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The purpose of the study was to assess and demonstrate the use of diagnostics for 

samples matched with propensity scores in multilevel settings. A Monte Carlo 

simulation was conducted that assessed the ability of different balance measures to 

identify the correctly specified propensity score model and predict bias in treatment 

effect estimates. The balance diagnostics included absolute standardized bias (ASB) 

and variance ratios calculated across the pooled sample as well as the same balance 

measures calculated separately for each cluster and then summarized across the 

sample (within-cluster balance measures). The results indicated that overall across 

conditions, the pooled ASB was most effective for predicting treatment effect bias but 

the within-cluster ASB (summarized as a median across clusters) was most effective 

for identifying the correctly specified model. However, many of the within-cluster 

balance measures were not feasible with small cluster sizes. Empirical illustrations 



 
 

from two distinct datasets demonstrated the different approaches to modeling, 

matching, and assessing balance in a multilevel setting depending on the cluster size. 

The dissertation concludes with a discussion of limitations, implications, and topics 

for further research. 
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Chapter 1. Introduction 

 A primary objective in evaluation research is to establish a cause-and-effect 

relation between a policy or program and its intended outcomes. Providing such evidence 

on the effectiveness of a policy or program, which will be referred to as “treatment” in 

this dissertation, is important for both formative and summative purposes. In education, 

program evaluations can help district leaders, principals, and teachers determine whether 

a treatment is working as intended and make informed decisions about how to adapt it to 

make it more effective. Evaluations can also help funders, such as the U.S. Department of 

Education or foundations, determine whether to continue funding a treatment or to invest 

in others. Over the last decade, the federal government has heavily invested in systematic 

reviews in fields such as education (What Works Clearinghouse, U.S. Department of 

Education), home visiting (Home Visiting Evidence of Effectiveness, U.S. Department of 

Health and Human Services), teen pregnancy prevention (Teen Pregnancy Prevention 

Evidence Review, U.S. Department of Health and Human Services), and labor 

(Clearinghouse for Labor Evaluation and Research, U.S. Department of Labor) that 

summarize the causal effects of a treatment, and these reviews often determine which 

programs receive funding.  

 As a result, evaluation researchers are increasingly interested in how to design 

studies so that they can establish a causal relation between the treatment and its intended 

outcomes. Research design features, such as how individuals came to receive their 

treatment and the similarity of individuals across treatment conditions, are the basis for 

whether cause can be established. Ideally, individuals are randomly assigned to treatment 

conditions so that any variables that might confound with the treatment are randomly 
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distributed across both conditions. However, this is not always feasible or desirable in 

applied settings in which individuals may voluntarily elect to receive a treatment or are 

selected based on specific criteria. An added complication to designing applied 

evaluation studies is that individuals are often nested together within organizational 

structures, such as schools, and the selection process and implementation of the treatment 

may vary across those schools. Such data structures typically require the use of multilevel 

models to account for variations in the outcome and the relation between predictor 

variables and the outcome across clusters. 

 Propensity score (PS) matching is a useful approach for designing studies with 

comparable treatment and control groups when randomization is not feasible. A PS is a 

balancing score that represents the propensity that a unit is selected for treatment 

(Rosenbaum & Rubin, 1983). PS matching involves a four step process: (1) modeling the 

PS using variables that are related to treatment selection and/or the outcome, (2) 

matching treated units to control units with similar PS estimates, (3) performing 

diagnostics on the matched sample, and (4) estimating the treatment effect with the 

matched sample. The diagnostic step is even more critical with PS matching than with a 

randomized controlled trial because the researcher must make a convincing case that the 

resulting treatment effect estimates are unbiased. To do so, the researcher must evaluate 

whether the units in the treatment and control groups have similar means and 

distributions of the measured covariates, a feature known as balance.  

 Although PS matching has recently been extended to multilevel settings, it is not 

yet clear how to apply diagnostic procedures to nested data structures. The study 

described in this dissertation tested several possible measures for evaluating balance of 
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multilevel PS-matched samples. The balance measures were evaluated based on two 

criteria: 1) ability to identify the best fitting PS model and 2) ability to predict bias in the 

treatment effect estimate. Findings from the study expand the literature on methods for 

multilevel PS matching and provide guidance to researchers wanting to assess balance 

under several multilevel contexts. 

 Using a Monte Carlo simulation, the study compares various methods of 

summarizing balance measures in multilevel settings. Two important balance measures in 

single-level settings are absolute standardized bias (ASB) and variance ratios. ASB 

measures the absolute standardized difference in means between treatment and control 

units on the covariate of interest, and a variance ratio is simply the ratio of the variance of 

the treatment group to the variance of the control group on the covariate. When PS 

matching is implemented in multilevel settings, these balance measures may be pooled 

across the sample while ignoring cluster membership, or they may be calculated 

separately within each cluster and then summarized. For example, a researcher taking the 

pooled approach would calculate the ASB for the full sample, whereas a researcher 

taking the within-cluster approach may calculate the ASB for each cluster and then report 

the mean or median of the cluster ASBs. Researchers undertaking PS matching in 

multilevel settings have used both approaches, yet neither had been previously 

corroborated by methodological research. The dissertation tested several variations of 

both pooled and within-cluster ASB and variance ratios for evaluating balance in studies 

that utilize multilevel PS matching.  

 Based on prior research, I hypothesized that the preferred balance measure should 

depend on several factors, including the size of the clusters, the value of the intracluster 
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correlation coefficients (ICCs) of the unit-level covariates, the extent of the 

misspecification of the PS model, and the matching method. These factors were 

manipulated in the Monte Carlo simulation to better understand the conditions in which 

different balance measures would be useful. More detailed hypotheses are provided at the 

end of Chapter 2. 

 In addition to the methodological study, I also conducted two empirical 

illustrations of multilevel PS matching using real data. The first illustration used student 

achievement data clustered at the classroom level, and the second used a worldwide 

youth health survey clustered at the country level. Both illustrations demonstrate the four 

steps in PS matching with a multilevel dataset, while using the recommended balance 

summary measures from the simulation study based on the cluster size and other 

characteristics of the data. This not only helped to verify that the recommended 

procedures are feasible to implement with real datasets but also identified additional 

challenges in applied settings that should be considered in future research. The empirical 

illustrations serve as models to applied researchers wishing to implement PS matching in 

similar multilevel contexts. 

 The dissertation is divided into six chapters. The next chapter lays out the 

conceptual framework and reviews the literature on PS matching with the recent 

expansion to multilevel settings. Chapter 3 describes the design of the simulation study 

that assesses balance measures for multilevel PS matching, and Chapter 4 provides the 

simulation results. Chapter 5 then shifts the focus to the empirical illustrations and 

includes a brief background on those datasets and a description of the empirical methods 

and results. Finally, the dissertation concludes in Chapter 6 with a summary of the results 
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from the simulation and the empirical illustrations, a discussion of the implications of the 

findings, acknowledgement of the study’s limitations, and suggestions for future 

research. 
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Chapter 2. Review of the Literature 

 As described in the previous chapter, the purpose of the dissertation is to better 

understand diagnostic tools that can be used to assess covariate balance when 

implementing PS matching with multilevel data. This chapter aims to expound upon the 

literature motivating the study, drawing together research in both educational and medical 

statistics and insights from methodological and applied studies. It begins with an 

introduction to causal inference and the invention of PS methods for establishing cause in 

observational studies. It then explains each of the steps required for implementing PS 

methods, including modeling the PS, conditioning on the PS, performing diagnostics, and 

estimating the TE. The chapter then describes approaches for using PS methods in 

multilevel contexts, including the current gaps in this literature. Finally, the chapter 

concludes with research questions for the Monte Carlo simulation study to investigate the 

use of diagnostic measures for multilevel PS matching. 

2.1 Potential Outcomes Framework 

 The fundamental problem of causality is that we can only observe one potential 

outcome for each person (Holland, 1986). The counterfactual, or the unobserved 

outcome, is unknown because the same person cannot simultaneously serve as both the 

treatment and the control. A person receiving treatment can be compared to a person not 

receiving the treatment, or can be compared to himself at another point in time. Rubin’s 

(1974) model for causal inference is the one most often used in statistics and social 

sciences to understand this problem and how it can be resolved (Schafer & Kang, 2008). 

To understand this model, a few key terms must be defined. In the equations that follow, 

Yi(Di) represents the potential outcomes for each individual i. In the case of a binary 
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treatment indicator, Di equals 1 for person i in the treatment condition and 0 for person i 

in the control.  

 First, the individual treatment effect (ITE), is the difference between the outcomes 

for an individual receiving treatment compared to if he or she had not received treatment. 

The ITE, which cannot be determined, can be written as follows:  

(1) (0)i i iY Y           (1) 

 Because the ITE cannot be observed, the average treatment effect (ATE), is 

typically of interest. This is the expected value of the ITE over the population: 

 [ (1) (0)]ATE E Y Y           (2) 

 However, the ATE is not always of interest, because the treatment may be 

designed for a very specific group of people and the effect should not be estimated for 

those whom the treatment was not intended. In this case, the average treatment effect on 

the treated (ATT) may be of greater interest because it focuses explicitly on the treatment 

effect (TE) for those who received treatment. It is defined as: 

[ (1) | 1] [ (0) | 1]ATT E Y D E Y D          (3) 

As with the counterfactual of the ITE, the counterfactual of the ATT cannot be observed, 

since only those in the treatment group are of interest and they cannot receive two 

conditions at once. As such, researchers interested in the ATT must find an adequate 

substitute for the counterfactual that allows them to meet the assumptions outlined below 

(Caliendo & Kopeinig, 2008).  

 2.1.1 Assumptions for causal inference. In order to estimate the ATE or ATT 

without bias, one must meet several assumptions (Rubin, 1978; 1980). First, one must 

assume that the treatment is the same for all individuals and that a treatment applied to 
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one individual does not affect the outcome of another individual (Rubin, 1980). This set 

of assumptions is referred to as the stable unit treatment value assumption (SUTVA). As 

will be discussed in later sections of this chapter, SUTVA is unlikely to hold in multilevel 

studies unless the researcher accounts for this design feature in the analysis.  

 Second, there should be no unmeasured confounders, an assumption known as 

unconfoundedness (Rubin, 1978). This can also be thought of as an independence 

assumption, as it requires that treatment assignment and potential outcomes are 

independent (Holland, 1986). This assumption can be met through randomization of 

treatment status or through conditioning on variables. Once all covariates that could 

influence treatment assignment and the outcomes are incorporated into the TE model, any 

differences on the outcome between those who receive treatment and those who receive 

the counterfactual is solely due to treatment status.  

 Finally, one must meet the assumption of common support, also known as 

overlap. That is, there is a positive probability of receiving both the treatment and the 

control for all possible values of the covariates (Rosenbaum & Rubin, 1983). If certain 

individuals have a 0 probability of receiving a condition, then it is not possible to 

estimate their causal effects because the alternative would not be possible for them. 

Empirical studies typically define common support in terms of the overlap in PS 

distributions and discard any units with PS estimates outside the range of the opposite 

group (Stuart, 2010). Together, Rosenbaum and Rubin refer to the unconfoundedness and 

common support assumptions as “strong ignorability.” 

 2.1.2 Importance of design in causal inference. Randomized controlled trials 

(RCTs) can meet the assumptions of strong ignorability and common support by nature 
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of the randomization. If participants are randomly assigned to the treatment condition, 

then everyone has a positive probability of selection for either the treatment or the control 

and thus meets the assumption of common support. Moreover, when participants are 

randomly assigned to treatment, any variables that could influence the outcome are, on 

expectation, randomly distributed across treatment and control groups and thus cannot be 

confounds. Because of these two features, the ATE/ATT estimate can be directly 

measured as the difference between the average outcome in the treatment group and the 

average outcome in the control group. In the case of an RCT, the ATE and ATT estimates 

are equivalent because treated individuals will not differ systematically from the overall 

population (Austin, 2011). Although adding covariates to the TE model can improve the 

precision of the estimate, they are not needed to meet the assumptions for causal 

inference. Observational studies, also known as quasi-experiments, have the same goal of 

establishing a causal relation between a treatment and an outcome, but unlike RCTs, 

individuals are not randomly assigned to treatment conditions (Cochran, 1965). As such, 

the ATE and ATT are not assumed to be equivalent, and the TE cannot be estimated 

through direct comparison of treatment and control participants (Austin).  

 When randomization is not feasible, one can make unbiased causal inferences 

through use of a variety of methods, for example regression discontinuity design (RDD) 

or an interrupted time series (ITS), a special case of an RDD. To use a discontinuity 

design, specific conditions must be met (Murnane & Willett, 2011). First, participants 

should be arrayed along an underlying continuum—called a forcing variable—that is 

related to the outcome of interest. Second, there should be an exogenously determined 

cut-point or threshold that divides participants into treatment groups. Third, there should 
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be a reliable and valid outcome of interest. In these studies, the analyst makes causal 

inferences based on whether there is a discontinuity in the relation between the forcing 

variable and the outcome at the cut-point. For example, Gormley, Gayer, Phillips, and 

Dawson (2005) used an RDD to show the effect of universal preschool on achievement 

measures using age as the forcing variable and the birthday cutoff as the cut-point. They 

could then compare the effects of attending preschool between those whose birthdays 

were just before the cutoff to those whose birthdays were just after the cutoff and had to 

wait another year before attending. In the case of an ITS design, the forcing variable is 

time, and the cut-point is a sudden change of policy. With an ITS, outcome data must be 

collected at many times before and after the cut-point in order to establish cause. For 

example, Wagenaar, Maldonado-Molina, and Wagenaar (2009) used an interrupted time 

series to analyze the effects of alcohol tax increases in Alaska on alcohol-related disease 

mortality from 1976 to 2004. While these methods help to infer cause, they are not 

appropriate in all situations. 

 With certain datasets and research questions, neither an RCT nor a discontinuity 

design, such as RDD and ITS, are feasible. For example, this would occur in an 

observational study in which there is not an exogenous cut-point along a forcing variable. 

In these circumstances, the researcher must account for the nonrandom treatment 

assignment and ensure that treatment assignment and potential outcomes are independent 

by conditioning on certain variables through use of regression-based adjustments, 

matching, or stratification. As one can imagine, each of these options for analyzing 

observational designs becomes increasingly complicated as more variables are needed in 

order to meet the assumption of unconfoundedness. In the case of regression-based 
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approaches, a model with a very large number of covariates may become over-

parameterized and difficult to fit, especially if the sample size is not large. With 

matching, incorporating a large number of factors on which to match could lead to very 

few matches between treatment and control individuals. Likewise, stratification based on 

a large number of factors may lead to too many strata from which to estimate effects. 

However, methods such as matching and stratification are feasible approaches for 

minimizing selection bias in nonrandomized studies with the use of a single balancing 

score, or PS, that incorporates a large set of variables (Rosenbaum & Rubin, 1983). 

2.2 Propensity Score Methods 

 Rosenbaum and Rubin (1983), who first introduced the PS, described it as a 

balancing score. The score is formed using regression, typically logistic or probit 

regression, with treatment status regressed on all relevant variables that are likely to 

predict treatment status and/or the outcome. In this paper, Rosenbaum and Rubin 

demonstrate that if treatment status is considered to be strongly ignorable given a set of 

covariates (in other words, there are no remaining confounds once the set of covariates 

are included), then the treatment status is also considered to be strongly ignorable given a 

PS that incorporates these covariates. Once the treatment status is considered to be 

strongly ignorable, the difference between the treatment and control means at any value 

of the PS is an unbiased estimate of the TE. As such, the PS can be used to produce 

unbiased TE estimates.  

 Since Rosenbaum and Rubin introduced the theory of propensity scores, PS 

methods have become increasingly popular in the social sciences. A recent literature 

review on PS methods showed nearly exponential growth in the number of articles 
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published using PS methods between 1991 and 2009 (Thoemmes & Kim, 2011). The 

largest percentage of articles were published in the field of education, but other fields 

included public health, criminology, psychology, sociology, social work, and family 

studies. In the future, PS methods will likely expand to other fields, such as business or 

engineering, that seek to make decisions based on the success of a practice. For example, 

a grocery store could use PS methods to determine the effects of self-checkout machines 

on customer satisfaction. In this scenario, customers who had the option of either using 

the self-checkout line or the traditional line may be asked to complete a survey after 

leaving the store. Using data from the survey, customers who used the self-checkout line 

could be matched with customers with similar characteristics who used the traditional 

line. To form the PS model, the survey would include questions to predict which line a 

customer chose, such as age, number of items purchased, experience using a self-

checkout machine, and number of produce items without barcodes. After matching 

customers on these characteristics, they could then be compared to give an unbiased 

estimate of satisfaction between those using self-checkout and traditional lines. 

 There are three primary advantages to using PS methods that may be influencing 

their growing popularity. First, as previously mentioned, PS methods are particularly 

useful when a large number of covariates are needed to meet the assumption of strong 

ignorability (Rubin & Thomas, 1996; Shadish, Clark, & Steiner, 2008). In a review of 

studies that used PS methods, researchers used an average of 31 covariates in their model, 

but some used well over 100 covariates (Thoemmes & Kim, 2011). Matching or 

stratifying on each of these variables separately would prove to be nearly impossible. 
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With PS methods, one can more easily incorporate a large number of covariates and 

examine the balance of the covariates across treatment and control groups.  

 Second, PS methods separate the design from the analysis, and as such, they can 

be used to better design an observational study before the analysis stage (Austin, 2011; 

Shadish et al., 2008). For example, one can examine the degree of overlap between the 

PS estimates in the treatment and control groups to determine whether certain individuals 

should be removed from the sample in order to meet the assumption of common support. 

One can also check the balance of the covariates before and after matching or 

stratification to ensure that the PS model was specified correctly prior to the analysis of 

outcomes. Such tweaks to the PS model would be made separately from the specification 

of the outcome model; therefore, the researcher would not be biased to adjust the design 

features after reviewing the results from the outcome model. These diagnostics are also 

much simpler to assess when the PS model is separate from the outcome model (Austin). 

Goodness-of-fit measures used in OLS regression, such as the model’s R2, will not 

provide information on whether balance on the covariates has been achieved.   

 Third, empirical research demonstrates that PS methods are close to 

approximating an RCT when certain conditions are met. Using data from the National 

Supported Work demonstration, Lalonde (1986) compared the results from the RCT to 

those from observational study techniques using another, non-random, control group. The 

observational methods included covariate adjustment, difference-in-differences analysis 

that compares the change in earnings before and after training between treatment and 

control groups, and a difference-in-differences analysis that also included covariate 

adjustment. The difference-in-differences analysis that controlled for pre-training 
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differences and demographic variables yielded results similar to the experimental results; 

however, other techniques that did not control for all confounds were biased. Later, 

Dehejia and Wahba (1999) expanded on this work by comparing the experimental results 

to the observational study results using PS methods. They found that the TE estimates 

using PS methods were much closer to the experimental results than the other 

observational methods. The authors concluded that PS methods can be a substitute for 

RCTs to estimate treatment impact as long as the variables that predict treatment 

assignment can be measured and there is sufficient overlap in propensity scores (see 

discussion of overlap in 2.2.3). 

 When implementing a PS method, researchers must undertake a series of steps 

and make key decisions within each step. These can be summarized into four key steps, 

each with their own set of sub-steps and decisions: 1) modeling the PS, 2) implementing 

the selected PS method, 3) performing diagnostics, and 4) estimating the TE1. 

 2.2.1 Step 1: Modeling the propensity score. When modeling the PS, the typical 

decision in the case of binary treatment is whether to use a logit or a probit model, both 

of which are designed to handle a dichotomous dependent variable by fitting a nonlinear 

function to the data. A logistic regression uses a logit link function, which, assuming a 

single predictor, can be written as: 

0 1 1( )

1
( )

1 e
x

F x
  




        (4) 

which can be rewritten as the inverse of the logistic function, g, as follows: 

                                                           
1 Caliendo and Kopeinig (2008) also include sensitivity analyses as a fifth step, including sensitivity tests 

for the unconfoundedness and common support assumptions.  
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0 1 1

( )
( ( )) ln( )

1 ( )

F x
g F x x

F x
   


      (5) 

Where F(x) is the probability that the unit received treatment given the linear 

combination of the predictors, base e is the exponential function, ln is the natural 

logarithm, 
0 is the intercept, and 

1 1x  is the regression coefficient multiplied by a 

predictor. 

Probit regression uses an inverse normal link function, which can be written as follows: 

 
0 1 1( ) ( )F x x           (6) 

where   is the cumulative distribution function (CDF) of the standard normal 

distribution.  

 Research suggests that when used for the purpose of creating PS estimates, these 

models yield similar results, so the choice is not critical (Caliendo & Kopeinig, 2008). A 

systematic review of 86 studies that used PS methods showed that 78 percent used 

logistic regression, 12 percent used probit regression, and the rest were unclear about the 

type of model used (Thoemmes & Kim, 2011). However, a logistic model can be 

interpreted in terms of odds ratios, whereas the probit model does not have a direct 

interpretation. For this reason and because logistic regression is more widely used, a logit 

model may be more interpretable to the target audience of the research. Other non-

parametric methods, such as boosted modeling have been proposed (McCaffrey, 

Ridgeway, & Morral, 2004), but are seldom used. Boosted modeling is a multivariate 

nonparametric regression technique that is more flexible than parametric regression 

because it does not assume that the relation between each covariate and treatment 

selection is linear and additive on the log-odds scale. Instead, it uses an algorithm to 
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automatically model a nonlinear relationship between a dependent variable (in this case, 

treatment status) and a large number of covariates (McCaffrey et al.). Lee, Lessler, and 

Stuart (2010) showed that using a boosted model outperformed logistic regression PS 

models in terms of bias reduction and 95% confidence interval coverage.  

 Despite the recent advances with boosted modeling, logistic regression is still the 

default modeling option for researchers implementing PS methods, including multilevel 

PS methods. All methodological studies that have assessed multilevel PS methods have 

used logistic regression models. For this reason, studying balance measures for multilevel 

PS matching under the assumption that a researcher has used a logistic regression model 

is more relevant and understandable to both the methodological and applied research 

communities. Furthermore, because the purpose of this research is to test balance 

measures, rather than modeling techniques, the use of logistic or boosted modeling is not 

important for answering the research questions. Either modeling approach could be used 

with the balance measures. Therefore, the remainder of this dissertation assumes the use 

of logistic regression for PS modeling. 

 By contrast, choosing which variables to include in the PS model is a rather 

important decision for ensuring that the assumption of unconfoundedness is met. If 

systematic differences exist between the treatment and control groups on confounders 

that are not included in the PS model, then TE estimates will be biased. A confounder is a 

variable associated with both treatment status and the outcome (Austin, Grootendorst, & 

Anderson, 2007). Although researchers agree on the importance of selecting appropriate 

variables, they differ in their guidance on how to select them and how many to select. For 

example, Caliendo and Kopeinig (2008) recommend including any variables that 
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influence both the treatment status and the outcome (true confounders), but Schafer and 

Kang (2008) recommend including any variables that influence either the treatment status 

or the outcome. However, both sets of authors emphasize the importance of 

understanding theory and previous research on the relations between variables and the 

outcomes and having institutional knowledge about how participants are sorted into 

treatment conditions when selecting variables to include. A series of simulations by 

Austin, Grootendorst, and Anderson (2007) compared variable balance and reduction in 

TE estimate bias of four approaches to selecting variables: selecting confounders only, 

selecting only variables associated with the outcome, selecting all measured variables, 

and selecting all variables associated with treatment selection. The selection techniques 

were equivalent in terms of achieving balanced samples, but omitting a confounder led to 

biased TE estimates. It is typical that researchers may only have access to common 

demographic variables such as age, race/ethnicity, gender, and a measure of social-

economic status, but using these exclusively rather than variables guided by theory will 

lead to biased TE estimates because it is likely that a confounder will be missed 

(Thoemmes & Kim, 2011). Furthermore, researchers should not remove predictors based 

on statistical significance, because the purpose of the model is not to achieve parsimony, 

but rather, to achieve balance between treatment and control groups (Schafer & Kang).   

 Once the appropriate variables are selected, the researcher would then need to 

choose the functional forms of the variables, for example whether to include any 

polynomial or interaction terms. However, research suggests that once the confounders 

are included, slight deviations of the PS model will have minimal impacts on selection 

bias (Drake, 1993; Waernbaum, 2010). Drake (1993) conducted a series of simulations 
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that varied the misspecifications of the PS model and the outcome model, which was 

estimated through stratification. The true PS model was a quadratic logistic model and 

misspecifications included a linear logistic model and omitting a quadratic term. Drake 

found that misspecifications of the outcome model led to much greater biases in the TE 

than did misspecifications of the PS model. Similarly, Waernbaum found in a series of 

simulations that misspecifications of the PS, such as omitting higher order terms, did not 

increase TE estimate bias in a matching design. As will be discussed in subsequent 

sections of this chapter, modeling decisions are more critical when implementing PS 

methods with multilevel data.   

 2.2.2 Step 2: Implementing the propensity score method. Once the PS 

estimates have been obtained using the logistic or probit regression functions (equations 

4-6), researchers can use them in one of four types of PS methods: 1) matching, 2) 

stratification, 3) inverse probability of treatment weighting (IPTW), or 4) covariate 

adjustment (Austin, 2011). This step is often referred to as conditioning on the PS (Austin 

et al., 2007). In matching, treatment and control units are matched that have the same or 

the most similar PS estimates, and the matched sample can then be used to estimate the 

ATT (Imbens, 2004). In stratification, the sample is ordered based on PS estimates and 

then subdivided into a number of equal-sized strata, either based on the total number of 

individuals in the sample (to estimate the ATE) or the total number of treated individuals 

(to estimate the ATT; Imbens). The TE is then estimated for each stratum and then 

averaged to calculate an overall TE. Applying IPTW is similar to applying sampling 

weights. In estimating the ATE, each unit’s weight is equal to the inverse probability of 

receiving the treatment that they actually received (weights can be modified for 
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estimating the ATT if it is of interest). Finally, using PS estimates for covariate 

adjustment simply means that instead of using a large number of separate covariates in an 

outcome model, the researcher would instead use the PS estimate as a single covariate in 

the outcome model.     

 In introducing the theory of PS methods, Rosenbaum and Rubin (1983) argue that 

matching, stratification, and covariate adjustments using PS estimates can produce 

unbiased estimates (they did not consider the use of inverse probability weights in their 

paper). However, there may be advantages to choosing one method over another. For 

example, matching, stratification, and inverse probability weighting have the advantage 

of separating the design from the analysis, allowing one to directly estimate the TE once 

the PS model has been specified (Austin, 2011). Although the PS estimates are formed as 

part of a separate step from the outcome model in the case of covariate adjustment, the 

researcher must still fit a regression model that predicts the outcome based on the PS 

estimate and treatment status. In doing so, there might be temptations to adjust the model 

to make the expected outcome more likely. Research also suggests that some methods are 

preferable to others in terms of achieving precise TE estimates, achieving balance across 

covariates, and removing bias in the TE estimates. In comparing the precision and bias of 

TE estimates, Schafer and Kang (2008) found that PS stratification and PS covariate 

adjustment were more effective than using inverse probability weights for measures of 

the ATE. Another series of simulation studies found that PS matching led to greater 

covariate balance between treatment and control units than did stratification, presumably 

for estimation of the ATT (Austin et al., 2007). However, there is also much variation in 

the effectiveness within each method, depending on how it is implemented. For example, 
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with stratification, the researcher must decide how many strata to use, and this has 

implications on the precision and bias of the TE estimates. The remainder of this chapter 

focuses on matching, since this method is used in the majority of applied studies that 

utilize PS methods (Thoemmes & Kim, 2011). Furthermore, nearly all methodological 

studies that investigated multilevel PS methods focused on matching.   

 When implementing PS matching, researchers must make four decisions 

regarding the matching algorithm: (1) whether to match with or without replacement, (2) 

whether to match 1 to 1 or many to 1, (3) whether to use a caliper, and (4) whether to use 

nearest neighbor or another matching estimator such as optimal matching. The most 

intuitive approach is 1:1 nearest neighbor matching without replacement in which 

treatment units are matched to the nearest control unit. Once matched, the control units 

are no longer available for other matches, and unmatched control units are discarded. 

Because the quality of the matches may change based on the order in which units are 

matched, it is recommended that matches are made in a random order (Caliendo & 

Kopeinig, 2008). Several adaptations can be made to the simple 1:1 nearest neighbor 

matching approach to either improve matches or limit the reduction in sample size. 

Researchers may decide to sample with replacement rather than sampling without 

replacement. This means that once a control unit has been matched with a treatment unit, 

the same control unit can be matched with another treatment unit if it is the nearest 

neighbor. This can improve the overall quality of the matches, but decreases precision of 

the TE estimate because there are fewer distinct individuals included in the sample 

(Caliendo & Kopeinig). Similarly, researchers may decide to match multiple control units 

to the same treatment unit (k:1 nearest neighbor matching), a decision that has the same 
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tradeoffs between bias and precision. As more control units are matched to the same 

treatment unit, the quality of each match decreases but the precision of the TE estimate 

increases because there are more individuals included in the sample. Researchers using 

this approach must decide how many control units should be allowed to match to each 

treatment unit. For either matching with replacement or k:1 matching, weights should be 

applied in the outcome analysis to account for individuals being in the sample more than 

once or for oversampling. Another adaptation to nearest neighbor matching is to limit 

matches to those that are within a specified distance from the treatment unit. This means 

that some treatment units that do not have control units within the specified distance, or 

caliper, would not be matched or included in the analysis. Many researchers use a caliper 

of .2 standard deviations of the PS, because it has been shown to be effective for 

removing selection bias (Cochran & Rubin, 1973; Rosenbaum & Rubin, 1985). As 

expected, applying a caliper can improve the quality of matches but can also increase 

variance and decrease power by removing individuals from the sample.  

 Another form of matching that a researcher may choose is optimal matching. 

Rather than focusing on the best match for an individual treatment unit as in nearest 

neighbor matching, it instead considers the overall quality of all matches (Stuart, 2010). 

In optimal matching, each match is chosen to minimize a measure of global distance. A 

simulation study that compared nearest neighbor matching to optimal matching showed 

that the two approaches performed similarly in terms of achieving covariate balance 

across treatment groups and minimizing propensity distances between matched pairs (Gu 

& Rosenbaum, 1993). Nearest neighbor matching may be preferred in some contexts and 
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fields because it can be more easily explained to an audience unfamiliar with PS 

matching techniques.  

 To summarize step 2, researchers wishing to use PS estimates may choose from 

one of four methods: matching, stratification, inverse probability weights, and covariate 

adjustment. Once the method is selected, more decisions are required. Matching is the 

most common method and is thus the focus of this review. For matching, one must decide 

on the particular matching algorithm, including whether to match with or without 

replacement, to match one to one or one to many, whether to use a caliper, and whether to 

use nearest neighbor matching or another matching estimator. 

 2.2.3 Step 3: Performing diagnostics. Once the PS method has been 

implemented, researchers must examine two properties 1) the balance property and 2) the 

region of common support (Thoemmes & Kim, 2011). The balance property assesses—

either numerically or graphically—whether the treatment and control groups have similar 

sample means and distributions on the covariates. This section first describes the numeric 

summaries and then describes the graphical displays that can be used to evaluate 

covariate balance. 

 There are several possible numeric diagnostics for evaluating balance; such 

methods include calculating standardized mean differences between treatment and 

control groups before and after matching, conducting t-tests to compare treatment and 

control groups after matching or within strata, examining the ratio of the variances of the 

PS estimates in the treatment and control groups, examining the ratio of the variances of 

the residuals orthogonal to the PS estimates in the treatment and control groups for each 

covariate, and comparing the pseudo-R2 before and after matching (Caliendo & 
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Kopeinig, 2008; Stuart, 2010). Although the most popular method is the t-test approach 

(Thoemmes & Kim, 2011), Stuart warns that this is problematic for two reasons. First, 

while balance is a within-sample characteristic, hypothesis tests refer to a broader 

population from which the sample was drawn. Second, the change from a significant 

difference before matching to a non-significant difference after matching could be due to 

a loss in power due to trimming the sample, rather than to an improvement in balance.  

 Calculating the standardized mean difference, also referred to as standardized bias 

or Cohen’s d (Cohen, 1988), is another popular choice for evaluating balance in PS 

matched or stratified samples. The standardized mean difference can be calculated as 
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where 
treatmentx and 

controlx are the sample means on the covariate of the treatment and 

control groups, respectively, and 2

treatments  and 2

controls are their respective variances. A 

slight variation of this formula is to use the variance among treatment group members 

exclusively rather than the pooled variance (Stuart, 2010); however, there is no consensus 

in the literature about which variance is more appropriate for evaluating balance. In the 

case of PS matching, one should calculate the standardized mean difference for each 

covariate before and after matching using the same variance for both (Stuart, 2010). A 

benefit of using the standardized mean difference for evaluating balance is that it can be 

evaluated against a predetermined threshold. However, one must consult the literature in 

the particular field of study to select an appropriate threshold; recommendations for 

thresholds may be as conservative as .05 (U.S. Department of Education, 2017) or as 

liberal as .25 (Harder, Stuart, & Anthony, 2010) depending on the field and the purpose 
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of the research. Ho, Imai, King, and Stuart (2007) argue that the level of acceptable 

standardized bias should depend on the importance of the covariate in predicting the 

treatment assignment and outcome measure, where higher levels of bias are acceptable 

for covariates of lower importance.  

 Austin (2009) showed in a set of simulations that balance measures that evaluate 

PS matching should incorporate the distribution of the covariates rather than just means, 

as with standardized mean differences. This can be achieved through measuring the ratio 

of variances between treatment and control groups as follows: 

2

2

treatment

control

s
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s
         (8) 

Ratios close to 1 indicate greater balance between treated and untreated subjects on the 

covariate. In Austin’s (2009) simulations, the ratio of variances outperformed the 

standardized mean differences for detecting bias in the TE estimate. The standardized 

mean differences for the correctly specified PS model and a misspecified model that did 

not include a confounder included in the model were both small, indicating little bias, but 

the ratio of variances were further from 1 with the misspecified model in comparison to 

the correctly specified model. As with standardized mean differences, the ratio of 

variances can be evaluated against set criteria. For example, Rubin (2001) considered a 

ratio of variance below .5 or above 2 as too extreme. However, although quantitative 

methodologists recommend examining the ratio of variances, it is not yet a common 

practice in applied research (Thoemmes & Kim, 2011).  

 Graphics for evaluating balance of the covariates include quantile-quantile (QQ) 

plots and a plot of the standardized mean differences before and after matching (if 

matching is used). QQ plots compare the quantiles of a variable for the treatment group 
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on one axis and the corresponding quantile for the control group on the opposite axis. 

When the distributions are balanced, the dots will track along the 45 degree line. Figure 1 

provides an example of QQ plots for three variables before and after matching. All three 

variables show improved balance after matching, as the dots track more closely to the 45 

degree line. The middle plots show that two units have been matched even though they 

have different values on the dichotomous variable, which may or may not be acceptable 

to the researcher depending on the importance of the variable for predicting the treatment 

assignment and outcome. 

 
Figure 1. QQ plots before and after matching for three variables 

 

 The standardized mean difference plot shows all covariates together, which 

allows one to visually examine the degree to which bias was reduced for each covariate. 

It may be the case that although matching reduced bias overall, it increased for certain 

variables, so researchers can use such a plot to identify those variables and determine 
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whether such an increase is tolerable (Stuart, 2010). In this example (Figure 2), the 

standardized mean difference decreased for all variables except one, which was 

determined to be an acceptable level of balance for that particular variable, because it was 

not believed to be strongly related to the outcome.  

 

Figure 2. Absolute standardized mean differences of covariates before and after matching with a caliper 

width of .25 

 

 Ho et al. (2007) explain that assessing balance is an iterative process. Researchers 

should not just choose one matching method and assess it for balance to confirm their 

approach and then move on. Instead, they should compare the balance of several 

variations of matching or stratification methods (e.g., optimal or nearest neighbor, one-to-

one or one-to-many) and models (e.g., including higher order terms or interactions) and 

then select the combination that achieves the greatest level of balance. During this 

iterative process, one should not select models based on statistical significance of the 

estimated regression coefficients, because the primary objective is to achieve balanced 

samples (Austin, 2011).  
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 In sum, balance can be assessed numerically, ideally through standardized mean 

differences and variance ratios, and graphically, through use of QQ plots and 

standardized mean difference plots. These procedures should be carried out in an iterative 

process to select the methods and models that will achieve the greatest level of balance 

and thus minimize bias. 

 To ensure that treatment and control groups are comparable for estimating the 

ATT and ATE, one must also evaluate common support through examining the region of 

overlap in the distributions of PS estimates. In the case of PS matching, common support 

is typically assessed through use of a “jitter plot” that illustrates the distribution of PS 

estimates for all matched and unmatched units. This plot is divided into four categories: 

unmatched treatment units (if any), matched treatment units, matched control units, and 

unmatched control units. Ideally, any treatment or control units that are much higher or 

lower than units in the opposite group should not be matched, because this would indicate 

a lack of common support. Figure 1 illustrates a sample with an acceptable level of 

common support through the use of 1:1 nearest neighbor matching with a caliper of .2 

standard deviations. In this case, the caliper rule effectively removed the majority of the 

control units and a few treatment units because there were not enough comparable units 

in the opposite group.  
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Figure 3. Jitter plot used to examine evidence for common support 

 

 Similar plots may be used to evaluate common support in PS stratification and 

weighting studies. In the case of stratification, one may construct a plot with the 

treatment and control units on separate horizontal lines as in Figure 1 but with vertical 

lines that divide the plot into strata to evaluate overlap within each stratum. For 

weighting, one may consider creating a plot in which the dot size represents the weight of 

the unit in the analysis. Numeric diagnostics for overlap include the simple comparison of 

the PS minima and maxima across matched treatment and control units and estimation of 

the region of overlap using nonparametric kernel densities (Smith & Todd, 2005).  

 Researchers may address the problem of lack of common support in several ways. 

If using PS matching, they can improve the level of common support by applying a 

caliper or narrowing the caliper width, as described in the above example of Figure 1. 

Another approach that can be used with any type of PS method is to apply a trimming 

rule. For example, one may remove any individuals with PS estimates smaller than the 

minima or larger than the maxima of the opposite group (if the ATE is of interest), or 

only remove control group members who are below the minimum or above the maximum 
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of the treatment group (if the ATT is of interest; Caliendo & Kopeinig, 2008). Crump, 

Hotz, Imbens, and Mitnik (2009) proposed a trimming rule that removes all units with PS 

estimates below .1 or above .9; however, they warn that applying a trimming rule may 

decrease the external validity by focusing on a smaller subset of the originally identified 

population. It may also change the estimand of interest. If many control or treatment units 

need to be discarded because there are no nearby units in the opposite group, then it may 

not be possible to estimate the ATE. Likewise, the researcher may not be able to estimate 

the ATT if treated units need to be discarded because there are no nearby control units 

(Stuart, 2010). In these cases, the researcher may need to select a different dataset to 

answer the particular research questions because the groups are too different to produce 

unbiased TE estimates (Rubin, 2001). 

 As will be discussed later in this chapter, it is not yet clear how researchers should 

apply PS diagnostics in multilevel studies, such as when students are nested within 

schools. Researchers would need to know whether to perform diagnostics for each school 

separately or to perform tests that pool all of the schools together. For example, one could 

calculate separate standardized mean differences for each covariate within each school, or 

one could calculate standardized mean differences for each covariate, aggregating across 

schools. No current literature has clarified how these different approaches would impact 

detecting bias and making adjustments to the PS modeling or conditioning approach. 

