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State of charge (SOC) estimation is one of the most important functions of battery 

management systems (BMSs), which is defined as the percentage of the remaining 

charge inside the battery to its maximum capacity. SOC indicates when the battery 

needs to be recharged. It is necessary for many battery management applications, for 

example, charge/discharge control, remaining useful time/ driving range predictions, 

and battery power capability estimations. Inaccurate SOC estimations can lead to user 

dissatisfaction, mission failures, and premature battery failures. This thesis focuses on 



  

the development of advanced battery models and algorithms for SOC estimations. Two 

SOC estimation approaches are investigated, including electrochemical models and 

data-driven models.  

 

Electrochemical models have intrinsic advantages for SOC estimation since it can 

relate battery internal physical parameters, e.g. lithium concentrations, to SOC. 

However, the computational complexity of the electrochemical model is the major 

obstacle for its application in a real-time BMS. To address this problem, an efficient 

solution for the solid phase diffusion equations in the electrochemical model is 

developed based on projection with optimized basis functions. The developed method 

generates 20 times fewer equations compared with finite difference-based methods, 

without losing accuracy. The results also show that the developed method is three times 

more efficient compared with the conventional projection-based method. Then, a novel 

moving window filter (MWF) algorithm is developed to infer SOC based on the 

electrochemical model. MWF converges to true values nearly 15 times faster compared 

with unscented Kalman filter in experimental test cases.  

 

This work also develops a data-driven SOC estimation approach. Traditional data-

driven approaches, e.g. neural network, have generalization problems. For example, 

the model over-fits to training data and generate erroneous results in the testing data. 

This thesis investigates algorithms to improve the generalization capability of the data-

driven model. An algorithm is developed to select optimal neural network structure and 

training data inputs. Then, a hybrid approach is developed by combining the neural 



  

network and MWF to provide stable SOC estimations. The results show that the SOC 

estimation error can be reduced from 8% to less 4% compared with the original neural 

network approach.  
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Chapter 1: Introduction 
 

1.1 Background 

Batteries are electrochemical energy storage devices that are key components of many 

systems, ranging from Bluetooth headphones to mobile phones, laptops, electric 

vehicles (EVs), and satellites. Though the term “battery” originally referred to several 

cells connected in series, it is now also used for a single electrochemical cell [1]. A 

battery generally consists of an anode (negative electrode) and a cathode (positive 

electrode) separated by an ion-conductive, electronically insulating solution called 

electrolyte [1, 2]. When the battery is connected to an external load, the anode supplies 

a current of electrons that flow through the load and are accepted by the cathode, while 

the ion moves across the electrolyte from the cathode to the anode because of 

electroneutrality. If the electrochemical process of the battery is able to be reversed by 

applying an external current, then the battery is called a rechargeable or secondary 

battery.  

 

State of charge (SOC) estimation is necessary for rechargeable batteries, as it provides 

the information to user about when the battery need to be recharged. SOC is defined as 

the percentage of remaining capacity relative to the maximum capacity of the battery 

[3]. Many SOC estimation approaches have been developed, among which Coulomb 

counting [4-6]  is the most popular one. In Coulomb counting, the current is integrated 

over time to estimate SOC. Although Coulomb counting is simple and easy to 

implement, the measurement and calculation errors can be accumulated by the 

integration function. The estimation of SOC tends to drift from the actual values. In 

addition, Coulomb counting needs accurate initial conditions, otherwise initial error 

will remain in the estimation.  The voltage-based method is also commonly used [7], 

where SOC is determined based on a voltage–SOC lookup table. However, voltage-

based methods do not work well for Li-ion batteries because of their flat plateau of 

discharge characteristics. Recently, model-based methods have been applied to SOC 

estimations. They have intrinsic advantages over traditional Coulomb counting and 
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voltage-based methods, for example, they are robust to sensor error and do not require 

accurate initial SOCs. This dissertation will focus on the development of advanced 

battery models and state filtering algorithms for SOC estimations.  

1.2 Motivation 

SOC estimation is critical for battery powered systems. For instance, EV drivers need 

to know the remaining driving range, and SOC of the battery is the prerequisite for the 

remaining driving range calculation. If SOC is in-accurate, then the driving range 

prediction will be misleading. There has been some news reporting that EV drivers 

were halted in the highway. In addition, the battery management system (BMS) will 

need SOC information for power management, because battery power is a function of 

impedance, and impedance will change with SOC. Inaccurate SOC estimation will lead 

to erroneous estimation of the battery power capability. In the worst case, the battery 

will shut down suddenly if the BMS allows a power that excels the battery’s capability. 

To avoid this situation, a common practice is to overdesign the battery to account for 

uncertainties. If the SOC can be accurately estimated, the over-engineering of batteries 

can be minimized. The associated benefits will be, for example, reduction of the size, 

weight and cost of the battery. In addition, the SOC information can be used to avoid 

over-charge and over-discharge of the battery. Voltage is not a good indicator of 

batteries’ charging state, as it is also a compound function of impedance and charging 

state. SOC can be used to determine when the charging current should be reduced. For 

example, control loop can be designed to gradually reduce the charging current based 

on SOC in order to maximize the charging rate while avoid the degradation.  

 

In summary, SOC estimation is one of the most important topics for battery 

management. It required by most of the recharged battery systems, because (1) it 

indicates when the battery need to be recharged; (2) it is required by real-time power 

management; (3) it can be used to design better charging/discharge algorithm to 

prolong life span; (4) it can be used to avoid over-engineering of the batteries, thereby 

reducing the size, weight, and cost of the battery.  
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1.3 Overview of the Dissertation 

The structure of the remaining of the dissertation is as follows. Chapter 2 presents the 

literature review on state of charge estimation algorithms, including electrochemical 

model based methods, data-driven methods and state filter algorithms, puts forward the 

problem statement based on the literature review, and provides the objectives of this 

dissertation. Chapter 3 develops new methods for electrochemical model simplification 

which can be applied for the real-time SOC estimation. Chapter 4 presents an improved 

state filter algorithm based moving window strategy, which is then combined with 

electrochemical model for SOC estimation. Experimental validations of the moving 

window filter and the simplified electrochemical model are also presented in Chapter 

4. Chapter 5 addresses the generalization issue of the data-driven models, e.g. neural 

network, for SOC estimation. A hybrid approach, which combines neural network and 

state filter is developed in Chapter 5 and then is compared with conventional data-

driven approaches to demonstrate the effectiveness of the new approach. Chapter 6 

draws the contributions of this dissertations and provides the future research directions.  
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Chapter 2: Literature Review and Objectives  
 
 

2.1 Previous Work and Research Gaps  

2.1.1 Electrochemical Model 

The equivalent circuit model (ECM) is the most commonly used battery model in a 

BMS [8-16]. It is formed by an open-circuit voltage source connected with a set of 

electric elements, such as resistors and capacitors, to model the electrical behavior of 

battery. The ECM is widely used in the BMS for SOC estimation, because it is 

computationally efficient. ECM can be used to estimate battery voltages based on 

current inputs, and different resistor-capacitor (RC) branches can be used to capture 

different time constants inherent in the battery system. However, because ECM is an 

empirical model in nature, it provides little insights into the electrochemical process 

inside the battery, and it cannot provide highly accurate results.  

 

In contrast, the electrochemical model uses partial differential equations (PDEs) to 

model the physics of the battery and it can be used to compute the electrochemical 

states inside a battery and provide accurate information about lithium concentrations 

and over-potentials, which can be used to prevent harmful side-reactions. For example, 

the electrochemical model developed by Doyle and Newman [17-19] includes the key 

chemistry and physics in a Li-ion battery, such as diffusion, migration, and reaction 

kinetics. The model has two scales, namely, a macro x-scale along the thickness of the 

electrodes, and a micro r-scale along the radius direction of the small solid-phase 

electrode particles. The electrochemical processes are modeled by a set of coupled 
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partial differential equations (PDEs). In solving PDEs, spatial discretization methods, 

such as finite element, finite difference, and finite volume are widely used. When using 

spatial discretization methods, we need to discretize the electrochemical model in both 

the x and r directions, resulting in thousands of states (equations) [20, 21] . 

Implementing a real-time BMS using the spatial discretization method is 

computationally prohibitive and on-board memory demanding. Therefore, in order to 

have an electrochemical model for real-time battery management, deriving a simplified 

and computationally efficient mathematical model is crucial.  

 

The single-particle model (SPM) is a typical example of a simplified model with less 

than 10 states [22, 23], in which each electrode is modeled by a single spherical particle. 

As a result, the spatial variations of potentials are unable to be determined by SPM.  In 

addition, the electrolyte concentration is generally assumed to be a constant in time and 

space. The assumptions will not hold for high current applications (>3C) [24, 25].  In 

the full electrochemical model, the diffusion PDE in solid particles is a major part of 

the model. It determines the lithium concentration in the electrode particles and 

provides information on the level of lithium available for producing an electrical charge. 

In the other words, it tells users about the remaining level of electrical energy in the 

battery. When solving the electrochemical model, the solid-phase diffusion PDE 

generates more than 80% of the states (equations) after discretizing the model. That is 

because the solid phase diffusion not only varies in the macro x-scale along the 

thickness of the electrode but also in the micro r-scale along the radius direction of the 

solid phase particles. Other PDEs, e.g. electrolyte diffusion, only changes in the macro 
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x-scale. For this reason, the solid phase diffusion is inherently more computational 

intensive than other PDEs in the electrochemical model. For example, if we discretize 

the battery model in the x-scale with n nodes and in the r-scale with m nodes. Then the 

total number of generated equations from the solid phase diffusion is n×m, while other 

PDEs in the model will only generate n equations. Therefore, simplifying the diffusion 

PDEs in the solid phase is essential in providing a real-time capability. Subramanian et 

al. [26, 27] developed an efficient solution for the diffusion PDE by approximating the 

solid-phase lithium concentration using even-order monomials. The coefficients for the 

polynomials are obtained by volume averaging of the PDE and the derivatives of the 

PDE. However, Mayhew et al. [28] found that when using more than three monomials 

to approximate the lithium concentration, the volume-averaging technique can generate 

an unstable reduced-order model (ROM).  Chaturvedi et al. [29] proposed a generalized 

projection framework to reduce the PDEs to a set of differential algebraic equations 

(DAEs). However, this method did not address the issue on constructing an optimal 

basis function.   

