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Systems biology seeks to build quantitative predictive models of biological system 

behavior. Biological systems, such as the mammalian immune system, operate across 

multiple spatiotemporal scales with a myriad of molecular and cellular players. Thus, 

mechanistic, predictive models describing such systems need to address this multiscale 

nature. A general outstanding problem is to cope with the high-dimensional parameter 

space arising when building reasonably detailed models. Another challenge is to devise 

integrated frameworks incorporating behavioral characteristics manifested at various 

organizational levels seamlessly. In this dissertation, I present two research projects 

addressing problems in immunological, or biological systems in general, using 

quantitative mechanistic models and machine learning, touching on the aforementioned 

challenges in scalable modeling.  

First, I aimed to understand how cell-to-cell heterogeneities are regulated 

through gene expression variations and their propagation at the single-cell level. To 



  

better understand detailed gene regulatory circuit models with many parameters 

without analytical solutions, I developed a framework called MAchine learning of 

Parameter-Phenotype Analysis (MAPPA). MAPPA combines machine learning 

approaches and stochastic simulation methods to dissect the mapping between high-

dimensional parameters and phenotypes. MAPPA elucidated regulatory features of 

stochastic gene-gene correlation phenotypes. 

Next, I sought to quantitatively dissect immune homeostasis conferring 

tolerance to self-antigens and responsiveness to foreign antigens. Towards this goal, I 

built a series of models spanning from intracellular to organismal levels to describe the 

recurrent reciprocal relationships between self-reactive T cells and regulatory T cells 

in collaboration with an experimentalist. This effort elucidated critical immune 

parameters regulating the circuitry enabling the robust suppression of self-reactive T 

cells, followed by experimental validation. Moreover, by bridging these models across 

organizational scales, I derived a framework describing immune homeostasis as a 

dynamical equilibrium between self-activated T cells and regulatory T cells, typically 

operating well below thresholds that could result in clonal expansion and subsequent 

autoimmune diseases.  

I start with an introduction with a perspective linking seemingly contradictory 

behaviors of the immune system at different scales: microscopic “noise” and 

macroscopic deterministic outcomes. By connecting these aspects in the adaptive 

immune system analogously with an ansatz from statistical physics, I introduced a view 

on how robust immune homeostasis ensues.  
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Chapter 1: Introduction 

 

 

Systems biology seeks to build quantitative predictive models of biological system 

behavior. Biological systems operate across multiple spatiotemporal scales: from 

molecules to the organismal level, and from milliseconds to days, and even to decades. 

A good example of such multiscale behavior is the immune system. A myriad of 

molecular and cellular players comprises the immune system. They operate throughout 

the body and interact with each other across space and time. Thus, building 

mechanistic, predictive models in the immune system needs to account for the 

multiscale nature of the system. 

 For my PhD dissertation, I have been addressing problems in immunology, or 

biological systems modeling in general, by building quantitative mechanistic models 

with a multiscale perspective. There are several challenges. A general problem in 

building models containing sufficiently realistic biological details is the large number 

of model parameters, which are often difficult to measure experimentally en mass. 

There is a tendency to oversimplify models in order to restrict the number of 

parameters, but useful models of biological systems often need higher levels of details 

and thus it can be challenging to reduce models to ones with a few parameters. How to 

cope with such high-dimensional parameter spaces effectively to build scalable yet 

detailed models has been an outstanding problem. Another issue in multiscale modeling 

is that different organizational levels may show different behavioral characteristics and 

putting them together seamlessly into a single modeling framework remained difficult. 

For example, dynamics of molecular species with low copy numbers at the subcellular 
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level exhibit inevitable stochasticity due to thermodynamic noise while gross behaviors 

of physiological processes at the organismal level such as circadian rhythm is more 

subjected to deterministic regulations. Lastly, such modeling efforts have attracted 

skepticisms on how they can help to uncover meaningful or novel biology, which 

largely originated from successful reductionistic experimental molecular biology and 

biochemistry in the latter half of the 20th century. A successful approach to cope with 

this challenge has been finding recurrent regulatory/topological patterns out of complex 

biological interaction networks, often termed as “regulatory circuit motifs”. Along 

similar lines, we may pursue recurrent behavioral patterns out of multiscale phenomena 

interlinked with feedback/feedforward interactions within/across scales in the immune 

system. We can first come up with a prototype model, the simplest giving rise to a 

particular behavioral pattern, followed by building context-dependent detailed models 

exhibiting such a behavior for specific cells or organs. 

 My dissertation consists of two major projects and one perspective chapter 

focusing on different scales of biological and immune systems that touch on the general 

challenges discussed above.  First, I aimed to understand how single-cell 

heterogeneities are regulated through gene expression variations and their propagation 

at a single cell level. I used stochastic simulations in combination with machine 

learning approaches to better dissect high-dimensional parameter-phenotype mapping. 

I used this approach to analyze several recurrent network motifs with detailed models 

and found: 1) hysteretic gene-gene correlations induced by promoter switching, which 

was something that could not be explained by the existing analytical approximation 

scheme, 2) the wide tunability of gene-gene correlations enabled by the feedforward 
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arm, and 3) oscillatory behaviors induced by a negative feedback loop operating in 

parameter regimes outside of those predicted by deterministic modeling.  

The next major project was to quantitatively dissect immune homeostasis 

conferring tolerance to self-antigens and responsiveness to foreign antigens. I started 

with modeling of the early phase of T cell priming with the aim to quantitively dissect 

how the extent of T cell activation is determined through cellular interactions among 

conventional T cells, dendritic cells, and regulatory T cells, especially in the context of 

autoimmunity where the suppression of self-reactive T cells is important. Towards this 

goal, I used a multiscale modeling scheme to describe intracellular and intercellular 

dynamics using both ordinary differential equations and partial differential equations. 

In close collaboration with an experimentalist (Dr. Harikesh Wong), the model was 

tightly linked to lymph node imaging data and generated experimentally testable 

predictions. Next, I further incorporated additional regulatory layers of immune 

homeostasis: 1) quorum regulation of clonal expansion of self-activated T cells and 2) 

reciprocal regulatory relationships between self-activated T cells and regulatory T cells 

for determining their intranodal and organismal homeostatic population sizes. 

Combining models in different scales altogether, I derived an integrated quantitative 

framework assessing immune homeostasis as equilibrium between self-activated T 

cells and regulatory T cells, which is well below the threshold leading to clonal 

expansion that causes autoimmune diseases. Then, I explored several corollaries of this 

framework. 

Finally, in the last, perspective chapter (that follows the current chapter), I 

argued how we can reconcile the contradicting behaviors of the immune system at 
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different scales: microscopic randomness and macroscopic determinism. In particular, 

I illustrated how the adaptive immune system utilizes inevitable randomness at the 

molecular and cellular scales that give rise to predictable gross behaviors at the cell 

population and organismal levels. By borrowing an ansatz from statistical physics and 

contrasting with systems analyzed by statistical physics approaches, I proposed a 

framework to explain on how robust immune homeostasis can be achieved even though 

the immune systems can sometimes still go awry causing diseases. I concluded by 

suggesting future research directions. 
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Chapter 2: The immune system as a many-body system: linkage 

between microscopic randomness and macroscopic determinism 

 

2.1 Background 

A major challenge of the immune system is to cope with diversity and uncertainty of 

pathogen encounters (Murphy and Weaver, 2016). Since molecular and cellular 

immune machineries can also be dangerous to the host, they should remain quiescent 

in homeostasis, but react appropriately upon pathogen encounters (Germain, 2001). 

The immune response should be mounted timely, scale proportionally to the amount of 

threat burden, and contract quickly once the pathogenic threat has been cleared, 

followed by establishment of immune memory (Mayya and Dustin, 2016). The 

adaptive immune system is more specialized in mounting immune responses and 

establishing memory in an antigen-specific manner (Murphy and Weaver, 2016). 

Having antigen receptors specific to unique molecular patterns for each cell, adaptive 

immune cells such as T cells and B cells confer more sensitive and specific immune 

responses aided by clonal expansions and memory cell differentiations to efficiently 

deal with pathogen encounters. 

 This process possesses an inherent danger of responding to self, thereby 

potentially leading to autoimmune diseases (Theofilopoulos et al., 2017). The immune 

system has evolved myriad mechanisms of immune homeostasis, including the 

induction of self-tolerance, to mitigate such aberrant outcomes. In thymus, newly 

generated precursors of T cells undergo positive and negative selection, through which 

only thymocytes that recognize the self-peptide:major histocompatibility complex 
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(self-pMHC) molecules above a certain affinity (positive selection), but not too 

strongly (negative selection) survive and move out to the periphery as naïve 

conventional T cells. 1  Those who recognize self-peptides too strongly are either 

removed or directed to become regulatory T cells (Tregs), which constitutes a key 

mechanism of “central tolerance”. These Tregs play a crucial role through various 

modalities to ensure peripheral tolerance, suppressing the activation of naïve self-

reactive T cells that escaped central tolerance in secondary lymphoid organs (SLOs) or 

effector functions of self-activated T cells in tissues. 

 An interesting aspect of adaptive immunity is that it seems to cast itself to and 

utilize randomness typical at the molecular and cellular levels to better deal with the 

uncertainty of pathogen encounters yet generates quite predictable gross behaviors in 

cell population and organismal levels. At first thought, this is rather counterintuitive in 

that reducing noise or randomness is beneficial for robust and predictable biological 

functions such as the kinetic proofreading mechanism in DNA replication processes 

(Hopfield, 1974) and refractory periods in action potential conductions in neurons or 

muscles (Purves et al., 2017). Indeed, there is already accumulated evidence that the 

adaptive immune system actually has evolved various mechanisms for filtering out 

noise to prevent aberrant immune responses (Wong and Germain, 2018). Another line 

of thought may take utilizing the randomness as a strategy. Since randomness can occur 

naturally in the microscopic world (molecular or cellular levels), reducing randomness 

                                                 
1 TCRs recognize unique peptide sequences presented by the peptide-binding groove of MHCs on cell 

surfaces of other cells. There are mainly two classes MHCs, Class I MHC (MHC-I) and Class II MHC 

(MHC-II). MHC-I is expressed by all cell types and mainly presents endogenous self- or foreign 

antigens. MHC-II is expressed mainly by professional antigen-presenting cells (APCs) such dendritic 

cells, B cells, and macrophages and mainly presents self- or foreign antigens uptaken from the 

surrounding space or transferred by other APCs. 
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requires substantial resources that could have been otherwise utilized for biological 

functions if the organism can operate robustly in the presence of noise and could even 

exploit such randomness (Stoeger et al., 2016). In this chapter, we will argue, 

borrowing languages and concepts from statistical physics, that the latter is also likely 

the case for the adaptive immune system based on existing biological and 

immunological knowledge. 

A rephrased fundamental question the adaptive immune system raises is how 

microscopic randomness gives rise to macroscopic determinism. More specifically, 

how does robust immune homeostasis, that is, being tolerant to self-antigens via central 

and peripheral tolerance while responsive to foreign antigens, emerge out of random 

processes of adaptive immunity at the time scale of decades? To consider this question 

in this chapter, first we will go through basic adaptive immunological processes 

conferring randomness. Then we will revisit a basic framework of statistical physics to 

consider how the connection between microscopic randomness and macroscopic 

determinism is possible and why it is robust. Finally, we will come back to the adaptive 

immune system and argue that the adaptive immune system indeed operates in a 

manner analogous to systems described by statistical physics to confer self/non-self 

discrimination, yet subject to fluctuations since it operates below the thermodynamic 

limit in terms of the numbers of constituent cells and molecules and the size of 

participating organs. Before we begin our main discussion from section 2.2, we will go 

over general notions related to the noise and size of biological systems at the 

microscopic scale in the following section (section 2.1.1). 
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2.1.1 Defining the parallel of the “thermodynamic limit” in biological 

systems  

Biological systems consist of discrete entities such as macromolecules and cells. To 

realize biological functions, these entities interact, and their physical or biochemical 

states change over time. These processes inherently involve stochasticity, and the 

system is especially “noisy” at the microscopic scale, where low copy numbers of the 

constituent entities can render the random effects pronounced, e.g., in their abundances, 

states, or spatial movements. There are myriad examples in this regard. Stochastic gene 

expression at the single-cell level is one example:  Elowitz and colleagues (Elowitz et 

al., 2002) utilized two reporter genes (cfp and yfp) regulated by identical promoters in 

E. coli. They showed that the expression variation of CFP and YFP across single cells 

was, in part, contributed by the inherent stochasticity of biochemical reactions of gene 

expression. Such stochasticity in gene expression was also observed in mammalian 

cells, particularly that arising from bursty transcription (Suter et al., 2011).  Another 

example is bacterial chemotaxis involving directed movement guided by chemotactic 

molecules (Wadhams and Armitage, 2004). The challenge bacteria face is that their 

size is typically smaller than the average spacing of chemotactic molecules. To obtain 

maximal information on the concentration gradient of chemotactic molecules in the 

environment, bacteria evolved various strategies via their chemosensory signaling 

pathways. E. coli utilizes two modes of random motions (run and tumble) - they pick a 

direction for a run randomly, but biasedly based on the frequencies of their encounter 

with chemotactic molecules, thus leading to directional movements along with the 

concentration gradient of chemotactic molecules (Webre et al., 2003). The last example 
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we consider here is the electrical noise in neurons (White et al., 2000). The variable 

electrical excitability of neurons can be attributed to random switching between open 

and close states of individual voltage-gated ion channels with the bias to either of these 

states based on the membrane potential. These examples illustrate noisy biological 

phenomena and a survival strategy to cope with noise at the microscopic scale. 

 However, these behaviors are somewhat different from what we experience in 

our daily lives. In systems with a large number of components, the microscopic noise 

tends to disappear due to the effect of averaging (in Statistics, this is called the “Law 

of Large Numbers”). In physics or chemistry, when the system reaches a sufficiently 

large size such that such fluctuations are averaged out, the system is termed as reaching 

the “thermodynamic limit”. Mathematically, the concept of the thermodynamic limit is 

expressed as the limit when the system size (the numbers of constituent entities and the 

volume of the system) approaches infinity (or a macroscopic size) when the densities 

or concentrations of the constituent are fixed (Kampen, 2007; Pathria and Beale, 2011). 

In physics or chemistry, the Avogadro’s number, 6.02×1023 is considered as a 

“practical” infinity, which is comparable in orders of magnitude to the numbers of 

molecules or atoms in typical objects we use daily such as a book. However, this notion 

is not directly applicable in biology involving living systems with intricate regulatory 

mechanisms operating under chemical non-equilibrium. Therefore, we need a more 

biological system-dependent definition of “how large is large.”  

Considering that biological systems at any scale can be modeled as a reaction 

system with multiple spatial compartments, the abundances of entities (molecules or 

cells) in the system can be described either by copy number (𝑁; discrete number) or 
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concentration (𝑁/𝑉; continuous number, 𝑉 is the volume of a relevant compartment). 

A condition of size sufficiency is that adding/subtracting a single copy of a constituent 

species only affects the concentration negligibly. For example, let us consider two 

systems with the same concentration of a species, but with different sizes, to say, 3 

particles in 1 cm3 vs. 3000 in 1000 cm3 with a concentration of 3 cm-3. Adding a particle 

to both systems increase the concentrations by 33% for the former but by 0.03% for the 

latter. An additional condition is that the fluctuations of the abundances or fluxes out 

of discrete and probabilistic reaction events is negligible to the extent that they do not 

affect the phenotypic outcomes of the system. The estimation of fluctuations requires 

information on the average abundances of constituent species and rate parameters (or 

time scales) of relevant processes determining the abundances of the species. 

Biological negligibility depends on functions and needs to be evaluated in a context-

dependent and, in some cases, qualitative manner. Throughout this chapter, if a system 

of interest does not meet the “largeness” conditions above, we will denote that the 

system is below (or less than) the “thermodynamic limit” following the terminology in 

physics and chemistry and provide quantitative and biological justifications if needed.  
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2.2 Sources of randomness in the adaptive immune system 

2.2.1 Overview of T cell development with numbers 

Lymphocytes originate from hematopoietic stem cells in the bone marrow. While B 

cells mature in the bone marrow, the progenitors of T cells migrate to the thymus. In 

the thymus, thymocytes (the precursors of T cells residing in the thymus) further 

expand and mature to become naïve T cells, finally exported to the periphery. Figure 

2.1 illustrates the T cell development process with population sizes of different 

developmental stages and transition rates across stages in steady states (Krueger et al., 

2017; Sawicka et al., 2014; Yates, 2014). The numbers introduced here are for young 

Figure 2.1 T cell development in the thymus with numbers in the young adult murine 

thymus. The numbers of cell populations are shown on the top of each population. The 

cell fluxes or transition rates are shown with arrows crossing developmental stages. 

DN: double-negative, DP: double-positive, SP: single-positive, M: 106 cells. 
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adult mice and median values of varying estimations across the literature. The 

thymocyte maturation processes are tightly linked to the spatial localization of 

thymocytes in the thymus. The thymus consists of the (outer) cortex and the (inner) 

medulla. The thymus-seeding progenitor cells enter the thymus through blood vessels 

in the corticomedullary junction. These progenitor cells receive Notch signal from 

thymic epithelial cells, resulting in the commitment to the T-cell lineage with the 

expression of CD2 and Thy-1.  

The earliest stage of the T-cell lineage is the double negative (DN) population, 

which consists of DN1, DN2, DN3, and DN4 stages. The DN thymocytes lack cell-

surface markers, including the CD3:T-cell receptor complex, CD4, and CD8 that define 

mature T cells. The name, ‘double negative’ came from the absence of both CD4 and 

CD8 in this population. The DN thymocytes reside in the cortex of the thymus, and 

their dwelling time at that stage is around 18 days. During this period, the number of 

the DN thymocytes expands from 25,000 (DN1) to 2,500,000 (DN3). The DN 

thymocytes initially express CD44, not CD25 (DN1) and begin to express CD25 as 

they mature (DN2). The thymocytes then downregulate CD44 (DN3). At the DN2 

stage, rearrangement of the T cell receptor (TCR) β-chain (for the 𝑎:β thymocytes) or 

𝛾- and 𝛿-chain (for the 𝛾:𝛿 thymocytes) loci  begins, and it continues at the DN3 stage.2 

Once the functional TCR β-chain is formed and paired with a surrogate pre-T-cell 

receptor α-chain resulting in constitutive TCR signaling, thymocytes then reduce the 

expression of CD25 and move to the DN4 stage, where they proliferate and begin 

expressing both CD4 and CD8. Similarly, once the functional TCR 𝛾- and 𝛿-chain are 

                                                 
2 The process of TCR gene rearrangements will be discussed in section 2.2.2. 
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formed, the resultant 𝛾:𝛿 thymocytes mature and migrate to the periphery as 𝛾:𝛿 T 

cells, residing in barrier tissues or lymphoid organs depending on the developmental 

stages of the host. 

The resultant double-positive (DP; CD4+CD8+) (𝑎:β) thymocytes do not further 

proliferate, arriving the population size of ~88,000,000 cells. They go through 

rearrangement of the TCR α-chain locus, finally producing α: β TCR for the duration 

of in average 2.5 days. Most of the cells with α: β TCR cannot signal in response to 

self-pMHCs, failing positive selection and thus being directed to apoptosis. The DP 

thymocytes that can recognize self-pMHCs with sufficient binding affinity to trigger 

pro-survival signaling pathways survive with a population size of ~8,500,000 cells and 

continue to mature for an additional 0.7 days. They start migrating to the thymic 

medulla and downregulate the expression of either CD8 or CD4, finally becoming 

single-positive (SP) thymocytes with the population sizes of 12,000,000 (CD4 SP) and 

4,000,000 (CD8 SP) that together constitute only around 2% of the DP cells. This sharp 

reduction of the population size is due to negative selection. Thymocytes that survived 

positive selection undergo negative selection during or after the DP stage, in which 

only cells that cannot respond to self-pMHCs to trigger apoptotic signaling pathways 

survive. Finally, SP thymocytes mature to be naïve T cells for 5.5 days and emigrate to 

the periphery with the daily output of 1,000,000-2,000,000 naïve T cells, which is 1% 

of the total number of thymocytes. 

Thus far, we briefly laid out the T cell development process with numbers for 

population sizes and cell fluxes (Figure 2.1). Note that the orders of magnitude of these 

numbers are likely less than the thermodynamic limit , suggesting that the T cell 
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development process in terms of the population sizes of intermediate cell types and cell 

fluxes may suffer inevitable fluctuations out of random interactions among discrete 

entities (cells) in low abundance.3 (Refs for the footnote: (Kampen, 2007; Pathria and 

Beale, 2011)). Not only for the gross cell population sizes, there are other sources of 

randomness shown in the following. 

2.2.2 Generation of TCR repertoire 

One of the remarkable features of adaptive immunity is the random generation of TCRs 

in individual T cells. This is a fundamental way for the immune system to address the 

uncertainty of pathogen encounters throughout the lifetime of individuals by casting 

itself to achieving the randomness.4  Essentially, each T cell has a unique peptide 

sequence of TCR through random rearrangements of V, D (only in β-chain), and J gene 

segments of TCR gene loci together with random addition or deletion in junctions 

                                                 
3 The thermodynamic limit is defined as the limit where the system size (the numbers of constituent 

entities and the volume of the system) goes to the infinity (or a macroscopic size) with fixed number 

densities of the constituent. Thermodynamic systems with the Avogadro’s number of particles (~1023) 

and macroscopic volumes are considered as being in the thermodynamic limit, where the fluctuations of 

macroscopic quantities are negligible (~1/√1023 ≈ 10−12) (Pathria and Beale, 2011). However, in 

reaction systems, the ratio between the flux and abundance of constituent entities determines the extent 

of fluctuations (Kampen, 2007). For example, the daily flux of the post-DP thymocytes that undergo 

negative selection is ~24.6M/day (Figure 2.1). The standard deviation of the daily fluctuation of the post-

DP thymocyte population is roughly √24.6 × 106 ≈ 5000. The relative fluctuation of the post-DP 

thymocyte abundance is 5000/8.5M = 0.0006, which may be considered as negligible. However, its 

effect on the downstream compartment can be significant. With the inferred rate of negative selection, 

11.2/day (Figure 2.1), the daily fluctuation of negative selection is 5000 × 11.2 ≈ 55,000/day. This 

comprises ~5% of the influx of the SP thymocyte population (~1.1M/day), indicating that the self-

reactive repertoire size (4~10% of the peripheral TCR repertoire, section 2.4.1) is subject to significant 

fluctuations. 
4 There is a subtle issue regarding what “randomness” means. Sometimes, randomness is equated with a 

complete disorder or uniformity of chances over various possible outcomes. However, mathematically 

speaking, randomness involves associated probability distributions over possible outcomes, which are 

not necessarily uniform (or flat). Some outcomes may possess higher chances of realization, while other 

outcomes may possess negligible chances of realization, reducing the effective number of possible 

outcomes. Therefore, the outcome of each individual random event is unpredictable, yet the distribution 

of outcomes derived from multiple events can show predictable and conceivable patterns, such as 

overrepresentation of a particular outcome over other possible outcomes or the reduced number of 

realized outcomes compared to the theoretical possibility. 
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(Murphy and Weaver, 2016).  This process enables each T cell to recognize potentially 

distinct pMHC molecules. For TCRs, three complementarity-determining regions 

(CDRs; CDR1, CDR2, and CDR3) mainly determine the affinity towards pMHCs. 

CDR1 and CDR2 are germline-encoded uniquely across the V segments of 𝛼- and β-

chain and contact the MHC components of pMHCs. Most variations of TCRs come 

from CDR3 that is formed in junctions of V, (D,) and J segments and contact the unique 

antigenic peptide presented on the peptide-binding groove of MHCs. A current estimate 

of the (post-selection) TCR repertoire (the sum of all unique TCRs in the host) size is 

~1010 for humans and ~107 for mice (Altan-Bonnet et al., 2019; Lythe et al., 2016).5 

(Refs for the footnote: Davis and Bjorkman, 1988; Quigley et al., 2010; Turner et al., 

2006; Venturi et al., 2008)) This TCR diversity enables the immune system to react 

against almost limitless yet unknown pathogens. 

2.2.3 Positive and negative selection 

Having a randomly generated (pre-selection) TCR repertoire carries a burden of 

generating TCRs mostly not meeting the functional requirements of both adapting to 

the MHC alleles of the host and being non-functional against self-antigens. Thus, once 

                                                 
5 The existence of the public repertoire shared by multiple individuals indicated convergent 

recombination of TCR loci that was confirmed experimentally. This biased recombination of V, (D,) and 

J gene segments reduces the diversity of TCRs from theoretical estimation (~1015-1016 in mice). 

Moreover, the shared 𝛽-chains by multiple TCR clones due to massive proliferation of thymocytes at 

the DN4 stage after the 𝛽-chain recombination further reduce the TCR diversity. For neonates, the lack 

of terminal deoxynucleotidyl transferase (TdT) and the resultant lack of N additions lead to the utilization 

of only the germline-encoded V, (D,) and J segments, greatly reducing the TCR diversity (Davis and 

Bjorkman, 1988; Quigley et al., 2010; Turner et al., 2006; Venturi et al., 2008). However, such 

biasedness of TCR recombination and reduced diversity of TCRs do not contradict with the notion, 

randomness embedded in the processes of the TCR generation since we still cannot predict the outcome 

of TCR gene rearranements in each T cell. Such inherent mechanisms of reducing the TCR diversity 

leading to predictable TCR repertoires such as public repertoires is in line with our main argument in 

this chapter, which will be put forward in section 2.4. (Davis and Bjorkman, 1988; Quigley et al., 2010; 

Turner et al., 2006; Venturi et al., 2008). 
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DP thymocytes are generated after the rearrangement of TCR gene segments, they go 

through a two-step selection process: positive selection and negative selection. In 

positive selection, the T cells should recognize self-pMHC molecules presented by 

stromal cells of thymic cortex to the strength above a certain threshold to survive. Then, 

the survived T cells migrate to thymic medulla and go through negative selection 

invoking central tolerance, where only T cells that recognize self-peptide MHC 

molecules presented by stromal cells of thymic medulla not too strongly survive and 

eventually become mature single positive naïve T cells.6 A small fraction of T cells that 

recognize self-pMHC strongly become regulatory T cells (Tregs) (comprising ~6% of 

the thymic out of naïve CD4 T cells) that play a major role in enforcing peripheral 

tolerance, but a majority of T cells that recognize self-peptide above a certain threshold 

go through apoptosis.  

 These processes have stochastic components. Presentation of self-peptides by 

stromal cells (thymic epithelial cells and thymic dendritic cells) and encounter of 

specific self-peptides by specific immature T cells for positive and negative selection 

can be “noisy” processes. For example, a T cell with TCR potentially binding a certain 

self-pMHC strong enough to survive positive selections may not be lucky enough to 

actually encounter such a self-pMHC molecule in the thymic cortex, thereby directed 

into apoptosis. Another scenario prone to more stochasticity with potential phenotypic 

outcomes is that a thymocyte that survived through positive selection but has a potential 

of strong self-recognition for a self-peptide may not actually encounter such a self-

                                                 
6 Negative selection against ubiquitous self-antigens (the types of self-antigens are more discussed below 

in this section) can begins when the DP thymocytes are still in the cortex after positive selection (Klein 

et al., 2019). 
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antigen in the thymic medulla, thereby surviving through negative selection and 

migrating to the periphery with high self-reactivity. This is due to the limited extent 

and abundance of self-antigen presentation at the individual stromal cell level in the 

thymus (Klein et al., 2019). Self-antigens presented in the thymus for negative selection 

can be divided into ubiquitous antigens and tissue-restricted antigens (TRAs). The 

former are expressed by all cell types including thymic stromal cells, and the latter are 

expressed in certain tissues and ectopically expressed in medullary thymic epithelial 

cells (mTECs) under control of a transcription factor, Autoimmune regulator protein 

(Aire) inducing promiscuous expression of TRAs. Although as a bulk, mTECs can 

express more than 85% of protein coding genes, the mRNA expression of a certain 

TRA is restricted to only 1-3% of mTECs, indicating stochastic nature of TRA 

expression in mTECs (Brennecke et al., 2015; Klein et al., 2019; Meredith et al., 

2015).7 Therefore, whereas thymocytes specific to ubiquitous self-antigens are almost 

certainly deleted, those specific to TRAs are subject to stochasticity of encountering 

stromal cells presenting cognate pMHCs, conferring an inevitable leakage of self-

specific conventional T cells to the periphery (Hassler et al., 2019; Legoux et al., 2015; 

Malhotra et al., 2016; Zhang et al., 2020).8 (Refs for the footnote: Le Borgne et al., 

2009). 

                                                 
7  (Brennecke et al., 2015; Meredith et al., 2015) reported that Aire-regulated TRA genes showed 

coordinated expression in each mTEC. The combinations of co-expressed genes seem to be encoded 

each mTEC. Single mTECs was clustered based on co-expression patterns. Authors suggested that this 

might be due to epigenetic “bookmarking” at the progenitor epithelial cell stage that is shared by the 

daughter cells. Therefore, the stochasticity seems to be embedded in the “bookmarking” process. 
8 This depends on how long a thymocyte stays in the medulla and how many stromal cells it encounters. 

(Le Borgne et al., 2019) estimated that a medullary thymocyte may interacts with at most around 500 

stromal cells. If we assume that a thymocyte can scans 2% of self-antigens during each encounter (Klein 

et al., 2019), a simple in silico bootstrap experiment (data not shown) suggests that the numbers of 

encounters below 300 lead to sizeable frequencies (above 1%) of naïve T cells being self-reactive.  
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2.2.4 Trafficking through secondary lymphoid organs and encounter of 

cognate antigens 

Once fully matured, naïve T cells migrate from thymus to the periphery. They transit 

through secondary lymphoid organs (SLOs) such as spleen and lymph nodes randomly. 

T cells enters lymph nodes through specialized blood vessels named high endothelial 

venules (HEVs) and are mainly located in the paracortical areas, also known as T-cell 

zones, where they search for and encounter antigen presenting cells (APCs), especially 

dendritic cells (DCs) bearing cognate antigens. DCs are abundant in barrier tissue sites 

such as the skin, intestine, and lung and also exist in solid organs. They actively uptake 

foreign- and self-origin antigens and migrate to the draining lymph nodes that are 

directly connected with the residing local tissue sites via the lymph vessels, and they 

preferentially reside in the paracortical areas as naïve T cells do. The encounter 

between rare precursor naïve T cells (0.1-10 per million naïve CD4+ T cells in mice) 

and APCs with cognate antigens is in principle probabilistic (Hayes et al., 2019; Jenkins 

and Moon, 2012; Lee et al., 2012). Together, naïve T cells and APCs play hide-and-

seek for opportunistic encounter between right pairs of TCRs and pMHC molecules. 

2.2.5 Quorum regulation of initiation of clonal expansion 

The fundamental paradigm of the adaptive immunity is based on clonal expansion of a 

small population of precursor T or B cells recognizing cognate antigens to generate a 

large population of effector cells to clear pathogens. For this, T cells require three 

signals, 1) TCR signal perceived via antigens, 2) CD28 stimulation via costimulatory 

ligands delivered by APCs, and 3) cytokine signals delivered in a para-/autocrine 
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manner (e.g., IL-2 received by IL-2 receptors (IL-2Rs); CD25 (or IL-2 receptor 𝑎 chain 

(IL2-R𝑎)) is a high affinity subunit of IL-2Rs, mainly determining the responsiveness 

of T cells towards IL-2.), which are integrated to determine, for example, the duration 

of proliferation and therefore should be sustained for around 5 days to allow > ~10 

rounds of cell division corresponding to > ~1000 fold increase of the population size 

of cognate cells (Heinzel et al., 2017; Marchingo et al., 2014).9 However, a complete 

picture of how such rare precursor lymphocytes primed by cognate antigens transition 

to clonal expansion still remained blurry. In vitro or in vivo experiments studying 

lymphocyte population growth upon activation usually use the unphysiological number 

of antigen-specific seeding cells. For example, to investigate how the response size is 

determined via the antigen amount (Fuhrmann et al., 2016), ~106 ovalbumin (OVA) 

specific naïve TCR-transgenic CD4+ T cells were transferred per mouse to study their 

IL-2 secretion pattern after immune responses. This number corresponds to the 

frequency of 1 per 25 naïve CD4+ T cells in a mouse, which is substantially above the 

physiologic frequency of naïve CD4+ T cells specific to an antigen, which is typically 

in the range of 0.1-10 per million naïve CD4+ T cells (Jenkins and Moon, 2012). 

A multitude of experimental evidence suggest that initial priming of T cells by 

antigen presenting cells (APCs) sustain activating signals for around 48 hours 

(Bohineust et al., 2018) whereas a typical duration of  clonal expansion of responding 

                                                 
9 (Heinzel et al., 2017; Marchingo et al., 2014) suggested that each precursor T cell chooses different 

proliferation parameters such as the time to first division and the interval between subsequent divisions 

from their distributions. Thus, some clones may divide much faster than other clones. The distribution 

of the interval between subsequent divisions has a peak at around at 10 hours. With 10 hours per division, 

5 days including the time to first division (~36 hours) are required to allow 10 rounds of divisions in 

average, yet subject to clone-to-clone variations.  
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T cells is around 5 days. This discrepancy of durations indicates that recently activated 

T cells require further activating signals from sources other than APCs to support the 

ongoing clonal expansion, and it is likely that those signals are mediated by IL-2 from 

neighboring activating and IL-2-secreting T cells to sustain proliferation and 

differentiation and suppress the apoptosis machinery (Butler et al., 2013; Marchingo et 

al., 2014). Therefore, the proximity between recently activated T cells and other 

activating T cells secreting IL-2 is subject to randomness in that it requires some luck 

for other activating T cells to happen to be located in the vicinity of activated T cells 

that need further boosting signals. 

2.2.6 Ubiquitous intracellular and molecular heterogeneities 

The most fundamental layer of randomness underlying the processes mentioned above 

are intracellular and molecular heterogeneities, which can be roughly divided into 

biochemical and physical layers. Regarding the biochemical layer, intracellular 

molecular species undergo biochemical reactions such as synthesizing and degrading 

mRNAs and proteins or signaling cascades triggered by receptor-ligand binding. 

Typically, the abundances of distinct mRNA and protein species do not exceed 105 and 

108, respectively (Milo and Phillips, 2015; Schwanhäusser et al., 2011). Moreover, 

gene alleles exist in two copies. These numbers are below the thermodynamic limit, 

making fluctuations due to random motions and collisions for chemical reactions 

pronounced. Therefore, there exist inevitable variations in the abundances of molecular 

species and resultant various phenotypic aspects across cells at a snapshot or over a 

time course in single cells (Raj and van Oudenaarden, 2008). For example, variations 

in the expression levels of TCR and intermediate species of TCR signaling pathways 
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may put each T cell in different states of responsiveness to antigen. One phenotype 

subject to these variations is differential IL-2 secretion dynamics due to differential 

TCR signals after antigen priming across each T cell even within a clonal population 

(Feinerman et al., 2008). This may impact the fate of thymocytes or effector T cells via 

differential IL-2 signaling (DiToro et al., 2018; Klein et al., 2019). The stochastic 

expression of TRAs by mTECs is another example in that it contributes to randomness 

of TCR:pMHC interactions between the SP thymocytes and mTECs in negative 

selection, explained above.  

The physical layer of randomness can be exemplified with the physical 

interactions within/between molecules such as ligands and receptors or the 

conformational changes of macromolecules mediated by electric forces at the 

molecular/atomic level. The free energy related to molecular binding or conformations 

is directly translated into a probability as exp(−
Δ𝐺

𝑘𝐵𝑇
) , where Δ𝐺 is the difference in 

free energy, 𝑘𝐵  is the Boltzmann constant, and 𝑇  is temperature. This predicts the 

existence of inevitable fluctuations deviating from most probable states, such as 

nonspecific binding of TCRs and pMHC molecules, which has been linked to 

functional tonic TCR signals (Myers et al., 2017). If free energy is similar among 

different molecular states, the choice over plausible states can occur with comparable 

chances, which seems to be relevant to TCR repertoire generation via TCR gene loci 

rearrangements with biased pairing between segments. 
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2.2.7 Summary 

Thus far, we have laid out briefly the sources of randomness in the adaptive immunity 

from the generation of TCR repertoire to the initiation of clonal expansions as well as 

the underlying intracellular and molecular heterogeneity. The underlying causes of 

randomness are three-fold: 1)  thermal behavior at the molecular level - the temperature 

and energy gap between the states determine the extent of variation, 2) Poisson-type 

processes at the molecular, cellular, or higher levels - that are described with 

phenomenological rate constants not based on obvious physics, where the rate 

constants and the abundance of discrete entities together determine the extent of the 

variation, and 3) Cross-scale origin – the TCR repertoire is generated essentially at the 

molecular level via the rearrangement of TCR gene loci that can be described with 

thermodynamic consideration, yet manifests across cells and cell populations.10 Such 

randomness may be regarded as being too overwhelming for the adaptive immune 

system to function robustly (i.e., being responsive to foreign antigens while being 

tolerant to self) even with regulation and control. Nevertheless, based on our 

experiences and existing data, it is evident that our immune system generally performs 

well at the time scale of decades, yet can be subjected to pathologic behaviors such as 

various autoimmune diseases. Therefore, understanding how such randomness at the 

molecular and cellular levels gives rise to the deterministic behaviors of robust immune 

response at the cell-population and organismal levels is crucial to address questions 

                                                 
10 The cross-scale origin of randomness in the immune repertoire generation seems to be a unique feature 

of the immune system. This is the fundamental challenge the immune system has to deal with since the 

law of large numbers does not apply here in a manner that it does for Poisson-type processes (section 

2.1.1). The main argument of this chapter (to put it another way from the main text) is to show that the 

law of large numbers applies at the repertoire level, thereby leading to deterministic immune parameters 

at the cell population level.  
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such as: 1) how is relatively robust self/non-self discrimination or immune homeostasis 

established out of such randomness?, 2) what is the probability that this breaks down 

to cause autoimmune diseases or cancer?, 3) how can we manipulate the system 

judiciously to reestablish or modulate immune homeostasis? Interweaving and 

transforming the catalogue of numerous parts involved in immune homeostasis into a 

multiscale integrated framework can be hinted from the establishment of statistical 

physics in the 19th century, the first moment of the linkage of microscopic randomness 

and macroscopic determinism. 

 

2.3 Analogy from statistical physics 

Physics of the 19th  century prepared great leaps that would happen in the 20th  century. 

Back then, the Newtonian mechanics had been established firmly and classical 

thermodynamics was being developed rapidly. While the majority of people in physical 

sciences were foreseeing completion of physics in the near future being satisfied with 

the contemporary physics, a few physicists were tackling a challenging problem: 

derivation macroscopic thermodynamics out of Newtonian mechanics on microscopic 

entities, atoms and molecules. (Note that even until the early 20th century, the existence 

of atoms and molecules was considered merely as a hypothetical and convenient 

concept to explain physical and chemical phenomena.) Ludwig Boltzmann was the 

main figure in this endeavor. 

To understand how Boltzmann was able to establish the connection between 

microscopic and macroscopic worlds, let us consider an example (Figure 2.2A). 

Suppose there is a box filled with ideal and noninteracting gas. Macroscopically, we 
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can measure quantities such as pressure (𝑃), temperature (𝑇), and volume (𝑉). In 

thermodynamics, these quantities are related as so called the equation of states of ideal 

gas: 

𝑃𝑉 = 𝑛𝑅𝑇, (2. 1) 

where 𝑛 is the number of gas molecules in mole and 𝑅 is the gas constant. Boltzmann 

wanted to derive this relationship out of microscopic random motions and collisions of 

molecules. However, one can realize that writing and solving equations of motion for 

about the order of 1023 particles with the specified initial positions and velocities of 

each molecule is essentially impossible (even with the modern computational power). 

Rather, he pursued a probabilistic or statistical approach. Let 𝐸 be the total energy of 

Figure 2.2 A system with ideal gas. (A) Introduction of relevant quantities. (B) 

Maxwell-Boltzmann distribution of kinetic energy of molecules. (C) Maxwell-

Boltzmann distribution of speed of molecules with the mass of Neon and at the 

temperature, 278.15 K. 
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the gas, the sum of kinetic energy of each individual molecule and 𝑁  be the total 

number of molecules comprising the gas. Under the constraint of conservation of total 

energy and the number of molecules, we can count the number of ways (𝑊)  of 

distributing molecules to microstates with energy 𝜖 . Then, the maximization of 𝑊 

corresponding to the equilibrium or most probable macrostate of the gas gives rise to 

the probability distribution, 𝑃(𝜖) of molecules for being at microstates with energy 𝜖 

(Figure 2.2B). Macroscopic (or thermodynamic) quantities and relationships among 

them were then derived from various statistical quantities of 𝑃(𝜖). Such quantities are 

not restricted to the mean or variation, but may include various aspects such as the tail 

of the distribution (Pathria and Beale, 2011).  

The lesson we want to derive here is not the detailed mathematical treatments 

applied to a specific system (e.g., ideal gas) of statistical physics but the way the 

microscopic variables were linked to macroscopic variables. Although the individual 

molecules are subject to random dynamics in terms of collisions and resultant scattering 

angles of colliding molecules, the derived probability distribution, 𝑃(𝜖)  itself is 

deterministic under the constraints of conservation of total energy and the total number 

of molecules. Thus, thermodynamic quantities as being statistical quantities derived 

from 𝑃(𝜖) are also deterministic. In other words, while we cannot predict the motion 

of individual molecules in terms of velocities or positions at a specific time point, we 

can predict the portion of molecules within a certain range of velocity or location 

(Figure 2.2C). Together, the individual level randomness transforms to the population 

level determinism provided with the (deterministic) population-level distributions 

shaped by constraints imposed on the system. 
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Note that the population level determinism is not necessarily through averaging 

and buffering the individual level fluctuations, but such randomness itself can 

contribute deterministic quantities at the population level.11 For example, the shape of 

the energy distribution of gas molecules does not become narrower even though the 

systems size (𝑉 and 𝑁) increases. The macroscopic rate constants of chemical reactions 

are typically dependent on fractions of chemical species above certain energy 

thresholds (termed as activation energy) in the corresponding energy distributions (i.e., 

the tail of the distributions), and these fractions are deterministic quantities derived 

from the distributions. As we shall see below, the outliers in the distribution play a 

significant role for achieving immune homeostasis.  

Thus far, we briefly surveyed how statistical physics was able to link the 

random microscopic world to the deterministic macroscopic world by changing the 

perspective from tracking random behaviors of all individual microscopic entities to 

deriving population level well-defined distributions of microscopic behaviors and 

statistical quantities out of such distributions that are eventually connected to 

macroscopic deterministic quantities. Additionally, constraints imposed on the system 

such as conservation laws in closed systems and entropy maximization in general 

including open systems enabled the derivation of well-defined distributions and 

determined the shapes of them.12 (Refs for the footnote: (Dixit et al., 2018)) This is the 

ansatz that we borrow from statistical physics to better understand the adaptive 

                                                 
11 More precisely, this is dependent on the source of randomness (section 2.2.7) and the macroscopic 

quantities of interest. 
12 Although our example is from an equilibrium system, non-equilibrium systems can be dealt with in a 

similar manner by deriving relevant probability distributions through maximization of "generalized” 

entropy with physical constraints (Dixit et al., 2018). 
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immunity, which deliberately exploits randomness to give rise to robust immune 

homeostasis, yet subject to fluctuations causing diseases since the size of the immune 

system (e.g., the number of cells and the sizes of the lymphoid organs) is below the 

thermodynamic limit.13 

 

2.4 Back to the adaptive immune system: probabilistic molecules and cells 

giving rise to predictable behaviors 

The quest of the adaptive immune system exploiting randomness for its robust self/non-

self discrimination can be accomplished if such randomness of individual molecules 

and cells translates to well-defined probability distributions of relevant 

behavioral/phenotypic aspects. The delicate regulatory and controlling machineries on 

molecules and cells for immune homeostasis through intertwined interactions across 

multiple organizational levels play their roles in modulating the shape and location of 

probability distributions in the corresponding phenotypic space in a static and/or 

dynamical manner.14 Our strategy here is to show that probability distributions derived 

throughout multiple processes eventually give rise to deterministic quantities, 

especially fractions in certain phenotypic intervals (e.g., tail portions) out of 

corresponding distributions such as the frequency of self-activated T cells and 

                                                 
13 We will come back to this topic in more detail in section 2.4.4.  
14 Unlike physical constraints such as energy/mass conservation and entropy maximization in the ideal 

gas example in section 2.3, these biological regulations were shaped throughout the evolution under non-

equilibrium conditions (the life). Moreover, whereas the physical constraints are imposed to the system 

externally, the biological regulations operate internally through interactions between the constituent 

entities of the system in non-equilibrium. Therefore, the practical implementation of the ansatz in 

describing the adaptive immune system requires different approaches from those of the ideal gas example 

in section 2.3 and may call for a new formalism that can encompass these aspects of the biological 

regulations. 
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pSTAT5+ Tregs, which eventually participate in recurrent reciprocal regulations across 

scales to confer robust self-tolerance and foreign-directed responses in an almost all-

or-none manner.15 (Refs for the footnote: (Flajnik and Kasahara, 2010; Redmond et al., 

2018)) 

2.4.1 From TCR repertoire generation to thymic selection 

The (partially) deterministic TCR repertoire generated by biased random TCR 

rearrangements goes through thymic selection.16 The net effects of thymic selection are 

to sort these unique TCRs in terms of their affinity (or avidity or functional reactivity 

(from the catch bond mechanism)) to self-pMHC molecules, which results in a 

probability distribution of unique TCRs over the affinity toward the self-pMHC 

molecules in thymus. Then, thymic selection trims the distribution to the shape we 

observe experimentally in the periphery (Figure 2.3). While individual encounters 

between TCRs and relevant self-pMHC molecules are stochastic and thus 

unpredictable, the probability distribution of the affinity the TCR repertoire exhibits 

upon random encounters of self-antigens can be deterministic and robust regardless of 

the detailed kinetic behaviors of relevant molecules and cells based on: 1) the central 

                                                 
15 A related interesting question is how and when Tregs evolved. As we shall see in the following 

sections, the adaptive immune system allows the inevitable leakage of the self-reactive repertoire to the 

periphery, and Tregs counter it in the periphery. This suggests that Tregs should have evolved around 

the same time when the adaptive immunity evolved in jawed vertebrates around 500 million years ago 

(Flajnik and Kasahara, 2010; Redmond et al., 2018).  
16 As we discussed in detail in footnotes 4 and 5, the biased random molecular rearrangements of TCR 

gene loci give rise to (partially) deterministic TCR repertoires, which are shared in part among different 

individuals in the same species. The evolution might have optimized the process to ensure that the 

distribution of TCR specificities by biased random arrangements cover a wide range of possible antigens, 

but the distribution itself need to be deterministic enough for functional realization in each individual 

(~107 for mice) out of the enormous theoretical possibility (~1015 for mice). The preadaptation of 

germline-encoded CDR1 and CDR2 of TCRs to MHC alleles may play an important role in this regard 

as we will discuss further in footnotes 17 and 22. 



 

 29 

 

limit theorem in terms of the distribution of affinity a unique TCR potentially 

experiences for each self-pMHC molecule presented in the thymus and 2)  the extreme 

value theory in terms of the strongest affinity a TCR experiences out of multiple 

encounters in thymus, based upon which positive and negative selection occur (Butler 

et al., 2013; Košmrlj et al., 2009) (Figure 2.3A).17 (Refs for the footnote: Krovi et al., 

2019). Eventually thymic selection removes T cells with TCR with affinity less than a 

threshold of positive selection or greater than a threshold of negative selection by 

deterministic fractions (75-80% of the DP thymocytes for the positive selection and 50-

                                                 
17 The shape of the probability density in Figure 2.3A is likely to be correct only if the preselection 

germline-encoded TCRs are inherently adapted to MHCs. If not, the majority of TCRs may reside in the 

region of death-by-neglect, showing an extremely right-skewed distribution. A recent study (Krovi et al. 

2019) suggested that the former is likely the case, in that the preselection TCRs have biased affinity to 

pMHC. 

Figure 2.3 Schematic distributions of TCR affinity to self-antigen and TCR-mediated 

activation status. (A) Distribution of TCR affinity to self-antigen presented in thymus 

before selection. (B) Distribution of TCR affinity to self-antigen presented in thymus 

after selection. (C) Distribution of naïve TCR affinity to self-antigen in presented in 

the periphery. (D) Distribution of TCR-mediated activation status in a lymph node. 

An example of Nur77 intensity is shown (unpublished data from Dr. Harikesh Wong). 
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80% of the positively selected population for the negative selection) (Altan-Bonnet et 

al., 2019; Krueger et al., 2017) (Figure 2.3B). Additionally, a small portion of CD4 T 

cells recognizing self-antigens strongly but not too strongly differentiate into Tregs 

comprising a deterministic fraction, about 6% of thymic output of Naïve CD4 T cells 

(Figure 2.3A-B). Together, despite the random nature of the TCR repertoire generation 

and thymic selection, the affinity distribution of the repertoire and the fraction of 

surviving cells and their fate choices are close to deterministic. 

As we briefly mentioned in section 2.2.3, negative selection is not perfect in 

that it cannot remove all potential self-reactive T cells. The extent of the failure of 

negative selection is dependent on antigen presentation patterns distinct for ubiquitous 

antigens and TRAs in the thymus. The sporadic presentation of TRAs and the limited 

dwell time of thymocytes in the thymic medulla make each SP thymocyte tests only a 

fraction (1-10%) of the entire self-pMHC repertoire present in the periphery (Altan-

Bonnet et al., 2019). This leads to the inevitable chance that a sizeable population of 

self-reactive T cells exists in the periphery, which has been revealed experimentally 

(Richards et al., 2015; Yu et al., 2015) (Figure 2.3C). Recent studies using knock-in or 

natural expression of ubiquitous and tissue-restricted self-antigens in the thymic 

medulla revealed that self-reactive SP thymocytes specific to a self-antigen choose their 

fates between clonal deletion, diversion to Tregs, and survival as naïve conventional T 

cells in distinct proportions based on expression patterns of their cognate self-antigens 

(whether ubiquitous or tissue-restricted, and whether under control of strong or weak 

promoter for TRAs) in the thymic epithelial cells (Hassler et al., 2019; Legoux et al., 
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2015; Malhotra et al., 2016; Zhang et al., 2020).18 Depending on the abundance of self-

antigens in thymic selection, two extreme outcomes are possible, which is either a 

complete clonal deletion or ignorance. In the former case, the abundant expression of 

ubiquitous self-antigens lead to deletion of the majority of antigen-specific thymocytes 

since the thymocytes can encounter such antigen even in the thymic cortex. In the latter, 

the near absence of antigen expression in the thymic medulla leads to near complete 

survival of self-reactive thymocytes. A subtlety comes in TRAs that are expressed in 

only a small fraction of mTECs at any given moment. In this condition, clonal deletion 

plays only a partial role, and a significant fraction of the SP thymocytes specific to the 

given TRA survive and emigrate to the periphery as naïve T cells. Of those who 

survived, another significant fraction is diverted to Tregs. Although quite variable, the 

numbers of Tregs and self-reactive conventional CD4+ T cells specific to a TRA in 

SLOs seems to be comparable to each other in orders of magnitude while the number 

of Tregs were an order of magnitude smaller than that of CD4+ T cells for antigens 

inducing complete deletion or ignorance (Hassler et al., 2019; Legoux et al., 2015; 

Malhotra et al., 2016; Zhang et al., 2020). Regarding this, the detailed processes of 

negative selection may ensue predictable fate decisions into deletion, diversion, and 

survival for the SP cells specific to a self-antigen despite the stochasticity involved. 