 2.2.4 Step 4: Estimating the treatment effect. After the propensity model has 

been selected based on the results of diagnostics, the final step is to use the PS estimates 

in the TE model. With matching methods, one can calculate the average outcome in each 

group with the matched sample using weights as needed to account for matching with 
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replacement or matching to multiple control units. In the MatchIt package of R, all 

unmatched units have a weight of 0 and matched treatment units have a weight of 1 (Ho, 

Imai, King, & Stuart, 2017). The control weights are calculated in three steps. First, 

thinking of matching in terms of creating groups with at least one treated unit and at least 

one control unit, a preliminary weight is calculated by dividing the number of treated 

units by the number of control units in the group. Second, if the same control unit was 

used across multiple groups, then the weights are summed across them. Third, the control 

group weights are rescaled such that the sum of all of the weights equals the number of 

uniquely matched pairs (Ho et al.). Using the weights, the ATT can be estimated as:  
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where 
itw  and 

icw  are the weights and 
ity  and 

icy are the values on the response variable 

for group i in the treatment and control groups, respectively. In the case of stratification, 

the treatment effect of each stratum is first estimated and then aggregated across strata. 

Weights should be applied based on the size of each stratum, and these weights will 

determine the type of treatment effect estimate. If the ATT is of interest, weights should 

be based on the number of treatment units in the stratum, but if the ATE is of interest, 

they should be based on the total number of treated and untreated units in the stratum, as 

follows: 
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where 
iw  is the weight assigned to stratum i, and 

ity and 
icy  are the values on the 

response variable for stratum i in the treatment and control groups, respectively 
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 The most contested topic regarding TE estimation with designs that utilize PS 

matching is whether to use variance estimates that account for the matched nature of the 

data (Stuart, 2010). Matched pairs will likely be correlated on the outcome measures, but 

the research is unclear on whether PS matched samples should be treated as dependent 

samples for the TE analysis. While some researchers argue that it is not necessary (e.g., 

Schafer & Kang, 2008), others have shown through simulations that accounting for the 

matched nature of the data in the variance estimates leads to more precise estimates of the 

TE (e.g., Gayat, Resche-Rigon, Mary, & Porcher, 2012). One way of accounting for 

matching in the variance estimates is through bootstrap methods, which are used to 

estimate the sampling variability of parameters (Austin & Small, 2014). Given that this 

issue is still contested in the literature, I opted to ignore the dependencies for the purpose 

of this study, given that the focus is on balance measures during the diagnostic stage and 

incorporating the bootstrap methods during the TE estimation stage would be unlikely to 

affect their performance. 

 Another issue when considering TE analysis is whether to include any covariates 

that are already being accounted for in the propensity scores. As previously discussed, 

Rosenbaum and Rubin (1983) showed that as long as the PS incorporates all confounds, 

the difference between the treatment and control means at any value of the PS is an 

unbiased estimate of the TE. This means that the TE analysis does not need to include 

covariates if the PS model is correctly specified. However, since it is impossible to know 

whether the model is correctly specified, incorporating covariates into the TE analysis 

may be beneficial. Incorporating covariates into both the PS model and the TE model is 

known as doubly robust estimation (Robins, Rotnitzky, & Zhao, 1994). Funk et al. (2011) 
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showed that when doubly robust estimation is applied, only one of the two models needs 

to be correctly specified to obtain unbiased treatment effect estimates.  

 Including covariates in the TE model may have additional benefits. First, 

including covariates in the TE model will explain a greater proportion of the total 

variance of the outcome, which will increase the power for detecting a significant effect. 

Second, covariates are useful for understanding how the treatment interacts with other 

variables, for example, the effects of a reading intervention may vary according to 

baseline reading ability. Third, in some cases, PS matching reduces the balance of some 

variables even though it improves balance overall. Incorporating these variables into the 

TE analysis would provide greater assurance that the TE estimates are unbiased. 2.2.5 

Summary of the four steps. Implementing a PS method entails following a series of 

steps and making specific decisions within each step. First, the researcher must model the 

PS, which involves determining whether to use a logit or probit model, the variables to 

include, and the functional forms of those variables. Next, the researcher should select a 

PS method—either matching, stratification, inverse probability weighting, or regression 

adjustment—and determine the particular algorithm for the method, for example 

choosing nearest neighbor or optimal matching. Third, the researcher should assess 

balance and overlap and iterate with different PS models and conditioning approaches 

until an approach is selected that will minimize TE estimate bias. In the final step, the 

researcher uses the PS estimates in the outcome model and must determine the weights 

and variance estimates to apply based on the particular PS approach. The next section 

will discuss the expansion of PS methods into multilevel settings and review the literature 

on how the four steps are applied to various multilevel contexts. 
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2.3 Multilevel Propensity Score Matching 

 Although PS matching has gained popularity as a way to make causal inferences 

in observational studies, researchers are only beginning to use them in multilevel settings, 

such as when students are nested within schools, and have used a wide variety of 

approaches (Arpino & Cannas, 2016). A series of empirical studies by Hong and 

colleagues on the effects of kindergarten retention on academic and social outcomes 

illustrate that there is no one best approach for all multilevel studies using PS methods 

(Hong & Raudenbush, 2005, 2006; Hong & Yu, 2007, 2008). These studies used 

stratification, but the modeling and conditioning approaches could be applied to 

multilevel PS matching studies as well. Across these multilevel studies, the authors 

employed different PS methods depending on the research questions at hand. For 

example, to answer questions about whether a school’s retention policy had an effect on 

children on average at the school, the authors stratified the schools in the sample based on 

a PS model that predicted the probability of a school allowing retention to estimate the 

ATE (Hong & Raudenbush, 2005). They did not include student-level characteristics in 

the PS model or stratify at the student level because the question was about the effect of a 

school-level policy on school-level outcomes. Other studies that investigated the ATE for 

students across schools used multilevel models to estimate the propensity of being 

retained based on individual, classroom, and/or school characteristics (Hong & 

Raudenbush, 2006; Hong & Yu, 2007, 2008). For example, one study examined the 

effect of being retained in schools with low retention rates separately from the effect of 

being retained in schools with high retention rates (Hong & Raudenbush, 2006). To do 

so, the authors first divided schools into low and high retention schools and within each 



 

34 
 

school type, they formed a separate multilevel PS model that incorporated school and 

student-level characteristics. They then used the PS estimates to divide students into 

strata and to estimate the ATE separately for low retention and high retention schools 

using multilevel regression models. The authors explained that without randomization of 

the school-level retention rate, the propensity of retention under a low-retention rate for 

children attending high-retention schools and the propensity of retention under a high-

retention rate for children attending low-retention schools were not estimable. Another 

study investigated the effects of retention for students with a risk of being retained (Hong 

& Yu, 2007). The study utilized a three-level PS model that predicted retention based on 

student, classroom, and school-level characteristics. Children who had 0 probability of 

being retained were removed from the sample, and the remaining were pooled together 

across schools and stratified based on the PS estimate for the TE analysis. The reading 

and math outcomes were estimating using a three-level model. Although these studies all 

explored the effects of retention on kindergarten outcomes, the specific research 

questions warranted different approaches to dealing with the nested nature of the data.  

 As demonstrated in the Hong studies, a researcher may employ a variety of PS 

modeling and conditioning approaches depending on the level of treatment assignment 

and the research questions of interest. When treatment is assigned to clusters, as in the 

first example (Hong & Raudenbush, 2005), the propensity score should reflect the 

probability of the cluster being assigned to treatment. This means that the researcher will 

select the cluster-level variables that are likely to predict treatment assignment and the 

outcome of interest to include in the PS model. Unit-level variables would not need to be 
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included because they do not predict treatment status, and therefore, a single-level PS 

model at the cluster level with matching between clusters is sufficient.  

 Research questions about unit-level treatment within multilevel contexts are more 

complex, and may fall into these general categories: 

1) What is the overall TE across clusters? 

2) What is the cluster-level TE on average and does it vary across clusters? 

3) What unit-level factors moderate the TE? 

4) What cluster-level factors moderate the TE (cross-level interaction)? 

 Depending on the research question, specific models will be required. For 

example, as will be discussed later in the chapter, the need to estimate a cluster-specific 

TE has implications for both the type of PS model that should be used and whether 

matching should be conducted within or across clusters (e.g., Thoemmes & West, 2011; 

Rickles & Seltzer, 2014; Arpino & Mealli, 2011; Kim & Seltzer, 2007). The next section 

of this chapter will focus on the decisions that must be made when using PS matching in 

multilevel settings. The current research has focused solely on the decisions related to 

modeling the PS (step 1) and matching units using the PS estimates (step 2, implementing 

the PS method). These decisions go hand-in-hand such that one must consider the 

matching approach while choosing the most appropriate PS model, and likewise should 

consider the PS model while choosing the most appropriate matching approach. Although 

these studies have utilized various balance diagnostics (step 3) to assess the modeling and 

matching approaches tested, none have specifically studied the use of balance diagnostics 

with multilevel PS matching. More research is needed to determine the performance of 

various assessments of covariate balance for detecting bias in TE estimates. Potential 
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approaches for assessing covariate balance will be discussed following the review of the 

literature on modeling and matching approaches for studies utilizing multilevel PS 

matching.   

 Research suggests that there are four primary types of models that can be used for 

PS estimation in multilevel settings when treatment status is at the individual level: 1) a 

single individual-level (SL) model that ignores clustering, 2) a fixed effects (FE) model, 

3) a multilevel model with random intercepts only (RI model), and 4) a multilevel model 

with random intercepts and slopes (RIS model; Thoemmes & West, 2011). These models 

may be paired with three types of matching approaches when implementing a PS method: 

1) pooled matching, 2) within-cluster matching, or two-stage matching (Rickles & 

Seltzer, 2014), which is a hybrid of the first two approaches. The paragraphs that follow 

will describe each modeling and matching approach and then will discuss the research on 

the optimal combinations in various settings.  

 2.3.1 Propensity score models for multilevel settings (step 1). The simplest PS 

model is an SL model that does not include any cluster-level covariates or account for 

any differences in the selection process across clusters (see Equations 4-6). The SL model 

ignores the presence of clustering; however, using such a model does not mean that 

clustering is not accounted for in the PS method. For example, a researcher may use an 

SL model to estimate the PS and then account for the clustered data by matching units 

within clusters and/or using a multilevel model in the TE estimation.  

 Multilevel PS models take into account cluster-level differences in treatment 

assignment (e.g., policies that affect the likelihood of being retained). The main 

consideration with using a multilevel PS model is whether to only allow the intercepts 
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(the probability of being selected for treatment) to vary across clusters by using the RI 

model or whether to allow both the intercepts and the slopes (the relation between the 

covariates and the treatment assignment status) to vary by using the RIS model. The RI 

model is represented in equation 11 below, and the RIS model is represented in equation 

12 (Thoemmes & West, 2011). 
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           (12) 

  In equation 11, logit(Pij) represents the estimated logit of the PS for the ith unit in 

the jth cluster, 
00  represents an intercept, 0p  represents the regression coefficients for the 

individual-level covariates, 0q  represents the regression coefficients for the cluster-level 

covariates, 
1i  represents the regression coefficients of any interactions between 

individual-level and cluster-level covariates, and 0 ju  is the random effects component 

influencing the intercept of each cluster, j. In Equation 12, 1 ju represents the cluster-level 

random effect components influencing the regression slopes of the individual-level 

covariates. 

 A slight variation of the RI model is an SL model that incorporates each cluster as 

a separate predictor using dummy variables, which Thoemmes and West (2011) refer to 

as a fixed effects (FE) model.  
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In this equation, 
0  represents an intercept, p represents regression coefficients for the 

individual-level covariates, q  represents regression coefficients for the dummy coded 

variables indicating cluster membership, and 
i  represents regression coefficients for 

potential interactions between the clusters and the individual-level predictors. 

 This option is preferred to using the same SL model across all clusters, because it 

accounts for cluster-level differences in the selection process. As indicated by the 

equation, the model may include interactions between clusters and individual-level 

variables, but this option is only available in limited situations because it requires large 

sample sizes within each cluster (Thoemmes & West, 2011). Although Thoemmes and 

West do not specify the cluster size needed for the model, there would need to at least be 

more individuals in a cluster than variables so that the researcher trusts the cluster-

specific regression coefficients. In cases in which there are no cluster-level predictors or 

interactions between clusters and individual-level predictors, the fit of the RI model and 

the fixed effects model would be equivalent (Kim & Seltzer, 2007).  

 2.3.2 Matching with propensity scores in multilevel settings (step 2). As 

described previously, once the PS model is specified, researchers then need to implement 

a PS method, typically either matching or stratification. In multilevel contexts, in addition 

to the other decisions that need to be made during this stage, researchers must also decide 

whether to condition the PS estimates within or across clusters. For example, in the case 

of matching, the researcher could decide to restrict a student’s match to only other 

students in the same school or to allow the student to match to students in other schools. 

Three matching approaches have been examined in simulation studies: (1) pooled 
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matching, (2) within-cluster matching, and (3) two-stage matching (Rickles & Seltzer, 

2014).  

 The within-cluster matching approach was first demonstrated by Rosenbaum 

(1986) in a study on the effect of dropping out of high school. The advantage of this 

approach is that cluster-level covariates do not need to be included in the PS model, 

because they will be the same for each student within the same school. This helps to 

ensure that the unconfoundedness assumption is met for cluster-level confounders, 

because it is not possible to leave out any important cluster-level covariates (Rickles & 

Seltzer, 2014). However, the disadvantage is that there may not be a close match within 

the same school if there is a small number of treatment students, control students, or both 

(Kelcey, 2011). Restricting matches to within the same school would potentially lead to 

either bad matches resulting in biased TE estimates, or, if using a caliper, would 

significantly reduce sample size and therefore power to detect a significant TE. Another 

concern is that if not all of the treatment students can be matched because of the 

restriction to matches within their schools, the estimand changes because the ATT 

estimate does not actually represent the full population of treatment individuals and no 

longer reflects the relative cluster sizes (Arpino & Cannas, 2016). 

 In many situations, matching within the same cluster is not feasible because the 

clusters are too small or because there are no comparable treatment and control units 

within the same cluster. For example, in a study of the effect of being retained in 

kindergarten, there may not be any students with similar characteristics as the students 

who were retained in the same school. As such, these studies of kindergarten retention 

tend to pool together kindergarteners across schools and implement PS stratification 
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based on a multilevel PS model with both student- and school-level predictors (e.g., Hong 

& Yu, 2008). However, when matching occurs across clusters, cluster-level differences in 

how units come to receive their treatment are not accounted for unless they are explicitly 

included in the PS model. As such, studies that utilize pooled matching should 

incorporate a multilevel PS model with a comprehensive list of cluster-level covariates 

(Hong & Yu). Another drawback to pooled matching is that one cannot preserve the 

design of a multi-site study where treatment and control students are compared within the 

same cluster (Rickles & Seltzer, 2014). Furthermore, the researcher cannot estimate a 

within-cluster TE and/or heterogeneity of the TE if that is of interest.  

  In the field of educational statistics, Stuart and Rubin (2008) proposed a two-stage 

matching approach for treatments implemented in just one school, and Rickles and 

Seltzer (2014) extended the approach for treatments implemented across many schools. 

The purpose of this approach is to preserve the conceptual design of a multisite study 

while circumventing the problem of small sample sizes. In this approach, treatment 

students are matched to control students within the same school if there is an adequate 

match within the same caliper. If there are no adequate matches within the same school, 

then the treatment student is matched to a control student from another school that has 

similar school-level characteristics. Rickles and Seltzer describe the two-stage approach 

as occurring in three steps: matching, adjustment, and analysis. First, the authors match 

students, ideally to control students within the same school, but to control students in 

similar schools if needed. Second, for matches made outside of the school, the authors 

make an adjustment to estimate what the outcome would have been for the student if they 

were in the same school as the treatment student. Third, they estimate the ATT within 
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each school, across schools, and review TE variation. One could take many different 

approaches to identifying similar schools, but in Rickles and Seltzer’s empirical example, 

they divided schools into quantiles on an achievement index, which was based on 

schools’ average standardized test scores. Students could then only be matched with 

students from schools within the same quintile. Separately, in the field of biostatistics, 

Aprino and Cannas (2016) developed a similar method, which they call “preferential 

within-cluster matching” in which they first attempt to match a unit within the same 

cluster and then move to the pooled dataset if a unit within the specified caliper width is 

not available in the unit’s cluster. However, unlike Rickles and Seltzer, Arpino and 

Cannas do not restrict matches to clusters with similar characteristics or implement an 

adjustment for matches made outside of the treated unit’s cluster. 

 2.3.3 Comparison of modeling and matching approaches. Researchers have 

several options for accounting for multilevel data when implementing PS methods. 

Though not recommended in most circumstances, they may choose to ignore the 

multilevel structure by pairing an SL model with pooled matching. If they wish to take 

the multilevel data structure into account, they can do so in either the modeling stage, 

matching stage, or in both stages. For example, a researcher may consider pairing a 

multilevel PS model with pooled matching or an SL, PS model with within-cluster 

matching. Using Monte Carlo simulations and examples from applied datasets, 

researchers have compared various combinations of modeling and matching approaches 

for multilevel data in terms of bias of the TE estimate, covariate balance as measured by 

standardized bias, root mean squared error or mean squared error, and proportion of 

matched units. The results of these studies show that the optimal combination of 
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modeling and matching approach depends on several factors including the extent of 

variation in the treatment selection process across clusters, within cluster sample sizes, 

and whether balance is desired across the sample as a whole or within clusters.  

 Arpino and Cannas (2016) refer to the SL model with pooled matching as the 

“naïve approach” because it ignores clustering in both stages. Simulations and empirical 

examples that compare this approach to other approaches demonstrate that ignoring 

clustering leads to poorer outcomes in almost all circumstances (Arpino & Cannas; 

Arpino & Mealli, 2011; Li, Zaslavsky, & Landrum, 2013; Thoemmes & West, 2011). For 

example, Arpino and Mealli conducted a series of Monte Carlo simulations that 

compared an SL propensity score model to two types of multilevel models that were each 

paired with pooled matching. The data generating model included three individual-level 

covariates and one cluster-level covariate, which was omitted from the PS models. SL 

propensity score models underperformed multilevel models in terms of covariate balance, 

bias of the TE estimates, and mean squared error. The extent of improvement using a 

multilevel model depended on the correlation between the omitted cluster-level variable 

and other variables. When the omitted cluster-level variable was highly correlated with 

treatment status, the bias of the SL model increased in comparison to the multilevel 

models. Li et al. conducted a simulation with a similar design to Arpino and Maelli but 

used IPTW rather than matching for estimating the ATE. The study tested three PS 

models in combination with three alternative formulas for calculating the IPTW with 

clustered data. They found that ignoring the clustering of the data in the PS model and the 

IPTW calculation led to larger bias and root mean squared error (RMSE); however, 

ignoring the clustering in the IPTW calculation was more detrimental than ignoring the 
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clustering of the data in the PS model. Thoemmes and West conducted a simulation that 

tested four types of PS models (SL, fixed effects, RI, and RIS) crossed with two 

conditioning approaches (pooled and within clusters), two different ICCs of the 

individual-level covariates (.05 and .5), and two different sample sizes. The authors 

considered both stratification and matching in their study, but the simulation only tested 

stratification. For pooled stratification, they formed 10 strata across the whole sample, 

ignoring clusters, and for within-cluster stratification, they formed 10 strata within each 

cluster. Although in most cases the naïve approach led to higher levels of bias of the TE 

estimate and mean squared error, it was not the case in the low ICC conditions. When the 

ICCs of the individual-level covariates were close to 0, all modeling and conditioning 

approaches performed similarly.  

 Methodological researchers have considered whether it is best to account for 

variations in treatment selection in the modeling or matching stage by comparing the 

implementation of a multilevel PS model with pooled matching with an SL propensity 

score model with matching within clusters (Arpino & Cannas, 2016; Rickles & Seltzer, 

2014; Thoemmes & West, 2011). The optimal approach depends on the cluster size. As 

previously described, if cluster sizes are small, then fewer treatment units can typically be 

matched when using within-cluster matching, and this changes the estimand of the ATT 

(Arpino & Cannas). Arpino and Cannas also explain that within-cluster matching with an 

SL propensity score model can be seriously biased when cluster sizes are small because 

of the reduction in matched units. For example, Thoemmes and West observed in an 

applied dataset that matching within clusters resulted in sample sizes that were on 

average only 5% of the original sample size and thus resulted in very large variations in 
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TE estimates. In simulations conducted by Arpino and Cannas, bias in the TE estimate 

based on within-cluster matching with an SL propensity score model started to be 

acceptable when the clusters had at least 300 units. When clusters were large (300 units 

or larger), within-cluster matching with an SL propensity score model performed better 

than a multilevel PS model with pooled matching, but all methods that took clustering 

into account were superior to the naïve approach. By contrast, when clusters had an 

average of 50 units each, the RI model with pooled matching and the SL model with 

within-cluster matching had higher levels of TE estimate bias than even the naïve 

approach; in this case, the fixed effects model was preferred. Rickles and Seltzer found 

that within-cluster matching paired with an SL propensity score model had low levels of 

bias in the TE estimate with slightly smaller cluster sizes. In their simulations, the cluster 

size was normally distributed with a mean of 200 and variance of 100.  

 Although Arpino and Cannas (2016) only considered the possibility of either 

accounting for clustered data in the PS modeling or the matching stage, other authors 

have considered accounting for clustering in both stages. In Thoemmes and West’s 

(2011) simulations, using an SL instead of a multilevel PS model when matching within 

clusters led to a high level of bias when the ICCs of the individual-level covariates in the 

PS model were large, indicating large differences in the treatment selection process 

across clusters. Kim and Seltzer (2007) tested three types of PS models with within-

cluster matching using an applied dataset and also concluded that using a multilevel 

model was important to reduce bias in the TE estimate. They explained that an SL 

propensity score model fails to achieve balance within clusters and therefore threatens the 

internal validity of the TE and its variation across clusters. However, these results were 
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inconsistent with those obtained by Rickles and Seltzer (2014) in a series of simulations 

that tested three different PS models with three different matching approaches. In these 

simulations, within cluster matching resulted in minimal levels of TE estimate bias across 

the different PS models (SL, RI, RIS). The authors explain that this is because within-

cluster matching accounts for both observable and unobservable differences in treatment 

selection across clusters.  

 When matching within clusters is not feasible due to small cluster sizes, research 

suggests that two-stage matching, also known as preferential within cluster matching, 

outperforms pooled matching (Arpino & Cannas, 2016; Rickles & Seltzer, 2014). Rickles 

and Seltzer determined that the two-stage matching method proved to be the optimal 

method when within-cluster matching resulted in poor matches or removed too many 

individuals from the sample due to the caliper size. However, the performance of the two-

stage method depended on pairing it with a PS model that accounted for the clustered 

data structure. Compared to within-cluster matching, two-stage matching led to greater 

bias of the TE estimate when paired with an SL propensity score model, but it performed 

similarly to within-cluster matching when paired with either an RI or RIS propensity 

score model. They also showed in an empirical example that the within-cluster matching 

approach removed 57% of treatment units, so the two-stage approach had better 

generalizability. Arpino and Cannas obtained similar results with two-stage matching, 

demonstrating that it performed better than within-cluster matching when clusters were 

small. However, they also made a distinction based on the strength of the relation 

between an omitted cluster-level confounder and the treatment status, which ranged from 

0 to .6 in simulation conditions. When the omitted confounder had a low or medium 
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strength relation with treatment status, two-stage matching was preferred but when it was 

high, within-cluster matching was preferred. 

 Whether implementing within-cluster, two-stage, or pooled matching, researchers 

implementing a multilevel PS model need to determine whether to implement an RI or an 

RIS model. Simulation studies that have considered the RIS model typically only 

considered models with two or three individual-level covariates, all with random slopes 

(Rickles & Seltzer, 2014; Thoemmes & West, 2011). However, Thoemmes and West 

suggested that in applied studies with many more covariates, researchers should initially 

run the PS model with all random slopes but then remove any that are not significant. 

Kim and Seltzer (2007) took this approach in their applied multilevel propensity score 

analysis; of the 18 individual-level covariates, six had significant random slopes and were 

allowed to be random in the PS model. These studies suggest that both the RI model and 

the RIS model can work well with PS matching depending on the study design.  

 Kim and Seltzer (2007) explained that there are clear differences between RI and 

RIS settings. In RI settings, the average probability of selection differs across clusters; in 

RIS settings, the average probability of selection differs across clusters and the 

magnitudes of the slopes of multiple unit-level covariates that predict the probability of 

selection differs across clusters. Using real data from the Early Academic Outreach 

Program, Kim and Seltzer compared the balance achieved with each PS model when 

paired with within-cluster nearest neighbor matching with a caliper. Both models had 18 

individual-level covariates, but in the RIS model, six of them were random. The results 

indicated that ignoring the random slopes in a RIS setting led to poorer balance within 



 

47 
 

clusters, leading to potentially biased cluster TE estimates and overestimation of 

between-cluster TE variation (Kim & Seltzer).  

 Thoemmes and West (2011) made a similar distinction between the settings in 

which RI models versus RIS models should be applied, referring to them as broad and 

narrow inference spaces—essentially the same concept as RI and RIS settings, 

respectively. In broad inference spaces, clustering is an incidental feature of the design, 

as policies for treatment assignment and delivery of the treatment are the same across 

clusters. As such, random slopes are not needed, and the PS analysis attempts to 

approximate a single-level randomized experiment in which units happen to be clustered 

within clusters. For example, in a federal college loan program that has the same 

eligibility criteria for all students in the United States, delivery is likely to be the same 

across all clusters and clustering is therefore incidental. By contrast, in narrow inference 

spaces, clustering is a central feature of the design, as different clusters have different 

policies of how to assign units to treatment and control conditions. In the narrow space, 

the PS analysis attempts to approximate a multisite randomized controlled trial and uses 

both random intercepts and random slopes for all of the covariates. In Thoemmes and 

West’s simulations, the RIS propensity score model performed well in both broad and 

narrow inference spaces, but the RI model performed well in broad but not narrow 

inference spaces. The simulations operationalized broad inference spaces by setting the 

ICCs of the individual-level covariates to .05 and narrow inference spaces by setting the 

ICCs to .5. When ICCs were .05, RI and RIS models performed similarly, but when ICCs 

were .5, the RIS model outperformed the others across all measured outcomes 

(Thoemmes & West). A limitation of this simulation and others in the field is that the 
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study only included three individual-level covariates, which is unrealistic in empirical 

datasets. It would not be realistic to include random slopes for every covariate in a PS 

model with a large number of predictors. Another limitation, which the authors noted, is 

that ICCs of .5 are unrealistically high, even in narrow inference spaces.  

 Arpino and Maelli (2011) and Arpino and Cannas (2016) showed that the cluster 

sizes should also factor into the type of multilevel PS model one chooses. Both studies 

compared the fixed effects model to the RI model in the presence of pooled matching and 

an unobserved cluster-level confounder. These simulations demonstrated that the fixed 

effects model achieved greater balance than the RI model when the cluster sizes were 

small (20 or fewer units per cluster). Arpino and Cannas’s simulation varied the relation 

between a cluster-level confounder and treatment status (0, .2, .4, and .6), which in turn 

caused the ICCs of treatment status to vary across conditions from .01 to .09. When 

clusters were small, the RI model had higher levels of imbalance and bias in the TE 

estimate when there was a strong relation between the omitted cluster-level confounder 

and treatment selection (Arpino & Cannas). By contrast, the fixed effects PS model 

performed reasonably well across all simulation conditions.  

 Several recent methodological studies provide guidance on the circumstances in 

which each combination of modeling and matching strategy is likely to minimize 

selection bias. In general, when cluster sizes are large enough to support it, using an RIS 

model with within-cluster matching will best reduce bias, but when cluster sizes are 

smaller, using two-stage matching is a good compromise between pooled and within-

cluster matching. An SL model can be warranted when the treatment selection process 

does not vary across clusters, and an FE or RI model can be warranted when the strength 
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of the predictors for treatment does not vary. Although this research suggests modeling 

and matching choices when implementing PS methods with multilevel data, it does not 

yet suggest the diagnostics to perform to assess balance. The next section discusses 

potential approaches for assessing balance of multilevel data.  

 2.3.4 Balance assessment for matching with multi-level propensity scores 

(step 3). Each of the methodological studies on multilevel PS matching described above 

calculated a form of standardized bias to evaluate covariate balance but differed in 

whether they took a pooled or within-cluster approach to doing so (Arpino & Cannas, 

2016; Arpino & Maelli, 2011; Kim & Seltzer, 2007; Rickles & Seltzer, 2014; Thoemmes 

& West, 2011). The pooled and within-cluster approaches to assessing balance are 

comparable to the pooled and within-cluster approaches for matching. In the pooled 

approach, clustering is ignored and standardized bias is calculated in the same way that it 

would be calculated in an SL study. Arpino and Maelli (2011) and Arpino and Cannas 

(2016) both took this approach to evaluating covariate balance by calculating the average 

absolute standardized bias (ASB) across clusters for each unit-level and cluster-level 

covariate over the Monte Carlo replications. Arpino and Maelli defined the pooled ASB 

as follows: 
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where TX and CX are the sample means on the covariate of the treatment and control 

groups, respectively, and 2

Ts  and 
2

Cs are sample variances of the two groups. Arpino and 

Cannas (2016) used a slight variation of this formula by standardizing the difference in 

means with the treatment variance rather than the pooled variance. 
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 By contrast, both Kim and Seltzer (2007) and Rickles and Seltzer (2014) took the 

within-cluster approach, calculating balance statistics separately for each unit-level 

covariate within each cluster. However, the studies took different approaches to 

summarizing the information. While Kim and Seltzer reported the mean differences 

between treatment and control units on the covariates separately for each school, Rickles 

and Seltzer calculated the grand-mean ASB for each covariate, as follows: 

1

1 J
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where J is the number of clusters and jd  is the ASB of the jth cluster. Like the pooled 

ASB, the grand-mean ASB provides a single summary statistic for each covariate, but 

unlike the pooled ASB, the grand-mean ASB gives each cluster equal weight regardless 

of its size. The pooled ASB and grand-mean ASB are equivalent when all clusters have 

the same number of units.    

 Another strategy is to calculate both pooled and within-cluster balance statistics, 

which Thoemmes and West (2011) did in their study. For both within-cluster and pooled 

balance, they calculated the standardized differences on the means of each covariate and 

reported the median of the standardized differences. For within-cluster balance, they 

reported the average of the median standardized bias across all clusters and strata, and for 

pooled balance, they reported the median standardized bias for the unit-level and cluster-

level covariates separately, averaged across all strata. For the applied example, they took 

the average across all covariates rather than the median. The authors did not explain why 

they used the median standardized bias in the simulation but the mean standardized bias 

in the applied example. 
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 A limitation of each of these studies is that they did not justify their particular 

approaches for evaluating covariate balance although each has its strengths and 

weaknesses. One advantage of the pooled approach is that it provides a single summary 

statistic for each covariate that can be compared against a predetermined threshold. 

However, it may not provide enough detail if the researcher desires to achieve within-

cluster balance, which is needed for reporting separate TE estimates for each cluster or 

reporting on cluster heterogeneity.  

 The within-cluster approach provides more detail for those needing to achieve 

balance within clusters, but may be cumbersome to review and evaluate when there are a 

large number of covariates and/or clusters. The researcher would then need to summarize 

the within-cluster balance statistics in a way that they can detect potential problems with 

the PS method, for example reporting the mean or median of the ASB of the covariates 

within each cluster, taking the grand mean of the within-cluster ASBs, or reporting the 

percentage of ASBs above a given threshold. As with within-cluster matching, within-

cluster balance assessment is likely to only be a viable option with large within-cluster 

sample sizes, since estimates of standardized bias are less reliable with small samples. 

The incidence rate for receiving treatment within clusters also needs to be large enough to 

support within-cluster balance measures. Even if the cluster has 200 units, if only 2 of 

them receive treatment and are matched, within-cluster balance will not be a meaningful 

or reliable measure. For example, based on the ECLS K 2011 cohort, typically only one 

or two children within a school are retained in kindergarten. When the retained children 

are matched using 1:1 nearest neighbor matching, the within-cluster sample size is 
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reduced to between one and five. With this dataset and analysis, within-cluster balance 

cannot be estimated for many of the schools and for other schools it is not informative.  

 Another limitation of each of the methodological studies on multilevel PS 

methods is that they only used a form of standardized bias to evaluate covariate balance 

even though research suggests that understanding the distribution of covariates is just as 

important as the means (Austin, 2009). As with standardized bias, pooled or within-

cluster variance ratios could be calculated in a multilevel setting. More research is needed 

to determine the optimal methods for calculating and summarizing covariate balance 

information in multilevel PS studies. A discussion of potential measures of balance in 

multilevel settings and ways to evaluate those measures is provided in the statement of 

the problem section. 

 2.3.5 Treatment effect estimation with multilevel propensity scores (step 4). 

As with single-level PS matching, the final step in multilevel PS matching is to use the 

matched sample in the TE estimate. The decision about what type of TE model to use 

when implementing PS matching is the same as with any multilevel study. The researcher 

would either account for the clustered nature of the data using a fixed or random effects 

multilevel model (see Equations 10-12) with the outcome variable regressed on treatment 

assignment, or would use an ordinary least squares (OLS) model with adjusted standard 

errors (Thoemmes & West, 2011). Treatment assignment and any other covariates would 

either be fixed or vary across clusters based on theoretical or empirical reasons 

(Thoemmes & West).  
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2.4 Statement of the Problem 

 Because the use of multilevel PS methods is still in the early stages, many 

questions remain. Simulation studies have helped clarify appropriate PS modeling and 

matching approaches under different types of multilevel contexts, and they have also 

clarified how these modeling and matching decisions impact covariate balance (Arpino & 

Cannas, 2016; Arpino & Mealli, 2011; Kim & Seltzer, 2007; Rickles & Seltzer, 2014; 

Thoemmes & West, 2011). However, each of these studies defined covariate balance 

differently. Some used a pooled approach for assessing balance (Arpino & Cannas; 

Arpino & Mealli), whereas others used a within-cluster approach (Kim & Seltzer; Rickles 

& Seltzer). (Note that Thoemmes and West reported both pooled and within-cluster 

balance statistics.) Moreover, the studies that took the within-cluster approach 

summarized the balance statistics in different ways. For example, one study provided a 

table with the standardized bias listed separately for each cluster, while another reported 

the mean standardized bias across all clusters (Kim & Seltzer; Rickles & Seltzer). More 

research is needed to understand which approaches for evaluating covariate balance can 

predict TE estimate bias in different multilevel contexts.  

 The question of how to assess balance in multilevel settings is more relevant to 

the narrow inference space in which clustering is a central feature of the study design. In 

narrow inference spaces, selection probabilities and characteristics that predict selection 

vary across clusters (Thoemmes & West, 2011), which means that some clusters may 

have satisfactory levels of covariate balance while others do not. If enough clusters 

exhibit poor levels of balance, this could lead to greater bias in the TE estimate. 

Furthermore, researchers studying narrow inference spaces may wish to report TE 
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heterogeneity or report a separate TE for each cluster, which would require the use of 

diagnostics at the cluster level to ensure that these estimates are not biased. By contrast, 

in broad inference spaces clustering is incidental to the design, and treatment selection 

probabilities and characteristics that predict treatment selection do not vary across 

clusters (Thoemmes & West). In such contexts, there is no need to estimate TE 

heterogeneity or the TE of individual clusters, so cluster-level balance statistics are also 

unnecessary. Therefore, future research on assessing covariate balance for studies that 

use multilevel PS matching is particularly needed for narrow inference spaces and should 

investigate which balance summary statistics are useful for predicting TE estimate bias.  

 One could imagine two types of balance measures in a multilevel setting: 

standardized bias and the ratio of variances of baseline covariates (Equations 7 and 8, 

respectively). Standardized bias is the most common metric for assessing balance in 

applied studies that use PS models (Thoemmes & Kim, 2011), so understanding its use in 

multilevel settings will be useful to applied researchers in the social sciences. 

Furthermore, research suggests that to detect TE estimate bias one must examine the 

balance of the variance of the covariates as well as the balance of the means (Austin, 

2009; Rubin, 2001). Standardized bias and variance ratios are particularly useful metrics 

of mean and variance balance because they can be compared against pre-established 

thresholds.  

 In a multilevel PS matching study, standardized bias and variance ratios may be 

pooled across clusters, or they may be calculated separately for each cluster and then 

summarized. In pooled balance statistics, standardized mean differences and variance 

ratios are calculated for each covariate in the PS model of a matched sample, ignoring 
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cluster membership. For example, Arpino and Maelli (2011) calculated the ASB for each 

covariate, and their equation (14) shows that cluster membership is not factored into the 

calculation. To produce cluster-based summaries, standardized bias and variance ratios 

are first calculated for each covariate within each cluster before and after matching. With 

balance statistics for each covariate within each cluster, a researcher will likely need a 

way to summarize the information to efficiently review and act on it. For example, 

Rickles and Seltzer (2014) took the grand mean of the cluster-level ASB statistics 

(equation 15). Another strategy is to summarize across covariates or clusters using the 

median (Thoemmes & West, 2011), which is less sensitive to outliers compared to the 

mean. As a measure of the magnitude of outlying clusters, one could calculate the 

percentage of clusters with balance measures above commonly accepted thresholds, for 

example the percentage of clusters with a variance ratio below .5 or above 2. It is not yet 

clear whether any of these summaries of the within-cluster balance measures would be 

preferred to the pooled balance measures for detecting and reducing bias in TE estimates. 

Given the lack of investigation of balance assessment in multilevel PS applications, this 

study sought answers to the following questions:  

1. Which pooled and within-cluster measures of variance ratios and ASB are best for 

selecting the correctly specified PS model? Does this vary according to ICC of the 

unit-level covariates, cluster size, or matching method? 

2. Which pooled and within-cluster measures of variance ratios and ASB are most 

related to bias in the TE estimate? Does this vary according to ICC of the unit-

level covariates, cluster size, PS model, or matching method? 
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I answered the questions using a Monte Carlo simulation and then demonstrated the use 

of balance measures for multilevel settings with two empirical datasets.  

 Several general hypotheses can be made through extrapolating from prior research 

on balance diagnostics in SL settings. First, I hypothesized that in most conditions 

variance ratio measures would perform better than ASB measures based on the results of 

Austin (2009), which showed through simulation that the variance ratio was more 

effective than ASB for detecting PS model misspecifications. Second, when comparing 

the different summary measures of ASB and variance ratios, I expected that the mean 

would perform better than the median or threshold indicators, since Stuart et al. (2013) 

found that the mean ASB was more strongly correlated with TE estimate bias compared 

to other ASB summary measures in SL settings. A similar study on PS balance by 

Belitser et al. (2011) suggest that these results should be moderated by sample size. 

Specifically, when the sample sizes are small, there was a stronger correlation between 

mean-based balance measures and bias compared to other balance measures, but when 

sample sizes were large, all tested balance measures performed similarly. Therefore, I 

would expect this finding to be true with smaller cluster sizes in a multilevel setting.  

 Other hypotheses can be made based on findings from methodological studies on 

multilevel PS methods. First, these studies inform us on the conditions for which to 

expect greater bias. For example, I expected that in the narrow inference space when the 

true PS model is an RIS model, using an SL model that ignores clustering would lead to 

biased TE estimates (Arpino & Cannas, 2016). As differences between the data 

generating PS model and the model imposed on the data increase, the bias in the TE 

estimate should also increase. Furthermore, I expected greater bias with pooled than with 
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within-cluster matching when cluster sizes are large, but expected greater bias with 

within-cluster than with pooled matching when cluster sizes were small, based on the 

research of Arpino and Cannas and that of Rickles and Seltzer (2014).  

 Understanding the conditions for which to expect greater levels of bias in the TE 

estimate also suggests the conditions for which balance measures can be more 

informative. Correlations between the balance measure and bias of the TE estimate are 

more meaningful with higher levels of bias. For this reason, I expected that several of the 

balance measures would perform similarly when bias in the TE estimate is low but that 

any optimal balance measures would stand apart from the others when bias in the TE 

estimate is higher. Multilevel PS studies also provide insight on how the ICCs of the unit-

level covariates may impact the preference for pooled or within-cluster balance measures. 

