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Since the start of the containerization revolution in 1950’s, not only the TEU capacity 

of the vessels has been increasing constantly, but also the number of fully cellular 

container ships has expanded substantially. Because of the tense competition among 

ports in recent years, improving the operational efficiency of ports has become an 

important issue in containership operations. Arrangement of containers both within 

the container terminal and on the containership play an important role in determining 

the berthing time. The berthing time of a containership is mainly composed of the 

unloading and loading time of containers.  Containers in a containership are stored in 

stacks, making a container directly accessible only if it is on the top of one stack. The 

task of determining a good container arrangement to minimize the number of re-

handlings while maintaining the ship’s stability over several ports is called stowage 

planning, which is an everyday problem solved by ship planners. 



  

The horizontal distribution of the containers over the bays affects crane utilization 

and overall ship berthing time. In order to increase the terminal productivity and 

reduce the turnaround time, the stowage planning must conform to the berth design. 

Given the configuration of berths and cranes at each visiting port, the stowage 

planning must take into account the utilization of quay cranes as well as the reduction 

of unnecessary shifts to minimize the total time at all ports over the voyage. This 

dissertation introduces an optimization model to solve the stowage planning problem 

with crane utilization considerations. The optimization model covers a wide range of 

operational and structural constraints for containership load planning.  

In order to solve real-size problems, a meta-heuristic approach based on genetic 

algorithms is designed and implemented which embeds a crane split approximation 

routine. The genetic encoding is ultra-compact and represents grouping, sorting and 

assignment strategies that might be applied to form the stowage pattern. The 

evaluation procedure accounts for technical specification of the cranes as well as the 

crane split. Numerical results show that timely solution for ultra large size 

containerships can be obtained under different scenarios.  
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Chapter 1: Introduction 
 

1.1. Containerization 

Containerization is an intermodal transportation system in which the containers as 

cargo units can be loaded on containerships, railroad cars and trucks without handling 

the contents. Containerization revolution that began in 1950s increased ocean carries 

productivity dramatically. Prior to containerization all goods other than bulk cargo 

were carried in break bulk format. Pieces of cargo were loaded one by one into trucks 

and at the marine port they were unloaded and loaded into the hold of a ship. At the 

destination individual pieces were unloaded and put on truck or train for delivery. In 

addition to inefficiency cargo was exposed to potential damage. Loading numerous 

pieces of cargo into a standard sealed metal box carried by truck or train to the 

seaport where it would be lifted and stored aboard ship sped up the process. At the 

destination the process would be reversed. The simple solution improved the delivery 

time, decreased transportation cost and made intermodal transportation far more 

feasible. On April 26th 1956 Ideal-X, the first cargo ship carrying containers left the 

port of Newark to the Port of Houston (Cudahy 2006). Soon the concept of 

containerization proved to be faster, safer and cheaper than the existing methods. By 

making the exchange of commodities easier it opened new markets for import and 

export.  

The vast majority of international trade travels by ship and over that past two 

decades, container utilization has grown dramatically, helping the idea of a global 

intermodal economy. “Today over 60% of the world’s deep sea general cargo is 
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transported in containers whereas some routes, especially between economically 

strong and stable countries, are containerized up to 100%” (Steenkan et al. 2004). The 

globalization would have been impossible without containers. Because the demand 

for transportation is different across the ports, different sizes of containerships have 

been designed.  

Container handling technology has also evolved over the years, not only in terms of 

size, type and capacity but also in ways that the containers are moved. In the  

beginning, ships were equipped with cranes to load and unload the containers 

themselves or traditional shore equipment was used. However as the container 

revolution went on, specialized equipment was developed allowing for a faster 

handling of containers. Nowadays, automated guided vehicles and cranes are in use in 

some ports to handle containers. The port of Rotterdam was the first one to develop 

and use this technology (Ben-Jaap 2005).  

1.2. Container port terminal  

 
A container terminal is the interface between land side and the quayside 

transshipment of the containers. Import containers arrive by containerships at the 

terminal where they are stored temporarily before being loaded onto the ground 

modes of transportation i.e. trains or trucks and dispatched to their final destination. 

