1994). Changes in decision heuristics, including increased random selection of 

alternatives, may alter observed response type ratios and parameter estimates. 

Swait-Louviere Scale Parameter Test 

One quantitative measure of treatment effects can be obtained from the Swait-

Louviere scale parameter test (Swait & Louviere, 1993). Traditionally, the scale 

parameter test has been used for combining two different datasets generated from the 

same choice process, such as in stated preference-revealed preference (SP-RP) studies 

when one dataset is suspected to be “noisier” than another. The scale parameter test 

checks whether two different datasets share the same population parameters assuming 

that the specification of both MNL models is identical (Swait & Louviere, 1993). 
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For MNL models, the error terms !jn are assumed to be independently and 

identically distributed Gumbel variates. The generalized extreme value (GEV) 

distribution is characterized by both a location parameter and a scale factor, which is 

inversely proportional to the variance of the error term ! ! ! !!!! . Explicitly 

rewriting Equation 2.1 to include the scale parameter µ gives: 

V (Mn, pjn, xjn, !jn) = !xjn +" (Mn – pjn) + !jn/µ. (2.5) 

Because it is not possible to simultaneously identify ", ", and µ, µ is either normalized to 

one or the researcher estimates the products µ" and µ". Therefore, the estimated 

parameters from any dataset are confounded with the scale parameter specific to that 

individual dataset. 

The scale parameter test determines whether differences in parameter estimates 

should be attributed to scale parameter differences:  

H: #1 = #2 and µ1 = µ2. 

The Swait-Louviere procedure involves a variant of the two-stage Chow test. First, 

estimated parameters are tested to determine if differences are due entirely to a difference 

in scale factors (i.e. the sum of log-likelihoods for two different data sets differ 

significantly from the log-likelihood of a model estimated from pooled data with a 

parameter restriction): 

H1: #1 = #2 = #. 

Assume that µ1 = µ2. A grid search is conducted over some hypothesized region over two 

stacked datasets for a scalar value ($): 

! ! !"#"!
! ! !"#"! .  (2.6) 
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The scalar value ($) can be interpreted as a variance scale parameter ratio. The optimal $ 

should optimize the log-likelihood of a multinomial logit model fitted to the pooled 

dataset W, which imposes that the vector of coefficients for the first dataset #1 must be 

equal to the vector of coefficients for the second dataset #2. Then, the test statistic (log-

likelihood ratio) is calculated using the formula 

!"! ! !! !"#$ !!!! ! !"#$ !! ! !"#$ !! , (2.7) 

where logL[x1] is the log-likelihood score for the model estimated using the first dataset, 

logL[x2] the log-likelihood score for the model using the second dataset, and logL[x1|2] is 

the log-likelihood score for the pooled dataset. The LR1 test statistic follows an 

asymptotic %2 distribution with R+1 degrees of freedom where R is the number of 

parameters specified in the MNL.  

The second part of the Swait-Louviere procedure tests the hypothesis 

H2: µ1 = µ2 = µ. 

Assume that #1 = #2. Estimate a model using a stacked dataset as before, except without 

the scalar value ($). The log-likelihood from this estimation (logL[xpool]) is then used in 

the test statistic 

!"! ! !! !"#$ !!""# ! !"#$ !!!! , (2.8) 

which also follows an asymptotic %2 distribution, but with only one degree of freedom. 

Both hypotheses must not be rejected for the main hypothesis (H) to be accepted 

at a given confidence interval. If the first hypothesis (H1) is rejected, then the principal 

hypothesis (H) must also be rejected. If H1 is not rejected, then the scalar value ($) 

measures the degree of heterogeneity between the error variances of the two datasets; 

otherwise, the scalar value ($) is interpreted simply as the optimally scaling average 
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multiplier of the second dataset that offsets the imposition of the estimated parameter 

vector # equality assumption (Swait & Louviere, 1993). 

Scale Heterogeneity Model 

Scale heterogeneity models, also known as heteroscedastic logit models, assume 

that all individuals have the same parameter vector #. Independence across choice sets is 

retained, but individuals are allowed to have different error variances or “noisiness” in 

their decisions (Breffle & Morey, 2000). This specification is equivalent to a 

homoscedastic model with parameter proportionality where the #’s are scaled up or down 

depending on the individual or strata; however, it is more parsimonious to describe the 

data using a single scale parameter than a vector of parameters, one for each 

stratification. 

Several other studies (Chung et al., 2011; DeShazo & Fermo, 2004; Swait & 

Adamowicz, 2001a) use scale heterogeneity models to quantify response inconsistencies 

due to task complexity. The scale parameter from Equation 2.5 can be represented as an 

exponential function (DeShazo & Fermo, 2002; Hole, 2007), which allows for 

nonlinearity in parameters and yet converges: 

µn (Cn) = exp [Cn !]. (2. 9) 

Cn represents a vector of m individual characteristics and the vector ! measures the 

degree of influence of Cn on the error variance. Heterogeneity due to task complexity is 

captured using scale factors that vary by treatment.  

Changes in scale factors alter the steepness of the choice probability function (see 

Figure 3). As the scale factor increases, the probability (vertical axis) associated with the 

utility difference between alternatives (horizontal axis) rises more sharply. The utility 
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values associated with different alternatives are more distinct for individuals with large 

scale factors because the observed factors (and corresponding parameter ") are large 

relative to the unobserved factors !. As a result, choice probabilities are better defined, 

resulting in steep curves and easily discernible preferences. The random component 

dominates with small scale factors, resulting in less responsive choice probabilities and 

greater model variance.  

Figure 3. Scale parameter effect on choice probabilities (Adamowicz et al., 1998). 
 

Scale heterogeneity models are also convenient for valuation studies because 

changes in the scale parameter reflect systematic differences without affecting marginal 

WTP measures. Using Equation 2.9, the MWTP is 

!"#$ !
!" !"
!" !"

!
!
!! !! !! !!!"!! !!!!!" !!!"
!
!" !! !! !!!"!! !!!!!" !!!"

  

! ! !! !! !
!! !! ! ! ! !

!. (2.10) 
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The scale heterogeneity model is identical to the scale parameter test for a treatment 

effect from a single treatment when Cn is specified as a dummy variable for some 

treatment because & rescales the variance for the treatment effect dataset. If H1 is 

rejected, then & should be statistically insignificant, and vice versa. 

The scale heterogeneity model will be used in determining whether task 

complexity can be captured parametrically. The scale parameter test only analyzes one 

specific treatment case at a time, which does not allow for extrapolation to other possible 

study designs. The scale heterogeneity model allows for continuous specifications of Cn, 

which addresses the correlation between response and survey complexity measures more 

thoroughly. For the number of alternatives, & can be specified as a linear trend parameter. 

Because there are multiple length treatments, the effect of survey length on scale 

parameter can be specified as either linear or quadratic. 

Random Parameters Logit Models 

Recent studies have also used random parameters logit (RPL) or MXL models to 

explain complexity (Boxall, Adamowicz, & Moon, 2009; Meyerhoff, 2006). In a random 

parameters model, preferences are allowed to vary randomly between subpopulation 

groups. This method relaxes IIA assumptions without imposing a specific structure on the 

heterogeneity by assuming that two additive parts comprise the model parameters "n, a 

fixed, observable component and an unobserved (random) component: 

!!" ! !!
!!"

!! ! !!" ! !!"  

! !!!
!!"

!! ! !!" ! !!!
!!"

!! ! !!" ! !!". (2.11) 

The more general specification for the MXL includes a random component for the error 

term (random intercept)  
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!!" ! !!!
!!"

!! ! !!" ! !!!
!
!!"

!! ! !!"
! !!". (2.12) 

The two parameter components can be alternatively interpreted as the population mean 

and individual deviation in tastes. The error terms !jn in this specification are still 

identically and independently distributed; however, the unobserved portion of the utility 

function now includes the #' term, which induces correlation over alternatives by 

assuming that respondents within a subpopulation evaluate all alternatives using the same 

tastes. By specifying the model in this way, all of the observed and unobserved attributes 

are represented.  

Substituting Equation 2.11 into Equation 2.2 gives the RPL (MXL) probabilities 

!!! ! !
!"# !

!!"
!!!!!" !

!"# ! !!"
!!!!!"!

! ! ! !"! , (2.13) 

where ! ! !  is the density function of " described by parameters # (mean and 

variance). Because the RPL models violate standard i.i.d. assumptions for CLs, 

estimation of the parameters relies on assuming a distribution for ! ! ! . The RPL 

models in this dissertation assume that the parameters #'n are randomly and normally 

distributed for simplicity, but any distribution could be used.  

The distribution of coefficient heterogeneity is addressed in both the RPL and the 

scale heterogeneity model. Whereas the scale heterogeneity model requires model 

parameters to vary based on specific proportionality factors, the RPL model is more 

liberal as the specification allows for more general variation in the parameters; however, 

the RPL requires the estimation of a larger number of parameters, which can lead to 

convergence issues. 
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Model Specification 

The models estimated in this chapter will include only the most important trip 

attributes (determined empirically) and ignore species stratification for ease of model 

interpretation. Combining catch into generic groupings reduces the number of parameters 

in the model without significant loss of meaning. The general model used in empirical 

estimations is 

!!" ! !!!"#!!"#$!" ! !!!"#!!"#"$%"&!" ! !!!"#$%&'(!!!" 
!!!!"#$%# ! ! !! ! !!! . (2.14) 

Marginal WTP mean and confidence intervals are calculated using the Krinsky-Robb 

method (see Haab & McConnell, 2002). 

Data 

Variants of experimental design elements were tested using the survey instrument 

described in Chapter 1. To minimize interaction effects between different forms of task 

complexity, questions were identical in wording and layout across treatments; only 

elements of the CEs reflected differences between treatments. Additionally, the 

experimental designs chosen had approximately the same efficiency scores. This study 

focuses on questionnaire length and number of alternatives per CE because they are the 

easiest way to adjust required sample size and control printing costs (page length) in a 

mail survey and most common variants among studies in the literature 

To ensure a standard basis of comparison, a Base survey with eight questions and 

two alternatives plus an opt-out option was considered the reference survey. The most 

common questionnaire lengths found in discrete choice studies were four, six, and eight 

discrete choice questions. Four questions seemed too few to accurately measure 

respondent preferences if psychological effects, such as learning, were present, and the 
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literature recommended eight (see Carson et al., 1994). All treatments varied only one 

experimental design element from the base so that any differences attributed to a 

particular design choice could be accurately measured. Three different survey length 

variants were tested based on frequently observed numbers in the literature (12, 16, and 

24 CEs) and one treatment varied the number of alternatives. 

To account for potential differences from income and fishing mode, an additional 

survey treatment was created with one less attribute and a reduced price vector (Shore). 

The fishing trip length attribute was included in the Base survey and variations on the 

Base survey because most party and charter boat fees explicitly outline time as one of the 

determinants of trip cost; however, time is not determined exogenously for shore mode 

anglers. Shore mode is also a less expensive form of angling and thus has a smaller price 

vector with fewer levels than the other treatments. Fishing mode, the number of 

attributes, the smaller price range, and the number of price levels are all potentially 

confounded in the Shore treatment. The data from the Shore treatment will not be used in 

the task complexity analyses because distinguishing between the multiple treatment 

effects and the mode effect is impossible. 

The experimental design variations allow for tests of questionnaire length and 

number of alternatives. The degree of information overlap, though not explicitly 

controlled for by any specific experiment, can also be tested. Changes in the number of 

attributes, attribute range, and attribute leveling cannot be tested due to confounding. The 

full sampling strategy was described in Chapter 1. Sample A respondents were assigned 

to the Shore treatment. Sample B respondents were randomly assigned to one of the other 

five treatments. Table 10 summarizes the treatments. 
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Table 10. Summary of Survey Treatments 
Survey 
Version 

Number of 
Questions 

Number of 
Alternatives 

Number of 
Attributes 

Sample 
Assignment 

Base 8 2 + Opt-out 8 Sample B 
Length 1 12 2 + Opt-out 8 Sample B 
Length 2 16 2 + Opt-out 8 Sample B 
Length 3 24 2 + Opt-out 8 Sample B 

3-Alternative 8 3 + Opt-out 8 Sample B 
Shore 8 2 + Opt-out 7 Sample A 

 
Results 

Qualitative Measures: Respondent Characteristics 

Differences in general population characteristics (race, age, gender, education, 

ethnicity, household income) were not detected between treatment groups.  

Qualitative Measures: Response Rates 

Z-tests on sample proportions were conducted to determine if task complexity 

affected response rates. The response rate for the Base survey is statistically different 

from the response rates of all of the length treatments at the 90% confidence level, 

indicating that the number of CE questions influences respondents’ willingness to 

complete and mail back surveys. The length treatment response rates are not statistically 

different from each other; however, the response rate for Length 3 is significantly 

different from the 3-Alternative treatment, which is not statistically different from the 

Base. Table 11 summarizes this qualitative evidence. 

Table 11. Response Rates by Treatment 
Treatment Mailed Returned Return Rate Z-Score (Base) Z-Score (Length 3) 

Base 1,173 428 36% — 3.823*** 
Length 1 585 188 32% 1.748** 1.204 
Length 2 585 189 32% 1.677* 1.132 
Length 3 392 101 26% 3.823*** — 

3-Alternative 1,166 410 35% 0.628 3.364*** 
***p < .01, **p < .05, *p < .10 for two-tailed Z-test. 
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Qualitative Measures: Item Nonresponse Rates 

Table 12 summarizes item nonresponse rates by treatment and question subgroup. 

Surprisingly, the average item nonresponse rate is not statistically different between 

treatments; however, this result is consistent with other mail survey studies showing that 

item nonresponse is independent of questionnaire length (Craig & McCann, 1978; Hing, 

Schappert, Burt, & Shimizu, 2005).  

Table 12. Item Nonresponse by Treatment and Question Order 

Treatment 

Average non- 
response rate 

in Q1-Q8 

Average non- 
response rate 

in Q9-Q12 

Average non- 
response rate 
in Q13-Q16 

Average non- 
response rate 
in Q17-Q24 

Average non- 
response rate 

for all Qs 
Base 20% — — — 20% 

Length 1 16%** 16% — — 16%** 
Length 2 19.4% 20% 21% — 20% 
Length 3 17.6% 20.5% 19.5% 19.4% 19% 

3-Alternative 22% — — — 22% 
***p < .01, **p < .05, *p < .10 for two-tailed Z-test compared to Base. 
 

Qualitative Measures: Response Composition (Type of Response) 

A comparison of choice distribution for different survey designs can also be 

revealing. Each length treatment was structured to include the base survey CEs. Inclusion 

of the base CEs in the 3-Alternative or Shore treatments was not possible for obvious 

reasons. Tables 13 through Table 17 give response breakdowns for a few questions. 

Though some variation is expected due to heterogeneity in respondent preferences, the 

proportion of opt-out responses were significantly higher in the length treatments than in 

the base in most cases. There also appear to be significant differences in the distribution 

of response type between treatment groups for each of the questions shown in the tables.  

Table 13. Question A Response Breakdown 
Treatment No. Responses Option A Option B Opt-Out Nonresponse 

Base 428 37% 38% 6% 19% 
Length 1 188 19%*** 40% 10%*** 31%*** 
Length 2 189 39% 30%*** 14%*** 17% 
Length 3 101 27%*** 45%** 8% 20% 

***p < .01, **p < .05, *p < .10 for two-tailed Z-test compared to Base. 
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Table 14. Question B Response Breakdown 
Treatment No. Responses Option A Option B Opt-Out Nonresponse 

Base 428 39% 18% 11% 32% 
Length 1 188 32%*** 25%*** 10% 32% 
Length 2 189 42% 20% 15%** 23%*** 
Length 3 101 48%*** 16% 18%*** 18%*** 

***p < .01, **p < .05, *p < .10 for two-tailed Z-test compared to Base. 
 
Table 15. Question C Response Breakdown 
Treatment No. Responses Option A Option B Opt-Out Nonresponse 

Base 428 10% 44% 25% 21% 
Length 1 188 9% 41% 14%*** 36%*** 
Length 2 189 12% 55%*** 19%*** 14%*** 
Length 3 101 14%** 49%* 18%*** 19% 

***p < .01, **p < .05, *p < .10 for two-tailed Z-test compared to Base. 
 
Table 16. Question D Response Breakdown 
Treatment No. Responses Option A Option B Opt-Out Nonresponse 

Base 428 25% 35% 17% 23% 
Length 1 188 9%*** 41%** 24%*** 26% 
Length 2 189 14%*** 41%** 22%** 23% 
Length 3 101 8%*** 48%*** 26%*** 18%** 

***p < .01, **p < .05, *p < .10 for two-tailed Z-test compared to Base. 
 
Table 17. Question E Response Breakdown 
Treatment No. Responses Option A Option B Opt-Out Nonresponse 

Base 428 6% 45% 18% 31% 
Length 1 188 7% 43% 26%*** 24%*** 
Length 2 189 12%*** 32%*** 23%** 33% 
Length 3 101 4% 52%** 28%*** 16%*** 

***p < .01, **p < .05, *p < .10 for two-tailed Z-test compared to Base. 
 

Qualitative Measures: Consistency—Ratings and Choices 

The last qualitative measure tests consistency within responses by respondents. 

Each CE in this survey required the respondent to select the most preferred trip option, as 

is standard in most CE questionnaires, and then rate each alternative in the CE. Including 

the rating exercise allows for tests of rationality and consistency, as ratings should align 

with trip selections. Many different scales appear in previous studies, but this survey 

utilized the most common scale, 1 (dislike) to 10 (like) (Bigsby & Ozanne, 2002). Table 

18 summarizes the percentage of inconsistent responses by treatment, which are 

responses where the highest rated alternative is not the chosen alternative, excluding 
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nonresponses. The Length 3 treatment group had the highest percentage of inconsistent 

responses per respondent, which was significantly different from the base. Surprisingly, 

the Length 2 and 3-Alternative treatments had the fewest number of inconsistent 

responses, suggesting these respondents paid more attention to the choice tasks. 

Table 18. Percent Inconsistent Responses by Treatment 

Treatment 
0-25% Responses 

Inconsistent 
25-50% Responses 

Inconsistent 
50-75% Responses 

Inconsistent 
75-100% Responses 

Inconsistent 
Base 76.3% 13.9% 3.9% 5.8% 

Length 1 76.5% 13.4% 4.3% 5.9% 
Length 2 78.2% 12.8% 3.2% 5.9% 
Length 3 69.3%*** 15.8% 5.9% 8.9%* 

3-Alternative 78.7% 10.8%** 4.2% 6.4% 
***p < .01, **p < .05, *p < .10 for two-tailed Z-test compared to Base. 
 

Swait-Louviere Scale Parameter Test 

Parameter estimates for individual treatments are listed in Table 19. The 

coefficients for fish kept and trip length are positive and statistically significant as 

expected. The opt-out and trip cost are negative and significant. The number of fish 

released is not statistically significant, but it is an important part of the theoretical model. 

There are some noticeable differences in parameter estimates between the treatments and 

the control group, which is also reflected in calculated MWTP values. For the tables in 

this chapter, the number of observations is the total number of items (alternatives) and the 

number of groups indicates the number of clusters used in computing the standard errors 

(N), which equals the number of individuals. Models in this chapter cluster observations 

by individual to control for error correlation in responses unless noted otherwise. 

Differences in parameter estimates between non-clustered and clustered models are not 

statistically significant. 
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Table 19. Estimation Results for Individual Treatments 
Variable Base Length 1 Length 2 Length 3 3-Alts. 

# Fish kept 0.0556*** 
(0.00603) 

0.0389*** 
(0.00762) 

0.0422*** 
(0.00651) 

0.0473*** 
(0.00741) 

0.0652*** 
(0.00558) 

# Released 0.00257 
(0.0108) 

0.0123 
(0.0132) 

0.0145 
(0.0113) 

0.0127 
(0.0130) 

-0.0110 
(0.00689) 

Trip length 0.0444*** 
(0.00914) 

0.0527*** 
(0.0129) 

0.0249*** 
(0.0115) 

0.0233* 
(0.0129) 

0.0666*** 
(0.00967) 

Opt-out -0.941*** 
(0.123) 

-1.162*** 
(0.145) 

-0.853*** 
(0.124) 

-1.155*** 
(0.142) 

-0.654*** 
(0.120) 

Trip cost -0.00460*** 
(0.000284) 

-0.00569*** 
(0.00342) 

-0.00457*** 
(0.00278) 

-0.00556*** 
(0.000325) 

-0.00553*** 
(0.000246) 

LR (%2) 943.0*** 710.3*** 790.6*** 961.0*** 1,388.8*** 

Log-Likelihood -2,829.57 -1,511.40 -2,108.42 -1,657.42 -2,518.92 
No. Obs. 8,166 5,097 6,837 5,838 10,168 
No. Groups 354 151 153 86 336 
MWTP (keep) $12.08 

(9.01 – 15.14) 
$6.83 

(3.98 – 9.67) 
$9.24 

(6.10 – 12.39) 
$8.50 

(5.60 – 11.40) 
$11.78 

(9.45 – 14.10) 
***p < .01, **p < .05, *p < .10. 
 

Pooled models for the scale parameter test are summarized in Table 20, Table 21, 

and Table 22. The test statistics for H1 (LR1), which considers whether differences in 

parameter estimates are due to scale factors only, are listed in Table 20. R is 5 for this 

model and the degrees of freedom for LR1 are 6. Because LR1 is rejected for all of the 

length treatments versus base at the 99% confidence level, the hypothesis of equal 

parameter estimates is also rejected, indicating that the underlying choice models for the 

length treatments have different parameters than the base. Increasing survey length either 

alters respondent behavior or changes unobserved sample characteristics. 

LR1 fails to be rejected for the 3-Alternatives treatment (Table 20), indicating that 

the relative scale factor ($) is a measure of heterogeneity of the error variances between 

the base and the 3-Alternatives treatment. In this case, it appears that the two datasets are 

fairly homogeneous as $ is very close to one. LR2 (Table 22), which tests whether there 

are differences in parameter estimates assuming that scale parameters are the same, also 

fails to be rejected in this case. Thus, the hypothesis (H) is accepted, meaning that the 

number of alternatives does not have a statistically significant effect on response process. 
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The 3-Alternatives treatment was not compared with any of the length treatments because 

it has already been demonstrated that the length treatments are significantly different 

from the control treatment, which has the same underlying parameters and error variance 

as the 3-Alternatives treatment according to the scale parameter test. 

Table 20. Pooled Estimation Results (Base + $Treatment) for Swait-Louviere H1 
Variable Base + L1 Base + L2 Base + L3 Base + 3-Alts. 

# Fish kept 0.0474*** 
(0.00458) 

0.0522*** 
(0.00475) 

0.0499*** 
(0.00460) 

0.0584*** 
(0.00396) 

# Released 0.00589 
(0.00811) 

0.00931 
(0.00840) 

0.00825 
(0.00814) 

-0.00666 
(0.00552) 

Trip length 0.0449*** 
(0.00725) 

0.0407*** 
(0.00757) 

0.0371*** 
(0.00736) 

0.0527*** 
(0.00641) 

Opt-out -1.036*** 
(0.0915) 

-1.004*** 
(0.0943) 

-1.054*** 
(0.0916) 

-0.828*** 
(0.0825) 

Trip cost -0.00497*** 
(0.000212) 

-0.00506*** 
(0.000213) 

-0.00506*** 
(0.000208) 

-0.00493*** 
(0.000176) 

LR (%2) 1,642.31*** 1,718.44*** 1,884.71*** 2,312.8*** 
Log-Likelihood -4,035.81 -4,634.94 -4,185.97 -5,357.97 
No. Obs. 13,263 15,003 14,004 18,334 
No. Groups 505 507 440 690 
MWTP (keep) $9.55 

(7.51 – 11.59) 
$10.33 

(8.23 – 12.42) 
$9.85 

(7.84 – 11.86) 
$11.84 

(9.99 – 13.70) 
Scale ratio ($) 1.05 0.83 1.02 1.05 
LR1 Test Statistic 610.32 606.10 602.04 -18.96 
***p < .01, **p < .05, *p < .10. 
 