When the ICCs are smaller, the selection process and balance should be similar across 

clusters, even in the presence of model misspecifications (Thoemmes & West, 2011). In 

this context, pooled balance measures should perform just as well as within-cluster 

balance measures. By contrast, when ICCs are larger, the selection process varies across 

clusters, causing more clusters to be imbalanced when there are misspecifications in the 

PS model. In this context, within-cluster balance measures may be more useful. The next 

chapter lays out the methods used for the simulation study in order to answer the research 

questions and test these particular hypotheses.  
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Chapter 3. Simulation Method 

 A simulation study was conducted to assess the ability of various balance 

measures to identify misspecifications in the PS model and thus potential bias in the TE 

estimate. This chapter describes the method used to answer the research questions 

outlined in Chapter 2. The chapter focuses exclusively on the simulation methods used to 

address the research questions; the methods used for the empirical illustrations are 

described in Chapter 5. The chapter begins by describing the data generation process, 

which involved generating data from a multilevel PS model and then generating data 

from the multilevel TE model. The models both included student-level covariates, a 

cluster-level covariate, and random intercepts and slopes. The next section describes the 

manipulated and fixed factors of the simulation design. The manipulated factors may be 

described as between-cell factors, which require running separate replications of the data, 

and within-cell factors, which require performing different procedures within each 

replicated dataset. Between cells, the simulation varied the ICCs of the student-level 

covariates (but not the ICC of the outcome itself) and the cluster sizes, and within cells, it 

varied the PS models imposed on the data, matching methods, balance measures, and the 

method of summarizing the balance measures across covariates. The balance measures 

included both pooled and within-cluster versions of ASBs and variance ratios. The 

chapter concludes by describing the measurement of the two outcomes: 1) use of balance 

measures for identifying the correctly specified PS model, and 2) correlation between the 

balance measures and bias in the TE estimates.  
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3.1 Data generation 

 The Monte Carlo simulation required two data generation models—the PS model, 

which generated the probability of being treated, and the TE model, which generated the 

value on the response variable, or outcome. The motivating context of the simulation is 

the narrow inference space in which clustering is a central feature of the study design. In 

the narrow inference space, the rates of treatment selection and the strength of the 

relation between the predictors and treatment assignment and the outcome vary across 

clusters. In such contexts, the RIS model (Equation 12) is appropriate for both the PS and 

outcome model and was therefore used for data generation.  

 The specific variables and parameters used in the equation are based on an 

empirical analysis of the effect of kindergarten retention on first grade reading outcomes 

using the ECLS-K: 2011 data (NCES, Tourangeau et al., 2015). This empirical 

illustration is one of the two illustrations described in greater detail in Chapter 5. The 

empirical analysis included 36 variables that were expected to be predictive of 

kindergarten retention and later reading achievement based on prior research on 

kindergarten retention. However, in order to more efficiently manipulate factors for the 

simulation, only the parameters for the three student-level covariates (kindergarten 

reading achievement, kindergarten math achievement, and age at kindergarten entry) and 

the one school-level covariate (number of students retained in the prior school year) that 

were most predictive of kindergarten retention were included in the simulation study. The 

choice to include a small set of variables in a simulation is a common approach in 

methodological studies of multilevel propensity score methods (e.g, Arpino & Maelli, 

2011; Rickles & Seltzer, 2014; Thoemmes & West, 2011). Although the number of 
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covariates in the PS model can affect covariate balance and the level of TE estimate bias, 

it should not affect the relative performance of different types of balance measures. 

Because the goal of this study is to understand the performance of various balance 

measures in the context of multilevel PS matching, the choice to limit the number of 

covariates should make the results parsimonious and interpretable without sacrificing 

accuracy. However, the empirical illustrations covered in Chapter 5 provide an example 

of how to apply the balance measures examined in the simulation to real datasets when a 

larger set of covariates are included in the PS model.  

 The propensity scores were generated with the following model: 
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In the top line, 
0 j is the intercept for the jth cluster and

Rj ,
Mj , and

Aj  are coefficients for 

their respective unit-level variables, 
RX , 

MX , and 
AX , which represent the kindergarten 

reading score, kindergarten math score, and age at kindergarten entry, respectively. The 

next line shows that the cluster intercept is composed of 
00 , the grand intercept, 

01 , a 

coefficient for a school-level variable, 
jW , the number of children retained from 

kindergarten in the prior school year, and 
0 ju , the school-level deviation from the 

expected value, based on the grand intercept and Wj. In the remaining lines, 
Rju  and 

Mju  

are school-level deviations from the grand regression coefficients (
0R  and 

0M ), 

indicating that the relation between each of the student-level predictors and 
ijT  (treatment 
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status represented by a student being retained in kindergarten) and between kindergarten 

math and 
ijT varies randomly across schools. Because the empirical dataset indicated that 

there was little variation in the relation between age at kindergarten entry and 

kindergarten retention across schools, the intercept varies but the slopes are fixed.  

 The parameter values for this data generation model are as follows:
00 1   ; 

01 .38  ; 
0 1.4R   ; 

0 1.7M   ; and 
0 .16A   . The parameters are based off of an 

RIS model performed on the ECLS-K 2011 dataset with the exception of the grand 

intercept (
00 ). In the empirical dataset, 

00 = -6.76, indicating that a student who attended 

a school with an average retention rate and who was at his or her school average on 

reading, math, and age at kindergarten entry would have an odds of 1:862 of being 

retained. This ratio would not be practical for the purpose of the simulation, since 

matching would need to occur within schools in some of the conditions. Therefore, for 

the purpose of the simulation, the parameter was changed to -1, making the odds of being 

retained under the same conditions to 1:2.7. Information about the distribution of the 

covariates and of the random effects in the PS model and the TE model are described 

later in the chapter. 

Outcome values, scores on first grade reading, were generated based on the 

following multilevel linear regression model: 
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 The equation uses the same terms as the propensity score model but adds the 

regression coefficient for the treatment status,
Tj , and the error term at the student-level, 

ijr . The parameter values for the TE data generating model are as follows: 
00 1.58  ; 

01 .025   ; 
0 .40T   ; 

0 .61R  ; 
0 .24M  ; and 

0 .006A   . The parameter value of 

0 .40T    is equivalent to a Cohen’s d effect size for the treatment effect, of -0.6.  

 To reflect the empirical dataset, the data were generated to allow for correlations 

among the covariates and among the random slope variances of the student-level 

variables. At the school-level, the number of students retained in the prior school year 

(W) and the school means of kindergarten reading (
RX ), kindergarten math (

MX ), and 

age at kindergarten entry (
AX ) and the school-level residuals for the PS model and the TE 

model were generated as random normal variables. The student-level covariates were also 

generated as random normal variables. The mean and covariance structure of all 

covariates and school-level residuals are shown in Table 1.  

Table 1 

 

Means, covariance and correlational structures of school- and student-level 

covariates and school-level residuals 

 
School-level covariates and student-level covariates at the school-level (for one ICC condition)a 

 
RX school mean 

MX school mean 
AX school mean W 

Meansb  0.46 0.45 66.12 1.71 

Covariance 

RX school mean 0.19    

MX school mean 0.15 0.18   

AX school mean 0.14 0.16 5.11  

W -0.08 -0.14 0.03 5.15 

Correlations 

RX school mean 1.00    

MX school mean 0.81 1.00     

AX school mean 0.14 0.17 1.00   
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W -0.08 -0.15 0.01 1.00 

School-level residuals in the PS model 

 
0 ju  Rju  Mju  

Means  0.00 0.00 0.00 

Covariance     

0 ju    6.58   

Rju    0.32 4.15  

Mju   1.86 -2.13 2.93 

Correlations     

0 ju   1.00   

Rju   0.06 1.00  

Mju   0.42 -0.61 1.00 

School-level residuals in the TE model 

 
0 ju  Tju  Rju  Mju  

Means 0.00 0.00 0.00 0.00 

Covariance     

0 ju  0.12    

Tju  -0.02 0.08   

Rju  0.01 0.02 0.02  

Mju  -0.01 0.01 -0.01 0.01 

Correlations     

 0 ju  1.00    

  Tju  -0.21 1.00   

  Rju  0.12 0.39 1.00  

  Mju  -0.20 0.29 -0.71 1.00 

Student-level covariates within schoolsc 

 
RX  MX  AX  

Covariance     

RX   0.47   

MX   0.34 0.46  

AX   0.49 0.69 16.55 

Correlations     

RX   1.00   
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MX   0.73 1.00  

AX   0.18 0.25 1.00 

Note. aTo create four different conditions of the intracluster correlations, the covariance matrix was 

multiplied by .25, .5, 1, and 2. 
bMeans of the school-level means. 
cThe within-school means vary across schools as shown in the first covariance matrix of this table. 

 

In both the PS and the TE models, data were generated so that the student-level 

covariates were centered at the school mean, and the school-level covariate was centered 

at the grand mean. This was consistent with how the empirical data were analyzed, based 

on the recommendations from methodological research on centering in multilevel models 

(Enders & Tofighi, 2007). The centering choice for the school-level covariate is 

straightforward since there is only the choice to center at the grand mean or to not center 

at all. Centering at the grand mean is more interpretable because the intercept represents 

the expected outcome when the covariate is equal to the mean across all of the clusters. 

For student-level covariates, the choice is more complex because one can center at the 

cluster mean or at the grand mean. Enders and Tofighi show that centering within clusters 

removes the between-cluster variation, which leads to more accurate estimates of slope 

variance. Because this simulation involved estimating slope variances of the student-level 

predictors, centering within clusters was more appropriate. 

The simulation manipulated five factors. The number of individuals within a cluster 

and the intraclass correlation coefficients (ICCs) of the student-level covariates were 

between-cell factors, and the propensity score model, matching method, and balance 

measures were within-cell factors. The ICC for each student-level covariate was 

calculated as follows: 
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2
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cluster

cluster student
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       (20)  

Where 2
cluster

  is variation explained by differences between clusters and 

2
student

  is variation explained by differences between students within clusters. Of the 

manipulated factors, the ICCs of the student-level covariates was the only factor that 

affected the data generation parameters. Specifically, the explained variance across 

clusters presented in the top matrix of Table 1 (the school-level covariates and student-

level covariates at the school-level) varied across the four ICC conditions. Based on the 

covariance structure obtained from the ECLS-K dataset and presented in Table 1, the 

ICCs of kindergarten reading, math, and age at entry were calculated as .29, .28, and .24, 

respectively. To obtain the desired ICCs at three other levels, the full covariance matrix 

of the cluster-level covariates was multiplied by .25, .50, and 2. Table 2 illustrates the 

ICCs across the four conditions. The full set of variance/covariance parameters of these 

four conditions are reported in the appendix. 

Table 2 

 

Intracluster correlations of the unit-level covariates across four factor levels 

 
Factor level 1 2 3 4 

Ratio of the school-level covariance matrix in Table 1 0.25 0.50 1.00 2.00 

Kindergarten reading achievement ICC 0.09 0.17 0.29 0.45 

Kindergarten math achievement ICC 0.09 0.16 0.28 0.44 

Age at kindergarten entry ICC 0.07 0.13 0.24 0.38 

Average ICC across covariates 0.08 0.15 0.27 0.42 

 

Note. ICC=intracluster correlation.      

 

 Data were generated with 500 replications within the cells of the study conditions 

described in the next section, which is a common number of replications in other 

simulations using multilevel PS methods (Arpino & Cannas, 2016; Li et al., 2013; 
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Rickles & Seltzer, 2014). To confirm that the number of replications was appropriate, the 

convergence of the simulation outcomes (selection of the correctly specified model and 

correlations between the balance measure and bias) was examined across the 500 

replications. The results from this analysis are provided in Chapter 4.  

3.2 Manipulated and Fixed Factors 

 As shown in Table 3, the simulation included both between-cell and within-cell 

factors. The between-cell factors included the ICCs of the student-level covariates and 

the cluster sizes, and the within-cell factors included the PS models, matching methods, 

balance measures, and the method of summarizing the balance measures across the 

covariates. The fixed factors included the coefficients in the PS model and the TE model 

(Table 1), and the number of clusters (50). 
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Table 3 

 

 

Manipulated factors and levels 

 
Manipulated factors Levels 

Between cell conditions 

Average ICCs of unit-level 

covariates 

.08 

.15 

.27 

.42 

Cluster sizes 10 

25 

100 

400 

Within cell conditions  

Propensity score model Correctly specified RIS model 

Over-parameterized, RIS model 

Under-parameterized, RI model 

Under-parameterized, SL model 

Under-parameterized, SL model without Wj 

Matching method Pooled 

Two-stage 

Within-cluster 

Balance measures Pooled ASB 

ASB 

Indicator of >.1 

Indicator of >.25 

Within-cluster ASB 

Mean across clusters 

Median across clusters 

Percentage of clusters >.1 

Percentage of clusters >.25 

Pooled variance ratio 

Variance ratio 

Indicator of <.5 or >2 

Within-cluster variance ratios 

Mean across clusters 

Median across clusters 

Percentage of clusters <.5 or >2 

Summary of balance measures 

across covariates 

Mean 

Weighted mean 

 

Note. RIS=random intercepts and slopes; RI=random intercepts; SL=single-level; Wj=cluster-level 

covariate; ASB=absolute standardized bias.  

 

 3.2.1 Between cell conditions. Because the number of students within clusters 

and the ICCs of the student-level covariates have been shown to affect the modeling and 

matching steps, these were important factors to vary when investigating the diagnostics 

step. For example, Thoemmes and West (2011) found that when the ICCs of the unit-
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level covariates were high (.5), the random intercepts and slopes PS model was preferred 

for reducing bias of the TE estimate, but when the ICCs were low, bias was low for all of 

the PS models tested. This means that it may be more difficult for balance measures to 

detect model misspecifications when the ICCs are low compared to when they are high, 

and for this reason, it was important to assess the ability of balance measures to detect 

model misspecifications with varying ICCs. Thoemmes and West (2011) considered 

ICCs of .05 and .5 for their unit-level covariates but warned that an ICC of .5 is higher 

than what one would expect in an applied study. For this reason, the simulation tested 

ICCs of .24, .28, and .29, which are the ICCs of the variables age at kindergarten entry, 

kindergarten math, and kindergarten reading, respectively, from the ECLS-K dataset, as 

shown in Table 2. The average ICCs in the other conditions are .08, .15, and .42, which 

are also more realistic than the ICCs tested by Thoemes and West.  

 Cluster sizes are another important consideration for selecting the modeling and 

matching approach in a multilevel study, and thus, were also important in selecting the 

diagnostic approach. For instance, Arpino and Cannas (2016) found that within-cluster 

matching resulted in greater bias of the TE estimate compared to pooled matching when 

clusters were smaller than 300, and the random intercepts and slopes model resulted in 

greater bias in the TE estimate than the random intercept only model when clusters were 

smaller than 20. Because the interaction between the cluster size and the matching and 

modeling method has an effect on the bias of the TE estimate, it was important to assess 

balance measures with different cluster sizes. It was also important to test a wide range of 

cluster sizes, because a wide range of cluster sizes are used in applied settings, depending 

on the context. One researcher may focus on the nested structure of students within 
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classrooms while another may focus on the nested structure of students within schools. 

To represent a range of contexts, this simulation used cluster sizes of 10, 25, 100, and 

400.  

 3.2.2 Within cell conditions. Within cells, the simulation varied the PS models 

imposed on the data, matching methods used to equate the groups, and balance measures 

used to evaluate the equivalency across groups. The correctly specified RIS model used 

to generate propensity scores in Equation 18, was compared to four misspecifications that 

represent four common modeling errors that researchers could make. The first 

misspecified PS model is an over-parameterized (OP) model in which a student-level 

variable that has no relation to treatment selection, the outcome, or any predictors of 

treatment selection is included in the model. The modeled relation of the fourth student-

level variable (X4) to treatment status varied randomly across clusters and did not interact 

with other variables in the prediction of treatment status or the outcome. The remaining 

misspecifications are under-parameterized models that fail to include random 

components and/or variables. Each of these models is nested such that the random 

intercepts (RI) model is a reduced version of the RIS model, the single-level (SL) model 

is a reduced version of the RI model, and the model without cluster-level covariates 

(NoL2) is a reduced version of the SL model. Specifically, the RI excludes Rju  and Mju

from Equation 18, because the intercepts vary across clusters but the relations between 

the unit-level variables and treatment status does not. Researchers might select the RI 

model if they incorrectly assume that the multilevel setting is a broad rather than a 

narrow inference space. A further misspecification would be to use an SL model, treating 

the cluster-level variable, W, as if it were a unit-level variable. To demonstrate this error, 
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the SL model removes Rju  and Mju , the random slopes, and 0 ju , the random intercepts 

from Equation 18, making the intercepts fixed across clusters. Finally, the NoL2 model 

represents an SL model that fails to include any cluster-level predictors of treatment 

selection. This misspecification is achieved by removing Rju , Mju , 0 ju , and 01 jW  from 

Equation 18.  

 The simulation also tested the three matching methods used for multilevel PS 

matching—pooled, two-stage, and within-cluster matching. Each method has been shown 

to be appropriate in narrow inference spaces when paired with an RIS, PS model; 

however, within-cluster matching can lead to biased TE estimates with small cluster sizes 

(Arpino & Cannas, 2016; Arpino & Maelli, 2011; Rickles & Seltzer, 2014). In the pooled 

matching condition, treated units were matched to control units with the closest PS 

estimate, regardless of cluster membership, while in the within-cluster matching 

condition, matches were restricted to control units in the same cluster. In the two-stage 

matching condition, a match was first attempted within the same cluster before moving to 

the pooled sample. The two-stage matching was not restricted to cluster groups as in 

Rickles and Seltzer but instead was open to the pooled sample as in Aprino and Cannas. 

All matching conditions were implemented with nearest neighbor matching with a caliper 

of .2 standard deviations of the PS with units matched in a random order. This matching 

method is common in applied studies and has been shown to be effective for removing 

selection bias (Cochran & Rubin, 1973; Rosenbaum & Rubin, 1985; Thoemmes & Kim, 

2011). In the within-cluster matching condition, if there were no individuals in the 

control group within the designated caliper width and the same cluster, then the treated 

unit was not matched. By contrast, in the two-stage matching condition, any treated 
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individuals that could not be matched within the designated caliper width and cluster 

were then matched to an individual within the caliper width but from another cluster. 

 The simulation tested both pooled and within-cluster forms of absolute 

standardized bias (ASB) and variance ratios for examining balance. As described 

previously, standardized bias is the difference in treatment and control means divided by 

the pooled treatment and control standard deviations (Equation 7), and is the most 

common metric for evaluating balance in PS-matched samples. In particular, ASB, the 

absolute form of standardized bias (Equation 13) is the most commonly reported balance 

measure in studies that have investigated multilevel PS methods (Arpino & Cannas, 

2016; Arpino & Maelli, 2011; Rickles & Seltzer, 2014). Although it has not yet been 

adopted by many applied researchers, the variance ratio (VR, Equation 8) is 

recommended for assessing balance of the sample distribution (Austin, 2009). 

Understanding how to assess balance both in terms of the sample means and the 

distributions of the covariates is important for multilevel studies using PS methods. 

 The pooled balance measures were calculated for each covariate in the PS model 

of the full matched sample, ignoring cluster membership. To facilitate comparison of 

VRs across clusters and covariates, the VR was calculated so that the smaller variance 

was always the numerator and the larger variance was always the denominator. 

Additionally, binary (0/1) variables were created to indicate whether each pooled 

measure was above or below commonly accepted thresholds. For ASB, the thresholds 

were set to .1 and .25, which are commonly used to evaluate bias in a PS model (e.g., 

Harder et al. 2010; Normand et al., 2001). Based on the What Works Clearinghouse 

group design standards, an ASB of .1 on a pre-test measure would require the researcher 
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to make a covariate adjustment to the TE model in order to get a rating of “meets 

standards with reservations,” and an ASB of .25 on a pre-test measure would 

automatically result in a rating of “does not meet standards” (U.S. Department of 

Education, 2017). For the pooled variance ratio, a binary variable indicated whether the 

variance ratio was below .5 or greater than 2, which suggest extreme differences in 

sample distributions (Rubin, 2001).  

 Each of the same statistics were calculated for the within-cluster balance 

measures as with the pooled balance measures (ASB, variance ratio, and threshold 

variables for all unit-level covariates), but were calculated separately for each cluster. To 

summarize the ASB and variance ratios across all clusters, the mean and median of the 

cluster-level balance measures were calculated. It was important to include the median as 

well as the mean as a measure of central tendency because it is less sensitive to outlying 

clusters. The binary threshold variables were reported as a percentage of clusters to show 

the extent of clusters with problematic levels of balance.  

 Once all of the balance measures were calculated for each covariate, they needed 

to be summarized into one metric that could be used for decision-making. Two 

approaches were tested: in the first approach, the researcher considers all covariates to be 

equally important and calculates the mean of the balance measure across covariates; in 

the second approach, the researcher applies weights to the covariates in terms of their 

influence on the outcome. Although the first approach is intuitive, Ho et al. (2007) 

recommended prioritizing the balance of covariates that more strongly influenced the 

outcome in the TE model. To do so, the weight of each covariate in the weighted mean 

was determined based on the influence of each covariate on the outcome in the real data. 
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Specifically, they were weighted according to the t-values for each covariate in the data 

generating TE model, where the weight of each covariate RX , MX , AX , and W was 

equal to 63, 25, 6, and 5, respectively. The t-values show the strength of the covariate in 

predicting the outcome measure according to the t-distribution, and can be converted into 

different types of effect sizes (Durlak, 2009). It is worth noting that a researcher would 

not have these precise estimates, because the TE would not be estimated until after 

matching. Instead, the researcher would consult with prior research to determine the 

relative importance of each covariate in estimating the treatment effect. This weighted 

approach is similar to a balance measure proposed by Stuart, Lee, and Leacy (2013), the 

ASB of the prognostic score. A prognostic score is a single score that summarizes a 

person’s likelihood of achieving a dichotomous outcome, such as passing a test or 

graduating from high school (Hansen, 2008). Although Hansen formally defined this 

term, Stuart et al. were the first to propose its use as a balance measure. In this context, 

Stuart et al. used both propensity scores and prognostic scores: first treatment units were 

matched to control units based on the propensity score; then, the ASB of the prognostic 

score was calculated to assess balance. Stuart et al. found that the ASB of the prognostic 

score had the highest correlation with bias in TE estimate compared to other balance 

measures and that it worked well in a variety of circumstances. This simulation could not 

use the prognostic score because of its use of a continuous outcome variable; however, 

the weighted mean as described above was a close proxy that could be tested with each of 

the balance measures, including the VR and indicators (ASB>.1, ASB>.25, and VR <.5 

or >2).  
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 3.2.3 Fixed factors. The parameters for both the PS and the TE data generating 

models remain constant across study conditions, except for the cluster-level covariate and 

the school means of the student-level covariates. These parameters vary in order to vary 

the ICCs of the unit-level covariates in the PS model. Because the focus of this 

simulation is on the identification of misspecifications of the PS model and not the TE 

model, the simulation does not include misspecifications of the TE model. Across all 

matched samples resulting from the study conditions, the TE estimate was calculated as a 

difference in treatment and control means. Furthermore, the simulation varied the number 

of units within each cluster, while holding the number of clusters constant at 50, the same 

number of clusters used in Rickles and Seltzer (2014). Fifty clusters may be a reasonable 

number faced by an applied researcher given that the empirical examples, undertaken 

with extant data included 859 and 29 clusters each. 

3.3 Outcome Measures 

 The goal of the simulation is to assess the degree to which the tested balance 

summary measures can correctly select the correctly specified PS model and the degree 

to which they correlate with bias of the TE estimate. Before evaluating model 

misspecifications, it is important to determine the degree of misspecification of each 

alternative model. Several criteria can be used for model comparison from either a 

frequentist or a Bayesian perspective. From the frequentist perspective, a loglikelihood 

ratio test may be used to compare the goodness of fit between any two nested models, 

and one can calculate a p-value using the chi-squared distribution. The Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC) are two other 

common criteria for model comparison. Burnham and Anderson (2004) explain that the 
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choice about whether to use the AIC or BIC does not depend on the preference for using 

frequentist or Bayesian, since they can both be derived in either framework. Rather, the 

decision depends on one’s philosophy about model selection. AIC assumes that there is 

no “true model” and that a different model may be selected with different sample sizes. 

By contrast, the BIC assumes that there is one “true model,” a data generating model that 

is independent of the sample size. Given that the simulation is based on one data 

generating model, the philosophy of the BIC is better aligned with this simulation. 

However, Bayesian factors rely on the proper selection of priors. Alternative Bayesian 

criteria for model comparisons including fractional Bayes factors (O’Hagan, 1995) and 

intrinsic Bayes factors (Berger & Pericchi, 1996) have proposed ways to address this 

problem. But a remaining concern of the BIC is that it tends to produce biased results 

from the selected model when the sample size is small (Burnham & Anderson). Because 

the small cluster sizes tested in the simulation, AIC is more appropriate for assessing 

model fit. Therefore, the fit of the models were compared using likelihood ratio tests and 

AIC to determine the degree of misspecification for each alternative model. 

 All balance measures were compared in terms of their ability to select the 

correctly specified PS model (Equation 18). If a balance measure is effective at detecting 

bias, then it will indicate poorer levels of balance (higher ASBs and variance ratios 

further from 1) for the matched samples resulting from the misspecified PS models than 

for the matched samples resulting from the correctly specified PS model. By contrast, if a 

balance measure is ineffective at detecting bias, then it might incorrectly indicate that the 

samples resulting from the misspecified PS models are well balanced. In a set of Monte 

Carlo simulations, Austin (2009) compared one condition in which the PS model was 
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correctly specified to another condition in which a covariate was missing from the PS 

model. For each covariate, they calculated both the ASB and the variance ratio. They 

concluded that the variance ratio was better at detecting model misspecifications because 

the ASBs were nearly the same for the correctly specified and misspecified model but the 

variance ratios showed poorer balance for the misspecified model.  

 The current study expanded the approach of Austin (2009) by simulating the 

process that applied researchers would undertake when selecting a PS model. Applied 

researchers implementing the diagnostic step in a multilevel PS analysis would consider a 

few different specifications of the PS model and would then select the one resulting in the 

most balanced samples. To quantify this diagnostic approach, the selected “best” model 

was recorded for each balance measure, assuming that a researcher would select the 

model resulting in the greatest balance, as measured as the average balance across the 

covariates. Whenever there was an exact tie in balance between models, none was 

selected. Then, across the 500 replications, the selection of the best model for each 

balance measure was tallied and the percentage in which each model was selected was 

calculated. If the model was selected for more than 50 percent of the replications, then it 

was selected as the “winner,” and if the model was selected for more than 75 percent of 

replications, it was selected as the “clear winner.”  

 Effective balance measures should not only be capable of selecting the correctly 

specified PS model but should also predict bias in TE estimates. As such, a correlation 

between each pooled and within-cluster balance measure and bias of the TE estimate was 

calculated. With each replication, the simulation calculated balance statistics for the 

matched sample and an estimate of the TE. Bias of the TE was calculated for each 
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replication by subtracting the TE estimate from the true TE (Equation 19). Once all 

replications were completed, a correlation coefficient between the balance measure and 

bias across replications was calculated. Balance measures that are most effective should 

have higher correlations with absolute bias of the TE estimate. This approach was used to 

evaluate balance measures in other studies of PS methods (Belitser et al., 2011; Stuart et 

al., 2013). 

 Absolute bias was calculated rather than relative bias. In the case of measuring the 

correlation between balance measures and bias, absolute bias is more appropriate because 

greater levels of imbalance should lead to greater levels of bias. This would not be the 

case if the direction of bias was recorded.  

3.4 Software 

 Data generation, matching, and analysis were carried out in SAS software, 

Version 9.4 for Windows2. The GMatch SAS macro developed by Brad Hammill (2015) 

was adapted for the multilevel matching procedures used in this study. 

3.5 Summary of Simulation Procedures 

 This chapter described the simulation methods used to address the study’s 

research questions: 1) “which balance measures are best at identifying the correctly 

specified PS model?”, and 2) “which balance measures are most strongly correlated with 

bias in the TE estimates?” Figure 4 summarizes the steps of the simulation in the form of 

a flowchart. First, data were generated according to the specified PS and TE models 

(Equations 18 and 19) and the covariance structures of the variables and residuals (Table 

                                                           
2Copyright © 2013 SAS Institute Inc. SAS and all other SAS Institute Inc. product or 

service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, 

USA. 
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1) for each of the 16 combinations of ICC and cluster size. Next, the five PS models were 

run on the 16 different datasets, and separate propensity scores were saved from each 

model. Then for each dataset and propensity score model, the treatment and control 

groups were matched in three different ways: pooled matching, two-stage matching, and 

within-cluster matching. Pooled and within-cluster balance measures and TE estimate 

bias were then calculated for each of the 240 matched datasets. As a reminder, TE 

estimates were calculated as the difference in treatment and control means in the matched 

sample. The within-cluster balance measures were summarized both as a mean and as a 

median across all of the clusters, and all balance measures were summarized across the 

covariates as a simple mean and as a weighted mean. These procedures were completed 

500 times. Finally, the percentage of replications in which the RIS model was selected 

and the correlation between TE estimate bias and balance was calculated for each 

condition and balance measure. The results are reported in the next chapter. 
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Figure 4. Flow of simulation procedures from data generation to outcome estimation. 

PS=propensity score; T=treatment; C=control; WC=within-cluster; TE=treatment effect. 

 

Chapter 4. Simulation Results 

 The previous chapter described the methods used to answer two main types of 

research questions: 1) the balance measures that can properly identify the correctly 

specified PS model and 2) the balance measures that are most correlated with bias in the 

TE estimate. This chapter provides the results from the Monte Carlo simulation that 

answer these questions. Before discussing the results on the outcome measures, the 

chapter describes the convergence of the simulation outcomes across the 500 replications 

as evidence of the reliability of the results presented throughout the chapter. For context, 
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it also provides descriptive information about the TE estimate bias across the study 

conditions (ICCs of the student-level covariates, cluster sizes, PS models, and matching 

methods). It then describes the results pertaining to each research question by 

summarizing the results across and between the study conditions. The chapter provides 

tables and figures to illustrate the major findings; the comprehensive results for each 

condition of the simulation are presented in tables and figures in the appendix.  

4.1 Convergence 

 The outcome measures successfully converged prior to the 500th replication. For 

the outcome of the percentage selection of the correctly specified model, convergence 

was defined as a change of no more than 1 percentile point from one replication to the 

next. On average across conditions, the percentage of replications in which the mean 

pooled ASB selected the correctly specified model converged within 52 replications, and 

the most replications required for any condition to converge was 94. For the correlation 

outcome, convergence was defined as a change of no more than .01 from one replication 

to the next. On average across conditions, the correlation between the mean pooled ASB 

and TE estimate bias converged within 313 replications. The number of replications 

required for convergence of the correlation outcome varied according to the cluster size, 

model, and matching method. In general, the within-cluster matching approach required 

more replications for convergence compared to the pooled or two-stage matching; the 

single-level models required more replications than the RIS models; and the largest 

cluster size (400) required more replications than the smaller cluster sizes. Just 2 of the 

240 conditions did not meet the convergence criteria within 500 replications, but 

graphical inspection of these conditions revealed there was no need for concern for 
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interpreting the results. Figure 5 demonstrates the convergence of the correlation between 

TE estimate bias and each of the balance measures for one of these two conditions, in 

which the ICC was high, cluster size was 10, PS model was RIS, and matching method 

was WC. Each color represents a different balance measure. The horizontal lines 

represent the estimate of the correlation parameter across the 500 replications. The jagged 

lines close to the Y-axis represent the large changes in estimates from one replication to 

the next during the first few replications but gradually become smoother as the simulation 

progresses. They are relatively smooth by 150 replications, but there are some jags in the 

lines until approximately the 450th replication. However, all correlations appear stable by 

the 500th replication.  
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Figure 5. Convergence of the correlation between absolute treatment effect estimate bias and each of the 

balance measures in the condition where the average intracluster correlation is high (.42), there are 10 units 

per cluster, the propensity score model has random intercepts and slopes, and matching is conducted within 

clusters. The correlation between treatment effect estimate and each balance measure is represented by a 

different color, where ASB=absolute standardized bias, VR=variance ratio, Pooled=pooled balance 

measure, and WC=within-cluster balance measure. All balance measures are summarized across covariates 

as an equally-weighted mean; the convergence pattern looks the same for the balance measures 

summarized as unequally-weighted means. 

 

4.2 Bias of the Treatment Effect Estimates 

 Before interpreting the results from the two research questions, it is important to 

first understand the values of the TE estimate bias across the simulation conditions. In 
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each condition, TE estimate bias was calculated as the absolute difference in the TE 

estimate and the TE parameter specified in the data generation. Without any type of 

matching, TE estimate bias was .54 on average across conditions and replications, but 

was reduced to .07 after matching, on average across ICCs, cluster sizes, PS models, and 

matching conditions. As shown in Table 4, bias was lowest for within-cluster matching 

(.04) compared to two-stage (.08) and pooled matching (.09). As expected, bias was 

reduced as the cluster size increased, from .11 for cluster sizes of 10, to .04 for cluster 

sizes of 400. However, the average bias for cluster sizes of 100 (.05) was just slightly 

greater than the average bias for cluster sizes of 400. Reviewing the results according to 

PS model, the RI model had the lowest bias on average across conditions (.04), followed 

by the RIS and OP models, which had almost the same level of bias (.07), followed by 

the SL model (.08), and finally, the model with no level-two covariates (.09). Varying the 

ICCs of the student-level covariates had very little effect on TE estimate bias but in 

general, across conditions, larger ICCs resulted in greater levels of bias. The study may 

not have seen as much of a difference in results according to ICC because the levels were 

based on real data and were more similar to one another than in Thoemmes and West 

(2011). 
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Table 4 

 

Mean treatment effect estimate bias by ICC, cluster size, matching method, and 

model 
 

Factor Level Mean and standard deviation of treatment effect 

estimate bias 

ICC (mean across 

student-level 

covariates) 

 

.08 .067 (.057) 

.15 .069 (.057) 

.27 .070 (.056) 

.42 .074 (.058) 

 

Cluster size 

 

10 .114 (.068) 

25 .075 (.044) 

100 .049 (.040) 

400 .042 (.042) 

Model RIS .070 (.067) 

OP .070 (.067) 

RI .044 (.042) 

SL .077 (.044) 

NoL2 .089 (.051) 

Matching method  Pooled .087 (.058) 

 Two-stage .082 (.052) 

 Within cluster .040 (.049) 

All  .070 (.057) 

Note. RIS=random intercept and slopes; OP=over-parameterized RIS model; RI=random intercept; 

SL=single level; NoL2=single level with no school-level covariates. 

 

TE bias means for all conditions across the 500 replications are reported in the appendix.  

 

 It is also worth noting the interactions between PS models, matching methods, 

and cluster sizes on the TE estimate bias. As shown in Figure 6, bias was lowest for the 

RI model when pooled or two-stage matching was used, but bias was lowest for the SL 

model when within-cluster matching was used. Overall, the lowest level of bias was for 

the SL model paired with within-cluster matching (.026), and the highest level of bias 

was for the PS model without cluster-level covariates paired with two-stage matching. 

These results suggest that within-cluster matching can better control for variation 

between clusters than multilevel modeling. However, in the absence of within-cluster 

matching, the multilevel PS models can also reduce bias. 
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Figure 6. Absolute bias of the treatment effect estimate by matching method and propensity score model. 

Pool=pooled matching; 2S= two-stage matching; WC=within-cluster matching; RIS=random intercepts and 

slopes model; OP=over-parameterized model; RI=random intercepts model; SL=single-level model; 

NoL2=single-level model without cluster-level covariates. 

 

 As shown in Figure 7, bias was greatest when clusters were small, but the 

difference was more pronounced for the more complex PS models (RIS and OP). For 

example, for the SL model, the average bias was between .088 and .071 across the tested 

cluster sizes. By contrast, the average bias for the RIS model was .018 with the cluster 

size of 400 but was .147 with the cluster size of 10. For the smallest cluster size (10), bias 

was lowest for SL model, but for cluster sizes of 25 and 100, bias was lowest for the RI 

model. For the largest cluster size (400) bias was lowest for RIS model.  
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Figure 7. Absolute bias of the treatment effect estimate by propensity score model and cluster size. 

RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random intercepts model; 

SL=single-level model; NoL2=single-level model without cluster-level covariates. 

 

 All together, these results indicate that with certain cluster sizes and matching 

methods, selecting the correctly specified PS model (the RIS model) can result in greater 

levels of TE estimate bias than a misspecified PS model. This finding has important 

implications for interpreting differences between the two simulation outcomes presented 

later in the chapter—the ability of each balance measure to select the correctly specified 

PS model, and correlation between the balance measure and TE estimate bias. Because 

the correctly specified PS model and the model that leads to the greatest reduction in TE 

estimate bias are not necessarily the same, there may be different balance measures that 

are optimal for each outcome.   
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4.3 Research Question 1: Which Balance Measures Identified the Correctly 

Specified Model? 

Before interpreting the ability of the balance measures to identify the correctly 

specified model, it is important to put the differences between the model specifications 

into context. To do so, the -2loglikelihood and AIC model fit indices were recorded for 

each matched dataset. The -2loglikelihood and AIC were then averaged across 

replications and simulation conditions. Across cluster sizes and ICCs, the model fit 

indices followed the expected pattern based on the differences between each model and 

the data-generating model. Table 5 shows the AIC and -2loglikelihood values and the 

results from the likelihood ratio chi-square test of model differences for one replication; 

however, the pattern was similar across all of the replications. As shown in Table 5, the 

best fitting PS model was the RIS model, the model used to generate the data. The OP 

model had a slightly worse model fit according to the AIC, and although the -

2loglikelihood value was lower, the likelihood ratio chi-square test revealed that it was 

not significantly different from the RIS model. These models were expected to have 

similar fit given that the OP model was the same as the RIS model but included one 

extraneous covariate.  

The remaining models had progressively worse fit in the expected order: the RI 

model had poorer fit than the RIS model, the SL model had poorer fit than the RI model, 

and the SL model with no level-two covariates had poorer fit than the SL model. Each of 

these steps in reducing the RIS model to the model with no level two covariates were 

statistically significant at the p < .0001 level. However, the greatest change in model fit 

was between the RI model and the SL model.  
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Table 5 

 

Model fit for one replication with the average ICC among the individual-level 

covariates=.42 and 10 units per cluster 
 

Model 

Number of 

parameters AIC -2loglikelihood 

2  difference from next 

reduced model 

OP 9 423.60 407.60 0.02 

RIS 8 421.62 407.62 19.11** 

RI 6 438.73 426.73 131.79** 

SL 5 568.52 558.52 25.75** 

No L2 4 592.27 584.27 NA 

     

**p<.0001 

 

Note. OP=over-parameterized model; RIS=random intercept and slopes; RI=random intercept; 

SL=single level; No L2=single level with no school-level covariates. NA= not applicable because it is 

the most reduced model. 

 

This pattern was consistent across the replications, but as shown in Table 6, there 

were differences in the percentage of significant likelihood ratio chi-square tests 

according to cluster size. Across all cluster sizes and replications, the difference in fit 

between the RIS model and the OP model was only significant for approximately 5% of 

the replications, and the differences between the RI and RIS model, the SL and RI model, 

and the NoL2 and the SL model were almost always significant (for 93%, 100%, and 

94% of replications, respectively). However, the rates for significant differences between 

models were lower when there were 10 units per cluster; in this case, the differences 

between the RI and RIS model was significant for 72% of replications and the difference 

between the NoL2 and the SL model was significant for 80% of replications. This 

suggests that there are likely to be differences in the probability of selecting the correct 

model according to cluster size. 
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Table 6 

 

Percentage of replications for which the likelihood ratio chi-square test was 

significant, by cluster size 

 
Model 

comparison 

Number of units per cluster 

10 25 100 400 All 

RIS vs. OP 5.0% 5.0% 5.3% 5.1% 5.1% 

RI vs. RIS 72.2% 100.0% 100.0% 100.0% 93.1% 

SL vs. RI 100.0% 100.0% 100.0% 100.0% 100.0% 

NoL2 vs. SL 79.8% 97.3% 100.0% 100.0% 94.3% 

 

Note. OP=over-parameterized model; RIS=random intercept and slopes; RI=random intercept; 

SL=single level; No L2=single level with no school-level covariates. NA= not applicable because it is 

the most reduced model. 