The export containers arrive by rail or truck and are stored in a similar manner before 

being loaded to the ship and leave the port. Transshipment containers on the other 

hand are unloaded from the ship and stored in the yard, but eventually leave the port 
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on a different containership. The container terminal is the point at which containers 

change their mode of travel.  

Container terminals can be looked at as three relatively independent subsystems.  

• Quay-side interface 

• Storage yard 

• Land-side interface  

 

Figure 1.1 shows a schematic of a container terminal system. 

 

 

Figure 1.1: General schematic of a container terminal (Steenkan et al. 2004) 

 

There are several decisions to be made in order to create a smooth and efficient flow 

of the containers in the system. The major tactical decision makers are terminal 

managers and the ship planners while at the operational level decisions might be 

made by crane operators or straddle carriers drivers. The hierarchy and timeline of the 

decisions for incoming and outgoing ships are depicted in figure 1.2. 
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Figure 1.2: Hierarchy of the main decisions for incoming and outgoing ships 

1.2.1. Quay-side interface 

Before a ship calls for a port, her specifications and berth requirements as well as 

estimated time of arrival will be transmitted to the port. Based on the availability of 

the berths and the schedules of the incoming vessels, the terminal operators allocate a 

berth, berthing time and other resources (i.e. quay cranes) to the vessel. Although the 

shipping lines expect prompt berthing upon arrival, this might not be possible due to 

the limitation of the wharfs and congestion at the sea side of the port. Vessels of the 

priority customers might be granted berth-on arrival service if they have contracts 

with terminal operators.  

After the containership docks at one of the available berths of the port, the containers 

will be loaded to, and unloaded from the containership using quay cranes. Quay 

cranes are the most expensive pieces of equipment at the container terminal and play 

a crucial role in loading and unloading operations. In the case of fully cellular 

containerships where no cranes are mounted on the vessel, quay cranes are the only 
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means of moving containers to/from the ship. Quay cranes are rail mounted and can 

move horizontally alongside the ship. The required time for moving a crane from one 

bay to the next depends on the type of the equipment and the underlying technology, 

but typically it is on the order of a one container move which ranges from one to three 

minutes. The crane operator uses the spreader arm to handle the container to/from the 

vessel. Maximum performance of the quay cranes depends on the crane type. While 

the technical performance is in the range of 50-60 box/hr, the operational 

performance is in the range of 22-30 box/hr (Steenken et. al. 2004).  A quay crane 

typically has four legs. The space between the legs accommodates up to five truck 

lanes which is used by the internal trucks. Trucks stop in the lanes under the cranes to 

either feed the export containers to the crane or take the import containers from the 

crane and transport them to the yard. Import containers might directly leave the port 

by road or rail without going to the storage yard; however this is not very common.  

1.2.2. Storage yard 

Storage yard is an intermediate system between the quay and the land side of the port 

system. Both import and export containers are stacked in the columns at the storage 

yard. The yard handling equipment  retrieve the export containers within the yard and 

take them to the quay cranes and bring back the import containers unloaded  at the 

berth for storage in the yard.  

There are two types of storage yards: those that stack the containers on the ground 

and those that store the containers on chassis. Although the containers on chassis can 

be retrieved and moved quickly and easily, this option is only available to the ports 

that do not have space limitations. When the land becomes expensive or simply 
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unavailable and the flow of the containers grows rapidly, similar to the situation in 

major Asian ports, stacking becomes the only viable option. Saving the space by 

using stacks comes at the price of increased time and effort for accessing the 

containers. The yard area in this case is divided into different blocks with several 

rows and tiers at each block. Some blocks or stack sections are reserved for special 

containers such as reefer containers which need electric plugs, hazardous cargo or 

overweight containers. Usually yard managers do not mix the import and export 

containers and store them in separate stacks. This is because the import containers 

arrive in the yard, in large batches but leave the port one by one in random order. On 

the contrary, the departure of export containers is predictable but their arrival happens 

in a random order. Empty containers also are stacked in different sections where they 

can be stacked higher than the normal containers. 

There are several types of equipment for handling and transporting the containers 

within the storage yard. Straddle carriers are individual independent units that are 

capable of both lifting and transporting standard containers. When the maximum 

storage density at the container yard is required, a combination of Rubber Tyre 

Gantry Cranes (RTCG) and trucks is usually preferred to straddle carriers. Each 

storage block in this case consists of several rows of containers and a truck lane. 

