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The cationic cyclopentadienyl zirconium acetamidinate (CPZA) complex 

{Cp*ZrMe[N(Et)C(Me)N(tBu)]}[B(C6F5)4], (Cp* = η5-C5Me5) generated through 

activation of Cp*ZrMe2[N(Et)C(Me)N(tBu)] via protonolysis of a methyl group with one 

equivalent of [PhNMe2H][B(C6F5)4], has been shown to be a highly active initiator for 

living α-olefin polymerization.  Discrete cationic CPZA alkyl complexes of the general 

structure {Cp*ZrR[N(Et)C(Me)N(tBu)]}[B(C6F5)4] were studied as model complexes for 

living polymers derived from this system.  Detailed analysis of models in which R = nPr, 

iPr, iBu, and 2-Et-Bu, as well as living isotactic poly(1-butene) and living isotactic 

poly(1-13C-decene) revealed significant differences with respect to isomerization and 

decomposition.  Studies carried out with various isotopically labeled iso-butyl derivatives 

revealed isomerization concurrent with decomposition, while the only case which did not 

provide evidence for isomerization was an isotopically labeled n-propyl derivative.  

Products of decomposition in cases of R = iBu and 2-Et-Bu included not only the 



expected alkenes from isomerization/β-hydride elimination, but significant quantities of 

alkane.  This is proposed to arise from competitive intramolecular abstraction of a 

hydrogen from the Cp* ligand.  During decomposition, all species mentioned above 

disappeared in a first order manner, and all products of decomposition/isomerization 

appeared in a zero order manner. This is consistent with slow β-hydride elimination 

followed by rapid isomerization, decomposition or reinsertion.  Possible mechanisms of 

isomerization are discussed. 

 The {Cp*ZrMe[N(Et)C(Me)N(tBu)]}[B(C6F5)4] initiator was found to be an 

active initiator for the living isotactic polymerization of propylene ([mmmm] = 0.71).  

When substoichiometrically activated with only 0.5 equivalents of [PhNMe2H][B(C6F5)4], 

atactic polypropylene was produced due to the rapid degenerative transfer of methyl 

groups between active and dormant centers, which results in the racemization of active 

sites by virtue of the configurational instability of the dormant state.  Successive 

additions of [PhNMe2H][B(C6F5)4] and a methylating agent were used to modulate the 

conditions of the polymerization system between degenerative transfer (at 50% activation) 

and fully activated conditions to produce the first discrete, homogeneous isotactic-atactic 

stereoblock polypropylene (sb-PP) materials.  Preliminary tensile testing of three unique 

sb-PP materials displayed elastomeric properties that were heavily dependant on the 

stereoblock architecture.  The synthesis of a wide range of polypropylene stereochemical 

microstructures between isotactic and atactic through bimolecular control by 

substoichiometric activation was also demonstrated, leading to the development of a 

fundamentally new architecture: stereogradient polypropylene. 

 



 

 
 
 
 
 
 
 
 

EXAMINATION OF DYNAMIC PROCESSES IN LIVING ZIEGLER-NATTA 
POLYMERIZATION AND NEW POLYPROPYLENE ARCHITECTURES 

THROUGH BIMOLECULAR CONTROL 
 
 
 

By 
 
 

Matthew Brian Harney 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2006 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Lawrence R. Sita, Chair 
Professor Jeffery T. Davis 
Professor Bryan W. Eichhorn  
Professor Andrei N. Vedernikov 
Professor Peter Kofinas 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Matthew Brian Harney 

2006 
 
 
 
 
 
 
 
 
 
 
 

 



Dedication 

 
 
I would like to dedicate this work to my wife, Christine J. Harney, without whom I would 
not be where I am today. 

 ii



Acknowledgements 

 
 

I would like to thank my advisor, Prof. Lawrence R Sita, for his guidance and 

support.  His passion for chemistry and commitment to excellence has made my time at 

the University of Maryland a truly remarkable experience.   

I would also like to thank the members of the Sita group both past and present.  In 

particular, the friendship and enthusiasm of Dr. Richard J. Keaton and Dr. Yonghui 

Zhang ensured that each day was not only productive, but enjoyable.     

A great deal of this work is based on NMR spectroscopic analysis.  Without the 

expertise of Dr. Yiu-fai Lam and Dr. Yinde Wang, none of this would have been possible. 

Finally, special thanks to my parents, Dr. Brian Harney and Carol Harney, my 

brother, Jonathan Harney, and my wife, Christine Harney.  My accomplishments have 

only been possible with their support, and this dissertation stands as a testament to their 

dedication.  

 
 

 iii



Table of Contents 

 
 
Dedication ........................................................................................................................... ii 
Acknowledgements............................................................................................................ iii 
Table of Contents............................................................................................................... iv 
List of Figures .................................................................................................................... vi 
List of Schemes................................................................................................................ viii 
List of Tables ...................................................................................................................... x 
List of Abbreviations ......................................................................................................... xi 
 
Chapter 1: Dynamic Processes in Ziegler-Natta Polymerization ....................................... 1 

1.1 Introduction............................................................................................................... 1 
1.1.1 Ziegler-Natta Polymerization............................................................................. 2 
1.1.2 Symmetry-Microstructure Relationships ........................................................... 6 
1.1.3 Termination Events............................................................................................ 8 
1.1.4 Microstructural Analysis.................................................................................... 9 

1.2 Site Isomerization ................................................................................................... 13 
1.2.1 C1-symmetric Metallocenes: Hemiisotactic and Isotactic Polypropylene ....... 13 
1.2.2 C1-symmetric Metallocenes: Elastomeric Polypropylene ............................... 16 

1.3 Chain-End Epimerization........................................................................................ 19 
1.4 Ligand Isomerization .............................................................................................. 22 

1.4.1 Oscillating Metallocenes.................................................................................. 22 
1.4.2 Post-Metallocene.............................................................................................. 24 

1.5 Reversible Chain Transfer ...................................................................................... 27 
1.5.2 Direct Site Transfer.......................................................................................... 31 

1.6 Degenerative Group Transfer ................................................................................. 32 
1.7 Living Polymerization ............................................................................................ 34 

 
Chapter 2: Discrete Cationic CPZA Alkyl Complexes as Models for Living Polymers.. 36 

2.1 Mechanistic Studies in Living Ziegler-Natta Polymerization ................................ 36 
2.2 Chain Walking and Cationic CPZA Model Complexes ......................................... 41 
2.3 Synthesis and Structure........................................................................................... 46 

2.3.1 CPZA Alkyl, Chloro Complexes ..................................................................... 46 
2.3.2 CPZA Alkyl, Methyl Complexes..................................................................... 49 
2.3.3 Cationic CPZA Alkyl Complexes.................................................................... 51 
2.3.4 Isotopically Labeled Derivatives ..................................................................... 56 
2.3.5 Hafnium Derivatives........................................................................................ 60 

2.4 Results..................................................................................................................... 65 
2.4.1 Stability of CPZA Alkyl Cations ..................................................................... 65 
2.4.2 Stability of CPHA Alkyl Cations..................................................................... 73 

2.5 Discussion ............................................................................................................... 74 
2.5.1 Decomposition of CPZA Alkyl Cations .......................................................... 74 
2.5.2 Isomerization of CPZA Alkyl Cations – Busico’s Mechanism....................... 77 

 iv



2.5.3 Isomerization of CPZA Alkyl Cations – Alternate Mechanism ...................... 80 
2.5.4 Hafnium Derivatives........................................................................................ 84 

2.6 Conclusions............................................................................................................. 85 
 
Chapter 3: Application of Living Degenerative Transfer Polymerizations ...................... 86 

3.1 Living Propylene Polymerization ........................................................................... 86 
3.1.1 Propylene Polymerization by CPZA Initiators ................................................ 87 

3.2 Stereoblock Polypropylene ..................................................................................... 91 
3.2.1 Stereoblock Polymers ...................................................................................... 91 
3.2.2 Synthesis and Microstructural Analysis........................................................... 93 
3.2.3 Materials Properties ......................................................................................... 97 

3.3 Conclusions............................................................................................................. 99 
 
Chapter 4: Bimolecular Control of Polypropylene Microstructure ................................ 101 

4.1 Control of Microstructure Through Substoichiometric Activation ...................... 101 
4.2 Stereogradient Polypropylene............................................................................... 106 
4.3 Conclusions........................................................................................................... 110 

 
Appendix......................................................................................................................... 111 

Experimentals ............................................................................................................. 111 
References................................................................................................................... 127 

 v



List of Figures 

 
 
Figure 1: The structures of linear PE, or HDPE, and branched PE, or LDPE.................... 3 
Figure 2: Isotactic and atactic polypropylene. ................................................................... 3 
Figure 3: The meso (m) and racemic (r) dyads................................................................. 10 
Figure 4: The ten possible stereochemical pentads of PP................................................. 11 
Figure 5: Stereoerrors in isotactic and syndiotactic PP under enantiomorphic-site control.

............................................................................................................................ 12
Figure 6: Stereoerrors in isotactic and syndiotactic PP under  chain-end control. ........... 12 
Figure 7: Complex 6 produces iso-PP with [mmmm] > 99%. .......................................... 16 
Figure 8: Atactic-isotactic stereoblock polypropylene (sb-PP) ........................................ 17 
Figure 9: C1-symmetric metallocenes capable of producing elastomeric polypropylene. 17 
Figure 10: Deuterium label scrambling observed in the polymerization of 1-d1-propylene.

............................................................................................................................ 20 
Figure 11: Sita’s acetamidinate and formamidinate preinitiators. .................................... 25 
Figure 12: Gibson’s catalyst for PE growth on zinc. ........................................................ 30 
Figure 13: Precatalyst used in combination with 17 by Dow Chemical to synthesize 

polyethylene elastomers via chain exchange using ZnEt2 as a chain-shuttling 
agent................................................................................................................ 31 

Figure 14: The configurational instability of alkyl, methyl CPZA complexes, coupled 
with the degenerative methyl group transfer process, results in atactic 
polymers from substoichiometrically activated 12. ........................................ 34 

Figure 15: Schrock’s initiators for living α-olefin polymerization................................... 37 
Figure 16: Fujita’s preinitiator for living propylene and ethylene polymerization and the 

activated ethylene insertion product modeled by DFT calculations, and Chan’s 
model complex displaying a weak F···H interaction....................................... 38 

Figure 17: 1H NMR spectra of the alkene region of oligomeric poly(1-butene) quenched 
immediately and after 72 h at –10 ºC.............................................................. 43 

Figure 18: Low molecular weight alkyl groups as models for living polymers ............... 44 
Figure 19:  Retrosynthetic strategy for 33. ....................................................................... 46 
Figure 20: Molecular structure of 36’-(2-Et-Bu). ............................................................ 48 
Figure 21:  1H NMR of 33-iBu. ........................................................................................ 53 
Figure 22: 1H NMR of 33-(2-Et-Bu)................................................................................ 54 
Figure 23: Molecular structure of 33-iBu. ........................................................................ 55 
Figure 24: 1H NMR of 33-(2-d)-iBu. ................................................................................ 58 
Figure 25: 1H NMR of 33-(1-13C)-iBu. ............................................................................ 59 
Figure 26: 1H NMR of 33-(1-13C-2-d)-iBu....................................................................... 60 
Figure 27: 1H NMR of 43. ................................................................................................ 62 
Figure 28: Molecular structure of 46 and 36-tBu. ............................................................ 63 
Figure 29: 1H NMR of 44. ................................................................................................ 65 
Figure 30: Subset of CPZA cations chosen for detailed low-temperature studies. .......... 66
Figure 31: Decomposition of 33-iBu, 33-(2-Et-Bu) and 16-PD at 0 °C in chlorobenzene-

d5, as observed by 1H or 13C NMR. ................................................................ 67 

 vi



Figure 32: Graph of the intensity of the β-agostic peak (relative to amidinate ethyl CH  
peaks) vs. time, and the β-agostic region of the H NMR of 33-(2-d)- Bu.

2
1 i .... 68

Figure 33: 13C{1H} NMR of 33-(1-13C-2-d)-iBu after 15 hours at 0 ºC........................... 69 
Figure 34: 1H NMR of 33-(2-d1)-nPr as a 1:1 mixture of diastereomers. ........................ 72 
Figure 35:  Eyring plots for the decomposition/isomerization of 33-nPr and 33-iPr ....... 73 
Figure 36: 13C{1H} NMR methyl region of atactic PP prepared under DT conditions and 

isotactic PP prepared under non-DT conditions ............................................. 88 
Figure 37: Kinetic profile of living DT propylene polymerization by 16. ....................... 89 
Figure 38: Kinetic profile of non-DT living propylene polymerization by 16. ................ 90 
Figure 39: 13C{1H} NMR of the methyl region of aliquots taken during the synthesis of 

an a-iso-a-PP triblock prepared with a 13C-labeled methyl end group........... 97 
Figure 40: Schematic representation of the isotactic-atactic sb-PP architectures targeted 

for tensile testing............................................................................................. 98 
Figure 41: Stress-strain curves showing ultimate elongation to break for the 30-40-30 a-

iso-a-PP triblock, the 60-40 a-iso-PP diblock, and the 30-20-30-20 a-iso-a-
iso-PP tetrablock. .......................................................................................... 100 

Figure 42: 13C{1H} NMR of polypropylene samples synthesized at varying levels of 
activation....................................................................................................... 102 

Figure 43: %mm of the spectra of Figure 42 and other polypropylene materials obtained 
as a function of % activation under the same polymerization conditions..... 103 

Figure 44: Comparison of the pentad distribution at 100%, 95%, 92.5%, and 90% 
activation....................................................................................................... 105 

Figure 45: 13C{1H} NMR of polypropylene samples synthesized at 100%, 95% and 90% 
activation, showing heptad and higher levels of stereoerror assignments. ... 106 

Figure 46: 13C{1H} NMR spectra of aliquots taken as a function of time and their 
difference spectra using the resonances of the 13C-labeled methyl end group as 
an internal reference...................................................................................... 108 

Figure 47: Ramp profile for addition of 0.4 equivalents of 13 to change the level of 
activation from 60% to 100% and mmmm content as a function of time as 
determined by 13C NMR. .............................................................................. 109 

 vii



 

List of Schemes 

 
 
Scheme 1:  Activation of Cp2TiCl2 by AlEt3. ..................................................................... 4 
Scheme 2: Formation of the active cationic center............................................................. 4 
Scheme 3: The Arlman-Cossee mechanism. ...................................................................... 5 
Scheme 4: Mechanism of MAO activation......................................................................... 6 
Scheme 5: Mechanism of stereocontrol in C2-symmetric metallocenes............................. 7 
Scheme 6: Mechanism of stereocontrol in CS-symmetric metallocenes............................. 7 
Scheme 7: β-hydride transfer reactions............................................................................... 8 
Scheme 8: Hemiisotactic PP from C1-symmetric metallocenes. ...................................... 14 
Scheme 9: Isotactic PP from C1-symmetric metallocenes................................................ 15 
Scheme 10: Mechanism of stereoblock-PP formation from C1-symmetric metallocenes.18 
Scheme 11: Chain-end epimerization. .............................................................................. 20 
Scheme 12: Proposed mechanisms of chain-end epimerization. ...................................... 21 
Scheme 13: Pendant vinylidene units in PP as resulting from displacement of the 

coordinated H2 by propylene monomer. ......................................................... 22 
Scheme 14: Mechanism of stereoblock-PP formation by oscillating metallocenes. ........ 23
Scheme 15: Counterion association mechanism proposed by Busico. ............................. 24 
Scheme 16: Coates’ initiator for living propene polymerization. Syndiotactic PP is 

formed from the MAO-activated 17, despite the C2-symmetry of the complex.
......................................................................................................................... 26 

Scheme 17: Mechanism of syn-PP production from derivatives of 17............................. 26 
Scheme 18: Eisen’s dynamic polymerization system....................................................... 27 
Scheme 19: Stereoblock-PP via reversible chain transfer to aluminum. .......................... 29 
Scheme 20: Polymer, methyl exchange in CPZA initiators. ............................................ 32 
Scheme 21: Degenerative methyl group transfer.............................................................. 33 
Scheme 22: Chain-end epimerization products observed by Landis. ............................... 39 
Scheme 23: Isomerization of cyclopentene insertion product. ......................................... 41 
Scheme 24: Mechanism of formation of end groups I-III. .............................................. 43 
Scheme 25: Comparison of the β-hydride elimination of a low molecular weight alkyl 

group to that of a living polymer. ................................................................... 45 
Scheme 26: Formation of 1,3-insertions through the isomerization of 2,1-insertions...... 46
Scheme 27: Synthesis of CPZA alkyl, chloro and alkyl, methyl derivatives. .................. 47 
Scheme 28: Treating 36-Me with tert-butyl lithium produced the TMM derivative in low 

yield................................................................................................................. 50 
Scheme 29: Activation of 37-R via methyl group protonolysis. ...................................... 52 
Scheme 30: Synthesis of isotopically labeled compounds via hydrozirconation. ............ 57
Scheme 31: Synthesis of isotopically labeled hafnium derivatives. ................................. 61 
Scheme 32: Synthesis of the hafnium tert-butyl cation. ................................................... 64 
Scheme 33: Isotopic scrambling observed in 33-(1-13C-2-d)-iBu. ................................... 69 
Scheme 34: Proposed mechanism of isobutane formation via the ‘tuck-in’ decomposition 

pathway. .......................................................................................................... 76 

 viii



Scheme 35: The transition state of β-hydride elimination of 33-iBu................................ 77 
Scheme 36: Isotopic label scrambling in 33-(1-13C-2-d)-iBu according to the Busico 

mechanism. ..................................................................................................... 78 
Scheme 37: Formation of a tert-butyl intermediate through coordinated alkene rotation.79
Scheme 38: Possible transformations of 33-nPr and 33-iPr. ............................................ 80 
Scheme 39: Possible isomerization of an isobutylene, hydride complex. ........................ 81 
Scheme 40: Formation of a tert-butyl intermediate through metal-assisted 1,2-hydride 

shift. ................................................................................................................ 82 
Scheme 41: Isotopic label scrambling in 33-(1-13C-2-d)-iBu according to the metal-

assisted 1,2-hydride shift mechanism ............................................................. 83 
Scheme 42: Synthesis of a-syn-PP diblock polymers via 53. ........................................... 92 
Scheme 43: Irreversible methyl group transfer from 56 to living polymers from 16....... 95
Scheme 44: Synthesis of 1-(13C)-a-iso-a-PP. ................................................................... 96 
Scheme 45: Synthesis of stereogradient-PP.................................................................... 108 

 

 ix



List of Tables 

 
 
Table 1:  Bond angles of the α- and β-carbons of 36’-(2-Et-Bu). .................................... 49 
Table 2: Comparison of Zr-N bond lengths of 36-R and 37-R for R = iPr and iBu. ........ 51 
Table 3: 1J(13C-1H) coupling constants for 33-R .............................................................. 52 
Table 4: Bond angles of the α- and β-carbons of 33-iBu. ................................................. 56 
Table 5: Comparison in selected bond lengths of 46 and 36-tBu. .................................... 63 
Table 6: Kinetic parameters of isomerization/decomposition of 33-R............................. 72 
Table 7: Kinetic parameters of decomposition of 44........................................................ 74 
Table 8: Pentad distributions of PP produced at 100% activation and 50% activation.... 88 
Table 9: Pentad distributions of PP stereoblocks and quenched samples......................... 98 
Table 10: Pentad distributions of PP synthesized at varying levels of activation. ......... 103 
Table 11: Pentad distributions of samples taken during stereogradient-PP synthesis. ... 109 
Table 12: Pentad distributions of individual stereogradient-PP segments...................... 109 
 

 x



List of Abbreviations 

 
 
acac – acetyl acetone 
nBu – n-butyl 
iBu – iso-butyl 
tBu – tert-butyl 
Cp – η5-C5H5
Cp* – η5-C5(CH3)5  
CPHA – cyclopentadienyl hafnium acetamidinate 
CPZA – cyclopentadienyl zirconium acetamidinate 
DP – degree of polymerization 
DT – degenerative transfer 
EBI – ethylene bis-indenyl 
EBTHI – ethylene bis-tetrahydroindenyl 
Et – ethyl 
Flu – η5-fluorine 
GPC – gel permeation chromatography 
Ind – η5-indenyl 
MAO – methylaluminoxane 
Me – methyl 
MesNpy - H3CC(2-C5H4N)(CH2Nmesityl)2
MMAO – modified methylaluminoxane 
MW – molecular weight 
Mn – number average molecular weight 
Mw – weight average molecular weight 
Naph – naphthalene 
NON – (tBu-d6-N-o-C6H4)2O 
PDI – polydispersity (Mn/Mw) 
PD – poly(1-decene) 
PE – polyethylene 
PH – poly(1-hexene) 
Ph – phenyl 
PMCP – poly(methylenecyclopentane) 
PO – poly(1-octene) 
PP – polypropylene 
a-PP – atactic polypropylene 
el-PP – elastomeric polypropylene 
iso-PP – isotactic polypropylene 
sb-PP – stereoblock polypropylene 
syn-PP – syndiotactic polypropylene 
nPr – n-propyl  
iPr – iso-propyl 
py – pyridine 

 xi



Ra – rate of activation 
Rp – rate of propagation 
TMM – trimethylenemethane 

 xii



Chapter 1: Dynamic Processes in Ziegler-Natta Polymerization  

 

1.1 Introduction 

 The polymerization of inexpensive, readily available monomers into high 

molecular weight (MW) materials with technologically relevant properties is one of the 

most significant accomplishments of modern chemistry.  The production of high value 

commodity polyolefins, such as polyethylene (PE) and polypropylene (PP), reached 110 

million tons in 2005.1  Indeed, it is no surprise that a tremendous amount of research has 

focused on efforts to tailor the properties of PE and PP-based polymers in hopes of 

widening the scope of their applications.   

Transition metal catalysts have played an important role in the development of 

modern polymer science ever since the seminal discoveries of Ziegler2, 3 and Natta4, 5 in 

the early 1950’s (vide infra).  Since Natta first attributed the differences in physical 

properties of various polypropylene materials to the relative configuration of 

stereocenters along the polymer backbone, one of the primary focuses of polyolefin 

research has been controlling the stereochemical arrangement, or microstructure.  With 

the extensive library of Ziegler-Natta catalysts currently reported,6-8 a wide range of 

polyolefins with microstructures of varying degrees of regio- and stereoregularity are 

currently available.  However, most systems rely on the structure of the catalytic species 

to direct stereocontrol during polymerization, such that a particular catalyst provides a 

single, and hopefully unique, microstructure.  The drawback to this method is that if one 

should require a different microstructure than what is produced by a given catalyst, the 
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only option is to alter the catalyst.  As such, the field of Ziegler-Natta polymerization 

catalyst development has been fairly combinatorial in nature.   

 A more attractive approach would be to access a variety of microstructures from a 

single catalytic system, achievable by varying the reaction conditions.  One way to 

accomplish this is to take advantage of reversible, competitive reactions (dynamic 

processes) that affect the microstructure by occurring competitively with propagation.   