The IL-2 niche generated by self-activated SP cells in the thymic medulla is likely to 

play an important role in determining antigen-specific Treg pool sizes (Hemmers et al., 

2019; Klein et al., 2019). Quantitative modeling approaches describing negative 

                                                 
18 Note that the tetramer assay (the main experimental method in the cited studies) can detect TCRs that 

do not signal when bound to the corresponding pMHC molecules. Therefore, there may be a tendency 

to overestimate the frequency of T cell specific to a certain self-antigen using this assay. 
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selection may help link multiple parameters such as TCR affinity to self-antigens, 

precursor frequency of cognate cells, and expression patterns of self-antigen to the 

deterministic fate decision probability at the level of clones specific to an antigen. 

Finally, these individual clones of “escapee” self-reactive conventional T cells 

comprises 4-10% of the CD4 conventional T cell pool in the periphery (Figure 2.3C) 

(Amado et al., 2013; Kim et al., 2007; Richards et al., 2015). This cohort is ‘invisible’ 

in homoeostasis, remaining quiescent due to the Treg suppression, yet retaining 

capability of self-antigen recognition and becomes ‘visible’ with signs of activation 

upon rapid depletion of Tregs (Amado et al., 2013; Kim et al., 2007; Richards et al., 

2015). Taken together, the affinity distribution of TCR repertoire relatively sharply 

demarcated after thymic selection becomes “leaky” in the periphery since the repertoire 

now tests against the entire set of self-peptides not exhaustively covered in negative 

selection (Figure 2.3A-C). Such leakiness in negative selection seems to be determined 

predictably at the antigen-specific population level and the entire repertoire level. 

2.4.2 From the invisible distribution of affinity toward self in the periphery 

to the establishment of homeostasis 

It has been revealed that self-reactive naïve T cells in the periphery eventually get 

activated in SLOs by cognate self-antigens, secrete IL-2, undergo brief proliferation, 

and get pruned out due to suppressive regulation by Tregs and intracellular apoptosis 

machineries (Liu et al., 2015; Wong et al., submitted). In the population level, around 

1-2% of CD4+ T cells show signs of ongoing activation by TCR signals such as IL-2 

secretion and Nur77 expression in homeostasis under the existence of Tregs comprising 

10-15% of CD4+ T cells in SLOs (Amado et al., 2013; Liu et al., 2015; Richards et al., 
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2015; Wong et al., submitted). The fraction of activated CD4+ T cells increases with 

rapid depletion of Treg population size or reduced Treg function up to 4-10% (as 

mentioned in the previous section), from which we can infer the original population 

size of invisible self-reactive T cells that survived thymic negative selection. Together, 

the affinity distribution of the peripheral TCR repertoire toward self-pMHC molecules 

including an invisible cohort (4-10% of T cells) of self-reactive cells is further molded 

by regulatory T cells and eventually manifest as a TCR-mediated activation distribution 

in SLOs with 1-2% of T cells in the tail portion of the distribution being activated yet 

constrained in homeostasis (Figure 2.3D).  

 As will be further discussed in Chapters 4, suppression of self-activated T cells 

by Tregs occur at two levels, the individual cell level and the cell population level. At 

the individual self-activated T cell level, suppression by Tregs mainly works to ensure 

that self-activated T cells are constrained in their activation status. For example, Treg-

mediated suppression prevents the self-activated T cells from upregulating IL-2Rα (the 

high affinity IL-2 receptor subunit) high enough to get auto-/paracrine IL-2 signals. At 

the population level, Tregs reduce the number of self-activated (and IL-2 secreting) T 

cells in two possible ways: 1) preventing self-reactive T cells from ever responding by 

suppressing dendritic cells and 2) decreasing the duration of priming of self-activated 

T cells (to be further discussed in Chapter 4). The extent to which each mode contribute 

is not clear yet due to the lack of experimental data, but we derived a general 

mathematical formula to describe this in Chapter 4. The latter can be understood as: if 

self-reactive T cells are being activated generally for a shorter duration (e.g., secreting 

IL-2 for a shorter duration), then there is less chance for asynchronously activated T 
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cells to be overlapped in time, resulting in a less frequency of self-activated T cells at 

any given moment.  

Additional layer of ensuring the homeostatic frequency of self-activated T cells 

is dependence of Tregs in SLOs on IL-2 for their population pool size maintenance 

through proliferation and survival (Owen et al., 2018; Smigiel et al., 2014; Stolley and 

Campbell, 2016). The main IL-2 producers in SLOs for Treg maintenance in 

homeostasis are likely self-activated CD4+ T cells (Liu et al., 2015; Setoguchi et al., 

2005; Stolley and Campbell, 2016; Yi et al., 2018), and this can be justified using 

mathematical arguments by showing that homeostatic frequencies of self-activated and 

IL-2 secreting T cells (1-2%) and pSTAT5+ Tregs (10-15%) form stable equilibrium 

out of reciprocal interactions between self-activated and IL-2 secreting T cells and 

Tregs, which is the main topic of Chapter 4.  

Finally, under homeostasis it can be shown that the probability that self-

activated T cells undergo clonal expansion through continuous paracrine IL-2 signals 

by other self-activated T cells is extremely low (~0) (Chapter 4). The crucial parameters 

Figure 2.4 Schematic of immune homeostasis. The vertical line indicates the 

frequency of self-activated CD4 T cells secreting IL-2 in homeostasis. This is far from 

the sharp transition point of the probability of clonal expansion. The detailed 

derivation of the curve is shown in Chapter 4. 
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are the frequency (or more precisely the number density) of self-activated and IL-2 

secreting T cells and the activation status (especially the IL-2Rα level) of self-activated 

T cells at the end of priming when responding T cells disengage from APCs. These 

together shape a sharp transition point of the probability of clonal expansion from 

extremely low (~0) to almost certain (~1) at around 5-6%, the frequency of self-reactive 

T cells (Figure 2.4). This transition point agrees with the experimentally inferred size 

of invisible cohort of self-reactive T cells, which go through massive proliferation upon 

Treg depletion (Kim et al., 2007; Richards et al., 2015).  

In summary, robust immune homeostasis (self-tolerance) is possible through 

the recurrent reciprocal regulations between self-activated T cells and regulatory T cells 

across scales with their (well-regulated) homeostatic frequencies in dynamical 

equilibrium. These frequencies are resulted from the tail portions of deterministic 

distributions of relevant phenotypes that emerge from underlying molecular and 

cellular random processes. The immune homeostasis ensures that the sharp transition 

of the probability of clonal expansion from (near) 0 to (near) 1 occurs at the frequency 

of self-activated (IL-2 secreting) T cells substantially above the equilibrium frequency. 

These arise naturally from random processes and regulatory/controlling constraints of 

constituent molecules and cells. 

2.4.3 Colocalization of right partners, symmetry breaking between self and 

non-self, and robust foreign-specific responses 

Another important question is then how the immune system mounts a robust immune 

response against pathogens while maintaining self-tolerance at the same time. The 

question can be subdivided into two: 1) how do rare antigen-specific precursor T cells 
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randomly surveying SLOs quickly locate cognate antigens?  2) how are T cells 

encountering foreign antigens instructed to undergo full-blown clonal expansion while 

self-reactive T cells remain suppressed in this process? The nature of these questions 

is again closely related with the recurring theme, random processes giving rise to 

deterministic probability distributions that are shaped and controlled by regulatory 

constraints of constituent molecules and cells and structural organizations of SLOs.  

The quest for rare antigen-specific precursor T cells (1-100 out of 106 cells) to 

locate the right draining lymph nodes and antigen presenting cells bearing the right 

antigen within a few days is accomplished by 1) strategic surveillance patterns of naïve 

T cells within and across SLOs and 2) strategic positioning of dendritic cells and 

chemotactic interactions between T cells and dendritic cells leading to a finer and 

further compartmentalization of the T cell zone, at the same time taking advantage of 

spatial structures of SLOs (Baptista et al., 2019; Fricke et al., 2016; Hayes et al., 2019; 

Lee et al., 2012; Mandl et al., 2012; Textor et al., 2014). These factors greatly reduce 

the search space of T cells and maximize thoroughness and coverage of T cell 

surveillance over the T cell zone and across SLOs.19 (Refs for the footnote: Cahalan 

and Parker, 2005). Additionally, inflammation greatly increases the blood flow in the 

inflamed tissue and local draining lymph nodes leading to increased amount of free 

antigen drained and T cell migration to the lymph nodes, respectively (Soderberg et al., 

                                                 
19 For example, DCs and T cells in SLOs are concentrated on and move along the fibrous networks 

formed by fibroblastic reticular cells, effectively reducing the search space in size and dimensionality 

(Wong and Germain, 2017). Another example is preferential colocalization of CD4+ and CD8+ T cells 

with their relevant DCs in distinct compartments of the paracortex in lymph nodes (Baptista et al., 2019). 

A simple estimation based on 2-photon experimental observations of stochastic encounters between 

naïve T cells and DCs in the paracortex suggested that with > 95% probability, any T cells can find 

relevant antigens presented by around 100 DCs in a lymph node within 6 hours (Cahalan and Parker, 

2005). 
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2005). This further contribute to the increased chance of the cognate encounter between 

T cells and antigens. Therefore, while individual encounters occur randomly, the 

dynamical and structural constraints ensure the distribution of duration between 

antigenic challenge and the antigen encounter forms a narrow shape and thus T cells’ 

locating cognate antigens under inflammatory condition certainly happen within 

around 72 hours (Heijst et al., 2009). Interestingly, this time scale coincides with the 

kinetics of dendritic cell migrations from infection sites to draining SLOs, maximizing 

antigen accessibility over the distribution of duration until the relevant encounters 

(Hayes et al., 2019).  

Having been recruited to the relevant SLOs with cognate antigens, how such 

foreign specific T cells transition to a phase of clonal expansion without invoking the 

response of self-reactive T cells is still unclear. Each individual naïve T cell do not 

know whether the antigen its TCR recognizes is from self or foreign. Therefore, the 

homeostatic condition where self-tolerance is guaranteed also applies to foreign 

specific T cells (Figure 2.4). A possible way to allow clonal expansion of foreign-

Figure 2.5 Schematic of symmetry breaking between self and non-self. The net effect 

is the increase of local density of foreign-activated T cells and the lowering of the 

transition point of the probability of clonal expansion due to higher activation status 

of foreign-activated T cells. 
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specific T cells is to increase the local density of activated foreign-specific T cells and 

the activation status (or IL-2Rα level) of those to create a local milieu that resides above 

the sharp transition point of the probability of clonal expansion, while the self-reactive 

T cells remain less affected (Figure 2.5). Several known molecular or cellular 

mechanisms seem to work to make this possible. The inflamed dendritic cells due to 

infections upregulate costimulatory ligands (CD80 and CD86) and pMHC molecules 

in their surfaces and other machineries for cell adhesion. Therefore, T cells engaged 

with the inflamed dendritic cells overcome the suppression by Tregs and activate 

further to lower the transition point of the probability of clonal expansion (Figure 2.5). 

Since the inflamed dendritic cells also present self-antigens, there is a danger that self-

reactive T cells also get highly activated due to upregulated costimulation that Tregs 

cannot fully suppress (further discussed in Chapter 4). Here, we propose several 

mechanisms of the symmetry breaking between self and non-self. The first mechanism 

involves relatively weak TCR signals received by self-activated Tconvs due deletion 

of Tconvs with high self-reactivity (Hassler et al., 2019) and the preferential 

localization of Tregs in SLOs where their cognate self-antigens are prevalent (Lathrop 

et al., 2008; Wheeler et al., 2009). If Treg’s TCR-mediated depletion of self-antigens 

from inflamed DCs together with weak TCR signals play a major role in suppression 

of the priming of self-reactive T cells as a main rate-limiting process (Akkaya et al., 

2019), then it seems plausible that self-activated T cells remain constrained with a low 

IL-2Rα level through weak and early declining TCR signals even with upregulated 

costimulation from inflamed DCs. This allows self-activated T cells to maintain the 

probability of clonal expansion low while conferring full-blown activation signals to 
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foreign-specific T cells. Additional asymmetry between self and non-self may come 

from differential migration patterns of newly activated T cells based upon their 

activation status (Krummel et al., 2016). More highly activated T cells are more 

sensitive to chemotactic cues from other inflamed DCs or responding T cells. Activated 

T cells also can recruit DCs. Therefore, the higher activation status of foreign-specific 

T cells increases the probability of colocalization with successive foreign-specific 

responding T cells via less random and more directional migration, thereby increasing 

the local density of those cells to form an IL-2-sharing microenvironment that enables 

full-blown clonal expansion. Self-reactive T cells are likely to be sterically excluded in 

this milieu since these are in more random and less directional migration with less 

sensitivty to chemotactic cues, thus maintaining their homeostatic density.  

Together, robust foreign-specific response is possible through 1) the narrow 

probability distribution of the duration spent by rare foreign-antigen specific T cells 

until cognate antigen encounter and the matching distribution of the duration for which 

DCs migrate to draining SLOs and present antigens and 2) symmetry breaking between 

self and non-self enabling rare foreign-antigen specific T cells to engage with DCs with 

cognate antigens over an extended duration and colocalize with other activated T cells 

ensuring continuous exposure to IL-2 in the local milieus, but suppressing self-reactive 

T cells excluded from such milieus. The probability of clonal expansion of foreign 

specific T cells is almost certain while that of self-reactive T cells for clonal expansion 

still remains low. The symmetry breaking mechanisms proposed here are worth further 

experimental and quantitative investigations. 
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2.4.4 When does the robust immune homeostasis go awry: being below 

thermodynamic limit 

One of the fundamental differences between typical thermodynamic systems and the 

immune system is that the immune system is not in the thermodynamic limit. In other 

words, as we have seen above, the number of constituent molecules and cells in their 

relevant spatial compartments are at most in the order of 108, which is below the 

thermodynamic limit. 20  Moreover, the local nature of cellular and molecular 

interactions shrinks the effective size of the spatial compartments and thus the effective 

numbers for constituent entities in each local milieu.21 The time scale of intercellular 

or intracellular process (minutes to hours to days) is much longer than that (nanosecond 

to millisecond) of typical thermodynamic systems. As a result, the probability 

distributions of phenotypes themselves we have discussed so far are prone to 

fluctuations even with robust regulatory/controlling constraints shaping the 

distributions. To exacerbate the situation further, while the constraints shaping 

probability distributions in statistical physics are typically based on fundamental laws 

of physics such as laws of energy or mass conservation or the second law of 

thermodynamics (entropy maximization), those in the immune system are not from 

                                                 
20 This number, 108 is for mice. It is interesting to consider other species such as humans, elephants, and 

whales. Blue whales typically weigh ~100 ton, whereas mice weigh ~10 g (a difference of seven orders 

of magnitude). If we assume that the size differences of the relevant organs (the thymus or lymph nodes) 

between mice and whales are the same as those of body sizes, a typical lymphoid organ of whales may 

encompass ~1015 cells, which is a substantial increase compared to that of mice. As we further discuss 

below, the effective size of local cellular interaction milieus and typical time scales of relevant processes 

may remain the same across the species as underlying physical or chemical principles remain the same. 

Therefore, even for whales, it is not likely that the immune system satisfies the conditions of the 

thermodynamic limit.  
21 For example, a typical length scale of local interactions between cells in lymphoid organs is around 

~100 𝜇𝑚. With an average dimension of each lymphocyte, ~10 𝜇𝑚, a typical local milieu encompasses 

only ~1000 cells. With a typical concentration of IL-2 in lymph nodes, 10 pM, a local milieu with ~100 

𝜇𝑚 dimensions includes only 602 molecules. 
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such first principle laws but arising from constituent molecules and cells performing 

regulatory/controlling mechanisms out of the interweaved interaction topology among 

themselves, which again reside below the thermodynamic limit and under continuous 

influences of environmental and genetic factors. Therefore, the picture we have 

suggested so far should be modified a bit in reality (Figure 2.6). 

The most relevant are the small tail portions of the distributions (self-reactive 

and IL-2 secreting T cells) in Figure 2.3 C-D that are crucial in establishing immune 

homeostasis. The low frequencies of these populations (4-10% and 1-2%, respectively) 

are especially prone to fluctuations, which may drive the system to reside near the 

transition point of the probability of clonal expansion (Figure 2.6). The evolution has 

worked out to ameliorate this danger by having various immune checkpoint 

mechanisms via suppressive feedback regulations operating across scales to enable 

robust immune homeostasis at least over the time scale of the reproduction age (Wong 

and Germain, 2018). However, genetic susceptibility and/or environmental stimuli 

drive the system towards particularly dangerous situations by influencing TCR 

Figure 2.6 Schematic of immune homeostasis under continuous fluctuations. Being far 

from the thermodynamic limit and varying environmental and genetic factors 

contribute to these fluctuations. 
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rearrangement, thymic selection, intrinsic responsiveness and checkpoints of self-

reactive T cells, Treg maintenance and function, innate inflammatory signaling, and/or 

antigen presentation, potentially resulting in autoimmune diseases (Figure 2.6, red) 

(Rosenblum et al., 2015; Theofilopoulos et al., 2017). Once a spontaneous initiation of 

self-specific response in this regime results in a sizeable expansion (if not a full-blown 

clonal expansion) with differentiation to effector cell types enough to damage the 

corresponding tissue sites, self-perpetuating and aggravating inflammation and tissue 

damages ensue via enhanced self-antigen presentation in quantity and variety with 

inflammation due to damage-associated molecular patterns (DAMPs) out of damaged 

cells.  

Worldwide, around 5-10% of human population suffer from various 

autoimmune diseases (Theofilopoulos et al., 2017). This indicates that assuming the 

average age of the onset of diseases to be around 30 years, immune homeostasis of each 

human eventually fails roughly at the time scale of 300 years, which is robust enough 

given the average lifespan of the human being, ~80 years. While autoimmune diseases 

seem thermodynamically inevitable, better understanding the nature of immune 

homeostasis would allow us opportunities to come up with more precise therapeutic 

modalities that can overcome inevitable fluctuations and reestablish immune 

homeostasis.  

 

2.5 Outlook 

Thus far, we have gone through how we can reconcile between microscopic 

randomness and macroscopic determinism that seems to be manifested in the 
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maintenance of immune homeostasis in the adaptive immune system. While some 

discussions in this chapter sound speculative, nevertheless transforming this argument 

into a concrete mathematical/computational framework is a timely task as evidenced 

by 1) the success of statistical physics that had overcome skepticisms and proved itself 

to be a fundamental way of connecting microscopic and macroscopic worlds consisting 

of many constituent entities and 2) the nature of the immune system made up of various 

cell types and molecules operating together to ensure robust immune functions that are 

now being uncovered collectively in the era of ‘systems immunology’. We propose this 

as an overarching framework of understanding and assessing immune homeostasis. 

Through this endeavor, the list of numerous molecular and cellular parts involved in 

adaptive immune processes can really be interweaved and transformed to become a 

quantitative predictive multiscale model of immune homeostasis, which is one of the 

ultimate goals of immune systems biology and may guide more fine-tuned therapeutic 

strategies for autoimmune diseases and cancer. To achieve this, quantitative modeling, 

quantitative experiments, and molecular biological approaches should go in parallel 

since still there are unknowns we cannot even estimate in molecular and cellular 

processes and new discoveries will be better appreciated under quantitative frameworks 

and continuously update the model (Germain, 2018).  

An immediate staring point to make the argument more concrete is to derive 

the consistently observed numbers from detailed molecular and cellular processes. One 

related question is why the frequencies of ‘invisible’ self-reactive T cells and Tregs in 

thymic output (4-10% and 6-10%, respectively) are similar. Is this agreement merely a 

coincidence? Can known cellular and molecular processes in thymic selection explain 
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this agreement? Are yet to be known processes required to derive this? What are the 

consequences of this in immune homeostasis? Answering these questions may shed 

light on underlying processes in thymic selection and devising better therapeutic 

manipulations for modulating immune homeostasis. 

Zooming out a little bit, an interesting and conceptual question is what the 

central and peripheral tolerance try to optimize. A prevailing notion has been to remove 

self-reactive cells and thus prevent autoimmunity; Central tolerance occurring via 

negative selection is not perfect for removing self-reactive cells, and peripheral 

tolerance with regulatory cell types such as Tregs further ensures the suppression of 

self-reactive T cells in the periphery. However, recent data suggest that self-reactive T 

cells are not kept from ever being activated, but continuously get activated. Intriguingly, 

the peripheral maintenance of Tregs appears to rely on IL-2 secreted by such self-

activated T cells. Self-reactive T cells are required to be activated to suppress 

themselves to prevent autoimmunity. This may lead us to rethink about the fundamental 

purpose of the machineries of tolerance solved out through the evolution. We propose 

that immune homeostasis tries to maximize the utility of maintaining self-specific 

repertoires in the periphery to the extent to which the self-reactivity is not dangerous 

to cause autoimmunity past the reproduction age. This is from an assumption that if the 

immune system can tolerate sizable peripheral self-specific repertoires, the evolution 

of which might occurred to promote maximal utilization of self-specific repertoires. 

The implication of this can involve various aspects. First, this can allow positive 

selection to shape the repertoire to be more self-reactive in general to confer more 

effective responses against pathogens at the expanse of the potential leakage of self-
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reactive T cells to the periphery (Mandl et al., 2013). Second, this can increase the total 

size of the repertoire, and the cross-reactivity of the self-specific repertoire against 

foreign antigen can be beneficial for fighting against pathogens (Yu et al., 2015). Third, 

this can be beneficial fighting against altered-self arising from cancer or increased self-

antigen arising from benign yet physiologically detrimental hypertrophy of tissues 

(Kohanim et al., 2019; Menares et al., 2019). Lastly, related to the first and second 

points, we may speculate that removing self-reactivity too stringently from the 

repertoire may allow pathogens to coevolve to resemble peptides of the host over the 

evolutionary time scale.22 If this happens, the adaptive immune system cannot function 

to clear such pathogens anymore. Therefore, maintaining self-reactivity may enable the 

host to cope with “camouflaged” pathogens. Endogenous retroviral elements in our 

genome may suggest some hints for this possibility. Self-reactivity may play a role to 

keep these “immigrant” self under check. 

 

                                                 
22 (Mandl et al., 2013) suggests that the germline encoded CDR1 and CDR2 mainly determine the 

reactivity of TCRs towards pMHCs, and CDR3 contributes in a minor portion, yet most decisively. In 

this scenario, it may be hard to classify peripheral T cells into solely the self-reactive or the foreign-

reactive. All T cells are somewhat both self-reactive and foreign-reactive with different weights on either 

of these. Therefore, it may be inevitable to harbor self-reactive repertoires to maintain enough foreign-

reactive repertoires in the periphery. Stringent reduction of self-reactive repertoires may lead to an 

insufficient size of foreign-reactive repertoires. 
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Chapter 3: Machine learning of stochastic gene network 

phenotypes 

 

3.1 Introduction 

A major goal of systems biology is to develop quantitative models to predict the 

behavior of biological systems (Germain et al., 2011; Gunawardena, 2014). However, 

most realistic molecular and cellular models have a large number of parameters (e.g., 

reaction rates, cellular proliferation rates, extent of physical interactions among cells 

or molecules), whose values remain unknown and are often challenging to measure or 

infer quantitatively (Babtie and Stumpf, 2017; Gutenkunst et al., 2007). While some 

biological phenotypes are robust to parameter variations (Li et al., 2004), most are 

“tunable” by parameters (Bialek, 2018). Moreover, parameter variations in biological 

systems typically span multiple orders of magnitude in physiologic and/or pathologic 

conditions, and their effects on phenotypic variations may differ in distinct local 

regions of the plausible parameter space due to typical nonlinearity in interactions 

among components. Therefore, analyzing the behavior of a system over the entire 

plausible space of parameters is needed to study the phenotypic range of a biological 

system and its parameter-phenotype relationships (Baum et al., 2016; Koeppl et al., 

2013; Lim et al., 2013).  

Ideally, the quest of parameter-phenotype relationships can be readily achieved 

with analytical solutions of the given model. However, realistic biological models are 

often the case intractable analytically, thereby dealt with by computational simulations, 

which alone do not yield intuitive understanding. Sensitivity and uncertainty analyses 
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have been invaluable ways to delineate parameters’ contributions in variation or 

uncertainty of model outcomes obtained by simulations in various fields, not restricted 

to biological modeling (Saltelli et al., 2012). Various methods of obtaining global or 

local sensitivity measures are available yet require sophisticated parameter sampling 

design. Additionally, a comprehensive tool (called Simmune) capable of building and 

simulating detailed models easily using graphical rules and dissecting parameters 

leading to experimentally testable outcomes was developed and utilized to solve 

various biological problems (Angermann et al., 2012; Meier-Schellersheim et al., 2019). 

However, these methods often require extensive computational resources to analyze 

the high-dimensional parameter space, given the large uncertainty in parameter values 

and the complex correlation structure among parameters. To cope with the 

computational cost for conducting a lot of simulations, metamodeling/emulation 

utilizing various regression techniques has been applied to sensitivity/uncertainty 

analyses. However, the capacity of sensitivity/uncertainty analyses is still far from what 

can be expected from analytical solutions: 1) fast evaluation of model phenotypes for 

new parameter values, 2) intuitive and immediate delineation of parameters’ role for 

shaping model phenotypes in both local and global levels in a scalable manner, 3) 

flexible and incremental improvements of coverage and/or resolution of the plausible 

parameter space as needed.  

Here, we combine computational simulation of full-feature dynamical models 

and machine learning (ML) to develop a framework, called MAchine learning of 

Parameter-Phenotype Analysis (MAPPA), for constructing, exploring, and analyzing 

the mapping between parameters and quantitative phenotypes of dynamical systems. 
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In contrast to the limited usages of ML in metamodeling/emulation merely as tools for 

some other functionalities such as sensitivity measures, feature selections, or model 

calibration and optimization, it is now our primary goal to generate computationally 

efficient, reliable, and interpretable ML models mapping between parameters and 

quantitative phenotypes of dynamical systems. This is enabled by taking advantage of 

the large amounts of data that can be generated from bottom-up, mechanistic 

computational simulation of dynamical systems and the full functionalities of modern 

machine learning approaches to “compress” such data. The ML models capture the 

nonlinear mapping between parameter and phenotypic spaces (parameter-phenotype 

maps) and therefore, can be viewed as “phenomenological” solutions of the given 

dynamical model in analogy to analytical solutions in ideal situations. As corollaries of 

having such phenomenological solutions, ML models can predict the system’s 

quantitative behavior from parameter combinations, thus bypassing computationally 

expensive simulations. They also can delineate which and how parameters and 

parameter combinations shape phenotypes, both globally throughout the parameter 

space and locally in the neighborhoods of individual parameter configurations 

efficiently without further computational costs. Furthermore, unlike existing sensitivity 

analysis methods requiring delicate designs of parameter sampling and thus rendering 

the schemes not flexible for further improvements later on, ML models can be easily 

improved with additional training data in coverage and resolution of the plausible 

parameter space. Finally, we introduce visualizations to enable interactive exploration 

of the parameter-phenotype map, including a web application for interrogations of 

analysis below (https://phasespace-explorer.niaid.nih.gov).  
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We applied MAPPA to a contemporary problem in single cell biology: Despite 

the increasing availability of single-cell gene expression data enabled by rapid 

technological advances (Tanay and Regev, 2017), an important unanswered question 

is how cell-to-cell expression variation and gene-gene correlation among single cells 

are regulated by the underlying gene regulatory network (GRN), within which different 

signals, including those arising from environmental variations or biochemical 

fluctuations, are transmitted (Elowitz et al., 2002; Martins et al., 2017; Raj and van 

Oudenaarden, 2008). Chemical master equations (CMEs) (see section A.1) can be used 

to model, analyze, and predict single-cell heterogeneity and gene-gene correlation 

behaviors based on GRNs. However, existing analytical schemes of solving CMEs are 

only available in simple models involving gene products from one gene or describing 

mRNAs and proteins as an aggregated gene product when involving two genes (Cao 

and Grima, 2018). To make CMEs analytically tractable, simplifying assumptions are 

needed with the risk of ignoring important features such as “bursty” transcription (Elf 

and Ehrenberg, 2003; Kampen, 2007). Together, these are far from realistic 

descriptions of GRNs we want to achieve (Cao and Grima, 2018). Here, we used 

MAPPA together with Gillespie’s Stochastic Simulation Algorithm (SSA) (Gillespie, 

2007)) and were able to generate predictive ML models mapping between a multitude 

of kinetic parameters and behaviors of propagation of gene expression variations for 

full-feature stochastic models of gene circuit motifs. We first explored information 

transmission behaviors in a simple two-gene network and illustrated a proof-of-concept 

of MAPPA and advantage over existing analytical methods. Then, we further applied 

MAPPA for more complex gene networks such as three gene feedforward networks 



 

 50 

 

and a two-gene negative feedback networks and illustrated additional layer of PoV 

regulations and oscillatory behaviors arising due to stochastic fluctuations. 

 

3.2 Results 

3.2.1 Learning the parameter-phenotype map of stochastic network 

dynamics 

Given a well specified stochastic gene network model and associated kinetic 

parameters, we seek to understand how the phenotypes of the system behave and 

change across the parameter space. Here, phenotypes can be any quantitative measures 

assessing certain aspects of the dynamical behavior of the given model (Figure A.1). 

While the quantitative relationship between parameters and phenotypes in a given 

system can be mathematically complex, we hypothesize that the mapping can be 

captured quantitatively by interpretable ML models such as Random Forests (RF) in 

Figure 3.1 MAPPA framework. MAPPA utilizes massive simulation data and 

machine learning to construct models that can accurately and efficiently predict 

quantitative phenotypes given high-dimensional parameter combinations without 

using resource intensive dynamical simulations. The resulting machine learning 

models also serve as interpretable parameter-phenotype maps. 
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which the contribution of individual parameters to achieve accurate mapping can be 

delineated (Breiman, 2001) (Figure 3.1). For example, the gene expression dynamics 

of a network of genes and proteins in cells can be modeled by CMEs. However, 

analytical solutions of non-linear CMEs (e.g., those with ON-OFF promoter dynamics) 

are generally intractable and evaluating how parameters affect a phenotype of interest, 

e.g., the correlation between two genes over time (Figure A.1), rely on conducting 

computational simulations over a large number of parameter combinations. Here we 

sought to use ML models to learn the PPM.  

MAPPA comprises three steps (Figure 3.2). In step 1, we model a system as a 

network of interacting entities (e.g., proteins, mRNAs, cells), whose states/levels are 

governed by stochastic birth-death processes (e.g., transcript production and 

degradation). While still poorly measured, particularly in vivo, plausible ranges of some 

parameters can be obtained from the literature or approximated based on physical 

and/or biological constraints. Next, in step 2, using methods designed for uniform 

sampling of high-dimensional parameter spaces (section A.3), we obtain parameter 

combinations from the plausible parameter space and conduct stochastic, dynamical 

simulations of the system using each one of the parameter combination samples. We 

then compute quantitative phenotypes of interest (here we focus on correlation of 

expression between genes in single cells, but the MAPPA approach is applicable to any 

phenotypes/modeling combinations) to obtain an in-silico dataset that links parameter 

values to phenotypes. In the final and critical step (step 3), we train a ML model that 

quantitatively maps parameters to phenotypes, and we evaluate the predictive 
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performance of the model by using parameter combinations not used in the training set. 

Using this approach, we can obtain arbitrarily large training and testing sets with size  

limited only by computational capacity. Any good ML approach generating  

Figure 3.2 Three steps in MAPPA framework. Step 1: Model the system as a network 

of interacting molecular species; their interactions are governed by kinetic parameters; 

Step 2: Uniformly sample parameter combinations from the plausible parameter space 

and conduct mechanistic/stochastic simulation on each of the combinations and 

compute the quantitative phenotype(s) of interest from the simulation results; Step 3: 

Construct Parameter-Phenotype Maps (PPMs) by training ML models using the 

simulated dataset generated in the previous step; PPMs map parameters to phenotypes. 

The trained ML models can be tested using additional simulated data from parameter 

combinations distinct from those used to generate the training set. This process can be 

repeated to improve the PPM, for example, by increasing the representation of 

parameter combinations that lead to rare phenotypic values. The resultant ML models 

can be used to explore, in a computationally efficient manner, how parameter 

perturbations may change the phenotype and delineate which parameters contribute to 

controlling the phenotype, both globally throughout the parameter space or locally at 

specific neighborhoods of the parameter space. 
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interpretable nonlinear models can in principle be used, here we use RF based on 1) 

ease of use without tuning hyperparameters as opposed to support vector machines and  

neural networks, 2) good performance and scalability comparable to support vector 

machines and neural networks for up to around 105 input data points, 3) faster training 

than support vector machines, neural networks, and gaussian process, and 4) (most 

importantly) delineation of contributions of individual parameters to phenotypic 

variations through global and local variable importance measures (across parameter 

space and at specific locations in parameter space, respectively) computed during the 

training process (not available for other nonlinear ML methods) (Breiman, 2001; Villa-

Vialaneix et al., 2012). 

Once we have a predictive ML model, we can use it as a “phenomenological” 

solution of the CME to efficiently predict phenotypes from parameters without using 

computationally intensive simulations (Figure 3.1). Guided by dimensionally-reduced 

visualizations and information on which parameters contributed to prediction, we can 

further evaluate the system and test our understanding by in-silico perturbation analysis, 

e.g., by assessing how well we can predict phenotypic changes as the parameter values 

are altered (Figure 3.2). These interactive, exploratory assessments are efficiently 

enabled by the ML model without full stochastic simulations; they can further help 

reveal the design principles of the systems and suggest parameter optimization 

strategies to attain specific phenotypes in synthetic gene circuits (Mohammadi et al., 

2017). To illustrate these use cases, we have developed an interactive website to allow 

the exploration of PPMs we analyzed below (https://phasespace-

explorer.niaid.nih.gov).  
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3.2.2 Information transfer (propagation of variation (Pov)) in a two-gene network 

To assess MAPPA, we first applied it to study how information (as encoded by the 

changes in gene expression over time) is transmitted from one gene to another (i.e., the 

propagation of variation (PoV)) in a prototypical, two-gene network model in single 

cells (Figure 3.3A, see section A.2.3) (Martins et al., 2017). While existing analytically 

tractable models for this circuit require simplifying assumptions (Elf and Ehrenberg, 

2003; Kampen, 2007), here we analyzed a full-feature model with mRNAs and proteins 

as distinct species, and promoters that can be switched stochastically between 

transcriptionally active (on) and inactive (off) states known as the random telegraph 

process (Peccoud and Ycart, 1995). As a measure of information propagation between 

Figure 3.3 Two-gene network model and the phenotype of interest. (A) The two-gene 

network model in which the protein product of gene X regulates the transcription rate 

of gene Y. The promoter of both X and Y undergoes stochastic on-off state switching. 

Both the mRNAs and proteins undergo first order degradation. See A.2 for additional 

details. (B) Definition of the phenotype of interest: quantifying the propagation of gene 

expression variability (or information) from gene X to gene Y. The time trajectories of 

mRNA X and Y generated by stochastic simulation from a specific parameter 

configuration is shown here for illustration. Here the metric of information 

transmission/propagation used, 𝐶𝑜𝑟𝑟(𝑚𝑋, 𝑚𝑌), was defined as the maximum of the 

cross-correlation between 𝑚𝑋(𝑡) (level of the mRNA X) and 𝑚𝑌(𝑡 − 𝜏) (level of the 

mRNA Y) across a pre-defined range of time lags 𝜏 (here the red dot indicates the 

maximum across 𝜏’s). We only consider correlations with 𝜏 < 0 in this network to 

capture the causal relationship between X and Y (X  Y). 
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genes X and Y, we defined the maximum time-lagged correlation (denoted as 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)) between mRNAs X and Y as the maximum cross-correlation between 

𝑚𝑋(𝑡) and 𝑚𝑌(𝑡 − 𝜏), where 𝑚𝑋(𝑡) and 𝑚𝑌(𝑡) are copy numbers of mRNAs X and Y 

at time 𝑡, respectively, and 𝜏 is the time lag (Figure 3.3B). The same metric can be 

applied to proteins, here we chose to focus on mRNAs since they are the dominant 

measurement modality in single cell studies.  

Simulation on a large number (76,532) of randomly sampled (through the 

uniform grid scheme), biologically plausible parameter combinations (see section A.3) 

revealed that very few had high correlations (e.g., only 315 had a correlation of greater 

than 0.7) (Figure 3.4A) (Martins et al., 2017). Dimension reduction visualization using 

tSNE (Figure 3.4C) indicated that the parameters with high 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) formed 

clusters. Moreover, additional parameter combinations sampled from these regions also 

had high correlations. Thus, biased sampling guided by the phenotype of the neighbors 

can be used to increase the representation of rare parameter combinations (Figure 3.4B 

and D). Using this approach, we trained random forest (RF) regression models for 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) and assessed their predictive capacity using independently simulated 

data (Figure 3.5A). Both the model trained using the initial, uniformly sampled 

parameter combinations (r=0.93; Figure A.2A) and the one trained by incorporating 

additional samples from the high-correlation regions showed excellent prediction 

performance (r = 0.98; Figure 3.5B); the latter had better performance in the high-

correlation regions (Figure A.2E). A two-class (high versus low correlations), 
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categorical RF model performed similarly well (AUC = 0.98; Figure A.2C; see section 

A.7).  

RF ML models provide “variable importance” to quantify the extent of 

influence a parameter can exert on the phenotype, both globally (GVI, Figure 3.5C and  

Figure 3.4 Simulation results of the two-gene network. (A) Distribution of 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) from the simulations using the first, initial set of sampled parameter 

combinations (see Figure 1D left panel). Among the 76,532 parameter combinations 

simulated, only 315 had 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  > 0.7 with most exhibiting very low 

correlations. (B) Additional simulations were performed on parameter combinations 

sampled near those shown in (A) with high correlations. Here the distribution of 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) from both the initial and additional parameter combinations is shown; 

the inset shows that of the additional parameter combinations only. (D and E) 

Visualization of the parameter space and the phenotype using two-dimensional (2d) t-

distributed Stochastic Neighbor Embedding (tSNE) computed from the sampled 

parameter combinations. (D) tSNE plot for (left) the initial simulated data and its subset 

(right) with 𝐶𝑜𝑟𝑟(𝑚𝑋, 𝑚𝑌) > 0.7. (E) Additional parameter combinations nearby those 

with 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) > 0.7 were sampled (referred herein as “additionally sampled”) 

and simulated to increase the representation of high-correlation parameter 

combinations; here the tSNE plot for the combined data (initial samples plus 

additionally sampled) with 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌) > 0.7 is shown. The color scale denotes 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌).  
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Figure 3.5 ML model training, performance, and variable importance. (A) The ML 

model training-testing scheme involving the initial (within the blue box) and 

additionally sampled (pink box; outside the blue box) data. Each of the two data sets 

were divided into independent, non-overlapping training and testing sets. We trained 

4 ML models (𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌) ~ kinetic parameters (R notation)): two of which were 

RF regression models, one using the initial (blue box) and the other using the 

combined (pink box) training set; similarly, two RF classification models for 

categorical outcomes (high vs. low 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)) were trained (see A.7). 

Categorical labels for the classification models: ‘high’ if 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) > 0.7 or ‘low’ 

if 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌)  ≤ 0.7. (B) Scatter plot showing the concordance between the 

independently simulated 𝐶𝑜𝑟𝑟(𝑚𝑋, 𝑚𝑌) (x axis – not used in ML model training) vs. 

those predicted by the RF regression model using the model parameter values alone 

(y axis) (r = 0.98); note that the RF model was trained using the combined training 

data; each point corresponds to a parameter combination. The red points are those 

from the independent test set of the initially sampled parameter combinations; the blue 

dots correspond to the independent test set of the additionally sampled parameter 

combinations nearby the initial combinations with high (>0.7) 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌). (C) 

Global Variable Importance (GVI) (x axis) of the model parameters (y axis) fitted by 

the RF regression model. The permutation GVI is shown, which reflects the increase 

in prediction errors in out-of-bag data after permuting the indicated variable. Another 

type of GVI (impurity GVI) is shown together with the permutation GVI in Figure 

A.3 B. (D) A summary heatmap depicting the Local Variable Importance (LVI) of the 

RF regression model. Each row corresponds to a cluster of parameter combinations 

that exhibit similar LVI profiles across the indicated parameters (columns); the values 
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Figure A.3 A-B) for the entire parameter space and locally (LVI, Figure 3.5D and A.3C) 

at a particular point in that space (see A.8). For example, GVI from the combined ML 

model revealed that the degradation rate of protein X (𝑑𝑝
𝑋), the off-rate of the promoter 

of gene Y (𝑘𝑜𝑓𝑓
𝑌 ), and the transcription rate of mRNA Y (𝑘𝑚

𝑌 ) are the most important 

for determining 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌), while the promoter switching rates of gene X (𝑘𝑜𝑓𝑓
𝑋  

and 𝑘𝑜𝑛
𝑋 ) are less important (Figure 3.5C and A.3B). The additional data from the high 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) regions made the rank of 𝑘𝑜𝑓𝑓
𝑌  higher, suggesting its role is pronounced 

in those regions and GVI of ML models can adapt flexibly to augmented data (Figure 

3.5C and A.3A-B). Based on the LVI profiles, parameter combinations can be clustered 

into qualitatively distinct groups (Figure 3.5D and A.3C). For example, the degradation 

rate of mRNA X is more important in cluster 7 than in other clusters (Figure 3.5D). 

Thus, individual parameters can exert local, “neighborhood”-dependent influences on 

the phenotype, consistent with the notion that gene networks may employ distinct 

strategies for PoV regulation depending on the cellular and environmental conditions 

(Martins et al., 2017).  

The LVI can be used to guide fast, high-resolution in silico explorations of how 

parameter perturbations of different extents may affect phenotypes, which can be 

computationally slow and resource intensive when full-blown simulations are used. For 

example, the LVI of a parameter configuration with high 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌)  (= 0.83) 

shown in the heatmap are the average across all parameter combinations within each 

cluster. Eight clusters are shown as indicated by the cluster number/color bar on the 

left; the number of clusters were chosen qualitatively by considering: 1) ease of 

visualization in the limited space, 2) the qualitative diversity of LVIs that the clusters 

can illustrate (section A.8). The LVI values shown in the heatmap are the average 

increases in the squared out-of-bag residuals provided by the randomForest package 

in R (see section A.8). 
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predicted that the degradation rate of protein X (𝑑𝑝
𝑋) and the transcription rate of gene 

X ( 𝑘𝑚
𝑋 —regulating the “burst” size) were the most important determinants of 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌), while the on-rate of promoters X and Y (𝑘𝑜𝑛
𝑋  and 𝑘𝑜𝑛

𝑌 ) were the least 

important (Figure 3.6A). Indeed, as confirmed by actual simulations, tuning 𝑑𝑝
𝑋 and 

𝑘𝑚
𝑋  locally affected 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) substantially, while changing 𝑘𝑜𝑛

𝑋  and 𝑘𝑜𝑛
𝑌  did not 

(Figure 3.6B-C). Together, our results illustrate that predictive ML models linking 

parameter and phenotypic spaces can be built successfully and are useful as 

computationally efficient and phenomenological solutions of the associated CMEs.  

Figure 3.6 in-silico perturbation analysis using ML model. (A) The specific parameter 

combination (the “starting point”) (parameter key: 042015_AAACEZGP) selected for 

in-silico perturbation experiments and its corresponding LVI. Avg. - average; OOB - 

out-of-bag. (B) Contour maps depicting the predicted (top) and simulated (bottom) 

phenotypic values (𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌)) as parameters 𝑑𝑝
𝑋(x axis) and 𝑘𝑚

𝑋  (y axis) were 

perturbed starting from the selected parameter combination shown in (I) (denoted by 

white dots); A scatter plot of the predicted vs. the simulated data points from these 

maps is shown at the bottom. (C) Similar to (B) but for perturbing 𝑘𝑜𝑛
𝑋  and 𝑘𝑜𝑛

𝑌  

(parameters with lowest LVI) starting from the parameter combination (denoted by 

white dots) shown in (A). 
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3.2.3 Assessing the robustness of the MAPPA analysis of PoV exploration 

in a two-gene network 

Next, we sought to test the robustness of the results above. First, we questioned whether 

having a different measure of PoV such as mutual information still produces consistent 

results as above. Mutual information computed from the same simulation results 

showed a good concordance with 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  (Figure 3.7A). Based on this 

phenotype, we could train an ML model with good prediction performance (Figure 

A.4A). GVI of this ML model showed a good agreement with that of the ML model 

predicting 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) in terms of highly ranked parameters, 𝑘𝑚
𝑌 , 𝑑𝑝

𝑋, 𝑘𝑜𝑓𝑓
𝑌 , and 𝑑𝑚

𝑌  

(Figure 3.5A, A.3, 3.7B, and A.4B), suggesting that PoV behaviors captured by ML 

models were not affected by specific definitions. This analysis also illustrated the 

flexibility of the MAPPA framework in that ML models for different phenotypes can 

be easily constructed in contrast with the potential difficulty of analytically deriving 

functional forms for different phenotypes dependent on model parameters.  

Figure 3.7 MAPPA analysis on mutual information. (A) Scatter plot showing mutual 

information vs. 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌) . (B) GVI of the RF regression model for mutual 

information. Permutation GVIs are shown. See Figure A.4B for both permutation and 

impurity GVIs. 
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Next, we sought to examine the effects of the size of training data and sampling 

schemes on ML model performance and GVIs. For this, we generated parameter 

combinations using the Sobol’ sampling scheme and conducted simulation using these 

combinations (section A.3). The performance of ML models increased with the 

increased sizes of training data and plateaued above the size of 20000 data points, 

suggesting that the size of the initial data (76532 data points) was already enough to 

cover the plausible parameter space for training reliable ML models (Figure 3.8A-B). 

GVI was also better resolved with increasing the size of training data (Figure 3.8C-D). 

Interestingly, both sampling schemes, uniform grid and Sobol’, showed comparable 

ML model performance and GVIs (Figure 3.8A-B), suggesting that the uniform grid 

Figure 3.8 ML model performance over different data sample sizes and sampling 

schemes. (A)-(B) Comparison of prediction performance on (A) a test data set and (B) 

out-of-bag (OOB) data set for different training sample sizes between the uniform grid 

and Sobol’ sampling schemes. The test data set was prepared by pooling 7500 

parameter combinations from both uniform grid and Sobol’ schemes and not used for 

ML model training. (C)-(D) Comparison of permutation GVI over different training 

sample sizes for (C) the Sobol’ sampling scheme and (D) the uniform grid scheme. 
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scheme has the similar space-filling capacity to that of the Sobol’ scheme, a low-

discrepancy quasi-random sampling scheme.  

Next, we examined the reliability of GVI and LVI generated by ML models by 

comparing these with independently computed global and local sensitivity measures. 

We first computed Sobol’s variance-based global sensitivity indices (first order indices 

and total indices) by conducting simulations on a parameter sample designed for 

Sobol’s indices (Figure 3.9) (Saltelli et al., 2012) (see section A.10 for the method 

detail). GVI and global sensitivity indices showed good concordance in terms of high-

ranked parameters (Figure A.3A and 3.9). Moreover, total sensitivity indices showed 

better concordance with GVI among other mid- or low-ranked parameters. Therefore, 

GVI is a reliable global sensitivity measure comparable to variance-based sensitivity 

indices. Moreover, considering the results of additional sampling on focused regions 

and different training sample sizes above, GVI is more flexible in further improvements 

of coverage and resolution over the plausible parameter space enabled by quick training 

of ML models augmented with additional data.  

Figure 3.9 Sobol’ variance-based sensitivity indices. First order indices (left) and total 

indices (right) are shown. See section A.10 for the method detail. 
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To compare LVI with local sensitivity measures, we randomly selected 500 

parameter combinations (300 from those with 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌) > 0.4  and 200 from 

those with 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  ≤ 0.4 ) and conducted simulations and obtained 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  on perturbed parameter combinations (section A.10). We prepared 

perturbed parameter combinations by changing a parameter at a time to other grid 

points over the full plausible range. Thus, the additional expense of local sensitivity 

analysis was 90 more simulations for each parameter combination. Among several 

types of local sensitivity measures we tried (section A.10),  the mean squared deviation 

turned out to be the most concordant with LVI from RF (Figure 3.10A), which can be 

understood given that LVI is estimated by the increase of mean squared errors in 

prediction after permuting each parameter values across all training data in RF (section 

A.8 and A.10). Interestingly, LVI itself tells whether it can be trusted or not through its 

maximum value for each parameter combination depending on the relative magnitude 

in the distribution of LVI across all parameter combinations in the training set (Figure 

Figure 3.10 Comparison between LVI and local sensitivity measures. (A) Distribution 

of concordance between LVI and three different local sensitivity measures over 500 

parameter combinations. See section A.10 for the definition of local sensitivity 

measures. (B) Scatter plot showing maximum values of LVI (in the unit of standard 

deviation) vs. concordance between LVI and mean squared deviation (local sensitivity 

measure). s.d.-standard deviation. (see section A.10). 
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3.10B). The high concordance also coincided with the large effect size on the 

phenotype of perturbations, and low values of LVI is prone to estimation noise due to 

the small effect size on the phenotype (data not shown). In turn, the relative magnitude 

of LVI indicates the potential effect size on the phenotypes upon parameter variations. 

Together, LVI can be considered as reliable local sensitivity measures as well as 

indicators of the effect size upon parameter perturbations, which are generated 

automatically in the training process of RF models, significantly reducing 

computational cost compared to existing local sensitivity analysis schemes. 

To assess MAPPA further, we examined analytical approximation schemes 

such as linear noise approximation (LNA) (lowest order system-size expansion) and 

inverse omega square approximation (IOS) (higher order system-size expansion) to 

derive 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  analytically (Elf and Ehrenberg, 2003; Grima et al., 2011; 

Paulsson, 2004). These methods employ simplifying assumptions to attain tractability 

(e.g., the promoter on/off switching is averaged; see section A.12). In overall, LNA 

already gave reasonable estimations of  𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) (r = 0.95), and IOS slightly 

improved the estimations over LNA (r = 0.96) except some parameter combinations 

giving worse predictions than those from LNA or unrealistic values (e.g., values higher 

than 1 or complex numbers) (Figure 3.11A and A5). However, some estimations by 

LNA or IOS turned out to be significantly lower than corresponding simulation 

outcomes, showing worse prediction performance than the ML model (Figure 3.11A-

B). The LNA model showed that  
𝑑𝑚
𝑌

𝑑𝑚
𝑌 +𝑑𝑚

𝑋  is one of the main factors determining 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  (see section A.12), which is consistent with the GVI that 𝑑𝑚
𝑋  is 

important. This explains the lower estimations of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  by analytical 
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approximation schemes since those parameter combinations in general showed 𝑑𝑚
𝑋 >

𝑑𝑚
𝑌  (Figure 3.11B).  

To further understand why then actual simulations yielded higher 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  for those, we focused on LVI clusters 7 and 8 with differential 

importance of 𝑑𝑚
𝑋  on 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  shown above (Figure 3.5D). Notably, it is 

important in LVI cluster 7 but less so in cluster 8. In both clusters (more pronounced 

in cluster 8), the ML model again performed better than the analytical models (Figure 

3.12). The parameter combinations with incorrect analytical estimation were more 

prevalent in cluster 8 having 𝑑𝑚
𝑋 > 𝑑𝑚

𝑌  (Figure 3.12B). Closer examination revealed 

that these parameter configurations had a hierarchical relationship of parameter values 

as 𝑘𝑚
𝑋 , 𝑑𝑚

𝑋 > 𝑑𝑚
𝑌 > 𝑘𝑜𝑛

𝑋 , 𝑘𝑜𝑓𝑓
𝑋  (Figure 3.12B). Thus, the promotor switching dynamics 

of gene X was the main driver of the fluctuations of mRNA X: a burst of transcripts 

Figure 3.11 Comparison between MAPPA and analytical approximation schemes over 

the entire parameter combination. (A) Scatter plot of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) computed from 

analytical approximation (y axis) versus that from the stochastic simulation in the 

entire dataset (both “initial” and “additional” – see Figure 3.5A). Best estimations of 

LNA and IOS for each parameter combination are plotted. The results from each 

approximation scheme are shown in Figure A.5. (B) Heatmap of parameter 

combinations (rows) for which the analytical approximation deviates significantly 

from the simulation results (i.e., with the differences > 0.25 in 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌)) The 

rows are sorted in increasing order of the difference of 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌)  between 

simulation and analytical approximation. 
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was made in the on-state and transcripts were then degraded rapidly in the off-state. 