RTCG’s are caple of lifting a container from the truck waiting in the truck lane and 

store it in the stack or retrieve an outbound container and put it on the truck. They are 

very expensive equipment and planning for their proper utilization is crucial to the 

throughput of the yard. RTCG’ are not fixed within the block and may move to 
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adjacent blocks, their movement however is slow and it is even slower if making a 

090 turn for reaching the adjacent block is necessary.  

When using straddle carriers no other vehicles are necessary for horizontal 

transportation of the containers within the storage yard. On the other hand when 

RTGC’s are employed, trucks with trailer, multi-trailers or Automatic Guided 

vehicles (AGV) are needed for moving the containers. AGV’s are computer 

controlled robots which operate on a grid of pre-designed wired routes with sensors 

and transponders. The deployment of AGV’s is driven by economic reasons where 

the labor costs are high. Although they call for high investment they are already in 

operation at ECT/Rotterdam and at the HHLA/Hamburg in combination with 

automatic gantry cranes (Steenkan et. al. 2004). Figure 1.3 shows an aerial photo of 

the port of Rotterdam.  

 

Figure 1.3: Port of Rotterdam in Netherlands (www.zpmc.com) 
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1.2.2. Land-side interface 

The land-side interface is the transshipment point between the storage yard and the 

inland transportation system which can be truck, rail or both. The landside operation 

starts at gates where two main activities happen: export delivery and import 

receiving. Export delivery begins with checking the documentation and inspection of 

the containers which is brought in by freight forwarders. A storage location will be 

assigned to the container and the truck will be routed to the destination area at the 

yard where the container will be lifted and stored. Import receiving process initiates 

by a request from the customer at the gate. The location of the container then is 

reported by the computer system and the truck will be guided to the specific yard area 

to load the container.  

To maximize the throughput of the port system and to avoid congestion, the processes 

of the above subsystems must be synchronized and optimized. 

1.3. The containership 

 
The size of a containership is normally stated as the number of TEU sized containers 

that it can carry (TEU is the abbreviation for twenty foot equivalent unit which is the 

standard container size by International Organization for Standardization). The first 

containerships were built by modifying  bulk vessels in order to accommodate 

containers. These ships had their own on board cranes to handle the containers. As 

containers became more popular in 1970’s, a new generation of the fully cellular 

containerships were introduced to the market. On board cranes were removed from 

these vessels so they had more space to dedicate to the stack of containers. Until the 
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mid 1980’s containership size was limited by the dimensional constraint of the 

Panama canal. The economies of scale (increased capacity at higher speeds with 

lower costs per TEU) encouraged ship builders to design larger vessels until the 

Panama Canal limit of 13 containers across a 32.2m wide deck was reached. The 

result was a new generation of containerships known as post Panamx that started in 

1988. Figure 1.4 shows different generations of the containerships and Figure 1.5 

shows the maximum containership size by the year of build as well as the projected 

trend of the size growth.  

Since then, the development of the post-Panamax fleet has been dramatic. According 

to the Lloyd’s register fact sheets (Lloyd’s 2003) the world post-Panamax container 

fleet has risen to 25% of the total containership fleet by capacity in 2003 and with the 

current trend a jump to 58% is expected. The new Panamax vessels will fit the third 

line of docks of the Panama Canal which will be operational in 2014 (Rodrigue et al. 

2009). 

United Nations reports that average carrying capacity per ship for the world 

containership fleet has increased from 3,489 TEUs in 2008 to 4,016 TEUs in 2010 as 

a result of  building larger vessels to achieve economies of scale. Data shows that 

well-defined trend towards large container vessels is continuing unabated. The largest 

fully cellular vessel in early 2010 had a nominal capacity of 14,770 TEU. The largest 

vessels delivered in 2009 were two 13,880 TEU ships for CMA CGM shipping lines 

(UNCTAD 2010). 
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Figure 1.4: Containership sizes (Source: The geography of transport systems) 

 

 

 
Figure 1.5: Maximum containership size by the year of build (Lloyd’s 2003)   

 
Not only the TEU capacity of the vessels has increased, but also the number of fully 

cellular containerships has expanded substantially. Studies show that by the 

beginning of 2010 there were 4,677 ships with a combined total capacity of 12.8 
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million TEUs  (UNCTAD 2010). Overall there was an increase from of 8.9 percent in 

the number of ships and 12.9 percent in TEU capacity over the previous year. Figure 

1.6 demonstrates the world fleet by principal vessel types for selected years. 