 

1.1.1 Ziegler-Natta Polymerization 

 In 1952, Ziegler2 reported that insertion of ethylene into the aluminum-carbon 

bonds of triethyl aluminum was observed at high ethylene pressure (50-300 bar), 

providing long-chain trialkyl aluminum compounds.  Subsequently, in an attempt to 

probe the effect of transition metals on this reaction, Ziegler demonstrated the linear 

polymerization of ethylene, providing high-density polyethylene (HDPE) using a 

supported TiCl4 catalyst activated by an alkyl aluminum cocatalyst.3  Previous 

polymerizations of ethylene using radical initiators produced only branched PE, or low-

density polyethylene (LDPE),9 as shown in Figure 1. Independently, Natta4, 5 was able to 

use TiCl3, similarly activated by alkyl aluminum cocatalysts, to produce PP which could 

be solvent-separated into fractions containing varying amounts of crystalline and 

amorphous materials.  He proposed that the crystalline material contained long segments 

along the polymer backbone in which the chiral carbons were of the same relative 

stereochemistry (isotactic), while the amorphous material contained chiral carbons of 

random stereochemistry (atactic) (Figure 2).  Today, a Ziegler-Natta catalyst has come to 

describe any transition metal based catalyst in combination with a main group 
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organometallic cocatalyst.10  Having paved the way for the production of polyolefins as 

commodity plastics, Ziegler and Natta were jointly awarded the Nobel Prize in Chemistry 

in 1963. 

 

Figure 1: The structures of linear PE, or HDPE (top), and branched PE, or LDPE 
(bottom) 

 

 

isotactic-PP

n

atactic-PP

n

 
Figure 2: Isotactic and atactic polypropylene. 

 
 

The heterogeneous nature of Ziegler-Natta catalysts made it difficult to study the 

mechanisms of activation and propagation.  Natta11 and Breslow12-14 found that 

titanocene dichloride (Cp2TiCl2, Cp = η5-C5H5) could be homogeneously activated with 
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aluminum alkyls to provide systems capable of ethylene polymerization.  Breslow 

proposed that activation begins with alkylation of the titanium center, followed by 

coordination of the remaining chloride to the aluminum (Scheme 1).  Eisch and co-

workers15 later confirmed that the active species was a cationic Ti(IV) species, generated 

through full abstraction of the chloride by aluminum.  This was accomplished by 

combining Cp2TiCl2/AlMeCl3 with trimethyl(phenylethynyl)silane to trap the cationic 

species and provide the isolatable {Cp2[(E)-2-Me-2-Ph-1-(TMS)ethenyl]Ti}+ AlCl4
–, as 

shown in Scheme 2.  While these systems provided an avenue for mechanistic studies, 

they unfortunately suffered from extremely low activity and rapid termination.   

Scheme 1:  Activation of Cp2TiCl2 by AlEt3. 

Ti
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Cl
Ti

Cl

Et
+ Ti

Et
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Scheme 2: Formation of the active cationic center 
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In 1964, a mechanism for propagation was proposed by Arlman16, 17 and Cossee18, 

and has since gained general acceptance (Scheme 3).  It begins with an olefin 

coordinating to the metal center at an open coordination site, which then undergoes 

migratory insertion into the metal-polymer bond through a cyclic four-membered 

transition state.  This then opens a new coordination site for olefin complexation, and the 

process is repeated.  

Scheme 3: The Arlman-Cossee mechanism. 
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  In 1980, Kaminsky19, 20 reported the serendipitous discovery that upon adding a 

trace amount of water to a Cp2MCl2/AlMe3 system, ethylene polymerization activities 

were dramatically increased.  It was later determined that the water would react with 

trimethyl aluminum in situ to produce methylaluminoxane (MAO), and polymerizations 

utilizing pre-prepared MAO as the cocatalyst confirmed that this was indeed the cause of 

the increased activity.  MAO is believed to be oligomeric in nature, although the exact 

structure is unclear.  The mechanism of activation proceeds in a similar manner as the 

aluminum alkyls through a methyl/chloro exchange, followed by a chloride abstraction to 
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produce a cationic metal center (Scheme 4).21  Since the activation with MAO is a 

reversible process, an extremely large excess is commonly used.22 Despite the success 

with ethylene polymerization, these systems produced only low molecular weight a-PP.19, 

20 

Scheme 4: Mechanism of MAO activation. 
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1.1.2 Symmetry-Microstructure Relationships 

A significant advance in propylene polymerization was accomplished by the 

development of ansa-bridged metallocenes.  Ewen23 was first able to show the 

relationship between catalyst symmetry and microstructural control in 1984, when he 

used Brintzinger’s24 ansa-bridged titanocene (EBI)TiCl2 (1,  EBI = ethylene bis-indenyl) 

to initiate propylene polymerization when activated with MAO.  The material consisted 

of a mixture of atactic PP (a-PP) and isotactic PP (iso-PP), leading Ewen to propose that 

the racemic (rac) isomer of 1 was highly enantioselective (producing iso-PP) while the 

meso isomer had no enantiofacial selectivity (producing a-PP).  His theory was later 

confirmed when Kaminsky and Brintzinger25 initiated the polymerization of propylene 

using MAO activated (EBTHI)ZrCl2 (2, EBTHI = ethylene bis-tetrahydroindenyl) as the 
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pure racemic isomer to produce only iso-PP.  Steric interactions direct the polymer chain 

away from the indenyl ligands, and methyl group of the coordinating propylene is 

directed anti to the polymer chain.22  Since these catalysts are C2-symmetric, the 

coordination sites are homotopic and incoming propylene units will coordinate to both 

with the same face selectivity, as shown in Scheme 5. 

Scheme 5: Mechanism of stereocontrol in C2-symmetric metallocenes. 

ZrZr Zr
P P

P
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P
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migratory
insertion

n
isotactic-PP
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Ewen,26  recognizing how the relationship between the coordination sites could 

effect the microstructure, later developed a CS-symmetric catalyst, Me2C(Cp)(9-

Flu)ZrCl2 (3, Flu = fluorenyl).  The coordination sites of 3 are enantiotopic by mirror 

symmetry, and will coordinate propylene units with the opposite face selectivity (Scheme 

6).  This results in syndiotactic polypropylene (syn-PP), in which each chiral center is of 

opposite chirality.  This microstructure had not been previously achieved with 

heterogeneous systems.  The relationships between PP stereochemical microstructure and 

the symmetry of the catalyst are commonly referred to as “Ewen’s symmetry rules”.22 

Scheme 6: Mechanism of stereocontrol in CS-symmetric metallocenes. 
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1.1.3 Termination Events 

 Termination events are competitive, irreversible reactions that halt further growth 

of a polymer chain.  Once such termination event, β-hydride elimination, is a 

unimolecular process in which the β-hydrogen of the growing polymer chain is 

transferred to the metal center through a four-centered transition state, resulting in a 

metal-hydride complex and a polymer with an alkene end group (Scheme 7).27  The 

metal-hydride species can then insert monomer into the M-H bond and reinitiate 

propagation of a new polymer chain. It is widely believed that an agostic interaction 

between the β-hydrogen and the metal center precedes formation of the transition state,28 

and so attempts have been made at preventing the elimination through the use of bulky 

ligands which prevent formation of a β-agostic interaction. 

Scheme 7: β-hydride transfer reactions. 
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Another termination event, β-hydride transfer to monomer, is a bimolecular 

process in which the β-hydrogen of the growing chain is transferred to a free monomer, 

producing the alkene terminated polymer and a new metal-alkyl complex (equivalent to 

monomer insertion into a M-H bond).27  The reaction involves a cyclic 6-center transition 
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state in which the β-hydrogen is transferred to the monomer as the monomer binds to the 

metal center in a concerted manner.  Theoretical studies suggest that the β-hydride 

transfer is metal assisted,29, 30 and so the β-agostic interaction could be considered a 

precursor to this reaction as well. 

A third common termination event is chain transfer to aluminum.  Since MAO 

often contains unreacted trimethylaluminum,31 and other trialkyl aluminum compounds 

are frequently used as scavengers,32-34 this is a common facet of Ziegler-Natta 

polymerization systems.  In this reaction, the polymer chain on the active metal is 

exchanged with an alkyl group on the aluminum center, providing an active metal-alkyl 

species and an aluminum terminated polymer.  Recently, Dong and co-workers35 have 

shown that the rac-Me2Si(2-Me-4-Naph-Ind)2ZrC2/MAO (Naph = naphthyl, Ind = 

indenyl) system engages in efficient chain transfer to aluminum, such that aluminum 

terminated iso-PP (Mn = 24,600-179,000 PDI = 2.10-2.94) is produced with high end-

group selectivity.  Such Al-terminated polymers have been used as precursors to 

hydroxyl-terminated PP36 and block copolymers.37  

 

1.1.4 Microstructural Analysis 

 The ability to generate unique microstructures of polypropylene and other 

polyolefins necessitated a reliable method to analyze these microstructures.  The most 

common technique employed is 13C NMR spectroscopy.22, 38-40  The resonance of a 

pendant methyl group in a PP chain is affected by not only its own chirality, but the 

relative chirality of the surrounding methyl groups within several units.  Two adjacent 

methyl groups along the PP back bone, called a dyad, have two possible relative 
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configurations.  A pair of the same chirality is called a meso dyad, abbreviated m, while a 

pair of opposite chirality called a racemic (or racemo) dyad, and abbreviated r (Figure 3).  

The microstructure is commonly described in terms of groups of five stereocenters, or 

pentads, although larger groups can be resolved at higher field strengths.  There are ten 

possible unique pentads, which are referred to in terms of the dyads of which they are 

comprised (Figure 4).  Pentads which are mirror images of each other, such as mmrm and 

mrmm, are not distinguishable by NMR and are considered the same pentad.   

m

r  
Figure 3: The meso (m) and racemic (r) dyads. 

 

Using this terminology, a perfectly isotactic PP sample would have a single 

resonance in the 13C NMR in the mmmm region, and a perfectly syndiotactic PP sample 

would have a single resonance in the rrrr region.  Perfectly atactic PP would feature all 

pentads, with a mmmm:mmmr:rmmr:mmrr:(mmrm+rmrr):rmrm:rrrr:rrrm:mrrm ratio of 

1:2:1:2:4:2:1:2:1.  Pentad distributions are often presented in this manner because it is in 

this order, from high field to low field, respectively, that they appear in the 13C NMR, 

with the mmrm and rmrr regions overlapping.  PP samples of low stereoregularity are 

commonly described in terms of the triad content; perfectly atactic PP would have a 

mm:mr:rr ratio of 1:2:1. 

 10



m m m m

m m m r

m m r r

m r r m

m m r m

r m r m

r m r r

r m m r

r r r m

r r r r  
Figure 4: The ten possible stereochemical pentads of PP. 

 

 Of course, the vast majority of polymerization systems do not produce perfectly 

stereoregular polymers.7, 22  The stereoerror resonances are not only useful to quantify the 

stereoregularity (reported as [mmmm] for iso-PP and [rrrr] for syn-PP), but the types of 

stereoerrors present are indicative of the mechanism of stereocontrol.  If the ligands of a 

catalyst are directing face selectivity, the system is said to be under enantiomorphic-site 

control, which is commonly referred to simply as site control.  For iso-PP from site 

control catalysts such as 2, a stereoerror has no effect on the stereoselectivity of the next 

insertion, and isolated stereoerrors are observed (Figure 5).  These appear in the 13C 

NMR as resonances in the mmmr, mmrr and mrrm regions in a 2:2:1 ratio, respectively.  

Syndiotactic PP from site control catalysts such as 3 has stereoerror resonances in the 

 11



rrrm, rrmm and rmmr regions, once again in a 2:2:1 ratio, respectively.  Since the next 

insertion after a stereoerror is unaffected, site control is said to have error correction. 

m m m m m m mrr

r r r r m m r r r

stereoerror

error correction

 
Figure 5: Stereoerrors in isotactic (top) and syndiotactic (bottom) PP under 
enantiomorphic-site control. 

m m m m m m mmr

r r r r m r r r r

stereoerror

error propagation  
 
Figure 6: Stereoerrors in isotactic (top) and syndiotactic (bottom) PP under  
chain-end control. 

 

 Another mechanism of stereoselectivity is called chain-end control, which is 

much less common than site control.  During isotactic propagation under chain-end 

control, the chirality of the last inserted monomer determines the face selectivity of the 

next.  When a stereoerror occurs in this case, the chain-end now has the opposite chirality 

and the error is propagated until the next stereoerror, resulting in an isotactic-isotactic 
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block structure (Figure 6).  This can be observed in the 13C NMR by the resonances in the 

mmmr and mmrm regions in a 1:1 ratio.  Similarly, syn-PP from catalysts under chain-end 

control exhibit resonances in the rrrm and rrmr regions in a 1:1 ratio. 

 

1.2 Site Isomerization 

 Occasionally, the polymer chain will move from one site to the other without a 

migratory insertion step.  This process will be referred to as site isomerization, although it 

is also commonly referred to as site epimerization or back-skipping.  In the case of the 

C2-symmetric metallocenes, site isomerization has no effect on the microstructure of the 

material by virtue of the homotopic coordination sites.  In the CS-symmetric metallocenes, 

site isomerization results in two consecutive insertions of the same enantioface, and will 

be evident in the polymer as an isolated m stereoerror (i.e.: …rrrmrrr…).  In this case, it 

is clear how ability of the site isomerization process to compete with propagation can 

have a significant effect on the microstructure, and hence the properties, of the polymer.  

With this in mind, some catalysts are designed to take advantage of site isomerization. 

 

1.2.1 C1-symmetric Metallocenes: Hemiisotactic and Isotactic Polypropylene 

Substituting alkyl groups onto one side of the Cp ligand of 3 removes the mirror 

plane of symmetry, resulting in chiral complexes. These C1-symmetric catalysts, 

depending on the size of the alkyl group, can provide varying microstructures. The 

methyl substituted catalyst 441 polymerizes according to the two site model in the same 

manner as 3.  However, the steric interaction of the methyl group removes the ability of 

the ligands to direct the facial selectivity of the opposite site, such that every other 
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insertion is without stereocontrol. This results in PP with methyl groups of alternating 

random and uniform chirality, called hemiisotactic (Scheme 8).  Perfectly hemiisotactic 

PP has a pentad distribution of 3:2:1:4:0:0:3:2:1.  Recently, Bercaw42 and Ewen43  have 

developed several C1-symmetric metallocene derivatives that produce an isotactic-

hemiisotactic-PP microstructure, meaning that every other stereocenter is of uniform 

configuration and the rest are aligned with its neighbors 60-75% of the time. This 

produces an isotactic-hemiisotactic stereoblock-like microstructure, and it was found that 

some of these materials had elastomeric properties. 

Scheme 8: Hemiisotactic PP from C1-symmetric metallocenes. 
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Marks44 and Kaminsky45 demonstrated that different microstructures, some with 

higher levels of isotacticity, could be achieved with other C1-symmetric metallocenes.  It 

was proposed that increased steric crowding of one coordination site would favor site 

isomerization of the polymer chain to the less hindered site.  Therefore, upon migratory 

insertion, a competition exists between site isomerization and olefin coordination to the 

less hindered site.  The microstructure of the PP produced will be dependant upon the 

relative rates of olefin insertion and site isomerization at each site.  If the steric repulsions 

at one site are strong enough, the polymer will back-skip after each insertion, and 

propagation will only proceed at the isoselective site. This mechanism was invoked to 

explain the iso-PP (Mn = 40,000-185,000) obtained from 545 (Scheme 9, blue pathway).  
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A wide variety of C1-symmetric metallocenes catalysts are now available, capable of 

producing many microstructures with varying degrees of control.22, 46 

Scheme 9: Isotactic PP from C1-symmetric metallocenes. 
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 Recently, the Bercaw47 group published a study analyzing the mechanism of iso-

PP formation from 5.  It was previously noted44, 48 that the isotacticity of the polymers 

from C1-metallocenes may not be a result of site isomerization, but that both sites may 

preferentially coordinate the same monomer face.  In the case of 5, the tert-butyl group 

may have a stronger influence on the orientation of the polymer, and hence the monomer 

coordination, than the fluorenyl ligand.  As such, the complex would undergo insertions 

at both sites with the same face selectivity, acting as a pseudo-C2-symmetric metallocene 

(Scheme 9, red pathway).  Through a variety of kinetic studies and microstructural 

analyses involving 5 and structurally similar derivatives, Bercaw claims that the pseudo-

C2-symmetric mechanism (alternating insertion sites) is dominant over the site 

isomerization mechanism.  Furthermore, using the information gathered from derivatives 

of 5 with various ligand substitutions, Bercaw designed a catalyst that was expected to 

produce iso-PP via the exclusive site-isomerization mechanism.  By replacing the tert-

butyl group with a 2-methyl-2-adamantyl group and the fluorenyl ligand with the 

enormous 1,1,4,4,7,7,10,10-octamethyl-1,2,3,4,7,8,9,10-octahydrodibenzo[b,h]fluorenyl 

ligand (Figure 7), the authors hoped to increase the rate of site isomerization and 
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simultaneously increase monomer face selectivity at the active site.  The PP produced 

from 6 was isotactic with [mmmm] > 99% (Mn = 370,000-425,000, PDI = 1.39-1.77), and 

had an extremely high melting point of 167 °C. 

Zr ClCl

 
Figure 7: Complex 6 produces iso-PP with [mmmm] > 99%. 

 

1.2.2 C1-symmetric Metallocenes: Elastomeric Polypropylene 

 Aside from the crystalline (isotactic) and amorphous (atactic) PP materials, 

Natta49 was able to isolate fractions exhibiting elastomeric properties. To explain this 

phenomenon, he proposed that the material contained alternating blocks of isotactic and 

atactic segments (Figure 8). The elastomeric properties were attributed to the 

crystallization of isotactic segments within the amorphous network, providing physical 

cross-links. Elastomeric PP (el-PP) is a thermoplastic elastomer, which means it is a 

soluble material that can be reversibly melted or solidified.50 This provides many 

advantages over chemically cross-linked materials, including the abilities to be injection 

molded and recycled. While several groups attempted to improve upon the synthesis of 

el-PP, it wasn’t until 1982 that Collette and co-workers51, 52 at DuPont developed 

heterogeneous alumina-supported zirconium and titanium alkyls that produced significant 

amounts of elastomeric material. This material was found to be stereochemically 
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heterogeneous, with fractions containing different degrees of isotacticity and molecular 

weights.  

n m x  
Figure 8: Atactic-isotactic stereoblock polypropylene (sb-PP)  

 

The first homogeneous catalyst which produced el-PP was reported in 1990 by 

Chien and co-workers.53 The C1-symmetric titanium bridged-metallocene 7 (Figure 9), 

upon activation with MAO, provided elastomeric el-PP of reasonably high molecular 

weights and fairly narrow polydispersities (Mn = 98,400, PDI = 1.7).  Chien also 

attributed the elasticity to an isotactic-atactic block structure, resulting from the 

interconversion of propagating species with the polymer chain either syn or anti to the 

ansa-methyl group during polymerization (Scheme 10). Sequential olefin insertions occur 

at one site before a site isomerization takes place, after which sequential insertions then 

take place at the opposite site.  This mechanism is somewhat counterintuitive; in order to 

have sequential insertions at two different sites, it would require either insertion without 

migration (competitive with site isomerization) or a single back-skip after each insertion 

regardless of which site is favored. 

TiCl2
CH3

H MCl2X
CH3

CH3
M = Ti, Zr or Hf
X = C or Si

7 8  
Figure 9: C1-symmetric metallocenes capable of producing elastomeric polypropylene. 
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Scheme 10: Mechanism of stereoblock-PP formation from C1-symmetric metallocenes. 
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Collins and co-workers54, 55 used similar catalysts (8, Figure 9) to examine the 

microstructure of the el-PP produced with C1-symmetric catalysts.  Collins used 

computer modeling studies in an attempt to match three possible mechanism of 

propagation with the microstructures observed by 13C NMR.  One of the models was that 

invoked by Chien to account for the el-PP produced from 7, in which sequential 

insertions occur at an isoselective site until a site isomerization, and then sequential 

insertions occur at a non-selective site.  The second model was a random insertion model, 

in which monomer will insert competitively at either the isoselective or the non-selective 

site, which does not necessarily produce a stereoblock architecture.  The final model 

involved strictly alternating insertions at both sites, which will produce a hemiisotactic 

microstructure if the selectivity at the isoselective site is particularly high.  By varying 

certain parameters relating to the selectivities and reactivities of the sites for each model, 

Collins revealed that any of these three models of propagation are feasible to produce PP 

with the same pentad distribution as that observed for el-PP from C1-symmetric 

metallocenes 7 and 8, and that this does not necessarily indicate a stereoblock 

microstructure.   
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 Recent work with C1-symmetric metallocenes towards el-PP attributes the 

elastomeric properties to the low to moderate overall crystallinity of the material,56 as 

opposed to a particular microstructure (stereoblock or otherwise).  The level of 

crystallinity will be determined by the content of long isotactic segments, which in turn is 

determined by the competition between propagation and site isomerization between sites 

of differing facial selectivities.  Despite the uncertainty in the exact microstructure, 

Rieger57 has developed many catalysts which have produced low crystallinity PP 

materials with properties ranging from stiff plastomers to thermoplastic elastomers.  Due 

to the competition between bimolecular propylene insertion and unimolecular site 

isomerization, some of these catalysts allow modest control over stereoerror content 

through varying monomer concentration.58  

 

1.3 Chain-End Epimerization 

When polymerizing propylene with isoselective metallocene catalysts at low 

monomer concentration, a larger number of stereoerrors than could be accounted for by 

random misinsertions was observed.59-62  It was found that the last inserted propylene unit 

is able to reverse its stereochemistry, a process known as chain-end epimerization 

(Scheme 11).  Chain-end epimerization is competitive with propagation at low propylene 

concentrations, leading to an inflated number of stereoerrors.  Busico61, 62 proposed a 

mechanism involving successive β-hydride elimination, olefin rotation and reinsertion 

steps through a tertiary alkyl center towards the opposite methyl group (Scheme 12a); a 

process similar to that which has been invoked to explain the isomerizations observed in 

the hydrozirconation of internal olefins,63 as well as the chain-walking observed in late 
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transition-metal polymerizations64, 65 and in 1-hexene polymerizations by metallocene 

catalysts.66  While this may explain the reversal of stereochemistry, it does not account 

for the occurrence of deuterium labels on methyl groups of correct stereochemistry in 

polymerizations of 1-d1-propylene67, 68 (Figure 10) or 2-d-propylene.68, 69  In order to be 

consistent with Busico’s mechanism, the system must also be able to switch coordination 

to the opposite enantioface (Scheme 12b). 

Scheme 11: Chain-end epimerization. 
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Scrambling due to enantionfacial coordination exchange  

Figure 10: Deuterium label scrambling observed in the polymerization of 1-d1-
propylene. 