This gave rise to non-Poissonian mRNA fluctuations (Raj et al., 2006). mRNA Y 

captured such promoter-induced fluctuations of mRNA X (by 𝑑𝑚
𝑌 > 𝑘𝑜𝑛

𝑋 , 𝑘𝑜𝑓𝑓
𝑋 ) while 

buffering out mRNA X-intrinsic fluctuations (by 𝑘𝑚
𝑋 , 𝑑𝑚

𝑋 > 𝑑𝑚
𝑌 ) and showed transient 

hysteretic and memory behaviors after gene X switched to the off-state, which both 

analytical schemes (LNA and IOS) could not delineate (Thomas et al., 2014). Together, 

our analyses provided insights on PoV regulation that go beyond those from 

analytically tractable approaches. 

Figure 3.12 Comparison between MAPPA and analytical approximation schemes over 

LVI clusters 7 and 8. (A)-(B) Scatter plots showing 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) of ML model 

prediction vs. simulation (left) and best analytical approximation out of LNA and IOS 

vs. simulation (center) and heatmap of parameter combinations (rows) (right) in LVI 

clusters (A) 7 and (B) 8. The parameter combinations in the heatmap ranked in 

increasing order by the “error” made by the analytical model compared to actual 

simulations, i.e., by the difference of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  between simulation and the 

analytical model; for LVI cluster 8 (in B), the parameter sets were split into those with 

differences ≤ 0.25 (top) or >0.25 (bottom). See Figure A.6 for comparisons between 

each of LNA and IOS and simulation. 
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3.2.4 Information transfer in three-gene feedforward network motifs 

Gene networks containing feedforward interactions are found across phylogeny and 

biological processes (Milo et al., 2002; Neph et al., 2012) (Figure 3.13). To assess the 

ability of MAPPA to analyze more complex networks, we applied it to study two types 

of feedforward circuits:  1) the coherent type (PPP), in which X positively regulates Y 

and Z, and Y also positively regulates Z, 2) the incoherent type (PNP), in which X 

activates both Y and Z, while Y represses Z (Mangan and Alon, 2003) (see section A.2 

for detailed model descriptions). The PPPs can function as delayed activators to filter 

out transient fluctuations in upstream signals, while the PNPs can serve as accelerated 

activators or detectors of changes in the input signal over time (Goentoro et al., 2009; 

Mangan and Alon, 2003). However, although these circuits have been studied for the 

aforementioned functions quite substantially, the function of these circuits, especially 

that of the Y arm, in shaping gene-gene correlations is not well understood for gene 

regulatory (transcription factor) networks described realistically with mRNAs and 

Figure 3.13 Three-gene feedforward network models and the phenotype of interest. 

The PPP (coherent) and PNP (incoherent) network types are considered. The 

quantitative phenotype of interest is the ratio of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍) (or fold-change (FC)) 

between the network with and without the Y-mediated feedforward; the goal of the 

analysis is to assess the function/effect of the Y feedforward arm. 
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proteins being modeled as separate entities and discrete promoter switching dynamics 

when stochasticity is present—e.g., how is information transmission from gene X to 

gene Z (𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑍) ) regulated by gene Y and what specific processes (e.g., 

degradation or translation of mRNA Y) in gene Y are most relevant? We thus defined 

the phenotype of interest as the ratio (or “fold change” (FC)) between the 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍) of the network with and that without the Y feedforward arm when all 

the other parameter values remained fixed (Figure 3.13; see section A.2).  

Stochastic simulation revealed a notable difference in FC between the two types 

of feedforward circuits (Figure 3.14A-B left panels and A.7A-B). In PPP, the Y-

mediated loop can either increase (FC>1) or decrease (FC<1) 𝐶𝑜𝑟𝑟(𝑚𝑋, 𝑚𝑍), but the 

correlation was reduced (FC<1) in PNP for most parameter combinations, even down 

to negative values in some cases (i.e., the direction of correlation flipped); these were 

more apparent when the correlation was lower (e.g., less than 0.4) when Y is absent 

(Figure 3.14A-B left panels). Moreover, PPP and PNP also differ in the time lag needed 

to maximize the correlation (𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍)): the Y-mediated arm tends to lengthen or 

shorten the delay between X and Z in the PPP or PNP, respectively (Figure A.7C-D), 

which are consistent with the aforementioned functions of PPP and PNP as delayed and 

accelerated activators, respectively. Together, simulations revealed distinct functions 

of the Y arm in regulating information propagation in the PPP and PNP circuits: in a 

“co-activating” circuit (PPP), the Y arm can increase the correlation extended over 

longer timescales, while the negative regulating Y arm in the PNP can reduce the 

transmission of variation from X to Z, thereby maintaining Z homeostasis and reducing 

Z’s “memory” on X fluctuations.  
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What specific processes in Y regulate FC is less clear. We therefore trained RF 

ML models that maps parameters to FC (section A.7). To account for FC’s dependence 

on 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍) without Y, we also defined a rank-based FC (FC (rank)) by taking 

percentiles of FC values in each interval of width 0.05 of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍) without Y  

followed by ML model training for this phenotype as well (section A.7) (Figure 3.14A-

B right panels). These models showed excellent prediction performance (PPP; r = 0.93 

(FC), 0.92 (FC (rank)) and PNP; r = 0.91 (FC), 0.92 (FC (rank))) (Figure A.8A-B). 

Interestingly, despite their phenotypic differences, the most important parameters for 

Figure 3.14 Distribution of the phenotypes, FC and FC (rank). (A)-(B) Scatter plot of 

phenotypes, FC (left) and FC (rank) (right) versus 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍) without Y for (A) 

PPP and (B) PNP; each dot corresponds to a single parameter combination sampled. 

Note that only parameter combinations with 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍)  > 0.2 without Y are 

considered since FC is less robust and would diverge when 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍) without Y 

is near 0. FC (rank) was defined to eliminate the effect of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍) without Y 

from FC by taking ranks of FC in each intervals of  width 0.05  of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑍) 
without Y. 
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determining FC and FC (rank) were similar between the two circuit types (Figure 3.15 

and A.9). These parameters fall into three categories regulating the transmission of the 

fluctuations from: 1) X to Y (𝐾𝑋𝑌 and 𝑘𝑚
𝑌 ), 2) Y to Z (𝑑𝑝

𝑌 and 𝐾𝑌𝑍), and 3) X to Z (𝐾𝑋𝑍). 

As we intended by removing the dependence of FC (rank) on 𝐶𝑜𝑟𝑟(𝑚𝑋, 𝑚𝑍) without 

Y, GVI of FC (rank) showed only the former two categories (X to Y and Y to Z) as 

high-ranked. Most notably, tuning the K parameters (Eq. A.29, A.35, and A.36 in 

section A.2.3) can shift the transfer function in and out of the range of variation of the 

upstream regulator: when operating out of range (at the saturating regime of the transfer 

function), variation in the activity level of the upstream factor are buffered and thus 

cannot be transmitted to the downstream gene (Figure 3.16A). Posttranslational 

modification of the upstream regulator and epigenetic modification of the 

promoters/enhancers of the target gene are capable of regulating K in this manner (Filtz 

et al., 2014). Thus, given permitted transmission of variation directly from X to Z, 

Figure 3.15 Global variable importance of ML models in three-gene networks. (A)-(B) 

GVI generated by ML models of FC (left) and FC (rank) (right) for (A) PPP and (B) 

PNP. Permutation GVIs are shown. See Figure A.9 for both permutation and impurity 

GVIs and a comparison between the two. 
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MAPPA pointed to several means for Y to influence the correlation between X and Z 

(and thus the FC) (Figure 3.16B).   

Similar to the example above (Figure 3.5D), the LVI map revealed that the 

contribution of individual parameters to FC and FC (rank) depends on the parameter 

configuration (Figure A.10; see section A.8). For example, the Hill coefficients (e.g., 

𝑛𝑌𝑍 ), which govern the “steepness” of the transfer functions, are generally not 

important (Figure A.10). However, LVI showed that 𝑛𝑌𝑍 is important at a particular 

parameter configuration in the PPP circuit (Figure 3.17A). With this configuration 

information can be transmitted from X to Z and from Y to Z, but that between X and 

Figure 3.16 Role of the feedforward arm for regulating PoV. (A) Illustrating the role 

of 𝐾 (𝐾𝑋𝑌, 𝐾𝑌𝑍, and 𝐾𝑋𝑍), the level of upstream input needed to attain half maximal 

activation of the downstream gene, plays in tuning the propagation of 

variability/information. The input (upstream protein level) is illustrated as a 

distribution to depict variability over time within a single cell (or cell-to-cell variation 

at a given time-point.) (red), this together with the relative value of K determine 

whether upstream variations are buffered or transmitted to effect downstream 

transcription. Left and right panels illustrate a positive and negative regulatory 

relationship, respectively, between the upstream gene and its downstream target gene.  

(B) Illustrating the main qualitative scenarios of variability propagation in the Y arm 

and the corresponding effect on the FC phenotype.  
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Y was minimal because 𝐾𝑋𝑌 and 𝑘𝑚
𝑌  were low and FC and FC (rank) was therefore low 

due to the added noise transmitted from Y to Z (Figure 3.17A-B). Actual simulation 

confirmed that decreasing 𝑛𝑌𝑍  leads to decreased noise transmission from Y to Z 

(Figure 3.16B) and thus an increase in FC (Figure 3.17C). These data illustrate that by 

Figure 3.17 in-silico perturbation analysis using ML model. (A) LVI of FC (left) and 

FC (rank) (right) for the specific parameter combination from PPP selected for local 

perturbation analysis. Avg. - average; OOB - out-of-bag. (B) Distributions of protein 

levels (𝑝𝑋 , 𝑝𝑌, and 𝑝𝑍) (red) and the transfer functions (black curve – see Figure 3.16A) 

between the indicated upstream protein and downstream gene at the selected parameter 

combination. The shaded areas indicate the effective regulation regimes between the 

input (upstream protein) and output (transcription rate). (C) Prediction (by RF ML 

model) and validation (based on stochastic simulations) for the perturbation on the two 

indicated parameters (x and y axes) starting from the selected parameter combination 

shown in (B). (Top and middle) Prediction and simulation of phenotypic values (the 

two contour maps on the left), and a scatter plot comparing prediction and simulation 

for the given perturbations (right panel) for FC (top) and FC (rank) (middle). The grey 

regions in the contour maps represent parameter combinations deemed biologically 

infeasible (section A.6). The starting point (white dot) of the arrow is the parameter 

combination, and the arrow indicates the shift in the transfer function (especially in the 

Hill coefficient) arriving at the second parameter combination (the end point of the 

arrow) as a result of the parameter perturbation; the bottom plot (similar to (B)) shows 

the changes in the transfer function between these two parameter combinations 

(indicated by the arrow) and how the second parameter combination allows higher 

transmission of variation (higher FC and FC (rank)). 
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employing even simple feedforward architectures, cells can attain additional flexibility 

in tuning the co-variation between circuit components (X and Z). For example, having 

separate “modulatory” Y feedforward arms can be useful when X is a master regulator 

of many genes: each Y can independently tune information transfer between X and a 

specific set of downstream genes. 

3.2.5 Information transfer in a two-gene negative feedback circuit: 

oscillations and frequency domain analysis 

Negative feedback circuit motifs are ubiquitous in biology; their functions include 

maintaining homeostasis, buffering fluctuations, and driving oscillatory behaviors 

(Alon, 2007; Brandman and Meyer, 2008; Germain, 2012). While either autoregulatory 

feedbacks or positive and negative coupled feedbacks have been analyzed in the 

context of noise suppression or generation of oscillations (Becskei and Serrano, 2000; 

Figure 3.18 Two-gene negative feedback network model and the phenotypes of 

interest. (A) Description of a two-gene negative feedback network model. (B) 

Definition of the phenotypes of interest. Due to the bidirectional regulation between X 

and Y, peak cross-correlation can be considered with both positive and negative time 

lags (see Figure S6A). The phenotypes of interest for analyzing oscillatory behaviors 

include the quality factor (QF) and the peak frequency (PF) of the power spectra in the 

frequency domain of gene expression dynamics. Example trajectories of mRNAs X 

and Y are shown for a parameter combination exhibiting oscillations. 
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Brandman and Meyer, 2008), the two-gene negative feedback circuit (Figure 3.18 and 

secrtion A.2), an extension of the simple two gene circuit we analyzed earlier (Figure 

3.3), has received less attention despite its simple topology and intriguing, implicated 

roles in generating oscillatory behaviors such as circadian rhythm (Pett et al., 2018). 

We performed deterministic modeling and bifurcation analysis, which confirmed that 

this circuit is capable of oscillations (limit cycle oscillations or damped oscillations) 

(Figure 3.19A and section A.13) (Strogatz, 2015; Woller et al., 2014). Stochastic 

simulations of this circuit revealed parameters showing comparable absolute 

magnitudes of 𝐶𝑜𝑟𝑟(𝑚𝑋, 𝑚𝑌)  and 𝐶𝑜𝑟𝑟(𝑚𝑌,𝑚𝑋) (maximum correlations between 

mRNA X and Y for negative and positive lags, respectively), indicative of oscillatory 

behavior (Figure 3.18B and 3.19B). When stochasticity is considered, oscillations (due 

Figure 3.19 Deterministic and stochastic oscillatory behaviors (A) Number of 

parameter combinations for each type of oscillatory behavior predicted by 

deterministic modeling; damped oscillations (DO), limit cycle oscillations (LC), and 

stable steady states (SS) for both initial and additional parameter sets. (B) Simulation 

results showing peak cross-correlations between 𝑚𝑋 and 𝑚𝑌 with negative time lag (x 

axis – 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌); information flows from X to Y) vs. positive time lag (y axis – 

𝐶𝑜𝑟𝑟(𝑚𝑌, 𝑚𝑋) ; information flows from Y to X) for the sampled parameter 

combinations. Shown in the shaded region are those parameter combinations with 

comparable magnitudes of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) and 𝐶𝑜𝑟𝑟(𝑚𝑌, 𝑚𝑋) (defined as within two-

folds between the positive- and negative-lagged correlations), which potentially 

exhibiting oscillations. The example oscillatory trajectories shown in Figure 3.18 was 

generated from the parameter combination denoted by the white dot. 
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to “stochastic resonance”) can occur even under parameter regimes that are predicted 

to not oscillate according to deterministic models (Forger and Peskin, 2005; Li et al., 

2005; McKane et al., 2007), thereby suggesting that in this circuit, stochasticity 

together with the appropriate coupling (i.e., governing the PoV) between genes X and 

Y can give rise to oscillations beyond classic “limit cycle” mechanisms.  

We thus applied MAPPA to explore how the PoV between X and Y can regulate 

oscillatory behaviors when stochasticity in gene expression is present. To quantify 

oscillatory phenotypes, time-varying gene expression levels were transformed to the 

frequency domain via power spectra analysis. Since a dominant and narrow peak at a 

specific frequency is expected if the system is oscillating with a relatively constant 

period and amplitude (Figures Figure 3.18B, section A.14), we focused on two 

quantitative phenotypes: 1) the quality factor of oscillation (QF), quantifying how tall 

and narrow the dominant peak is, and 2) the peak frequency (PF), where the peak is 

located in the power spectrum (Figure 3.18B and A.11; section A.14) (Guisoni et al., 

2016).  

Predictive ML models for both QF (r = 0.87; Figure A.12A) and PF (r = 0.97; 

Figure A.12B) could be built (section A.7) after adding data sampled and simlulated 

from high QF (QF > 0.4) regions to mitigate the tendency of the initial ML model to 

underestimate QF when QF is large (Figure A.12A left). We also confirmed that the 

different sampling scheme did not show difference in ML model performance and the 

size of data is enough to cover the parameter space (Figure A.12C). Based on GVI, 𝐾𝑌𝑋 

(the TF activity needed to achieve half maximal transcription rate of the target gene) 

and 𝑛𝑌𝑋 (the Hill coefficient) governing modulatory range and nonlinearity of protein 
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Y’s suppression of mRNA X synthesis were among the most important for predicting 

QF (Figure 3.20A). Degradation rates (𝑑𝑚
𝑋 , 𝑑𝑝

𝑋, 𝑑𝑚
𝑌 , and 𝑑𝑝

𝑌) were among the most 

important for predicting both QF and PF (Figure 3.20). We further examined parameter 

combinations and associated averaged LVI with higher QF (QF>0.4) (Figure 3.21). For 

these parameter combinations, protein degradation rates for X and Y (𝑑𝑝
𝑋  and 𝑑𝑝

𝑌 ) 

tended to be similar to each other, yet matching mRNA degradation rates (𝑑𝑚
𝑋  and 𝑑𝑚

𝑌 ) 

Figure 3.20 Global variable importance generated by ML models for oscillation 

phenotypes.(A)-(B) GVI of the RF regression model for (A) QF and (B) PF. (Left) 

Permutation GVIs are shown. (Right) Both permutation and impurity GVIs are shown. 
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was not necessary (Figure 3.21A-B). 𝐾𝑌𝑋 also needs to be low, and 𝑛𝑌𝑋 tends to be 

high so that even low levels of the Y protein can have a sizable suppressive effect on 

the transcription rate of gene X (Figure 3.21A). Averaged LVI for these parameter 

combinations revealed increased importance of 𝑑𝑝
𝑋  and 𝑑𝑝

𝑌  for determining PF and 

decreased importance of 𝑑𝑚
𝑋  and 𝑑𝑚

𝑌  for determining QF compared to corresponding 

GVI (Figure 3.22 and 3.21C-D), consistent with characteristic patterns revealed in 

Figure 3.21 Closer examination on the high QF region. (A) Hierarchical clustered 

heatmap of combined parameter combinations (rows) with QF > 0.4. The color scale 

denotes the relative (z-score scaled) magnitude of the parameter value. (B) Correlation 

heatmap of combined parameter combinations with QF > 0.4. The color scale denotes 

Pearson correlation between parameters. (C)-(D) Averaged LVI for parameter 

combinations with QF > 0.4 for (C) QF and (D) PF.  
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parameter combinations (Figure 3.21A-B). Together, the appropriate nonlinearity and 

modulatory range of suppressive regulation and matching combination of relaxation 

time scales of proteins are required for robust oscillations and for setting the period. 

Deterministic modeling similarly suggested that nonlinearity due to a high Hill 

coefficient is required for oscillations (Gonze and Abou-Jaoudé, 2013), suggesting that, 

in general, parameters like 𝑛𝑌𝑋  may regulate both the “average” (as revealed by 

deterministic models) and fluctuation induced oscillatory phenotypes. 

We next asked how stochasticity and PoV shape oscillatory phenotypes beyond 

the behavior predicted by deterministic models. Deterministic modeling predicted three 

non-overlapping classes of parameter configurations with distinct behaviors: 1) limit 

cycle oscillations (LC), 2) damped oscillations (DO), or 3) stable steady states (SS). 

We assessed the QF for each of the parameter combinations that fell within these 

individual phenotypic classes (Figure 3.22). This analysis revealed that even the non-

Figure 3.22 Distributions of QF shown by deterministic behavioral classes. QF is 

obtained by stochastic simulation over combined parameter combinations and plotted 

for each type of circuit behaviors classified by deterministic ordinary differential 

equation modeling; DO: damped oscillations, LC: limit cycle oscillations, and SS: 

stable steady states. 
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oscillatory parameter regimes (based on deterministic modeling) can have non-zero, 

sizable QF once the effect of stochasticity is considered, and each class has distinct but 

overlapping distributions of QF. As expected, LC had the largest fraction of its 

parameter combinations with high QF while SS had the least. More surprisingly, each 

of the three distributions span wide ranges and even some of the SS parameter 

combinations can have QF approaching the median of the LC distribution. These results 

suggest that stochasticity and PoV between X and Y may together be exploited by cells 

to attain and finetune oscillatory behavior beyond that predicted by deterministic 

considerations alone (Figure 3.22). 

To assess the regulatory effects of the key parameters predicted by our ML 

model, we chose a parameter combination with high QF and varied both 𝐾𝑌𝑋 and 𝑛𝑌𝑋, 

as suggested by their high LVI for QF at this particular point in parameter space (which 

belongs to the LC class exhibiting relaxation-type oscillations due to the strong 

feedback (low 𝐾𝑌𝑋  and high 𝑛𝑌𝑋) based on deterministic modeling) (Figure 3.23A) 

(Gonze and Abou-Jaoudé, 2013). Our ML model predicted that increasing 𝐾𝑌𝑋  or 

decreasing 𝑛𝑌𝑋 can lower QF, which was confirmed using data from actual stochastic 

simulation (Figure 3.23B and 3.24A). While deterministic modeling suggested a 

qualitatively similar requirement of low 𝐾𝑌𝑋 for limit cycle oscillation (green area in 

Figure 3.24B), here with stochasticity considered a higher QF (e.g., QF>0.4) can be 

attained even when 𝑛𝑌𝑋  is lower (grey area in Figure 3.24B), especially when 

compensated by a lower 𝐾𝑌𝑋 (i.e., higher sensitivity to X suppression) (Figure 3.24). 

Our analyses thus revealed interesting insights on the regulation of noise induced 

oscillation in this feedback circuit. By utilizing naturally arising stochasticity and PoV, 
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this circuit could generate oscillation even when 𝑛𝑌𝑋 is low and thus far from the DO-

LC bifurcation point (where the system transitions from DO to LC; the boundary 

between green and pink areas in Figure 3.24B). Operating at a lower 𝑛𝑌𝑋  may be 

biologically more desirable as achieving high 𝑛𝑌𝑋  requires additional energy 

expenditure and thus allowing low 𝑛𝑌𝑋 can potentially improve operational robustness 

(e.g., under changing environments) (Estrada et al., 2016; Gonze and Abou-Jaoudé, 

2013; Weiss, 1997). These results further illustrate how MAPPA can complement and 

provide information beyond analytically tractable models in a computationally efficient 

manner.  

 

Figure 3.23 in-silico perturbation analysis using ML model. (A) A selected parameter 

combination for local, in silico perturbation analysis (left) and its LVI for QF and PF 

(right; shown as a scatter plot). The two parameters being perturbed are circled in red. 

(B) Comparison between ML prediction and stochastic simulation of QF as 𝑛𝑌𝑋 and 

𝐾𝑌𝑋  were perturbed starting from the selected parameter combination (denoted by 

white dots). We compared the discrete/qualitative behavior by dividing the space into 

four quadrants with high/low values for 𝑛𝑌𝑋 and 𝐾𝑌𝑋 (shown in the middle) since the 

ML model was trained based on only two possible values of 𝑛𝑌𝑋, -0.707 (on the relative 

scale; the original Hill coefficient value is 1) and 0.707 (the original Hill coefficient 

value is 5)  (see section A.3). The QF predicted by the ML model is shown on the left 

of the quadrant map and the actual simulation is shown on the right. The change in QF 

across the quadrants is qualitatively consistent between the simulation and the 

prediction (bottom plot). The full simulation result, as the two parameters were 

perturbed along the continuous range, is shown in Figure 3.24A. 
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3.2.6  Discussion 

MAPPA generates and utilizes massive data from mechanistic simulation of biological 

models and builds ML models to map parameters to phenotypes. The resulting ML 

models can enable computationally efficient exploration of large parameter spaces and 

reveal which and how parameters affect a system’s behavior at both the global and local 

(parameter dependent) levels. MAPPA can guide which parameters to measure, dissect 

the robustness and “optimality” of the system, suggest evolutionary trajectories, and 

empower synthetic biology (Arpino et al., 2013; Babtie and Stumpf, 2017; Shoval et 

al., 2012). Moreover, MAPPA can potentially be paired with approximate Bayesian 

computation methods for posterior estimation of model parameters based on real world 

data (Jagiella et al., 2017; Raynal et al., 2017).  

MAPPA can in principle be applied to study systems comprising hundreds and 

thousands of parameters. Given the enormous parameter space, however, it may be 

Figure 3.24 Bifurcation behavior of stochastic oscillations. (A) Stochastic simulation 

result of QF as 𝑛𝑌𝑋  and 𝐾𝑌𝑋  are perturbed starting from the parameter combination 

(denoted by a white dot) shown in (F). Here 𝑛𝑌𝑋 is varied continuously between the 

scaled/standardized values of -0.707 (corresponding to an original Hill coefficient of 1) 

and 0.707 (original Hill coefficient of 5). The color scale denotes QF. (B) The 

oscillatory behaviors predicted by deterministic modeling in the same parameter space 

shown in (A) (see section A.13). Damped oscillation regions are depicted in pink and 

limit cycle oscillation regions are in green. The “oscillatory” region (defined as those 

with QF>0.4) predicted by stochastic modeling is shown in grey. 
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computationally intractable to sample sufficient representative parameter combinations 

for training generalizable ML models. One strategy worth further testing, as we had 

explored above, would be to start with sparse random sampling and then increase the 

sampling depth incrementally but biasedly. For example, we can iterate between ML 

model evaluation (i.e., prediction performance) and targeted sampling from parameter 

regions associated with desired phenotypes but poor prediction performance. This 

scheme may converge towards informative models relatively quickly even when the 

number of parameters is large. For example, Loyola et al. (Loyola R et al., 2016) 

suggested an iterative sampling strategy that theoretically does not depend on the 

dimensionality of the input space, thus effectively avoiding the curse of dimensionality. 

As future work, incorporating such approaches to MAPPA can potentially enable 

efficient analysis of networks with orders of magnitude more parameters. 

With the rapid expansion of high-throughput single-cell measurement 

technologies, we came to better appreciate the extensive cell-to-cell heterogeneity in 

diverse cell populations, present even in those that were thought to be relatively 

homogeneous (Tanay and Regev, 2017). As suggested by the complex correlation 

among genes across single cells or within individual cells over time (Eldar and Elowitz, 

2010; Filipczyk et al., 2015; Martins et al., 2017), an essential source of cellular 

heterogeneity is the propagation of gene expression variations across the underlying 

regulatory network. Thus, a better understanding of this mechanism requires realistic 

stochastic modeling of gene regulatory networks across multiple genes describing gene 

products (mRNA and protein) as separate entities and keeping discreteness and 

nonlinearity of the system. Although CMEs can be an ideal treatment and there have 
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been substantial developments in analytical theories of CMEs, those are still limited to 

simple models involving only one gene or one aggregate gene product (not separately 

modeling mRNA and proteins) if involving more than one gene. Even the simple two-

gene circuit (Figure 3.3) is not tractable analytically yet even in a linear form to the 

best of our knowledge (Cao and Grima, 2018; Schnoerr et al., 2017). Various 

approximation schemes such as Fokker-Planck equations, linear-noise approximation 

and its variant with higher order terms, and moment-closure methods are available and 

successfully applied. However, these are relying on assumptions such as relatively 

large copy numbers of species, linearity, and unimodality of the system, which are not 

always the case for modeling gene regulatory networks. Therefore, the application of 

MAPPA on the gene circuit models we dealt with in this study represents good use 

cases, and the results we have shown suggest that MAPPA can complement the existing 

methods when these are unreliable. 

Although we tried to keep details in modeling gene regulatory circuits 

compared to those analytically tractable, these still contained approximations of the 

actual gene expression dynamical processes (Rodriguez et al., 2019). Some underlying 

assumptions are worth mentioning. Promoter switching between active and inactive 

states is independent of the expression level of the upstream TF and decoupled from 

TF binding status of promoters, and the binding and unbinding interactions between 

TFs and promotors are fast enough to be approximated as the Hill-type functions. A 

recent work (Holehouse and Grima, 2019) illustrated that deterministically derived 

propensity functions in the form of the Hill-type functions are only accurate in the 

regime of fast promoter switching dynamics compared to other processes in the model 
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under the assumption that TF binding is coupled with promoter switching. Although 

assumptions in (Holehouse and Grima, 2019) are not the same as those of our study, 

this suggests that our choice of the Hill-type functions for describing the regulation of 

TFs on the transcription of downstream genes may not always hold. However, in 

addition to the cooperative binding of molecules, several other molecular mechanisms 

were proposed in generating the Hill-type functions: such as energy expenditure-driven 

binding or multisite phosphorylation of TFs (Estrada et al., 2016; Gonze and Abou-

Jaoudé, 2013; Weiss, 1997). Therefore, in this study, we did not specify molecular 

mechanisms of the Hill-type functions, which were instead considered 

phenomenological descriptions of quantitative relationships between the level of TFs 

and the effective transcription rates of downstream genes. 

Taken together, utilizing the large amounts of data generated from bottom-up, 

mechanistic computational simulation of dynamical systems and the ability of modern 

machine learning approaches to “compress” such data to generate computationally 

efficient and interpretable models is a promising direction for dissecting complex 

dynamical systems. 
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Chapter 4: Quantitative dissection of immune homeostasis using 

multiscale modeling approaches 

 

4.1 Introduction 

The adaptive immune system mounts immune responses in an antigen-specific manner. 

To enable this efficiently for vastly diverse pathogens, lymphocytes such as T cells and 

B cells express unique receptors generated through the random combination of relevant 

genetic loci for each cell to recognize unique molecular patterns from pathogens. Once 

these cells recognize cognate foreign antigens under proper costimulatory signals 

provided by antigen-presenting cells (APCs), they undergo clonal expansions 

accompanying differentiation to effector cell types. However, this process possesses an 

inherent danger of recognizing self, thereby potentially leading to autoimmune diseases. 

The immune system has evolved several mechanisms of self-tolerance to mitigate such 

aberrant outcomes. In the thymus, newly generated precursors of T cells undergo 

positive and negative selection, through which only thymocytes that recognize the self-

peptide- histocompatibility complex (self-pMHC) molecules above a particular affinity 

(positive selection), but not too strongly (negative selection) survive and move out to 

the periphery as naïve conventional T cells. Most of those who recognize self too 

strongly are either removed or directed to become regulatory T cells (Tregs). These 

Tregs play a crucial role in the peripheral self-tolerance through various modalities to 

suppress the activation of naïve self-reactive T cells in secondary lymphoid organs 

(SLOs) or effector functions of self-activated T cells in tissues.  
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Recently, experimental evidence suggested that self-reactive T cells are 

remarkably prevalent in the periphery due to incomplete thymic deletion (Moon et al., 

2011; Yu et al., 2015). The frequencies of self-specific T cells were shown to be 

comparable to those of foreign-specific T cells (Moon et al., 2011; Yu et al., 2015). 

Moreover, such self-reactive T cells get activated secreting IL-2, undergo several 

rounds of proliferation, and eventually get pruned out through apoptosis (Liu et al., 

2015; Wong et al., submitted). This whole process is possible due to suppression 

through localized spatiotemporal and functional regulations of regulatory T cells, 

mainly dependent on IL-2 secreted by self-activated T cells (Liu et al., 2015; Wong et 

al., submitted). Intriguingly, separate lines of studies illustrated that the peripheral 

maintenance of the Treg population pool is dependent on IL-2 (Amado et al., 2013; 

O’Gorman et al., 2009; Smigiel et al., 2014). Blocking or knock-out of endogenous IL-

2 showed a decrease in the pool size of peripheral Tregs resulting in autoimmunity 

while external IL-2 injection showed the opposite, thereby showing promising 

outcomes for treating various autoimmune diseases (Amado et al., 2013; Rosenzwajg 

et al., 2019; Stolley and Campbell, 2016). Moreover, primary IL-2 producers 

responsible for homeostatic Treg maintenance were shown to be CD4+ T cells, and in 

homeostatic SLOs, 1-2% of CD4+ T cells are secreting IL-2 at any given moment 

(Amado et al., 2013; Liu et al., 2015; Owen et al., 2018). In the spleen, such T cells 

were self-reactive (Stolley and Campbell, 2016). Together, these studies illustrate that 

the maintenance of immune homeostasis involves dynamical and multilayered 

regulatory mechanisms between self-activated CD4+ T cells and Tregs. Whereas 

individual self-activated CD4+ T cells are dynamically constrained by nearby Tregs, 
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the peripheral maintenance of a physiologic Treg population size requires IL-2, and 

primary producers of IL-2 are likely self-activated CD4+ T cells in SLOs. This suggests 

that immune homeostasis is established as dynamical equilibrium between self-

activated CD4+ T cells and Tregs at the cellular and cell population levels. 

Although a list of numerous parts regarding immune homeostasis has been 

accumulated, the integrated quantitative framework has remained to be developed 1) 

to comprehensively dissect critical immune parameters governing robust self/non-self 

discrimination, 2) to intuitively understand at what level and how the sharp transition 

between tolerance and full-blown response occurs, and 3) to guide therapeutic 

manipulations of immune homeostasis to treat cancer and autoimmune diseases. To 

achieve this goal, we employed multiscale modeling approaches to quantitatively 

describe reciprocal relationships between self-reactive CD4+ T cells and Tregs 

occurring across scales from the intracellular level to the organismal level. First, we 

developed a multiscale dynamical model describing T cell activation out of cellular 

interactions among CD4+ conventional T cells (Tconvs), dendritic cells (DCs), Tregs 

with their evolving internal states (Wong et al., submitted). We found that the activation 

status of activated Tconvs such as the duration of IL-2 secretion and the responsiveness 

to IL-2 is regulated mainly by the Treg density in homeostasis and by the costimulatory 

ligand level of DCs in inflammation. Some of these results were experimentally 

validated. Then, we built probabilistic models of clonal expansion of self-activated 

Tconvs occurring through paracrine IL-2 signals. We showed that the activation status 

of recently self-activated Tconvs and the frequency of self-activated, IL-2 secreting 

Tconvs in SLOs shape a sharp transition between tolerance and full-blown responses, 
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conferring an extremely low probability of clonal expansion in homeostasis. Finally, 

we built cell population models of peripheral maintenance of Treg pool size at the 

intranodal and organismal levels. We showed that the homeostatic IL-2 niche size 

provided by the homeostatic pool size of self-activated, IL-2 secreting Tconvs is indeed 

sufficient to maintain the homeostatic Treg pool size.  Based on these modeling results, 

we derived an integrated quantitative framework illustrating immune homeostasis as 

dynamical equilibrium between self-activated, IL-2 secreting T convs and Tregs, which 

is away from thresholds of clonal expansion causing autoimmune diseases. Then, we 

explored several corollaries of this framework.   

 

4.2 Results 

4.2.1 Multiscale T cell activation model recapitulates the two-phase 

response 

T cells require TCR, CD28, and cytokine-mediated signals such as IL-2 to be activated 

and undergo proliferation and differentiation to effector cell types. Myc was shown to 

be an integrator of these signals and translates into the proliferation capacity (Heinzel 

et al., 2017; Marchingo et al., 2014). However, in vivo acquisition of these signals by a 

T cell undergoing activation engaged with DCs while subject to Treg-mediated 

suppression is a highly dynamical process with interlinked interactions occurring at the 

intra- and intercellular levels (Figure 4.1A-C). Therefore, it is challenging to intuit the 

full dynamical picture of this process, although detailed knowledge of important 

molecular and cellular components has been accumulated. To better delineate the 
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quantitative contribution of key immunological parameters on the extent of activation 

and proliferation of a responding T cell in SLOs, we developed a multiscale, dynamical 

model of T cell activation occurring through intra- and intercellular processes of a 

priming Tconv, DC, surrounding Tregs, and secreted IL-2 (Figure 4.1; section B.1) 

(Wong et al., submitted). 

Our strategy of model development was to integrate existing models of each 

component from the literature into a single framework (See section B.1 for detailed 

descriptions of the model). We described intracellular dynamics of molecular species 

in the Tconv and DC with ordinary differential equations (ODEs) and spatial dynamics 

Figure 4.1 Model schematics of the T cell activation model. (A) Model schematic of 

cellular interactions. Participating cells are a conventional CD4+ T cell (Tconv), a 

dendritic cell (DC), and surrounding regulatory T cells (Tregs). IL-2 also mediates 

cellular interactions. (B) Model schematic of intracellular signaling pathways of the 

Tconv. (C) Model schematic of intracellular signaling pathways of the Treg. (D) Model 

schematic of the spatial compartments. Spatial compartments are divided into two 

regions. In Compartment 1, intracellular dynamics of the Tconv and DC are described 

using ordinary differential equations. In Compartment 2, the spatial movements and 

internal state evolutions of Tregs and diffusions of IL-2 are described using partial 

differential equations. See Methods for detailed model descriptions. ODE-ordinary 

differential equation; PDE-partial differential equation.   
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of the concentration of IL-2 and the number density and internal states of Tregs with 

partial differential equations (PDEs) (Figure 4.1D). These descriptions in two different 

compartments are connected using boundary conditions at 𝑟 = 5 𝜇𝑚. We employed 

several key assumptions and added new features based on these in building the model 

(section B.1). The variables and parameters of the model are shown in Table B.2 with 

corresponding references.  

Next, we generated dynamical trajectories of the model in various conditions 

(Figure 4.2). The baseline condition from a randomly selected model parameter 

combination represents homeostatic regulation of a self-activated Tconv, where the 

rapid loss of  CD80/86 and thus costimulation through trans-endocytosis by Tregs plays 

a role as a rate-limiting process (Qureshi et al., 2011). The resultant early cease of IL-

2 secretion did not allow IL-2Ra level to increase high enough for autocrine IL-2 

signaling and thus led to a low level of pSTAT5. The Myc level, representing 

proliferation capacity (Heinzel et al., 2017), increased indicative of a few rounds of 

Figure 4.2 Dynamical trajectories of key molecular species during T cell activation. 

The simulation was conducted for various conditions. The baseline condition 

represents the situation of the successful suppression of self-activated T cells by Tregs 

simulated on a randomly sampled parameter combination. Other conditions represent 

conditions where indicated parameters are perturbed. 

 



 

 91 

 

proliferation but decreased early before reaching significant accumulation due to early 

stopping of TCR and costimulation and the lack of IL-2 signal. In contrast, other 

conditions showed delayed loss of costimulation, the resultant prolonged IL-2 secretion, 

higher accumulation of IL-2Ra owing to longer duration of autocrine IL-2 signaling. 

Finally, prolonged and higher Myc accumulation occurred, suggesting increased 

proliferation capacity. The most distinguished condition was inflammation, where the 

costimulatory ligand level in DCs increased by 10-fold from the homeostatic value.  

The next influential condition was half reduction of the initial Treg density. The rest 

conditions, reducing the level of CTLA4 of Tregs to half and turning off Treg clustering, 

showed similar differences from the baseline condition with a modest increase of T cell 

activation/proliferation status. These simulation results quantitatively recapitulate 

experimental findings such as inflammation as additional information on the invasion 

of non-self and autoimmunity occurring due to dysregulation of the peripheral Treg 

population pool size. In turn, in the inflammatory condition, the current modeling 

assumptions are not sufficient to prevent self-reactive T cells from escaping Treg’s 

suppression, thereby warranting additional mechanisms such as trogocytosis by Tregs 

for stealing cognate antigens from APCs (Akkaya et al., 2019). 

These simulation results illustrated how TCR, CD28, and IL-2 signals are 

dynamically regulated in in vivo settings. We can summarize the dynamics of these 

signals into two phases (Figure 4.3) (Waysbort et al., 2013). Initially, Tconvs undergo 

activation based on TCR and CD28 signals from DCs, but lack IL-2 signaling due to 

the low level of IL-2Ra (Phase 1). Once the priming Tconvs disengage from APCs, the 

only signal they further obtain is through autocrine and/or paracrine IL-2 signaling 
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(Phase 2). Suppression by Tregs makes self-reactive T cells in homeostasis, although 

they do activate through phase 1, rarely achieve the capacity to proceed to phase 2 by 

lowering autocrine IL-2 availability and IL-2 sensing capacity (low IL-2Ra). 

4.2.2 MAPPA analysis revealed generalizable quantitative roles of 

immune parameters for T cell activation status 

Simulation results above, however, could hold only for the particular parameter 

combinations we chose due to the nonlinear feature of the model. Therefore, we applied 

the MAPPA (MAchine learning of Parameter-Phenotype Analysis) framework we 

developed (Park et al., 2019) (Chapter 3) to assess the robustness vs. turnability of 

various phenotypes throughout the plausible parameter space by quantifying relative 

contributions of immune parameters (Figure 3.1 and 3.2). MAPPA utilizes unbiased 

sampling of parameter combinations from the plausible parameter space, variations of 

quantitative phenotypes in the parameter space, and machine learning (ML) models 

trained by Random Forests (RF) mapping the parameter space to phenotypes. We 

defined biologically plausible ranges of parameters from phenomenological 

descriptions such as signaling transductions described by the Hill functions or those  

Figure 4.3 The two-phase response of Tconvs. The temporal dynamics of Tconv 

activation can be decomposed into two phases.  
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Name Definition 
MATLAB 

notation 
min max 

𝝂 pMHC-TCR on-rate nu 0.2 0.4 

𝑲𝑻𝑪𝑹→𝑰𝑳𝟐𝑹𝜶 

Half saturation level 

(EC50)  of TCR 

activation for IL2R 

production 

K_TCR_IL2R_alpha 0.1 1 

𝑲𝒄𝒐𝒔𝒕𝒊𝒎→𝑰𝑳𝟐𝑹𝜶 
Half saturation level 

(EC50) of costimulation 

for IL2R production 

K_costim_IL2R_alpha 10 100 

𝑲𝑱𝑨𝑲→𝒑𝑺𝑻𝑨𝑻𝟓 
Half saturation level 

(EC50) of JAK activation 

for IL2R production 

K_JAK_pSTAT5 0.01 0.1 

𝑲𝑻𝑪𝑹→𝑰𝑳𝟐 
Half saturation level 

(EC50) of TCR activation 

for IL2 production 

K_TCR_IL2 0.1 1 

𝑲𝒄𝒐𝒔𝒕𝒊𝒎→𝑰𝑳𝟐 
Half saturation level 

(EC50) of costimulation 

for IL2 production 

K_costim_IL2 10 100 

𝑲𝒑𝑺𝑻𝑨𝑻𝟓→𝑰𝑳𝟐 
Half saturation level 

(EC50) of costimulation 

for IL2 production 

K_pSTAT5_IL2 0.1 1 

𝑲𝑻𝑪𝑹→𝑷𝑰𝟑𝑲 
Half saturation level 

(EC50) of TCR activation 

for PI3K activation 

K_TCR_PI3K 0.1 1 

𝑲𝒄𝒐𝒔𝒕𝒊𝒎→𝑷𝑰𝟑𝑲 
Half saturation level 

(EC50) of costimulation 

for PI3K activation 

K_costim_PI3K 10 100 

𝑲𝑱𝑨𝑲→𝑷𝑰𝟑𝑲 
Half saturation level 

(EC50) of JAK activation 

for PI3K production 

K_JAK_PI3K 0.01 0.1 

𝑫𝑰𝑳𝟐 Diffusion constant of IL2 D_IL2 10 100 

𝒏𝒕𝒓𝟎 
Initial number density of 

Tregs 
n_tr0 0.0001 0.001 

𝒇𝒄𝒐𝒏𝒕_𝒍𝒐𝒘 
Basline contact efficiency 

between Tregs and DCs 
f_contact_low 0.1 0.4 

𝒇𝒄𝒐𝒏𝒕_𝒉𝒊𝒈𝒉 
Stimulated contact 

efficiency between Tregs 

and DCs 

f_contact_high 1 2.5 

𝑳𝒂𝒏𝒕𝒊𝒈𝒆𝒏 
Number of peptide-MHC 

per cell 
L_antigen 100 1,000 

𝑳𝑪𝑫𝟖𝟎|𝑪𝑫𝟖𝟔_𝒊 
Initial number of 

CD80/86 molecules per 

cell 

L_CD80_86_i 

(homeo) 

100,000 

(inflam) 

300,000 

(homeo) 

1,000,000 

(inflam) 

3,000,000 

Table 4.1 Ranges of parameter values used for the MAPPA framework. The ranges 

span an order of magnitude for each cell. The MATLAB notations were used to denote 

parameters in the main text and figures. homeo-homeostasis; inflam-inflammation.   

varying dynamically or across cells such as the number density of Tregs, or those 

without consensus values such as the diffusion coefficient of IL-2 within their plausible 
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ranges. We fixed the rest of the parameters obtained from biophysical or biochemical 

experimental measurements (Table 4.1). We sampled 20,000 random parameter 

combinations within the aforementioned plausible ranges of parameters and conducted 

simulations on them. We tested two different ranges of the initial costimulatory ligand 

level (CD80/86), 100,000-1,000,000 for the homeostatic condition and 300,000-

3,000,000 for the inflammatory condition, given that the mature and inflammatory 

dendritic cells tend to upregulate CD80/86. 

From the simulation results, we focused on various aspects of T cell activation 

status. (Figure 4.4). We categorized the phenotypes into the receiver, sender, and signal 

integrator (Figure 4.4A). For the receiver, we defined a phenotype, the maximum level 

of IL-2Ra (IL-2Ra.max) in the time course, which reflects the capacity of a priming T 

cell to “receive” auto-/paracrine IL-2 signals to proceed to the Phase 2 response. For 

Figure 4.4 Definition of activation phenotypes. (A) (Left) The activation phenotypes 

can be divided into the receiver (associated with IL-2Ra), the sender (associated with 

IL-2), and the signal integrator (associated with Myc) phenotypes. (Right) Based on 

this categorization, we defined phenotypes, the maximum level of IL-2Ra (IL-

2Ra.max), the maximum rate of IL-2 secretion (IL-2.sec.max), the duration of IL-2 

secretion (IL-2.sec.dur), and the area under curve of Myc time course (Myc.AUC). (B) 

Detailed definitions of the phenotypes based on dynamical trajectories of IL-2Ra, IL-

2, and Myc are shown. 
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the sender, we defined two phenotypes, the maximum IL-2 secretion rate (IL-2.sec) 

and the effective duration of IL-2 secretion (IL-2.dur), which reflect the capacity of a 

priming T cell to “send” auto-/paracrine IL-2 signals to itself or nearby 

conventional/regulatory T cells by creating an IL-2 niche. For the signal integrator, we 

defined a phenotype, the area under the curve of the time course of Myc (Myc.AUC), 

which reflects the “integration” of all activation signals through TCR, CD28, and IL-2, 

interpreted as proliferation capacity according to the Hodgkin’s model (Heinzel et al., 

2017).  

Simulations on 20,000 parameter combinations in homeostatic and 

inflammatory conditions revealed the distributions of phenotypes across the parameter 

space (Figure 4.5). The distributions of IL-2Ra.max showed that the majority of 

parameter combinations exhibited low IL-2Ra.max in both homeostatic and 

inflammatory conditions, which is consistent with our earlier report that responding T 

cells rarely achieve high pSTAT5 level indicative of IL-2 signaling in homeostasis (Liu 

et al., 2015; Wong et al., submitted). The difference between these two conditions was 

better delineated in the log scale, revealing the increased mode and heavier right tail of 

the distribution in the inflammatory condition. Myc.AUC and IL-2.sec.dur showed 

very distinct distributions with inverted skewness between the homeostatic and 

inflammatory conditions while IL-2.sec.max did not. These results suggest that 

inflammation exerts differential regulatory effects on different phenotypes of T cell 

activation. 
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For quantitative delineation of such phenotypic variations contributed by 

parameter variations, we trained predictive RF ML models for each phenotype, which 

map parameter combinations to phenotypes with quantification of each parameter’s 

importance (Figure 4.6 and B.1). Indeed, the phenotypes, IL-2Ra.max, IL-2.sec.dur, 

and Myc.AUC exhibited distinct regulatory contributions of parameters between 

homeostasis and inflammation (Figure 4.6A, C, and D) as alluded by their different 

distributions between conditions (Figure 4.5). The initial Treg density (n_tr0) was the 

most influential for these phenotypes in homeostasis, whereas the initial costimulatory 

ligand level (L_CD80_86_i) was so in inflammation. Interestingly, in both conditions, 

the TCR off-rate (nu) of the responding T cell was lowly ranked for these phenotypes. 

In contrast, the phenotype, IL-2.sec.max was affected mostly by the TCR off rate (nu) 

in both conditions (Figure 4.6B), which was consistent with the similar phenotypic 

distributions in both conditions (Figure 4.5). Together, these results suggest a  

Figure 4.5 Distributions of activation phenotypes generated by simulations. The 

simulation was conducted on 20,000 randomly sampled parameter combinations for 

two different conditions, homeostasis and inflammation. For the definitions of 

phenotypes, see Figure 4.4. 
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Figure 4.6 Global variable importance determining the activation phenotypes. (A) for 

IL-2Ra.max (log10) after taking log10 of IL-2Ra.max, (B) for IL-2.sec.max, (C) for 

IL-2.sec.dur, and (D) for Myc.AUC. Permutation importance is generated as decrease 

of prediction performance after permuting each parameter across parameter 

combinations. (Left) homeostasis and (right) inflammation. 
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quantitative insight on the relative importance of immune parameters for regulating 

different activation phenotypes in deferent contexts (homeostasis and inflammation). 

The predisposed Treg density is the primary regulator of IL-2Ra.max, IL-2.sec.dur), 

and Myc.AUC in homeostasis. However, the upregulated costimulatory ligand level 

inflammation overrides the regulatory effect of the Treg density, enabling the 

responding T cells to be more receptive to IL-2 signal (higher IL-2Ra.max), secreting 

IL-2 over a longer duration (higher IL-2.sec.dur), and more proliferative (higher 

Myc.AUC) (Yi et al., 2018; Wong et al., submitted). 

4.2.3 Modest reductions in micro-domain size or molecular functionality 

enable self-activated T cells to respond to IL-2 

Next, we sought to explore an experimentally accessible phenotype. We focused the 

maximum pSTAT5 signal within the Tconv (pSTAT5.max; categorized as the escapee 

phenotype) at any time point following activation (up to 120h) in homeostasis since 

this phenotype reflected the extent of escape from Treg control in our experimental 

studies (Figure 4.7) (Wong et al., submitted). As shown in Figure 4.9, the majority of  

Figure 4.7 Definition of the escapee phenotype. The maximum level of pSTAT5   

(pSTAT5.max) signal can be seen as the extent of escape. A high level of pSTAT5 

signal indicates that the responding Tconv can accumulate a high level of IL-2Rand 

secrete IL-2 for a long duration, resulting in autocrine IL-2 signal.  
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Figure 4.9 Distribution of pSTAT5.max generated by simulation. (A) Distribution of 

pSTAT5.max values from 20000 dynamic simulations. Inset: distribution of 

pSTAT5.max values plotted on a log10 scale for visual clarity. Dashed red line 

represents a discrete threshold for parameter configurations within the top 5% of the 

distribution (B) Two-dimensional visualization of sampled parameter space using t-

distributed stochastic neighbor embedding (t-SNE). Each dot represents a parameter 

configuration. Colored dots represent configurations with pSTAT5.max values within 

the top 5% of the distribution while white dots represent those outside. 

Figure 4.8 Closer examination of parameter configurations with high pSTAT5.max. 

Heatmap illustrating individual parameters (columns) and their standard scores (Z-

score) within each configuration (rows) from the top 5% of the pSTAT5.max 

distribution. 
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parameter configurations generated a low pSTAT5.max. This result was consistent 

with the nearly negligible frequency of pSTAT5+ CD4+ T cells in LNs of healthy 

animals (Wong et al., submitted) and suggested that the three-cell circuit was largely 

robust against parameter variation. However, examination of the few configurations 

that did produce a large pSTAT5.max — referred to as “active” configurations — 

revealed characteristic features, such as a high level of costimulatory ligand on the 

surface of DCs (L_CD80_86_i) and a low initial Treg density (n_tr0) (Figure 4.8, Table 

4.1). 