 

With an understanding of the differences in fit between the models, we can now 

turn to interpreting the ability of each balance measure to select the RIS model, which 

was used to generate the PS data. As a reminder, within each condition and replication, 

balance of the matched sample was assessed using a variety of measures. Then, the PS 

model resulting in the greatest covariate balance between treatment and control groups 

was selected. If there was not a single best PS model for achieving balance, then none 

were selected. After completing the 500 replications, the percentage of replications in 

which the RIS model was selected was calculated. If a model was selected for at least 

50% of the replications, it was considered the winning model.  

Overall, across all conditions, the within-cluster ASB balance measures were 

most effective for identifying the correctly specified model, as shown in Table 7. This 

makes sense given that the correctly specified model included random intercepts and 

slopes, which meant that balance should differ across clusters. Therefore, the within-

cluster balance measures would be better able to capture these within-cluster imbalances. 

Of the within-cluster ASB measures, the median of the cluster-level ASBs had slightly 
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higher rates of selecting the RIS model than the mean of the cluster-level ASBs, and both 

of these measures had higher rates of selecting the RIS model than the ASB indicators 

with thresholds of .1 and .25 (the percentage of clusters with an ASB >.1, and the 

percentage of clusters with an ASB > .25, respectively). The within-cluster ASB 

measures had higher rates of identifying the correctly specified PS model than the within-

cluster VR measures. The rates for selecting the correctly specified model were slightly 

higher for the balance measures that summarized the covariates according to a weighted 

mean (based on the strength of the covariate’s relation to the outcome variable) rather 

than an equally weighted mean. This was true for both within-cluster and pooled balance 

measures.  
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Table 7 

 

Percentage of replications in which the RIS model was selected on average across 

ICCs, cluster sizes, and matching methods 

 
Type of balance measure Summarization of 

covariates 

Percentage 

Pooled 

ASB 

Mean 9.1% 

Weighted mean 10.7% 

ASB>.1 

Mean 0.4% 

Weighted mean 0.7% 

ASB>.25 

Mean 0.1% 

Weighted mean 0.1% 

VR 

Mean 25.2% 

Weighted mean 23.6% 

VR<.5 or VR>2 

Mean 0.1% 

Weighted mean 0.1% 

Within-

cluster 

ASB mean 

Mean 43.8% 

Weighted mean 46.1% 

ASB median 

Mean 45.0% 

Weighted mean 46.5% 

ASB >.1 percentage 

Mean 39.5% 

Weighted mean 42.3% 

ASB >.25 percentage 

Mean 40.9% 

Weighted mean 44.3% 

VR mean 

Mean 6.5% 

Weighted mean 9.0% 

VR median 

Mean 7.8% 

Weighted mean 10.5% 

VR<.5 or VR>2 percentage 

Mean 7.7% 

Weighted mean 10.5% 

 

Note. ASB=absolute standardized bias. VR=variance ratio, The percentages for each condition are 

provided in the appendix. 

 

The pattern of the types of balance measures that were best able to select the 

correctly specified model were not the same for the within-cluster and pooled balance 

measures. In the case of pooled balance measures, the VR was better able to select the 

RIS model than the ASB. Another key difference was that the indicators of ASB>.1, 

ASB>.25, and VR<.5 or >2 were not capable of selecting the RIS model in the pooled 

sample. This was because in nearly all of the matched samples the covariates rarely had 

ASBs above .1 or VRs below .5 or above 2. This resulted in values of 0 for the indicators 

ASB>.1, ASB>.25, and VR<.5 or >2 in the pooled sample for more than one model, 
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which meant that there was an exact tie between multiple PS models in a given 

replication. According to the study design, whenever there was an exact tie between 

multiple PS models, no model was selected.    

Some balance measures differed in their performance in selecting the RIS model 

according to cluster size and matching method. Figure 8 shows the average rates of 

selecting the correctly specified model for the balance measures by each combination of 

cluster size and matching method. The figure shows the rates for the balance measures 

summarized across covariates as a simple mean, but the pattern is the same for the 

balance measures summarized according to the unequally weighted mean. As shown in 

Figure 8, across all matching methods and cluster sizes, the within-cluster ASB mean and 

median were most likely to select the RIS model. The rates for the pooled VR and ASB 

indicators (ASB >.1, ASB>.25, and VR <.5 or >2) were also consistent across all 

matching methods and cluster sizes, with rates near 0%. By contrast, the performance of 

the pooled ASB and VR varied according to matching method and cluster size. The 

pooled ASB had rates of selecting the RIS model below 10% for cluster sizes of 10, 25, 

and 100 units each, but for clusters of 400 units each, the rates of selecting the RIS model 

were much higher. Specifically, with a cluster size of 400, the rate of selecting the RIS 

model was 21% with pooled matching, 28% with two-stage matching, and 40% with 

within-cluster matching. The ability of the pooled VR also increased with cluster size, 

ranging from an average success rate of 10% for cluster sizes of 10 to an average success 

rate of 47% for cluster sizes of 400. For cluster sizes of 100 and 400, the rates of 

selecting the correct model also varied according to matching method with the highest 

rates of success with pooled matching. For example, with a cluster size of 100, the 
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percent that the pooled VR selected the correct model was 34% for pooled matching, 

29% for two-stage matching, and 24% for within-cluster matching.   

The different success rates of the pooled balance measures according to cluster 

size and matching method make sense in the context of the TE estimate bias described 

earlier in the chapter. As a reminder, the TE estimate bias was calculated as a pooled 

measure across all clusters. With small cluster sizes of 10 and 25, the TE estimate bias is 

lowest for the single-level model; therefore, it is more likely that a pooled balance 

measure will select the SL model than the RIS model. As the cluster size increases, it is 

more likely that the model that will reduce pooled TE estimate bias is the RIS model, so 

the selection of the RIS model based on a pooled balance measure is more likely. 

Similarly, TE estimate bias tended to be lower for the RIS model when within-cluster 

matching was used instead of another matching method, which may have also contributed 

to the differences in the selection rates for the pooled balance measures across the types 

of matching methods.   
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Figure 8. Proportion of replications for which the random intercepts and slopes (RIS) model was selected, 

by cluster size and matching method (WC=within-cluster matching, 2S=two-stage matching, P=pooled 

matching). Each circle or square represents a different balance measure (ASB=absolute standardized bias, 

VR=variance ratio, WC=within-cluster balance measure). This figure presents the mean of each balance 

measure across all covariates. 

 

These results may seem discouraging; only a few of the best performing balance 

measures managed to select the correct model for about 50% of the replications. 

However, the descriptive and model fit information earlier in the chapter can help to 

explain this. An examination of model fit indicated that the over-parameterized model 

had nearly the same model fit as the RIS model. After all, the over-parameterized model 

was also an RIS model but happened to include an unnecessary student-level covariate. 

Furthermore, across conditions, the treatment effect bias for the over-parameterized 

model was approximately the same as the treatment effect bias for the correctly specified 
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RIS model. This indicates that there would be no problematic consequences for including 

an additional covariate in the PS model that is unrelated to treatment status or the 

outcome. Given that the model fit and resulting TE estimate bias from the two models 

were approximately the same, one could then define selecting the correct model as 

selecting either of the two RIS models. 

By redefining the outcome in terms of selecting either of the two RIS models, one 

can see the same pattern among the balance measures but with much more promising 

results. As shown in Figure 9, many of the within-cluster ASB measures for cluster sizes 

of at least 25 have a perfect ability to select an RIS model across 500 replications. These 

measures were previously hovering close to 50% because they had an equal probability 

of selecting the RIS model or the OP model, since they were nearly equivalent. With the 

redefined outcome, even the condition with a cluster size of 10 and within-cluster 

matching has greater than a 50% chance of selecting one of the two correct models with a 

within-cluster ASB balance measure.  
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Figure 9. Proportion of replications for which the random intercepts and slopes (RIS) model or the over-

parameterized (OP) model was selected, by cluster size and matching method (wc=within-cluster matching, 

2s=two-stage matching, p=pooled matching). Each circle or square represents a different balance measure 

(ASB=absolute standardized bias, VR=variance ratio, WC=within-cluster balance measure). This figure 

presents the mean of each balance measure across all covariates. 

 

4.4 Research Question 2: Which Balance Measures Are Most Strongly Correlated 

with Bias in the TE Estimate? 

 The balance measures were also evaluated based on the strength of correlation 

with TE estimate bias. Balance measures that are effective should be strongly, and 

positively, correlated with TE estimate bias so that high levels of imbalance should 

indicate that corrections should be made to the PS model. Likewise, low levels of 

imbalance should indicate that the researcher should proceed with the PS model and 

expect low levels of TE estimate bias. Before reviewing these results, it is important to 

recall from earlier in the chapter that the PS models that resulted in the lowest levels of 
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bias were not necessarily those with the best model fit. As shown in Tables 4 and 5, the 

RI model tended to reduce the TE estimate bias the most (Table 4), even though the RIS 

model had the best fit (Table 5). This suggests that the balance measures that are best at 

selecting the RIS model may be different from the balance measures that are best at 

predicting TE estimate bias. Given that the goal of PS matching is to achieve balanced 

samples that will reduce TE estimate bias, researchers should prioritize selecting the PS 

model that will reduce TE estimate bias over selecting the best fitting PS model, all else 

being equal. This section describes the results in terms of the correlations between the 

balance measures and TE estimate bias, which are the basis of recommendations for 

researchers presented in the empirical illustrations in Chapter 5. 

 Aggregated across all conditions, the pooled ASB measures had the strongest 

correlations, as shown in Table 8. On average across conditions, the correlation between 

TE estimate bias and the pooled ASB, summarized as an equally weighted mean across 

covariates, was .27; the correlation between the TE estimate bias and the pooled ASB, 

summarized as an unequally weighted mean, was .35. Based on the strength of the 

correlation, these two measures far outperformed all of the other measures, including the 

pooled VR measures and all of the within-cluster measures. On average across 

conditions, the pooled VR balance measures and the within-cluster measures each had 

correlations with TE estimate bias close to 0. As described previously, the pooled balance 

indicators (ASB >.1, ASB >.25, and VR<.5 or >2) yielded little variation, because across 

the pooled samples, there were rarely any covariates with values meeting those 

thresholds. For example, in many conditions the mean and standard deviation for ASB 

>.25 was 0 across the 500 replications, which meant that a correlation coefficient could 
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not be calculated. For this reason, the results for the pooled indicator balance measures 

are not included in the results for the remainder of the chapter. However, they are 

provided in the appendix.  

Table 8 

 

Pearson correlations between TE estimate bias and the balance measures 

 
Type of balance measure Summarization of 

covariates 

Pearson correlation 

Pooled 

ASB 

Mean .27 

Weighted mean .35 

VR 

Mean -.01 

Weighted mean .00 

Within-

cluster 

ASB mean 

Mean .03 

Weighted mean .05 

ASB median 

Mean .05 

Weighted mean .07 

ASB >.1 percentage 

Mean .02 

Weighted mean .04 

ASB >.25 percentage 

Mean .04 

Weighted mean .06 

VR mean 

Mean .01 

Weighted mean .02 

VR median 

Mean .01 

Weighted mean .01 

VR<.5 or VR>2 percentage 

Mean .01 

Weighted mean .01 

 

Note. ASB=absolute standardized bias. VR=variance ratio. The correlations for each condition are 

provided in the appendix. 

  

 The pooled ASB had the strongest correlation with TE estimate bias, on average, 

across all ICCs, PS models, and matching methods tested. As shown in Figure 10, the 

pooled ASB, weighted according to the strength of its relation to the outcome, typically 

performed better than the pooled ASB, summarized as an equally weighted mean across 

covariates. The exception to this pattern was for within-cluster matching; when within-

cluster matching was used, the pooled ASB, summarized as a mean across covariates 

(rather than the unequally weighted mean), was more strongly correlated with TE 
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estimate bias; however, the correlations were similar (r= .23 for the simple mean and 

r=.21 for the unequally weighted mean).  

 Figure 10 also shows that there were differences in the preferred balance measure 

according to cluster size. For cluster sizes of 10, 25, and 100, the pooled ASB (with 

unequal weights across covariates) was most highly correlated with TE estimate bias, on 

average across ICCs, PS models, and matching methods (r=.51, .51, and .37, 

respectively). However, for the cluster size of 400, nearly all balance measures had 

correlation coefficients near 0 because the TE estimates were also near 0. On average 

across ICCs, PS models, and matching methods, when the clusters had 400 units each, the 

highest correlation was with the within-cluster ASB mean, but this correlation was only 

.04.  

 The figure also shows interactions between the cluster size and matching method 

on the strength of the correlations between the balance measure and TE estimate bias. 

When within-cluster matching was used, the pooled ASB as an unweighted mean was the 

preferred balance measure for cluster sizes of 10 and 25, but for the cluster size of 100, 

the pooled ASB as an equally weighted mean performed better (r = .19) than the 

unequally weighted mean (r = .13). When within-cluster matching was paired with the 

cluster size of 400, the pooled ASB measures were both negatively correlated with TE 

estimate bias (r= -.40 for the unequally weighted mean, r= -.17 for the equally weighted 

mean). However, this negative correlation may not be problematic because this 

combination of cluster size and matching method also had the lowest level of TE estimate 

bias.  
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Figure 10. Correlations between treatment effect (TE) estimate bias and balance measures, by cluster size 

and matching method. ASB=absolute standardized bias; VR=variance ratio; WC=within-cluster balance 

measure; m=equally weighted mean; wm=weighted mean (according to the covariate’s relation to the 

outcome measure). Values represent the mean correlation across ICCs and PS models.  

 

 Figure 11 illustrates the interactions between the cluster size and the PS model on 

the strength of the correlations between each balance measure and TE estimate bias. 

These results illustrate a similar pattern as in Figure 10. For most combinations of PS 

model and cluster size, the pooled ASB had the highest correlation with TE estimate bias, 

and most other balance measures had correlations close to 0. The exceptions to this were 



 

101 
 

for the conditions in which TE estimate bias was lowest. In particular, there were 

negative correlations between the pooled ASB and TE estimate bias when the RI model 

was used on a sample with 400 units per cluster (r=-.29 for the unequally weighted mean, 

and r=-.15 for the equally weighted mean).  

 

Figure 11. Correlations between treatment effect (TE) estimate bias and balance measures, by cluster size 

and propensity score model. RIS= random intercepts and slopes model; RI= random intercepts model; 

SL=single-level model; noL2= model without cluster-level covariates; ASB=absolute standardized bias; 

VR=variance ratio; WC=within-cluster balance measure; m=equally weighted mean; wm=weighted mean 

(according to the covariate’s relation to the outcome measure). Values represent the mean correlation 

across ICCs and matching methods.  
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 Further investigation of the negative correlations shows that there was a three-

way interaction between cluster size, PS model, and matching method on the strength of 

the correlations between the pooled ASB and TE estimate bias. Negative correlations 

were observed under conditions of  cluster sizes of 100 and 400 based on PS scores from 

some PS estimation models. Specifically, when within-cluster matching was used with a 

sample of 100 units per cluster, the correlation between pooled ASB and TE estimate bias 

was positive for propensity scores from the RIS model (r=.68) but negative for those 

from the RI, SL, or NoL2 models (r=-.12, -.32, -.29, respectively). When within-cluster 

matching was used with a sample with 400 units per cluster, the pooled ASB was 

negative for data from each PS estimation model, ranging from r= -.03 for the RIS model 

to r=-.69 for the SL model. Figure 12 shows a scatterplot in which the data from SL 

propensity score model were paired with within-cluster matching with the results shown 

grouped according to cluster size. The figure reveals that the negative correlations only 

occurred when there were very small levels of TE estimate bias and imbalance, which 

occurred with within-cluster matching and large sample sizes. Because the pooled ASB 

in these conditions was close to 0 across all replications, it could not be a good predictor 

of TE estimate bias. However, in these conditions, it is not problematic because TE 

estimate bias is very low.  
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Figure 12. Scatterplot depicting the relation between absolute treatment effect (TE) estimate bias and the 

pooled, weighted absolute standardized bias balance measure for the conditions with the single-level (SL) 

propensity score model and within-cluster matching, disaggregated by cluster size.  

  

4.5 Summary of Simulation Results 

 To summarize, the simulation tested which balance measures were most effective 

for 1) selecting the correctly specified model, and 2) correlating with absolute TE 

estimate bias. Across all conditions tested, the within-cluster ASB median (summarized 

as an unequally weighted mean across covariates) was most effective for the first 
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outcome, and the pooled ASB mean (summarized as an unequally weighted mean) was 

most effective for the second outcome. The results differed because the correctly 

specified PS model was not, in most cases, the model that resulted in the lowest level of 

TE estimate bias. Other authors have noted that the goal of PS modeling is not to achieve 

model fit but to achieve balanced samples, which may require researchers to use a model 

with relatively poorer fit than other potential PS models (e.g., Schafer & Kang, 2008). 

Because the goal of PS matching is to achieve unbiased TE estimates, researchers should 

use the results from the correlation outcome as a guide for assessing balance in multilevel 

samples. However, this simulation design assumes that the researcher would estimate a 

single TE, rather than separate TE estimates for each cluster. Estimation of heterogeneous 

treatment effects would likely require correct specification of potential random intercepts 

and slopes in a multilevel model, making the first outcome more relevant (Kim & Seltzer, 

2007). This limitation and its implications are further described in Chapter 6. The next 

chapter provides two empirical illustrations that assume the use of homogeneous TE 

estimates and therefore uses the recommended balance measure from the second 

outcome. Researchers can use these illustrations as a blueprint for conducting multilevel 

PS matching, performing diagnostics, and estimating treatment effects with different 

cluster sizes.  
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Chapter 5. Empirical Illustrations 

 Empirical analyses were conducted to demonstrate the use of multilevel 

propensity score matching and balance assessment with real data and identify additional 

challenges with assessing multilevel PS balance that did not arise during the simulation. 

As described in Chapter 3, the ECLS-K:2011 (NCES, Tourangeau et al., 2015) was the 

basis for the parameter values used in the simulation and is one of the two empirical 

illustrations in this chapter. Because the multilevel PS methods and balance measures 

behave differently based on the cluster size, a second dataset was selected with much 

larger cluster sizes. Whereas the ECLS-K dataset has an average of 15 kindergarteners 

clustered within each school, the Health Behavior in School-Aged Children 2009-10 

(HBSC) is an international survey with thousands of youth clustered within each country. 

The chapter provides a blueprint of the steps involved for researchers working with either 

small or large cluster sizes. 

 The chapter includes four sections: 1) an overview of the steps involved in 

multilevel PS matching 2) the ECLS-K illustration, 3) the HBSC illustration, and 4) a 

summary of results and brief conclusions. In the first section, a step-by-step flowchart 

(Figure 13) expands the four-step process for PS matching described in Chapter 2 into a 

nine-step process for multilevel PS matching with questions for applied researchers to 

answer as they complete their analyses. Each illustration includes an introduction to the 

topic and descriptions of the sample, methods, and results. The methods sections focus in 

particular on the diagnostic step, and the results sections demonstrate the differences in 

the results when researchers use the recommended diagnostic procedures based on the 

results in Chapter 4 and when they do not.  
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5.1 Overview of Steps for Multilevel PS Matching 

 Figure 13 illustrates the steps an applied researcher would take when conducting 

multilevel PS matching, beginning with step 1 in the top left box and ending with step 9 

in the bottom right box. First, the researcher must identify covariates for the PS model 

that are likely to be related to treatment selection and the outcome, based on prior 

research on the topic. At this point, the researcher should also consult the literature to 

determine the relative importance of each covariate in predicting the outcome and assign 

weights to the covariates accordingly. These weights will be used in step 6. Next, the 

researcher should consider whether to incorporate any interactions or higher-order terms 

into the PS model. In step 3, the researcher should determine which combinations of 

multilevel PS models and matching methods to use based on the number of units in each 

cluster. Next, the researcher should run a set of propensity score models, including the 

recommended types of models in step 3 and variations of interactions or higher-order 

terms selected in step 2. For example, if the researcher wants to include two possible 

interactions and plans to use either an SL or RI model, the researcher might run eight PS 

models (SL or RI model paired with either no interaction, the first interaction, the second 

interaction, or both). Using an RIS model would also involve identifying potential 

random slopes based on the literature and including models with different combinations 

of them. In step 5, the researcher then conducts one or two matching approaches using 

the propensity scores obtained from each PS model. If the researcher previously ran eight 

PS models and subsequently uses two matching methods, this would result in 16 matched 

samples. Next, the researcher should determine which balance measures to use. 

Assuming that the researcher is estimating a single, homogeneous treatment effect, the 

researcher would select either the pooled ASB (for clusters that have on average less than 
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400 units each) or the within-cluster ASB (for clusters that have on average more than 

400 units each). Next, the researcher would use the selected balance measure to calculate 

balance for each of the matched samples. For the within-cluster ASB, the researcher 

would calculate the ASB for each covariate within each cluster and then take the median 

across all clusters. For both the pooled ASB and the within-cluster ASB, the researcher 

would calculate a weighted mean across the ASBs of each covariate using the weights 

selected in step 1. The researcher would also examine overlap using a jitter plot, as 

described in Chapter 2, to ensure that all matched units in the sample do not have 

propensity scores outside the range of the opposite treatment selection group. If some 

units do not overlap with the opposite group, the researcher should return to step 5 and 

either add a caliper or narrow the caliper width. Finally, once the researcher has selected 

the most balanced sample and overlap is sufficient, the researcher can then use the 

selected matched sample for the TE analysis. The next two sections of the chapter will 

follow these steps with illustrations from the ECLS-K and HBSC datasets. 



 

108 
 

 

Figure 13. Flowchart illustrating the series of decisions required for multilevel propensity score matching.  

Note. PS=propensity score; SL=single-level model; RI=random intercepts model; RIS=random intercepts 

and slopes model; WC=within-cluster matching; 2S=two-stage matching; ASB=absolute standardized bias; 

TE=treatment effect.  
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5.2. Kindergarten Retention 

 Decades of research show that the policy of retaining low-performing students in 

the early grades leads to negative academic and social-emotional outcomes (Jimerson, 

2001). Researchers studying this topic generally use quasi-experimental techniques 

because retention is typically a decision made based on a combination of district and 

school policy, the student’s performance, and the judgment of the parents, teachers, 

principal, and other school staff. Selecting students to be retained (the treatment 

condition) is not typically accomplished through a random process or through the use of a 

variable with a clear cutoff, such as a test score. For this reason, RCT and RDD designs 

are not feasible, making propensity score methods optimal in this context. In a meta-

analysis of 20 studies on early grade retention from the 1990s, all used matching or 

covariate adjustment to make causal inferences (Jimerson). Specifically, 75% of the 

studies matched or controlled for SES, 70% matched or controlled for gender, 65% 

matched or controlled for academic achievement, and 30% matched or controlled for 

social-emotional factors. Later, Wu, West, and Hughes (2010) used propensity score 

matching based on 72 baseline characteristics to understand the effects of first grade 

retention on short- and long-term social-emotional outcomes. Hong and colleagues 

expanded upon this research by using the large, nationally representative ECLS-K 1998 

sample to assess the effect of kindergarten retention on a variety of later academic and 

social-emotional outcomes using multilevel PS stratification (Hong & Raudenbush, 2005, 

2006; Hong & Yu, 2007, 2008). The present analysis uses multilevel PS matching to 

assess the effects of kindergarten retention on reading outcomes. Although this analysis is 

unlikely to produce novel findings that will result in policy changes, it is intended only to 

illustrate how the techniques examined in the simulation can be applied to a context that 
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lends itself to multilevel PS methods, which will likely be useful for researchers working 

with this and similar NCES datasets or administrative data.  

 5.2.1 Data. Whereas Hong and colleagues (Hong & Raudenbush, 2005, 2006; 

Hong & Yu, 2007, 2008) used the ECLS-K 1998 cohort, this analysis used the most 

recent cohort of children who began kindergarten in 2011. The analytic sample was 

limited to children who attended a school that had a policy that allowed for kindergarten 

retention and did not have a missing test score in the reading achievement test at the end 

of the treatment year. The sample used for matching included 857 schools and 12,451 

students (an average of 15 students per school). 

 5.2.2 Variable selection. The PS models included a comprehensive set of 

variables from the ECLS-K dataset that were likely to predict retention and/or reading 

achievement based on Hong and Raudenbush (2005). Their analysis used more than 200 

variables, including student/parent, classroom, and school characteristics, but for the 

purpose of illustration, this analysis was limited to a two-level model with students at the 

unit level and schools at the cluster level. Student characteristics included gender, 

ethnicity, age at kindergarten entry, socio-economic status (SES), type of child care 

received prior to kindergarten, number of parents in the household, number of siblings in 

the household, disability status, kindergarten teacher’s perception that the child fell 

behind due to frequent absences, participation in extracurricular activities, parent’s and 

teacher’s ratings of educational expectations of the child, availability of a home 

computer, availability of children’s books in the home, literacy and math knowledge at 

the beginning of kindergarten, parent and teacher ratings of social skills, parent and 

teacher ratings on emotional and behavioral problems, and participation in pull-out 
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instruction. The school characteristics included school size, school type (public or 

private), percentage of Hispanic children, attendance rates, availability of services for 

children with disabilities, adequacy of facilities rating, and a school safety rating.  

 5.2.3 Propensity score models and matching procedures. Using these 

variables, several multilevel PS models were constructed and compared for balance. The 

analysis limited the methods to those that had reduced bias most effectively for small 

cluster sizes based on the results of the simulation and other simulation studies (Rickles 

& Seltzer, 2014; Arpino & Cannas 2016). This included the SL model that included 

school-level covariates and the RI model (Figure 13, step 3); the RIS model was not 

tested due to its poor performance with clusters of this size. The models tested also varied 

in whether they included interactions between kindergarten reading and kindergarten 

math scores and between kindergarten reading and age at kindergarten entry. In all 

models, student-level variables were centered at the school mean, and school-level 

variables were centered at the grand mean. The school-level averages of the student-level 

variables were not included in the model.  

 Two-stage and within-cluster matching were both conducted using the propensity 

scores from each of the PS models. Because there were not any conditions in the 

simulation for which pooled matching was most effective for reducing TE estimate bias, 

pooled matching was not considered. All matching methods utilized nearest neighbor 

matching without replacement and a caliper of .2 standard deviations of a propensity 

score.  

 In total, 16 variations of models and matching methods were conducted: two 

model types (SL or RI) by four combinations of interactions (one model with no 
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interactions, two models with one interaction each, and one model with both interactions) 

by two matching methods (two-stage and within-cluster).  

 5.2.4 Diagnostics. In the diagnostic step, the balance for all combinations of the 

PS models and matching methods were calculated using both the recommended and a 

few of the non-recommended balance measures from the simulation. By assessing 

balance with the non-recommended measures, one can determine whether using a non-

recommended balance measure would lead to selecting a different matched sample and 

therefore obtaining a different TE estimate. Based on the results from the correlations 

between balance measures and TE estimate bias from the simulation, the recommended 

balance measure was the pooled ASB, with covariates summarized as a mean weighted 

by the likely importance of the covariates in predicting the outcome (Figure 13, step 6). 

For the purpose of this review, weights were assigned based on the importance of the 

covariate in the WWC Review Protocol for Beginning Reading Interventions, Version 

3.0 (U.S. Department of Education, 2014). The protocol prioritizes baseline equivalence 

for a pre-intervention measure and secondarily considers gender, race, English learner 

status, disability status, SES, location type (urban, rural, suburban), and average class size 

(small, medium, large). Weights were assigned such that the kindergarten reading 

achievement variable was equal to the total weight of the five secondary variables from 

the WWC protocol, which was equal to the total weight of the 31 covariates that did not 

correspond to a variable in the protocol. The non-recommended balance measures 

included the equally-weighted pooled ASB, pooled VR, the pooled ASB >.1 indicator, 

the pooled ASB >.25 indicator, the pooled VR > 2 or <.5 indicator. For the non-

recommended balance measures, the balance across covariates was summarized using an 
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equally weighted mean. For this empirical example, within-cluster balance measures 

could not be calculated because there were too many instances in which only one or two 

students from a school were included in the matched sample; these measures are included 

in the second empirical example presented in Section 5.3.  

Table 9  

 

Assessment of balance of PS model and matching combinations used to select the 

sample for the ECLS-K analysis of the effects of kindergarten retention on reading 

outcomes 

 
PS model and matching method  Balance measures 

Matching 

method 

Model 

type 

Model 

interactions 

N ASB 

(w) 

ASB VR 

distance  

ASB 

> .1  

ASB 

> .25  

VR < .5 or 

> 2 

Two-

stage 

SL None 860 .043 .033 .073 .033 .003 .000 

Reading*math 852 .053 .043 .083 .033 .003 .000 

Reading*age 852 .053 .043 .083 .083 .003 .000 

Both 848 .043 .043 .093 .033 .003 .000 

RI None 674 .053 .043 .103 .033 .003 .000 

Reading*math 674 .053 .053 .113 .143 .003 .000 

Reading*age 678 .033 .043 .093 .053 .003 .000 

Both 668 .043 .053 .103 .113 .003 .000 

Within 

cluster 

SL None 320 .073 .053 .083 .163 .003 .000 
Reading*math 324 .073 .053 .073 .163 .003 .000 
Reading*age 334 .073 .053 .083 .163 .003 .000 
Both 318 .043 .043 .063 .053 .003 .000 

RI None 246 .083 .083 .073 .353 .083 .000 

Reading*math 248 .053 .063 .063 .193 .003 .000 

Reading*age 260 .063 .053 .093 .193 .003 .000 

Both 250 .053 .043 .083 .053 .003 .000 

 

Note. PS=propensity score. N= number of students in the matched sample. SL=single-level model 

(includes cluster-level covariates). RI= random intercept model. ASB=absolute standardized bias. ASB 

(w) = absolute standardized bias, weighted according to importance of covariates in predicting the 

value of the outcome. VR=variance ratio.  

 

The bold represents the most balanced sample according to each balance measure. Multiple are in bold 

if there was an exact tie between samples. 

 

The variance ratio was calculated as the distance of the ratio from 1 such that lower values indicate 

greater balance. 

   

 Proceeding to the diagnostic step (Figure 13, step 7), each of the PS models and 

matching methods were compared for balance using the pooled ASB with covariates 

weighted according to their importance to select the sample. As shown in Table 9, the RI 
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propensity score model that includes the reading and age interaction paired with two-

stage matching had the lowest level of imbalance, and was thus selected. The table also 

shows that using a different balance measure would lead to selecting different matched 

samples. Using the pooled ASB with covariates assigned equal weights would lead the 

researcher to choosing the sample derived from the SL model without any interactions 

with two-stage matching. Finally, using the pooled VR would lead one to selecting the RI 

model with the reading and math interaction and within-cluster matching.  

 Consistent with the simulation results, the indicators of ASB >.1, ASB >.25 and 

VR < .5 or >2, which were calculated as the proportion of covariates that met the 

threshold, were not effective for selecting a single best model. The ASB > .1 resulted in 

little differentiation between models and a four-way tie between PS methods. The 

remaining indicators performed much worse, as nearly all combinations of models and 

matching methods had a value of 0.  

 Additionally, overlap was examined through the visual display of propensity 

scores in a jitter plot for the pooled sample. Figure 14 shows the jitter plot of the pooled 

sample from the RI propensity score model with the reading and age interaction and two-

stage matching, which was selected by the recommended balance measure (the pooled 

ASB, summarized across covariates as an unequally weighted mean). The jitter plot 

shows that retained students were matched with promoted students with propensity scores 

in a similar range. However, a high percentage of retained students were excluded from 

the sample because no promoted students had similar propensity scores. This is 

problematic; the researcher no longer can claim that the treatment effect is the ATT, since 

it only applies to a smaller subset of those treated. However, using a less restrictive 
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matching method that would include these retained students would lead to greater levels 

of imbalance and therefore biased TE estimates. An analyst deciding to continue with 

using the matched sample in Figure 14 should caution readers that the TE estimate only 

applied to a subsample of the treated and was therefore not a true ATT. 

 

Figure 14. Overlap of matched sample from the random intercepts model with the reading and age 

interaction and two-stage matching.  

 

 5.1.5 Results. Finally, the TE was estimated in two ways: (1) by comparing 

means between retained and promoted students and (2) by using a regression model that 

controlled for baseline covariates. Assuming that the matched sample is balanced, the 

difference in treatment group means should be sufficient. However, controlling for 

covariate differences in both the matching phase and the TE estimation phase can lead to 

more accurate results if there are misspecifications in one of the models (Funk et al., 
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2011). By using both methods, one could examine the extent that controlling for baseline 

covariates in the TE model would affect the final TE estimate. The TE was estimated 

separately for the unmatched sample and three matched samples resulting from using 

different balance measures: 1) RI model that included the reading and age interaction and 

used two-staged matching (the most balanced sample based on the pooled ASB with 

covariates weighted according to their importance), 2) SL model without interactions that 

used two-stage matching (the most balanced sample based on the pooled ASB with 

covariates weighted equally), and 3) RI model with the reading and math interaction and 

within-cluster matching (the most balanced sample based on the pooled VR with 

covariates weighted equally). The first matched sample represents the one selected from 

the recommended balance measure and the second and third matched samples represent 

the samples from alternative, non-recommended balance measures. 

 As shown in Table 10, the choice of methods made a large impact on the TE 

estimate based on the simple comparison of means. Without any matching or covariate 

adjustments, the TE estimate indicated that retained children did worse in first grade 

reading than promoted children by more than 1.5 standard deviations. The standardized 

TE estimate was reduced to -.38 with the use of the preferred PS model and matching 

method based on the pooled ASB (with covariates unequally weighted). The standardized 

TE estimate from the three matched samples without the use of covariate adjustment 

ranged from -.38 to -.57 for the sample with within-cluster matching and the RI model 

that included the reading and math interaction. 

 The differences between TE estimates across the PS methods were much smaller 

with the use of a TE regression model that controlled for baseline covariates. In this case, 
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the difference in effect size between the full, unmatched sample and the sample from the 

recommended strategy differed by less than .01 standard deviations of a first grade 

reading score. With the use of regression models to estimate the treatment effects, the 

difference in standardized TE estimates between the matched samples that used two-stage 

matching was also much smaller (.03). However, the standardized TE estimate from the 

sample that used within-cluster matching (-.60) was noticeably stronger than the other TE 

estimates, as it fell outside of the confidence intervals of two out of the other three TE 

estimates. Because the true TE estimate is unknown in the case of an empirical analysis, 

this causes one to wonder if certain PS models and matching methods that heavily trim 

the sample lead to greater levels of bias and imbalance than simply controlling for the 

variation using regression adjustment alone. As shown in Table 10, the sample that used 

within-cluster matching was much smaller than the others, and the resulting estimate 

should be considered a subset of the ATT rather than a true ATT.  

Table 10  

 

Difference in standardized reading scores between those retained and those not 

retained in kindergarten 

 
PS model and matching method Effect size (D) and 95% CI 

Match Model Interactions 

Balance 

measure used N 

Estimate from 

comparison of 

means 

Estimate from 

regression model 

with covariates 

None NA NA NA 12,451 -1.66 (-1.75, -1.56) -.48 (-.57, -.39) 

2S RI Read*age Pooled ASB(w) 678 -.38 (-.53, -.23) -.48 (-.63, -.33) 

SL None Pooled ASB 860 -.49 (-.62, -.35) -.45 (-.59, -.32) 

WC RI Read*math Pooled VR 248 -.57 (-.82, -.31) -.60 (-.78, -.42) 

 

Note. 2S=two-stage matching. WC=within-cluster matching. SL=single level. RI=random intercept 

model. NA=not applicable. ASB=absolute standardized bias. ASB(w) = absolute standardized bias, 

weighted according to importance of covariates in predicting the value of the outcome. VR=variance 

ratio. CI=confidence interval. 
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 Using the recommended balance measure to select the sample and then estimate 

the TE using a regression model with covariate adjustment would lead to the conclusion 

that being retained in kindergarten would lead to lower reading achievement by .48 

standard deviations. However, because of the wide range of estimates across the PS 

models and matching methods, another approach would be to calculate a model average 

estimate, rather than relying solely on one estimate. With this approach, one could weight 

each TE estimate according to the likelihood of it being correct. This alternative approach 

will be further discussed in the next chapter.  

5.3 Bullying Victimization 

 The next empirical illustration used the HBSC dataset to examine the effects of 

bullying victimization on life satisfaction. This analysis was included because it could 

demonstrate the use of multilevel PS matching with much larger clusters (thousands of 

youth within countries) in comparison to the first analysis. The survey is administered to 

youth in 40 countries and/or regions and covers topics related to physical and behavioral 

health, education, social and sexual behavior, and alcohol and drug use. Several studies 

have examined trends in bullying victimization using the HBSC dataset. For example, 

Lian et al. (2018) examined the relations between being bullied and weight status and 

body self-image using logistic regressions. The authors made covariate adjustments for 

SES, family structure, and classmate support and conducted separate analyses for males 

and females. Another study used HBSC data to compare rates of bullying and 

victimization across 40 countries and examine cross-national trends by sex and age group 

(Craig et al., 2009). These studies both used regression techniques rather than PS 

methods, but studies in other topic areas have used HBSC data with PS methods to make 
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causal inferences (e.g., Elstad & Pedersen, 2012; Winter, Combs, & Ward, 2018), and it 

is likely that applied researchers will continue to do so.  

 5.3.1 Data. The analytic sample was limited to youth who had non-missing data 

for the outcome variable and the selected covariates, which included 29 countries and 

104,181 youth. 

 5.3.2 Variable selection. The PS models included a set of variables from the 

HBSC dataset that were likely to predict being a victim of bullying and ratings of life 

satisfaction based on prior research (Craig et al., 2009; Lian et al., 2018). This included 

youth characteristics, including gender, age, grade level, overweight status (based on 

reported body mass index [BMI]), physical activity, SES, a composite measure of 

classmate support, and another composite measure of peer support. SES and classmate 

support were constructed using the same items as in Lian et al., and the peer support 

measure was constructed using the set of items in the peer support scale. To incorporate 

relevant country-level covariates, the HBSC data were merged with data from the World 

Bank (available at data.worldbank.org) on each country’s per capita gross domestic 

product (GDP) and the Gini coefficient, a measure of a country’s level of wealth 

inequality. Interactions between age and grade and between age and gender were also 

examined.  

 5.3.3 Propensity score models and matching procedures. Using these 

variables, several PS models and matching methods were compared for balance. The 

analysis limited the methods to those that were most effective for reducing TE estimate 

bias with large cluster sizes. Specifically, variations of SL, RI, and RIS models were each 

paired with within-cluster matching (Figure 13, step 3). Because even the smallest 
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country included nearly 1,000 youth, there was no reason to match youth across different 

countries. Moreover, when comparing countries of youth who have a wide range of social 

and cultural norms, it is likely that they may have different understandings of a concept 

like bullying, which would make controlling for all country-level differences through 

modeling difficult. In this context, within-cluster matching can be more effective for 

controlling for the cultural differences than controlling for differences with cluster-level 

covariates. The RIS models included random slopes for gender, SES, and age. If there 

was an interaction in the model, these were also included as random slopes. All youth-

level variables were clustered at the country mean, and country-level variables were 

clustered at the grand mean.  

 In total, there were 12 variations of models and matching methods tested: three 

model types (SL, RI, RIS) by four combinations of interactions (one model with no 

interactions, two models with one interaction each, and one model with both interactions) 

by one matching method (within-cluster).  

