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Abstract

Obtaining the stable throughput region of a wireless netywamd a policy that achieves this through-
put, has attracted the interest of the research communtheipast years. A major simplifying assump-
tion in this line of research has been to assume that the nletvamtrol policy has full access to the
current channel conditions at every time a decision is matavever, in practice one may only esti-
mate the actual conditions of the wireless channel proeesshence the network control policy can at
most have access to an estimate of the channel which cantibdddghly inaccurate. In this work we
determine a stationary joint link activation and routindippbased on a weighted version of the “back-
pressure” algorithm that maximizes the stable throughgibin of time-varying wireless networks with
multiple commodities by having access to only a possiblgdug@ate estimate of the true channel state.
We further show optimality of this policy within a broad caef stationary, non-stationary, and even
anticipative policies under certain mild conditions. Thdyarestriction is that policies in this class have
no knowledge on the current true channel state, except wizgatilable through its estimate.

Keywords— Cross layer design, Scheduling and Routing, Stable thmpuiy Channel state uncer-
tainty

1 Introduction

An important criterion to measure performance is the ratgtath data are delivered to their destinations,
while guaranteeing that the queues at the network nodes glmw without bound. This is what we gener-
ally call stable throughputf the network. Under stability the throughput rates calecivith the arrival rates
of the traffic entering the network. The main objective isderitify the maximum set of achievable stable
arrival rates, or otherwise to characterize gtability regionof the network and further provide a network
control policy that achieves these rates.

In this paper, we restrict our attention to the joint schadland routing network control policies that
maximize the stable throughput region of time-varying Veiss networks. There exists a rich literature on
the subject of maximum stable throughput (See e.g., [1][8] [4].).

Specifically in [1], a scheduling policy that achieves maximstable throughput in single-hop time-
varying networks is identified. Moreover, in [2], the authaharacterize the stability region of static,
multi-hop radio networks with multiple commodities, anepose a centralized, stationary, scheduling and
routing rule, commonly referred as the “back-pressuredt #ichieves maximum stable throughput. The



“back-pressure” policy forwards the traffic through thewmtk from queues with high loads to queues with
lower loads and achieves stability by load-balancing theugs in the network. Furthermore, the authors
in [2] show that their proposed policy is at least as good asstationary policy. Under the assumption
that a scheduled transmission is always successful, thmyepghat their policy performs at least as well
as any non-stationary policy with respect to maximizing steble throughput region of the network. In
fact, the “back-pressure” algorithm of [2] has been showm#ximize the stable throughput region under
a variety of conditions. In a previous work of ours, [3], weywed optimality of a policy inspired by the
back-pressure algorithm of [2] within the set of all staionpolicies in the more general setting of wireless
networks withtime-varying topologiesFurther, [3] also differs from [2] in that our proposed pgligives
priority to each commaodity according to a preassigned coditpaveight. In both [2], and [3], it is assumed
that links are imperfect and that a scheduled transmisseynfail, based on a link failure probability, which
is independent of the identity, and the number of the simelasly activated links. Finally, in another
related study, [4], a joint scheduling, routing, and powantool policy, also inspired by the back-pressure
algorithm, is proposed that maximizes the stable througtegion of time-varying wireless networks. The
authors in [4] consider a time-varying process of perfe@nctels, i.e., a transmission through a link is
always successful.

However, in practice the channel conditions can only baregéd, and hence exact knowledge of the
current channel state is likely to be unavailable. Furtlmenin cases when the channel process varies fast
with time (e.g., fast fading) or when the propagation delathe feedback channel is large (See e.qg., [5],
[6].) this estimate may be highly inaccurate. Hence, thenohbstate at the time of a scheduling or routing
decision is significantly different from the state at whibke &actual transmissions take place. The effect of
this discrepancy in the channel state may be two folded; fiestain scheduled transmissions are going
to fail, and second, transmissions through certain link&chvlvould be successful if scheduled, are not
activated. Naturally, this situation will affect the setstébilizable rates and will result in a smaller stability
region that is a subset of the stability region under peifeks or under perfect channel estimation.

In this paper, we are interested in capturing the effect gfarfect channel estimation and character-
ize the maximum achievable stable throughput region. We @ligain a policy that maximizes the stable
throughput region under this setting. Towards this end, whurk is different from [4], and generalizes [2],
and [3], in that we consider policies with knowledge of onfyestimateof the true channel state. Specif-
ically, we propose a stationary, joint scheduling, andingupolicy for multi-hop, time-varyinghetworks
that maximizes the stable throughput region of the netwgrkdving access to only a, perhaps highly inac-
curate,estimateof the current channel state. Our proposed policy, insgisethe “back-pressure” idea of
[2], is shown to be optimal within a broad class of statiopand non-stationary, even anticipative policies.
We improve on the results of [2], and [3] in two aspects. Fingt show that our proposed policy performs
at least as well in terms of stable throughput as a large ofagslicies that do not have more information
on the current true channel state than our policy and whésértformation is limited to be given through
an estimate of the channel state. In contrast with [2], thésilt holds even when scheduled transmissions
are not guaranteed to succeed. Second, our model of umtgritaithe channel state is more sophisticated
than the simplistic model used in [2], and [3] in two respe@i)ghe existence of a link is explicitly modeled
through the Signal to Interference plus Noise Ratio coterimposed by the physical layer, and (ii) our
model accounts for the fact that the probability of succdsstoansmission is affected by the interference
caused by other nearby concurrent transmissions.
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The rest of the paper is organized as follows. In Section 2 rgegmt the network model. Section 3
discusses the problem of stable throughput maximizatiaeuchannel state uncertainty. Section 4 defines
a large class of stationary, non-stationary, perhapsipatice policies. The results of optimality of our pro-
posed policy within this broad class of policies with regpectable throughput maximization are presented
in Section 5. Finally, Section 6 concludes the paper.

2 Model Formulation

We consider slotted time and a wireless network consistinly goossibly mobile, nodes each of which is
equipped with a single transceiver. We denoteNdy= {1,2,..., N} the set of all nodes in the network.
Each node: € N transmits at a fixed power levél,.

We also consider a set = {1,2,...,J} of distinct commodities of traffic with packet lengths equal
to one time slot. The number of exogenous packet arrivalsonfrnaodity j at noden during time slot
t is denoted byA,,;(t). We let A’(t) denote theN-vector (A,;(t) : n = 1,2,...,N) of arrivals of
the j** commodity during time slot at every node in the network, antl(t) denote theN x .J matrix
(Ap;(t),n=1,2,...N,j =1,2,...J) of arrivals in time slot at every node: and for every commodity
j. Traffic of commodityj € J is routed in a multi-hop fashion through the network untieiichesanynode
in a set ofexit nodedor that commodityV; C N, where it exits the network. For any commodity# j,
the setsV;,, andV; may overlap. We further assume that there are no exogenaualsiof a particular
commodity at the exit nodes of that commodity, i4,,(t) =0 foralln € V;, j € J.