 

Another other mechanism, proposed by Resconi,70 involves a dihydrogen/η3-allyl 

intermediate. The advantage of this mechanism is that it allows scrambling of a 

deuterium label to occur independently of the chain-end epimerization process, as 

depicted in Scheme 12c with poly(2-d-propylene), eliminating the need for a 
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coordination-face exchange to take place.  In addition, the η3 ⇄ η1 interconversion, 

allowing rotation around the C-C single bond, is a well-known process.71 

Scheme 12: Proposed mechanisms of chain-end epimerization. 
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In 2002, Bercaw72 published the results of an experiment designed to distinguish 

between the two mechanisms. Using the MAO-activated zirconocene catalysts 2 and rac-

(EBI)ZrCl2 (9), polymerizations were carried out using a doubly labeled propylene, 
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13CH3-CD=CH2. Examining the polymer by 13C NMR DEPT experiments determined 

that there were no doubly labeled methyl groups (13CH2D) present in the polymer, 

consistent only with Busico’s mechanism.  While the observation of pendant vinylidene 

units along the main chain and the generation of dihydrogen during propylene 

polymerizations suggests that the η3 ⇄ η1 interconversion does occur (Scheme 13), this 

experiment demonstrated that the Resconi mechanism is not a cause for chain-end 

epimerization. 

Scheme 13: Pendant vinylidene units in PP as resulting from displacement of the 
coordinated H2 by propylene monomer. 
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1.4 Ligand Isomerization 

1.4.1 Oscillating Metallocenes 

A new type of catalyst for the production of el-PP was reported by Coates and 

Waymouth73 in 1995. The unbridged metallocene catalyst (2-PhInd)2ZrCl2 (11), upon 

activation with MAO, produced PP with elastomeric properties (Mn = 8,570-423,300, 

PDI = 1.7-2.8), once again attributed to a stereoblock microstructure. The mechanism of 

stereoblock formation in this case was said to result from the interconversion of the active 

species between “rac-like” and “meso-like” rotational conformations during propagation 

(Scheme 14). The C2-symmetric rac-like conformation produces isotactic polymer 

according to the two-site model of propagation, while the C2V-symmetric meso-like 

conformation produces atactic polymer.  Indeed, ethylene bridged analogs of 11 in both 
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racemic and meso isomers appeared to confirm this hypothesis. The dynamic nature of 

unbridged 11 enables oscillation between isotactic and atactic modes of propagation, 

resulting in an isotactic-atactic block structure. A variety of (2-ArInd)2ZrCl2–type 

catalysts with alkyl groups substituted at various positions have also been thoroughly 

investigated.74 

Scheme 14: Mechanism of stereoblock-PP formation by oscillating metallocenes. 
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While the mechanism depicted in Scheme 14 appears reasonable on paper, it has 

come under dispute due to recent theoretical and experimental findings.75-77 Solution 

NMR investigations of the catalytic species did not provide evidence for a slow 

meso/rac-like conformation exchange, and the barrier for interconversion was calculated 

to be quite low at 2 – 5 kcal mol-1 (cf. 5 – 15 kcal mol-1 for monomer insertion). Also, the 

PP materials produced are quite heterogeneous and can be solvent-separated into 

fractions with properties ranging from completely amorphous to highly crystalline, 

suggesting the presence of more than one catalytic species. Based on the surprisingly 

high dependence of the microstructure on the cocatalyst and solvents employed, and 

detailed high-field 13C-NMR analysis of the materials, Busico77 has proposed a 

mechanism that involves the catalyst rapidly oscillating between enantiomeric rac-like 

conformations, which can be reversibly “locked” by close counteranion association 
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(Scheme 15).  In the “unlocked” mode, the rapidly interconverting active centers produce 

atactic polymer, while the “locked” centers are frozen in a rac-like conformation and 

propagate in an isotactic fashion.  In support of this mechanism, polymerizations run in 

polar solvents, favoring ion dissociation, provided almost pure a-PP. 

Scheme 15: Counterion association mechanism proposed by Busico. 
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1.4.2 Post-Metallocene 

In 2000, Sita78 reported the cyclopentadienyl zirconium acetamidinate (CPZA) 

preinitiator, Cp*ZrMe2[N(Et)C(Me)N(tBu)] (12, Cp* = η5-C5Me5).  When activated by a 

stoichiometric amount of [PhNMe2H][B(C6F5)4] (13), this system is capable of living 

isoselective polymerization of 1-hexene at -10° C (for more on living polymerization, see 

section 1.7).  Subsequently, a report was published79 detailing a modified system in 

which the distal methyl group was replaced by a hydrogen (Figure 11).  This 

formamidinate derivative, Cp*ZrMe2[N(Et)C(H)N(tBu)] (14), when activated by 13, 

produces atactic poly(1-hexene) (a-PH), despite having the same C1-symmetry as 12.  

The reason for this is the inherent configurational instability of the formamidinate ligand 
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in the activated cationic form, {Cp*ZrMe[N(Et)C(H)N(tBu)]}[B(C6F5)4] (15), as opposed 

to the cationic form of 12, {Cp*ZrMe[N(Et)C(Me)N(tBu)]}[B(C6F5)4] (16), which is 

configurationally stable.  Since the racemization of 15 occurs at a higher rate that 1-

hexene propagation, the isoselectivity exhibited by 16 is lost. 
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Figure 11: Sita’s acetamidinate and formamidinate preinitiators. 

  

Another class of compounds capable of living polymerization are group 4 metal 

bis(phenoxyimine) compounds (17, Scheme 16) Initial investigations by Fuijia80 at 

Mitsui Chemicals discovered that upon activated by MAO, these species were active for 

ethylene polymerization.  Subsequent investigations by Coates and co-workers,81 using 

high-throughput screening techniques to test a wide variety of Mitsui-type ligands, led to 

the discovery of a derivative that produced syn-PP via 2,1-insertion under chain-end 

control in a living fashion.  Given that the complexes are C2-symmetric, the formation of 

syndiotactic polymer was quite unexpected.  Theoretical studies by Cavallo and co-

workers82 supported Coates’ original proposal that the ligands are fluxional; the chirality 

of the chain-end influences the chirality of the ligands, which in turn dictates face 

selectivity of the coordinating monomer (Scheme 17).  Reports from both Fujita83, 84 and 

the Coates group85, 86 have since detailed many derivatives active for living propylene 

polymerization, some capable of incorporation of comonomers such as ethylene, 
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norbornene and 1,5-hexdiene.  Recently, Coates87 reported a derivative which is active 

for the living isotactic polymerization of propylene. 

Scheme 16: Coates’ initiator for living propene polymerization. Syndiotactic PP is 
formed from the MAO-activated 17 when R = Ph, R’ = R” = tBu, despite the C2-
symmetry of the complex. 
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Scheme 17: Mechanism of syn-PP production from derivatives of 17. 
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Recent work by Eisen88 and co-workers has led to the development of a dynamic 

titanium complex capable of producing el-PP. When the Ti(Ph2PNpy)2-(NEt2)2 (18, py = 

pyridine) precursor is activated by MAO, the pyridine ligands of the active cationic 
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species [Ti(Ph2PNpy)2(Me)]+ (19) are labile enough to reversibly disassociate from the 

metal center and coordinate to MAO.  Scheme 18 depicts 19 in both the ‘open’ form and 

one of six possible coordination isomers of the ‘closed’ form. The open configuration 

polymerizes in an atactic manner, and reassociation of the ligands to the active center 

effects isotactic propagation, resulting in an atactic-isotactic block structure. While this 

system featured long catalyst lifetimes (up to 20 h) and the material was of  uniform 

crystallinity, the molecular weight distributions were quite broad (Mn = 10,200-62,400, 

PDI = 2.0-4.7), increasing linearly with polymerization time. 

Scheme 18: Eisen’s dynamic polymerization system. 
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1.5 Reversible Chain Transfer 

 In systems activated by MAO, irreversible chain transfer to alkyl aluminum 

impurities is a common termination event.  However, some systems have been found to 

undergo reversible chain transfer reactions, in which a polymer chain is transferred to 

another active metal center.  In some cases, reversible chain transfer has been observed 

between active species that produce polymers of different microstructures or different 

comonomer incorporation levels to yield novel materials.  
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 1.5.1 Chain Transfer via Transfer Agents 

  In 1997, Chien89 reported using a binary system containing a C2-symmetric 

zirconocene and a C2V-symmetric zirconocene activated by [Ph3C][B(C6F5)4] (20) to 

polymerize propylene.  The material produced was found to contain iso-PP (from the C2 

species), a-PP (from the C2V species), and about 7% isotactic-atactic sb-PP.  This 

material, unlike a blend of pure a-PP and pure iso-PP, displayed elastomeric properties, 

which were attributed to the small amounts of sb-PP serving as a compatibilizer for the a-

PP and iso-PP homopolymers.  Subsequently, Chien90 also reported a binary system 

which produces a mixture of iso-PP and syn-PP, once again with some amounts of 

stereoblock polymer.  

Chien89, 90 proposed several possible mechanisms for the formation of sb-PP in 

the binary system. One is that the vinyl end group of a chain that has terminated via β-

hydride elimination has inserted into an active chain as a macromonomer, however, 

Chien is quick to point out that the metallocene catalysts employed in his studies are not 

active for higher α-olefins.  Another possibility is that the polymers are being transferred 

to the trialkyl aluminum scavenger, and then transferred from the aluminum to an active 

center of different symmetry (Scheme 19).  In 2000, Brintzinger91 reported his results 

with binary systems combining catalysts of atactic with either syndiotactic or isotactic 

selectivities, and also observed the formation of sb-PP (as much as 20%).  He attributed 

this to reversible polymer exchange between the zirconium centers and the aluminum 

centers of MAO. 
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Scheme 19: Stereoblock-PP via reversible chain transfer to aluminum. 
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As another example of reversible chain transfer, in 2002, Gibson92 reported iron-

catalyzed PE chain growth on zinc (Figure 12).  When a bis(imino)pyridineiron 

precatalyst (21) was activated with MAO, it provided high MW PE of broad PDI (Mn = 

10 000, PDI = 19.2).  However, in the presence of 500 equivalents of Et2Zn, the system 

produced PE with low MW and narrow PDI (Mn = 700, PDI = 1.1).  It was determined 

that the polymer chains were undergoing extremely rapid and reversible transfer between 

the Fe and Zn centers, such that all chains were growing at the same rate.  The final molar 

yield of the product, upon hydrolysis, corresponded to two polymer chains per Zn center, 

or 1000 equivalents of PE per equivalent of 21.  Subsequent reports from Gibson93, 94 

detailed the extension of this reaction to other metal-alkyl chain transfer agents and other 

catalysts.  
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Figure 12: Gibson’s catalyst for PE growth on zinc. 

 
 Researchers at Dow Chemical95 recently combined the use of a binary system 

with chain transfer agents to make novel PE materials.  Using high-throughput screening 

techniques, it was found that 17 (R = iso-butyl, 2-methylcyclohexyl; R’ = R” = tBu) and a 

hafnium pyridylamide catalyst (22, Figure 13) together provided a PE material with 

bimodal MW and broad PDI (13.6).  However, when this binary system was run in the 

presence of Et2Zn, the MW became monomodal with a narrow PDI (1.33), indicating that 

the polymer chains were being reversibly transferred between the Zn centers and both of 

the catalytic species.  Furthermore, since each of these catalysts have different 

selectivities for comonomer incorporation (low incorporation of 1-octene for 21, high 

incorporation for 22), the chain transfer agents allowed the synthesis of polymers with 

blocks of linear high density polyethylene (HDPE) and blocks of linear low density 

polyethylene (LLDPE).  These materials were found to combine the flexibility and 
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transparency of LLDPE with the high melting point of HDPE, and exhibited elastomeric 

properties at temperatures significantly higher than LLDPE of comparable density. 
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Figure 13: Precatalyst used in combination with 17 (R = iso-butyl, 2-methylcyclohexyl; 
R’ = R” = tBu) by Dow Chemical to synthesize polyethylene elastomers via chain 
exchange using ZnEt2 as a chain-shuttling agent.  

 

1.5.2 Direct Site Transfer  

 A third possible mechanism of chain transfer is direct exchange between two 

active centers.  Although Chien notes this as a possibility in his report of the 

atactic/isotactic binary system,89 in a subsequent publication he remarks that the transfer 

most likely involves the aluminum species.90  

 One system that has displayed this behavior is Sita’s78 zirconium acetamidinate 

initiator.  As mentioned above, C1-symmetric 12 produces iso-PH at -10° C when 

activated by a stoichiometric amount of 13 to produce the active species, 16.  A CS-

symmetric derivative, Cp*ZrMe2[N(iPr)C(Me)N(iPr)] (23), is also active for living 1-

hexene polymerization, although in this case atactic polymer is produced.  When a 

portion of the activated CS-symmetric species, {Cp*ZrMe[N(iPr)C(Me)N(iPr)]}[B(C6F5)4] 

(24), is added to a sample of living iso-PH derived from 16 (16-PH), direct methyl-

polymeryl exchange between 24 and 16-PH is observed, producing 16 and 24-PH 
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(Scheme 20).96  If a second portion of 1-hexene is then added to the system after 

equilibrium is reached, a polymer of bimodal MW is produced in which the low MW 

polymer is a mixture of homotactic a-PH and homotactic iso-PH, and the high MW 

polymer is a mixture of homotactic iso-PP, atactic-isotactic sb-PP, and isotactic-isotactic 

sb-PP. 

Scheme 20: Polymer, methyl exchange in CPZA initiators. 
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1.6 Degenerative Group Transfer 

 Another dynamic process demonstrated by the Sita system is degenerative group 

transfer.  It was discovered that when the precatalyst 12 was activated by only 0.5 

equivalents of 13 and then used to initiate the polymerization of 1-hexene, the molecular 

weight of the polymer was consistent with all of the zirconium centers being active for 

polymerization.97  The reason for this was found to be the rapid, reversible transfer of a 

methyl group from the dormant dimethyl (or alkyl, methyl) species to the active cationic 

species, thereby reversing the dormant/active roles (Scheme 21).  Since this transfer 

occurs much faster than propagation, all centers propagate at the same rate and the PDI 

remains as narrow as the fully activated system (≤1.05).   

 32



Scheme 21: Degenerative methyl group transfer. 

[Zr1]+-P1
Me

[Zr2]-P2+ [Zr2]+-P2
Me

[Zr1]-P1 +
kex

M
kp

M
kp

active activedormantdormant

 
 

 Another interesting outcome of the degenerative transfer (DT) process is that the 

PH materials produced at partial activation are atactic,97 despite the fact that the C1-

symmetric 12 produces isotactic polymers when fully activated.  It was determined that 

the loss of stereocontrol was due to the configurational instability of the neutral species, 

and not due to any kind of chain transfer reaction. 2-D 1H EXSY NMR techniques were 

used to verify that alkyl, methyl derivatives of 12 undergo rapid racemization through 

amidinate ring-flipping in solution, while the cationic monoalkyl derivatives are 

configurationally static on the polymerization time scale (Figure 14).  Since this 

racemization occurs much faster than the methyl group transfer, and the transfer occurs 

much faster than propagation, the active species are effectively being continuously 

racemized during the polymerization.  This unique feature of the CPZA system was 

exploited by initiating the polymerization of a portion of 1-hexene under DT conditions, 

producing living a-PH, and then activating the system with another 0.5 equivalents of 

cocatalyst before a portion of 1-octene was added to produce a-PP-block-iso-PO (Mn = 12, 

400, PDI = 1.04).  This was the first example of a homogeneous, discrete atactic-isotactic 

stereoblock polyolefin. 
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Figure 14: The configurational instability of alkyl, methyl CPZA complexes, coupled 
with the degenerative methyl group transfer process, results in atactic polymers from 
substoichiometrically activated 12. 

 

It was also found that the combination of alkyl, chloro CPZA complexes with 

alkyl CPZA cations would also result in rapid degenerative transfer of the chloride atom, 

and once again all zirconium centers were found to be active for polymerization.98  In this 

case the PH obtained was isotactic (Mn = 24,100, PDI = 1.02), due to the fact that the 

alkyl, chloro derivatives are also configurationally static.  

 

1.7 Living Polymerization 

 Since the living nature of some CPZA polymerization systems is key to much of 

what will be discussed in this dissertation, an appropriate understanding of living Ziegler-

Natta polymerization is necessary. While the exact definition of the term “living 

polymerization” has been the subject of some debate,99 it is typically used to describe a 

system in which irreversible termination events are negligible.  Living polymerizations 

were first discovered by Szwarc100, 101 in 1956 in the context of anionic polymerization.  

Since then, Quirk102 has outlined common characteristics of a living system.  They 

include: (1) polymerization proceeds until 100% of monomer is consumed; (2) molecular 

weight (Mn) increases linearly with monomer conversion; (3) the number of polymer 
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molecules is equal to the number of active initiator molecules, and remains constant; (4) 

the degree of polymerization (DP) is equal by the initial monomer concentration ([M]0) 

divided by the initial initiator concentration ([I]0), or DP = [M]0/[I]0; (5) the rate of 

activation is much greater than the rate of polymerization, (Ra >>> Rp), such that 

polymers of narrow PDI (<1.1) are produced; (6) block copolymers are quantitatively 

produced by sequential monomer additions; and (7) telechelic polymers are quantitatively 

produced when the polymerization is quenched with functional group containing 

reagents. 

 The first example of living Ziegler-Natta polymerization was demonstrated by 

Doi and co-workers103 in 1979 using V(acac)3-AlEt2Cl (25), which had previously been 

shown by Natta104 to produce PP with a predominantly syndiotactic microstructure.  The 

syndiotacticity of the polymer is formed under chain-end control via 2,1-insertions of the 

propylene into the vanadium-carbon bonds.  Doi discovered that when polymerizations 

were conducted with 25 below -65 °C, the PDI of the samples were narrow (1.07-1.18) 

with Mn as high as 91,300.  Further evidence of a living system was obtained through 

kinetic analysis, which revealed a linear increase of yield and molecular weight with time 

at constant propylene concentration.  Since then, many systems capable of living 

Ziegler-Natta polymerization of α-olefins have been reported,105 providing a wide variety 

of unique polymers.  Several of these systems are discussed where appropriate. 
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Chapter 2: Discrete Cationic CPZA Alkyl Complexes as Models 

for Living Polymers 

2.1 Mechanistic Studies in Living Ziegler-Natta Polymerization 

 Given the advantages offered by a living polymerization system over non-living 

systems, it is surprising that more mechanistic studies taking advantage of the ability to 

directly observe the active species, have not been conducted.  Indeed, an understanding of 

the factors that control termination under certain conditions would provide insight into 

the rational design of the next generation of living polymerization systems.  Schrock and 

co-workers106-109 have suggested that the steric environment around the metal center of 

their {[NON]ZrMe}[B(C6F5)4] (26, [NON]2- = [tBu-d6-N-o-C6H4)2O]2-) initiator prevent 

formation of β-agostic interactions, and therefore prevent β-hydride elimination and 

transfer reactions.  This theory appeared to be validated in another of their living systems, 

when the direct observation by 1H NMR spectroscopy of the iso-butyl initiators, 

{[MesNpy]M(iBu)}[B(C6F5)4] (M = Zr (27) and Hf (28); [MesNpy]2- = [H3CC(2-

C5H4N)(CH2Nmesityl)2]2-), did not reveal any evidence for an agostic interaction 

between the metal and the β-hydrogen of the iso-butyl group.110, 111  Both initiators 27 

and 28 were found to decompose only very slowly at 0° C in a strictly first-order fashion 

via assumed β-hydride elimination; with t1/2 = 40 min for 27 and t1/2 = 21 h for 28. 
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Figure 15: Schrock’s initiators for living α-olefin polymerization. 

 
Fujita and co-workers112, 113 have recently proposed a different hypothesis for 

their surprisingly robust titanium bis(phenoxyimine) catalyst, TiCl2(η2-1-[C{H}=NAr]-2-

O-3-tBu-C6H3)2 (29, Ar = fluorinated phenyl), capable of living polymerization of 

ethylene and propylene at 50 ºC. On the basis of DFT calculations, Fujita attributed this 

remarkable stability to an attractive force between an ortho-fluorine and the β-hydrogen 

of the polymer chain, claiming that this interaction is strong enough to mitigate reactivity 

of the β-hydrogen towards β-hydride elimination and transfer to monomer reactions. 

Independently, Chan and co-workers114 reported a neutral (phenoxypyridine)Zr-benzyl 

model complex (30) that displays a weak H···F interaction between a fluorine atom of an 

ortho-CF3 group and the α-hydrogen of a benzyl group (Figure 16), observable by 1H and 

19F NMR. Chan and Fujita113 both claim that 30 serves as a model for the direct 

observation of the H···F interaction proposed in 29.  However, detailed computational 

investigations by Busico and co-workers115 suggest that the effects of the ortho-F atoms 

are primarily steric in nature, destabilizing the transition state of β-hydride transfer to 

monomer by coming in close contact with the monomer.  Furthermore, the presence of 

the ortho-F atoms prevents the phenyl groups from rotating to reduce these steric 
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interactions.  Similar transition state energies were found when the ortho-F atoms were 

replaced with methyl groups. Interestingly, this study also suggests that the transition 

state of β-hydride transfer to monomer is slightly stabilized by a weak attractive force 

between the ortho-F atom and the closest α-hydrogen of the polymer chain, an 

interaction that might be more appropriately modeled by Chan’s complex. 
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Figure 16: Top: Fujita’s preinitiator for living propylene and ethylene polymerization 
and the activated ethylene insertion product modeled by DFT calculations. Bottom: 
Chan’s model complex displaying a weak F···H interaction. 
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Scheme 22: Chain-end epimerization products observed by Landis.  Species inside box 
were not observed. 

Zr

A-

H

Zr
P

HMe

A-

*

Zr
P

MeH

A-

*

P
Me

*

Zr

A-

H

P
Me

*

Zr
Me

P MeA-

*

Zr

A-
H

P Me

*

Zr

A-
H PMe

*

Zr

A-

H
Me

P

*

Zr

A-
H MeP *

Zr
P

MeH

A-

*

Zr
P

HMe

A-

*

Me

P

*

Me

P

*

 

Landis and co-workers116-121 have reported extensive investigations analyzing 

initiation and propagation events of 1-hexene, propylene and ethylene polymerizations by 

rac-(EBI)ZrMe2, activated via methyl-group abstraction by B(C6F5)3, at -40 °C using 13C 

NMR.117  These studies, combined with previously conducted kinetic investigations119 

and kinetic isotope effects,121 indicate that propagation begins with reversible olefin 

coordination and displacement of the anion, followed by the rate-limiting insertion of the 

alkene into the metal-polymeryl bond.  Further studies with this system were conducted 
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in an attempt to observe the chain-end epimerization process using (1-13C)-propylene.118  

All expected primary polymeryl species, including those only accessible through the 

proposed non-dissociative alkene enantioface exchange, were observed (Scheme 22).  

However, the tertiary alkyl and coordinated alkene intermediates remained elusive. 

