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The air-sea interface is one of the most physically active interfaces of the

Earth’s environments and significantly impacts the dynamics in both the atmosphere

and ocean. In this doctoral dissertation, developments are made to two types of Data

Assimilation (DA) applied to this interface: Lagrangian Data Assimilation (LaDA)

and Coupled Data Assimilation (CDA).

LaDA is a DA method that specifically assimilates position information mea-

sured from Lagrangian instruments such as Argo floats and surface drifters. To make

a better use of this Lagrangian information, an augmented-state LaDA method is

proposed using Local Ensemble Transform Kalman Filter (LETKF), which is in-

tended to update the ocean state (T/S/U/V) at both the surface and at depth by

directly assimilating the drifter locations. The algorithm is first tested using “iden-

tical twin” Observing System Simulation Experiments (OSSEs) in a simple double

gyre configuration with the Geophysical Fluid Dynamics Laboratory (GFDL) Mod-



ular Ocean Model version 4.1 (MOM4p1). Results from these experiments show

that with a proper choice of localization radius, the estimation of the state is im-

proved not only at the surface, but throughout the upper 1000m. The impact of

localization radius and model error in estimating accuracy of both fluid and drifter

states are investigated.

Next, the algorithm is applied to a realistic eddy-resolving model of the Gulf

of Mexico (GoM) using Modular Ocean Model version 6 (MOM6) numerics, which

is related to the 1/4-degree resolution configuration in transition to operational use

at NOAA/NCEP. Atmospheric forcing is first used to produce the nature run simu-

lation with forcing ensembles created using the spread provided by the 20 Century

Reanalysis version 3 (20CRv3). In order to assist the examination on the proposed

LaDA algorithm, an updated online drifter module adapted to MOM6 is developed,

which resolves software issues present in the older MOM4p1 and MOM5 versions of

MOM. In addition, new attributions are added, such as: the output of the interme-

diate trajectories and the interpolated variables: temperature, salinity, and velocity.

The twin experiments with the GoM also show that the proposed algorithm pro-

vides positive impacts on estimating the ocean state variables when assimilating the

drifter position together with surface temperature and salinity.

Lastly, an investigation of CDA explores the influence of different couplings

on improving the simultaneous estimation of atmosphere and ocean state variables.

Synchronization theory of the drive-response system is applied together with the

determination of Lyapunov Exponents (LEs) as an indication of the error conver-

gence within the system. A demonstration is presented using the Ensemble Trans-



form Kalman Filter on the simplified Modular Arbitrary-Order Ocean-Atmosphere

Model, a three-layer truncated quasi-geostrophic model. Results show that strongly

coupled data assimilation is robust in producing more accurate state estimates and

forecasts than traditional approaches of data assimilation.
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Chapter 1: Introduction

1.1 Surface Ocean Currents

Surface ocean currents are primarily driven by atmosphere surface winds that

influence the uppermost ocean “mixed layer”, which can extend typically to depths

of about 100-300m depth (Apel, 1987). The scales of ocean currents at the sea

surface span from the basin-wide circulation, to mesoscale eddies and fast narrow

currents, to sub-mesoscale features, to smaller scales such as turbulence. The differ-

ences in these scales result from a combination of different forcing and different un-

derlying geophysics intertwined with the motion of the deep ocean which is difficult

to measure and monitor. A detailed knowledge of the surface flow field is expected

to be of high value for the prediction of Earth system model forecasts at a variety

of timescales. Nevertheless, fundamental studies about the structure and impact

of surface currents at different scales are currently insufficient and many scientific

problems still remain unsolved in accurately estimating the ocean surface currents

due to the lack of the measurements or mature data assimilation strategies. A re-

cent European Centre for Medium-Range Weather Forecasts (ECMWF) Newsletter

article (Mogensen et al., 2018) showed that sea-surface temperature (SST) coupling

is important for the prediction of not only the large-scale tropical cyclones but also
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the 2-meter temperature as well, while follow-on work is still necessary to improve

the understanding of the processes involved in interactions between the atmosphere

and the ocean (including sea ice) in accordance with ECMWFs Strategy.

In order to have a better understanding and then determine a more accurate

prediction of the surface currents in different temporal and spatial scales, we need to

improve in three main perspectives: (1) launching a large number of measurement

devices to monitor the surface currents; (2) constructing realistic global and local

circulation models to be capable of detecting not only the large-scale of circulation

but also sub-mesoscales flows (100 m to tens of kilometers, hours to days); and

(3) proposing robust data assimilation methods to provide accurate prediction by

combining all the relevant ocean measurements with a high-dimensional numerical

forecast model.

1.2 Surface Drifters

In general, a direct measurement of the instantaneous surface current is no-

toriously difficult. The current state-of-the-art approach is to use remotely sensed

satellite altimetry and ocean vector winds to derive gridded sea level anomalies and

therefore determined the flow field of the sea surface. For example, the Ocean Sur-

face Current Analyses Realtime (OSCAR) product (Bonjean and Lagerloef, 2002)

determines the near-surface ocean by using sea surface height, surface vector wind

and sea surface temperature through quasi-linear and steady flow momentum equa-

tions. The resulting velocity map is of 1/3◦ resolution and updated every 5 days.
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More advanced approaches including the use of synthetic aperture radar (SAR) for

high-resolution imaging of surface (Romeiser et al., 2009) are of growing interest.

Surface drifters/surface drifting floats, in recent years, have a strongly in-

fluential usage in monitoring the ocean currents by tracking a preponderance of

flow-following instruments, which are of low cost and transmit nearly instantaneous

data with high frequency. The trajectories of drifters transported by ocean currents

provide information about the underlying dynamics and physical properties of the

ocean. Poje et al. (2014) pointed out that these Lagrangian experiments are the

most feasible means of simultaneously measuring the submesoscale of ocean surface

structure. The Global Drifter Program (GDP) sponsored by the National Oceanic

and Atmospheric Administration (NOAA) is a part in situ, part remote-sensing

program (Figure 1.1) that provides the capacity to produce a rough estimate of

near surface currents by tracking a large number of surface drifters drogued at 15-m

depth throughout the global ocean Lumpkin et al. (2007).

The Grand Lagrangian Deployment (GLAD) is another surface drifter pro-

gram, conducted by the Consortium for Advanced Research on Transport of Hy-

drocarbon in the Environment (CARTHE), aimed at in studying the Loop Current

Eddy (LCE) in the Gulf of Mexico (GoM). Nearly 300 surface drifters were de-

ployed in late July 2012 and drogued at 1-m depth. Armed with GPS transmitter,

the GLAD drifters are capable of updating their own instantaneous locations every

15 mins. Historical data of GLAD drifter trajectories are collected from July 20,

2012 through October 22, 2012. Prior to the GLAD drifter deployments, the loop

current has already shed an eddy located near the center of GoM where the majority
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Figure 1.1: GPS locations of the Global Drifter Program (GDP) on June 24, 2019.

Colored marks represent different deploying country. This is generated by www.

aoml.noaa.gov/phod/gdp/index.php.

of drifters were spotted (Coelho et al., 2015).

Ocean data assimilation systems have typically used temperature and salinity

measurements from surface drifters indirectly via calibration of satellite-based SST

and sea surface salinity (SSS) retrieval products (Bitterman and Hansen, 1993; Mel-

nichenko et al., 2016), though they are sometimes assimilated directly (Dong et al.,

2017). The position data of surface drifters are rarely used in any way, though there

have been some pioneering investigations in reconstructing the mesoscale Eulerian

velocity fields based on observations of the Lagrangian positions (Nilsson et al.,

2012; Taillandier et al., 2006). Therefore, how to fully utilize the information pro-
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vided by the drifter positions and improve more information in monitoring of the

high-frequency motions in the ocean becomes an interesting research topic.

1.3 Studies of Data Assimilation

Despite modern advances in modeling the ocean and atmosphere, there are

still unresolved processes, inaccurate parameterizations, and inevitable errors in

boundary and initial conditions. If these errors are not corrected over time during

long model integrations, the aggregated errors will result in a divergence from a

reliable forecasting trajectory.

Data assimilation (DA) is a mathematical discipline applied in Numerical

Weather Prediction (NWP) to efficiently solve this objective, which combines obser-

vations with “prior knowledge” (e.g. a skillful forecast generated from a numerical

model) to provide an improved estimate of the true state of the physical system

and the corresponding uncertainty of that estimate. In this dissertation, we focus

on the following two perspectives of DA: (1) utilizing Lagrangian observations (e.g.

drifters, subsurface floats etc.) to improve the synoptic states in a General Cir-

culation Model (GCM); (2) studying the impact of various degrees of coupling in

simultaneously assimilating both atmosphere and ocean observations.

1.3.1 Lagrangian Data Assimilation (LaDA)

LaDA is a DA method that specifically assimilates the position information

measured from Lagrangian instruments such as surface drifters and deep Argo floats
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that move along with the flow of the ocean currents. There are three main challenges

for all LaDA methods: (1) the indirect representation of Lagrangian observations in

terms of general forecast model variables; (2) the inherently nonlinear evolution of

drifter trajectories; and (3) the efficiency of application to high-dimensional models.

One DA approach uses a mathematical and statistical approximation to trans-

form from a sequence of geophysical locations to an instantaneous Eulerian velocity

and assimilates these proxy measurements to update the prognostic model state

variables (Molcard et al., 2003; Nilsson et al., 2012; Taillandier et al., 2006). While

this approach is easy to extend to the realistic model with a completion of an ad-

vanced observation operator, the approximation of the velocity measurements in

general simplifies the motion and ignores the local instabilities in the underlying

geophysics.

An alternative approach (Ide et al., 2002; Kuznetsov et al., 2003) extends the

original fluid model state to include the drifter positions in an augmented-state

vector x = (xF ,xD)T and evolves this extended dynamical system. Given a suffi-

ciently short analysis cycle, this approach is able to update the model states with

high accuracy by utilizing the quasi-linear error growth in the simulated drifter po-

sition and the correlations of errors between the ocean tracer and velocity fields.

This Lagrangian approach may be more effective than the assimilation of trans-

formed Eulerian velocity proxy observations in strongly nonlinear dynamic models

(Kuznetsov et al., 2003; Vernieres et al., 2011), though it requires an effective drifter

simulator inside the corresponding forecast model.

Under the framework of the augmented-state approach, Apte et al. (2008)
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showed that LaDA can be applied with the ensemble Kalman filter (EnKF) (Evensen,

2004; Ide et al., 2002) with high-dimensional model states, though it fails to capture

dynamics with the high-order nonlinearity because of the resulting non-Gaussian dis-

tribution of error from the nonlinear trajectory model. An alternative assimilation

method that could be used in the presence of this nonlinearity is the particle filter

(PF) (Salman et al., 2008; Santitissadeekorn et al., 2014). However, the canonical

PF does not scale well to high dimensions (Snyder et al., 2008). While new types of

PF have recently been proposed for high dimensional geophysical systems (Penny

and Miyoshi, 2016; Poterjoy, 2016; van Leeuwen, 2003), none have yet been shown

viable for operational applications. A hybrid method (Slivinski et al., 2015) has

been proposed to address the issues due to nonlinearity and high-dimensionality

at the same time by updating the flow states using an EnKF while updating the

drifter states using a PF. The algorithm of Slivinski et al. (2015) was examined

using a framework of perfect twin experiments with the linear shallow water equa-

tions. Results indicated that compared to the EnKF, this hybrid approach produced

improved estimates of the Bayesian posterior and better tracked the true state.

1.3.2 Coupled Data Assimilation (CDA)

The ultimate goal of studying the ocean surface is to have a better under-

standing on both of the ocean and atmosphere dynamics at different depths and

heights respectively. Assimilation approaches related to updating the ocean and at-

mosphere states are generally categorized based on the choice of forecast models and
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the analyzing states: (1) uncoupled DA ; (2) weakly coupled DA; and (3) strongly

coupled DA.

Uncoupled DA (UCDA) is the most commonly used approach that take advan-

tage of the solo ocean model forced by atmosphere data (e.g. atmosphere reanalyses)

and solo atmosphere model forced by ocean data (e.g. a SST objective analysis, or

ocean reanalyses). Different DA strategies are applied to these forced forecast mod-

els independently and update the ocean and atmosphere states separately.

Weakly coupled DA (WCDA) and strongly coupled DA (SCDA) together re-

gard the coupled model as the forecast model, but differ in the way of updating

analysis states. In WCDA, the observation in one medium does not influence the

determination of the analysis in the other medium. In this approach, the inter-

relation between the ocean and atmosphere states are ignored during the analysis

update and are only realized during the forecast model integration. Whereas, SCDA

takes into account the connection between data of the two media by assimilating

observations of the two media together into one coupled system.

1.4 Study Objectives

The content of this thesis is mainly separated into to two parts: LaDA and

CDA. The primary goal of studying LaDA is to propose a feasible DA approach

to assimilate the direct drifter locations and then to provide corrections with high

accuracy not only for the surface ocean currents but also in the deep ocean as well.

Specifically, we incorporate the Local Ensemble Transform Kalman Filter (LETKF)
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with the LaDA augmented-state framework, which is denoted as LETKF-LaDA.

The design of this method aims to be readily extended to realistic models of refined

resolution and implemented efficiently using parallel computing. We investigate the

proposed method from the following perspectives:

1. What is the optimal localization radius of LETKF-LaDA in an eddy-permitting

forecast model and, more importantly, in an eddy-resolving model in terms of

Baroclinic Rossby Radius of Deformation?

2. How deep does the information from the surface drifters give beneficial impacts

on the LaDA analysis?

3. What is the influence of assimilating surface drifters along with in situ T/S,

comparing with the traditional DA method to assimilate purely T/S observa-

tional data?

4. How does the model resolution impact the performance of LETKF-LaDA?

5. Is LETKF-LaDA capable of recovering the sub-mesoscale currents that can

neither be accurately predicted by the forecast model nor completely recovered

from the satellite altimetry?

In order to benefit the future study on LaDA, we also build up an online

drifter module to simulate drifter motions for the latest version of the Geophysical

Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 6 (MOM6).

The drifter trajectory is obtained by integrating the velocity with the same model

time step as the associated ocean model. In addition, the drifter module is further
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improved by emulating the temperature, salinity and even velocity measurements

at the corresponding drifter positions.

As for the study related to CDA, we compare UCDA, WCDA and SCDA

from an idealized theoretic perspective. In this thesis, we consider an example cou-

pled quasi-geostrophic model and its application on the aforementioned three CDA

methods. We apply mathematical knowledge from dynamical system and synchro-

nization theories to provide a theoretical analysis on the estimation performances.

The following problems are discussed in the corresponding chapter:

1. Can forced ocean-atmosphere models synchronize with the coupled model?

What would be the difference when the surface forcing is applied at different

frequencies? Is it necessary to provide extra information or mechanisms for

the forced system to synchronize with the coupled system?

2. What are the impacts of different coupling strategies on the DA in terms of

the error convergence? Will there be any difference in the atmosphere and

ocean components?

3. What are the effects of the observations from different medium on the perfor-

mance of SCDA?

4. What is the performance of UCDA, WCDA and SCDA over a range of various

forecast lead times?
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1.5 Outline

Chapter 2 introduces the detailed algorithm of LETKF-LaDA. We commence

our discussion with the verifying experiments using the 3D ocean model with the

double-gyre configuration of the Modular Ocean Model version 4.1 (MOM4p1), in

order to study its impact on correcting the ocean fields from surface currents to deep

ocean. We then compare it with the traditional DA method assimilating tempera-

ture and salinity at the drifter locations. In Chapter 3, we extend the application

of LETKF-LaDA to an eddy-resolving model with a GoM configuration in MOM6.

The creation of an online drifter module adapted to MOM6 is also introduced in this

chapter. In Chapter 4, we study the differences in UCDA, WCDA and SCDA from

the perspective of synchronization. We employ the tool of Lyapunov Exponents

(LEs) to analyze the performance of different DA methods. Chapter 5 summarizes

the conclusions and the follow-on work.
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Chapter 2: LETKF-LaDA on Double-Gyre Model of MOM4p1

2.1 Overview

2.1.1 Formulation of augmented-state LaDA

The augmented-state approach (Ide et al., 2002) extracts information carried

by Lagrangian tracers by extending the model states as a combination of fluid and

drifter states,

x =

 xF

xD

 ,
where xD contains the information measured by drifters, such as: longitude, latitude,

depth, as well as temperature and salinity when these are available in the model

forecast states. In this study, we mainly consider the case of drifter data consisting

of longitude and latitude measurements and assume drifters maintain a constant

depth. Thus if there are ND drifters, then xD is a 2ND-component vector and xF is

of NF components, where NF is the dimension of fluid model states. The dimension

of the vector xD can exceed 2ND if extra fields are included in the drifter prognostic

states (e.g. temperature and salinity).

The drifter advection equation is then added to the original fluid dynamical
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system as, 
dxfF
dt

= MF (xfF , t)

dxfD
dt

= MD(xfF ,x
f
D, t)

As a clarifying example, suppose that only the position data carried by Lagrangian

drifters are observed. Then the dimension of the observation space is 2ND and the

observations can be represented in terms of the observation operator H and true

states xt as,

yo =

[
0 I

] xtF

xtD

+ ε = Hxt + ε,

where

H =

[
0 I

]
, ε ∼ N(0,R).

The matrix I in the above formula is an identity matrix of dimension 2ND × 2ND.

The quantity ε is a Gaussian random error, with the 2ND × 2ND observation error

covariance matrix R. The forecast time length must be chosen sufficiently small

to maintain approximately Gaussian error statistics. The augmented-state LaDA

provides an estimator of xi+1 = (xF ,xD)T at time ti+1 given the observations yoi+1.

With the Gaussian assumption, the Kalman filter based methods attempt to provide

the best linear unbiased estimator by taking advantage of the estimated observation

error covariance matrix R and the estimated background error covariance matrix

P. Our background error covariance matrix is composed of the combined fluid and

drifter states defined as,

P =

 PFF PFD

PT
FD PDD

 ,
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where PFF , PFD, PDD, denote the background error covariance matrices of the

fluid state vector, the cross-covariance between the fluid and drifters state vectors,

and the drifters state vector, respectively. The detail definition of the components

of these background error covariance matrices will be specified in the later section.

The ensemble Kalman filter (EnKF) updates the prior error covariance matrix by

computing the sample error covariance matrix from ensemble perturbations around

the ensemble forecast mean.

2.1.2 Review of LETKF

The LETKF is an Ensemble Square Root Filter (EnSRF) proposed by Hunt

et al. (2007) as an extension of works by Bishop et al. (2001), Halliwell et al. (2014)

and Houtekamer and Mitchell (1998), using the localization approach of Ott et al.

(2004). There are generally two kinds of localization approach: in observation

space (R-localization), and in model space (B-localization) (Greybush et al., 2011).