 5.3.4 Diagnostics. Based on the results from the simulation, the recommended 

balance measure was the within-cluster ASB, summarized as a median across clusters 

and as a weighted mean across covariates. To calculate this measure, the ASB of each 

covariate is calculated within each cluster; next, the median ASB across the clusters is 

calculated for each covariate; and finally, the median ASB for all covariates are 

aggregated as a weighted mean according to each covariate’s likely importance in 

predicting the outcome. Peer support, SES, gender, and age were given a weight equal to 

twice of the remaining covariates due to their importance in this literature (e.g., Craig et 

al., 2009). The non-recommended balance measures included the pooled ASB and VR, 
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the within-cluster mean VR, and the within-cluster indicator of VR > 2 or <.5. The 

within-cluster mean ASB and the within-cluster ASB indicator of >.1 performed 

similarly to the ASB median in large sample sizes, so these balance measures were 

compared to determine whether any of them would result in selecting a different PS 

model and matching method. For each of the non-recommended measures, the balance 

across covariates was summarized using an equally weighted mean. The pooled ASB 

indicators of >.1 and >.25 and the pooled VR indicator of <.5 or >2 were not calculated, 

because based on the simulation results, it was unlikely that any covariates would have 

values outside these thresholds across the pooled sample.  

Table 11  

 

Assessment of balance of PS models used to select the sample for the HBSC analysis of 

the effects of kindergarten retention on reading outcomes 
 

PS model  

N 

Within-cluster balance Pooled balance  

Model 

type Interactions 

Median 

ASB 

(w) 

Mean 

ASB 

ASB 

> .1 

Mean 

VR 

distance 

VR 

>2 or 

<.5 ASB 

VR 

distance 

SL none 49,384 .054 .065 .198 .062 .000 .005 .020 

age*grade 49,264 .058 .067 .202 .058 .000 .004 .011 

age*gender 49,384 .057 .065 .210 .062 .000 .005 .020 

both 49,286 .054 .061 .202 .054 .000 .004 .010 

RI none 49,454 .058 .066 .214 .065 .000 .005 .021 

age*grade 49,366 .055 .064 .206 .061 .000 .004 .009 

age*gender 49,458 .056 .068 .226 .066 .000 .006 .022 

both 49,374 .056 .065 .206 .060 .004 .005 .012 

RIS none 49,176 .036 .043 .056 .066 .000 .005 .022 

age*grade 49,234 .049 .060 .103 .057 .000 .005 .012 

age*gender 49,376 .042 .052 .155 .064 .000 .004 .022 

both 49,214 .044 .053 .147 .054 .000 .007 .013 

 

Note. PS=propensity score. N= number of students in the matched sample. SL=single-level model 

(includes cluster-level covariates). RI= random intercepts model. RIS= random intercepts and slopes 

model. WC=within-cluster balance measure. ASB=absolute standardized bias. ASB (w) = absolute 

standardized bias, weighted according to importance of covariates. VR=variance ratio.  

 

All matching was carried out within clusters. 
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 As shown in Table 11, based on the recommended unequally-weighted, within-

cluster ASB median, the sample derived from the RIS model without the interactions 

should be selected for estimating the treatment effect. Using either the within-cluster 

ASB mean or the within-cluster indicator of ASB > .1, would lead to the same 

conclusion. However, using one of the non-recommended balance measures would lead 

to selecting samples derived from other PS models. Using the within-cluster VR would 

lead to selecting a single-level model that included both interactions, the pooled ASB 

would result in selecting the RIS model with the age and gender interaction, and the 

pooled VR would lead to selecting the RI model with the age and grade interaction. 

Because clusters were very large, there were few covariates that had VRs below .5 or 

above 2 for any of the clusters and models. For this reason, the within-cluster indicator of 

VR <.5 or >2 could not identify a preferred model. Similarly, the pooled ASB was close 

to 0 across the pooled sample for each model, ranging from .004 to .007. 

 Because within-cluster balance measures were best suited for this analysis, it also 

seemed appropriate to review overlap within clusters, rather than across the pooled 

sample. These initially were reviewed as separate figures for each country, but were 

summarized into two plots (Figure 15). The top plot shows the overlap in propensity 

scores among youth who were matched, and the plot beneath it shows the overlap in 

propensity scores among youth who were not matched. Both plots are disaggregated by 

country. As shown in the figure, the matched sample of those who were bullied and those 

who were not is sufficiently overlapping, whereas the unmatched sample is clearly 

separated with those who were not bullied with propensity scores lower than nearly all 

propensity scores of those who were bullied. Because thousands of youth who said they 
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were bullied remained unmatched, this has implications for interpreting the ATT. As with 

the matched sample from ECLS-K illustration, this matched sample should be treated as a 

subset of the ATT. One can also notice differences in the distribution of propensity scores 

and the prevalence of bullying by country, which reinforces the decision to match within 

countries. For example, no one from Turkey was included in the matched sample because 

none reported that they had been bullied. The different distributions in propensity scores 

may reflect differences in how the concept of bullying translates across different 

languages and cultures. 
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Figure 15. Overlap in propensity scores by country, matching status, and treatment status (bullied or not). 

Overlap is shown for the selected sample with the RIS propensity score model with no interactions.  
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 5.2.5 Results. Treatment effects were estimated in the same two ways as with the 

ECLS-K sample—as a difference in means and as a regression model that controlled for 

baseline differences. Table 12 presents the standardized effect size estimates from each 

outcome analysis. 

Table 12  

 

Difference in ratings of life satisfaction between those who had been bullied and those 

who had not been bullied 

 
Model 

type 

Interaction Balance 

measure 

used to 

select the 

sample 

Sample 

size 

Estimate from 

comparison of means 

Estimate from regression 

model with covariates 

Effect 

size (D) 

95% CI Effect 

size (D) 

95% CI 

None NA NA 104,184 -.348 (-.362, -.334) -.251 (-.265, -.237) 

RIS  None WC ASB 

median 

49,176 -.269 (-.287, -.252) -.269 (-.287, -.251) 

Age*gender Pooled 

ASB 

49,234 -.258 (-.276, -.241) -.260 (-.278, -.243) 

SL  Both WC VR 49,286 -.265 (-.283, -.248) -.264 (-.282, -.247) 

RI  Age*grade Pooled VR 49,366 -.264 (-.282, -.246) -.263 (-.280, -.245) 

 

Note. PS=propensity score. SL=single-level model (includes cluster-level covariates). RI= random 

intercepts model. RIS=random intercepts and slopes model. CI=confidence interval for the effect size. 

 

All matching was conducted within clusters. 

  

 As expected, the standardized difference in means on a scale of life satisfaction 

was greatest in magnitude without the use of covariate adjustment or matching (-.348). 

However, the difference between the unmatched sample and the matched samples were 

much smaller compared with the ECLS-K retention analysis, suggesting that there was 

less selection bias compared with ECLS-K. Across the matched samples, there were only 

small differences between the TE estimates when calculating as either a difference in 

treatment and control means or using a regression model with covariates. When both 

matching and covariate adjustment to the TE model were employed, the range in 

standardized effect sizes was less than .01. One might conclude that because of the large 
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within-cluster sample sizes and the use of within-cluster matching, all of the matched 

samples were well-balanced, and therefore, small changes to the propensity score model 

were unlikely to make a difference in the TE estimate. For this reason, using the correct 

balance measure was less critical than was the case in the ECLS-K illustration.  

5.4 Summary of Empirical Analyses 

 This chapter presented two different types of multilevel PS matching analyses, 

which both followed the process outlined in Section 5.1 and Figure 13. In both 

illustrations, a series of different types of PS models and matching methods were 

assessed for balance. Based on the results of the simulation and the average cluster size in 

the dataset, the recommended balance measure was used to select the sample for the TE 

analysis. Then the TE was estimated using the sample from the recommended balance 

measure, and the effects were compared to those when a different balanced sample was 

selected or when matching was not used at all. 

 In the ECLS-K analysis, using different balance measures led to different 

selections of which PS method to use and subsequently a wide range of TE estimates. 

Even when controlling for baseline covariates in the TE model, the standardized 

difference in treatment effects ranged from -.45 to -.60 with the three matched samples. 

In the HBSC analysis, the difference in effects between using a recommended balance 

measure and another balance measure to select the sample was much smaller (no more 

than .01 standard deviations when combined with regression adjustment). In the context 

of the ECLS-K analysis, the balance measure choice and the resulting matched sample 

based on that choice had a greater impact on the results, presumably because of the small 

cluster sizes and the greater degree of selection bias. The small cluster sizes and low 
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prevalence of retention within each cluster made within-cluster matching and multilevel 

modeling difficult.  

 In both analyses, the unmatched sample resulted in a similar TE estimate as the 

recommended matched sample when the same covariates were used in the regression-

based TE model. This begs the question of why one would use PS matching if a 

researcher would likely obtain the same results from matching as with simply including 

all of the covariates in the TE model. It is possible that in both analyses the selected 

covariates made treatment selection strongly ignorable; therefore, covariate adjustment 

alone was sufficient for reducing TE estimate bias. In other situations, where there are 

more unmeasured confounders, it is likely that using PS matching to trim the sample 

would be more effective for reducing TE estimate bias. 
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Chapter 6. Discussion 

 Multilevel settings present a unique challenge for those wishing to conduct 

propensity score (PS) matching. When treatment is assigned at the unit level but the rates 

and predictors of treatment selection differ across clusters, researchers must account for 

the nested structure of the data through the PS model, the matching process, or both. Prior 

methodological studies have proposed and tested approaches for modeling the propensity 

score and conditioning on the propensity score through matching or stratification (e.g., 

Arpino & Cannas, 2016; Arpino & Maelli, 2011; Rickles & Seltzer, 2014; Thoemmes & 

West, 2011). In the modeling phase, researchers can account for clustering through use of 

a single-level model that includes cluster-level covariates, a fixed effects model, a 

random intercepts (RI) model, or a random intercepts and slopes (RIS) model. In the 

matching phase, researchers can account for clustering through within-cluster matching 

(treated units can only be matched to control units within the same cluster) or two-stage 

matching in which matches are first attempted within the same cluster but if no adequate 

matches exist, a second attempt is made to match in the pooled sample. The 

recommended procedure depends on the extent to which the treatment selection 

probabilities vary across clusters, the extent to which the strength of the predictors of 

treatment selection vary across clusters, and the number of units per cluster. 

 Prior to this study, methodological researchers had not yet examined an essential 

component of multilevel PS matching—diagnostics for evaluating the quality of the 

matched sample. The diagnostic step is an essential component of PS matching because it 

provides evidence that the treatment effects are estimated without bias. During the 

diagnostic step, the researcher must evaluate balance for each potential PS model and 
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matching method to select a sample for analysis. However, there are many different 

methods for evaluating balance in a multilevel setting, and each method may result in a 

different conclusion about which sample to select for TE estimation. For example, 

researchers must choose whether to use the absolute standardized bias (ASB) or the 

variance ratio (VR), and whether to calculate the balance across the pooled sample or 

calculate it separately for each cluster. This study expanded the literature on multilevel 

PS matching by assessing the extent to which each balance measure could select the 

correctly specified PS model and the extent to which the balance measure correlated with 

TE estimate bias using a Monte Carlo simulation. It also demonstrated the use of the 

recommended and non-recommended balance measures with two empirical datasets. The 

purpose of this chapter is to summarize the findings from the simulation and the 

empirical illustrations and to discuss limitations of the study, implications, and directions 

for future research. 

6.1 Summary of Key Findings 

 Across all of the manipulated factors of the simulation, one balance measure 

emerged as optimal for each of the assessed outcomes. For the outcome of selecting the 

correctly specified model, the within-cluster ASB median performed best, and for the 

outcome of correlation with TE estimate bias, the pooled ASB performed best. For both 

outcomes, the mean ASB across covariates weighted according to the strength of the 

covariate’s relation to the outcome performed better than the equally weighted mean. 

There were some notable differences according to the conditions tested, especially related 

to cluster size. For example, the pooled ASB negatively correlated with TE estimate bias 

when clusters had more than 400 units each; in this case, the within-cluster ASB was 
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more effective for predicting TE estimate bias. However, even then, the balance measure 

that had the strongest correlation with TE estimate bias had a correlation near 0. In the 

case of the large cluster sizes, the resulting TE estimate bias was very low across the PS 

models and methods tested, making the choice of the correct model less critical.  

 The differences between the two simulation outcomes occurred because, for most 

conditions of the study, the correctly specified PS model was not the same as the model 

that led to the greatest reduction in TE estimate bias. The correctly specified model was 

an RIS model, the model used to generate the propensity scores for all of the simulation 

conditions. However, the simulation showed that the PS model that resulted in the lowest 

TE estimate bias depended on the cluster size. On average, the SL model resulted in the 

lowest TE estimate bias with clusters of 10 units each, the RI model resulted in the lowest 

TE estimate bias with clusters with 25 or 100 units each, and the RIS model resulted in 

the lowest TE estimate bias with clusters of 400 units each. Similarly, Arpino and Cannas 

(2016) also observed that using an RIS propensity score model led to greater levels of TE 

estimate bias compared to fixed effects and SL models, except when there were more 

than 300 units per cluster. It is not yet clear what mechanism causes the RIS and RI 

propensity score models to have higher levels of TE estimate bias than the SL model with 

small cluster sizes even when the multilevel models had better fit. Prior research on the 

cluster sizes required for multilevel modeling suggests that random intercept and slope 

parameters can be estimated with low levels of bias for samples with small cluster sizes, 

including some clusters with only one unit each (Bell, et al., 2010). More research is 

needed to understand the reasons for the cluster size requirements when multilevel PS 

models are used for matching. 
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 As expected, when the correctly specified model was also the model that most 

reduced TE estimate bias, the recommended balance measures for the two outcomes were 

similar. For example, with 400 units per cluster, TE estimate bias was lowest for the 

correctly specified (RIS) PS model. In this case, the within-cluster ASB was the balance 

measure that was both the best for selecting the correctly specified model and the one that 

had the strongest, positive correlation with TE estimate bias.  

 The results from the second outcome, the correlation between the balance 

measure and TE estimate bias, were the basis for recommendations for researchers and 

for the empirical illustrations in Chapter 5. Because the goal of PS matching is to reduce 

imbalances and therefore TE estimate bias, researchers should use the PS model that 

accomplishes that, even if it means selecting a model that does not have the best relative 

fit with the data. Therefore, the empirical illustrations demonstrated the use of the 

balance measures that achieved the highest correlations with TE estimate bias in the 

simulation. Because the results from the simulation differed according to cluster size, a 

different balance measure was preferred for each analysis given their disparate cluster 

sizes. For the ECLS-K dataset, which included an average of 15 students per school, the 

preferred balance measure was the pooled ASB. By contrast, for the HBSC dataset, the 

preferred balance measure was the within-cluster ASB because there was an average of 

3,592 youth per country. The assumption was that the HBSC dataset was most similar to 

the results for the simulation condition of 400 units per cluster, whereas the ECLS-K 

dataset was most similar to the results from the simulation conditions of 10 and 25 units 

per cluster. 
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6.2 Limitations, Implications, and Future Directions 

 Noting the limitations of the study is not only useful for interpreting the results, 

but also for generating ideas for future research that would fill gaps in the current 

literature. First, the study did not test all possible diagnostics or propensity score methods 

that could be used with assessing multilevel data. For example, the simulation did not 

assess overlap measures or visual diagnostics, which are both important in assessing SL 

propensity score models (e.g., Stuart, 2010). The empirical illustration proposed ways of 

incorporating visual overlap diagnostics into multilevel PS matching, but more research 

is needed to assess the application of overlap measures to multilevel settings.  

 Additionally, the simulation focused on the use of a logistic PS model with 

nearest-neighbor matching, because it is the most common PS method in both single-

level and multilevel studies (Thoemmes & Kim, 2011). This means that the results are 

applicable to a large percentage of researchers who employ these methods; however, it is 

not clear how well the results translate to other PS models and conditioning approaches. 

The study used nearest neighbor 1:1 matching without replacement with a caliper of .2 

standard deviations of a propensity score, so it is unknown whether results would apply 

to other matching procedures such as matching with replacement, k:1 matching, matching 

without a caliper, and optimal matching. In addition, all PS models used logistic 

regression, although probit regression and boosted modeling (Lee et al., 2010) are 

alternative ways of producing PS estimates. Although the results are most likely relevant 

to stratification, weighting, covariate adjustment, and other types of matching, more 

research would be needed using these methods in order to make recommendations for 

diagnostics to use with them.  
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 The parameters for generating the propensity scores and outcomes in the 

simulation were generally based on estimates obtained from models imposed on the 

ECLS-K data. However, the ratio of the treated to untreated students was altered to 

increase the number of treated students within a cluster. This decision allowed for a 

greater proportion of the sample in the simulation to be matched within the pooled 

sample and within clusters. Although within-cluster balance measures could be assessed 

within the simulation, this was not the case for the empirical illustration that used the 

same dataset. For the ECLS-K illustration, typically between zero and two children were 

retained in any given school, which meant that calculating the VR or ASB within schools 

was not an option. Similarly, Hong and colleagues used multilevel PS stratification to 

estimate the effects of kindergarten retention evaluated balance within the 7-15 strata 

used in each study rather than within each school (Hong & Raudenbush, 2005, 2006; 

Hong & Yu, 2007, 2008). Although the simulation considered the number of units within 

a cluster as the major factor for indicating which balance measures should be use, it is 

likely that the ratio of treated to untreated units is just as important. This could be another 

condition to examine in future research.  

 One limitation of using the ECLS-K dataset to define the parameters to be used in 

the generation of the simulation data was that the variances of the covariates were very 

similar between treatment and control groups prior to matching. Because the variance 

ratios of the covariates were fixed across the simulation conditions, this meant that 

variances of the covariates were already well balanced prior to matching. Even though 

the results suggested that the ASB performed better than the VR for both of the study’s 

outcomes, variance ratios should not be completely ruled out as a balance measure for 
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multilevel PS matching. It is not clear if variance ratios would be the preferred method 

for datasets that have greater differences in the variances between treatment and control 

groups prior to matching. 

 Another challenge with using the ECLS-K parameters was that there were very 

small covariances among the cluster-level variables, making data generation difficult in 

some conditions (Table 1). The PS model estimates for all of the conditions converged; 

however, in some conditions, error messages indicated that “at least one element of the 

gradient is greater than 1e-3.” This was most problematic for the condition with the 

lowest ICCs and the clusters with 10 units each; in this condition, the error message 

occurred in 56% of replications for the RIS propensity score model. According to 

Kiernan, Tao, and Gibbs (2012), this warning in SAS is common and typically is not a 

concern if the gradient values are reasonably small. These authors suggest that to confirm 

that estimates are not problematic, one can change the maximum gradient to 0 and 

compare the estimates and standard errors to the original results. Upon following these 

procedures, there was little to no change in the results. 

 The simulation also focused on four variables that were strongly correlated with 

kindergarten retention rather than the fuller set of covariates used in the PS model of the 

empirical analysis. Using a smaller number of covariates for a simulation than with real 

data is common in studies of multilevel PS methods (Thoemmes & West, 2011; Rickles 

& Seltzer, 2014; Arpino & Cannas, 2016). Thoemmes and West argued that increasing 

the number of covariates should not affect the performance of PS estimation methods 

given that models have been correctly specified. Increasing the number of covariates 

would have diminishing returns according to the proportion of variance that they explain. 
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The empirical analyses provided a means of examining the application of multilevel PS 

balance measures with real data using a larger set of covariates than in the simulation. 

 Another limitation is that the simulation conditions estimated treatment effects 

using just one method, calculating the difference in treatment and control means across 

the pooled sample. Although the pooled ASB was the best overall balance measure for 

predicting TE estimate bias based on that calculation, it is likely that a within-cluster 

balance measure would be better for estimating a separate treatment effect for each 

cluster. In an applied study using multilevel PS matching, Kim and Seltzer (2007) 

separately estimated balance and a TE estimate for each school. Because they estimated 

separate treatment effects for each cluster, it was more important to achieve balance 

within each cluster than to achieve balance across the pooled sample.  

 Additionally, although the calculation of a TE estimate based on the difference in 

means is common in practice, it is not a doubly robust method. In a doubly robust design, 

the use of PS methods paired with a TE model that controls for remaining baseline 

differences reduces TE estimation bias (Robins et al., 1994; Funk et al., 2011). As shown 

in the empirical illustration, the TE estimates from the different PS matched samples 

converge when the covariates are used in both the PS model and the TE model. It would 

be useful to know the extent to which the balance measure is important for selecting the 

correct model and estimating the treatment effect with the use of doubly robust methods 

that account for baseline differences in both models. 

 One might also argue that the premise of the first outcome, selecting the correctly 

specified model, is flawed, because it depends on the philosophy that the researcher 

should select only one PS model and estimate the TE according to that model. This is 
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generally the approach methodological researchers have taken when assessing different 

PS models, matching methods, and balance measures. However, Burnham and Anderson 

(2002, 2004) present a different philosophy of modeling that could be applied to PS 

methods. They argue that researchers do not have to choose just one model from a set of 

plausible models. Instead, researchers can compute an average parameter estimate across 

the tested models, with each model weighted according to the plausibility of being 

correct. These weights can be computed according to the AIC model fit statistic, or if 

bootstrapping is conducted, according to the estimated model selection frequencies. 

Burnham and Anderson (2004) show that this approach, which they call “multimodel 

inference,” increases precision and reduces bias of the parameter estimate compared to 

selection of just one model. Multimodel inference could be extended to PS modeling to 

further reduce TE estimate bias. Instead of selecting the one PS model that leads to the 

most balanced samples, the researcher could estimate the treatment effects for all of the 

matched samples derived from the different PS models and matching methods tested and 

then calculate an average across those estimates. This reduces the risk that the researcher 

would select the PS model resulting in an outlying TE estimate compared to the TE 

estimates resulting from other potential PS models. Another way of addressing this 

concern would be through sensitivity tests, which some consider as a separate step in PS 

methods but was not evaluated in the simulation (Caliendo & Kopeinig, 2008). 

 The assumption that a researcher should select only one true PS model also had 

implications for the empirical illustrations. In the ECLS-K analysis, the TE estimates 

varied widely according to which PS model was selected due to the small number of 

matched pairs resulting from each PS model. King and Nielsen (forthcoming) argue that 
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model dependence, the problem of obtaining different TE estimates based on the model 

selected, is especially problematic when propensity scores are used for matching. As 

more observations are removed from the sample through matching, model dependence 

increases, and thus bias and imbalance also increase. They argue that because researchers 

have their own agendas and biases, they are likely to choose the model that will confirm 

their hypotheses, leading them to selecting a model resulting in an outlying TE estimate 

rather than the one that is most likely true. Although researchers in the PS literature 

advise that propensity score modeling should be completed as a first step before 

estimating treatment effects, they do not think that this is done in practice. They suspect 

that either consciously or unconsciously, researchers are selecting the methods that 

conform to their expected results. However, it seems that Burnham and Anderson’s 

(2004) approach would help mitigate these concerns. If researchers average all possible 

TE estimates rather than picking the one that matches their hypotheses, it would likely 

result in less biased results and more accurate conclusions. Future research on PS 

methods should apply Burnham and Anderson’s approach to examine its effects on TE 

estimate bias.    

6.3 Summary 

 In interpreting the results of the study, one must be aware of the conditions that 

were not tested and the resulting limitations. Examining these limitations also sheds light 

on the gaps remaining in the literature on multilevel PS methods and directions for future 

research. For example, the simulation did not test all possible balance measures, PS 

methods, ICCs of the covariates, sample sizes, cluster sizes, or ratios between the number 

of treatment and control units. Moreover, the study did not consider other types of TE 
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estimation methods that could lead to less biased results, including estimation of separate 

treatment effects for each cluster (Kim & Seltzer, 2007), estimation of treatment effects 

that include covariate regression adjustment (Robins et al., 1994, Funk et al., 2011), and 

estimation of an average treatment effect across plausible PS and TE models (Burnham & 

Anderson, 2002, 2004). Assessing the correlation between the balance measures and 

these different types of TE estimates will be an important next step. 

 Nevertheless, the study increased the knowledge of PS methods and balance 

measures in multilevel settings. It demonstrated how using the best fitting PS model (in 

this case, the RIS model) often led to more biased TE estimates compared to using a 

simpler SL or RI model that results in more balanced samples. This provided justification 

for making recommendations to researchers based on the results from the second 

outcome, the correlation between balance measures and pooled TE estimate bias. These 

results suggest that in most cases the pooled ASB will have the highest correlation with 

the TE estimate, with the exception of large cluster sizes. With cluster sizes of 400, the 

matched samples had such low levels of imbalance across all balance measures that none 

of the balance measures had strong, positive relations with TE estimate bias. In this case, 

selecting the best PS model and matching method was less critical because all would lead 

to nearly the same TE estimate. The results also suggest that when averaging the balance 

results across many covariates, researchers should weigh them according to their likely 

influence on the outcome measure. Future studies that investigate balance measures for 

multilevel PS methods will determine how well these results hold with different data 

generating parameters and TE estimation methods.   
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Appendix 

 The appendix provides supplementary tables, including the covariance parameters 

from the simulation, descriptive statistics for the treatment effect estimate bias and 

balance measures and outcomes for all of the conditions tested in the simulation. 
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Table A1 

Covariance structure of each of the three conditions with different average intracluster 

correlations for the unit-level covariates  

Average ICC=.08  

 
RX

school 

mean MX
school mean AX

school mean W 

RX
school mean .048    

MX
school mean .038 .046   

AX
school mean .036 .041 1.276  

W -.020 -.034 .008 1.288 

Average ICC=.15 

RX
school mean .097    

MX
school mean .076 .091   

AX
school mean .072 .082 2.553  

W -.040 -.068 .016 2.575 

Average ICC=.43 

RX
school mean .386    

MX
school mean .305 .365   

AX
school mean .287 .328 10.211  

W -.160 -.271 .065 10.301 

Note. ICC=intracluster correlation. 

The covariance structure for the condition with an average ICC of .27 is reported in 

Table 1. 
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Table A2.  

 

Absolute treatment effect estimate bias by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .157 .143 .117 .158 .145 .120 .096 .091 .065 .109 .105 .051 .121 .117 .052 .515 

25 .086 .081 .067 .090 .083 .066 .050 .051 .028 .110 .103 .022 .118 .110 .023 .540 

100 .030 .029 .024 .031 .029 .024 .018 .029 .013 .110 .099 .010 .118 .106 .010 .550 

400 .015 .014 .013 .016 .015 .013 .010 .022 .012 .111 .099 .009 .119 .105 .009 .554 

.15 10 .170 .156 .118 .165 .159 .118 .100 .099 .063 .111 .106 .053 .122 .118 .050 .520 

25 .089 .080 .069 .087 .081 .067 .049 .051 .029 .110 .101 .022 .122 .112 .023 .542 

100 .031 .031 .027 .031 .031 .027 .020 .033 .017 .109 .097 .012 .121 .108 .012 .551 

400 .017 .017 .015 .018 .018 .015 .012 .026 .015 .109 .095 .011 .122 .106 .012 .554 

.27 10 .169 .150 .120 .163 .148 .117 .098 .096 .064 .108 .101 .052 .130 .122 .053 .519 

25 .090 .084 .067 .091 .087 .071 .052 .058 .030 .108 .098 .024 .128 .119 .024 .542 

100 .035 .035 .029 .035 .034 .029 .023 .035 .019 .107 .093 .015 .128 .112 .015 .552 

400 .020 .021 .018 .021 .020 .018 .014 .030 .019 .107 .092 .015 .127 .109 .015 .554 

.42 10 .172 .162 .126 .175 .164 .126 .105 .104 .066 .109 .099 .051 .144 .134 .052 .528 

25 .092 .088 .074 .093 .091 .076 .054 .059 .033 .102 .088 .025 .139 .126 .027 .544 

100 .040 .040 .034 .040 .040 .034 .025 .039 .024 .104 .087 .019 .138 .119 .020 .556 

400 .024 .025 .023 .025 .025 .023 .018 .033 .024 .103 .085 .020 .138 .117 .021 .558 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A3.  

 

Pooled absolute standardized bias with covariates equally weighted, by ICC, cluster size, propensity score model, and matching 

method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .244 .232 .189 .248 .231 .192 .156 .143 .119 .038 .038 .090 .070 .064 .091 .544 

25 .119 .117 .098 .118 .118 .098 .068 .063 .044 .025 .025 .040 .060 .051 .039 .554 

100 .035 .037 .030 .035 .038 .029 .024 .023 .015 .014 .019 .017 .052 .040 .017 .560 

400 .013 .010 .008 .013 .010 .008 .013 .009 .009 .010 .018 .011 .048 .037 .011 .561 

.15 10 .247 .232 .186 .244 .230 .186 .162 .146 .115 .037 .039 .096 .086 .079 .094 .552 

25 .119 .116 .098 .119 .115 .096 .067 .062 .045 .027 .025 .039 .076 .065 .038 .565 

100 .035 .037 .030 .034 .038 .031 .023 .024 .016 .015 .018 .017 .067 .053 .017 .569 

400 .013 .011 .008 .013 .011 .008 .013 .009 .009 .010 .018 .011 .064 .051 .011 .571 

.27 10 .244 .223 .181 .246 .221 .181 .153 .140 .114 .039 .039 .094 .105 .096 .093 .564 

25 .115 .114 .093 .119 .117 .094 .067 .065 .045 .025 .025 .040 .095 .082 .039 .576 

100 .036 .038 .029 .036 .038 .029 .023 .022 .016 .014 .018 .017 .089 .072 .017 .582 

400 .013 .011 .008 .013 .011 .008 .013 .009 .009 .010 .018 .011 .085 .069 .011 .583 

.42 10 .247 .231 .184 .248 .232 .191 .158 .146 .114 .039 .039 .093 .136 .124 .092 .585 

25 .113 .113 .096 .113 .114 .098 .068 .061 .045 .026 .025 .040 .127 .112 .040 .595 

100 .036 .038 .030 .035 .038 .030 .023 .021 .016 .014 .017 .016 .118 .098 .016 .601 

400 .013 .011 .008 .013 .011 .008 .013 .009 .009 .010 .016 .011 .115 .094 .011 .601 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 

 

  



 

143 
 

Table A4.  

 

Pooled absolute standardized bias with covariates weighted according to the strength of relation with the outcome, by ICC, cluster 

size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .309 .290 .237 .310 .293 .243 .187 .173 .139 .032 .033 .106 .040 .038 .109 .721 

25 .139 .140 .122 .139 .141 .121 .075 .072 .050 .022 .023 .045 .029 .028 .044 .741 

100 .036 .039 .033 .036 .039 .033 .022 .024 .018 .012 .019 .021 .021 .022 .021 .747 

400 .012 .010 .009 .012 .010 .009 .016 .009 .011 .010 .019 .016 .018 .020 .015 .751 

.15 10 .315 .296 .234 .309 .296 .235 .196 .176 .133 .033 .035 .114 .043 .042 .110 .722 

25 .141 .140 .123 .141 .138 .121 .072 .071 .051 .023 .023 .044 .033 .031 .043 .741 

100 .035 .039 .034 .034 .039 .034 .021 .026 .019 .013 .019 .021 .025 .024 .021 .747 

400 .012 .011 .009 .013 .011 .009 .016 .009 .011 .010 .019 .016 .022 .023 .016 .749 

.27 10 .310 .285 .237 .309 .281 .233 .182 .167 .132 .035 .035 .111 .048 .045 .109 .718 

25 .134 .134 .115 .138 .138 .118 .072 .075 .050 .022 .024 .046 .037 .035 .045 .737 

100 .036 .040 .033 .037 .039 .032 .021 .024 .017 .013 .018 .021 .030 .028 .020 .745 

400 .012 .011 .009 .012 .011 .009 .017 .009 .011 .010 .020 .015 .027 .027 .015 .747 

.42 10 .309 .295 .237 .309 .294 .241 .186 .175 .133 .036 .036 .109 .055 .050 .106 .719 

25 .129 .132 .119 .129 .134 .123 .070 .068 .052 .023 .023 .047 .045 .043 .045 .733 

100 .035 .040 .033 .035 .040 .033 .022 .022 .018 .014 .018 .020 .037 .034 .019 .742 

400 .012 .011 .009 .013 .011 .009 .017 .009 .011 .010 .019 .015 .035 .033 .014 .744 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A5.  

 

Percentage of covariates with pooled absolute standardized bias >.1 with covariates equally weighted, by ICC, cluster size, 

propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .772 .767 .559 .784 .761 .571 .649 .614 .456 .047 .047 .369 .215 .200 .372 0.959 

25 .557 .539 .452 .553 .553 .449 .246 .212 .124 .006 .003 .108 .226 .181 .100 0.973 

100 .013 .021 .016 .015 .022 .014 .001 .001 .001 .000 .000 .001 .248 .187 .001 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .250 .212 .000 1.000 

.15 10 .780 .751 .574 .788 .757 .570 .664 .625 .440 .044 .042 .388 .250 .242 .372 0.990 

25 .557 .534 .449 .552 .530 .443 .225 .197 .141 .005 .002 .110 .249 .240 .093 0.999 

100 .017 .018 .016 .013 .017 .020 .000 .000 .001 .000 .000 .001 .250 .249 .002 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .250 .250 .000 1.000 

.27 10 .789 .760 .555 .798 .757 .548 .644 .615 .426 .050 .045 .376 .266 .261 .371 0.999 

25 .552 .537 .420 .552 .547 .429 .239 .222 .134 .005 .002 .105 .251 .250 .097 1.000 

100 .013 .021 .014 .014 .017 .018 .001 .001 .001 .000 .000 .001 .250 .250 .001 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .250 .250 .000 1.000 

.42 10 .812 .765 .573 .812 .762 .568 .662 .618 .434 .055 .054 .373 .270 .264 .349 1.000 

25 .529 .522 .437 .531 .525 .444 .238 .188 .147 .003 .002 .095 .250 .251 .107 1.000 

100 .014 .021 .018 .011 .025 .018 .002 .001 .001 .000 .000 .001 .250 .250 .002 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .250 .250 .000 1.000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A6.  

 

Percentage of covariates with pooled absolute standardized bias >.1 with covariates weighted according to the strength of relation 

with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .919 .901 .706 .923 .908 .717 .795 .750 .557 .018 .024 .445 .058 .058 .459 0.990 

25 .683 .691 .568 .692 .704 .553 .303 .275 .119 .001 .001 .097 .055 .044 .092 0.993 

100 .013 .019 .008 .014 .019 .006 .000 .001 .000 .000 .000 .000 .060 .045 .000 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .061 .051 .000 1.000 

.15 10 .924 .907 .721 .919 .915 .732 .795 .769 .536 .018 .014 .472 .068 .066 .442 0.997 

25 .700 .694 .580 .700 .688 .561 .264 .254 .134 .001 .000 .108 .060 .058 .083 1.000 

100 .014 .015 .009 .012 .012 .012 .000 .000 .000 .000 .000 .000 .061 .060 .000 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .061 .061 .000 1.000 

.27 10 .913 .906 .725 .925 .899 .701 .778 .749 .507 .021 .025 .454 .069 .069 .447 1.000 

25 .673 .670 .528 .661 .686 .542 .271 .288 .122 .001 .000 .109 .061 .060 .098 1.000 

100 .010 .017 .008 .012 .013 .009 .001 .001 .000 .000 .000 .000 .061 .061 .000 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .061 .061 .000 1.000 

.42 10 .930 .903 .737 .926 .905 .721 .771 .740 .539 .033 .037 .449 .069 .065 .411 1.000 

25 .623 .654 .549 .639 .669 .574 .252 .238 .146 .001 .000 .097 .061 .061 .100 1.000 

100 .012 .016 .011 .012 .022 .011 .002 .001 .000 .000 .000 .000 .061 .061 .000 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .061 .061 .000 1.000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A7.  

 

Percentage of covariates with pooled absolute standardized bias >.25 with covariates equally weighted, by ICC, cluster size, 

propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .463 .427 .327 .463 .425 .322 .192 .146 .159 .000 .000 .079 .051 .035 .078 0.764 

25 .054 .052 .063 .055 .059 .077 .001 .000 .004 .000 .000 .002 .027 .006 .001 0.752 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 0.750 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 0.750 

.15 10 .472 .437 .304 .466 .424 .305 .214 .152 .138 .000 .000 .093 .118 .086 .091 0.813 

25 .050 .054 .063 .051 .047 .057 .001 .000 .002 .000 .000 .002 .108 .036 .001 0.782 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .071 .002 .000 0.753 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .036 .000 .000 0.750 

.27 10 .454 .409 .308 .458 .393 .301 .182 .143 .141 .000 .000 .096 .194 .169 .091 0.920 

25 .042 .045 .058 .049 .054 .061 .001 .002 .003 .000 .000 .002 .213 .152 .003 0.931 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .248 .110 .000 0.966 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .250 .055 .000 0.997 

.42 10 .458 .427 .305 .459 .438 .322 .199 .156 .135 .001 .000 .084 .247 .238 .096 0.989 

25 .044 .047 .064 .036 .045 .072 .001 .000 .003 .000 .000 .001 .250 .247 .003 1.000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .250 .250 .000 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .250 .250 .000 1.000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A8.  

 

Percentage of covariates with pooled absolute standardized bias >.25 with covariates weighted according to the strength of 

relation with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .674 .611 .421 .645 .618 .412 .262 .209 .166 .000 .000 .073 .012 .008 .078 0.943 

25 .066 .067 .071 .075 .080 .085 .000 .000 .003 .000 .000 .000 .006 .001 .000 0.940 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 0.939 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 0.939 

.15 10 .676 .628 .396 .660 .620 .393 .307 .214 .145 .000 .000 .100 .029 .021 .089 0.955 

25 .066 .072 .073 .067 .057 .067 .001 .000 .000 .000 .000 .000 .026 .009 .000 0.947 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .017 .000 .000 0.940 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .009 .000 .000 0.939 

.27 10 .649 .595 .405 .658 .585 .386 .248 .193 .141 .000 .000 .097 .047 .041 .087 0.981 

25 .055 .062 .063 .069 .070 .072 .001 .003 .001 .000 .000 .000 .052 .037 .001 0.983 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .060 .027 .000 0.992 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .061 .013 .000 0.999 

.42 10 .655 .627 .393 .649 .619 .411 .276 .229 .136 .000 .000 .082 .060 .058 .093 0.998 

25 .057 .058 .074 .043 .057 .085 .001 .000 .001 .000 .000 .000 .061 .060 .001 1.000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .061 .061 .000 1.000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .061 .061 .000 1.000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A9.  

 

Pooled variance ratio with covariates equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .171 .168 .205 .175 .171 .211 .160 .149 .187 .111 .108 .157 .102 .102 .159 .090 

25 .110 .101 .106 .111 .100 .105 .118 .101 .094 .083 .076 .083 .073 .069 .082 .065 

100 .054 .047 .045 .054 .047 .045 .091 .063 .051 .065 .054 .044 .052 .046 .044 .044 

400 .025 .022 .021 .026 .022 .021 .081 .047 .038 .060 .047 .033 .043 .036 .033 .039 

.15 10 .170 .166 .213 .171 .169 .215 .162 .151 .181 .113 .108 .156 .104 .103 .155 .090 

25 .109 .101 .106 .111 .102 .108 .119 .104 .095 .087 .079 .084 .075 .071 .084 .064 

100 .051 .046 .043 .052 .046 .042 .093 .064 .049 .073 .059 .044 .054 .046 .044 .046 

400 .026 .023 .021 .027 .023 .022 .085 .050 .038 .066 .053 .032 .046 .037 .032 .042 

.27 10 .171 .165 .205 .176 .168 .207 .164 .155 .183 .120 .115 .156 .107 .103 .153 .093 

25 .108 .101 .107 .110 .101 .109 .121 .103 .095 .096 .087 .082 .075 .071 .084 .067 

100 .053 .046 .044 .054 .046 .043 .094 .065 .049 .081 .066 .043 .056 .047 .042 .050 

400 .026 .022 .020 .026 .022 .021 .086 .052 .038 .075 .060 .032 .049 .039 .032 .045 

.42 10 .185 .172 .207 .182 .172 .206 .167 .158 .184 .124 .124 .156 .107 .104 .155 .098 

25 .107 .101 .109 .111 .101 .110 .123 .105 .097 .104 .092 .083 .079 .076 .083 .073 

100 .054 .047 .044 .053 .046 .044 .098 .066 .048 .089 .073 .043 .061 .051 .042 .056 

400 .025 .022 .021 .026 .022 .021 .089 .052 .037 .085 .068 .033 .054 .043 .032 .051 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A10.  