 

 

Figure 1.6: World fleet by principal types of vessel (UNCTAD 2010) 

 

Containerization has revolutionized cargo shipping. Today, approximately 90% of 

non-bulk cargo worldwide moves by containers stacked on transport ships; 26% of all 

containers originate from China. As of 2005, some 18 million total containers make 

over 200 million trips per year (Levinson 2006). 

Samsung Heavy Industries compared the cost of ship building between two 6200TEU 

vessels and one 12000TEU. The results suggest approximately 16% reduction in costs 

by building the latter vessel rather than the formers. The fuel cost per TEU for 
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12000TEU vessel compared to two 6200TEU is also approximately 17% lower (Yang 

2004).  

Today deployment of 15,000 TEU vessels on the routes between both east and west 

coast of North America and Southeast Asia is justified by the economies of scale. The 

containership "Emma Maersk" which is 396 m long was launched in August 2006. A 

study conducted at the Delft University (Wijnolst et al 1999) suggests that the 

maximum size for future containerships would be 18,000 TEU with a draft of 21m, 

given depth restrictions in the Malacca Strait which is a major shipping route between 

Europe and Asia. According to Levinson (2006) this so-called Malaccamax size 

constrains a ship to dimensions of 470 m in length and 60 m wide (1542 feet * 197 

feet). 

 

1.4. The container 

Containers are large metal boxes used to transport commodities from one destination 

to another. The dimensions of the containers have been standardized. The term TEU1 

is used to refer to one container with a length of twenty feet, so a container of 40 ft is 

expressed by 2 TEU. Although the 20 foot containers are the most popular, the 40 

footer are increasingly replacing them particularly since costs tend to be per container 

rather than per foot. The longer container types are also becoming more popular as 

the shorter containers (e.g. 10 foot containers) are rarely used. Table 1.1 shows the 

dimensions and weights for the three most common container types worldwide. 

 

                                                 
1 Twenty feet equivalent unit 
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Table 1.1: Average dimensions and weights of popular container types2 

 
 

1.5. Containerization challenges 

The global demand for containerized services has shown an increasing trend for the 

past decade. Table 1.2 shows double digit percentages of growth in container flow for 

Trans-Pacific and Asia-Europe routes between the years 2003-2004. The flow 

estimates used in this table are based on UNCTAD 2010 report. The decline of 

container flow in 2009 is attributed to the global recession which reduced the flow of 

containers from Asia to the United States and Europe. 

 

  

                                                 
2 Container Handbook 
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Table 1.2: Estimated cargo flow along major trade routes (millions of TEU) 

  Trans‐Pacific  Asia‐Europe Transatlantic 

Total   Asia‐US  US‐Asia  Europe‐

Asia 

Asia‐

Europe 

US‐

Europe 

Europe‐US 

2009  11.5 6.9  5.5 11.5 2.5 5.3  43.2 

2008  14.5 5.6  10.5 16.7 2.9 4.3  54.5 

2007  15.2 5.0  10.1 17.2 2.7 4.5  54.7 

2006  15.0 4.7  9.1 15.3 2.5 4.4  51 

2005  12.4 4.4  5.5 10.8 2.1 3.8  39 

2004  10.2 4.2  5.2 8.9 1.7 3.2  33.4 

2003  8.8 4.1  4.9 7.3 1.7 2.9  29.7 

2002  7.2 3.9  4.2 6.1 1.5 2.6  25.5 

2001  5.6 3.9  4.0 5.9 2.7 3.6  25.7 

2000  5.2 3.3  3.6 4.5 2.2 2.9  21.7 

 

This ongoing growth has put an enormous pressure on ports and terminal operators to 

increase productivity in order to handle all these containers in a fast and smooth way. 

To maintain rapid dwell time for large vessels, ports need to invest in high speed 

container handling equipments and to accommodate large volumes of containers per 

vessel, expansion of landside storage facilities is necessary. Currently mega 

containerships can be served from one side of the vessel. Developing new berthing 

systems such as indented berths which make it possible to handle the containers from 

both sides of the ship can also speed up the process.  