We generated a predictive RF ML regression model to determine the influence 

of individual parameters on the pSTAT5.max quantitatively (prediction accuracy: r = 

0.95) (Figure B.2). The ML model revealed that the Treg density (n_tr0) ranked second 

highest in terms of “variable importance” both globally, across all parameter 

configurations, and locally, for a specific configuration associated with large 

Figure 4.10 Variable importance generated by ML model for pSTAT5.max. (A) Global 

variable importance (GVI) of the dynamical model parameters (y-axis) fitted by the 

RFML regression model using “combined data” (see Figure B.2B). “Permutation 

importance” (x-axis) represents the increase in prediction errors using out-of-bag 

(OOB) data after permuting the indicated parameters. (B) Averaged local variable 

importance (LVI) of the parameter configurations above the cut-off for the 

pSTAT5.max shown in Figure 4.9A. The LVI was calculated using the combined data 

model described above. “Permutation importance” (x-axis) represents the increase in 

prediction errors for the OOB data after permuting the indicated variables. 
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pSTAT5.max values. (Figure 4.10). Both the costimulatory ligand level (L_CD80_86_i) 

and the TCR-pMHC off-rate (nu) were also important, although to a lesser extent. As 

expected, the EC50 for pSTAT5 (K_JAK_pSTAT5) was the highest ranked parameter 

(Figure 4.10). 

Thus, during homeostasis, MAPPA revealed that the density of Tregs within a 

micro-domain largely dictated whether a self-activated T cell responded to IL-2. To 

further study this prediction, we ran new sets of simulations to assess the impact of 

increasing or decreasing the Treg density by two-fold on the number of active 

configurations. These simulations revealed that increasing the Treg density decreased 

the number of active configurations by ~2.5-fold, while decreasing this parameter 

resulted in a ~2-fold increase, findings that were consistent with the predictions from 

the RF model described above (Figure 4.11 and 4.11).  

Figure 4.11 Effect of the perturbation of the Treg density. Stacked bar graphs depict 

the percentage of active and inactive configurations in parameter space when the Treg 

density is increased or decreased by two-fold. The control represents the results from 

the original 20000 dynamic simulations, while each perturbation represents the results 

from a set of 20000 new dynamic simulations 
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To understand why the Treg density had such a substantial impact on the 

number of active configurations, we examined the dynamic trajectories of IL-2 

secretion, IL-2R expression, and pSTAT5 signaling in CD4+ T cells as the Treg 

density was lowered linearly down to 50% (Figure 4.12). This analysis revealed that as 

the local density of Tregs decreased, IL-2 secretion increased linearly (Figure 4.12A). 

By contrast, IL-2R expression and pSTAT5 signaling exhibited a degree of 

nonlinearity: we observed sharp increases in both parameter values after a 40% 

reduction in the local density of Tregs (Figure 4.12B-C). Collectively, these data 

indicated that quantitatively modest reductions in the size of micro-domains were 

sufficient to shift certain configurations from inactive to active and suggested that the 

system exhibited a sharp decision boundary enforced by Tregs. 

The model implied that within micro-domains, elevated Treg densities could 

compensate for reduced Treg molecular functionality, thereby preventing self-activated 

CD4+ T cells from responding to IL-2 (Figure 4.11 and 4.11). To explore the limitations 

of this compensation, we simulated disrupting Treg functions by setting certain 

parameters outside of their normal, homeostatic range, including Treg’s ability to strip 

Figure 4.12 Dynamical trajectories of the model with different Treg densities. (A)-(C) 

Dynamical trajectories of (A) IL-2 secretion, (B) IL-2R protein copy number, and 

(C) pSTAT5 signal in a CD4+ T cell as the Treg density is varied. The control 

condition represents an inactive configuration that was picked at random from 

parameter space. 
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costimulatory ligands (trans-endocytosis) or consume IL-2. Such perturbations could 

arise naturally due to genetic or environmental variation. The former was particularly 

relevant given the range of quantitative gene expression variants associated with 

autoimmune disorders. For instance, human patients with heterozygote mutations in 

either CTLA4 or IL-2Rβ reduce the respective cell-surface protein concentrations by 

~50%. Interestingly, some CTLA4 heterozygotes develop multi-organ autoimmune 

disease, largely attributed to defective Treg function,  while IL-2Rβ heterozygotes 

appear stable(Kuehn et al., 2014; Schubert et al., 2014; Zhang et al., 2019). To test the 

impact of these perturbations on the control of self-activated T cells, we ran 20,000 

new simulations, but this time, the concentrations of either of these two proteins were 

reduced by 50%. These perturbations were selectively restricted to Tregs only for 

Figure 4.13 Functional perturbations on Tregs revealing susceptible configurations. (A) 

Stacked bar graphs depicting the percentage of active, inactive, and susceptible 

configurations. For each perturbation (i.e., a 50% reduction in the concentration of 

CTLA4 or IL-2R in Tregs), 20000 new dynamic simulations were performed. (B) 

Susceptible configurations were pooled from each perturbation in A and visualized 

within parameter space (red dots). 
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simplicity. As shown in Figure 4.13A, reducing CTLA4 or IL-2Rβ by 50% resulted in 

783 (3.9%) or 85 (0.4%) new configurations with a large pSTAT5.max, respectively 

(Figure 4.13A). We refer to these configurations as “susceptible”, which shift to exhibit 

high pSTAT5.max (i.e., become more active) only upon perturbing local Treg 

functionality (Figure 4.13).  

Within the parameter space, susceptible configurations resided near those that 

were active (Figure 4.8B and 4.13B), suggesting that the former were on the verge, but 

fell just short of breaking down during homeostasis. We therefore used MAPPA to 

quantitatively compare susceptible versus active configurations. This analysis revealed 

that the Treg density was by far the most important parameter separating these two 

groups, with susceptible configurations generally exhibiting ~2-fold higher density 

(Figure 4.14 and B.3). Thus, elevated Treg densities in susceptible configurations were 

often sufficient to constrain self-activated T cells as long as the other parameter values 

fell within homeostatic ranges. However, modest “secondary hits” that affected Treg 

Figure 4.14 Delineation of susceptible configurations. (A) GVI of the RF ML 

classification model comparing susceptible and active configurations. (B) Distributions 

of values for the effective Treg density (n_tr0 * f_contact_low; derived from the top 

two parameters in A. Distributions are shown for active, inactive, and susceptible 

configurations. See Figure B.3. 
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functionality (e.g., reduction in CTLA4 expression) made these regions active, 

enabling self-activated T cells to escape control.  

The modeling results presented in this section regarding the escapee phenotype, 

pSTAT5.max, were tested experimentally and shown to be consistent with the 

experimental results (Wong et al., submitted). 

4.2.4 Existing experimental evidence together with modeling results above 

informs conditions required to establish immune homeostasis 

Although the results presented so far demonstrated regulatory constraints on 

activation of self-reactive T cells shaped by the local intra- and intercellular regulatory 

topology, how these can relate to a sharp demarcation between tolerance and full-blown 

response is less clear. In homeostatic conditions, multiple lines of experimental studies 

consistently reported that around 1-2% of Tconvs in SLOs secrete IL-2 (Amado et al., 

2013; Liu et al., 2015) and 2-4% of Tconvs show signs of activation (Richards et al., 

2015; Wong et al., submitted). This striking abundance of (seemingly) self-activated 

Tconvs raises a concern. Although individual self-activated T cells are well constrained 

by Tregs in their initial priming by APCs, there is a danger that they continuously 

obtain paracrine IL-2 signal from other IL-2 secreting T cells leading to clonal 

expansion and subsequent autoimmunity. Separate lines of studies showed that the 

homeostatic maintenance of the peripheral Treg pool size in SLOs relies on IL-2 

secreted by Tconvs, with 10-15% of Tregs being pSTAT5+ (Almeida et al., 2006; Owen 

et al., 2018; Smigiel et al., 2014). Such IL-2 producing Tconv are likely to have been 

activated by self-antigens presented by MHC class II (MHC-II) of DCs (Liu et al., 2015; 

Stolley and Campbell, 2016; Yi et al., 2018). In contrast, the Treg pool size inversely 
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regulates the size of the IL-2 secreting and activated CD4+ T cell population (Amado 

et al., 2013; Kim et al., 2007; Richards et al., 2015). These studies together with 

modeling results above suggested sufficient and necessary conditions enabling the 

establishment of immune homeostasis: 

Condition 1: 1-2% of conventional CD4+ T cells that are self-activated and 

secreting IL-2 determined by homeostatic Treg density are not dangerous to cause full-

blown autoimmunity and well constrained in an isolated manner. 

Condition 2: The homeostatic Treg population size in SLOs can be maintained 

by self-activated, IL-2 secreting T cells (1-2% of CD4 T cells) and pSTAT5+ Tregs 

(10-15% of Tregs) in SLOs. 

In the following sections, we sought to quantitatively justify that these 

conditions are indeed met in homeostasis by building various models, which were then 

extrapolated towards the breakdown of self-tolerance to readily see where a sharp 

decision boundary between tolerance and full-blown response exists. 

4.2.5 Treg suppression of self-activated T cells guarantees the seemingly 

abundant frequency of IL-2 secreting T cells in homeostasis is safe, not 

causing full-blown self-specific responses 

To show Condition 1 is indeed the case, we defined a model T cell zone with relevant 

quantities (Figure 3A). We previously measured that the median Treg density in the 

paracortex of a popliteal lymph node is around 0.0004 𝜇𝑚−3 (data not shown; Wong 

et al., submitted). In SLOs, the fraction of Tregs of total CD4+ T cells is 10-15%, and 

around 10-15% of Tregs are pSTAT5+ (Liu et al., 2015; Smigiel et al., 2014; Stolley 
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and Campbell, 2016). With IL-2-GFP reporter mice, the homeostatic frequency of IL-

2 secreting CD4 Tconvs was measured as roughly 1-2% (Amado et al., 2013; Liu et al., 

2015). To make the argument more specific, we assumed the T cell zone to be a cube 

with 300 𝜇𝑚  for each dimension (Figure 4.15). From the Treg density, 𝑛𝑡𝑟 =

0.0004 𝜇𝑚−3, the total number of Tregs in the T cell zone is 𝑁𝑡𝑟 = 10800 cells. With 

the assumption that 12% of total CD4+ T cells are Tregs, the number of Tconvs in the 

zone is 𝑁𝑡𝑐𝑜𝑛𝑣 =  79200 cells. With the frequency of IL-2 secreting CD4+ T cells, 

𝑓𝐼𝐿2+ = 0.01, the number of IL-2 secreting CD4+ Tconv in the T cell zone is 𝑁𝐼𝐿2+ =

792 cells. Assuming that 10% of Tregs are pSTAT5+ (𝑓𝑝𝑆𝑇𝐴𝑇5+ = 0.1), the effective 

IL-2 niche accessible to Tregs can be estimated as 10% of the total volume of the T cell 

zone. With these quantities, we then estimated the effective size of IL-2 niche for each 

IL-2 secreting T cell as 𝑙𝐷 = 9.79𝜇𝑚  (Figure 4.17) (See section B.3 for detailed 

calculation). In fact,  𝑙𝐷 varies dynamically depending on the Treg density, the capacity 

of IL-2 reabsorption through IL-2Rof Tregs, and the IL-2 diffusion coefficient 

(Oyler-Yaniv et al., 2017). 

Figure 4.15 Definition of the model T cell zone with related quantities. These quantities 

were back-calculated to fit the size of the model T cell zone based on experimental 

data. 
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We then sought to build probabilistic models of self-activated T cells 

undergoing clonal expansion with assumed and estimated quantities shown above 

(Figure 4.15). According to the results in previous sections and experimental evidence 

from (Bohineust et al., 2018; Marchingo et al., 2014), once a self-reactive Tconv gets 

activated and disengages from a DC, the full-blown response through clonal expansion 

is possible only if the self-activated Tconv continuously obtains IL-2 signals provided 

by neighboring IL-2 secreting T cells for around five days. We may think of two 

possibilities. First, the self-activated T cell sequentially encounters other IL-2 secreting 

T cells within their IL-2 niches through random movements for five days (Figure 4.16). 

Figure 4.17 Estimated effective IL-2 niche size generated by a self-activated IL-2 

secreting Tconv. See section B.3 for details. The green circle is a Tconv secreting IL-

2. The purple region is the effective IL-2 niche, where IL-2 concentration is high 

enough to provide IL-2 signals to Tregs. 𝑟𝑡𝑐: the radius of Tconvs, 𝑙𝐷: the effective 

size of the IL-2 niche created by an IL-2 secreting Tconv. 

Figure 4.16 Schematics of potential mechanisms of self-activated T cell to undergo 

clonal expansion.  
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The other possibility is the self- activated, IL-2 secreting T cells form a cluster, where 

the cells mutually maintain and provide the TCR or costimulation signals to each other 

to maintain IL-2 secretion in that milieu for five days although solid in vivo 

experimental evidence in a physiological setting is still not available (Figure 4.16)  

(Sabatos et al., 2008; Zenke et al., 2020).  

In the sequential encounter model, once disengaging from a DC, a self-activated 

T cell randomly moves in the T cell zone with its average speed, 𝑣𝑟𝑎𝑛𝑑 = 5 𝜇𝑚/𝑚𝑖𝑛, 

and its cross-section of the IL-2 niche size and the diameter of the cell (Figure 4.18A). 

Then, the volume swept by this cross-section per unit time together with the frequency 

Figure 4.18 Sequential encounter model. (A) Formal estimation of average encounter 

rate in the homeostatic condition. 𝑅𝑒𝑛𝑐: the average encounter rate, 𝑣𝑟𝑎𝑛𝑑: the average 

speed of self-activated Tconvs.  See section B.4.1 for details. (B) Schematic of IL-2 

pulses introduced in the T cell activation models. Based on the simulation result of the 

IL-2 diffusion dynamics in the baseline condition in Figure 4.2, the average IL-2 

concentration was estimated to be 3 pM. The average width of each pulse was 

estimated to be 2 min based on the effective IL-2 niche size per cell and the average 

speed of self-activated T cells. The rate of pulses was equated with the encounter rate 

that is adjusted by the frequency of IL-2 secreting Tconvs. 
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of IL-2 secreting T cells in the T cell zone determines the average rate of IL-2 niche 

encounter per hour as 𝑅𝑒𝑛𝑐 = 6.2 ℎ
−1 (See section B.4.1 for detailed computation). 

Each encounter lasts for, on average, 
𝑙𝐷

𝑣𝑟𝑎𝑛𝑑
≈
10

5
= 2 𝑚𝑖𝑛 . Thus, hourly the self-

activated T cell is subject to IL-2 niches for, on average, 12 minutes.  

To examine how the encounter rate of the IL-2 niches affects the proliferation 

capacity (the dynamics of Myc) of the self-activated T cells, we modified the multiscale 

Figure 4.19 Dynamical trajectories of Myc under different IL-2 pulse rates for various 

conditions. The parameter combination for the baseline condition is the same as one 

used in Figure 4.2. The costimulatory ligand (CD80/86) level, the Treg density, and 

the level of CTLA4 in Tregs were perturbed. 
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T cell activation model (Figure 4.1) by adding IL-2 pulses after the disengagement 

between the priming T cells and DC (Figure 4.18B). Using the same parameter 

combination that illustrated homeostatic suppression of the self-activated Tconv by 

Tregs in Figure 4.2, we conducted simulations with different rates of IL-2 niche 

encounter and altered activation statuses after initial priming by a DC (Figure 4.19). 

The baseline condition showed that up to the encounter rate of 20/hour, the self-

activated T cells eventually lost Myc expression indicative of aborted proliferation. A 

sharp transition of Myc dynamics exists between 20/hour and 25/hour, and with the 

latter, the Myc level kept upregulated, suggesting continued proliferation in the time 

scale of 5 days and thus clonal expansion (Figure 4.19). In contrast, other conditions 

with either increased CD80/86 or reduced CTLA4/Treg density showed upregulated 

Myc in later time points even with low pulse rates (around 10-15/hour) (Figure 4.19). 

Since the IL-2 signal is the only input signal upregulating Myc after the disengagement, 

the receiver phenotype, IL-2Rmax, determines the threshold number of encounters, 

𝑁𝑒𝑛𝑐.𝑡𝑟ℎ𝑒𝑠ℎ. 

Based on these results, we finally derived a probabilistic model describing the 

probability of achieving encounter rates equal to or greater than a threshold rate given 

the frequency of IL-2 secreting Tconvs determining the average encounter rate, 𝑅𝑒𝑛𝑐 

(Figure 4.20) (See section B.4.1 for the detailed derivation). The probability of 

achieving the threshold encounter rate ≥ 20/hour for continued proliferation for five 

days (clonal expansion) in the baseline condition (Figure 4.19) is extremely low over 

the time scale beyond the lifespan of mice and humans under the homeostatic frequency 

of IL-2 secreting Tconvs (Figure 4.20). The probability sharply increases at around the 
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frequency of 0.05 (5%), which is only possible when a substantial fraction of Tregs are 

depleted (Amado et al., 2013). When we imposed lower threshold encounter rates, 10-

15/hour for clonal expansion as in the conditions with an increased CD80/86 and 

reduced CTLA4/Treg density (Figure 4.19), the probability of achieving such 

encounter rates were still extremely low with the homeostatic frequencies of IL-2 

secreting Tconvs (Figure 4.20). However, the sharp increase of the probability of clonal 

expansion happened at the frequency of 0.03-0.04 (3-4%), which are lower than that 

for the baseline threshold encounter rate, 20/hour, and slightly higher than the upper 

limit of the homeostatic range of the frequency, suggesting an increased risk of clonal 

Figure 4.20 Probability of self-activated Tconvs for undergoing clonal expansion 

tuned by the frequency of IL-2 secreting Tconvs for different threshold encounter rates 

over the time window of 120 hours. (Top) Probability regulated by the frequency of 

IL-2 secreting T cells for different threshold encounter rates over the time window of 

120 hours. (Bottom) The time scales until the occurrence of a single event of clonal 

expansion in the model T cell zone. The arrows indicate the homeostatic variation of 

the frequency of IL-2 secreting Tconvs. 
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expansion of self-activated Tconvs and resultant autoimmunity if additional 

perturbations as infections occur. Taken together, based on the sequential encounter 

model in conjunction with the T cell activation model, the homeostatic frequency of 

IL-2 secreting T cells in SLOs are safe enough under the regulatory constraints of Tregs 

for each self-activated T cell, and perturbed conditions impose a higher risk of clonal 

expansion of self-activated T cells. 

Alternatively, we also derived a probabilistic model of cluster formation, 

enabling clonal expansion of self-activated Tconvs (Figure 4.21) (See section B.4.2 for 

the detailed derivation). The requirement of the threshold size of the precursor 

frequency of cognate T cells (in other words, quorum regulation) for clonal expansion 

and a full-blown response has been suggested both theoretically and experimentally 

(Bosch et al., 2017; Butler et al., 2013), yet no quantitative mechanistic description is 

available so far. Based on the homeostatic quantities defined above, the quorum size 

threshold of full-blown responses (minimum five cells) measured in (Bosch et al., 

2017), and the kinetic parameters of T cell-T cell spatial interactions inferred from 

(Fricke et al., 2016; Matheu et al., 2015), we derived the probability of cluster 

formation and maintenance of self-activated, IL-2 secreting Tconvs with the size ≥ five 

cells at least for 10 hours. This time window is a typical time scale of T cell division 

(Heinzel et al., 2017), and we assumed that after this time window the cluster is self-

sustained with the mutual provision of relevant signals to keep adhesion between cells 

and IL-2 secretion of participating cells (Zenke et al., 2020). As for the sequential 

encounter model, the cluster formation model also exhibited a drastic transition in the 

probability of clonal expansion from 0 to 1 with increasing frequencies of IL-2 



 

 114 

 

secreting Tconvs (Figure 4.21B). With the homeostatic value of the adhesion 

coefficient, 𝑘𝑜𝑓𝑓 =
1

1.5
 𝑚𝑖𝑛−1 , the homeostatic frequency of IL-2 secreting Tconvs 

again showed an extremely low probability of cluster formation that sharply transitions 

to 1 at the frequency around 0.05 (5%) that is unlikely in homeostasis (Amado et al., 

2013; Liu et al., 2015). In contrast, the increased adhesion coefficient due to more 

Figure 4.21 Cluster formation model. (A) Formal derivation of the probability of 

cluster formation requires parameters related to T cell-T cell interaction kinetics that 

can be estimated through intravital imaging experiments. (B) Probability of self-

activated Tconvs for undergoing clonal expansion by forming a cluster sustained at 

least for 10 hours tuned by the frequency of IL-2 secreting Tconvs for different 

adhesion coefficients (Top) Probability regulated by the frequency of IL-2 secreting 

Tconvs for different adhesion coefficients. (Bottom) The time scales until the 

occurrence of a single event of clonal expansion in the model T cell zone. The arrows 

indicate the homeostatic variation of the frequency of IL-2 secreting Tconvs. 

  



 

 115 

 

activated status of the self-activated T cell after initial priming led to the sharp 

transition of the probability occurring at the decreased frequencies of IL-2 secreting T 

cells at around 0.03-0.04 (3-4%), again showing an increased risk of clonal expansion 

under additional activating perturbations. Together, the cluster formation model also 

showed that the homeostatic frequency of self-activated, IL-2 secreting Tconvs are safe, 

not likely causing autoimmunity, yet more activated status of self-activated Tconvs 

after initial priming has a higher risk of full-blown responses. 

4.2.6 The homeostatic frequencies of IL-2 secreting T cells and Tregs in SLOs 

guarantee the dynamical equilibrium between self-activated, IL-2 secreting 

Tconvs and Tregs 

We next turned to Condition 2. We first asked whether the homeostatic IL-2 niche 

provided by self-activated Tconvs is sufficient to maintain the peripheral homeostatic 

Treg pool size (section B.5). We focused on the relevant experimental studies that 

reported the effects of IL-2 blocking on Tregs (Owen et al., 2018; Smigiel et al., 2014; 

Tong et al., 2019). Our strategy was to show that 10% of the total volume of SLOs 

covered by the IL-2 niche indicated by 𝑓𝑝𝑆𝑇𝐴𝑇5+ = 0.1 is sufficient to maintain Treg 

pool at the intranodal (Figure 4.22A) and whole lymphatic system (Figure 4.22B) levels 

within a reasonable range of the proliferation rate. Of note, two subtypes of Tregs, 

central Tregs (cTregs) and effector Tregs (eTregs), were considered in the studies 

considered. cTregs comprising about half of the peripheral Treg pool in SLOs were 

shown to entirely rely on IL-2 while eTregs are differentiated from cTregs and rely on 

ICOS for their survival and proliferation (Smigiel et al., 2014). Therefore, we only 
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considered cTregs, and the maintenance of eTregs was regarded as a corollary of that 

of cTregs. 

At the intranodal level (Figure 4.22A), the governing equation of the cTreg pool 

size is 

𝑑𝑛𝑐𝑡𝑟
𝑑𝑡

= 𝑘𝑒𝑛𝑡𝑟𝑦 + 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+ ∙ 𝑛𝑐𝑡𝑟

−𝑘𝑑𝑒𝑐𝑎𝑦 ∙ (1 − 𝑓𝑝𝑠𝑇𝐴𝑇5+) ∙ 𝑛𝑐𝑡𝑟 , (4. 1)
 

where 𝑛𝑐𝑡𝑟: the number density of cTregs, 𝑓𝑝𝑆𝑇𝐴𝑇5+: the frequency of pSTAT5+ cTregs 

in an SLO,  𝑘𝑒𝑛𝑡𝑟𝑦: the rate of Treg entry, 𝑘𝑝𝑟𝑜𝑙𝑖𝑓: the rate of Treg proliferation with 

IL-2 signal, and 𝑘𝑑𝑒𝑐𝑎𝑦: the rate of Treg disappearance due to death/exit/conversion. 

The goal is to show that the steady state of this equation (
𝑑𝑛𝑐𝑡𝑟

𝑑𝑡
= 0) is guaranteed with 

experimentally measured and inferred parameter values of 𝑘𝑒𝑛𝑡𝑟𝑦 , 𝑓𝑝𝑆𝑇𝐴𝑇5+ , and 

𝑘𝑑𝑒𝑐𝑎𝑦 and reasonable values of  𝑘𝑝𝑟𝑜𝑙𝑖𝑓. We again applied the model system with the 

defined quantities in Figure 4.15. From data in (Smigiel et al., 2014; Tong et al., 2019), 

Figure 4.22 Schematic of the cell population model describing the peripheral Treg 

maintenance supported by the IL-2 niches at (A) the intranodal level (Eq 4.1) and (B) 

the organismal level (Eq 4.2). 
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which presented results of the mean dwelling time of cTregs in SLOs and cTreg decay 

upon administration of IL-2 blocking antibodies in SLOs, respectively, we inferred the 

values of 𝑘𝑒𝑛𝑡𝑟𝑦 and 𝑘𝑑𝑒𝑐𝑎𝑦 (See section B.5.1 for details). Considering these values 

and the steady state assumption, we estimated the rate of Treg proliferation to be 

 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 = 0.07 ℎ
−1 (doubling time: around 10 hours) (See section B.5.1 for details). 

This value is consistent with the time for each T cell division estimated in (Heinzel et 

al., 2017). Together, this quantitative analysis strongly suggests that the IL-2 niche 

created by the homeostatic frequency of self-activated, IL-2 secreting Tconvs is 

sufficient to maintain the homeostatic Treg pool size with biologically reasonable 

kinetic parameter values, especially 𝑘𝑝𝑟𝑜𝑙𝑖𝑓, at the intranodal level. 

At the organismal level considering the whole lymphatic system (Figure 

4.22B), the governing equation of the Treg pool size is  

𝑑(𝑁𝑐𝑇𝑟)

𝑑𝑡
= 𝑘𝑡ℎ𝑦,𝑇𝑟 + 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡 ∙ 𝑁𝑐𝑇𝑟

−𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡 ∙ (1 − 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡) ∙ 𝑁𝑐𝑇𝑟 , (4. 2)
 

where 𝑁𝑐𝑇𝑟: the total number of cTregs, 𝑘𝑡ℎ𝑦,𝑡𝑟: the rate of thymic output of cTregs, 

𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡: the rate of cTreg decay due to death/conversion/exit, and 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡: the 

fraction of cTreg within the IL-2 niches in all SLOs. The goal is to show that the 

estimated fraction of cTreg within the IL-2 niche, 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡, in the steady state is 

comparable or less than that of cTreg experimentally measured in SLOs. (den Braber 

et al., 2012; Milanez-Almeida et al., 2015) provided data for estimating the numbers of 

T cell subtypes at the organismal level. The steady state assumption and the estimated 

𝑘𝑝𝑟𝑜𝑙𝑖𝑓  led us to estimate that  𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡  = 0.025, which is lower than typical 
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frequencies of pSTAT5+ Tregs (0.05-0.2) in SLOs (See section B.5.2 for detail). We 

then pursued a more stringent estimation of 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡 assuming an extreme situation 

where the number of cTregs in peripheral blood, not accessible to the IL-2 niche, is the 

same as that in SLOs, which led to an estimation that 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡 = 0.06, which is still 

comparable or lower than typical frequencies of pSTAT5+ Tregs (0.05-0.2) in SLOs 

(section B.5.2). Together, these results strongly suggest that the IL-2 niche in SLOs 

provided by the homeostatic number of self-activated T cells is sufficient to maintain 

the homeostatic pool size of Tregs at the organismal level.  

We next derived the relationship between the IL-2 niche size and the Treg pool 

size in SLOs by extrapolating the governing equation at the intranodal level (Eq 4.1) 

from the steady state condition. To prevent 𝑛𝑐𝑡𝑟  from diverging, we modified the 

equation by introducing the carrying capacity factor as  

Figure 4.23 Model extrapolation of the intranodal Treg population size deviating from 

the homeostatic value by tuning the IL-2 niche size and the entry rate reflecting the 

thymic output of Tregs. Central Tregs (cTregs) were considered. 
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0 = 𝑘𝑒𝑛𝑡𝑟𝑦 + 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+ ∙ 𝑛𝑐𝑡𝑟 ⋅ (1 −
𝑛𝑐𝑡𝑟
𝐾𝑐𝑐
)

−𝑘𝑑𝑒𝑐𝑎𝑦 ∙ (1 − 𝑓𝑝𝑠𝑇𝐴𝑇5+) ∙ 𝑛𝑐𝑡𝑟 , (4. 3)
 

where the carrying capacity: 𝐾𝑐𝑐 = 0.001/𝜇𝑚
3 . The resultant quantitative 

relationships between 𝑛𝑐𝑡𝑟  and 𝑓𝑝𝑠𝑇𝐴𝑇5+  for different 𝑘𝑒𝑛𝑡𝑟𝑦  revealed that a sizable 

entry rate is required to maintain the homeostatic Treg population size under the 

homeostatic IL-2 niche size (or the homeostatic frequency of IL-2 secreting Tconvs) 

(Figure 4.23).  

We next sought to quantitatively derive Treg’s negative regulation of the 

frequency of self-activated, IL-2 secreting Tconvs, which has been shown 

experimentally in (Amado et al., 2013) (Figure 4.24A). The schematic relationship 

between the frequencies of Tregs and IL-2 secreting Tconvs based on the experimental 

data showed two distinct linear trends joining near the homeostatic frequency of Tregs 

(Figure 4.24B). We derived a mathematical relationship that may explain this feature 

as 

𝑁𝐼𝐿2+(𝑛𝑡𝑟) = 𝑁𝑡𝑐𝑜𝑛𝑣 ⋅ 𝑓𝑠𝑒𝑙𝑓 ⋅ 𝑓𝑎𝑐𝑡(𝑛𝑡𝑟) ⋅
𝑃𝐿𝑁(𝑛𝑡𝑟)

𝑃𝑡𝑜𝑡
⋅
𝜏𝑠𝑒𝑐.𝑑𝑢𝑟(𝑛𝑡𝑟)

𝜏𝑑𝑤𝑒𝑙𝑙
, (4. 4) 

 

where 𝑓𝑠𝑒𝑙𝑓: the predisposed number of potentially self-reactive CD4+ T cells, 𝑃𝑡𝑜𝑡: the 

total number of distinct self-peptide sequences presented through MHC-II, 𝑃𝐿𝑁: the 

number of distinct peptide sequences presented in a particular lymph node, 𝑓𝑎𝑐𝑡: the 

probability of the lymph node-specific self-reactive T cells being activated upon 

encounter with cognate antigen-bearing DCs, 𝜏𝑑𝑤𝑒𝑙𝑙: the average lymph node dwelling 

time of CD4+ T cells, and 𝜏𝑠𝑒𝑐.𝑑𝑢𝑟: the duration of IL-2 secretion (See section B.5.3 for 

the detailed derivation). 𝑁𝐼𝐿2+’s dependence on the Treg density is mediated by the  
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Figure 4.25 Treg regulation of the frequency of IL-2 secreting T cells. (A) 

Experimental data illustrating Treg regulation of the frequency of IL-2 secreting T 

cells. Adopted from (Amado et al., 2013). Tregs deviate from the homeostatic 

frequency (~ 12%) through either depletion (left) or expansion (right) (B) Schematic 

summary of experimental data shown in (A). 

Figure 4.25 Relationship between the Treg density and the duration of IL2 secretion. 

Scatter plots depicts IL-2.sec.dur vs. (left) Treg density and (right) effective Treg 

density. These are from the MAPPA results in homeostasis shown in Figure 4.6C.  
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quantities, 𝑓𝑎𝑐𝑡 , 𝑃𝐿𝑁, and 𝜏𝑠𝑒𝑐.𝑑𝑢𝑟. Determining the detailed dependence of 𝑓𝑎𝑐𝑡  and 

𝑃𝐿𝑁  on the Treg density requires further experimental data on Treg-mediated  

regulations of antigen presentation and migration patterns of Tconvs, which is out of 

the scope of this study. However, we were able to extract 𝜏𝑠𝑒𝑐.𝑑𝑢𝑟’s dependence on the 

Treg density from the MAPPA results (Figure 4.6C), which revealed that their detailed 

relationship from the simulation (Figure 4.25) likely explains the discrete transition of 

slope in Figure 4.24B. These results illustrate that the individual cell level phenotype, 

the duration of IL-2 secretion, contributes to the cell population size regulation. 

4.2.7 The integrated quantitative framework bridging models across scales 

enables intuitive assessment of immune homeostasis 

Bridging quantitative models we developed so far altogether, we derived an integrated 

quantitative framework assessing immune homeostasis (Figure 4.26). Curve 1 

illustrates the regulation of the Treg population size by the IL-2 niche size determined 

by the number of self-activated, IL-2 secreting Tconvs or reflected by the frequency of 

pSTAT5+ Tregs (Figure 4.22 and 4.23). Curve 2 illustrates Treg’s negative regulation 

of the number of self-activated IL-2 secreting Tconvs (Figure 4.24 and 4.25). The 

shaded area indicates the region where autoimmune propensity is high enough within 

a lifespan of the host (Figure 4.22 and 4.21). Immune homeostasis is achieved as 

dynamical equilibrium between self-activated IL-2 secreting Tconvs and regulatory T 

cells (the intersection of Curves 1 and 2), which is formed well below thresholds of 

clonal expansion and subsequent autoimmune diseases. The system fluctuates around 

this equilibrium point, being subject to strong restoring forces directing back towards 

the equilibrium point, which ensures the system does not go across the autoimmune 
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region (Figure 4.26). Using this framework, we can reinterpret the role of thymic 

negative selection (Figure 4.27A). It does not have to remove all self-reactive T cells. 

Instead, it needs to prune them to ensure that the equilibrium point resulting from the 

reciprocal interplay between peripheral Tregs and self-activated T cells falls far below 

the autoimmune region. Therefore, even with the seemingly high prevalence of 

peripheral self-reactive T cells (Richards et al., 2015), immune homeostasis far from 

the autoimmune propensity is assured. In this manner, the peripheral TCR repertoire 

can harbor a 4-10% larger TCR repertoire beneficial to fight against foreign pathogens 

or altered self such as cancer. In contrast, thymic involution due to aging hinders 

negative selection, resulting in high autoimmune propensity (Coder et al., 2015).  

We explored several scenarios of deviation of immune homeostasis using this 

framework. With defects in Treg proliferation, the equilibrium point may fall within 

the dangerous region due to the altered curve 1 (Figure 4.27B). If intracellular 

checkpoints are flawed due to some genetic factors, the decision boundary of 

Figure 4.26 Phase portrait proposed as an integrated quantitative framework sewing 

all models explored in this study together. 
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autoimmunity shifts towards left, and thus the equilibrium now may reside within the 

autoimmune region (Figure 4.27C). The anti-CTLA4 immune therapy mainly perturbs 

Curve 1 and the decision threshold of clonal expansion together (Figure 4.27D), which 

makes the system reside near the threshold. Therefore, a significant portion of patients 

treated with this therapy experience immune-related adverse events (Trinh and Hagen, 

2013). 

We next sought to assess immune homeostasis of SFZ70 mice, which are TCR 

transgenic mice generated by knocking in Tcra and Tcrb genes from a self-reactive 

Figure 4.27 Schematic depiction of several scenarios of modulating immune 

homeostasis using the integrated framework. (A) Thymic negative selection. (B) Treg-

intrinsic defects in proliferation and/or survival. (C) Defects in intracellular 

checkpoints for Tconv activation. (D) Anti-CTLA4 antibody treatment. The blue 

arrows indicates the evolution of the system towards a new equilibrium point. 
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Tconv specific to an antigen drained from the skin from a scurfy mouse (Killebrew et 

al., 2011). SFZ70 mice generate both TCR-transgenic Tconvs and Tregs and do not 

develop autoimmunity in homeostasis. The absolute counts of Tconvs and Tregs in skin 

draining lymph nodes in these mice were 1/100 and 1/30 of the counts of those cells in 

wild type mice, respectively.  Unlike in wild type mice, Tconvs in SFZ70 mice are all 

self-reactive, and therefore the size of the IL-2 niche in SFZ70 mice is comparable in 

the order of magnitude to that of wild type mice although the absolute counts differ by 

two orders of magnitude. This enabled the maintenance of the Treg population size that 

is sufficient to ensure the equilibrium point formed in the safe region (Figure 4.28A). 

The activation of DCs by agonistic anti-CD40 antibodies and the resultant upregulation 

of costimulatory signals resulted in autoimmune manifestation in SFZ70 mice 

(Killebrew et al., 2011), which can be recapitulated in our framework in that the 

increased frequency of IL-2 secreting Tconvs and the lowered threshold of clonal 

expansion drive the system to the autoimmune region. 23  Together, our integrated 

                                                 
23 Although this observation may suggest a heightened autoimmune propensity under inflammatory 

conditions, in general, wild type mice or healthy humans do not develop overt autoimmune diseases after 

infections due to the symmetry breaking between self and non-self ensuring the system to remain in the 

Figure 4.28 Assessment of immune homeostasis of SFZ270 mice. (A) Altered immune 

homeostasis of SF270 mice (black) compared to the wild type mice (gray). (B) 

Modulation of immune homeostasis of SFZ70 by DC activation.   
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framework readily provided an intuitive understanding of the establishment of immune 

homeostasis and demonstrated the assessments of the deviation from immune 

homeostasis, potentially guiding efficient treatment modalities reverting the system to 

homeostasis. 

4.3 Discussion 

In this study, we illustrated that immune homeostasis is established as dynamical 

equilibrium between self-activated, IL-2 secreting Tconvs and Tregs, which is formed 

well below thresholds that could result in clonal expansion of self-activated T cells and 

subsequent autoimmune diseases. To arrive at this, we employed various modeling 

approaches describing crucial processes occurring at different organizational levels. 

We began with multiscale modeling of T cell activation occurring via three cell-type 

interactions describing both intracellular and intercellular dynamics of constituent cells 

and molecules. This model recapitulated the two-phase response of T cells, and Treg 

suppression ensures a temporal mismatch between IL-2 secretion and autocrine IL-2 

sensing through the early cease of IL-2 secretion and the aborted upregulation of IL-

2R (Figure 4.2 and 4.3). The application of the MAPPA approach to unbiasedly 

explore the plausible parameter space revealed that the number density of Tregs is the 

most crucial parameter constraining activation phenotypes of self-activated T cells in 

homeostasis, yet the suppression is overridden mostly by the increased costimulatory 

ligand (CD80/86) level in inflammation. Through the probabilistic models of paracrine 

                                                 
safe region (possible mechanisms are proposed in section 2.4.3). On the other hand, in SFZ70 mice, the 

low count of Tregs (1/30 of that of wild type mice) in lymph nodes leads to the failure of the symmetry 

breaking for overcoming increased costimulation. 
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IL-2-mediated T cell clonal expansion, we showed that Treg suppression on individual 

self-activated T cells in homeostasis ensures self-activated T cells do not go through 

clonal expansion under the homeostatic frequency of self-activated, IL-2 secreting 

Tconvs (1-2% of Tconvs). The sharp transition in the probability of clonal expansion 

existed for higher frequencies (> 5%). Lastly, the cell population models revealed that 

such homeostatic frequencies of Tregs and self-activated, IL-2 secreting Tconvs 

ensuring tolerance are determined as equilibrium of opposing regulations between 

these cell populations. Combining and extrapolating all models together, we derived an 

integrated quantitative framework for the intuitive assessment of immune homeostasis 

and demonstrated its potential usage in guiding therapeutic manipulation of immune 

homeostasis.  

The most crucial component among processes ensuring immune homeostasis is 

the negative feedback interaction between self-activated, IL-2 secreting Tconvs and 

Tregs that operates at both cellular and population levels, illustrating the fractal nature 

of this recurrent regulatory motif (Germain, 2012). The net effect of the negative 

feedback arm of this motif across layers is to constrain the activation status of each 

asynchronously self-activated Tconv, the population size of IL-2 secreting Tconvs, and 

the diffusion range of secreted IL-2. These constraints together warrant that self-

activated Tconvs do not undergo clonal expansion even with the paracrine IL-2 niche 

provided by surrounding IL-2 secreting Tconvs. The frequency/number density of 

Tregs is the most influential parameter ensuring this in homeostasis. Intriguingly, the 

positive forward arm via the IL-2 niche provided by self-activated Tconvs enables the 

homeostatic maintenance of the Treg population size in SLOs. Therefore, the design 
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principle of immune homeostasis as a multilayered feedback motif suggests a fresh 

insight over self-activated Tconvs; the prevalent self-reactive Tconvs and their overt 

activation against self-antigens are not an imperfection but an integral part of immune 

homeostasis, driving the system towards dynamical equilibrium.  

Such prevalence of self-activated T cells raised a question; where does a sharp 

decision boundary between tolerance and full-blown clonal expansion of T cells exist? 

The individual Tconvs are ignorant of whether they are seeing self or not. Previous 

theoretical and experimental studies suggested a quorum-regulated mechanism for 

determining full-blown activation and clonal expansion of T cells, but they lacked 

mechanistic explanations on quorum regulation and the consideration of ongoing self-

activations of Tconvs (Bosch et al., 2017; Butler et al., 2013). In this study, we 

quantitatively and mechanistically demonstrated that both the activation status 

(especially the receiver phenotype, IL-2Rmax) of individual self-activated Tconvs at 

the end of initial priming by DCs and the IL-2 niche size provided by self-activated, 

IL-2 secreting Tconvs together determine the probability of going through clonal 

expansion for self-activated Tconvs (section 4.2.5). In homeostasis, the probability 

showed a sharp transition from near 0 to near 1 at a frequency of IL-2 secreting T cells 

substantially above the homeostatic frequency, guaranteeing the dynamical equilibrium 

between Tregs and IL-2 secreting Tconvs is formed within safe regions. Together, our 

results suggested more refined models of a quorum-regulated decision of clonal 

expansion dependent on both cellular and cell population-level parameters. 

Our illustration of immune homeostasis leads us to rethink what the tolerance 

mechanisms optimize. The sizeable peripheral self-reactive repertoire with less danger 
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of autoimmunity suggests that the adaptive immune system may have evolved to 

preserve and even maximize the utility of self-reactivity in the periphery to the extent 

of not causing autoimmunity over the reproductive period of hosts. It has been shown 

that higher self-avidity within the peripheral TCR repertoire shaped by positive 

selection can provide better foreign-specific responses and this may happen at the 

expense of the leakage of overtly self-reactive T cells to the periphery (Mandl et al., 

2013). It has been also suggested that efficient deletion of self-reactive T cells may 

create holes in the TCR repertoire, through which pathogens breach the host (Yu et al., 

2015). Retaining the self-reactive repertoire may also be beneficial for clearing 

neoplasms that may become malignant or physiologically detrimental for the host 

(Kohanim et al., 2019; Menares et al., 2019).  

Our proposed framework suggests a potential benefit in clinical settings. 

Recently, the modulation of immune homeostasis has become a major therapeutic 

modality in treating autoimmunity and cancer. The low-dose IL-2 administration on 

autoimmune patients showed promising therapeutic outcomes relieving symptoms of 

various autoimmune diseases (Rosenzwajg et al., 2019). However, the double-edged 

nature of the IL-2 signals affecting both Tconvs and Tregs requires a more optimized 

determination of IL-2 dosages. Likewise, despite the excellent outcomes and increasing 

indications of immune checkpoint inhibition therapies for treating cancer, a significant 

fraction of patients treated with this modality develop immune-related adverse events 

that sometimes require the cease of the therapy (Esfahani et al., 2020). Even worse, the 

genetic variations in relevant loci related to crucial molecular and cellular components 

in immune homeostasis across patients add additional complexities for preventing and 
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treating autoimmunity and cancer (Farh et al., 2015). In this regard, our framework may 

be able to quantitatively assess the effects of various therapeutic scenarios and subtle 

genetic variations on the modulation of immune homeostasis and guide personalized 

therapeutic plans. Our framework, currently describing the most basic axes, is already 

able to assess the effect of IL-2 administration and CTLA4 reduction. A systematic 

framework to quantitatively link model parameters to patient-specific immune status, 

genetic variations, and therapeutic regimens remained to be developed to move forward 

in this direction. Adding additional components in the models and determining 

uncertain parameters through additional experimental data are also required to make 

our framework more practical. 

As we showcased in this study, different mathematical/computational modeling 

modalities are used for describing different biological organizational layers. The 

entities described in each layer are also distinct. Therefore, an intuitive and 

comprehensive understanding of a multiscale biological system requires sewing 

distinct models seamlessly all together, and this remained challenging. In this regard, 

we suggested a way of bridging different models together by introducing a phase 

portrait depicting all regulatory relationships across scales (Figure 4.26). The 

integration was enabled by identifying quantities that are linked across models. For 

example, we equated the frequency of IL-2 secreting Tconvs with the frequency of 

pSTAT5+ Tregs and collectively considered them as the IL-2 niche size. The IL-2 niche 

size provided by a single self-activated Tconv is spatially limited (Oyler-Yaniv et al., 

2017). Therefore, the volume of the space covered with the IL-2 niche is proportional 

to the frequency of IL-2 secreting Tconvs and reflected with the frequency of pSTAT5+ 
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Tregs obtaining IL-2 signaling. Each of these quantities was related to the probability 

of clonal expansion of self-activated Tconvs (Figure 4.22 and 4.21) and the Treg 

density (Figure 4.23 and Curve 1 of Figure 4.26), respectively, and these relationships 

were plotted along the same horizontal axis (Figure 4.26). Likewise, we derived the 

relationship between the frequency of IL-2 secreting Tconvs and the duration of IL-2 

secretion (IL-2.sec.dur or 𝜏𝑠𝑒𝑐.𝑑𝑢𝑟) (section B.5.3), and the latter was related to the Treg 

density/frequency from the T cell activation model (Figure 4.6C and 4.25). In this way, 

the empirical relationship between the population sizes of IL-2 secreting Tconvs and 

Tregs in Figure 4.24Figure 4.25 was recapitulated quantitatively, forming Curve 2 

(Figure 4.26). 

Lastly, a theoretical consideration points to the intriguing feature of immune 

homeostasis in that the system drives itself by allowing self-reactive Tconvs to respond 

to self-antigens and eventually arrives at dynamical equilibrium between self-activated, 

IL-2 secreting T cells and regulatory T cells. This equilibrium point is itself fluctuating 

yet allows full-blown clonal expansions rarely in homeostasis. Occasional relevant 

signals readily allow the system to go across the transition point to let clonal expansion 

almost certainly happen (discussed in Chapter 2). After the triggering signals are gone, 

then the system goes back to the equilibrium due to various negative feedback 

mechanisms across scales that are not covered in this study. This behavior is 

reminiscent of self-organized criticality (SOC), a class of phenomena described in 

statistical physics, where the system is self-driven to the near-critical regime in terms 

of the control parameter. The control parameter of the system occasionally goes across 

the critical point and exhibits a phase transition. The order parameter defining the 
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distinct phases are intimately coupled to the control parameter and brings the control 

parameter back to the self-driven near-critical regime. The homeostatic condition and 

clonal expansion can be considered as different phases of the adaptive immunity. The 

local density/frequency of self-activated, IL-2 secreting Tconvs and their activation 

status after initial priming can be considered as the control parameters. The exact 

mapping between the adaptive immune system and SOC has not been pursued yet. We 

hypothesize that the cluster formation model (Figure 4.21) in the context of nucleation 

theory may provide a solid connection (Ginot et al., 2018), which may reveal the 

underlying cause of the power-law distribution of clonal sizes in the peripheral TCR 

repertoire (Desponds et al., 2017). 
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Chapter 5: Final discussion and outlook 

 

The overarching goal of this dissertation was to explore scalable approaches of 

dynamical modeling in biology and immunology in search of novel biology by 

interweaving a catalog of numerous parts. This touches on both methodological and 

biological challenges, which arise from the inherent complexities of biological systems 

such as many types of constituent molecules and cells in various spatial compartments 

and complicated interaction among them often occurring across scales in space and 

time.  

Traditional modeling tools from physical/mathematical sciences aimed at 

problems confined in scales often face limits dealing with such complexities despite 

those are invaluable ingredients we can start with. As mentioned in earlier chapters, the 

explosion of the number of model parameters in reasonably detailed models is a major 

hurdle. Additionally, it remained challenging to seamlessly bridge different modeling 

modalities describing different aspects of biological behaviors at different scales and 

thus to readily build multiscale dynamical models.  

To address the explosion of parameters in realistic biological models, we 

introduced a framework, MAPPA to better dissect high-dimensional parameter-

phenotype maps aided by machine learning (ML) regression models trained by Random 

Forests (RF) (Chapter 3). RF ML models readily provide information on tunability vs. 

robustness for model phenotypes at both global and local levels in the parameter space. 

Such ML models are considered as “phenomenological solutions” in analogous to 

analytical solutions in mathematical approaches. However, in MAPPA, phenotypes are 
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flexibly defined out of simulation data, thereby bypassing complicated mathematical 

manipulation of deriving analytical formula linking parameters and phenotypes. We 

applied MAPPA to several problems, such as dissecting gene-gene correlation 

behaviors in single cells and assessing the robustness of Treg suppression of self-

activated T cells. 

In the biological aspect, high-throughput quantitative experimental methods are 

becoming more available even at the subcellular level, and the overarching themes such 

as precision or personalized medicine is now thriving. In this regard, there are unmet 

needs to better understand the complexity of biological system behavior for better 

therapeutic intervention in hope for desired outcomes to prevent and cure diseases. The 

problem is that such behaviors are sometimes beyond mere static and linear input-

output relationships, the maximum that humans may mentally intuit. In earlier chapters, 

we have seen that even a simple model such as a two-gene network generated PoV 

behaviors that were hard to intuit without the quantitative modeling even though fairly 

accumulated knowledge on gene expression processes. The immune homeostasis is 

another example that the delicate balance between self-activated T cells and Tregs kept 

away from autoimmune propensity is formed through the multilayered negative 

feedback circuit occurring at the intracellular, cellular, and cell population levels. 

Therefore, merely tuning one knob, such as the anti-CTLA4 administration, would 

result in both the desired outcomes and an increased risk of the autoimmune side 

effects. These examples illustrate a potentially major role of quantitative modeling in 

this “precision” era in designing and guiding therapeutic interventions tailored to 

individual patients. 
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Apart from dealing with many parameters, realistic biological models capable 

of solving real-world problems should incorporate another dimension of biological 

details, which are different modeling modalities describing different behavioral aspects 

at different organizational levels. In dissecting immune homeostasis (Chapter 4), we 

employed different ways of model integrations. In the T cell activation models, we used 

ODEs for describing the evolution of intracellular entities and PDEs for describing 

diffusion, migration, and the internal states of the entities in the surrounding space. We 

were able to integrate these under the assumption of the spherical symmetry of the 

model and the time separation between ODEs and PDEs (Figure 4.1). Although this is 

still a simple situation given the typical complexity in biology, computational tools for 

flexibly designing and executing these modalities together under more generalized 

situations without the symmetries or time separations do not seem to exist. Another 

approach we employed for bridging dissimilar modeling modalities was to link 

quantities at different scales and merge them to derive a simple phase portrait that 

quantitatively depicts the whole. This approach revealed the nature of immune 

homeostasis (Figure 4.26). However, this approach may not apply for other situations 

since identifying a family of quantities linked together requires biological insights that 

are problem-specific. Together, the integration across modeling modalities needs 

further investigation, yet problem-specific biological insights can also fill the gaps.  

 Immune homeostasis revealed by our integrated framework suggests an 

interesting direction that may immediately help cancer patients. The aforementioned 

autoimmune side effect of the anti-CTLA4 therapy is due to its blind action on both 

tumor neoantigens and other normal tissue-derived self-antigens. As we proposed a 
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potential symmetry breaking mechanism between self and non-self in section 2.4.3, 

introducing new intervention arms such as the low dose IL-2 administration in 

modulating immune homeostasis may enhance asymmetry between tumor neoantigens 

and normal tissue-derived self-antigens and may reduce side effects of immune 

checkpoint inhibition therapies while maintaining the efficacy against cancer antigens. 

Our framework can readily test this possibility in silico. 

 Lastly, as mentioned in Introduction, how can we address the skepticisms 

towards the modeling efforts? Indeed, reductionist biology has created a playground 

where scalable modeling approaches may prove themselves invaluable in biology. 