At each noden there exist/ infinite capacity buffers, each holding separately the peckf a particular
commodity; € 7 that have reached noade We denote the queue size for commodiigt noden at the end
of time slott by X,,;(t). Attime slot0 the queue sizes at all nodes are arbitrary but finite, Xg;(0) > 0
for every noden € V, and commodityj € ;7. Moreover, the queue size at each exit nade V; of some
commodityj, and for all time slotg > 0 satisfiesX,,;(t) = 0. Finally, for every commodityy € J we
denote byX’ (t) the N-vector(X,;(t),n = 1,2, ... N) of queue sizes of thg" commodity at every node in
the network at the end of time slgtand byX(¢) the N x J matrix (X,,;(t),n =1,2,... N,j = 1,2,...J)
of queue sizes of every commaodity at every node in the netabitke end of time slat The set of possible
values ofX(t), i.e., the state space of the procg¢3s(t)}7°,, is denoted byx.

The channel proceds$S(¢)}72, defines the channel conditions between any pair of nodeg indtwork
and is assumed to change only at the beginning of each time slg1, 2, ...}. Specifically, at time slot,
the channel stat8(t) = {(G;,,m)(t), Nom), Vn,m € N'} is characterized by the path 1085, ,,,(t) be-
tween each pair of nodes m, as well as the noise powey,,,,,), at each receiving node. A fundamental
aspect of our model that contrasts it from prior work of [B], fand [4] is that at the beginning of each time
slot ¢ the network controller has access only toemtimateS(t) = {(G/, ) (t), Nopn (t), Yn,m € N}
of the current channel staf(t). The estimatedchannel statéS(¢) during slott¢ is characterized by the
estimatecpath Ioss@(mm) (t) between each pair of nodesm, and theestimatedhoise powedVo(m) (t) at
each receiving node:. Note that although the noise poway,,,) is time invariant, its estimaté&/;,,,) (t)
depends on time, since as time progresses we may naturabyngenotonically improving estimate.

We further assume that the state space oftthe and estimatedchannel processes is a finite set of
cardinality &, which is naturally assumed to be common for bp#{t)}5° |, and{S(t)}22,. For example,
that would be the case if we consider node mobility that isricged to occur only among points of a
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finite grid. We denote this common set By= {S() 82 S(F)1 We will further denote byC =
{1,2,..., K} the set of indices that label the elementsSof

At every time slott, a (unidirectional) link! = (n, m) from noden to nodem under the true channel
stateS(¢) € S is defined to exist, if the Signal to Noise Ratio (SNR):aexceeds a certain, non-negative,
thresholdd,,, i.e.,

P, G(n,m) (t)

SNR(L, ) 1=
o(m)

> O (1)
We denote the source nodef link ¢ by s(¢), and its destination node by d(¢). Given the time variability
of the channel conditions, and the fact that nodes are mdhéeotal number of linksL, can be as large as
N x (N —1). We denote by = {1,2,..., L} the set of indices of all links in the network.

The fact that the wireless medium is a shared resource piosiéations on the set of nodes that may
successfully transmit simultaneously. Hence, not evelpgasuof links inC can be concurrently activated. In
order to take the physical layer access constraints intoustcappropriate medium access control schemes
need to be introduced. In this paper, we focus on conflict $m®duling. Towards this end, we define an
activation vectorto be anyL-element binary vector, each entry of which corresponds(tmalirectional)
link. At any time slott, the entries of this vector are equal to one for those links #re concurrently
activated at time slat, and zero for all other links. We also require that an adtivavector complies with
the single transceiver assumption. This assumption impliat simultaneous transmission and reception
from the same node as well as receiving/transmitting semelbusly from/to multiple nodes are not allowed.
We further define an activation vectorto bevalid with respect to some channel st&g) if for every link
¢ € £ such that the'" entry ¢, of ¢ satisfiesc; = 1, the SINR criterion as shown in Equation (2)

SINRC((, 1) :=

j e ¢
- (0 G( (4)7611(34))( )G > . @
o)) T 22 v e\ qy Psw) Gisw,dey(t)

St.cpyr =1

is satisfied withcy being ther'™ entry ofc. The criterion of Equation (2) implies that the correspoigdi
transmissions through all linkse £ with ¢, = 1 will be successful under channel st8t). Similarly, the
estimated SINR criterion und&(¢) can be written as

p— Py Gis t
SINRC(4,1) — — © Csw.an ) > u. 3)
Noe) () + 22 ¢ e o (0 FPs@)Gise),ae)) (t)
St.cyr =1

Note that due to the inaccuracy of the estimate, an activatator selected at time slotay be valid with
respect to the estimated channel stt8 at slot, but not valid with respect to the true channel st¢e),
and vice versa.

For every possible channel st&€) ¢ S wherek € K, we denote byZ;, the constraint sebf S(¥) i.e.,
the set of allalid activation vectors with respect &%), Note that for every activation vectef € {0, 1}*
that is componentwise smaller than some vectar7;, i.e.,c’ < c, it follows thatc’ € 7. This is natural
because for any collection of links that jointly satisfy tBENR criteria of Equations (2) - (3), these criteria
will still be satisfied by switching off certain transmissg® From the above observation it follows trivially
that for everyk e K the 0-vector is also a valid activation vector for each chanretes(*) € S.
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For each commodity, consider a proces®E’ (t)}5°, that for every time slot gives the link activations
for packets of commodity. In other words for every time slatthe vectorE’ (¢) is an L-element binary
vector, the entries of which are equal to one for those lihled &re simultaneously activated and packets
of commaodity; are transmitted through them, and are equal to zero otherwigrther, for every time slot
t we defineE(t) := Z;']:1 E’(t). The procesgE(t)}°, corresponds to the overall link activations for
every time slot and it is such that whenever the at time slttie estimated channel process is in sgifg,
the vectorE(t) is a valid link activation vector with respect 8*). This means thaE(t) is a vector from
the constraint sefy, i.e, E(t) € 7. We call the proces$E’(t)}22, an activation process Recall that
the constraint set has the property that for any vector irctmstraint set, any other vector that is smaller
component-wise must be in the constraint set as well. SiXiege 7y, the aforementioned property implies
that for every commaodity the corresponding vectdi’ (¢) is also a valid activation vector with respect to
S, i.e., it satisfiesE’ (t) € 7. Further, we require that for each commodijtya vectorE’(¢) must be
such that its/*® component,(E’(t)),, takes the value zero for all those time slotthat the queue size
at source node of the link(¢), for commodity; is equal to zero at the time of the link activation, i.e.,
X0t —1) = 0. We say that every such procefE(t)}2, is anadmissible policyand the process
{E/(t), j € J}32, is anadmissible policy corresponding to thig¢* commodity Unless otherwise specified
all the policies we consider are valid.