The LETKF uses R-localization, which selects and weights local observations in

a prescribed region around each grid point while excluding observations outside

this region.Salman et al. (2006) shows a proper selection of the localization region

is beneficial in using EnKF to assimilate the drifter positions within the shallow-

water system. In order to preserve vertically consistent dynamics, no localization is

applied in the vertical (Penny et al., 2015). As a consequence, surface observations

impact the analysis of the entire water column. Because previous studies have found

superior results using this approach to vertical localization when applying LETKF
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in the ocean (Penny et al., 2015; Sluka et al., 2016), we only consider experiments

applying variations in the horizontal localization radius.

After the localized region is determined, we compute an analysis update to

the center grid point at all depths. In general, the EnKFs assume Gaussian er-

ror statistics, which are estimated from the perturbations of the ensemble forecast

around the ensemble forecast mean state. The analysis solution is thus confined to

a maximum (K− 1)-dimensional linear space defined by the ensemble states, where

K is the number of ensemble members. By applying the localization technique, we

allow the global analysis to be formed from a larger dimensional space, though the

localized solution is still formed within a linear space limited by the ensemble size.

The localization makes it possible to approximate the solution of spatially extended

high-dimensional nonlinear problems with better accuracy. The linear transform

applied as part of the LETKF is an efficient technique to update the ensemble de-

terministically by transforming the prior distribution to the posterior distribution.

The LETKF algorithm is easily parallelized by calculating the analysis indepen-

dently at each grid point, thus facilitating the technical transition to more realistic

applications.

2.2 Algorithm of LETKF-LaDA

Combining sections 2.1.1 and 2.1.2, we denote the LETKF method applied

to solve the Lagrangian problem as LETKF-LaDA. To simplify the description, we

first consider the case when drifter locations are observed and the dimension of
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observation space is 2ND. A more general case considering the surface temperature

and salinity is elaborated at the end of this section.

1. Run the dynamical model to obtain the global ensemble forecast states x
f(k)
[g] =

(x
f(k)
F [g] , x

f(k)
D[g])

T (k = 1, 2, ..., K), then obtain the corresponding global ensemble

mean xf[g] = (xfF [g], xfD[g])
T and the forecast error perturbation matrix Xf

[g] ,

whose kth column is xf(k) − xf[g]. The subscript [g] indicates the global state

vector.

2. Apply the specialized observation operator H defined in section 2.1.1 to the

augmented model states in order to form the ensemble y
f(k)
[g] of the forecast

observation vectors by y
f(k)
[g] = Hx

f(k)
[g] . Compute the corresponding mean,

yf[g], and error perturbation matrix, Yf
[g], defined in observation space. In

this case, we assume all observation data is carried by the drifters so that

y
f(k)
[g] = x

f(k)
D[g], the mean vector yf[g] = xD[g] and 2ND × K matrix Yf

[g] =

Xf
D[g]. For our experiments, the global observation vector is denoted as yo[g]

and the observation error covariance matrix R[g] is defined as a diagonal matrix

with diagonal entries specified as the observation variance σ2, which will be

discussed in section 2.3.

3. Determine the local analysis of the LETKF-LaDA system, using the local

arrays of the global terms: xf[l], Xf
[l], Yf

[l], R[l], yo[l] and yf[l]. The selection ap-

proach of the localization region depends on the type of the analysis variables

to be updated. For the fluid variables we apply the localization region as a

cylinder centered at a horizontal grid point (i, j) with horizontal localization
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Figure 2.1: (a) the localization region defined to update the fluid states xfF [l] at grid

point (i, j), the white circle at the center of the figure. The background dashed lines

represent the mesh grids of the forecast model. (b) The localization region defined

to update the drifter states xfD[l] associated to a forecasting drifter ID n. The center

white triangle is located at the forecast ensemble mean position of drifter No. n. In

both figures, γLETKF denotes the radius of the localization region and the squares

represents the observation drifter locations. Those observation drifters inside the

circles (red squares) are marked by their IDs as the localized observation.

radius γLETKF (see Figure 2.1 (a)), which will be specified in section 2.3. For

global model state variables xf[g] and Xf
[g], rows associated with the fluid vari-

ables at this grid point (i, j) from all the depth levels are chosen to formulate

their corresponding local variables xfF [l] and Xf
F [l]. For example, suppose the
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prognostic flow states are gridded velocities uF and vF , then we have,

xfF [l] =



ufF (i, j, 1)

vfF (i, j, 1)

...

ufF (i, j, h)

vfF (i, j, h)


2h×1

(2.1)

Xf
F [l] =



u
f(1)
F (i, j, 1)− ufF (i, j, 1) · · · u

f(K)
F (i, j, 1)− ufF (i, j, 1)

v
f(1)
F (i, j, 1)− vfF (i, j, 1) · · · v

f(K)
F (i, j, 1)− vfF (i, j, 1)

...
...

u
f(1)
F (i, j, h)− ufF (i, j, h) · · · u

f(K)
F (i, j, h)− ufF (i, j, h)

v
f(1)
F (i, j, h)− vfF (i, j, h) · · · v

f(K)
F (i, j, h)− vfF (i, j, h)


2h×K

(2.2)

where h is the bottom level of the model. In Figure 2.1 (a), all the observed

drifters located in this localized region are marked by their IDs and we define

the number of localized observed drifters as ND[l]. We then choose the rows

of Yf
[g], yo[g] and yf[g] related to these marked drifter IDs to create 2ND[l] ×K

matrix Yf
[l], and 2ND[l] × 1 vectors yo[l] and yf[l]. Similarly, rows and columns

are chosen to formulate 2ND[l] × 2ND[l] diagonal matrix R[l]. Figure 2.1 (b)

illustrates the approach to define the localization region in order to update

the local state variables of the simulated drifters. As shown in Figure 2.1

(b), the selection of the localization region is associated with each drifter ID

rather than each model grid point. For each simulated drifter ID n, its forecast

ensemble mean location (λ
f

n, ϕ
f
n) is defined as the center of the corresponding
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localization region. Localized model state vector xfD[l] and error perturbation

matrix Xf
D[l] include all the entries associated to this ID n,

xfD[l] =

 λ
f

D,n

ϕfD,n

 , Xf
D[l] =

 λ
f(1)
D,n − λ

f

D,n · · · λ
f(K)
D,n − λ

f

D,n

ϕ
f(1)
D,n − ϕ

f
D,n · · · ϕ

f(K)
D,n − ϕ

f
D,n

 . (2.3)

Similarly to the approach used to update the fluid variable, yf[l], Yf
[l], yo[l] and

R[l] can be defined accordingly based on the localization region. Among all

the marked IDs, the observation associated to its own drifter ID n is included.

To simplify the notation, the subscriptions “F [l]” in (2.1,2.2) and “D[l]” in

(2.3) of the model variables (i.e. xf and Xf ) are all replaced by “[l]” in the

next step.

4. The remaining steps follow the original LETKF (Hunt et al., 2007), repeated

here for completeness. Form the local analysis error covariance and weight

matrix as,

P̃
a

[l] =
[
(k − 1)I/ρ+ (Yf

[l])
TR−1[l] Yf

[l]

]−1
, Wa

[l] =
[
(k − 1)P̃

a

[l]

]1/2
,

where ρ is the covariance inflation factor. The ensemble weight vector used to

compute the local mean analysis is,

x
a(k)
[l] = xf[l] + Xf

[l]w
a(k)
[l] .

5. Collect all the local analysis states at each grid point and each drifter ID to

form the global analysis state vector,

x
a(k)
[g] =

 x
a(k)
F [g]

x
a(k)
D[g]


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This algorithm can be extended to a more general case in which additional

measurements of the fluid variables are associated with each drifter. For ex-

ample, if additional temperature and salinity measurements are made for each

drifter ID n, xfD[l] and Xf
D[l] in (2.3) at step 3 can be extended as,

xfD[l] =



λ
f

D,n

ϕfD,n

T
f

D,n

S
f

D,n


, Xf

D[l] =



λ
f(1)
D,n − λ

f

D,n · · · λ
f(K)
D,n − λ

f

D,n

ϕ
f(1)
D,n − ϕ

f
D,n · · · ϕ

f(K)
D,n − ϕ

f
D,n

T
f(1)
D,n − T

f

D,n · · · T
f(K)
D,n − T

f

D,n

S
f(1)
D,n − S

f

D,n · · · S
f(K)
D,n − S

f

D,n


.

The remaining steps in the above algorithm are the same.

The above further extension of the system allows a direct differencing of the

observed drifter measurements with the modeled drifter measurements, i.e.

yo−Hxf . We assume the interpolation operator is automatically embedded in

the drifter dynamic model MD rather than explicitly relying on an observation

operator H to map the gridded temperature and salinity states to the drifter

positions at the appropriate time.

2.3 Experiments Setup

2.3.1 The numerical ocean model and spin-up procedure

We use the “identical twin” approach in OSSEs to evaluate the impact of

LETKF-LaDA. The nature run and the forecast model in all experiments use the

GFDL subtropical double gyre configuration of the B-grid hydrostatic non-Boussinesq

ocean model MOM4p1 (Griffies, 2008). We work in a rectangular, closed basin
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on a beta plane with longitude ranging from 0◦E to 10◦E and latitude ranging

from 15◦N to 35◦N. Ocean circulation is driven by the zonal wind stress defined

as Fλ(ϕ) = 0.1 · sin(π · (ϕ − 20◦N)/10◦ N) N/m2 , where ϕ is the latitude. Fifty

constant z-level coordinates are used extending down to 5500m.
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Figure 2.2: Temperature and salinity initial conditions provided by SODA on 2 Jan

1981 at location 175◦E 25◦N varying from 5m to 5316m. The thermocline is located

below 75m and above 235m.

The nature run is generated using a 1/4-degree horizontal resolution with

integration time step ∆t = 1800 seconds. We specify the initial conditions of the

temperature and salinity fields by replicating a point profile of temperature and

salinity state estimates from the Simple Ocean Data Assimilation (SODA) on 2 Jan

1981 (Figure 2.2) and then initializing the model with this horizontally uniform

stratification. The true drifter locations are simulated in the nature run, randomly

initialized in the energetic region 2.5◦E ∼ 5◦E and 20◦N ∼ 27◦N , as shown in

Figure 2.3(a). The deployment depth, 15m, is the same as the official fixed depth
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assigned for the NOAA GDP surface drifters.

Figure 2.3: (a) The sea surface height (SSH) of the nature run at the end of the 6-

month spin-up procedure (contour interval is 0.1m); (b) sampled drifter trajectories

in 91 days are shown with SSH (m) at the terminal time. Initial drifter locations

are marked as triangles in (a) and asterisks in (b).

We construct an ensemble of wind stress fields by adding a constant to the

zonal component of the true wind field with the magnitude, which is randomly cho-

sen by θ ∼ N(0, 0.1)N/m2 for each ensemble member. This addition of the constant

is applied uniformly for all grid points and time steps, i.e. F
(k)
λ (ϕ) = F (ϕ) + θ(k)

(k = 1, 2, · · · , K). To initialize the ensemble, we first spin up each ensemble ocean

member for six months with the perturbed atmospheric conditions F
(k)
λ . All ex-

periments use an ensemble size K = 40. We next populate 50 drifters (ND = 50)

simulated at 15m depth, initialized at the ‘true’ positions identically for each en-
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semble member. The ensemble members are then integrated for another 16 days

to generate the initial ensemble spread of drifter positions. We take advantage of

an embedded drifter module in MOM4p1 that provides output of drifter positions

as well as temperature and salinity at the drifter locations. Within this module,

the drifter positions are calculated by integrating the corresponding velocities ob-

tained after applying a bilinear interpolation to the gridded ocean velocity fields

at the corresponding depth. The temperature and salinity data are determined di-

rectly by bilinear interpolation of the gridded temperature and salinity fields to the

corresponding drifter locations.

The LETKF-LaDA system uses a daily analysis cycle following Jacobs et al.

(2014). The optimal choice of analysis cycle window depends on the error dou-

bling time of the modeled drifter positions, and remains an open question. The

observations are assimilated daily with positioning errors drawn from a normal dis-

tribution using a prescribed standard deviation of σ = 0.1 degree in both longitude

and latitude. The parameter σ is determined by averaging the daily error growth of

all the 50 drifter locations deployed in 40-member flow ensemble generated by the

first step of spin-up process as previously described. We investigate the influence of

the horizontal localization radius and model resolution on the performance of the

LETKF-LaDA. We define the horizontal localization radius, γLETKF , as a multiple

of the Rossby radius of deformation (RRD) at the respective latitudes (Chelton

et al., 1998). The choice of γLETKF in different experiments will be specified in the

next section. None of the experiments use multiplicative inflation (i.e. ρ = 1). The

control experiment is initialized using the ensemble mean ocean and drifter states
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at the end of the two-step spin-up process.

2.3.2 Error metrics

The locations of drifters in this work are based on longitude-latitude coordi-

nates on a spheroid surface instead of the Cartesian coordinates on a flat surface

as used in previous augmented-state LaDA studies (Salman et al., 2006). In this

section, we utilize the measurements of geophysical distance to evaluate the differ-

ence between two locations of interest. The errors in drifter states are computed by

taking the average distance between ensemble mean positions and the true positions

of all the drifters,

RMSED =
1

ND

ND∑
n=1

d
(

(λtD,n, ϕ
t
D,n), (λD,n, ϕD,n)

)
,

where d((·, ·), (·, ·)) is the function to compute the geophysical distance between two

locations based on their latitude and longitude coordinates. Salman et al. (2008)

defined a dimensionless fluid field norm in the horizontal direction that evaluates the

error in terms of a percentage of the true fluid state. The error corresponding to the

velocity field is formulated as a type of kinetic energy field. Because the double-gyre

model used for our experiments has the additional complexity of including multiple

vertical layers, we sum the horizontal errors from the top depth level ho to level h,

|T | =

 h∑
m=ho

∑
i,j

(TF (i,j,m)−T t
F (i,j,m))

2

h∑
m=ho

∑
i,j
T t
F (i,j,m)2

1/2

, |S| =

 h∑
m=ho

∑
i,j

(SF (i,j,m)−St
F (i,j,m))

2

h∑
m=ho

∑
i,j
St
F (i,j,m)2

1/2

|KE| =

 h∑
m=ho

∑
i,j

(uF (i,j,m)−utF (i,j,m))
2
+(vF (i,j,m)−vtF (i,j,m))

2

h∑
m=ho

∑
i,j
utF (i,j,m)2+vtF (i,j,m)2

1/2

, (2.4)
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where TF (i, j,m), SF (i, j,m), uF (i, j,m) and vF (i, j,m) indicate the flow states at

the grid point (i, j,m), in order to verify the convergence of the proposed LETKF-

LaDA approach. We use the RMSED defined above to quantify the norm of the

drifter states.

Due to the relationship between geostrophic currents and sea surface height

(SSH), we are also interested in the forecast error correlation between the drifter

states and the surrounding flow fields. For a specific drifter with ID n, we denote

its true position as (λtD,n, ϕ
t
D,n) and the drifter state corresponding to this ID as

xtD,n. The fluid state at the horizontal grid point (i, j) with depth h is specified as

the vector xfF (i, j, h). The error correlation between the drifter state and its closest

vertical ocean field is denoted as,

rn(i, j, h) = Corr(εfF (i, j, h), εfD,n)

=
E
[
(xfF (i, j, h)− xtF )(xfD,n − xtD,n)

]
√
E
[
(xfF (i, j, h)− xtF )2

]
·
√
E
[
(xfD,n − xtD,n)2

] , (2.5)

where E(·) denotes the mean. Similarly, the error correlation corresponding to SSH

is

rSSH,n(i, j, h) = Corr(εfF (i, j, h), εfSSH)

=
E
[
(xfF (i, j, h)− xtF )(xfSSH − xtSSH)

]
√
E
[
(xfF (i, j, h)− xtF )2

]
·
√
E
[
(xfSSH − xtSSH)2

] , (2.6)

where xSSH is selected at the closest grid point position to the nth drifter location.
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2.4 Results and Discussion

We first set the localization radius of LETKF-LaDA as γLETKF = 3LR, where

LR stands for the approximate RRD at the corresponding latitude, and implement

the LETKF-LaDA for 91 days (about 3 months). Within this time period, some of

the true drifters complete one circuit around the gyre (see Figure 2.3(b)). Figure 2.4

depicts contours of absolute error averaged from the top layer 5m to the 235m. Since

the initial drifter positions are all close to the gyre, a large reduction in error occurs

within the western-central region for all prognostic model variables. Figure 2.5 shows

that the error is reduced not only in the surface fields but also at deeper levels. The

relatively small error reduction in the northern and southern boundary regions is

due to sparse observation coverage (Figure 2.4). Figure 2.6(a) highlights the time

variation of the analysis RMSEs and ensemble spreads in velocities at confluence

region (0.125◦E∼ 2.875◦E and 23.625◦N∼ 26.625◦N). The exponential decays in

both of the RMSEs and ensemble spread of flow velocities at the confluence region

are able to guarantee the ensemble drifters at this region distributed around the truth

with small ensemble spreads and therefore provide accurate analysis states. Salman

et al. (2008) shows that different drifter deployments can affect the convergence of

the error in drifter displacements. In Figure 2.6(b), we display the time variation of

analysis RMSE for sampled drifters labeled in Figure 2.3(b). The RMSE of most of

the drifters are below the prescribed observation error standard deviation (i.e. 0.1

degree), except for the drifter No.37 circuiting near the confluence. It is observed

that this drifter has a sudden increase in the RMSE as it is about to complete one
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loop and then the error gradually decays in the end.

Figure 2.4: Absolute error comparisons between the control run (i.e. |xC −xt|) and

the LETKF-LaDA (i.e. xa − xt) assimilating only the drifter position to analyze

ocean flow fields temperature (T), salinity (S) and velocities (U, V) at end of 91

days. The errors are shown in the longitude-latitude plane and averaged from the

top layer 5m to the 235m. The true drifter locations at the end of 91 days are

marked by closed triangles in the first contour figure of the left column.

In general, the performance of the LETKF-LaDA depends on the localization

radius, which affects both the extent of influence by observations and the reduction

of nonlinear error in the prognostic model states. In the following discussions, we

27



Figure 2.5: Absolute error comparisons between the control run (i.e. |xC −xt|) and

the LETKF-LaDA (i.e. |xa − xt|) assimilating only the drifter position to analyze

ocean flow fields temperature (T), salinity (S) and velocities (U, V). The errors are

shown in the latitude-depth plane and averaged along longitude from 0.625◦E to

7.125◦E. The x-axis stands for the latitude interval 22.125◦N∼ 27.875◦N, while the

y-axis represents the depth level from 5m to 600m.

first determine an effective localization radius for the given system and then apply

this radius for the remainder of the experiments.
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Figure 2.6: a) Time variation of analysis RMSE and ensemble spread in velocities at

confluence region (0.125◦E∼ 2.875◦E and 23.625◦N∼ 26.625◦N) averaged through

all the depth levels; b) time variation of analysis RMSE (in degree) in drifter dis-

placements.