 

In summary, available methods, for example, VA, can generate numerically unstable 

equations and lead to erroneous results. In addition, there is no available literature 

addresses the optimal basis function construction for the diffusion PDE reduction that 

is in dependent of loading conditions.  

2.1.2 State Filter 

In many practical cases, the physical state of a system cannot be determined by direct 

observation. For example, the SOC or lithium concentration cannot be directly 
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measured with sensor. State filter is an algorithm to infer the internal state of a given 

system from the measurements of the input. A system model is required to estimate 

system states. Below is an example of the flowchart for battery SOC estimation based 

on state filter. Here, the state filter compares the actual measured output and the model 

output, and then try to find the optimal state value, i.e. SOC, to minimize the difference 

between the measurement and the model output. 

 

Figure 1: Flowchart of model-based battery SOC estimation algorithm 

There are multiple advantages to use state filter. For example, it can handle noisy 

measurements, and can tolerate the modeling error due to unit to unit variations and 

un-modeled physics.  

 

State filters require the system model in a state-space form as below: 

 �����	��	
���	:		���� = f(��, ��)��� (1) 

 ���������	�	��	
���	:	�� = h(��, ��) ��� (2) 
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where ��	and �� are process noise and measurement noise, respectively. 
 
 
The commonly used state filter algorithms include: Kalman filter [30], extended 

Kalman filter [20, 30-37], and unscented Kalman filter (UKF) [38-47]. Corno et al. [48] 

developed a SOC estimation method based on extended Kalman filter and 

electrochemical model. Han et al. [31] proposed a method to estimate SOC based on 

physics-based single particle model and extended Kalman filter. Santhanagopalan et al.  

[41] used unscented Kalman filter and electrochemical model to estimate SOC of high 

power lithium-ion batteries. However conventional Kalman filter based approach 

converges slowly if initial estimation error is high, and attempts to increase the 

convergence rate by changing initial covariance values can result in noisy predictions 

for SOC. Below is an example of using UKF for SOC estimation with electrochemical 

model. The initial SOC error is 40%. The UKF can eventually converge to true values. 

However, it takes around half an hour to converge. This can cause inconvenience for 

users, as one need to wait for half an hour to get the accurate SOC reading.  Therefore, 

the state filter algorithm has to be improved to ensure fast convergence.  

 

Figure 2: Slow convergence of UKF given 40% initial SOC estimation error 
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2.1.3 Data Driven Model 

Data driven methods use the algorithms, like fuzzy-logic [11], artificial neural networks 

(NN) [12-16] and support vector machines (SVM) [17-19], to establish a data driven 

model for SOC estimation. Data-driven models do not require detailed expert 

knowledge on how the SOC changes with the influence factors like temperature, 

voltage, current, and ageing. A typical example is the SVM-based SOC estimator for a 

large-scale lithium-ion polymer (LiP) battery pack proposed by Hansen and Wang [17].  

The features used to train the SVM were the current, voltage, SOC at the end of last 

second and the change in voltage during the last seconds. The SVM estimator was 

tested with US06 dynamical operational data from the U.S. Department of Energy’s 

Hybrid Electrical Vehicle program. In the dynamic tests, the maximum root-mean-

square error is 5.76%. Another example is the fusion approach proposed by Kozlowski 

et al., [11], which combines the auto-regression moving average model, fuzzy logic 

and neural network. The features for training were battery voltage, current, temperature 

and electrochemical parameters obtained from electrochemical impedance 

spectroscopy test (EIS) [20].  The estimation error was claimed to be less than 5%.  

 

Data driven models can be accurate if the training data is sufficient to cover the loading 

conditions of the battery. However, the loading conditions of battery powered systems, 

e.g. EVs, can be complex, and the battery system response can change with current, 

temperature, SOC and SOH. Collecting training data that has good coverage on all 

loading conditions can be expensive and time consuming. In addition, there are unit to 
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unit variations among the cells due to the manufacturing uncertainties, which add 

difficulties of the implementing of data driven methods to real applications. Therefore, 

develop methods to improve the generalization capability of data driven model is 

critical for real-applications.  

 
 

2.2 Problem Statement and Research Objectives  

 
SOC estimation provides necessary information to the user about how much charge 

lefts in the battery, and it is essential for battery power/discharging/charging control. 

SOC estimation is challenging due to many reasons, for example, the sensor 

measurements can contain noise or bias; SOC itself is a complex function of impedance 

and loading conditions. Model-based methods are promising for SOC estimation as it 

is able to handle the sensor noise problem and do not require initial SOC values.  

Model-based methods include physics-based or data-driven methods.  

 

For physics-based methods, the major problem for real-time SOC estimation is the 

computational complexity of the coupled partial differential equations (PDEs), which 

are used to describe the physical process inside the battery. Simplification of the 

diffusion PDEs in the solid-phase particles has been found to be the key to reduce the 

computation time and memory requirement of the physics-based models. The available 

methods for diffusion PDE simplifications suffer from lots of drawbacks. For instants, 

the commonly used volume averaging method can generate unstable equations, which 

will lead to unacceptable error.  Projection-based methods are promising for the model 
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reduction of diffusion PDEs. However, the basis function used in the projection will 

greatly influence the performance, and how to construct an optimal basis function has 

not been discussed in the literature. In this research, we will address these problems in 

the diffusion PDE reduction. First, we will develop a methodology to reduce the PDEs 

to ODEs, which guarantees numerical stability of the generated equations. In addition, 

we will investigate a method to construct optimal basis functions, which aims to further 

reduce the computation requirement and improve the accuracy compared with original 

projection-based methods.  

 

State-filters are required when using physics-based model for SOC estimations. 

Available state filters are effective to handle measurement noise and modeling 

uncertainties. However, as we discussed previously, the state-filter can converge slow 

if the initial error is high, which can cause inconvenience to battery users. Investigating 

approaches to improve the convergence rate of the state filters is another major 

objective of this research.  

 

Data-driven models is an alterative to physics-based methods, especially for new 

battery chemistries, where their material properties are unknown and physical 

processes are not fully understood. Data-driven models only require the current, voltage, 

temperature data, and pre-defined training target values, and do not need the detailed 

physics of the battery. Implantation and development of data-driven model is easier 

than physics-based methods. However, the generalization of data-driven model is a 

problem, as data-driven models highly rely on training data. To collect data that covers 
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all conditions are not practical. Therefore, how to improve generalization capability of 

data-driven models becomes significant for its applications.   Therefore, in this research, 

we will study algorithms to mitigate the generalization issue of the data-driven 

approaches. We aim to develop methods to reduce the variations and outliers generated 

from the data-driven model, which may due to over-fitting of the training data. The 

developed methods should enable the data-driven model to estimate SOC for different 

cells and various loading conditions, while learn the model from a cell and under a 

particular load condition.  
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Chapter 3: A Computationally Efficient Solution for Battery 
Diffusion PDEs in Solid Phase Particles  
 

3.1 Introduction 

This section develops a computationally efficient numerical solution for the diffusion 

PDEs in solid phase particles, which contributes to more than 80% of the computation 

cost of the electrochemical model. The assumption of the developed method is that the 

reaction flux is homogeneous and the diffusivity is a constant as function of SOC.  The 

PDEs take reaction flux as the input and Li concentration as the output.  

 

The developed numerical solution is based on the projection method with optimized 

basis functions. The optimized basis functions are constructed with three steps: firstly, 

define elementary basis functions, e.g. even order monomials; secondly, 

orthonormalize the elementary basis functions to ensure the numerical stability of the 

generated equations; thirdly, the optimized basis function is constructed by the linear 

transformation of the orthonormal basis function. The performance of the new 

numerical solution is analyzed in frequency domain and time domain with comparison 

to available methods in the literature.  

 

3.2 Principle of Electrochemical models  

Li-ion batteries are electrochemical systems. The performance of Li-ion batteries can 

be determined by the electrochemical states. For example, the battery output voltage 

and capacity depend on the lithium concentration in the solid electrochemical particles. 
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For SOC estimation, the lithium concentration in solid phase can be used to calculate 

electrode SOC as below: 

 ������ = 3 !"# # �$ 
%��, �, ��
%,'()	 *�*�+
,

-
,  (3) 

where 
%��, �, �� is the solid phase concentration, 
%,'() is the max concentration in 

solid phase, L is the thickness of the electrode and R is the particle radius.  

 

Electrochemical model can also be used to determine the states that related to battery 

degradation. The degradation and failure of Li-ion batteries are generally caused by the 

harmful side-reactions inside the battery. Lithium plating is a typical example that 

consumes cyclable lithium. The occurrence of side-reactions depends on the 

overpotential. If the overpotential can be estimated, algorithms can be developed to 

minimize the side-reactions inside the cell, which results in improving battery 

reliability. To estimate the electrochemical states, an accurate and computational 

efficient electrochemical model is required.  

 

The electrochemical model consists of coupled partial differential equations to describe 

the diffusion, migration and reaction kinetics inside the battery. Solving the 

electrochemical models is challenging. Traditionally, t 

 

Doyle and Newman [17] have developed an electrochemical model that takes mass 

transfer, diffusion, migration, and reaction kinetics into account. In the literature, this 

model is also called the “dualfoil” model. It is the most commonly used model for 
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simulating the electrochemical process of the Li-ion battery, and it has been extensively 

validated by experiments [49, 50]. In this model, the battery is divided into three 

domains, namely, negative electrode, separator, and positive electrode. Figure 3 shows 

shows the structure of a Li-ion battery and the governing equations of the physics 

process in each part of the battery. The lattice structures of the electrode active materials 

are modeled by small spherical particles. The transport of Li-ions in the solid electrode 

partials (solid phase) and electrolyte phase is modeled by diffusion equations and 

coupled by Butler–Volmer reaction kinetics. Using this model, the lithium 

concentrations and overpotentials inside the battery can be calculated. The major 

equations describing the physics of the battery are introduced below. 