Further, for every time slatwhereS(¢) = S*) for somek € K, and for any activation vectar € 7y,
we construct thd, x L diagonal indicator matriQ€(t), whose/*" diagonal entry(Q°¢(t)),, satisfies

Lﬁ(&NW%ﬂZ9W%§m¥%UZ@MJW
(QS(t))e = (&NW@J)<me$NW@J)<@MO7 “)
0, otherwise

Intuitively, for any given activation vectot € 75, and estimated channel st&€", the ¢*" entry of the
matrix Q€(¢) takes the value one only when the estimator estimates threeheorrectly in the sense that
the values of the corresponding SINRs under bothrire andestimatedchannel state lie on the same side
of the inequality. Note that wheth€€¢(¢)), is equal to one or zero depends on the overall link activation
given by the vectoe. In the ideal case of perfect channel estimation, the m&fif¢) is the identity matrix,
i.e., Q°(t) = I, for every time slot where the estimated channel state is in s#te for somek € K, and
for any activation vectoe € 7.

Also, for every commodityj we define the matriR’ as anN x L matrix that denotes the changes in
the queue sizes after a successful link activation. (Fhé) entry, R, of this matrix equals

nd?

1, ifn=d() ¢V,
Rl,={ -1, ifn=s(0), (5)
0, otherwise.

Note thatwa = 0 whenn = d(¢) € V}, as packets of commaodityarriving atn exit the system. Overall,
the above yields the following dynamic equation for the qusizes

XI(t+1)=X'(t)+ R QB+ 1) B/ (t+1) + Al (t+1), t>0. (6)

Throughout this paper we make use of the following assumpiothe input processes.
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Assumption 1 (a) The triplet{S(t),S(t), A(t)}32, is i.i.d. over time and independent &f(0). (b) The
arrival process has finite second moments, E@A (¢)?] < oo.

Assumption 1 (a) guarantees that each of the procgses} >, {S(t)}22,, and{A(t)}2, are indi-
vidually i.i.d, and hence have a stationary distributianpérticular, the probabilityg (%) of the occurrence
of estimatecthannel stat&(*) € S, given by

pg(k) := P[S(t) = SW], V& e K, (7)

does not depend an Without loss of generality, we assume that
pg(k) >0, Ykek. (8)

Indeed, all our results are probabilistic in nature, anchateaffected if we discard sample paths correspond-
ing to a nullset of outcomes. Moreover, from Assumption ft(f)lows that although the processes are i.i.d.
in time, for any particular time slatthey can be correlated among themselves. For example ueaind
estimated channel stat8$t), andS(t) are naturally correlated but n{(t) andS(t — 1).

From Assumption 1(b), it follows that the first moments of #ngval procesq A (¢)}22, are also finite,
i.e., A, := E[A,;(t)], where the quantity,,; corresponds to the arrival rate of commaoditgt noden. We
also denote by thearrival rate matrix (\,;, n = 1,2,... N, j =1,2,...J) of arrival rates at every node
in the network, and for every commodity. Finally, for eacimeoodity j € .7 we write A’ for the N-vector
N = (A\pj, n=1,2,...N) of arrivals of thej™" commodity at every node in the network. All arrival rates
in our model are measured in terms of packets per time slot.

The nomenclature defined so far is summarized through anmgamFigure 1, where we consider a
network of3 nodes, i.e.N = {1,2,3}. Nodesl and2 transmit at a fixed power®; and P, respectively.
We consider that the channel conditions are such that we tav@ossible channel states, namély=
{sM 81, On the left side of the figure, we give the possible links trat be established under channel
stateS(!) and on the right side of the figure we give the set of possillksliunder channel sta&(?).
Specifically, when the estimated channel stat®(ld, there exist two possible links, namely linksand2,
where a “link” satisfies the SNR criterion of Equation (1) amden it isS(2) no connectivity exists among
the nodes. Hencel = {1,2}. Further, although both links and2 are in£, we assume that they cannot
be activated simultaneously due to the fact that they do oiatly satisfy the physical layer constraints
of SINR. Specifically, we assume that at most one of them caacbeated at any given time. Since the
constraint sef;, for channel stat&(*) contains all the valid activation vectors with respecBtt), we have
that7; = {[0,0], [0, 1],[1,0]} andZz = {[0,0]}. There exist two commaodities of traffic in the network; i.e.,
J ={1,2}. A11(t) and Axx(t) denote the arrivals in packets per slot, during time slaff commodity1
at nodel, and of commodity2 at node2 respectively. We assume that packets of each commodityhexit
network at nods, i.e.,V; = {3}, for j = 1, 2. Atevery node in the network, there exist two infinite capaci
buffers, that hold separately the packets of each commodigyindicate the queue size of commoditwat
node2 at the end of time slat by X5 (¢), and the queue size of commodityat the same node h¥i2s ().
Note that, due to the estimation errors, the policy may saleselg., linkl assuming that the current channel
state isS(Y) when in fact the current state 82 and hence the scheduled transmission through1linkl
fail.
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Figure 1: The possible connectivities o8aode network unde possible channel state®{" andS®.

3 Stable throughput maximization under channel state uncetainty

In this section, we consider a policy that maximizes thelstivoughput region of the network by making
use ofonly an estimate of the true channel state. Our policy is builthupe “back-pressure” idea in [2]. As
its name suggests, this policy attempts to maximize thdestAboughput by spreading the traffic from the
more congested to the less congested areas in the netwockrdhagly, the policy we introduce activates
the nodes of the network in a way that the weighted queue fzesery commodityj will be kept as close

to equal as possible, while at the same time the constranissed by the physical layer are being satisfied.
Since the physical layer information available to our ppi&limited due to the uncertainty in the channel
state, our policy will try to maximize the stable throughpegion of the network, within a broad class of
policies, by having access to only an estimate of the chazoralitions.

The routing component of the introduced policy resemblesstircalled “hot-potato” routing approach
in which nodes simply unload packets to neighboring noddis svhaller queue loads ([7]). In fact, in our
model, the route any packet follows is determined by the diotivation schedule that aims at maximizing
the stable throughput region of the network. Hence, althaugindividual packet may follow a circuitous
route towards one of its exit nodes, the overall charatiesi®f the routes are expected to be reasonable,
albeit non-optimal. Since our objective is to achieve maximstable throughput, this sort of routing is
legitimate. No other routing will increase the stable tlgioput region, although it may decrease the delay
that packets of the different commodities experience imgtevork.

The introduced policyry is parameterized by a weight assignment= (w;,j = 1,2...,.J), wherew;
is a positive weight assigned to each commoglitiPackets corresponding to a commaodity of a larger weight
are given priority over the others, by being scheduled, anded through the network more frequently.
For every given weight vectow, the stationary policyE(t) := = (t) is a certainJ-tuple of mappings
mol . X x S — {0,1}F, each corresponding to a commodjtyand wheré®’ (¢) := w¥/ (). So, we also
have thatr = Zle wg"j. For every time slot, the quantityfrg"j(t) indicates the link activations for
packets of commodity, and# (¢) gives the overall link activations in the network.

We proceed by specifying the stable throughput maximizialicp 7" in detail. Given the current
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gueue size matrix € X, weight assignmend,, and activation vectoe € 7, for every estimated channel
stateS(¥) let

DY (x) = —w; QR %), kek,jeJ, ceT, ©)
where
Qf =E |Q°(1) | S() =8| (10)

From this definition it follows that the matrng is an L x L diagonal matrix. Itg*" diagonal entry
(Qz)g gives the conditional probability that both the estimatat true SINR values corresponding/tie
at the same side of the inequality, provided that the ovérdlactivations in the network are determined
through the activation vectar and the estimated channel stateSi§). For any given link¢, our model
allows this probability to be dependent on the concurreartgmissions. For example, this probability is
expected to be higher when lirtkis the only link activated than when linkis activated along with other
concurrent nearby transmissions. Also, Assumption 1(ajantees that the matr(xg for everyk € K and
c € 7}, defined in Equation (10), is time invariant.