 

Pooled variance ratio with covariates weighted according to the strength of relation with the outcome, by ICC, cluster size, 

propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .187 .186 .256 .195 .188 .265 .180 .162 .231 .113 .110 .188 .097 .098 .191 .097 

25 .119 .109 .130 .120 .107 .128 .140 .112 .118 .091 .083 .100 .070 .066 .099 .070 

100 .059 .051 .054 .059 .051 .055 .118 .071 .064 .078 .061 .051 .046 .041 .051 .048 

400 .027 .024 .025 .028 .024 .024 .115 .052 .045 .077 .056 .035 .038 .030 .035 .044 

.15 10 .181 .182 .260 .188 .184 .270 .181 .170 .231 .122 .118 .197 .100 .100 .195 .096 

25 .119 .111 .135 .122 .113 .137 .138 .114 .119 .097 .085 .101 .069 .066 .102 .069 

100 .056 .050 .051 .056 .049 .050 .122 .073 .061 .092 .071 .051 .046 .041 .052 .050 

400 .030 .025 .026 .030 .026 .026 .122 .057 .046 .089 .069 .036 .039 .031 .035 .048 

.27 10 .186 .177 .250 .197 .181 .254 .183 .168 .223 .133 .123 .193 .099 .096 .189 .098 

25 .118 .108 .131 .121 .108 .136 .144 .114 .117 .114 .101 .099 .068 .067 .102 .070 

100 .058 .051 .053 .060 .050 .052 .127 .076 .064 .107 .084 .050 .046 .040 .050 .054 

400 .029 .024 .024 .028 .024 .025 .125 .063 .048 .107 .084 .037 .040 .032 .036 .051 

.42 10 .207 .185 .257 .204 .188 .256 .193 .178 .230 .142 .145 .190 .101 .099 .192 .108 

25 .120 .112 .134 .123 .110 .134 .148 .119 .123 .129 .112 .100 .067 .067 .103 .076 

100 .059 .051 .054 .056 .052 .054 .133 .079 .064 .124 .099 .052 .047 .042 .052 .060 

400 .027 .024 .025 .027 .023 .024 .131 .066 .050 .124 .100 .039 .041 .034 .037 .058 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A11.  

 

Percentage of covariates with pooled variance ratio <.5 or >2 with covariates equally weighted, by ICC, cluster size, propensity 

score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .017 .015 .092 .018 .011 .099 .010 .004 .059 .000 .000 .028 .000 .000 .030 .000 

25 .001 .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.15 10 .016 .012 .105 .016 .012 .100 .009 .005 .056 .000 .000 .021 .000 .000 .023 .000 

25 .001 .000 .001 .000 .000 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.27 10 .016 .015 .090 .012 .015 .099 .011 .005 .059 .001 .000 .023 .000 .000 .027 .000 

25 .000 .000 .001 .000 .000 .001 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.42 10 .021 .018 .098 .018 .015 .095 .012 .008 .065 .000 .000 .026 .000 .000 .029 .000 

25 .000 .000 .001 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A12.  

 

Percentage of covariates with pooled variance ratio <.5 or >2 with covariates weighted according to the strength of relation with 

the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 .019 .016 .112 .018 .009 .123 .009 .003 .069 .000 .000 .023 .000 .000 .025 .000 

25 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.15 10 .019 .013 .129 .023 .015 .127 .010 .006 .078 .000 .000 .022 .000 .000 .020 .000 

25 .001 .000 .003 .000 .000 .002 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.27 10 .019 .018 .107 .017 .015 .118 .012 .007 .068 .001 .000 .021 .000 .000 .024 .000 

25 .000 .000 .000 .000 .000 .002 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

.42 10 .028 .021 .118 .022 .014 .119 .017 .008 .080 .000 .000 .032 .000 .000 .035 .000 

25 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

100 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A13.  

 

Within-cluster absolute standardized bias (mean across clusters) with covariates equally weighted, by ICC, cluster size, propensity 

score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 1.078 0.986 1.077 1.063 1.004 1.100 1.389 1.132 1.133 1.163 1.067 1.177 1.178 1.054 1.183 1.319 

25 0.717 0.656 0.785 0.719 0.650 0.790 0.878 0.754 0.887 0.823 0.777 0.829 0.825 0.769 0.832 1.194 

100 0.318 0.287 0.325 0.318 0.286 0.325 0.572 0.487 0.505 0.649 0.631 0.492 0.647 0.628 0.491 1.165 

400 0.142 0.126 0.130 0.142 0.125 0.129 0.446 0.377 0.379 0.587 0.582 0.374 0.582 0.578 0.374 1.148 

.15 10 1.088 0.956 1.009 1.125 0.976 1.048 1.358 1.118 1.218 1.171 1.043 1.198 1.153 1.041 1.221 1.312 

25 0.720 0.648 0.830 0.721 0.645 0.809 0.881 0.756 0.888 0.834 0.780 0.834 0.826 0.775 0.828 1.203 

100 0.318 0.286 0.324 0.320 0.288 0.324 0.565 0.484 0.510 0.653 0.635 0.491 0.652 0.630 0.491 1.165 

400 0.142 0.126 0.130 0.141 0.126 0.130 0.444 0.378 0.380 0.588 0.583 0.375 0.584 0.581 0.375 1.147 

.27 10 1.115 0.983 0.978 1.102 0.991 1.010 1.383 1.134 1.160 1.154 1.041 1.221 1.152 1.033 1.222 1.308 

25 0.718 0.641 0.789 0.721 0.645 0.775 0.885 0.764 0.906 0.834 0.782 0.843 0.825 0.773 0.843 1.204 

100 0.317 0.285 0.325 0.318 0.286 0.328 0.563 0.484 0.506 0.654 0.636 0.492 0.654 0.635 0.492 1.168 

400 0.143 0.129 0.132 0.144 0.129 0.133 0.443 0.378 0.381 0.589 0.584 0.376 0.588 0.586 0.375 1.146 

.42 10 1.095 0.957 0.993 1.093 0.969 1.026 1.316 1.107 1.134 1.150 1.037 1.170 1.145 1.028 1.167 1.324 

25 0.718 0.654 0.779 0.737 0.650 0.794 0.883 0.767 0.899 0.828 0.784 0.849 0.825 0.776 0.845 1.215 

100 0.315 0.286 0.328 0.317 0.286 0.327 0.560 0.482 0.506 0.654 0.634 0.489 0.658 0.640 0.489 1.168 

400 0.145 0.131 0.135 0.145 0.132 0.136 0.442 0.380 0.385 0.592 0.583 0.379 0.595 0.596 0.378 1.150 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A14.  

 

Within-cluster absolute standardized bias (mean across clusters) with covariates weighted according to the strength of relation with 

the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 1.024 0.933 1.090 1.006 0.966 1.092 1.591 1.260 1.204 1.343 1.223 1.231 1.355 1.193 1.251 1.530 

25 0.675 0.611 0.735 0.676 0.604 0.742 1.022 0.856 0.962 0.990 0.930 0.907 0.992 0.918 0.912 1.418 

100 0.289 0.252 0.291 0.287 0.252 0.290 0.730 0.587 0.586 0.829 0.799 0.577 0.828 0.794 0.576 1.389 

400 0.126 0.108 0.112 0.126 0.108 0.112 0.620 0.487 0.474 0.782 0.762 0.472 0.778 0.756 0.472 1.371 

.15 10 1.037 0.929 0.994 1.084 0.955 1.008 1.549 1.238 1.323 1.356 1.197 1.313 1.351 1.194 1.347 1.536 

25 0.677 0.606 0.772 0.675 0.600 0.754 1.025 0.856 0.954 1.008 0.932 0.905 0.999 0.927 0.895 1.430 

100 0.291 0.252 0.290 0.292 0.254 0.292 0.720 0.587 0.602 0.837 0.805 0.577 0.835 0.797 0.576 1.393 

400 0.126 0.109 0.113 0.126 0.108 0.112 0.616 0.488 0.475 0.784 0.762 0.474 0.779 0.758 0.474 1.368 

.27 10 1.094 0.962 0.999 1.069 0.954 1.018 1.541 1.269 1.226 1.331 1.182 1.222 1.336 1.166 1.230 1.528 

25 0.673 0.605 0.764 0.680 0.607 0.748 1.033 0.869 0.980 1.008 0.936 0.917 1.000 0.923 0.917 1.433 

100 0.290 0.251 0.292 0.290 0.250 0.290 0.717 0.587 0.587 0.835 0.808 0.575 0.836 0.802 0.577 1.398 

400 0.128 0.111 0.115 0.129 0.111 0.114 0.615 0.488 0.477 0.784 0.764 0.474 0.783 0.763 0.473 1.369 

.42 10 1.047 0.945 0.983 1.055 0.927 0.995 1.501 1.234 1.201 1.324 1.182 1.256 1.318 1.168 1.244 1.542 

25 0.671 0.603 0.741 0.687 0.606 0.755 1.022 0.857 0.969 1.000 0.936 0.921 0.995 0.923 0.917 1.445 

100 0.287 0.252 0.293 0.290 0.252 0.294 0.714 0.586 0.590 0.835 0.805 0.573 0.838 0.807 0.574 1.397 

400 0.129 0.112 0.117 0.129 0.114 0.118 0.613 0.488 0.479 0.788 0.764 0.476 0.792 0.774 0.475 1.374 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A15.  

 

Within-cluster absolute standardized bias (median across clusters) with covariates equally weighted, by ICC, cluster size, 

propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.773 0.660 0.858 0.754 0.675 0.894 0.931 0.786 0.824 0.868 0.766 0.766 0.878 0.764 0.770 1.186 

25 0.496 0.438 0.483 0.498 0.437 0.485 0.669 0.568 0.581 0.688 0.644 0.562 0.691 0.638 0.560 1.145 

100 0.230 0.199 0.215 0.227 0.200 0.215 0.466 0.405 0.407 0.572 0.560 0.400 0.569 0.556 0.400 1.157 

400 0.107 0.093 0.095 0.107 0.092 0.094 0.379 0.337 0.341 0.533 0.546 0.335 0.532 0.539 0.336 1.156 

.15 10 0.745 0.640 0.799 0.782 0.670 0.869 0.939 0.770 0.852 0.864 0.765 0.755 0.853 0.759 0.756 1.171 

25 0.505 0.443 0.487 0.503 0.440 0.488 0.666 0.570 0.586 0.693 0.645 0.564 0.694 0.644 0.564 1.150 

100 0.230 0.199 0.215 0.230 0.200 0.216 0.465 0.403 0.406 0.576 0.562 0.400 0.577 0.559 0.401 1.156 

400 0.106 0.092 0.094 0.106 0.092 0.094 0.379 0.336 0.340 0.534 0.548 0.337 0.535 0.543 0.337 1.158 

.27 10 0.773 0.664 0.778 0.762 0.661 0.835 0.907 0.771 0.858 0.856 0.767 0.761 0.853 0.761 0.760 1.171 

25 0.498 0.432 0.483 0.502 0.437 0.482 0.672 0.572 0.591 0.693 0.645 0.568 0.696 0.642 0.567 1.156 

100 0.231 0.199 0.215 0.231 0.200 0.216 0.464 0.402 0.407 0.576 0.567 0.401 0.577 0.564 0.400 1.161 

400 0.107 0.093 0.095 0.107 0.094 0.096 0.378 0.333 0.339 0.535 0.548 0.335 0.538 0.548 0.334 1.157 

.42 10 0.773 0.659 0.820 0.776 0.680 0.850 0.909 0.765 0.836 0.851 0.771 0.755 0.852 0.759 0.771 1.181 

25 0.496 0.439 0.482 0.501 0.439 0.487 0.663 0.567 0.588 0.687 0.645 0.571 0.693 0.645 0.567 1.161 

100 0.230 0.200 0.217 0.232 0.200 0.217 0.459 0.399 0.404 0.576 0.566 0.397 0.580 0.569 0.397 1.162 

400 0.108 0.094 0.096 0.108 0.093 0.096 0.376 0.332 0.338 0.540 0.551 0.336 0.547 0.557 0.336 1.163 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A16.  

 

Within-cluster absolute standardized bias (median across clusters) with covariates weighted according to the strength of relation 

with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.722 0.630 0.851 0.719 0.642 0.883 1.077 0.886 0.874 1.020 0.883 0.805 1.026 0.881 0.813 1.401 

25 0.463 0.407 0.457 0.465 0.405 0.455 0.797 0.662 0.638 0.850 0.790 0.620 0.851 0.779 0.617 1.385 

100 0.205 0.172 0.191 0.203 0.173 0.191 0.614 0.509 0.493 0.761 0.734 0.489 0.757 0.726 0.487 1.408 

400 0.095 0.079 0.082 0.094 0.078 0.081 0.540 0.441 0.435 0.731 0.741 0.430 0.730 0.727 0.430 1.408 

.15 10 0.703 0.613 0.804 0.748 0.636 0.823 1.086 0.877 0.903 1.017 0.888 0.801 1.013 0.876 0.802 1.402 

25 0.469 0.410 0.464 0.467 0.404 0.464 0.791 0.665 0.638 0.862 0.789 0.619 0.862 0.786 0.619 1.395 

100 0.207 0.173 0.191 0.207 0.174 0.192 0.613 0.508 0.494 0.769 0.739 0.488 0.768 0.730 0.488 1.410 

400 0.094 0.078 0.081 0.094 0.079 0.081 0.538 0.439 0.433 0.732 0.743 0.433 0.731 0.728 0.431 1.408 

.27 10 0.751 0.639 0.804 0.738 0.637 0.837 1.044 0.882 0.916 0.999 0.889 0.808 1.007 0.873 0.805 1.390 

25 0.465 0.401 0.464 0.470 0.406 0.458 0.803 0.670 0.646 0.859 0.790 0.629 0.866 0.783 0.627 1.402 

100 0.208 0.172 0.191 0.206 0.174 0.191 0.610 0.508 0.492 0.766 0.745 0.489 0.765 0.733 0.487 1.416 

400 0.095 0.079 0.082 0.095 0.079 0.082 0.537 0.435 0.433 0.733 0.744 0.429 0.733 0.732 0.428 1.408 

.42 10 0.727 0.639 0.804 0.738 0.655 0.831 1.044 0.865 0.885 0.994 0.889 0.795 0.998 0.872 0.814 1.401 

25 0.463 0.408 0.461 0.466 0.406 0.465 0.783 0.653 0.642 0.848 0.788 0.626 0.857 0.781 0.622 1.405 

100 0.206 0.174 0.193 0.208 0.174 0.192 0.602 0.501 0.488 0.763 0.743 0.482 0.761 0.733 0.482 1.415 

400 0.095 0.079 0.082 0.096 0.079 0.082 0.533 0.433 0.431 0.738 0.747 0.431 0.742 0.736 0.429 1.418 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A17.  

 

Percentage of clusters with pooled absolute standardized bias >.1 with covariates equally weighted, by ICC, cluster size, propensity 

score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.915 0.905 0.892 0.915 0.908 0.899 0.935 0.920 0.911 0.927 0.925 0.913 0.932 0.922 0.915 0.959 

25 0.887 0.868 0.876 0.884 0.866 0.875 0.914 0.899 0.902 0.915 0.911 0.899 0.917 0.911 0.900 0.964 

100 0.754 0.715 0.733 0.752 0.716 0.734 0.866 0.856 0.866 0.885 0.893 0.861 0.888 0.893 0.860 0.984 

400 0.512 0.446 0.457 0.512 0.444 0.457 0.808 0.830 0.836 0.871 0.884 0.834 0.872 0.884 0.833 0.992 

.15 10 0.913 0.905 0.892 0.915 0.902 0.894 0.934 0.921 0.918 0.934 0.923 0.916 0.929 0.923 0.917 0.957 

25 0.887 0.871 0.880 0.886 0.870 0.879 0.914 0.899 0.900 0.916 0.911 0.899 0.914 0.911 0.901 0.965 

100 0.753 0.714 0.734 0.754 0.717 0.737 0.864 0.856 0.863 0.886 0.894 0.863 0.887 0.894 0.862 0.983 

400 0.507 0.441 0.453 0.511 0.441 0.454 0.807 0.828 0.836 0.870 0.884 0.834 0.872 0.889 0.833 0.992 

.27 10 0.917 0.909 0.896 0.916 0.902 0.900 0.936 0.922 0.906 0.933 0.927 0.913 0.929 0.923 0.912 0.957 

25 0.885 0.867 0.878 0.885 0.867 0.875 0.914 0.900 0.901 0.915 0.911 0.902 0.914 0.909 0.901 0.965 

100 0.757 0.713 0.735 0.756 0.716 0.736 0.865 0.856 0.866 0.888 0.892 0.861 0.890 0.896 0.861 0.984 

400 0.512 0.446 0.456 0.513 0.448 0.460 0.807 0.826 0.837 0.869 0.881 0.835 0.876 0.889 0.832 0.992 

.42 10 0.916 0.906 0.905 0.920 0.910 0.896 0.934 0.921 0.911 0.933 0.926 0.911 0.932 0.922 0.915 0.959 

25 0.885 0.868 0.879 0.884 0.870 0.880 0.914 0.899 0.902 0.916 0.913 0.902 0.915 0.911 0.899 0.966 

100 0.756 0.717 0.738 0.755 0.714 0.736 0.865 0.854 0.865 0.888 0.890 0.860 0.892 0.896 0.860 0.985 

400 0.513 0.449 0.461 0.516 0.444 0.460 0.809 0.824 0.835 0.871 0.882 0.833 0.882 0.893 0.831 0.991 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A18.  

 

Percentage of clusters with pooled absolute standardized bias >.1 with covariates weighted according to the strength of relation 

with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.929 0.921 0.901 0.928 0.920 0.911 0.964 0.950 0.935 0.960 0.954 0.935 0.962 0.953 0.937 0.992 

25 0.896 0.876 0.888 0.894 0.872 0.885 0.949 0.931 0.931 0.955 0.949 0.928 0.956 0.950 0.928 0.997 

100 0.743 0.692 0.718 0.741 0.695 0.721 0.923 0.905 0.910 0.943 0.947 0.904 0.946 0.949 0.904 1.001 

400 0.471 0.389 0.404 0.471 0.388 0.405 0.904 0.894 0.897 0.943 0.949 0.895 0.946 0.952 0.895 1.008 

.15 10 0.932 0.923 0.913 0.928 0.918 0.915 0.967 0.951 0.942 0.966 0.954 0.940 0.963 0.956 0.941 0.990 

25 0.895 0.879 0.891 0.895 0.877 0.889 0.947 0.934 0.929 0.956 0.951 0.926 0.954 0.950 0.928 0.997 

100 0.741 0.692 0.720 0.742 0.697 0.725 0.920 0.906 0.908 0.946 0.949 0.907 0.946 0.951 0.907 1.002 

400 0.468 0.386 0.402 0.471 0.386 0.403 0.900 0.891 0.896 0.942 0.949 0.894 0.946 0.958 0.894 1.008 

.27 10 0.930 0.923 0.922 0.932 0.918 0.920 0.964 0.951 0.933 0.964 0.955 0.936 0.959 0.954 0.936 0.992 

25 0.893 0.874 0.891 0.893 0.874 0.887 0.948 0.932 0.929 0.956 0.950 0.931 0.955 0.949 0.931 0.997 

100 0.747 0.691 0.721 0.744 0.696 0.721 0.922 0.905 0.909 0.945 0.948 0.907 0.949 0.952 0.906 1.003 

400 0.473 0.390 0.403 0.475 0.391 0.405 0.900 0.890 0.897 0.941 0.947 0.895 0.950 0.959 0.894 1.008 

.42 10 0.926 0.920 0.916 0.933 0.922 0.906 0.962 0.949 0.935 0.963 0.954 0.935 0.963 0.953 0.935 0.992 

25 0.895 0.876 0.893 0.892 0.877 0.892 0.946 0.932 0.930 0.955 0.952 0.929 0.954 0.952 0.927 0.998 

100 0.745 0.695 0.726 0.742 0.695 0.724 0.920 0.903 0.908 0.944 0.948 0.906 0.948 0.954 0.904 1.004 

400 0.473 0.391 0.406 0.475 0.387 0.408 0.903 0.888 0.895 0.942 0.946 0.894 0.954 0.964 0.893 1.007 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A19.  

 

Percentage of clusters with pooled absolute standardized bias >.25 with covariates equally weighted, by ICC, cluster size, 

propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.796 0.770 0.763 0.794 0.776 0.760 0.836 0.809 0.778 0.825 0.813 0.789 0.833 0.812 0.789 0.896 

25 0.719 0.683 0.702 0.721 0.681 0.700 0.788 0.752 0.758 0.792 0.781 0.751 0.792 0.780 0.750 0.909 

100 0.454 0.392 0.426 0.450 0.391 0.426 0.678 0.653 0.670 0.725 0.736 0.661 0.728 0.737 0.662 0.951 

400 0.154 0.121 0.128 0.153 0.120 0.125 0.563 0.582 0.599 0.680 0.709 0.590 0.681 0.713 0.591 0.972 

.15 10 0.792 0.767 0.754 0.795 0.765 0.756 0.837 0.805 0.801 0.834 0.812 0.796 0.827 0.814 0.800 0.893 

25 0.725 0.687 0.710 0.721 0.685 0.707 0.788 0.752 0.759 0.793 0.781 0.753 0.789 0.780 0.753 0.910 

100 0.454 0.391 0.426 0.457 0.396 0.427 0.675 0.650 0.666 0.725 0.736 0.662 0.728 0.736 0.662 0.951 

400 0.151 0.118 0.125 0.151 0.117 0.125 0.564 0.582 0.600 0.679 0.712 0.593 0.684 0.719 0.593 0.971 

.27 10 0.799 0.772 0.750 0.787 0.768 0.757 0.836 0.810 0.786 0.831 0.815 0.791 0.828 0.813 0.792 0.894 

25 0.720 0.680 0.708 0.724 0.681 0.705 0.787 0.752 0.762 0.793 0.783 0.756 0.791 0.780 0.756 0.910 

100 0.459 0.391 0.424 0.455 0.393 0.426 0.676 0.651 0.669 0.726 0.737 0.661 0.731 0.740 0.659 0.953 

400 0.152 0.119 0.126 0.154 0.120 0.126 0.563 0.575 0.597 0.680 0.712 0.590 0.690 0.724 0.588 0.971 

.42 10 0.797 0.769 0.756 0.799 0.779 0.759 0.839 0.809 0.778 0.830 0.814 0.787 0.831 0.810 0.789 0.896 

25 0.722 0.683 0.705 0.720 0.683 0.705 0.786 0.753 0.760 0.793 0.782 0.752 0.792 0.782 0.752 0.912 

100 0.456 0.396 0.430 0.459 0.396 0.427 0.676 0.649 0.666 0.730 0.734 0.657 0.735 0.743 0.658 0.953 

400 0.154 0.119 0.126 0.156 0.118 0.126 0.563 0.574 0.595 0.683 0.710 0.590 0.699 0.732 0.589 0.971 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A20.  

 

Percentage of clusters with pooled absolute standardized bias >.25 with covariates weighted according to the strength of relation 

with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.795 0.774 0.775 0.795 0.774 0.775 0.874 0.847 0.805 0.870 0.855 0.814 0.875 0.854 0.813 0.945 

25 0.714 0.671 0.701 0.712 0.669 0.699 0.841 0.799 0.793 0.854 0.843 0.785 0.854 0.841 0.787 0.958 

100 0.412 0.337 0.382 0.408 0.338 0.381 0.777 0.736 0.743 0.828 0.837 0.734 0.832 0.837 0.735 0.970 

400 0.115 0.080 0.085 0.113 0.079 0.083 0.725 0.700 0.705 0.822 0.832 0.699 0.825 0.839 0.699 0.973 

.15 10 0.797 0.768 0.765 0.798 0.767 0.765 0.881 0.844 0.827 0.878 0.855 0.817 0.875 0.857 0.822 0.944 

25 0.715 0.674 0.709 0.712 0.670 0.705 0.837 0.801 0.793 0.859 0.844 0.788 0.853 0.842 0.789 0.959 

100 0.415 0.339 0.383 0.417 0.343 0.386 0.774 0.735 0.740 0.832 0.838 0.736 0.835 0.840 0.736 0.971 

400 0.113 0.077 0.084 0.114 0.075 0.084 0.724 0.698 0.707 0.823 0.834 0.703 0.828 0.845 0.702 0.973 

.27 10 0.801 0.775 0.767 0.796 0.770 0.769 0.874 0.849 0.815 0.874 0.854 0.814 0.873 0.853 0.814 0.944 

25 0.710 0.668 0.708 0.716 0.670 0.702 0.839 0.799 0.797 0.858 0.846 0.794 0.857 0.842 0.795 0.959 

100 0.418 0.338 0.380 0.413 0.339 0.383 0.775 0.736 0.743 0.830 0.838 0.738 0.836 0.843 0.736 0.974 

400 0.113 0.077 0.085 0.115 0.078 0.084 0.724 0.693 0.703 0.822 0.834 0.699 0.833 0.854 0.697 0.974 

.42 10 0.801 0.778 0.763 0.801 0.783 0.769 0.875 0.845 0.802 0.872 0.855 0.812 0.875 0.850 0.814 0.946 

25 0.714 0.671 0.708 0.709 0.671 0.704 0.834 0.800 0.793 0.856 0.845 0.790 0.858 0.847 0.788 0.962 

100 0.416 0.343 0.387 0.420 0.345 0.384 0.774 0.732 0.738 0.833 0.836 0.731 0.837 0.845 0.731 0.974 

400 0.115 0.077 0.085 0.118 0.076 0.085 0.725 0.689 0.701 0.825 0.834 0.699 0.841 0.864 0.698 0.974 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A21.  

 

Within-cluster variance ratio (mean across clusters) with covariates equally weighted, by ICC, cluster size, propensity score model, 

and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.697 0.679 0.693 0.700 0.684 0.693 0.693 0.666 0.670 0.656 0.642 0.682 0.660 0.642 0.681 0.572 

25 0.594 0.574 0.612 0.592 0.572 0.615 0.566 0.537 0.581 0.525 0.498 0.559 0.528 0.498 0.558 0.439 

100 0.387 0.364 0.385 0.385 0.365 0.386 0.363 0.336 0.351 0.351 0.311 0.340 0.355 0.312 0.339 0.292 

400 0.223 0.205 0.208 0.223 0.204 0.208 0.220 0.191 0.193 0.224 0.183 0.186 0.234 0.185 0.186 0.196 

.15 10 0.699 0.683 0.698 0.697 0.679 0.701 0.691 0.665 0.674 0.658 0.640 0.679 0.655 0.639 0.678 0.572 

25 0.591 0.569 0.615 0.593 0.571 0.614 0.566 0.536 0.582 0.526 0.500 0.559 0.529 0.499 0.560 0.440 

100 0.385 0.365 0.385 0.386 0.366 0.386 0.362 0.336 0.352 0.349 0.309 0.338 0.357 0.312 0.338 0.291 

400 0.223 0.206 0.210 0.223 0.206 0.210 0.219 0.191 0.193 0.222 0.184 0.186 0.233 0.186 0.186 0.197 

.27 10 0.696 0.677 0.692 0.695 0.675 0.699 0.688 0.664 0.675 0.654 0.640 0.680 0.655 0.638 0.679 0.573 

25 0.596 0.573 0.618 0.597 0.572 0.620 0.568 0.539 0.583 0.524 0.502 0.561 0.528 0.501 0.560 0.445 

100 0.386 0.366 0.386 0.387 0.366 0.386 0.362 0.337 0.353 0.351 0.309 0.340 0.359 0.314 0.339 0.290 

400 0.224 0.205 0.209 0.224 0.205 0.209 0.219 0.190 0.193 0.219 0.184 0.186 0.232 0.188 0.186 0.197 

.42 10 0.697 0.675 0.689 0.694 0.674 0.687 0.688 0.659 0.670 0.654 0.637 0.679 0.649 0.637 0.677 0.572 

25 0.595 0.574 0.615 0.596 0.573 0.615 0.570 0.541 0.588 0.530 0.503 0.564 0.529 0.503 0.562 0.446 

100 0.386 0.366 0.388 0.387 0.366 0.387 0.360 0.337 0.353 0.352 0.309 0.339 0.360 0.314 0.338 0.289 

400 0.224 0.207 0.210 0.224 0.207 0.211 0.219 0.193 0.195 0.216 0.186 0.188 0.233 0.192 0.187 0.198 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A22.  

 

Within-cluster variance ratio (mean across clusters) with covariates weighted according to the strength of relation with the 

outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.712 0.695 0.709 0.718 0.697 0.706 0.708 0.676 0.681 0.670 0.654 0.693 0.676 0.654 0.693 0.587 

25 0.607 0.582 0.620 0.604 0.582 0.624 0.580 0.545 0.587 0.538 0.509 0.564 0.542 0.508 0.563 0.453 

100 0.398 0.367 0.387 0.397 0.368 0.388 0.376 0.341 0.356 0.364 0.320 0.343 0.369 0.322 0.342 0.310 

400 0.232 0.205 0.208 0.231 0.204 0.208 0.232 0.194 0.195 0.238 0.193 0.187 0.250 0.196 0.187 0.223 

.15 10 0.712 0.698 0.709 0.715 0.693 0.717 0.707 0.676 0.678 0.673 0.650 0.689 0.670 0.652 0.686 0.587 

25 0.605 0.577 0.623 0.607 0.580 0.621 0.578 0.544 0.589 0.541 0.510 0.567 0.543 0.510 0.567 0.455 

100 0.395 0.367 0.386 0.396 0.367 0.386 0.374 0.340 0.355 0.360 0.318 0.340 0.371 0.321 0.341 0.310 

400 0.232 0.207 0.210 0.232 0.207 0.210 0.231 0.195 0.196 0.235 0.194 0.187 0.249 0.198 0.187 0.223 

.27 10 0.709 0.692 0.712 0.709 0.693 0.718 0.706 0.676 0.682 0.668 0.654 0.687 0.672 0.652 0.687 0.588 

25 0.608 0.582 0.626 0.612 0.584 0.630 0.581 0.547 0.591 0.538 0.514 0.567 0.543 0.513 0.567 0.461 

100 0.397 0.368 0.386 0.398 0.369 0.387 0.374 0.342 0.357 0.363 0.318 0.344 0.372 0.325 0.343 0.310 

400 0.233 0.206 0.208 0.233 0.206 0.209 0.232 0.194 0.196 0.231 0.195 0.188 0.249 0.201 0.188 0.224 

.42 10 0.709 0.690 0.700 0.711 0.690 0.699 0.707 0.674 0.672 0.670 0.651 0.687 0.666 0.652 0.686 0.590 

25 0.608 0.583 0.625 0.610 0.580 0.622 0.585 0.551 0.595 0.544 0.515 0.569 0.544 0.516 0.568 0.463 

100 0.397 0.367 0.387 0.397 0.368 0.388 0.372 0.342 0.357 0.363 0.317 0.342 0.375 0.325 0.341 0.309 

400 0.233 0.207 0.210 0.233 0.208 0.210 0.232 0.197 0.198 0.228 0.196 0.189 0.251 0.205 0.189 0.224 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A23.  

 

Within-cluster variance ratio (median across clusters) with covariates equally weighted, by ICC, cluster size, propensity score 

model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.752 0.731 0.719 0.758 0.742 0.717 0.762 0.725 0.704 0.711 0.694 0.738 0.718 0.693 0.733 0.600 

25 0.629 0.601 0.656 0.627 0.598 0.660 0.594 0.551 0.605 0.536 0.501 0.578 0.542 0.499 0.576 0.425 

100 0.363 0.334 0.354 0.362 0.336 0.355 0.338 0.302 0.316 0.319 0.277 0.303 0.325 0.278 0.303 0.254 

400 0.194 0.175 0.177 0.193 0.175 0.177 0.191 0.160 0.161 0.188 0.156 0.156 0.198 0.156 0.155 0.161 

.15 10 0.754 0.738 0.723 0.751 0.736 0.724 0.758 0.724 0.713 0.715 0.692 0.735 0.711 0.689 0.736 0.601 

25 0.627 0.594 0.657 0.630 0.596 0.655 0.593 0.548 0.610 0.537 0.502 0.577 0.541 0.501 0.580 0.425 

100 0.362 0.335 0.355 0.361 0.335 0.356 0.338 0.302 0.317 0.316 0.276 0.301 0.326 0.278 0.302 0.254 

400 0.193 0.175 0.178 0.193 0.175 0.178 0.190 0.160 0.160 0.186 0.158 0.155 0.197 0.158 0.155 0.162 

.27 10 0.752 0.736 0.718 0.754 0.732 0.724 0.755 0.724 0.708 0.709 0.694 0.735 0.706 0.689 0.735 0.601 

25 0.631 0.599 0.662 0.634 0.598 0.663 0.594 0.553 0.612 0.533 0.505 0.580 0.539 0.501 0.580 0.430 

100 0.362 0.337 0.354 0.365 0.336 0.356 0.338 0.302 0.317 0.319 0.277 0.305 0.328 0.280 0.302 0.254 

400 0.194 0.174 0.176 0.194 0.174 0.176 0.190 0.159 0.160 0.183 0.158 0.155 0.197 0.158 0.155 0.161 

.42 10 0.748 0.725 0.710 0.747 0.723 0.708 0.752 0.715 0.706 0.709 0.686 0.731 0.703 0.687 0.728 0.600 

25 0.630 0.600 0.657 0.632 0.599 0.657 0.596 0.554 0.617 0.541 0.505 0.583 0.538 0.504 0.580 0.433 

100 0.364 0.337 0.358 0.364 0.338 0.357 0.337 0.305 0.320 0.320 0.277 0.305 0.330 0.280 0.305 0.253 

400 0.194 0.176 0.178 0.194 0.176 0.179 0.191 0.162 0.163 0.181 0.159 0.156 0.199 0.159 0.156 0.161 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A24.  

 

Within-cluster variance ratio (median across clusters) with covariates weighted according to the strength of relation with the 

outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.769 0.747 0.735 0.777 0.756 0.731 0.778 0.731 0.714 0.728 0.706 0.752 0.736 0.707 0.746 0.616 

25 0.641 0.609 0.662 0.639 0.608 0.668 0.609 0.557 0.608 0.550 0.511 0.579 0.556 0.509 0.578 0.438 

100 0.374 0.335 0.355 0.374 0.335 0.353 0.352 0.306 0.317 0.333 0.285 0.305 0.339 0.286 0.305 0.271 

400 0.202 0.174 0.177 0.200 0.174 0.176 0.203 0.162 0.162 0.201 0.166 0.156 0.213 0.167 0.155 0.185 

.15 10 0.768 0.753 0.734 0.769 0.752 0.739 0.776 0.739 0.719 0.733 0.702 0.745 0.730 0.703 0.744 0.618 

25 0.642 0.601 0.662 0.646 0.606 0.659 0.604 0.554 0.614 0.553 0.512 0.582 0.556 0.511 0.585 0.441 

100 0.372 0.335 0.353 0.372 0.334 0.354 0.349 0.304 0.318 0.327 0.283 0.301 0.340 0.285 0.302 0.272 

400 0.202 0.175 0.178 0.201 0.174 0.177 0.202 0.163 0.162 0.197 0.168 0.156 0.213 0.168 0.155 0.184 

.27 10 0.767 0.755 0.739 0.771 0.755 0.743 0.776 0.736 0.714 0.724 0.710 0.742 0.725 0.704 0.744 0.618 

25 0.645 0.609 0.669 0.650 0.610 0.674 0.607 0.560 0.617 0.548 0.516 0.583 0.557 0.514 0.584 0.447 

100 0.373 0.338 0.351 0.375 0.338 0.355 0.350 0.306 0.319 0.330 0.285 0.307 0.341 0.289 0.304 0.272 

400 0.202 0.174 0.175 0.202 0.174 0.175 0.202 0.163 0.162 0.195 0.169 0.156 0.213 0.168 0.155 0.183 

.42 10 0.761 0.740 0.720 0.766 0.736 0.719 0.774 0.732 0.707 0.730 0.702 0.739 0.722 0.704 0.737 0.621 

25 0.644 0.607 0.664 0.645 0.605 0.661 0.613 0.562 0.621 0.556 0.516 0.584 0.554 0.517 0.584 0.450 

100 0.375 0.336 0.354 0.374 0.337 0.355 0.347 0.308 0.321 0.330 0.285 0.305 0.345 0.290 0.305 0.272 

400 0.202 0.175 0.177 0.202 0.176 0.178 0.203 0.165 0.165 0.192 0.169 0.157 0.216 0.170 0.156 0.182 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A25.  

 

Percentage of clusters with pooled variance ratio <.5 or >2 with covariates equally weighted, by ICC, cluster size, propensity score 

model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.759 0.733 0.747 0.759 0.741 0.749 0.750 0.719 0.717 0.711 0.693 0.733 0.714 0.692 0.730 0.609 

25 0.634 0.606 0.648 0.634 0.603 0.653 0.600 0.555 0.608 0.542 0.503 0.581 0.547 0.499 0.579 0.406 

100 0.316 0.278 0.310 0.316 0.280 0.313 0.275 0.231 0.256 0.250 0.185 0.237 0.259 0.188 0.235 0.160 

400 0.067 0.052 0.056 0.066 0.052 0.057 0.065 0.043 0.046 0.078 0.032 0.039 0.085 0.036 0.040 0.060 

.15 10 0.757 0.735 0.742 0.758 0.730 0.757 0.747 0.715 0.717 0.714 0.691 0.726 0.707 0.689 0.722 0.609 

25 0.630 0.599 0.654 0.632 0.601 0.652 0.600 0.554 0.609 0.542 0.503 0.579 0.547 0.502 0.580 0.405 

100 0.313 0.277 0.310 0.313 0.279 0.310 0.273 0.230 0.258 0.249 0.183 0.234 0.260 0.189 0.235 0.161 

400 0.066 0.052 0.057 0.066 0.052 0.057 0.063 0.043 0.046 0.075 0.031 0.040 0.083 0.038 0.040 0.062 

.27 10 0.751 0.727 0.740 0.750 0.725 0.752 0.744 0.716 0.722 0.708 0.691 0.731 0.712 0.689 0.729 0.610 

25 0.635 0.606 0.662 0.635 0.601 0.661 0.602 0.557 0.612 0.538 0.506 0.583 0.544 0.502 0.581 0.413 

100 0.317 0.278 0.310 0.319 0.278 0.312 0.273 0.232 0.258 0.251 0.181 0.239 0.266 0.189 0.237 0.159 

400 0.067 0.052 0.056 0.067 0.052 0.058 0.061 0.042 0.046 0.072 0.032 0.040 0.082 0.042 0.040 0.064 

.42 10 0.757 0.731 0.741 0.753 0.726 0.730 0.744 0.709 0.715 0.708 0.687 0.731 0.701 0.685 0.728 0.609 

25 0.636 0.606 0.654 0.638 0.603 0.655 0.602 0.560 0.615 0.548 0.507 0.584 0.544 0.504 0.582 0.415 

100 0.317 0.283 0.316 0.318 0.282 0.316 0.272 0.233 0.261 0.253 0.184 0.236 0.269 0.193 0.236 0.160 

400 0.067 0.052 0.057 0.066 0.052 0.056 0.061 0.042 0.046 0.069 0.031 0.041 0.085 0.045 0.041 0.065 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A26.  