However, scalable modeling is still in an early stage, and this also requires previous 

modeling efforts describing smaller components. Therefore, it may not always be 

possible to keep up with cutting-edge biology. Overcoming this may require friendly 

and nurturing environments for enough maturity of the modeling field. On the other 

hand, the active engagement between modelers and biologists with a common language 

may help identify immediate biological problems the current stage models can solve.  

Indeed, the work presented in this dissertation was enabled by active interactions with 

experimental biologists. Continuous endeavors in this manner may pave a way to firmly 

establish scalable modeling as an essential approach in biology.  
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Appendix A: Supporting information for Chapter 3 

 

A.1 Glossary 

MAPPA: MAchine learning of Parameter-Phenotype Analysis - the name of our 

framework. 

Parameter space: Multidimensional space in which each dimension is defined by the 

biologically plausible range of each parameter. 

Phenotypes: The quantities reflecting specific aspects of dynamical or stationary 

behaviors of the model/system, which are defined and can be computed using 

dynamical/stochastic simulation results for each parameter combination. 

Phenotypic space: Multidimensional space defined by plausible ranges of each 

phenotype. 

PPM - Parameter-Phenotype Map: Quantitative relationship between parameter 

values and phenotypes of interest. In our work PPMs are fitted as ML (Machine 

Learning) models. 

GVI - Global Variable Importance: The relative contribution of a parameter for 

predicting phenotypes averaged over parameter combinations in the training set.  

LVI - Local Variable Importance: The relative contributions of a parameter for 

predicting phenotypes at a particular point in parameter space (i.e., at a specific 

parameter combination).  

CME - Stochastic or Chemical Master Equation: Equations describing the dynamic 

evolution of probability distribution of system states in chemical reaction networks.  
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SSA - Stochastic Simulation Algorithm: A simulation algorithm that generates 

dynamic trajectories of system states (e.g. the abundance of chemical species) in a 

chemical reaction network. The timing and type of reactions are determined 

probabilistically based on the current system state and kinetic parameters. Ensemble of 

time trajectories constitute time evolution of probabilities of states described by CMEs. 

PoV (Propagation of variation), information transfer, information propagation, 

transmission of information, transmission of variation: These terms were used 

interchangeably; they refer to the phenomenon that variation in gene expression across 

single cells (or dynamic fluctuations over time within single cells) can be propagated 

from gene to gene in gene regulatory networks. This can be captured by gene-gene 

correlations across single cells in a cell population (e.g., via singe cell transcriptomic 

data). 

PPP (see Figure 3.13): A coherent feedforward circuit motif. X positively regulates Y 

(P). Y positively regulates Z (P). X positively regulates Z (P).  

PNP (see Figure 3.13): An incoherent feedforward circuit motif– “incoherent” 

because Z is regulated by X and Y in opposite directions. X positively regulates Y (P). 

Y negatively regulates Z (N). X positively regulates Z (P).  

FC: Fold-change of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) between PPP or PNP circuits with and without the 

Y feedforward arm. 

Transfer function: a mathematical (e.g., Hill) function describing how the activity of 

upstream transcription factors affects that of the downstream promotor/enhancer.  

QF - Quality Factor: A quantity measuring the extent of oscillation in a system. 
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PF - Peak Frequency: The dominant frequency of oscillation in a system identified as 

the most dominant peak in the power spectra (frequency domain analysis) obtained 

from dynamic trajectories. 

LC - Limit Cycle Oscillations: Persistent oscillations with a well-defined 

frequency/period. 

DO - Damped Oscillations: Transient oscillations followed by settling down to stable 

fixed states. 

SS - Stable Steady States: Evolution to fixed stable states without any transient 

oscillations. 

A.2 Model descriptions 

Here we describe variables, parameters, and reactions constituting our models in Figure 

3.3, 3.13, and 3.18. 

A.2.1 Model variables  

The chemical species (or variables) used in this study are as follows (Figure 3.3, 3.13, 

and 3.18): 

𝑔𝑎
𝑋: Gene X with an “active” promoter (on-state) 

𝑔𝑖
𝑋: Gene X with an “inactive” promoter (off-state) 

𝑚𝑋: mRNA transcribed from gene X 

𝑝𝑋: Protein translated from mRNA X 

𝑔𝑎
𝑌: Gene Y with an “active” promoter (on-state) 

𝑔𝑖
𝑌: Gene Y with an “inactive” promoter (off-state) 

𝑚𝑌: mRNA transcribed from gene Y 
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𝑝𝑌: Protein translated from mRNA Y 

𝑔𝑎
𝑍: Gene Z with an “active” promoter (on-state) 

𝑔𝑖
𝑍: Gene Z with an “inactive” promoter (off-state) 

𝑚𝑍: mRNA transcribed from gene Z 

𝑝𝑍: Protein translated from mRNA Z 

A.2.2 Kinetic parameters 

The range of the kinetic parameters (Table A.1) was obtained from the experimental 

literature (Dolken et al., 2008; Jovanovic et al., 2015; Li et al., 2014; Mariani et al., 

2010; Rabani et al., 2011; Raj et al., 2006; Schwanhäusser et al., 2011), similar to what 

we did in our previous work (Martins et al., 2017). We summarized the prior 

experimental findings into biologically feasible ranges for each parameter (Table A.1). 

Based on the reported range of copy numbers of transcription factors (TFs) and 

correlations between protein copy numbers and other quantities such as translation rate 

constants (Milo and Phillips, 2015; Schwanhäusser et al., 2011), we obtained modified 

ranges of the transcription and translation rate constants, which were applied to 

upstream genes acting as TFs in the models (Table A.1). 

Over the course of the model development across different network motifs, we 

tested different ways to specify K (which can be interpreted as the level of the upstream 

TF needed to achieve the half maximum rate of transcription) when sampling parameter 

combinations. For the two-gene network (Figure 3.3), K was fixed to a single value as 

in our previous work (Table A.2) (Martins et al., 2017), while for other circuit motifs 

(Figure 3.13 and 3.18), K was not fixed. For the two-gene negative feedback network  
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Table A.1 Kinetic parameters with biologically plausible ranges from the literature. 

(Related to Figure 3.3, 3.13, and 3.18) Superscripts are used to denote the gene (for 

example, 𝑘𝑜𝑓𝑓
𝑋 ) and subscripts are used to denote parameters involved in the interaction 

between genes, for example, 𝐾𝑋𝑍 and 𝑛𝑋𝑍 for interaction between protein X and the 

promoter/enhancer of gene Y). *For genes encoding transcription factors.  **The value 

was fixed as our previous work (Martins et al., 2017). ***In our analyses, these 

parameters were rescaled and expressed as a ratio to the estimated mean copy number 

of the protein. 

(Figure 3.18), the unit of K was the copy number, which is the same as that for proteins 

(Table A.4). For the three-gene feedforward networks (Figure 3.13), we tested 

specifying K as a relative quantity, namely as a ratio to the mean copy number of the 

upstream TF estimated from the corresponding deterministic model at steady state 

(Table A.3). For downstream analyses including ML model training and visualizations, 

we decided to make the unit of K consistent across models as the relative ratio, and 

thus we converted the unit of K in the two-gene negative feedback network copy 

number to the relative ratio. Observing that the resultant values of K span several orders 

Parameter Description (unit) Range 

𝒌𝒐𝒏 
The rate of switching of the promoter 

state from off- to on-state (event/hour) 
0.04-0.4 

𝒌𝒐𝒇𝒇 
The rate of switching of the promoter 

state from on- to off-state (event/hour) 
0.01-0.5 

𝒌𝒎 
The maximum rate of mRNA 

production (events/hour) 

0.1-3500 

(0.1-1000)* 

𝒅𝒎 
The rate of mRNA degradation 

(events/molecule/hour) 
0.004-16 

𝒌𝒑 
The rate of protein production 

(events/molecule/hour) 

0.1-20000 

(0.1-1000)* 

𝒅𝒑 
The rate of protein degradation 

(events/molecule/hour) 
0.0005-6 

𝒏 

Cooperativity for Hill functions of 

proteins (Hill coefficient) regulating 

the promoters/enhancers of 

downstream genes 

1 

1-5 

1, 5 

𝑲 

The level (copy number or ratio to 

mean protein copy number) of the 

protein needed to achieve half 

maximum transcriptional rate for the 

downstream gene 

133.33 (copy number) for two-gene** 

30-3000 (copy number) for two-gene 

negative feedback*** 

0.2-5 for (ratio) for three-gene 

feedforward 
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of magnitude (10−4~104), we applied the base-10 logarithm transformation, resulting 

in K spanning the range -4 to 4. 

A.2.3 Chemical reactions and the deterministic dynamics for each system 

The following biochemical reactions are modeled in the two-gene network (Figure 

3.3). 

Reaction Description Propensity 

𝒈𝒊
𝑿⟶ 𝒈𝒂

𝑿 
Promoter activation of gene 

X 
𝑘𝑜𝑛
𝑋 ∙ 𝑔𝑖

𝑋 (A. 1) 

𝒈𝒂
𝑿⟶ 𝒈𝒊

𝑿 
Promoter deactivation of 

gene X 
𝑘𝑜𝑓𝑓
𝑋 ∙ 𝑔𝑎

𝑋 (A. 2) 

𝒈𝒂
𝑿⟶ 𝒈𝒂

𝑿 +𝒎𝑿 
mRNA X production: 

Transcription of gene X 
𝑘𝑚
𝑋 ∙ 𝑔𝑎

𝑋 (A. 3) 

𝒎𝑿⟶𝒎𝑿 + 𝒑𝑿 
Protein X production: 

Translation of mRNA X 
𝑘𝑚
𝑋 ∙ 𝑚𝑋 (A. 4) 

𝒎𝑿⟶ ∅ Degradation of mRNA X 𝑑𝑚
𝑋 ∙ 𝑚𝑋 (A. 5) 

𝒑𝑿⟶ ∅ Degradation of protein X 𝑑𝑝
𝑋 ∙ 𝑝𝑋 (A. 6) 

𝒈𝒊
𝒀   ⟶ 𝒈𝒂

𝒀 
Promoter activation of gene 

Y 
𝑘𝑜𝑛
𝑌 ∙ 𝑔𝑖

𝑌 ( A. 7) 

𝒈𝒂
𝒀   ⟶ 𝒈𝒊

𝒀 
Promoter deactivation of 

gene Y 
𝑘𝑜𝑓𝑓
𝑌 ∙ 𝑔𝑎

𝑌 (A. 8) 

𝒈𝒂
𝒀 + 𝒑𝑿⟶ 𝒈𝒂

𝒀 + 𝒑𝑿 +𝒎𝒀 
mRNA Y production: 

Transcription of gene Y 
𝑔𝑎
𝑌 ∙ 𝑘𝑚

𝑌 ∙
𝑝𝑋
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑝𝑋𝑛𝑋𝑌

(A. 9) 

𝒎𝒀⟶𝒎𝒀 + 𝒑𝒀 
Protein Y production: 

Translation of mRNA Y 
𝑘𝑚
𝑃 ∙ 𝑚𝑌 (A. 10) 

𝒎𝒀⟶ ∅ Degradation of mRNA Y 𝑑𝑚
𝑌 ∙ 𝑚𝑌 (A. 11) 

𝒑𝒀⟶ ∅ Degradation of protein Y 𝑑𝑝
𝑌 ∙ 𝑝𝑌 (A. 12) 

 

The following equations are deterministic descriptions of the reactions above using 

ordinary differential equations:  

𝑑𝑚𝑋
𝑑𝑡

=
𝑘𝑜𝑛
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 ∙ 𝑘𝑚

𝑋 − 𝑑𝑚
𝑋 ∙ 𝑚𝑋 (A. 13) 

𝑑𝑝𝑋
𝑑𝑡

= 𝑘𝑝
𝑋 ∙ 𝑚𝑋 − 𝑑𝑝

𝑋 ∙ 𝑝𝑋 (A. 14) 

𝑑𝑚𝑌
𝑑𝑡

=
𝑘𝑜𝑛
𝑌

𝑘𝑜𝑛𝑌 + 𝑘𝑜𝑓𝑓
𝑌 ∙

𝑝𝑋
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑝𝑋𝑛𝑋𝑌

∙ 𝑘𝑚
𝑌 − 𝑑𝑚

𝑌 ∙ 𝑚𝑌 (A. 15) 



 

 142 

 

𝑑𝑝𝑋
𝑑𝑡

= 𝑘𝑝
𝑌 ∙ 𝑚𝑌 − 𝑑𝑝

𝑌 ∙ 𝑝𝑌. (A. 16) 

Stationary states can be estimated by setting derivatives in the left-hand side of 

equations above equal to zero, resulting in the following expressions: 

𝑚𝑋̅̅ ̅̅ =
𝑘𝑜𝑛
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 ∙

𝑘𝑚
𝑋

𝑑𝑚𝑋
, (A. 17) 

𝑝𝑋̅̅ ̅ =
𝑘𝑝
𝑋

𝑑𝑝𝑋
∙ 𝑚𝑋̅̅ ̅̅ , (A. 18) 

𝑚𝑌̅̅ ̅̅ =
𝑘𝑜𝑛
𝑌

𝑘𝑜𝑛𝑌 + 𝑘𝑜𝑓𝑓
𝑌 ∙

𝑝𝑋̅̅ ̅
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑝𝑋̅̅ ̅

𝑛𝑋𝑌
∙
𝑘𝑚
𝑌

𝑑𝑚𝑌
, (A. 19) 

𝑝𝑌̅̅ ̅ =
𝑘𝑝
𝑌

𝑑𝑝𝑌
∙ 𝑚𝑌̅̅ ̅̅ . (A. 20) 

The following reactions describe the elements of the three-gene feedforward 

networks (PPP and PNP) (Figure 3.13). 

Reaction Description Propensity 

𝒈𝒊
𝑿 ⟶ 𝒈𝒂

𝑿 
Promoter activation 

of gene X 
𝑘𝑜𝑛
𝑋 ∙ 𝑔𝑖

𝑋 (A. 21) 

𝒈𝒂
𝑿 ⟶ 𝒈𝒊

𝑿 

Promoter 

deactivation of gene 

X 

𝑘𝑜𝑓𝑓
𝑋 ∙ 𝑔𝑎

𝑋 (A. 22) 

𝒈𝒂
𝑿

⟶ 𝒈𝒂
𝑿 +𝒎𝑿 

mRNA X 

production: 

Transcription of gene 

X 

𝑘𝑚
𝑋 ∙ 𝑔𝑎

𝑋 (A. 23) 

𝒎𝑿

⟶𝒎𝑿 + 𝒑𝑿 

Protein X 

production: 

Translation of 

mRNA X 

𝑘𝑚
𝑋 ∙ 𝑚𝑋 (A. 24) 

𝒎𝑿⟶ ∅ 
Degradation of 

mRNA X 
𝑑𝑚
𝑋 ∙ 𝑚𝑋 (A. 25) 

𝒑𝑿⟶ ∅ 
Degradation of 

protein X 
𝑑𝑝
𝑋 ∙ 𝑝𝑋 (A. 26) 

𝒈𝒊
𝒀   ⟶ 𝒈𝒂

𝒀 
Promoter activation 

of gene Y 
𝑘𝑜𝑛
𝑌 ∙ 𝑔𝑖

𝑌 (A. 27) 

𝒈𝒂
𝒀   ⟶ 𝒈𝒊

𝒀 

Promoter 

deactivation of gene 

Y 

𝑘𝑜𝑓𝑓
𝑌 ∙ 𝑔𝑎

𝑌 (A. 28) 
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𝒈𝒂
𝒀 + 𝒑𝑿
⟶ 𝒈𝒂

𝒀 + 𝒑𝑿
+𝒎𝒀 

mRNA Y 

production: 

Transcription of gene 

Y 

𝑔𝑎
𝑌 ∙ 𝑘𝑚

𝑌 ∙
𝑝𝑋
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑃𝑋

𝑛𝑋𝑌
(A. 29) 

𝒎𝒀

⟶𝒎𝒀 + 𝒑𝒀 

Protein Y 

production: 

Translation of 

mRNA Y 

𝑘𝑚
𝑃 ∙ 𝑚𝑌 (A. 30) 

𝒎𝒀⟶ ∅ 
Degradation of 

mRNA Y 
𝑑𝑚
𝑌 ∙ 𝑚𝑌 (A. 31) 

𝒑𝒀⟶ ∅ 
Degradation of 

protein Y 
𝑑𝑝
𝑌 ∙ 𝑝𝑌 (A. 32) 

𝒈𝒊
𝒁⟶ 𝒈𝒂

𝒁 
Promoter activation 

of gene Z 
𝑘𝑜𝑛
𝑍 ∙ 𝑔𝑖

𝑍 (A. 33) 

𝒈𝒂
𝒁⟶ 𝒈𝒊

𝒁 

Promoter 

deactivation of gene 

Z 

𝑘𝑜𝑓𝑓
𝑍 ∙ 𝑔𝑎

𝑍 (A. 34) 

𝒈𝒂
𝒁 + 𝒑𝑿 + 𝒑𝒀 

⟶ 𝒈𝒂
𝒁 + 𝒑𝑿

+ 𝒑𝒀 +𝒎𝒁 

mRNA Z production: 

Transcription of gene 

Z 

𝑔𝑎
𝑍 ∙ 𝑘𝑚

𝑍 ∙
𝑝𝑋
𝑛𝑋𝑍

𝐾𝑋𝑍
𝑛𝑋𝑍 + 𝑝𝑋

𝑛𝑋𝑍
∙

𝑝𝑌
𝑛𝑌𝑍

𝐾𝑌𝑍
𝑛𝑌𝑍 + 𝑃𝑌

𝑛𝑌𝑍
; PPP(A. 35) 

𝑔𝑎
𝑍 ∙ 𝑘𝑚

𝑍 ∙
𝑝𝑋
𝑛𝑋𝑍

𝐾𝑋𝑍
𝑛𝑋𝑍 + 𝑝𝑥

𝑛𝑋𝑍
∙

𝐾𝑌𝑍
𝑛𝑌𝑍

𝐾𝑌𝑍
𝑛𝑌𝑍 + 𝑝𝑌

𝑛𝑌𝑍
; PNP(A. 36) 

𝒎𝒁

⟶𝒎𝒁 + 𝒑𝒁 

Protein Z production: 

Translation of 

mRNA Z 
𝑘𝑚
𝑍 ∙ 𝑚𝑍 (A. 37) 

𝒎𝒁⟶  ∅ 
Degradation of 

mRNA Z 
𝑑𝑚
𝑍 ∙ 𝑚𝑍 (A. 38) 

𝒑𝒁⟶  ∅ 
Degradation of 

protein Z 
𝑑𝑝
𝑍 ∙ 𝑝𝑍 (A. 39) 

 

The deterministic descriptions are: 

𝑑𝑚𝑋
𝑑𝑡

=
𝑘𝑜𝑛
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 ∙ 𝑘𝑚

𝑋 − 𝑑𝑚
𝑋 ∙ 𝑚𝑋 , (A. 40) 

𝑑𝑝𝑋
𝑑𝑡

= 𝑘𝑝
𝑋 ∙ 𝑚𝑋 − 𝑑𝑝

𝑋 ∙ 𝑝𝑋 , (A. 41) 

𝑑𝑚𝑌
𝑑𝑡

=
𝑘𝑜𝑛
𝑌

𝑘𝑜𝑛𝑌 + 𝑘𝑜𝑓𝑓
𝑌 ∙

𝑝𝑋
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑝𝑋𝑛𝑋𝑌

∙ 𝑘𝑚
𝑌 − 𝑑𝑚

𝑌 ∙ 𝑚𝑌, (A. 42) 

𝑑𝑝𝑌
𝑑𝑡

= 𝑘𝑝
𝑌 ∙ 𝑚𝑌 − 𝑑𝑝

𝑌 ∙ 𝑝𝑌, (A. 43) 

𝑑𝑚𝑍
𝑑𝑡

=

{
 
 

 
 

𝑘𝑜𝑛
𝑍

𝑘𝑜𝑛𝑍 + 𝑘𝑜𝑓𝑓
𝑍 ∙

𝑝𝑋
𝑛𝑋𝑍

𝐾𝑋𝑍
𝑛𝑋𝑍 + 𝑝𝑋𝑛𝑋𝑍

∙
𝑝𝑌
𝑛𝑌𝑍

𝐾𝑌𝑍
𝑛𝑌𝑍 + 𝑝𝑌𝑛𝑌𝑍

∙ 𝑘𝑚
𝑍 − 𝑑𝑚

𝑍 ∙ 𝑚𝑍; PPP

𝑘𝑜𝑛
𝑍

𝑘𝑜𝑛𝑍 + 𝑘𝑜𝑓𝑓
𝑍 ∙

𝑝𝑋
𝑛𝑋𝑍

𝐾𝑋𝑍
𝑛𝑋𝑍 + 𝑝𝑋𝑛𝑋𝑍

 ∙
𝐾𝑌𝑍

𝑛𝑌𝑍

𝐾𝑌𝑍
𝑛𝑌𝑍 + 𝑝𝑌𝑛𝑌𝑍

 ∙ 𝑘𝑚
𝑍 − 𝑑𝑚

𝑍 ∙ 𝑚𝑍; PNP

, (A. 44) 
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𝑑𝑝𝑍
𝑑𝑡

= 𝑘𝑝
𝑍 ∙ 𝑚𝑍 − 𝑑𝑝

𝑍 ∙ 𝑝𝑍. (A. 45) 

Stationary states were obtained as follows: 

𝑚𝑋̅̅ ̅̅ =
𝑘𝑜𝑛
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 ∙

𝑘𝑚
𝑋

𝑑𝑚𝑋
, (A. 46) 

𝑝𝑋̅̅ ̅ =
𝑘𝑝
𝑋

𝑑𝑝𝑋
∙ 𝑚𝑋̅̅ ̅̅ , (A. 47) 

𝑚𝑌̅̅ ̅̅ =
𝑘𝑜𝑛
𝑌

𝑘𝑜𝑛𝑌 + 𝑘𝑜𝑓𝑓
𝑌 ∙

𝑝𝑋̅̅ ̅
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑝𝑋̅̅ ̅

𝑛𝑋𝑌
∙
𝑘𝑚
𝑌

𝑑𝑚𝑌
, (A. 48) 

𝑝𝑌̅̅ ̅ =
𝑘𝑝
𝑌

𝑑𝑝𝑌
∙ 𝑚𝑌̅̅ ̅̅ , (A. 49) 

𝑚𝑍̅̅ ̅̅ =

{
 
 

 
 

𝑘𝑜𝑛
𝑍

𝑘𝑜𝑛𝑍 + 𝑘𝑜𝑓𝑓
𝑍 ∙

𝐾𝑋𝑍
𝑛𝑋𝑍

𝐾𝑋𝑍
𝑛𝑋𝑍 + 𝑝𝑋𝑛𝑋𝑍

 ∙
𝑝𝑌̅̅ ̅
𝑛𝑌𝑍

𝐾𝑌𝑍
𝑛𝑌𝑍 + 𝑝𝑌̅̅ ̅

𝑛𝑌𝑍
∙
𝑘𝑚
𝑍

𝑑𝑚𝑍
; PPP

𝑘𝑜𝑛
𝑍

𝑘𝑜𝑛𝑍 + 𝑘𝑜𝑓𝑓
𝑍 ∙

𝑝𝑋̅̅ ̅
𝑛𝑋𝑍

𝐾𝑋𝑍
𝑛𝑋𝑍 + 𝑝𝑋̅̅ ̅

𝑛𝑋𝑍
 ∙

𝐾𝑌𝑍
𝑛𝑌𝑍

𝐾𝑌𝑍
𝑛𝑌𝑍 + 𝑝𝑌̅̅ ̅

𝑛𝑌𝑍
∙
𝑘𝑚
𝑍

𝑑𝑚𝑍
; PNP

, (A. 50) 

𝑝𝑍̅̅ ̅ =
𝑘𝑝
𝑍

𝑑𝑝𝑍
∙ 𝑚𝑍̅̅ ̅̅ . (A. 51) 

 The following reactions describe the elements of the two-gene negative 

feedback network (Figure 3.18). 

Reaction Description Propensity 
𝒈𝒊
𝑿⟶ 𝒈𝒂

𝑿 Promoter activation of gene X 𝑘𝑜𝑛
𝑋 ∙ 𝑔𝑖

𝑋 (A. 52) 

𝒈𝒂
𝑿⟶ 𝒈𝒊

𝑿 
Promoter deactivation of gene 

X 
𝑘𝑜𝑓𝑓
𝑋 ∙ 𝑔𝑎

𝑋 (A. 53) 

𝒈𝒂
𝑿 + 𝒑𝒀⟶ 𝒈𝒂

𝑿 + 𝒑𝒀 +𝒎𝑿 
mRNA X production: 

Transcription of gene X 
𝑔𝑎
𝑋 ∙ 𝑘𝑚

𝑋 ∙
𝐾𝑌𝑋

𝑛𝑌𝑋

𝐾𝑌𝑋
𝑛𝑌𝑋 + 𝑝𝑌

𝑛𝑌𝑋
(A. 54) 

𝒎𝑿⟶𝒎𝑿 + 𝒑𝑿 
Protein X production: 

Translation of mRNA X 
𝑘𝑚
𝑋 ∙ 𝑚𝑋 (A. 55) 

𝒎𝑿 ⟶ ∅ Degradation of mRNA X 𝑑𝑚
𝑋 ∙ 𝑚𝑋 (A. 56) 

𝒑𝑿⟶ ∅ Degradation of protein X 𝑑𝑝
𝑋 ∙ 𝑝𝑋 (A. 57) 

𝒈𝒊
𝒀  ⟶ 𝒈𝒂

𝒀 Promoter activation of gene Y 𝑘𝑜𝑛
𝑌 ∙ 𝑔𝑖

𝑌 (A. 58) 

𝒈𝒂
𝒀  ⟶ 𝒈𝒊

𝒀 
Promoter deactivation of gene 

Y 
𝑘𝑜𝑓𝑓
𝑌 ⋅ 𝑔𝑎

𝑋 (A. 59) 

𝒈𝒂
𝒀 + 𝒑𝑿⟶ 𝒈𝒂

𝒀 + 𝒑𝑿 +𝒎𝒀 
mRNA Y production: 

Transcription of gene Y 
𝑔𝑎
𝑌 ∙ 𝑘𝑚

𝑌 ∙
𝑝𝑋
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑝𝑋

𝑛𝑋𝑌
(A. 60) 

𝒎𝒀⟶𝒎𝒀 + 𝒑𝒀 Protein Y production: 𝑘𝑚
𝑃 ∙ 𝑚𝑌 (A. 61) 
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Translation of mRNA Y 

𝒎𝒀⟶ ∅ Degradation of mRNA Y 𝑑𝑚
𝑌 ⋅ 𝑚𝑌 (A. 62) 

𝒑𝒀⟶ ∅ Degradation of protein Y 𝑑𝑝
𝑌 ∙ 𝑝𝑌 (A. 63) 

 

Corresponding deterministic descriptions of reactions are: 

𝑑𝑚𝑋
𝑑𝑡

=
𝑘𝑜𝑛
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 ∙

𝐾𝑌𝑋
𝑛𝑌𝑋

𝐾𝑌𝑋
𝑛𝑌𝑋 + 𝑝𝑌𝑛𝑌𝑋

 ∙ 𝑘𝑚
𝑋 − 𝑑𝑚

𝑋 ∙ 𝑚𝑋 , (A. 64) 

𝑑𝑝𝑋
𝑑𝑡

= 𝑘𝑝
𝑋 ∙ 𝑚𝑋 − 𝑑𝑝

𝑋 ∙ 𝑝𝑋 , (A. 65) 

𝑑𝑚𝑌
𝑑𝑡

=
𝑘𝑜𝑛
𝑌

𝑘𝑜𝑛𝑌 + 𝑘𝑜𝑓𝑓
𝑌 ∙

𝑝𝑋
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑝𝑋𝑛𝑋𝑌

∙ 𝑘𝑚
𝑌 − 𝑑𝑚

𝑌 ∙ 𝑚𝑌, (A. 66) 

𝑑𝑝𝑌
𝑑𝑡

= 𝑘𝑝
𝑌 ∙ 𝑚𝑌 − 𝑑𝑝

𝑌 ∙ 𝑝𝑌. (A. 67) 

The corresponding stationary states are:  

𝑚𝑋̅̅ ̅̅ =
𝑘𝑜𝑛
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 ∙

𝐾𝑌𝑋
𝑛𝑌𝑋

𝐾𝑌𝑋
𝑛𝑌𝑋 + 𝑝𝑌̅̅ ̅

𝑛𝑌𝑋
∙
𝑘𝑚
𝑋

𝑑𝑚𝑋
, (A. 68) 

𝑝𝑋̅̅ ̅ =
𝑘𝑝
𝑋

𝑑𝑝𝑋
∙ 𝑚𝑋̅̅ ̅̅ , (A. 69) 

𝑚𝑌̅̅ ̅̅ =
𝑘𝑜𝑛
𝑌

𝑘𝑜𝑛𝑌 + 𝑘𝑜𝑓𝑓
𝑌 ∙

𝑝𝑋̅̅ ̅
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑝𝑋̅̅ ̅

𝑛𝑋𝑌
∙
𝑘𝑚
𝑌

𝑑𝑚𝑌
 , (A. 70) 

𝑝𝑌̅̅ ̅ =
𝑘𝑝
𝑌

𝑑𝑝𝑌
∙ 𝑚𝑌̅̅ ̅̅ . (A. 71) 

A.3 Sampling of parameter combinations 

To obtain the system’s phenotypic behavior throughout the biologically plausible 

parameter space, our strategy was to sample parameter combinations unbiasedly (but 

sparsely to keep computational cost reasonable). 

We first used a simple ‘uniform grid scheme’ for the two-gene network and the 

two-gene negative feedback network. The range of each parameter was divided into 
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discrete points uniformly in the original or logarithmic scales based on the range of 

each parameter determined by the distribution reported in the literature (Jovanovic et 

al., 2015; Schwanhäusser et al., 2011). Then, we sampled parameter combinations by 

randomly selecting a value out of the grid points for each parameter. For the two-gene 

network, for example, it has 1010 possible parameter combinations since each of the 10 

parameters was divided into 10 grid points; there a total of 105 parameter combinations 

were sampled (Table A.2). For the two-gene negative feedback network having 12 

parameters total, 8, 2, and 2 were divided into 10, 5, and 2 grid points, respectively, 

resulting in a total of 1014 possible parameter combinations (Table A.4).  

Second, we used the ‘Sobol’ sampling scheme’ for the three-gene feedforward 

networks due to the larger number of parameters. The Sobol’ sequence is a low-

discrepancy and quasi-random sequence, which fills the unit interval (0,1) more evenly 

than a pseudorandom sequence (Sobol’, 1967), thus is appropriate for our goal of 

sampling parameter combinations as uniformly as possible in the high-dimensional 

parameter space. Using a Sobol’ sequence generator implemented in the randtoolbox 

package in R, a 16-dimensional Sobol’ sequence of 105 points filling a (0,1)16 

hypercube was generated. Then, this sequence was rescaled linearly in the original or 

logarithmic scales to fit the parameter ranges previously specified for the three-gene 

feedforward networks (Table A.3). To further specify the network type (out of the 8 

possible types (Mangan and Alon, 2003)) for each of parameter combinations, we 

added a sign (positive and negative) to the Hill coefficients and randomly assigned 

either a + or – to 𝑛𝑋𝑌, 𝑛𝑌𝑍, and 𝑛𝑋𝑍, respectively, where the +/- signs represent positive 

and negative regulation/influence on downstream promoters, respectively. Thus, either 
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activating or repressive Hill functions were used based on the sign of the Hill 

coefficients during simulations. In the main text/analysis, we only considered two of 

the most prevalent types (PPP and PNP; Figure 3.13).   

We also note that Latin hypercube sampling is another possible scheme, 

although we did not use in our current work (Mckay et al., 2000). In the context of 

global sensitivity analysis, it has been reported that both the Sobol’ sequence and the 

Latin hypercube work better than pseudorandom sequence, but the relative 

performance between Sobol and Latin hypercube is less clear (Homma and Saltelli, 

1996; Mckay et al., 2000; Saltelli et al., 2012). 

We further tested the Sobol’ sampling scheme for the simple two-gene and two-

gene negative feedback networks and compared ML model performance from this 

scheme to that from the uniform grid scheme for different training sample sizes. The 

ranges of parameters for the Sobol’ sampling scheme were the same as those for the 

uniform grid sampling scheme. 

A.4 Parameter key 

Each of the sampled parameter combination was assigned a unique key to make it easily 

identifiable. The basic syntax for parameter keys is [date of sampling]_[letter 

combinations] (e.g., 111315_AAAAENMF). 

A.5 Additional sampling around specific parameter neighborhoods 

Once simulations for the uniformly sampled parameter combinations were conducted 

for the two-gene, three-gene feedforward, two-gene negative feedback networks 

(Figure 3.3, 3.13, and 3.18) and phenotypes of interest were computed, we sought to 
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obtain a more detailed picture around the regions of the parameter space that exhibit 

interesting but rare phenotypic states (e.g., high correlations between the genes in the 

two-gene network). We thus sampled additional parameter combinations around those 

regions, conducted simulations for these combinations, and augmented this additional 

data for training new ML models (see Figure 3.5A).  

The detailed method we implemented is as follows. First, parameter 

combinations exhibiting phenotypic states of interest were selected. Second, for each 

parameter combination of interest, the sub-range of detailed sampling for each 

parameter was created (with 1/10 the width of the original parameter range and centered 

at its value in the parameter combination). Third, additional parameter combinations 

were sampled on these sub-ranges using the uniform grid sampling scheme or the Sobol’ 

sampling scheme as described above. Finally, we conducted stochastic simulations for 

these new parameter combinations and computed the phenotypes of interest based on 

the simulation results. Note that for the three-gene feedforward circuit motifs, the 

parameter combinations for additional sampling were chosen based on a hard cutoff: 

we selected those whose 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌) in the circuit with Y differ from that without 

Y by least 0.2 (Figure A.7A-B). This was chosen qualitatively through visual inspection 

of the left panels of Figure A.7A-B to enrich for parameter combinations in the off-

diagonal regions. 

A.6 Stochastic simulation scheme 

As mentioned in the main text, we used Gillespie’s Stochastic Simulation Algorithm 

(SSA) to generate dynamic trajectories for each of the parameter combinations 

(Gillespie, 2007). To save space for data storage, we stored the simulation data once 
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every 5 minutes. To ensure that the copy numbers of mRNAs and proteins stay within 

biologically feasible ranges, we applied a filtering step before starting simulations, such 

that only parameter combinations for which the estimated mean (steady-state) copy 

numbers of mRNAs and proteins of genes do not exceed 1,000 and 2,000,000 copies, 

respectively, can proceed to simulation (Milo and Phillips, 2015; Schwanhäusser et al., 

2011).   

We used the following procedure to obtain stationary time trajectories. First, 

we estimated the time scale under which the system would fluctuate around the mean 

copy number of chemical species based on deterministic differential equations. Each 

chemical species fluctuates differently in accordance with the “firing” rates of the 

chemical species and the slowest reactions determine the overall timescale of 

fluctuation. For proteins and mRNAs, the contributors to the firing rate are degradation 

and synthesis rates. The mean firing rate can be estimated as: 

𝑓𝑟 = 𝑘 + 𝑑 ∙ 𝐴̅ ≈ 2 ∙ 𝑑 ∙ 𝐴̅, (A. 72)  

where fr: the firing rate, k: the synthesis rate, d: the degradation rate, 𝐴̅: the mean copy 

number of the species; ‘≈’ indicates the stationary state where 𝑘 = 𝑑 ∙ 𝐴̅. Therefore, 

we have an expression that depends only on the degradation rate and the mean copy 

number. Assuming this firing occurs as a Poisson process, the variance of the number 

of firing events per unit time is also the firing rate itself. We can define a time scale, 𝜏𝑓 

as: 

𝜏𝑓 ≡
𝐴̅

𝑓𝑟
=

1

2 ∙ 𝑑
. (A. 73) 

This as a mean time interval during which the variance of the number of firing events 

is the same as the mean copy number of the chemical species, which can be interpreted 
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as the time it takes to randomize the system such that the “information/memory” about 

the copy number is lost after this time interval. A related interpretation is that the 

waiting time of the Poisson process is exponentially distributed with mean waiting time 

for a single firing event being the inverse of the firing rate (1/(2 ∙ 𝑑 ∙ 𝐴̅)), thus it would 

take on average 𝜏𝑓  units of time for 𝐴̅  firing events to occur. For promoters, for 

example, 𝜏𝑓  can be estimated as 1/𝑘𝑜𝑓𝑓  or 1/𝑘𝑜𝑛 . The maximum of 𝜏𝑓  among all 

chemical species, 𝜏𝑓,𝑚𝑎𝑥, can be considered as a good approximation of the time scale 

of fluctuation for the system. To obtain a stationary time trajectory of the system, a 

simulation needs to span multiple intervals of 𝜏𝑓,𝑚𝑎𝑥 to allow the system to explore 

distinct regions of the state space. This argument is supported by theoretical studies, 

for example, see (Elf and Ehrenberg, 2003; Gillespie, 2000). 

Having defined the time scale of fluctuation, 𝜏𝑓,𝑚𝑎𝑥 , given system with a 

particular parameter combination, we divided the simulation into two phases: 1) a burn-

in phase with a duration of 4 ∙ 𝜏𝑓,𝑚𝑎𝑥 and 2) the main phase with duration of multiples 

of 20 ∙ 𝜏𝑓,𝑚𝑎𝑥 (see below). The simulation begins with the burn-in phase with the initial 

condition of zero copies for mRNAs and proteins and inactivated states for promoters, 

which allows the copy numbers of each species to build up to or near the stationary 

values; the data from the burn-in phase is discarded in later analyses. Then, the main 

phase begins and generates time trajectories of each molecular species until the 

stationary test is passed (see below) or a time limit, 𝑡𝑚𝑎𝑥 , is reached. Only the 

trajectories that passed the stationary test were used for downstream analyses. 

The stationary test was conducted after every 20 ∙ 𝜏𝑓,𝑚𝑎𝑥  and the test was 

performed using only the last 2/3 of the data/trajectories (partly to mitigate the risk that 
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the copy number did not yet reach near the steady-state values) and consisted of two 

steps. In the first step, the mean values of two halves of the data (latter 2/3) were 

compared. If the difference between the two values is less than a cut-off (expressed as 

a percentage of the mean value of the first half of the data), then the second step is 

applied. If not, the simulation would continue for another 20 ∙ 𝜏𝑓,𝑚𝑎𝑥. In the second 

step, we used the KPSS test (Kwiatkowski et al., 1992) to evaluate stationarity for 

higher order moments since the phenotypes of interest involved cross-correlations and 

power spectra involving second moments. We stopped the simulation if the generated 

trajectory passed the test or continued for another 20 ∙ 𝜏𝑓,𝑚𝑎𝑥 if it failed the test. 

A.7 Machine learning scheme 

We used Random Forests (RF) (Breiman, 2001) to build machine learning (ML) 

models that learn the nonlinear relationships between parameters and phenotypes. We 

combined each parameter combination with its phenotype computed from the 

simulations (e.g., correlations between mRNAs X and Y) to form a data table; we then 

partitioned the data into training and test sets with the ratio of ~4:1 and only the training 

set was used in fitting the model. The function randomForest in the R package 

randomForest was applied to the training set to construct an ensemble of 500 decision 

trees (Breiman, 2001). Once trained, we tested the ML model using the unseen test set. 

The prediction performance of the ML model was shown as Receiver Operator 

Characteristic (ROC) and recall-precision curves for classification ML models (the area 

under these curves (AUC) was used as the quantitative metric), and the Pearson 

correlation coefficient between the predicted and simulated values was used for the RF 

regression based ML models (for predicting continuous values such as gene-gene 
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correlation). For GVI, LVI, and in-silico parameter perturbation analyses, we trained 

ML models by using the entire data set for maximal performance since our goal is to 

predict the effect of unseen perturbations followed by evaluation by additional 

stimulations.  

For the two-gene (Figure 3.3), three-gene feedforward (Figure 3.13), and two-

gene feedback (Figure 3.18) networks, to evaluate whether the use of additional 

samples drawn nearby the parameter combinations exhibiting desirable phenotypes 

(see above) can lead to improved prediction accuracy, we first trained ML models using 

only the “initial” data (without additional samples) and used the “combined” data (with 

additional samples) to train another model (Figure 3.5A). We saw that the performance 

of the combined ML models was indeed better (or at least comparable to) than that of 

the initial ML models (Figure A.2B-C and A.12A-B, data not shown for the three-gene 

feedforward networks). We thus used combined ML models for the rest of analyses, 

including the determination of GVIs and LVIs and in the in-silico perturbation 

experiments. 

We used RF regression models for continuous value phenotypes. To address 

the inherent bias of RF regression (Breiman, 1996; Zhang and Lu, 2012), we applied a 

bias correction method for all ML regression models we trained in this study (Zhang 

and Lu, 2012). Briefly, we trained additional models for the “error” or the residuals 

𝑦 − 𝑦̂, where y is the phenotypic value from the training set and 𝑦̂ is the value predicted 

by the uncorrected, original RF regression model. The bias-corrected predictions were 

obtained by adding the predicted corrections from the residual ML model. 
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A.8 Variable importance 

The randomForest package in R generates variable importance both at the 

global level (global variable importance (GVI), which can be thought as average over 

all data points in training sets) and in the local level (local variable importance (LVI)) 

for each individual data point in the training sets with the ‘importance’ and ‘localImp’ 

options turned on, respectively (Breiman, 2001; Liaw and Wiener, 2002). Two types 

of global variable importance were computed: permutation and impurity GVIs. The 

permutation GVI is generated based on the increase in the out-of-bag prediction errors 

(using the training set only) after randomly permuting each input variable. The impurity 

GVI is generated by measuring the total decrease in the node “impurity” (which 

quantifies the heterogeneity/entropy of the outcomes underneath each tree node; Gini 

index is used for categorical outcome variables and the residual sum of squares for 

continuous outcome variables) conferred by each variable in the training set. LVI is the 

increase in the out-of-bag prediction error on a specific data point of the training set 

(thus a particular point in the parameter space) after permuting each of the input 

variables. The permutation GVI was generated by averaging the LVIs from all data 

points. Although GVI gives a general overview, the variable importance can differ 

across parameter space as captured by the LVI. We grouped the individual LVIs (at 

each point in the parameter space) by hierarchical clustering and visualized the 

resulting clusters using tSNE plots and used them to guide in-silico perturbation 

experiments. 

For the hierarchical clustering heatmaps (Figure 3.5D and A.11), we showed 

the average values of LVIs for each cluster rather than showing all LVIs for individual 
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parameter combinations. The number of clusters were chosen based on visual 

inspection of the original heatmaps to allow visualization of major patterns capturing 

the full qualitative diversity of the LVIs. Detailed heatmaps showing all LVIs can be 

generated on our website (https://phasespace-explorer.niaid.nih.gov). 

A.9 Nonlinear dimension reduction visualization end embedding of 

additional samples 

We used t-distributed stochastic neighbor embedding (tSNE), a technique for 

dimensionality reduction, to visualize high-dimensional parameter spaces. We first 

generated a reference tSNE plot in 2D space using the original sampled parameter 

combinations. Since the tSNE algorithm does not provide a general parameterized 

transformation from higher to lower dimensional spaces, adding additionally sampled 

parameter combinations (see above) to an existing visualization requires a new tSNE 

plot. Thus, we implemented a customized algorithm for embedding additional points 

in an existing tSNE plot by following Appendix D of Berman et al. (Berman et al., 

2014) and applied it for generating Figure 3.4D. The procedure is briefly summarized 

below. 

Starting with a lower dimensional tSNE embedding, 𝑌, of the original high 

dimensional data, 𝑋, where 𝑋 and 𝑌  are matrices, and the rows in them, 𝑥𝑖  and 𝑦𝑖 , 

correspond to individual data points with 𝑖 = 1, 2, … , 𝑁, with 𝑁 being the number of 

data points. Then, for an additional high-dimensional point (with the same dimension 

as 𝑋),  𝑧, we want to obtain lower dimensional embedding, 𝑤 (with the same dimension 

as 𝑌), on the reference embedding, 𝑌. To accomplish this, as in the tSNE algorithm, we 

first defined transition probabilities as  

https://phasespace-explorer.niaid.nih.gov/


 

 155 

 

𝑝𝑥𝑖|𝑧 =
exp (−

‖𝑥𝑖 − 𝑧‖
2

2𝜎2
)

∑ exp (−
‖𝑥𝑘 − 𝑧‖2

2𝜎2
)𝑘

, (A. 74) 

𝑞𝑦𝑖|𝑤 =
(1 + ‖𝑦𝑖 − 𝑤‖

2)−1

∑ (1 + ‖𝑦𝑘 − 𝑤‖2)−1𝑘
, (A. 75) 

where ‖⋯‖ denotes the Euclidian norm of a vector inside, and 𝜎  is related to the 

perplexity, P, a parameter used in the tSNE algorithm, roughly equivalent to the number 

of nearest points that z can perceive as specified by the following relation,  

−∑𝑝𝑥𝑗|𝑧 log2 𝑝𝑥𝑗|𝑧
𝑗

= log2 𝑃 . (A. 76) 

These transition probabilities reflect the similarity between the existing data points and 

the additional point we would like to embed. Next, the lower dimensional coordinates, 

𝑤, was obtained by minimizing the Kullback-Leibler divergence between 𝑝𝑥𝑖|𝑧  and 

𝑞𝑦𝑖|𝑧, 𝐾𝐿(𝑝||𝑞) by tuning each component of 𝑤 as:  

𝑤∗ = argmin
𝑤

𝐾𝐿(𝑝||𝑞) = argmin
𝑤

∑𝑝𝑥𝑖|𝑧 log (
𝑝𝑥𝑖|𝑧

𝑞𝑦𝑖|𝑤
)

𝑖

. (A. 77) 

We note that UMAP (Uniform Manifold Approximation and Projection) is 

also a good method for nonlinear dimension reduction and known to better preserve 

the global distance relationship in dimension-reduced space than tSNE (McInnes et 

al., 2018). Moreover, UMAP has its own built-in function for embedding additional 

data on the top of an existing embedding with fast performance. 

A.10 Global and local sensitivity analysis 

We computed Sobol’s variance-based sensitivity indices to compare with GVI from RF 

models for the simple two gene network (Figure 3.9) (Saltelli et al., 2008). Given a 



 

 156 

 

model in the form of 𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑘), with 𝑌 a scalar model output and 𝑋𝑖 model 

inputs, two types of sensitivity indices were computed: first-order indices 𝑆𝑖 and total 

indices 𝑆𝑇𝑖 defined as 

𝑆𝑖 =
𝑉𝑋𝑖 (𝐸𝑋~𝑖(𝑌|𝑋𝑖))

𝑉(𝑌)
, (A. 78) 

 

𝑆𝑇𝑖 =
𝐸𝑋~𝑖 (𝑉𝑋𝑖(𝑌|𝑋~𝑖))

𝑉(𝑌)
= 1 −

𝑉𝑋~𝑖 (𝐸𝑋𝑖(𝑌|𝑋~𝑖))

𝑉(𝑌)
, (A. 79) 

where 𝑋~𝑖  denotes all input variables except 𝑋𝑖 . The first-order indices (𝑆𝑖) can be 

understood as the fraction of the total variance of 𝑌 contributed by 𝑋𝑖 as a first-order 

effect while the total indices (𝑆𝑇𝑖)  include the first-order effect and higher-order 

interaction effects of 𝑋𝑖. We used Salteli’s implementation in the sensitivity package in 

R to compute the indices. This required preparing two independent parameter sets with 

the same size using preferentially the Sobol’ sequence: to say, 𝐴 and 𝐵, where rows are 

parameter combination vectors. Then the simulation experiment scheme was designed 

by replacing each column of 𝐵 with the corresponding column of 𝐴 denoted as 𝐶𝑖. If 

we start from 𝐴 and 𝐵 with 𝑁 rows with 𝑝 parameters, then we end up having 𝑁 ∙ (𝑝 +

2) parameter combinations to be simulated. For our case with 𝑁 = 1000 and 𝑝 = 10, 

we simulated 12000 parameter combinations. Once we obtained the outcome 𝑌 after 

simulations, we empirically computed 𝑆𝑖 and 𝑆𝑇𝑖 as 

𝑆𝑖 =

1
𝑁 ∙ (𝑌

(𝐴) ∙ 𝑌(𝐶𝑖)) − 𝑓0
2

1
𝑁 ∙ (𝑌

(𝐴) ∙ 𝑌(𝐴)) − 𝑓0
2
, (A. 80) 
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𝑆𝑇𝑖 = 1 −

1
𝑁 ∙ (𝑌

(𝐵) ⋅ 𝑌(𝐶𝑖)) − 𝑓0
2

1
𝑁 ∙ (𝑌

(𝐴) ∙ 𝑌(𝐴)) − 𝑓0
2
, (A. 81) 

where 𝑌(… ) ⋅ 𝑌(… )  denotes the inner product of two output vectors and 𝑓0 =
1

𝑁
⋅

∑ 𝑌(𝐴𝑗)𝑁
𝑗=1  with 𝐴𝑗 being the 𝑗th row of 𝐴. 

For local sensitivity analysis for comparison with LVI from ML models, we 

randomly selected 500 parameter combinations (300 from those with 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) >

0.4 and 200 from those with 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  ≤ 0.4) and conducted simulations on 

perturbed parameter combinations. We prepared perturbed parameter combinations by 

changing a parameter at a time to other grid points over the full plausible range. Thus, 

additional expanses of local sensitivity analysis were 90 more simulations for each 

parameter combination. Then, we defined three different local sensitivity measures out 

of simulation results: 1) maximum deviation, the full ranges of the phenotypic 

variations upon perturbing a parameter in the full range: 2) mean squared deviation of 

the phenotype from the original values upon perturbing a parameter to different values 

within the full range, and 3) partial difference defined as a change of the phenotype if 

the value of a parameter was changed to an adjacent grid point, analogous to a partial 

derivative. The concordance between LVI and a local sensitivity measure for a 

particular parameter combination was defined as Pearson correlation coefficient 

between them. 

A.11 Mutual information 

From simulation outcomes of the simple two-gene network, we computed 

entropies 𝐻(𝑚𝑋)  for mRNA X and 𝐻(𝑚𝑌 ) for mRNA Y, and a joint entropy 



 

 158 

 

𝐻(𝑚𝑋 ,𝑚𝑌) for mRNA X and mRNA Y. We used the entropy package in R. We applied 

the discretize (for two univariate entropy) or discretize2d (for bivariate entropy) 

functions to obtain discretized probability distributions, followed by the entropy 

function applied on such estimated distributions. The mutual information was obtained 

as  

𝐼(𝑚𝑋 , 𝑚𝑌) = 𝐻(𝑚𝑋) + 𝐻(𝑚𝑌) − 𝐻(𝑚𝑋 ,𝑚𝑌). (A. 82) 

We further normalized this as 

𝐼′(𝑚𝑋 , 𝑚𝑌) =
𝐼(𝑚𝑋 ,𝑚𝑌)

√𝐻(𝑚𝑋) ∙ 𝐻(𝑚𝑌)
, (A. 83) 

which was finally used as a phenotype of interest in the Results. 