Since the queue sizs,; is equal to zero whenevere V;, it follows that the/th componenl(DZVg(x)L

of Dzvcj(x) is the weighted queue size difference

<D2ch(><)> = wi (QF)e(ws(0); — Tagey;)- (11)
For every linkl € L, let
w R wj
(D}e(x)), = max (D} (x)) . (12)
and
Te(x) = ((Dle(x))e, £=1,...,L). (13)
Finally, define
(7)) := arg max { (D} (x)), . 14
to be the maximizer in Equation (12), and also let
* L w T
ci(x) := arg max {Dfl(x) e} (15)

Recall that the entries of every valid activation veatoe 7, are either0 or 1, with 1 indicating ac-
tivation of the corresponding link. HendBZ‘;(x)Tc is a partial sum of weighted queue size differences
over all the links, maximized over all the elements of thest@int set7;.. If there exist more than one
maximizer in Equation (15) ties are resolved arbitrarilpypded that a link/ will be left inactive whenever
the corresponding maximum weighted difference associatedthat link is0. Furthermore, if there exist
more than one maximizer in Equation (14), ties are resolvbiirarily. With the above in hand, and in the
spirit of the optimal policy of [2], our proposed polieyf is such that it¢*® entry (%7 (x, S*))), is given
by

- 1, j=(rx))e(ci(x))e=1, andzgyp; > 0,
wj *)Vy, — J = Uk k (0)
(5 (%, 8™))e { 0, otherwise (16)
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where(c}(x)), is the (™" entry of the vectok} (x). When a link¢ is activated, i.e.(wy (x, S(k)))z =1,
the policyry will select for transmission through that link a packet oéaf the classeg that achieves the
“max” in Equation (14). Note that from Equations (14), (1&)d (16) the policyry’ also satisfies

(DF)T =Dy )7 my (x,5M) 0. (17)

Note that the matri>Qg is all the information our policy has regarding the curremammnel conditions
as shown through Equations (11), (14), and (15). The polispleys this information by giving a higher
preference to those links for which both the true and thenegdd SINRs lie at the same side of the inequal-
ity. Specifically, the policy will have the tendency to aeti® links that have a higher chance of successful
transmission.

Clearly, for every commodity we have thatr}'/ (x, S(’“)) € T7;.. Note further that for every link that is
activated, a packet of a single commoditis transmitted, and hence there will exist a sing}g’ (x, S(’“))
that satisfieg7y’ (x,S(*))), = 1. From this observation it follows thaty (x,S*)) € 7;. The above,
along with the fact that the policy leaves a lihknactive whenever the maximum weighted difference over
that link is0, guarantees that}" satisfies the conditions for being an admissible policy. éot®n 5, we
will show the maximizing property of this policy under thdléoving mild assumption.

Assumption 2 Letn’ € A be a node such that for somee N, j € J with \,,; > 0 there exists a
sequence of Imk% "€ L,withs(ly) =n, d(l;) = s(liy1), i =1,...,m — 1, andd(¢,,) = n’ such
thatvVi=1,...,

P[SNR(£;,t) > 044y, and SNR(£;,) > 040,)] > 0, (18)

whereSNR(¢, t) is obtained through EquatiofL), andSNR(¢, t) is defined similarly as

—_— S G s
SNR(f, 1) := O @) ) (19)
o(d (t)
Then, there exists a nodé’ € V;, and a sequence of link&;}7, € £ with s(¢}) = n/, d(¢})) =
(€;+1) i =1,...,m" —1,andd(¢ ,) € V; such that Equatior(18) holds with{¢;}!", replaced by

{6

Assumption 2 is an assumption on sufficient connectivityhefrietwork. Specifically it requires that for
any node that may receive traffic of a particular commoditgré should also exist a downstream path of
links to some exit node for that commodity under both the,tamngl estimated channel states.

3.1 System stability

The state of our system is driven by the process of the quees.sin this section, we show that under
Assumption 1(a), and policyry’, the queue size process defined by Equation (6), i.e., the staour
system, evolves according to a homogeneous Markov Chainai@uis to show that this Markov Chain is
stable, and thus derive network stability for as large a katrival rates as possible.

Proposition 1 Under Assumption 1(a), the proce§X(¢)}%°, generated by Equatio(6) with E/(¢) =
I (X(t —1),S(t)) for everyj € J is a homogeneous Markov chain. Furthermd¥g() is independent
of (S(t'),S(t'), A(t")) for all #/ >t > 0.



The result in the above proposition is a direct consequefidkeofact that any process defined by a
recurrence equation driven by white noise input, with atitialue independent of the input, is Markov (See,
e.g., [8, Theorem 2.1].).

A usual definition for stability of an irreducible Markov Ghais that the Markov Chain is positive
recurrent. When the Markov Chain is not guaranteed to bduaible, a more general definition for stability
needs to be employed. Following [2], we adopt the followirgdinition for stability of a (not necessarily
irreducible) homogeneous Markov Chain.

Definition 1 [2] Let {Y(¢)};2, be a Markov Chain with, possibly empty, transient cldssand recurrent
communicating classeg;, i = 1,2,.... Then{Y (¢)}:°, is stableif

Pmin{r >0 : Y(7) ¢ YV} <o |Y(0)=y]=1,Vy e,
and all states: € U2, Z; are positive recurrent.

We will say that the network is stable if the state procgXst)};°, is stable, as defined in Definition 1.

4 A broad class of policies under channel state uncertainty

In this section, we introduce a general class of polide€ur objective will be to compare the performance
of the members iif to 7" with respect to maximizing the stable throughput regionhef network. This
comparison will be performed in Section 5.

In order to specify the class we definenSEQ(t; k,c, Q) to be the number of time slots in the interval
[0, ] that the estimated channel state is in s&it8, the activation vectoE(t) takes value: € 7y, and the
matrix QE(*) (t) is equal toQ € Q. HereQ is the set of allL x L diagonal matrices whose diagonal is
in the set{0, 1}~. Also, we definengg, (¢; k, c) to be the number of time slots in the interjal¢] that the
estimated channel state$§*), and the activation vectdg(t) takes valuec € 7. We define the sef as
follows. We say that a policy E(¢)}?°, belongs taf if for every k, k' € K, and time slot € {1,2,...}
the following is true

P[s(t) = s*)|S(t) = S, E(t) = ¢] = P[S(t) = S*)|S(t) = S™)], (20)
and for everyk € K, activation vector € 7;, and matrixQ € Q the following is true

ngpq(tik e, Q) P[Qe(t) = Q.S(t) = SW,E(t) = ]

— - , almost surely ag — oo, 21
ngg(t; k. c) P[S(t) = S®) E(t) = ¢] Y D

whenngg (t; k, ) # 0 ast — oo. Note thatifngy (¢; &, c) = 0 ast — oo, then the corresponding activation
vectorc is not used by the policy. In such a case, this activationorazzn be eliminated from its constraint
set. Recall that the constraint set is the set of all validvaiibn vectors with respect to the current channel
state estimate.