 

Percentage of clusters with pooled variance ratio <.5 or >2 with covariates weighted according to the strength of relation with the 

outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.774 0.748 0.761 0.780 0.752 0.762 0.766 0.726 0.729 0.725 0.705 0.746 0.730 0.703 0.743 0.625 

25 0.648 0.615 0.655 0.647 0.613 0.662 0.615 0.562 0.612 0.556 0.513 0.582 0.562 0.509 0.582 0.422 

100 0.327 0.276 0.306 0.329 0.276 0.308 0.290 0.233 0.257 0.266 0.191 0.236 0.276 0.196 0.235 0.182 

400 0.073 0.049 0.053 0.071 0.049 0.053 0.073 0.044 0.047 0.087 0.036 0.039 0.097 0.041 0.039 0.078 

.15 10 0.770 0.751 0.751 0.778 0.743 0.770 0.764 0.727 0.719 0.730 0.702 0.734 0.722 0.703 0.730 0.623 

25 0.645 0.607 0.662 0.648 0.611 0.658 0.611 0.559 0.614 0.559 0.512 0.584 0.564 0.513 0.586 0.423 

100 0.322 0.273 0.303 0.324 0.274 0.302 0.287 0.231 0.257 0.263 0.191 0.231 0.278 0.199 0.233 0.185 

400 0.071 0.050 0.055 0.073 0.051 0.055 0.070 0.043 0.046 0.084 0.035 0.039 0.096 0.044 0.040 0.081 

.27 10 0.765 0.742 0.766 0.764 0.744 0.771 0.764 0.728 0.733 0.723 0.704 0.737 0.731 0.705 0.735 0.626 

25 0.649 0.615 0.669 0.651 0.615 0.671 0.613 0.563 0.617 0.555 0.517 0.585 0.561 0.515 0.587 0.433 

100 0.329 0.274 0.304 0.330 0.276 0.306 0.288 0.234 0.257 0.264 0.190 0.239 0.282 0.201 0.235 0.187 

400 0.073 0.050 0.054 0.073 0.050 0.055 0.069 0.043 0.047 0.080 0.036 0.041 0.097 0.050 0.040 0.083 

.42 10 0.771 0.749 0.754 0.774 0.745 0.746 0.768 0.728 0.716 0.726 0.705 0.738 0.719 0.701 0.738 0.630 

25 0.648 0.613 0.664 0.653 0.609 0.662 0.618 0.569 0.621 0.561 0.518 0.585 0.562 0.517 0.587 0.435 

100 0.327 0.275 0.308 0.327 0.277 0.309 0.283 0.234 0.261 0.265 0.192 0.235 0.289 0.204 0.234 0.185 

400 0.073 0.050 0.055 0.072 0.049 0.053 0.069 0.043 0.046 0.077 0.035 0.041 0.100 0.054 0.041 0.085 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A27.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Pooled absolute standardized bias with covariates equally weighted 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.00 0.00 0.08 

25 0.00 0.00 0.04 

100 0.06 0.07 0.10 

400 0.25 0.30 0.40 

.15 10 0.00 0.00 0.06 

25 0.00 0.00 0.03 

100 0.07 0.07 0.10 

400 0.28 0.27 0.37 

.27 10 0.00 0.00 0.07 

25 0.00 0.01 0.03 

100 0.08 0.07 0.08 

400 0.27 0.29 0.38 

.42 10 0.00 0.00 0.08 

25 0.00 0.00 0.03 

100 0.08 0.06 0.10 

400 0.27 0.27 0.40 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A28.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Pooled absolute standardized bias with covariates weighted according to the strength of relation 

with the outcome 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.00 0.00 0.08 

25 0.00 0.00 0.04 

100 0.06 0.07 0.10 

400 0.25 0.30 0.40 

.15 10 0.00 0.00 0.06 

25 0.00 0.00 0.03 

100 0.07 0.07 0.10 

400 0.28 0.27 0.37 

.27 10 0.00 0.00 0.07 

25 0.00 0.01 0.03 

100 0.08 0.07 0.08 

400 0.27 0.29 0.38 

.42 10 0.00 0.00 0.08 

25 0.00 0.00 0.03 

100 0.08 0.06 0.10 

400 0.27 0.27 0.40 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A29.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of covariates with pooled absolute standardized bias >.1 with covariates equally 

weighted 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.00 0.00 0.03 

25 0.00 0.00 0.01 

100 0.00 0.00 0.00 

400 0.00 0.00 0.00 

.15 10 0.00 0.00 0.04 

25 0.00 0.00 0.00 

100 0.00 0.00 0.00 

400 0.00 0.00 0.00 

.27 10 0.00 0.00 0.05 

25 0.00 0.00 0.01 

100 0.00 0.00 0.00 

400 0.00 0.00 0.00 

.42 10 0.00 0.00 0.05 

25 0.00 0.00 0.01 

100 0.00 0.00 0.00 

400 0.00 0.00 0.00 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A30.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of covariates with pooled absolute standardized bias >.1 with covariates weighted 

according to the strength of relation with the outcome 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.00 0.00 0.07 

25 0.00 0.00 0.02 

100 0.00 0.00 0.00 

400 0.00 0.00 0.00 

.15 10 0.00 0.00 0.06 

25 0.00 0.00 0.00 

100 0.00 0.00 0.00 

400 0.00 0.00 0.00 

.27 10 0.00 0.00 0.07 

25 0.00 0.00 0.02 

100 0.00 0.00 0.00 

400 0.00 0.00 0.00 

.42 10 0.00 0.00 0.07 

25 0.00 0.00 0.01 

100 0.00 0.00 0.00 

400 0.00 0.00 0.00 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A31.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of covariates with pooled absolute standardized bias >.25 with covariates equally 

weighted 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.000 0.000 0.010 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.15 10 0.000 0.000 0.018 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.27 10 0.000 0.000 0.008 

25 0.000 0.000 0.002 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.42 10 0.000 0.000 0.016 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A32.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of covariates with pooled absolute standardized bias >.25 with covariates weighted 

according to the strength of relation with the outcome 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.000 0.000 0.012 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.15 10 0.000 0.000 0.020 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.27 10 0.000 0.000 0.008 

25 0.000 0.000 0.002 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.42 10 0.000 0.000 0.022 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A33.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Pooled variance ratio with covariates equally weighted 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.080 0.086 0.152 

25 0.118 0.102 0.154 

100 0.298 0.248 0.228 

400 0.500 0.478 0.450 

.15 10 0.094 0.094 0.142 

25 0.146 0.120 0.164 

100 0.342 0.302 0.246 

400 0.520 0.488 0.452 

.27 10 0.088 0.076 0.144 

25 0.138 0.120 0.162 

100 0.378 0.298 0.226 

400 0.514 0.456 0.410 

.42 10 0.068 0.066 0.142 

25 0.164 0.154 0.144 

100 0.356 0.314 0.240 

400 0.506 0.484 0.430 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A34.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Pooled variance ratio with covariates weighted according to the strength of relation with the 

outcome 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.088 0.084 0.154 

25 0.144 0.144 0.170 

100 0.244 0.224 0.254 

400 0.450 0.426 0.412 

.15 10 0.116 0.106 0.166 

25 0.142 0.122 0.158 

100 0.276 0.258 0.252 

400 0.438 0.416 0.396 

.27 10 0.110 0.110 0.168 

25 0.138 0.148 0.196 

100 0.284 0.220 0.250 

400 0.430 0.388 0.400 

.42 10 0.076 0.102 0.170 

25 0.160 0.128 0.156 

100 0.272 0.248 0.232 

400 0.460 0.432 0.392 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A35.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of covariates with pooled variance ratio <.5 or >2 with covariates equally weighted 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.000 0.000 0.006 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.15 10 0.000 0.000 0.002 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.27 10 0.000 0.000 0.006 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.42 10 0.000 0.000 0.008 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A36.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of covariates with pooled variance ratio <.5 or >2 with covariates weighted according 

to the strength of relation with the outcome 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.000 0.000 0.006 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.15 10 0.000 0.000 0.002 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.27 10 0.000 0.000 0.006 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

.42 10 0.000 0.000 0.008 

25 0.000 0.000 0.000 

100 0.000 0.000 0.000 

400 0.000 0.000 0.000 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A37.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Within-cluster absolute standardized bias (mean across clusters) with covariates equally weighted 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.362 0.338 0.252 

25 0.486 0.466 0.340 

100 0.478 0.492 0.496 

400 0.486 0.460 0.462 

.15 10 0.330 0.368 0.292 

25 0.472 0.444 0.288 

100 0.530 0.528 0.496 

400 0.492 0.494 0.492 

.27 10 0.284 0.352 0.306 

25 0.496 0.514 0.370 

100 0.508 0.500 0.498 

400 0.538 0.516 0.496 

.42 10 0.324 0.342 0.290 

25 0.512 0.444 0.366 

100 0.546 0.494 0.482 

400 0.488 0.494 0.508 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A38.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Within-cluster absolute standardized bias (mean across clusters) with covariates weighted 

according to the strength of relation with the outcome 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.426 0.418 0.242 

25 0.516 0.494 0.428 

100 0.490 0.502 0.512 

400 0.514 0.478 0.466 

.15 10 0.400 0.430 0.300 

25 0.514 0.476 0.384 

100 0.510 0.530 0.518 

400 0.486 0.504 0.476 

.27 10 0.360 0.396 0.302 

25 0.536 0.534 0.408 

100 0.510 0.520 0.498 

400 0.482 0.510 0.488 

.42 10 0.404 0.384 0.272 

25 0.516 0.486 0.440 

100 0.548 0.510 0.494 

400 0.502 0.490 0.522 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A39.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Within-cluster absolute standardized bias (median across clusters) with covariates equally 

weighted 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.344 0.364 0.216 

25 0.508 0.476 0.428 

100 0.474 0.494 0.506 

400 0.500 0.476 0.500 

.15 10 0.360 0.430 0.264 

25 0.510 0.474 0.426 

100 0.504 0.506 0.480 

400 0.536 0.510 0.480 

.27 10 0.316 0.350 0.248 

25 0.518 0.510 0.442 

100 0.482 0.528 0.528 

400 0.506 0.500 0.520 

.42 10 0.340 0.376 0.252 

25 0.518 0.502 0.438 

100 0.492 0.512 0.490 

400 0.496 0.472 0.506 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 

 

  



 

179 
 

Table A40.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Within-cluster absolute standardized bias (median across clusters) with covariates weighted 

according to the strength of relation with the outcome 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.442 0.426 0.218 

25 0.512 0.496 0.442 

100 0.500 0.524 0.494 

400 0.502 0.466 0.472 

.15 10 0.424 0.466 0.250 

25 0.478 0.460 0.482 

100 0.516 0.514 0.504 

400 0.526 0.526 0.506 

.27 10 0.368 0.410 0.262 

25 0.526 0.530 0.446 

100 0.474 0.522 0.524 

400 0.520 0.524 0.512 

.42 10 0.396 0.402 0.260 

25 0.486 0.498 0.492 

100 0.522 0.506 0.488 

400 0.518 0.502 0.498 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A41.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of clusters with pooled absolute standardized bias >.1 with covariates equally 

weighted 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.258 0.284 0.198 

25 0.354 0.372 0.318 

100 0.486 0.516 0.496 

400 0.496 0.482 0.472 

.15 10 0.284 0.250 0.202 

25 0.344 0.368 0.352 

100 0.498 0.496 0.518 

400 0.500 0.488 0.472 

.27 10 0.262 0.254 0.188 

25 0.386 0.378 0.326 

100 0.472 0.532 0.494 

400 0.472 0.508 0.510 

.42 10 0.286 0.276 0.160 

25 0.386 0.420 0.346 

100 0.494 0.454 0.454 

400 0.486 0.470 0.460 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A42.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of clusters with pooled absolute standardized bias >.1 with covariates weighted 

according to the strength of relation with the outcome 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.274 0.284 0.200 

25 0.454 0.426 0.350 

100 0.504 0.534 0.494 

400 0.496 0.498 0.544 

.15 10 0.296 0.280 0.208 

25 0.444 0.442 0.380 

100 0.516 0.524 0.508 

400 0.502 0.500 0.504 

.27 10 0.280 0.292 0.192 

25 0.460 0.464 0.360 

100 0.486 0.562 0.486 

400 0.514 0.518 0.494 

.42 10 0.318 0.290 0.168 

25 0.448 0.462 0.368 

100 0.490 0.504 0.476 

400 0.512 0.500 0.502 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A43.  

 

Proportion of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of clusters with pooled absolute standardized bias >.25 with covariates equally 

weighted 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.284 0.320 0.188 

25 0.478 0.458 0.370 

100 0.468 0.504 0.476 

400 0.466 0.434 0.412 

.15 10 0.308 0.292 0.216 

25 0.412 0.422 0.360 

100 0.496 0.512 0.482 

400 0.468 0.424 0.454 

.27 10 0.262 0.278 0.218 

25 0.492 0.456 0.354 

100 0.464 0.514 0.482 

400 0.508 0.456 0.450 

.42 10 0.308 0.342 0.204 

25 0.418 0.440 0.388 

100 0.512 0.488 0.450 

400 0.500 0.456 0.472 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A44.  

 

Percentage of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of clusters with pooled absolute standardized bias >.25 with covariates weighted 

according to the strength of relation with the outcome 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.328 0.378 0.202 

25 0.480 0.498 0.418 

100 0.478 0.538 0.474 

400 0.486 0.486 0.476 

.15 10 0.364 0.340 0.248 

25 0.468 0.462 0.406 

100 0.500 0.518 0.498 

400 0.528 0.462 0.504 

.27 10 0.364 0.354 0.262 

25 0.516 0.498 0.398 

100 0.488 0.498 0.512 

400 0.510 0.518 0.482 

.42 10 0.340 0.364 0.232 

25 0.468 0.498 0.428 

100 0.518 0.510 0.470 

400 0.544 0.466 0.500 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A45.  

 

Percentage of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Within-cluster variance ratio (mean across clusters) with covariates equally weighted 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.162 0.122 0.202 

25 0.012 0.014 0.060 

100 0.008 0.008 0.012 

400 0.210 0.012 0.026 

.15 10 0.120 0.116 0.186 

25 0.016 0.012 0.058 

100 0.038 0.000 0.014 

400 0.166 0.018 0.018 

.27 10 0.124 0.128 0.188 

25 0.006 0.008 0.042 

100 0.032 0.000 0.010 

400 0.164 0.032 0.024 

.42 10 0.134 0.124 0.192 

25 0.016 0.010 0.050 

100 0.030 0.002 0.008 

400 0.156 0.022 0.016 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A46.  

 

Percentage of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Within-cluster variance ratio (mean across clusters) with covariates weighted according to the 

strength of relation with the outcome 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.172 0.164 0.190 

25 0.028 0.024 0.074 

100 0.022 0.018 0.040 

400 0.260 0.088 0.050 

.15 10 0.138 0.140 0.186 

25 0.032 0.024 0.078 

100 0.060 0.022 0.028 

400 0.240 0.090 0.050 

.27 10 0.144 0.148 0.182 

25 0.026 0.016 0.054 

100 0.044 0.014 0.026 

400 0.192 0.100 0.056 

.42 10 0.172 0.132 0.184 

25 0.028 0.016 0.070 

100 0.050 0.028 0.026 

400 0.204 0.104 0.062 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A47.  

 

Percentage of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Within-cluster variance ratio (median across clusters) with covariates equally weighted 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.176 0.168 0.208 

25 0.032 0.012 0.052 

100 0.026 0.018 0.024 

400 0.160 0.050 0.034 

.15 10 0.156 0.144 0.226 

25 0.016 0.016 0.074 

100 0.044 0.012 0.028 

400 0.156 0.042 0.028 

.27 10 0.150 0.150 0.208 

25 0.020 0.012 0.046 

100 0.058 0.008 0.030 

400 0.142 0.040 0.024 

.42 10 0.170 0.156 0.216 

25 0.014 0.010 0.058 

100 0.036 0.016 0.020 

400 0.134 0.056 0.052 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A48.  

 

Percentage of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Within-cluster variance ratio (median across clusters) with covariates weighted according to the 

strength of relation with the outcome 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.182 0.172 0.226 

25 0.064 0.026 0.064 

100 0.052 0.046 0.042 

400 0.200 0.142 0.070 

.15 10 0.168 0.150 0.206 

25 0.046 0.046 0.112 

100 0.060 0.040 0.050 

400 0.210 0.126 0.066 

.27 10 0.130 0.146 0.208 

25 0.044 0.028 0.086 

100 0.076 0.028 0.058 

400 0.182 0.126 0.076 

.42 10 0.190 0.162 0.204 

25 0.030 0.030 0.078 

100 0.058 0.044 0.046 

400 0.194 0.146 0.098 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A49.  

 

Percentage of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of clusters with pooled variance ratio <.5 or >2 with covariates equally weighted 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.134 0.154 0.154 

25 0.036 0.016 0.080 

100 0.018 0.006 0.022 

400 0.240 0.044 0.072 

.15 10 0.130 0.136 0.180 

25 0.018 0.028 0.082 

100 0.028 0.006 0.024 

400 0.198 0.036 0.064 

.27 10 0.144 0.154 0.172 

25 0.028 0.022 0.048 

100 0.024 0.000 0.020 

400 0.176 0.072 0.070 

.42 10 0.126 0.142 0.130 

25 0.012 0.012 0.076 

100 0.036 0.002 0.020 

400 0.174 0.056 0.068 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A50.  

 

Percentage of replications in which the RIS model was selected by ICC, cluster size, propensity score model, and 

matching method. 
 

Balance measure: Percentage of clusters with pooled variance ratio <.5 or >2 with covariates weighted according to 

the strength of relation with the outcome 

 

Average 

ICC 

Cluster 

size Pooled Two-stage Within cluster 

.08 10 0.160 0.164 0.174 

25 0.062 0.030 0.108 

100 0.040 0.022 0.054 

400 0.252 0.108 0.110 

.15 10 0.174 0.170 0.172 

25 0.050 0.050 0.108 

100 0.052 0.034 0.048 

400 0.246 0.094 0.108 

.27 10 0.154 0.146 0.182 

25 0.032 0.040 0.062 

100 0.058 0.020 0.044 

400 0.230 0.124 0.126 

.42 10 0.176 0.166 0.174 

25 0.036 0.028 0.092 

100 0.058 0.024 0.048 

400 0.222 0.114 0.114 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model. 
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Table A51.  

 

Correlation between treatment effect estimate bias and pooled absolute standardized bias with covariates equally weighted, by ICC, 

cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.49 0.49 0.52 0.52 0.50 0.53 0.51 0.48 0.45 -0.05 -0.07 0.48 0.11 0.09 0.47 0.62 

25 0.59 0.54 0.53 0.58 0.57 0.47 0.51 0.53 0.38 0.13 0.17 0.45 0.13 0.11 0.43 0.66 

100 0.54 0.53 0.40 0.51 0.54 0.38 0.27 0.47 0.13 0.11 0.08 0.07 0.13 0.19 0.10 0.64 

400 0.20 0.16 -0.04 0.20 0.10 -0.04 -0.35 0.14 -0.20 0.08 0.14 -0.28 0.24 0.16 -0.30 0.64 

.15 10 0.53 0.55 0.49 0.54 0.52 0.45 0.61 0.53 0.40 0.04 0.04 0.51 0.11 0.18 0.51 0.69 

25 0.61 0.60 0.47 0.57 0.58 0.50 0.52 0.49 0.34 0.12 0.18 0.38 0.14 0.10 0.33 0.71 

100 0.48 0.59 0.42 0.51 0.58 0.47 0.14 0.50 0.12 0.14 0.13 0.06 0.22 0.12 -0.04 0.67 

400 0.15 0.19 -0.05 0.16 0.24 0.00 -0.41 0.32 -0.24 0.17 0.09 -0.32 0.20 0.16 -0.24 0.64 

.27 10 0.56 0.58 0.62 0.55 0.51 0.58 0.49 0.40 0.42 0.08 0.02 0.46 0.08 0.07 0.50 0.65 

25 0.59 0.57 0.46 0.58 0.56 0.53 0.48 0.59 0.38 0.15 0.16 0.35 0.10 0.14 0.34 0.64 

100 0.48 0.48 0.40 0.45 0.48 0.39 0.18 0.39 0.07 0.15 0.24 0.05 0.20 0.17 0.09 0.66 

400 0.19 0.21 -0.04 0.16 0.10 -0.13 -0.40 0.17 -0.21 0.28 0.14 -0.26 0.21 0.16 -0.31 0.74 

.42 10 0.52 0.51 0.50 0.57 0.56 0.53 0.52 0.56 0.47 0.06 -0.04 0.45 0.23 0.20 0.49 0.65 

25 0.54 0.59 0.51 0.58 0.56 0.54 0.44 0.51 0.32 0.13 0.02 0.19 0.22 0.20 0.26 0.70 

100 0.47 0.56 0.41 0.52 0.56 0.38 0.05 0.34 0.02 0.12 0.27 -0.07 0.27 0.26 0.05 0.70 

400 0.09 0.21 -0.06 0.23 0.19 -0.10 -0.53 0.01 -0.11 0.29 0.22 -0.25 0.23 0.23 -0.17 0.70 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A52.  

 

Correlation between treatment effect estimate bias and pooled absolute standardized bias with covariates weighted according to the 

strength of relation with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.69 0.69 0.72 0.70 0.70 0.76 0.66 0.65 0.50 0.01 0.01 0.58 0.12 0.15 0.56 0.81 

25 0.75 0.73 0.80 0.74 0.76 0.77 0.67 0.72 0.39 0.14 0.30 0.43 0.15 0.22 0.43 0.83 

100 0.70 0.71 0.69 0.65 0.75 0.71 0.32 0.61 -0.03 0.26 0.34 -0.21 0.21 0.43 -0.16 0.83 

400 0.23 0.26 -0.01 0.28 0.16 0.00 -0.52 0.24 -0.57 0.34 0.39 -0.68 0.41 0.42 -0.66 0.82 

.15 10 0.70 0.72 0.74 0.69 0.68 0.74 0.72 0.68 0.51 0.08 0.14 0.58 0.06 0.22 0.57 0.84 

25 0.74 0.75 0.78 0.75 0.74 0.78 0.66 0.67 0.37 0.24 0.32 0.36 0.19 0.24 0.34 0.85 

100 0.67 0.75 0.71 0.66 0.74 0.73 0.17 0.63 -0.09 0.28 0.37 -0.28 0.36 0.37 -0.34 0.83 

400 0.19 0.19 -0.02 0.20 0.23 -0.01 -0.57 0.41 -0.58 0.32 0.40 -0.69 0.38 0.40 -0.65 0.82 

.27 10 0.70 0.70 0.79 0.73 0.68 0.76 0.64 0.62 0.48 0.10 0.07 0.52 0.09 0.18 0.55 0.81 

25 0.76 0.77 0.75 0.77 0.77 0.77 0.67 0.72 0.35 0.15 0.26 0.22 0.16 0.26 0.21 0.84 

100 0.65 0.69 0.66 0.61 0.67 0.67 0.17 0.58 -0.13 0.25 0.42 -0.35 0.31 0.43 -0.33 0.83 

400 0.14 0.26 -0.03 0.20 0.20 -0.08 -0.61 0.33 -0.55 0.40 0.40 -0.69 0.36 0.41 -0.67 0.85 

.42 10 0.69 0.69 0.74 0.72 0.73 0.74 0.68 0.72 0.54 0.07 0.05 0.48 0.17 0.16 0.51 0.80 

25 0.73 0.72 0.76 0.74 0.76 0.78 0.62 0.63 0.29 0.17 0.14 0.09 0.24 0.24 0.16 0.84 

100 0.62 0.73 0.66 0.67 0.73 0.64 -0.01 0.53 -0.22 0.23 0.45 -0.45 0.35 0.43 -0.34 0.84 

400 0.12 0.32 -0.07 0.23 0.32 -0.04 -0.69 0.15 -0.53 0.41 0.42 -0.71 0.39 0.42 -0.68 0.85 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A53.  

 

Correlation between treatment effect estimate bias and percentage of covariates with pooled absolute standardized bias >.1 with 

covariates equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.15 0.06 0.24 0.09 0.10 0.27 0.22 0.29 0.26 -0.05 -0.08 0.32 0.10 0.03 0.32 -0.09 

25 0.40 0.42 0.45 0.40 0.34 0.42 0.46 0.49 0.30 0.07 0.01 0.42 0.13 0.04 0.40 -0.08 

100 0.28 0.26 0.01 0.19 0.24 -0.09 0.02 0.12 0.02   0.09 0.03 0.08 0.07 0.01 

400              0.07   

.15 10 0.08 0.08 0.29 0.10 0.10 0.24 0.34 0.28 0.27 -0.02 -0.04 0.35 0.04 0.13 0.35 -0.01 

25 0.43 0.42 0.38 0.37 0.41 0.35 0.40 0.44 0.29 0.02 -0.02 0.34 0.02 -0.01 0.31 0.02 

100 0.17 0.27 0.00 0.19 0.11 -0.02   0.09   0.12  -0.03 0.06  

400                 

.27 10 0.16 0.14 0.34 0.10 0.10 0.33 0.29 0.22 0.28 0.05 -0.05 0.34 0.04 0.03 0.36 0.02 

25 0.41 0.34 0.39 0.41 0.40 0.45 0.43 0.54 0.34 -0.01 0.08 0.33 0.05 0.07 0.31  

100 0.10 0.16 0.13 0.15 0.11 -0.01 0.06 0.02 0.10   0.11   0.08  

400                 

.42 10 0.03 0.16 0.27 0.11 0.16 0.29 0.31 0.33 0.31 -0.01 -0.05 0.29 0.09 -0.02 0.31  

25 0.40 0.40 0.38 0.41 0.42 0.40 0.39 0.46 0.31 -0.03 -0.08 0.19  0.03 0.25  

100 0.15 0.19 0.06 0.22 0.28 0.09 -0.04 0.07 0.05   0.17   0.20  

400                 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. Blank cells are those in which a correlation could not be calculated because all covariates in all replications had ASB<.1. 
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Table A54.  

 

Correlation between treatment effect estimate bias and percentage of covariates with pooled absolute standardized bias >.1 with 

covariates weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and 

matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.35 0.31 0.40 0.26 0.32 0.42 0.43 0.46 0.28 -0.01 0.02 0.40 0.06 0.11 0.35 -0.09 

25 0.56 0.61 0.67 0.57 0.56 0.66 0.58 0.61 0.30 0.07 0.01 0.38 0.13 0.05 0.41 -0.08 

100 0.31 0.29 0.13 0.26 0.33 0.10 0.02 0.12 0.02   0.09 0.03 0.08 0.07 0.01 

400              0.07   

.15 10 0.30 0.33 0.41 0.27 0.32 0.39 0.49 0.46 0.32 -0.08 -0.02 0.40 0.05 0.14 0.37 -0.01 

25 0.62 0.59 0.65 0.58 0.57 0.61 0.52 0.58 0.31 0.02 -0.02 0.31 0.01 -0.01 0.29 0.02 

100 0.23 0.30 0.12 0.24 0.16 0.10   0.09   0.12  -0.03 0.06  

400                 

.27 10 0.35 0.34 0.44 0.34 0.40 0.43 0.46 0.46 0.33 0.11 -0.03 0.37 -0.03 0.12 0.40 0.02 

25 0.58 0.57 0.63 0.65 0.64 0.62 0.58 0.62 0.29 -0.01 0.08 0.23 0.05 0.06 0.22  

100 0.17 0.24 0.24 0.22 0.20 0.17 0.12 0.02 0.10   0.11   0.08  

400                 

.42 10 0.28 0.39 0.41 0.35 0.41 0.41 0.47 0.54 0.37 -0.03 0.02 0.31 0.12 -0.01 0.34  

25 0.66 0.56 0.63 0.61 0.62 0.64 0.52 0.54 0.30 -0.03 -0.08 0.08  0.03 0.19  

100 0.25 0.26 0.21 0.24 0.32 0.21 0.03 0.07 0.05   0.17   0.20  

400                 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. Blank cells are those in which a correlation could not be calculated because all covariates in all replications had ASB<.1. 
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Table A55.  

 

Correlation between treatment effect estimate bias and percentage of covariates with pooled absolute standardized bias >.25 with 

covariates equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.39 0.38 0.42 0.40 0.43 0.42 0.47 0.40 0.41   0.47 0.06 0.04 0.42 -0.10 

25 0.41 0.34 0.22 0.40 0.39 0.24 -0.06  0.28   0.12 -0.03 0.00 0.20 -0.01 

100                 

400                 

.15 10 0.40 0.41 0.40 0.44 0.40 0.35 0.58 0.49 0.33   0.43 0.13 0.15 0.47 0.00 

25 0.38 0.39 0.23 0.41 0.31 0.29 0.06  0.05   0.14 0.09 0.04 0.07 -0.04 

100             0.17 0.03  -0.02 

400             0.12    

.27 10 0.42 0.48 0.54 0.42 0.47 0.50 0.45 0.35 0.39   0.40 0.01 -0.01 0.45 -0.05 

25 0.41 0.41 0.20 0.44 0.39 0.30 0.07 0.15 0.10   0.17 0.11 0.09 0.26 -0.03 

100             0.08 0.07  -0.04 

400              0.10  -0.02 

.42 10 0.42 0.41 0.44 0.45 0.45 0.49 0.47 0.50 0.39 0.01  0.44 0.07 0.09 0.44 0.02 

25 0.32 0.40 0.32 0.36 0.38 0.35 0.01  0.15   0.03  0.01 0.11  

100                 

400                 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. Blank cells are those in which a correlation could not be calculated because all covariates in all replications had ASB<.25. 
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Table A56.  

 

Correlation between treatment effect estimate bias and percentage of covariates with pooled absolute standardized bias >.25 with 

covariates weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and 

matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.54 0.54 0.59 0.55 0.56 0.61 0.55 0.49 0.45   0.51 0.06 0.04 0.48 -0.10 

25 0.44 0.39 0.39 0.42 0.45 0.42 -0.06  0.30   0.12 -0.03 0.00 0.20 -0.01 

100                 

400                 

.15 10 0.56 0.55 0.57 0.57 0.54 0.59 0.65 0.54 0.46   0.47 0.13 0.15 0.50 0.00 

25 0.39 0.44 0.42 0.44 0.36 0.43 0.06  0.05   0.14 0.09 0.04 0.07 -0.04 

100             0.17 0.03  -0.02 

400             0.12    

.27 10 0.53 0.58 0.66 0.59 0.56 0.64 0.54 0.47 0.44   0.46 0.01 -0.01 0.45 -0.05 

25 0.43 0.43 0.39 0.46 0.44 0.47 0.07 0.16 0.10   0.17 0.11 0.09 0.26 -0.03 

100             0.08 0.07  -0.04 

400              0.10  -0.02 

.42 10 0.56 0.57 0.64 0.59 0.57 0.64 0.57 0.58 0.40 0.01  0.42 0.07 0.09 0.46 0.01 

25 0.36 0.42 0.43 0.36 0.43 0.49 0.02  0.15   0.03  0.01 0.11  

100                 

400                 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. Blank cells are those in which a correlation could not be calculated because all covariates in all replications had ASB<.25. 
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Table A57.  

 

Correlation between treatment effect estimate bias and pooled variance ratio with covariates equally weighted, by ICC, cluster size, 

propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.01 0.05 0.07 0.05 0.00 0.06 -0.03 -0.05 0.06 0.03 -0.02 0.06 0.00 -0.02 -0.01 -0.05 

25 -0.09 0.05 0.05 0.00 -0.01 0.05 0.06 -0.03 0.10 0.05 0.02 0.03 -0.04 0.02 0.02 -0.04 

100 0.08 0.00 0.06 -0.02 -0.04 0.02 0.02 -0.12 -0.04 -0.01 -0.12 -0.03 -0.05 -0.03 -0.04 0.01 

400 -0.04 -0.03 0.01 -0.02 -0.10 -0.10 -0.10 -0.07 -0.05 0.03 -0.13 0.00 0.01 0.00 0.01 -0.03 

.15 10 -0.02 -0.01 0.09 0.03 -0.01 0.10 0.03 -0.01 0.07 -0.02 -0.01 0.04 -0.02 0.04 0.04 -0.02 

25 -0.01 -0.06 -0.04 -0.06 -0.06 -0.06 -0.03 -0.04 -0.01 0.09 0.03 0.03 0.03 0.00 0.00 0.01 

100 0.07 -0.01 0.00 0.11 0.02 0.07 -0.06 -0.05 -0.03 0.05 -0.08 0.01 0.04 0.00 -0.05 -0.03 

400 0.02 -0.07 -0.09 -0.01 0.08 0.06 -0.09 -0.04 -0.04 -0.06 0.01 -0.06 0.03 -0.03 -0.07 -0.03 

.27 10 0.00 0.02 0.02 0.02 0.02 0.06 0.01 0.02 0.08 -0.09 -0.06 0.09 -0.03 -0.10 0.09 -0.07 

25 0.04 -0.01 -0.11 -0.04 -0.01 -0.03 -0.08 -0.06 -0.01 -0.02 -0.04 -0.02 -0.04 -0.05 -0.01 -0.03 

100 0.00 0.03 0.01 0.05 0.06 0.03 -0.08 -0.07 -0.02 0.00 -0.10 -0.03 0.07 -0.03 -0.07 0.02 

400 -0.02 0.01 -0.01 0.03 -0.04 0.04 -0.01 0.00 0.03 -0.08 -0.10 0.11 -0.07 -0.02 0.07 0.03 

.42 10 -0.03 0.01 -0.01 -0.05 -0.01 0.04 -0.01 -0.02 -0.03 0.00 -0.01 0.01 0.03 -0.03 0.00 -0.01 

25 -0.05 0.08 0.05 0.00 -0.02 0.07 0.03 -0.12 0.01 -0.07 -0.07 -0.06 0.00 0.05 -0.02 0.04 

100 0.06 0.04 0.03 -0.02 0.03 -0.01 -0.16 -0.04 -0.03 0.03 0.02 0.09 -0.05 -0.04 0.07 0.05 

400 0.07 0.02 -0.03 -0.02 0.02 -0.01 0.03 -0.12 -0.14 0.03 -0.02 -0.02 0.02 0.03 -0.06 -0.03 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A58.  

 

Correlation between treatment effect estimate bias and pooled variance ratio with covariates weighted according to the strength of 

relation with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.03 0.02 0.05 0.02 0.00 0.00 -0.07 -0.04 0.06 0.03 -0.02 0.06 -0.04 -0.04 0.02 -0.06 

25 -0.11 0.03 0.05 -0.04 -0.05 0.08 0.04 0.01 0.08 0.02 -0.03 0.01 -0.06 -0.03 0.01 0.00 

100 0.09 0.03 0.03 0.00 0.00 0.00 0.05 -0.12 -0.07 0.01 0.00 -0.05 0.00 -0.03 0.00 0.06 

400 -0.03 -0.06 0.00 0.01 -0.08 -0.08 -0.07 -0.11 -0.08 -0.01 -0.03 -0.01 0.05 0.12 -0.03 -0.04 

.15 10 -0.02 0.01 0.13 0.03 0.04 0.11 0.02 0.01 0.10 -0.02 -0.02 0.05 -0.01 -0.01 0.07 0.04 

25 0.02 -0.01 -0.04 -0.03 -0.07 0.01 -0.03 -0.02 -0.02 0.10 -0.02 0.05 0.04 0.03 0.00 0.03 

100 0.06 -0.03 0.00 0.11 0.03 0.06 -0.02 0.00 0.02 0.02 -0.13 0.04 -0.01 -0.02 -0.02 0.00 

400 0.00 -0.05 -0.06 -0.03 0.04 0.05 -0.07 -0.06 -0.02 0.01 0.00 -0.04 0.04 -0.01 -0.03 -0.02 

.27 10 -0.03 0.07 0.02 0.03 0.01 0.03 0.01 0.00 0.06 -0.07 -0.03 0.10 -0.03 -0.11 0.10 -0.01 

25 0.05 -0.01 -0.10 -0.03 -0.03 -0.03 -0.11 -0.06 0.02 0.00 0.00 0.00 0.02 0.03 0.01 0.00 

100 0.04 0.02 -0.02 0.07 0.06 0.01 -0.04 -0.08 0.00 0.00 -0.06 0.02 0.02 -0.03 0.01 0.03 

400 -0.07 0.01 0.00 0.03 -0.03 0.05 -0.02 -0.03 0.03 -0.10 -0.06 0.06 -0.05 0.02 0.01 0.03 

.42 10 -0.03 0.02 0.03 -0.06 -0.02 0.05 0.02 0.01 -0.02 0.01 0.01 0.02 0.02 0.02 -0.01 0.04 

25 -0.08 0.05 0.04 -0.09 -0.05 0.06 0.00 -0.07 0.00 -0.09 -0.08 -0.03 -0.03 0.01 -0.09 0.07 

100 0.06 0.02 0.03 -0.06 -0.02 -0.01 -0.14 -0.06 -0.06 0.02 0.02 0.10 -0.02 -0.01 0.07 0.10 

400 0.09 0.08 0.01 0.00 0.06 0.01 0.03 -0.11 -0.14 0.04 0.05 -0.06 0.04 0.02 -0.08 0.01 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A59.  

 

Correlation between treatment effect estimate bias and percentage of covariates with pooled variance ratio <.5 or >2 with 

covariates equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 -0.01 0.01 0.13 0.03 -0.02 0.08 -0.02 0.04 -0.01   0.07   -0.03  

25 -0.01     0.06           

100                 

400                 

.15 10 0.05 -0.04 0.10 0.04 0.10 0.07 -0.01 -0.03 0.07   0.00   0.01  

25 0.03  0.03   0.03 -0.04          

100                 

400                 

.27 10 -0.03 0.11 -0.06 -0.02 0.08 0.09 0.00 0.01 0.06 0.00  0.04   0.05  

25   0.01   0.00   0.05        

100                 

400                 

.42 10 0.03 0.03 0.05 0.01 0.05 0.05 0.02 -0.07 -0.04   -0.05   -0.02  

25   0.00   0.10           

100                 

400                 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. Blank cells are those in which a correlation could not be calculated because all covariates in all replications had VR between .5 and 2. 

 

  



 

199 
 

Table A60.  

 

Correlation between treatment effect estimate bias and percentage of covariates with pooled variance ratio <.5 or >2 with 

covariates weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and 

matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.04 0.01 0.11 0.00 -0.01 0.03 -0.02 -0.02 0.01   0.08   0.01  

25 -0.01     0.06           

100                 

400                 

.15 10 0.01 -0.03 0.13 0.07 0.12 0.14 -0.01 -0.01 0.12   0.04   0.04  

25 0.03  0.03   0.04 -0.04          

100                 

400                 

.27 10 -0.03 0.06 -0.02 -0.01 0.06 0.04 0.02 0.00 0.04 0.00  0.03   0.01  

25   0.01   0.00   0.05        

100                 

400                 

.42 10 0.04 -0.01 0.08 -0.02 0.05 0.02 0.03 -0.06 -0.03   -0.03   -0.04  

25   0.00   0.10           

100                 

400                 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. Blank cells are those in which a correlation could not be calculated because all covariates in all replications had VR between .5 and 2. 
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Table A61.  

 

Correlation between treatment effect estimate bias and within-cluster absolute standardized bias (mean across clusters) with 

covariates equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.10 0.06 0.07 0.06 0.09 0.03 0.06 0.03 0.04 -0.03 0.03 -0.03 0.03 -0.01 0.03 0.42 

25 0.13 0.11 0.09 0.13 0.04 0.04 0.00 0.04 0.12 0.12 0.07 -0.02 0.15 0.12 0.02 0.57 

100 0.00 0.00 0.00 0.01 0.03 0.04 -0.14 -0.04 -0.10 0.13 0.09 -0.11 0.06 0.07 -0.08 0.45 

400 -0.03 -0.04 0.00 0.05 0.01 0.01 -0.12 -0.07 -0.09 0.07 0.11 -0.10 0.00 0.02 -0.06 0.45 

.15 10 0.01 0.07 0.09 0.02 0.11 0.05 -0.02 0.01 -0.03 0.04 0.08 0.15 0.09 0.09 0.01 0.48 

25 0.12 0.01 0.01 0.10 0.10 0.03 0.06 0.01 -0.06 0.07 0.04 0.05 0.10 0.10 0.08 0.51 

100 -0.01 0.07 0.00 -0.04 0.09 0.06 0.00 -0.02 0.05 0.11 0.05 -0.03 0.05 0.00 -0.02 0.48 

400 0.05 0.06 0.02 0.04 0.10 0.05 -0.08 0.03 0.06 0.06 0.06 -0.01 -0.01 0.04 0.00 0.48 

.27 10 0.07 0.04 0.16 0.07 0.08 0.04 0.10 0.04 0.02 -0.03 0.02 -0.02 0.07 0.04 -0.02 0.47 

25 0.14 0.12 0.03 0.07 0.07 0.07 -0.03 0.05 -0.01 0.11 0.03 0.04 0.01 0.07 -0.01 0.50 

100 0.01 0.01 0.02 0.05 0.07 -0.02 -0.11 -0.08 -0.11 -0.03 0.02 -0.08 0.05 0.08 -0.09 0.43 

400 -0.04 0.09 0.10 -0.09 0.16 0.11 -0.06 0.07 0.06 0.10 0.06 0.06 0.04 0.06 0.07 0.49 

.42 10 0.08 0.09 0.09 0.02 0.09 0.15 0.05 0.02 0.00 0.05 0.09 0.01 -0.02 -0.06 -0.01 0.48 

25 0.07 0.15 0.08 0.11 0.12 0.07 0.05 0.05 -0.02 0.13 0.08 0.04 0.14 0.13 -0.06 0.51 

100 0.02 -0.06 0.00 0.00 0.02 0.03 -0.12 -0.01 -0.03 0.02 0.08 -0.08 0.00 0.04 -0.12 0.51 

400 0.07 0.03 0.01 0.01 0.00 -0.01 -0.17 -0.02 -0.01 0.10 0.15 -0.05 0.05 0.21 -0.10 0.51 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A62.  