2.4.1 Impacts of varying localization radius γLETKF

Using the 1/4-degree horizontal resolution, we vary the localization radius:

γLETKF = 5LR, 4LR, 3LR, 2LR and LR. Each experiment applies the LETKF-LaDA

over 91 analysis cycles. We compare the error variations of the cycled analysis states

to the control run. Figure 2.7 shows the results of percentage error norm defined in

equation (2.4). We compare the errors of the analysis mean with the control run.

For the temperature, salinity, and kinetic energy fields, we sum the squared errors

in percentage norm from 5m to 1000m meter depth. Cases using 3LR and 2LR

produce the lowest errors over the course of the experiments. The 2LR localization

radius produces slightly lower errors than 3LR radius in controlling the mean drifter

error distance below 3km within the 1/4◦ meshgrid map. The experiment with
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5LR radius generates the most accurate analysis in model prognostic fields at end

of the first cycle, however it begins diverging after 60 cycles due to continuous

error growth in drifter states beginning after 5 cycles. Using the smallest attempted

localization radius LR, the error decays relatively slowly in both the prognostic fields

and estimated drifter positions in the first 60 cycles. The errors in prognostic fields

reach a low value comparing with other radii at the end of this time period. With

localization radius LR, the LETKF-LaDA produces in a sudden reduction in error

between 60 to 80 days, however this error reduction does not appear stable. The

sudden “shock” in error after the 1st cycle of the LETKF-LaDA with the various

localization radii may be the consequence of an instability generated by a large

change in the state variables.

In order to monitor the performance of the LETKF-LaDA in the vertical using

varying localization radii, we consider the analysis states at the end of the 91st

analysis cycle and compute the error in each horizontal layer from 5m to 1000m

depth (see Figure 2.8). In the temperature field, all errors have a similar shape

in the vertical direction with a maximum at approximately 270m depth. Both

of the 3LR and 2LR localization radii produce smaller errors at all depth levels

than all the rest of the localization radii. The experiment with localization radius

behaves similarly to those with radii 3LR and 2LR below the thermocline, though

a marginally larger error is produced in the top layer (5m∼200m). For salinity,

experiments using 3LR and 2LR radii have the lowest error above 270m depth,

while errors in all experiments decay to almost the same value at deeper levels. All

LETKF-LaDA cases have difficulty in reducing error in kinetic energy below 300m
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Figure 2.7: Error norms of temperature, salinity, kinetic energy and drifter states

(RMSED) in the given period [0, 91] using formula (2.4). The error norms of the

ocean flow fields are aggregated from 5m depth to 1000m depth (i.e. ho = 5m and

h = 1000m). In each subplot, we show the experiment results of control run (blue

solid line), 5LR (orange dotted line), 4LR (red dash-dotted line), 3LR (purple solid

line), 2LR (green solid line) and LR (cyan dashed line).

depth, though the case using a radius of 3LR produces the smallest error in all depth

levels.

The LETKF-LaDA requires the growth in drifter position error to grow quasi-

linearly in time for the duration of the analysis cycle. The degree of nonlinearity

depends on the stability of the dynamics, being greatest in the gyre region, and

for the purpose of LaDA depends upon the time between observations. In order to
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Figure 2.8: Error in temperature, salinity and kinetic energy at the end of 91th

DA cycle along the vertical direction with experiments of localization radius 5LR,

4LR, 3LR, 2LR and LR. These quantities are evaluated by formula (2.4) at each

individual vertical level with ho = h. The control run is not shown in these figures

because its errors largely exceed the scale of the given results in all fields.

evaluate the performance of the LETKF-LaDA in updating the state in the presence

of varying degrees of nonlinearity, we examine trajectories for two different drifter

IDs (Figure 2.9). We select one drifter in the gyre (No. 44) and another in a region

with relatively slow approximately linear flow (No. 40). For both the linear and

nonlinear trajectories, the LETKF-LaDA is able to track the true drifter trajectories.

In summary, with the quantitative and qualitative comparison in all the states

and drifter trajectories, we find that the LETKF-LaDA with localization radii 3LR
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Figure 2.9: Drifter trajectories of nature run (black) compared to the control run

(blue) and the LETKF-LaDA varying the localization radius: 5LR, 4LR, 3LR and

2LR in 91 days. All cases use identical drifter starting positions. The green line

(2LR) is the closest trajectory to the black line (obs) at the end for both of the

drifters.

and 2LR result in the lowest errors in the state estimate.

2.4.2 Comparing to conventional assimilation of in situ temperature

and salinity

Drifters may be equipped not only with a GPS locator but also sensors provid-

ing in situ measurements (Lumpkin et al., 2007). In this section, we add temperature

and salinity observations to the simulated Lagrangian drifters and compare the per-

formance of three observing strategies: (1) using the LETKF to assimilate only the

in situ temperature and salinity observations at the surface (no position informa-

tion), (2) using the LETKF-LaDA to assimilate only drifter positions, and (3) using

the LETKF-LaDA to assimilate both drifter locations and in situ temperature and
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salinity observations with observation errors σT = 0.1◦C and σS = 0.1psu. All ex-

periments use the localization radius γLETKF = 3LR, as determined in the previous

section.

Figure 2.10 summarizes the time variation of error in the estimated ocean state.

The LETKF-LaDA experiments provide more accurate estimates of the prognostic

model state variables than that of the conventional T/S DA after passing through

the “shock” period in all the flow fields. The addition of the in situ data to some

extent reduces the “shock” in temperature and salinity error for the LETKF-LaDA

in the first few cycles. In the vertical comparison at the terminal time (see Figure

2.11), the LETKF-LaDA outperforms assimilation of conventional observations at

all depths using the metric given by formula (2.4). Assimilating the combination of

in situ and Lagrangian position data further improves the accuracy of the LETKF-

LaDA salinity estimates in all layers and temperature in most of the layers except

for the levels between 100m and 200m, though this results in a smaller improvement

of the estimations in kinetic energy blow 450m.

2.4.3 Model resolution

One factor that could have an impact on the convergence of the LETKF-LaDA

is errors in drifter trajectories caused by the model grid resolution. The insufficient

modeling flow caused by a coarse grid resolution can possibly result in a relatively

large discrepancy between the forecast drifter and the truth. This is a particular

concern for transitioning to the assimilation of real observational data. In order to
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Figure 2.10: Error norms of temperature, salinity and kinetic energy in the given

period [0, 91] using formula (2.4). The error norms of the ocean flow fields are

aggregated from 5m to 1000m depth (i.e. with ho = 5m and h =1000m). In each

subplot, we show the experiment results of control run (blue solid line), assimilation

of surface drifter measured T and S (orange dotted line), LETKF-LaDA assimilating

only drifter positions (red dashdotted line) and LETKF-LaDA assimilating both

drifter positions and surface drifter measured T and S (purple solid line).

examine sensitivity to resolution, model forecasts are obtained using configurations

of 1/3◦ and 1/2◦ horizontal grid resolutions. The initial coarser ensemble fields are

generated by applying bilinear interpolation to the previous initial ensemble fields

defined in 1/4◦ gridding system as in section 2.3. Figure 2.12 shows a comparison

of the SSH fields in one-day forecast generated by models of different resolutions
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Figure 2.11: Vertical profile of change in error for temperature, salinity and kinetic

energy at the end of 91th DA cycle with experiments of traditional DA assimilating

T and S, LETKF-LaDA with and without assimilation of T and S. These quantities

are evaluated by formula (2.4) at each individual vertical level with ho = h. The

control run is not shown in these figures because its errors largely exceed the scale

of the given results in all fields.

before we start applying the LETKF-LaDA. Forecast models of coarser grids fail

to represent the scale of SSH at the center of the gyres and create larger errors at

eastern edge of the gyre. The LETKF-LaDA is performed with localization radius

3LR.

We observe in Figure 2.13 that assimilating Lagrangian data is possible with

a forecast model resolution that resolves the dynamics present in the observations
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Figure 2.12: SSH contour comparisons between the nature run and one-day forecast

ensemble means generated by forecast models of 1/4◦, 1/3◦ and 1/2◦ resolutions

before we start applying the LETKF-LaDA.

(e.g. in this case with a perfect model). Experiments using both coarser resolutions

fail to stabilize the error growth in ocean and drifter states due to the exponential

growth in the drifter position errors.

The above results show that the accuracy of the forecasting model influences

the performance of the LETKF-LaDA. The relation between the convergence of

the LETKF-LaDA and the prognostic flow scale of the forecasting model must be

examined in the future with a high-resolution model.

2.4.4 Relation between the Lagrangian states and SSH

Due to the geostrophic relationship between the surface currents and pressure

in the midlatitudes, and because SSH can be used as a proxy for integrated pressure

in the upper ocean column, we expect some redundancy in the information provided

by surface drifter position data and satellite altimeter measurements. For example,
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Figure 2.13: Error norms of temperature, salinity, kinetic energy and drifter states

(RMSED) in the given period [0, 91] using formula (2.4). The error norms of the

ocean flow fields are aggregated from 5m depth to 1000m depth (i.e. ho = 5m and

h = 1000m). In each subplot, we show the experiment results of control run (blue

solid line), LETKFLaDA with forecast model of 1/2◦ (orange dotted line), 1/3◦ (red

dashdotted line) and 1/4◦ (purple solid line) resolutions.

Carrier et al. (2016) showed that assimilating the combination of the along-track

SSH and the Eulerian flow velocity approximated by drifter locations can provide

improved forecasts of SSH, compared to using either the observations of the along-

track SSH or the Eulerian velocity alone. Similarly, we expect the LETKF-LaDA

will be a viable method to improve forecasts of SSH by taking advantage of drifter

position data.
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We use the error correlation between the drifter state variables (e.g. longitude

and latitude) and the ocean prognostic fields (e.g. temperature, salinity and veloc-

ity) to extract information from the Lagrangian position data that can be used to

update the subsurface state. Because the general quasi-geostrophic balance between

the surface currents and dynamic ocean height fields indicates that a passive drifter

will move following the contour of SSH, we infer that the correlation between the

SSH forecast error and the Eulerian velocity forecast error is intertwined with the

forecast errors corresponding to the drifter positions. To verify this, we spin up

the ensemble as introduced in section 2.3 and compute the SSH (rSSH) and drifter

forecast error correlations (rlon and rlat) using the formula (2.6) and (2.5) defined

in section 2.3.2.

We examine error correlations between the drifter positions and the 3D fluid

and compare in the longitude-depth plane. For example, the rlon and rlat associated

with drifter No.14 share similar patterns with the contour profile of rSSH for all the

flow fields (Figure 2.14). Continuing the experiments for all the other drifters, we

summarize the connection between rSSH and rlon, rlat in longitude-depth plane as

following: for a specific drifter ID n,

rSSH,n ≈ α · rlon,n + β · rlat,n, α ∝ −un, β ∝ sign(un) · vn,

where (un, vn) is the drifter velocity of drifter ID n. For those drifters located in

unstable portions of the flow, a large ensemble size is needed to verify the above

relation numerically. In the last row of Figure 2.14, the estimations of rSSH are

determined by this formula for drifter No. 14, using the coefficients: α = −un/(|un|+
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|vn|) and β = sign(un) ·vn/(|un|+ |vn|). Comparing the first three rows with the last

row in Figures 14, we observe that with this approximation formula, rlon and rlat

partially recover the positivity and negativity of the correlations rSSH in the given

region, though the magnitude is different. The strongly linear relation between

rlon/rlat and rSSH suggests a similar relation in their corresponding error covariance

matrices.

Figure 2.14: Correlation comparisons among rlon (1st row), rlat (2nd row) and rSSH

(3rd row) associated with drifter No. 14 in the longitude-depth plane. The 4th row

shows the correlation estimation of rSSH using the linear combination of rlon and

rlat associated with drifter No. 14 in the longitude-depth plane using coefficients:

α = −un/(|un|+ |vn|) and β = sign(un) · vn/(|un|+ |vn|) .
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2.5 Conclusion

In this chapter, we introduced a localized augmented-state Lagrangian Data

Assimilation implemented with the Local Ensemble Transform Kalman Filter (LETKF-

LaDA). Extending previous work with augmented-state LaDA methods, we applied

this method to an ocean model with 3D dynamics and representation of temperature

and salinity tracers. The LETKF-LaDA was found to provide more accurate anal-

yses throughout the ocean column from the surface to 1000m depth by assimilating

drifter position observations, compared to the conventional assimilation of in situ

drifter measurements of temperature and salinity measurements.

In the context of the LETKF-LaDA, we studied the impact of localization

radius on stabilizing the error growth over time. We found that with radius 5LR,

five times the Rossby radius of deformation, the error decays fast in the first DA

cycle but the nonlinear error grows unchecked over longer time. We also found that

if the localization radius is too small, e.g. LR, error often grows unconstrained in

regions far away from the observations. The best performing localization radius in

our experiments with the LETKF-LaDA assimilating 50 drifters deployed randomly

around the gyre was between 2LR ∼ 3LR.

Correlations between errors in the drifter locations and ocean states (rlon and

rlat) were also studied. For a specific drifter, rlon and rlat had an approximately linear

relation with the SSH error correlation (rSSH) at the drifter location. Since the error

correlation is an influential factor in the performance of DA methods, future research

will examine the use of the LETKF-LaDA to simultaneously assimilate both drifter
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position and along-track SSH observations to improve the forecast accuracy of the

SSH field and the ocean surface currents, especially where there are gaps in the

altimeter observations.

The LETKF-LaDA was implemented using a parallel computing framework in

order to accelerate the computation of the analysis in anticipation of scaling to an

operational global ocean data assimilation system. An additional factor affecting

the stability of the LaDA filter is the number of drifter observations. A software

limitation in MOM4p1 prevents us from studying the effect of this parameter because

the built-in drifter module of MOM4p1 does not support running a large group of

drifters. As the number of simulated drifters increases, the drifters become more

likely to be lost or repeated during the model integration. The primary cause of

this issue is an error in communication across different processors.

Conducting an OSSE using the “identical twin” approach is an important

first step for validation of any new DA method. However this type of experiment

ignores important concerns that are necessary to determine the viability of the

LETKF-LaDA for operational use, such as the presence of systematic model errors.

For example, in our experiments varying model resolution, results indicated that

the LETKF-LaDA is sensitive to degraded model resolution. In future research,

we will apply the LETKF-LaDA using a more realistic model configuration of the

latest GFDL MOM6, configured with various resolutions that span a range from

eddy permitting to eddy resolving and forced with time-variant near-surface wind

forcing, and transit the whole system into assimilating real historical drifter and

hydrographic profile data.
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Chapter 3: LETKF-LaDA on Gulf of Mexico of MOM6

3.1 Overview

Modern ocean models are capable of resolving the oceanic large-scale flow, in-

cluding western boundary currents such as the Gulf Stream to the Kuroshio. Nev-

ertheless, at mesoscales and sub-mesoscales, the current ocean models inadequately

predict the flow with high accuracy even using high-resolution model. Individual

tracers or drifters, in contrast, are essential observations to provide reliable infor-

mation for the search and rescue operations, and hydrocarbon/chemical spill simu-

lations (Poje et al., 2014). Therefore, it is important to take a full advantage of the

information carried by actual drifters/floats in order to properly constrain the model

simulation with the prescribed resolution. Here, we summarize the major studies of

applying different DA methods to multiple GoM forecast models assimilating drifter

measurements.

Vernieres et al. (2011) used a multi-layer reduced gravity model of the GoM

in a perfect model scenario to investigate the impact of three kinds of synthetic

measurements on the performance of DA: Eulerian velocity at the fixed stations, 2D

horizontal Lagrangian drifter locations, and 3D Lagrangian drifter locations. The

investigation was conducted using an EnKF under the framework of augmented-
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state method (Ide et al., 2002). Results indicated that the two LaDA methods

were capable of reproducing the eddy-shedding process by one drifter as long as the

drifter is launched in a proper position. In addition, the two LaDA methods also

had larger region of influence compared with the Eulerian method, with the LaDA

in 3D scenario being the largest.

During the summer 2012, the Consortium for Advanced Research on Trans-

port of Hydrocarbon in the Environment (CARTHE) conducted experiments of the

Grand Lagrangian Deployment (GLAD) by deploying more than 300 drifters at

the GoM and recording their displacement every 15mins for three months. The

database was released later in a combination of estimated instantaneous velocities

derived from drifter trajectories, which motivates the assimilation of the drifter

measurements in more realistic scenarios. Drifters in GLAD program were gradu-

ally launched since July 20, 2012 and the launching process took coupled of days

to complete. Figure 3.1 shows the 297 drifter GPS locations on Aug 3rd, 2012,

when the launching process for all the drifters was already completed. Note that

most of the drifters were initially deployed in the northeastern region. In addition,

Hurricane Issac passed through the GoM area, which inflicts damage on the obser-

vations in late August. Details on the data processing of all the drifters are shown

in Olascoaga et al. (2013) and Coelho et al. (2015)

Jacobs et al. (2014) and Carrier et al. (2014, 2016) all utilized the Navy Coastal

Ocean Model (NCOM), capable of producing very accurate ocean simulations for

regional and global applications at mesoscales and sub-mesoscales. Variational DA

methods including 3D-Var and 4D-Var were attempted in this series of research
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Figure 3.1: Horizontal distribution of 297 drifter locations recorded in GLAD

database on Aug 3rd, 2012.

to study the impact of the “proxy velocity” entries of the GLAD on the analysis

and the forecast state variables. Results show that: (1) the GLAD velocity data

significantly contribute to improvements in characterizing of the circulation; and (2)

with a combination of along-track SSH observations and the GLAD velocity data,

the NCOM-4DVAR system was able to provide a better SSH forecast when compared

to the experiments of assimilating either the aforementioned two observations alone.

Coelho et al. (2015) proposed a non-intrusive cycling method named as Multi-

Model Ensemble Kalman Filter, where they generated the members of the ensemble

forecast using a set of realistic ocean models with different horizontal resolutions,

which included the NCOM at 1 km and 3 km resolutions, the US Navy operational

NCOM at 3 km resolution (AMSEAS), and two versions of the Hybrid Coordi-

nates Ocean Model (HYCOM) set at 4 km. In this work, the GLAD velocity data
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was assimilated to improve the water velocity prediction along the observed drifter

trajectories.

So far, among the applications to the realistic prediction models, only the

Eulerian velocity entries of the GLAD dataset were used and assimilated into the

DA system. There has not been many attempts to apply the augmented-state

assimilation (Ide et al., 2002) of the direct drifter positions into a real-world scenario,

possibly due to the absence or underdevelopment of drifter module in the ocean

model, or the curse of dimensionality faced by most of the current augmented-state

methods.