Equation (20) is a natural condition which requires thangttame slott, E(¢), and the true channel state
S(t) are conditionally independent given the estin&te). In other words, all policie$E(t)}2°, we may
consider have no more information on the true channel Stetethan the stationary policyy . Naturally,

a policy that has additional information regarding the whannel state at time slotan potentially exploit
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this knowledge, and for example avoid collisions by not siciieg the corresponding nodes. Also, Equation
(21) is natural and it is in spirit similar to regular ergatlicconditions. From Equations (20) and (21) we
may easily deduce that

nSEQ(t§ k,c,Q)

nen(he Qe = Qs =S, (22)

where from Assumption 1(a)?[Q¢(t) = Q|S(t) = S™)] is independent of timé. Note also that the set
£ includes all the stationary policies since for stationaojigies both Equations (20) and (21) are being
satisfied. It may further include somen-stationary as well asanticipativepolicies as long as they comply
with the conditions for being in sét Finally, we remind the reader that anticipative networktoal policies
are all those policies that have knowledge on the futureegbf the quantities that affect the evolution of
the state process, driven by Equation (6).

4.1 The notion of intermittent boundedness

When the polic{ E(¢) } 72, belongs to the class, the resulting queue size procg3$(t) }7°, generated by
Equation (6) is not necessarily a Markov Chain. Therefdre,stability definition according to Definition
1 is not applicable anymore. Instead, we will make use of e&efeaotion of stability, that of intermittent
boundedness.

Definition 2 The random procesgY (t)};2,, is almost surely intermittently bounded, if there existsilasgt
W of the sample space, with[IW] = 1, such that for everw € W there exists a sequenge; }:°,, and

a finite Y.« for which |Y(w,t;)| < Ymax, Vi = 1,2,..., whereY (w, t) denotes the sample path of the
process{Y (t)}:°, corresponding to outcome. Further, {Y (¢)}:°, is said to be intermittently bounded
with positive probability, if there exists a sub$€&tof the sample space, wit[1¥'] > 0, such that for every
w € W there exists a sequenge; }°°,, and a finiteY.x for which|Y (w, ;)| < Yiax, Vi=1,2,....

5 Optimality of the proposed policy

In this section we will prove optimality of the policy intraded in Section 3 with respect to maximizing
the stable throughput region of the network under uncegtamthe channel state. We will first define some
sets of rates that are important in our proofs.

In a stable network, traffic at any given node= A/ cannot accumulate without bound. Hence, stability
can be viewed through the concepflofv conservationnamely that for any commodity the sum of departing
flows at any node, except for the exit nodes for this commodityst be equal to the sum of arriving flows
for this commodity. Therefore, we define the sefadsiblearrival ratesA as

K J
A= {)\ eRY/: 3f] e RE, suchthat X = —R/ ) pg(k)f], and > f] € co(Qk)}, (23)
k=1 j=1

where 9, = {QS ¢, ¢ € 73}, f] are flow vectors of thg*® commodity under estimated channel state
S(k) andco(-) denotes the convex hull of a set. Further, let the stablesgimput regionCr underm’ be

11



defined as

Cry = {The set of arrival rated such that for all processe[sS(t),é(t),A(t)}oo

K satisfying

Assumptions 1, and 2, whepe= E[A (t)], the network is stable undex}’. }

We also denote byNJ;SV the following set of rates
(Nj}r(v)v = {The set of rates\ such that for all processe{sS(t), S(t), A(t)}ool, satisfying
t=
Assumptions 1, and 2, whepe= E[A (t)], the process of the queue sizes is
almost surely intermittently bounded undeg’.}

Finally, to compare withCry, and@}rgv, we introduce the set of arrival rat@% as

6’5’ = { The set of rated\ such that for some process%S(t), S(t), A(t)}ool, satisfying

Assumption 1 wher& = E[A(¢)], the process of the queue sizes is intermittently
bounded with positive probability under some polidg(t)}i°, € 5.}

Note that although the requirement for an arrival rate b&n@ ~w is that the process of the queue sizes
is stable underry’, the set of arrival rate€% only requires that the queue size process satisfies the weak
notion of intermittent boundedness with positive prokigbil

Let ri(-) denote the relative interior of a set. The following theorstates our main result. The proof
can be found in the Appendix.

Theorem 1 The setA is a convex polytope. Furthermore, fafl weight assignmentsr = (w;,j =
1,2,...,J), withw; > 0 for every commodity € .7, the following relationships hold

ri(A) € Cpy C Chw € CE C A (24)

We proceed to give some more insight into the meaning of tlderem. From Equation (24) it follows
that for all weight assignments, the rate region€ -w, C}TSV, andC?% are all squeezed between the convex

polytopeA, and its relative interior. Hence, the sets of rais: (NJ;SV, andC?. can differ by at most points
on the relative boundary ok, and therefore they are almost identical sets. In fact,itmgies that for any
rate, except perhaps for a few rates in the relative bourafaty that cannot be stabilized by our introduced
stationary policyr’, there exists no policy in the large cla$shat can even make the process of the queue
sizes intermittently bounded with some positive probgpbili

As an example, by utilizing Equation (23), in Figure 2 we dépine stability region for the example
network presented in Figure 1. Here, it is assumed that tharei estimation is such that the matrices
Q[lo’O}T, Q[lo’”T, Q[ll’O}T are all equal to a diagonal matrix with diagonal entries ity 0.5, while the
values on[ZO’O]T are immaterial due to the fact that there are no links avialander channel stat§(®).
Further, we assumed that the stationary probabilities @&stimated channel stat8s”) andS?) are both
equal to 0.5, i.e.pg(1) = pg(2) = 0.5. As discussed above, the set of stable achievable rates iffety d
from A by only the relative interior ofA, which is the union of three line segments shown in Figure 2.
Further, in Figure 2 we also provide the stability region o hetwork under perfect channel estimation,
obtained by replacin@[lo’O]T, Q[lo’”T, andQ[ll’O]T with the identity matrix in Equation (23). It is evident
that the channel estimation errors have a significant impathe stability region.
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|~ Stability Region under
perfect channel estimation

Relative boundary of A

1/8—

Stability Region A under
imperfect channel estimation

I
1/4 1/2 A22

Figure 2: Stability region of the network presented in Fegliunder perfect and imperfect channel estimation.

6 Conclusions

In this paper, we characterized the stability region of avwnet with multiple commodities in which the true
channel state cannot be known by the network control poids/introduced a joint scheduling, and routing
policy that assigns weights of preference to each commadityattempts to maximize the stable throughput
region of a time-varying network, independently of the virtigssignment, while having access only to a
possibly inaccurate estimate of the true channel processchAracterized the common set of stable arrival
rates that this policy supports, and proved its optimalitthwespect to maximizing the stable throughput
region of the network within a broad class of stationary,-stationary, and possibly anticipative policies,
under some mild conditions. We finally verified that the netnsiability region can be considerably smaller
than the corresponding stability region under perfect nebhastimation.