Through extensive low temperature 1- and 2-D 13C, 1H NMR experiments, Sita 

and co-workers122 reported the observation of cyclopentene insertion into the Zr-Me bond 

of 16.  At -30 °C, the cis-1,2-product of insertion (31) is indefinitely stable, and possesses 

a single strong β-agostic interaction.  However, above -30 °C, this complex undergoes 

rearrangement to the cis-1,3-isomer (32) in a strictly first-order process, possibly driven 

by steric interactions between the methyl group on the cyclopentyl unit and the amidinate 

N-tert-butyl group.  No intermediates of any kind are observed, including alkene, hydride 

complexes as required by the Busico mechanism for chain-end epimerization.  If the 

isomerization is occurring through this mechanism, the alkene rotation step brings the 

bulk of the alkyl ring into close contact with the Cp* ligand, which should be a highly 

unfavorable conformation.  In this regard it is fairly surprising that the isomerization 

proceeds readily at such low temperatures, although additional driving force for the 

isomerization might be found in the two separate β-agostic interactions that 32 was 

observed to be engaged in (Scheme 23).  Formation of a double β-agostic interaction has 

previously been proposed as a possible stabilizing interaction in the tertiary alkyl 

intermediate during chain-end epimerization,123, 124 and so this observation in 32 is of 

particular significance.  

 40



Scheme 23: Isomerization of cyclopentene insertion product. 
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 This dissertation focuses on investigations into dynamic processes present in the 

CPZA living polymerization system towards the development of a method for precise 

control of polyolefin stereochemistry.  The work described in Chapter 2 can be found in 

Harney, M. B.; Keaton, R. J.; Sita, L. R. J. Am. Chem. Soc. 2004, 126, 4536-4537 and 

Harney, M. B.; Keaton, R. J.; Fettinger, J. C.; Sita, L. R. J. Am. Chem. Soc. 2006, 128, 

3420-3432.  The work described in Chapter 3 can be found in Harney, M. B.; Zhang, Y.; 

Sita, L. R. Angew. Chem. Int. Ed. 2006, 45, 2400-2404, and the work described in 

Chapter 4 can be found in Harney, M. B.; Zhang, Y.; Sita, L. R. Angew. Chem. Int. Ed. 

2006, 45, 6140-6144. 

 

2.2 Chain Walking and Cationic CPZA Model Complexes 

The isomerization mechanism proposed by Busico61, 62 and apparently validated 

by Bercaw’s72 doubly labeled propylene experiment (see Section 1.3), might be 

responsible for the observed isomerization in 31.  However, there are several unsettling 

aspects of the Busico mechanism: (1) a relatively large number of reversible steps must 

occur within an extremely short amount of time in order for the process to compete with 

propagation; (2) none of the six unique alkene, hydride intermediates, which avoid alkene 
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displacement by monomer, have ever been observed; (3) the tertiary alkyl intermediate 

has never been observed; (4) the alkene enantiofacial exchange would appear to require 

at least partial dissociation and reassociation of the olefinic polymer end-group, and yet 

termination through alkene release or displacement by free monomer is avoided.  

The living nature of polymers derived from 16 and other CPZA derivatives, as 

well as the unique stability of alkyl CPZAs,125 offers a unique opportunity for in-depth 

analysis of isomerization mechanisms through direct of observation of cationic species.  

As such, in order to observe the effects of any isomerization reactions in the living 

polymer, which, under normal conditions are not competitive with propagation, an 

oligomeric sample of poly(1-butene) initiated by 16 (16-PB) with DP ≈ 20 was 

maintained at –10 ºC for an extended period of time.126  While higher molecular weight 

polymers (DP ≥ 100) show virtually no alkene resonances from β-hydride elimination 

using standard acquisition parameters, samples of 16-PB that were quenched and 

analyzed by 1H NMR show alkene resonances that grow steadily over the course of 

several days (Figure 17).  Aside from the expected resonances of the endgroup I (δ 4.69 

and 4.76) from the direct β-hydride elimination of unchanged 16-PB, those of a mixture 

of E and Z isomers of the trisubstituted alkene endgroup II (δ 5.18 and 5.27) as well as 

the terminal alkene endgroup III (δ 4.90, 4.96 and 5.68) are observed.  This suggests 

isomerization of the living polymer before decomposition, resulting in the cationic 

zirconium center chain-walking down the pendant group of the last inserted monomer 

(Scheme 24). The initial isomer of 16-PB, IV, presumably isomerizes into intermediates 

V-VII, all of which undergo β-hydride elimination to account for I-III.  At no time are 

resonances observed attributable to VIII, resulting from β-hydride elimination of V into 
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the polymer backbone, which may be inaccessible for steric reasons. Unfortunately, we 

have not yet been able to directly spectroscopically observe V-VII.   

 
Figure 17: 1H NMR (400 MHz, CDCl3, 25 ºC) spectra of the alkene region of oligomeric 
poly(1-butene) quenched immediately (bottom)  and after 72 h at –10 ºC (top).  P = 
isotactic poly(1-butene). 

 

Scheme 24: Mechanism of formation of end groups I-III. 
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Using low MW alkyl complexes as models for a living active center could permit 

the direct observation of isomerization events.  As depicted in Figure 18, the pendant 

alkyl groups of {Cp*Zr(R)[N(Et)C(Me)N(tBu)]}[B(C6F5)4] (33-R, R = varied alkyl group) 

can be tailored to mimic different types of polyolefin chains.  For example, an n-propyl 

group can be viewed as a model for a living polyethylene chain, while an iso-butyl group 

can be viewed as a model for polypropylene.  Further increasing the size of the alkyl 

group improves the ability of the complex to model living polyolefins obtained from 

higher α-olefins. The decomposition and potential structural rearrangements of these 

models can be easily monitored by 1H and 13C NMR spectroscopy, whereas the 

complexity of spectra of living polymers hinders straightforward analysis. 
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Figure 18: Low molecular weight alkyl groups as models for living polymers 

 

It is intuitive to think that the rates of decomposition of the models and living 

polymers should be relatively similar given the nearly identical environments around the 

zirconium center (Scheme 25).  However, a model complex clearly cannot accurately 

reproduce the extended steric interactions of a polymer chain, and it is unclear what kind 

of ramifications this will have on the stability of the complex.  Due to this, a comparison 

of stabilities between the model complexes and a living polymer must be conducted to 

reveal the magnitude of this effect.  
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Scheme 25: Comparison of the β-hydride elimination of a low molecular weight alkyl 
group to that of a living polymer. 

[Zr]

[Zr]

R R

[Zr] H +
β-H elim.

[Zr] H
β-H elim.

R R

+n n

 
 

 Secondary alkyl groups can also provide valuable information as models.  Several 

systems have been found to polymerize propylene via 2,1-insertion, which results in a 

secondary polymeryl group bound to the metal. In addition, regioerrors during propylene 

polymerizations with metallocenes, which propagate via 1,2-insertion, also result in a 

secondary polymeryl species, which has been described as a ‘dormant state’ on the basis 

of an excessive number of n-butyl end groups relative to the occurrence of regio-

misinsertions.127-131  However, Landis120 has recently determined that the n-butyl end 

group enrichment may be more accurately attributed to the higher reactivity of secondary 

alkyls with molecular hydrogen, which is commonly used as an irreversible chain transfer 

agent.  Secondary polymeryl complexes can also isomerize to the primary position and 

continue monomer propagation, resulting in a 1,3-insertion (Scheme 26). Therefore, it 

was of interest to observe the stability of a cationic CPZA secondary alkyl model with 

respect to isomerization vs. direct decomposition given the unique stability of our 

secondary and tertiary alkyl/chloro CPZA derivatives, which do not undergo 

isomerization to primary alkyls even at temperatures as high as 60 ºC.132 
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Scheme 26: Formation of 1,3-insertions through the isomerization of 2,1-insertions. 
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2.3 Synthesis and Structure 

The synthesis of discrete cationic CPZA alkyl complexes can be achieved through 

protonolysis of alkyl, methyl complexes with 13, in the same way that the methyl cation 

16 is generated through protonolysis of the dimethyl 12.133  Alkyl, methyl complexes can 

be synthesized through methylation of alkyl, chloro complexes, which in turn can be 

synthesized from the previously reported dichloride complex, 

Cp*ZrCl2[N(Et)C(Me)N(tBu)] (34).125 
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Figure 19:  Retrosynthetic strategy for 33. 

 

2.3.1 CPZA Alkyl, Chloro Complexes 

The dichloride starting material 34 is easily prepared in large quantities from the 

lithium amidinate salt and commercially available Cp*ZrCl3 (35) at –78 ºC in diethyl 
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ether (Et2O).  This compound is then reacted with alkylmagnesium chlorides, or 

alkyllithium reagents in the cases of the sterically demanding tert-butyl and neopentyl 

groups, under similar conditions to provide the monoalkylated product 

Cp*ZrRCl[N(Et)C(Me)N(tBu)] (36-R, R = varied alkyl group), as shown in Scheme 27.  

The tert-butyl derivative, 36-tBu, requires extended reaction times (18 h) at -55 ºC to 

avoid isomerization to the iso-butyl derivative, 36-iBu, which occurs in the presence of 

unreacted tert-butyl lithium if the reaction is warmed to room temperature before 

completion.  If alkylmagnesium bromides are employed instead of chlorides, 

transhalogenation at zirconium takes place, yielding the product as a mixture of alkyl, 

chloro and alkyl, bromo (36’-R) derivatives.   

Scheme 27: Synthesis of CPZA alkyl, chloro and alkyl, methyl derivatives. 
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Several derivatives of 36-R and 36’-R have had their structures determined by 

single crystal x-ray diffraction, and each was found to exist as a single diastereomer with 

the chloride (or bromide) residing adjacent to the amidinate N-tert-butyl group.132  

Importantly, no derivative of 36-R exhibited a close interaction between β-hydrogens and 

the metal center.  Examining the structure of 36’-(2-Et-Bu) (Figure 20), the largest of the 

alkyl models examined, reveals that the bond angles around the α-carbon are not 
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significantly distorted from tetrahedral geometry, aside from the Zr-Cα-Cβ bond angle of 

117.72(8)° (cf. 109° for ideal tetrahedral).  Likewise, the angles around the β-carbon are 

only slightly ‘flattened’ towards the β-hydrogen, most likely due to steric effects.  It is 

interesting to note that part of the 2-ethyl-butyl group is accommodated in the open area 

‘beneath’ the amidinate ligand and opposite to the Cp* ligand.  It is not then unreasonable 

to presume that the living polymer might also take advantage of this space for 

accommodation of the β-alkyl groups of a poly(α-olefin) chain. 

 

Figure 20: Molecular structure (30% thermal elipsoids) of 36’-(2-Et-Bu). All hydrogens, 
aside from those on the 2-ethyl-butyl group, have been removed for the sake of clarity. 
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Table 1:  Bond angles of the α- and β-carbons of 36’-(2-Et-Bu). 

Bond Angle (degrees) 
C(20)-C(19)-Zr(1) 117.72(8) 
C(20)-C(19)-H(19) 106.7(10) 109.7(10) 
Zr(1)-C(19)-H(19) 107.8(10) 107.3(10) 

H(19)-C(19)-H(19’) 107.2(14) 
   

C(22)-C(20)-C(21) 110.30(11) 
C(22)-C(20)-C(19) 113.06(10) 
C(21)-C(20)-C(19) 111.85(11) 
C(22)-C(20)-H(20) 105.8(9) 
C(21)-C(20)-H(20) 108.2(9) 
C(19)-C(20)-H(20) 107.2(9) 

 

 
 In solution, 1H NMR confirms the presence of a single diastereomer for each 

derivative, presumably the same as that determined from x-ray crystallography.  Further, 

variable temperature NMR confirmed that each derivative of 36-R is stable with respect 

to decomposition, isomerization and racemization through amidinate ring-flipping at all 

temperatures examined (as high as 80 ºC).132 

 

2.3.2 CPZA Alkyl, Methyl Complexes 

With the chloro, alkyl complexes in hand, the synthesis of alkyl, methyl 

derivatives, Cp*ZrRMe[N(Et)C(Me)N(tBu)] (37-R, R = varied alkyl group), was 

accomplished by treating 36-R with methyl lithium (Scheme 27).  The only unsuccessful 

attempt was in the case of R = tert-butyl. While the chloro derivative 36-tBu was 

synthesized from tert-butyl lithium with extended reaction times at -55 ºC, all subsequent 
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attempts at methylation failed.132  Presumably, shielding of the metal center by the bulky 

tert-butyl group prevented alkylation, with the reaction resulting only in formation of 37-

iBu when attempted at room temperature. Reversing the steps and attempting to react the 

methyl, chloro derivative 36-Me with tert-butyl lithium also proved unsuccessful.  The 

major product of this reaction (ca. 30% by 1H NMR) was a previously characterized 

trimethylenemethane (TMM) complex (Scheme 28).134 

Scheme 28: Treating 36-Me with tert-butyl lithium produced the TMM derivative in low 
yield. 
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N
N
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Once again, the solid state structures of several derivatives of 37-R, synthesized 

by Richard J. Keaton,132 were determined by x-ray diffraction.  Similar to derivatives of 

36-R, each of the alkyl methyl complexes were found to have their methyl group adjacent 

to the amidinate N-tert-butyl group, and there were no close β-hydrogen-zirconium 

interactions observed.  However, the 1H NMR revealed the two sets of peaks, indicating 

the presence of two diastereomers.  As mentioned above, 2-D 1H EXSY NMR 

experiments conducted by Yonghui Zhang135 confirmed that in solution, the amidinate 

ligand is configurationally unstable and undergoes rapid racemization for all derivatives 

of 37-R.97  This disparity between the configurational stability in the alkyl, chloro (or 

alkyl, bromo) complexes vs. the alkyl, methyl complexes is most likely an electronic 

effect caused by the electron withdrawing nature of the halide.  Indeed, close examination 
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of the crystal structures reveals that derivatives of 36-R uniformly have slightly shorter 

N-Zr bond lengths than analogous derivatives of 37-R (Table 2).133 

Table 2: Comparison of Zr-N bond lengths of 36-R and 37-R for R = iPr and iBu. 

 36-iPr 37-iPr  36'-iBu 37-iBu 
Zr-N(Et) 2.2419(11) 2.2594(9)  2.2284(15) 2.2601(12) 
Zr-N(t-Bu) 2.2528(11) 2.2808(9)  2.2587(16) 2.2821(12) 

 

2.3.3 Cationic CPZA Alkyl Complexes 

Activation of 37-R with [PhNMe2H][B(C6F5)4] in chlorobenzene at –10 ºC results 

in the cationic CPZA alkyl species 33-R (Scheme 29) via protonolysis of the methyl 

group.  Competitive protonolysis of the alkyl groups is not observed.  In work done by 

Keaton,132 cationic CPZA alkyl complexes were found to possess a strong β-agostic 

interaction in solution.  To further clarify the solution structure, a series of difference-1D 

NOE 1H NMR experiments were carried out.  For the derivatives of 33-R in which R 

contains β-hydrogens, it was found that the agostically bound β-hydrogen resides in close 

proximity to the N-ethyl group.  As presented in Table 3, proof of the agostic interaction 

was evident in the 1JCH coupling values, which were reduced at the β-position (85-110 

Hz) and increased at the α-position (133-155 Hz), as determined by Keaton using 2D C, 

H J-reso

13

1 lved HSQC NMR techniques.  No such interaction was found in a sample of 

oligomeric 16-PB.  Much like the alkyl chloro derivatives, the cations exhibit 

configurational stability with respect to amidinate ring flipping and do not racemize in 

solution.  
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Scheme 29: Activation of 37-R via methyl group protonolysis. 
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[B(C6F5)4] counterion of 33 not shown.  

 
 
 

Table 3: 1J(13C-1H) coupling constants for 33-R.a

R  1J(13Cα-1Hα)b 1J(13Cβ-1Hβ)b

Et 140 135 123 
nPr 144 133 110 n.o. 
iPr 155 126 85 

nBu 140 133 121 109 
iBu 138 128 92 

2-Et-Bu 140 120 86 
a Obtained from 2D 13C, 1H HSQC NMR in chlorobenzene-d5 at -10 °C. 
b Two values denote that two distinct resonances for diastereotopic protons were observed. 
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Figure 21:  1H NMR (400 MHz, -10 ºC, C6D5Cl) of 33-iBu. Note the agostically bound 
β-hydrogen, which occurs as a broad multiplet at -0.13 ppm.  Resonance at 2.77 ppm is 
due to N,N’-dimethylaniline.  
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Figure 22: 1H NMR (400 MHz, -10 ºC, C6D5Cl) of 33-(2-Et-Bu). Note the agostically 
bound β-hydrogen, which occurs as a broad multiplet at -0.13 ppm. 

 
While several attempts have been made for each derivative of 33, only the iso-

butyl derivative provided crystals sufficient for x-ray analysis, as shown in Figure 23. 

The borate counterion (not shown) is well displaced from the zirconium cation and there 

are no close Zr-F interactions between the ion pair.  The existence of a β-agostic 

interaction as revealed by solution 1H NMR data is confirmed by the position of the 

crystallographically located β-hydrogen atom [cf. Zr(1)-H(20A) distance of 2.25(3) Å].136  

Additional evidence for this β-hydrogen agostic interaction is provided by bond angles 
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around the α- and β-carbons (Table 4).  The geometry of the a-carbon is quite distorted, 

with a Zr-Ca-Cb bond of only 88.06(16)°.   It is also interesting to note that the zirconium-

nitrogen bonds in the cation 33-iBu are very short at 2.1376(18) and 2.1882(18) Å, and so 

it would appear that this geometric parameter is indeed a good measure of the electron 

deficiency of the metal center as now established by the zirconium-nitrogen bond length 

trend: 37-iBu > 36’-iBu > 33-iBu.137 

 

 

 

Figure 23: Molecular structure (30% thermal elipsoids) of 33-iBu. The B(C6F5)4 
counterion and all hydrogens, aside from the α- and β-hydrogens of the iso-butyl group, 
have been removed for the sake of clarity. 
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Table 4: Bond angles of the α- and β-carbons of 33-iBu. 

Bond Angle (degrees) 

C(20)-C(19)-Zr(1) 88.06(16) 
C(20)-C(19)-H(19) 116(2) 124(2) 
Zr(1)-C(19)-H(19) 122(2) 110(2) 

H(19)-C(19)-H(19’) 98(3) 
  

C(21)-C(20)-C(19) 112.1(3) 
C(21)-C(20)-C(22) 111.6(3) 
C(19)-C(20)-C(22) 114.0(3) 
C(19)-C(20)-H(20) 113.6(14) 
C(21)-C(20)-H(20) 102.9(14) 
C(22)-C(20)-H(20) 101.8(14) 

 

2.3.4 Isotopically Labeled Derivatives 

 As detailed above, the incorporation of isotopic labels into polypropylene, 

through the polymerization of isotopically labeled monomer, has been useful in 

elucidating the mechanisms of isomerization reactions.  If derivatives of 33-R undergo 

isomerization prior to decomposition in a manner similar to that observed during 

decomposition 16-PB, the Busico mechanism would dictate that a deuterium label in the 

β-position would, upon isomerization, necessarily be relocated to what was formerly the 

α-carbon.  As such, derivatives of 33-R with isotopic labels in either the α- or β-position 

(or both) were desirable.  

In order to synthesize isotopically labeled derivatives of 33-R, the 

hydrozirconation techniques developed in our lab were utilized.138  Hydrogenolysis of 

Cp*ZrCl(SiMe2Ph)[N(Et)C(Me)N(tBu)] (38) under an atmosphere of D2 allowed the 

hydrozirconation of isobutylene or propylene to provide β-deuterium labeled iso-butyl 

and n-propyl compounds 36-(2-d)-iBu and 36-(2-d1)-nPr through insertion of the olefin 
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into the Zr-D bond of the in-situ generated CPZA chloro deuteride species (Scheme 30). 

Also, the hydrozirconation of (1-13C)-isobutylene, synthesized via Wittig reaction 

between acetone and (13C-methyl)triphenylphosphonium iodide, under either H2 or D2 

provided the 13C labeled 36-(1-13C)-iBu and the doubly labeled 36-(1-13C-2-d)-iBu.  

Cationic versions of these isotopically labeled compounds, 33-(2-d)-iBu, 33-(1-13C)-iBu, 

33-(1-13C-2-d)-iBu and 33-(2-d1)-nPr, were then obtained in the same fashion as the 

unlabeled derivatives as detailed above.  

Scheme 30: Synthesis of isotopically labeled compounds via hydrozirconation. 
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It is important to note that neither the hydrozirconation reaction nor any of the 

steps leading to the cationic species resulted in any detectable amount of scrambling of 

the isotopic labels. Furthermore, none of the isotopically labeled alkyl, chloro or alkyl, 

methyl derivatives showed scrambling upon heating to 60 ºC for several hours.  This 

stands in sharp contrast to the isomerization of neutral alkyl, chloro zirconocene resulting 

from hydrozirconation of internal olefins.63 
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Figure 24: 1H NMR (500 MHz, 0 °C, C6D5Cl) of 33-(2-d)-iBu.  Note that the β-hydrogen 
resonance has disappeared as compared to 33-iBu (Figure 21). 
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Figure 25: 1H NMR (500 MHz, -10 °C, C6D5Cl) of 33-(1-13C)-iBu.  Note that the α-
hydrogen resonances have been split by the 13C-label as compared to 33-iBu (Figure 21). 
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Figure 26: 1H NMR (500 MHz, -10 °C, C6D5Cl) of 33-(1-13C-2-d)-iBu.  Note that the α-
hydrogen resonances have been split by the 13C-label and the β-hydrogen resonance has 
disappeared as compared to 33-iBu (Figure 21). 

 

2.3.5 Hafnium Derivatives 

Given that the cationic cyclopentadienyl hafnium acetamidinate (CPHA) methyl 

and iso-butyl analogs of 33-R can also serve as initiators for the isospecific living 

polymerization of 1-hexene,139   albeit with a rate of propagation that is ~60 times slower 

than their second row cousins, it was decided to expand the range of the present studies to 

include isotopically labeled hafnium derivatives.  A neutral base-stabilized hafnocene 

isobutylene complex has been isolated, although not in the context of chain-end 

epimerization studies.140  In addition, considering all the previous failed attempts to 
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prepare a cationic tert-butyl derivative of 33-R, it was felt that better success might be 

achieved in efforts to synthesize the corresponding cationic hafnium tert-butyl species.   

The synthesis of double isotopically labeled hafnium iso-butyl was achieved in 

analogous fashion to the synthetic protocol used to prepare the zirconium analog 33-(1-

13C-2-d-iBu).  Thus, as Scheme 31 reveals, hydrogenolysis of 

Cp*HfCl(SiMe2Ph)[N(Et)C(Me)N(tBu)] (39) under a D2 atmosphere resulted in the 

hydrohafnation141 of (1-13C)-isobutylene to provide the desired isotopically labeled 

chloro, iso-butyl hafnium compound 40; albeit in only moderate yield as compared to the 

analogous hydrozirconation reaction (cf 70% yield for 36-(1-13C-2-d)-iBu vs. 48% for 

40).  Methylation of 40 using the standard procedure successfully provided the 

isotopically labeled methyl, iso-butyl hafnium compound 41.  Finally, treatment of 41 

with 1 equiv of [PhNMe2H][B(C6F5)4] in chlorobenzene at -10º C provided the desired 

cationic species Cp*Hf[(1-13C-2-d)-iBu][N(Et)C(Me)N(tBu)]}[BC6F5] (42) in 

quantitative fashion as determined by 1H NMR.   In this respect, it is important to note 

that it was previously reported that no evidence for a β-hydrogen agostic interaction 

could be found for an analogous, unlabeled CPHA iso-butyl cation (43, Figure 27) in 

solution using 1-D and 2-D NMR techniques.139 

Scheme 31: Synthesis of isotopically labeled hafnium derivatives. 
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Figure 27: 1H NMR (500 MHz, 0 °C, C6D5Cl) of 
pattern of the β-hydrogen resonance as compared to 
21). 
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Table 5: Comparison in selected bond lengths of 46 and 36-tBu. 