 

Correlation between treatment effect estimate bias and within-cluster absolute standardized bias (mean across clusters) with 

covariates weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and 

matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.10 0.08 0.07 0.06 0.14 0.03 0.09 0.08 0.03 -0.03 0.01 0.00 0.03 0.02 0.05 0.49 

25 0.14 0.14 0.09 0.18 0.11 0.10 -0.05 0.04 0.17 0.14 0.09 -0.02 0.16 0.13 0.04 0.62 

100 0.07 0.07 0.04 0.04 0.11 0.10 -0.14 -0.05 -0.08 0.13 0.11 -0.11 0.08 0.12 -0.08 0.54 

400 -0.02 -0.03 0.02 0.11 -0.02 -0.02 -0.15 0.01 -0.04 0.13 0.16 -0.07 0.03 0.08 -0.06 0.51 

.15 10 0.05 0.09 0.05 0.03 0.16 0.06 0.00 0.03 -0.03 0.05 0.04 0.16 0.09 0.09 0.02 0.50 

25 0.21 0.11 0.04 0.16 0.18 0.04 0.02 0.01 -0.12 0.11 0.07 0.03 0.11 0.12 0.05 0.56 

100 -0.01 0.10 0.09 0.01 0.14 0.09 0.00 -0.01 0.05 0.20 0.11 -0.02 0.13 0.09 -0.04 0.56 

400 0.04 0.01 0.03 0.02 0.12 0.04 -0.10 0.04 0.08 0.09 0.13 -0.01 0.02 0.11 0.01 0.57 

.27 10 0.08 0.07 0.20 0.13 0.09 0.08 0.06 0.03 0.05 0.01 0.03 0.04 0.07 0.07 0.10 0.53 

25 0.18 0.13 0.08 0.14 0.09 0.09 -0.02 0.04 -0.05 0.12 0.08 0.01 0.01 0.07 -0.04 0.58 

100 0.05 0.05 0.02 0.04 0.08 -0.04 -0.13 -0.07 -0.09 0.02 0.03 -0.08 0.06 0.07 -0.06 0.47 

400 -0.03 0.13 0.14 -0.05 0.12 0.09 -0.09 0.04 0.08 0.14 0.11 0.07 0.10 0.13 0.05 0.54 

.42 10 0.11 0.14 0.08 0.09 0.14 0.19 0.07 0.02 0.01 0.03 0.06 0.06 0.01 -0.06 0.03 0.53 

25 0.12 0.18 0.14 0.17 0.14 0.11 0.00 0.00 -0.05 0.13 0.10 0.00 0.15 0.14 -0.10 0.57 

100 0.11 0.02 0.03 0.03 0.07 0.01 -0.12 0.02 -0.05 0.07 0.16 -0.10 0.04 0.11 -0.13 0.57 

400 0.09 0.06 0.02 0.06 0.04 0.03 -0.19 0.01 0.00 0.13 0.22 -0.11 0.10 0.26 -0.11 0.59 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A63.  

 

Correlation between treatment effect estimate bias and within-cluster absolute standardized bias (median across clusters) with 

covariates equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.09 0.16 0.09 0.11 0.16 0.08 0.00 0.04 0.05 0.07 0.01 0.00 0.05 -0.01 0.01 0.41 

25 0.24 0.16 0.09 0.14 0.16 0.06 0.06 0.04 0.02 0.06 0.13 -0.05 0.12 0.06 0.03 0.51 

100 0.11 -0.05 0.00 0.11 -0.04 -0.04 -0.11 -0.07 -0.03 0.09 0.03 -0.05 0.08 0.00 -0.03 0.37 

400 0.02 -0.01 0.03 0.09 -0.04 -0.01 -0.04 -0.01 -0.02 0.09 0.05 0.01 -0.04 0.04 0.02 0.32 

.15 10 0.02 0.08 0.13 0.04 0.06 0.07 0.02 0.07 0.05 0.05 0.09 0.16 0.08 0.08 0.05 0.48 

25 0.16 0.09 0.14 0.18 0.06 0.08 0.05 0.03 0.01 0.10 0.07 0.03 0.06 0.10 0.07 0.47 

100 0.05 0.07 0.06 0.03 0.08 0.08 -0.02 0.04 0.01 0.12 0.06 -0.05 0.09 0.06 0.02 0.39 

400 0.03 0.05 0.00 0.07 0.09 0.13 -0.06 0.00 0.06 0.06 0.04 0.04 -0.03 0.02 0.07 0.32 

.27 10 0.16 0.06 0.18 0.05 0.07 0.10 0.11 0.02 0.04 0.01 0.05 0.04 0.04 0.01 0.07 0.42 

25 0.13 0.13 0.04 0.14 0.15 0.05 -0.02 0.11 0.00 0.12 0.08 0.04 0.04 0.02 0.07 0.46 

100 0.13 0.04 0.01 0.12 0.03 -0.02 -0.10 -0.04 0.03 -0.09 -0.02 0.01 0.02 -0.03 -0.01 0.40 

400 0.03 0.02 0.01 0.00 0.07 0.13 -0.08 0.04 0.07 0.05 0.03 0.04 -0.02 -0.04 0.06 0.39 

.42 10 0.03 0.02 0.11 -0.01 0.15 0.18 -0.01 0.05 -0.04 0.01 0.02 0.01 0.06 0.01 0.02 0.45 

25 0.13 0.21 0.13 0.20 0.19 0.16 -0.04 0.09 0.03 0.13 0.13 0.10 0.12 0.13 0.04 0.48 

100 0.06 0.09 0.10 0.10 0.13 0.02 -0.07 -0.01 0.03 -0.01 0.05 -0.06 0.03 0.04 -0.06 0.41 

400 0.09 0.13 0.04 0.00 0.01 -0.02 -0.12 -0.09 0.01 -0.01 0.14 0.02 0.10 0.19 -0.05 0.29 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A64.  

 

Correlation between treatment effect estimate bias and within-cluster absolute standardized bias (median across clusters) with 

covariates weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and 

matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.10 0.18 0.10 0.09 0.20 0.10 0.03 0.04 0.03 0.07 0.00 0.03 0.06 -0.03 0.03 0.44 

25 0.25 0.23 0.13 0.18 0.20 0.15 0.00 0.03 0.03 0.09 0.15 -0.01 0.12 0.07 0.08 0.51 

100 0.19 0.04 0.06 0.17 0.06 0.04 -0.10 -0.05 0.02 0.10 0.06 -0.01 0.10 0.06 -0.01 0.39 

400 0.02 0.03 0.07 0.14 -0.02 -0.03 -0.08 0.03 0.02 0.13 0.08 0.02 -0.01 0.06 0.03 0.29 

.15 10 0.08 0.10 0.07 0.05 0.11 0.08 0.08 0.08 0.03 0.06 0.11 0.16 0.08 0.07 0.07 0.48 

25 0.26 0.17 0.20 0.25 0.17 0.19 0.00 0.02 0.00 0.11 0.10 0.04 0.09 0.10 0.07 0.46 

100 0.04 0.13 0.14 0.07 0.11 0.13 -0.02 0.07 0.05 0.16 0.06 -0.06 0.13 0.11 0.01 0.40 

400 0.01 -0.02 -0.03 0.06 0.03 0.06 -0.09 -0.03 0.05 0.06 0.06 0.05 -0.03 0.07 0.10 0.34 

.27 10 0.19 0.10 0.21 0.09 0.13 0.14 0.06 0.01 0.06 0.06 0.05 0.03 0.05 0.01 0.08 0.44 

25 0.22 0.19 0.09 0.21 0.27 0.09 -0.06 0.10 -0.03 0.14 0.11 0.03 0.06 0.04 0.04 0.49 

100 0.15 0.13 0.06 0.15 0.09 0.02 -0.10 -0.05 0.02 -0.02 -0.03 0.03 0.01 -0.04 -0.03 0.40 

400 0.01 0.06 0.07 0.06 0.05 0.10 -0.10 0.04 0.07 0.05 0.04 0.03 0.03 -0.01 0.02 0.37 

.42 10 0.11 0.05 0.13 0.06 0.15 0.21 0.01 0.02 -0.06 0.00 0.02 0.04 0.08 0.04 0.06 0.50 

25 0.16 0.24 0.18 0.26 0.25 0.20 -0.03 0.06 0.03 0.13 0.14 0.08 0.13 0.13 0.02 0.52 

100 0.14 0.10 0.17 0.11 0.19 0.00 -0.09 -0.03 0.02 0.02 0.09 -0.10 0.06 0.06 -0.09 0.41 

400 0.09 0.12 0.00 0.06 0.02 0.01 -0.13 -0.08 0.02 0.00 0.19 0.00 0.11 0.21 -0.07 0.31 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A65.  

 

Correlation between treatment effect estimate bias and percentage of clusters with pooled absolute standardized bias >.1 with 

covariates equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.08 0.11 0.06 0.03 0.02 0.01 -0.02 0.04 0.01 -0.04 0.02 -0.07 -0.07 0.00 -0.04 0.09 

25 0.15 0.15 0.07 0.10 0.09 0.11 -0.04 0.00 0.00 0.04 0.03 0.04 0.03 0.04 -0.01 0.13 

100 0.10 0.00 0.02 0.11 0.04 0.02 -0.02 0.00 -0.10 0.05 0.03 0.03 -0.01 0.04 0.03 0.11 

400 -0.01 0.00 0.06 0.11 -0.02 -0.01 0.00 0.02 -0.04 -0.07 -0.02 -0.08 -0.07 0.02 0.02 0.11 

.15 10 0.06 0.00 -0.06 -0.02 -0.06 0.05 0.02 -0.01 0.00 0.02 0.00 0.05 -0.03 -0.03 0.00 0.10 

25 0.13 0.10 0.02 0.06 0.02 0.03 -0.02 0.05 0.03 -0.01 0.02 -0.03 0.06 0.02 0.00 0.09 

100 0.08 0.06 0.05 0.04 0.00 0.11 0.01 0.05 0.00 -0.02 -0.07 0.03 0.01 -0.06 0.05 0.14 

400 0.03 0.02 0.01 0.05 0.11 0.14 0.05 0.03 0.07 -0.05 -0.10 0.09 -0.06 -0.06 0.00 0.11 

.27 10 0.08 -0.07 0.04 0.07 0.09 -0.07 0.03 -0.05 0.00 -0.04 0.02 -0.02 0.00 0.05 -0.01 0.11 

25 0.12 0.11 0.05 0.10 0.12 0.16 0.03 0.07 0.02 0.06 -0.03 0.03 0.03 -0.05 0.04 0.10 

100 0.08 0.05 0.07 0.08 0.07 -0.03 -0.04 -0.05 0.06 -0.05 0.03 0.03 0.07 0.08 0.01 0.10 

400 0.07 0.01 0.03 -0.02 0.12 0.15 0.02 -0.05 0.05 0.01 0.00 0.12 0.02 -0.02 0.04 0.18 

.42 10 0.00 0.05 0.03 0.02 0.13 0.11 0.07 0.03 -0.02 -0.01 0.01 -0.09 -0.01 0.03 0.01 0.08 

25 0.08 -0.02 0.09 0.13 0.16 0.16 0.00 0.05 0.10 0.03 0.08 -0.01 0.05 0.07 0.02 0.12 

100 0.07 0.04 0.04 0.12 0.10 -0.02 -0.06 -0.01 -0.03 0.02 -0.04 -0.07 0.01 0.04 -0.06 0.20 

400 0.04 0.10 0.04 0.01 0.05 0.01 -0.05 -0.07 0.07 -0.06 -0.01 0.05 -0.05 0.03 -0.01 0.16 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A66.  

 

Correlation between treatment effect estimate bias and percentage of clusters with pooled absolute standardized bias >.1 with 

covariates weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and 

matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.04 0.05 0.07 0.08 0.02 0.06 0.02 0.08 -0.03 -0.04 0.02 -0.03 -0.11 -0.04 -0.02 0.14 

25 0.18 0.18 0.08 0.14 0.12 0.14 -0.04 0.01 -0.02 0.05 0.05 0.01 0.02 0.13 -0.01 0.09 

100 0.16 0.08 0.05 0.11 0.08 0.02 0.02 0.00 -0.06 0.10 0.02 0.02 0.00 0.07 0.04 0.09 

400 0.02 0.01 0.08 0.14 -0.03 0.00 -0.01 0.06 -0.02 -0.04 -0.05 -0.01 -0.04 0.06 0.05 0.13 

.15 10 0.05 0.00 0.00 0.02 -0.01 0.06 0.03 0.04 0.02 -0.03 0.01 0.03 -0.02 0.03 0.04 0.11 

25 0.12 0.14 0.03 0.10 0.04 0.07 0.01 0.02 0.05 -0.03 0.02 0.00 0.03 0.01 0.02 0.10 

100 0.08 0.10 0.09 0.06 0.02 0.12 0.01 0.09 0.06 0.09 -0.01 0.05 0.09 0.02 0.07 0.12 

400 0.04 -0.05 0.00 0.05 0.06 0.06 0.02 0.03 0.10 -0.02 -0.08 0.13 -0.01 0.00 0.06 0.09 

.27 10 0.11 0.01 0.05 0.09 0.14 -0.01 0.01 -0.02 -0.01 -0.01 0.03 -0.01 0.03 0.10 -0.01 0.18 

25 0.16 0.13 0.10 0.13 0.16 0.18 -0.01 0.07 0.06 0.02 0.02 0.00 -0.02 0.03 0.02 0.15 

100 0.11 0.09 0.07 0.08 0.10 0.02 -0.05 -0.05 0.03 0.03 0.06 0.06 0.04 0.12 0.01 0.08 

400 0.03 0.05 0.08 0.05 0.10 0.11 0.05 -0.03 0.07 0.06 -0.03 0.10 0.06 -0.04 0.02 0.17 

.42 10 0.01 0.04 0.08 0.04 0.11 0.11 0.05 0.02 -0.01 0.05 0.03 -0.02 0.00 0.02 0.04 0.14 

25 0.07 0.04 0.13 0.11 0.16 0.17 0.00 0.03 0.05 0.03 0.02 -0.02 0.05 0.11 0.01 0.13 

100 0.10 0.07 0.09 0.09 0.13 -0.05 -0.03 0.00 -0.07 0.03 0.00 -0.03 -0.01 0.05 -0.06 0.17 

400 0.04 0.10 0.03 0.07 0.07 0.04 0.02 -0.02 0.12 0.00 0.02 0.05 0.02 0.09 0.01 0.15 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A67.  

 

Correlation between treatment effect estimate bias and percentage of clusters with pooled absolute standardized bias >.25 with 

covariates equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.08 0.14 0.03 0.12 0.11 0.02 -0.01 0.08 0.04 -0.01 0.01 0.04 0.02 0.02 0.06 0.19 

25 0.21 0.15 0.05 0.19 0.21 0.08 0.03 0.10 0.03 0.07 0.07 0.01 0.04 0.04 -0.02 0.17 

100 0.15 0.01 0.03 0.14 0.03 0.05 -0.11 -0.07 -0.04 0.02 0.00 -0.06 -0.02 -0.01 -0.02 0.11 

400 -0.03 -0.06 -0.05 0.05 -0.03 -0.01 -0.09 -0.06 -0.03 -0.02 -0.01 0.07 0.01 0.07 0.02 0.13 

.15 10 0.07 0.08 -0.02 0.05 -0.01 0.01 0.00 0.00 -0.02 0.00 0.00 0.07 0.02 0.05 0.00 0.18 

25 0.19 0.12 0.12 0.17 0.04 0.04 -0.04 0.08 0.00 0.04 0.01 -0.02 0.05 0.04 0.03 0.14 

100 0.07 0.12 0.09 0.07 0.12 0.13 0.02 0.05 0.04 0.05 0.03 0.06 0.00 -0.01 -0.03 0.09 

400 0.06 0.05 0.03 0.09 0.08 0.00 0.00 0.03 0.05 0.00 -0.04 0.01 -0.06 -0.07 0.00 0.15 

.27 10 0.12 0.00 0.08 0.12 0.06 0.07 0.00 -0.01 -0.08 -0.06 0.02 0.02 0.02 0.04 0.03 0.18 

25 0.13 0.16 0.06 0.13 0.16 0.08 0.04 0.02 0.02 0.06 0.01 -0.01 0.01 -0.02 0.00 0.09 

100 0.12 0.07 0.07 0.13 0.04 -0.01 -0.03 -0.08 0.09 -0.11 0.01 0.03 0.00 0.11 0.06 0.15 

400 0.00 0.11 0.11 -0.10 0.12 0.05 -0.05 0.01 0.09 0.04 -0.05 0.09 -0.01 -0.06 0.11 0.20 

.42 10 0.05 0.05 0.08 0.06 0.10 0.14 0.00 0.12 -0.03 0.07 0.03 -0.07 0.03 -0.02 -0.06 0.18 

25 0.19 0.17 0.07 0.20 0.20 0.14 -0.03 0.07 0.06 0.01 0.09 0.00 0.09 0.08 -0.02 0.18 

100 0.08 0.13 0.13 0.08 0.12 0.06 -0.04 0.01 -0.04 -0.02 -0.02 -0.05 -0.02 0.07 -0.04 0.18 

400 0.05 0.04 0.01 0.00 -0.02 -0.01 -0.10 -0.06 -0.04 -0.02 -0.01 0.00 -0.05 0.07 0.00 0.25 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A68.  

 

Correlation between treatment effect estimate bias and percentage of clusters with pooled absolute standardized bias >.25 with 

covariates weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and 

matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.08 0.13 0.07 0.12 0.12 0.08 -0.02 0.08 0.00 -0.01 0.03 0.07 0.03 -0.02 0.08 0.25 

25 0.26 0.18 0.08 0.22 0.22 0.15 0.00 0.10 0.01 0.08 0.08 -0.01 0.03 0.11 0.00 0.14 

100 0.20 0.11 0.11 0.16 0.12 0.14 -0.11 -0.04 0.03 0.09 0.07 -0.05 0.01 0.05 0.00 0.13 

400 -0.02 -0.06 -0.05 0.10 0.00 0.03 -0.10 0.01 0.03 0.05 0.04 0.08 0.06 0.07 0.06 0.12 

.15 10 0.09 0.07 0.02 0.08 0.07 0.07 0.00 0.06 0.02 -0.03 0.07 0.08 0.05 0.07 0.06 0.24 

25 0.24 0.14 0.15 0.19 0.09 0.14 -0.01 0.09 0.04 0.04 0.00 -0.02 0.06 0.07 0.05 0.16 

100 0.07 0.18 0.17 0.10 0.16 0.17 0.04 0.08 0.06 0.15 0.12 0.07 0.13 0.08 -0.03 0.11 

400 0.02 0.03 0.07 0.03 0.10 0.00 -0.05 0.04 0.05 0.02 -0.01 0.04 0.02 0.07 0.02 0.12 

.27 10 0.15 0.05 0.08 0.16 0.13 0.08 -0.01 0.01 -0.04 -0.01 0.02 0.03 0.06 0.07 0.02 0.25 

25 0.16 0.17 0.08 0.20 0.20 0.12 -0.02 0.05 0.03 0.06 0.06 -0.01 0.00 0.01 0.01 0.23 

100 0.15 0.13 0.09 0.14 0.09 0.03 0.00 -0.07 0.08 -0.01 0.03 0.03 0.02 0.12 0.04 0.17 

400 0.01 0.15 0.10 -0.05 0.09 0.04 -0.08 -0.02 0.08 0.09 0.03 0.10 0.09 0.01 0.10 0.21 

.42 10 0.04 0.09 0.08 0.10 0.09 0.16 -0.04 0.06 0.00 0.10 0.05 -0.01 0.06 -0.03 -0.03 0.26 

25 0.22 0.20 0.10 0.23 0.25 0.14 -0.02 0.04 0.03 0.05 0.05 0.03 0.09 0.09 -0.03 0.25 

100 0.14 0.15 0.17 0.10 0.14 0.04 -0.04 0.03 -0.03 0.03 0.10 -0.03 0.02 0.07 -0.04 0.20 

400 0.06 0.04 0.02 0.01 0.01 0.00 -0.07 0.01 0.01 0.06 0.03 0.01 -0.01 0.13 0.03 0.24 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A69.  

 

Correlation between treatment effect estimate bias and within-cluster variance ratio (mean across clusters) with covariates equally 

weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.01 0.02 0.12 0.11 0.07 -0.01 0.03 0.02 -0.09 0.01 0.00 0.02 -0.02 -0.01 -0.01 -0.04 

25 0.05 0.10 0.08 0.06 0.11 -0.01 -0.02 0.01 0.04 0.01 0.06 0.05 0.10 -0.04 0.08 -0.02 

100 -0.06 0.03 -0.08 -0.02 0.03 -0.04 -0.03 0.01 -0.05 0.10 0.01 -0.03 -0.03 -0.04 -0.05 -0.06 

400 0.06 0.00 -0.01 0.00 -0.02 -0.07 0.03 -0.04 -0.02 -0.01 0.03 0.04 0.04 0.01 -0.01 0.02 

.15 10 0.03 0.06 0.00 -0.02 0.02 -0.06 -0.03 0.05 0.00 -0.02 0.02 0.09 -0.01 0.06 0.01 0.02 

25 -0.03 0.00 0.09 0.01 0.01 0.04 0.07 0.11 -0.01 0.04 0.01 -0.04 0.00 -0.07 -0.06 -0.02 

100 0.05 0.01 -0.10 -0.04 0.01 -0.01 -0.01 0.05 0.00 0.09 -0.02 -0.03 0.01 0.01 -0.07 -0.02 

400 -0.03 -0.03 0.01 -0.04 -0.05 -0.01 -0.09 0.06 0.07 0.05 0.07 -0.03 0.04 0.11 0.02 0.03 

.27 10 -0.01 0.11 0.02 0.02 0.10 0.09 0.06 -0.03 0.03 0.04 0.08 0.05 -0.03 0.02 0.05 0.07 

25 -0.01 -0.02 -0.02 -0.02 0.02 0.02 0.05 0.15 0.08 0.04 -0.02 0.08 -0.07 0.00 0.09 -0.04 

100 0.00 0.06 -0.06 0.04 0.03 -0.06 0.03 -0.01 -0.09 -0.05 0.03 -0.06 0.05 -0.02 -0.01 -0.07 

400 -0.04 -0.05 0.00 -0.06 -0.06 -0.04 0.00 -0.01 -0.12 0.07 0.05 -0.01 0.06 0.06 0.00 -0.02 

.42 10 0.00 -0.04 0.09 -0.03 -0.02 0.05 0.03 0.02 0.01 -0.04 0.02 0.06 -0.05 -0.03 0.05 0.06 

25 0.04 0.05 0.05 0.08 0.11 0.05 0.05 0.08 -0.01 0.10 0.06 0.01 0.06 0.09 -0.02 0.04 

100 -0.01 -0.01 0.02 0.07 -0.05 -0.05 -0.02 0.01 0.00 0.03 -0.01 0.03 0.01 0.05 0.02 -0.05 

400 -0.04 -0.02 0.01 -0.01 -0.12 -0.09 -0.09 -0.08 -0.02 0.01 -0.01 -0.02 0.02 0.04 -0.01 0.05 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A70.  

 

Correlation between treatment effect estimate bias and within-cluster variance ratio (mean across clusters) with covariates 

weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.00 -0.02 0.10 0.11 0.06 -0.01 0.01 0.02 -0.05 0.03 -0.04 0.07 0.02 -0.01 0.01 -0.06 

25 0.01 0.06 0.07 0.06 0.08 0.00 0.02 0.02 0.02 -0.01 0.05 0.08 0.03 -0.05 0.10 -0.04 

100 -0.05 0.09 -0.03 0.02 0.03 -0.06 -0.04 -0.04 -0.09 0.04 0.05 -0.07 -0.03 -0.01 -0.08 -0.03 

400 0.06 -0.01 -0.04 0.04 0.01 -0.07 0.03 -0.02 -0.02 -0.01 0.01 0.00 0.03 0.02 -0.03 0.06 

.15 10 0.01 0.06 -0.02 0.00 0.07 -0.04 -0.04 0.02 0.01 0.02 0.05 0.03 0.04 0.07 -0.02 0.04 

25 -0.01 0.02 0.13 0.02 0.01 0.04 0.07 0.09 -0.03 0.06 0.01 0.00 0.02 -0.07 -0.06 -0.03 

100 0.01 0.07 -0.05 -0.05 0.05 0.00 0.01 0.04 -0.03 0.09 0.00 -0.08 0.02 0.00 -0.11 0.01 

400 -0.04 -0.06 -0.02 -0.08 -0.05 0.02 -0.05 0.04 0.06 0.04 0.06 -0.03 0.02 0.10 0.01 0.05 

.27 10 0.01 0.05 0.09 0.05 0.09 0.12 0.07 -0.01 0.02 -0.03 0.04 0.03 -0.05 -0.03 0.04 0.06 

25 0.04 -0.01 -0.02 -0.04 0.00 0.01 0.05 0.15 0.06 0.04 -0.05 0.05 -0.08 -0.04 0.07 -0.04 

100 -0.02 0.01 -0.02 0.06 0.01 -0.02 0.02 -0.05 -0.09 -0.06 0.05 -0.09 0.01 -0.03 -0.02 -0.04 

400 -0.02 -0.01 0.04 -0.05 -0.04 -0.02 -0.03 0.02 -0.07 0.05 0.08 0.01 0.07 0.08 0.02 0.02 

.42 10 -0.02 -0.02 0.09 -0.05 -0.03 0.05 0.05 0.01 0.03 -0.02 -0.01 0.06 -0.06 -0.06 0.07 0.04 

25 -0.02 0.03 0.06 0.07 0.15 0.04 -0.01 0.02 -0.01 0.09 0.07 0.01 0.07 0.11 0.00 0.05 

100 -0.02 0.00 0.01 0.06 -0.08 -0.05 -0.04 0.00 -0.02 -0.02 -0.05 -0.02 -0.03 0.05 -0.03 -0.02 

400 -0.02 0.02 0.03 0.01 -0.13 -0.10 -0.06 -0.07 -0.02 0.00 -0.04 -0.01 -0.02 0.01 0.00 0.04 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A71.  

 

Correlation between treatment effect estimate bias and within-cluster variance ratio (median across clusters) with covariates 

equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 -0.01 0.05 0.13 0.10 0.05 -0.04 -0.01 0.00 -0.09 0.04 0.02 0.02 -0.01 0.03 0.00 0.00 

25 0.02 0.10 0.05 0.02 0.10 -0.01 -0.05 0.02 0.06 0.00 0.06 0.05 0.09 -0.06 0.09 -0.03 

100 -0.04 -0.02 -0.11 0.00 0.02 -0.05 -0.04 0.05 -0.05 0.12 0.05 -0.04 -0.02 -0.01 -0.05 -0.04 

400 0.08 0.00 -0.03 0.02 0.04 -0.07 0.02 -0.01 0.02 0.01 0.01 -0.01 0.00 0.06 -0.02 0.02 

.15 10 0.02 0.07 -0.03 -0.07 0.02 -0.07 -0.06 0.04 -0.03 -0.02 0.03 0.05 0.01 0.09 -0.01 -0.04 

25 -0.08 0.02 0.10 0.00 0.01 0.03 0.08 0.09 -0.03 0.08 0.02 -0.04 -0.02 -0.05 -0.08 -0.02 

100 0.03 0.03 -0.07 -0.02 -0.03 -0.03 -0.01 0.01 -0.04 0.07 -0.03 -0.03 0.00 0.04 -0.06 -0.01 

400 -0.02 -0.02 0.01 -0.02 -0.05 -0.04 -0.10 0.07 0.08 0.02 0.03 -0.03 0.00 0.04 0.02 0.00 

.27 10 0.01 0.07 0.00 0.04 0.05 0.11 0.02 0.01 0.00 0.04 0.03 0.04 -0.08 0.01 0.03 0.03 

25 0.01 -0.04 0.02 -0.03 0.00 -0.02 0.03 0.13 0.08 0.01 -0.02 0.10 -0.07 -0.03 0.11 -0.01 

100 0.03 0.06 -0.02 0.06 0.03 -0.02 0.04 -0.02 -0.11 -0.04 0.06 -0.06 0.03 -0.03 -0.01 -0.05 

400 0.06 -0.03 -0.02 -0.05 -0.04 -0.04 -0.01 -0.05 -0.09 0.04 0.02 0.00 0.05 0.05 0.01 -0.01 

.42 10 -0.01 -0.03 0.11 -0.01 -0.02 0.05 0.03 -0.02 0.02 -0.04 -0.02 0.06 -0.05 -0.04 0.01 0.06 

25 0.05 0.07 0.02 0.08 0.10 0.03 0.03 0.05 -0.06 0.10 0.01 -0.01 0.07 0.11 -0.03 -0.01 

100 0.01 0.03 0.04 0.08 -0.04 0.01 -0.03 0.04 0.04 0.01 0.02 -0.02 -0.04 0.05 0.07 -0.05 

400 -0.07 -0.01 0.01 -0.05 -0.07 -0.06 -0.03 -0.08 -0.06 0.04 0.00 0.06 0.05 0.01 0.00 0.05 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A72.  

 

Correlation between treatment effect estimate bias and within-cluster variance ratio (median across clusters) with covariates 

weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 -0.01 0.02 0.10 0.10 0.07 -0.03 -0.02 0.02 -0.05 0.05 -0.03 0.03 0.04 0.03 0.02 -0.02 

25 0.00 0.06 0.03 0.04 0.06 -0.01 0.01 0.01 0.02 0.00 0.06 0.08 0.03 -0.03 0.09 -0.06 

100 -0.02 0.01 -0.07 0.04 0.01 -0.07 -0.03 -0.01 -0.07 0.04 0.03 -0.09 -0.04 0.02 -0.05 -0.03 

400 0.07 0.00 -0.02 0.07 0.05 -0.05 0.04 -0.02 0.00 0.00 0.00 -0.03 0.01 0.09 -0.04 0.06 

.15 10 0.00 0.06 -0.05 -0.04 0.08 -0.04 -0.07 0.01 0.00 0.03 0.07 -0.01 0.05 0.11 -0.05 0.01 

25 -0.06 0.02 0.11 0.03 0.01 0.04 0.07 0.06 -0.04 0.05 0.04 0.01 0.00 -0.07 -0.09 -0.02 

100 0.00 0.05 -0.03 -0.03 0.01 -0.01 0.02 0.02 -0.07 0.06 -0.05 -0.05 0.04 0.01 -0.06 0.03 

400 -0.02 -0.02 -0.02 -0.03 -0.02 0.01 -0.08 0.04 0.06 -0.01 0.05 -0.02 0.00 0.05 0.03 0.03 

.27 10 0.04 0.02 0.06 0.07 0.06 0.14 0.04 0.04 -0.01 -0.02 0.00 0.05 -0.12 -0.04 0.05 0.03 

25 0.06 -0.06 -0.02 -0.06 -0.01 -0.04 0.04 0.14 0.08 0.01 -0.04 0.05 -0.08 -0.07 0.10 -0.05 

100 0.03 0.02 0.04 0.07 0.03 0.01 0.06 -0.03 -0.09 -0.05 0.08 -0.06 0.01 -0.04 -0.03 -0.02 

400 0.06 0.00 0.03 -0.05 -0.04 -0.03 -0.07 -0.02 -0.06 0.01 0.05 0.01 0.03 0.07 0.02 0.05 

.42 10 -0.02 0.00 0.11 -0.02 -0.02 0.04 0.02 -0.02 0.03 -0.03 -0.07 0.07 -0.05 -0.06 0.04 0.05 

25 0.00 0.07 0.03 0.08 0.11 0.03 -0.01 0.01 -0.06 0.11 0.04 0.00 0.08 0.14 -0.03 0.00 

100 -0.01 0.03 0.03 0.07 -0.04 0.00 -0.02 0.06 0.02 -0.03 0.01 -0.03 -0.08 0.05 0.02 -0.04 

400 -0.04 0.01 0.03 0.00 -0.08 -0.07 0.01 -0.07 -0.07 0.02 0.00 0.05 0.03 -0.03 0.00 0.06 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A73.  

 

Correlation between treatment effect estimate bias and percentage of clusters with pooled variance ratio <.5 or >2 with covariates 

equally weighted, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.06 0.04 0.14 0.09 0.05 0.01 0.05 -0.01 -0.11 -0.01 0.01 0.03 -0.03 0.02 -0.01 -0.05 

25 0.04 0.10 0.10 0.02 0.14 0.02 -0.03 0.00 -0.01 0.00 0.05 0.08 0.12 -0.05 0.10 -0.02 

100 -0.01 0.05 -0.08 -0.05 -0.01 -0.07 0.02 0.02 -0.04 0.06 0.04 -0.05 0.00 -0.04 -0.02 0.00 

400 0.01 -0.01 -0.02 -0.02 0.00 -0.05 0.07 -0.07 -0.03 -0.02 -0.04 0.05 0.05 0.01 -0.01 0.03 

.15 10 0.04 0.05 -0.01 -0.03 -0.02 -0.06 -0.06 0.06 0.01 -0.01 0.01 0.07 -0.02 0.07 0.02 -0.06 

25 -0.03 0.03 0.09 0.00 0.00 0.03 0.04 0.06 -0.01 0.08 0.00 -0.05 -0.04 -0.05 -0.07 -0.02 

100 0.05 0.01 -0.10 -0.03 0.06 0.00 0.02 0.02 0.02 0.12 -0.01 -0.04 0.04 0.02 -0.05 0.01 

400 0.03 -0.04 -0.02 -0.07 -0.04 0.03 -0.11 0.01 0.00 0.06 0.11 -0.03 0.03 0.08 -0.08 0.07 

.27 10 0.00 0.04 0.02 -0.04 0.06 0.09 0.01 -0.04 0.05 0.06 0.05 0.03 -0.03 -0.02 0.04 0.04 

25 -0.01 -0.02 -0.04 0.01 0.00 0.02 0.04 0.10 0.09 0.02 -0.02 0.08 -0.09 -0.02 0.11 -0.03 

100 -0.01 0.05 -0.06 0.01 -0.01 -0.07 0.01 0.02 -0.04 -0.05 0.02 -0.04 0.08 0.00 -0.03 -0.07 

400 -0.13 -0.02 0.01 -0.03 -0.03 -0.06 -0.02 0.02 -0.04 0.05 0.02 0.00 0.04 0.05 -0.02 -0.09 

.42 10 0.00 -0.01 0.08 -0.01 0.01 0.03 0.02 0.02 0.04 -0.05 0.02 0.07 -0.05 -0.04 0.05 0.04 

25 0.03 0.03 0.02 0.05 0.07 0.07 0.05 0.06 -0.02 0.11 0.03 -0.02 0.05 0.08 0.00 -0.03 

100 -0.05 -0.07 0.01 0.07 -0.02 0.03 -0.01 0.00 -0.02 0.02 -0.06 0.03 0.02 0.02 0.05 0.01 

400 -0.03 -0.04 -0.04 0.03 -0.15 -0.05 -0.07 -0.07 0.03 -0.02 0.02 -0.01 -0.02 -0.01 -0.01 0.01 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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Table A74.  

 

Correlation between treatment effect estimate bias and percentage of clusters with pooled variance ratio <.5 or >2 with covariates 

weighted according to the strength of relation with the outcome, by ICC, cluster size, propensity score model, and matching method. 
 

Average 

ICC 

Cluster 

size 

Propensity score model and matching method 

 

RIS model OP model RI model SL model NoL2 model No 

match P 2S WC P 2S WC P 2S WC P 2S WC P 2S WC 

.08 10 0.03 -0.01 0.14 0.07 0.03 0.03 0.02 0.01 -0.06 0.00 -0.02 0.09 0.00 0.04 0.01 -0.05 

25 0.01 0.06 0.08 0.03 0.11 0.03 0.03 0.00 -0.01 -0.01 0.05 0.09 0.06 -0.02 0.11 -0.04 

100 -0.01 0.11 -0.05 -0.01 0.00 -0.08 0.00 0.00 -0.07 0.02 0.10 -0.10 0.01 0.01 -0.06 0.02 

400 0.01 -0.03 -0.02 0.01 -0.01 -0.07 0.04 -0.01 0.04 -0.05 -0.06 0.05 0.05 -0.01 -0.04 0.03 

.15 10 0.03 0.05 -0.01 -0.03 0.02 -0.05 -0.04 0.02 0.01 0.04 0.03 0.00 0.03 0.07 -0.01 -0.01 

25 0.00 0.02 0.12 0.00 0.00 0.02 0.02 0.06 -0.03 0.05 0.02 0.00 0.00 -0.07 -0.06 0.01 

100 0.03 0.05 -0.07 -0.05 0.08 0.01 0.03 -0.02 -0.01 0.12 0.00 -0.11 0.02 0.03 -0.09 0.01 

400 0.02 -0.03 -0.04 -0.07 -0.07 0.01 -0.08 -0.02 -0.03 0.06 0.08 -0.04 0.03 0.05 -0.06 0.07 

.27 10 0.02 0.01 0.09 0.01 0.06 0.11 0.04 -0.02 0.05 0.01 0.01 0.00 -0.05 -0.05 0.03 0.05 

25 0.02 -0.01 -0.06 -0.01 0.00 -0.01 0.02 0.12 0.07 0.02 -0.06 0.04 -0.10 -0.07 0.07 -0.04 

100 -0.05 0.00 -0.04 0.05 -0.04 -0.03 0.01 -0.03 -0.06 -0.05 0.01 -0.05 0.04 -0.02 -0.04 -0.05 

400 -0.10 -0.02 0.03 -0.03 -0.02 -0.04 0.01 0.06 0.00 0.04 0.03 0.01 0.07 0.04 0.01 -0.05 

.42 10 -0.02 0.00 0.08 -0.07 -0.01 0.06 0.06 0.00 0.08 -0.04 -0.01 0.04 -0.06 -0.04 0.04 0.03 

25 -0.03 0.02 0.02 0.05 0.10 0.04 0.01 0.03 0.00 0.09 0.07 0.01 0.08 0.10 0.01 -0.02 

100 -0.06 -0.06 0.04 0.00 -0.04 0.03 -0.02 -0.01 -0.02 0.01 -0.07 0.00 0.01 0.04 -0.04 0.02 

400 -0.01 -0.01 -0.03 0.05 -0.16 -0.10 -0.02 -0.03 0.05 0.01 0.01 0.01 -0.03 -0.01 0.01 0.01 

 

Note. ICC=intracluster correlation of the unit-level covariates; RIS=random intercepts and slopes model; OP=over-parameterized model; RI=random 

intercepts model; SL=single-level model; NoL2=model without cluster-level covariates; P=pooled matching; 2S=two-stage matching; WC=within-cluster 

matching. 
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