Appendix
Proof of Theorem 1

In this section we are going to prove each individual indasielationship of Theorem 1. The third inclu-
sion, that isC}T(v)v C C%, follows trivially from the definitions of the se@}rgv, andC~. Next, we prove the

three remaining inclusions, namely that 1i)A) € Cry, (i) Cry C é}rgv, and (i) C% C A.
(i)
Proof of ri(A) € Crw

Consider a rate € ri(A). We show that\ € Cry, i.e., that this rate is stabilized by our proposed policy
7. We make use of Extended Foster’s Theorem ([2]), which ples/ia sufficient condition for stability.
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Theorem 2 (Extended Foster Theorem)Consider a Homogenous Markov Chafly'(¢)}7°, with state
space). Suppose there exists a real valued, funcfion)’ — R, that is bounded from below, such that

E[VY(t+1)|Y(t)=y]<oo, Vye, (25)

and such that for some> 0, and some finite subsgt of )

EVY(E+1)-VI@) 1Y) =yl <—e YVygh (26)

Then{Y (t)}{2, is stable in the sense of Definition 1.

We will show that the process of the queue si#&t)}°,, satisfies the conditions of this theorem. For

J

compactness of notation, we useto denotet + 1. Givenw > 0, andx € X, letV(x) := > i wjijxj,

be a candidate Lyapunov function. We show that, With) thus defined under policy’, and given any
process{A (t)}:°,, such thatE[A ()] = A, the proces{X(t)}:2, given by Equation (6) withE’ (t) =
wg"j(X(t —1),S(¢)) for all j € 7 satisfies the conditions of Theorem 2.

First, it is immediate thatE[V (X (¢1)) | X(t) = x] < o0, Vx € X. To see this, lek € X, and let

GI(t) = x) + RIQTSO) (1) i (x, §(1)) + Al (1). 27)
Note that for everyt the matrixQ™(<8(t)(¢) is a function ofS(¢), and$(¢). Since by Proposition 1, the
variablesS (¢7), S(t*), A(t*) are independent & (¢), Equation (6) yields

E[V(X(tH)) | X Zw] [GJ T TGIEH)], (28)

which is finite for allx since from Assumption 1 (b) the procelA () }¢°, is assumed to have finite second
moments, and further the policy’ (x, S(¢+)), as well as the procesEQ™(<S®)(¢)}2, take values in
finite sets. This in fact holds independently of the choicstafionary policysr, and of the arrival rate\.

To complete the proof, we show that, when poley is used, there exists a finite sk such that Equation
(26) holds. For compactness of notation, we define

AV (x) = E [V(X(t")) - V(X(1) | X(t) =x] .
We first prove two lemmas that will be useful in proving theidesresult.

Lemma 1 Given any policyr, arrival rate A, and queue size matrix € X, the Markov Chain{X(¢)}22,
given by Equatior{6) satisfies

J
AV (x) <2 (Z w;x TN — ZPS ZDkﬂ'(x S(k) x) " 7 (x, S(k))) + B, (29)

j=1 kek

where B does not depend ax.
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Proof: From Equation (28), and the definition of our candidate Lyswufunction we have

AV(x) = XJ: JE (X9 = X)) T (X () + X (1)) | X(t) = x]
=
_ XJ: w,E [(Xf(ﬁ) —XI(t)) T (2XI () + XI(#) — XI (1)) | X(¢) = x]
=
= 2 Z::l w; (x7 B [XI(67) = XI(t) | X(t) = x] )
b uE (X7 (%) = X (8) T (X (#7) = X (1) | X (1) = %]

1

<.
Il

By using Equation (6) we obtain

Mu

AV(x) =23 (wpd "B [RIQTSEN ()7 (x, §(4)) + AT (+) | X(t) = x])

1

Mk -

3 wE | (RIQUSE (rymix, 8(0) + AT(11))

1
(RJ(.:fr xS ()70 (x, §(t1)) + A (t+)) X (t) = x] .

J

Since{A(t)}2, is stationary and has finite first and second moments, amblfey 7/ (x, S(t)), as well

as the proces$Q™( (.St D(t)}2,, wheren(x, S(t)) = Z}']:1 7 (x,S(t)), take values in finite sets, the

second term is finite and bounded for evérg 7 by a quantity independent of the queue size mattix
and time slot. Hence for everk € X,

ZJ: (w <ITR |:R]Q7T (x,8( t+))(t+)7rj(x S(t-i-)) + A](t—l-) | X(t) = ]) B

for someB independent ok, andt. Further by making use of Proposition 1, namely tAgt™) is indepen-
dent ofX(¢), and using conditional expectations it follows that

J
AV(x) < Qijij)\j +B
j=1

+ 2 Zw xRS pg [Q"(X’S(k))(t+)|X(t) =x,S(t") = s<k>] 7l (x, 8™,

kek

Using Equation (10), and the fact th@r8") (++), andS(¢+) are independent & (t) we obtain

Vix) < QZw X7 )\]—QZZpS ( JQﬂ(xsm Rijj>T7rj(x,S(k))—|—B. (30)

j=1kek
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Finally, by using Equation (9), the above equation becomes

J J
AV (x) <2 (Z wixI TN — Zps Z kn-(x s<k) x)" 7w (x, S(k))) + B,

j=1 kek Jj=1

which completes the proof.
[
When an arrival rate\ belongs tori(A), a useful upper bound can be obtained on the first term in the
parenthesis of Equation (29), by means of the following lemm

Lemma 2 Let A € ri(A). Then there exist nonnegative scalar§, for all ¢ € 7, k € K, with
> eeT, Wi < 1, such that, for all € X,

Zw X TN < pg(k) Y ppDR(x) e (31)
kel ceTy

Proof: LetrateX € ri(A). ThenX € A, asri(A) C A. Hence, with reference to Equation (23) there exists
a scala® > 1, and non-negative flow vectof$ € RZ such that

N =-R7Y pg(b)f, (32)

kek
and wherej Z‘] fj € co(Qy,) i.e., for someu§ > 0 such thaty " .. uf = 1 we have

5ij = > uiQfe. (33)

ceTy,

Note that from Equation (33) it follows that, for glle 7, andk € K, we have
() =0, vegs®. (34)

Using Equation (32), and the fact each of the vecfgjrare non-negative component-wise we can write

J
jz:;wjxﬂ)\j < Igcps Z <IJ%E?%( (_ijjTRj) f;ﬁ)
= Zps max( wjijRj) Z %QEC, (35)
kek c€T},

where Equation (35) follows by making use of Equatlon (BItL] := 5 By definition, /', > 0. Also,
smcezcgk py =1, andé > 1, it follows thatzcgk w'y < 1. Further, Equation (35) can be written as

J
ijij)\j < Zps Z w kmax <<—ij§Rijj)T> C
j=1

kel ceTy
= > pglk) > WiDYe(x) e, (36)
kel ceTy
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where Equation (36) follows by making use of Equations (92)(and (13). This completes the proof of
Lemma 2.
[
We proceed to finalize the proof of the claim thgtA) C Crw. From Lemmas 1 and 2 we conclude
that, given\ € ri(A), there exist nonnegative scalar§, for all ¢ € 7, andk € K, with > ceT Wi <1,
such that, for alk € X', and all stationary policies,

x) <2 pg(k) (Zﬂ ZDWSW j(x,s<k>>)+B. (37)

kel ceTy

So farm was an arbitrary stationary policy. We now focus on the goii¢’. In view of the fact that
m(x,8W) = 37, 7i(x,8%)) € Ty, from Equation (17), and of the definition afy’, we obtain

J J
D Dy s (9 07 (6,8 = D g ()T D (%, 81)
j=1

=
= Dszg(x,sw))(x)Tﬂ'Sv(xa Sy

N
= max{Dp(x) c}.