In this chapter, we extend the application of the LETKF-LaDA method pro-

posed in section 2.1.2 to a high-resolution eddy-resolving regional ocean model, the

Modular Ocean Model version 6 (MOM6) configured for GoM. Unlike the constant

surface wind field used in the previous chapter, the GoM model is forced by a

time-variant surface wind field and related near-surface atmosphere fields, such as,

downward shortwave/longwave radiation flux and precipitation. With the utiliza-

tion of MOM6 in transition to operational use for ocean monitoring at NCEP, and

as the ocean component of coupled models being developed for Numerical Weather

Prediction (NWP), we expect the LETKF-LaDA will be able to contribute to the

whole DA system by successfully enhancing the prediction of ocean circulation by

assimilating the drifter positions directly. The work is built using three main proce-

dures: (1) developing necessary functionality in an online drifter module for MOM6;

(2) using the regional GoM model with the realistic atmosphere surface forcing; and

(3) the application of the LETKF-LaDA assimilating drifter positions.

46



3.2 Model Description

In the previous developments of MOM, from MOM1 in 1991 to MOM5 in

2012, the upgrade in each version of the model makes tremendous strides, such as

improvements in the numerical methods, physical parameterizations and compu-

tational infrastructure. MOM has become an evolutionary tool to assist oceanog-

raphers to have a better understanding of ocean dynamics. Despite the valuable

advancement in the previous versions of MOM, there were still severe issues in the

mesoscale eddy equation, which caused the spurious diapycnal mixing associate with

numerical advection (Griffies et al., 2000; Ilcak et al., 2012).

MOM6 is the latest ocean modeling project in the effort to make revolutionary

advances while solving the remaining issues from all previous versions of MOM. The

main improvements include the general-coordination formation, conservative repre-

sentation of wetting and drying and the novel parameterization of sub-grid scale

physics (Griffies et al., 2015). The application of the Arakawa C-grid, instead of

the the Arakawa B-grid in MOM5, enables a more accurate simulation of mesoscale

eddies. In addition, the parameterization of mesoscale and submesoscale eddies has

also been updated by incorporating the cutting-edge theories, such as the mesoscale

eddy kinetic energy methods of Marshall and Adcroft (2010), the resolution func-

tion of Hallberg (2013), the improved energy budget-based parameterization for the

mesoscale eddy diffusivity of Jansen et al. (2015), and the newly updated algorithm

in parameterizing the submesoscale eddy of Fox-Kemper et al. (2011, 2008). This

advantage of MOM6 shows a great potential in the application of LETKF-LaDA
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with drifter observations, targeting to forecast the mesoscale and submesoscale cur-

rents with high accuracy.

In this section, we will explain in detail about building up the necessary ingre-

dients for the later use of combing LETKF-LaDA and MOM6 as the forecast model

to improve the prediction of surface currents in the GoM.

3.2.1 Construction of a Gulf of Mexico regional model configuration

The model domain is defined in a region extending 18◦N to 30.5◦N and 262◦E

to 279.5◦E using spherical coordinates and a horizontal resolution 1/24◦. The hor-

izontal grid is generated by interpolating from the gridded bathymetric data set

of General Bathymetric Chart of the Oceans (GEBCO). The vertical coordinates

used in the current study are defined as 75-level z∗ coordinates, though the Arbi-

trary Lagrangian-Eulerican (ALE) vertical coordinate is available in MOM6. We

will take account of the impact of time-variant ALE in the future research.

The surface atmospheric forcing is provided by the 20th Century Reanalysis

version 3 (20CRv3) for winds, temperature, specific heat, precipitation, pressure

and downward shortwave and longwave radiation. The 20th Century Reanalysis

(20CR) is the pioneer project producing an ensemble of sub-daily global atmo-

spheric conditions spanning over 100 years. According to Slivinski et al. (2019b),

the previous version 2c suffers from significant issues including inaccurate estimates

of confidence and a global sea level pressure bias in the mid-19th century. The latest

version 20CRv3 utilizes improved DA methods and a more advanced forecast model,
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in order to attenuate the significant issues involving estimates of confidence and a

global sea level pressure in the mid-19th century (Slivinski et al., 2019a).

All the atmospheric boundary forcing used in this chapter is time-variant, with

an update frequency of 3 hours. In addition, the ensemble forcing for each member

is selected from the 80-member 20CRv3 ensemble data set. Figure 3.2 shows the

monthly ensemble spread of the 20CRv3 eastward/northward wind fields at a height

of 10 meters in 2012.

Figure 3.2: Monthly ensemble spread of eastward (left) and northward (right) wind

fields at 10 meter height in 2012. Each panel represents the ensemble spread at the

beginning of each month.

The initial data of the potential temperature and salinity is mapped from

the objectively analyzed (1◦ grid) climatological fields from the World Ocean Atlas

2005 (WOA05). As a preliminary stage of the extension to a realistic scenario, we

utilize the default “wall” boundary condition, where no flux exists at the eastern

and southern boundaries. Therefore, with this experiment setting, no loop current
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is expected to appear during the experimenting time period. An examination of a

more accurate boundary condition based on the SODA data set will be conducted

in the future research.

Figure 3.3 shows snapshots of SSH and sea surface temperature (SST) after

215 days (around 7 months) free run on the GoM model with 1/24◦ resolution using

the 20CRv3 atmosphere forcing of ensemble member No.001.
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Figure 3.3: Screenshots of SSH (left; unit: m) and SST (right; unit: ◦C) at the end

of 215-day free run of GoM with resolution 1/24◦ and “wall” boundary condition.

This free run is initialized with the WOA05 climatological fields and forced with

20CRv3 atmosphere forcing for ensemble member No.001.

3.2.2 Construction of drifter module for MOM6

As shown in the previous chapter, one of the reasons to extend the application

of LETKF-LaDA to MOM6 is the deficiency of the drifter simulation module em-

bedded in the MOM4p1 and MOM5. The online drifter code in previous versions of
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MOM mainly suffers from the complexities of a distributed computing environment,

resulting in serious issues related to the repetition and the loss of drifters during a

free model run. This prevents us from deploying a number of drifters in a specific

region and employing the historical database, such as the GDP and the GLAD,

including hundreds and even thousands deployments.

As such, many offline drifter simulation operators and analysis toolboxes (De-

landmeter and van Sebille, 2019; Lange and van Sebille, 2017) have been invented

as remedies to attenuate the inconvenience brought by the flawed online drifter

simulation modules. However, because of their offline setup, the background flow

field can be only input by a sequence of the general ocean model output. This can

consume extra storage space and excessive I/O when implementing the drifter sim-

ulator, specially when using a high-resolution model. More importantly, since the

output interval is in general larger than the model time step, the drifter trajectory

generated by these offline toolboxes is less accurate because it cannot be obtained

by integrating the instantaneous interpolated flow velocity at each model time step.

Here, we build an online drifter simulation module within MOM6. This will

benefit not only future research studying the impact of different LaDA methods

involving the MOM6, but also other applications related to the drifter/particle sim-

ulation within MOM6. The main idea in constructing the drifter module is to regard

the complete processor-communication functions of the MOM6 iceberg module as a

template, in order to create a well distributed background flow environment for the

drifter behaviors. At each model time step, flow velocities are defined on the C-grid

(as shown in the green diamond labels of Figure 3.4) in each data domain, therefore
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we first shift the C-grid velocities to the B-grid (the corner of each cell). Specifically,

we shift all the zonal velocity northward and all the meridional velocity westward.

We then focus on each local cell (Figure 3.4(a)) to implement the bilinear interpola-

tion of velocities into the drifter location in this local rectangle cell. A rotation map

(i.e. the Jacobian matrix) defined on each tracer cell (i.e. blue circle marks in Figure

3.4) is multiplied by the interpolation coefficient vector to convert interpolating re-

lations within the local rectilinear cell to those within an actual curvilinear cell (see

Figure 3.4(b)). Then the drifter velocity is obtained within spherical coordinates.

Using this instantaneous velocity, the drifter location at the end of each model time

step is then determined by using the 4th order of Runge Kutta method.

Figure 3.4: (letf) Different grids defined on the local unit rectlinear cell with B-grid

(brown triangle labels), C-grid (green diamond labels; “Cu” for zonal velocity and

“Cv” for meridional velocity) and tracer grid (blue circle label). (right) Represen-

tation of different types of grid in the actual curvilinear cell.

Figure 3.5 shows a drifter trajectory for one-month model run with 1/24◦

resolution for the background flow field. In the enlarged panel, an inertial oscillation
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can be observed through the drifter trajectory.

Figure 3.5: The trajectory of a drifter initially deployed at (266.96, 26.89) from

01/01/2012-01/31/2012 with the background SSH (unit: m) contour. The Gulf

of Mexico model is of 1/24 degree horizontal resolution and is forced by the sur-

face fields of 20CRv3. The initial condition and the boundary condition are both

provided by the SODA Dataset (instead of the “wall” boundary condition). The

zoomed-in figure of the drifter trajectory is shown in the embedded panel.

Some beneficial attributes of the new online drifter module must be high-

lighted, in comparison to the previous version:

1. Completely solves the issues of repeating and disappearing drifters.

2. Besides the drifter location, the drifter RESTART file also includes the extra

interpolated variable values: temperature, salinity, and zonal and meridional
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velocity located at the terminal drifter location.

3. In addition to the drifter RESTART file, the latest online drifter module is

also capable of generating the drifter trajectory file with the location update

frequency of a time scale of one minute. This will make it possible to fully

utilize high-frequency drifter databases, such as GLAD in future research.

Yet, further improvements and upgrades must still be made in the current

drifter simulation code:

1. The drifter simulation module is limited to simulate the behaviors of only

surface drifters. The selection of drifters on different depth levels should also

be included in a future development of the drifter module, which will be a

promising feature to simulate the trajectory of the drifting platforms in the

deep ocean, such as the Argo floats.

2. The current drifter module only takes account of the 2D dynamics. The con-

sideration of 3D dynamics in the future improvement would make the drifter

module more realistic.

3.3 Experiments Setup

We use the “identical twin” approach of OSSEs as a preliminary stage of testing

the impact of LETKF-LaDA, where we use the same model configuration for both

the nature run and the forecast model, i.e. 1/24◦ resolution and the “wall” boundary

condition. Since 20CRv3 contains the atmosphere surface forcing of an 80-member
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ensemble, the nature run is defined to be forced by the mean forcing of the 20CRv3

80-member ensemble in year 2012. The initial conditions of the 3D temperature and

salinity are obtained by using the World Ocean Atlas 2005 climatology database.

The nature run starts on Jan 1st, 2012, and 300 drifters are deployed randomly in

the whole region on August 3rd, 2012 (Figure 3.6) at 1m depth in order to emulate

the GLAD setup. Figure 3.7 shows a point profile of temperature and salinity in

the nature run on August 3rd, 2012. The drifter observations are collected every

day with observation error 0.08◦ in both longitude and latitude. We emulate the

temperature and salinity measurement of the drifters by bilinearly interpolating

the “true” underlying flow fields to the observed drifter locations with observation

error 0.4 ◦C for temperature and 0.2 psu for salinity. Assuming that the dominant

errors in the observations are errors of representativeness, the choices of the above

observation errors all depend on the averaging error growth rate in the first 24h

forecast. The observation windows are defined as one day for all observation types,

which is the same setup as Jacobs et al. (2014).

We set the ensemble size as K = 26 and the ensemble atmosphere surface

forcing selected as the first 26 members in the ensemble of 20CRv3. To initialize

the ensemble for LETKF-LaDA, we first spin up each ensemble ocean member for

215 days (around 7 months) without drifters. Figure 3.8 shows the time variation

of the ensemble spread in SSH, SST, and sea surface zonal and meridional velocity

(SSU/SSV) during the 215 days, which shows that the ensemble errors are saturated

enough at the end of this time period. Identically to the nature run, we populate the

same 300 drifters (ND = 300) drogued at 1m depth as shown in Figure 3.6 on August
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Figure 3.6: Deployments of the initial 300 drifters randomly distributed in the region

264◦E∼ 276◦E, 23.5◦N∼ 28◦N with background contour (contour interval is 0.05m)

as the true SSH (m) at the end of the first 215 days free model run.
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Figure 3.7: A point profile of temperature and salinity on August 3rd, 2012, locating

at 266.271◦E 24.3125◦N .
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3rd, 2012. The drifters are advected by the prescribed ensemble surface currents

for one day to generate the initial ensemble spread for drifter state variables. The

choice of the relatively short one-day spin-up process for the drifter state variables

is due to the high refinement within the horizontal grid of the forecast model. Like

the experiment setting in Chapter 2, and matching the observation frequency, the

LETKF-LaDA uses a daily analysis cycle following Jacobs et al. (2014). The local-

ization radius is tuned to be as long as the baroclinic Rossby radius of deformation

γLETKF = LR, which is related to the dominant length scale of unstable waves in a

stratified shear flow (Chelton et al., 1998).
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Figure 3.8: Time variation of the area-averaged ensemble spread during the first

step of spin-up process, i.e. 215 days.

The free run is initialized as the ensemble mean flow (among the 26 members)

obtained on August 4th, 2012, the end of the spin-up process for both of the flow and

drifter state variables. The atmospheric surface forcing is defined by the 26-member
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ensemble mean, which can be regarded as a combination of the “true” atmosphere

surface forcing and a time-variant marginal error. No extra condition or mechanism

is used to constrain the free model run in the whole process. In this chapter, we also

use the same percentage norm (2.4) as a metric to quantify the estimation error.

3.4 Results and Discussion

3.4.1 LETKF-LaDA assimilating drifter locations only

Among all the previous work in the augmented-state LaDA approach, the

assimilation of the direct drifter positions is only used for analyzing flow velocity

and surface velocity related fields (e.g. the mean height field in Salman et al. (2006);

Slivinski et al. (2015)). Chapter 2 showed a promising result for improving the 3D

temperature/salinity using the covariance between the temperature/salinity of the

whole local water column and the surface drifter states using the eddy-permitting

model. Two experiments are conducted in order to examine the impact of LaDA

on the temperature and salinity: (1) a baseline of the free run experiment; and

(2) using LaDA assimilating drifter positions to analyze all ocean state variables

including temperature, salinity, and zonal and meridional velocity.

Figure 3.9 shows the time variation of the accumulated forecast error from

h = 1m to h = 1200m in temperature, salinity, and kinetic energy defined in (2.4).

Among all the basic 3D ocean fields, the LETKF-LaDA performs better than the

free run, except for the salinity. Different from chapter 2, we find that assimilating

only the drifter locations has difficulties in constraining the salinity field, which could
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be caused by the involvement of the atmosphere surface fields (e.g. precipitation,

or temperature; Lima et al. (2019)) in this more realistic scenario. This indicates

that additional observations related to ocean salinity are necessary for improving

estimation in future research assimilating historical drifter data. A significant error

reduction in kinetic energy appears in the first 6 days, while the error slowly increases

after. This could be due to the time varying wind field and surface temperature for

the prescribed nature run, which provides a different error growth rate at each time

step. Figure 3.10 shows the time variation of the area-averaged RMSEs of surface

temperature and winds, where it shows an increase of the error growth in the wind

fields starting from day 6. For temperature, the LETKF-LaDA outperforms the free

run and the variation of the ocean temperature error is strongly influenced by the

error variation of the atmosphere surface temperature (see the blue line in Figure

3.10(b)).

We next consider the vertical influence of the LETKF-LaDA in estimating

the accuracy at the terminal time step, i.e. the end of 15th day (see Figure 3.11).

For temperature, LETKF-LaDA is less accurate than the free run in the top 10m

depth, while the estimation is improved below. This implies that the temperature

observation is needed to improve the estimation of surface temperature. For salinity

field, assimilating only the surface drifter position only provides a better estimation

in the surface layer of about 10m to 20m depth. For the estimation of kinetic energy,

the positive influence of the surface drifter observation can be extended to around

800m depth.
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Figure 3.9: Forecast error norms of temperature, salinity, kinetic energy in the given

period [0, 15] using formula (2.4) for free run (blue line) and LETKF-LaDA (red line)

with localization radius LR. The error norms of the ocean flow fields are aggregated

from 1m depth to 1200m depth (i.e. ho = 1m and h = 1200m). λ and ϕ stand for

drifter longitude and latitude.

3.4.2 The impact of LETKF-LaDA on assimilating drifter locations

and TS measurements

Carrier et al. (2014) conducted two experiments using 4D-Var: (1) assimilat-

ing temperature and salinity (hereafter referred as TS) only; and (2) assimilating

approximated velocity at the sampled drifter positions together with TS. The TS

observation used in their work included both remotely sensed and in situ ocean
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Figure 3.10: Area-averaged RMSEs of the surface temperature (blue, unit: K), zonal

wind field (orange, unit: m/s), and meridional wind field (green, unite: m/s) with,

(a) the original update requency of 3hrs (upper panel), and (b) the daily average

(lower panel).

observation: (Geostationary Operational Environmental Satellite) GOES-East sea

surface temperatures (SSTs), Argo profiling floats, expendable bathythermographs

(XBT) and drifter buoys. By first comparing the free run and the assimilation of

TS alone, they concluded that it is difficult for the TS observations to sufficiently

constrain the error in the model solution of the surface velocity field. The addition

of the “proxy” drifter velocity observations not only match the result in temperature

and salinity states, but also further improve the estimation of the velocity field.

In this subsection, we consider the involvement of the surface TS measurement

in LaDA, which are emulated by bilinearly interpolating the corresponding flow fields
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Figure 3.11: Forecast error in temperature, salinity and kinetic energy at the end

of 15th DA cycle along the vertical direction with experiments of free run (blue

line) and LETKF-LaDA using LR (red line). These quantities are evaluated by

formula (2.4) at each individual vertical level with ho = h. λ and ϕ stand for drifter

longitude and latitude.

to the drifter positions. Four experiments are conducted: (1) a free run; (2) a control

run obtained by using LETKF to assimilate only the TS carried by drifters with the

same ensemble size (i.e. K = 26) and localization radius (i.e γLETKF = LR); (3)

using LETKF-LaDA to assimilate only the drifter position; and (4) using LETKF-

LaDA to assimilate surface TS together with the drifter positions.

Similar to Carrier et al. (2014), we first compare the free run with the control

run in Figure 3.12. It shows that assimilating the surface TS measurements can
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significantly improve the salinity estimation, and slightly correct the temperature

forecast after the 9th cycle. Different from the results in Carrier et al. (2014),

we notice that the surface TS is indeed capable of constraining the velocity field

using LETKF, though the error reduction is marginal. We then compare the results

between the control run and the two experiments using the LETKF-LaDAs (Figure

3.12). By adding the TS measurement, the LETKF-LaDA can outperform the

control run in salinity and further improve the prediction in temperature, though

the estimation in velocity is comparable to the case without TS observations.