A.12 Analytical linear noise approximation and inverse omega square 

approximation 

We derived the linear noise approximation of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑦) by following the 

approach of Elf and Ehrenberg (Elf and Ehrenberg, 2003) and Paulsson (Paulsson, 

2004). With stationary assumption and linearization of the CMEs describing the system, 

the following relationship (a Lyapunov matrix equation) can be derived, 

𝐽 ∙ 𝐶 + 𝐶 ∙ 𝐽𝑇 + 𝐵 = 0, (A. 84) 

where 𝐽: the Jacobian of the deterministic equations, 𝐶: the covariance matrix, and 𝐵: 

the diffusion matrix. 𝐽 and 𝐵 at the stationary state were obtained as: 

J=

(

 
 
 
 

−(𝑘𝑜𝑛
𝑋 + 𝑘𝑜𝑓𝑓

𝑋 ) 0 0 0 0

𝑘𝑚
𝑋 −𝑑𝑚

𝑋 0 0 0

0 𝑘𝑝
𝑋 −𝑑𝑝

𝑋 0 0

0 0 0 −(𝑘𝑜𝑛
𝑌 + 𝑘𝑜𝑓𝑓

𝑌 ) 0

0 0 𝛼𝑘𝑚
𝑌 𝑔𝑎𝑌 𝛽𝑘𝑚

𝑌 −𝑑𝑚
𝑌 )

 
 
 
 

, (A. 85) 
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𝐵 =

(

 
 
 
 

2𝑘𝑜𝑓𝑓
𝑋 𝑔𝑎

𝑋 0 0 0 0

0 2𝑑𝑚
𝑋𝑚𝑋 0 0 0

0 0 2𝑑𝑝
𝑋𝑝𝑋 0 0

0 0 0 2𝑘𝑜𝑓𝑓
𝑌 𝑔𝑎𝑌 0

0 0 0 0 2𝑑𝑚
𝑌𝑚𝑌)

 
 
 
 

, (A. 86) 

where 𝛼 =
𝑛𝑋𝑌𝐾𝑋𝑌

𝑛𝑋𝑌𝑝𝑋
𝑛𝑋𝑌−1

(𝐾𝑋𝑌
𝑛𝑋𝑌+𝑝𝑋

𝑛𝑋𝑌)
2 , 𝛽 =

𝑝𝑋̅̅ ̅̅
𝑛𝑋𝑌

𝐾𝑋𝑌
𝑛𝑋𝑌+𝑝𝑋̅̅ ̅̅

𝑛𝑋𝑌
, and 𝑔𝑎𝑋 , 𝑚𝑋 , 𝑝𝑋 , 𝑔𝑎𝑌 , and 𝑚𝑌  were 

obtained by solving stationary equations in the Model Description above. Then, the 

covariance matrix, 𝐶 , was obtained by solving the matrix equation (Eq. 84) with 

elements 𝐶𝑖𝑗 with indices 𝑖 and 𝑗 (1, 2, 3, 4, and 5 corresponding to the variables, 𝑔𝑎
𝑋, 

𝑚𝑋, 𝑝𝑋, 𝑔𝑎
𝑌, and 𝑚𝑌): 

𝐶11 = (1 − 𝑔𝑎𝑋) ∙ 𝑔𝑎𝑋 , (A. 87) 

𝐶12 = 𝐶11 ∙
𝑚𝑋

𝑔𝑎𝑋
∙

𝑑𝑚
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑚𝑋

, (A. 88) 

𝐶22 = 𝑚𝑋 + 𝐶11 ∙
𝑚𝑋

2

𝑔𝑎𝑋
2 ∙

𝑑𝑚
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑚𝑋

, (A. 89) 

𝐶13 = 𝐶12 ⋅
𝑝𝑋
𝑚𝑋

⋅
𝑑𝑝
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑝𝑋

, (A. 90) 

𝐶23 = 𝐶13 ⋅
𝑚𝑋

𝑔𝑎𝑋
⋅

𝑑𝑚
𝑋

𝑑𝑚𝑋 + 𝑑𝑝𝑋
+ 𝐶22 ⋅

𝑝𝑋
𝑚𝑋

⋅
𝑑𝑝
𝑋

𝑑𝑚𝑋 + 𝑑𝑃
𝑋 , (A. 91) 

𝐶33 = 𝑝𝑋 + 𝐶13 ⋅
𝑝𝑋

𝑔𝑎𝑋
⋅

𝑑𝑚
𝑋

𝑑𝑚𝑋 + 𝑑𝑝𝑋
+ 𝐶22 ⋅

𝑝𝑋
2

𝑚𝑋
2 ⋅

𝑑𝑝
𝑋

𝑑𝑚𝑋 + 𝑑𝑝𝑋
, (A. 92) 

𝐶14 = 𝐶24 = 𝐶34 = 0, (A. 93) 

𝐶44 = (1 − 𝑔𝑎𝑌) ∙ 𝑔𝑎𝑌, (A. 94) 

𝐶15 = 𝐶13 ⋅ (1 − 𝛽) ⋅ 𝑛𝑋𝑌 ⋅
𝑚𝑌
𝑝𝑋
⋅

𝑑𝑚
𝑌

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑚𝑌

, (A. 95) 
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𝐶25 = 𝐶15 ⋅
𝑚𝑋

𝑔𝑜𝑛𝑋
⋅

𝑑𝑚
𝑋

𝑑𝑚𝑋 + 𝑑𝑚𝑌
+ 𝐶23 ⋅ (1 − 𝛽) ⋅ 𝑛𝑋𝑌 ⋅

𝑚𝑌
𝑝𝑋
⋅

𝑑𝑚
𝑌

𝑑𝑚𝑋 + 𝑑𝑚𝑌
, (A. 96) 

𝐶35 = 𝐶25 ⋅
𝑝𝑋
𝑚𝑋

⋅
𝑑𝑝
𝑋

𝑑𝑝𝑋 + 𝑑𝑚𝑌
+ 𝐶33 ⋅ (1 − 𝛽) ⋅ 𝑛𝑋𝑌 ⋅

𝑚𝑌
𝑝𝑋
⋅

𝑑𝑚
𝑌

𝑑𝑝𝑋 + 𝑑𝑚𝑌
, (A. 97) 

𝐶45 = 𝐶44 ⋅
𝑚𝑌

𝑔𝑎𝑌
⋅

𝑑𝑚
𝑌

𝑘𝑜𝑛𝑌 + 𝑘𝑜𝑓𝑓
𝑌 + 𝑑𝑚𝑌

, (A. 98) 

𝐶55 = 𝑚𝑌 + 𝐶35 ⋅ (1 − 𝛽) ⋅ 𝑛𝑋𝑌 ⋅
𝑚𝑌
𝑝𝑋
+ 𝐶45 ⋅

𝑚𝑌

𝑔𝑎𝑌
, (A. 99) 

Finally, the analytical approximation of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) was obtained as: 

𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) =
𝐶25

√𝐶22 ∙ 𝐶55
, (A. 100) 

where 𝐶22 and 𝐶55 are the variances of mRNA X and mRNA Y, respectively.  Further 

expansion of the covariance between mRNAs X and Y, 𝐶25, revealed: 

𝐶25 = 𝛿 ⋅
𝑑𝑚
𝑋

𝑑𝑚𝑋 + 𝑑𝑚𝑌
⋅

𝑑𝑚
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑚𝑋

⋅
𝑑𝑝
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑝𝑋

⋅
𝑑𝑚
𝑌

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑚𝑌

  

+𝛿 ⋅
𝑑𝑚
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑚𝑋

⋅
𝑑𝑚
𝑌

𝑑𝑚𝑋 + 𝑑𝑚𝑌
⋅

𝑑𝑚
𝑋

𝑑𝑚𝑋 + 𝑑𝑝𝑋
 ⋅

𝑑𝑝
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑝𝑋

 

+𝛿 ⋅
𝑔𝑎𝑋 ⋅ 𝑚𝑋

1 − 𝑔𝑎𝑋
⋅

𝑑𝑚
𝑌

𝑑𝑚𝑋 + 𝑑𝑚𝑌
⋅

𝑑𝑝
𝑋

𝑑𝑚𝑋 + 𝑑𝑝𝑋
 

+𝛿 ⋅
𝑑𝑚
𝑌

𝑑𝑚𝑋 + 𝑑𝑚𝑌
⋅

𝑑𝑚
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 + 𝑑𝑚𝑋

⋅
𝑑𝑝
𝑋

𝑑𝑚𝑋 + 𝑑𝑝𝑋
 , (A. 101) 

where 𝛿 =
(1−𝑔𝑎

𝑋)

𝑔𝑎
𝑋
⋅ 𝑚𝑋 ⋅ 𝑚𝑌 ⋅ (1 − 𝛽) ⋅ 𝑛𝑋𝑌, showing 

𝑑𝑚
𝑌

𝑑𝑚
𝑋+𝑑𝑚

𝑌  as one of the main 

contributors to 𝐶𝑜𝑟𝑟(𝑚𝑋 , 𝑚𝑌) according to this analytical treatment. 

For the inverse omega square approximation (IOS) (Grima et al., 2011), we 

used the package, CERENA (ChEmical REaction Network Analyzer) written in Matlab 
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(Kazeroonian et al., 2016). Note that although IOS is in principle analytically solvable, 

the simple two-gene model is already in the complexity beyond hand calculation of 

IOS, rendering symbolic computational tools such as CERENA only feasible ways of 

applying IOS in a practical sense. 

A.13 Deterministic modeling of the two-gene negative feedback circuit: 

bifurcation analysis at a fixed point 

We explored the phase space and bifurcation behaviors of the two-gene negative 

feedback circuit (Figure 3.18) (Strogatz, 2015). Our goal is to delineate, using 

deterministic modeling only based on the Model Descriptions (section A.2) above, 

whether a given parameter combination would result in damped oscillation, limit cycle 

oscillation, or stable steady state. First, the fixed points (i.e., 𝑚𝑋, 𝑝𝑋, 𝑚𝑌, and 𝑝𝑌) were 

obtained for each of parameter combinations by solving the stationary equations 

numerically shown in the Model Descriptions (section A.2) above. Then, the Jacobian 

𝐽 at the fixed point was obtained as: 

𝐽 =

(

 
 

−𝑑𝑚
𝑋 0 0 −𝛼

𝑘𝑝
𝑋 −𝑑𝑝

𝑋 0 0

0 𝛽 −𝑑𝑚
𝑌 0

0 0 𝑘𝑝
𝑌 −𝑑𝑝

𝑌
)

 
 
, (A. 102) 

whereA.103  

𝛼 =
𝑘𝑜𝑛
𝑋 𝑘𝑚

𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 ∙

𝑛𝑌𝑋𝐾𝑌𝑋
𝑛𝑌𝑋𝑝𝑌

𝑛𝑌𝑋−1

(𝐾𝑌𝑋
𝑛𝑌𝑋 + 𝑝𝑌

𝑛𝑌𝑋)
2 , (A. 104) 

𝛽 =
𝑘𝑜𝑛
𝑌 𝑘𝑚

𝑌

𝑘𝑜𝑛𝑌 + 𝑘𝑜𝑓𝑓
𝑌 ∙

𝑛𝑋𝑌𝐾𝑋𝑌
𝑛𝑋𝑌𝑝𝑋

𝑛𝑋𝑌−1

(𝐾𝑋𝑌
𝑛𝑋𝑌 + 𝑝𝑋

𝑛𝑋𝑌)
2 . (A. 105) 
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The eigenvalues 𝜆 of the Jacobian 𝐽 at the fixed point were obtained by solving the 

characteristic equation of 𝐽: 

(𝜆 + 𝑑𝑚
𝑋 )(𝜆 + 𝑑𝑝

𝑋)(𝜆 + 𝑑𝑚
𝑌 )(𝜆 + 𝑑𝑝

𝑌) + 𝛼𝛽𝑘𝑝
𝑋𝑘𝑝

𝑌 = 0. (A. 106) 

Depending on the parameter combination, this equation can have: 1) four real negative 

roots, 2) two real negative and two complex roots, or 3) four complex roots. Since the 

analytical approach for solving fourth degree polynomial equations is complex, we 

numerically solved this equation for each of the parameter combinations. More 

thorough treatment of four-dimensional Hopf bifurcation can be found in Asada and 

Yoshida (Asada and Yoshida, 2003).  

The nature of the eigenvalues obtained for each parameter combination 

determine the behaviors of the circuit (Kuznetsov, 2004; Strogatz, 2015). First, if the 

eigenvalues are all real and negative, then the system evolves to and settles at the stable 

fixed point (𝑚𝑋, 𝑝𝑋, 𝑚𝑌, and 𝑝𝑌). Second, if the eigenvalues include a pair or two pairs 

of complex values with negative real part, then, the system exhibits damped oscillation, 

eventually settling down to the stable fixed point. Lastly, if the eigenvalues include a 

pair of complex conjugates with positive real part and other two with negative real parts, 

then the system exhibits limit cycle oscillations. Here we provide a brief proof of limit 

cycle oscillations. The trajectory in eigen bases corresponding to eigenvalues with 

negative real parts eventually decays to the stable fixed point. Therefore, the trajectory 

is confined to the 2-dimensional center manifold defined by eigen bases of eigenvalues 

with positive real parts and exhibits radially growing oscillations from the 

neighborhood of the fixed point in that manifold (Kuznetsov, 2004). Due to the 



 

 163 

 

degradation terms and nonlinearity in the model, any trajectory after a sufficiently long 

time is confined within a hypercube defined by  

𝑚𝑋;  (0,
𝑘𝑜𝑛
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 ∙

𝑘𝑚
𝑋

𝑑𝑚𝑋
), 

𝑝𝑋;  (0,
𝑘𝑜𝑛
𝑋

𝑘𝑜𝑛𝑋 + 𝑘𝑜𝑓𝑓
𝑋 ∙

𝑘𝑚
𝑋

𝑑𝑚𝑋
∙
𝑘𝑝
𝑋

𝑑𝑝𝑋
), 

𝑚𝑌; (0,
𝑘𝑜𝑛
𝑌

𝑘𝑜𝑛
𝑌 + 𝑘𝑜𝑓𝑓

𝑌 ∙
𝑘𝑚
𝑌

𝑑𝑚
𝑌
), 

𝑝𝑌; (0,
𝑘𝑜𝑛
𝑌

𝑘𝑜𝑛𝑌 + 𝑘𝑜𝑓𝑓
𝑌 ∙

𝑘𝑚
𝑌

𝑑𝑚𝑌
∙
𝑘𝑝
𝑌

𝑑𝑝𝑌
), 

given that the vector field, (
𝑑𝑚𝑋

𝑑𝑡
, 
𝑑𝑝𝑋

𝑑𝑡
,
𝑑𝑚𝑌

𝑑𝑡
,
𝑑𝑝𝑌

𝑑𝑡
) points always inward on the boundary 

of the hypercube. Therefore, by Poincaré-Bendixson theorem any trajectory in the 

center manifold eventually evolves to a closed orbit or a limit cycle (Strogatz, 2015) 

(Figure 3.19A and 3.22). Note that it is impossible that all eigenvalues have positive 

real parts since the sum of all eigenvalues should be negative based on the relationship: 

∑𝜆𝑖 = −(𝑑𝑚
𝑋 + 𝑑𝑝

𝑋 + 𝑑𝑚
𝑌 + 𝑑𝑝

𝑌) < 0. 

A.14 Power spectral analysis 

The oscillatory behavior in the two-gene negative feedback network can be 

described in the frequency domain using power spectra analysis of the time trajectories. 

Power spectra were obtained by Fourier transformation of the auto-correlation 

functions or cross-correlation functions as proven by the Wiener-Khinchin theorem 

(Kampen, 2007). Ideally, we need a large number of realizations of the time trajectories 

to obtain the power spectra. However, here (and often in practice) we only have a single 
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time trajectory and thus noise can be an issue. There are several methods to reduce such 

noise, including the averaging of multiple estimates from segments of the original 

trajectories and applying window functions for Fourier transformations (Percival and 

Walden, 1993). We employed both strategies together. We divided single time 

trajectories into multiple segments, applied Welch’s methods implemented in the sapa 

package in R to each of those segments, and averaged over multiple estimates. Based 

on the resolution needed and computation time, we set a limit on the length of the 

segment to not exceed 105 time-points, which corresponds to ~8333 hours (105 × 5 

minutes) in the system’s time. Thus, this approach would miss anything that occurs in 

longer timescales or shorter than 5 minutes (the data acquisition time interval), which 

were not captured in the current power spectral analysis. 

The unit of frequency in power spectra analysis is 1 𝑢𝑛𝑖𝑡 =
1

5
min −1 = 3.33 ×

10−3𝐻𝑧 since the unit time interval is 5 min. The frequency range spanned several 

orders of magnitude. Thus, we applied the logarithm (with base 10) to define peak 

frequency (PF). PF spanned values ranging from -5 to -1, and the corresponding values 

of these in 𝐻𝑧  spanned from 3.33 × 10−8𝐻𝑧  to 3.33 × 10−4𝐻𝑧  using the general 

conversion formula; 10PF × 3.33 × 10−3𝐻𝑧. Intuitively, for example, if a periodic 

event occurs once every hour, the frequency is 
1

3600
sec−1 = 2.78 × 10−4𝐻𝑧 = 8.35 ×

10−2 𝑢𝑛𝑖𝑡, and after taking logarithm with base 10, PF = −1.08. 
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A.15 Supplementary Figures 

 

 

 

 

 

 

 

Figure A.1 Motivation and conceptual framework. Cell-to-cell gene expression 

heterogeneity is prevalent and can propagate from gene to gene across the gene 

regulatory network, giving rise to patterns of expression heterogeneity in the cell 

population that are potentially associated with cellular phenotypes. Given a biological 

network, our framework samples parameter combinations, conducts stochastic 

dynamical simulations to generate time series data sets from the network, builds 

machine learning (ML) models that connect parameter and phenotypic spaces, such as 

linking parameter values to cell-to-cell gene expression variations and gene-gene 

correlations across single cells. The ML models can be thought of as phenomenological 

solutions of the equations governing the stochastic dynamics of the network. They 

enable much faster computation of quantitative phenotypes from parameter 

combinations than using full-blown simulations and a better understanding of how the 

system’s phenotypes are shaped by the parameters. 
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Figure A.2 ML model performance for a two-gene network. (A) Scatter plot showing 

the predicted (y) vs. the simulated (x) phenotypic values. The RF regression model 

trained on the initial training set was used to predict the phenotypic value for the initial 

test set.  (B) Same as (A) but showing the prediction performance of the RF regression 

models trained on the initial training set (red) and the combined training set (blue) in 

predicting the additional test set (enriching for parameter combinations with 

high 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)). (C) Prediction performance of the RF classification models 

(𝐶𝑜𝑟𝑟(𝑚𝑋, 𝑚𝑌) > 0.7 vs. < 0.7) evaluated using the combined test set, as indicated 

by the receiver operating characteristic (ROC) and precision-recall curves. Hollow 

circles correspond to data from the RF model trained using the initial training set, 

while solid circles are data from the RF model trained using the combined training 

set.  
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Figure A.3 Variable importance of ML models in a two-gene network. (A) (Left) 

Permutation GVI for the RF regression model trained on the initial training set. (Right) 

Impurity (y axis) vs. permutation (x axis) GVIs for the RF regression model trained 

on the initial training set are shown together in a scatter plot. (B) Impurity (y axis) vs. 

permutation (x axis) GVIs for the RF regression model trained on the combined 

training set are shown together in a scatter plot. (C) tSNE plot of all (initial and 

additional) parameter combinations colored by the cluster ID defined in Figure 3.5 D.  
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Figure A.4 MAPPA analysis on mutual information. (A) Scatter plot of predicted vs. 

simulated mutual information to illustrate the prediction performance of the RF 

regression model for mutual information (r = 0.97); note that the RF model was trained 

using the combined training data; each point corresponds to a parameter 

combination.(B) Impurity (y axis) vs. permutation (x axis) GVIs for the RF regression 

model predicting mutual information trained on the combined training set are shown 

together in a scatter plot. 

 

Figure A.5 Comparison between MAPPA and analytical approximation schemes. 

Scatter plot of 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  computed from analytical approximation (y axis) 

versus that from the stochastic simulation in the entire dataset (both “initial” and 

“additional” – see Figure 3.5A). Analytical approximations are from LNA (left) and 

IOS (right).  
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Figure A.6 Comparison between MAPPA and analytical approximation schemes 

over LVI clusters 7 and 8. (A)-(B) Scatter plots showing 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌)  of 

analytical approximation (LNA) vs. simulation (left) and analytical approximation 

(IOS) vs. simulation (right) in LVI clusters (A) 7 and (B) 8.  
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Figure A.7 Simulation results for three-gene feedforward networks. (A)-(B) Simulation 

results for (A) PPP and (B) PNP circuit types. (Left) Scatter plot showing the 

simulation results with (y axis) and without (x axis) the feedforward component 

(mediated by Y) for different parameter combinations (using the initial samples). 

Those with a difference in 𝐶𝑜𝑟𝑟(𝑚𝑋 ,𝑚𝑌) of greater than 0.2 are labeled with red 

(increased with Y) or blue (decreased with Y). (Center) Simulation results for the 

additional parameter combinations. The red (blue) dots correspond to parameter 

combinations sampled around those that resulted in the red (blue) dots in the left panel. 

(Right) The same but showing both the initial and additional parameter combinations.  

(C)-(D) Differences in the lag time (y) for achieving peak cross-correlations between 

the circuits with and without Y for (C) PPP and (D) PNP. PPP tends to lengthen time 

lags (Δ𝜏 < 0) while PNP tends to shorten time lags (Δ𝜏 > 0). For PNP, only parameter 

combinations with positive 𝐶𝑜𝑟𝑟(𝑚𝑋, 𝑚𝑍)  with Y were included for proper 

comparison between PPP and PNP.  
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Figure A.8 ML model performance for three-gene feedforward networks. (A)-(B) The 

prediction performance of the RF regression model for FC (left) and FC (rank) (right) 

trained using the combined training sets for (A) PPP (FC: 𝑟 = 0.93, FC (rank): 𝑟 =
0.92) and (B) PNP (FC: 𝑟 = 0.91, FC (rank): 𝑟 = 0.92).  
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Figure A.9 Impurity and permutation GVI of FC and FC (rank) in three-gene networks. 

(A)-(B) Impurity and permutation GVIs are shown together for (A) PPP and (B) PNP. 

Left panels are for FC, and right panels are for FC (rank). Ranks for highly important 

parameters are largely consistent between the impurity and permutation importance 

measures. 
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Figure A.10 Local variable importance generated by ML models for FC. (A)-(B) The 

LVI (from the ML model for FC) of the parameter combinations were clustered and the 

average values of each cluster is shown for (A) PPP and (B) PNP. The cluster number is 

shown in the color bar (section A.8). 
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Figure A.11 Distribution of phenotypes in the parameter space. (A) tSNE plot of the 

initial parameter combinations colored by QF. (B) tSNE plot of the initial parameter 

combinations colored by PF. See A.14 for additional details on the logged unit of PF. 
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Figure A.12 Prediction performance of ML models for oscillation phenotypes. (A) 

Scatter plot of predicted vs. simulated QF to illustrate the prediction performance of 

the RF regression model for QF for initial (left) and combined (right) data sets. The 

color scale denotes the distribution density reflecting the relative abundance of data 

points. (B) Scatter plot of predicted vs. simulated PF to illustrate the prediction 

performance of the RF regression model for PF for initial (left) and combined (right) 

data sets. (C) Comparison of prediction performance on a test data set for different 

training sample sizes between uniform grid and Sobol’ sampling schemes. The test 

data set was prepared by pooling 4500 parameter combinations from both uniform grid 

and Sobol’ schemes and not used for ML model training. 
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A.16 Parameter ranges and grids defined for parameter sampling sampling 

 

 

 
Grids 𝒌𝒐𝒏

𝑿  𝒌𝒐𝒇𝒇
𝑿  𝒌𝒎

𝑿  𝒅𝒎
𝑿  𝒌𝒑

𝑿 𝒅𝒑
𝑿 𝒌𝒐𝒏

𝒀  𝒌𝒐𝒇𝒇
𝒀  𝒌𝒎

𝒀  𝒅𝒎
𝒀  𝒌𝒑

𝒀 𝒅𝒑
𝒀 𝒏𝑿𝒀 𝑲𝑿𝒀 

 Grid 1 0.04 0.01 0.1 0.004 0.1 0.0005 0.04 0.01 0.1 0.004 0.001 0.0001 1 133.3333 

 Grid 2 0.08 0.0644 0.278 0.0101 0.278 0.00142 0.08 0.0644 0.32 0.0101 0.001 0.0001 
  

 Grid 3 0.12 0.119 0.774 0.0253 0.774 0.00403 0.12 0.119 1.02 0.0253 0.001 0.0001 
  

 Grid 4 0.16 0.173 2.15 0.0635 2.15 0.0114 0.16 0.173 3.27 0.0635 0.001 0.0001 
  

 Grid 5 0.2 0.228 5.99 0.16 5.99 0.0325 0.2 0.228 10.5 0.16 0.001 0.0001 
  

 Grid 6 0.24 0.282 16.7 0.401 16.7 0.0923 0.24 0.282 33.5 0.401 0.001 0.0001 
  

 Grid 7 0.28 0.337 46.4 1.01 46.4 0.262 0.28 0.337 107 1.01 0.001 0.0001 
  

 Grid 8 0.32 0.391 129 2.53 129 0.744 0.32 0.391 342 2.53 0.001 0.0001 
  

 Grid 9 0.36 0.446 359 6.37 359 2.11 0.36 0.446 1090 6.37 0.001 0.0001 
  

 Grid 10 0.4 0.5 1000 16 1000 6 0.4 0.5 3500 16 0.001 0.0001 
  

 

Table A.2 Parameter grid for the two-gene network. (Related to Figure 3.3; uniform grid sampling). The feasible range of individual 

parameters were divided into 10 equally sized bins (except 𝑛𝑋𝑌  and 𝐾𝑋𝑌 ). Uniform grid sampling was used to sample parameter 

combinations (section A.3). The unit of 𝐾𝑋𝑌 is the copy number (Table A.1; section A.2.2). Since the gene X is considered to encode 

for a transcription factor regulating gene Y, 𝑘𝑚
𝑋  and 𝑘𝑝

𝑋 were restricted to not exceed 1000 (Table A.1; section A.2.2). 
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Table A.3 Parameter range for the three-gene feedforward network. (Related to Figure 3.13; Sobol sampling). Sobol sampling was used 

to sample the parameter combinations (section A.3). The unit of the Ks (𝐾𝑋𝑌, 𝐾𝑌𝑋, and 𝐾𝑋𝑍) is the relative ratio to the mean protein 

copy number (Table A.1; section A.2.2). Since all genes encode transcription factors, 𝑘𝑚 and 𝑘𝑝 of all genes were restricted to not 

exceed 1000 (Table A.1; section A.2.2). 

 

 

 

 

 

 

 

 

Range 𝒌𝒐𝒏
𝑿  𝒌𝒐𝒇𝒇

𝑿  𝒌𝒎
𝑿  𝒅𝒎

𝑿  𝒌𝒑
𝑿 𝒅𝒑

𝑿 𝒌𝒐𝒏
𝒀  𝒌𝒐𝒇𝒇

𝒀  𝒌𝒎
𝒀  𝒅𝒎

𝒀  𝒌𝒑
𝒀 𝒅𝒑

𝒀 𝒌𝒐𝒏
𝒁  𝒌𝒐𝒇𝒇

𝒁  𝒌𝒎
𝒁  𝒅𝒎

𝒁  𝒌𝒑
𝒁 𝒅𝒑

𝒁 𝒏𝑿𝒀 𝑲𝑿𝒀 𝒏𝒀𝒁 𝑲𝒀𝒁 𝒏𝑿𝒁 𝑲𝑿𝒁 

Min 0.04 0.01 0.1 0.004 0.1 0.0005 0.04 0.01 0.1 0.004 0.1 0.0005 0.04 0.01 0.1 0.004 0.1 0.0005 1 0.2 1 0.2 1 0.2 

Max 0.4 0.5 1000 16 1000 6 0.4 0.5 1000 16 1000 6 0.4 0.5 1000 16 1000 6 5 5 5 5 5 5 
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Grids 𝒌𝒐𝒏
𝑿  𝒌𝒐𝒇𝒇

𝑿  𝒌𝒎
𝑿  𝒅𝒎

𝑿  𝒌𝒑
𝑿 𝒅𝒑

𝑿 𝒌𝒐𝒏
𝒀  𝒌𝒐𝒇𝒇

𝒀  𝒌𝒎
𝒀  𝒅𝒎

𝒀  𝒌𝒑
𝒀 𝒅𝒑

𝒀 𝒏𝑿𝒀 𝑲𝑿𝒀 𝒏𝒀𝑿 𝑲𝒀𝑿 
Grid 1 0.04 0.01 0.1 0.004 0.1 0.0005 0.04 0.01 0.1 0.004 0.1 0.0005 1 30 1 30 
Grid 2 0.08 0.0644 0.278 0.0101 0.278 0.00142 0.08 0.0644 0.32 0.0101 0.278 0.00142 5 100 5 100 
Grid 3 0.12 0.119 0.774 0.0253 0.774 0.00403 0.12 0.119 1.02 0.0253 0.774 0.00403 

 
300 

 
300 

Grid 4 0.16 0.173 2.15 0.0635 2.15 0.0114 0.16 0.173 3.27 0.0635 2.15 0.0114 
 

1000 
 

1000 
Grid 5 0.2 0.228 5.99 0.16 5.99 0.0325 0.2 0.228 10.5 0.16 5.99 0.0325 

 
3000 

 
3000 

Grid 6 0.24 0.282 16.7 0.401 16.7 0.0923 0.24 0.282 33.5 0.401 16.7 0.0923 
    

Grid 7 0.28 0.337 46.4 1.01 46.4 0.262 0.28 0.337 107 1.01 46.4 0.262 
    

Grid 8 0.32 0.391 129 2.53 129 0.744 0.32 0.391 342 2.53 129 0.744 
    

Grid 9 0.36 0.446 359 6.37 359 2.11 0.36 0.446 1090 6.37 359 2.11 
    

Grid 10 0.4 0.5 1000 16 1000 6 0.4 0.5 3500 16 1000 6 
    

 

Table A.4 Parameter grid for the two-gene negative feedback network. (Related to Figure 3.18; uniform grid sampling). The feasible 

range of parameters were divided into grids with varying numbers of bins. Uniform grid sampling was used to sample parameter 

combinations (section A.3). The unit of 𝐾𝑋𝑌 and 𝐾𝑌𝑋 is the copy number (Table A.1; section A.2.2). Since both genes X and Y encode 

transcription factors, 𝑘𝑚
𝑋 , 𝑘𝑝

𝑋, and 𝑘𝑝
𝑌 were restricted to not exceed 1000 (Table A.1; section A.2.2).
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Appendix B: Supporting information for Chapter 4 

 

B.1 Description of a multiscale T cell activation model 

We describe the detailed model of the T cell activation occurring through the 

interactions between three cell types: conventional CD4+ T cells (Tconvs), regulatory 

T cells (Tregs), and dendritic cells (DCs) (Figure 4.1). The variables and parameters of 

the model can be found in Table 4.1 and B.1. This model was implemented and 

simulated with the MATLAB, and the MATLAB codes are available on Github 

(https://github.com/pkm304/multiscale_t_cell_activation). 

B.1.1 TCR signaling (DC:TC1) 

This component consists of kinetic proofreading of antigen recognition and the 

effective signaling strength that regulates downstream pathways, including the 

production of IL-2 and IL-2Rα (François et al., 2013; Voisinne et al., 2015). To make 

the model description self-contained, we layout the detailed derivation from (François 

et al., 2013). 

B.1.1.1 Kinetic proofreading 

B.1.1.1.1 Reactions 

 

B.1.1.1.2 Equations 

𝑆 

𝜈 
𝜈 

𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛 + 𝑅𝑇𝐶𝑅 ⇄𝜈
𝜅 𝐶𝑇𝐶𝑅,0 ⇄𝑏+𝛾𝑆

𝜙
𝐶𝑇𝐶𝑅,1 ⇄𝑏+𝛾𝑆

𝜙
⋯ ⇄𝑏+𝛾𝑆

𝜙
𝐶𝑇𝐶𝑅,𝑁 (B. 1) 
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Corresponding equations are as bellow: 

𝑑𝑆𝑆𝐻𝑃1
𝑑𝑡

= 𝛼𝐶𝑇𝐶𝑅,1(𝑆𝑆𝐻𝑃1,𝑇 − 𝑆𝑆𝐻𝑃1) − 𝛽𝑆𝑆𝐻𝑃1, (B. 2) 

𝑑𝐶𝑇𝐶𝑅,0
𝑑𝑡

= 𝜅 (𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛 −∑𝐶𝑇𝐶𝑅,𝑖

𝑁

𝑖=0

)(𝑅𝑇𝐶𝑅 −∑𝐶𝑇𝐶𝑅,𝑖

𝑁

𝑖=0

)

+(𝑏 + 𝛾𝑆𝑆𝐻𝑃1)𝐶𝑇𝐶𝑅,1 − (𝜙 + 𝜈)𝐶𝑇𝐶𝑅,0, (B. 3)

 

𝑑𝐶𝑇𝐶𝑅,𝑗

𝑑𝑡
= 𝜙𝐶𝑇𝐶𝑅,𝑗−1 + (𝑏 + 𝛾𝑆𝑆𝐻𝑃1)𝐶𝑇𝐶𝑅,𝑗+1

−(𝜙 + 𝑏 + 𝛾𝑆𝑆𝐻𝑃1 + 𝜈)𝐶𝑇𝐶𝑅,𝑗 , (B. 4)
 

𝑑𝐶𝑇𝐶𝑅,𝑁
𝑑𝑡

= 𝜙𝐶𝑇𝐶𝑅,𝑁−1 − (𝑏 + 𝛾𝑆𝑆𝐻𝑃1 + 𝜈)𝐶𝑇𝐶𝑅,𝑁, (B. 5) 

where 𝑗 runs from 1 to N-1. 

At steady states, the summation of equations for 𝐶𝑇𝐶𝑅,𝑗 above leads to: 

𝜅 (𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛 −∑𝐶𝑇𝐶𝑅,𝑖

𝑁

𝑖=0

)(𝑅𝑇𝐶𝑅 −∑𝐶𝑇𝐶𝑅,𝑖

𝑁

𝑖=0

) = 𝜈∑𝐶𝑇𝐶𝑅,𝑖

𝑁

𝑖=0

. (B. 6) 

 

Assuming ∑ 𝐶𝑇𝐶𝑅,𝑖
𝑁
𝑖=0 ≪ 𝑅𝑇𝐶𝑅, we obtain 

𝜅𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛𝑅𝑇𝐶𝑅 = (𝜅𝑅 + 𝜈)𝜈∑𝐶𝑇𝐶𝑅,𝑖

𝑁

𝑖=0

, (B. 7) 

𝜈∑𝐶𝑇𝐶𝑅,𝑖

𝑁

𝑖=0

= 𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛
𝜅𝑅𝑇𝐶𝑅
𝜈 + 𝜅𝑅

. (B. 8) 

Other equations become 

𝑆𝑆𝐻𝑃1 = 𝑆𝑆𝐻𝑃1,𝑇
𝐶𝑇𝐶𝑅,1

𝐶𝑇𝐶𝑅,1 + 𝐶𝑇𝐶𝑅,∗
, where 𝐶𝑇𝐶𝑅,∗ =

𝛽

𝛼
, (B. 9) 

0 = 𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛
𝜅𝑅𝑇𝐶𝑅
𝜈 + 𝜅𝑅

+ (𝑏 + 𝑆𝑆𝐻𝑃1)𝐶𝑇𝐶𝑅,1 − (𝜙 + 𝜈)𝐶𝑇𝐶𝑅,0, (B. 10) 

0 = 𝜙𝐶𝑗−1 + (𝑏 + 𝑆𝑆𝐻𝑃1)𝐶𝑇𝐶𝑅,𝑗+1 − (𝜙 + 𝑏 + 𝑆𝑆𝐻𝑃1 + 𝜈)𝐶𝑇𝐶𝑅,𝑗, (B. 11) 

0 = 𝜙𝐶𝑇𝐶𝑅,𝑁−1 − (𝑏 + 𝑆𝑆𝐻𝑃1 + 𝜈)𝐶𝑇𝐶𝑅,𝑁 . (B. 12) 

To solve for 𝐶𝑗′𝑠, we first obtain solutions of 
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0 = 𝜙 + (𝑏 + 𝑆𝑆𝐻𝑃−1)𝑟
2 − (𝜙 + 𝑏 + 𝑆𝑆𝐻𝑃1 + 𝜈)𝑟 = 𝑓(𝑟) (B. 13) 

as 

𝑟± =
𝜙 + 𝑏 + 𝑆𝑆𝐻𝑃1 + 𝜈 ± √(𝜙 + 𝑏 + 𝑆𝑆𝐻𝑃1 + 𝜈)2 − 4𝜙(𝑏 + 𝑆𝑆𝐻𝑃1)

2(𝑏 + 𝑆𝑆𝐻𝑃1)
. (B. 14) 

Finally, 𝐶𝑇𝐶𝑅,𝑗 can be expressed as 

𝐶𝑇𝐶𝑅,𝑗 = 𝑎+𝑟+
𝑗
+ 𝑎−𝑟−

𝑗. (B. 15) 

Since 𝑓(1) = −𝜈 < 0 < 𝜙 = 𝑓(0), it is always the case that 𝑟+ > 1 > 𝑟− > 0. To 

obtain 𝑎+ and 𝑎−, we manipulate the following two equations, 

0 = 𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛
𝜅𝑅𝑇𝐶𝑅𝜈

𝜈 + 𝜅𝑅𝑇𝐶𝑅
+ 𝑎+((𝑏 + 𝑆𝑆𝐻𝑃1)𝑟+ − 𝜙 − 𝜈)

+𝑎−((𝑏 + 𝑆𝑆𝐻𝑃1)𝑟− − 𝜙 − 𝜈)

= 𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛
𝜅𝑅𝑇𝐶𝑅𝜈

𝜈 + 𝜅𝑅𝑇𝐶𝑅
+
𝑎+𝜈

𝑟+ − 1
+
𝑎−𝜈

𝑟− − 1
(B. 16)

 

∑𝐶𝑇𝐶𝑅,𝑖

𝑁

𝑖=0

=
𝜅𝑅𝑇𝐶𝑅𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛

𝜈 + 𝜅𝑅𝑇𝐶𝑅
=
𝑎+(𝑟+

𝑁+1 − 1)

𝑟+ − 1
+
𝑎−(𝑟−

𝑁+1 − 1)

𝑟− − 1
(B. 17) 

 

Finally, we obtain 

𝑎+ = −𝑎− (
𝑟−
𝑟+
)
𝑁+1 𝑟+ − 1

𝑟− − 1
, (B. 18) 

𝑎− = (1 − 𝑟−)
𝜅𝑅𝑇𝐶𝑅𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛

𝜈 + 𝜅𝑅𝑇𝐶𝑅
(1 − (

𝑟−
𝑟+
)
𝑁+1

)

−1

, (B. 19) 

𝑎+ = (𝑟+ − 1)
𝜅𝑅𝑇𝐶𝑅𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛

𝜈 + 𝜅𝑅𝑇𝐶𝑅
(
𝑟−
𝑟+
)
𝑁+1

(1 − (
𝑟−
𝑟+
)
𝑁+1

)

−1

. (B. 20) 

Other variables at steady states can be obtained as, 

𝐶𝑇𝐶𝑅,𝑁 = 𝑎+𝑟+
𝑁 + 𝑎−𝑟−

𝑁 = 𝑎−𝑟−
𝑁 (1 −

𝑟−(𝑟+ − 1)

𝑟+(𝑟− − 1)
)

=  
𝜅𝑅𝑇𝐶𝑅𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛

𝜈 + 𝜅𝑅𝑇𝐶𝑅
(1 − (

𝑟−
𝑟+
)) 𝑟𝑁 (1 − (

𝑟−
𝑟+
)
𝑁+1

)

−1

, (B. 21)
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𝐶𝑇𝐶𝑅,1 = 𝑎+𝑟+ + 𝑎−𝑟− = 𝑎− (𝑟− − (
𝑟−
𝑟+
)
𝑁+1 𝑟+ − 1

𝑟− − 1
)

=
𝜅𝑅𝑇𝐶𝑅𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛

𝜈 + 𝜅𝑅𝑇𝐶𝑅
𝑟−(1 − 𝑟−) (1 +

(𝑟−/𝑟+)
𝑁+1(𝑟+ − 1)

𝑟− − 𝑟−2
)(1 − (

𝑟−
𝑟+
)
𝑁+1

)

−1

. (B. 22)

 

For large N, (𝑟−/𝑟+)
𝑁+1 = 𝜖 → 0. Thus,  

𝑎− = (1 − 𝑟−)
𝜅𝑅𝑇𝐶𝑅𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛

𝜈 + 𝜅𝑅𝑇𝐶𝑅
+ 𝑂(𝜖), (B. 23) 

𝐶𝑇𝐶𝑅,0 ≈ 𝑎− + 𝑂(𝜖), (B. 24) 

𝐶𝑇𝐶𝑅,1 ≈ 𝑎−𝑟− + 𝑂(𝜖) =
𝜅𝑅𝑇𝐶𝑅𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛

𝜈 + 𝜅𝑅𝑇𝐶𝑅
𝑟−(1 − 𝑟−) + 𝑂(𝜖), (B. 25) 

𝐶𝑇𝐶𝑅,𝑁 ≈
𝜅𝑅𝑇𝐶𝑅𝐿𝑎𝑛𝑡𝑖𝑔𝑒𝑛

𝜈 + 𝜅𝑅𝑇𝐶𝑅
(1 − (

𝑟−
𝑟+
)) 𝑟−

𝑁 + 𝑂(𝜖). (B. 26) 

Once 𝑆𝑆𝐻𝑃1 is determined using 𝑆𝑆𝐻𝑃1 = 𝑆𝑆𝐻𝑃1,𝑇
𝐶𝑇𝐶𝑅,1

𝐶𝑇𝐶𝑅,1+𝐶𝑇𝐶𝑅,1
∗ , other variables follow 

from it. 

B.1.2 Costimulatory signaling and inhibition by CTLA4 (DC:TC2 and 

TR:DC1) 

This component describes binding kinetics of CD80/86, CD28, and CTLA4 and the 

trans-endocytosis of CD80/86 by CTLA4 (Collins et al., 2002; Jansson et al., 2005; 

Khailaie et al., 2018; Larsen et al., 2005; van der Merwe et al., 1997; Qureshi et al., 

2011; Sugár et al., 2017) 

B.1.2.1 CD28-CD80/86 binding kinetics 

B.1.2.1.1 Reactions for both Tconvs and Tregs 

𝐿𝐶𝐷80|𝐶𝐷86 + 𝑅𝐶𝐷28 ⇄
𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑓𝑓

𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑛

𝐶𝑐𝑜𝑠𝑡𝑖𝑚, (B. 27) 

𝐿𝐶𝐷80|𝐶𝐷86 + 𝑅𝐶𝑇𝐿𝐴4 ⇄
𝑘𝐶𝑇𝐿𝐴4
𝑜𝑓𝑓

𝑘𝐶𝑇𝐿𝐴4
𝑜𝑛

𝐶𝐶𝑇𝐿𝐴4, (B. 28) 
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𝐶𝐶𝑇𝐿𝐴4
𝑘𝐶𝑇𝐿𝐴4
𝑒𝑛𝑑𝑜

→    ∅. (B. 29) 

We assumed the expression level of CD28 in the plasma membrane of Tconvs remains 

fixed. The cycling of CTLA4 is maintained at steady states for Tregs. Also, once the 

complexes of CTLA4 and CD80/86 are internalized, the complexes are instantly 

degraded. 

B.1.2.1.2 Equations 

B.1.2.1.2.1 Tconvs 

We assume that the Tconv:DC engagement ceases before the considerable 

accumulation of CTLA4 by the Tconv. Thus, 𝑅𝐶𝑇𝐿𝐴4 = 0 for the whole time. 

𝑑𝐶𝑐𝑜𝑠𝑡𝑖𝑚
𝑑𝑡

= 𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑛 (

𝐿𝐶𝐷80|𝐶𝐷86 

𝑆𝐷𝐶
− 𝐶𝑐𝑜𝑠𝑡𝑖𝑚) (

𝑅𝐶𝐷28
𝑆𝑇

− 𝐶𝑐𝑜𝑠𝑡𝑖𝑚)

− 𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑓𝑓

⋅ 𝐶𝑐𝑜𝑠𝑡𝑖𝑚. (B. 30)

 

At steady states, 

𝐶𝑐𝑜𝑠𝑡𝑖𝑚 =
1

2
(𝑅𝐶𝐷28/𝑆𝑇  + 𝐿𝐶𝐷80|𝐶𝐷86 /𝑆𝐷𝐶  + 𝑘𝑐𝑜𝑠𝑡𝑖𝑚

𝑜𝑓𝑓
/𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑛

−√
(𝑅𝐶𝐷28/𝑆𝑇  + 𝐿𝐶𝐷80|𝐶𝐷86 /𝑆𝐷𝐶  + 𝑘𝑐𝑜𝑠𝑡𝑖𝑚

𝑜𝑓𝑓
/𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑛 )

2

−4𝑅𝐶𝐷28/𝑆𝑇  ∙ 𝐿𝐶𝐷80|𝐶𝐷86 /𝑆𝐷𝐶  
)  . (B. 31)

 

𝐶𝑐𝑜𝑠𝑡𝑖𝑚 was assumed to be the determinant of immune synapse formation. If 

either 𝐶𝑐𝑜𝑠𝑡𝑖𝑚 falls below a threshold (set to 5 in the simulation) or the simulation time 

passes 48 hours (whichever happens first), the Tconv stops engaging with the DC and 

receiving signals of TCR and costimulation.  

B.1.2.1.2.2 Tregs 

We assumed that Tregs maintain a constant CTLA4 level in their cell membranes. This 

assumption slightly underestimates the actual value during active negative feedback 

regulation, given our data that IL-2 signaling increases CTLA4 expression by Tregs. 
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𝑑𝐶𝑐𝑜𝑠𝑡𝑖𝑚
𝑑𝑡

= 𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑛 (

𝐿𝐶𝐷80|𝐶𝐷86 

𝑆𝐷𝐶
− 𝐶𝑐𝑜𝑠𝑡𝑖𝑚 − 𝐶𝐶𝑇𝐿𝐴4) (

𝑅𝐶𝐷28
𝑆𝑇

− 𝐶𝑐𝑜𝑠𝑡𝑖𝑚)

− 𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑓𝑓

𝐶𝑐𝑜𝑠𝑡𝑖𝑚, (B. 32)

 

𝑑𝐶𝐶𝑇𝐿𝐴4
𝑑𝑡

= 𝑘𝐶𝑇𝐿𝐴4
𝑜𝑛 (

𝐿𝐶𝐷80|𝐶𝐷86 

𝑆𝐷𝐶
− 𝐶𝑐𝑜𝑠𝑡𝑖𝑚 − 𝐶𝐶𝑇𝐿𝐴4) (

𝑅𝐶𝑇𝐿𝐴4
𝑆𝑇

− 𝐶𝐶𝑇𝐿𝐴4)

−𝑘𝐶𝑇𝐿𝐴4
𝑜𝑓𝑓

𝐶𝐶𝑇𝐿𝐴4 − 𝑘𝐶𝑇𝐿𝐴4
𝑒𝑛𝑑𝑜 𝐶𝐶𝑇𝐿𝐴4. (B. 33)

 

 

At steady states, given 𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑛 , 𝑘𝑐𝑜𝑠𝑡𝑖𝑚

𝑜𝑓𝑓
, 𝑘𝐶𝑇𝐿𝐴4
𝑜𝑛 , and 𝑘𝐶𝑇𝐿𝐴4

𝑜𝑓𝑓
 ≫ 𝑘𝐶𝑇𝐿𝐴4

𝑒𝑛𝑑𝑜 ,  

𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑛 (

𝐿𝐶𝐷80|𝐶𝐷86 

𝑆𝐷𝐶
− 𝐶𝑐𝑜𝑠𝑡𝑖𝑚 − 𝐶𝐶𝑇𝐿𝐴4) (

𝑅𝐶𝐷28
𝑆𝑇

− 𝐶𝑐𝑜𝑠𝑡𝑖𝑚)

− 𝑘𝑐𝑜𝑠𝑡𝑖𝑚
𝑜𝑓𝑓

𝐶𝑐𝑜𝑠𝑡𝑖𝑚 = 0, (B. 34)

 

𝑘𝐶𝑇𝐿𝐴4
𝑜𝑛 (

𝐿𝐶𝐷80|𝐶𝐷86 

𝑆𝐷𝐶
− 𝐶𝑐𝑜𝑠𝑡𝑖𝑚 − 𝐶𝐶𝑇𝐿𝐴4) (

𝑅𝐶𝑇𝐿𝐴4
𝑆𝑇

− 𝐶𝐶𝑇𝐿𝐴4)

−𝑘𝐶𝑇𝐿𝐴4
𝑜𝑓𝑓

𝐶𝐶𝑇𝐿𝐴4 = 0, (B. 35)

 

which can be solved numerically for 𝐶𝑐𝑜𝑠𝑡𝑖𝑚 and 𝐶𝐶𝑇𝐿𝐴4. 

B.1.2.2 Detailed description of trans-endocytosis of CD80/86 by Tregs 

We further implemented the regulation of the trans-endocytosis efficiency by 

costimulation with the assumption that costimulation strength upregulates the trans-

endocytosis efficiency. This assumption was based on the fact that CD28 signaling 

increases the adhesion of T cells to DCs and, therefore, is likely to increase the 

efficiency of CTLA-4-mediated trans-endocytosis (Thauland et al., 2014). 

𝑑𝐿𝐶𝐷80|𝐶𝐷86 

𝑑𝑡
= −𝑘𝐶𝑇𝐿𝐴4,𝑒𝑓𝑓

𝑒𝑛𝑑𝑜 ⋅ 𝐶𝐶𝑇𝐿𝐴4,𝑡𝑜𝑡

= −𝑘𝐶𝑇𝐿𝐴4
𝑒𝑛𝑑𝑜 (𝑓𝑐𝑜𝑛𝑡_𝑙𝑜𝑤 + (𝑓𝑐𝑜𝑛𝑡_ℎ𝑖𝑔ℎ − 𝑓𝑐𝑜𝑛𝑡_𝑙𝑜𝑤) ⋅ (1 +

𝐾𝐶𝐷28,𝑡𝑟→𝑈𝑚𝑖𝑛 
𝐶𝑐𝑜𝑠𝑡𝑖𝑚,𝑡𝑟

)

−1

)

× 𝑉𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ⋅ 𝑛𝑡𝑟 ⋅ 𝑆𝐷𝐶:𝑇𝑅 ⋅ 𝐶𝐶𝑇𝐿𝐴4, (B. 36)

 

where 𝑘𝐶𝑇𝐿𝐴4,𝑒𝑓𝑓
𝑒𝑛𝑑𝑜  is the effective rate of endocytosis of CTLA4 and 𝐶𝐶𝑇𝐿𝐴4,𝑡𝑜𝑡 is the 

total number of the CD80|CD86:CTLA4 complexes in the immune synapses formed 

by Tregs and a DC. 
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B.1.3 Competition for IL-2 between a Tconv and Tregs (TC:I1, TC:I2, and 

TR:I1) 

In this component, we describe the dynamics of IL2Ra production, IL-2 production, 

secretion, and diffusion, and IL-2-IL-2R binding and endocytosis. 