Table 21. Pooled Estimation Results (TreatmentA + $TreatmentB) for Swait-Louviere H1 

Variable L1 + L2 L1 + L3 L2 + L3 
# Fish kept 0.0449*** 

(0.00548) 
0.0433*** 
(0.00529) 

0.0408*** 
(0.00448) 

# Released 0.0139 
(0.00951) 

0.0116 
(0.0380) 

0.0125* 
(0.00781) 

Trip length 0.0427*** 
(0.00949) 

0.0381*** 
(0.00913) 

0.0219*** 
(0.00786) 

Opt-out -1.101*** 
(0.104) 

-1.164*** 
(0.101) 

-0.910*** 
(0.0855) 

Trip cost -0.00565*** 
(0.000240) 

-0.00564*** 
(0.000235) 

-0.00460*** 
(0.000194) 

LR (%2) 1,497.26*** 1,666.75*** 1,751.07*** 

Log-Likelihood -3,621.65 -3,171.07 -3,766.10 
No. Obs. 11,934 10,935 12,675 
No. Groups 304 237 239 
MWTP (keep) $7.94 

(6.85 – 10.04) 
$7.68 

(5.66 – 9.69) 
$8.86 

(6.73 – 10.99) 
Scale ratio ($) 0.82 1.00 1.20 
LR1 Test Statistic -3.66 -4.50 -0.52 
***p < .01, **p < .05, *p < .10. 
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Table 22. Pooled Estimation Results (TreatmentA + TreatmentB) for Swait-Louviere H2 
Variable Base + 3-Alts. L1 + L2 L1 + L3 L2 + L3 

# Fish kept 0.0602*** 
(0.00407) 

0.0404*** 
(0.00492) 

0.0433*** 
(0.00529) 

0.0446*** 
(0.00489) 

# Released -0.00641 
(0.00572) 

0.0134 
(0.00855) 

0.0116 
(0.00920) 

0.0139* 
(0.00851) 

Trip length 0.0541*** 
(0.00656) 

0.0382*** 
(0.000857) 

0.0381*** 
(0.00913) 

0.0237*** 
(0.00859) 

Opt-out -0.849*** 
(0.0845) 

-0.971*** 
(0.0939) 

-1.164*** 
(0.101) 

-0.987*** 
(0.0932) 

Trip cost -0.00508*** 
(0.00181) 

-0.00502*** 
(0.000215) 

-0.00564*** 
(0.000235) 

-0.00501*** 
(0.000211) 

LR (%2) 2,312.48*** 1486.26*** 1666.75*** 1737.50*** 

Log-Likelihood -5,358.14 -3,627.15 -3,171.07 -3,772.89 
No. Obs. 18,334 11934 10,935 12,675 
No. Groups 690 304 237 239 
MWTP (keep) $11.84 

(9.99 – 13.69) 
$8.04 

(5.92 – 10.16) 
$7.68 

(5.66 – 9.69) 
$8.89 

(6.76 – 11.04) 
LR2 Test Statistic -19.30 -14.66 -4.5 -14.1 
***p < .01, **p < .05, *p < .10. 
 

Comparisons between length treatments were conducted to determine if treatment 

effects varied between treatments. LR1 (Table 21) and LR2 (Table 22) fail to be rejected 

for comparisons of the length treatments, meaning that H also fails to be rejected; 

therefore, the hypothesis of equal parameter estimates and equal scale parameters is 

accepted. The length treatment models are not significantly different from each other, 

only from the base.  

Scale Heterogeneity Models 

Table 23 lists the results for the scale heterogeneity models by treatment type. The 

3-Alternatives case was only examined as a linear case as there was only one treatment 

for this type of complexity. The scale heterogeneity parameter for the number of 

alternatives is not statistically significant, which is not surprising because the scale 

parameter here replicates the Swait-Louviere scale parameter test and H for the 3-

Alternatives case was not rejected. The length treatments are examined as both a linear 

(Model A) and quadratic (Model B) effect on error variance. In the linear specification, 
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the scale parameter term for questionnaire length is not statistically significant; however, 

both the linear and quadratic terms are highly significant in the quadratic specification. 

The convexity of the scale parameter indicates that the error variance initially increases, 

plateaus, then decreases in response to increases in survey length. The parameters are 

significantly different from the homogeneous base model in Table 19 (LR (%2) = 

15,648.05), and the MWTP estimates for the quadratic length specification are much 

lower than the MWTP estimates for the base. The confidence intervals just barely 

overlap. Contrary to findings in other studies (Bradley & Daly, 1994; Brazell & Louviere, 

1998; Carlsson & Martinsson, 2008; Hensher et al., 2001; Louviere, 2004), preferences 

do change depending on survey length. 

Table 23. Scale Heterogeneity Models: Single-Complexity Type 

Variable Base + 3-Alts. 
Base + Length 

(Model A) 
Base + Length 

(Model B) 
# Fish kept 0.059*** 

(0.00435) 
0.0453*** 
(0.00400) 

0.0727*** 
(0.0123) 

# Released -0.00658 
(0.00560) 

0.00974* 
(0.00591) 

0.0170* 
(0.00991) 

Trip length 0.0532*** 
(0.00660) 

0.0367*** 
(0.00589) 

0.0597*** 
(0.0129) 

Opt-out -0.836*** 
(0.0857) 

-1.020*** 
(0.0830) 

-1.635*** 
(0.270) 

Trip cost -0.00498*** 
(0.000229) 

-0.00502*** 
(0.000293) 

-0.00808*** 
(0.00126) 

& (#alternatives) 0.0324 
(0.0473) 

— — 

& (#questions) — 0.000396 
(0.00331) 

-0.0680*** 
(0.0215) 

& ((#questions)2) — — 0.00212*** 
(0.000658) 

LR (%2) 0.47 0.01 10.53*** 
No. Obs. 18,334 25,938 25,938 
No. Groups† 5,264 8,646 8,646 
MWTP (keep) $11.84 

(9.99 – 13.70) 
$9.02 

(7.57 – 10.48) 
$8.99 

(7.54 – 10.44) 
***p < .01, **p < .05, *p < .10. 
† No. Groups indicates the number of unique observations for the scale parameter variable. 
 

Learning and fatigue effects are best examined in terms of question order, but this 

effect is difficult to measure explicitly in mail surveys. Respondents are not constrained 
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to answering questions in a particular order and can easily change the answers for 

previously completed questions at any time. For example, Carlsson, Frykblom, and 

Liljenstolpe (2003) found no question order effects in study of wetland valuation in 

Sweden despite administering half of the surveys in reverse question order. The inability 

to parse out any question order effects is typical of mail surveys but does not 

conclusively indicate the absence of order effects. If learning effects are present, the 

impact of inconsistent responses early in the survey (Carlsson & Martinsson, 2001; 

Sælensminde, 1998) should result in higher variance in short surveys compared to long 

surveys. Fatigue effects occur at the end of long surveys (Maddala et al., 2003; Ryan & 

Bates, 2001; Ryan & San Miguel, 2000) and are correlated with survey length, so longer 

surveys should exhibit higher variances than short surveys. The shape of the scale 

parameter in response to questionnaire length does not support either theory as middle-

length surveys have the highest error variances. 

To explore this further, a scale heterogeneity model (Table 24) was estimated 

including a question order term (question number in the survey). The parameters are not 

statistically different from the quadratic model in Table 23 but are significantly different 

from the homogeneous base model in Table 19 (LR (%2) = 15,647.21). After controlling 

for questionnaire length effects, there is a slight increase in error variance with questions 

near the end of the survey, which can be construed as a fatigue effect. Though 

statistically significant, this effect is dwarfed by the questionnaire length effect. 
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Table 24. Scale Heterogeneity Models: Testing for Learning and Fatigue Effects 
Variable Base + Length (C) 

# Fish kept 0.0709*** 
(0.0120) 

# Released 0.0158* 
(0.00966) 

Trip length 0.0598*** 
(0.0128) 

Opt-out -1.633*** 
(0.269) 

Trip cost -0.00799*** 
(0.00125) 

& (question order) -0.00805* 
(0.00424) 

& (#questions) -0.0623*** 
(0.0216) 

& ((#questions)2) 0.00209*** 
(0.000658) 

LR (%2) 14.10*** 
No. Obs. 25,938 
No. Groups† 8,646 
MWTP (keep) $8.87 

(7.44 – 10.31) 
***p < .01, **p < .05, *p < .10. 
† No. Groups indicates the number of unique observations for the scale parameter variables. 
 

Random Parameters Logit Models 

Due to convergence issues, the RPL models estimated only specify random 

parameters for the number of fish kept. The first set of results in Table 25 is from a 

dataset containing the control group responses and the 3-Alternative group responses. 

The parameter estimates differ from the scale heterogeneity model and the pooled model 

without a consistent direction. The random parameter on fish kept is positive, indicating 

that responses from the 3-Alternatives group weighted the number of fish kept more 

heavily than the base group. Surprisingly, the results for the length treatments were not as 

conclusive. The random parameter in this case indicates that respondents with longer 

surveys have a greater dispersion in their utility weight for number of fish kept but no 

shift in the mean. The pooled treatment model includes data from all of the design 

treatments. In the pooled treatment model, the random parameter implies that any survey 
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design treatment results in a higher mean value and greater dispersion in taste parameters 

compared to the base. These results suggest that there is a treatment effect caused by the 

3-Alternatives scenario, but it is not captured using the parametric specifications used in 

the previous section unlike the treatment effects for the different length scenarios. 

Table 25. RPL Models with Randomness in Fish Kept 

Variable 

 Base + 3-Alts.  
 

Base + Length 
(All L Treatments)  Base + All Treatments 

 Coef. Std. Err.  Coef. Std. Err.  Coef. Std. Err. 
# Fish kept Mean 0.0704*** 0.0136  0.0540*** 0.00348  0.0591*** 0.00976 
(#treatment) S. D. 0.0182*** 0.00924  0 0.00145  0.0161*** 0.00667 
# Released Mean -0.0161** 0.00632  0.0152*** 0.00589  0.00381 0.00472 
Trip length Mean 0.0738*** 0.00690  0.0399*** 0.00573  0.0502*** 0.00490 
Opt-out Mean -0.985*** 0.0875  -1.271*** 0.0705  -1.144*** 0.0598 
Trip cost Mean -0.00545*** 0.000182  -0.00521*** 0.000143  -0.00547*** 0.000124 
Wald (%2)  1,051.57***  3,536.25***  2,390.44*** 
No. Obs.  18,334  25,938  36,106 
MWTP  $12.91 

(7.93 – 17.89) 
 
 

$10.36 
(8.89 – 11.83) 

 
 

$10.80 
(7.25 – 14.34) 

***p < .01, **p < .05, *p < .10. 
 

Degree of Information Overlap 

Because this study did not explicitly control for the degree of information overlap, 

the Swait-Louviere method could not be used as the data could not be subset; however, 

the degree of information overlap directly affects perception of choice difficulty and is 

important in survey design considerations. Therefore, analyses of the degree of 

information overlap will be conducted using only the control sample. 

Previous studies have used variables such as the percentage of attributes with 

unequal levels (Maddala et al., 2003) and entropy measures (Danthurebandara, Yu, & 

Vandebroek, 2011; Swait & Adamowicz, 2001a, 2001b) to represent the degree of 

information overlap. Here, the degree of information overlap (or information diversity) is 

defined as the distance or Euclidean mean between attribute vectors in the CE. Smaller 

values indicate that the information between vectors is very similar, whereas large values 
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indicate very different vector values. Though this is a departure from methods used in the 

literature, the Euclidean mean is a simple but apt description that captures the degree of 

difference between attribute levels and the number of attributes with unequal levels.  

The test results for degree of information overlap are shown in Table 26. The 

scale parameter in the scale heterogeneity model is not statistically significant. The 

random parameters in the RPL model have a positive and significant standard deviation 

from the estimated mean coefficient, which indicates decreases in error variance with 

increases in degree of information overlap. The magnitude of all parameters in the RPL 

model are greater than those in the homogeneous model, but differences in MWTP 

confidence intervals are not significant. As with the 3-Alternatives treatment, the degree 

of information overlap is best captured non-parametrically. 

Table 26. Regression Results for the Degree of Information Overlap (Base Only) 

Variable 
Base 

Homogeneous 
Base 

Scaled 
 Base-RPL 
 Coef. Std. Error 

# Fish kept 0.0556*** 
(0.00603) 

0.0533*** 
(0.00656) 

Mean 
S. D. 

0.0969*** 
0.0555*** 

0.0130 
0.0080 

# Released 0.00257 
(0.0108) 

0.000803 
(0.0107) 

Mean 0.00993 0.0169 

Trip length 0.0444*** 
(0.00914) 

0.0439*** 
(0.00897) 

Mean 0.0741*** 0.0131 

Opt-out -0.941*** 
(0.123) 

-0.889*** 
(0.136) 

Mean -1.184*** 0.168 

Trip cost -0.00460*** 
(0.000284) 

-0.00433*** 
(0.000435) 

Mean -0.00726*** 0.000401 

& (overlap) — 0.000225 
(0.000293) 

 — — 

LR (%2) 943.0*** 0.59  491.82*** 
No. Obs. 8,166 8,166  8,166 
No. Groups 354 2,722†  — 
MWTP $12.08 

(9.01 – 15.14) 
$12.28 

(9.11 – 15.45) 
 $13.35 

(9.56 – 17.14) 
***p < .01, **p < .05, *p < .10. 
† No. Groups indicates the number of unique observations for the scale parameter variable. 
 

Complete Complexity Analysis 

The previous sections examined the effect of various forms of task complexity 

individually, as has been done before in the literature (Arentze et al., 2003; Carlsson & 
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Martinsson, 2008; Hensher, 2006a, 2006b); however, the practice may result in omission 

bias because some sources of task complexity, namely the degree of information overlap, 

are present in all treatments. Though other studies have examined the effect of total 

survey complexity on survey response (Danthurebandara et al., 2011; Swait & 

Adamowicz, 2001a, 2001b), the all-encompassing entropy measure is unable to 

differentiate contributions from specific forms of task complexity. The scale 

heterogeneity model in Table 27 uses pooled treatment data with separate scale 

parameters for each complexity type so that relative importance can be measured. A 

homogeneous specification using the pooled treatment data is included for comparison. 

No RPL was estimated due to technological constraints. 

Table 27. Regression Results for Complete Task Complexity Model (Pooled Data) 
Variable Homogeneous Scale Heterogeneity 

# Fish kept 0.0507*** 
(0.00287) 

0.0567*** 
(0.00164) 

# Released 0.00236 
(0.00444) 

0.00439 
(0.00519) 

Trip length 0.0428*** 
(0.00479) 

0.0474*** 
(0.0147) 

Opt-out -0.961*** 
(0.0568) 

-1.141*** 
(0.321) 

Trip cost -0.00516*** 
(0.000127) 

-0.00602*** 
(0.00168) 

& (overlap) — -0.000212*** 
(0.0000803) 

& (# alternatives) — 0.103*** 
(0.0601) 

& (question order)  -0.00313 
(0.00400) 

& (# questions) — -0.0598*** 
(0.0216) 

& ((#questions)2) — 0.00197*** 
(0.000656) 

LR (%2) 4725.6*** 20.13*** 
No. Obs. 36,106 36,106 
No. Groups 1,080 11,188† 
MWTP $9.82 

(8.58 – 11.06) 
$9.43 

(8.21 – 10.64) 
***p < .01, **p < .05, *p < .10. 
† No. Groups indicates the number of unique observations for the scale parameter variables. 
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The estimated model parameters for the scale heterogeneity model are generally 

larger than the model parameters in the homogeneous model though some of the 

attributes are mean-invariant. The likelihood ratio test statistic for difference in 

parameters between the two models is 20.124, which statistically different at the 99% 

confidence level. The scale parameters for survey length are comparable to those 

estimated using the base and length pooled data (Table 23 and Table 24). The effect of 

questionnaire length is statistically significant and inverted-U shaped, as in the previous 

model, and the parameters suggest that error variances increase until questionnaire length 

reaches 15 questions, then decreases. Additionally, MWTP values are very similar 

between the homogeneous pooled data model and the heterogeneous pooled data model, 

as expected; however, the pooled data models shift the confidence intervals significantly 

in a negative direction compared to the results from the base data only model (Table 19). 

This is similar to the result found by Hensher (2006a) for VTTS when overlooking task 

complexity effects. 

Some results from the single-source examinations were not consistent with the 

pooled treatment results. Question order was not statistically significant in the presence 

of other sources of task complexity. Degree of overlap and number of alternatives were 

both statistically significant in this model though they were not in single-source scale 

heterogeneity models. This is most likely due to correlation with another regressor; 

however, examination of the covariance matrix for the estimated coefficients did not 

reveal any significant correlations between variables in the model (all covariance 

measures are small). The degree of information overlap variable, which increases with 
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increases in information diversity, is negative and statistically significant, indicating that 

increasing information diversity increases error variance in the model. 

The number of alternatives increases choice accuracy, which is counterintuitive 

and contradicts previous findings in the literature that increasing the number of 

alternatives produces no effect (Arentze et al., 2003; Kits et al., 2009; Malhotra, 1982) or 

has a negative effect on the decision-making process (Dhar, 1997a, 1997b; Green & 

Srinivasan, 1990; Haynes, 2009; Redelmeier & Shafir, 1995; Tversky & Shafir, 1992). In 

this case, it could be that a larger assortment of choices allows for more direct 

comparisons and a greater understanding of possible options (Hutchinson, 2005), which 

may reduce random selection behaviors. Additionally, some studies have suggested that 

the relationship between choice and number of alternatives can be characterized as an 

inverted-U (Reutskaja & Hogarth, 2009). The theory is that individuals are better off with 

more options but prefer to make decisions from only a few alternatives, and the shift in 

dominant effect results in a convex shape. Because there were only two treatments for the 

number of alternatives and the number of alternatives was small in each treatment, it 

could be that the scale parameter is identifying the beginning of the inverted-U function.  

Conclusion 

Methodological biases are important considerations in the design of stated 

preference studies as they are often the only source of economic information for 

nonmarket goods and services. This chapter examined several CE survey designs for a 

mail survey of recreational groundfish anglers in New England. The results of this 

experiment show that individuals do respond to increases in task complexity as evidenced 
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by variations in response rates, qualitative choice consistency measures, model 

parameters, and estimated MWTP.  

Three different methods were used to test for evidence of response changes due to 

treatment group: the Swait-Louviere scale parameter test, scale heterogeneity modeling, 

and RPL modeling. The results suggest that researchers should be most concerned with 

survey length and number of alternatives when designing CE questionnaires. Survey 

length has an inverted-U shaped relationship with error variance, and longer surveys 

deflate MWTP estimates. Increasing the number of alternatives increases response 

consistency, but only having two treatments addressing this form of task complexity may 

be influencing this result. 

Though some tests performed on individual complexity treatments did not reveal 

any behavioral changes, the pooled complexity model confirmed that task complexity 

does affect underlying decision-making processes as evidenced by differences in 

estimated model parameters, error variances, and MWTP confidence intervals. The 

contradictions between individual and the pooled treatment results suggest that 

interaction effects between different forms of task complexity may influence results 

unless all forms of task complexity are analyzed simultaneously and mean MWTP 

estimates are slightly higher when task complexity is ignored.  

Nonmarket stated preference valuation studies should account for the possibility 

of survey design influences on analytical outcomes to reduce inherent study biases and 

prevent poor policy choices. Because changes in model parameters and error variances 

affect demand estimates, there may be additional consequences for valuations based on 

total WTP not explored in this study. This chapter extended previous research on task 
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complexity by simultaneously examining several sources of perceived difficulty, but 

further exploration is warranted to understand the relationship between questionnaire 

length, question order, number of alternatives, and degree of information overlap on 

observed response behavior in mail CE surveys. 
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Chapter 3: Stated Preference Models for Recreational Fishing 

Introduction 

Stated preference methods are widely used in environmental and nonmarket 

contexts because adequate revealed preference data are not always available for 

quantitative analysis. Discrete choice stated preference methods are becoming more 

popular with applications including hunting trip valuation (Gan & Luzar, 1993; 

Mackenzie, 1993), public good valuation (Bennett, Rolfe, & Morrison, 2001; Johnson & 

Desvousges, 1997; Opaluch, Swallow, Weaver, Wessells, & Wichelns, 1993), and 

recreational angling (Banzhaf et al., 2001; Haider, 2002; Hicks, 2002; Roe, Boyle, & 

Teisl, 1996). Because CEs mimic real choice environments, more accurate predictions are 

obtained using this method than other stated preference methods (Elrod, Louviere, & 

Davey, 1992; Louviere, 1988; Louviere & Woodworth 1983). Despite many advances in 

discrete choice stated preference modeling techniques and technology, no consensus has 

been reached regarding model specification for recreational fisheries applications. 

Though some angler behavior and characteristics vary between fisheries, most 

discrete choice stated preference studies of recreational angling utilize the same 

variables: regulations in the form of bag limits and minimum size limits; some 

combination of catch, keep, and discard of fish; and trip cost. Even with these 

commonalities, no single model is consistently utilized in CE stated preference studies of 

recreational angling. One concern is in estimating the economic impact of changes in 

management. Because most recreational fisheries studies support or inform policy 

decisions, having a standardized method for approaching such valuation problems would 

be useful. Previous models have included various numbers of regulatory variables from 
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none (Roehl et al., 1993) to several (Aas et al., 2000; Dorow et al., 2010; Hicks, 2002; Oh 

et al., 2005; Oh & Ditton, 2004; Paulrud & Laitila, 2004). These studies include an array 

of specifications including linear and interaction terms. 

Another issue concerns estimation structure. Econometric specifications in the 

literature include conditional logits, nested logits, scaled multinomial logits, and mixed 

logits. Conditional logits assume that anglers have singular decision-making processes 

and that all options within a choice scenario can be considered IIA. Nested logits assume 

that anglers have a branched decision-making process and that the assumption of IIA 

holds only within branches, not between. Scaled multinomial logit and mixed logit 

specifications both allow for heterogeneity, but the random elements of mixed logits may 

affect WTP estimates whereas the scale factor in scale heterogeneity models should not. 

The type of respondent included in survey data analysis is also a concern. 

Recreational angling studies obtain their survey panels through a variety of methods, 

including license frames (Herrmann et al., 2001), marketing or third party lists, random 

digit dialing, and in-person intercept interviews (Oh et al., 2005). Studies vary in their 

ability to control for specific respondent characteristics through pre-screening. Inclusion 

(or exclusion) of different angling sub-populations may affect results. 

The diverse range of models and estimation methods found in previous models 

present challenges when comparing outcomes from different studies or generating results 

using meta-analysis as variations in valuation estimates cannot be attributed solely to 

differences in resource characteristics. This chapter focuses on the consequences of 

model and population specification on inferences of the recreational value of Atlantic 

cod, haddock and pollock using the CE stated preference data described in Chapter 1. 
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Methods 

Random utility models (RUMs) have been used to model recreational angling 

since Bockstael, McConnell, and Strand (1989) pioneered the usage with their study of 

Florida sportfishing. In discrete choice stated preference studies, anglers are asked to 

compare several trips simultaneously with different attribute levels. The collection of 

choice responses from various choice scenarios enables researchers to examine tradeoffs 

and behavioral responses to a variety of biological and regulatory changes. 

The traditional model for a discrete choice study begins with a choice occasion s. 

According to random utility theory, the researcher cannot directly observe the actual 

utility function of any angler n; however, a significant proportion of the utility function 

can be understood using information from a well-designed choice study. That is, 

1. Ujns = Vn (xjs) + "jns, (3.1) 

where Ujns is the latent, unobserved utility for option j at a given choice occasion s, Vn is 

the systematic or observed portion of an angler’s utility, xjs is a vector of alternative-

specific attributes, and "jns is the random or unobserved portion of the angler’s utility. 

Given the random component, the utility function itself cannot be estimated; however, a 

researcher can interpret the probability of an angler’s choice. The angler n will choose 

option j from set s if the utility obtained from that option outweighs the utility of all other 

options k in set s: 

P (j|s) = P [(Vn (xjs) + "jns) > (Vn (xks) + "kns)] $ j ' k % s. (3.2) 

Estimation of the choice probabilities requires an assumption of the distribution of the 

random component. Typically, either a Gumbel or normal distribution is assumed, which 

leads to estimation using models from either the multinomial logit or multinomial probit 
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families. This general specification forms the basis for most studies of recreational 

angling using CE data; however, variations in the details can cause significant differences 

in results. Several classes of models commonly found in the literature are explored in the 

following sections. 

Linear Utility Functions 

The most common utility model used in economic analyses of recreational 

angling is linear. A simple linear-in-parameters utility function can be specified in 

general as  

Ujns = "xjns + "jns $ n = 1, …, N; j = 1, …, J; s = 1, …, S, (3.3) 

where " is a vector of utility weights homogeneous across individuals, and "jns is the 

random component or error term, which, for conditional logit models, "jns ~ i.i.d. 

generalized extreme value (GEV). The error term may include characteristics of the 

alternative omitted by the researcher, measurement errors, and unobserved characteristics 

of the individual or the choice context. The choice probabilities are given by 

1. ! !!!!" ! !"# !!!"#
!"# !!!"#!

!
, (3.4) 

where Xns is the vector of attributes of all alternatives j = 1, …, J. WTP for marginal 

changes in attribute levels, as measured by consumer surplus, is given by the ratio of the 

partial derivative of the utility function with respect to a particular attribute x to the 

partial derivative of the utility function with respect to price p (or trip cost) 

!"#$ !
!" !"
!" !"

, (3.5) 

which is simply the ratio of the parameter estimates for x and p: 

MWTP = "x/"p. (3.6) 
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All MWTP confidence intervals reported in this chapter are constructed using the 

Krinsky-Robb procedure recommended by Haab and McConnell (2002). 