Figure 3.13 shows the vertical error variation at the terminal time step hor-

izontally averaged at each level. We conclude that by adding the surface TS ob-

servations, LETKF-LaDA is largely improved in the estimation of surface salinity

and the impact can be extended to around 40m depth. Moreover, the addition of

surface TS observations improves the estimation of the surface temperature com-

pared to using the LETKF-LaDA assimilating the drifter positions only. The two

LETKF-LaDA cases exhibit significantly reduction in the velocity error above 800m,

while the benefit fades away in the deeper ocean. This can be due to the fact that

the velocity error in the deeper ocean grows more linearly than the surface velocity

error does and over longer timescales, which implies a potential value of including

the velocity-related information in deep ocean from Argo float trajectories for the

future study of LaDA.
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Figure 3.12: Forecast error norms of temperature, salinity, kinetic energy in the

given period [0, 15] using formula (2.4) for experiments: (1) free run (blue line); (2)

control run (orange line); (3) using LETKF-LaDA to assimilatie drifter locations

(red solid line); and (4) using LETKF-LaDA to assimilate both drifter locations

and TS measurements on drifters (red dotdash line). Localization radius of all

the experiments are defined as LR. The error norms of the ocean flow fields are

aggregated from 1m depth to 1200m depth (i.e. ho = 1m and h = 1200m). λ and ϕ

stand for drifter longitude and latitude.

3.4.3 Comparing LaDA with EuDA

We now compare the performance of LaDA versus EuDA. The velocity obser-

vations are simulated by directly interpolating the true surface ocean velocity fields

to the corresponding drifter locations. Notice that in the operational use where the

true gridded flow is unknown, the instantaneous velocity observations are in general

64



1 2
|temp| %

100

101

102

103

De
pt

h 
[m

]

0.1 0.2 0.3
|salt| %

100

101

102

103

Free run Ctrl; obs: t,s LaDA; obs: λ,φ LaDA; obs: λ,φ,t,s

60 80
|KE| %

100

101

102

103

Figure 3.13: Error in temperature, salinity and kinetic energy at the end of 10th DA

cycle along the vertical direction with experiments: (1) free run (blue line) ;control

run (orange line); (2) using the LETKF-LaDA to assimilatie drifter locations (red

solid line); and (3) using the LETKF-LaDA to assimilate both drifter locations

and TS measurements on drifters (red dotdash line). Localization radius of all the

experiments are defined as LR. These quantities are evaluated by formula (2.4) at

each individual vertical level with ho = h. λ and ϕ stand for drifter longitude and

latitude.

approximated by a sequence of the drifter locations and known with much less ac-

curacy than the observations we have simulated in this subsection. Therefore, the

EuDA that we present here is under an idealized scenario and the simulated velocity

observations contains enough information of nonlinear dynamics in the surface flow.

The observation error for velocity is chosen as 0.08m/s, which is comparable to the

observation error of the drifter location as 0.08◦ per day. The justification of this
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is based on the fact that 1/24◦ is approximately equivalent to 3.75km within the

region of GoM and the details are shown as following,

1◦ = 3750 m/(1/24◦) = 9× 104 m.

1 day = 24× 3600 s.

Therefore,

0.08◦/day ≈ 0.08× 9× 104 m/(24× 3600 s) ≈ 0.08 m/s

Four experiments are conducted to compare the performance between the

LaDA and the ideal EuDA using LETKF: (1) the free run; (2) the same control run

defined in the previous subsection; (3) using the LETKF-LaDA to assimilate surface

TS in addition to the drifter locations; and (4) using the traditional LETKF to as-

similate Eulerian flow velocity and TS together. The time variation of the forecast

error is shown in Figure 3.14. It shows that the velocity error of the LETKF-LaDA

is marginally smaller than the one of the ideal EuDA. Furthermore, the LETKF-

LaDA can further improve the temperature estimation than the ideal EuDA, though

the salinity forecast obtained by the LETKF-LaDA is less accurate.

In the vertical comparison at the terminal time step (Figure 3.15), we observe

that the vertical forecast error in both of the LaDA and the ideal EuDA are compa-

rable, and they are both better than the control run and the free run in predicting

ocean temperature and kinetic energy above around 800m. In addition, the ideal

EuDA performs slightly better than LaDA in estimating the velocity below 800m.

In order to determine the vertical comparison in details between the LaDA and the

EuDA, we utilize the following index to describe their performance.
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Figure 3.14: Forecast error norms of temperature, salinity, kinetic energy in the given

period [0, 15] using formula (2.4) for experiments: (1) free run (blue line); (2) control

run (orange line); (3) using LETKF-LaDA to assimilatie both drifter locations and

TS measurements on drifters (red dotdash line); and (4) using LETKF-EuDA to

assimilate “proxy” velocity and TS measurements on drifters (green dotdash line).

Localization radius of all the experiments are defined as LR. The error norms of the

ocean flow fields are aggregated from 1m depth to 1200m depth (i.e. ho = 1m and

h = 1200m). λ and ϕ stand for drifter longitude and latitude.

Carrier et al. (2014) introduced a metric, called skill score (SS), intended

for comparing the results of two experiments that have marginal difference against

each other. The skill score of the experiment 1 based on the performance of the

experiment 2 is shown as following,

SS = 1.0− RMSE1

RMSE2

, (3.1)

where experiment 2 can be regarded as the baseline of the comparison. This for-
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Figure 3.15: Error in temperature, salinity and kinetic energy at the end of 15th DA

cycle along the vertical direction with experiments: (1) free run (blue line); (2) con-

trol run (orange line); (3) using LETKF-LaDA to assimilatie both drifter locations

and TS measurements on drifters (red dotdash line); and (4) using LETKF-EuDA to

assimilate “proxy” velocity and TS measurements on drifters (green dotdash line).

Localization radius of all the experiments are defined as LR. These quantities are

evaluated by formula (2.4) at each individual vertical level with ho = h. λ and ϕ

stand for drifter longitude and latitude.

mula indicates that if the experiment 1 performs better (worse) than the baseline

experiment 2 in terms of a lower (higher) error, then the SS metric will be positive

(negative).

Figure 3.16 shows the SS of the LaDA based on the performance of the EuDA.

The error reduction of the LaDA is relatively less than the one from the ideal EuDA

in salinity for almost all the levels, while it is better in improving the velocity field
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in the depth level between 20m and 200m.
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Figure 3.16: Vertical SS scores at the end of 10th DA cycle along the vertical

direction of using LETKF-LaDA to assimilatie both drifter locations and TS mea-

surements on drifters (blue line) with the base of using LETKF-EuDA to assimilate

“proxy” velocity and TS measurements on drifters (black dashed line). Localization

radius of all the experiments are defined as LR. λ and ϕ stand for drifter longitude

and latitude.

3.4.4 The impact of variable localization on LETKF-LaDA

The reason why the LaDA doesn’t perform as well as the EuDA in forecasting

the salinity after including the salinity observation can be manifold, such as the

length of the assimilation window and unbalanced setup on the observation error.

One possible reason can be due to the high dependence of the LaDA on the drifter
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forecast error. The addition of the TS observations results in the misfitting of the

the drifter position, which provides a less accurate estimation in the drifter posi-

tions and therefore provides less accurate covariance matrix in cost function at the

next step (see Figure 3.17). As such, we consider of employing a “variable localiza-

tion” technique (Kang et al., 2011) to constrain the error growth corresponding to

the drifter position by zeroing out the covariance components between the drifter

positions (i.e. longitude and latitude) and the drifter TS measurements.
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Figure 3.17: RMSEs of the forecast drifter locations generated by (1) free run (blue

line); (2) LETKF-LaDA assimiating on the drifter locations (red solid line); (3)

LETKF-LaDA assimilating all types of the drifter measurements (red dotdash line);

and (4) LETKF-LaDA assimilating all types of the drifter observation using variable

localization (red dotted line). λ and ϕ stand for drifter longitude and latitude.

Figure 3.18 shows the time variation of the SS for the experiment using the

aforementioned variable localization against the base of the one without the variable

localization. We can observe that the variable localization does show a positive

impact in estimating the salinity field and this has eliminated around 10% advantage
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of EuDA with respect to the salinity (compared with Figure 3.16), while this results

in the slightly inaccurate prediction of velocity in the first 9 DA cycles and of

temperature between the 7th and 11th day.
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Figure 3.18: SS score of temperature, salinity, kinetic energy and drifter states in the

given period [0, 15] for the experiment of LETKF-LaDA to assimilatie ALL measure-

ments on drifters using variable localization (blue line) based on the LETKF-LaDA

without variable localization (black dashed line). Localization radius of all the ex-

periments are defined as LR. The error norms of the ocean flow fields are aggregated

from 1m depth to 1200m depth (i.e. ho = 1m and h = 1200m). λ and ϕ stand for

drifter longitude and latitude.
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3.5 Conclusion

In this chapter, we upgrade the examination of the LETKF-LaDA into a more

realistic scenario where we build up an eddy-resolving model with the configuration

of GoM and it is forced with the historical surface conditions sampled from 20CRv3.

In addition, we build up an online drifter module adaptive to MOM6, which solves

the deficiency of the drifter module appearing in the previous versions of MOM,

such as the loss and repetition issues in simulating a large number of drifters. By

implementing the drifter module within the high-resolution gridded flow, we can

also observe the phenomena of the inertial oscillation through the drifter trajectory.

However, the current drifter module is still limited in simulating only the surface

drifters at the first depth level of the model, i.e. 1m in the given model configuration

and the release of this constraint will be tackled in the follow-on research.

As in the previous chapter, we use the “identical twin” experiments of OSSEs

to test the performance of LETKF-LaDA. Compared with the free run, we conclude

that the LETKF-LaDA improves the forecast error in not only the velocity but also

the temperature as well, even when the observations only include the drifter posi-

tions. The misfitting issue in the salinity field could be due to the additional effect

in the surface precipitation and 2-meter temperature error. The positive impact

of the error reduction of kinetic energy can be extended to the deep ocean around

800m depth. We then investigate the impact of the drifter location observations on

the LETKF-LaDA by defining the control run as the one simply assimilating the

surface TS. We notice that without temperature observations, LETKF-LaDA is still
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able to further reduce the error in temperature and velocity versus the experiment

assimilating TS alone. Even though assimilating the drifter locations alone cannot

constrain the salinity as well as the control run and free run, the addition of the TS

measurements is able to make up this deficiency in LETKF-LaDA.

We then compare the performance of the LaDA and the idealized EuDA when

assimilating the surface TS measurements together with the drifter positions. Re-

sults show that the LaDA outperforms the EuDA in improving the estimation of

temperature and velocity, while it is less efficient in improving the salinity. We

propose a possible remedy for this issue to apply the variable localization strategy

by zeroing out the covariance components between the drifter positions and the TS

measurement.

In the follow-on research, we will open the eastern and southern boundary of

the given model and will use the historical database as the open boundary condition.

The drifter observations will be replaced by the GLAD database recorded from

August to October to examine the impact of LETKF-LaDA on the real data. Note

that the GLAD database does not include any additional measurements besides

the drifter locations and approximated velocity. Based on our previous work, we

conclude that the TS measurements are necessary for LETKF-LaDA to further

improve the estimation of all ocean state variables. Therefore, we need to add the

remotely sensed and in situ TS observation together with the drifter position when

later examining the LETKF-LaDA using real historical data.
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Chapter 4: Transition from the Uncoupled Media to the Coupled

Media: the Dynamical Model and Data Assimilation

4.1 Introduction

In the previous two chapters, all the dynamical models and the data assimi-

lation methods are demonstrated only within the ocean, though the ocean models

are constrained by different atmosphere surface forcing. We observe, in chapter 3,

that it is difficult to continuously reduce the error in ocean states when the ocean

model is forced by the time-variant and high-frequency surface forcing. One of the

reasons is possibly due to the single-direction fluxes from the atmosphere to the

surface ocean and the high dependency of the given ocean models on the downward

surface flux data. At each DA cycle, while we provide analysis temperature states

with higher accuracy than the forecasts, there is neither any correcting feedback to

the surface forcing nor the upward radiation fluxes to the atmosphere, which drives

the forecast trajectory of the next cycle still inevitably veering away from a well

initialized prediction. As such, a mutual communication between atmosphere and

ocean at the interface-layer is a significant factor influencing the performance of DA

methods.
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In pioneering researches, the forecast models are evolving from multi-models

in different independent media to a single model in coupled media, where downward

and upward radiation fluxes are considered in the same model at the interface layer.

Different DA method are emerging to improve the multi-media forecast states based

on the choice of the forecast model and the definition of the covariances between

states from different media. Uncoupled DA (UCDA) is a traditional DA strategy

used in operational prediction centers, in which the atmosphere and ocean are pre-

dicted and analyzed separately. In recent research, for example, coupled models

were applied as forecast models within the DA system in National Centers for En-

vironment Prediction (NCEP; Saha et al. (2006)) and Geophysical Fluid Dynamics

Laboratory (GFDL; Zhang et al. (2007)). In both of the aforementioned research

studies, independent DA methods are applied to analyze the atmosphere and ocean

states, though the bilateral communication on the interface layer is considered in

the forecast model. This DA system is known as weakly coupled DA (WCDA).

The latest development (Penny and coauthors, 2008; Penny and Hamill, 2017) in

studying CDA is to treat the atmosphere and ocean as one coupled media in order

to forecast and analyze states together, i.e. strongly coupled DA (SCDA).

Pecora and Carroll (1991, 2015) conclude that a necessary condition for a

response system to synchronize with the driver system is the negative values of all

the Lyapunov exponents (LEs), or also known as conditional LEs, for the response

system. Suppose the nature dynamics is governed by a coupled driving system,

then the forced ocean/atmosphere models can be ideally summarized as different

response systems, with the surface forcing as the driving information provided by
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the “nature” driving coupled system. In addition, the system of a forecast model

and a DA method can be also viewed as a response system to the nature driving

system, with the observation as the driving information. In our work, we utilize

the idea of the drive/response system and the theory of synchronization from the

perspectives of the LEs to discuss the convergence of different couplings in models

and DA systems.

All demonstrations in this chapter are carried out with the simplified Modular

Arbitrary-Order Ocean-Atmosphere Model (MAOOAM) developed by De Cruz et al.

(2016), which is a three-layer (including two layers of atmosphere and one layer of

ocean) truncated quasi-geostrophic model. The configuration and the choice of

parameters are the same as the examination by Vannitsem and Lucarini (2016),

where the state vectors are of dimension N = 36 with Na = 20 for atmosphere and

No = 16 for the ocean. As for the DA method, we focus on the performance using

of Ensemble Kalman Transform Filter (EKTF) in this thesis while more results

corresponding to variational methods are shown in Penny et al. (2019).

In section 4.2, we first derive the forced ocean/atmosphere model under the

framework of drive-response system. The corresponding tangent linear model (TLM)

related to these forced models are further determined for the computation of LEs.

Different discussions based on LEs are elucidated in section 4.3, including: the

comparisons between the uncoupled and coupled models, different couplings in DA

and impacts of observations on SCDA. The examination of the forecast lead time

inherited from the analyses generated by different coupling approaches is conducted

at the end of the same section.
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4.2 Synchronization and Lyapunov Exponents

4.2.1 Derivation of forced ocean/atmoshphere model

We define the coupled model governing the dynamics of both atmosphere and

ocean states as following,

dxc

dt
=M(xc). (4.1)

Categorizing the components inside xc into atmosphere states xa and ocean states

xo, the above dynamical model can then be separated into two sub-models associated

to atmosphere and ocean respectively,
dxca
dt

=Ma(x
c
a,x

c
o)

dxco
dt

=Mo(x
c
a,x

c
o)

Inheriting the typical use of uncoupled forced models in operational NWP and

AMIP/OMIP-type climate studies, we decomposed the above coupled system into

the following uncoupled independent systems forced by the boundary information

of a sequence prescribed states {x̃ca} and {x̃co},

dxa
dt

=Ma(xa, x̃
c
o)

dxo
dt

=Mo(x̃
c
a,xo)

.

In the perfect forcing scenario, {x̃ca} and {x̃co} are collected from the “true” trajec-

tory produced by the coupled model. In this work, we exert the boundary forcing to

the uncoupled models by using a set of step-wise functions with updating frequency
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tb, 
x̃ca(t) = xca(ti),

x̃co(t) = xco(ti),

for t ∈ [ti, ti + tb],

where tb is generally defined no less than the model integration time step. Using the

same numerical integration method used for the original coupled model, the forced

ocean/atmosphere models also use the 2nd order Runge-Kutta (RK2) integration

method to obtain their trajectories. Here, we take the forced atmosphere model as

an example to illustrate the detailed steps of RK2,

k1 =Ma(xa(t), x̃o(t))

k2 =Ma(xa(t) + ∆tk1, x̃o(t))

xa(t+ ∆t) = xa(t) +
∆t

2
(k1 + k2)

(4.2)

4.2.2 Derivation of the conditional tangent linear models for forced

ocean/atmosphere models

De Cruz et al. (2016) shows that the MAOOAM can be rewritten as the

following system of ODEs

dxi
dt

=M(x, T i) = xTT ix,

where T i is the (N + 1) − by − (N + 1) constant matrix depending on the model

parameters. In order to simplify the derivation of the force atmosphere/ocean model,

we decompose the matrix T i and the state vector x as

78



T i =


T i1,1 T i1,a T i1,o

T ia,1 T ia,a T ia,o

T io,1 T io,a T io,o

 and x =


1

xa

xo


In addition, we decompose the total dimension of the model state variables N into

the dimension of the atmosphere variables Na and the dimension of the ocean vari-

ables No.

In the formulae of the forced atmospheric model, we first categorize all the

components on the right hand side of the dynamic equations into one part associ-

ated with atmospheric variables and the other one independent of the atmospheric

variables:

dxa,i
dt

= Ma,i(xa, x̃o, Ti)

= xTa T ia,1 · 1 + 1 · T i1,axa + xTa T ia,axa + x̃To T io,axa + xTa T ia,ox̃o + ca,i

for i ∈ Ia,

and

ca,i = x̃To T io,1 · 1 + 1 · T i1,ox̃o + x̃To T io,ox̃o + 1 · T i1,1 · 1

where Ia denotes the indices subset corresponding to the atmosphere. In addition,

ca,i is a constant with respect to xa for all i ∈ Ia. Then it is straightforward to

compute the Jacobian of the above ODEs by taking the derivatives corresponding

to atmospheric variables. The ith row of the atmosphere Jacobian matrix (i.e. Ja,i),
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could be derived as following,

Ja,i =

[
∂Ma,i

∂xa,1

∂Ma,i

∂xa,1
...

∂Ma,i

∂xa,Na

]
= ((T ia,1)T + T i1,a) + xTa (T ia,a + (T ia,a)T ) + x̃To (T io,a + (T ia,o)T )

for i ∈ Ia,

where Ja,i is of 1 × Na and the other rows of the atmosphere TLM Ja can be

determined using the same manner.