The key factors that shipping lines use to choose among competitive ports include 

handling cost per TEU, ship dwell time (total time spent at port), performance of quay 
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cranes, availability of the berths and the interface to the landside intermodal 

transportation system. To meet the challenges of today’s competitive market it is 

crucial for each port to invest in state-of-the-art technologies and optimize the 

utilization of its expensive and limited facilities. 

One of the major contributing factors in ship turnaround time is the pattern that the 

containers are stowed in the vessel. In general, a containership calls at a number of 

ports on her route and in each port, containers are unloaded and loaded. The 

containers will be stored in stacks that are only accessible from the top. In a favorable 

stowage pattern containers will be assigned to the positions in the ship such that the 

overall stability of the ship is maintained and the number of unnecessary movements 

is minimized. Unfavorable movements appear if at a certain port, containers have to 

be unloaded and reloaded again, since they are stored on top of containers destined 

for that port. Reducing the overall ship turnaround time by optimizing the stowage 

pattern and maximizing the utilization of the quay cranes during the load/unload 

process is the subject of this research. 

1.6. Environmental issues of containerships 

Stability of the vessel is a very important factor in cargo safety and maneuverability. 

Improper distribution and inadequate trimming of the containers causes horizontal as 

well as vertical imbalances to the vessel whether she is fully or partially loaded. One 

of the solutions to this problem is using ballast water to stabilize the vessel. Ballast in 

general is any material used to balance an object e.g. sandbags used to balance hot air 

balloons. Modern ships take ocean water into their ballast tanks instead of traditional 

solid ballasts like rocks and sands which have been used by old ships for a long time. 
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Figure 1.7 shows the ballast water status in a typical vessel at different points of the 

voyage. 

Containerships discharge their existing ballast water as the cargo is loaded. Ballast is 

primarily composed of water but it also contains sediment and thousands of living 

species which will be disposed in foreign waters. These species known as alien or 

invasive species can affect the native marine food chain and cause environmental 

damages. Rigby et al. 1995 estimate that about 10 billion tones of ballast water is 

transported around the world each year. The role of ballast water in introducing exotic 

species has received extensive attention recently and governments have established 

guidelines for discharge and treatment of the ballast water. 

 

Figure 1.7: Cross section of a ship showing ballast tanks and ballast water cycle 

(Source: International Marine Organization’s website www.imo.org) 
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The more the imbalance in a containership, the more ballast water is required to 

stabilize it. In summary a proper stowage plan helps to make the containership 

operations more environmentally friendly in two ways. First it reduces the amount of 

ballast water needed to be carried which consequently lowers the risk of polluting the 

forthcoming ports with the exogenous species. Second it reduces the energy required 

for the thrust because the thrust is proportionate to the load of the vessel. 

1.7. Motivation of this research 

Because of the tense competition among ports in recent years, improving the 

operational efficiency of ports has become an important issue in containership 

operations. One of the major performance measures is the berthing time at a port.  

Arrangement of containers both within the container terminal and on the 

containership play an important role in determining the berthing time. The berthing 

time of a containership is mainly composed of the unloading and loading time of 

containers.  Containers in a containership usually are stored in stacks.  A container is 

directly accessible only if it is on the top of one stack (Last in First Out, LIFO). The 

ship visits several ports during a voyage and containers are loaded and unloaded at 

each port. The task of determining a good container arrangement to minimize the 

number of re-handlings while maintaining the ship’s stability is called stowage 

planning, which is an everyday problem solved by ship planners.  

Containers are loaded to and unloaded from the containership using quay cranes. The 

problem of allocating quay cranes to ship’s sections is known as crane split. In some 

cases up to ten quay cranes might be allocated to a ship. Technical requirements 

determine the range in which each quay crane can operate. The ship’s dwell time is 



 18 
 

determined by the time that the latest carne finishes its job. Since the distribution of 

the containers over the bays affects crane utilization and overall ship berthing time, 

crane split and stowage problem are interrelated. Given the configuration of cranes at 

each visiting port, the stowage planning must take into account the utilization of quay 

cranes as well as the reduction of unnecessary shifts to minimize the total time at 

ports over the voyage. It seems that integration of the stowage plan and the crane split 

results in a more efficient working instruction which ultimately increases port 

utilization; however the joint optimization of these processes has not been discussed 

in the literature. 