Inclusion of Regulatory Attributes 

One principal difference in the literature is the inclusion (or exclusion) of 

regulatory attributes. CEs are founded on the premise that the entire worth of the good or 

service equals the sum of its parts. Studies of market goods and services typically utilize 

all attributes shown to respondents in the CEs because the attribute list encompasses all 

aspects of the good that are perceptible to the consumer. For example, a study of 

breakfast cereals might include attributes such as brand, package size, grain type, sugar 

content, and cereal shape. Generating such definitive breakdowns for nonmarket goods is 

more difficult, and some attributes may overlap with others. Additionally, comprehensive 

characteristic lists for nonmarket goods may overwhelm respondents and are impractical 

for many applications. 

Therein lies the debate for recreational fisheries: Should regulatory attributes be 

included in CE surveys? More importantly, should regulatory attributes be included in 

models using CE data? There are a large number of environmental goods and services 

that affect an angler’s enjoyment (utility level) for a given fishing trip. Ambience, 

weather, water features, bird sightings, and catch are among the possible items 

contributing to pleasure derived from being outdoors. Personal considerations are also 

important in choosing angling trips, such as time with friends or family, or the ability to 

supplement the dinner table. Most researchers would list regulations such as size limits 

and bag limits in the list of deciding factors for angling trips; however, the importance of 

regulations varies depending on the application. For anglers who only participate in catch 
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and release fishing (game fish), regulations have no bearing at all; all of the fish are 

released, so whether or not regulations bind is immaterial. For meat fisheries (food fish), 

the degree to which regulations bind does impact trip outcomes, effort, and participation 

levels. The problem lies in capturing these economic consequences for policy analysis 

using discrete choice stated preference methods if anglers ignore the attributes when 

answering CEs, as has been noted in other studies by NMFS. 

Most recreational angling surveys do include regulatory attributes in the CE 

questions, utilizing direct tactics and explicitly listing regulation levels in the table of 

attributes for each question (Gillis & Ditton, 2002; Hicks, 2002; Oh et al., 2005; Paulrud 

& Laitila, 2004). Some authors believe that it is necessary to adhere to traditional 

marketing conjoint methods and include all attributes from the CEs in the estimation of 

choice probabilities because the value of changes to management is usually derived from 

the ratio of parameter estimates and reported as a MWTP for changes in management 

level (Hicks, 2002; Oh et al., 2005; Paulrud & Laitila, 2004). It is unclear what these 

types of values mean. Can a simple ratio of parameters define the economic impact of a 

change in management, especially when anglers insist that these attributes are ignored 

when they answer stated preference surveys? Moreover, are the model parameters 

meaningful when estimated in this fashion? 

To address these issues, three different model specifications are compared. The 

first model is a linear in parameters utility function including all regulatory variables: 

!!"# ! !! !"#!!"!" !"# ! !! !"#!!"#"$%"& !"# 
!!! !!""#$%!!"#$ !"# ! !! !!""#$%!!"#"$%"& !"# 
!!! !"##"$%!!"#$ !"# ! !! !"##"$%!!"#"$%"& !"#  
!!! !"#!!"#!!"#"$ !"# ! !! !!""#$%!!"#!!"#"$ !"#  
!!! !"##"$%!!"#!!"#"$ !"# ! !!" !"#!!"#! !"#$ !"#  
!!!! !!""#$%!!"#! !"#$ !"# ! !!" !"##"$%!!"#! !"#$ !"#  
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!!!" !"#$!!"#$%! !"#!!"#!!!"#!   

!!!" !!"#!!"#$%! !"#!!"#!!!"#!
!
  

!!!" !"#!!"# !"# ! !!" !"#$!!"#$ !"# ! !!"#. (3.7)  

The second model includes only bag limits because previous studies have stated that 

estimation failure occurs with minimum size limits (e.g., Hicks, 2002): 

!!"# ! !! !"#!!"#$ !"# ! !! !"#!!"#"$%"& !"#  
!!! !!""#$%!!"#$ !"# ! !! !!""#$%!!"#"$%"& !"#  
!!! !"##"$%!!"#$ !"# ! !! !"##"$%!!"#"$%"& !"#  
!!! !"#!!"#!!"#!" !"# ! !! !!""#$%!!"#!!"#"$ !"#  
!!! !"##"$%!!"#!!"#"$ !"# !!!" !"#$!!"#$%! !"#!!"#!!!"#!  

!!!! !"#$!!"#$%! !"#!!"#!!!"#!
! ! !!" !"#-!"# !"#  

!!!" !"#$!!"#$ !"# ! !!"!. (3.8)  

The third model does not include any regulatory variables: 

!!"# ! !! !"#!!"#$ !"# ! !! !"#!!"#"$%"& !"#  
!!! !!""#$%!!"#$ !"# ! !! !!""#$%!!"#"$%"& !"#  
!!! !"##"$%!!"#$ !"# ! !! !"##!"#!!"#"$%"& !"# 
!!! !"#$!!"#$%! !"#!!"#!!!"#!   

!!! !"#$!!"#$%! !"#!!"#!!!"#!
! ! !! !"#!!"# !"#  

!!!" !"#$!!"#$ !"# ! !!"#. (3.9)  

The catch for each species is defined as the number of fish kept and the number of 

fish released. Decomposition of the catch into keep and release is a better indicator of 

fishing success than total catch (Milon, 1991). Additionally, New England groundfish are 

classified as a meat fishery and the difference between the value of a kept fish and a 

discarded fish should be significant, which would not be captured with a grouped catch 

term. The value of catching an additional fish is arbitrary in this context and not 

informative. Separating the catch is also more suitable for estimating regulation impacts 

because regulations affect the composition of catch, not total catch. 
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Based on anecdotal evidence from focus groups, the variable “trip length” is 

modeled as a quadratic function to show that anglers enjoy longer trips with decreasing 

marginal utility due to increasing opportunity costs of time. Because shore anglers 

(Sample A) received a version of the survey that did not include trip length unlike for-

hire anglers (Sample B), this variable is interacted with a dummy indicating for-hire 

(Sample B) inclusion status. 

Diminishing Marginal Utility of Catch 

Though some previous studies utilize interaction terms (e.g. Dorow et al., 2010; 

Hicks, 2002; Oh & Ditton, 2004; Oh et al., 2005; Paulrud & Laitila, 2004), very few have 

explored nonlinear specifications for catch. The linear-in-catch (LIC) utility models 

outlined above assume constant rates of substitution between income and catch, which 

may not best represent angler utility. A nonlinear-in-catch (NIC) model allows for 

diminishing marginal utility of catch and may be more appropriate. Though a log-linear 

transform is possible, the following model uses the square root of catch as in previous 

fishery studies (e.g., Daw, 2008; Haab, Hicks, & Whitehead, 2005; Hicks, Haab, & 

Lipton, 2004; Lipton & Hicks, 2003; Silvestre, 1998): 

!!"# ! !! !"#!!"#$ !"# ! !! !"#!!"#"$%"& !"#  
!!! !!""#$%!!"#$ !"# ! !! !!""#$%!!"#"$%"& !"#  
!!! !"##"$%!!"#$ !"# ! !! !"##"$%!!"#!"#!$ !"#  
!!! !"#$!!"#$%! !"#!!"#!!!"#!   

!!! !"#$!!"#$%! !"#!!"#!!!"#!
! ! !! !"#!!"# !"#  

!!!" !"#$!!"#$ !"# ! !!"#. (3.10) 

The marginal WTP estimates for catch differ from the linear-in-catch specification in that 

the ratio of partial derivatives is no longer constant: 
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!"#$!!"#!!"#$ !
!" !!!!"#!!"#$!

!" !"
! !! !

! !!"#!!"#$ !! !

!!"
. (3.11) 

First-Hand Knowledge of Fishery 

Because it was not possible to pre-screen respondents prior to mailing the 

surveys, the first few questions asked respondents to indicate whether or not they had 

fished for the three species in the survey in the last year and in the last five years. 

Initially, these questions were designed to be screening questions to eliminate 

respondents who had not had direct experience with the species in the survey; however, 

most anglers who found the survey irrelevant either refused or did not respond to the 

survey. The anglers who responded to the survey but did not state having any direct 

experience with any of the species in the past five years form an intriguing group. These 

individuals are not users of the fishery as they stated lack of experience with the fish in 

the survey, yet insisted on expressing their opinions on the subject. Marginal WTP 

estimates from the non-experienced group are difficult to interpret and might represent 

existence or non-use values, option values, or latent effort values. The meaning of the 

MWTP estimate for this sample is unknown because there is a possibility that these 

species are not in the respondents’ choice sets. Estimates for the latter sample should be 

smaller than the marginal WTP estimates for those with direct experience. 

Shore Versus For-Hire 

The previous models used a pooled dataset including both shore (Sample A) and 

for-hire (Sample B) respondents. As explained in earlier chapters, shore fishermen are 

less likely to encounter these species due to biological preferences for colder, deeper 

waters. Table 28 shows the proportion of anglers reporting experience with the species. 
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Table 28. Self-Reported Species Familiarity by Fishing Mode 
Species Shore For-Hire 

Cod 44% 56% 
Haddock 31% 47% 
Pollock 28% 47% 
Any of the 3 Species 51% 71% 
All 3 Species 21% 38% 

 
The high proportion of individuals from shore mode having direct experience 

with the three species is surprising, considering only 19% of shore anglers reported being 

multi-mode fishermen. Shore anglers typically have smaller expenditures per trip than 

boat-mode anglers so comparing model results for the two different sub-populations 

should show different preference structures. 

Alternative Econometric Specifications 

Conditional logits are restricted by the assumption of i.i.d. error terms, which 

implies IIA, which means that the ratio of probabilities of any two alternatives is 

independent of any alternative-specific characteristics for all other alternatives and is 

constant regardless of the presence or absence of any additional alternatives: 

! ! !!"
! ! !!"

! !"# !!!"#
!"# !!!"#

! !"#! !!!"# ! !!!"# . (3.12) 

Most studies that relax the i.i.d. assumption do so using nested logits (Hicks, 

2002; Kaoru, 1995; Milon, 1988; Morey, Waldman, Assane, & Shaw, 1995). The 

primary theoretical reason behind this practice is the assumption that anglers first make a 

decision about going fishing, and then make choices regarding particular trips, but some 

studies suggest that the nested logit is inferior to single-step conditional logit models for 

recreational participation decisions (Adamowicz, Swait, Boxall, Louviere, & Williams, 

1997). Neither anecdotal evidence nor quantitative evidence supports a nested logit for 

this application. Nested logit models estimated from this data did not pass consistency 
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conditions outlined by Herriges and Kling (1996) and Kling and Herriges (1995), ruling 

out this specification as a viable alternative. 

A different econometric specification involves introducing systematic 

heterogeneity in the error term using the fact that the GEV distribution is characterized by 

both a location parameter and a scale factor. The scale heterogeneity model, or 

heteroscedastic logit, does not explicitly capture all of the heterogeneity in a dataset per 

se; rather, the scale factor implies a proportional scaling of the vector of utility weights 

across respondents with idiosyncratic error terms being larger for some anglers than for 

others. Explicitly rewriting Equation 3.3 with the scale parameter µ gives: 

Ujns = "xjns + "jns/µ  $ n = 1, …, N; j = 1, …, J; s = 1, …, S. (3.13) 

The scale factor is inversely proportional to the variance of the error term ! !

! !!!! . Usually, the scale parameter is normalized to one because it is not possible to 

identify both " and µ. If the scale parameter is allowed to vary by individual, then 

Equation 3.13 can be rewritten as 

Ujns = (µn")xjns + "jns  $ n = 1, …, N; j = 1, …, J; s = 1, …, S, (3.14) 

with the error term now distributed i.i.d. GEV with variance &!2 = !! !!! . From 

Deshazo and Fermo (2002) and Hole (2007), the scale factor is represented as an 

exponential function to force the scale parameter to be positive (error terms are positive, 

so scale parameters must be positive across all subpopulation groups): 

!! !! ! !"#! !!! . (3.15) 

Cn represents a vector of m individual characteristics and the vector ! measures the 

degree of influence of Cn on the error variance. This specification is convenient as it 

allows for nonlinearity and converges. 
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When the only contribution to heterogeneity in error terms can be fully described 

by a scale parameter, MWTP is not affected. Rewriting Equation 3.5 gives 

!"#$ !
!" !"
!" !"

!
!
!" !!! !!"#!!!"#
!
!" !!! !!"#!!!"#

! !!!!
!!!!

! !!
!!

 (3.16) 

under the assumption that µn is a scalar term and the utility function is linear in 

parameters. MWTP for the NIC utility function specified in Equation 3.10 is also 

unaffected:  

!"#$!!"#!!"#$ !
!" ! !!"#!!"#$

!" !"
! !!!! !

! !!"#!!"#$ !! !

!!!!"
  

! !! !!"#!!"#$ !! !

!!!"
. (3.17) 

Though the MWTP function is nonlinear, the scale factor cancels out. 

This parametric specification for heterogeneity allows for heterogeneity in 

coefficients but does not affect MWTP because attribute and price coefficients are 

simultaneously scaled by the same parameter. That is not to say that all anglers have the 

same choice probabilities; differences in attribute sensitivities are fully captured by the 

scale heterogeneity model. For example, the derivative of the choice probability with 

respect to trip cost is 

!!! ! !!"
!!!"#

! !!! ! !!" ! !! !! ! !!" ! !! ! !!. (3.18) 

As !! ! !, the deterministic portion of the utility function decreases in relative 

importance, the error term !jns dominates, and price sensitivity approaches zero. Anglers 

with larger scale parameters will exhibit bigger demand changes than anglers with small 

scale parameters, but it is possible for two anglers to have the same MWTP for an 

attribute with different choice probabilities.  



 

 69 

Though many recent studies in nonmarket valuation have employed mixed logits 

for describing sample heterogeneity, critics have argued that mixed logits are poorly 

representative and far less parsimonious than scale heterogeneity specifications (Louviere 

et al., 2008). More specifically, if respondent preferences closely resemble lexicographic 

preferences, then scale heterogeneity models are better at explaining resulting behavior 

(Fiebig, Louviere, Keane, & Wasi, 2010). Individuals with lexicographic preference 

structures appear extreme by consistently ignoring a majority of the attributes in each 

choice set. For example, an individual would be interpreted by the model as being 

extreme relative to other respondents if he always chooses trips with the most haddock 

regardless of the values of other attributes. Scale heterogeneity models capture extreme 

behaviors through large scale parameters, which allow a few attributes to drive choices 

and indicate little randomness in observed behavior. For the same reason, scale 

heterogeneity models are better able to explain random behaviors than mixed logit 

models by putting more explanatory power in the error term than in the model 

parameters. Individuals with a seemingly large amount of random behavior are assigned 

small scale parameters. 

Additionally, scale heterogeneity models are more computationally feasible. 

Though mixed logit and scale heterogeneity models perform about the same when 

responses are well behaved, reliance on residual taste heterogeneity alone severely 

restricts the information available to mixed logit specifications and limits the model’s 

ability to adequately explain extreme or random circumstances (Fiebig et al., 2010). 

Many mixed logit specifications are too resource-intensive to be estimated using the 
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average commercially available computer or have convergence problems (Vojá!ek & 

Pecáková, 2010) and researchers often compromise theory to achieve empirical results.  

Given that many recreational anglers report making fishing decisions based on 

very few factors, scale heterogeneity models seem most appropriate for understanding 

heterogeneity in this application. Several different scale heterogeneity models are 

estimated assuming that error terms are similar or correlated among subgroups in the 

study sample. Heterogeneity based on the two population differences identified 

previously, mode and direct experience, are estimated. Additionally, heterogeneity based 

on angler avidity is also explored. The scale factor for this model is estimated as a 

function of number of trips taken over 12 months as reported by the respondent: 

Ujns = [µn ((# trips)n) ' "] xjns + "jns. (3.19) 

A more detailed, or cumulative, scale heterogeneity model is also estimated to minimize 

misspecification and identify residual effects from multiple sources of heterogeneity. 

This model incorporates all survey-identified population differences (mode, knowledge 

of species, avidity) and socio-economic demographic variables: 

!!"# ! !!

!"#$%&!!"#!$%!&'! !
!!!"# !
!!"#$% !

!"#$%&'(!!"# !

! ! !!"! ! !!"#. (3.20) 

Results 

Inclusion of Regulatory Attributes 

From Table 29, Model 1 follows classic conjoint techniques by utilizing all 

attributes shown to respondents in the CEs. Some of the estimated parameters behave as 

expected: kept fish have a higher weight for cod and haddock than released fish, but both 

types of catch are considered valuable to anglers. It is puzzling that released pollock is 
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more valuable than kept pollock, though this could be due to high levels of excitement 

during capture and distaste for consumption of the fish. With regard to species 

importance, cod has the greatest value to recreational anglers in this fishery, followed by 

haddock and then pollock, as predicted. Trip cost is significant and negative, as expected. 

For the tables in this chapter, No. Obs. is the total number of items (alternatives) and No. 

Groups is the number of clusters used in computing the standard errors (N), which equals 

the number of individuals. Models in this chapter cluster observations by individual to 

control for correlation in responses by specific individuals unless noted otherwise. 

Differences in parameter estimates between non-clustered and clustered models are not 

statistically significant. 

Table 29. Analysis of Regulatory Attribute Inclusion 
Variable Model 1 Model 2 Model 3 

# Cod kept 0.0688 (0.00516)*** 0.0631 (0.00478)*** 0.0648 (0.00470)*** 
# Cod released 0.00277 (0.00948)*** 0.0250 (0.00608)*** 0.00938 (0.00526)* 
# Haddock kept 0.0595 (0.00502)*** 0.0614 (0.00499)*** 0.0645 (0.00472)*** 
# Haddock released 0.0254 (0.00892)*** 0.0286 (0.00719)*** -0.00377 (0.00588) 
# Pollock kept 0.00614 (0.0127) 0.0201 (0.0118)* 0.0260 (0.00796)*** 
# Pollock released 0.0509 (0.0219)** -0.0210 (0.0115)* -0.0694 (0.00983)*** 
Bag limit cod 0.0386 (0.00775)*** 0.0540 (0.00566)*** — 
Bag limit haddock 0.0240 (0.00816)*** 0.0247 (0.00619)*** — 
Bag limit pollock 0.0767 (0.0145)*** 0.0307 (0.00928)*** — 
Min. size limit cod 0.0223 (0.00730)*** — — 
Min. size limit haddock 0.0166 (0.00707)** — — 
Min. size limit pollock -0.0130 (0.00934) — — 
Trip length ( For-Hire 0.182 (0.0191)*** 0.182 (0.0190)*** 0.188 (0.0181)*** 

(Trip length)2 ( For-Hire -0.00928 (0.00133)*** -0.00914 (0.00133)*** -0.00987 (0.00128)*** 

Trip cost -0.00557 (0.000131)*** -0.00550 (0.000130)*** -0.00549 (0.000128)*** 

Opt-out -0.0740 (0.148) -0.356 (0.0776)*** -0.710 (0.0604)*** 

LR (%2) 4,986.0*** 4961.8*** 4,869.0*** 

No. Obs. 39,151 39,151 39,151 
No. Groups 1,214 1,214 1,214 
MWTP Cod $12.36 

(10.31, 14.24) 
$11.48 

(9.55, 13.25) 
$11.79 

(9.88, 13.55) 
MWTP Haddock $10.69 

(8.83, 12.39) 
$11.18 

(9.32, 12.88) 
$11.75 

(9.92, 13.37) 
MWTP Pollock $1.10 

(-3.27, 5.76) 
$3.65 

(-0.45, 8.15) 
$4.74 

(2.02, 7.74) 
***p < .01, **p < .05, *p < .10. 
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The interpretation of the parameters on the two management variables, bag limit 

and minimum size limit, is challenging. Though the positive sign on bag limits is 

expected, the magnitude of the parameters for bag limits is not. Anglers should be 

happier when allowed to keep more fish, but the empirical model shows that anglers 

place higher utility weights on the bag limits for pollock than they do on the cod and 

haddock they are keeping, which contradicts evidence from ongoing research at NMFS 

showing that bag limits have little or no impact on anglers’ decisions to take fishing trips. 

These parameter estimates are not sensible. 

The coefficient on minimum size is equally inexplicable. Raising the minimum 

size limit decreases the probability of keeping fish caught and anglers should consider 

increases undesirable. Three explanations are possible. The justifications used previously 

in the literature (Hicks, 2002) are that the survey population contains an unusually large 

proportion of conservation-minded anglers that believe in preserving juvenile species, or 

respondents are interpreting minimum size as a quality variable indicating the size of fish 

they are catching or keeping. Another possibility is that anglers do not keep small fish 

regardless of regulations, so increases in the minimum size are desirable (personal 

communication, S. Steinback, March 18, 2011). In species such as black sea bass, the 

minimum size could be 12”, but because anglers will not retain anything smaller than 

16”, increasing the minimum size limit from 12” to 16” is actually agreeable to the 

anglers. None of these explanations are plausible in this case. The first two explanations 

are not supported by feedback from survey respondents and focus group participants. The 

third explanation cannot be true in this case because the smallest minimum sizes included 

in the survey are well above what is considered a small, inedible groundfish. 
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The positive sign on minimum size limits is a common phenomenon in models 

where only one regulation size variable is specified (Aas et al., 2000; Hicks, 2002) even 

though this result contradicts rational behavior. Slot limits, where both a minimum and 

maximum size limit are specified in the regulation, do not appear to suffer from the same 

estimation problems (Oh & Ditton, 2004; Oh et al., 2005). Though authors have 

attempted to work around this estimation failure by interacting minimum size with other 

attributes, such models make it difficult to isolate the effects of policy changes on angler 

behavior. For example, Hicks (2002) used an interaction between minimum size and 

catch, Paulrud and Laitila (2004) combined size and catch as one attribute. The 

interaction terms complicate policy analysis, as assumptions on the interacted variables 

may be restrictive. Dorow et al. (2010) reclassified the minimum size into a series of 

dummy variables, but half of the parameters still had negative signs. Additionally, binary 

transformations are impractical for considering policy changes outside the possibilities 

included in the survey. 

Model 2 in Table 29 is slightly more sensible than Model 1. As in Model 1, the 

value of the relative species decreases from cod to haddock to pollock, but there are 

several differences, the most notable being the negative coefficient on released pollock 

and the relative worth of kept pollock. The first result is more consistent with anecdotal 

evidence as catching and discarding an undesirable fish uses up valuable time and 

resources that could be devoted to catching more desirable species. The relative worth of 

kept pollock is roughly one-third that of cod and haddock, which makes more sense than 

the miniscule and statistically insignificant parameter in Model 1. There are only 

marginal differences in the parameters for trip cost and trip length, but the opt-out 
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constant is now statistically significant and markedly more negative, which reflects the 

“I’d rather be fishing” attitude of most recreational anglers. 

The magnitude of the bag limit parameters in Model 2 is still puzzling. Though it 

is possible that anglers consider the bag limit for cod in making trip decisions almost as 

much as they consider the number of cod kept, it is still absurd to think that anglers 

would weight bag limits for pollock more heavily than the number of fish caught.  

Model 3 in Table 29 does not include any regulatory attributes. In this model, 

releasing pollock is as undesirable as it is to keep cod or haddock. Also, cod and haddock 

have very similar values. Though more stringent regulations were imposed on haddock 

recently and could have artificially inflated the resource values temporarily, historically 

haddock has been slightly less desirable than cod and the likelihood of the value of 

haddock being equal to the value of cod is relatively slim. Even if the value of haddock 

per pound were equal to the value of cod per pound, the difference in mean fish sizes 

would imply a higher valuation for one cod relative to one haddock.  

Diminishing Marginal Utility of Catch 

Table 30 lists the results for the NIC (Model 4) utility model. Model 3 (LIC) 

results are shown again for ease of comparison. Model 4 has a higher likelihood ratio 

score for identical degrees of freedom. The trends in estimated parameters for catch are 

similar to those in Model 3, but catch variables are weighted more heavily relative to 

other attributes in Model 4 than in Model 3, and the opt-out coefficient is much smaller in 

Model 4. Accounting for diminishing marginal utilities reduces the magnitude of the opt-

out parameter, which is more sensible because fishing attributes should have higher 

importance-weights than the opt-out alternative. The parameter estimates for trip length 
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and trip cost are not affected. Model 4 is as statistically significant but more theoretically 

appropriate and will be used in all subsequent analyses. 

The welfare estimates for Model 4 are calculated at the average value of the 

hypothetical catch vector, 4.5 fish. Though there are slight differences, the confidence 

intervals of the WTP estimates for Model 4 overlap with those of Model 3. Differences 

between the average WTP estimates are not significant despite marked dissimilarity in 

the construction of the theoretical model.  