Bond M = Hf (46) M = Zr (36-tBu)
M-N(2) 2.211(2) 2.2360(17) 
M-N(1) 2.254(2) 2.2928(18) 

M-C(CH3)3 2.298(3) 2.316(2) 
M-Cl(1) 2.4389(7) 2.4732(6) 

   

2.485(3) 2.501(2) 
2.492(3) 2.503(2) 
2.530(3) 2.548(2) 
2.534(3) 2.554(2) 

M-Cp* 

2.573(3) 2.591(2) 
 

     

Figure 28: Molecular structure (30% thermal elipsoids) of 46 (left) and 36-tBu (right).  
All hydrogens have been removed for the sake of clarity. 

 

 Unfortunately, in the same manner as the zirconium derivative, attempts to 

methylate 46 produced only the unlabeled derivative of the methyl, iso-butyl compound, 

Cp*HfMe(iBu)[N(Et)C(Me)N(tBu)] (47).  However, success was at last realized in 

reversing the order of alkylation of 45.  As depicted in Scheme 32, methylation of 45 

using methylmagnesium chloride first provided the chloro, methyl compound 48, which 
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was then reacted with tert-butyl lithium overnight at -55 ºC to afford the elusive methyl, 

tert-butyl complex 49.  Finally, upon treatment of 49 with 1 equiv. of 13, the desired 

cationic tert-butyl hafnium complex 44 was quantitatively generated as determined by 1H 

NMR spectroscopy.  It is important to note that the resonance of the β-hydrogens appears 

as a single sharp singlet with no evidence for any β-agostic interactions, as shown in 

Figure 29. 

 

Scheme 32: Synthesis of the hafnium tert-butyl cation. 
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Figure 29: 1H NMR (500 MHz, -25 °C, C6D5Cl) of 44.  Note that isomerization to 43 
(Figure 27) has already begun (resonances marked with *). 

 

2.4 Results 

2.4.1 Stability of CPZA Alkyl Cations 

 All derivatives of 33-R appeared quite stable at –10 ºC (no detectable 

decomposition or isomerization after ~18 hours by 1H NMR). At the higher temperature 

of 30° C, however, decomposition does ensue and an initial screening qualitatively 

determined a relative order of stability of 33-R to be R = Et > nPr > nBu > iPr > iBu > 2-

ethylbutyl.132  Based on this observation, several of these complexes were targeted for 

more in-depth analysis, with the subset being comprised of: 33-nPr, 33-iPr, 33-iBu, and 

33-(2-Et-Bu) (Figure 30). 
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Figure 30: Subset of CPZA cations chosen for detailed low-temperature studies. 

 

All derivatives of 33 appeared quite stable by 1H NMR at -10 ºC, with no 

detectable decomposition or isomerization after ~18 hours. At 0 ºC, 33-iBu and 33-(2-Et-

Bu) decomposed in a first-order fashion while 33-nPr and 33-iPr remained stable.  

Surprisingly, the 2-ethyl-butyl derivative 33-(2-Et-Bu) decomposed approximately twice 

as fast as the iso-butyl derivative 33-iBu (kd = 0.066 h-1; t1/2 = 10.3 h vs. 0.035 h-1; 20.4 h, 

respectively).  In order to put this disparity into proper perspective, the rate of 

decomposition of a living polymer derived from 16 was also measured at 0 ºC.  This was 

done by polymerizing ~15 equivalents of (1-13C)-1-decene in chlorobenzene-d5 at -10 ºC 

to provide oligomeric living poly(1-13C-decene) (16-PD), which was then allowed to 

equilibrate at 0 ºC inside the NMR.  Following the disappearance of the α-carbon 13C 

resonance at 82.3 ppm96 using inverse gated 13C NMR allowed determination of kd to be 

0.212 h-1 (t1/2 = 3.2 h), more than six times greater than that of 33-iBu.  
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Figure 31: Decomposition of 33-iBu (solid line), 33-(2-Et-Bu) (dashed line) and 16-PD 
(dotted line) at 0 °C in chlorobenzene-d5, as observed by 1H (33-iBu, 33-(2-Et-Bu)) or 
13C (16-PD) NMR. 

 

The pathway by which 33-iBu decomposes was probed by observing the course of 

decomposition of the single deuterium labeled derivative 33-(2-d)-iBu and the double 

isotopically labeled derivative 33-(1-13C-2-d)-iBu through 1H and 13C NMR.  Upon 

warming 33-(2-d)-iBu from -10 to 0 °C, the original β-positioned deuterium label began 

to undergo scrambling almost immediately, concurrently with decomposition, reaching 

apparent equilibrium in approximately 11 hours (Figure 32).  In following the 

decomposition of 33-(1-13C-2-d)-iBu, by 13C NMR, two 1:1:1 triplets for diastereotopic 
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13CH2D-labeled methyl groups of the iso-butyl substituent were observed, with no 

evidence being obtained for the corresponding singlets that should arise from formation 

of single 13C-labeled methyl groups (Figure 33).  The mechanism by which scrambling 

occurs always places a D and 13C label on the same carbon atom as shown in Scheme 33, 

and this is consistent with the multi-step sequence of events also shown in this scheme 

that is identical in nature to the mechanism proposed by Busico and co-workers for chain-

end epimerization (vide supra). 
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Figure 32: Left: graph of the intensity of the β-agostic peak (relative to amidinate ethyl 
CH2 peaks) vs. time. Trend line provided as a guide for the eye. Right: the β-agostic 
region of the 1H NMR (500 MHz, 0 ºC, C6D5Cl) of 33-(2-d)-iBu.  Spectra correspond to 
the first 6 data points on the graph, bottom to top. 
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hafnium initiator, but they attributed this product to the reaction of the initiator with 

dimethylaniline, which is a byproduct of activation using [PhNHMe2][B(C6F5)4] (13).  

No evidence of a reaction between any derivative of 33-R and dimethylaniline was 

detected in the present study, and replacing this borate with [Ph3C][B(C6F5)4] (19), which 

can also be used to generate 33-R from 37-R through methide abstraction, albeit with 

lower chemoselectively (a small amount of 16 is generated through competitive alkyl 

group abstraction), unfortunately did not prevent production of 2-methylpropane during 

decomposition of 33-iBu.  Other attempts to remove obvious proton sources from the 

equation (e.g., use of silylated glassware) were likewise unsuccessful. 

The decomposition products of 33-(2-Et-Bu) also showed signs of isomerization 

in the form of several different alkene isomers, analogously to the alkene end groups 

observed for the oligomeric poly(1-butene) resulting from the decomposition of 16-PB.  

As such, 1H NMR analysis of vacuum transferred volatiles from a sample of decomposed 

33-(2-Et-Bu) revealed not only the 2-ethyl-1-butene, as produced by β-hydride 

elimination without isomerization, was accompanied by lesser amounts of 2-ethyl-2-

butene and 3-methyl-1-pentene, produced from the zirconium center chain-walking 

within the group before elimination.  However, none of the discrete, cationic alkyl 

derivatives expected from isomerization, 33-R with R = 3-methyl-3-pentyl, 3-methyl-2-

pentyl, or 3-methyl-1-pentyl, were observed.  Once again, a significant amount of alkane 

(2-ethylbutane) was produced concurrently with the alkenes.   

Since the cationic tert-butyl derivative has not yet yielded to synthesis, it has not 

been possible to investigate the stability of this species relative to that of the iso-butyl 

cation.  However, a similar investigation was conducted with the n-propyl and iso-propyl 
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derivatives, in the hopes that comparable behavior would be observed.  As stated 

previously, both 33-nPr and 33-iPr remained unchanged over extended periods of time at 

0 °C in chlorobenzene solution, a temperature at which both 33-iBu and 33-(2-Et-Bu) 

undergo isomerization and decomposition.  At 5 ºC, however, 33-iPr disappeared in a 

first order fashion (k = 0.010 h-1, t½ = 68 h) with only a trace amount of decomposition 

being observed, while 33-nPr appeared in a zero-order fashion.  This is consistent with 

slow β-hydride elimination of 33-iPr followed by rapid reinsertion or isomerization to 

33-nPr.  In order to determine if this isomerization process is reversible, decomposition 

of the deuterium labeled n-propyl derivative 33-(2-d1)-nPr was studied at elevated 

temperatures.  Thus, at 20 ºC, while 33-(2-d1)-nPr was observed to decompose in first 

order fashion (k = 0.012 h-1, t½
 = 59.8 h), the deuterium label in the β-position of the n-

propyl group did not show any evidence of scrambling (see Figure 34 for 1H NMR), and 

this remained true at all temperatures examined up to 50 ºC.  Curiously, propylene, the 

expected product of β-hydride elimination of 33-nPr and 33-iPr, was not observed in 

either case.  Unfortunately, the alkane region of the 1H NMR was not clear enough to 

verify propane as an alternate decomposition product, although it is possible that the 

volatility of propylene and propane produced is contributing to the difficulty in detection.  

Eyring analysis determined the activation parameters to be ∆H‡ = 22.0 kcal/mol, ∆S‡ = 

3.3 eu for 33-iPr and ∆H‡ = 21.6 kcal/mol, ∆S‡ = -2.0 eu.  The relatively low ∆H‡ of each 

process suggests that the rate limiting step involves bond breaking and forming in a fairly 

concerted fashion, while the low absolute value of ∆S‡ is likely due to pre-organization of 

the ground-state resulting from the strong β-agostic interaction. 
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Figure 34: 1H NMR (500 MHz, 40 °C, C6D5Cl) of 33-(2-d1)-nPr as a 1:1 mixture of 
diastereomers.  Insert: expansion of the α-hydrogen resonance immediately upon 
warming to 40 °C (bottom) and after 5 h at 40 °C (top).  Note that the coupling pattern 
does not change. 

Table 6: Kinetic parameters of isomerization/decomposition of 33-R.  

R T(ºC) k (h-1) t½ (h) ∆H‡ 
(kcal/mol) ∆S‡ (eu) 

5 0.010 67.6 
10 0.021 33.4 
15 0.042 16.4 

iPr 

20 0.082 8.4 

22.0 3.3 

20 0.012 59.8 
30 0.029 23.9 
35 0.073 9.5 
40 0.105 6.6 
45 0.246 2.8 

(2-d1)-nPr 

50 0.343 2.0 

21.6 -2.0 
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Figure 35:  Eyring plots for the decomposition/isomerization of 
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2.4.2 Stability of CPHA Alkyl Cations 

With respect to hafnium derivatives, activation of 49 with

provided the cationic tert-butyl derivative 44, as detailed above.  T

to be highly unstable, isomerizing to the unlabeled iso-butyl 

temperatures as low as -35 ºC (kd = 0.060 h-1, t½ = 11.6 h). At the s

temperature of -10 ºC, isomerization was extremely rapid, with t½ 

The activation parameters (∆H‡ = 16.4 kcal/mol, ∆S‡ = -3.0 eu

those observed for 33-iPr and 33-nPr.  The similarly low absol

suggest that while a static β-agostic interaction was not observed

the complex must initially form an intermediate which contains su

engaging in β-hydride elimination. 
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‡
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Table 7: Kinetic parameters of decomposition of 44. 

T(ºC) k (h-1) t½ (h) ∆H‡ 
(kcal/mol) ∆S‡ (eu) 

-35 0.060 11.6 
-30 0.135 5.1 
-25 0.313 2.2 
-20 0.564 1.2 
-15 1.094 0.6 
-10 1.717 0.4 

16.4 -3.3 

 

The unlabeled iso-butyl derivative 43, as obtained from the isomerization of 44, 

was also found to be unstable, decomposing slowly even at –35 ºC. The rate of 

decomposition of 43 was measured at 0 ºC to be 0.055 h-1 (t½ = 12.6 h), compared to 

0.034 h-1 (t½ = 20.4 h) for 33-iBu (vide supra).  Following the decomposition of the 

doubly labeled derivative, 42, revealed surprising results.  By 13C NMR, no detectable 

amount of isotopic label scrambling was observed in the cationic species itself, and 

decomposition products contained no doubly labeled methyl groups.  The only 

resonances observable for the decomposition products were (1-13C)-isobutylene, resulting 

from the elimination of unscrambled 42 and (1-13C)-2-methylpropane, presumably with 

the deuterium label still residing in the 2-possition. 

 

2.5 Discussion 

2.5.1 Decomposition of CPZA Alkyl Cations 

The decomposition pathway of these species was found to be fairly complex, and, 

despite thorough experimentation as detailed above, retains some degree of mystery.  

When allowed to proceed to completion, the pendant alkyl groups of 33-iBu and 33-(2-
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Et-Bu) are not only transformed into alkene products, as expected from β-hydride 

elimination, but a significant amount of alkane and traces of other, as of yet unidentified 

products were also observed.  In addition, while the possible detection of n-propane 

during the decomposition of 33-nPr or 33-iPr was obscured by other resonances in the 

alkane region of the 1H NMR, resonances attributable to propylene, which would occur 

further downfield in the alkene region, were also not observed.   

Given the strict first order decomposition of 33-iBu at different concentrations, 

we are accordingly led to believe, therefore, that formation of the saturated hydrocarbon 

co-product of decomposition of this species is due to a competitive first order 

intramolecular process.  As shown in Scheme 34, the most likely decomposition path 

leading to isobutane from 33-iBu involves intramolecular H-abstraction from one of the 

methyl groups of the cyclopentadienyl ligand to produce the cationic ‘tuck-in’ metal 

species 50 which can reasonably be assumed to be highly reactive. Indeed, there is much 

precedence for this reaction in organometallic chemistry involving the Cp* ligand.143-146  

Efforts are currently underway to unequivocally substantiate this decomposition pathway 

as it clearly has possible relevance to attempts to utilize the initiators 33-R at 

temperatures well above that which has previously been shown to provide clear living 

character in the polymerizations of higher α-olefins (e.g., -10º C in the case of 1-hexene). 

For the n-propyl and iso-propyl derivatives, at no temperature was propylene observed, 

and thus, it is possible that intramolecular H-abstraction from the cyclopentadienyl ligand 

is the dominant decomposition path for 33-nPr.  
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Scheme 34: Proposed mechanism of isobutane formation via the ‘tuck-in’ decomposition 
pathway. 
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 When comparing derivatives of 33-R, it is clear that this system is intensely 

sensitive to subtle steric and electronic effects.  The electronic influence is evident in that 

the primary alkyls 33-iBu and 33-(2-Et-Bu) are less stable than the secondary alkyl 33-

iPr.  It appears that increasing the substitution at the β-position has a significant effect on 

stability, which is to be expected if the transition state of β-hydride elimination places a 

partial positive charge onto the β-carbon (Scheme 35). This is consistent with the 

observation that the energy barrier of β-hydride elimination of polyethylene chains from 

metallocene catalysts is significantly higher than that of β-branched polymers.27  Also, 

the coordinated isobutylene, hydride complex 51 that results from the β-hydride 

elimination of the iso-butyl derivative will be destabilized by the steric interactions 

between the isobutylene unit and the Cp* ring.  This effect would be intensified in the 

analogous coordinated 2-ethyl-1-butene, hydride complex resulting from the β-hydride 

elimination of the 2-ethyl-butyl group, a point which would suggest that the overall 

stability of a derivative of 33-R can be limited by the stability of its olefin, hydride β-

hydride elimination product.   
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Scheme 35: The transition state of β-hydride elimination of 33-iBu. 
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 A partial positive charge at the β-position in the transition state of β-hydride 

elimination would also provide an explanation for the increased stability of 33-nPr and 

33-iPr.  Given that free propylene was not observed by 1H NMR, the decreased capacity 

of the secondary β-position to stabilize a partial cationic charge (relative to the tertiary β-

position of the iso-butyl derivative) may render the β-hydride elimination noncompetitive 

with the intramolecular H-abstraction pathway shown in Scheme 34.   

 

2.5.2 Isomerization of CPZA Alkyl Cations – Busico’s Mechanism 

Derivatives of 33-R with β-substituted alkyl groups (poly(1-butene), 2-ethylbutyl, 

iso-butyl) undergo isomerization concurrent with decomposition in a process seemingly 

consistent with Busico’s β-hydride elimination, alkene rotation, and reinsertion 

mechanism.  Considering 33-iBu, assuming β-hydride elimination to be the rate-

determining step for isomerization, both 1,2-reinsertion to regenerate unscrambled 33-(1-

13C-2-d)-iBu and isomerization of the iso-butyl group through alkene rotation and 2,1-

reinsertion to form a transient tert-butyl intermediate, according to Scheme 36, must both 

be very facile processes that effectively compete extremely well with irreversible chain-

release from alkene, hydride intermediates.  Indeed, scrambling of isotopic labels in 33-

(1-13C-2-d)-iBu appears immediately by 13C NMR at 0° C at a point when minimal loss 
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of compound through decomposition has occurred.  Unfortunately, no NMR 

spectroscopic evidence for such a cationic tert-butyl intermediate has been obtained.  

More disappointingly, all attempts to identify a reagent that could be used to chemically 

trap the presumed alkene, hydride intermediates in order to eliminate the reversibility of 

the β-hydride elimination process and isotopic scrambling, and thereby, permit kinetic 

analyses to obtain clear cut thermodynamic parameters, including a kinetic isotope effect, 

have failed to produce a viable candidate as of yet. 

Scheme 36: Isotopic label scrambling in 33-(1-13C-2-d)-iBu according to the Busico 
mechanism. 
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[Zr] = {(η5-C5Me5) Zr[N(Et)C(Me)N(tBu)]}[B(C6F5)4]  

If the isomerization of 33-iBu is occurring trough Busico’s mechanism, complex 

51 must be able to undergo reversible olefin rotation to form its rotational isomer, 51†, 

which can then reinsert the coordinated isobutylene to transiently form 33h before the 

process is reversed.  This process maybe be facilitated by an inherent ground state 

destabilization in 51 and 51† resulting from steric interactions between the coordinated 

isobutylene and the ligands (Scheme 37), serving to effectively lower the barrier of 

rotation.  As such, 51 and 51† can interchange freely, leading to the transient formation of 

the tertiary cation 33-tBu.  
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Scheme 37: Formation of a tert-butyl intermediate through coordinated alkene rotation. 
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The analogous transformations for 33-nPr and 33-iPr, as shown in Scheme 38, are 

complicated by the fact that each complex can form two different isomers with β-agostic 

interactions, due to the two diastereotopic β-hydrogens of 33-nPr and the two 

diastereotopic β-methyl groups of 33-iPr (see structures 33-nPr1 vs. 33-nPr2 and 33-iPr1 

vs. 33-iPr2).  β-hydride elimination from these isomers result in two propylene/hydride 

complexes (52) that differ only in the coordination face of the prochiral propylene unit 

(see Si-52 vs. Re-52 and Si-52† vs. Re-52†).  The asymmetry of the coordinated 

propylene may preclude free rotation of the olefin (i.e., conversion of Si-52†→Si-52 or 

Re-52→Re-52† is irreversible due to steric interactions between the propylene and the 

Cp* ligand in the products), however, the isomerization of the cyclopentene insertion 

product 31 to 32 at low temperatures would suggest that alkene rotation to unfavorable 

conformations does not have a particularly high barrier.  The fact that 33-iPr underwent 

full isomerization to 33-nPr, and yet 33-(2-d1)-nPr has not demonstrated any evidence of 

isomerization may be due to a large energy difference between barriers of 1,2-insertion 

and 2,1-insertion of 52.   
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Scheme 38: Possible transformations of 33-nPr and 33-iPr. 
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2.5.3 Isomerization of CPZA Alkyl Cations – Alternate Mechanism 

 As discussed in 2.3.3, the solution structure of each derivative of 33-R was 

determined by difference-1D NOE 1H NMR experiments, and each was found to have the 

Zr-H β-agostic interaction adjacent to the amidinate N-ethyl substituent.  As such, upon 

β-hydride elimination, the olefin is coordinated adjacent to the amidinate N-tert-butyl 

substituent.  However, it was previously demonstrated that the insertion of monomer 

occurs on the N-ethyl side,122  presumably due to the reduced steric crowding of the N-

ethyl group vs. the N-tert-butyl group.  Furthermore, a previously reported solid-state 

structure of 16 with a molecule of diethyl ether (Et2O) coordinated to the N-tert-butyl 

side,137 which most likely initially coordinated to the N-ethyl side, displays an ability of 

the cationic CPZA complexes to rearrange substituents to achieve the most energetically 

favorable conformation.  Given this, it seems paradoxical that the isomerization steps 
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required for the Busico mechanism would proceed entirely while coordinated to the 

crowded N-tert-butyl side without rearrangement. 

 As depicted in Scheme 39, if 33-iBu necessarily β-hydride eliminates to yield the 

isobutylene, hydride complex, 51, with the isobutylene unit coordinated to the N-tert-

butyl side, an irreversible rearrangement may then occur in which the olefin ‘slips’ past 

the hydride and into the more open N-ethyl coordination site.  The small hydride ligand 

could easily be accommodated in the open space between the amidinate and alkene 

ligands in the transition state of the rearrangement.  In fact, one can envision a rapid 

rearrangement from 33-iBu to 33-tBu occurring without discrete formation of an alkene, 

hydride complex through intermediates with significant metallacyclopropane character, 

similar to a stepwise metal-assisted 1,2-hydride shift (Scheme 40).  Indeed, the increased 

barrier of rotation of a metallacyclopropane relative to a coordinated alkene would 

explain why 51, with the alkene coordinated to the more sterically open amidinate N-

ethyl side, does not simply rotate to undergo 1,2-insertion preferentially over 2,1-

insertion.  In addition, reports from our group have shown that stable CPZA 

metallacyclopropane complexes can be synthesized.147  

Scheme 39: Possible isomerization of an isobutylene, hydride complex. 
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Scheme 40: Formation of a tert-butyl intermediate through metal-assisted 1,2-hydride 
shift. 
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The initially formed tert-butyl cation in Scheme 40 is shown with the β-agostic 

interaction on the N-tert-butyl side.  As mentioned above, all derivatives of 33 were 

found to have β-agostic interactions on the N-ethyl side; it would stand to reason that 33-

tBu would undergo a simple rearrangement to form the agostic interaction on the N-ethyl 

side as well (Scheme 41). As such, another 1,2-hydride shift then reforms 33-iBu.  