 

Figure 3:  Dualfoil battery electrochemical model 
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We define an x-axis starting from the negative current collector to the positive current 

collector, and an r-axis along the radius direction of the solid electrode particle. The 

transportation of the Li-ions in the solid-phase particles can be modeled by a diffusion 

equation as follows [17]: 

 ∂
%��, �, ��∂� = 1�$ ∂∂� 01%�$ ∂
%��, �, ��∂� 2 (4) 

 

with boundary conditions and initial conditions: 

 
∂
%∂� 345, = 0	 

(5) 

 
∂
%∂� 345+7 = − 11% 9: 

(6) 

 
%��, �, 0� = 
%, (7) 

 

where cs is the solid-phase concentration, jn is the molar flux, Ds is the diffusion 

coefficients, and Rp is the radius of the solid-phase particle.  

 

The transportation of Li-ions in the electrolyte can be modeled by 

 ∂
;��, ��∂� = ∂∂� 01; ∂
;��, ��∂� � 1<=; �(,�;��, ��2 (8) 
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where ce is the lithium concentration in the electrolyte, De is the effective diffusion 

coefficient, =; is the volume fraction of the electrolyte, F is Faraday’s constant, and �(, 

is the transference number for the anion.  

 

On the surface of solid-phase particles, an electrochemical reaction occurs when Li-

ions are transferred from (to) the solid phase to (from) the electrolyte phase. The 

reaction flux jn depends on the overpotential >%, and this relationship can be described 

by the Butler–Volmer equation Eq. (9). As 

 9:��, �� = �,��, ��< ?exp 0C(<!D >%��, ��2 − exp0CE<!D >%��, ��2F (9) 

 

where	C( andCEare transport coefficients; and�, is the exchange current density and is 

given by 

 �,��, �� = �;GG
;��, ��HI × J
%,'() − 
%%��, ��KHI 
%%��, ��HL  
(1
0) 

where css and cs,max are the surface concentration and the maximum possible 

concentration in the solid particles of the electrode, and reff is a reaction rate constant. 

As seen from (9), the overpotential	>%determines the rate of electrochemical reactions 

or flux jn, and it varies with time t and location x. The overpotentials calculated by the 

solid-phase potentialΦ%, electrolyte potential Φ%, open-circuit potential NO
%%��, ��P, 

and the flux jn, as  
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 >%��, �� = Φ%��, �� − Φ;��, �� − NO
%%��, ��P − <!G9:��, �� (11) 

 

where 	<!G9:��, �� is the potential drop due to the film resistance !G  at the solid 

electrolyte interface.  

 

In each electrode, the flux jn is dependent upon the divergence of current density in the 

electrolyte ie,, as follows: 

 ∂�;��, ��∂� = �<9:��, �� (12) 

 

where a is the specific interfacial area of the particle. The ie should be zeroes at the 

current collectors and should be equal to the applied current density, I, at the separator.  

 

3.2 Projection-based model reduction method 

Traditional finite element and finite difference methods to solve the electrochemical 

model can generate thousands of states making these methods virtually impossible for 

on-line applications. To implement the electrochemical model in a real-time BMS, 

where the memory and computational power is limited, an efficient numerical solution 

for the diffusion PDEs must be developed. Projection-based methods have been 

developed to reduce the PDEs to a low-order DAEs system [9]. The projection-based 

method approximates the concentration 
%��, ��	by a set of basis functions with time-

varying coefficients as follows: 
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%��, �� = QR��� ∙ T��� (13) 

 

where 	Q��� = [V����, V$���,… , VX���]R  and T��� = [�����, �$���,… , �X���]R . 

Once �Z��� is determined, 
%��, ��	can be found accordingly. Therefore, the problem is 

converted into a problem of finding time-varying coefficients �Z���. First, N equations 

are needed, as there are N unknown �Z���. The projection-based method is used to 

generate the N equations based on the diffusion equation.  

 

A function P: N → N is called a projector if it is: (1) linear: P�� ∙ �� � ] ∙ �$� = � ∙
P���� � ] ∙ P��$� ; and (2) idempotent: P$��� = P��� . For example, the Galerkin 

projector for the function	���� is  

 P̂ _O����P = ` �$���� ∙ aZ*�+7,` �$aZ ∙ aZ*�+7,
∙ aZ (14) 

 

where	aZ is called the test function of the projector. With different test functions, the 

projection results are different. This property is useful for constructing different 

equations to calculate the time-varying coefficients in (13). 

 

In this paper, we design the basis function to satisfy the first boundary condition at 

the center of the particle in (5). An example of such a basis function is the even-order 

monomials (i.e., 1, r2, r4…). Plugging in the approximation to the boundary condition 

at the surface of the particle, we obtain the first equation  



 

 

20 
 

 1% b∂QR���∂� c45+7d ∙ T��� = −9: (15) 

 

The remaining N – 1 equations are obtained by applying the projection N – 1 times 

to both sides of the solid-phase diffusion PDE using different basis functions	aZ, � =
1, … , e − 1, 

 

P̂ _ 0f
%��, ��f� 2 = P̂ _ b 1�$ ff� 01%�$ f
%��, ��f� 2d
⇒ # �$h7

,
f
%��, ��f� aZ���*�

= # �$h7
, b 1�$ ff� 01%�$ f
%��, ��f� 2daZ���*� 

(16) 

 

Integrating by parts for the right-hand side of (16) and applying the boundary 

condition in (5) and (6), we have  

  

# �$+7
,

f
%��, ��f� aZ���*�
= −# 1%�$+7

,
f
%��, ��f� faZ���f� *� − !i$aZ�!�9:,				 

	� = 1,… ,e − 1.	    

(17) 

 

Plugging the approximation (13) into (17), we obtain 
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0# �$+7
, QR���aZ���*�2 ∙ Tk ���

= 0−# 1%�$+7
,

fQR���f� faZ���f� *�2 ∙ T���
� J−!i$aZO!iPK 9:,				 

	� = 1,… ,e − 1 

(18) 

 

Then, the obtained differential algebraic equations are summarized as follows: 

 

l ∙ Tk ��� = m ∙ T��� � n ∙ 9: 

o ∙ T��� = −9: 

cqq��� = r ∙ T��� 
(19) 

where 

 

l = ?# �$+7
, s���QR���*�FXt�×X 

m = ?−# 1%�$+7
,

fs���f� fQR���f� *�FXt�×X 

u = v−!i$sO!iPwXt�×� 

o = x1% fQR���f� c45+7y�×X 

       r = vQRO!iPw�×X 

(20) 
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3.3 Orthonormalization of Basis Functions 

To ensure numerical stability and avoid large condition number, Q	and	s	have to be 

orthonormal basis functions, such that 

 Proj^_OV}P = ~1					� = 90					� ≠ 9 (21) 

 

and then the matrix M becomes  

 l = �1 00 1 ⋯ 0 00 0⋮ ⋱ ⋮0 0 ⋯ 1 0�	. (22) 

  

Let us assume that the original elementary basis set is � = ���, �$, … , ���. The 

Gram–Schmidt algorithm is used to generate a set of orthonormal basis functions�� =
���, �$, … , ���	that spans the same k-dimensional space of ℝ: as S, and  

 〈�Z , �}〉 = ~1					� = 90					� ≠ 9 (23) 

The steps of the Gram–Schmidt algorithm are listed as follows: 
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3.4 Optimal Basis Function Construction 

The selection of basis function has a significant effect on the approximation accuracy. 

In this study, we develop a method to construct an optimal basis function from a set of 

elementary basis functions. First, we define a set of high-order orthonormal elementary 

basis functions, U, formed by applying the Gram–Schmidt algorithm to even-order 

monomials (i.e., 1, r2, r4…) 

 � = [��, �$, … , �X]� (24) 

 

We also choose the same U as the elementary test functions in the projection to satisfy 

the orthonormality between the basis and test functions in (21). Then the M, A, B, E, 

and C matrices in the DAE (19) become  
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l = ?# �$+7
, �����R���*�FXt�×X 

m = ?−# 1%�$+7
,

f����f� f�R���f� *�FXt�×X 

u = v−!i$�O!iPwXt�×� 

o = x1% f�R���f� c45+7y�×X 

r = v�RO!iPw�×X 

(25) 

 

The construction of the optimal basis function	�	and test function	a is accomplished 

by using a linear transformation given by 

 � = � × � s = �× � 
(26) 

 

where V and W are k by N matrices, and N and k are the original and reduced 

dimensionality with k	≪	N. To ensure the orthonormality of the	� and	s, we must 

have	��� = �. 
 

The concentration	
%��, ��	can then be approximated by 

 

 
%��, �� = ��T4��� (27) 
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Plugging the basis and test functions in (26) into (19) and (20), the DAEs generated 

by the optimized basis and test functions are 

 

l� ∙ Tk���� = m� ∙ T���� � n� ∙ 9: 

o� ∙ T���� = −9: 


%%��� = r� ∙ T����, 
(28) 

  

 

where 

 

l� = ?�0# �$+7
, �����R���*�2��F�t�×� 

m� = ?�0−# 1%�$+7
,

f����f� f�R���f� *�2��F�t�×� 

n� = ��J−!i$�O!iPK��t�×� 

o� = xb1% f�R���f� c45+7d��y
�×�

 

r� = �J�RO!iPK����×�.  

(29) 

 

Therefore, the number of DAEs is further reduced to k.   