B.1.3.1 IL2 receptor production and IL-2-IL2 receptor binding dynamics 

We follow the descriptions by: (Busse et al., 2010; Feinerman et al., 2010; Tkach et 

al., 2014; Voisinne et al., 2015) 

B.1.3.1.1 Reactions 

∅
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛
→          𝑚𝑅𝐼𝐿2𝑅𝛼, (B. 37) 

𝑚𝑅𝐼𝐿2𝑅𝛼
𝑘𝑚𝐼𝐿2𝑅𝛼
𝑑𝑒𝑔

→     ∅, (B. 38) 

𝑚𝑅𝐼𝐿2𝑅𝛼
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
→        𝑚𝑅𝐼𝐿2𝑅𝛼+𝑅𝐼𝐿2𝑅𝛼, (B. 39) 

𝑅𝐼𝐿2𝑅𝛼
𝑘𝐼𝐿2𝑅𝛼
𝑑𝑒𝑔

→    ∅, (B. 40) 

𝑅𝐼𝐿2𝑅𝛼 + 𝑅𝐼𝐿2𝑅𝛽𝛾 ⇄
𝑘𝐼𝐿2𝛼;𝛽𝛾
𝑜𝑓𝑓

𝑘𝐼𝐿2𝛼;𝛽𝛾
𝑜𝑛

𝑅𝐼𝐿2𝑅 , (B. 41) 

𝑅𝐼𝐿2𝑅 + 𝐼𝐼𝐿2 ⇄
𝑘𝐼𝐿2𝑅
𝑜𝑓𝑓

𝑘𝐼𝐿2𝑅
𝑜𝑛

𝐶𝐼𝐿2𝑅 , (B. 42) 

𝐶𝐼𝐿2𝑅
𝑘𝐶𝐼𝐿2𝑅
𝑒𝑛𝑑𝑜

→    ∅. (B. 43) 

B.1.3.1.2 Equations 

𝑑𝑚𝑅𝐼𝐿2𝑅𝛼
𝑑𝑡

= 𝑘𝑚𝐼𝐿2𝑅𝛼 
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑏𝑎𝑠𝑎𝑙) + 𝑘𝑚𝐼𝐿2𝑅𝛼

𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑇𝐶𝑅,𝑐𝑜𝑠𝑡𝑖𝑚)𝑃𝑇𝐶𝑅,𝑐𝑜𝑠𝑡𝑖𝑚→𝐼𝐿2𝑅𝛼
𝑜𝑛

+𝑘𝑚𝐼𝐿2𝑅𝛼
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑝𝑆𝑇𝐴𝑇5)𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5

𝑜𝑛 − 𝑘𝑚𝐼𝐿2𝛼
𝑑𝑒𝑔

𝑚𝑅𝐼𝐿2𝑅𝛼, (B. 44)
 

where 
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𝑃𝑇𝐶𝑅,𝑐𝑜𝑠𝑡𝑖𝑚→𝐼𝐿2𝑅𝛼
𝑜𝑛 =

(

 
 
1 +

(

 
 

(
𝐶𝑁

𝐾𝑇𝐶𝑅→𝐼𝐿2𝑅𝛼
)
𝑛𝑇𝐶𝑅→𝐼𝐿2𝑅𝛼

+(
𝐶𝑐𝑜𝑠𝑡𝑖𝑚

𝐾𝑐𝑜𝑠𝑡𝑖𝑚→𝐼𝐿2𝑅𝛼
)
𝑛𝑐𝑜𝑠𝑡𝑖𝑚→𝐼𝐿2𝑅𝛼

)

 
 

−1

)

 
 

−1

, (B. 45) 

𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5
𝑜𝑛 =

1

1 + (
𝐾𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5

𝑆𝐽𝐴𝐾
)
𝑛𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5

(1 − 𝑃𝑇𝐶𝑅→𝐼𝐿2𝑅𝛼
𝑜𝑛 ), (B. 46)

 

𝑆𝐽𝐴𝐾 =
𝑅𝐼𝐿2𝛼 

𝑅𝐼𝐿2𝛼 + 𝑅𝐼𝐿2𝛼,0 
∙

𝐼𝐼𝐿2
𝐼𝐼𝐿2 + 𝐾𝐼𝐿2→𝐽𝐴𝐾(𝑅𝐼𝐿2𝛼 )

, (B. 47) 

𝐾𝐼𝐿2→𝐽𝐴𝐾(𝑅𝐼𝐿2𝛼 ) = 𝐾𝐼𝐿2→𝐽𝐴𝐾
ℎ𝑖𝑔ℎ 𝑅𝐼𝐿2𝛼 

𝑅𝐼𝐿2𝛼 + 𝑅𝐼𝐿2𝛼,0 
+ 𝐾𝐼𝐿2→𝐽𝐴𝐾

𝑙𝑜𝑤
𝑅𝐼𝐿2𝛼,0

𝑅𝐼𝐿2𝛼 + 𝑅𝐼𝐿2𝛼,0 
. (B. 48) 

The rest of the differential equations are 

𝑑𝑅𝐼𝐿2𝑅𝛼
𝑑𝑡

= 𝑘𝐼𝐿2𝑅𝛼
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑅𝐼𝐿2𝑅𝛼 − 𝑘𝐼𝐿2𝑅𝛼

𝑑𝑒𝑔
𝑅𝐼𝐿2𝑅𝛼, (B. 49) 

𝑑𝑅𝐼𝐿2𝑅
𝑑𝑡

= 𝑘𝐼𝐿2𝛼;𝛽𝛾
𝑜𝑛 (𝑅𝐼𝐿2𝑅𝛼 − 𝑅𝐼𝐿2𝑅)(𝑅𝐼𝐿2𝑅𝛽𝛾 − 𝑅𝐼𝐿2𝑅) − 𝑘𝐼𝐿2𝛼;𝛽𝛾

𝑜𝑓𝑓
𝑅𝐼𝐿2𝑅, (B. 50) 

𝑑𝐶𝐼𝐿2𝑅
𝑑𝑡

= 𝑘𝐼𝐿2𝑅
𝑜𝑛 (𝑅𝐼𝐿2𝑅 − 𝐶𝐼𝐿2𝑅)𝐼 − 𝑘𝐼𝐿2𝑅

𝑜𝑓𝑓
𝐶𝐼𝐿2𝑅 − 𝑘𝐶𝐼𝐿2𝑅

𝑒𝑛𝑑𝑜𝐶𝐼𝐿2𝑅 .          (B. 51) 

Thus, at steady states, 

𝑅𝐼𝐿2𝑅 =
1

2
((𝑅𝐼𝐿2𝑅𝛼 + 𝑅𝐼𝐿2𝑅𝛽𝛾 + 𝐾𝐼𝐿2𝑅𝛼:𝛽𝛾,𝑑)

− √(𝑅𝐼𝐿2𝑅𝛼 + 𝑅𝐼𝐿2𝑅𝛽𝛾 + 𝐾𝐼𝐿2𝑅𝛼:𝛽𝛾,𝑑)
2
− 4𝑅𝐼𝐿2𝑅𝛼𝑅𝐼𝐿2𝑅𝛽𝛾)), 𝑖#(B. 52) 

𝐶𝐼𝐿2𝑅 =
𝐼𝐼𝐿2𝑅𝐼𝐿2𝑅
𝐾𝐶𝐼𝐿2𝑅 + 𝐼𝐼𝐿2

, (B. 53) 
 

where 𝐾𝐶𝐼𝐿2𝑅 =
𝑘𝐼𝐿2𝑅
𝑜𝑓𝑓

𝑘𝐼𝐿2𝑅
𝑜𝑛 ≈ 10𝑝𝑀. (B. 54) 

 

B.1.3.2 IL2 production dynamics 

We follow the descriptions by: (Tkach et al., 2014; Voisinne et al., 2015) 

B.1.3.2.1 Reactions 
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∅
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛
→          𝐼𝑚𝐼𝐿2, (B. 55) 

𝐼𝑚𝐼𝐿2
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛+𝑠𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛
→                 𝐼𝑚𝐼𝐿2 + 𝐼𝐼𝐿2. (B. 56) 

B.1.3.2.2 Equations 

𝑑𝐼𝑚𝐼𝐿2
𝑑𝑡

= 𝑘𝑚𝐼𝐿2
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑇𝐶𝑅,𝑐𝑜𝑠𝑡𝑖𝑚)𝑃𝑇𝐶𝑅,𝑐𝑜𝑠𝑡𝑖𝑚→𝐼𝐿2

𝑜𝑛 − 𝑘𝑚𝐼𝐿2
𝑑𝑒𝑔

𝐼𝑚𝐼𝐿2, (B. 57) 

where 

𝑃𝑇𝐶𝑅,𝑐𝑜𝑠𝑡𝑖𝑚→𝐼𝐿2
𝑜𝑛 =

1

1 + (
𝐾𝑇𝐶𝑅→𝐼𝐿2
𝐶𝑁

)
𝑛𝑇𝐶𝑅→𝐼𝐿2

×
1

1 + (
𝐾𝑐𝑜𝑠𝑡𝑖𝑚→𝐼𝐿2
𝐶𝑐𝑜𝑠𝑡𝑖𝑚

)
𝑛𝑐𝑜𝑠𝑡𝑖𝑚→𝐼𝐿2

∙ (1 − 𝑃𝑝𝑆𝑇𝐴𝑇5→𝐼𝐿2
𝑜𝑛 ) (B. 58)

 

 

for CD4 T cells (Lim et al., 2015).  

The secretion rate of IL2 is 

𝑞𝐼𝐿2 = 𝑘𝐼𝐿2
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝐼𝑚𝐼𝐿2. (B. 59) 

B.1.3.3 IL-2 secretion, diffusion, and consumption dynamics 

We integrated models from (Busse et al., 2010; Oyler-Yaniv et al., 2017; Shvartsman 

et al., 2001; Thurley et al., 2015) into a partial differential equation (PDE). Ordinary 

differential equations (ODEs) in the previous subsections are linked to the model 

component introduced here. 

B.1.3.3.1 Reactions 

∅
𝑞𝐼𝐿2
→  𝐼𝐼𝐿2, (B. 60) 

𝐼𝐼𝐿2
𝑘𝐼𝐿2,𝑒𝑥𝑡𝑟
𝑑𝑒𝑔

→     ∅, (B. 61) 

𝐼𝐼𝐿2 + 𝑅𝐼𝐿2𝑅,𝑡𝑐 ⇄
𝑘𝐼𝐿2𝑅
𝑜𝑓𝑓

𝑘𝐼𝐿2𝑅
𝑜𝑛

𝐶𝐼𝐿2𝑅,𝑡𝑐, (B. 62) 
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𝐼𝐼𝐿2 + 𝑅𝐼𝐿2𝑅,𝑡𝑟 ⇄
𝑘𝐼𝐿2𝑅
𝑜𝑓𝑓

𝑘𝐼𝐿2𝑅
𝑜𝑛

𝐶𝐼𝐿2𝑅,𝑡𝑟 . (B. 63) 

B.1.3.3.2 Equations 

The concentration of IL-2 is modeled through a reaction-diffusion equation. 

𝜕𝐼𝐼𝐿2
𝜕𝑡

= 𝐷𝐼𝐿2 ⋅ ∇
2𝐼𝐼𝐿2 − 𝑛𝑡𝑟 ⋅ 𝑗𝐼𝐿2,𝑡𝑟

𝑐𝑜𝑛𝑠𝑢𝑚 − 𝑘𝐼𝐿2,𝑒𝑥𝑡𝑟
𝑑𝑒𝑔

⋅ 𝐼𝐼𝐿2, (B. 64) 

where  

𝑗𝐼𝐿2,𝑡𝑟
𝑐𝑜𝑛𝑠𝑢𝑚 = 𝑘𝐼𝐿2𝑅

𝑜𝑛 ⋅ 𝐼𝐼𝐿2𝑅 ⋅ 𝑅𝐼𝐿2𝑅,𝑡𝑟 − 𝑘𝐼𝐿2𝑅
𝑜𝑓𝑓

⋅ 𝐶𝐼𝐿2𝑅,𝑡𝑟 , (B. 65) 

(assuming steady states) = 𝑘𝐶𝐼𝐿2𝑅
𝑒𝑛𝑑𝑜 ⋅ 𝐶𝐼𝐿2𝑅,𝑡𝑟 = 𝑘𝐶𝐼𝐿2𝑅

𝑒𝑛𝑑𝑜 ⋅
𝐼𝐼𝐿2 ⋅ 𝑅𝐼𝐿2𝑅,𝑡𝑟
𝐾𝐶𝐼𝐿2𝑅 + 𝐼𝐼𝐿2

. (B. 66) 

Boundary conditions are  

−4𝜋𝜌2 ⋅ 𝐷𝐼𝐿2
𝜕𝐼𝐼𝐿2
𝜕𝑟
|
𝑟=𝜌

= 𝑞𝐼𝐿2 − 𝑘𝐼𝐿2𝑅
𝑜𝑛 ⋅ 𝐼𝐼𝐿2𝑅 ⋅ 𝑅𝐼𝐿2𝑅,𝑡𝑐 + 𝑘𝐼𝐿2𝑅

𝑜𝑓𝑓
⋅ 𝐶𝐼𝐿2𝑅,𝑡𝑐 (B. 67) 

and 

𝐼(𝑟 = ∞, 𝑡) = 0. (B. 68) 

We numerically solved this equation using the MATLAB for actual simulations. 

B.1.3.3.3 Steady-state solution 

We layout the analytical derivation of the steady-state solution based on (Oyler-Yaniv 

et al., 2017). Since the time scale of relaxation of IL-2 diffusion (~60s) is much shorter 

than that of IL-2 receptor dynamics (~several hours), we assume the density of IL-2, 

𝐼𝐼𝐿2, reaches steady states at any given moment (time intervals of few minutes) (Oyler-

Yaniv et al., 2017). Thus, we only need to solve the following steady-state equation, 

0 = 𝐷𝐼𝐿2 ⋅ ∇
2𝐼𝐼𝐿2 − 𝑛𝑡𝑟 ⋅ 𝑗𝐼𝐿2,𝑡𝑟

𝑐𝑜𝑛𝑠𝑢𝑚 − 𝑘𝐼𝐿2,𝑒𝑥𝑡𝑟
𝑑𝑒𝑔

⋅ 𝐼𝐼𝐿2. (B. 69) 

With additional assumptions that 𝐼𝐼𝐿2 ≪ 𝐾𝐶𝐼𝐿2𝑅 ≈ 32 𝑝𝑀  and 𝑛𝑡𝑟  is constant 

throughout the spatial compartment,  we obtain 𝑗𝐼𝐿2,𝑡𝑟
𝑐𝑜𝑛𝑠𝑢𝑚 =

𝑘𝐶𝐼𝐿2𝑅
𝑒𝑛𝑑𝑜 ⋅𝑅𝐼𝐿2𝑅,𝑡𝑟

𝐾𝐶𝐼𝐿2𝑅
⋅ 𝐼𝐼𝐿2 =
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𝑘𝐼𝐿2𝑅
𝑐𝑜𝑛𝑠𝑢𝑚 ⋅ 𝐼𝐼𝐿2 , where 𝑘𝐼𝐿2𝑅

𝑐𝑜𝑛𝑠𝑢𝑚 ≡
𝑘𝐶𝐼𝐿2𝑅
𝑒𝑛𝑑𝑜 ⋅𝑅𝐼𝐿2𝑅,𝑡𝑟

𝐾𝐶𝐼𝐿2𝑅
. Finally, we obtain an analytically 

tractable equation, 

0 = ∇2𝐼𝐼𝐿2 −
𝛿

𝐷𝐼𝐿2
𝐼𝐼𝐿2, (B. 70) 

where 𝛿 ≡ 𝑛𝑡𝑟 ⋅ 𝑘𝐼𝐿2𝑅
𝑐𝑜𝑛𝑠𝑢𝑚 + 𝑘𝐼𝐿2,𝑒𝑥𝑡𝑟

𝑑𝑒𝑔
. With a suitable change of variables such that 

𝑟̃ ≡
𝑟

𝜆
, where 𝜆 = √

𝐷𝐼𝐿2

𝛿
= √

𝐷𝐼𝐿2

𝑛𝑡𝑟⋅𝑘𝐼𝐿2𝑅
𝑐𝑜𝑛𝑠𝑢𝑚+𝑘𝐼𝐿2,𝑒𝑥𝑡𝑟

𝑑𝑒𝑔 , we obtain 

0 = ∇̃2𝐼𝐼𝐿2 − 𝐼𝐼𝐿2. (B. 71) 

Assuming the spherical symmetry (i.e., the perfect spherical shape of T cell and 

isotropic IL2 secretion), we only need to solve the radial part of the equation, 

(
𝜕2

𝜕𝑟̃2
+
2

𝑟̃

𝜕

𝜕𝑟̃
) 𝐼 − 𝐼 = 0. (B. 72) 

With 𝐼(𝑟̃) =
𝐽(𝑟̃)

𝑟̃
, we obtain  

𝜕2𝐽(𝑟̃)

𝜕𝑟̃2
= 𝐽(𝑟̃). (B. 73) 

The general solution of this equation is  

𝐽(𝑟̃) = 𝐴𝑒𝑟̃ + 𝐵𝑒−𝑟̃ , (B. 74) 

or 

𝐼(𝑟̃) =
𝐴𝑒𝑟̃

𝑟̃
+
𝐵𝑒−𝑟̃

𝑟̃
=
𝐴′𝑒

𝑟
𝜆

𝑟
+
𝐵′𝑒

−
𝑟
𝜆

𝑟
. (B. 75) 

Using the boundary condition, 𝐼(𝑟 = ∞, 𝑡) = 0, we determine 𝐴′ = 0. From the other 

boundary condition,  

−4𝜋𝜌2 ⋅ 𝐷𝐼𝐿2
𝜕𝐼𝐼𝐿2
𝜕𝑟
|
𝑟=𝜌

= 𝑞𝐼𝐿2 − 𝑘𝐼𝐿2𝑅
𝑜𝑛 ⋅ 𝐼𝐼𝐿2𝑅 ⋅ 𝑅𝐼𝐿2𝑅,𝑡𝑐 + 𝑘𝐼𝐿2𝑅

𝑜𝑓𝑓
⋅ 𝐶𝐼𝐿2𝑅,𝑡𝑐, (B. 76) 
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we can determine 𝐵′ in terms of other parameters. By plugging 𝐼(𝑟̃) =
𝐵′⋅𝑒−𝑟/𝜆 

𝑟
 into 

the boundary condition at 𝑟 = 𝜌, we obtain 

−4𝜋𝜌2 ⋅ 𝐷𝐼𝐿2(−
𝐵′𝑒−

𝜌
𝜆

𝜌2
−
𝐵′𝑒−

𝜌
𝜆

𝜆𝜌
)

= 𝑞𝐼𝐿2 − 𝑘𝐼𝐿2𝑅
𝑜𝑛 ⋅ 𝑅𝐼𝐿2𝑅,𝑡𝑐

𝐵′ ⋅ 𝑒−
𝜌
𝜆

𝜌
+ 𝑘𝐼𝐿2𝑅

𝑜𝑓𝑓
⋅ 𝐶𝐼𝐿2𝑅,𝑡𝑐. (B. 77)

 

By solving this for 𝐵′, we obtain 

𝐵′ =
𝑞𝐼𝐿2 + 𝑘𝐼𝐿2𝑅

𝑜𝑓𝑓
⋅ 𝐶𝐼𝐿2𝑅,𝑡𝑐

4𝜋𝐷𝐼𝐿2 (1 +
𝜌
𝜆
) +

𝑘𝐼𝐿2𝑅
𝑜𝑛 ⋅ 𝑅𝐼𝐿2𝑅,𝑡𝑐

𝜌

exp
𝜌

𝜆
. (B. 78) 

Finally, the solution 𝐼(𝑟) is  

𝐼(𝑟) =
𝑞𝐼𝐿2 + 𝑘𝐼𝐿2𝑅

𝑜𝑓𝑓
⋅ 𝐶𝐼𝐿2𝑅,𝑡𝑐

4𝜋𝐷𝐼𝐿2 (1 +
𝜌
𝜆
) +

𝑘𝐼𝐿2𝑅
𝑜𝑛 ⋅ 𝑅𝐼𝐿2𝑅,𝑡𝑐

𝜌

exp (−
𝑟 − 𝜌
𝜆
)

𝑟
. (B. 79) 

The concentration of IL-2 at 𝑟 = 𝜌 is  

𝐼(𝑟 = 𝜌) =
𝑞𝐼𝐿2 + 𝑘𝐼𝐿2𝑅

𝑜𝑓𝑓
⋅ 𝐶𝐼𝐿2𝑅,𝑡𝑐

4𝜋𝐷𝐼𝐿2 ⋅ 𝜌 (1 +
𝜌
𝜆
) +

𝑘𝐼𝐿2𝑅
𝑜𝑛 ⋅ 𝑅𝐼𝐿2𝑅,𝑡𝑐

𝜌

. (B. 80) 

B.1.4 Spatiotemporal dynamics of Tregs and their internal states described 

by coupled partial differential equations 

In this component, we describe the spatial dynamics of Tregs and their internal states, 

resulting in coupled partial differential equations along with the equations in section  

B.1.4.1 Treg movement  

There are three possible mechanisms of the dynamical spatiotemporal regulation of 

Treg density: 1) chemoattraction or chemorepulsion due to cytokines or chemokines 
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secreted by responding Tconvs or DCs (Chavanis, 2008; Rapp et al., 2019), 2) 

proliferation induced by IL-2 sensing (Amado et al., 2013), and 3) decrease of the cell 

motility upon the engagement with DCs (Thauland et al., 2014). All of these 

possibilities are taken into account as: 

𝜕𝑛𝑡𝑟
𝜕𝑡

= −∇ ∙ (𝑛𝑡𝑟 ⋅ 𝜒0 (1 −
𝑛𝑡𝑟
𝐾𝑐𝑐
) ⋅ ∇𝑎)

+∇ ∙ (𝑛𝑡𝑟 ⋅ ∇𝑈 ⋅ (1 −
𝑛𝑡𝑟
𝐾𝑐𝑐
)) + ∇ ∙ (𝐷𝑡𝑟 ⋅ ∇𝑛𝑡𝑟)

+𝑘𝐼𝐿2→𝑡𝑟𝑒𝑔
𝑝𝑟𝑜𝑙𝑖𝑓 𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟

𝑜𝑛

(𝐾𝐼𝐿2→𝑡𝑟𝑒𝑔
𝑝𝑟𝑜𝑙𝑖𝑓

+ 𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟
𝑜𝑛 )

⋅ 𝑛𝑡𝑟 ⋅ (1 −
𝑛𝑡𝑟
𝐾𝑐𝑐
) , (B. 81)

 

where 𝑈 is the attractive potential describing the decrease of the Treg motility due to 

the engagement with DCs and regulated by costimulation and pSTAT5 levels of Tregs 

(Chinen et al., 2016; Thauland et al., 2014): 

𝑈(𝑟) = −𝑈𝑚𝑖𝑛 (1 + (
𝐶𝑐𝑜𝑠𝑡𝑖𝑚,𝑡𝑟

𝐾𝐶𝐷28,𝑡𝑟→𝑈𝑚𝑖𝑛 
+
𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟
𝑜𝑛

𝐾𝑝𝑆𝑡𝑎𝑡5,𝑡𝑟→𝑈𝑚𝑖𝑛 
)

−1

)

−1

 

× (1 −
𝑟𝑛𝑈

𝑟ℎ𝑎𝑙𝑓 + 𝑟𝑛𝑈
) , (B. 82)

 

(1 −
𝑛𝑡𝑟

𝐾𝑐𝑐
) is the carrying capacity factor estimated based on the physical volume of 

Tregs. 𝑎  is an arbitrary cytokine or chemokine inducing chemoattraction or 

chemorepulsion. 𝐷𝑡𝑟 is also assumed to be a function of 𝑟: 

𝐷𝑡𝑟(𝑟) =

{
 
 

 
 

𝐷𝑡𝑟,ℎ𝑖𝑔ℎ − (𝐷𝑡𝑟,ℎ𝑖𝑔ℎ − 𝐷𝑡𝑟,𝑙𝑜𝑤)

× (1 + (
𝐶𝑐𝑜𝑠𝑡𝑖𝑚,𝑡𝑟

𝐾𝐶𝐷28,𝑡𝑟→𝑈𝑚𝑖𝑛 
+
𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟
𝑜𝑛

𝐾𝑝𝑆𝑡𝑎𝑡5,𝑡𝑟→𝑈𝑚𝑖𝑛 
)

−1

)

−1

, 𝑟 < 15 𝑢𝑚 

𝐷𝑡𝑟,ℎ𝑖𝑔ℎ,   𝑟 > 15 𝑢𝑚

. (B. 83) 

The boundary condition is 

−𝑛𝑡𝑟𝜒0 (1 −
𝑛𝑡𝑟
𝐾𝑐𝑐
) ∇𝑎 + 𝑛𝑡𝑟 ⋅ ∇𝑈 ⋅ (1 −

𝑛𝑡𝑟
𝐾𝑐𝑐
) + 𝐷𝑡𝑟∇𝑛𝑡𝑟 = 0, (B. 84) 
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at 𝑟 = 𝜌 and ∞. The more natural description instead of using the attractive potential 

seems to be the Feller boundary condition, so-called a sticky boundary condition, which 

can be pursued later (Bou-Rabee and Holmes-Cerfon, 2019; Leszczyński and 

Bartłomiejczyk, 2015; Peters and Barenbrug, 2002). 

B.1.4.2 Time evolution of internal states of Tregs 

The internal states of Tregs evolve upon receiving signals from secreted IL-2 or other 

sources such as costimulatory ligands or pMHCII of DCs. We developed a general 

mathematical description of the internal dynamics of an entity described as a frequency 

using PDEs. In general, the number density of a molecular species R in Tregs is written 

as 𝑛𝑅 = 𝑅 ∙ 𝑛𝑡𝑟, where 𝑅 is the number of a molecular species per cell. Then, the time 

evolution of 𝑛𝑅 is  

𝜕𝑛𝑅
𝜕𝑡

=
𝜕𝑅

𝜕𝑡
⋅ 𝑛𝑡𝑟 + 𝑅 ⋅

𝜕𝑛𝑡𝑟
𝜕𝑡

= (𝑓𝑝𝑟𝑜𝑑 + 𝑓𝑑𝑒𝑔) ⋅ 𝑛𝑡𝑟 +
𝑛𝑅
𝑛𝑡𝑟
⋅
𝜕𝑛𝑡𝑟
𝜕𝑡

, (B. 85) 

where 𝑓𝑝𝑟𝑜𝑑 and 𝑓𝑑𝑒𝑔 are the production and degradation rates of R, respectively. The 

suitable form for implementing in the pdepe function of the MATLAB software (see 

section B.1.6 for the MATLAB implementation) is 

𝑛𝑡𝑟
𝑛𝑅
⋅
𝜕𝑛𝑅
𝜕𝑡

=
𝑛𝑡𝑟

2

𝑛𝑅
⋅ (𝑓𝑝𝑟𝑜𝑑 + 𝑓𝑑𝑒𝑔) +

𝜕𝑛𝑡𝑟
𝜕𝑡

= ∇ ∙ (𝑛𝑡𝑟 (1 −
𝑛𝑡𝑟
𝐾𝑐𝑐
) (∇𝑈 − 𝜒0 ⋅ ∇𝑎) + 𝐷𝑡𝑟 ⋅ ∇𝑛𝑡𝑟)

+
𝑛𝑡𝑟

2

𝑛𝑅
⋅ (𝑓𝑝𝑟𝑜𝑑 + 𝑓𝑑𝑒𝑔)

+𝑘𝐼𝐿2→𝑡𝑟𝑒𝑔
𝑝𝑟𝑜𝑙𝑖𝑓 𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟

𝑜𝑛

(𝐾𝐼𝐿2→𝑡𝑟𝑒𝑔
𝑝𝑟𝑜𝑙𝑖𝑓

+ 𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟
𝑜𝑛 )

⋅ 𝑛𝑡𝑟 ⋅ (1 −
𝑛𝑡𝑟
𝐾𝑐𝑐
) , (B. 86)

 

where  

𝑐 ≡
𝑛𝑡𝑟
𝑛𝑅
, (B. 87) 
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𝑓 ≡ 𝑛𝑡𝑟 (1 −
𝑛𝑡𝑟
𝐾𝑐𝑐
) (∇𝑈 − 𝜒0 ⋅ ∇𝑎) + 𝐷𝑡𝑟 ⋅ ∇𝑛𝑡𝑟 ,                  (B. 88) 

𝑠 ≡
𝑛𝑡𝑟

2

𝑛𝑅
⋅ (𝑓𝑝𝑟𝑜𝑑 + 𝑓𝑑𝑒𝑔)

+𝑘𝐼𝐿2→𝑡𝑟𝑒𝑔
𝑝𝑟𝑜𝑙𝑖𝑓 𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟

𝑜𝑛

(𝐾𝐼𝐿2→𝑡𝑟𝑒𝑔
𝑝𝑟𝑜𝑙𝑖𝑓

+ 𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟
𝑜𝑛 )

⋅ 𝑛𝑡𝑟 ⋅ (1 −
𝑛𝑡𝑟
𝐾𝑐𝑐
) . (B. 89)

 

Specifically, we implemented dynamics of 𝑚𝐼𝐿2𝑅𝛼 (mRNA of 𝐼𝐿2𝑅𝛼) and 𝐼𝐿2𝑅𝛼 as 

𝜕𝑛𝑚𝐼𝐿2𝑅𝛼,𝑡𝑟
𝜕𝑡

=
𝜕𝑚𝑅𝐼𝐿2𝑅𝛼,𝑡𝑟

𝜕𝑡
⋅ 𝑛𝑡𝑟 +𝑚𝑅𝐼𝐿2𝑅𝛼,𝑡𝑟 ⋅

𝜕𝑛𝑡𝑟
𝜕𝑡

= (
𝑘𝑚𝐼𝐿2𝑅𝛼,𝑡𝑟 
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑏𝑎𝑠𝑎𝑙) + 𝑘𝑚𝐼𝐿2𝑅𝛼

𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑝𝑆𝑇𝐴𝑇5) ⋅ 𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟
𝑜𝑛

−𝑘𝑚𝐼𝐿2𝛼
𝑑𝑒𝑔

⋅
𝑛𝑚𝐼𝐿2𝑅𝛼,𝑡𝑟
𝑛𝑡𝑟

 
) ⋅ 𝑛𝑡𝑟

+
𝑛𝑚𝐼𝐿2𝑅𝛼,𝑡𝑟
𝑛𝑡𝑟

⋅
𝜕𝑛𝑡𝑟
𝜕𝑡

, (B. 90)

 

𝜕𝑛𝐼𝐿2𝑅𝛼,𝑡𝑟
𝜕𝑡

=
𝜕𝑅𝐼𝐿2𝑅𝛼,𝑡𝑟

𝜕𝑡
⋅ 𝑛𝑡𝑟 + 𝑅𝐼𝐿2𝑅𝛼,𝑡𝑟 ⋅

𝜕𝑛𝑡𝑟
𝜕𝑡

= (𝑘𝐼𝐿2𝑅𝛼
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 ⋅

𝑛𝑚𝐼𝐿2𝑅𝛼,𝑡𝑟
𝑛𝑡𝑟

− 𝑘𝐼𝐿2𝑅𝛼
𝑑𝑒𝑔

⋅
𝑛𝐼𝐿2𝑅𝛼,𝑡𝑟
𝑛𝑡𝑟

) ⋅ 𝑛𝑡𝑟 +
𝑛𝐼𝐿2𝑅,𝑡𝑟
𝑛𝑡𝑟

⋅
𝜕𝑛𝑡𝑟
𝜕𝑡

, (B. 91)
 

where  

𝑃𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5,𝑡𝑟
𝑜𝑛 (𝑟) =

1

1 + (
𝐾𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5
𝑆𝐽𝐴𝐾,𝑡𝑟(𝑟)

)
𝑛𝐽𝐴𝐾→𝑝𝑆𝑇𝐴𝑇5

, (B. 92)
 

𝑆𝐽𝐴𝐾,𝑡𝑟(𝑟) =

𝑛𝑅𝐼𝐿2𝛼
𝑛𝑡𝑟

𝑛𝑅𝐼𝐿2𝛼
𝑛𝑡𝑟

+ 𝑅𝐼𝐿2𝛼,0 

⋅
𝐼𝐼𝐿2

𝐼𝐼𝐿2 + 𝐾𝐼𝐿2→𝐽𝐴𝐾 ⋅ (
𝑛𝑅𝐼𝐿2𝛼
𝑛𝑡𝑟

)
, (B. 93) 

𝐾𝐼𝐿2→𝐽𝐴𝐾 (
𝑛𝑅𝐼𝐿2𝛼
𝑛𝑡𝑟

) = 𝐾𝐼𝐿2→𝐽𝐴𝐾
ℎ𝑖𝑔ℎ

𝑛𝑅𝐼𝐿2𝛼
𝑛𝑡𝑟

𝑛𝑅𝐼𝐿2𝛼
𝑛𝑡𝑟

+ 𝑅𝐼𝐿2𝛼,0 

+ 𝐾𝐼𝐿2→𝐽𝐴𝐾
𝑙𝑜𝑤

𝑅𝐼𝐿2𝛼,0
𝑛𝑅𝐼𝐿2𝛼
𝑛𝑡𝑟

+ 𝑅𝐼𝐿2𝛼,0 

. (B. 94) 
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B.1.5 Signal integration from TCR, costimulation, and IL-2 and translation 

into the proliferation capacity 

In a priming Tconv, the signaling strengths, 𝐶𝑇𝐶𝑅,𝑁, 𝐶𝑐𝑜𝑠𝑡𝑖𝑚, and 𝑆𝐽𝐴𝐾 are integrated 

for functional outcomes. 

B.1.5.1 Division destiny 

One of the integrated functional outcomes is the division destiny, the number of 

divisions the responding Tconv undergoes (Marchingo et al., 2014). Myc has been 

suggested as a signal integrator, of which the dynamics determine the division destiny 

(Heinzel et al., 2017). 

B.1.5.1.1 Reactions 

∅
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛
→          𝑚𝑅𝑀𝑦𝑐 , (B. 95) 

𝑚𝑅𝑀𝑦𝑐
𝑘𝑚𝑀𝑦𝑐
𝑑𝑒𝑔

→    ∅, (B. 96) 

𝑚𝑅𝑀𝑦𝑐
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
→        𝑚𝑅𝑀𝑦𝑐+𝑅𝑀𝑦𝑐 , (B. 97) 

𝑅𝑀𝑦𝑐
𝑘𝑀𝑦𝑐
𝑑𝑒𝑔

→   ∅. (B. 98) 

B.1.5.1.2 Equations 

𝑑𝑚𝑅𝑀𝑦𝑐

𝑑𝑡
= 𝑘𝑚𝑀𝑦𝑐 

𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑏𝑎𝑠𝑎𝑙) + 𝑘𝑚𝑀𝑦𝑐
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑎𝑙𝑙) ⋅ 𝑃𝑇𝐶𝑅,𝑐𝑜𝑠𝑡𝑖𝑚,𝐽𝐴𝐾→𝑃𝐼3𝐾

𝑜𝑛

−𝑘𝑚𝑀𝑦𝑐
𝑑𝑒𝑔

⋅ 𝑚𝑅𝑀𝑦𝑐 , (B. 99)
 

𝑑𝑅𝑀𝑦𝑐

𝑑𝑡
= 𝑘𝑀𝑦𝑐 

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑚𝑅𝑀𝑦𝑐 − 𝑘𝑀𝑦𝑐
𝑑𝑒𝑔
𝑅𝑀𝑦𝑐 , (B. 100) 

where  
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𝑃𝑇𝐶𝑅,𝑐𝑜𝑠𝑡𝑖𝑚,𝐽𝐴𝐾→𝑃𝐼3𝐾
𝑜𝑛 =

(

 
 
1 +

(

 
 
(

𝐶𝑁
𝐾𝑇𝐶𝑅→𝑃𝐼3𝐾

)
𝑛𝑇𝐶𝑅→𝑃𝐼3𝐾

+ (
𝐶𝑐𝑜𝑠𝑡𝑖𝑚

𝐾𝑐𝑜𝑠𝑡𝑖𝑚→𝑃𝐼3𝐾
)
𝑛𝑐𝑜𝑠𝑡𝑖𝑚→𝑃𝐼3𝐾

+(
𝑆𝐽𝐴𝐾

𝐾𝐽𝐴𝐾→𝑃𝐼3𝐾
)

𝑛𝑐𝑜𝑠𝑡𝑖𝑚→𝑃𝐼3𝐾

)

 
 

−1

)

 
 

−1

. (B. 101)
 

B.1.6 Implementation of PDEs using the pdepe function in the MATLAB 

software 

The general formula of PDEs in the pdepe function can be described as 

𝑐 (𝑥, 𝑡, 𝑢,
𝜕𝑢

𝜕𝑥
) ⋅
𝜕𝑢

𝜕𝑡
= 𝑥−𝑚

𝜕

𝜕𝑥
(𝑥𝑚 ⋅ 𝑓(𝑥, 𝑡, 𝑢, )) + 𝑠 (𝑥, 𝑡, 𝑢,

𝜕𝑢

𝜕𝑥
),     (B. 102) 

with the general boundary condition 

𝑝(𝑥, 𝑡, 𝑢) + 𝑞(𝑥, 𝑡) ⋅ 𝑓 (𝑥, 𝑡, 𝑢,
𝜕𝑢

𝜕𝑥
) . (B. 103) 

𝑚 determines the dimensionality of the system; 𝑚 = 0, 1, and 2 refer to 1-D linear, 2-

D cylindrical, and 3-D spherical systems with angular symmetries, respectively. 

B.2 MAPPA framework and simulation procedure  

Most of the model parameters were obtained from existing previous literature (see 

Table 4.1 and B.1 for detailed descriptions and references of parameters). While 

parameters related to ligand-receptor binding kinetics could be obtained from the 

literature, parameters associated with Hill functions connecting upstream signals and 

downstream effects could not be determined since they are phenomenological 

descriptions and subject to cell-cell heterogeneities, even under shared environments. 

Initial conditions of model variables (such as the initial level of CD80/86 or initial 

density of Tregs) can be considered as parameters externally provided. However, these 

values also vary significantly during homeostatic conditions. Therefore, simulating the 
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model under a few fixed parameter combinations cannot account for phenotypic 

variations of the T cell response, leading us to apply the MAPPA framework outlined 

below. 

MAPPA is a computational framework that uses Random Forests to build 

quantitative maps between parameter space and phenotypic space for complicated 

models with analytical intractability  . This framework determines the contribution of 

individual parameters sampled throughout the plausible parameter space on a range of 

phenotypes, both at the global level (i.e., across all configurations in the parameter 

space), or local level (i.e., across specific configurations in the parameter space only). 

For our studies, the plausible parameter space was constructed using homeostatic 

parameter value ranges (see Table 4.1). We factored in the effects of inflammation on 

the costimulatory ligand level (CD80/86 on a DC), for which we considered two 

different ranges, 100,000-1,000,000 and 300,000-3,000,000 for homeostasis and 

inflammation, respectively. Within these parameter ranges, we sampled 20,000 

parameter combinations using the Sobol’ sampling scheme, which, when compared to 

a pseudorandom sampling scheme, ensures uniform coverage of high-dimensional 

space.  

Simulations were conducted using the MATLAB software for each parameter 

combination. The simulation time was from 0 to 120 hours, reflecting the typical time 

scale of the T cell response. The units of variables were set to be either copy numbers 

for intracellular species or copy numbers per 𝑢𝑚3 for extracellular species. The units 

of parameters were converted to those compatible with the units of variables. Matlab 

code is available on Github (https://github.com/pkm304/multiscale_t_cell_activation). 

https://github.com/pkm304/multiscale_t_cell_activation
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ODEs and PDEs were connected with boundary conditions at the interface of spatial 

compartments (Figure 4.1). By utilizing the separation of time scales between gene 

expression dynamics occurring over hours and spatial dynamics of cell movement and 

IL-2 diffusion reaching stationary states occurring over minutes, we were able to use 

the built-in ODE and PDE solvers (ode45 and pdepe, respectively) of the MATLAB, 

rather than creating a new simulation scheme. We decomposed each simulation of 

ODEs and PDEs into 5-minute intervals, which is the optimal separation of time scales. 

For each 5-minute interval, the initial boundary conditions were based on the 

simulation results from the previous time interval. 

B.3 Effective size of the IL-2 niche per cell 

We estimate the effective size of the IL-2 niche provided by an IL-2 secreting Tconv 

in homeostasis based on the model T cell zone and related quantities (Figure 4.15; 

Table B.1). 𝑓𝑝𝑆𝑇𝐴𝑇5+ = 0.1 indicates that 10% of the volume of the T cell zone is 

affected by IL-2 secreting Tconv. From 𝑁𝐼𝐿2+ = 792, we derive the mean effective 

range 𝑙𝐷 of the IL-2 niche for each IL2 secretor: 

4

3
𝜋(𝑙𝐷

   3 − 𝑟𝑡𝑟
   3) ∙ 𝑁𝐼𝐿2+ = 𝑉𝐼𝐿2+ ∙ 𝑁𝐼𝐿2+ = 𝑓𝑝𝑆𝑇𝐴𝑇5+ ∙ 𝑉𝑡𝑜𝑡, (B. 104) 

where the volume of Tregs is excluded and 𝑉𝐼𝐿2+ is the effective volume of the IL-2 

niche per IL-2 secreting cell. Finally, we obtain 

𝑙𝐷 = (
3

4𝜋
∙
𝑓𝑝𝑆𝑇𝐴𝑇+ ∙ 𝑉𝑡𝑜𝑡

𝑁𝐼𝐿2+
− 𝑟𝑡𝑟

3 )

1
3

= 9.79𝜇𝑚. (B. 105) 

We can consider the quantities, 𝑙𝐷  = 9.79𝜇𝑚  and 𝑉𝐼𝐿2+ = 3406.8𝜇𝑚
3 , as a 

fundamental spatial unit of T-cell-T-cell interactions mediated by paracrine IL-2. 
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Table B.1 Quantities defined in the model T cell zone. 

 

B.4 Probabilistic models of clonal expansion 

B.4.1 Sequential encounter model 

We employed the mathematical description of collisions between cells under the 

assumption that each self-activated T cells randomly moves around with the average 

speed, 𝑣𝑟𝑎𝑛𝑑 = 5𝜇𝑚/𝑚𝑖𝑛 (Fricke et al., 2016). A self-activated T cell sweeps the 

space with a cross-section, 𝜎 = 𝜋 ⋅ (𝑟𝑡𝑐 + 𝑙𝐷)
2 = 706.86 𝜇𝑚2 . The volume the 

activated Tconv with this cross-section sweeps per minute is 𝑉𝑠𝑤𝑒𝑒𝑝 = 𝜎 ⋅ 𝑣𝑟𝑎𝑛𝑑 

(Figure 4.18). Then, we estimate the number of IL-2 secreting Tconv encounters within 

their IL-2 niches per unit time as 𝑅𝑒𝑛𝑐 = 𝑛𝐼𝐿2+ ⋅ 𝜎 ⋅ 𝑣𝑟𝑎𝑛𝑑 = 0.104 𝑚𝑖𝑛
−1 = 6.2 ℎ−1, 

where 𝑛𝐼𝐿2+ = 2.93 × 10
−5. In homeostasis, each encounter lasts 𝜏 ≈ 2 𝑚𝑖𝑛 given the 

size of the IL2 niche per cell (𝑙𝐷 ≈ 10𝜇𝑚) and the average speed of T cell movement, 

𝑣𝑟𝑎𝑛𝑑 = 5𝜇𝑚/𝑚𝑖𝑛 . The average accumulated duration of encounters per hour is 

Notation Description Value 

𝑽𝒕𝒐𝒕 Volume of (model) T cell zone 2.7 × 107 µm3 

𝒇𝑰𝑳𝟐+ Frequency of IL-2 secreting CD4+ T cells 0.01 

𝒇𝒑𝑺𝑻𝑨𝑻𝟓+ Frequency of pSTAT5+ Tregs 0.1 

𝒏𝒕𝒓 Number density of Tregs 0.0004 µm-3 

𝑵𝒕𝒓 Number density of Tregs 10800 cells 

𝒏𝒕𝒄𝒐𝒏𝒗 Number density of Tconvs 0.00293 µm-3 

𝑵𝒕𝒄𝒐𝒏𝒗 Number of Tconv 79200 cells 

𝑵𝑰𝑳𝟐+ Number of IL-2 secreting Tconvs 792 cells 

𝒏𝑰𝑳𝟐+ Number density of IL-2 secreting Tconvs 2.93 × 10-5 µm-3 

𝒓𝒕𝒄, 𝒓𝒕𝒓  Radius of Tconv and Treg 5 µm 
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𝜏𝑐𝑢𝑚𝑢𝑙 ≈ 12 𝑚𝑖𝑛, which is around 20% of an hour. This duration is substantially below 

the duration that a self-activated T cell under Treg suppression needs for maintaining 

the proliferation signals and suppressing the apoptotic signals since, as we have seen 

(Figure 4.5), a self-activated T cell barely achieves a high level of IL2-Ra enough to 

sense IL-2. 

By applying the Poisson process, we obtained the probability of having 𝑥 

encounters per hour given the average encounter rate, 𝑅𝑒𝑛𝑐 as 

𝑃ℎ𝑜𝑢𝑟(𝑥, 𝑅𝑒𝑛𝑐) =
𝑅𝑒𝑛𝑐

𝑥 ⋅ 𝑒−𝑅𝑒𝑛𝑐

𝑥!
 . (B. 106) 

To get more intuition, we compute the probability of equal to or more than 30 

encounters per hour,  

𝑃ℎ𝑜𝑢𝑟(𝑥 ≥ 30, 6.2) = ∑
6.2𝑥 ⋅ 𝑒−6.2

𝑥!
𝑥≥30

= 5.64 × 10−12, (B. 107) 

which is an extremely low probability. To undergo a complete clonal expansion, self-

activated T cells should get enough signals for five days or 120 hours (Heinzel et al., 

2017). If we assume that the average number of encounters enough to maintain the 

activated T cell for a clonal expansion is 𝑁𝑒𝑛𝑐.𝑡ℎ𝑟𝑒𝑠ℎ, then the probability of clonal 

expansion can be obtained as 

𝑃𝑐𝑙𝑜𝑛𝑎𝑙 = {𝑃ℎ𝑜𝑢𝑟(𝑥 ≥ 𝑁𝑒𝑛𝑐.𝑡ℎ𝑟𝑒𝑠ℎ, 𝑅𝑒𝑛𝑐)}
120.                      (B. 108) 

Assuming 𝑁𝑒𝑛𝑐.𝑡ℎ𝑟𝑒𝑠ℎ = 15, a condition of obtaining IL-2 signals around half of the 

whole duration, 

𝑃𝑐𝑙𝑜𝑛𝑎𝑙 = {𝑃ℎ𝑜𝑢𝑟(𝑥 ≥ 15, 6.2)}
120 ≈ 10−326.                    (B. 109) 

The average precursor number of self-activated T cells undergoing clonal expansion 

during five days in the model T cell zone is 

𝑁𝑐𝑙𝑜𝑛𝑎𝑙 = 𝑁𝐼𝐿2+ ∙ 𝑃𝑐𝑙𝑜𝑛𝑎𝑙 ≈ 10
−323. (B. 110) 
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We interpret this as we expect a self-activated T cell in the model T cell zone would 

eventually escape and undergo clonal expansion if we wait for 
5

10−323
≈ 10324 days ≈

10321 years, which is essentially impossible within the scope of the age of the universe 

(13.7 billion years).  

B.4.2 Cluster formation model 

For a cluster of cells to go through clonal expansion, the formed cluster should sustain 

at least 10 hours, the duration of cell division (Heinzel et al., 2017). We assume that 

after 10 hours, the cluster can sustain the mutual signaling milieu to keep IL-2 

availability with the increasing cluster size (Zenke et al., 2020). The probability of 

forming a cluster of 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟 cells within the unit volume, 𝑉𝐼𝐿2+, of the per-cell average 

IL-2 niche persisting more than 10 hours can be decoupled as 

𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) = 𝑃𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ⋅ 𝑃𝑝𝑒𝑟𝑠𝑖𝑠𝑡(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟), (B. 111) 

where 𝑃𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛: the probability of cluster formation and 𝑃𝑝𝑒𝑟𝑠𝑖𝑠𝑡: the probability of 

10-hour persistence of the cluster.  

We derive 𝑃𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) by applying the Poisson process (Richardson, 

1946). With the expected number of IL-2 secreting Tconv in the unit volume, 𝜆𝐼𝐿2+ =

𝑛𝐼𝐿2+ ∙ 𝑉𝐼𝐿2+ = 𝑓𝑝𝑆𝑇𝐴𝑇5+, we obtain 

𝑃𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) =
(𝜆𝐼𝐿2+)

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒−𝜆𝐼𝐿2+

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟!
=
(𝑓𝑝𝑆𝑇𝐴𝑇5+)

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑒−𝑓𝑝𝑆𝑇𝐴𝑇5+

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟!
. (B. 112) 

The expected number of the clusters with 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟 cells in the model T cell zone is  

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) =
𝑉𝑡𝑜𝑡
𝑉𝐼𝐿2+

∙ 𝑃𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) =
𝑉𝑡𝑜𝑡
𝑉𝐼𝐿2+

∙
(𝜆𝐼𝐿2+)

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒−𝜆𝐼𝐿2+

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟!

= 𝑁𝐼𝐿2+ ∙
(𝑓𝑝𝑆𝑇𝐴𝑇5+)

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟−1
𝑒(−𝑓𝑝𝑆𝑇𝐴𝑇5+)

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟!
. (B. 113)
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where 
𝑉𝑡𝑜𝑡

𝑉𝐼𝐿2+
 is the number of the unit volume in the model T cell zone. Interestingly, 

𝑃𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟)  and 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟)  are expressed with the experimentally 

measurable quantities, 𝑓𝑝𝑆𝑇𝐴𝑇5+ and 𝑁𝐼𝐿2+. 

Derivation of the functional form of 𝑃𝑝𝑒𝑟𝑠𝑖𝑠𝑡(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) requires information of 

the kinetics for T cell-T cell adhesions (Figure 4.21). From previous intravital imaging 

studies (Fricke et al., 2016; Matheu et al., 2015), we obtained important time scales. 

With the average speed of T cells, 𝑣𝑟𝑎𝑛𝑑 =
5𝜇𝑚

𝑚𝑖𝑛
 and the average size of the IL-2 niche 

per cell, 𝑙𝐷 ≈ 10𝜇𝑚 the time scale 𝜏𝑜𝑛 for new self-activated T cells joining an already 

existing cluster is 𝜏𝑜𝑛 ≈
10

5
= 2 𝑚𝑖𝑛 (Figure 4.21). With the mean contact duration 

between T cells, 𝜏𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 1.5 𝑚𝑖𝑛 (Matheu et al., 2015), the rate of disengagement 

of cells from a cluster can be estimated as 𝑘𝑜𝑓𝑓~
1

1.5
 𝑚𝑖𝑛−1. 

With this time scale information, we further derived the functional forms of 𝑘𝑜𝑛 

and 𝑘𝑜𝑓𝑓. For a preformed cluster with 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟 cells, the probability of an additional 

self-activated, IL-2 secreting Tconv encountering this cluster within the IL-2 niche is  

𝑃𝑎𝑑𝑑 =
𝑉𝐼𝐿2+ ⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

2
3

𝑉𝑡𝑜𝑡
=

𝑓𝑝𝑆𝑇𝐴𝑇5+ ⋅ 𝑉𝑡𝑜𝑡
𝑁𝐼𝐿2+

⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
2
3

𝑉𝑡𝑜𝑡
, (B. 114)

 

where the numerator describes the volume of IL-2 niche of the cluster. Note that we 

used 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
2

3  rather than 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟  because cells in the periphery of the cluster 

contribute to the IL-2 niche of the cluster seen by incoming cells (Richardson, 1946). 

Assuming that this encounter happens within 𝜏𝑜𝑛 and there are 𝑁𝐼𝐿2+ self-activated, 

IL-2 secreting Tconvs, we obtain 𝑘𝑜𝑛 as 
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𝑘𝑜𝑛 = 𝑃𝑎𝑑𝑑 ⋅
𝑁𝐼𝐿2+
𝜏𝑜𝑛

=
𝑓𝑝𝑆𝑇𝐴𝑇5+ ⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

2
3

𝜏𝑜𝑛
. (B. 115) 

For deriving 𝑘𝑜𝑓𝑓, we assume that, again, only the cells in the periphery of the clusters 

are subject to detachment. We further assumed that as the size of the cluster increases, 

the cells in the cluster adhere to each other more firmly, leading to decreased 𝑘𝑜𝑓𝑓. 

Finally, we obtained 𝑘𝑜𝑓𝑓 as 

𝑘𝑜𝑓𝑓 =
𝑘𝑜𝑓𝑓.𝑚𝑎𝑥

1 +
𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝐾𝑐𝑙𝑢𝑠𝑡𝑒𝑟

⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
2
3, (B. 116)

 

where 𝑘𝑜𝑓𝑓.𝑚𝑎𝑥 =
1

1.5
 𝑚𝑖𝑛−1and 𝐾𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≈ 10.   