1.8. Structure of the dissertation 

 
This dissertation is organized as follows. An introduction to the problem and the 

motivation for the research are presented in Chapter 1. Chapter 2 summarizes the 

existing literature that focus on containership loading/unloading operations and some 

other related problems. A mathematical programming model for solving the problem 

is developed and discussed in Chapter 3. Solution results of the aforementioned 

model for some sample problems are reported in Chapter 4. A general discussion on 

optimization techniques as well as a genetic algorithm framework for solving the 

containership loading problem is presented in Chapter 5. In Chapter 6 the parameters 

of the proposed genetic algorithm are analyzed and the performance of the method is 

discussed. Application of the solution algorithm for solving several scenarios and the 

effect of different policies on the loading/unloading process are shown in Chapter 7. 

The final chapter includes the concluding remarks and directions for future research. 
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Chapter 2: Literature review 

 
2.1. Containership stowage planning 

The stowage planning for a containership deals with the arrangement of containers 

within the ship. In general, a containership calls at a number of ports on her route and 

in each port, containers are unloaded and loaded. The stowage problem considers the 

assignment of containers to the positions in the ship such that the overall stability of 

the ship is maintained and the number of unnecessary movements is minimized. 

These unfavorable movements appear if at a certain port, containers have to be 

unloaded and reloaded again, since they are stored on top of containers destined for 

that port.  

Shields (1984) used a Monte Carlo method to solve the problem. Multiple parameters 

and constraints are considered in the research but the quality of the solution is not 

addressed. In this method the solution space is not searched systematically. Since then 

researchers have used mathematical programming and heuristics and artificial 

intelligence based optimization methods have been developed to solve large scale 

problems. 

Aslidis (1990) solved a very special case of one uncapacitated column with 

constraints imposed on the vertical center of weight of the stack. He proved that exact 

optimal solution for the single column stack can be obtained in polynomial time.  

Avriel and Penn (1993) and Avriel et al. (1998) formulated the problem as a binary 

linear programming model without considering stability constraints. All containers 

are assumed to have the same size. Since the stability is not taken into account the 
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weight of the containers is ignored. Due to the large number of variables needed, it 

was impossible to find the optimal solution for large size problems. Small examples 

were solved to optimality and alternative heuristics were proposed for larger 

problems. In their heuristic the authors broke the original transportation matrix into a 

sum of two sub matrices, one included the whole column and the other was a matrix 

of remainders. In a separate work Avriel et al. (2000) investigated the relation 

between the stowage problem and the coloring of circle of graphs problem. They 

showed that finding the minimum number of columns for which there is a zero shifts 

stowage plan is equivalent to finding the coloring number of circle graphs and 

through that they proved that the general stowage planning problem is NP-Complete.  

Haghani and Kaisar (2001) developed a mixed integer programming model and a 

heuristic algorithm for the simplified stowage planning to minimize container loading 

cost while maintaining the ship’s stability within an acceptable range. They took 

longitudinal moment, trim and metacentric height (GM) into account and assumed 

that all containers have the same dimensions. In their two step heuristic approach they 

first assigned containers to stations and then to the individual cells within the station. 

Giemsch and Jellinghaus (2003) proposed a mixed integer programming model and a 

three step heuristic. Stability constraints are not considered in their work and results 

are not reported clearly. Imai et al. (2006) developed a multi-objective mathematical 

model for simultaneous stowage and load planning of a containership. They 

simplified the stowage part of the problem by considering only loading related 

rehandlings and single size containers. Since the effects of the unloading related 

reahndlings are ignored during the load planning, the burden will be carried to the 
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forthcoming ports. They used genetic algorithms to solve the joint problem of 

stowage and load planning to reduce the container rehandle in yard stacks. 

In the aforementioned models an important simplification is the uniform container 

size. Multiple container sizes are considered in Ambrosino et al. (2004). They 

assumed that all the loading is done at the first port and the coming ports are only for 

discharge. This assumption reduces the stowage problem to an assignment problem 

with stability constraints at the master bay. They used a decomposition heuristic 

algorithm to solve the problem. 