The differential form of the conditional TLM for a small perturbation δxa

could be determined as,

d(δxa,i)

dt
= Ja,iδxa

= ((T ia,1)T + T i1,a)δxa + xTa (T ia,a + (T ia,a)T )δxa + x̃To (T io,a + (T ia,o)T )δxa

for i ∈ Ia,

Likewise, to derive the forced ocean TLM, the forced oceanic model can be

extended and rewritten as,

dxo,i
dt

= Mo,i(x̃a,xo, Ti)

= 1 · T i1,oxo + xTo T io,oxo + xTo T io,1 · 1 + xTo T io,ax̃a + x̃Ta T ia,oxo + co,i

for i ∈ Io,

and

co,i = 1 · T i1,ax̃a + x̃Ta T ia,1 · 1 + x̃Ta T ia,ax̃a + 1 · T i1,1 · 1

where Io is the subset of indices associated to the ocean states. The parameter co,i

is a constant with respect to xo for all i ∈ Io. Then the forced TLM for a small

perturbation of ocean state variables δxo is defined as following,
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dδxo,i
dt

= Jo,iδxo

= (T i1,o + (T io,1)T )δxo + xTo ((T io,o)T + T io,o)δxo + x̃Ta ((T io,a)T + T ia,o)δxo,

for i ∈ Io,

where the ith row of the ocean Jacobian matrix, Jo,i and is obtained by,

Jo,i =

[
∂Mo,i

∂xo,1

∂Mo,i

∂xo,1
...

∂Mo,i

∂xo,No

]
= (T i1,o + (T io,1)T ) + xTo ((T io,o)T + T io,o) + x̃Ta ((T io,a)T + T ia,o) for i ∈ Io

4.2.3 Numerical methods for computing Lyapunov Exponents

Lyapunov exponents (LEs) are defined on the far-past and far-future tangent

linear operators and the Oseledec subspaces. Given an N -dimension dynamical

system, LEs characterize the asymptotic exponential separation rate of trajectories

initialized with infinitesimal errors. The LEs are defined as

λj = lim
t→∞

1

t− t0
ln ‖F(t, t0)ej‖, j = 1, 2, ..., N, (4.3)

where ej is a unit vector at time t0 and F(t, t0) is the tangent linear propagator

or resolvent corresponding to the TLM of the given dynamic system, e.g. the coupled

model system (4.1),

d(δx)

dt
= J (x, t)δx, (4.4)

where J : RN × R+ → RN×N is the Jacobian matrix of M with respect to x.

Theoretically, the tangent linear propagator F is defined by the fundamental matrix

Ψ ∈ RN×N as

F(t, t0) = Ψ(t)Ψ(t0)
−1. (4.5)
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It solves the TLM as,

δx(t) = F(t, t0)δx(0).

The positive LEs representing the error growing modes within the dynami-

cal system. The detailed mathematical definitions and properties are reviewed by

Kuptsov and Parlitz (2012). In practice, the general form of F in a larger interval

is numerically determined by a multiplication of a sequence of approximated linear

propagators defined on infinitesimal time intervals,

F(t0 + nδt, t0) = F(t0 + nδt, t0 + (n− 1)δt) · · · F(t0 + 2δt, t0 + δt)F(t0 + δt, t0)

≈ (1− δt · Jn−1) · · · (1− δt · J1)(1− δt · J0),

= F̂n−1 · · · F̂1F̂0

(4.6)

where δt is a small time step and is usually taken the same as the model integration

time step. Ji is the Jacobian matrix defined at time t0+ i ·δt. Different from the the

theoretical definition of F in (4.5), we use the forward Euler method to obtain the

numerical approximation of the intermediate tangent linear propagator from t0 + iδt

to t0 + (i+ 1)δt through the TLM (4.4),

F̂i := (1− δt · Ji) ≈ F(t0 + (i+ 1)δt, t0 + iδt).

The most commonly used numerical method approximating the LEs in a given

dynamical system is based on a sequential QR factorization. This numerical method

is derived from a basic idea of using an orthogonal time-varying change of variables to

transform the dynamical system 4.4 to a triangular system, of which the converging

theorem (Dieci et al., 2011; Liapounoff, 1907) is introduced as following, “If we have
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a regular system with upper triangular coefficient matrix B(t) : ẏ = B(t)y, then,

for j = 1, 2, ..., N , its Lyapunov exponents are given by

λj = lim
t→∞

1

t− t0

∫ t

t0

Bjj(s) ds.”

Here, λj is the same as the LE in (4.3) from the TLM 4.4 if the transformation is

orthogonal throughout the time.

In fact, the aforementioned orthogonal transformation can be achieved by

using the orthonormal matrix from QR factorizing the tangent linear propagator

F(t, t0) of the original dynamical system at every time t,

F(t, t0) = Q̃(t)R̃(t), (4.7)

with all the diagonal components R̃jj(t) positive. If y(t) := Q̃(t)T δx(t), then its

derivative satisfies a triangular system,

d(y(t))

dt
= B(t)y(t), (4.8)

where B(t) is the upper triangular matrix. We can also conclude that each diagonal

component R̃jj(t) satisfies a condition,

ln(R̃jj(t)) =

∫ t

t0

Bjj(s) ds. for j = 1, 2, ..., N, (4.9)

and,

λj = lim
t→∞

1

t− t0
ln(R̃jj(t)).

Note that for the full-rank matrix, the QR factorization is unique if the diagonal

components are all positive. The detailed derivations of the triangular system (4.8)

and the formula (4.9) are shown in the Appendix A.
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In light of the above theory, the QR algorithm of computing the LEs is shown

as below,

1. We first initialize the orthonormal matrix Q0 as the identity matrix, i.e. Q0 =

I.

2. At each time time step ti := t0 + iδt (i = 0, 1, ..., n − 1), we compute the

approximated intermediate linear propagator F̂i defined on the time interval

(ti, ti+1]. Then we apply the QR factorization on the multiplication F̂iQi,

Qi+1Ri+1 := QR(F̂iQi), (4.10)

where QR(·) is the numerical QR factorization operator. At each step, we

save the diagonal terms of each Ri+1 (i = 0, 1, ..., n− 1)

3. Then the numerical values for LEs can be estimated as,

λ̂j(n) =
1

nδt
ln
∣∣∣ n−1∏
i=1

(Rn−i)jj

∣∣∣, for j = 1, 2, ..., N

Notice that within the above algorithm F̂i at each time step ti (i = 0, 1, ..., n − 1)

can be rewritten as

F̂i = Qi+1Ri+1Q
T
i .

Therefore the estimation of the long-term linear propagator is shown as,

F(tn, t0) ≈ F̂n−1 · · · F̂1F̂0 = QnRnRn−1 · · ·R1

and we have the following relations between the numerical QR algorithm and the

theoretical QR factorization (4.7) used in the aforementioned convergence theorem,

R̃n ≈ Rn · · ·R2R1 and Q̃n ≈ Qn,
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or,

λj = lim
t→∞

1

t− t0
ln(R̃jj(t)) ≈ lim

n→∞

1

nδt
ln(Rn · · ·R1) = lim

n→∞
λ̂j(n).

Despite that there is no theoretical justification of the converging rate of λ̂j(n) to

λj based on the choice of n, we define n large enough for a relatively accurate

estimation.

We next discussed the computation of LEs after we apply the DA method to

the given dynamical system. Carrassi et al. (2008) and Penny (2017) describes the

effect of the DA analysis update as a contraction operating on the tangent linear

propagator. Suppose we operate a DA method at end of time ti and the updated

linear propagator can be written as,

F+(ti, ti−1) = [I−KiHi]F−(ti, ti−1),

where F− is the original tangent linear propagator for the forecast model and F+ is

the updated linear propagator after applying DA update. In numerical computation,

F−(ti, ti−1) is substituted by the approximation F̂i−1. I −KiHi is the contraction

matrix resulting from DA with Ki as the gain matrix and Hi as the observation

operator at ti. The updated LEs can be numerically determined by followint the

above QR algorithm replacing each F̂i−1 with F+(ti, ti−1) in (4.10).

4.3 Results and Discussion

In this section, all the models are numerically integrated using RK2 with the

time step δt = 0.01 model time unit (MTU). We use the discrete QR algorithm

reviewed in the previous section to determine LEs with n = 106 loops to obtain
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relatively accurate results. We conduct a series of Observing System Simulation

Experiments (OSSEs) to assess the impact of DA methods on different coupling

approaches. The nature run is generated by the original MAOOAM coupled model

and the observation errors are determined by the 10% of climatological variability

of the corresponding states. The initial ensemble perturbations are Gaussian with

10% of climatological variance. The choice of the different DA window is specified

in details in the following subsections.

4.3.1 Forced ocean/atmosphere model and coupled model

We first compare the Lyapunov spectrum of the coupled model to those of the

uncoupled models under the ideal scenario, where the perfect forcing is provided.

We examine with different forcing interval tb = 0.01, 100, 1000 model time unit

(MTU) and tb = infinity (insert as a constant forcing). The experiments are set up

as the following procedures: first, all the uncoupled modes start from the the initial

condition slightly perturbed from the initial condition of the coupled model; second,

integrate all the models for transient time 107 MTU to reach their own attractors

respectively; and at last, the comparison starts after the completion of the transient

and continue running for another 106 MTU.

We find that changing the forcing interval tb does not significantly impact the

Lyapunov spectrum of the forced atmosphere and ocean models if the systems are

driven by the same set of prescribed forcing. Figure 4.2 (b) shows the LEs of the

forced ocean model using different forcing frequencies. Of the near-zero LEs for all
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Figure 4.1: The Lyapunov spectrum for the coupled model and forced atmosphere

and ocean. For the forced models, forcing time interval is tb = 0.01 MTU. The two

dotted red lines are referencing lines with value ±0.01

the forced ocean, the first three leading LEs are numerically positive and on the

scale of 10−5, the 4th and 5th LEs vary between 10−6 and −10−6, and the 6th to

8th are negative and on the scale of −10−5. Meanwhile, of the near-zero LEs for the

coupled model, the first four leading LEs are positive with the first LE on the scale

of 10−4 and the 2nd to 4th of 10−5. The 5th to 8th LEs are numerically negative,

among which the 5th and 6th are of the scale −10−5, whereas the 7th and 8th are

of the scale −10−4.

Nevertheless, the choice tb does impact the degree of synchronization in terms

of the RMSEs (see Figure 4.2 (a)). Compared to the near-zero LEs of the cor-

responding coupled model, we notice that the Lyapunov spectrum for uncoupled

models shows a “staircase” profile with a prominent “gap” between the 8th and

the 9th LEs, while there is a gradual decay within the Lyapunov spectrum for the
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coupled model. This discrepancy implies a loss of phase in the forced ocean model.

To illustrate this point, Figure 4.2 (a) shows the relative RMSEs of the uncoupled

trajectories against the true coupled trajectory. It shows that within the given test-

ing periods, even for the uncoupled trajectory with tb = 0.01 and the perfect forcing,

there is no sign of synchronization in the given time period.

Figure 4.2: (left) The relative error between the forced and coupled trajectory and

(right) CLEs of forced ocean model with different forcing window lengths tb. The

CLEs associated to tb = 0.01 (blue), tb = 100 (orange), tb = 1000 (green) and

tb = inf (red) are intertangled with each other and are presented by the red line.

To compare DA applied to the coupled versus forced models, we estimate

the minimum ensemble size required for the ETKF to prevent filter divergence.

We compare the forced atmosphere model to the coupled atmosphere model, using

an observing network restricted to the atmosphere only (Table 4.1). We define

divergence as the condition that the root mean square error reaches the same order

of magnitude as a free model run starting from perturbed initial conditions. For

the forced atmosphere model, the convergence for a given analysis cycle window τ
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depends largely on the forcing interval tb. Using an analysis cycle window shorter

than the forcing interval causes the ETKF to diverge. However, when the analysis

cycle window is too large (i.e. τ = 1000), ETKF diverges for all the given forcing

intervals tb = 0.01, 0.1, 1, 10. In addition, when the data assimilation window is of

the same length as the forcing interval, the minimum ensemble sizes are identically

the same (i.e. 7), which is greater than the number of unstable-neutral modes (i.e.

3-4, shown in Figure 4.4). This can be possibly due to the extraneous error from

the observation at each time step.

When using a coupled forecast model, the ETKF converges for the data as-

similation windows τ = 0.1, 1 and 10 MTU. The minimum ensemble sizes for con-

vergence are smaller (i.e. 9-12) compared to the its corresponding model dimension

- roughly 25% to 33% of the coupled model dimension (36) as compared to 35% to

55% of the model dimension (20) for the converging cases of the forced atmosphere

system. When using a coupled forecast model the ETKF appears more robust to

longer assimilation windows.

4.3.2 Comparisons of different coupling approaches using the ETKF

We next investigate the ETKF under different coupling scenarios. We use

an ensemble size of 37, which is larger than the degrees of freedom of the coupled

model. For the forced model cases, perfect forcing is updated every tb = 0.1 and

12.5 MTU (or about 16 mins and 1.4 days). As previously described, the forced

atmosphere ETKF is sensitive to the frequency of the forcing update (Figure 4.3).
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The ETKF converges using both SCDA and WCDA, though SCDA consistently

produces smaller RMSE in the oceanic component than WCDA.

Figure 4.3: RMSEs in atmosphere (left) components and ocean (right) components

for SCDA (orange), WCDA (green), UCDA with forcing interval tb = 0.1 MTU

(red) and UCDA with forcing interval tb = 12.5 MTU (purple). The DA window is

uniformly defined as τ = 2.5 MTU with ensemble size 37. For all the experiments,

the full observing network is applied.

The forced atmosphere ETKF diverges if the forcing from the ocean is updated

less frequently. For example, when examining the Lyapunov spectrum for a similar

case, the forced model with tb = 12.5 MTU (∼ 1.4 days) still has a leading CLE

larger than zero (Figure 4.4), indicating filter divergence. The CDA ETKF systems

generate atmospheric analyses with RMSE similar to the uncoupled ETKF with

frequently updated (tb = 0.1 MTU or 16mins) perfect forcing. Note that for the

UCDA with tb = 0.1 MTU, though the RMSEs in both atmosphere and ocean

are stablized, the computational leading LE of the whole system in 4.4 is shown

as marginally above 0, approximately 3.14× 10−5 (compared to 6.08× 10−4 for the
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leading LE of forced ocean model with tb = 0.1). The reason for this can be manifold,

such as the machine error of computing the LEs or the testing time period is not

long enough to obtain a negative value. Experiments with longer implementation

time needs to be conducted for a further verification of this problem.

Figure 4.4: Lyapunov spectrum (left) and a magnification of the near-zero LEs

(right) for SCDA ETKF, WCDA ETKF and forced atmosphere and ocean ETKF

(UCDA) using forcing intervals of tb = 0.1 (around 16 min) and tb = 12.5 (around

1.4 days). Each is implemented with an ensemble size of 37, an analysis cycle window

of 2.5 MTU, and no inflation.

4.3.3 Comparisons of different observation networks

We next focus on the performance of SCDA and consider the transition of the

observation network from one medium to coupled media, including atmosphere only,

ocean only and both. In this thesis, we only simplify the discussion by considering

the cutting off observing network in terms of the model state variables, which are

in fact defined on the spectral space instead of the physical space. We unify the
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multiplicative inflation factor as ρ = 1 and the ensemble size as 37, in order to

demonstrate a clear comparison in the the error reduction. Detailed discussions of

observing on the physical network and diversified multiplicative inflation factor are

shown in Penny et al. (2019).

We first examine the experiments using the analysis update window as τ = 0.1

MTU (∼ 16 mins), a high-frequency analysis. Figure 4.5 shows the RMSEs in atmo-

sphere and ocean components. The ETKF of observing only the ocean components

is comparable to the ETKF of observing only atmosphere states for ocean compo-

nents (i.e. around 10−6), while it performs slightly worse than the experiments using

the other two types of observing networks in reducing the atmosphere error. Ob-

serving both of the domains performs the best in correcting both of the atmosphere

and ocean states among all the testing SCDA with τ = 0.1 MTU. In Figure 4.6,

the ensemble spread is shown for each experiment case, where experiments of ob-

serving only the atmosphere domain and both domains provide less variation in the

ensemble spread in all the state variables. The corresponding Lyapunov spectrum

is shown in Figure 4.7, where we can observe that the leading LE in all the ETKF

experiments is slightly below 0. This implies that ETKFs of the ensemble size 37

with τ = 0.1 MTU are capable of stablizing the system for all observing networks

described here.

We then extend the analysis window to τ = 2.5 MTU (see 4.8). Results

show that providing only the ocean observation is not sufficient for the ETKF to

constrain the error growth in the atmosphere state variables. This coincides with the

results from Ballabrera-Poy et al. (2009) and Han et al. (2013), where they show
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Figure 4.5: RMSEs in atmosphere (left) components and ocean (right) components

for SCDA using observations from: 1) both atmosphere and ocean (orange; atmo-

sphere time average: 1.98× 10−6; ocean time average: 8.85× 10−8); 2) atmosphere

only (green; atmosphere time average: 2.05×10−6; ocean time average: 7.00×10−7)

and 3) ocean only (red; atmosphere time average: 1.04× 10−4; ocean time average:

1.35 × 10−6), compared with the free run (blue). The DA window is defined as

τ = 0.1 MTU (∼ 16 mins).

that SCDA has difficulty in using observations from the low-frequency system to

accurately update the high frequency system. While the performance of observing

only the atmosphere domain is comparable to the case of observing coupled domain

in correcting atmosphere state variables, it provides less accuracy in estimating the

ocean state variables than observing the coupled domain. Conclusively, SCDA of

observing atmosphere and ocean states together is relatively more robust and stable

than the ones of observing only single domain.
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Figure 4.6: Ensemble spreads in atmosphere (left) components and ocean (right)

components for SCDA using observations from: 1) both atmosphere and ocean

(orange); 2) atmosphere only (green) and 3) ocean only (red), compared with the

free run (blue). The DA window is defined as τ = 0.1 MTU (∼ 16 mins).

0 5 10 15 20 25 30 35
index

−0.6

−0.4

−0.2

0.0

0.2

Ly
ap

un
ov

 E
xp

on
en

ts
 (d

ay
^-

1)

w/o ETKF
w/ ETKF; obs:cpld
w/ ETKF; obs:atm
w/ ETKF; obs:ocn

2 4 6 8 10 12 14 16
index

−0.020

−0.015

−0.010

−0.005

0.000

0.005

Ly
ap

un
ov

 E
xp

on
en

ts
 (d

ay
^-

1)

Figure 4.7: The Lyapunov exponents of the coupled model with and without the

37-member ETKF DA, with analysis/observing window τ = 0.1 MTU, observing

the atmosphere, the ocean, or both domains (left). Magnified view of the same

(right).
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Figure 4.8: RMSEs in atmosphere (left) components and ocean (right) components

for SCDS using observations from: 1) both atmosphere and ocena (orange); 2)

atmosphere only (green) and 3) ocean only (red), compared with the free run (blue).