This most obvious advantage of this mechanism over Busico’s is the elimination 

of the need for many reversible steps to compete with elimination.  The initial rate-

limiting β-hydride elimination, which may or may not be reversible, sets off a cascade of 

rearrangements which rapidly, and necessarily, lead back to the parent 33-iBu.  If this 

mechanism is extended to the chain-end epimerization of propylene polymerization by 

metallocenes, the metallacyclopropane intermediates provide an explanation as to how 

this process can occur without displacement by free monomer.  Although the tert-butyl 
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intermediate has not been observed, isomerization via 1,3-hydride shift or another 

mechanism not involving a tert-butyl intermediate is not consistent with the observation 

by 13C NMR of only doubly labeled methyl groups (13CH2D), and no singly labeled 

methyl groups (13CH3), in the iso-butyl group of scrambled 33-(1-13C-2-d)-iBu. 

Scheme 41: Isotopic label scrambling in 33-(1-13C-2-d)-iBu according to the metal-
assisted 1,2-hydride shift mechanism 
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2.5.4 Hafnium Derivatives 

The success in using hafnium derivatives to form the tert-butyl cation is quite 

significant. Currently, 44 is the only example reported of a group 4 metal tertiary alkyl 

cation, which is widely accepted as part of the chain-end epimerization mechanism 

despite the fact that no other direct observation has been made. Certainly, the rapid 

isomerization of the tert-butyl 44 to the iso-butyl 43 is in agreement with the transient 

nature of the unobservable intermediate implicated by the observed isotopic label 

scrambling.  The relevance, however, is diminished by the fact that the isotopically 

labeled iso-butyl cation 42 does not scramble, and therefore shows no evidence of 

isomerization or formation of a tert-butyl intermediate during decomposition. 

Subsequently, the conclusions that can be drawn by comparison of the CPHA model 

complexes with the CPZA living polymers are limited.   

Further demonstration of unique behavior of the CPHA derivatives presents itself 

in the lack of stability of the iso-butyl cation 43, which decomposes at temperatures well 

below those at which 33-iBu is indefinitely stable.  Considering the 1H NMR, the β-

hydrogen of 43 features relatively high chemical shift (1.55 ppm) and well-defined 

coupling pattern, which stands in stark contrast to the broad multiplets at lower chemical 

shifts (0.10 – -0.05 ppm) of agostically-bound β-hydrogens of cationic CPZA alkyls.  

This would appear to be in agreement with Bercaw’s hypothesis that an energetically 

favorable β-agostic interaction can stabilize the ground state, thereby increasing the 

barrier to β-hydride elimination.28  Cationic CPHA alkyls such as 43 may not be able to 

form a stabilizing β-agostic interaction, possibly due to a miss-match of orbital energies 

between the full Cβ-Hβ bonding orbital and the empty 5d orbital of the metal. 
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2.6 Conclusions 

It is clear from the significant differences in stability of these cationic CPZA alkyl 

complexes that caution should be exercised when attempting to extrapolate properties of 

models to living polymers.  Even so, these models have served to shed some light on the 

types of steric and electronic factors that affect stability, and the general trends reveled 

could aid in designing new initiators for living polymerization at higher temperatures.  

The isotopic labeling studies carried out with the iso-butyl derivative have also yielded 

valuable information on the mechanism of isomerization and decomposition, although 

there is still some question as to whether to reality of the situation is best represented by 

Busico’s mechanism, the metal-assisted hydride-shift mechanism or another alternative.  

Hafnium derivatives were used to directly observe the first example of a group 4 metal 

tertiary-alkyl cation, which remains to date the only such observation reported.  While the 

hafnium iso-butyl derivative did not demonstrate any evidence for isomerization during 

decomposition, the fact that it is significantly less stable than the zirconium analogue may 

be a demonstration of the stabilizing nature of a β-agostic interaction in the latter case.   
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Chapter 3: Application of Living Degenerative Transfer 

Polymerizations  

3.1 Living Propylene Polymerization 

In contrast to the libraries of catalysts available for non-living propylene 

polymerization, the living polymerization of propylene has only been demonstrated by a 

few systems, including the V(acac)3-AlEt2Cl (25) system developed by Doi103 and 

bis(phenoxyimine) systems (17 and 29) developed by Coates81, 82, 85-87 and Fujita80, 83, 84, 

112, 113 (vide supra).  Living systems, by virtue of undergoing only negligible chain 

termination during propagation, provide access to polymers unachievable through non-

living systems, such as well-defined block copolymers and end-functionalized polymers. 

While the CPZA Ziegler-Natta initiators reported by our group have been 

productive for the isotactic and atactic living polymerization of α-olefins, including 

sterically encumbered monomers148 and α,ω-nonconjugated dienes,149 none of these 

materials are, as of yet, technologically relevant.  Indeed, the unique ability of 16 to 

polymerize α-olefins in both an isotactic and atactic manner would clearly be 

advantageous if applied to propylene polymerizations, in the context of isotactic-atactic 

sb-PP materials as thermoplastic elastomers.  However, many systems capable of the 

polymerization of high α-olefins have not been found to be active for propylene and 

ethylene polymerization, and vice versa.   As such, it was desirable to explore the activity 

of CPZA initiators for propylene polymerization. 
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3.1.1 Propylene Polymerization by CPZA Initiators 

 Due to potential complications involving the solubility of iso-PP in chlorobenzene 

at low temperatures, the degenerative transfer living polymerization of propylene was 

first attempted in the hopes that atactic polymer would be produced, as was found to be 

the case for other α-olefins.  Certainly, the high solubility of a-PP would allow the 

reaction to proceed in a controlled manner and lend itself more readily to analysis by 

room temperature GPC methods.  Thus, upon activation of 12 with 0.5 equivalents of the 

cocatalyst 13 at -10 °C in chlorobenzene under a propylene atmosphere of 5 psi, the 

degenerative transfer polymerization was found to proceed smoothly, providing a soluble, 

amorphous PP material.150  The 13C NMR (Figure 36, top) confirmed that the 

microstructure was highly atactic, with a mm:mr:rr triad ratio of 27:52:21 (cf. 25:50:25 

for perfectly atactic; see Table 8 for full pentad analysis), and the narrow PDI as 

determined by GPC analysis (Mn
 = 25,500, PDI = 1.11) suggested that the living 

character of the system had not been compromised.  Further proof of the living character 

was obtained by kinetic analysis, accomplished by drawing aliquots over the course of a 

reaction and analyzing each by GPC.  Since the propylene pressure, and hence the 

concentration in solution, is maintained constant, the molecular weight is expected to 

increase linearly with time in the absence of termination events.  Indeed, this proved to be 

the case, as shown in Figure 37. 
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Figure 36: 13C{1H} NMR (125 MHz, 1,1,2,2-C2D2Cl4, 70 ºC) methyl region of atactic 
PP prepared under DT conditions (top) and isotactic PP prepared under non-DT 
conditions (bottom).  

Table 8: Pentad distributions of PP produced at 100% activation and 50% activation.  

100% activated 50% activated Pentad 
non-DT  DT  

mmmm 0.713 0.052 
mmmr 0.101 0.126 
rmmr 0.009 0.070 
mmrr 0.103 0.103 
mmrm+rmrr 0.021 0.274 
rmrm 0.003 0.159 
rrrr 0.005 0.052 
rrrm 0.003 0.103 
mrrm 0.044 0.061 
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Figure 37: Kinetic profile of living DT propylene polymerization by 16.  The intercept 
does not reach zero due to the inherent error of calibration with polystyrene standards. ▲ 
= Mn, □ = PDI. 

 
 The isotactic polymerization of propylene was subsequently attempted by 

activation of 12 will a full equivalent of 13, under otherwise identical conditions to those 

described above for the DT polymerization of propylene.  A solid white powder was 

obtained, which, as expected, proved to be completely insoluble in THF, precluding 

molecular weight determination by room temperature GPC methods.  However, high 

temperature 13C NMR confirmed that the PP was isotactic, with mmmr, mmrr, and mrrm 

stereoerrors indicative of enantiomorphic site control, as shown in Figure 36 (bottom).  

The isotacticity of the polymer was found to be [mmmm] = 0.71 (Table 8), corresponding 

to a 94% face selectivity,9 and DSC analysis revealed a melting temperature of 116 °C. 
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As this material was not found to be soluble in THF, kinetic analysis via GPC to 

confirm living behavior could not be performed with pure iso-PP.  It was considered, 

however, that atactic-isotactic stereoblock diblock PP materials might be soluble enough 

for analysis.  Hence, a sample of living a-PP (16-a-PP) was synthesized using 16 at half-

activation, after which a second half-equivalent of 13 was added to convert the system 

form DT conditions to non-DT conditions, as had been previously demonstrated by the 

synthesis of the a-PH-block-iso-PO copolymer. The polymerization was then continued 

with aliquots sampled over time, which proved to be appropriately soluble for analysis by 

GPC.  Once again, the molecular weight increased linearly with time, verifying the living 

nature of isotactic propylene polymerization by 16 (Figure 38). 
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Figure 38: Kinetic profile of non-DT living propylene polymerization by 16.  The 
intercept does not reach zero because t = 0 begins at full activation of the system. ■ = Mn, 
▲= PDI. 

  

 90



3.2 Stereoblock Polypropylene 

3.2.1 Stereoblock Polymers 

 The controlled synthesis of isotactic-atactic sb-PP, towards the development of 

novel elastomeric materials, has been the target of countless hours of research.  Several 

systems have produced elastomeric PP materials which were proposed to have 

stereoblock architectures, including Chien’s53 C1-symmetric metallocenes (1.2.3) and the 

oscillating metallocenes73 (1.4.1), but it was subsequently suggested through theoretical 

and experimental findings in each case by Collins54, 55 and Busico,77 respectively, that the 

microstructures were not necessarily stereoblocks. 

The first system capable of producing discrete PP stereoblock diblocks was 

reported in 2004 by Shiono and co-workers.151 The titanium precatalyst 

(tBuNSiMe2Flu)TiMe2 (53, Flu = fluorenyl) had previously been reported as being active 

for the syndioselective polymerization of propylene, when activated by MAO, 

[Ph3C][B(C6F5)4], or B(C6F5)3 in toluene at 40 °C, via 1,2-insertion under chain-end 

control ([rrrr] = 0.30).152  Subsequently, Shiono153 discovered that lowering the 

temperature to -50 °C when activating with B(C6F5)3 provided a living system for 

syndioselective propylene ([rrrr] = 0.24) and 1-hexene polymerization, as demonstrated 

by the linear increase of yield and MW with time.  Upon further refinements, it was 

found that when the polymerization of propylene was conducted using modified MAO 

(MMAO) as the cocatalyst, in heptane at 0 °C, syndioselectivity was increased ([rrrr] = 

0.60).154  However, in chlorobenzene, under otherwise identical conditions, a largely 

atactic polymer (mm:mr:rr = 10:48:42) was produced. The difference in syndioselectivity 

between solvents was attributed to a close counterion association in heptane, which 
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prevented site isomerization and allowed the ligand set to impart site-control.  

Chlorobenzene, on the other hand, favored counterion disassociation, allowing site 

isomerization to dominate.  In both cases, the living nature was verified by a linear 

increase of MW with time at constant propylene concentration.  As such, it was possible 

to carry out a polymerization in heptane and then add a portion of chlorobenzene, thereby 

increasing solvent polarity sufficiently to convert propagation from syndiotactic to 

atactic, resulting in the first synthesis of uniform syndiotactic-atactic diblock PP (Mn = 

94,700, PDI = 1.27), as shown in Scheme 42.151  However, the polymer did not have a 

melting temperature according to differential scanning calorimetry (DSC), likely due to 

insufficient stereoregularity in the syn-PP segments to induce crystallization, and no other 

comments were made concerning the properties of the material.  Recently, Shiono155 used 

a modified version of the catalyst, which uses a 3,6-(tBu)2Flu ligand, to synthesize a 

cystallizable syndiotactic-atactic diblock PP with a melting point of 119 °C.  

Scheme 42: Synthesis of a-syn-PP diblock polymers via 53. 
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The synthesis of discrete isotactic-atactic sb-PP materials, as demonstrated by 16 

as part of the living isotactic propylene polymerization kinetic study detailed above, had 

not been previously reported in the literature.  Indeed, the versatility of 16 appeared to 

offer an avenue of investigation into whether a stereoblock structure would result in 
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elastomeric properties; a concept which was first suggested in 1959,49 and yet has eluded 

concrete validation ever since. 

 

3.2.2 Synthesis and Microstructural Analysis. 

The synthesis of iso-a-PP stereoblock diblocks was easily accomplished by 

initially preparing a sample of 16-a-PP under DT conditions before establishing isotactic 

propagation though the addition of a second portion of 13, as demonstrated above.  

However, the synthesis of multiblock polymers would be required for an in-depth study 

of the relationship between stereoblock architecture and physical properties.  This would 

then require a method of changing the system from non-DT to DT conditions by 

introducing transferable methyl groups, effectively reducing the level of activation.  An 

appropriate methylating agent, and the resulting product upon methyl group donation, 

would need to be completely inactive for polymerization and unreactive towards 12, 16 

and the living polymers derived thereof.  The task of finding such an agent is further 

complicated by the need to avoid coordinating solvents such as THF and Et2O, 

preventing the use of methyl lithium or methyl Grignard.  Inspired by the facile transfer 

of methyl groups between 12 and 16, it was conceived that another cyclopentadienyl 

zirconium amidinate derivative might serve as a suitable methylating reagent.  However, 

in order to be useful, the cationic form must be inactive for polymerization.  Fortunately, 

previous studies78, 79, 148, 156, 157 examining many different cationic cyclopentadienyl 

zirconium and hafnium amidinate derivatives revealed several classes of inactive 

derivatives which might serve as methylating agents.     
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One class of potential methylating agents was tert-butyl amidinate derivatives, 

which, when ‘activated’ by 13, had previously been shown to be inactive for 1-hexene 

polymerization.79  Using low temperature 1H NMR techniques, the tert-butyl amidinate 

derivative Cp*ZrMe2[N(Et)C(tBu)N(tBu)] (54) was shown to transfer a methyl group to 

16 in chlorobenzene-d5 at -10 °C, resulting in the quantitative production of 12 and 

{Cp*ZrMe[N(Et)C(tBu)N(tBu)]}[B(C6F5)4] (55).135  The sharp, well-defined resonances 

of the spectrum suggested that 12 and 55 were static compounds, and not in equilibrium 

with 16 and 54.  Indeed, combining 16 with a half-equivalent of 54 provided a-PH 

identical to that obtained from activation of 12 with a half-equivalent of 13.  The utility 

of 54 as fully functional methylating agent was tested by Yonghui Zhang135 through the 

planned synthesis of a stereoblock pentablock copolymer.  Thus, beginning with the 

synthesis of living a-PH under DT conditions (50% activation), sequential additions of 

half-equivalents of 13 (to establish non-DT conditions) and 54 (to establish DT 

conditions) before additional portions of 1-octene and 1-hexene, respectively, resulted in 

the production of an a-PH-iso-PO-a-PH-iso-PO-a-PH stereoblock copolymer (Mn = 28 

500, PDI = 1.08).  After the synthesis of each block, an aliquot was quenched and 

analyzed by GPC and inverse-gated 13C NMR to verify that the MW and tacticity of each 

block was as expected. 

Unfortunately, while 54 was a suitable methylating agent for high α-olefin 

polymerization, the same was not found to be true for propylene.  When a mixture of 12 

and 0.5 equivalents of 54 was used to initiate propylene polymerization, a-PP was 

produced which was indistinguishable from a-PP produced from half-activated 12 under 

otherwise identical conditions.  In fact, a-iso-a-PP stereoblock triblocks could be 
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synthesized using 54 as the methylating agent to establish DT conditions for the final 

atactic segment.  However, it was found that the cationic 55, when present in a fully 

activated system, whether alone or in the presence of 16, did produce a-PP with low 

activity.   As such, once 54 had been used to switch from fully activated to DT, the 

system could not be switched back to full activation without contamination by low MW 

a-PP.  Because of this, a new methylating agent was required for the synthesis of 

isotactic-atactic multiblock sb-PP.  Upon a screening of several tert-butyl amidinate and 

acetamidinate derivatives,135 only Cp*ZrMe2[N(tBu)C(Me)N(CH2
tBu)] (56) was found to 

meet all the requirements of an effective methylating reagent for propylene 

polymerization.  

Scheme 43: Irreversible methyl group transfer from 56 to living polymers from 16. 
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  Having at last developed a suitable methylating agent, the programmed synthesis 

of several unique discrete, multiblock, isotactic-atactic sb-PP architectures proved to be a 

straightforward task.  In practice, polymerization time is used to define block length, with 

the MW of segments polymerized under DT conditions at 50% activation growing half as 

quickly as those polymerized when the system is fully activated.  In order to obtain 

unequivocal proof that sharp block boundaries exist in the final isotactic-atactic sb-PP 

materials, a 1-(13C)-a-iso-a-PP triblock polymer was synthesized employing 13C-labeled 
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16 as the initiator and 56 as the methylating agent (Scheme 44).  Aliquots were then 

taken after the synthesis of each new block, and difference 13C NMR spectra were 

produced by subtracting the initial a-PP block spectrum from the diblock spectrum, and 

the diblock spectrum from the final triblock spectrum, using the 13C-labeled methyl end 

group resonance as an internal reference.  As shown in Figure 39, this allowed the direct 

observation of each individual stereoblock, and confirmed that each was either strictly 

isotactic or atactic as programmed.  In this regard, it is important to stipulate that since 

we have not yet attempted to rigorously compensate for changes in mass transfer of 

propylene and viscosity effects that can occur as a function of polymerization time, or to 

a lesser extent in temperature and concentration, quantitative block lengths within a target 

isotactic-atactic sb-PP multiblock structure have been observed to vary slightly from run 

to run (e.g., observed 1.0:1.2:0.8 for a target  1:1:1 a-iso-a-PP triblock).  Another 

problem encountered was the synthesis of sb-PP beginning with an isotactic segment, 

most likely due to solubility issues of even relatively low MW iso-PP.   While attempts at 

iso-a-iso-PP and other architectures that necessarily begin with isotactic propagation 

provided low-crystallinity materials (i.e., not simply iso-PP), the yields were often much 

lower then those with initial atactic segments.  In addition, the mmmm content of 

quenched samples during synthesis of materials with initial isotactic segments was not in 

agreement with expected values.   

Scheme 44: Synthesis of 1-(13C)-a-iso-a-PP. 
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Figure 39: 13C{1H} NMR (125 MHz, 1,1,2,2-C2D2Cl4, 70 ºC) of the methyl region of 
aliquots taken during the synthesis of an a-iso-a-PP triblock prepared with a 13C-labeled 
methyl end group (note: the resonances for this end group appear between 22.5-23.0 ppm 
and are used as the internal reference to generate difference spectra). (a) atactic block 
aliquot, (b) atactic-isotactic diblock aliquot, (c) final atactic-isotactic-atactic triblock, (d) 
difference spectrum between a and b (the middle isotactic segment) and (e) difference 
spectrum between c and b (the final atactic segment). 

 

3.2.3 Materials Properties 

In order to probe whether the exact makeup of the stereoblock architecture could 

affect the physical properties of the material, three different isotactic-atactic stereoblock 

architectures, a 60-40 a-iso-PP diblock, a 30-40-30 a-iso-a-PP triblock, and a 30-20-30-
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20 a-iso-a-iso-PP tetrablock, were synthesized with uniform MW and total relative 

isotactic/atactic ratio (Mn ~ 170,000, 40% isotactic, [mmmm] ~ 0.32).  It is worth 

stressing that the only significant difference between these three PP materials is in the 

stereoblock architecture, as shown in Figure 40. 

 

Mn = 164 200,  D = 1.19, [mmmm] = 0.33

Mn = 167 500,  D = 1.19, [mmmm] = 0.38

Mn = 172 400,  D = 1.19, [mmmm] = 0.32

atactic (60) isotactic (40)

Diblock

atactic (30) atactic (30)isotactic (40)

Triblock

atactic (30) atactic (30)isotactic (20) isotactic (20)

Tetrablock

 
Figure 40: Schematic representation of the isotactic-atactic sb-PP architectures targeted 
for tensile testing.  

 

Table 9: Pentad distributions of PP stereoblocks and quenched samples. 

 triblock tetrablock Pentad diblock 
  2/3 full  1/2 3/4 full 

mmmm 0.383  0.420 0.331 0.367 0.260 0.321 
mmmr 0.177  0.151 0.148 0.172 0.164 0.153 
rmmr 0.033  0.030 0.040 0.037 0.047 0.047 
mmrr 0.093  0.100 0.092 0.091 0.096 0.098 
mmrm+rmrr 0.181  0.157 0.182 0.184 0.220 0.186 
rmrm 0.054  0.057 0.079 0.065 0.092 0.078 
rrrr 0.009  0.011 0.027 0.013 0.021 0.025 
rrrm 0.026  0.026 0.048 0.026 0.057 0.045 
mrrm 0.043  0.048 0.052 0.043 0.046 0.049 
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Upon preliminary tensile-testing of standard dog bone-shaped samples (ASTM 

D638-5; thickness: 0.5 mm), the dependency of elastomeric properties on stereoblock 

architecture was clear.  As shown in Figure 41, the triblock showed the highest strain to 

break at 1530%, although it occurred at low stress (7 MPa) and with fairly poor recovery 

(70%).  The tetrablock proved to be the best performing elastomer, with the highest stress 

to break (19 MPa) at 1227% strain with 91% recovery.  Interestingly, the diblock 

exhibited intermediate properties at break (11 MPa strain, 1325% stress, 84% recovery). 

Furthermore, from stress-strain hysteresis curves for 10 cycles, the a-iso-a-iso-PP 

tetrablock material proved to be an exceptional elastomer after initial strain-induced 

annealing (2 cycles), with virtually no further irreversible deformation taking place 

within subsequent stress-strain cycles involving an initial maximum strain of 300% (see 

inset of Figure 41). 

 

3.3 Conclusions 

 The controlled synthesis of discrete isotactic-atactic sb-PP, as demonstrated using 

the modulated degenerative transfer living polymerization ability of 16, stands as the only 

reported route to such materials in a well-defined and homogeneous manner.  In addition, 

preliminary tensile testing has not only validated Natta’s49 hypothesis that such materials 

could be elastomeric, but also demonstrated a remarkable dependence of elastic 

properties on the exact stereoblock architecture.  This opens a new concept in the targeted 

design of thermoplastic elastomers with specific properties, alleviating the need for exotic 

comonomers or low MW plasticizers, by which a countess variety of isotactic-atactic 

stereoblock materials are now accessible. 
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Chapter 4: Bimolecular Control of Polypropylene Microstructure 

 

4.1 Control of Microstructure Through Substoichiometric Activation 

As detailed in Chapter 3, the polymerization of propylene by 12 when activated 

by 0.5 equivalents provides a-PP with a pentad distribution indicative of nearly perfectly 

random chirality.150  This is due to the degenerative transfer process (see section 1.6), in 

which metal centers rapidly transfer between neutral and dormant states, such that Rtr 

>>> Rp (Rtr = rate of transfer, Rp = rate of polymerization).  Due to the conformational 

instability of the amidinate ligand in the dormant state, all metal centers are effectively 

racemized during polymerization, thereby resulting in the atactic microstructure observed 

for PP synthesized at 50% activation.   