With those estimated kinetic parameters, we now derive 𝑃𝑝𝑒𝑟𝑠𝑖𝑠𝑡(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟). We 

start from a dynamical equation describing the cluster size: 

𝑑𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑑𝑡

= 𝑘𝑜𝑛 − 𝑘𝑜𝑓𝑓 =
𝑓𝑝𝑆𝑇𝐴𝑇5+ ⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

2
3

𝜏𝑜𝑛
−

𝑘𝑜𝑓𝑓.𝑚𝑎𝑥

1 +
𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝐾𝑐𝑙𝑢𝑠𝑡𝑒𝑟

⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
2
3

= −(
𝑘𝑜𝑓𝑓.𝑚𝑎𝑥

1 +
𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝐾𝑐𝑙𝑢𝑠𝑡𝑒𝑟

−
𝑓𝑝𝑆𝑇𝐴𝑇5+

𝜏𝑜𝑛
) ⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

−
1
3 ⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

= −𝛿(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , (B. 117)

 

where we introduced the effective decay parameter,  

𝛿(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ≡ (
𝑘𝑜𝑓𝑓.𝑚𝑎𝑥

1 +
𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝐾𝑐𝑙𝑢𝑠𝑡𝑒𝑟

−
𝑓𝑝𝑆𝑇𝐴𝑇5+

𝜏𝑜𝑛
) ⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

−
1
3. (B. 118) 

Finally, the probability of 10-hour persistence of a cluster with 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟 cells can be 

estimated as, 

𝑃𝑝𝑒𝑟𝑠𝑖𝑠𝑡(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ≈ exp[−𝛿(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ⋅ 10 ℎ𝑜𝑢𝑟𝑠]. (B. 119) 

Thus far, we have derived 𝑃𝑐𝑙𝑜𝑛𝑎𝑙 as 
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𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) = 𝑃𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ⋅ 𝑃𝑝𝑒𝑟𝑠𝑖𝑠𝑡(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

=
(𝑛𝐼𝐿2+ ∙ 𝑉𝐼𝐿2+)

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒−𝑛𝐼𝐿2+∙𝑉𝐼𝐿2+

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟!

× exp [−(
𝑘𝑜𝑓𝑓.𝑚𝑎𝑥

1 +
𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝐾𝑐𝑙𝑢𝑠𝑡𝑒𝑟

−
𝑓𝑝𝑆𝑇𝐴𝑇5+

𝜏𝑜𝑛
) ⋅ 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟

−
1
3 ⋅ 10 ℎ𝑜𝑢𝑟𝑠] . (B. 120)

 

The proper interpretation of 𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) is the probability of formation and 

clonal expansion of a cluster of the size, 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟, in the unit volume, 𝑉𝐼𝐿2+, the per-cell 

average size of IL-2 niche provided by a self-activated, IL-2 secreting Tconv. With this, 

we further derived the expression of the probability of formation and clonal expansion 

of clusters with 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≥ 5 cells anywhere in the total volume, 𝑉𝑡𝑜𝑡. The threshold 

size, five cells, was obtained from (Bosch et al., 2017). The total volume, 𝑉𝑡𝑜𝑡, can be 

thought of being comprised of multiple 𝑉𝐼𝐿2+. Then, the total number of the unit volume 

is 𝑁𝑢𝑛𝑖𝑡 =
𝑉𝑡𝑜𝑡

𝑉𝐼𝐿2+
≈ 7920 . First, we obtained the probability of nonexistence of the 

cluster with the size ≥ 5 as  

𝑃𝑛𝑢𝑙𝑙 = ∏ (
𝑁𝑢𝑛𝑖𝑡
0
) ⋅ 𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

0 ⋅ (1 − 𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟))
𝑁𝑢𝑛𝑖𝑡

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟≥5

= ∏ (1 − 𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ⋅
𝑁𝑢𝑛𝑖𝑡
𝑁𝑢𝑛𝑖𝑡

)
𝑁𝑢𝑛𝑖𝑡

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟≥5

≈ ∏ exp(−𝑁𝑢𝑛𝑖𝑡 ⋅ 𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟))

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟≥5

= exp [− ∑ 𝑁𝑢𝑛𝑖𝑡 ⋅ 𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟≥5

] , (B. 121)

 

where the approximation with exponential function is valid given that 𝑁𝑢𝑛𝑖𝑡 ⋅

𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟) ≪ 1 and 𝑁𝑢𝑛𝑖𝑡 ≫ 1. The probability of clonal expansion in anywhere 

of 𝑉𝑡𝑜𝑡 is  
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𝑃𝑐𝑙𝑜𝑛𝑎𝑙.𝑡𝑜𝑡 = 1 − 𝑃𝑛𝑢𝑙𝑙 = 1 − exp [− ∑ 𝑁𝑢𝑛𝑖𝑡 ⋅ 𝑃𝑐𝑙𝑜𝑛𝑎𝑙(𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟≥5

] . (B. 122) 

𝑃𝑐𝑙𝑜𝑛𝑎𝑙.𝑡𝑜𝑡  for varying the self-activated T cell frequencies are plotted for different 

𝑘𝑜𝑓𝑓.𝑚𝑎𝑥 , 
1

1.5
, 
1

2
, and 

1

2.5
, where lower 𝑘𝑜𝑓𝑓.𝑚𝑎𝑥  indicates the condition that self-

activated T cells achieve higher adhesive capacity, possibly due to inflammation 

(Figure 4.21B). 

B.5 Cell population models of the peripheral Treg maintenance 

We consider the population dynamics of Tregs at two different organizational levels, 

i.e., the intranodal level and organismal levels (Figure 4.22). Our goal is to show that 

the homeostatic frequencies of self-activated, IL-2 secreting Tconvs (1-2% of Tconvs) 

and pSTAT5+ Tregs (10-15% of Tregs) are sufficient to maintain the physiologic 

peripheral Treg pool size based on the reasonable values of parameters and variables 

related to Treg population dynamics inferred from the existing literature and 

quantitative arguments. 

Recently, at least two subtypes of Tregs, i.e., central Tregs (cTregs) and effector 

Tregs (eTregs) has been shown to exist with different phenotypes in terms of 

responsiveness to IL-2 and dwelling time in lymph nodes (Owen et al., 2018; Smigiel 

et al., 2014; Tong et al., 2019). cTregs show naïve phenotypes and rely on IL-2 for their 

survival and proliferation while eTregs are derived from cTregs and independent of 

IL2, yet dependent on the ICOS signaling from dendritic cells (Smigiel et al., 2014). 

The frequency ratio between these two subtypes in SLOs is roughly 1:1 despite 

significant variations across SLOs. Therefore, we only consider cTregs for modeling 
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their maintenance in the periphery dependent on IL-2, which is roughly half of the total 

Treg population. 

B.5.1 Intranodal Treg population dynamics 

Again, we utilize the model T cell zone and related quantities (Figure 4.15; Table B.1) 

to describe the intranodal dynamics of the Treg population (Figure 4.22A). We can 

write the governing equation of the population dynamics of cTregs as 

𝑑𝑛𝑐𝑡𝑟
𝑑𝑡

= 𝑘𝑒𝑛𝑡𝑟𝑦 + 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+ ∙ 𝑛𝑐𝑡𝑟 − 𝑘𝑑𝑒𝑐𝑎𝑦 ∙ (1 − 𝑓𝑝𝑠𝑇𝐴𝑇5+) ∙ 𝑛𝑐𝑡𝑟 , (B. 123) 

where 𝑘𝑑𝑒𝑐𝑎𝑦  includes exit, death, and conversion of cTregs. In homeostasis, the 

following relationship should hold, 

0 = 𝑘𝑒𝑛𝑡𝑟𝑦 + 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+ ∙ 𝑛𝑐𝑡𝑟 − 𝑘𝑑𝑒𝑐𝑎𝑦 ∙ (1 − 𝑓𝑝𝑠𝑇𝐴𝑇5+) ∙ 𝑛𝑐𝑡𝑟 , (B. 124) 

where 𝑛𝑐𝑡𝑟 = 0.0002𝜇𝑚
−3(half of the total Treg density) and 𝑓𝑝𝑆𝑇𝐴𝑇5+ = 0.15 for 

cTregs. The experiment of blocking T cell entry by (Tong et al., 2019) allows us to 

infer the value of 𝑘𝑒𝑛𝑡𝑟𝑦. The average dwelling time of cTregs was shown to be 10 

hours after blocking entry (equivalent to 𝑘𝑒𝑛𝑡𝑟𝑦 = 0). Thus, we have 

𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+ − 𝑘𝑑𝑒𝑐𝑎𝑦 ∙ (1 − 𝑓𝑝𝑠𝑇𝐴𝑇5+) ≈ −0.1ℎ
−1. (B. 125) 

To achieve the homeostatic cTreg density, 𝑛𝑐𝑡𝑟 = 0.0002𝜇𝑚
−3,  

𝑘𝑒𝑛𝑡𝑟𝑦 = −(𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+ − 𝑘𝑑𝑒𝑐𝑎𝑦 ∙ (1 − 𝑓𝑝𝑠𝑇𝐴𝑇5+)) ∙ 𝑛𝑐𝑡𝑟

= 0.00002𝜇𝑚−3ℎ−1. (B. 126)
 

Finally, if we can infer 𝑘𝑝𝑟𝑜𝑙𝑖𝑓  from additional experimental data and the 

resultant value is reasonable, then the homeostatic IL-2 niche size is sufficient to 

maintain the physiologic size of the Treg population at least at the intranodal level. In 

Figure 3 of (Smigiel et al., 2014), two weeks of IL-2 blocking led to the decrease of the 
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cTreg frequency from 22 × 104  to 7 × 104  in the spleen, leaving the frequency of 

eTreg unchanged. Since IL-2 blocking leads to 𝑓𝑝𝑆𝑇𝐴𝑇5+ ≈ 0 (Smigiel et al., 2014), we 

now have 

𝑑𝑛𝑐𝑡𝑟
𝑑𝑡

= 𝑘𝑒𝑛𝑡𝑟𝑦 − 𝑘𝑑𝑒𝑐𝑎𝑦 ∙ 𝑛𝑐𝑡𝑟 , (B. 127) 

where 𝑘𝑒𝑛𝑡𝑟𝑦 is now a function of time since the total Treg pool also decreases due to 

the lack of IL-2 signals. We assume that 𝑘𝑒𝑛𝑡𝑟𝑦 is directly proportional to the total 

peripheral Treg pool size and employ the total Treg population decay rate, 𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡 =

0.00263 ℎ−1 (the mean half-life: 11 days or 264 hours) from (Vukmanovic-Stejic et 

al., 2006). Since 𝑘𝑑𝑒𝑐𝑎𝑦 ≫ 𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡, we may consider the system maintains quasi-

steady states over the time scale of two weeks, 

𝑘𝑒𝑛𝑡𝑟𝑦(𝑡) − 𝑘𝑑𝑒𝑐𝑎𝑦 ∙ 𝑛𝑐𝑡𝑟(𝑡) ≈ 0. (B. 128) 

Given that 𝑘𝑒𝑛𝑡𝑟𝑦(2 𝑤𝑒𝑒𝑘𝑠) = 𝑘𝑒𝑛𝑡𝑟𝑦𝑒
−𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡∙2 𝑤𝑒𝑒𝑘𝑠 = 8.27 × 10−6 𝜇𝑚−3ℎ−1 

and 𝑛𝑐𝑡𝑟(2 𝑤𝑒𝑒𝑘𝑠) = 6.36 × 10
−5𝜇𝑚−3 , we can infer that 𝑘𝑑𝑒𝑐𝑎𝑦 ≈ 0.13ℎ

−1 , 

indicating that the mean dwelling time of cTregs without IL-2 signal is around 7.7 hours. 

Finally, we obtain 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 as 

𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+ − 𝑘𝑑𝑒𝑐𝑎𝑦 ∙ (1 − 𝑓𝑝𝑠𝑇𝐴𝑇5+) ≈ −0.1ℎ
−1 (B. 129) 

𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ≈
𝑘𝑑𝑒𝑐𝑎𝑦 ∙ (1 − 𝑓𝑝𝑠𝑇𝐴𝑇5+) − 0.1ℎ

−1 

𝑓𝑝𝑆𝑇𝐴𝑇5+

≈
0.13 ∙ (1 − 0.15) − 0.1

0.15
= 0.07 ℎ−1, (B. 130)

 

indicating the doubling time is 
ln(2)

0.07
≅ 10 ℎ𝑜𝑢𝑟𝑠. This value is compatible with data 

from (Heinzel et al., 2017) that showed the duration of each division is about 10 hours, 

although this was derived from conventional T cells.  
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Experimental data showed that 𝑓𝑝𝑆𝑇𝐴𝑇5+ is variable across SLOs in the range of 

0.05-0.15 (Liu et al., 2015) for all Tregs in SLOs. cTregs tend to have higher values of 

𝑓𝑝𝑆𝑇𝐴𝑇5+ due to their preferential localization with IL-2 secreting Tconvs and migratory 

DCs via CCR7 (Smigiel et al., 2014). Furthermore, (Milanez‐Almeida et al., 2015) 

showed that the frequency of Tregs with an activated phenotype (CD69+) is around 20% 

of the all Tregs in SLOs, potentially due to memory of Tregs for IL-2 signal experience. 

Thus, we may assume the plausible range of 𝑓𝑝𝑆𝑇𝐴𝑇5+ for extreme cases to be between 

0.07 and 0.20 depending on SLOs due to different self-antigen loads and the basal 

inflammation status. With this range of 𝑓𝑝𝑆𝑇𝐴𝑇5+, 𝑘𝑝𝑟𝑜𝑙𝑖𝑓  can be estimated between 

0.02 and 0.30 (doubling times spanning from 2.32 hours to 34.7 hours), which include 

the reasonable range, 0.035-0.07 (doubling time of 10-20 hours).  

Taken together, the homeostatic condition with the frequency (1-2% of total 

CD4+ T cells) of self-reactive T cells secreting IL-2 and the frequency (10-15% of all 

Tregs) of pSTAT5+ Tregs meet the homeostatic maintenance of the Treg population 

size with reasonable parameter values inferred from existing experimental data at the 

intranodal level. 

B.5.2 Organismal Treg population dynamics  

Taking the value of 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 estimated above (to say 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ≈ 0.07 ℎ
−1), we will show 

that at the organismal level, homeostatic maintenance of cTregs is possible with the 

value of 𝑓𝑝𝑆𝑇𝐴𝑇5+  less than or comparable to the ones measured experimentally in 

SLOs (Figure 4.22B). The total Treg pool of the whole body (more precisely in the 
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lymphatic system) is regulated with thymic output, peripheral proliferation/survival, 

and decay (death, exit, and conversion) giving  

𝑑(𝑁𝑐𝑇𝑟𝑒𝑔)

𝑑𝑡
= 𝑘𝑡ℎ𝑦,𝑇𝑟𝑒𝑔 + 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡 ∙ 𝑁𝑐𝑇𝑟𝑒𝑔

−𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡 ∙ (1 − 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡) ∙ 𝑁𝑐𝑇𝑟𝑒𝑔, (B. 131)

 

where 𝑁𝑐𝑇𝑟𝑒𝑔: the total number of cTreg in all SLOs, 𝑘𝑡ℎ𝑦,𝑇𝑟𝑒𝑔: the thymic output of 

Tregs, and 𝑓𝑝𝑆𝑇𝐴𝑇5,𝑡𝑜𝑡: the fraction of cTreg within the IL-2 niche at the organismal 

level. From (den Braber et al., 2012; Milanez‐Almeida et al., 2015), we obtained the 

homeostatic values of parameters and variables as 

𝑁𝑇𝑟𝑒𝑔 = 1.44 × 10
6 𝑐𝑒𝑙𝑙𝑠, (B. 132) 

𝑁𝑐𝑇𝑟𝑒𝑔 ≈ 0.5 × 1.44 × 10
6 𝑐𝑒𝑙𝑙𝑠 = 7.2 × 105 𝑐𝑒𝑙𝑙𝑠, (B. 133) 

𝑘𝑡ℎ𝑦,𝑇𝑟𝑒𝑔 = 13800 𝑐𝑒𝑙𝑙𝑠 𝑑
−1 = 575 𝑐𝑒𝑙𝑙𝑠 ℎ−1. (B. 134) 

At steady states, we have 

0 = 𝑘𝑡ℎ𝑦,𝑇𝑟𝑒𝑔 + 𝑘𝑝𝑟𝑜𝑙𝑖𝑓 ∙ 𝑓𝑝𝑆𝑇𝐴𝑇5+ ∙ 𝑁𝑐𝑇𝑟𝑒𝑔

−𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡 ∙ (1 − 𝑓𝑝𝑆𝑇𝐴𝑇5+) ∙ 𝑁𝑐𝑇𝑟𝑒𝑔, (B. 135)
 

which leads to 

𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡 =
𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡 ∙ 𝑁𝑐𝑇𝑟𝑒𝑔 − 𝑘𝑡ℎ𝑦,𝑇𝑟𝑒𝑔

(𝑘𝑝𝑟𝑜𝑙𝑖𝑓 + 𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡) ∙ 𝑁𝑐𝑇𝑟𝑒𝑔
=
1894 − 575

52300
= 0.025. (B. 136) 

We can estimate 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡 in a stricter manner by adding cTregs, not in SLOs but in 

other organs such as ones in peripheral blood circulation, thus not being able to obtain 

IL-2 signals. If we assume the number of those cTregs to be similar to that of SLOs, 

𝑁𝑐𝑇𝑟𝑒𝑔,𝑎𝑑𝑑 = 7.2 × 10
5 𝑐𝑒𝑙𝑙𝑠, then 

𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡 =
𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡 ∙ (𝑁𝑐𝑇𝑟𝑒𝑔 + 𝑁𝑐𝑇𝑟𝑒𝑔,𝑎𝑑𝑑) − 𝑘𝑡ℎ𝑦,𝑇𝑟𝑒𝑔

(𝑘𝑝𝑟𝑜𝑙𝑖𝑓 + 𝑘𝑑𝑒𝑐𝑎𝑦,𝑡𝑜𝑡) ∙ 𝑁𝑐𝑇𝑟𝑒𝑔

=
3788 − 575

52300
= 0.06. (B. 137)
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This more stringent estimation of 𝑓𝑝𝑆𝑇𝐴𝑇5+,𝑡𝑜𝑡 is still comparable to or less than the 

values of 𝑓𝑝𝑆𝑇𝐴𝑇5+  measured from SLOs, indicating that IL-2 niche created by 

responding self-reactive T cells with the homeostatic frequency (1-2%) of Tconvs in 

SLOs is (more than) enough to maintain the physiologic peripheral cTreg population 

pool at the whole organismal level. 

B.5.3 Treg regulation of the frequency of IL-2 secretion T cells 

We derive the quantitative expression of the Tregs’ negative regulation over the 

frequency of IL-2 secreting Tconvs in the model T cell zone (Figure 4.24). This 

requires quantities such as the predisposed number of potentially self-reactive Tconvs 

(𝑓𝑠𝑒𝑙𝑓), the total number of distinct self-peptide sequences presented through MHC-II 

(𝑃𝑡𝑜𝑡), and the number of distinct peptide sequences presented in a particular lymph 

node (𝑃𝐿𝑁). Then, we can estimate the number of T cells that are potentially activated 

upon the cognate antigen encounter in the lymph node as  

𝑁𝑠𝑒𝑙𝑓.𝐿𝑁 = 𝑁𝑡𝑐𝑜𝑛𝑣 ⋅ 𝑓𝑠𝑒𝑙𝑓 ⋅
𝑃𝐿𝑁
𝑃𝑡𝑜𝑡

. (B. 138) 

The number of IL-2 secreting Tconvs, 𝑁𝐼𝐿2+is governed by 

𝑑𝑁𝐼𝐿2+
𝑑𝑡

= 𝑘𝑎𝑐𝑡 −
1

𝜏𝑠𝑒𝑐.𝑑𝑢𝑟
. 𝑁𝐼𝐿2+, (B. 139) 

where 𝑘𝑎𝑐𝑡 is the rate of CD4+ T cell activation (cells/hour) and 𝜏𝑠𝑒𝑐.𝑑𝑢𝑟 is the duration 

of IL-2 secretion by activated CD4+ T cells, which was the phenotype of interest (IL-

2.sec.dur) in the MAPPA analysis (Figure 4.4, 4.5, and 4.6). At steady states, we have 

𝑁𝐼𝐿2+ = 𝑘𝑎𝑐𝑡 ⋅ 𝜏𝑠𝑒𝑐.𝑑𝑢𝑟 . (B. 140) 

Further derivation of 𝑘𝑎𝑐𝑡 is possible through the population-level dynamics of Tconvs 

in a lymph node. With the average dwelling time of CD4+ T cells in a lymph node, 
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𝜏𝑑𝑤𝑒𝑙𝑙 = 11 hours, obtained from (Mandl et al., 2012), the homeostatic population size 

of CD4+ T cells is determined by 

0 = 𝑘𝑒𝑛𝑡𝑟𝑦.𝑡𝑐 −
𝑁𝑡𝑐𝑜𝑛𝑣
𝜏𝑑𝑤𝑒𝑙𝑙

, (B. 141) 

where 𝑘𝑒𝑛𝑡𝑟𝑦.𝑡𝑐 is the entry rate of Tconvs to an SLO (cells/hour). This expression can 

be rearranged as 

𝑘𝑒𝑛𝑡𝑟𝑦.𝑡𝑐 =
𝑁𝑡𝑐𝑜𝑛𝑣
𝜏𝑑𝑤𝑒𝑙𝑙

. (B. 142) 

Based on this, we obtain the entry rate of self-reactive Tconvs that are potentially 

activated in the particular lymph node by self-antigens as  

𝑘𝑒𝑛𝑡𝑟𝑦.𝑠𝑒𝑙𝑓.𝐿𝑁 = 𝑘𝑒𝑛𝑡𝑟𝑦.𝑡𝑐 ⋅ 𝑓𝑠𝑒𝑙𝑓 ⋅
𝑃𝐿𝑁
𝑃𝑡𝑜𝑡

=
𝑁𝑡𝑐𝑜𝑛𝑣
𝜏𝑑𝑤𝑒𝑙𝑙

⋅ 𝑓𝑠𝑒𝑙𝑓 ⋅
𝑃𝐿𝑁
𝑃𝑡𝑜𝑡

. (B. 143) 

By introducing an additional probability factor, 𝑓𝑎𝑐𝑡 describing the probability of the 

SLO-specific self-reactive Tconvs being activated upon encounter with cognate 

antigen-bearing DCs, we obtain 𝑘𝑎𝑐𝑡 as 

𝑘𝑎𝑐𝑡 = 𝑘𝑒𝑛𝑡𝑟𝑦.𝑠𝑒𝑙𝑓.𝐿𝑁 ⋅ 𝑓𝑎𝑐𝑡 =
𝑁𝑡𝑐𝑜𝑛𝑣
𝜏𝑑𝑤𝑒𝑙𝑙

⋅ 𝑓𝑠𝑒𝑙𝑓 ⋅
𝑃𝐿𝑁
𝑃𝑡𝑜𝑡

⋅ 𝑓𝑎𝑐𝑡. (B. 144) 

Finally, the steady-state 𝑁𝐼𝐿2+ can be written as  

𝑁𝐼𝐿2+ = 𝑘𝑎𝑐𝑡 ⋅ 𝜏𝑠𝑒𝑐.𝑑𝑢𝑟 = 𝑁𝑡𝑐𝑜𝑛𝑣 ⋅ 𝑓𝑠𝑒𝑙𝑓 ⋅ 𝑓𝑎𝑐𝑡 ⋅
𝑃𝐿𝑁
𝑃𝑡𝑜𝑡

⋅
𝜏𝑠𝑒𝑐.𝑑𝑢𝑟
𝜏𝑑𝑤𝑒𝑙𝑙

. (B. 145) 

The parameters that are dependent on the Treg density are 𝑓𝑎𝑐𝑡, 𝑃𝐿𝑁, and 𝜏𝑠𝑒𝑐.𝑑𝑢𝑟, and 

Treg regulation on these parameters are mediated via DCs. 𝑓𝑠𝑒𝑙𝑓 can be estimated as 

𝑓𝑠𝑒𝑙𝑓 = 0.04 − 0.1 based on (Amado et al., 2013; Richards et al., 2015). Given that the 

precursor frequency of CD4+ T cells that can recognize a particular self-peptide-MHC-

II complex in mice is 0.1-10 per 106 cells (Jenkins and Moon, 2012), the number of 

unique peptide-MHC-II complexes in a mouse can be estimated as 𝑃𝑡𝑜𝑡 =
𝑓𝑠𝑒𝑙𝑓

1/1,000,000
=
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40,000 − 100,000. The number of unique self-peptide-MHC-II complexes per SLO 

can roughly be estimated as 𝑃𝐿𝑁 = 1,000 − 10,000 based on (Fugmann et al., 2017; 

Wan et al., 2020). Assuming 𝑓𝑎𝑐𝑡 = 1, 𝑃𝐿𝑁 = 5,000, and 𝜏𝑠𝑒𝑐.𝑑𝑢𝑟 = 20, we estimate as 

𝑁𝐼𝐿2+ = 720, which is near to the value, 𝑁𝐼𝐿2+ = 792 we defined above. We require 

further experimental data to constrain these parameters. 
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B.6 Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

Figure B.1 Machine learning model performance for each activation phenotype for 

homeostasis and inflammation. (A)-(D) Scatter plots showing out-of-bag predictions 

from ML models vs. simulation results for (A) IL-2Ra.max (log10), (B) IL-2.sec.max, 

(C) IL-2.sec.dur, and (D) Myc.AUC. (E) ML model performance for IL-2Ra.max (in 

original scale) shown as a scatter plot between out-of-bag predictions from ML models 

vs. simulation results. OOB-out-of-bag. (F) Global variable importance determining 

IL-2Ra.max. 
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Figure B.2 Prediction performance of ML model for pSTAT5.max. (A)-(B) Scatter 

plots showing the concordance between the independently simulated pSTAT5.max (x-

axis) and those predicted by a RF ML regression model (y-axis) using out-of-bag 

(OOB) data (i.e., data not used for training). Two RF ML models are shown: A is based 

on the initial simulations (“initial data”) only while B is based on initial data plus 

additional simulations enriched for parameter configurations with large pSTAT5.max 

values (“combined data”), thus increasing prediction performance. Each r value 

represents the Pearson correlation coefficient between the predicted and simulated 

pSTAT5.max values. Each dot represents the pSTAT5.max for a specific parameter 

configuration. 
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Figure B.3 Delineation of susceptible configurations. (A) Heatmap illustrating 

individual parameters (columns) and their standard scores (Z-score) within each 

susceptible configuration (rows). (B) Prediction performance of the RFML 

classification model comparing susceptible and active configurations. Performance 

was assessed using the receiver operator characteristic (ROC) and precision-recall 

curves; area under the curve (AUC) used as the quantitative metric. (C) Distributions 

of values for the top two parameters from Figure 4.14A, the Treg density (n_tr0) and 

the baseline contact efficiency (f_contact_low). Distributions are shown for active, 

inactive, and susceptible configurations. See Figure 4.14. 
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B.7 Parameters and variables used in the T cell activation model 

 

Table B.2 Parameters and variables used in the T cell activation model 

Name Definition MATLAB notation Value Unit References Etc. 

𝜿 pMHC-TCR on-rate kappa 10−4 𝑠−1 
(Altan-Bonnet and Germain, 

2005; François et al., 2013) 
 

𝝂 pMHC-TCR off-rate nu 0.1~1 𝑠−1 
(Altan-Bonnet and Germain, 

2005; François et al., 2013) 
0.2~0.4 for MAPPA 

𝑵 Number of phosphorylation steps N 5  (François et al., 2013)  

𝝓𝒎𝒂𝒙 Phosphorylation rate phi_max 0.09 𝑠−1 (François et al., 2013)  

𝒃 
Spontaneous dephosphorylation 

rate 
b 0.04 𝑠−1 (François et al., 2013)  

𝜸 Phosphatase efficiency gamma 1.2 × 10−6 𝑠−1 (François et al., 2013)  

𝑺𝑺𝑯𝑷𝟏,𝑻 
Number of phosphatase (SHP-1) 

per cell 
S_SHP1_t 60,000  (François et al., 2013  

𝑪𝑻𝑪𝑹,𝟏
∗  

Half saturation level of  for  
activation 

C_TCR_1_star 500  (François et al., 2013)  

𝒌𝒄𝒐𝒔𝒕𝒊𝒎
𝒐𝒏  

Association rate of CD80/86 and 

CD28 
k_on_costim 0.77 ± 0.06 𝜇𝑚2𝑠−1 (Collins et al., 2002) 

Converted to 2D rate 

following 

(Jansson and Davis, 

2011) 

𝒌𝒄𝒐𝒔𝒕𝒊𝒎
𝒐𝒇𝒇

 
dissociation rate of CD80/86 and 

CD28 
k_off_costim 28 ± 2 𝑠−1 (Collins et al., 2002)  

𝒌𝑪𝑻𝑨𝑳𝟒
𝒐𝒏  

Association rate of CD80/86 and 

CTLA4 
k_on_CTLA4 1.09 𝜇𝑚2𝑠−1 (Collins et al., 2002) 

Converted to 2D rate 
following 

(Jansson and Davis, 

2011) 

𝒌𝑪𝑻𝑳𝑨𝟒
𝒐𝒇𝒇

 
Dissociation rate of CD80/86 and 

CTLA4 
k_off_CTLA4 5.1 𝑠−1 (Collins et al., 2002) 

 
 

𝒌𝑪𝑻𝑳𝑨𝟒
𝒆𝒏𝒅𝒐  Rate of CTLA4 endocytosis k_endo_CTLA4 0.291 𝑚𝑖𝑛−1 (Khailaie et al., 2017)  

𝒌𝒎𝑰𝑳𝟐𝑹𝜶 
𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏(𝒃𝒂𝒔𝒂𝒍)

 Basal transcription rate of IL2R k_transc_basal_mIL2R_alpha 0.03 × 𝒌𝑰𝑳𝟐𝜶
𝒅𝒆𝒈

 ℎ−1 (Voisinne et al., 2015)  

𝒌𝒎𝑰𝑳𝟐𝑹𝜶 
𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏(𝑻𝑪𝑹,𝒄𝒐𝒔𝒕𝒊𝒎)

 

Transcription rate of IL2R 

downstream of TCR and 

costimulation 

k_transc_TCR_costim_mIL2R_alpha 10 × 𝒌𝑰𝑳𝟐𝜶
𝒅𝒆𝒈

 ℎ−1 (Voisinne et al., 2015)  
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𝒌𝒎𝑰𝑳𝟐𝑹𝜶 
𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏(𝒑𝑺𝑻𝑨𝑻𝟓)

 
Transcription rate of IL2R 

downstream of pSTAT5 
k_transc_pSTAT5_mIL2R_alpha 

4 × 102

× 𝒌𝑰𝑳𝟐𝜶
𝒅𝒆𝒈

 
ℎ−1 (Voisinne et al., 2015)  

𝑲𝑻𝑪𝑹→𝑰𝑳𝟐𝑹𝜶 
Half saturation level of TCR 

activation for IL2R production 
K_TCR_IL2R_alpha 

0.2 

0.3 
 

(François et al., 2013) 

(Voisinne et al., 2015) 
0.1~1for MAPPA 

𝒏𝑻𝑪𝑹→𝑰𝑳𝟐𝑹𝜶 
Hill coefficient of TCR activation 

for IL2R production 
n_TCR_IL2R_alpha 1  (Voisinne et al., 2015)  

𝑲𝒄𝒐𝒔𝒕𝒊𝒎→𝑰𝑳𝟐𝑹𝜶 

Half saturation level of 

costimulation for IL2R 

production 

K_costim_IL2R_alpha 10~100  This study Varied for MAPPA 

𝒏𝒄𝒐𝒔𝒕𝒊𝒎→𝑰𝑳𝟐𝑹𝜶 
Hill coefficient of costimulation 

for IL2R production 
n_costim_IL2R_alpha 1  This study  

𝑲𝑱𝑨𝑲→𝒑𝑺𝑻𝑨𝑻𝟓 
Half saturation level of JAK 

activation for IL2R production 
K_JAK_pSTAT5 0.05  (Voisinne et al., 2015) 

0.01~0.1 for 
MAPPA 

𝒏𝑱𝑨𝑲→𝒑𝑺𝑻𝑨𝑻𝟓 
Hill coefficient of JAK activation 

for IL2R production 
n_JAK_pSTAT5 2  

(Busse et al., 2010; 

Feinerman et al., 2010; 

Voisinne et al., 2015) 

For bistability of 

IL2R 

𝑲𝑰𝑳𝟐→𝑱𝑨𝑲
𝒉𝒊𝒈𝒉

 

Half saturation level of IL2 for 

JAK activation (for high IL2R 

level) 

K_IL2_JAK_high 1 𝑝𝑀 (Voisinne et al., 2015)  

𝑲𝑰𝑳𝟐→𝑱𝑨𝑲
𝒍𝒐𝒘  

Half saturation level of IL2 for 

JAK activation (for low IL2R 

level) 

K_IL2_JAK_low 50 𝑝𝑀 (Voisinne et al., 2015)  

𝑹𝑰𝑳𝟐𝑹𝜶,𝟎 
Half saturation level of IL2R for 

JAK activation 
R_IL2R_alpha_0 2 × 104  (Voisinne et al., 2015)  

𝒌𝒎𝑰𝑳𝟐𝜶
𝒅𝒆𝒈

 Degradation rate of IL2R mRNA k_deg_mIL2R_alpha 0.2 ℎ−1 (Voisinne et al., 2015)  

𝒌𝑰𝑳𝟐𝑹𝜶 
𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒊𝒐𝒏 Translation rate of IL2R k_transl_IL2R_alpha 102 × 𝒌𝒎𝑰𝑳𝟐𝜶

𝒅𝒆𝒈
 ℎ−1 (Voisinne et al., 2015)  

𝒌𝑰𝑳𝟐𝑹𝜶
𝒅𝒆𝒈

 Rate of IL2R endocytosis k_deg_IL2R_alpha 
𝑙𝑛(2)/5 

0.05 
ℎ−1 

(Duprez et al., 1988; Tkach 

et al., 2014) 

(Duprez and Dautry-Varsat, 
1986; Voisinne et al., 2015) 

Set to 0.05  in this 
study 

𝑲𝑰𝑳𝟐𝑹𝜶:𝜷𝜸,𝒅 𝑘𝐼𝐿2𝛼;𝛽𝛾
𝑜𝑓𝑓

/𝑘𝐼𝐿2𝛼;𝛽𝛾
𝑜𝑛  K_IL2R_a_bg 2700  (Cotari et al., 2013)  

𝒌𝑰𝑳𝟐𝜶;𝜷𝜸
𝒐𝒏  

Association rate of IL2R and 

IL2R 
 Not needed    

𝒌𝑰𝑳𝟐𝜶;𝜷𝜸
𝒐𝒇𝒇

 
Dissociation rate of IL2R-

IL2R complexes 
 Not needed    

𝒌𝑪𝑰𝑳𝟐𝑹
𝒆𝒏𝒅𝒐  

Rate of endocytosis of IL2-IL2R 

complexes 
k_endo_C_IL2R 

𝑙𝑛(2)/0.25 

1.7 
ℎ−1 

(Duprez et al., 1988) 

(Busse et al., 2010) 
Set to 2 in this study 
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𝒌𝑰𝑳𝟐𝑹
𝒐𝒏  Association rate of IL2 and IL2R k_on_IL2R 1.1 × 1011 𝑀−1ℎ−1 (Wang and Smith, 1987)  

𝒌𝑰𝑳𝟐𝑹
𝒐𝒇𝒇

 
Dissociation rate of IL2-IL2R 

complexes 
k_off_IL2R 0.83 ℎ−1 (Wang and Smith, 1987)  

𝑲𝑪𝑰𝑳𝟐𝑹,𝒅 
Equilibrium dissociation constant 

(𝒌𝑰𝑳𝟐𝑹
𝒐𝒇𝒇

/𝒌𝑰𝑳𝟐𝑹
𝒐𝒏 ) 

K_IL2_tr 1.0 × 10−11 𝑀 (Wang and Smith, 1987) Used only for Tregs 

𝒌𝒎𝑰𝑳𝟐
𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏(𝑻𝑪𝑹)

 

Transcription rate of IL2 
downstream of TCR and 

costimulation 

k_transc_TCR_ 

mIL2 
162 ℎ−1 (Ferguson et al., 2001)  

𝒌𝒎𝑰𝑳𝟐
𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏(𝒄𝒐𝒔𝒕𝒊𝒎)

 
Transcription rate of IL2 

downstream of costimulation 
k_transc_costim_mIL2     

𝒌𝒎𝑰𝑳𝟐
𝒅𝒆𝒈

 
Degradation rate of IL-2 mRNA 

molecules 
k_deg_mIL2 0.2 ℎ−1 (Shim et al., 2002)  

𝒌𝑰𝑳𝟐
𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒊𝒐𝒏 Translation rate of IL-2 k_transl_IL2 266 ℎ−1 

(Ferguson et al., 2001; 

Voisinne et al., 2015) 
 

𝒌𝑰𝑳𝟐
𝒔𝒆𝒄 

𝑘𝑚𝐼𝐿2
𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑇𝐶𝑅,𝑐𝑜𝑠𝑡𝑖𝑚)

𝑘𝐼𝐿2
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛

𝑘𝑚𝐼𝐿2
𝑑𝑒𝑔   

60 

7.5 × 3600 

1,200 ±  500 

𝑠−1 

ℎ−1 

𝑚𝑖𝑛−1 

(Voisinne et al., 2015) 

(Tkach et al., 2014) 
(Huang et al., 2013) 

Dynamical variable 

in this study (𝑞𝐼𝐿2) 

𝑲𝑻𝑪𝑹→𝑰𝑳𝟐 
Half saturation level of TCR 

activation for IL2 production 
K_TCR_IL2 

0.2 

0.8 
 

(François et al., 2013) 

(Voisinne et al., 2015) 
0.1~1 for MAPPA 

𝒏𝑻𝑪𝑹→𝑰𝑳𝟐 
Hill coefficient of TCR activation 

for IL2 production 
n_TCR_IL2 1  (Voisinne et al., 2015)  

𝑲𝒄𝒐𝒔𝒕𝒊𝒎→𝑰𝑳𝟐 
Half saturation level of 

costimulation for IL2 production 
K_costim_IL2 10~100  This study Varied for MAPPA 

𝒏𝒄𝒐𝒔𝒕𝒊𝒎→𝑰𝑳𝟐 
Hill coefficient of costimulation 

for IL2 production 
n_costim_IL2 1  This study  

𝑲𝒑𝑺𝑻𝑨𝑻𝟓→𝑰𝑳𝟐 
Half saturation level of pSTAT5 

for IL2 production 
K_pSTAT5_IL2 1/3 ∙ 105  (Tkach et al., 2014) 0.1~1 for MAPPA 

𝒏𝒑𝑺𝑻𝑨𝑻𝟓→𝑰𝑳𝟐 
Hill coefficient of pSTAT5 for IL2 

production 
n_pSTAT5_IL2 1  This study  

𝑫𝑰𝑳𝟐 Diffusion constant of IL2 D_IL2 

(aq) 100 

(ext) 16 

10 
(T cell zone) 

100 

𝜇𝑚2𝑠−1 

(Weidemann et al., 2011) 
(Höfer et al., 2012) 

(Busse et al., 2010) 

(Ross and Pompano, 2018) 

aq: aqueous buffer 
ext: extracellular 

matrix 

10~100 for 

MAPPA 

𝒌𝑰𝑳𝟐,𝒆𝒙𝒕𝒓
𝒅𝒆𝒈

 
Degradation rate of IL2 in the 

extracellular space of lymph nodes 
k_deg 0.1 ℎ−1 (Busse et al., 2010)  

𝒌𝒎𝑴𝒚𝒄 
𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏(𝒃𝒂𝒔𝒂𝒍)

 Basal transcription rate of Myc k_transc_basal_mMyc 0.03 × 𝒌𝑴𝒚𝒄
𝒅𝒆𝒈

 ℎ−1 (Voisinne et al., 2015)  
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𝒌𝒎𝑴𝒚𝒄
𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏(𝑻𝑪𝑹,𝒄𝒐𝒔𝒕𝒊𝒎,𝑱𝑨𝑲))

 

Transcription rate of Myc 
downstream of TCR, 

costimulation, and JAK 

k_transc_PI3K_mMyc 50 × 𝒌𝑴𝒚𝒄
𝒅𝒆𝒈

 ℎ−1 (Voisinne et al., 2015)  

𝒌𝒎𝑴𝒚𝒄
𝒅𝒆𝒈

 Degradation rate of Myc mRNA k_deg_mMyc 0.2 ℎ−1 (Voisinne et al., 2015)  

𝒌𝑴𝒚𝒄 
𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒊𝒐𝒏 Translation rate of Myc k_transl_Myc 20 × 𝒌𝒎𝑰𝑳𝟐𝜶

𝒅𝒆𝒈
 ℎ−1 (Voisinne et al., 2015)  

𝒌𝑴𝒚𝒄
𝒅𝒆𝒈

 Degradation rate of Myc k_deg_Myc 0.099 ℎ−1 (Heinzel et al., 2017)  

𝑲𝑻𝑪𝑹→𝑷𝑰𝟑𝑲 
Half saturation level of TCR 

activation for PI3K activation 
K_TCR_PI3K 

0.2 

0.3 
 

(François et al., 2013) 

(Voisinne et al., 2015) 
0.1~1 for MAPPA 

𝒏𝑻𝑪𝑹→𝑷𝑰𝟑𝑲 
Hill coefficient of TCR activation 

for PI3K activation 
n_TCR_PI3K 1  (Voisinne et al., 2015)  

𝑲𝑪𝒐𝒔𝒕𝒊𝒎→𝑷𝑰𝟑𝑲 
Half saturation level of 

costimulation for PI3K activation 
K_costim_PI3K 10~100  This study Varied for MAPPA 

𝒏𝑪𝒐𝒔𝒕𝒊𝒎→𝑷𝑰𝟑𝑲 
Hill coefficient of costimulation 

for PI3K activation 
n_costim_PI3K 1  This study  

𝑲𝑱𝑨𝑲→𝑷𝑰𝟑𝑲 
Half saturation level of JAK 

activation for PI3K production 
K_JAK_PI3K 0.05  (Voisinne et al., 2015) 

0.01~0. 1 for 
MAPPA 

𝒏𝑱𝑨𝑲→𝑷𝑰𝟑𝑲 
Hill coefficient of JAK activation 

for PI3K activation 
n_JAK_PI3K 1  (Voisinne et al., 2015)  

𝝆 Radius of a T cell  4~10 𝜇𝑚  Set to 5 in this study 

𝒏𝒕𝒓 
Number density of regulatory T 

cells 

n_tr, 

n_tr0 
0.0001~0.001 𝜇𝑚−3 This study 

0.001: gastric lymph 

nodes 

𝑺𝑫𝑪 Surface area of dendritic cells S_DC 1,800~2,400 𝜇𝑚2 (Miller et al., 2004) Set to  in this study 

𝑺𝑫𝑪:𝑻 
Surface area of dendritic cell-T cell 

contacts 
S_DC_TR 

1~8 (avg)~70 
12.6 

𝜇𝑚2 
(Miller et al., 2004) 

(Jansson and Davis, 2011) 
Set to  in this study 

𝑺𝑻 Surface area of T cells S_T 314.16 𝜇𝑚2   

𝑫𝒕𝒓 Motility coefficient of Tregs D_tr 

0.83~1.76 

0.17 (free 

Treg) 

0.017 (Treg in 

contact with 

DC) 

𝜇𝑚2𝑚𝑖𝑛−1 
 

𝜇𝑚2𝑠−1 
 

(Wu et al., 2015) 

 

This study 

 

JURKAT T-cells 3D 

In vivo Tregs 

 

𝝌𝟎 Chemotactic constant chi_0 0~100  This study Set to 0 in this study 
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𝑲𝒄𝒄 Carrying capacity of Treg K_cc 0.003 𝜇𝑚−3 This study  

𝒌𝑰𝑳𝟐→𝒕𝒓𝒆𝒈
𝒑𝒓𝒐𝒍𝒊𝒇

 
Proliferation rate of Tregs induced 

by IL2 
k_prolif_max 

0.0385 

1.07 × 10−5 
ℎ−1 

𝑠−1 
This study 

Doubling time: 18 

hours 

𝑲𝑰𝑳𝟐→𝒕𝒓𝒆𝒈
𝒑𝒓𝒐𝒍𝒊𝒇

 
Half maximum level of pSTAT5 

for Treg proliferation 
K_prolif_IL2 0.1  This study  

𝑼𝒎𝒊𝒏 
Minimum attractive potential 

between DCs and Tregs 
U_min 0.05  This study 

To simulate adhesive 
force between DCs 

and Tregs 

𝒏𝑼 Steepness of the potential n_U 5  This study  

𝒓𝒉𝒂𝒍𝒇 Distance leading to half r_half 15 𝜇𝑚 This study  

𝑲𝑪𝑫𝟐𝟖,𝒕𝒓→𝑼𝒎𝒊𝒏  
Half saturation CD28 signaling 

strength for adhesion 

K_CD28_tr_U_ 

min 
5  This study  

𝑲𝒑𝑺𝑻𝑨𝑻𝟓,𝒕𝒓→𝑼𝒎𝒊𝒏  
Half saturation pSTAT5 signaling 

strength for adhesion 
K_pSTAT5_tr_U 

_min 
0.1  This study  

𝒇𝒄𝒐𝒏𝒕_𝒍𝒐𝒘 

𝒇𝒄𝒐𝒏𝒕_𝒉𝒊𝒈𝒉 

Contact efficiency between Tregs 

and DCs 

f_contact_low 

f_contact_high 
0.1~0.4 
1~2.5 

 This study Varied for MAPPA 

𝑽𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓 
Volume of space encompassing the 

region where Tregs are in the 

engagement with DCs 

V_neighbor 837.8 𝜇𝑚3  
3

4
𝜋(152 − 52) 

𝑳𝒂𝒏𝒕𝒊𝒈𝒆𝒏 Number of peptide-MHC per cell L_antigen 1~105  
(Altan-Bonnet and Germain, 

2005; François et al., 2013) 
100~1000 for 

MAPPA 

𝑹𝑻𝑪𝑹 Number of TCR per cell R_TCR 30,000  
(Altan-Bonnet and Germain, 
2005; François et al., 2013) 

 

𝑪𝑻𝑪𝑹,𝒋, 

𝒋 = 𝟎,… ,𝑵 
 C_TCR_N   (François et al., 2013)  

𝑺𝑺𝑯𝑷𝟏 
Number of activated phosphatase 

(SHP-1) per cell 
S_SHP_1   (François et al., 2013)  

𝝓 Phosphorylation rate phi  𝑠−1 (François et al., 2013)  

𝑹𝑪𝑫𝟐𝟖 
Number of CD28 molecules per 

cell 
R_CD28 30,000  (Sugár et al., 2017) Similar to TCR 

𝑳𝑪𝑫𝟖𝟎|𝑪𝑫𝟖𝟔 
Number of CD80/86 molecules per 

cell 

L_CD80_86, 

L_CD80_86_i 

CD86: 

400,000 
CD80/CD86: 

300,000 

 

(Qureshi et al., 2011) 

(Khailaie et al., 2017) 
 

100,000~1,000,000 
and 

300,000~3,000,000 
for MAPPA 
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𝑹𝑪𝑻𝑳𝑨𝟒 
Number of CTLA-4 molecules on 

plasma membrane per cell 
R_CTLA4 24500  (Khailaie et al., 2017)  

𝑪𝑪𝑻𝑳𝑨𝟒 
Number of CD80/86-CTLA-4 

complexes per cell 
C_CTLA4     

𝑪𝒄𝒐𝒔𝒕𝒊𝒎 
Number of CD80/86-CD28 

complexes per cell 
C_costim     

𝑷𝑻𝑪𝑹→𝑰𝑳𝟐𝑹𝜶
𝒐𝒏  

Activation function of TCR for 

IL2R production 
P_on_TCR_IL2     

𝑷𝑱𝑨𝑲→𝒑𝑺𝑻𝑨𝑻𝟓
𝒐𝒏  

Activation function of JAK for 

pSTAT5 signaling 
P_on_JAK_pSTAT5     

𝑷𝒄𝒐𝒔𝒕𝒊𝒎→𝑰𝑳𝟐𝑹𝜶
𝒐𝒏  

Activation function of 

costimulation for IL2R 

production 

P_on_costim_IL2R_alpha     

𝑷𝑻𝑪𝑹→𝑰𝑳𝟐
𝒐𝒏  

Activation function of TCR for IL2 

production 
P_on_TCR_IL2     

𝑷𝒑𝑺𝑻𝑨𝑻𝟓→𝑰𝑳𝟐
𝒐𝒏  

Inhibition function of pSTAT5 for 
IL2 production 

P_on_pSTAT5_IL2     

𝑷𝒄𝒐𝒔𝒕𝒊𝒎→𝑰𝑳𝟐
𝒐𝒏  

Activation function of 

costimulation for IL2 production 
P_on_costim_IL2     

𝑷𝑻𝑪𝑹,𝒄𝒐𝒔𝒕𝒊𝒎,𝑱𝑨𝑲→𝑷𝑰𝟑𝑲
𝒐𝒏  

Activation function of TCR, 

costimulation, and JAK for PI3K 

activation 

P_on_signals_PI3K     

𝑺𝑱𝑨𝑲 Normalized level of activated JAK S_JAK   (Voisinne et al., 2015)  

𝒎𝑹𝑰𝑳𝟐𝑹𝜶 Number of IL2R mRNA mR_IL2R_alpha     

𝑹𝑰𝑳𝟐𝑹𝜶 
Number of IL2R molecules on 

plasma membrane per cell 
R_IL2R_alpha 

Tconv (basal): 

3 
Tconv (TCR): 

1000 
Tconv (IL2 

max): 4 × 104 
Treg (basal): 

103 
Treg (IL2 

max): 4 × 104 
Treg 

(constant): 104 

 

(Voisinne et al., 2015) 

(Voisinne et al., 2015) 

(Voisinne et al., 2015) 
(Voisinne et al., 2015) 

(Voisinne et al., 2015) 

(Feinerman et al., 2010) 

 

 

 
 

 

 

𝑹𝑰𝑳𝟐𝑹𝜷𝜸 
Number of IL2R  molecules on 

plasma membrane per cell 
R_IL2R_bg 

Basal (w/o 

TCR 
 

(Cotari et al., 2013) 

(Tkach et al., 2014) 
w/o: without 
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activation): 

1000 
Max (with 

TCR 

activation): 

10000 

𝑹𝑰𝑳𝟐𝑹 

Number of IL2R molecules 

(IL2R-IL2R complexes) on 

plasma membrane per cell 

R_IL2R     

𝑪𝑰𝑳𝟐𝑹 
Number of IL2-IL2R complexes 

on plasma membrane per cell 
C_IL2R     

𝑰𝒎𝑰𝑳𝟐 Number of IL2 mRNA per cell mI_IL2     

𝑰𝑰𝑳𝟐 
Concentration of IL2 in 

extracellular space in lymph node 
I_IL2  

𝜇𝑚−3 
𝑝𝑀 

  

𝒒𝑰𝑳𝟐 
Secretion rate of IL2 to 

extracellular space 
q_IL2 ~10 𝑠−1  𝒌𝑰𝑳𝟐

𝒕𝒓𝒂𝒏𝒔𝒍𝒂𝒕𝒊𝒐𝒏 ∙ 𝑰𝒎𝑰𝑳𝟐 

𝒏𝒕𝒓 
Number density of Tregs in 

extracellular space surrounding a 
priming Tconv in lymph node 

n_tr  𝜇𝑚−3   

𝒎𝑹𝑴𝒚𝒄 Number of Myc mRNA per cell mMyc     

𝑹𝑴𝒚𝒄 Number of Myc protein per cell Myc     
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