Table 30. Marginal Utility of Catch Analysis: LIC vs. NIC Utility Functions 
Variable Model 3 (LIC) Model 4 (NIC) 

# Cod kept 0.0648 (0.00470)*** — 
# Cod released 0.00938 (0.00526)* — 
# Haddock kept 0.0645 (0.00472)*** — 
# Haddock released -0.00377 (0.00588) — 
# Pollock kept 0.0260 (0.00796)*** — 
# Pollock released -0.0694 (0.00983)*** — 
!"#!!"#$  — 0.296 (0.0199)*** 

!"#!!"#"$%"&  — 0.0567 (0.0201)*** 

!"##$%&!!"#$  — 0.257 (0.0189)*** 

!"##$%&!!"#"$%"&  — -0.0119 (0.0210) 

!"##"$%!!"#$  — 0.126 (0.0312)*** 

!"##"$%!!"#"$%"&  — -0.211 (0.0344)*** 
Trip length ( For-Hire 0.188 (0.0181)*** 0.183 (0.0180)*** 
(Trip length)2 ( For-Hire -0.00987 (0.00128)*** -0.00978 (0.00128)*** 
Trip cost -0.00549 (0.000128)*** -0.00550 (0.000130)*** 
Opt-out -0.710 (0.0604)*** -0.199 (0.0812)** 
LR (%2) 4,869.0*** 4,898.5*** 

No. Obs. 39,151 39,151 
No. Groups 1,214 1,214 
MWTP Cod $11.79 

(9.88, 13.55) 
$12.67 

(10.77, 14.42) 
MWTP Haddock $11.75 

(9.92, 13.37) 
$11.00 

(9.30, 12.53) 
MWTP Pollock $4.74 

(2.02, 7.74) 
$5.39 

(2.92, 8.16) 
***p < .01, **p < .05, *p < .10. 
 

First-Hand Knowledge of Fishery 

Results for the models separating the survey sample into groups based on recent 

species experience are shown in Table 31. The keep parameters in Model 5, the sub-
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sample with direct experience, are higher for cod and haddock than in Model 6, but the 

release values are higher in Model 6. The opposite is true for pollock. These results are 

intuitive because anglers without direct experience of the species are more likely to value 

the species equally and possibly place more emphasis on releasing fish (as is common in 

sport fisheries). Also, the opt-out coefficient is almost double in Model 5 what it is in 

Model 6, indicating greater preference for fishing than other activities. 

Table 31. Species Familiarity Comparison: Direct vs. No Experience 
Variable Model 5 (Exp.) Model 6 (No Exp.) 

!"#!!"#$  0.317 (0.0236)*** 0.254 (0.0372)*** 

!"#!!"#"$%"&  0.0471 (0.0236)** 0.0967 (0.0384)** 

!"##$%&!!"#$  0.273 (0.0229)*** 0.221 (0.0346)*** 

!"##$%&!!"#"$%"&  -0.0176 (0.0251) 0.000886 (0.0396) 

!"##"$%!!"#$  0.103 (0.0374)*** 0.149 (0.0579)*** 

!"##"$%!!"#"$%"&  -0.220 (0.0411)*** -0.148 (0.0644)** 
Trip length ( For-Hire 0.160 (0.0226)*** 0.170 (0.0303)*** 
(Trip length)2 ( For-Hire -0.00796 (0.00157)*** -0.0103 (0.00225)*** 
Trip cost -0.00554 (0.000153)*** -0.00543 (0.000254)*** 

Opt-out -0.559 (0.100)*** 0.291 (0.143)** 
LR (%2) 4,358.8*** 935.37*** 

No. Obs. 27,803 11,348 
No. Groups 840 374 
MWTP Cod $13.45 

(11.22, 15.52) 
$11.01 

(7.42, 14.36) 
MWTP Haddock $11.61 

(9.59, 13.44) 
$9.60 

(6.47, 12.45) 
MWTP Pollock $4.37 

(1.44, 7.68) 
$6.47 

(1.80, 11.73) 
***p < .01, **p < .05, *p < .10. 
 

Though there is some overlap in WTP values, the confidence intervals for Model 

5 are much tighter than in Model 6. This most likely reflects the uncertainty or ambiguity 

in assigning values to these fish for anglers who are not intimately familiar with the 

fishery. The values for anglers with direct experience are also higher for cod and haddock 

and lower for pollock than for anglers without recent direct species experience. 
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Shore Versus For-Hire 

Table 32 lists the results for Model 7, shore anglers only, and Model 8, for-hire 

anglers only. Though a large number of shore anglers reported having fished for at least 

one of the three species in recent years, shore fishing appears to be the primary mode for 

these anglers given the deflated catch parameters in Model 7 compared to Model 8. The 

variation in preferences is due to little evidence of persistent mode switching in the 

survey sample and ecological preferences of the fish. WTP confidence intervals are much 

broader in Model 7, reflecting value uncertainty due to limited interactions with the fish. 

Table 32. Mode Comparison: Shore Angler vs. For-hire Angler Responses 
Variable Model 7 (Shore) Model 8 (For-hire) 

!"#!!"#$  0.190 (0.0702)*** 0.304 (0.0208)*** 

!"#!!"#"$%"&  0.0911 (0.0774) 0.0650 (0.0209)*** 

!"##$%&!!"#$  0.169 (0.0586)*** 0.269 (0.0202)*** 

!"##$%&!!"#"$%"&  -0.0377 (0.0756) -0.00579 (0.0220) 

!"##"$%!!"#$  0.107 (0.120) 0.105 (0.328)*** 

!"##"$%!!"#"$%"&  -0.172 (0.127) -0.181 (0.0364)*** 
Trip length — 0.124 (0.0212)*** 
(Trip length)2 — -0.00608 (0.00146)*** 
Trip cost -0.00571 (0.00116)*** -0.00540 (0.000132)*** 

Opt-out -0.249 (0.218) -0.341 (0.0917)*** 
LR (%2) 113.8*** 4818.7*** 

No. Obs. 3,045 36,106 
No. Groups 134 1,080 
MWTP Cod $7.86 

(1.88, 15.59) 
$13.29 

(11.26, 15.16) 
MWTP Haddock $6.96 

(2.35, 12.56) 
$11.75 

(9.90, 13.40) 
MWTP Pollock $4.41 

(-5.27, 15.48) 
$4.59 

(1.94, 7.57) 
***p < .01, **p < .05, *p < .10. 
 

Alternative Econometric Specifications 

Tables 33 and 34 list the results for the scale heterogeneity models. Larger scale 

parameters indicate smaller variances and steeper probability functions, which implies 

that the utility functions are better defined (see Figure 3 from Chapter 2). The scale 

parameter in the single-source heterogeneity model for direct experience, Model 9 (Table 
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33), is both statistically significant and positive. Anglers with direct experience have 

better defined utility functions with smaller variances, which is consistent with Model 5 

(direct experience group model in Table 31). The direct experience scale parameter 

retains its magnitude and significance in the multiple-source heterogeneity model, Model 

12 (Table 34), indicating significant differences in angler behavior, and the effect 

dominates all other scaled heterogeneity effects. 

Table 33. Scale Heterogeneity Models: Single Heterogeneity Source 
Variable Model 9 Model 10 Model 11 

!"#!!"#$  0.202 (0.0154)*** 0.296 (0.0199)*** 0.306 (0.0206)*** 

!"#!!"#"$%"&  0.0368 (0.0136)*** 0.0565 (0.0201)*** 0.0700 (0.0208)*** 

!"##$%&!!"#$  0.174 (0.0145)*** 0.256 (0.0190)*** 0.270 (0.0200)*** 

!"##$%&!!"#"$%"&  -0.00881 (0.0142) -0.0120 (0.0210) -0.00586 (0.0219) 

!"##"$%!!"#$  0.0763 (0.0214)*** 0.126 (0.0312)*** 0.107 (0.0325)*** 

!"##"$%!!"#"$%"&  -0.140 (0.0240)*** -0.211 (0.0345)*** -0.181 (0.0361)*** 
Trip length ( For-Hire 0.114 (0.0134)*** 0.183 (0.0180)*** 0.127 (0.0206)*** 
(Trip length)2 ( For-Hire -0.00595 (0.000914)*** -0.00978 (0.00128)*** -0.00625 (0.00143)*** 
Trip cost -0.00364 (0.000169)*** -0.00550 (0.000130)*** -0.00546 (0.000132)*** 
Opt-out -0.204 (0.0555)*** -0.199 (0.0812)** -0.341 (0.0893)** 
!(Direct Experience) 0.503 (0.0440)*** — — 
!(# Trips) — 0.000130 (0.000489) — 
!(Shore) — — -1.502 (0.0594)** 
LR (%2) 164.14*** 0.1 50.38*** 
No. Obs. 39,151 39,151 39,151 
No. Groups† 12,203 12,203 12,203 
MWTP Cod $13.04 

(11.10, 14.85) 
$12.67 

(10.77, 14.42) 
$13.23 

(11.38, 15.08) 
MWTP Haddock $11.25 

(9.48, 12.82) 
$11.01 

(9.31, 12.53) 
$11.66 

(9.85, 13.46) 
MWTP Pollock $4.93 

(2.35, 7.76) 
$5.40 

(2.92, 8.16) 
$4.60 

(1.84, 7.36) 
***p < .01, **p < .05, *p < .10. 
† No. Groups indicates the number of unique observations for the scale parameter variables. 
 

The scale parameter for avidity in Model 10 (Table 33), as measured by number 

of trips reported for the previous fishing season, is not statistically significant and the 

single-source heterogeneity model is not well-estimated; however, it is statistically 

significant in Model 12 (Table 34), the multi-source heterogeneity model. The sign of the 

avidity parameter is negative, indicating that more avid anglers have greater variance in 
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behavior and individual trips are less likely to affect the overall utility of their fishing 

season. For highly avid anglers, this parameter dominates all other heterogeneity effects. 

Less avid anglers probably consider the attributes of an individual trip more carefully 

because individual trips have more weight on the total utility of a fishing season.  

Table 34. Scale Heterogeneity Models: Multiple Heterogeneity Sources 
Variable Model 12 

!"#!!"#$  0.201 (0.0227)*** 

!"#!!"#"$%"&  0.0431 (0.0137)*** 

!"##$%&!!"#$  0.172 (0.0206)*** 

!"##$%&!!"#"$%"&  -0.00357 (0.0139) 

!"##"$%!!"#$  0.0627 (0.0217)*** 

!"##"$%!!"#"$%"&  -0.116 (0.0255)*** 
Trip length ( For-Hire 0.0833 (0.0150)*** 
(Trip length)2 ( For-Hire -0.00409 (0.000971)*** 
Trip cost -0.00346 (0.000335)*** 
Opt-out -0.266 (0.0615)*** 
!(Direct Experience) 0.517 (0.0460)*** 
!(# Trips) -0.00200 (0.000703)*** 
!(Shore) -0.517 (0.102)*** 
!(Income) 0.0357 (0.00814)*** 
!(Age) -0.102 (0.0222)*** 
!(Non-White) -0.183 (0.0627)*** 
LR (%2) 270.83*** 
No. Obs. 39,151 
No. Groups† 12,203 
MWTP Cod $13.65 

(11.80, 15.51) 
MWTP Haddock $11.72 

(9.90, 13.54) 
MWTP Pollock $4.27 

(1.50, 7.05) 
***p < .01, **p < .05, *p < .10. 
† No. Groups indicates the number of unique observations for the scale parameter variables. 
 

Model 11 (Table 33) includes a scale parameter for shore anglers. The coefficient 

is negative and statistically significant and consistent with Table 32, indicating that the 

utility of shore anglers is not as well formed for this fishery compared to anglers from 

other modes. Coincidentally, the parameter for shore anglers is equal to but opposite in 

sign of the scale parameter for direct experience in Model 12 (Table 34), meaning that 

direct experience nullifies the shore effect (and vice versa). 
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Model 12 (Table 34) also captures heterogeneity in respondent demographics. 

Older anglers have smaller scale parameters. The apparent increase in randomness for 

this subpopulation could be attributed to decision-making processes dictated by factors 

not included in this study, such as the opportunity to socialize or general enjoyment of the 

outdoors. Non-white anglers also have more randomness, but this result may be biased by 

the skewed ethnic distribution of the dataset because only 7% of the respondents reported 

being non-white. Higher income levels are correlated with more defined utility functions. 

Higher income anglers are more certain of their choices because their option sets are 

broader and are more experienced with a wider range of alternatives. 

Figures 4 through 7 illustrate the effect of the scale parameters on choice 

probabilities, with specific demonstrations of age, income, and avidity effects in Figures 

5 through 7. The graphs exhibit signs of fixed-point theorem with expected error of zero. 

 
Figure 4. Changes in choice probability after accounting for sources of heterogeneity. 
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Figure 5. Changes in choice probability after accounting for angler avidity (# trips). 

 

 
Figure 6. Changes in choice probability after accounting for respondent income. 
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Figure 7. Changes in choice probability after accounting for respondent age. 

 
The MWTP confidence intervals computed for Model 12 overlap with those of 

the non-heterogeneous model (Model 4). The mean and confidence intervals for cod and 

haddock are slightly higher in Model 12 than in Model 4, but the opposite is true for 

pollock. Though scale parameters do not affect MWTP, the estimated parameters for the 

heterogeneous model are not equal to the parameters of the homogeneous model. 

Conclusion 

Stated preference models of recreational angling in the literature vary greatly 

despite having many commonalities in attributes and theory. This chapter addressed 

several different specifications using CE data collected for a recreational meat fishery in 

New England. Nonlinear utility specifications allow for diminishing marginal utility of 

catch and fit this particular dataset better than linear utility specifications. Anglers with 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

H
et

er
og

en
eo

us
 P

ro
ba

bi
lit

y 
Va

lu
e 

Homogeneous Probability Values 

Effect of Heterogeneity on Choice Probability: Age 

   18-24 years old    25-44 years old    45-64 years old    65 years old or older 



 

 83 

first-hand encounters of the species in the survey have more defined utility functions, as 

seen in the greater divergence in parameter estimates for the three species, which affects 

outcomes of demand analysis. Additionally, the confidence intervals on MWTP for 

anglers with direct experience are much tighter and have higher mean values than for 

anglers who have not targeted or caught any of the three species in recent history. Though 

anglers appear to assign value to all fish species, studies incorporating results from all 

survey respondents will likely have lower and more variable valuation estimates than 

those that exclusively target anglers with relevant fishery experience. This result is also 

supported by the comparison of models using shore anglers versus boat anglers. For this 

fishery, shore anglers are unlikely to encounter the species and there is a definite 

divergence in both estimated parameters and welfare measures between the two modes. 

Including respondents from irrelevant modes or those with no direct species experience is 

problematic for policy analysis as the meaning of obtained values is indeterminate. 

Scale heterogeneity models show that there are structured differences between 

respondent types based on mode, experience, avidity, and socioeconomic demographics. 

Whereas the MWTP results for additional fish kept in the heterogeneous models are not 

statistically different from those for homogeneous models, the parameter estimates are 

significantly affected by differences in angler avidity, species familiarity, mode, and 

socioeconomic demographics. Researchers interested only in MWTP estimates can use 

homogeneous models without significant loss of information; however, any analyses 

requiring knowledge of demand changes or attribute sensitivity require the use of 

heterogeneous models. Accounting for sources of heterogeneity will significantly affect 

assessments of recreational fisheries. 
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Recreational values of species caught primarily to supplement dinner tables 

should be approximately equal to market values for those fish (Wheeler & Damania, 

2001). Price comparisons of recreational values and ex-vessel prices are commonplace, 

but incorrect. Ideally, price comparisons should be made between recreational values and 

retail values for these fish because anglers are assumed to purchase fish for the dinner 

table if an inadequate number of fish are caught during the trip; however, retail data for 

these fish are not available. A recent FAO document estimated that the wholesale price 

for cod in the US is approximately 67% of the retail price (Gudmundsson, Asche, & 

Nielsen, 2006). The wholesale value of cod based on the NMFS Fishery Market News 

reports is generally $1-$3 per pound. At an average recreational catch size of 7 lbs., the 

approximate retail value per fish kept would be $11-$31 using the FAO conversion, 

which is slightly higher than the ranges obtained using the stated preference data for an 

average-sized catch basket. Haddock, which hovers around $1.50 per pound wholesale, 

and pollock, at $0.50 per pound, are both approximately $7 for the average fish (3 lbs. 

and 10 lbs., respectively). The recreational values computed using the stated preference 

data are much higher for haddock ($7-$12/fish), suggesting additional recreational values 

associated with haddock fishing or the perception that haddock is scarcer than cod. 

This chapter also addressed the theoretical debate in the literature regarding the 

inclusion or exclusion of regulatory attributes in modeling stated preference discrete 

choice data. Though stated preference surveys present anglers with information regarding 

potential management scenarios, fisheries management tools should not be included 

directly as explanatory variables in models of fishing behavior. The inclusion of such 

variables in stated preference models produces perplexing and inexplicable results. Bag 
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limits and size limits result in nonsensical parameter estimates or may appear to be 

misinterpreted by respondents as quality variables in these regressions. Regulations 

(minimum size limits and bag limits) bind to at random as a consequence of the 

uncertainties in trip catch and should therefore enter the angler’s utility function 

indirectly through changes in the distribution of catch. Additionally, most anglers 

consider keep, total catch, cost, trip length, and weather to be the most important aspects 

of recreational fishing. 

Traditional stated preference models do not address fishing preferences properly 

by including regulations in empirical specifications because the supporting theory is not 

realistic. Stated preference modelers should consider that few revealed preference studies 

of recreational angling explicitly incorporate management terms despite the presence of 

variations in regulations and follow those examples more closely. Admittedly, some 

applications do not have sufficient variation in regulations across observed time periods 

to generate solid revealed preferences, and revealed preference data does not allow for 

observations of new and proposed regulations; however, these facts alone do not 

necessarily support the explicit inclusion of regulations in stated preference models. 

Chapter 4 outlines a bioeconomic method for estimating the impact of regulation changes 

without requiring a RUM that explicitly includes management variables. 
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Chapter 4: Policy Analysis Through Catch Simulation 

Introduction 

Policy makers continually strive to understand the effects of fisheries 

management on recreational angling because consequences are often difficult to measure. 

Whereas commercial fisheries in the United States are subject to mandatory data 

reporting and even compulsory observation, recreational fisheries data are often scarce 

due to reliance on limited collections of voluntary information. Furthermore, recreational 

angling involves choosing among alternatives with random outcomes. Attributes of 

recreational angling activities, chiefly catching fish, are known only after the fishing trip 

has occurred. Inherent differences in angler skills and environmental factors may 

influence results, but catch is mostly random. The stochastic nature of the catch on 

recreational angling trips complicates economic analyses of fishery regulations. 

Traditionally, recreational fisheries have been managed using a combination of 

season or area closures, bag (creel) limits, and minimum size limits. These policy tools 

are designed to control catch, but also may induce changes in angler behavior; however, 

quantifying the results can be challenging. Because catch is random, bag and size 

restrictions are not necessarily binding on every trip. Anglers may not be affected by 

regulations on their fishing trips because that depends entirely on the fish that are caught, 

which increases the difficulty of measuring the economic impacts of regulation changes. 

Four possible angler responses to changes in regulation levels exist. Anglers may 

not be affected by regulations either before or after the change. For example, let the bag 

limit be 10 fish in March and 15 fish in August. An angler who only catches 7 fish during 

trips in both March and August is never affected by bag limits and the bag limit has no 
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impact on the angler’s behavior. A second possibility is that anglers are always affected 

by regulations. If the angler always catches 20 fish, the angler would be affected by the 

decreased restrictions and respond accordingly. It is also possible that anglers are affected 

by only one set of regulations and not the other. An angler that catches 7 fish in March 

and 20 fish in August might feel that regulations became more stringent because the bag 

limit did not bind in March (no effect), but did bind in August (affected trip outcomes). 

On the other hand, an angler that catches 12 fish in March and August would perceive 

that regulations were more relaxed because the regulations were binding on the first trip 

but not the second. Outcomes of regulation changes depend on the degree to which 

regulations bind and the impact of binding regulations on angler behavior. 

Many economists have tried to assess the economic impact of regulatory changes 

in recreational fishing (Aas et al., 2000; Gentner & Lowther, 2002; Gillis & Ditton, 2002; 

Hicks, 2002; Layman, Boyce, & Criddle, 1996; Lew & Seung, 2010; Massey, Newbold, 

& Gentner, 2006; McConnell, Strand, & Blake-Hedges, 1995; Oh et al., 2005; Paulrud & 

Laitila, 2004; Olaussen & Skonhoft, 2008; Ruliffson & Homans, 1999; Schuhmann, 

1998; Scrogin, Boyle, Parsons, & Plantinga, 2004; Whitehead & Haab, 1999; Woodward 

& Griffin, 2003). Stated preference methods are popular due to inherent flexibilities. 

Researchers are free to pick any number of attributes and attribute level combinations, 

and data deficiencies are easily addressed. Angler preferences and behaviors for virtually 

any application can be analyzed using a wide range of attribute levels. In stated 

preference studies, the economic loss (or gain) from a change in regulations is typically 

estimated using the relative value of a marginal change in regulations from an all-

encompassing conjoint model (Aas et al., 2000; Gentner & Lowther, 2002; Gillis & 
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Ditton, 2002; Hicks, 2002; Lew & Seung, 2010; Massey et al., 2006; Oh et al., 2005; 

Paulrud & Laitila, 2004); however, as demonstrated in the previous chapter, 

complications often arise when estimating coefficients for bag and size limits. The role of 

regulation in angler choices among alternatives should be limited to the impact on the 

primary services valued by anglers. When anglers care about the number of fish they 

keep, a bag limit would affect their choices if it were constraining. If anglers care about 

the catch only, then bag and size limits would have no impact. 

Revealed preference methods may not be feasible for estimating the impacts of 

regulations on behavior because policy variations may not be available in historic data. 

However, a few studies have addressed both policy changes and randomness in catch 

using revealed preference RUMs (McConnell et al., 1995; Schuhmann, 1998; Whitehead 

& Haab, 1999). McConnell et al. (1995) postulated that regulations affect angler utility 

indirectly. Rather than directly including policy changes in the RUM, they suggested that 

bag limits affect the distribution of catch. The angler’s expected mean catch is altered 

through changes in the shape of the distribution curve imposed by different regulations, 

thereby altering angler behavior under the RUM. The economic impact of a change in 

bag limits can be obtained by evaluating the RUM for different distributions of catch. 

This chapter expands the framework outlined in McConnell et al. (1995) to 

include minimum size regulations. The effects of fisheries management on random catch 

are examined. Consequences of policy changes are analyzed using simulations of fish 

catch; however, unlike other catch simulation studies, the model used in this chapter is 

based on a RUM from a stated preference survey and incorporates age-class biomass 

predictions from stock assessment tools.  
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Randomness, Catch, and the Utility Function 

Typically, applications of RUMs assume that attributes are known with certainty. 

Fishery applications are problematic because catch outcomes are random and not known 

with certainty ex ante. This problem was first confronted by Bockstael and Opaluch 

(1983) and Opaluch and Bockstael (1984), who assumed commercial fishermen would 

know the parameters of a distribution of returns. To account for the randomness, 

McConnell et al. (1995) and Schuhmann (1998) used expected catch in their RUMs and 

computed welfare measures based on changes in the underlying distribution. An 

adaptation of this concept is presented as an alternative to traditional stated preference 

measures for regulation valuation. 

The traditional RUM assumes that angler utility is a function of income, trip 

attributes, and costs, and is well described in the literature. For illustration purposes, let 

utility be a known function (V(·)) of fish caught c, observable trip attributes z, and some 

unobservable characteristics, ": 

U = V(c, z) + (. (4.1) 

Because anglers are making decisions ex ante and catch is random, the actual utility 

function is based on an expected level of catch: 

U = V(E[c], z) + (, (4.2) 

where catch follows some probability distribution function that varies based on stock 

abundance, fishing mode, gear, bait, weather, temperature, angler experience, total 

harvest, and other environmental factors. This function is a utility of expectations and not 

an expectation of utilities. Expected utility (E[U(x)]) is the utility of an economic agent 

facing uncertainty, whereas a utility of expectations (U(E[x])) implies the agent’s beliefs 
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or assumptions about a future or possible good. The two are not necessarily equal; the 

relationship between E[U(x)] and U(E[x]) depends on the risk preferences of the 

individual. From Jensen’s inequality, E[U(x)] ) U(E[x]) for concave functions (risk-

averse behavior). The reverse is true for convex functions (risk-seeking behavior). When 

anglers are risk neutral, the relationship between E[U(x)] and U(E[x]) is linear, and 

maximizing expected utility is equivalent to maximizing expected catch. 

Though many studies of fishermen assume that fishermen behave rationally by 

maximizing expected utility (Wilen, Smith, Lockwood, & Botsford, 2002), there is 

evidence that fishing behavior is inconsistent with expected utility theory (Eggert & 

Martinsson, 2004; Holland, 2008). Many anglers are risk seeking (Eggert & Lokina, 

2007; Smith, 2000) and appear to maximize expected value rather than expected utility 

(Salas & Charles, 2007). For the purposes of this study, anglers targeting cod and like 

species are assumed to be risk neutral, though the framework accommodates risk-seeking 

behavior (expected value maximization). 