In the area of meta-heuristics, genetic algorithms and tabu search are used as solution 

approaches to stowage planning problem. Wilson and Roach (1999), (2000) used a 

hybrid heuristic composed of branch and bound and tabu search. They considered 

multiple type containers and stability and solved the problems in two steps. In the 

first step blocks or cargo are allocated to the bays in the vessel by branch and bound 

and in the second step tabu search assigns individual containers to each block. They 

reported that results are as good as the ones by human planners; however the size of 

the solved example was small and details of the solution approach were not presented. 

Later Wilson et al (2001) used genetic algorithms instead of tabu search to 

progressively refine the arrangement of containers within the cargo space of a 

containership until each container is specifically allocated to a stowage location. No 

mathematical model was presented in the papers by Wilson et al.  

Todd and Sen (1997) developed a multi criteria genetic algorithm. They call their 

genetic encoding a complete encoding because the whole assignment pattern at each 

port is stored in chromosomes which is both memory consuming and computationally 
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expensive. Besides that the crossover operator does not guarantee the feasibility of 

the resulting off-springs. To address this issue they apply a repair procedure to the 

results which interferes with the natural inheritance mechanism of genetic algorithm 

and destroys useful information which are crucial for evolution. Instead of saving the 

complete layout, Dubrovsky et al. (2002) used a genetic algorithm with a compact 

solution encoding by recording only the changes of the layout  form port to port 

which result from loading and unloading the containers along the route. This method 

significantly reduces the search space and speeds up the convergence. However it 

does not take into account the effect of crane utilization and multiple containers sizes. 

To demonstrate the stability concerns they presented an example with horizontal 

equilibrium constraint. A parallel implementation of their genetic algorithm promises 

shorter running times when the number of CPU’s is more than one.  

Most recently Delgado et al. (2009) proposed a constrained programming approach 

for stowage planning. They assumed that containers must form a stack, 20-foot 

containers cannot be stacked on top of 40-foot containers, reefer containers must be 

assigned to reefer slots, and sum of the heights and weights of containers in each 

stack must stay within the stack limits. The objective of their approach was to 

minimize overstows, keep stacks empty if possible and avoid loading non reefer 

container into reefer cells. Results for some small scale cases shows that this method 

outperforms integer programming as well as column generation based approaches for 

the problem. Cranes are not considered in this research. 
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2.2. Container loading problem 

 
Container loading problem is the problem of loading a subset of small items (e.g. 

rectangular boxes) into a large container. Depending on the field of application, the 

objective function and the side constraints, several variants of the container loading 

problem have been discussed in the literature. One classification is the problem of 

packing all given items into the least possible number of containers vs. packing as 

many items as possible into a given number of containers. Two, three and four 

dimensional packing models are discussed in the literature. Restrictions include but 

not limited to container capacity. Dyckhoff (1990) classifies such problems.  

2.2.1. Bin packing 

The problem of packing a set of boxes with different dimensions into a set of bins is 

called the bin packing problem. The objective is to use minimum number of bins to 

accommodate all the boxes. This problem has been discussed in the computer science 

and operations research literature extensively. Among them Scheithauser (1991) 

studied three-dimensional bin packing problem and Martello et al. (2000) considered 

exact methods for the solution. A review on the approximation algorithms for the bin 

packing problem can be found in Coffman et al. (1996). Giemsch and Jellinghaus 

(2003) discussed the possibilities of extending the three-dimensional bin packing 

problem to the containership stowage problem and Giemsch (2004) studied the 

stowage problem as a 4-D packing problem.  



 24 
 

2.2.2. Strip packing 

The strip packing problem also known as pallet loading problem involves the packing 

of a set of rectangles into a strip of given width and infinite height so that no 

rectangles are overlapping and the height of the strip is minimized. It is a 

generalization of bin packing because if we restrict all input boxes to be of the same 

height, then strip packing is equivalent to bin packing. It has applications in 

manufacturing industry, job scheduling, etc. The problem also has applications in 

multi-drop situations where the load should be divided into distinct sections for 

different destinations as it is discussed in Bischoff and Ratcliff (1995). A survey on 

two-dimensional packing problems is available in Lodi et al. (2002). 