 

Suppose the transfer function of the DAEs based on the high-order elementary basis 

function is H(s), and the transfer function of the DAEs generated by the low-order 
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optimized basis function is �4���.	The objective of the optimization is to find the 

transform matrices V and W to minimize the 2-norm error between H(s) and Hr(s):  

 ‖� − �4‖$ = # |����� − �4����|$*��∞
t∞  (30) 

 

The Meier–Luenberger condition [51] provides the first-order necessary optimality 

condition for the optimization problem (30), which is stated as follows: 

 

Theorem 1.1  Let H(s) be the full-order system, and 	�4���  be the minimizer of 

‖���� − �4���‖$ with simple poles ���, … , ��4 .Then 	�O−���P = �4O−���P and 

�′O−���P = �4′O−���P  for � = 1,… , �. 
 

To satisfy this necessary condition, we need to interpolate H(s) and its derivative at the 

mirror image of the poles of the reduced-order system. For linear stable ODEs, the 

rational Hermite interpolation provides a way to determine the W and V matrices to 

obtain �4, and below is its definition:  

 

Given ���� = r���  − m�t�u, and r distinct points	σ�, … , σ4 ∈ ℂ, let  

 
!�	��� = �¤�	��σ�  − m�t�u,… , �¥4  − m�t�u� 

!�	��� = �¤�	��σ�  − m��t�r,… , �¥4  − m��t�r�. (31) 
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Define m¦ = �����t§��m�,u¦ = �����t§��u,r¦ = r�Then�4��� = r¦��� ¦ −
m¦�t�u¦ is a rational Hermite interpolate to ���� at	σ�, … , σ4 , and 	��¥Z� = �4�¥Z� 
and	�′�¥Z� = �4′�¥Z�, for � = 1, … , �.  

 

The rational Hermite interpolate can be directly used to find V and W to construct	�4, 

if the poles of �4	are known. However, this information is not known as a prior. In this 

case, the IRKA can be used to iteratively correct the interpolation points until the local 

minimum is found [52]. The IRKA is defined below.   

 

Iterative Rational Krylov Algorithm (IRKA)  

1. Make an initial selection of ¥Z for � = 1, … , �	that is closed under conjugation. 

2. Choose V and W such that: 

    							!�	��� = �¤�	��¥�  − m�t�u,… , �¥4  − m�t�u� 
 !�	��� = �¤�	��¥�  − m�t�r,… , �¥4  − m�t�r� 
and ��� = �.  
3. While relative change in�¥Z� > ��© 

a. m¦ = ��m� 

b. Assign	¥Z ← −�Z�m¦� for i=1,…,r 

c. Update V and W, such that  

!�	��� = �¤�	��¥�  − m�t�u,… , �¥4  − m�t�u� 
!�	��� = �¤�	��¥�  − m�t�r,… , �¥4  − m�t�r� 
and ��� = �. 

4. m¦ = ��m�, = ��u, r¦ = r� 
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The IRKA was developed originally for asymptotically stable systems, i.e., all of the 

eigenvalues of the pencil (A, I) must be in the left half of the complex plane. However, 

our system is unstable, therefore the IRKA is not directly applicable. 

 

To solve this problem, we first convert the DAEs into ODEs. Let us assume that R = 

[M; E]. If R is invertible, then we can transform the DAEs in (19) to ODEs [28]. Let  

  « = l ∙ T ¬t§ = [­� ­$] (32) 

where ­� ∈ ℝXt�×Xand	­$ ∈ ℝXt�×�, then we have  

 T = �lo�t§ � «−9:� = [­� ­$] � «−9:� = ­�« − ­$9: (33) 

 

Plugging (33) into (19), we obtain the ODEs: 

 
«k = m�­�« − ­$9:� � u9: = m­�« � �u − m­$�9: cqq��� = r�­�« − ­$9:� = r­�« − r­$9: 

 
(34) 

 
Since	[��, �$, … , �X]	are orthonormal, [M; E] is  

 �lo� =
®̄
¯̄̄
°̄1 0 0 ⋯ 0 00 1 0 ⋯ 0 00 0 1 ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 ⋯ 1 00 1%�$′ 1%�"′ ⋯ 1%�Xt�′ 1%�X′±²

²²²
²³
 (35) 
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It is straightforward to prove that the inverse of (35) is  

 �lo�t� =
®̄
¯̄
¯̄
°̄1 0 0 ⋯ 0 00 1 0 ⋯ 0 00 0 1 ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮0 0 0 ⋯ 1 0
0 −�$′�X′ −�"′�X′ ⋯ −�Xt�′

�X′
1

1%�X′±²
²²
²²
²³
		 (36) 

 

Because u1=1, the first column and first row of A in (20) are zeros. Therefore, the 

first row and first column of m­� are zeros, and the ODEs are obtained as follows: 

 
´zk����¶k ·���¸ = ´0 ¹¹ mº·¸ «��� � ´Bº�uº·¸ ∙ 9:��� 


%%��� = [C½� r½·] ∙ [z����, ¶·���]R � Dº ∙ 9:��� (37) 

 
where ¶· = [z$, z", … , zX]R. Then, we decompose the system into a stable part and an 

unstable part, and the IRKA is only applied to the stable part of the system. 

 
¿ zk���� = Bº� ∙ 9:���¶k ·��� = mº· ∙ ¶·��� � uº· ∙ 9:��� 

���� = C½� ∙ z���� � r½· ∙ ¶·��� � Dº ∙ 9:��� (38) 

The transfer function of (38) is 

 ���� = C½��t�Bº� � r½·�� ∙   − mº·�t§uº·ÀÁÁÁÁÁÂÁÁÁÁÁÃÄÅ	Æ;	4;ÇÈE;Ç	ÆÉ	Ê+ËÌ � Dº (39) 
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In the IRKA, only	r½$��  − mº·�t�uº$,	will be reduced, and the remaining part stays the 

same. Supposing that the transformation matrices generated in IRKA are V2 and W2, 

then the transformation matrices V and W are 

 � = x1 ¹ 0¹ �· ¹0 ¹ 1y ,				� = x1 ¹ 0¹ �· ¹0 ¹ 1y (40) 

 

Then we can use (26) to obtain the optimized basis function. Figure 4 summaries the 

steps of the optimal projection method developed in this thesis for solving diffusion 

PDEs 

 

Figure 4: Flowchart of the optimal projection method for solving diffusion PDEs 

3.5 Results and Discussions 

In this study the optimal basis function is constructed from Q��� = [1, �$, �Í, … , �$,]R. 

First, the Gram–Schmidt algorithm is applied to Q  to obtain the orthonormal 

elementary basis and test functions, � = [��, �$, … , �X]� . The model parameters, 

including the diffusion coefficient Ds = 3.9 × 10–10 cm2/s and particle radius Rp= 12.5 
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× 10–4 cm, were obtained from [49]. These model parameters have shown good 

agreement with experimental data of LixC6\LiyMn2O4 cells in [10].  

 

To compare the developed approach with available methods, the frequency responses 

of different methods are calculated, including finite difference (FD), volume averaging 

(VA), projection with even-order monomials (P), and our proposed method: projection 

with optimized basis functions (OP). The actual transfer function of the diffusion 

equation is given by [53] 

 ����� = !i1%
tanhO!iÒ� 1%⁄ POtanhO!iÒ� 1%⁄ P − !iÒ� 1%⁄ P.	 (41) 

 

Figure 5 shows the frequency responses of different methods compared with the true 

transfer function. At low frequency (e.g., <10-2 rad/sec), all methods well match the 

true transfer function. As the frequency increases, we see different performances for 

different methods. Overall, the FD method with 500 nodes (FD500) shows the best 

performance. However, it requires solving 500 equations, which is not feasible for real-

time applications. Our proposed projection method with optimized basis functions (OP) 

shows the best balance between accuracy and computational burden among those 

methods. Figure 5 shows that OP5 outperforms all other methods excepting for FD500. 

For example, OP5 is better than FD100 in high frequency domain, while it only requires 

solving about 20 times fewer equations compared to FD100. As expected, OP5 also 

outperforms VA and the projection with un-optimized basis functions (P5). The VA 

method developed in [26] performs well in the low-frequency domain but generates 
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large errors in the high-frequency domain. In addition, VA3 with 3 basis functions is 

worse than VA2 with 2 basis functions, although more basis functions are used in VA3, 

because the system equations generated by VA become unstable when using high order 

monomials.  

 

Figure 5:  Frequency responses of different methods compared to the true transfer 

function  

(FD5: finite difference with 5 nodes; FD100: finite difference with 100 nodes; FD500: 

finite difference with 500 nodes; P5: projection with un-optimized basis; OP5: our 

proposed projection method with optimized basis; VA2: volume averaging with 2 basis 

functions; VA3: volume averaging with 3 basis functions)    

 
More simulations were conducted to illustrate how the error changes with the number 

of states (or the convergence rate). Based on this investigation, we can determine how 
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many states are really necessary. Figure 6 shows a convergence rate comparison of the 

different methods. The relative error is calculated by the following equation in the 

frequency domain:  

 Ô���� = # ‖����� − ������‖$‖������‖$
Õ
, *� (42) 

 

The OP shows an exponential convergence rate, while the finite difference and the 

projection with original un-optimized basis present a linear convergence rate. The 

advantage of the proposed OP method is obvious. From Figure 6, the accuracy of the 

proposed OP with 3 states is similar to that of the un-optimized basis with 10 states and 

is 2 times better than FD with 10 states. With 5 states, the OP is almost converged, and 

there is no need to add more states.  

 

To compare the performance in time domain, three simulation studies are conducted 

with the time-varying flux jn(t). The first case is a 50s discharge step followed by a 

950s rest step as shown in Figure 7. This is to evaluate the algorithms’ performance in 

slow dynamics and steady-state simulations. The benchmarking result is obtained by 

using a FD method with 500 nodes, which is an accurate solution due to the high 

number of nodes used. The time-domain outputs using different methods are calculated 

and plotted in Figure 8. In the 50s discharge step, the results of FD100, P5 and OP5 are 

on top of that of FD500, meaning they are accurate for slow dynamics. VA2 and FD5 

are less accurate as they show obvious discrepancy from FD500 in the concentration 

estimation. In the rest step, after 950s rest, the system dynamics should set down and 
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converge to steady state. In this step, most algorithms including FD500, FD100, P5, 

OP5, and VA2 are converged to the same steady-state solution. However, FD5 shows 

a different steady-state solution, which can cause issues in actual applications, for 

example, errors in state of charge estimation.  