Assuming that catch is important to anglers, Equation 4.2 does not explain 

regulatory impacts unless bag limits are always binding, in which case the marginal value 

of a change in the number of fish caught is equal to the value of a marginal change in the 

bag limit. Bag limits and minimum size limits have no discernible effect on either the 

catch distribution or other trip elements if the regulations are not perceived to be binding, 

which is the case for most recreational fisheries. Additionally, an angler’s utility for fish 

kept may not equal the utility of a fish released. For meat fisheries, the value of a fish 

kept is much higher than that of a fish released. In competitive sport fisheries, catch is not 

kept and the angler’s utility is based solely on the number of fish released. In most cases 
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there will be some value associated with both keep and release, though the dominant term 

in the utility function will depend on the fishery type. Dividing the total catch of fish 

from Equation 4.2 into the number of fish kept k and the number of fish released r gives 

U = V(E[k], E[r], z) + (. (4.3) 

Figure 8 demonstrates how bag limits affect the distributions for the number of 

fish kept and released, but not catch. Keep is defined as the lower end of the catch 

distribution truncated by the bag limit, and the upper end of the catch distribution defines 

the distribution of fish released. 

 
Figure 8. Impact of bag limits on catch number distribution. 
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decreases, expected release must increase and vice versa. The expected number of fish 

kept given a bag limit B is 

! !! ! ! ! ! ! ! !" ! ! ! ! ! ! ! ! ! !" ! ! !   
! ! !! ! ! ! !" ! ! ! ! ! !" ! ! !  (4.5) 

When the number of fish caught is greater than the bag limit, keep equals the bag limit. 

Equation 4.5 can be rewritten as 

! !! ! ! ! !!!!"!
!

! ! ! ! ! !!"!
! ! ! ! ! !!"!

!   

! !" ! !!"!
! ! ! ! ! !!"!

! . (4.6) 

Using Leibniz’s integral rule, the impact of bag limits on expected keep is thus 

!
!" ! !! ! !" ! ! ! ! !!"!

! ! !" ! ! ! ! !!"!
! . (4.7) 

Bag limits have little effect on expected keep when B is large because Pr(n > B) is small 

and catch becomes the constraining factor.  

For release, the expected number of fish is simply 

! !! ! ! !! ! ! !! ! !" ! !!"!
! ! ! ! ! !!"!

! . (4.8) 

The impact of bag limits on expected release is  

!
!" ! !! ! ! ! ! !!"!

! , (4.9) 

which demonstrates that bag limits have no effect on expected catch: 

!
!" ! !! ! !

!" ! !! !" !! ! !. (4.10) 

A similar illustration can be used for minimum size limits. Let catch size be a 

continuous random variable s with probability density function g(s) and cumulative 

distribution function G(s). The probability that catch exceeds the minimum size limit is 

!" ! ! !" ! ! ! !"!
!" . (4.11) 
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This notation assumes anglers know regulation levels with certainty. If anglers are unsure 

of the regulations, then MS is defined by a pdf as opposed to an exact point limit: 

!" ! ! !" ! !! ! !"!
! !!" ! !"!

! .  (4.12) 

If s and MS are correlated, then a bivariate pdf is required: 

!" ! ! !" ! !!!!"!"!#!
!

!
! .  (4.13) 

A minimum size regulation defines the size of fish kept by imposing a truncation 

of the lower end of the catch size distribution (see Figure 9). 

 
Figure 9. Impact of minimum size limits on catch size distribution. 

 
Keep, for a single fish based on size, is defined as 

!! ! !!!"!!"#!!!!"#$ ! !"
!!!"!!"#$%! . (4.14) 

The expected keep based on size is thus 

!!!!! ! ! ! !" ! ! !" ! ! ! !" ! ! !" ! ! ! !"!
!" . (4.15) 

The impact of a minimum size on expected keep is 

!
!"# !!!!!! ! !

!"# !"! ! ! !" ! !! !" ! (4.16) 

Similarly, release in terms of fish size is defined as 

Minimum 
size limit 

Catch (s) 
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Release Keep 
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!! ! !!!"!!"#!!!!"#$ ! !"
!!!"!!"#$%!  (4.17) 

and expected release is 

!!!!! ! ! ! !" ! ! !" ! ! ! !" ! ! !" ! ! ! !"!"
! . (4.18) 

The impact of a minimum size on expected release is  

!
!"# !!!!!! ! !

!"# !"! ! ! !" ! ! !" . (4.19) 

Again, the minimum size has no effect on the expected catch: 

!
!"# !!!!!! ! !

!"# ! !! ! !!!!!! ! !. (4.20) 

Assuming catch size and catch number are independent distributions, expected 

keep and release can be described as 

! ! ! ! !! ! !! ! ! ! !"!
!" !" ! !!"!

! ! ! ! ! !!"!
!   

! ! ! ! !! ! !! ! ! ! !"!"
! !" ! !!"!

! ! ! ! ! !!"!
! . (4.21) 

The effect that changes in bag limits have on an angler’s utility is 

!
!"! ! ! !

!" ! !!!!!!!!!! ! . (4.22) 

For a simple linear-in-parameters, linear-in-catch specification such as 

! ! !!! ! ! !!! ! ! !!!, (4.23) 

Equation 4.22 becomes 

!
!"! ! ! !!! !! !

!" ! !! ! !!! !! !
!" ! !!   

! ! ! !!"!
! !! ! ! !"!

!" ! !! ! ! !"!"
! . (4.24) 

Similarly, the impact of a change in minimum size limits on an angler’s utility is 

!
!"#! ! ! !!E !! !

!"# E !! ! !!E !! !
!"# ! !!   

!
! !! ! !! ! ! !!"!

!
!!! !" ! !!"!

! ! !! !" ! !!"!
!

! !" . (4.25) 
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Incorporating expected keep and release in the angler’s utility function expresses 

the stochastic nature of catch and still allows quantitative measurements of changes in 

regulations to affect utility. This model assumes that the distributions for catch size and 

number are independent, perhaps oversimplifying true stock dynamics. These fish 

typically school by size in specific locations based on the ecological requirements of each 

life-cycle stage. Additionally, the model does not explicitly incorporate high-grading, the 

practice of selectively harvesting fish by discarding non-optimal catch even when the fish 

can be legally kept. A model with high-grading requires inter-temporal correlations in the 

utility function allowing anglers to compare new fish with previous catch, which is 

beyond the scope of this study. 

Aggregate Outcomes (Short-run and Long-run Modeling) 

The framework outlined in the previous section addresses the effect of regulation 

changes on angler behaviors for individual trips but describes aggregate outcomes for the 

fishery poorly. Simply expanding out the utility function for N fishing trips might capture 

some welfare effects but provides little information regarding effort shifts. Additionally, 

historic data are inadequate for determining the impact of regulations on angler behavior 

in the New England groundfisheries. To address both insufficiencies, a simulation 

process is used to quantify the effects of different regulatory and biological scenarios on 

effort and angler welfare. This study extends works like Schuhmann (1998) and 

Woodward and Griffin (2003) by examining minimum size limits using age-class 

distributions of fish. Rather than assuming distributions of catch, the simulations apply 

parameters from stock assessment projections and historic catch records. The stated 

preference analyses from Chapter 3 form the basis of the behavioral model used in the 
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simulation exercises, which demonstrates an alternative use of stated preference surveys 

and compensates for lack of historic data. Additionally, the computations of total effort 

and consumer welfare offer more insight than mean expected compensating variation per 

trip for changes in catch. 

The simulation has global fishery controls and individual trip level calculations. 

During actual fishing trips, anglers bait lines, throw the lines into the water, and pull out 

the lines when fish bite. A fishing line that captures a fish is known as a successful cast. 

An angler interested in keeping fish to supplement the dinner table continues this fishing 

process until either the bag limit is reached or the opportunity cost of time exceeds the 

value of the fishing trip. The simulation replicates angler behavior by mimicking this 

fishing process and then aggregates across trips to compute global outcomes.  

For each trip, the simulation randomly assigns each computer angler a value for 

the maximum possible number of successful casts from a distribution. Because the 

average number of successful casts thrown per hour cannot be derived using available 

information, historic catch data serves as the proxy for fishing success per trip. MRFSS 

data from the last five years are used to generate catch distributions for each species, 

from which random numbers are drawn. Each simulated angler is assigned one draw from 

the catch distribution as the total number of successful casts. The program then assigns a 

size to each successful cast based the biomass projections for each age-class-length of 

fish overlaid with an appropriate age-class catchability factor. The resulting parameters 

form the basis for determining the size of fish in each angler’s catch basket. 

 The program simulates the fishing action by “catching” fish, or retrieving the pre-

assigned fish from the successful casts. The computer angler sorts “caught” fish into keep 
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and release buckets. This process is continued until either the bag limit binds or all 

successful casts for the trip are used. The probability that the computer angler takes the 

simulated trip is determined at the end of the iteration using the total number of fish kept 

and released on the trip. RUMs estimated using the stated preference survey determine 

simulated angler behavior. If the trip is considered acceptable (Pr(choice = Utrip) > 50%), 

the value of the trip is calculated using the MWTP derived from the stated preference 

survey analysis and added to the total welfare measure for the fishery. The algorithm for 

one trip iteration is outlined in Figure 10. 
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Evaluate first
successful cast

Is fish > 
min.size?

Add 1 to keep Add 1 to release

Is keep <
bag limit?

Add 1 to catch

Is catch < max # 
successful casts?

Compute probability of angler taking 
trip using conditional logit from SPCE

Is prob ! 0.5?

Compute WTP for trip 

Add 1 to total effort
Add keep to total keep

Add trip WTP to aggregate WTP

Yes No

No

Yes

Yes

No

Yes

Begin Trip Iteration

End Trip Iteration

No

Evaluate next
successful cast

 
Figure 10. Trip algorithm (single simulation iteration). 

 
The computer simulates trips until either the total allowed recreational harvest is 

reached (season closure) or the allotted number of iterations has been taken (see Figure 

11). The biological model that determines the total allowed recreational harvest in the 

simulation is the model policy makers use to set annual catch limits (ACLs), and the 

ACLs used in the simulation are actual projections for future years. The total number of 
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iterations allowed for each simulation is based on the average estimated effort for the 

most recent five years for the study area, which is approximately 500,000 fishing trips.  

Draw trip characteristics:
mode, trip length, trip cost

Run 1 trip iteration

Is trip
counter < total #

iterations?

Add 1 to trip counter

Is total keep < 
recreational ACL?

End Simulation

Yes

No

Yes

No

Begin Simulation

Draw maximum # successful fishing casts 
for each trip from MRFSS catch distribution

Begin year loop Assign a size to each 
successful cast

Begin regulation loop

End regulation loop

Set regulation levels

End year loop

 
Figure 11. Simulation algorithm (global controls). 

 
The simulation process replicates the mix of angler modes, trip types, and fishing 

experiences that could actually occur for future policy scenarios. To ensure comparability 

of results, the program randomizes all trip-specific variables (trip length, trip cost, mode, 

successful casts) only once across all scenarios in all years. Fish size is assigned for all 

successful casts once per year based on the biological model. Because the biological 
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parameters are specific to each year, fish sizes must be drawn independently for each 

year to capture changes in age-class distributions.  

Trips are always taken in the same order with the same characteristics but under 

different regulatory and biological restrictions. Forcing most of the simulation system to 

be invariant enables explicit comparisons of changes in the distribution of keep and 

release under various biological, bag limit, and size restriction combinations. To illustrate 

this concept, consider the following example. Trip 53 is always the 53rd trip in the 

simulation. The fishing mode will always be party boat, and the maximum number of 

successful casts for cod is five fish for all simulations in all years on trip 53. The sizes of 

the cod caught in 2011 for trip 53 will always be 19”, 23”, 26”, 29”, and 12”, in that 

order, but the cod in 2012 for trip 53 are 18”, 20”, 22”, 16”, and 17” in size because of 

changes in the underlying age-class distribution. A minimum size limit of 20” and a five 

fish bag limit in 2011 will result in three kept fish and two discards on trip 53, but only 

two fish are kept in 2012. 

Most bioeconomic models incorporate some type of catchability factor that 

translates raw biomass into landed fish. Typically, catchability is defined as the 

proportion of stock removed by one unit of fishing effort, or  

C/E = sqN (4.26) 

where C represents catch, E is fishing effort, s is a constant related to a particular type of 

fishing gear, q is the catchability coefficient, and N is the population size. Differences in 

environmental preferences and biological behaviors require separate catchability 

estimates for each age class to accurately model probable recreational catch; however, the 

total population size and effort for each age class are not known with certainty so q 

cannot be solved for explicitly. For the purposes of this simulation, the catchability 



 

 101 

coefficient is important only for obtaining the distribution of catch in terms of fish size 

for each ecological scenario. 

An approximation based on historic catch is generated without explicitly solving 

for the catchability coefficient, assuming that s is identical across all fishing gears and 

modes. Historic total and recreational catch are known for each age-class because this 

information is compiled for stock assessments and virtual population analysis (VPA). 

Tables detailing catch by age-class and total biomass estimates for each stock are 

available in several stock assessment reports by the NEFSC (Mayo, Shepherd, O’Brien, 

Col, & Traver, 2009; Northeast Fisheries Science Center, 2008a, 2008b). Rewriting 

Equation 4.23, the ratio of the two types of catch for a representative age-class is 

!!"#
!!"!#$

! !!"#!!"#!!"#!
!!"!#$!!"!#$!!"!#$!

! !!"#!!"#!!"#
!!"!#$!!"!#$!!"!#$

. (4.27) 

Assuming that effort is static, the catchability ratios from Equation 4.22 can be used to 

recalibrate the biomass estimates and generate a new age-class distribution that 

approximates some measure of angler success. The biomass distribution is multiplied by 

the catchability ratios to obtain a new distribution reflecting probable angler successes for 

catching fish of particular sizes in each year. All simulated catch sizes are assigned to 

successful casts using this method. 

Angler utility is affected by catch size as in other bioeconomic simulation studies 

(Woodward & Griffin, 2003); however, this model assumes that fish size is only 

important for determining whether or not the fish can be legally kept. Because size 

regulations are published in inches, age-class distributions are converted into lengths 

using age-length distribution keys for each species. The age-length keys are specific to 

ecological conditions and generated using advanced biological modeling algorithms. 
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Several assumptions are made for simplicity and to reduce computing time. Each 

trip is computed for one representative angler who has no repeat trips (or for whom the 

repeated trips have identical preference structures). Because the New England 

groundfishery is a meat fishery, it is assumed that all simulated anglers will fish until the 

legal bag limit is reached and no more. This does not mean that every simulated angler 

gets the bag limit; trips are allowed to have different numbers of catch, but the simulation 

limits high-grading. To prevent simulated anglers from high-grading, trips are terminated 

early (before all successful casts are used) if the trip has an unusually high number of 

legal-sized fish. For example, if there are seven possible successful casts on a trip with 

cod sizes 26”, 27”, 28”, 25”, 26.5”, 29”, and 12”, in that order, and the regulations 

restricts keep to three cod 22” or larger, then the program terminates the trip after the 28” 

fish. This simulated angler would only keep three fish instead of catching seven fish and 

discarding four. The termination mimics for-hire fishing behavior in this fishery because 

most for-hire captains cease fishing activities once the legal limit has been reached. 

Though there are cases where captains allow fishing beyond the legal limit and sell off 

excess catch, such practices are the exception rather than the norm in this fishery. The 

assumption of no high-grading introduces minimal error because analysis of historic 

release data shows that less than 1% of recreational anglers surveyed in the past 10 years 

reported high-grading for haddock, and fewer than 3% reported high-grading for cod.  

Anglers are also assumed to view the biological condition of the fishery as 

identical throughout the year and have no temporal discounting as was assumed in the 

study by Woodward and Griffin (2003). Management efforts are restricted to changes in 

bag and size limits, and it is assumed that the policies are uniform across all modes. 
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Though the system will induce early termination (season closure) if ACLs are exceeded, 

none of the scenarios reached that limit. This study does not consider advanced 

management tools such as sectors and transferable quotas. 

The biological and management conditions of the fishery are assumed to be static 

over the course of a year and spatially identical, which is inconsistent with seasonal age-

class adjustments due to spawning and migration patterns. The assumption is necessary to 

generate enough information to accurately predict the number of fish by size. Locational 

delineation was not possible because the biological models were not estimated on a very 

fine spatial scale. 

The simulations are not as sophisticated or as dynamic as the General 

Bioeconomic Fisheries Simulation Model (GBFSM) developed by Woodward and 

Griffin (2003) as there is no biofeedback loop where changes in catch one year affect the 

stock biomass in the following year. The recreational landings of cod and haddock are 

usually not high enough to affect species biomass (personal communication, S. 

Steinback, March 18, 2011), so this deviation from reality is insignificant; however, the 

ACLs specified in the biological model for each year affect projections of future biomass, 

so it is assumed that the fishery always achieves the ACL. Because the recreational 

allocation of ACLs are not reached in any of the scenarios, the simulation implicitly 

assumes that the commercial sector will always over-harvest, causing the fishery to reach 

the total ACL in each year. Short-run economic outcomes are easily estimated for each 

year using the simulation, and, assuming that the ACLs are binding, long-run economic 

outcomes can be obtained by combining simulation outputs across years. 
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Data 

Angler behavior is simulated using a RUM derived from the stated preference 

survey. The previous chapter characterized the angler maximization problem for 

Northeast groundfish using several different specifications of the utility model. This 

chapter continues the evaluation of three of those models using simulations. The first 

model examined in this chapter is the LIC utility model from Chapter 3 (Equation 3.9, 

Model 3) where utility U (·) for angler n and trip j is represented by 

!!" ! !! ! !"#!!"#$ !" ! !! ! !"#!!"#"$%"& !"   
!!! ! !!""#$%!!"#$ !" ! !! ! !!""#$%!!"#"$%"& !"   

!!! !"! !"#$! !"!!"#!!!"#! ! !! !"! !"#$! !"!!"#!!!"#!
!
  

!!! !"#-!"# !" ! !! !"#$!!"#$ !" ! !!". (4.28) 

Because biological prediction models are not available for pollock, Equation 4.28 only 

includes two species from the market basket in Chapter 3. Atlantic pollock biology is 

generally not well understood, and recreational data for the species is limited. The second 

model modifies the NIC utility function from Chapter 3 (Equation 3.10, Model 4): 

!!" ! !! ! !"#!!"#$ !" ! !! ! !"#!!"#"$%"& !"  
!!! ! !!""#$%!!"#$ !" ! !! ! !!""#$%!!"#"$%"& !"  
!!! !"! !"#$! !"!!"#!!!"#!  !!! !"! !"#$! !"

! !!"#!!!"#!  
!!! !"#-!"# !" !!! !"#$!!"#$ !" ! !!". (4.29) 

The third model in the simulations has the same specification as Equation 4.23 but is 

estimated using only anglers with self-reported targeting or catch of cod and haddock 

(fishery users), which is analogous to Model 5 in Chapter 3, and will be referred to 

hereafter as the nonlinear-in-catch users (NICU) model. Trip costs used in the behavior 

models are drawn from the same distribution used to create the attribute levels in the CE 
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survey. The trip length distribution is based on the frequency of trip types (4 hour, 8 hour, 

12 hour) advertised by various online vendors servicing the study area.  

Species targeting and target switching are included implicitly in the simulations. 

Because the model includes a basket of fish from two species, anglers are allowed to 

target either species using the tradeoffs determined by the stated preference survey. The 

program does not explicitly separate anglers targeting cod from those targeting haddock, 

but some simulated anglers expect to catch more cod than haddock, whereas others 

expect to catch more haddock than cod. For example, a computer angler who expects to 

catch 15 cod and 2 haddock is classified as targeting cod, whereas a computer angler with 

an expected catch of 87 haddock and 2 cod is classified as targeting haddock. 

Anglers are also allowed to exit and enter the fishery at will because there are no 

explicit controls requiring mandatory participation. Though the opt-out choice in the 

stated preference survey was “Do something else, but not saltwater fishing,” there are no 

freshwater substitutes for cod. Therefore, it is appropriate to assume that simulated 

anglers that choose not to take the saltwater fishing trip are not fishing at all, and the 

simulation outputs can be assumed to be a measure of participation. Such information is 

useful for determining total economic impacts as measured via input/output (I/O) models 

because non-participating anglers that cease all fishing activities affect regional economic 

transfers whereas non-participating anglers that participate in other fisheries do not. 

The estimated parameters for the two-species RUMs listed in Table 35 are 

significantly different from the three-species model results in Chapter 3. The coefficients 

for fish caught are smaller in the LIC model than the results in Chapter 3, but the 

coefficients for trip length and trip cost are larger. The reverse is observed in the NIC and 
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NICU models, indicating that the two models compensate for the lack of one fish species 

in different ways. Despite differences in the angler behavior model, MWTP confidence 

intervals overlap with those of Chapter 3. The confidence intervals for the NIC and NICU 

specifications are computed at the average catch of 4.5, but simulated total trip values are 

calculated using marginal values for each fish. 

Table 35. Conditional Logit Parameters Used in Simulation Exercises 
Variable LIC NIC NICU 

Cod kept 0.0636 (0.00461)*** — — 
Cod released 0.0210 (0.00482)*** — — 
Haddock kept 0.0613 (0.00464)*** — — 
Haddock released 0.00849 (0.00538) — — 
!"#!!"#$  — 0.302 (0.0197)*** 0.318 (0.0233)*** 

!"#!!"#"$%"&  — 0.111 (0.0146)*** 0.120 (0.0173)*** 

!"##$%&!!"#$  — 0.247 (0.0186)*** 0.258 (0.0224)*** 

!"##$%&!!"#"$%"&  — 0.0397 (0.0155)*** 0.0537 (0.0185)*** 
Trip length ( For-Hire 0.156 (0.0176)*** 0.158 (0.0176)*** 0.130 (0.0219)*** 
(Trip length)2 ( For-Hire -0.00740 (0.00124)*** -0.00786 (0.00124)*** -0.00556 (0.000152)*** 
Trip cost -0.00557 (0.000130)*** -0.00559 (0.000130)*** -0.00563 (0.000153)*** 
Opt-out -0.730 (0.0603)*** -0.153 (0.0792)* -0.504 (0.0981)*** 
LR (%2) 4,817.18*** 4,860.1*** 4326.6*** 
No. Obs.† 39,151 39,151 27,803 
No. Groups† 1,214 1,214 840 
MWTP Cod (keep) $11.41 

(9.72, 13.11) 
$12.71 

(11.00, 14.43) 
$13.31 

(11.28, 15.33) 
MWTP Cod (release) $3.76 

(2.07, 5.45) 
$4.68 

(3.48, 5.88) 
$5.00 

(3.58, 6.41) 
MWTP Haddock (keep) $10.99 

(9.26, 12.72) 
$10.42 

(8.79, 12.06) 
$10.79 

(8.85, 12.73) 
MWTP Haddock (release) $1.52 

(-0.36,3.41) 
$1.67 

(0.40, 2.94) 
$2.25 

(0.74, 3.75) 
***p < .01, **p < .05, *p < .10. 
† No. Obs. is the total number of items (alternatives) and No. Groups is the number of clusters used in 
computing the standard errors (N), which equals the number of individuals 
 

The biological data for the simulation comes from AGEPRO V3.1, courtesy of 

Paul Nitschke and Scott Steinback of NEFSC. The software program projects biomass by 

species for any number of future years. Output includes total biomass, spawning biomass, 

recruitment biomass, and harvest biomass for different age-class specifications. Biomass 

estimates become more uncertain as the projection year moves away from the last year of 

historical data available; thus, simulations in this study are limited to five years into the 
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future (2011-2015 at the time of writing). The simulation analysis is also restricted to 

GOM stocks and anglers presuming to fish in the GOM (see Figure 12) because projected 

biomass data are only available for the Gulf of Maine (GOM) cod and haddock stocks. 

Detailed estimates of future biomass for pollock are not available at this time. 

 
Figure 12. Map of stock regions (NMFS Northeast Regional Office, 2008). 

 
The total number of iterations used in the simulations is derived from estimates of 

historic effort. Proportions of the total number of anglers in each mode for Maine, New 

Hampshire, and Massachusetts were aggregated to compute a possible total number of 

relevant trips in the region; however, the 500,000 iterations used in the simulations is 

probably higher than actual effort because Massachusetts fishing trips are split between 

Georges Bank and the GOM. Anglers south of Chatham, MA, are likely to be fishing in 

Georges Bank rather than in the GOM. Additionally, the proportional standard error 

(PSE) associated with effort estimates for species targeting in specific geographic areas is 

Gulf of Maine 

Georges Bank 

Southern New England 

Mid-Atlantic 
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very high. The simulation results should be considered conservative estimates because 

actual effort levels are almost certainly lower.  