The DA window is defined as τ = 2.6 MTU (∼ 6 hrs).

4.3.4 Forecast leading time

Penny (2017) indicated, “For the purpose of seamless prediction, the research

community must demonstrate that CDA not only improves initial states but also

improves forecasts at all time scales. In this section, we compare the accuracy of

forecasts at multiple lead times using DA with different degrees of coupling. For

these comparisons we use initial conditions produced from 36,000 DA cycles of a

37-member ETKF using either SCDA, WCDA, or uncoupled DA. At each cycle we

initialize forecasts with lead times ranging from 0 to 10 days, compute the RMSEs,

and aggregate the reults. For the uncoupled DA, we use a forced model with ei-

ther perfect forcing or forcing degraded equal to the perfect forcing plus a white

noise of 10% of climatological variability. The SCDA forecasts have the highest
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accuracy, followed by the WCDA, then the uncoupled DA with perfect forcing. For

the oceanic states (Figure 4.9), the forecasts produced by SCDA outperform all the

other couplings for the first two days of lead time. For both the SCDA and WCDA,

the error grows quickly after day 3 to reach almost the same level by day 10. The

ocean forecast errors for the uncoupled DA using perfect forcing are generally stable

at all lead times, while at shorter lead times the forcasts generated by degraded

forcing result in a relatively larger RMSE than all other methods. A more realistic

scenario for degraded forcing might allow forcing error to grow with time until it

reaches saturation, for example by relaxing the forcing field to climatology.

10−2 10−1 100 101
days

10−5

2×10−6

3×10−6

4×10−6

6×10−6

Figure 4.9: The RMSE of forecasts at various lead times in the (a) atmosphere and

(b) ocean components for the ETKF using SCDA, WCDA, and the forced ETKF

with perfect and noisy forcing. The analysis window is τ = 2.5 MTU (6 hrs) and

the forcing window of uncoupled ETKF is tb = 0.1 MTU (16 min).
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4.4 Conclusion

In this chapter, we take advantage of the Lyapunov spectrum to discuss the

impact of coupling appearing in the model and DA system. We first compare the

forced ocean/atmosphere model with the coupled model under the framework of

drive-response system. Imposed with the prescribed perfect driving information,

all the forced ocean/atmosphere models have nearly the same Lyapunov spectrum

with different forcing time intervals tb = 0.01, 100, 100 MTU and tb =infinity (i.e.

constant states). Specifically, among all the near-zero LEs of forced ocean models,

a sharply stepwise decay is shown, as a contrast to a smooth decay for the coupled

model, which implies a loss of transition phases for the forced ocean model by ignor-

ing the instantaneous bilateral fluxes within the interface layer. More importantly,

the non-negative leading LE for the forced ocean/atmosphere models indicates that

the responsive forced ocean/atmosphere model cannot generally synchronize with

the driving coupled model if no extra information or mechanism is applied. As such,

we examine the application ETKF on the forced models with different forcing fre-

quencies and compare it with the coupled forecast model. We discover that using

the coupled model as the forecast model is more robust and stable for varied analysis

windows than the forced model. In addition, the stability of the analysis window

depends highly on the forcing window.

We then compare the UCDA, WCDA and SCDA using ETKF. Smith et al.

(2015) found that for a 1D simplified coupled column model using incremental 4D-

Var, WCDA was usually comparable to uncoupled assimilation experiments in which
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the atmosphere and ocean models were forced using accurate surface fluxes. Here we

find a similar result and add that the stability is degraded in the forced system only

when the forcing accuracy is reduced (e.g. by extending the forcing time window).

We examine the SCDA assimilating observations from the atmosphere-only,

ocean-only, and both medias. We found that when providing only ocean observa-

tions, it is difficult to constrain the error growth in all model state variables unless

the analysis window is sufficiently short. The inclusion of the atmosphere observa-

tion is essential to stablize the SCDA system for larger analysis update windows.

In the last part, we compared the performance of different couplings in the

forecast leading time. SCDA provides the most accurate forecast in both the atmo-

sphere and ocean states with a two-day lead time. The forecast errors of the forced

ETKF are in general stable for ocean states at various lead times. A small error in

the forcing can produce relative large error in all the states even within a short lead

time. The perfect forcing can provide a relative small and stable error for ocean

state variable in long lead times, however it is impossible to exert such a perfect

forcing in any realistic scenario.
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Table 4.1: The minimum ensemble size required to prevent filter divergence for

various scenarios (without inflation) within the time 9× 104 MTU. The quantity tb

indicates the forcing frequency and τ is the assimilation window

Experiment type

Forcing/Coupling Analysis cycle window (MTU)

interval τ = 0.1 τ = 1.0 τ = 10.0

(∼ 16 mins) (∼ 2.6 hrs) (∼ 1.1 days)

Forced atmosphere tb = 0.01
7 7 11

(∼ 1.6 mins)

tb = 0.1
7 7 9

(∼ 16 mins)

tb = 1.0 Diverges
7 11

(∼ 2.6 hrs) with 21

tb = 10.0 Diverges Diverges
7

(∼ 1.1 days) with 21 with 21

Coupled system,
12 9 9

observed atmosphere
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Chapter 5: Conclusion and Future Research

In this dissertation, we mainly focus on the developments in Lagrangian Data

Assimilation (LaDA) and Coupled Data Assimilation (CDA). Lagrangian floats,

drifting along the flow with currents and measuring ocean fields (e.g temperature

and salinity), are a promising technology for detecting the ocean flow of small spatial

and high-frequency temporal scale (Poje et al., 2014). While assimilating the direct

measurement of temperature and salinity is a commonly used approach in many

operational prediction centers, the drifter positions are under-exploited in DA for

estimating the ocean circulation system because of: (1) its indirect representation of

the ocean states in the general forecast ocean models; (2) nonlinear error growth; and

(3) the curse of high dimension when applying to a realistic model. In this thesis,

we propose a LaDA method LETKF-LaDA using the augmented-state approach

(Ide et al., 2002; Kuznetsov et al., 2003), targeting to assimilate the direct drifter

positions efficiently and then to readily extend to the realistic system, which has been

a challenge in ocean data assimilation for the past 15 years. Using the “identical

twin” approach in the OSSEs, we first examine the LETKF-LaDA on the simple 3D

double-gyre model of MOM4p1, which shows that the proposed method is efficient

in reducing model error in various ocean variables, at all depths down to 1000 m. In
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addition we conclude that using a localization radius of 2 to 3 times the baroclinic

Rossby radius of deformation gives the best results for this specific system. Adding

observations of temperature and salinity to the drifter positions further enhances

error reduction.

An application of a more advanced model, i.e. MOM6, using GoM configu-

ration and eddy-resolving resolution has been considered next to further verify the

performance of LETKF-LaDA. We first build up a complete online drifter module

for the MOM6, successfully solving the untouched problem remaining in the drifter

modules of the MOM4p1 and MOM5 about the communication issues between dif-

ferent processors. Different from the previous testing, a more realistic scenario using

the time-variant atmosphere forcing form the 20CRv3 database has been attempted

to emulate the operational use. Results show that assimilating only the Lagrangian

positions improves not only the prediction of ocean flow velocities in different water

masses, but also the forecast of temperature and salinity as well. We also verify

that LaDA is in general comparable to the results of EuDA but even with higher

accuracy in the velocity fields. We also show that variable localization is necessary

when assimilating temperature and salinity drifter measurement together with the

position observations.

In the follow-on research, we will further upgrade the application of LETKF-

LaDA on the Gulf of Mexico configuration using realistic observation and boundary

conditions. Different from the previous examination in Chapter 3, the forecast model

will be designed using an open boundary condition defined by SODA database in-

stead of the simple “wall” boundary condition. The insitu and Argo observations of
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temperature and salinity will be assimilated together with GLAD historical database

using LETKF-LaDA. Similar to the work done by Carrier et al. (2014, 2016) and

Jacobs et al. (2014), a comparison of the absolute dynamic height (ADH; in meters)

from the Archiving, Validation, and Interpretation of Satellite Oceanographic data

(AVISO) product will be made to verify the performance of the results. We are ex-

pecting that the addition of the LaDA can further improve the forecast of the ocean

fields, especially for the mesoscale and sub-mesoscale flow, in order to provide bene-

ficial information about understanding the Loop Current System (LCS) in terms of

the variability in strength, location, depth, and the size of the Loop Current (LC).

This will serve as a test for later extension to other regional applications and, if

successful, eventually tests in global applications.

With real historical data, the drifter observations can be updated with high

frequency, i.e. hourly updates for GDP and 15min-updates for GLAD. Meanwhile,

as mentioned in chapter 3, the latest version of online drifter module for MOM6 is

capable of providing the intermediate drifter trajectory at the end of each forecasting

time step. In future research, the LETKF-LaDA can be upgraded to the 4D-LETKF

(Harlim and Hunt, 2007), where the minimization of the cost function is based on

a observed trajectory within the whole DA window instead of a terminal position,

J(w) =
1

2
(k − 1)wTw +

1

2

n∑
l=1

[yol −Hl(x
b
l )−Yb

lw]TR−1l [yol −Hl(x
b
l )−Yb

lw].

Moreover, in this thesis, we only focus on assimilating surface drifters, which

we have already concluded have a significant impact on improving the surface cur-

rents and have a positive influence in estimating the deep ocean. In the next step of
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the future research, we will extend the application of the proposed LETKF-LaDA to

deep ocean by assimilating the Argo floats positions at 1000m drifting depth and at

the surface during transmission phase, of which the temperature and salinity profiles

are mainly used as observations in current practice (Scott et al., 2018; Verrier et al.,

2017). Advanced studies by Nilsson et al. (2012, 2011) implemented an assimilation

of the Argo trajectories to improve the Mediterranean Forecast System by convert-

ing the trajectory observations to Eulerian velocity, while no attempt has ever tried

to assimilate the direct drifter positions. Figure 5.1 shows the dense distribution

of Argo floats within the global ocean. Equipped with the latest version of drifter

module of MOM6, it is possible to escalate the current surface drifter simulator to

one emulating the Argo float in the deep ocean, providing the forecast states for

Argo trajectories. By assimilating the Argo location in addition to the temperature

and salinity profiles, we are expecting a better estimation of ocean circulation in the

deep ocean.

In Chapter 4, we use the knowledge of synchronization and the Lyapunov spec-

trum to show that SCDA is more robust than UCDA and WCDA. Using the example

of MAOOAM, we conclude that it is necessary to use the coupled model and strong

coupling in the DA, taking account of the bi-directional fluxes and interactions in

the model and covariances of states from different media. In addition, the motion

of the surface drifters locating at the interface layer between the atmosphere and

ocean is a consequence of the intertwined reaction from both of the aforementioned

media, and therefore the trajectory observations provide valuable information on

the coupled dynamics. By combining the discussion in LaDA, we are planning to
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Figure 5.1: The distribution of active floats in the Argo array, colour coded by

country that owns the float, as of February 2018, generated by www.jcommops.org,

02/03/2018.

utilize LETKF-LaDA within the coupled scenario in order to improve the estimation

of the forecast in not only the ocean states, but also the atmosphere states as well.
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Appendix A: Triangular Transformation Theorem for QR Algorithm

In this chapter, we shed light on the details of deriving the QR algorithm

based on the triangular transformation. The discussion below is extended by the

demonstration shown in Dieci and Vleck (2007). Consider the TLM as a regular

N-dimension system,

d

dt
δx(t) = J (t)δx(t), (A.1)

where J : R+ → RN×N is continuous and bounded uniformly in t. We denote Ψ(t)

as the fundamental matrix of the dynamical system (A.1), then it has the property,

d

dt
Ψ(t) = J (t)Ψ(t) (A.2)

Kuptsov and Parlitz (2012) explains that the relation between the fundamental

matrix Ψ(t) and the tangent linear propagator F(t, t0) is,

F(t, t0) = Ψ(t)Ψ−1(t0) for t > t0.

Then we can also obtain the same property that,

d

dt
F(t, t0) = J (t)F(t, t0). (A.3)

Next, we are going to utilize the above properties showing the following theorem.

Theorem. Define the QR factorization of the tangent linear propagator as, F(t, t0) =

Q̃(t)R̃(t), where Q̃(t) is an orthonormal matrix and R̃(t) is an upper triangular
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matrix with all diagonal components positive for all t > t0. If we define y(t) =

Q̃
T

(t)δx(t), then y(t) satisfies an upper triangular dynamical system,

d

dt
y(t) = B(t)y(t),

where B(t) is an upper triangular matrix for all t > t0. In addition,

ln(R̃jj(t)) =

∫ t

t0

Bjj(s)ds, for j = 1, 2, ..., N.

Proof. Based on the relation y(t) = Q̃
T

(t)δx(t), we consider the derivative of y(t),

d

dt
y(t) =

d

dt
(Q̃

T
(t))δx(t) + Q̃

T
(t)

d

dt
δx(t)

=
d

dt
(Q̃

T
(t))δx(t) + Q̃

T
(t)J (t)δx(t)

=
d

dt
(Q̃

T
(t))Q̃(t)y(t) + Q̃

T
(t)J (t)Q̃(t)y(t)

=
[ d
dt

(Q̃
T

(t))Q̃(t) + Q̃
T

(t)J (t)Q̃(t)
]
y(t)

Define B(t) as,

B(t) :=
d

dt
(Q̃

T
(t))Q̃(t) + Q̃

T
(t)J (t)Q̃(t). (A.4)

Then we are going to show that B(t) is in fact an upper triangular matrix. Notice

that equation (A.4) can be also written as,

d

dt
(Q̃

T
(t)) = B(t)Q̃

T
(t)− Q̃

T
(t)J (t).

Using the identity Q̃
T

(t)Q̃(t) ≡ I for all t > t0, we then can derive the derivative of

the matrix Q̃(t) as,

d

dt
Q̃(t) = J (t)Q̃(t)− Q̃(t)B(t). (A.5)

We then take the derivative of the tangent linear propagator F(t, t0) = Q̃(t)R̃(t)
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and use (A.5),

d

dt
F(t, t0) =

d

dt
(Q̃(t)R̃(t))

=
( d
dt

Q̃(t)
)
R̃(t) + Q̃(t)

( d
dt

R̃(t)
)

= J (t)Q̃(t)R̃(t)− Q̃(t)B(t)R̃(t) + Q̃(t)
( d
dt

R̃(t)
) (A.6)

Alternative, based on property (A.3), we can also obtain

d

dt
F(t, t0) = J (t)F(t, t0) = J (t)Q̃(t)R̃(t) (A.7)

Combining (A.6) and (A.7),

d

dt
R̃(t) = B(t)R̃(t) (A.8)

Since R̃(t) and the derivative of R̃(t) are both upper triangular matrices, then we

can conclude that B(t) is an upper triangular matrix. In addition, scrutinizing

the diagonal components in (A.8), we also have the following system of the scalar

differential equations:

d

dt
R̃jj(t) = Bjj(t)R̃jj(t), for j = 1, 2, · · · , N.

Therefore,

R̃jj(t) = exp
[ ∫ t

t0

Bjj(s)ds
]
R̃jj(0) = exp

[ ∫ t

t0

Bjj(s)ds
]
,

or,

ln (R̃jj(t)) =

∫ t

t0

Bjj(s)ds.

Notice that R̃(t) is determined by QR factorizing F(t0, t0), which is an identity

matrix I. Thus, R̃(t0) = I, i.e. Rjj(0) = 1 (j = 1, 2, ..., N). (Q.E.D.)

107



Bibliography

Apel, J.R. (1987), Principles of Ocean Physics. International Geophysics, Elsevier
Science, URL https://books.google.com/books?id=iuk6nZIzvtkC.

Apte, A., C. K. R. T. Jones, and A. M. Stuart (2008), “A Bayesian ap-
proach to Lagrangian data assimilation.” Tellus A, 60, 336–347, URL https:

//onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2007.00295.x.

Ballabrera-Poy, Joaquim, Eugenia Kalnay, and Shu-Chih Yang (2009), “Data as-
similation in a system with two scales – combining two initialization techniques.”
Tellus A, 61, 539–549, URL https://onlinelibrary.wiley.com/doi/abs/10.

1111/j.1600-0870.2009.00400.x.

Bishop, Craig H., Brian J. Etherton, and Sharanya J. Majumdar (2001), “Adap-
tive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical
Aspects.” Monthly Weather Review, 129, 420–436, URL https://doi.org/10.

1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

Bitterman, David S. and Donald V. Hansen (1993), “Evaluation of Sea Surface
Temperature Measurements from Drifting Buoys.” Journal of Atmospheric and
Oceanic Technology, 10, 88–96, URL https://journals.ametsoc.org/doi/abs/

10.1175/1520-0426%281993%29010%3C0088%3AEOSSTM%3E2.0.CO%3B2.

Bonjean, Fabrice and Gary S. E. Lagerloef (2002), “Diagnostic Model and Anal-
ysis of the Surface Currents in the Tropical Pacific Ocean.” Journal of Physical
Oceanography, 32, 2938–2954.

Carrassi, Alberto, Michael Ghil, Anna Trevisan, and Francesco Uboldi (2008), “Data
assimilation as a nonlinear dynamical systems problem: Stability and convergence
of the prediction-assimilation system.” Chaos: An Interdisciplinary Journal of
Nonlinear Science, 18, 023112, URL https://doi.org/10.1063/1.2909862.

Carrier, Matthew J., Hans Ngodock, Scott Smith, Gregg Jacobs, Philip Muscarella,
Tamay Ozgokmen, Brian Haus, and Bruce Lipphardt (2014), “Impact of As-
similating Ocean Velocity Observations Inferred from Lagrangian Drifter Data
Using the NCOM-4DVAR.” Monthly Weather Review, 142, 1509–1524, URL
https://doi.org/10.1175/MWR-D-13-00236.1.

108

https://books.google.com/books?id=iuk6nZIzvtkC
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2007.00295.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2007.00295.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2009.00400.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2009.00400.x
https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0426%281993%29010%3C0088%3AEOSSTM%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0426%281993%29010%3C0088%3AEOSSTM%3E2.0.CO%3B2
https://doi.org/10.1063/1.2909862
https://doi.org/10.1175/MWR-D-13-00236.1


Carrier, Matthew J., Hans E. Ngodock, Philip Muscarella, and Scott Smith (2016),
“Impact of Assimilating Surface Velocity Observations on the Model Sea Surface
Height Using the NCOM-4DVAR.” Monthly Weather Review, 144, 1051–1068,
URL https://doi.org/10.1175/MWR-D-14-00285.1.