 

 

Figure 6:  Convergence comparison of different methods 

 

Figure 7:  50s flux and 950s rest applied to the surface of the particle 
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Figure 8:  Time domain outputs of different methods for slow dynamics 

 
The second simulation uses a pulse series with frequency 5Hz and duration 100s, which 

is to evaluate the algorithms’ accuracy in the simulation for fast dynamics. The 

waveform of the pulses is shown in Figure 9 (only the first second data is plotted in 

order to show the data clearly). The time-domain results are plotted in Figure 10 and 

the error comparing to baseline (FD500) is shown in Figure 11. Similar to the frequency 

domain result in Figure 5, in the high frequency simulations, our proposed OP5 shows 

obvious advantages comparing to P5, VA2, and FD5 as it better matches with the 

results of FD500. The VA2 and FD5 perform rather poorly and show large swings from 

the baseline.  
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Figure 9:  5Hz pulses applied to the surface of the particle 

The third case is based on federal driving schedule (FDS), which is to simulate the 

actual loading condition of a EV battery. The time-domain current waveform is shown 

in Figure 12, and its Fourier transform is shown in Figure 13. From Figure 13, we know 

that the main frequency components  of FDS are less than 2 Hz. In Figure 5, the transfer 

function of FD500 overlaps with the true transfer function for frequencies < 2Hz. 

Hence, here we can still use FD500 as baseline for the comparison. Figure 14 shows 

the simulation results of FDS based on different algorithms, and Figure 15 shows the 

simulation errors. Similar to the previous case, FD100 and OP5 are still the best among 

all methods. Table 1 summaries the comparison of the Root Mean Square Error 

(RMSE), computational time, and memory requirements (for the equation storage) of 

difference algorithms in the simulation of the FDS. OP5 has the least RMS error among 

all algorithms. OP5 reduces the computational time and memory by over 20 and 200 

times respectively compared to FD 100, and in the mean time, it is more accurate. With 

the same number of states, the proposed OP5 is also much better than the conventional 

P5 method, where the RMS error is reduced from 92 to 14.   
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The simulations above demonstrate that FD100, P5, and the proposed OP5 performs 

similarly for low frequency inputs in terms of accuracy. For high-frequency inputs, our 

developed method is superior to FD100 and P5. For applications where the current 

profile is stationary (e.g., constant current discharge), either FD100, P5, or OP5 should 

provide good performance. For dynamical applications, for instance, EVs, where the 

current consist of various transients due to starting, braking, and accelerating, the 

proposed OP5 method is the best among all the methods investigated in terms of 

accuracy and computational efficiency.  

 

 

Figure 10: Time domain outputs of different methods for 5Hz pulses 
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Figure 11: Errors of different methods compared to FD with 500 nodes 

 
 

 
Figure 12: Federal driving schedule (FDS) profile  
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Figure 13: Fourier transform of FDS 

 

Figure 14: Time-domain simulation of different algorithms based on FDS 
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Figure 15: Time-domain simulation errors of different algorithms based on FDS 

 
Table 1: Comparison of algorithm performance for diffusion PDE calculation 

Algorithm 
Simulation 

time (s) 
# equations 

RMS error 

(µmol/cm^3) 

Memory 

(byte) 

FD100 12 100 18 81680 

FD5 0.44 5 271 288 

OP5 (Proposed) 0.42 5 14 288 

P10 1.21 10 16 1768 

P5 0.43 5 92 488 

VA2 0.41 2 382 88 
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3.6 Summary 

Computational complexity is the major bottleneck for the application of any realistic 

electrochemical model in a real-time battery management system. In particular, the 

coupled solid-phase partial differential diffusion equations are the most 

computationally intensive. In this paper, a projection-based method with optimized 

orthonormal basis functions was developed to generate a reduced order model (ROM) 

from the solid-phase diffusion equations. The optimized basis function was constructed 

by linear transforming a set of orthonormal elementary basis functions. The linear 

transformation matrices were found by using the iterative rational Krylov algorithm. 

Simulation studies were conducted to compare the performance of the developed 

method with other commonly used algorithms, including finite difference, volume 

average and the projection method with conventional basis functions. The results show 

that the proposed method with optimized basis functions is the best in terms of accuracy 

and computational complexity among all the investigated algorithms. Particularly, in 

the simulation of high frequency inputs, which is common for EVs, our proposed 

method can reduce the root mean square error by more than 5 times compared to the 

conventional basis functions. In addition, compared with finite difference method, our 

proposed method can cut the computational time and memory requirement by over 20 

times and 200 times, respectively, while it does not lose any accuracy. The developed 

method can also be applied to solve electrolyte diffusion PDEs, and with proper 

modification, the developed method can be extended to solve 2-D or 3-D diffusion 

PDEs by adding basis functions in other dimensions.  
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Chapter 4: Moving Window Filter for SOC Estimation Based on 

Electrochemical Models 

 

4. 1 Introduction  

This section develops a new state filter algorithm based on the moving window to 

ensure the fast convergence of the SOC estimation. The filter gain of the moving 

window filter (MWF) is derived based on the maximum likelihood theory. The 

derivation of the filter gain assumes: (1) the measurement noise and process noise are 

Gaussian distributed with zero mean; (2) the system equations are continuously 

differentiable. The developed MWF is validated based on the federal driving schedule 

data from five cells and it shows improved performance compared with unscented 

Kalman filters.  

 

4.2 State Estimation Theory and Kalman Filters 

Information about system state is necessary to solve many control theory problems. For 

example, the power control of batteries will need the state of charge (SOC) information. 

In many practices, state can not be directly measured. For example, SOC of the battery 

cannot be directly observed. In control theory, state observer is an algorithm to estimate 

the internal state of a real system based on the input and output of the system. State 

filter is an improved approach of state observer as it takes the measurement noise and 

process noise into account. The measurement noise is normally caused by sensor errors, 

and process noise is usually due to modeling errors, e.g. unit to unit variations and un-
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modeled physics. The measurement noise and process noise are often modeled as 

Gaussian noise with zero mean and a certain standard deviation.  The commonly used 

state filter algorithms include: Kalman filter [30], extended Kalman filter [20, 30-34], 

and unscented Kalman filter (UKF) [38-41]. Figure 16 shows the flow chart of a 

standard Kalman filter. uk and yk are the input and output to the system respectively at 

time k. At each time step k, the input uk feeds into the state space model with an initial 

guess of the state �Ö� to provide an estimation of the output yk, and then the state filter 

tries to find an updated state value that minimizes the difference between the model 

predicted output and actual output. The initial state guess �Ö� is corrected by �� = �Ö� �
×��� − �Ö��, where the K is called filter gain and used to penalize the state error in 

order to correct the state in the right directions.  

 

 

Figure 16:  Flow chart of Kalman filter 

Kalman filter is used for linear systems and it is the optimal filter for Gaussian 

measurement and Gaussian process noise. For nonlinear systems, extended Kalman 

filter and unscented Kalman filter are commonly used. State of charge estimation is a 

nonlinear problem, because the OCV of the battery is nonlinear. Unscented Kalman 
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filter has been demonstrated in the literature that it can provide better results compared 

with extended Kalman filter. However, problems still exist for state of charge 

estimation using unscented Kalman filter. When the initial state of charge guess 

presents high error, e.g. > 40% SOC error, the filter convergence could be slow. Here 

is an example shown in Figure 17. The unscented Kalman filter is used with 

electrochemical model for SOC estimation of a LiFePO4 battery. The initial SOC error 

is 40%. Black line is the actual SOC value, while red line is the UKF estimation. The 

UKF can gradually converge to true value. However, it takes around 30 minutes for the 

UKF to converge. The convergence is too slow and can cause inconvenience usage 

experience. For example, if you are planning for a trip with electric car, you need to 

wait 30 minutes to get accurate range prediction, which is undesirable. To overcome 

SOC estimation error, a common practice is to over-design the battery to have buffer 

to ensure users have enough juice to accomplish the mission. Therefore, a state 

estimation algorithm that converges faster can not only improve the customer 

experience but also can reduce the over-design of the battery to save the cost.  

 

In this thesis, we developed a new state filter algorithm which converges faster than 

Kalman filters and applied the developed approach for SOC estimations. We compared 

the developed approach with UKF, to quantify the improvements. In next section, we 

will present a brief introduction of UKF, which we will use it as the benchmark for 

performance comparison, and after that, we will discuss the theoretical background and 

derivations of the new moving window filter (MWF); In final section, we will compare 

the developed new filter with UKF with realistic test cases.  
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Figure 17: Unscented Kalman filter-based SOC estimation with 40% initial SOC 

error  

SOC estimation is a nonlinear problem. The nonlinearity can be seen in the 

measurement model, where OCV(SOC[k]) is highly nonlinear, as shown in Figure 18. 

For the nonlinear state estimation problem, the extended Kalman filter (EKF) is a 

standard approach. The problem with EKF is that it only uses first-order or second-

order terms of the Taylor series expansion to approximate the nonlinear functions. 

Large errors are produced if the model is highly nonlinear. In this study, we utilized an 

unscented Kalman filter (UKF), which is accurate to the third order, in the sense of a 

Taylor series expansion for any nonlinearity [54]. UKF is a direct application of the 

unscented transform (UT), which is a statistical tool. In UT, a Gaussian distribution is 

represented by a set of carefully chosen sample points called sigma points. These sigma 

points capture the mean and covariance of the Gaussian random variables (GRVs) 

when propagated through a nonlinear function. UKF has been applied to system 

estimation [55, 56], anomaly detection [57, 58], and prognostics [59, 60].  
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Figure 18:  OCV-SOC curve of 5 LiFePO4 cells  

 Assume that a Gaussian random variable x (dimension L) has mean x and covariance

xP . Consider propagating x through the nonlinear function ( )g=y x . To calculate the 

statistics of y , we first find a matrix χ of 2L+1 sigma vectors iχ with corresponding 

weights iW , according to the following equations [54]:  
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(43) 

where 2 ( )L Lλ α κ= + − is a scaling parameter, α determines the spread of the sigma 

points around x , κ is another scaling parameter which is set to 3 – L, and β  is used to 

incorporate prior knowledge of the distribution of x . For Gaussian distributions, 2β =
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is optimal [54].  ( )( )x
i

L λ+ P is the i-th column of the matrix square root of ( )L λ+ xP . 