Accordingly, it was conceived that a new level of control over microstructure 

could be achieved by precisely controlling the level of activation, since the rate of 

bimolecular transfer of a methyl group from the neutral Zr-Me to the active Zr+ is defined 

by the relative concentrations (Rtr = ktr[Zr-Me][Zr+]).  Slowing the rate of methyl group 

transfer, relative to the rate of polymerization, through lowering the concentration of 

neutral species (accomplished by simply increasing the level of activation) should result 

in longer lifetimes of the active, configurationally static species, providing a more iso-

rich polymer.  In practice, this proved to be the case as evidenced by the series of 13C 

NMR spectra shown in Figure 42, in which the isotactic microstructure obtained at 100% 

activation is gradually transformed to a fully atactic one by simply decreasing the level of 

activation.158  The non-linear decrease in isotacticity is more apparent in Figure 43, which 

tracks the %mm as a function of % activation.  The most significant changes take place at 
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the higher levels of activation, with [mm] dropping by 0.28 between 100% and 90% 

activation (0.82 and 0.54, respectively) compared to a difference in [mm] of only 0.21 

between 90% and 70% activation (0.33). 

 

Figure 42: 13C{1H} NMR (125 MHz, 1,1,2,2-C2D2Cl4, 70 ºC) of polypropylene samples 
synthesized at varying levels of activation, as indicated on the right. 
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Figure 43: %mm of the spectra of Figure 42 and other polypropylene materials obtained 
as a function of % activation under the same polymerization conditions. The line is 
provided as a guide for the eye. 

 
Table 10: Pentad distributions of PP synthesized at varying levels of activation.  

activation 
(%) mmmm mmmr rmmr mmrr mmrm+rmrr rmrm rrrr rrrm mrrm 

100 0.713 0.101 0.009 0.103 0.021 0.003 0.005 0.003 0.044 
95 0.602 0.142 0.005 0.095 0.087 0.007 0.002 0.012 0.047 

92.5 0.422 0.202 0.022 0.092 0.179 0.031 0.004 0.018 0.035 
90 0.302 0.210 0.037 0.092 0.221 0.059 0.008 0.031 0.040 
85 0.190 0.201 0.050 0.098 0.254 0.094 0.016 0.050 0.047 
80 0.162 0.194 0.055 0.099 0.267 0.110 0.016 0.055 0.043 
70 0.105 0.166 0.061 0.102 0.269 0.135 0.032 0.079 0.051 
60 0.067 0.144 0.069 0.106 0.274 0.146 0.044 0.098 0.051 
50 0.052 0.126 0.070 0.103 0.274 0.159 0.052 0.103 0.061 
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It is of significant importance to note that the increasing frequency of isolated mr 

stereoerrors with decreasing levels of activation represents a fundamentally unique 

method of microstructural control.  Typically, low-crystallinity PP is achieved through 

the introduction of rr stereoerrors, indicative of a single misinsertion within a segment of 

uniformly chiral methyl groups.  This is accomplished either by modifying the ligand set 

to induce a lower level of monomer face selectivity, or adjusting the reaction conditions 

to favor competitive isomerization reactions.  However, the partial activation of 16 results 

in lower degrees of isotacticity through the incorporation of increasing amounts (with 

decreasing activation) of isolated r stereoerrors, as shown in Figure 44, by virtue of slow 

racemization (relative to propagation) of the active species during polymerization.  This 

results in the isotactic-isotactic stereoblock type microstructure159 as demonstrated by the 

preliminary stereochemical analysis of the high activation level (100-90%) spectra at the 

heptad level and higher,39 shown in Figure 45.  As the level of activation decreases, these 

blocks decrease in length until they are indistinguishable, and an atactic microstructure is 

produced.  Consequently, the overall microstructure of PP produced by this method at a 

higher level of activation is significantly different than that of a typical site-control 

catalyst, even at identical mmmm pentad content. While isolated mr stereoerrors are 

common in isotactic polymerization under chain-end control, there has yet to be reported 

a system that has demonstrated the ability to deliberately incorporate varying amounts of 

this type of stereoerror. 
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Figure 44: Comparison of the pentad distribution at 100%, 95%, 92.5%, and 90% 
activation.  Note that as the mmmm pentad content decreases, isolated r stereoerrors increase 
rapidly, as shown in the mmmr and mmrm pentads.  

 
 

Finally, preliminary investigations demonstrate that for any substoichiometric 

level of activation, the microstructure can be similarly affected by varying the absolute 

concentrations of the active and dormant species, accomplished by simply changing the 

solvent volume.  As expected, isotacticity increases as the concentrations decrease. 
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Figure 45: 13C{1H} NMR (125 MHz, 1,1,2,2-C2D2Cl4, 70 ºC) of polypropylene samples 
synthesized at 100% (top), 95% (middle) and 90% (bottom) activation, showing heptad 
and higher levels of stereoerror assignments.  

 
 
4.2 Stereogradient Polypropylene 

The living nature of 16, in combination with the degenerative transfer process, 

had already been shown to provide many unique PP microstructures.  The sb-PP 

synthesis (Chapter 3) used sequential additions of discrete portions of cocatalyst, 13, and 

a methylating agent, 56, to modulate between 100 and 50% activation, providing fully 

isotactic and atactic microstructures, respectively. In addition, not only does the 
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bimolecular control of PP microstructure, as detailed above, provide another dimension 

of control for fine-tuning the properties of stereoblock PP materials (i.e., sb-PP 

incorporating blocks synthesized at 90% activation, for example), but the gradual 

addition of 13 (or 56) to a reaction should provide a fundamentally new microstructure in 

which the microstructure changes gradually from atactic at one end of the polymer to 

isotactic at the other: stereogradient polypropylene. 

In practice, polymerization of propylene by 13C-labeled 16 at 60% activation was 

conducted for 30 minutes before a solution of 13 was added gradually via a 

programmable syringe pump over the next four hours, after which polymerization was 

continued for another 30 minutes before quenching with methanol (Scheme 45).  During 

the reaction, aliquots were taken and quenched every 30 minutes for 13C NMR analysis.   

As shown in Figure 46 (left), these samples show a clear increase of overall isotacticity 

with time.  Generating difference spectra (Figure 46, right), using the 13C-labeled methyl 

end-group resonances as an internal standard, allowed the examination of individual 

segments polymerized during the addition of 13, as sampled every 10% increase in 

activation. Pentad analysis of the aliquot spectra (Table 11) and the difference spectra 

(Table 12) confirmed that the [mmmm] closely tracked the increase in activation, showing 

that propagation became increasingly isoselective until full isotactic propagation is 

reached at 100% activation (Figure 47).  This experiment served to unequivocally 

authenticate the stereogradient microstructure. 
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Scheme 45: Synthesis of stereogradient-PP. 
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Figure 46: 13C{1H} NMR (125 MHz, 1,1,2,2-C2D4Cl2, 70 °C) spectra of aliquots taken 
as a function of time (left) and their difference spectra (right) using the resonances (not 
shown) of the 13C-labeled methyl end group as an internal reference. 
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Figure 47: Ramp profile (black line) for addition of 0.4 equivalents of 13 to change the 
level of activation from 60% to 100% and mmmm content as a function of time (red 
shading) as determined by 13C NMR. 

 

 
Table 11: Pentad distributions of samples taken during stereogradient-PP synthesis.  

t (min) activation* mmmm mmmr rmmr mmrr mmrm+rmrr rmrm rrrr rrrm mrrm
30 60% 0.085 0.142 0.059 0.105 0.265 0.143 0.050 0.097 0.053
60 70% 0.076 0.144 0.061 0.105 0.269 0.146 0.044 0.097 0.057
90 80% 0.099 0.160 0.062 0.105 0.270 0.136 0.035 0.083 0.049
120 90% 0.132 0.168 0.055 0.099 0.266 0.124 0.032 0.074 0.049
150 100% 0.230 0.161 0.046 0.099 0.225 0.103 0.027 0.062 0.048
180 100% 0.296 0.152 0.041 0.099 0.196 0.088 0.024 0.055 0.050

* at time of quench         
 

 
Table 12: Pentad distributions of individual stereogradient-PP segments 

t (min) activation*mmmm mmmr rmmr mmrr mmrm+rmrr rmrm rrrr rrrm mrrm
30 60% 0.085 0.142 0.059 0.105 0.265 0.143 0.050 0.097 0.053

30-60 60-70% 0.073 0.136 0.066 0.093 0.249 0.139 0.052 0.099 0.092
60-90 70-80% 0.146 0.196 0.064 0.106 0.273 0.118 0.013 0.052 0.033
90-120 80-90% 0.297 0.221 0.026 0.075 0.254 0.061 0.019 0.016 0.031
120-150 90-100% 0.612 0.121 0.010 0.089 0.057 0.019 0.017 0.015 0.060
150-180 100% 0.730 0.097 0.001 0.098 0.018 0.001 0.007 0.002 0.047

* during time of segment with linear increase of activation level (20%/h)  
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4.3 Conclusions 

 In summary, by taking advantage of the bimolecular nature of degenerative 

transfer living Ziegler-Natta polymerization, and an intrinsic configurational instability of 

the dormant state, we have established a new dimension of control for the design and 

synthesis of elastomeric polypropylene.    Ranging from fully isotactic to fully atactic, 

from discrete stereoblocks to gradual stereogradients, an unprecedented level of control 

has been achieved.  The ability to synthesize an unlimited variety of polypropylene 

microstructures from a single catalytic system demonstrated; many of which could never 

be achieved through non-living systems.  The investigation of these new materials, in the 

hopes of finding new technologically relevant materials, is currently under way. 
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 Appendix 

Experimentals 

 

Manipulations were performed under an inert atmosphere of dinitrogen using standard 

Schlenk techniques or a Vacuum Atmospheres glovebox.  Dry, oxygen-free solvents 

were employed throughout.  Diethyl ether (Et2O) and pentane were distilled from 

sodium/benzophenone (with a few milliliters of triglyme being added to the pot in the 

case of pentane).  Chlorobenzene was distilled from calcium hydride.  Benzene-d6 was 

vacuum transferred from sodium/potassium alloy (NaK) prior to being used for NMR 

spectroscopy.  Chlorobenzene-d5 was vacuum transferred from calcium hydride prior to 

being used for NMR spectroscopy. Research grade propylene (99.97%) was purchased 

from Matheson Trigas, and passed through Q5 and molecular sieves (4 Å). GPC analyses 

were performed using a Viscotek GPC system at 45 °C. THF was used as the eluant at a 

flow rate of 1.0 mL/min. Mn and Mw/Mn values were obtained using the Viscotek 

OmniSEC software and seven polystyrene standards (Polymer Laboratories). 

[PhNMe2H][B(C6F5)4] (13) was purchased from Boulder Scientific. [Ph3C][B(C6F5)4] (19) 

and Cp*ZrCl3 (35) were purchased from Strem Chemical.  (η5-

C5Me5)ZrMe2[N(Et)C(Me)N(tBu)] (12), Cp*ZrMe2[tBuN(H)NEt] (14), 

{Cp*ZrMe[tBuN(H)NEt]}[B(C6F5)4] (15), {Cp*ZrMe[tBuN(Me)NEt]}[B(C6F5)4] (16), 

Cp*ZrMe2[iPrNC(Me)NiPr] (23), {Cp*ZrMe[iPrNC(Me)NiPr]}[B(C6F5)4] (24), (η5-

C5Me5)ZrCl2[N(Et)C(Me)N(tBu)] (34), {(η5-

C5Me5)Zr(R)[N(Et)C(Me)N(tBu)]}[B(C6F5)4], R = Et, nPr, iPr, nBu, iBu (33-R), (η5-
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C5Me5)Zr(R)(Cl)[N(Et)C(Me)N(tBu)], R = Et, nPr, iPr, nBu, iBu, tBu (36-R), (η5-

C5Me5)Zr(R)(Me)[N(Et)C(Me)N(tBu)], R = Et, nPr, iPr, nBu, iBu (37-R), (η5-

C5Me5)ZrCl(SiMe2Ph)[N(Et)C(Me)N(tBu)] (38), (η5-C5Me5)HfCl2[N(Et)C(Me)N(tBu)] 

(45), Cp*ZrMe2[t-BuNC(t-Bu)NEt] (54), {Cp*ZrMe[t-BuNC(t-Bu)NEt]}[B(C6F5)4] (55), 

and Cp*ZrMe2[tBuNC(Me)N(CH2tBu)] (56) were prepared as previously reported. 1H 

NMR spectra were recorded at 400 or 500 MHz and 13C NMR spectra were recorded at 

100 or 125 MHz using benzene-d6, chlorobenzene-d5 or 1,1,2,2-tetrachloroethane-d2 as 

the solvent.  Elemental analyses were performed by Midwest Microlab. 

 

Preparation of (η5-C5Me5)Zr(R)(Cl)[N(Et)C(Me)N(tBu)] (36-R):  The following is 

representative for 36-Me and 33-(2-Et-Bu) unless otherwise noted: To a –78 °C solution 

of  34 (500 mg, 1.14 mmol) in 50 ml Et2O was added a solution of 1.14 mmol of 

MeMgCl, or 2-EtBuMgCl in Et2O.  After slowly warming the mixture to RT, the reaction 

was quenched with 0.5 ml TMSCl, the volatiles were removed in vacuo, and the resulting 

yellow solid was taken up in pentane and filtered.  The mother liquor was concentrated 

and recrystallized at –30 °C to afford yellow crystals with an isolated yield of 80-90%. 

 

(η5-C5Me5)Zr(Me)(Cl)[N(Et)C(Me)N(tBu)] (36-Me):  1H NMR (400 MHz, C6D6, 293 

K): δ (ppm) 2.78 (m, 2H), 2.02 (s, 15H), 1.60 (s, 3H), 1.28 (s, 3H), 0.83 (t, 3J=7.2 Hz, 

3H), 0.45 (s, 3H). 

 

(η5-C5Me5)Zr(2-Et-Bu)(Cl)[N(Et)C(Me)N(tBu)] [36-(2-Et-Bu)]: 1H NMR (400 MHz, 

C6D6, 293 K): δ (ppm) 2.90 (dq, 2J=14.2 Hz, 3J=7.3 Hz, 1H), 2.71 (dq, 2J=14.2 Hz, 3J=7.3 
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Hz, 1H), 2.01 (s, 15H), 1.83 (m, 1H), 1.71 (s, 3H), 1.70 (m, 2H), 1.57 (m, 1H), 1.35 (m, 

1H), 1.33 (s, 9H), 1.05 (t, 3J=7.3 Hz, 3H), 1.03 (t, 3J=7.3 Hz, 3H), 0.66, (dd, 2J=13.5 Hz, 

3J=7.1 Hz), -0.08, (dd, 2J=13.5 Hz, 3J=6.2 Hz). Anal. Calcd. for C24H45ClN2Zr: %C 59.02, 

%H 9.31, %N 5.74; Found %C 58.42, %H 9.25, %N 5.79. 

 

Preparation of (η5-C5Me5)Zr(2-d)-nPr(Cl)[N(Et)C(Me)N(tBu)] [36-(2-d)-nPr]: In a 

50-ml Schlenk tube fitted with a gas tight Kontes Teflon valve, 0.30 g (0.56 mmol) of 38 

was dissolved in 15 ml of pentane, after which time, the tube was sealed.  After removal 

from the glove box, the tube was cooled to 77 K, evacuated and resealed.  Upon warming 

to room temperature, the tube was pressurized to 15 psi with propylene, then pressurized 

to 35 psi with D2, and resealed. The tube was shaken overnight, during which time the 

color changed from dark red to yellow, and the volatiles were removed in vacuo.  

Extraction in pentane and filtration through a thin pad of Celite afforded a yellow 

solution, which upon concentration and cooling to –35 °C afforded yellow crystals (0.19 

g, 79% yield). 1H NMR (400 MHz, C6D6, 293 K): δ (ppm) 2.79 (dq, 2J=14.0 Hz, 3J=7.0 

Hz, 1H), 2.62 (dq, 2J=14.4 Hz, 3J=7.2 Hz, 1H), 2.13 (m, 0.6H), 2.01 (s, 15H), 1.67 (s, 3H), 

1.54 (m, 0.4H), 1.33 (s, 9H), 1.22 (t, 3J=7.0 Hz, 3H), 0.80 (t, 3J=7.2 Hz, 3H), 0.59 (dd, 

2J=13.6 Hz, 3J=10.8 Hz, 1H), 0.27 (dd, 2J=13.6 Hz, 3J=11.2 Hz, 1H). 

 

Preparation of (η5-C5Me5)Zr(2-d)-iBu(Cl)[N(Et)C(Me)N(tBu)] [36-(2-d)-iBu]: In a 

50-ml Schlenk tube fitted with a gas tight Kontes Teflon valve, 0.30 g (0.56 mmol) of 38 

was dissolved in 15 ml of pentane and an excess of liquid isobutylene was added, after 

which time, the tube was sealed.  After removal from the glove box, the tube was 
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pressurized to 35 psi with D2, resealed, and shaken overnight, during which time the 

color changed from dark red to yellow, and the volatiles were removed in vacuo.  

Extraction in pentane and filtration through a thin pad of Celite afforded a yellow 

solution, which upon concentration and cooling to –35 °C afforded yellow crystals (0.22 

g, 85% yield). 1H NMR (400 MHz, C6D6, 293 K): δ (ppm)  2.89 (dq, 2J=14.3 Hz, 3J=7.2 

Hz 1H), 2.72 (dq, 2J=14.3 Hz, 3J=7.2 Hz, 1H), 2.00 (s, 15H), 1.70 (s, 3H), 1.33 (s, 9H), 

1.32 (d, 3J=6.4 Hz, 3H), 1.15 (d, 3J=6.4 Hz, 3H), 0.82 (t, 3J=7.2 Hz, 3H), 0.73 (dd, 

2J=13.6 Hz, 3J=6.4 Hz), -0.03 (dd, 2J=13.6 Hz, 3J=6.4 Hz). 

 

Preparation of sodium methylsulfinyl methylide stock solution: Several portions of 

pentane were used to wash 10 g of sodium hydride dispersion (60%) in mineral oil.  The 

powder was thoroughly dried en vacuo before 250 mL DMSO was added.  The solution 

was heated to 60 ºC and stirred for 4 hours before unreacted NaH was filtered away to 

give a pale blue-green solution.  The solution was titrated using salicylaldehyde 

phenylhydrazone (0.315 M). 

 

Preparation of (13C-methyl)triphenylphosphonium iodide: To a solution of 10.2 g 

(38.9 mmol) triphenylphosphine in 25 mL benzene at 0 ºC was added dropwise 5.0 g 

(35.0 mmol) 13C-iodomethane in 10 mL benzene, white precipitate forming immediately.  

The solution was stirred for 2 hours at RT before filtering, and the precipitate was washed 

with several portions of fresh benzene.  The white powder was dried en vacuo (13.4 g, 

94%).  99.1% 13C by NMR.  
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Preparation of 1-13C-isobutylene: To 60 mL of NaMe2SO stock solution in DMSO 

(0.315 M, 18.9 mmol) was added 7.60 g (13C-methyl)triphenylphosphonium iodide, 

stirred for 1 hour.  A suitable trap at –196º C was fitted to the setup and the solution was 

brought to 60 ºC before 124 mg (2.13 mmol) of acetone in 6 mL DMSO was added 

dropwise via syringe with N2 bubbling through the solution. The solution was stirred for 

15 minutes after addition before the trap was sealed.  The product was used without 

further purification. 

Preparation of (η5-C5Me5)Zr(1-13C)-iBu(Cl)[N(Et)C(Me)N(tBu)] [36-(1-13C)-iBu]: 

Into a 50-ml Schlenk tube fitted with a gas tight Kontes Teflon valve containing a 

solution of 0.30 g (0.56 mmol) of 38 in 15 ml of pentane was vacuum transferred 1 g of 

1-13C-isobutylene.  The tube was pressurized to 35 psi with H2, resealed, and shaken 

overnight, during which time the color changed from dark red to yellow.  The volatiles 

were vacuum transferred away to recover unreacted 1-13C-isobutylene. Extraction in 

pentane and filtration through a thin pad of Celite afforded a yellow solution, which upon 

concentration and cooling to –35 °C afforded yellow crystals (0.20 g, 77% yield). 1H 

NMR (400 MHz, C6D6, 293 K): δ (ppm)  2.89 (dq, 2J=14.3 Hz, 3J=7.2 Hz 1H), 2.72 (dq, 

2J=14.3 Hz, 3J=7.2 Hz, 1H), 2.24 (d nonet, 2JCH=1.6 Hz 3JHH=6.4 Hz, 1H), 2.00 (s, 15H), 

1.70 (s, 3H), 1.33 (s, 9H), 1.32 (dd, 3JCH=4.4 Hz , 3JHH=6.4 Hz, 3H), 1.15 (dd,  3JCH=4.4 

Hz , 3JHH=6.4 Hz, 3H), 0.82 (t, 3J=7.2 Hz, 3H), 0.73 (ddd, 1JCH=115.7 Hz, 2JHH=13.6 Hz, 

3JHH=6.4 Hz), -0.03 (ddd, 1JCH=115.7 Hz, 2JHH=13.6 Hz, 3JHH=6.4 Hz). 

 

Preparation of (η5-C5Me5)Zr(1-13C-2-d)-iBu(Cl)[N(Et)C(Me)N(tBu)] [36-(1-13C-2-d)-

iBu]: Prepared in the same manner as 36-(1-13C)-iBu with D2 in place of H2 (0.18 g 70% 
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yield). 1H NMR (400 MHz, C6D6, 293 K): δ (ppm)  2.89 (dq, 2J=14.3 Hz, 3J=7.2 Hz, 1H), 

2.72 (dq, 2J=14.3 Hz, 3J=7.2 Hz, 1H), 2.00 (s, 15H), 1.70 (s, 3H), 1.33 (s, 9H), 1.32 (d, 

3JCH=4.4 Hz , 3H), 1.15 (d,  3JCH=4.4 Hz, 3H), 0.82 (t, 3J=7.2 Hz, 3H), 0.73 (dd, 

1JCH=115.7 Hz, 2JHH=13.6 Hz), -0.03 (dd, 1JCH=115.7 Hz, 2JHH=13.6 Hz). 

 

Preparation of (η5-C5Me5)Zr(R)(Me)[N(Et)C(Me)N(tBu)] (37-R): The following is 

representative for 37-R [R = (2-d)-nPr, (2-d)-iBu, (1-13C)-iBu, (1-13C-2-d)-iBu, 2-Et-Bu] 

unless otherwise noted: To a -78 °C solution of  36-R (1.0 mmol) in 25 mL of Et2O was 

added a solution of MeLi (1.0 mmol) in Et2O. After slowly warming the mixture to RT, 

the reaction was quenched with 0.5 ml TMS-Cl, the volatiles were removed in vacuo and 

the yellow solid was taken up in pentane and filtered. The mother liquor was 

concentrated and the product was recrystallized at -30 °C to afford yellow crystals with 

an isolated yield of 60-85%. 