By substituting into Equation (37), we get

B+2) pg(k) (Z WD (x) e — gg%{DZZ(X)TC})

kel cely,

IN

AV (x)

IN

B—2) pg(k) ga;:{DZZ(X)TC} (1 - M’Z)
ceTy,

kel

< B- D T
< pmaxmax{Di(x) e},

where from Equation (7), and the fact thal, 7. Wi <1

p = 21}3161121 (ps(k) (1 - Z //2)) >0
ceTy,

Now, letx € X, with x # 0, and suppos&X (¢) = x. Choose a node, and a commodity such that
Tnj > 0.
The Markov property of X (¢)}¢°, implies that
AV(x) =E [V(X(t")) - V(X(t)) | X(t) = x,X(0) =0] .

Hence, without loss of generality, assume that the queegsacess at time slotsatisfiesX (0) = 0. Since
X,;(t) = xzp; > 0, and X,,;(0) = 0, there must exist a sequence of linksdrfrom some node:’, with
Anrj > 0, to noden that satisfy Assumption 2. Further, Assumption 2 then igwplhat there exist links
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e L,i=1,...,z for somez, satisfyingd < z < N, such thatn = s(¢;), and nodesiy, ...,n., such
thatd(¢1) = n1, s(biy1) = ni, d(lip1) = niq1, 0 = 1,...,2 — 1, andn, € V;. For notational simplicity,
also letn, := n. Sincex,,_; = 0, whenevem, € V;, we can write

z

Tnj = Z(mniﬂj - wnij) < zHZlE;X(l'mﬂj - "EmJ) (38)
i=1 ’

It follows that there exists some link. for which the above queue size difference through it, is mézed
for some commodity* € 7. Letn;«_y = s({;»), andn;» = d(¢;x). Then, from Equation (38) we have
Tni T

xni*flj* - wni*j* - 7] - Wj (39)
Recall that!; € £ foralli = 1,...,z. Further, letk* be such that;~ satisfies Equation (1) under the
estimated channel staft) = S("). Lete,, € R” be a vector with it¢;« component equal to, and
with all other components equal @o Then, from the property of the constraint set it followsttha, € 7j+.
Also, it follows from Equations (12) and (13) that

T T
maxmax{Dy,(x) ¢} > g%g{DZ”*c(X) c}

T j*
=z zv*efz‘* (X) Clir = ( zv*oli* (X))Z 2 (thjeli* (X)>Z.* ’

ix

where (DZ”ee (x))[* is the ;™ entry of the vectoDZV*];i* (x). In view of Equations (11), and (39), it

follows that

~ €y, Wiirs Qornies Lo
max max{DY (x) Teg. } 2> wis (Qui Vo, (Tne_yjo — Tnyuje) > G Ty

kek ceTy, N

)

where(Q,* )., is the/t diagonal entry of the matriQ, ., while

Wnin 1= minw; > 0,
JjeET

and, in view of Assumption 2,
q~min > 0.

Note that the entries,;, andgm,in do not depend os. Overall, we have

P Wmin gmin Tnj

N

AV (x) < B -
so that, given any > 0,

AV (x) < —¢, VX¢X0::{X€X : xnj<M}.

n P Wmin gmin

Since vectors it have integer components, the 8étis finite, and the proof is complete.
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(ii)
1
Proof of Crw C C,,(v]v
Consider an arrival ratd € Crw. In order to prove thal € (NZ}T(V)V, we need to show that stability according

to Definition 1 implies intermittent boundedness with priolbity 1. We proceed by giving a theorem that
gives a sufficient condition for intermittent boundedneka blarkov Chain.

Theorem 3 Let {Y (¢)}{°, be a Markov Chain, with) the, possibly empty, set of its transient states. If
{Y(t)}22, almost surely exits the set of transient states in finite tiraeif

Pmin{r >0 : Y(1) ¢V} <0 |Y(0)=y]|=1, Vye)y (40)
(which holds vacuously whenis empty), thedY () }5°,, is intermittently bounded with probability.

Proof: Consider the Markov ChaifY (¢)}72,, that satisfies Equation (40). Then with probabilitythe
Markov Chain{Y ()}, will be eventually confined within a single recurrent clagsollows (e.g. from
Theorem?.3 in Chapter2 of [8] ) that, with probabilityl, some (recurrent) state will be visited infinitely
many times. Hence, there exists aBétthat is a subset of the sample sp&gé.e. W C Q, with P[W] =1
such that for every event € W, there exist a statg, and a sequencf; }5°,, such that in the sample path
w the process satisfies

Y(w,t;)) =y, Vi=1,2,....

Hence, by Definition 2 it follows thafY (¢) }72, is intermittently bounded with probability.

A direct consequence of Theorem 3 is Corollary 1, that we stakt.

Corollary 1 Let {Y'(t)}{2, be a stable Markov Chain. TheRY (¢);2, is intermittently bounded with
probability 1.

From Corollary 1, the desired result follows.

(iii)
Proof of C2 C A
We need to show that ik € (NJZ then A € A. We start by introducing the notation required for our
proof. We define the random variabig (¢; k) to be the number of time slots in the interval[0, ¢] dur-
ing which S(7) takes the values*). Moreover, we denote byng(w,t; k)12, {ngg(w,tik,c)},
{nsEQ(w,t;k,c, Q)}2, the sample patlw of the corresponding processes (Recall that the processes
{ngg(t: k. c)}i21, {ngpq(t: k. c, Q) }i2, are defined in Section 4.). Finally B (w, ¢) 172, {S(w, 1)},
{E(w,t)}2,,{Q%(w, t) }i2,, and{X(w, t) }s2, we denote each of the sample pathsf the respective pro-
cesses.