Then, each sigma point is propagated through the nonlinear function ( )i iy g χ= , 

0,.., 2i L= . The estimated mean and covariance of y are computed by the weighted 

sample mean and covariance as follows: 

 2
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(45) 

The UKF is a straightforward application of the UT for state estimation. The main steps 

of UKF are summarized below: 

(1) Initialize with [ ]0 0
ˆ E=X X and ( ) ( )0 0 0 0 0

ˆ ˆ T

E= − − 
 

P X X X X  

(2) For { }1,...,k ∈ ∞ , calculate sigma points: 

 
1 1 1 1 1 1

ˆ ˆ ˆ
k k k k k k

γ γ− − − − − −= + − 
 χ X X P X P

 (46) 

 (3) State prediction:  

Propagate the sigma points through the state model:  

 
| 1 | 1k k k k− −=   χ H χ  (47) 

Calculate the propagated mean:  

     2
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, | 1
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L
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k i i k k

i

W
−

−
=

= ∑X χ

 
(48) 
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Calculate the propagated covariance: 
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(49) 

 

(4) Measurement update: 

Propagate sigma points through the measurement function:  

 
| 1 | 1k k k k− − =  y H χ

 (50) 

Calculate the propagated mean:  
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Calculate the estimated covariance  
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(52) 

Calculate the Kalman gain K and update the state estimation and covariance: 
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4.3 Moving Window Filter 

Conventional state filtering methods are sequential estimation algorithms, which utilize 

the measurements at a single time point to provide the state estimation. Figure 19 shows 

the a schematic plot for conventional sequential state filters, e.g. Kalman filter. This 

approach is computational efficient. However, as we discussed before, it can converge 

slow and in addition, it may not robust to outliers in the measurement. Therefore, in 

this thesis, we are trying to develop an approach to improve the state filters. One 

method is to use more data points in the estimation. For example, as shown in Figure 

20, we can use a moving window of N data points (from T-N+1 to T) to provide state 

estimation at T-N+1. The estimation accuracy and robustness should be improved as 

more data points are involved in the estimations. The key question is how to calculate 

filter gain in this method. 

 

Figure 19: Conventional sequential estimation scheme 
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Figure 20: Moving window state filter  

Let’s consider a maximum likelihood estimation problem: 

 ��Ø����)ÙÚÛÜÝ Þ���tX��|�,, ��, … , ��� (54) 

Based on Bayes’ theorem [61, 62], we have the following: 

 

��Ø����)ÙÚÛÜÝ
Þ��,, ��, … , ��|��tX���Þ���tX���Þ��,, ��, … , ���  

= argm���)ÙÚÛÜÝ
áO�,, ��, … , ��tXâ��tX��P∏ áO��â��PÙäåÙÚÛÜÝ á�)ÙÚÛÜÝ�á�Éæ,ÉÝ,…,ÉÙ�  

= argm���)ÙÚÛÜÝ
á�)ÙÚÛÜÝ|Éæ,ÉÝ,…,ÉÙÚÛ�á�Éæ,ÉÝ,…,ÉÙÚÛ�∏ á�Éä|)ä�ÙäåÙÚÛÜÝ á�)ÙÚÛá�Éæ,ÉÝ,…,ÉÙ�á�)ÙÚÛÜÝ�

= argm���)ÙÚÛÜÝ Þ���tX��|�,, ��, … , ��tX�	∏ Þ���|�����5�tX��  

 

(55) 

Eq. (55) is equivalent to a quadratic estimation problem  

 

��Ø��	)ÙÚÛÜÝ ����tX��� = 	 Oç − è��Ö�tX���P�¬t§Oç − è��Ö�tX���P 

																																		����tX�� − �Ö�tX����∏�tX��t� ���tX�� −�Ö�tX���  
 

 

(56) 

Base on first order optimality: 

 
éê�)ÙÚÛÜÝ�é)ÙÚÛÜÝ 	=	0			

 
(57) 

We have: 

 ��tX�� = �Ö�tX�� �∏�të�§ì��¬� � ì�∏�të�§C�C�C�C�t§�y�y�y�y----H�H�H�H��Ö�tX����������	 (58) 

where  
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 ç	=	[��tX��, ��, … , ��]�	
 

(59) 

 è�ð� = 	
®̄
¯̄
° ℎ���ℎ�����ℎ��������…ℎ����O…����P�±²

²²
³

X×�
 

 

(60) 

 

 � = fè���tX���f��tX��  (61) 

 

 �Ö�tX�� ∶ ���		��	Þ���tX��|�,, ��, … , ��tX�	 (62) 

 ∏�të�§:	
��. ��	Þ���tX��|�,, ��, … , ��tX� (63) 

In Eq. (58), 	∏�të�§ì��¬� � ��∏�të�§C)
t§

 is the gain of the filter. The gain has the 

similar structure as Kalman filter. However, the definition of the matrices in the gain 

is different from Kalman filter. Figure 21 shows the implementation of the moving 

window filter (MWF) for SOC estimation. At each time step T, N data points will be 

used to update the states.  
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Figure 21: Moving window filter implementation  

4.4 Experimental Validation  

To validate the proposed approach, experiments were conducted to collect battery data.  

Figure 22 shows the experimental setup. 5 LiFePO4 batteries were tested in this 

research. Arbin BT 2000 was used to control the battery charging discharge, and the 

voltage, current, and temperature data of the battery were collected. Figure 23 shows 

the current profile used in the test, which is converted from the speed profile of federal 

driving schedule (FDS) based on an EV model. This is in order to simulate what the 

battery can experience in the actual driving condition.  
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Figure 22: Experimental Setup  

 
Figure 23: Federal driving schedule (FDS) current profile  

 
Figure 24: Federal driving schedule (FDS) velocity profile  
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The collected data is used to test the performance moving window filter with the 

electrochemical model. The electrochemical model parameters were obtained from 

[63].  First, we examined the effects of the window size on the SOC accuracy. Figure 

25 shows the results. We can see that the SOC estimation error reduces with the 

increasing of window size, especially when the window size increases from 2 to 4. 

After 4, there is not much improvement. Hence, in next paragraphs, we will use a 

window size of 4 for the state estimation and compare the results with unscented 

Kalman filter (UKF).  

 
Figure 26 shows the comparison results of Cell #1. Black line is actual SOC, which 

obtained by Coulomb counting as we know the initial condition and the sensor is 

accurate in the lab.  The red line is the MWF, which converges to true value in less than 

2 mins. The UKF result is in blue line. It takes about 30mins for the UKF to converge. 

Therefore, MWF outperforms UKF.  Figure 27 to Figure 30 show the comparison 

results for Cell #2 to Cell #5. MWF shows consistent improvements over UKF. 

 
Figure 25: Effect of window size on the filter accuracy  
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Figure 26: SOC estimation comparison of cell 1 

 
Figure 27: SOC estimation of cell 2 
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Figure 28: SOC estimation of cell 3 

 
Figure 29: SOC estimation of cell 4 
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Figure 30: SOC estimation of cell 5 

 
Table 2 summarizes the results of all 5 cells. For convergence analysis, only the first a 

few minutes are important as we want to see which filter converge faster. Therefore, in 

Table 2, only the first 10mins error were estimated. We can see the MWF’s 

improvements over UKF is significant as the SOC error decreases from >10% to 3%.  

 

The computational efficient electrochemical model is used here with state filters for 

SOC estimation. The MWF not only converges fast, but also demonstrates good 

capability to handle unit to unit variations, because here the model parameters are 

learned from Cell #1 and then the same parameter set is applied to different cells.  
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Table 2: Summary of SOC estimation results based on electrochemical model 

and MWF 

Cell ID 

Root Mean Square Error  (first 10mins) 

UKF MWF 

Cell 1 12.1% 2.4% 

Cell 2 19.7% 2.5% 

Cell 3 12.4% 1.5% 

Cell 4 18.1% 2.1% 

Cell 5 12.1% 1.6% 
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Chapter 5:  Improved Data-driven Approach for SOC 
Estimation 
 

5.1 Introduction 

Data-driven approaches do not require the understanding of battery physics, and are 

easier to be implemented compared with physics-based approaches, especially for new 

battery chemistries, where the battery physics are not fully understood and material 

properties are not available.  

 

This section investigates a data-driven approach for battery SOC estimation based on 

neural networks. The neural networks are trained by using voltage and current as the 

inputs, and SOC as the output. There are fairly few assumptions behind the neural 

network application, as it does not require the data to follow a certain distribution or 

structure. The only assumption of the application is that there exist function mappings 

between voltage, current and SOC, which should be always true based on battery 

physics.  

 

Data-driven approaches are highly dependent on the training data. If the model is 

trained based on one cell or one loading condition, when it is applied to other cells and 

other loading condition, it may generate larger errors. That is the generalization 

problem of the data-driven approach. Therefore, in this section, we also develop a 

method to improve the generalization capability of the data-driven models by using 

moving window filters.  
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5.2 Theory of Neural Network 

Neural networks (NNs) are computational intelligence tools that have been widely used 

for system modeling [54, 61, 62, 64-71], anomaly detection [72, 73], prognostics [74, 

75] , and classification [76, 77]. An NN comprises a set of interconnected simple 

processing elements called neurons that mimic the information processing and 

knowledge acquisition capabilities of the human brain. There are several characteristics 

of NNs that make them an attractive choice for system modeling: firstly, NNs can fit 

any nonlinear function with sufficient neurons and layers to make them suitable for 

complex system modeling; secondly, NNs can learn and update their internal structure 

to adapt to a changing environment; in addition, NNs are efficient in data processing 

because of their parallelism in computation; moreover, NNs are data-driven in nature 

and able to build an accurate system model without detailed physical knowledge of a 

system [78].   