 

(η5-C5Me5)Zr(2-Et-Bu)(Me)[N(Et)C(Me)N(tBu)] [37(2-Et-Bu)]: 1H NMR (400 MHz, 

C6D6, 293 K): δ (ppm) 2.98 (dq, 2J=14.1 Hz, 3J=7.1 Hz, 1H), 2.73 (dq, 2J=14.1 Hz, 3J=7.1 

Hz, 1H), 1.98 (s, 9H), 1.81 (s, 3H), 1.75 (m, 1H), 1.63 (m, 3H), 1.44 (m, 1H), 1.20 (s, 

9H), 1.052 (t, 3J=7.3 Hz, 3H), 1.048 (t, 3J=7.3 Hz, 3H), 0.89 (t, 3J=7.1 Hz, 3H), 0.32 (dd, 

2J=14.0 Hz, 3J=7.2 Hz, 1H), 0.21 (s, 3H), -0.34 (dd, 2J=14.0 Hz, 3J=6.8 Hz, 1H). Anal. 

Calcd. for C25H48N2Zr: %C 64.16, %H 10.35, %N 5.99; Found: %C 62.68, %H 10.03, 

%N 6.04. 
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(η5-C5Me5)Zr(2-d)-nPr(Me)[N(Et)C(Me)N(tBu)] [37(2-d)-nPr]: 1H NMR (400 MHz, 

C6D6, 293 K): δ (ppm) 2.90 (dq, 2J=14.0 Hz, 3J=7.2 Hz, 1H), 2.70 (b, 1H), 1.99 (s, 15H), 

1.98 (m, 1H), 1.74 (s, 3H), 1.23 (d, 3J=7.0 Hz, 3H), 1.18 (s, 9H), 0.88 (t, 3J=6.8 Hz, 3H), 

0.88 (m, 1H), 0.27 (m, 1H), 0.14 (s, 3H). 

 

(η5-C5Me5)Zr(2-d)-iBu(Me)[N(Et)C(Me)N(tBu)] [37-(2-d)-iBu]: 1H NMR (400 MHz, 

C6D6, 293 K): δ (ppm) 2.97 (dq, 2J=14.4 Hz, 3J=7.2 Hz, 1H), 2.75 (dq, 2J=14.4 Hz, 3J=7.2 

Hz, 1H), 1.98 (s, 15H), 1.80 (s, 3H), 1.27 (s, 3H), 1.23 (s, 3H), 1.19 (s, 9H), 0.85 (t, 

3J=7.2 Hz, 3H), 0.41 (d, 2J=13.2 Hz, 1H), 0.23 (s, 3H), -0.26 (d, 2J=13.2 Hz, 1H). 

 

(η5-C5Me5)Zr(1-13C)-iBu(Me)[N(Et)C(Me)N(tBu)] [37-(1-13C)-iBu]: 1H NMR (400 

MHz, C6D6, 293 K): δ (ppm) 2.97 (dq, 2J=14.4 Hz, 3J=7.2Hz, 1H), 2.75 (dq, 2J=14.4 Hz, 

3J=7.2Hz, 1H), 2.20 (bm, 1H), 1.98 (s, 15H), 1.80 (s, 3H), 1.27 (m, 3H), 1.23 (m, 3H), 

1.19 (s, 9H), 0.85 (t, 3J=7.2 Hz, 3H), 0.41 (ddd, 1JCH=114.0 Hz,  2J=13.2 Hz, 3J=6.4 Hz, 

1H), 0.23 (s, 3H), -0.26 (ddd, 1JCH=114.0 Hz,  2J=13.2 Hz, 3J=6.4 Hz, 1H). 

 

(η5-C5Me5)Zr(1-13C-2-d)-iBu(Me)[N(Et)C(Me)N(tBu)] [37-(1-13C-2-d)-iBu]: 1H NMR 

(400 MHz, C6D6, 293 K): δ (ppm) 2.97 (dq, 2J=14.4 Hz, 3J=7.2Hz, 1H), 2.75 (dq, 2J=14.4 

Hz, 3J=7.2Hz, 1H), 1.98 (s, 15H), 1.80 (s, 3H), 1.27 (m, 3H), 1.23 (m, 3H), 1.19 (s, 9H), 

0.85 (t, 3J=7.2 Hz, 3H), 0.41 (ddd, 1JCH=114.0 Hz,  2J=13.2 Hz, 1H), 0.23 (s, 3H), -0.26 

(dd, 1JCH=114.0 Hz,  2J=13.2 Hz, 1H). 
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Preparation of {(η5-C5Me5)Zr(R)[tBuNC(Me)NEt]}[B(C6F5)4] (33-R): The following 

is representative for 33-R [R = (2-d)-nPr, (2-d)-iBu, (1-13C)-iBu, (1-13C-2-d)-iBu, 2-Et-Bu] 

unless otherwise noted: To 11 mg (14 µmol) of [PhNHMe2][B(C6F5)4] was added a 

solution of 13 µmol of 37-R in 1.0 ml of C6D5Cl at –10 ºC to provide a clear, deep 

yellow solution. 

 

Preparation of (η5-C5Me5)Hf(SiMe2Ph)(Cl)[N(Et)C(Me)N(tBu)] (39): To a –78 °C 

solution of  45 (0.50 g, 0.95 mmol) in 100 ml Et2O was added 5.0 ml (0.95 mmol) of 

LiSiMe2Ph (0.19 M in Et2O). After slowly warming the mixture to RT, the volatiles were 

removed in vacuo, and the resulting brown oil was taken up in pentane and filtered. 

Removal of the volatiles in vacuo afforded a brown oil which could not be further 

purified (0.55 g, 93%). 1H NMR (400 MHz, C6D6, 293 K): δ (ppm) 7.94 (dd, 3J=7.6 Hz, 

4J=1.2 Hz, 2H), 7.27 (t, 3J=7.6 Hz, 2H), 7.13 (tt, 3J=7.6 Hz, 4J=1.2 Hz, 1H), 2.90 (dq, 

2J=14.0 Hz, 3J=7.2Hz, 1H), 2.82 (dq, 2J=14.0 Hz, 3J=7.2Hz, 1H), 2.09 (s, 15H), 1.17 (s, 

9H), 1.16 (s, 3H), 0.76 (s, 3H), 0.71 (t, 3J=7.2 Hz, 3H) 0.59 (s, 3H). 

 

Preparation of (η5-C5Me5)Hf(1-13C-2-d-iBu)(Cl)[N(Et)C(Me)N(tBu)] (40): Into a 50-

ml Schlenk tube fitted with a gas tight Kontes Teflon valve containing a solution of 0.38 

g (0.61 mmol) of 39 in 15 ml of pentane was vacuum transferred 1 g of 1-13C-isobutylene.  

The tube was pressurized to 35 psi with D2, resealed, and shaken overnight.  The volatiles 

were vacuum transferred away to recover unreacted 1-13C-isobutylene. Extraction in 

pentane and filtration through a thin pad of Celite afforded a yellow solution, which upon 

concentration and cooling to –35 °C afforded yellow crystals (0.16 g, 48% yield). 1H 
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NMR (400 MHz, C6D6, 293 K): δ (ppm)  2.91 (dq, 2J=14.0 Hz, 3J=7.0 Hz, 1H), 2.80 (dq, 

2J=14.0 Hz, 3J=7.0 Hz, 1H), 2.05 (s, 15H), 1.66 (s, 3H), 1.32 (d, 3JCH=4.4 Hz , 3H), 1.31 

(s, 9H), 1.14 (d,  3JCH=4.4 Hz, 3H), 0.83 (t, 3J=7.0 Hz, 3H), 0.54 (dd, 1JCH=111.1 Hz, 

2JHH=13.9 Hz), -0.17 (dd, 1JCH=111.1 Hz, 2JHH=13.9 Hz). 

 

Preparation of (η5-C5Me5)Hf(1-13C-2-d-iBu)(Me)[N(Et)C(Me)N(tBu)] (41): To a –78 

°C solution of 40 (0.11 g, 0.20 mmol) in 25 mL of Et2O was added 0.1 ml (0.2 mmol) of 

MeLi (2.0 M in Et2O). After slowly warming the mixture to RT, the reaction was 

quenched with 0.5 ml TMSCl, the volatiles were removed in vacuo and the yellow solid 

was taken up in pentane and filtered. The mother liquor was concentrated and the product 

was recrystallized at –30 °C to afford yellow crystals (0.75 g, 71% yield). 1H NMR (400 

MHz, C6D6, 293 K): δ (ppm)  3.00 (dq, 2J=14.0 Hz, 3J=7.0 Hz, 1H), 2.82 (dq, 2J=14.0 Hz, 

3J=7.0 Hz, 1H), 2.02 (s, 15H), 1.73 (s, 3H), 1.27 (d, 3JCH=4.0 Hz , 3H), 1.21 (d,  3JCH=4.4 

Hz, 3H), 1.17 (s, 9H), 0.89 (t, 3J=7.0 Hz, 3H), 0.22 (dd, 1JCH=109.2 Hz, 2JHH=13.8 Hz), -

0.48 (dd, 1JCH=109.2 Hz, 2JHH=13.8 Hz). 

 

Preparation of (η5-C5Me5)Hf(tBu)(Cl)[N(Et)C(Me)N(tBu)] (46): To a –78 °C solution 

of  37 (0.75 g, 1.43 mmol) in 100 ml Et2O was added 0.89 ml (1.43 mmol) of tBuLi (1.61 

M in tetrahydrofuran).  After slowly warming the mixture to RT, the reaction was 

quenched with 0.5 ml TMSCl, the volatiles were removed in vacuo, and the resulting 

yellow solid was taken up in pentane and filtered.  The mother liquor was concentrated 

and recrystallized at –30 °C to afford white crystals (0.70 g, 89% yield). 1H NMR (400 

MHz, C6D6, 293 K): δ (ppm) 3.09 (dq, 2J=14.4 Hz, 3J=7.1 Hz, 1H), 2.81 (dq, 2J=14.4 Hz, 
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3J=7.1 Hz, 1H), 2.08 (s, 15H), 1.64 (s, 3H), 1.46 (s, 9H), 1.35 (s, 9H), 0.87 (t, 3J=7.1 Hz, 

3H). 

 

Preparation of (η5-C5Me5)Hf(Me)(Cl)[N(Et)C(Me)N(tBu)] (48): To a –78 °C solution 

of  37 (0.75 g, 1.43 mmol) in 100 ml Et2O was added 0.53 ml (1.43 mmol) of MeMgCl 

(2.71 M in tetrahydrofuran).  After slowly warming the mixture to RT, the reaction was 

quenched with 0.5 ml TMSCl, the volatiles were removed in vacuo, and the resulting 

yellow solid was taken up in pentane and filtered.  The mother liquor was concentrated 

and recrystallized at –30 °C to afford white crystals (0.58 g, 80% yield). 1H NMR (400 

MHz, C6D6, 293 K): δ (ppm) 2.82 (m, 2H), 2.07 (s, 15H), 1.57 (s, 3H), 1.28 (s, 9H), 0.82 

(t, 3J=7.1 Hz, 3H), 0.23 (s, 3H). 

 

Preparation of (η5-C5Me5)Hf(tBu)(Me)[N(Et)C(Me)N(tBu)] (49): To a –55 °C 

solution of  48 (0.30 g, 0.59 mmol) in 50 ml Et2O was added 0.31 ml (0.59 mmol) of 

tBuLi (1.90 M in pentane).  The reaction was stirred overnight at –55 ºC before being 

quenched with 0.5 ml TMSCl, the volatiles were removed in vacuo, and the resulting 

yellow solid was taken up in pentane and filtered.  The mother liquor was concentrated 

and recrystallized at –30 °C to afford yellow crystals (0.25 g, 81% yield). 1H NMR (400 

MHz, C6D6, 293 K): δ (ppm) 3.06 (dq, 2J=14.5 Hz, 3J=7.2 Hz, 1H), 2.98 (dq, 2J=14.5 Hz, 

3J=7.2 Hz, 1H), 2.02 (s, 15H), 1.71 (s, 3H), 1.37 (s, 9H), 1.20 (s, 9H), 0.87 (t, 3J=7.2 Hz, 

3H) 0.17 (s, 3H). 
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Preparation of {(η5-C5Me5)Hf(R)[N(Et)C(Me)N(tBu)]}[B(C6F5)4] [R = (1-13C-2-d)-

iBu (42), tBu (44)]: Prepared in the same manner as 33-R.   

 
Kinetic Study of Poly(1-butene):  To a solution of 83 mg (105 µmol) of 13 in 12 ml of 

chlorobenzene at –10° C was added a solution of 40 mg (100 µmol) of 12 in 8 ml of 

chlorobenzene also at –10° C, to produce a clear yellow solution.  At this time 110 mg (2 

mmol) of 1-butene, precooled to –10° C, was added all at once and the resulting mixture 

was allowed to stir for 2 hrs at –10° C, beginning at which time 2-mL samples were 

rapidly quenched by the addition of acidic methanol every 12 hrs.  The volatiles were 

then removed in vacuo, and the crude material was purified through precipitation of a 

toluene solution into a large volume of acidic methanol. The final pure material was 

collected and dried overnight at 60° C/0.01 mmHg. 

 

Preparation of Living Poly(1-butene) (16-PB): To a solution of 11mg (14 µmol)  13 in 

0.5 mL chlorobenzene-d5 at –10º C was added a solution of 5 mg (13 µmol) 12 in 0.5 mL 

chlorobenzene-d5 at –10º C, to produce a clear yellow solution.  At this time 24 mg (0.42 

mmol) 1-butene was added all at one and the resulting mixture was allowed to sit at –10º 

C for 2 hrs. 

 

Preparation of Living Poly(1-13C-1-decene) (16-PD): The same procedure as that for 

16-PB was followed, except 33 mg (0.25 mmol) 1-13C-1-decene was used in place of 1-

butene. 
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Degenerative Transfer Polymerization of Propylene: The following description of a 

60% activated system is representative for any level of activation, unless otherwise noted. 

To a solution of 24.2 mg (0.030 mmol) 13 in 0.5 ml of chlorobenzene at -10 ºC was 

added 20.0 mg (0.050 mmol) of 12 in 0.5 ml of chlorobenzene at -10 ºC. This solution 

was then rapidly added to a 250 ml Schlenk flask charged with 20 ml of chlorobenzene at 

-10 ºC, which was previously pressurized to 5 psi with propylene and stirred for 10 

minutes.  The flask was then repressurized and the pressure maintained for 2 hours while 

stirring before quenching with 1 ml of acidic methanol.  The volatiles were then removed 

in vacuo and the crude polymeric material was purified through precipitation of a hot 

toluene solution into a large volume of acidic methanol. The final pure polypropylene 

was collected and dried overnight at 60 ºC (0.01 mmHg).  735 mg.  Mn
 = 25,200, PDI = 

1.41. 

50% activation: 20.1 mg (0.025 mmol) 13, 2h 50 min, yield: 926 mg.  Mn
 = 25,500, PDI 

= 1.11. 

70% activation: 28.2 mg (0.035 mmol) 13, yield: 0.692 g. Mn
 = 21,700, PDI = 1.18. 

80% activation: 32.2 mg (0.040 mmol) 13, yield: 0.681 g. Mn
 = 27,400, PDI = 1.20. 

85% activation: 34.2 mg (0.0425 mmol) 13, yield: 0.812 g. Mn
 = 25,000, PDI = 1.22. 

90% activation: 36.3 mg (0.045 mmol) 13, yield: 0.753 g. Mn
 = 24,400, PDI = 1.22. 

92.5% activation: 40.0 mg (0.100 mmol) 12, 74.5 mg (0.0925 mmol) 13, 40 ml 

chlorobenzene, yield: 1.666 g. Mn = 22, 400, PDI = 1.24. 

95% activation: 38.3 mg (0.0475 mmol) 13, yield: 0.756 g. Mn
 = 23,000, PDI = 1.22. 

100% activation (non-DT): 10.0 mg (0.025 mmol) 12, 20.1 mg (0.025 mmol) 13, yield: 

0.500 g. 
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Kinetics of propylene polymerization under DT conditions: The polymerization was 

carried out in the same manner as the general procedure, while 20.0 mg (0.05 mmol) of 

12 and 20.0 mg (0.025 mmol) of 13 were used and the total solution volume was 35 ml. 

Aliquots were quenched with methanol after 48 min and 5 more points were collected 

within the next 5 h. Polypropylene samples were purified and GPC data was collected. 

 

Polymerization of propylene under non-DT conditions. 

General procedure conducted in an identical manner to DT conditions, but an equal molar 

ratio of (η5-C5Me5)ZrMe2[N(Et)C(Me)N(tBu)] to [PhNHMe2][B(C6F5)4] was used.  

 

Kinetics of propylene polymerization under non-DT conditions: In order to 

circumvent solubility issues, the kinetics of isotactic propagation were determined by first 

synthesizing an atactic polypropylene block under DT conditions using 20.5 mg (0.051 

mmol) 12 and 21.2 mg (0.026 mmol) 13 in 60 ml chlorobenzene for 2 hours.  The 

reaction was switched to non-DT conditions by fully activating the system with a second 

portion of 21.2 mg of 13.  Aliquots were quenched with acidic methanol at 10 min. from 

full activation and approximately every 30 min. thereafter for 3 h. 

 

Synthesis of 13C-labeled a-iso-a-polypropylene stereoblock triblock: Under DT 

conditions, a polymerization was carried out using 20.0 mg (0.05 mmol) 13C-labeled 12 

and 20.0 mg (0.025 mmol) 13 in 30 mL chlorobenzene for 2 h. At this point the reaction 

was switched to non-DT by the addition of a second portion of 20.0 mg (0.025 mmol) of 
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13 for 1 h, after which the reaction was returned to DT by the addition of 11.0 mg (0.025 

mmol) 56 for another 2 h before being quenched with ~1 mL of acidic methanol. The 

volatiles were removed in vacuo and the crude polymeric material was purified through 

precipitation of a hot toluene solution into a large volume of acidic methanol. The final 

pure polypropylene was collected and dried overnight at 60 ºC (0.01 mmHg). Mn = 31 

100, PDI = 1.28. 

 

Synthesis of a-iso-polypropylene stereoblock diblock: Under non-DT conditions, a 

polymerization was carried out using 25.0 mg (0.063 mmol) 12 and 25.2 mg (0.031 mmol) 

13 in 100 ml chlorobenzene for 30 h. At this point the reaction was switched to non-DT 

by the addition of a second portion of 25.2 mg (0.031 mmol) of 13 in ~ 0.5 ml 

chlorobenzene for 10 h, after which the reaction was quenched with ~1 mL of acidic 

methanol, the volatiles were removed in vacuo and the crude polymeric material was 

purified through precipitation of a hot toluene solution into a large volume of acidic 

methanol. The final pure polypropylene was collected and dried overnight at 60 ºC (0.01 

mmHg).   Yield: 5.70 g.  Mn = 162,100, PDI = 1.20.  

 

Synthesis of a-iso-a-polypropylene stereoblock triblock: Under non-DT conditions, a 

polymerization was carried out using 25.0 mg (0.063 mmol) 12 and 25.2 mg (0.031 mmol) 

13 in 100 ml chlorobenzene for 15 h. At this point the reaction was switched to non-DT 

by the addition of a second portion of 25.2 mg (0.031 mmol) of 13 in ~ 0.5 ml 

chlorobenzene for 10 h, after which the reaction was returned to DT by the addition of 

13.8 mg (0.031 mmol) 56 for another 15 h. The reaction was then quenched with ~1 mL 
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of acidic methanol, the volatiles were removed in vacuo and the crude polymeric material 

was purified through precipitation of a hot toluene solution into a large volume of acidic 

methanol. The final pure polypropylene was collected and dried overnight at 60 ºC (0.01 

mmHg).   Yield: 6.92 g.  Mn = 167,500, PDI = 1.19.  

 

Synthesis of a-iso-a-iso-polypropylene stereoblock tetrablock: Under non-DT 

conditions, a polymerization was carried out using 25.0 mg (0.063 mmol) 12 and 25.2 mg 

(0.031 mmol) 13 in 100 ml chlorobenzene for 15 h. At this point the reaction was 

switched to non-DT by the addition of a second portion of 25.2 mg (0.031 mmol) of 13 in 

~ 0.5 ml chlorobenzene for 5 h, after which the reaction was returned to DT by the 

addition of 13.8 mg (0.031 mmol) 56 for another 15 h. The reaction was then returned to 

non-DT by a final addition of 25.2 mg (0.031 mmol) 13 in ~ 0.5 ml chlorobenzene for 5 h 

before being quenched with ~1 mL of acidic methanol. The volatiles were removed in 

vacuo and the crude polymeric material was purified through precipitation of a hot 

toluene solution into a large volume of acidic methanol. The final pure polypropylene 

was collected and dried overnight at 60 ºC (0.01 mmHg).   Yield: 6.54 g.  Mn = 172,500, 

PDI = 1.19. 

 

Tensile test for stereoblock polypropylene materials: The materials were compression 

molded at 135 ºC into 0.5 mm-thick sheets from which dog bones were cut using the 

ASTM D638-5 cutter.  The testing was conducted on an Instron model 3345 tensile tester 

with pneumatic grips at an extension rate of 2 in/min.  Recovery after break and recovery 

after 300% elongation were calculated as defined in the ASTM D412 method. 
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Synthesis of 13C-labeled Stereogradient Polypropylene: To a solution of 48.1 mg 

(0.060 mmol) 13 in 0.5 ml of chlorobenzene at -10 ºC was added 40.1 mg (0.100 mmol) 

of 12-13C3 in 0.5 ml of chlorobenzene at -10 ºC (60% activation). This solution was then 

rapidly added to a 250 ml Schlenk flask charged with 40 ml of chlorobenzene at -10 ºC, 

which was previously pressurized to 5 psi with propylene and stirred for 10 minutes.  The 

flask was then repressurized and the pressure maintained for 30 minutes while stirring. A 

0.5-ml aliquot was quenched, and 4.0 ml of a 10.0 mM solution of 2 in 1:1 

chlorobenzene:dichloromethane was added via syringe pump at a constant rate of 2 ml/h, 

during which time 0.5-ml aliquots were taken every 30 minutes.  Upon complete addition, 

another 0.2 ml of solution of 2 was added to ensure complete activation, and the reaction 

maintained for another 30 minutes before quenching with 1 ml of acidic methanol.  The 

volatiles were then removed in vacuo and the crude polymeric material was purified 

through precipitation of a hot toluene solution into a large volume of acidic methanol. 

The final pure polypropylene was collected and dried overnight at 60 ºC (0.01 mmHg). 

Yield: 1.803 g. Aliquot at 30 min: Mn = 7,500, PDI = 1.19. At 60 min: Mn = 12,400, PDI 

= 1.19. At 90 min: Mn = 16,600, PDI = 1.20. At 120 min: Mn = 20.800, PDI = 1.19. At 

150 min: Mn = 22,900, PDI = 1.23. Final quench at 180 min: Mn = 25,200, PDI = 1.22. 
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