Chelton, Dudley B., Roland A. deSzoeke, Michael G. Schlax, Karim El Naggar, and
Nicolas Siwertz (1998), “Geographical Variability of the First Baroclinic Rossby
Radius of Deformation.” Journal of Physical Oceanography, 28, 433–460, URL
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

Coelho, Emanuel F., P. Hogan, G. Jacobs, P. Thoppil, H.S. Huntley, B.K. Haus,
B.L. Lipphardt, A.D. Kirwan, E.H. Ryan, J. Olascoaga, F. Beron-Vera, A.C.
Poje, A. Griffa, T.M. zgkmen, A.J. Mariano, G. Novelli, A.C. Haza, D. Bogucki,
S.S. Chen, M. Curcic, M. Iskandarani, F. Judt, N. Laxague, A.J.H.M. Re-
niers, A. Valle-Levinson, and M. Wei (2015), “Ocean current estimation us-
ing a Multi-Model Ensemble Kalman Filter during the Grand Lagrangian De-
ployment experiment (GLAD).” Ocean Modelling, 87, 86 – 106, URL http:

//www.sciencedirect.com/science/article/pii/S1463500314001577.

De Cruz, L., J. Demaeyer, and S. Vannitsem (2016), “The Modular Arbitrary-Order
Ocean-Atmosphere Model: maooam v1.0.” Geoscientific Model Development, 9,
2793–2808, URL https://www.geosci-model-dev.net/9/2793/2016/.

Delandmeter, P. and E. van Sebille (2019), “The Parcels v2.0 Lagrangian frame-
work: new field interpolation schemes.” Geoscientific Model Development Dis-
cussions, 2019, 1–24, URL https://www.geosci-model-dev-discuss.net/

gmd-2018-339/.

Dieci, Luca, Michael Jolly, and Erik S. Van Vleck (2011), “Numerical Techniques
for Approximating Lyapunov Exponents and Their Implementation.” Journal of
Computational and Nonlinear Dynamics, 6.

Dieci, Luca and Erik S. Van Vleck (2007), “Lyapunov and Sacker-Sell Spectral
Intervals.” Journal of Dynamics and Differential Equations, 19, 265–293.

Dong, Shenfu, Denis Volkov, Gustavo Goni, Rick Lumpkin, and Gregory R. Foltz
(2017), “Near-surface salinity and temperature structure observed with dual-
sensor drifters in the subtropical South Pacific.” Journal of Geophysical Research:
Oceans, 122, 5952–5969, URL https://agupubs.onlinelibrary.wiley.com/

doi/abs/10.1002/2017JC012894.

Evensen, Geir (2004), “Sampling strategies and square root analysis schemes for
the EnKF.” Ocean Dynamics, 54, 539–560, URL https://doi.org/10.1007/

s10236-004-0099-2.

Fox-Kemper, B., G. Danabasoglu, R. Ferrari, S.M. Griffies, R.W. Hallberg, M.M.
Holland, M.E. Maltrud, S. Peacock, and B.L. Samuels (2011), “Parameterization
of mixed layer eddies. III: Implementation and impact in global ocean climate

109

https://doi.org/10.1175/MWR-D-14-00285.1
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
http://www.sciencedirect.com/science/article/pii/S1463500314001577
http://www.sciencedirect.com/science/article/pii/S1463500314001577
https://www.geosci-model-dev.net/9/2793/2016/
https://www.geosci-model-dev-discuss.net/gmd-2018-339/
https://www.geosci-model-dev-discuss.net/gmd-2018-339/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JC012894
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JC012894
https://doi.org/10.1007/s10236-004-0099-2
https://doi.org/10.1007/s10236-004-0099-2


simulations.” Ocean Modelling, 39, 61 – 78, URL http://www.sciencedirect.

com/science/article/pii/S1463500310001290. Modelling and Understanding
the Ocean Mesoscale and Submesoscale.

Fox-Kemper, Baylor, Raffaele Ferrari, and Robert Hallberg (2008), “Parameteriza-
tion of Mixed Layer Eddies. Part I: Theory and Diagnosis.” Journal of Physical
Oceanography, 38, 1145–1165, URL https://doi.org/10.1175/2007JPO3792.

1.

Greybush, Steven J., Eugenia Kalnay, Takemasa Miyoshi, Kayo Ide, and Brian R.
Hunt (2011), “Balance and Ensemble Kalman Filter Localization Techniques.”
Monthly Weather Review, 139, 511–522, URL https://doi.org/10.1175/

2010MWR3328.1.

Griffies, Stephen M. (2008), “Elements of MOM4p1.” URL https://data1.gfdl.

noaa.gov/~arl/pubrel/o/old/doc/mom4p1_guide.pdf. Accessed 8 Nov 2018.

Griffies, Stephen M., Ronald C. Pacanowski, and Robert W. Hallberg (2000), “Spu-
rious Diapycnal Mixing Associated with Advection in a z-Coordinate Ocean
Model.” Monthly Weather Review, 128, 538–564, URL https://doi.org/10.

1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2.

Griffies, Stephen M., Ronald J. Stouffer, Alistair J. Adcroft, Kirk Bryan,
Keith W. Dixon, Robert Hallberg, Matthew J. Harrison, Ronald C.
Pacanowski, and Anthony Rosati (2015), “A Historical Introduction to
MOM.” URL https://www.gfdl.noaa.gov/wp-content/uploads/2019/04/

mom_history_2017.09.19.pdf. [Online; posted October 2015].

Hallberg, Robert (2013), “Using a resolution function to regulate parameterizations
of oceanic mesoscale eddy effects.” Ocean Modelling, 72, 92 – 103, URL http:

//www.sciencedirect.com/science/article/pii/S1463500313001601.

Halliwell, G. R., A. Srinivasan, V. Kourafalou, H. Yang, D. Willey, M. Le Hnaff, and
R. Atlas (2014), “Rigorous Evaluation of a Fraternal Twin Ocean OSSE System
for the Open Gulf of Mexico.” Journal of Atmospheric and Oceanic Technology,
31, 105–130, URL https://doi.org/10.1175/JTECH-D-13-00011.1.

Han, Guijun, Xinrong Wu, Shaoqing Zhang, Zhengyu Liu, and Wei Li (2013), “Error
Covariance Estimation for Coupled Data Assimilation Using a Lorenz Atmosphere
and a Simple Pycnocline Ocean Model.” Journal of Climate, 26, 10218–10231,
URL https://doi.org/10.1175/JCLI-D-13-00236.1.

Harlim, John and Brian R. Hunt (2007), “Four-dimensional local ensemble transform
Kalman filter: numerical experiments with a global circulation model.” Tellus A:
Dynamic Meteorology and Oceanography, 59, 731–748, URL https://doi.org/

10.1111/j.1600-0870.2007.00255.x.

110

http://www.sciencedirect.com/science/article/pii/S1463500310001290
http://www.sciencedirect.com/science/article/pii/S1463500310001290
https://doi.org/10.1175/2007JPO3792.1
https://doi.org/10.1175/2007JPO3792.1
https://doi.org/10.1175/2010MWR3328.1
https://doi.org/10.1175/2010MWR3328.1
https://data1.gfdl.noaa.gov/~arl/pubrel/o/old/doc/mom4p1_guide.pdf
https://data1.gfdl.noaa.gov/~arl/pubrel/o/old/doc/mom4p1_guide.pdf
https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2
https://www.gfdl.noaa.gov/wp-content/uploads/2019/04/mom_history_2017.09.19.pdf
https://www.gfdl.noaa.gov/wp-content/uploads/2019/04/mom_history_2017.09.19.pdf
http://www.sciencedirect.com/science/article/pii/S1463500313001601
http://www.sciencedirect.com/science/article/pii/S1463500313001601
https://doi.org/10.1175/JTECH-D-13-00011.1
https://doi.org/10.1175/JCLI-D-13-00236.1
https://doi.org/10.1111/j.1600-0870.2007.00255.x
https://doi.org/10.1111/j.1600-0870.2007.00255.x


Houtekamer, P. L. and Herschel L. Mitchell (1998), “Data Assimilation Using an
Ensemble Kalman Filter Technique.” Monthly Weather Review, 126, 796–811,
URL https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;

2.

Hunt, Brian R., Eric Kostelich, and Istvan Szunyogh (2007), “Efficient data as-
similation for spatiotemporal chaos: A local ensemble transform Kalman filter.”
Physica D: Nonlinear Phenomena, 230, 112–126.

Ide, Kayo, Leonid Kuznetsov, and Christopher K R T Jone (2002), “Lagrangian
data assimilation for point vortex systems.” Journal of Turbulence, 3, N53, URL
https://doi.org/10.1088/1468-5248/3/1/053.

Ilcak, Mehmet, Alistair J. Adcroft, Stephen M. Griffies, and Robert W. Hallberg
(2012), “Spurious dianeutral mixing and the role of momentum closure.” Ocean
Modelling, 45-46, 37 – 58, URL http://www.sciencedirect.com/science/

article/pii/S1463500311001685.

Jacobs, Gregg A., Brent P. Bartels, Darek J. Bogucki, Francisco J Beron-Vera, Shuyi
S Chen, Emanuel F. Coelho, Milan Curcic, Annalisa Griffa, Matthew Gough,
Brian K Haus, Angelique C. Haza, Robert W. Helber, Patrick J. Hogan, Helga
S. Huntley, Mohamed Iskandarani, Falko Judt, A. D. Kirwan, Nathan Laxague,
Arnoldo Valle-Levinson, Bruce L. Lipphardt, Arthur J Mariano, Hans E. Ngodock,
Guillaume Novelli, Maria J Olascoaga, Tamay M Ozgokmen, Andrew C. Poje,
Ad J H M Reniers, Clark D. Rowley, Edward H. Ryan, Scott R. Smith, Peter L.
Spence, Prasad G. Thoppil, and Mozheng Wei (2014), “Data assimilation con-
siderations for improved ocean predictability during the Gulf of Mexico Grand
Lagrangian Deployment (GLAD).” Ocean Modelling, 83, 98–117.

Jansen, Malte F., Alistair J. Adcroft, Robert Hallberg, and Isaac M. Held
(2015), “Parameterization of eddy fluxes based on a mesoscale energy budget.”
Ocean Modelling, 92, 28 – 41, URL http://www.sciencedirect.com/science/

article/pii/S1463500315000967.

Kang, Ji-Sun, Eugenia Kalnay, Junjie Liu, Inez Fung, Takemasa Miyoshi, and Kayo
Ide (2011), “Variable localization in an ensemble Kalman filter: Application to
the carbon cycle data assimilation.” Journal of Geophysical Research: Atmo-
spheres, 116, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.

1029/2010JD014673.

Kuptsov, Pavel V. and Ulrich Parlitz (2012), “Theory and Computation of Covariant
Lyapunov Vectors.” Journal of Nonlinear Science, 22, 727–762.

Kuznetsov, L., K. Ide, and C. K. R. T. Jones (2003), “A Method for Assimilation
of Lagrangian Data.” Monthly Weather Review, 131, 2247–2260, URL https:

//doi.org/10.1175/1520-0493(2003)131<2247:AMFAOL>2.0.CO;2.

111

https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
https://doi.org/10.1088/1468-5248/3/1/053
http://www.sciencedirect.com/science/article/pii/S1463500311001685
http://www.sciencedirect.com/science/article/pii/S1463500311001685
http://www.sciencedirect.com/science/article/pii/S1463500315000967
http://www.sciencedirect.com/science/article/pii/S1463500315000967
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD014673
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JD014673
https://doi.org/10.1175/1520-0493(2003)131<2247:AMFAOL>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<2247:AMFAOL>2.0.CO;2


Lange, M. and E. van Sebille (2017), “Parcels v0.9: prototyping a Lagrangian ocean
analysis framework for the petascale age.” Geoscientific Model Development, 10,
4175–4186, URL https://www.geosci-model-dev.net/10/4175/2017/.

Liapounoff, A. (1907), “General problem of the stability of the movement.” Annals
of the Faculty of Sciences of Toulouse: Mathematics, 2nd, 9, 203–474, URL http:

//www.numdam.org/item/AFST_1907_2_9__203_0.

Lima, L. N., L. P. Pezzi, S. G. Penny, and C. A. S. Tanajura (2019), “An Investi-
gation of Ocean Model Uncertainties Through Ensemble Forecast Experiments
in the Southwest Atlantic Ocean.” Journal of Geophysical Research: Oceans,
124, 432–452, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.

1029/2018JC013919.

Lumpkin, Rick, Mayra Pazos, National Oceanographic, and Atmospheric Admin-
istration (2007), “Measuring surface currents with Surface Velocity Program
drifters: the instrument, its data, and some recent results. Chapter two of La-
grangian Analysis.” In and Prediction of Coastal and Ocean Dynamics, University
Press.

Marshall, David P. and Alistair J. Adcroft (2010), “Parameterization of ocean
eddies: Potential vorticity mixing, energetics and Arnolds first stability theo-
rem.” Ocean Modelling, 32, 188 – 204, URL http://www.sciencedirect.com/

science/article/pii/S1463500310000107. The magic of modelling: A special
volume commemorating the contributions of Peter D. Killworth Part 2.

Melnichenko, Oleg, Peter Hacker, Nikolai Maximenko, Gary Lagerloef, and James
Potemra (2016), “Optimum interpolation analysis of Aquarius sea surface salin-
ity.” Journal of Geophysical Research: Oceans, 121, 602–616, URL https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JC011343.

Mogensen, Kristian S., Tim Hewson, Sarah Keeley, and Linus Magnusson
(2018), “ECMWF Newsletter.” URL https://www.ecmwf.int/en/newsletter/

156/news/effects-ocean-coupling-weather-forecasts. Last accesed 8 July
2019.

Molcard, Anne, Leonid I. Piterbarg, Annalisa Griffa, Tamay M. zgkmen, and
Arthur J. Mariano (2003), “Assimilation of drifter observations for the recon-
struction of the Eulerian circulation field.” Journal of Geophysical Research:
Oceans, 108, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.

1029/2001JC001240.

Nilsson, J. A. U., S. Dobricic, N. Pinardi, P.-M. Poulain, and D. Pettenuzzo (2012),
“Variational assimilation of Lagrangian trajectories in the Mediterranean ocean
Forecasting System.” Ocean Science, 8, 249–259, URL https://www.ocean-sci.

net/8/249/2012/.

112

https://www.geosci-model-dev.net/10/4175/2017/
http://www.numdam.org/item/AFST_1907_2_9__203_0
http://www.numdam.org/item/AFST_1907_2_9__203_0
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JC013919
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JC013919
http://www.sciencedirect.com/science/article/pii/S1463500310000107
http://www.sciencedirect.com/science/article/pii/S1463500310000107
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JC011343
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JC011343
https://www.ecmwf.int/en/newsletter/156/news/effects-ocean-coupling-weather-forecasts
https://www.ecmwf.int/en/newsletter/156/news/effects-ocean-coupling-weather-forecasts
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JC001240
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JC001240
https://www.ocean-sci.net/8/249/2012/
https://www.ocean-sci.net/8/249/2012/


Nilsson, Jenny A. U., Srdjan Dobricic, Nadia Pinardi, Vincent Taillandier, and
Pierre-Marie Poulain (2011), “On the assessment of Argo float trajectory assimila-
tion in the Mediterranean Forecasting System.” Ocean Dynamics, 61, 1475–1490,
URL https://doi.org/10.1007/s10236-011-0437-0.

Olascoaga, M. J., F. J. Beron-Vera, G. Haller, J. Trianes, M. Iskandarani, E. F.
Coelho, B. K. Haus, H. S. Huntley, G. Jacobs, A. D. Kirwan Jr., B. L. Lip-
phardt Jr., T. M. zgkmen, A. J. H. M. Reniers, and A. Valle-Levinson (2013),
“Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian co-
herent structures.” Geophysical Research Letters, 40, 6171–6175, URL https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013GL058624.

Ott, Edward, Brian R. Hunt, Istvan Szunyogh, Aleksey V. Zimin, Eric J. Kostelich,
Matteo Corazza, Eugenia Kalnay, D. J. Patil, and James A. Yorke (2004),
“A Local Ensemble Kalman Filter for Atmospheric Data Assimilation.” Tellus
A, 56, 415–428, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/

j.1600-0870.2004.00076.x.

Pecora, Louis M. and Thomas L. Carroll (1991), “Driving systems with chaotic
signals.” Phys. Rev. A, 44, 2374–2383, URL https://link.aps.org/doi/10.

1103/PhysRevA.44.2374.

Pecora, Louis M. and Thomas L. Carroll (2015), “Synchronization of chaotic sys-
tems.” Chaos: An Interdisciplinary Journal of Nonlinear Science, 25, 097611,
URL https://doi.org/10.1063/1.4917383.

Penny, S. G., E. Bach, K. Bhargava, C.-C. Chang, C. Da, L. Sun, and T. Yoshida
(2019), “Strongly Coupled Data Assimilation in Multiscale Media: Experiments
Using a Quasi-Geostrophic Coupled Model.” Journal of Advances in Modeling
Earth Systems, 0, URL https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2019MS001652.

Penny, S. G. and T. Miyoshi (2016), “A local particle filter for high-dimensional
geophysical systems.” Nonlinear Processes in Geophysics, 23, 391–405, URL
https://www.nonlin-processes-geophys.net/23/391/2016/.

Penny, Stephen G. (2017), “Mathematical foundations of hybrid data assimilation
from a synchronization perspective.” Chaos: An Interdisciplinary Journal of Non-
linear Science, 27, 126801, URL https://doi.org/10.1063/1.5001819.

Penny, Stephen G., David W. Behringer, James A. Carton, and Eugenia
Kalnay (2015), “A Hybrid Global Ocean Data Assimilation System at NCEP.”
Monthly Weather Review, 143, 4660–4677, URL https://doi.org/10.1175/

MWR-D-14-00376.1.

Penny, Stephen G. and coauthors (2008), “Coupled Data Assimilation for Integrated
Earth System Analysis and Prediction: Goals, Challenges and Recommenda-
tions.” URL https://www.wmo.int/pages/prog/arep/wwrp/new/documents/

Final_WWRP_2017_3_27_July.pdf. Last ccessed 3 April 2018.

113

https://doi.org/10.1007/s10236-011-0437-0
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013GL058624
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013GL058624
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2004.00076.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.2004.00076.x
https://link.aps.org/doi/10.1103/PhysRevA.44.2374
https://link.aps.org/doi/10.1103/PhysRevA.44.2374
https://doi.org/10.1063/1.4917383
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001652
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001652
https://www.nonlin-processes-geophys.net/23/391/2016/
https://doi.org/10.1063/1.5001819
https://doi.org/10.1175/MWR-D-14-00376.1
https://doi.org/10.1175/MWR-D-14-00376.1
https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2017_3_27_July.pdf
https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2017_3_27_July.pdf


Penny, Stephen G. and Thomas M. Hamill (2017), “Coupled Data Assimilation
for Integrated Earth System Analysis and Prediction.” Bulletin of the Ameri-
can Meteorological Society, 98, ES169–ES172, URL https://doi.org/10.1175/

BAMS-D-17-0036.1.
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