 

Many types of NNs have been proposed, including Hopfield networks, feed-forward 

(FF) networks, recurrent networks, and radial basis function (RBF) networks. The feed-

forward network is the most widely used type of NN. It consists of an input layer with 

nodes to represent the input variables, one or more hidden layers with nodes to mimic 

the nonlinearity between the system input and output, and an output layer to represent 

the system output variable. Figure 31 shows the structure of an FF network for SOC 

estimation. The inputs to the neural network are current (I), voltage (V), and 

temperature (T), and the output is the battery SOC. The nodes between two adjacent 
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layers are interconnected. The input layer passes on the inputs with weights; no 

processing takes places in this layer. The hidden layers and output layers are processing 

layers with the activation function at each node. The hyperbolic tangent sigmoid 

function is often used in the hidden layer as an activation function. It is defined as 

follows:  

 

 ( ) 2

2
1

1
tansig u

u
e−= −

+
F

 
(64) 

 

In the output layer, the linear transfer function is used as an activation function for 

regression and fitting problems, as shown below: 

 ( )lin u u=F  (65) 

 
The output of a processing node j in the hidden or output layer is given by:  

 ( )j j ij i j

i

y u x bω = = + 
 
∑F F

 
(66) 

 

where ix  is the output from the i-th node at the previous layer, ijω is the weight of the 

interconnection from the i-th node of the previous layer to j-th node of the present layer, and 

jb  is the bias. The net weights ijω  and biases jb  need to be determined based on training data. 

The back propagation algorithm is used in this study to determine these parameters. Back 

propagation means that an error during network training can propagate from the output layer 

to a hidden layer and then to the input layer to estimate the optimal neural weights of each 

node. To learn more about the BP algorithm for neural network weight estimation, see [79].  
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Figure 31:  The structure of a multilayer feed-forward neural network 

5.3 Training and Testing Data 

A practical concern for training the NN is that the real-life loading conditions of 

batteries are complex and uncertain. For example, for EVs, the loading condition may 

vary with road conditions, speeds, and driving styles. As a result, the training data 

should cover the real-life loading conditions as much as possible in terms of SOC span, 

current and voltage range, and loading changing rate. For example, the training 

database can be constructed from the battery tests using simulated driving cycles. Also, 

the data collected during the field application of EVs can be used to improve the 

performance of the NN. Furthermore, the NN should have a generalization capability 

in case a loading condition is not included in the database.  

 

In this paper, the training data are collected using a dynamical stress testing (DST) 

profile, as specified in the US Advanced Battery Consortium (USABC) testing 
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procedures [80]. The current profile of the DST is shown in Figure 32. Although DST 

consists of a variety of current steps with different amplitudes and lengths and takes 

into account regenerative charging (as shown by the negative amplitudes in Figure 32). 

it is still much simpler than the real-life loading conditions of batteries. DST will be 

used in this paper as training data to examine the NN’s accuracy and generalization 

capability for complex real-life loading conditions for SOC estimation. Figure 34 

shows the test setup of the experiments. 5 LiFePO4 batteries which are typically used 

for EVs, were tested. The maximum capacity of the battery is 2.3 Ah. The battery was 

put in the temperature chamber, and the temperature of the cell was measured. The 

Arbin BT2000 was used to control the charging and discharging of the battery.  

 

The testing data of the NN should be different from the training data. In this study, the 

testing data were collected using Federal Driving Schedule (FDS) [81], which is shown 

in Figure 33. FDS are much more complex than the DST in terms of the changing rate 

of the current. This profile was used to test the robustness and generalization of the 

NN.  

 

The NN training can be made more efficient and robust through proper normalization 

of the data. Therefore, before training, the inputs are normalized to the range [-1, 1] by 

the following equation: 

 

 ( )min

max min

2
1

x x
x

x x

−
= −

−  
(67) 
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where minx  and maxx are the minimum and maximum in the input vector x of the NN. In 

the testing step, the testing data should also be scaled using the same minx  and maxx used 

in the training data.  

 

 

Figure 32: Dynamical Stress Testing (DST) profile, which will be used as 

training data 

 
Figure 33: Federal Driving Schedule (FDS), which will be used as testing data 
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Figure 34:  Experimental setup for battery tests 

5.4 Determination of the Neural Network Structure  

Several equivalent circuit models (ECMs) have been developed for SOC estimation. 

Based on an ECM, the OCV of a battery can be estimated using the measured voltage 

and current. Then, the SOC can be inferred using a predetermined OCV–SOC lookup 

table. Similarly, an NN-based model tries to determine a relationship between the SOC 

and the measured voltage and current. The difference between NN and ECM is that NN 

will infer the SOC directly from the voltage and current measurement without an OCV–

SOC lookup table. Thus, this approach eliminates the time-consuming tests necessary 

to establish an OCV–SOC lookup table. The adaptation of the NN-battery model to 

different chemistries is convenient and efficient.   

 

In this study, the inputs of the NN were the current and voltage measurements. Because 

of the capacitive resistance in the battery, the current and voltage in the previous 

samples will affect the present battery state. Therefore, the measurements of previous 

samples were also input into the NN model. In addition, to avoid over-training of the 
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NN, 1 sample was selected out of every 4 samples to train the NN. The inputs of the 

NN at time i were [ I(i), I(i–4),…,I(i–4k), V(i), V(i–4),…, V(i–4k), T(i), T(i–4),…, T(i–

4k)] and the output was SOC(i), where k was a constant that depended on the time 

constant of the battery system response and was determined before training the NN.  

 

Another practical problem with the application of NN is that the number of hidden 

layers and the number of neurons at each layer need to be determined. There are some 

“rules of thumb” for determining an optimal NN structure. First, there is no theoretical 

reason to use an NN with more than 2 hidden layers since it has been proven that a 2-

layer NN can fit to a function with any kind of shape [32-34]. Second, the presence of 

too many neurons will present a risk of over-fitting, while too few neurons will under-

fit the data. We adopted a constructive method to determine these parameters, as well 

as the parameter k of the NN inputs. The NN was constructed starting from the simplest 

version with low-dimension inputs to a complex structure with high-dimension inputs. 

If the training error is not acceptable, then additional nodes will be added and the 

dimension of the inputs will be increased. Once the training error is acceptable, then 

the optimization is terminated. The following algorithm provides detailed procedures 

to determine the NN structure and the parameter k:  

 



 

 

67 
 

 

Algorithm 1 A constructive approach for the structure determination of neural 
networks for SOC estimation 
 

Using Algorithm 1, the parameters of the NN were determined to be k = 30 and n = 5.  

 

5.5 Training and Testing Results 

Figure 35 shows the NN training results for Cell #1 with 5 neurons in each layer based 

on the DST data. The solid curve is the SOC calculated by Coulomb counting. Since 

the battery was discharged from 100% SOC and the integration error was negligible 

because the current sensor was well calibrated, the solid curve is regarded as the actual 

SOC for the comparison. The neural network can fit the DST data pretty well, as the 

RMS error is only 0.3%. However, when applying the trained NN to FDS data of cell 

#1, the RMS error of SOC is increased to 3.3% and max error is higher than 10%.  The 

errors mainly present in the middle SOC range (30~80%) due to the flat plateau of the 

LiFePO4 batteries’ discharge characteristics. The problem cannot be simply solved by 

adding more neurons to get better fit. As an illustration example, we trained the neural 

network with 15 neurons in each hidden layer based on the DST data, and then use it 

to estimate the SOC of Cell #1’s FDS data again. Figure 38 shows the training results 

Step 1: Initialization: k = 1, n = 1, where k is a parameter used to determine the 
dimension of the input vector, and n is the number of neurons in the hidden layers.  

Step 2: Train the neural network with [ I(i), I(i–4),…,I(i–4k), V(i), V(i–4),…, V(i–4k) , 

T(i), T(i–4),…, T(i–4k)] as input and SOC (i) as output.  

Step 3: Calculate the root mean square (RMS) error between the NN estimated 
output and the actual SOC.  

Step 4: If the RMS error <1%, then the searching is ended; else if k < 2n, k = k+1 
and go to the step 2; else n = n+1, k = n and go to Step 2.  
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and we can see the fitting is better with more neurons, and RMS error is reduced to 

0.2%, however, the testing results with the FDS data actually gets worse and the error 

increases to 3.7%. Hence, if the neural network is trained to an RMS that is too low, it 

may lose its generalization ability. To prevent over-fitting, a simple structure neural 

network is preferred. To prevent under-fitting, we trained the neural network to a 

reasonable RMS error that is sufficient to capture the dynamics of the battery. 

 

Figure 39 to Figure 42 present the NN SOC estimation results for Cell #2 to Cell #5. 