The proxy distribution for the total number of successful casts was derived from 

historic data. Total trip catch from the most recent five years of MRFSS data for cod and 

haddock from Maine, New Hampshire, and Massachusetts were entered into EasyFitXL, 

a distribution fitting software package. This particular software package was used 

because it is one of the few programs that generates random numbers for discrete 

distributions. EasyFitXL identified the best-fitting discrete distributions for combined 

keep and release data from MRFSS. For cod, a geometric distribution with p = 0.14901 

was most appropriate. A geometric distribution is the probability distribution of the 

number of Bernoulli trials needed to get one success. Given a probability of success X on 

each trial of p, the probability of the kth trial being the first success is 

Pr(X = k) = (1 – p)k p. (4.30) 

A logarithmic distribution with p = 0.89251 was fit to the haddock catch data. The 

probability mass function of a logarithmic distribution is 

! ! ! !!
!"! !!!

!!
! .  (4.31) 

EasyFitXL generated strings of random draws following the fitted discrete distributions. 

The expected trip catch numbers (successful casts) for each species were then randomly 

assigned to each simulated angler resulting in double randomization. All trip 

characteristics, including costs, mode, trip length, expected catch, and catch size, were 

assigned only once for all simulations to ensure comparability. 
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Trip Results 

The economic impacts of different regulations on individual trips are predicted 

using the theoretical framework outlined earlier in this chapter. The expected keep and 

release for each species under different regulatory scenarios is calculated using the 

distributions for catch size and catch number for each year. Regulations truncate the catch 

distribution at different points, resulting in changes to expected keep and release (see 

Table 53 and Table 54 in Appendix C). The WTP per trip for a representative angler, 

computed using the expected keep and release values, are shown in Tables 36 through 38.  

Table 36. Theoretical (Expected) Mean WTP per Trip for LIC Model 
Regulations 2011 2012 2013 2014 2015 

20 C * 20", any H * 14" $113.54 $104.11 $103.50 $103.29 $103.38 
10 C * 20", any H * 18" $105.12  $104.67  $104.54  $104.49  $104.48  
15 C * 22", any H * 16" $109.44 $108.87 $108.85 $108.68 $108.68 
15 C * 22", any H * 18" $108.92 $108.18 $108.06 $107.91 $107.91 
10 C * 22", any H * 16" $104.21 $103.70 $103.68 $103.54 $103.53 
10 C * 22", any H * 18" $103.68 $103.01 $102.89 $102.76 $102.76 
10 C * 22", 15 H * 20" $100.43 $98.84 $98.36 $98.20 $98.20 
2 C * 22", any H * 18" $78.76 $78.40 $78.28 $78.25 $78.25 
10 C * 23", any H * 18" $102.86 $102.10 $101.97 $101.80 $101.79 
2 C * 23", any H * 18" $78.47 $78.09 $77.96 $77.92 $77.92 
10 C * 24", any H * 16" $102.12 $101.25 $101.24 $100.98 $100.98 
10 C * 24", any H * 18" $101.59 $100.56 $100.45 $100.21 $100.20 
10 C * 24", any H * 19" $101.18 $100.01 $99.81 $99.59 $99.59 
8 C * 24", 10 H * 18" $93.73 $92.80 $92.71 $92.49 $92.49 
2 C * 24", any H * 18" $78.04 $77.56 $77.44 $77.37 $77.37 
10 C * 26", any H * 18" $99.28 $97.92 $97.80 $97.45 $97.44 
10 C * 26", any H * 20" $97.98 $95.63 $95.13 $94.75 $94.74 
8 C * 26", 10 H * 20" $90.51 $88.42 $87.99 $87.64 $87.63 
5 C * 26", 10 H * 21" $81.64 $79.55 $78.95 $78.57 $78.66 
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Table 37. Theoretical (Expected) Mean WTP per Trip for NIC Model 
Regulations 2011 2012 2013 2014 2015 

20 C * 20", any H * 14" $234.43 $229.21 $228.59 $228.49 $228.59 
10 C * 20", any H * 18" $233.76  $233.65  $233.65  $233.61  $233.61  
15 C * 22", any H * 16" $234.71 $234.62 $234.66 $234.60 $234.60 
15 C * 22", any H * 18" $235.20 $235.09 $235.09 $235.04 $235.04 
10 C * 22", any H * 16" $232.47 $232.23 $232.26 $232.16 $232.16 
10 C * 22", any H * 18" $232.96 $232.70 $232.70 $232.60 $232.60 
10 C * 22", 15 H * 20" $231.64 $230.52 $230.13 $230.03 $230.03 
2 C * 22", any H * 18" $201.40 $201.08 $201.08 $200.97 $200.96 
10 C * 23", any H * 18" $232.45 $232.10 $232.09 $231.96 $231.96 
2 C * 23", any H * 18" $200.80 $200.40 $200.40 $200.25 $200.25 
10 C * 24", any H * 16" $231.10 $230.52 $230.57 $230.36 $230.36 
10 C * 24", any H * 18" $231.59 $230.99 $231.00 $230.80 $230.80 
10 C * 24", any H * 19" $231.61 $230.93 $230.89 $230.70 $230.69 
8 C * 24", 10 H * 18" $226.64 $225.81 $225.74 $225.53 $225.53 
2 C * 24", any H * 18" $199.85 $199.23 $199.24 $199.04 $199.03 
10 C * 26", any H * 18" $229.80 $228.82 $228.83 $228.49 $228.48 
10 C * 26", any H * 20" $229.59 $227.97 $227.65 $227.31 $227.30 
8 C * 26", 10 H * 20" $223.74 $221.75 $221.34 $220.98 $220.97 
5 C * 26", 10 H * 21" $213.85 $211.47 $210.85 $210.36 $210.45 
 
Table 38. Theoretical (Expected) Mean WTP per Trip for NICU Model 

Regulations 2011 2012 2013 2014 2015 
20 C * 20", any H * 14" $244.93 $241.52 $240.94 $240.85 $240.95 
10 C * 20", any H * 18" $244.92  $244.89  $244.93  $244.89  $244.88  
15 C * 22", any H * 16" $245.44 $245.39 $245.45 $245.39 $245.39 
15 C * 22", any H * 18" $246.29 $246.28 $246.33 $246.28 $246.27 
10 C * 22", any H * 16" $243.27 $243.05 $243.10 $243.00 $242.99 
10 C * 22", any H * 18" $244.12 $243.93 $243.98 $243.88 $243.87 
10 C * 22", 15 H * 20" $243.58 $242.62 $242.29 $242.19 $242.19 
2 C * 22", any H * 18" $211.63 $211.37 $211.42 $211.30 $211.29 
10 C * 23", any H * 18" $243.60 $243.33 $243.37 $243.24 $243.23 
2 C * 23", any H * 18" $211.00 $210.67 $210.71 $210.56 $210.55 
10 C * 24", any H * 16" $241.88 $241.33 $241.39 $241.18 $241.17 
10 C * 24", any H * 18" $242.74 $242.21 $242.27 $242.06 $242.05 
10 C * 24", any H * 19" $242.93 $242.34 $242.36 $242.15 $242.15 
8 C * 24", 10 H * 18" $238.70 $237.88 $237.82 $237.61 $237.61 
2 C * 24", any H * 18" $210.02 $209.45 $209.52 $209.30 $209.29 
10 C * 26", any H * 18" $240.93 $240.00 $240.06 $239.71 $239.70 
10 C * 26", any H * 20" $241.13 $239.73 $239.50 $239.15 $239.15 
8 C * 26", 10 H * 20" $235.90 $233.98 $233.62 $233.25 $233.24 
5 C * 26", 10 H * 21" $225.94 $223.63 $223.05 $222.56 $222.65 
 

The average change in mean WTP per trip (averaged across all years) for moving 

from the current regulations (keep 10 cod larger than 22”; keep any haddock larger than 

18”) to one of the other regulatory scenarios is listed in Table 39. Overall, the NIC and 

NICU models exhibit smaller responses in mean WTP per trip to changes in regulations 

than the LIC model. 
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Table 39. Difference in Mean WTP per Trip from Changing Current Regulations 
Regulations LIC NIC NICU 

20 C * 20", any H * 14" $2.55 -$2.85 -$2.12 
10 C * 20", any H * 18" $1.64 $0.95 $0.95 
15 C * 22", any H * 16" $5.89 $1.93 $1.46 
15 C * 22", any H * 18" $5.17 $2.38 $2.33 
10 C * 22", any H * 16" $0.71 -$0.46 -$0.88 
10 C * 22", any H * 18" $0.00 $0.00 $0.00 
10 C * 22", 15 H * 20" -$4.21 -$2.24 -$1.38 
2 C * 22", any H * 18" -$24.63 -$31.61 -$32.55 
10 C * 23", any H * 18" -$0.92 -$0.60 -$0.60 
2 C * 23", any H * 18" -$24.95 -$32.29 -$33.26 
10 C * 24", any H * 16" -$1.71 -$2.13 -$2.57 
10 C * 24", any H * 18" -$2.42 -$1.67 -$1.69 
10 C * 24", any H * 19" -$2.99 -$1.75 -$1.57 
8 C * 24", 10 H * 18" -$10.18 -$6.86 -$6.03 
2 C * 24", any H * 18" -$25.46 -$33.43 -$34.44 
10 C * 26", any H * 18" -$5.04 -$3.83 -$3.88 
10 C * 26", any H * 20" -$7.37 -$4.75 -$4.22 
8 C * 26", 10 H * 20" -$14.58 -$10.96 -$9.96 
5 C * 26", 10 H * 21" -$23.55 -$21.32 -$20.39 
 

To illustrate the effect of regulations more explicitly, Figures 13 through 18 

depict the response in mean WTP per trip to changes in bag and size limits, ceteris 

paribus. The impact of minimum size regulations on mean WTP per trip, shown in 

Figures 13 through 15, have a smaller effect on the mean WTP per trip for cod than 

haddock, but the opposite is true for bag limits. Mean WTP declines much more rapidly 

in the LIC model than in the NIC or NICU models in response to increases in minimum 

size limits, but mean WTP plateaus slower in the in the LIC model in response to bag 

limits than the NIC or NICU models (Figures 16 through 18).The bag limit graphs 

plateau because the probability that bag limits bind changes abruptly. When bag limits 

are low, the probability that the bag limit binds is high, causing large changes in mean 

WTP. When bag limits are high, the probability that the bag limit binds is low, resulting 

in small mean WTP responses. When bag limits are very high, the probability of bag 

limits binding becomes negligible and mean WTP stays the same.  
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Figure 13. Effect of minimum size regulations on WTP per trip, ceteris paribus (LIC). 

 

 
Figure 14. Effect of minimum size regulations on WTP per trip, ceteris paribus (NIC). 
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Figure 15. Effect of minimum size regulations on WTP per trip, ceteris paribus (NICU). 

 

 
Figure 16. Effect of bag limits on WTP per trip, ceteris paribus (LIC model). 
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Figure 17. Effect of bag limits on WTP per trip, ceteris paribus (NIC model). 

 

 
Figure 18. Effect of bag limits on WTP per trip, ceteris paribus (NICU model). 
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Simulation Results 

Eighteen different bag limit and minimum size limit combinations are presented 

for the five biological scenarios. The simulation results for each year represent short-run 

outcomes in the fishery under different management parameters. Differences in age-class 

distributions between scenario years are reflected in the number of fish kept and released 

per trip for the same regulation levels, and consequently in WTP values. Simulation 

results are listed in the tables below and in Tables 55 through 57 in Appendix C. 

Simulated Mean WTP per Trip 

Table 40 shows the simulated mean WTP per trip for each behavioral model 

averaged across all scenario years. The mean WTP per trip values shown here are smaller 

than in Tables 36 through 38 because the no-highgrading algorithm imposed an artificial 

truncation on the MRFSS catch distribution causing simulated keep and release values to 

differ from the theoretical expected keep and release values. Were simulated anglers 

allowed to high-grade, as occurs in other recreational fisheries, the simulation results 

would align more closely with the theoretical derivation because the distribution of catch 

used to calculate the theoretical values would be the same as the distribution used in the 

simulations; however, the simulation truncates catch when the bag limit is reached 

instead of simply dividing the catch distribution into keep and release. Consequently, 

actual simulated catch numbers are not equal to draws from the MRFSS historic catch 

distribution, and the theoretical values are higher than the simulation numbers.  
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Table 40. Average Simulated Mean WTP per Trip 
Regulations LIC NIC NICU 

20 C * 20", any H * 14" $96.17 $116.66 $122.85 
10 C * 20", any H * 18" $84.26 $109.70 $115.67 
15 C * 22", any H * 16" $90.35 $114.38 $120.55 
15 C * 22", any H * 18" $89.40 $113.92 $120.17 
10 C * 22", any H * 16" $84.09 $110.33 $116.29 
10 C * 22", any H * 18" $78.14 $105.92 $111.03 
10 C * 22", 15 H * 20" $79.04 $108.04 $114.16 
2 C * 22", any H * 18" $49.06 $72.36 $75.76 
10 C * 23", any H * 18" $77.82 $105.87 $110.98 
2 C * 23", any H * 18" $49.11 $72.55 $75.97 
10 C * 24", any H * 16" $83.18 $110.09 $116.07 
10 C * 24", any H * 18" $82.22 $109.62 $115.68 
10 C * 24", any H * 19" $81.12 $109.04 $115.17 
8 C * 24", 10 H * 18" $71.85 $103.78 $109.54 
2 C * 24", any H * 18" $49.20 $72.88 $76.33 
10 C * 26", any H * 18" $80.72 $108.77 $114.82 
10 C * 26", any H * 20" $78.97 $107.83 $114.00 
5 C * 26", 10 H * 21" $60.35 $93.60 $99.09 
 

The estimates are roughly equivalent to the price of an offshore party boat or head 

boat trip in the Gulf of Maine and, in general, decrease as regulations become more 

restrictive. The mean WTP per trip for the LIC model is lower than for the NIC and 

NICU specifications and exhibits the greatest variation between the regulation extremes. 

Simulated Results for the Short-run (1 year) 

Tables 41 through 43 show the simulation results averaged across scenario years 

for the three behavioral models in the short-run (1 year). Recreational angling values, as 

measured by total WTP, differ by more than 20% between the simulated regulation 

extremes. Nonlinear-in-catch welfare estimates are higher than the linear-in-catch welfare 

estimates because the initial marginal utility of catch is greater in the nonlinear case. The 

nonlinear models also have higher effort estimates than the linear model and smaller 

responses to regulation changes. Because users are likely to place more value on the 

fishery than non-users, the total WTP using the NICU model is higher than the NICU 

model despite lower effort projections.  
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Table 41. Short-run Simulation Results for LIC (Averaged Across Scenario Years) 

Regulations Effort 
For-hire 

Effort 
Total WTP 
(in $1000s) Cod Keep 

Haddock 
Keep 

20 C * 20", any H * 14" 332,694 297,686 29,946 1,582,754 1,019,669 
10 C * 20", any H * 18" 328,252 297,467 26,005 1,293,151 968,280 
15 C * 22", any H * 16" 329,679 297,546 27,912 1,379,355 1,003,076 
15 C * 22", any H * 18" 329,037 297,515 27,569 1,377,738 969,773 
10 C * 22", any H * 16" 327,542 297,417 25,884 1,217,924 999,165 
10 C * 22", any H * 18" 326,893 297,387 25,543 1,216,340 965,988 
10 C * 22", 15 H * 20" 325,158 297,324 24,200 1,212,535 842,278 
2 C * 22", any H * 18" 311,925 294,274 15,302 415,577 933,590 
10 C * 23", any H * 18" 326,491 297,371 25,409 1,195,206 965,129 
2 C * 23", any H * 18" 312,025 294,282 15,323 414,437 933,738 
10 C * 24", any H * 16" 326,475 297,368 25,517 1,160,422 996,694 
10 C * 24", any H * 18" 325,811 297,338 25,176 1,158,870 963,619 
10 C * 24", any H * 19" 324,997 297,306 24,784 1,157,178 925,538 
8 C * 24", 10 H * 18" 322,427 297,146 21,900 1,052,783 789,009 
2 C * 24", any H * 18" 312,162 294,287 15,359 412,407 933,923 
10 C * 26", any H * 18" 324,374 297,132 24,616 1,072,476 960,425 
10 C * 26", any H * 20" 323,077 297,082 23,999 1,070,080 900,378 
5 C * 26", 10 H * 21" 315,985 296,168 18,117 775,739 718,946 
 
Table 42. Short-run Simulation Results for NIC (Averaged Across Scenario Years) 

Regulations Effort 
For-hire 

Effort 
Total WTP 
(in $1000s) Cod Keep 

Haddock 
Keep 

20 C * 20", any H * 14" 369,984 302,087 41,595 1,751,047 1,108,469 
10 C * 20", any H * 18" 367,516 302,027 38,875 1,467,583 1,060,140 
15 C * 22", any H * 16" 368,901 302,098 40,666 1,546,763 1,094,242 
15 C * 22", any H * 18" 368,319 302,098 40,438 1,545,379 1,059,371 
10 C * 22", any H * 16" 367,850 302,051 39,131 1,385,337 1,093,648 
10 C * 22", any H * 18" 367,247 302,051 38,900 1,383,774 1,058,785 
10 C * 22", 15 H * 20" 365,976 302,037 38,128 1,380,785 935,612 
2 C * 22", any H * 18" 350,940 300,648 25,393 476,766 1,031,391 
10 C * 23", any H * 18" 367,034 302,057 38,857 1,359,807 1,058,258 
2 C * 23", any H * 18" 351,100 300,648 25,472 475,095 1,031,793 
10 C * 24", any H * 16" 367,145 302,064 38,969 1,319,375 1,091,895 
10 C * 24", any H * 18" 366,541 302,064 38,739 1,317,907 1,057,125 
10 C * 24", any H * 19" 365,812 302,063 38,455 1,316,109 1,016,744 
8 C * 24", 10 H * 18" 364,826 301,980 36,525 1,209,470 893,813 
2 C * 24", any H * 18" 351,246 300,648 25,602 471,829 1,032,327 
10 C * 26", any H * 18" 365,003 301,994 38,285 1,216,376 1,054,631 
10 C * 26", any H * 20" 363,852 301,988 37,831 1,213,723 990,568 
5 C * 26", 10 H * 21" 358,292 301,738 32,381 892,091 816,677 
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Table 43. Short-run Simulation Results for NICU (Averaged Across Scenario Years) 

Regulations Effort 
For-hire 

Effort 
Total WTP 
(in $1000s) Cod Keep 

Haddock 
Keep 

20 C * 20", any H * 14" 371,870 301,290 43,745 1,765,050 1,115,547 
10 C * 20", any H * 18" 369,626 301,239 40,964 1,481,631 1,067,558 
15 C * 22", any H * 16" 370,901 301,299 42,818 1,559,850 1,101,473 
15 C * 22", any H * 18" 370,414 301,299 42,625 1,558,823 1,066,641 
10 C * 22", any H * 16" 369,936 301,261 41,216 1,398,326 1,101,078 
10 C * 22", any H * 18" 369,423 301,261 41,019 1,397,046 1,066,248 
10 C * 22", 15 H * 20" 368,301 301,255 40,282 1,394,460 943,064 
2 C * 22", any H * 18" 352,538 299,672 26,708 480,159 1,040,196 
10 C * 23", any H * 18" 369,202 301,267 40,976 1,372,679 1,065,671 
2 C * 23", any H * 18" 352,723 299,672 26,795 478,496 1,040,548 
10 C * 24", any H * 16" 369,250 301,274 41,058 1,331,458 1,099,434 
10 C * 24", any H * 18" 368,739 301,274 40,862 1,330,276 1,064,638 
10 C * 24", any H * 19" 368,089 301,274 40,610 1,328,713 1,024,159 
8 C * 24", 10 H * 18" 367,053 301,198 38,540 1,221,057 901,079 
2 C * 24", any H * 18" 352,908 299,672 26,938 475,208 1,041,104 
10 C * 26", any H * 18" 367,140 301,181 40,393 1,227,251 1,062,038 
10 C * 26", any H * 20" 366,150 301,181 39,992 1,225,092 997,991 
5 C * 26", 10 H * 21" 360,806 300,925 34,302 901,296 824,636 
 

Though keep, and consequently total WTP, decreases markedly with tighter 

restrictions, effort declines are relatively small. Moving from the most lenient to the most 

severe simulated regulatory scenario decreases total effort by less than 10%. Moreover, 

effort in the for-hire sector, which represents the larges portion of recreational angling in 

this fishery, barely fluctuates. These findings are consistent with anecdotal evidence that 

many anglers continue to fish regardless and historical data from for-hire trips that show 

very little change in number of participants per trip over the past 15 years despite changes 

to regulations for both cod and haddock. Modest movements in total effort may also be 

due to target switching behaviors, which deflate effort reductions for the fishery overall.  

Simulated Results for the Long-run (5 years) 

Assuming that the ACL is reached each year by the commercial fishery, long-run 

outcomes can be obtained by adding up short-run outcomes from the simulation. Tables 

44 through 46 show the long-run simulation results for the three behavioral models if 

regulations were to remain constant for the next five years. Effort, and more specifically 
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for-hire effort, remains fairly consistent across regulation scenarios; however, large losses 

(gains), as much as $50 million, can be seen in consumer welfare. Additionally, the 

simulation results show significant consequences for biomass over the five-year period 

from changes in regulations. Recreational harvest mortality can change by more than 5 

million fish over the five-year period if policy makers adopt more stringent regulations. 

Table 44. Long-run Simulation Results for LIC 

Regulations Effort 
For-hire 

Effort 
Total WTP 
(in $1000s) Cod Keep 

Haddock 
Keep 

20 C * 20", any H * 14" 1,663,468 1,488,429 149,729 7,913,772 5,098,343 
10 C * 20", any H * 18" 1,641,260 1,487,333 130,026 6,465,754 4,841,398 
15 C * 22", any H * 16" 1,648,396 1,487,731 139,559 6,896,777 5,015,381 
15 C * 22", any H * 18" 1,645,186 1,487,577 137,845 6,888,692 4,848,865 
10 C * 22", any H * 16" 1,637,711 1,487,087 129,420 6,089,622 4,995,825 
10 C * 22", any H * 18" 1,634,465 1,486,933 127,714 6,081,698 4,829,942 
10 C * 22", 15 H * 20" 1,625,792 1,486,621 121,000 6,062,676 4,211,391 
2 C * 22", any H * 18" 1,559,627 1,471,370 76,511 2,077,883 4,667,950 
10 C * 23", any H * 18" 1,632,456 1,486,854 127,046 5,976,029 4,825,646 
2 C * 23", any H * 18" 1,560,123 1,471,408 76,617 2,072,187 4,668,692 
10 C * 24", any H * 16" 1,632,376 1,486,841 127,583 5,802,112 4,983,472 
10 C * 24", any H * 18" 1,629,053 1,486,691 125,879 5,794,350 4,818,093 
10 C * 24", any H * 19" 1,624,985 1,486,531 123,919 5,785,891 4,627,692 
8 C * 24", 10 H * 18" 1,612,136 1,485,732 109,498 5,263,917 3,945,046 
2 C * 24", any H * 18" 1,560,812 1,471,434 76,797 2,062,036 4,669,613 
10 C * 26", any H * 18" 1,621,872 1,485,662 123,082 5,362,380 4,802,127 
10 C * 26", any H * 20" 1,615,384 1,485,408 119,997 5,350,402 4,501,892 
5 C * 26", 10 H * 21" 1,579,926 1,480,838 90,583 3,878,693 3,594,728 
 
Table 45. Long-run Simulation Results for NIC 

Regulations Effort 
For-hire 

Effort 
Total WTP 
(in $1000s) Cod Keep 

Haddock 
Keep 

20 C * 20", any H * 14" 1,849,922 1,510,436 207,973 8,755,235 5,542,343 
10 C * 20", any H * 18" 1,837,581 1,510,135 194,375 7,337,914 5,300,699 
15 C * 22", any H * 16" 1,844,507 1,510,492 203,330 7,733,817 5,471,209 
15 C * 22", any H * 18" 1,841,594 1,510,492 202,189 7,726,896 5,296,854 
10 C * 22", any H * 16" 1,839,250 1,510,257 195,656 6,926,683 5,468,238 
10 C * 22", any H * 18" 1,836,233 1,510,257 194,500 6,918,870 5,293,924 
10 C * 22", 15 H * 20" 1,829,882 1,510,185 190,639 6,903,925 4,678,062 
2 C * 22", any H * 18" 1,754,701 1,503,240 126,964 2,383,831 5,156,957 
10 C * 23", any H * 18" 1,835,169 1,510,285 194,283 6,799,035 5,291,292 
2 C * 23", any H * 18" 1,755,500 1,503,240 127,362 2,375,475 5,158,966 
10 C * 24", any H * 16" 1,835,726 1,510,322 194,843 6,596,874 5,459,477 
10 C * 24", any H * 18" 1,832,705 1,510,322 193,695 6,589,533 5,285,626 
10 C * 24", any H * 19" 1,829,058 1,510,313 192,276 6,580,545 5,083,720 
8 C * 24", 10 H * 18" 1,824,130 1,509,899 182,627 6,047,352 4,469,064 
2 C * 24", any H * 18" 1,756,229 1,503,240 128,009 2,359,144 5,161,636 
10 C * 26", any H * 18" 1,825,014 1,509,971 191,426 6,081,879 5,273,155 
10 C * 26", any H * 20" 1,819,261 1,509,942 189,156 6,068,614 4,952,841 
5 C * 26", 10 H * 21" 1,791,458 1,508,688 161,905 4,460,456 4,083,384 
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Table 46. Long-run Simulation Results for NICU 

Regulations Effort 
For-hire 

Effort 
Total WTP 
(in $1000s) Cod Keep 

Haddock 
Keep 

20 C * 20", any H * 14" 1,859,350 1,506,449 218,725 8,825,249 5,577,737 
10 C * 20", any H * 18" 1,848,128 1,506,195 204,822 7,408,154 5,337,791 
15 C * 22", any H * 16" 1,854,503 1,506,497 214,091 7,799,248 5,507,366 
15 C * 22", any H * 18" 1,852,070 1,506,497 213,126 7,794,113 5,333,203 
10 C * 22", any H * 16" 1,849,679 1,506,307 206,079 6,991,630 5,505,388 
10 C * 22", any H * 18" 1,847,116 1,506,307 205,093 6,985,232 5,331,239 
10 C * 22", 15 H * 20" 1,841,505 1,506,273 201,410 6,972,298 4,715,321 
2 C * 22", any H * 18" 1,762,688 1,498,360 133,538 2,400,796 5,200,980 
10 C * 23", any H * 18" 1,846,009 1,506,333 204,878 6,863,395 5,328,355 
2 C * 23", any H * 18" 1,763,617 1,498,360 133,977 2,392,478 5,202,738 
10 C * 24", any H * 16" 1,846,251 1,506,369 205,290 6,657,292 5,497,168 
10 C * 24", any H * 18" 1,843,694 1,506,369 204,310 6,651,381 5,323,188 
10 C * 24", any H * 19" 1,840,443 1,506,369 203,048 6,643,563 5,120,796 
8 C * 24", 10 H * 18" 1,835,266 1,505,989 192,698 6,105,283 4,505,395 
2 C * 24", any H * 18" 1,764,540 1,498,360 134,692 2,376,040 5,205,522 
10 C * 26", any H * 18" 1,835,702 1,505,907 201,967 6,136,256 5,310,192 
10 C * 26", any H * 20" 1,830,752 1,505,903 199,962 6,125,461 4,989,953 
5 C * 26", 10 H * 21" 1,804,028 1,504,623 171,509 4,506,481 4,123,179 
 
Meta-Analyses of Simulations 

Meta-analyses of the simulations are detailed in Tables 47 through 52. The term 

meta-analysis is used to denote a linear regression of the simulation outputs, which could 

be considered an assessment of the response surfaces with regards to changes in 

regulation levels. The data include the outcomes of the simulation scenarios listed in 

previous tables as well as an additional 100 to 200 simulation scenarios that cover the 

intermediate regulation levels. The meta-analysis models include all simulation 

parameters except a fixed effect for year 2015 to avoid multicollinearity. 