SinceX € (NEQ, there exists a policyE(t)}?°, € &, and an i.i.d. proces§S(t),S(t), A(t)}22, such
thatE[A(¢)] = A. In particular
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P

t
1 : .
Clim - j — | = ;
w.thm ; g_ Al (w,T) /\] 1, VjieJ, (41)

s(w, t: k
P [w: lim 7715(% k)

t—o0 t

= ps(k)] =1, Vkek. (42)

Furthermore, from Equation (22) we have that

ng wvt; k>C>Q
w: lim SEQ( )

P
t—00 ’I’LSE(w,t;k‘,C)

= P[Q°(t) = QIS(t) = sW]] =1. (43)

Also, since the processX(t)}72, is intermittently bounded with positive probability it folvs that
Plw: X(w, i) < Xmax, forsome finiteX,,.x, and for some sequende;};=;] > 0. (44)

Since the events in Equations (41), (42) and (43) have pititgalh, and the event in Equation (44) has a
positive probability, their intersection will have a pdgit probability. Hence, it follows that thé events
have a non-empty common intersection. We first fix an outcohtleat belongs to this common intersection,
and oncev’ is selected, we identify aiX,,.,, and a sequencg;}°, as specified by Equation (44). We
have

lim —ZA] W) =N (45)
imooti £

S /7 t27 k
lim % — pg (k) (46)

nSEQ(w,7 t7 kv c, Q)

li = P[Q°(t) = QIS(t) = St 47
Jim S e~ Flat®) = Qis() =s®) (47)
X(w't) < Xpax, for some Xpax, Vi=1,2,.... (48)
We now proceed to first sum both sides of Equation (6) from tioe0 to ¢; for somei = 1,2,..., and

cancel the identical terms. Then, by dividing both sidesdefresulting equation by we obtain

| _ L io s E(',7)
t—iXJ(w i) = t—iX](w ZR]Q (W, 7)E (W, 7) Z:AJ (W', 7) (49)
From (48), we have
1.
lim —X7(w',t;) =0, (50)
and
1.
lim —X7(w',0) = 0. (51)
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Taking the limit in Equation (49) as— oo, and by using Equations (45), (50) and (51) we obtain

1—00

. 1 , .
= — lim {R] Z o Z QEW' (W 7)E (w/,T)}
TN ke reqii
st.S(w',7) =8k

_ . j 1 E(w )/, (]
- _ZE%{R]ZE Z Q (M,T)E](w77') ’ (52)
kek Te{l,...,t;}
st.S(W!,7) =8®

t.
j : RN iOEW )/, 1 i
A = —lim {E g_lRJQ ( )(w,T)EJ(w,T)}

where
K= {keKstSw,7)=8% for somer € {1,...,00}}.

Thus, fork € K, and fori large enough it follows thatg (w’, 2;; k) > 0. Without loss of generality (by
redefining the sequendg; }°, if necessary), assume thag (', t;; k) > 0 for all k € K,andi=1,2,....
Then, Equation (52) can be written as

N o= — lim {R] Z HS(wljtﬁ k) 1 Z QE(w,’T)(w/,T)Ej(w/,T)}. (53)

i—o0 / t; na(w, t; k
kel ! S( Y )Te{l,...,ti}
stS(W,r)=8S®

Note thatE’ («’, 7) € T;, wheneverS (', 7) = S(*). Also, for every time slot, the matrixQE“"7) (', 7)
is a diagonal matrix, whose diagonal entries take valuekarset{0, 1}. Therefore, it is also true that the
productQ®«"7) (' 7) EY(«', 7) € T;.. Also, since

1 1 1
- 1= ———ng(W t;k) =1
N . . S s Ly 9
st8(w,7)=8" st.8(W,r) = S®

we have that for everye {1,...},j € 7, andk € K,

1 ! .
m Z QE(w ,T) (w/,T)E] (w/ﬂ_) € co(Th).
S Y TE{L...,ti}

st.S(w,7)=8S®

SinceK is a finite set, and since for evety the setco(7y) is a compact set, there exists a subsequence
{ti,}32,, and vectord} such that

: 1 EW 7))/, / T _eJ
EEO{W > QR B, ) =1, (54)
T E {1,...,15”}
s.t.S(w,7) =S®
forall j € 7,k € K. Hence from Equations (46), (53) and (54) we obtain
N =-R7Y pg()f], VkeKk. (55)
kek
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Finally, by letting the corresponding x 1 vectorfg be the0-vector, whenevek € K\ K we conclude that

N =-R> pg(b)f], Vkek. (56)
kel

Clearly, f) € RL for everyk € K andj € J. To complete the proof we need to show that_, £/ €
co(Qy) for everyk € K. We consider two cases.

1. k € K\ K: For everyk € K \ K, we have that
J
Zf € cof Qk (57)
7j=1

since0 € 7y, for everyk € K.

2. k € K: From Equation (54), and sindg(w’, ) = 37_ E/(w/, ), for all k € K we have

J
. 1 /
J : = EW,n), /
j=1 re{l,..., t;}

s.t. S(w’ T) = S(k)

- oIy X aef
ceTr QeQ re{1,...,t;}
s.t.S(w',7) =Sk,
EWw,7)=c,
QW' 7)=Q

= lim ZZTLSEQW%}CCQ)QC

1—00 ceT, Qeo ns w’ tz,k’)

i ks -
~ lim ZZ”SEQ“}t ©VD_ gl (58)

_ . !t
1—00 ceT, Qeo S(w,t,,k)

Since each of the terms involved in the sum are non-negating,since the outer limit exists, it

follows that each of the product terms in the limit are bowhdEurther, smceM converges
tisk,

to a non-zero value, we may extract a converging subsequetethatim;_, .. {w}

exists, and therefore

nSEQ(w,7 ti; kv C, Q) } 1 Q c. (59)

J
Sl - 3 e

ceT, Qe

nQE(letUk:vC)
t:

Note also thatim;_, exists and can be written as a finite sum of existing limits as

7

(Wt k, e, Q) n W' tisk,c,Q
S i Mo ! 60
t; 1—00 t;
QeQ QeQ

ngg(W' tisk, c) N$EQ
li SE _ E
m — Ziglo

1—00 t;
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ti;k,c,Q)

where we made use of the fact that the lifiib; o M exists. As discussed in Section

4, for all c € Ty, the quantityngp, (', t:; k, c) # 0 ast — oo. Hence, we can write

ng wlvti;k>c>Q ng wlati;k>c>Q & ! tzk o (W' tzk
lim{ SEQ( )}: lim{ SEQ( )NSE(‘% ik, c) ng(w', tis k) . (61)

1—00 1—00

t; nSE(w/vti; k‘,C) nS(w/>ti; k) t;

It follows from Equations (46) and (60) that
t;

lim
1—00 ng (w’, ti; k) hmz—>oo
exists. Let this limit be equal to

i = lim —nSE(w/7ti;k7c)

62
1—00 ns(w’,ti;k) ( )

From Equations (46), (47) and (62) it follows that the indival limits in Equation (61) exist. Hence,
it can be written as

{ nSEQ (w/7 tla k7 C, Q)

lim

1— 00

G } — PIQ%(t) = QIS(1) = S®] 5¢ p(k). (63)

By replacing Equation (63) in Equation (59) we get

J
Sf = Y Y P =qS1t)=sP] Qe
j=1

ceT, QeQ

= > %Qgc, (64)

ceTy
where Equation (64) follows by employing Equation (10). €eguently, it follows that

J

Z fg € co(@k),
j=1

and the proof is complete.
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