The results are worse than that of Cell #1, and there are lots of sudden jumps or drops 

in the estimation, that’s because the model is trained from Cell #1, and there are unit to 

unit differences between cells. For applications, such as electric vehicles (EVs), this 

will confuse the user, as the residual range prediction of the EV may change drastically 

from time to time.  The model estimation error is potentially due to the unit to unit 

variations, since our model is trained to Cell #1 only. We could mitigate this issue by 

training the model to each individual cell. However, this is not practical in many actual 

applications. For example, for companies that ship millions of product each year, it is 

infeasible to develop a model for each individual cells. Therefore, the generalization 

capability of the model is extremely important. Approaches to improve the 

generalization capability model to address the variations due to unit to unit differences 

and loading condition changes must be developed for the practical use of data-driven 

models, and this is the main research objective this chapter.  
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Figure 35: Neural network training results of cell #1 with 5 neurons for each layer 

based on DST data  

 

Figure 36: Testing results of neural network with 5 neurons in each layer for Cell 

#1 FDS data  
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Figure 37: Training result of neural networks with 15 neurons in each player 

based on Cell #1 DST data  

 

Figure 38: Testing results of neural network with 15 neurons in each layer for Cell 

#1 FDS data 
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Figure 39: NN SOC estimation results for Cell#2 FDS data, where NN is trained 

based on Cell#1 DST data  

 
Figure 40: NN SOC estimation results for Cell#3 FDS data, where NN is trained 

based on Cell#1 DST data  

 

0 0.5 1 1.5 2 2.5 3 3.5
Time (S) 104

0

20

40

60

80

100

S
O

C
(%

)

RMS=8.0%

Actual
Estimate

0 0.5 1 1.5 2 2.5 3 3.5
Time (S) 104

0

20

40

60

80

100

S
O

C
(%

)

RMS=8.8%

Actual
Estimate



 

 

72 
 

 
Figure 41: NN SOC estimation results for Cell#4 FDS data, where NN is trained 

based on Cell#1 DST data  

 

Figure 42: NN SOC estimation results for Cell#5 FDS data, where NN is trained 

based on Cell#1 DST data  
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Figure 43: Flowchart of the combined approach of neural network and moving 

window filter  

5.6 Developed Solution by Combing NN with State Filters  

We have demonstrated in last chapter that state filter can effectively handle unit to unit 

variations, and it can also uncover the underlying states from noisy measurements. The 

neural network outputs have high variations and jump up and down around the true 

values. We could consider the neural network outputs as the noisy measurements, and 

our objective is to remove the noise and uncover the true SOC values. Based on 

experience from previous chapter, the state filter can be used to address this problem. 
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To use the state filter, we have to reformulate the neural network to fit in the structure 

of the state filtering frame work.  

 

In state filter, we need a state-space model including state functions and measurement 

functions. We propose to use the physics of the SOC evolution, i.e. Coulomb counting 

rule as the state function, which can ensure the smooth transitions of the SOC and avoid 

the sudden jumps. Since we consider NN outputs as noisy measurements of SOC, the 

measurement function would be the neural network SOC output equal to state function 

output plus noise as shown in (69).  

 �����	��	
���	:	����ó � 1� = ����ó� − ô�ó�õDö'() � �	
 

(68) 
 

 ���������	�	��	
���	:	ee�ó � 1� = ����ó � 1� � =	 (69) 

 
Based on the state-space model, we can use the moving window filter (MWF) to filter 

out the noise from the NN outputs. The implementation flowchart of the combined NN 

and MWF approach is shown in Figure 43. Figure 44 to Figure 48 shows the SOC 

estimation results for Cell#1 to Cell #5. Again, the model used for different cells is the 

same and is learned from Cell#1’s DST data, which is a different loading condition. 

Using the combined approach, the accuracy is improved consistently for all cells as you 

can see from Table 3, which summarizes the estimation errors.  For example, the SOC 

estimation error of Cell #2 is reduced from 80% to 1.8% by using the new approach 

compared with original NN model. In addition, there are no sudden jumps and drops in 

the SOC any more. Smooth estimation of SOC is guaranteed.  
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Figure 44: SOC estimation results for Cell #1 FDS data based on the combined 

NN&MWF approach 

 
Figure 45: SOC estimation results for Cell #2 FDS data based on the combined 

NN&MWF approach 
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Figure 46: SOC estimation results for Cell #3 FDS data based on the combined 

NN&MWF approach 

 

Figure 47: SOC estimation results for Cell #4 FDS data based on the combined 

NN&MWF approach 
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Figure 48: SOC estimation results for Cell #5 FDS data based on the combined 

NN&MWF approach 

Table 3: Summary of SOC estimation results based on the data-driven approach  

Cell ID 
SOC Root Mean Square Error 

NN NN+MWF 

Cell 1 3.3% 1.5% 

Cell 2 8.0% 1.8% 

Cell 3 8.8% 2.5% 

Cell 4 18.9% 3.9% 

Cell 5 23.3% 3.4% 
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5.7 Conclusions and Discussions  

 
In this chapter, a state of charge (SOC) estimation approach was developed based on a 

feed forward neural network and a moving window filter (MWF). Neural network is a 

data-driven approach which can approximate the input and output relation of a system. 

Based on this advantage, the nonlinear mapping relationship of the SOC with the 

current and voltage measurements was modeled by a 2-layer feed-forward neural 

network. This study adopted a searching method to determine the best number of nodes 

and the dimension of the neural network inputs. This searching method begins with the 

simplest network structure with low dimension inputs and goes to a complex network 

with high dimension inputs until the RMS error of the trained model reaches 1%.  

 

To estimate battery SOC, the inputs of the neural network were the voltage and current 

measurements and the output was the SOC. The data collected from the dynamical 

stress testing were used to train the neural network, and the data acquired from the 

Federal Driving Schedule were used to test the accuracy and generalization capability 

of the neural network. The overall RMS error of neural network based SOC estimation 

from 100% to 0% SOC was larger than 8% for most of the cells. High estimation 

variations were shown at the flat discharge zone of the LiFePO4 battery, i.e., 30–80% 

SOC, which is not desirable in EV applications, since it will result in a sudden drop or 

jump in the residual range prediction and cause inconvenience and anxiety to drivers.  

Thus, to further improve the estimation accuracy and reduce the estimation variance, a 

MWF-based approach was implemented to filter out the errors in the neural network 
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estimation. After the filtering, the RMS error of the overall SOC estimation was 

reduced to less than 4%  

 

This modeling approach eliminates the need to determine an open circuit voltage–SOC 

lookup table, unlike the equivalent circuit model based SOC estimation. The data 

required to train the model are current, voltage, and SOC. Therefore, the field collected 

data can be used to update the neural network and increase the estimation accuracy.  
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Chapter 6:  Contributions and Suggestions for Future Research  
 

6.1 Contributions of this Dissertation 

Contributions of this thesis include the following: 

1) Computational complexity of electrochemical models is the major obstacle for the 

application of electrochemical models to the real-time battery SOC estimation. The 

diffusion partial differential equations (PDEs) in solid phase particles contributes 

more than 80% calculations of the full model. Available methods for solving PDEs 

are either too computationally intensive or numerically instable. This work 

developed a new computationally efficient numerical solution for the diffusion 

PDEs in solid phase particles based on the optimized projection method. The new 

solution guarantees numerical stability and minimizes the computational 

requirements:  

– Developed a method to generate numerical stable equations for the diffusion 

PDEs in solid phase particles. This was achieved by using orthonormal basis 

functions and reformulating the generated differential algebraic equations 

(DAEs) to ordinary differential equations (ODEs). A process to generate 

orthonormal basis functions from elementary basis functions (e.g. 1, r2, r3, 

…, r2n) was developed based on Gram-Schmidt algorithm.  

– Developed an algorithm to optimize the basis function for the diffusion 

PDEs in solid phase particles, in order to reduce the number of generated 

equations after the projection of the PDE. The optimized basis functions 

were formulated by a linear transformation of the high-order orthonormal 
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basis functions. The transformation matrix was found by minimizing the 

second-order norm difference between the reduced order model and the 

high-order model. The optimized basis function generates much less 

equations compared with the original orthonormal basis functions, while 

keeps the similar accuracy and preserves numerical stability. The evaluation 

results showed that the developed method significantly improves efficiency 

and reduces the memory requirement of diffusion PDEs. For instance, the 

developed algorithm is 20 times more efficient than conventional finite 

difference method and 3 times more efficient than the conventional 

projection method.  

Besides being used in solving solid diffusion PDEs in this thesis, the developed 

optimized projection method can be applied to solve electrolyte diffusion PDEs, 

and can be extended to solve multi-dimension diffusion PDEs, to enable more 

efficient and accurate calculations.  

 

2) Conventional state filter algorithms, e.g. extended Kalman filter and unscented 

Kalman filter, converge slowly given large initial SOC estimation errors (e.g. 40% 

SOC errors).  This thesis developed a moving window filter (MWF) that utilizes 

data from a moving window, which can converge faster than traditional Kalman 

filters. The filter gain was derived based on maximum likelihood theory. The MWF 

was implemented with the computationally efficient electrochemical model 

developed in the first part, and was validated using experimental data based on the 

federal driving schedule. It showed that the MWF can reduce the convergence time 
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from 30mins to less than 2mins compared with unscented Kalman filter for the SOC 

estimation.  

 

3) The major disadvantage of data-driven models is their ability to generalize, which 

means that a trained model can generate large estimation errors for the loading 

conditions that are not included in the training data set. To solve this problem, this 

thesis developed a hybrid data-driven method for SOC estimation, which combines 

the neural network and the moving window filter. The new approach significantly 

improves the neural network performance, for example it reduces more than half of 

the SOC estimation error compared with the original neural network approach. The 

developed approach can effectively improve the generalization capability of the 

neural network. 

 

6.2 Suggestions for Future Research 

The future research can focus on how to take the battery aging into account for SOC 

estimation. For electrochemical models, it means that the model parameters have to be 

updated with aging, for example, the cycliable lithium will diminish and film resistance 

will grow with aging. For data-driven models, like neural networks, the model may 

have to be re-trained in order to represent the current aging state. Two approaches can 

be used to solve this problem. The first one is to develop the aging model based on lab 

or field data off-line. This will require us to identify an aging indicator, and then build 

a model to describe how the model parameters change as a function of the aging 

indicator. The second approach is to develop an on-board parameter updating algorithm 
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to estimate the parameters based on in-situ collected data. Ideally, this approach would 

be better than the first one, because model can be adapted to particular cells, while the 

first approach may only be able to capture a median aging trend among a distribution 

and unit-to-unit variation can be an issue. With these merits, however, the development 

of the on-line parameter updating algorithm is challenging, as it is difficult to prove the 

stability of the on-line update algorithm. In addition, to avoid out of range estimations, 

constraints must be implemented for the optimization, as a result, iterative 

optimizations may be necessary. How to reduce the computational complexity of the 

optimization and how to ensure the convergence of the optimization for on-line 

parameter estimation can be the major topics in this research direction.  
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