In the effort meta-analyses (Table 47), coefficients for bag limits are positive and 

negative for minimum size limits, as predicted. Increasing minimum size limits should 

discourage anglers from fishing while increases in bag limits should increase effort. 

Effort responds most to cod regulations in the LIC model whereas the NIC and NICU 

models weight haddock minimum size limits more heavily. Haddock bag limits have very 

little impact on the fishery in all of the models though the coefficient is significant. 
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Table 47. OLS Linear Meta-analysis Results for Effort 
Variable LIC NIC NICU 

Cod bag limit 614.177*** 
(23.854) 

143.966*** 
(48.239) 

197.311*** 
(47.513) 

Cod minimum size -425.173*** 
(38.437) 

-349.991*** 
(66.049) 

-370.715*** 
(43.094) 

Haddock bag limit 14.347*** 
(4.089) 

21.915*** 
(5.080) 

7.228*** 
(2.702) 

Haddock minimum size -220.621*** 
(94.093) 

-537.808*** 
(87.482) 

-499.498*** 
(67.102) 

Year 2011 650.014** 
(263.993) 

530.954* 
(287.463) 

499.498* 
(67.102) 

Year 2012 164.512 
(265.470) 

138.462 
(290.036) 

142.233 
(244.019) 

Year 2013 158.861 
(265.470) 

137.769 
(290.036) 

141.133 
(244.019) 

Year 2014 7.605 
(265.470) 

4.27 
(290.036) 

5.1 
(244.019) 

Constant 332,588.8*** 
(2,208.676) 

381,018.1*** 
(2,855.674) 

383,417.1*** 
(1,895.566) 

R-squared 0.888 0.833 0.756 
Adjusted R-squared 0.884 0.822 0.744 
F-statistic† 205.72*** 75.95*** 55.03*** 
No. Obs. 216 131 150 
***p < .01, **p < .05, *p < .10. 
† F(8, 207) for LIC, F(8, 122) for NIC, F(8, 141) for NICU 
 

The meta-analyses for total WTP (Table 48) show that changes in cod bag limits 

have the greatest impact on total WTP. Because the value of fish kept is higher than the 

value of fish released, changes in bag limits should have a larger effect on total WTP than 

changes in minimum size limits. The coefficient for cod minimum size limits is larger 

than the coefficient for haddock minimum size limits in the LIC model, but the reverse is 

true in the NIC and NICU models. Cod minimum size limits are more important in the 

NICU model than in the NIC model, which can be attributed to differences in the 

perception of species importance between the survey sample groupings. Though the 

coefficients for haddock bag limits are statistically significant, the magnitude is small 

relative to other regulation variables.  
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Table 48. OLS Linear Meta-analysis Results for Total WTP (in $1000s) 
Variable LIC NIC NICU 

Cod bag limit 526.344*** 
(16.159) 

255.426*** 
(38.236) 

334.952*** 
(36.346) 

Cod minimum size -111.447*** 
(26.039) 

-91.782* 
(52.353) 

-154.493*** 
(32.966) 

Haddock bag limit 15.510*** 
(2.770) 

21.941*** 
(4.027) 

11.475*** 
(2.067) 

Haddock minimum size -62.944 
(63.743) 

-197.734*** 
(69.341) 

-186.708*** 
(51.331) 

Year 2011 249.361 
(178.840) 

150.490 
(227.853) 

97.735 
(186.821) 

Year 2012 69.203 
(179.840) 

44.062 
(229.892) 

35.774 
(186.668) 

Year 2013 67.199 
(179.840) 

43.722 
(229.892) 

35.037 
(186.668) 

Year 2014 3.684 
(179.840) 

2.004 
(229.892) 

1.609 
(186.668) 

Constant 21,941.34*** 
(1,496.248) 

40,070.21*** 
(2,263.503) 

43,275.18*** 
(1,450.056) 

R-squared 0.900 0.830 0.777 
Adjusted R-squared 0.896 0.818 0.765 
F-statistic† 231.55*** 74.23*** 61.55*** 
No. Obs. 216 131 150 
***p < .01, **p < .05, *p < .10. 
† F(8, 207) for LIC, F(8, 122) for NIC, F(8, 141) for NICU 
 

Tables 49 through 52 show the results of the meta-analyses for catch. Increasing 

cod bag limits increases the number of cod kept, and increasing the minimum size 

decreases the number of cod kept, as expected. Cod bag limits are more important in 

determining the number of cod kept in the LIC model whereas cod minimum size limits 

are more important in the NIC and NICU models due to the nonlinear catch structure in 

the latter models. The number of cod released is most affected by the minimum size of 

cod in all models. Cod bag limits have only minor impacts on the number of cod released. 

In general, haddock regulations have little effect on the number of cod kept or released. 

 

 

 

 



 

 123 

Table 49. OLS Linear Meta-analysis Results for Cod Keep (in 1000s fish) 
Variable LIC NIC NICU 

Cod bag limit 43.792*** 
(1.405) 

32.307*** 
(3.928) 

32.790*** 
(1.625) 

Cod minimum size -23.256*** 
(2.265) 

-40.172*** 
(5.378) 

-44.147*** 
(1.474) 

Haddock bag limit -0.519** 
(0.241) 

-0.655 
(0.414) 

0.325*** 
(0.092) 

Haddock minimum size 8.634 
(5.545) 

3.056 
(7.123) 

-3.830* 

(2.295) 
Year 2011 25.862* 

(15.557) 
37.425 

(23.407) 
37.358*** 
(8.354) 

Year 2012 6.984 
(15.644) 

9.709 
(23.617) 

9.430 
(8.347) 

Year 2013 7.114 
(15.644) 

9.982 
(23.617) 

9.769 
(8.347) 

Year 2014 0.247 
(15.644) 

0.306 
(23.617) 

0.263 
(8.347) 

Constant 1,160.78*** 
(130.158) 

1,940.251*** 
(232.529) 

2,072.618*** 
(64.844) 

R-squared 0.886 0.888 0.957 
Adjusted R-squared 0.882 0.881 0.954 
F-statistic† 201.85*** 120.98*** 388.16*** 
No. Obs. 216 131 150 
***p < .01, **p < .05, *p < .10. 
† F(8, 207) for LIC, F(8, 122) for NIC, F(8, 141) for NICU 
 
Table 50. OLS Linear Meta-analysis Results for Cod Release (in 1000s fish) 

Variable LIC NIC NICU 
Cod bag limit 4.060*** 

(0.452) 
2.160*** 
(1.260) 

6.251*** 
(1.255) 

Cod minimum size 48.442*** 
(0.729) 

58.058*** 
(1.726) 

57.183*** 
(1.138) 

Haddock bag limit 0.722*** 
(0.078) 

1.587*** 
(0.133) 

0.026 
(0.071) 

Haddock minimum size -2.266 
(1.784) 

-4.375* 
(2.286) 

-1.549 
(1.772) 

Year 2011 -38.863*** 
(5.006) 

-56.494*** 
(7.513) 

-59.696*** 
(6.450) 

Year 2012 -9.542* 
(5.034) 

-13.790* 
(7.580) 

-14.503** 
(6.445) 

Year 2013 -9.776* 
(5.034) 

-14.281* 
(7.580) 

-15.106** 
(6.445) 

Year 2014 -0.310 
(5.034) 

-0.407 
(7.580) 

-0.395 
(6.445) 

Constant -875.563*** 
(41.886) 

-1,020.847*** 
(74.636) 

-971.652*** 
(50.063) 

R-squared 0.960 0.967 0.955 
Adjusted R-squared 0.959 0.965 0.952 
F-statistic† 621.90*** 445.79*** 372.54*** 
No. Obs. 216 131 150 
***p < .01, **p < .05, *p < .10. 
† F(8, 207) for LIC, F(8, 122) for NIC, F(8, 141) for NICU 
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Haddock minimum size limits are most important for determining the number of 

haddock kept in all models. Increasing haddock minimum size decreases the number of 

haddock kept, as expected. Haddock bag limits have little effect on the number of 

haddock kept. Increases in the minimum size of cod decreases the number of haddock 

kept in the LIC and NICU models. This indicates that cod fishing is complementary to 

haddock fishing and anglers are less likely to fish for haddock when cod regulations are 

stricter. The coefficient for cod minimum size limits is positive in the NIC model, which 

can be attributed to preference differences between the NIC and NICU models. Increases 

in cod bag limits results in slight increases in the number of haddock kept, which also 

suggests complementarity in fishing. 

Table 51. OLS Linear Meta-analysis Results for Haddock Keep (in 1000s fish) 
Variable LIC NIC NICU 

Cod bag limit 0.974*** 
(0.246) 

3.613** 
(1.820) 

0.858 
(1.439) 

Cod minimum size -2.726*** 
(0.395) 

8.704*** 
(3.234) 

-5.005*** 
(1.305) 

Haddock bag limit 1.718*** 
(0.0421) 

0.254*** 
(0.038) 

1.452*** 
(0.082) 

Haddock minimum size -16.191*** 
(0.097) 

-39.081*** 
(3.429) 

-17.265*** 
(2.032) 

Year 2011 10.332*** 
(2.719) 

10.034 
(11.091) 

8.191 
(7.397) 

Year 2012 2.616 
(2.734) 

2.754 
(11.190) 

2.641 
(7.391) 

Year 2013 2.346 
(2.734) 

2.508 
(11.190) 

2.390 
(7.391) 

Year 2014 0.212 
(2.734) 

0.215 
(11.190) 

0.204 
(7.391) 

Constant 1,127.576*** 
(22.747) 

1,437.174*** 
(111.744) 

1,354.899*** 
(57.410) 

R-squared 0.960 0.713 0.830 
Adjusted R-squared 0.958 0.694 0.821 
F-statistic† 615.35*** 37.81*** 86.14*** 
No. Obs. 216 131 150 
***p < .01, **p < .05, *p < .10. 
† F(8, 207) for LIC, F(8, 122) for NIC, F(8, 141) for NICU 
 

Increasing the minimum size increases the number of haddock released. Haddock 

bag limits have little effect on the number of haddock released. Increases in effort 
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account for the increase in the number of haddock released when bag limits for cod rise, 

but the positive relationship between cod minimum size limits and number of haddock 

released is most likely due to effort switching. 

Table 52. OLS Linear Meta-analysis Results for Haddock Release (in 1000s fish) 
Variable LIC NIC NICU 

Cod bag limit 4.580*** 
(1.376) 

2.189*** 
(0.488) 

3.574*** 
(0.394) 

Cod minimum size 11.333*** 
(2.217) 

3.650*** 
(0.669) 

2.123*** 
(0.357) 

Haddock bag limit -1.111*** 
(0.236) 

-0.262*** 
(0.051) 

-0.071*** 
(0.022) 

Haddock minimum size 164.401*** 
(5.428) 

20.142*** 
(0.886) 

23.352*** 
(0.556) 

Year 2011 -86.498*** 
(15.229) 

-10.839*** 
(2.910) 

-10.198*** 
(2.024) 

Year 2012 -22.103 
(15.314) 

-2.635 
(2.936) 

-2.556 
(2.022) 

Year 2013 -19.72 
(15.314) 

-2.397 
(2.936) 

-2.293 
(2.022) 

Year 2014 -1.970 
(15.314) 

-0.212 
(2.936) 

-0.204 
(2.022) 

Constant -2,652.02*** 
(127.410) 

-392.323*** 
(28.912) 

-439.871*** 
(15.706) 

R-squared 0.892 0.887 0.946 
Adjusted R-squared 0.888 0.880 0.943 
F-statistic (8, 207) 214.28*** 120.13*** 307.43*** 
No. Obs. 216 131 150 
***p < .01, **p < .05, *p < .10. 
 
Conclusion 

Understanding the socioeconomic impacts of recreational angling is critical for 

effectively managing fisheries, particularly when there are commercial interests involved; 

however, economic analyses of recreational fisheries often rely on strong, unrealistic 

assumptions. This chapter outlined a theoretical framework for understanding the effect 

of management changes on angler behavior and welfare by modeling trip catch in 

stochastic rather than deterministic terms. Additionally, global fishery outcomes were 

derived using a unique simulation method that overcame data scarcity by combining 

stated preference survey results with actual stock biomass projections. 
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The nonlinear models explored in the previous chapter were more stable to 

changes in regulations than linear models in terms of total recreational fishery values and 

effort, but effort response was small in all models, which is more consistent with historic 

and anecdotal evidence of angler behavior. Total WTP and catch decreased with 

increased regulation stringency, as expected. Haddock bag limits have very little effect on 

fishery outcomes in terms of effort, total WTP, or catch of either species; however, 

haddock minimum size regulations affect effort, total WTP, and haddock catch. Effort 

and catch are highly affected by cod minimum size limits but cod bag limits have a 

greater effect on total WTP. 

The simulation results indicate that local economies remain relatively unaffected 

by changes in policy. Because effort responses to changes in regulations are small, 

fishing-related expenditures remain constant and the economic ramifications for 

providers of recreational angling goods and services are negligible. Additionally, 

changing minimum size limits are most effective for reducing catch and effort while 

minimizing impacts related to total consumer fishery values. 

Simulation models are limited by algorithmic assumptions but provide insight in 

situations where real-world data are lacking if all dynamic elements are considered. For 

recreational fisheries, such models are useful for cost-benefit and allocation analyses 

because data are often sparse. The framework used in this chapter was specific to two 

New England groundfish species, so results may not be generalizable; however, 

combining stated preference methods with biological and regulatory information extends 

previous work in bioeconomic analyses of recreational angling and provides fisheries 

managers with additional tools for policy analysis.  
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Chapter 5: Conclusion 

Accurate descriptions of agent behavior are crucial for economic analyses of 

nonmarket policy options. This dissertation investigates various facets of policy analysis 

in recreational angling; specifically, whether CEs are well behaved and how CE surveys 

can be used to understand changes in fish catch and the effect of regulations. The three 

main phases of the research process, data collection, model specification, and utilizing 

model outputs, are examined to address these issues. 

The first analytical chapter in this dissertation focuses on survey design, which is 

relevant for many applications outside nonmarket policy evaluation. Survey design is 

particularly germane for nonmarket applications, though, because data is often 

nonexistent or lacking variation. Revealed preference methods cannot be used in many 

cases due to data constraints and researchers must obtain information about economic 

behavior from other sources. Stated preference methods, and CEs especially, are popular 

tools for data collection because multiple tradeoffs can be evaluated simultaneously and 

CEs are relatively simple to construct and analyze. Despite the ease of implementation 

and interpretation, CEs can approach the limits of human information processing 

capabilities. This chapter addresses whether increasing cognitive demands induce 

behavioral responses stemming from task stimuli rather than respondent preferences in 

choice experiment surveys using five different types of choice experiment instruments: a 

control, three different questionnaire lengths, and a variation on the number of 

alternatives in a choice set.  

The results of random utility models, heterogeneous scale parameter logit models, 

and random parameters models for the different task complexity treatments show that 
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survey design does have a significant impact on behavior models and estimated MWTP. 

MWTP estimates for the number of fish kept were statistically different between 

treatment groups, with means ranging from $6.83 to $12.08 per fish. The shapes of 

behavioral models are also affected by CE survey structure. Questionnaire length and 

error variance have an inverted U-shaped relationship, reaching the plateau around 15 

questions. Negative relationships between the number of alternatives and error variance 

and between information diversity and error variance are observed. Increasing the 

number of choices in a choice set decreases the respondent error, but this result may be 

biased because the experiment only included two different levels for the number of 

alternatives. Increasing the number of different pieces of information a respondent must 

process increases the error variance in an estimated model. A slight survey fatigue effect 

is detected but is overshadowed by other forms of task complexity. Testing for individual 

complexity effects is not the same as testing for multiple complexity effects 

simultaneously as the estimations appear to be prone to omitted variable bias. For 

example, order effects were significant in single-source complexity models but not in 

multi-source complexity models. Conversely, the degree of information overlap is 

significant in multi-source models but not in single-source models.  Homogenous models, 

or models that ignore possible sources of task complexity, result in statistically smaller 

parameters than models that account for heterogeneity due to task complexity. Policy 

analysts should strongly consider cognitive responses to survey design when using CE 

surveys for behavioral information and valuation estimates.  

The second chapter of this dissertation focuses on how choice experiments can be 

used to understand changes in catch by exploring the attributes included in econometric 
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models, the functional form of included attributes, inclusion of survey respondents, and 

angler heterogeneity using species-specific random utility models and heterogeneous 

scale logit models. The results of the analyses show that regulatory attributes cannot be 

included directly in stated preference behavioral models because the parameter results are 

nonsensical and inconsistent with observed angler behavior. Nonlinear-in-catch models 

have comparable MWTP estimates and model fit statistics to linear-in catch models, but 

are more realistic due to diminishing marginal utility of catch. Inclusion of responses 

from non-fishery users biases estimated results. Fishery users, identified through self-

reported species targeting, have significantly different utility structures and higher 

MWTP per fish than non-fishery users. Angler age, species experience, and mode have 

the largest effect on utility structures for models incorporating scale parameters 

representing heterogeneity in angler characteristics. 

The third chapter of this dissertation focuses on modeling changes in regulations 

in angler utility functions. Because catch is random, regulations will not be binding on 

every trip. Additionally, regulations have no immediate effect on catch. A framework for 

understanding angler behavior is developed reflecting these two facts, which are often 

overlooked by other studies. Expected keep and release per trip are derived using 

expected catch with distributions truncated by bag limits and minimum size limits. By 

incorporating expectations of keep and release in the angler’s behavior model, analysis of 

regulatory changes are possible given that a utility of expectations is equivalent to 

expected utility for a risk neutral angler. This formulation measures changes in the 

MWTP per trip from regulatory impacts on the underlying distributions for keep and 

release. 
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To analyze longer-term effects of regulations, a series of simulations is conducted 

for different biological and management scenarios. Simulated anglers make trip decisions 

driven by the behavior model from the stated preference survey results. Characteristics of 

the trips taken are summarized to produce estimates of total effort, catch, and WTP (total 

trip values).  The simulation results show that effort declines are small, even with very 

stringent regulations, but total WTP fluctuations are large, reflecting changes in average 

catch per trip and species composition. Additionally, linear-in-catch models exhibit larger 

responses to changes in regulations compared to nonlinear-in-catch models. The meta-

analysis of the simulations revealed that changes in minimum size restrictions are more 

effective for reducing effort and total catch, but cod bag limits have a greater effect on 

total WTP. Haddock bag limits have very little effect on fishery outcomes in terms of 

effort, total WTP, or catch of either species; however, haddock minimum size regulations 

affect effort, total WTP, and haddock catch.  

The simulation results imply that local economies remain relatively unaffected by 

changes in regulations. If there is little variation in the total number of trips taken, then 

there should be little change in consumption of recreational fishing inputs including for-

hire services, bait, and tackle. Policy managers should use minimum size limits to alter 

effort and harvest levels and preserve fishery value. 
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Appendix A: Brochure and Survey Instrument 

Figure 19. Intercept survey brochure, side 1.  
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Figure 20. Intercept survey brochure, side 2. 
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Figure 21. Survey cover page. 

  

North Atlantic Saltwater 
Recreational Fishing Survey 

Help us improve your recreational fishing experience! 
 

Questions? Call 301.713.2328 x104 or email Sonia.Jarvis@NOAA.gov. 

This survey is entirely voluntary.  
All responses are confidential. 

Sponsored by NOAA Fisheries 
(National Marine Fisheries Service) 
Office of Science and Technology 
http://www.st.nmfs.noaa.gov/st5/RecFishEcon.html 

OMB Control Number 0468-0052 expires 04/30/2011 FME Series 01LE12CE01 
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Figure 22. Information page (page 2 of survey). 

 
  

ATLANTIC SALTWATER GROUNDFISH IN THIS SURVEY 

ATLANTIC COD 

 

Also known as “codfish” and “cod” 
Fishing season varies by state 
Average weight is 5-10 pounds 
Average length is 20-30 inches 
Maximum published weight is 211.2 pounds 
Maximum published length is 78.7 inches 
Daily limit varies by state* 
Minimum size in Federal waters is 22 or 24 inches 
depending on location* 

HADDOCK 

 

Can usually be fished year-round 
Average weight is 2-5 pounds 
Average length is 18-23 inches 
Maximum published weight is 37 pounds 
Maximum published length is 44.1 inches 
No daily limit* 
Minimum size in Federal waters is 18 inches* 

POLLOCK 

 

Also known as “Boston bluefish” 
Can usually be fished year-round 
Average weight is 4-15 pounds 
Average length is 22-26 inches 
Maximum published weight is 70.4 pounds 
Maximum published length is 51.2 inches 
No daily limit* 
No minimum size in Federal waters* 

*Regulations as of May 1, 2009 Images © NHFG / Victor Young Illustrations 

Questions? Call Sonia Jarvis at 301.713.2328 x104 or email Sonia.Jarvis@NOAA.GOV 2 
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Figure 23. Section A (page 3 of survey). 

  

The questions on this page are about YOU and YOUR fishing activities. 
Do not include any information from other fishing party or household members. 

Please print clearly and fill in boxes with a with a  or . 

SECTION A: YOUR SALTWATER FISHING ACTIVITIES 

1 Which of the following species have you personally caught or tried to catch in the last five years? 
 (Please mark all that apply.) 

  Cod   Haddock   Pollock 

2 Which of the following species have you personally caught or tried to catch last season? 
 (Please mark all that apply.) 

5 How many fishing trips did you take last season for cod, haddock, or pollock on a party boat, 
open boat, or head boat? (A party boat, open boat, or head boat is a boat that takes paying 
passengers for a defined length of time where the fee paid is per person.) 

3 What is the total number of fishing trips you took last season for cod, pollock, or haddock? 

6 How many fishing trips did you take last season for cod, haddock, or pollock using a private 
charter boat?  (A private charter boat is a boat that takes paying passengers for a defined length of 
time where the fee paid rents the boat and captain, regardless of the number of passengers so long 
as the legal limit for the vessel is not exceeded.). 

   

   

   

4 How many fishing trips did you take last season for cod, haddock, or pollock on a private boat? 
(A private boat is a boat owned by you, a friend, or an acquaintance where you did not have to pay any 
rental fees for the vehicle used on the trip.) 

   

  Cod   Haddock   Pollock 

Questions? Call Sonia Jarvis at 301.713.2328 x104 or email Sonia.Jarvis@NOAA.GOV 3 
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Figure 24. Sample choice experiment (pages 4-27, Base and Length treatments). 

  

Questions? Call Sonia Jarvis at 301.713.2328 x104 or email Sonia.Jarvis@NOAA.GOV 4 

2      Please rate the trips listed in the table above. (Circle the number that reflects your opinion best.) 

 TRIP A DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

 TRIP B DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

 TRIP C DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

Please compare Trip A, Trip B, and Trip C in the table below, then answer questions 1 and 2. 
Compare only the trips on this page. Do not compare these trips to trips on other pages in this survey. 

Assume that the trips below are identical in every way except for the features listed in the table. 
All regulations remain as they are today unless otherwise noted in the table below. 

TRIP FEATURES  TRIP A  TRIP B  TRIP C 

 

DAILY BAG (TAKE) LIMIT 
Number of fish you can legally keep per day. 

 4 Pollock  10 Cod  

Do 
something 
other than 
saltwater 
fishing. 

MINIMUM SIZE LIMIT 
Smallest fish you can legally keep of this species. 

 

23 inch 
Pollock 

 

22 inch 
 Cod 

 

  

NUMBER OF LEGAL-SIZE FISH YOU CATCH 
These fish are at least legal minimum size. Some fish are 
released if you catch more than the daily bag limit. 

 10 Pollock  1 Cod  

NUMBER OF UNDERSIZED FISH YOU CATCH 
These fish are below the legal minimum size. All of these fish 
must be released. 

 1 Pollock  3 Cod  

NUMBER OF OTHER FISH YOU KEEP 
Other fish you catch on this trip that can be legally kept. 

 

3 Cod 
6 Haddock 

 

1 Haddock 
3 Pollock 

 

 

TRIP LENGTH 
Total time purchased for this trip. 

 8 Hours  12 Hours  

TOTAL TRIP COST 
YOUR share of the fishing trip cost, including bait, ice, fishing 
equipment, daily license fees, boat rental fees, boat fuel, and 
round trip transportation costs associated with traveling to 
and from the fishing location. Travel costs may include vehicle 
fuel, car rental, tolls, airfare, and parking. This cost does not 
include the price of food or drink.  

 $312  $276  

        

1      I like this trip best: 
(Please mark the ONE option YOU like best with a  or ) 

 

TRIP A   

TRIP B   

TRIP C  

SECTION B: SALTWATER FISHING TRIPS 
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Figure 25. Sample choice experiment (pages 4-11, 3-Alternative treatment). 

  

2      Please rate the trips listed in the table above. (Circle the number that reflects your opinion best.) 

 TRIP A DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

 TRIP B DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

 TRIP C DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

 TRIP D DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

Please compare Trip A, Trip B, Trip C, and Trip D in the table below, then answer questions 1 and 2. 
Compare only the trips on this page. Do not compare these trips to trips on other pages in this survey. 

Assume that the trips below are identical in every way except for the features listed in the table. 
All regulations remain as they are today unless otherwise noted in the table below. 

TRIP FEATURES  TRIP A  TRIP B  TRIP D 

 

DAILY BAG (TAKE) LIMIT 
Number of fish you can legally keep per day. 

 10 Cod  8 Cod  

Do 
something 
other than 
saltwater 
fishing. 

MINIMUM SIZE LIMIT 
Smallest fish you can legally keep of this species. 

 

18 inch 
Cod 

 

20 inch 
Cod 

 

  

NUMBER OF LEGAL-SIZE FISH YOU CATCH 
These fish are at least legal minimum size. Some 
fish are released if you catch more than the daily 
bag limit. 

 10 Cod  6 Cod  

NUMBER OF UNDERSIZED FISH YOU CATCH 
These fish are below the legal minimum size. All of 
these fish must be released. 

 1 Cod  3 Cod  

NUMBER OF OTHER FISH YOU KEEP 
Other fish you catch on this trip that can be legally 
kept. 

 

6 Haddock 
3 Pollock 

 

1 Haddock 
1 Pollock 

 

 

TRIP LENGTH 
Total time purchased for this trip. 

 2 Hours  8 Hours  

TOTAL TRIP COST 
YOUR share of the fishing trip cost, including bait, 
ice, fishing equipment, daily license fees, boat 
rental fees, boat fuel, and round trip 
transportation costs associated with traveling to 
and from the fishing location. Travel costs may 
include vehicle fuel, car rental, tolls, airfare, and 
parking. This cost does not include the price of 
food or drink.  

 $78  $312  

        

1      I like this trip best: 
(Please mark ONE option YOU like best 

with a  or ) 

 

TRIP A   

TRIP B   

TRIP D  

SECTION B: SALTWATER FISHING TRIPS 

TRIP C 

10 Haddock 

12 inch 
Haddock 

1 Haddock 

1 Haddock 

3 Cod 
6 Pollock 

10 Hours 

$70 

 

TRIP C  
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Questions? Call Sonia Jarvis at 301.713.2328 x104 or email Sonia.Jarvis@NOAA.GOV 4 
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Figure 26. Sample choice experiment (pages 4-11, Shore treatment). 

  

Questions? Call Sonia Jarvis at 301.713.2328 x104 or email Sonia.Jarvis@NOAA.GOV 4 

2      Please rate the trips listed in the table above. (Circle the number that reflects your opinion best.) 

 TRIP A DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

 TRIP B DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

 TRIP C DISLIKE 1 2 3 4 5 6 7 8 9 10 LIKE 

SECTION B: SALTWATER FISHING TRIPS 
Please compare Trip A, Trip B, and Trip C in the table below, then answer questions 1 and 2. 

Compare only the trips on this page. Do not compare these trips to trips on other pages in this survey. 
Assume that the trips below are identical in every way except for the features listed in the table. 

All regulations remain as they are today unless otherwise noted in the table below. 

TRIP FEATURES  TRIP A  TRIP B  TRIP C 

 

DAILY BAG (TAKE) LIMIT 
Number of fish you can legally keep per day. 

 8 Pollock  4 Cod  

Do 
something 
other than 
saltwater 
fishing. 

MINIMUM SIZE LIMIT 
Smallest fish you can legally keep of this species. 

 

23 inch 
Pollock 

 

24 inch 
Cod 

 

  

NUMBER OF LEGAL-SIZE FISH YOU CATCH 
These fish are at least legal minimum size. Some fish are 
released if you catch more than the daily bag limit. 

 1 Pollock  3 Cod  

NUMBER OF UNDERSIZED FISH YOU CATCH 
These fish are below the legal minimum size. All of these fish 
must be released. 

 3 Pollock  1 Cod  

NUMBER OF OTHER FISH YOU KEEP 
Other fish you catch on this trip that can be legally kept. 

 

1 Cod 
3 Haddock 

 

6 Haddock 
1 Pollock 

 

 

TOTAL TRIP COST 
YOUR share of the fishing trip cost, including bait, ice, fishing 
equipment, daily license fees, boat rental fees, boat fuel, and 
round trip transportation costs associated with traveling to 
and from the fishing location. Travel costs may include vehicle 
fuel, car rental, tolls, airfare, and parking. This cost does not 
include the price of food or drink.  

 $15  $120  

        

1      I like this trip best: 
(Please mark the ONE option YOU like best with a  or ) 

 

TRIP A   

TRIP B   

TRIP C  
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Figure 27. Survey last page (back cover). 

SECTION N: ABOUT YOU AND YOUR HOUSEHOLD 
1 Are you male or female? Male Female 

3 What is the highest level of education you have completed? (Please mark only one category.) 

Some high school 4-year degree 

High school graduate or GED completion Some graduate school 

2-year degree or trade school graduate Master’s degree (ex: MA, MS, MBA) 

Attended some college Professional or doctoral degree 

4 What is your ethnic background? (Please mark all that apply.) 

White Asian or Pacific Islander 

Black or African American American Indian 

Hispanic or Latino Other: ___________________________ 

5 Which of the following categories best describes your household’s total annual income before 
taxes in 2008? (Please mark only one category.) 

Less than $20,000 $80,000—99,999  

$20,000—39,999 $100,000—149,999 

$40,000—59,999 $150,000—199,999 

$60,000—79,999 $200,000 or more 

6 Was this survey completed by the person to whom it was mailed? Yes No 

THANK YOU FOR PARTICIPATING! 

Your answers to this survey will help us better manage our fisheries. If you have any questions or comments 
regarding the survey, contact Sonia Jarvis at 301.713.2328 x104 or email Sonia.Jarvis@NOAA.gov. 

Cover page image courtesy of Kevin Sullivan, New Hampshire Fish and Game Department. Notwithstanding any other provisions of the law; no person is required to 
respond to, nor shall any person be subject to a penalty for failure to comply with a collection of information subject to the requirement of the Paperwork Reduction Act, 
unless that collection of information displays a currently valid OMB Control Number. Public reporting burden for this survey is estimated to average 20 minutes per re-
sponse, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the 
collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden, to Sonia Jarvis, NMFS F/ST5, 1315 East West Highway, Silver Spring, MD 20901. 

2 How old are you? 18-24 years 25-44 years 45-64 years 65 years and over 
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Appendix B: Experimental Designs 

Overview of Optimal Experimental Designs 

Optimal design methodology has arisen in response to situations where classical 

tabulated designs (full factorial, fractional factorial, Latin squares, Box-Behnken, etc.) 

are incapable of adequately addressing the experiment. In this case, the need for a non-

classical tabulated design comes from a mixture of model nonlinearity and an odd 

combination of factor-level requirements. The terms factor and attribute are used 

interchangeably in the literature to denote variables of interest. The term level refers to 

fixed values for factors that have more than one value (some factors may have only one 

value). A researcher desires to use an optimal design because it ensures that the outcome 

of his experiments, the fitted mathematical function (or model), results in predicted 

values that are close to the observed raw data. Changes to the experimental design 

directly affects the degree of control a researcher has on the fit of models, particularly 

when external restrictions are imposed. As stated by Johnson and Mansfield (2008), “no 

amount of complex analysis can compensate for a poor survey design that can generate 

only flawed [CE] data.” 

A good experimental design ensures that factor effects are not contaminated by 

other factor effects or the survey design. The goal is to construct a model-dependent 

design that enables the estimation of all primary relationships, has capacity for an 

alternative model, minimizes variation in estimated coefficients, increases sample size 

where necessary to minimize influences by noisy areas or capture steep changes in the 

model, replicates sample points as much as possible, and randomizes the sequence of data 

values during collection (Croarkin & Tobias, 2010). The use of efficiency-maximizing 
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algorithms does not guarantee designs that are mathematically optimal, but the results are 

commonly accepted as such.  

Analyses of experimental designs with factor-level matrices X are based on X!X, 

the sum of squares (or information matrix); (X!X)-1, the matrix inverse of the sum of 

squares; and the eigenvalues of the inverse, A. The main attributes of interest when 

considering the optimality of potential designs are balance and orthogonality. A balanced 

design is an experimental design where all runs p have the same number of observations, 

guaranteeing an orthogonal relationship between the intercept and each effect. A run or 

factor combination is one alternative (vector of attributes) in a choice experiment. 

Mathematically, all off-diagonal elements in the intercept row and column are zero for 

(X!X)-1. An orthogonal design is one where combinations of levels for specific factors are 

proportional or equal, and the submatrix of (X!X)-1 excluding the intercept row and 

column is diagonal. A balanced and orthogonal design meets specific efficiency criteria 

so that, for N repetitions of the design, (X!X)-1 is diagonal and X!X = NI where I is an 

identity matrix of dimensions equal to the number of runs in the experiment. 

There are four main types of efficiency criteria. To achieve D-optimality, the 

experimental design minimizes the generalized variance of the parameter estimates 

(measured by the geometric mean of the eigenvalues |(X!X)-1|1/p). In A-optimality, the 

experimental design minimizes the average variance of the parameter estimates 

(measured by tr((X!X)-1)/p). G-optimal experimental designs maximize the maximum 

variance of the predicted values as measured by the maximum standard error of 

prediction over the candidate set. V-optimal designs minimize the average variance of the 

predicted values. A-, D-, and G- efficiency measures are convex functions of A and are 
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usually correlated. All three measures increase when designs tend towards balance and 

orthogonality. The most common experimental design algorithms are based on 

maximizing D-efficiency because the algorithms are less computationally expensive than 

any of the other methods and the ratio of any two designs does not change, whereas some 

measures (e.g., A-efficiency) may vary depending on the coding scheme. 

Only full-factorial designs achieve D-efficiency scores of 100. Full-factorial 

designs contain every possible combination of attribute and attribute level. It is not 

possible to administer such surveys in most cases either due to cost or respondent burden. 

For example, a three alternative, three attribute study with three levels per attribute would 

require 33 x 33 x 33 = 19,683 choice sets for an orthogonal and balanced design (Louviere 

et al., 2000). Most experimental designs employed in the social sciences are blocked 

fractional-factorial designs with D-efficiency scores below 100. Subsets of choice 

experiments are selected from the full-factorial and then arranged into several blocks or 

survey versions, minimizing respondent burden, but also reducing the ability to identify 

all combinations of attribute effects. 

Researchers may elect to cleanly estimate any combination of main effects and 

interaction effects. A main effect is a change in the outcome variable Y based on a change 

in one factor xj. For example, increasing the number of candies consumed by a child from 

3 to 10 induces 2 additional tantrums. An interaction effect is a non-additive change in 

the outcome variable Y based on a change in two or more factors xj and xk. For example, 

combinations of water and light levels have different effects on plant height. Desired 

estimable effects must be explicitly specified in the design search algorithm for 

fractional-factorial designs; otherwise, other effects may confound the results. The 
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number and type of attribute effects selected determines the design’s D-efficiency score 

and the total number of choice experiments that must be run to achieve the statistical 

properties desired. In the example above, only 243 choice sets are required to identify all 

main effects and two-way interaction effects. This number can be divided among several 

blocks to minimize respondent burden. The three-alternative example survey could be 

decomposed into 27 versions with 9 questions each, or 9 versions with 27 questions each. 

Utility and the Experimental Design 

Based on Lancaster’s approach to consumer theory (1966, 1971) and random 

utility theory, the basic assumptions of the CE stated preference technique are that the 

utility of a good consists of the utility of the attributes characterizing the good and the 

researcher is only able to observe a component of the consumer’s utility function. 

Classically, the utility function is assumed to be a linear-in-parameters function of 

product attributes and net income, 

Vikn(Mn – Pik, zik, !ikn) = "L + !ikn, (B.1) 

where Vikn denotes the indirect utility of individual n for choosing alternative i from CE 

k, Mn is the respondent’s annual household income, Pik is the price of alternative i in 

choice set k, L = [Mn – Pikzik´]´ is a column vector of regressors, and the row vector "  = 

["M "z] represents the portion of the individual’s utility function (part-worths) that are 

attributable to characteristics of the environmental good or policy specified in L. The 

random component or error term !ikn may include characteristics of the alternative 

omitted by the researcher, measurement errors, unobserved characteristics of the 

individual, or the choice context. 



 

 144 

The individual n is assumed to choose alternative i from CE k if the utility of that 

alternative exceeds the utility associated with any other alternative in the choice set Skn, 

which can be expressed as the probability 

Pkn(i |Skn) = Pr[Vikn(Mn - Pik, zik, !ikn) * Vjkn(Mn - Pjk, zjk, !jkn)] 
 $ j ) i % Skn. (B.2) 

Using the linear-in-parameters specification above, the probability function can be 

rewritten as  

!!"# ! !"# ! !!!!!"!!" !

!! !"# ! !!!!!"!!"
!!

!!!
. (B.3) 

Assuming completely independent choices, the log-likelihood function is thus 

!" ! ! ! !!"# !" !!"#!
!!!

!
!!!

!
!!! , (B.4) 

where yikn is 1 if individual n chooses alternative i in CE k, 0 otherwise. 

Optimal experimental designs are selected such that the vectors zik minimize the 

variance-covariance matrix of the parameter estimates ", which is asymptotically 

equivalent to  

, (B.5) 
where !!"# ! !!" ! !!"!!"#!

!!! . (B.6) 

If the assumed " used in constructing the design is correct and there are no external 

sources of variance, then the variance matrix of the design should be very close, if not 

exactly, the variance matrix of the resulting analysis. Equation B.5 shows how increasing 

the number of alternatives, choice sets per respondent, and number of respondents 

increases the statistical efficiency of the design and minimizes the variance-covariance 

matrix of ". Further information regarding optimal design and econometric methods can 

be found in Train (2003) and in Kuhfeld’s SAS documentation (Kuhfeld, 2009).  
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Appendix C: Simulation Results 

Table 53. Expected Keep Using Theoretical Framework 
Regulations 2011 2012 2013 2014 2015 

C: 20", 10 fish 5.16 5.12 5.12 5.11 5.11 
C: 20", 20 fish 6.00 5.96 5.95 5.94 5.94 
C: 22", 10 fish 4.97 4.91 4.91 4.89 4.89 
C: 22", 15 fish 5.66 5.58 5.58 5.56 5.56 
C: 24", 10 fish 4.70 4.59 4.59 4.55 4.55 
C: 24", 8 fish 4.25 4.15 4.15 4.12 4.12 
C: 26", 10 fish 4.40 4.24 4.24 4.19 4.19 
C: 26", 5 fish 3.04 2.93 2.93 2.90 2.90 
C: 26", 8 fish 3.98 3.84 3.84 3.80 3.80 
H: 14", no limit 3.72 3.72 3.72 3.72 3.72 
H: 16", no limit 3.71 3.71 3.71 3.71 3.71 
H: 18", 10 fish 3.19 3.17 3.16 3.16 3.16 
H: 18", no limit 3.66 3.64 3.63 3.63 3.63 
H: 19", no limit 3.61 3.58 3.56 3.56 3.56 
H: 20", 10 fish 3.07 2.96 2.91 2.91 2.91 
H: 20", 15 fish 3.32 3.20 3.15 3.15 3.15 
H: 20", no limit 3.52 3.40 3.34 3.34 3.34 
H: 21", 10 fish 2.89 2.76 2.69 2.68 2.69 
 
Table 54. Expected Release Using Theoretical Framework 

Regulations 2011 2012 2013 2014 2015 
C: 20", 10 fish 1.09 1.12 1.12 1.13 1.13 
C: 20", 20 fish 0.25 0.29 0.29 0.30 0.30 
C: 22", 10 fish 1.28 1.34 1.34 1.36 1.36 
C: 22", 15 fish 0.59 0.66 0.66 0.69 0.69 
C: 24", 10 fish 1.55 1.66 1.66 1.69 1.69 
C: 24", 8 fish 1.99 2.09 2.09 2.12 2.12 
C: 26", 10 fish 1.85 2.00 2.00 2.05 2.05 
C: 26", 5 fish 3.21 3.31 3.31 3.35 3.35 
C: 26", 8 fish 2.27 2.41 2.41 2.45 2.45 
H: 16", no limit 3.72 3.72 3.72 3.72 3.72 
H: 18", 10 fish 3.71 3.70 3.70 3.70 3.70 
H: 18", no limit 3.71 3.70 3.70 3.70 3.70 
H: 19", no limit 3.69 3.68 3.68 3.68 3.68 
H: 20", 10 fish 3.67 3.64 3.62 3.62 3.62 
H: 20", 15 fish 3.67 3.64 3.62 3.62 3.62 
H: 20", no limit 3.67 3.64 3.62 3.62 3.62 
H: 21", 10 fish 3.61 3.57 3.55 3.55 3.55 
H: 14", no limit 3.72 3.72 3.72 3.72 3.72 
H: 18", no limit 3.71 3.70 3.70 3.70 3.70 
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Table 55. Simulated Catch Estimates Averaged Across Scenario Years (LIC Model) 

Regulations 
Total Cod 

Kept 
Total Cod 
Released 

Total Haddock 
Kept 

Total Haddock 
Released 

20 C * 20", any H * 14" 1,582,754 179,185 1,019,669 4,419 
10 C * 20", any H * 18" 1,293,151 144,147 968,280 44,066 
15 C * 22", any H * 16" 1,379,355 299,736 1,003,076 14,834 
15 C * 22", any H * 18" 1,377,738 298,964 969,773 44,182 
10 C * 22", any H * 16" 1,217,924 261,760 999,165 14,739 
10 C * 22", any H * 18" 1,216,340 260,989 965,988 43,912 
10 C * 22", 15 H * 20" 1,212,535 259,119 842,278 88,187 
2 C * 22", any H * 18" 415,577 62,957 933,590 41,898 
10 C * 23", any H * 18" 1,195,206 292,128 965,129 43,869 
2 C * 23", any H * 18" 414,437 71,611 933,738 41,907 
10 C * 24", any H * 16" 1,160,422 345,808 996,694 14,690 
10 C * 24", any H * 18" 1,158,870 344,809 963,619 43,768 
10 C * 24", any H * 19" 1,157,178 343,625 925,538 76,794 
8 C * 24", 10 H * 18" 1,052,783 309,332 789,009 34,875 
2 C * 24", any H * 18" 412,407 86,804 933,923 41,909 
10 C * 26", any H * 18" 1,072,476 467,591 960,425 43,586 
10 C * 26", any H * 20" 1,070,080 465,222 900,378 95,589 
5 C * 26", 10 H * 21" 775,739 318,232 718,946 110,249 
 
Table 56. Simulated Catch Estimates Averaged Across Scenario Years (NIC Model) 

Regulations 
Total Cod 

Kept 
Total Cod 
Released 

Total Haddock 
Kept 

Total Haddock 
Released 

20 C * 20", any H * 14" 1,751,047 206,515 1,108,469 5,010 
10 C * 20", any H * 18" 1,467,583 172,251 1,060,140 50,988 
15 C * 22", any H * 16" 1,546,763 352,564 1,094,242 17,045 
15 C * 22", any H * 18" 1,545,379 351,873 1,059,371 50,900 
10 C * 22", any H * 16" 1,385,337 314,518 1,093,648 17,027 
10 C * 22", any H * 18" 1,383,774 313,775 1,058,785 50,852 
10 C * 22", 15 H * 20" 1,380,785 312,330 935,612 104,719 
2 C * 22", any H * 18" 476,766 91,742 1,031,391 48,996 
10 C * 23", any H * 18" 1,359,807 351,846 1,058,258 50,816 
2 C * 23", any H * 18" 475,095 104,734 1,031,793 49,007 
10 C * 24", any H * 16" 1,319,375 417,483 1,091,895 16,991 
10 C * 24", any H * 18" 1,317,907 416,643 1,057,125 50,745 
10 C * 24", any H * 19" 1,316,109 415,590 1,016,744 89,466 
8 C * 24", 10 H * 18" 1,209,470 380,738 893,813 42,379 
2 C * 24", any H * 18" 471,829 128,025 1,032,327 49,010 
10 C * 26", any H * 18" 1,216,376 565,016 1,054,631 50,573 
10 C * 26", any H * 20" 1,213,723 563,028 990,568 111,782 
5 C * 26", 10 H * 21" 892,091 403,910 816,677 136,224 
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Table 57. Simulated Catch Estimates Averaged Across Scenario Years (NICU Model) 

Regulations 
Total Cod 

Kept 
Total Cod 
Released 

Total Haddock 
Kept 

Total Haddock 
Released 

20 C * 20", any H * 14" 1,765,050 208,648 1,115,547 5,078 
10 C * 20", any H * 18" 1,481,631 174,460 1,067,558 51,657 
15 C * 22", any H * 16" 1,559,850 356,539 1,101,473 17,253 
15 C * 22", any H * 18" 1,558,823 355,997 1,066,641 51,554 
10 C * 22", any H * 16" 1,398,326 318,470 1,101,078 17,242 
10 C * 22", any H * 18" 1,397,046 317,867 1,066,248 51,513 
10 C * 22", 15 H * 20" 1,394,460 316,590 943,064 106,197 
2 C * 22", any H * 18" 480,159 93,665 1,040,196 49,774 
10 C * 23", any H * 18" 1,372,679 356,394 1,065,671 51,479 
2 C * 23", any H * 18" 478,496 106,887 1,040,548 49,778 
10 C * 24", any H * 16" 1,331,458 422,742 1,099,434 17,212 
10 C * 24", any H * 18" 1,330,276 422,067 1,064,638 51,420 
10 C * 24", any H * 19" 1,328,713 421,148 1,024,159 90,627 
8 C * 24", 10 H * 18" 1,221,057 385,903 901,079 43,039 
2 C * 24", any H * 18" 475,208 130,615 1,041,104 49,786 
10 C * 26", any H * 18" 1,227,251 572,125 1,062,038 51,252 
10 C * 26", any H * 20" 1,225,092 570,443 997,991 113,282 
5 C * 26", 10 H * 21" 901,296 410,368 824,636 138,672 
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