2.2.3. Multi-Container loading 

Multi-Container Loading is a variation of the bin packing where the containers can 

have different dimensions. The objective is to choose a subset of the containers such 

that the shipping costs are minimized. An analytical model for the problem is 

described in Chen et al. (1995) and LP-based bounds are found in Scheithauser 

(1999).  

2.2.4. Knapsack loading 

Given a profit for each box, the knapsack loading problem is the problem of loading a 

subset of rectangular boxes into a container to maximize the loading profit subject to 

the container capacity. Minimization of the unused space can also be an objective 

function if the profit of each box is associated to its volume. Pisinger et al. (2004) 

covers many methods and techniques available for the solution of the Knapsack 

problem and its variations.  
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2.3. Stacking problem 

A storage system in general is composed of the structure and the rules for adding and 

retrieving items in a storage area. Based on the application, a storage system can be 

anything like rail shunting yard, parking garage, computer memory, book library, a 

warehouse inventory, etc. The storage system may accommodate single type or 

multiple-type items. In the parking garage example the items are cars while in a 

hardware warehouse inventory items might be different kind of tools. The term 

stacking usually appears in the context of storage systems. Although it might be 

referred to the general situation in which items are stored on top of one another, it 

usually implies that the method of retrieval from the storage area is last in first out 

(LIFO). In a LIFO system the last item that is stored in the system is the first item to 

be retrieved. If the items can be retrieved regardless of their entering sequence the 

system will be randomly accessible. An Example is an inventory shelf where items 

can be stored vertically, but can be taken in any desired order. While stacks can be 

found in physical form in environments such as warehouses, their conceptual form is 

extensively used in the computer science and queuing theory. The storage rules in 

both forms are similar, but the purpose of stacking is different.  

In physical systems stacking is usually used because the storage area is limited and 

also because it is cheaper to put the items of approximately the same size on top of 

each other rather than building shelving systems and cellular structures. 

In computer systems however this is not the case. Stacks can be found in every level 

of a computer system not because it is cheaper to store data in a LIFO fashion, but 

because it is an efficient and powerful method to implement specific applications. In 
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the low level layers of a computer they are used for interrupt handling and system 

function call management. In the higher levels stacks have applications in expression 

evaluation and syntax parsing, runtime memory management, backtracking, etc. 

Using stacks for expression evaluation was first proposed by the early German 

computer scientist Friedrich L. Bauer and patented in 1957. He received IEEE 

Computer Society Pioneer Award in 1988 for his work on Computer Stacks (Broy 

2002).  

2.3.1. Overstowage 

Stacking the items might seem to be a cheap alternative at first, but it might come at 

the cost of overstowage. Overstowage happens when there is need to retrieve an item 

which is not located on the top of the stack. In that case the items must be temporarily 

retrieved one by one until the designated item becomes accessible. After that, the 

temporarily removed items must be put back into the stack. Overstowage happens in 

everyday life. For example in an overcrowded elevator some people might have to 

temporarily exit the elevator in order to let people who have reached their desired 

floor out of the elevator. While packing a suitcase for a trip, one usually tries to put 

the items that are needed more frequently on top to avoid overstowage. Drivers of the 

pick up and delivery service trucks like UPS and FedEx may experience overstowage 

if the packages that they want to reach far inside the truck are blocked by the recently 

loaded ones.  

Another example is the multiple-car carrier truck which, based on the size of the 

vehicles, can transport up to 12 vehicles in their stack shaped structure. Figure 2.1 

shows a schematic design of such trucks. There are two independent stacks in this 
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example each having capacity of five cars. For unloading the leftmost car in the top 

tier it is necessary to first unload all the other cars in that tier. So if all the cars are not 

destined to the same destination and enough attention is not paid while loading the 

cars, the operator may have to go through the process of unloading and loading the 

overstowed cars. This is both time consuming and expensive. Overstowing is not 

always a result of bad planning; it might be inevitable due to technical and 

operational constraints. In the case of multiple-car carrier there might be a situation 

that for example only sedan cars are allowed on the leftmost position. In that case if 

the truck has to transport 9 SUV’s and 1 sedan to two dealerships and the sedan 

happens to belong to the first dealership, then 4 SUV’s on top ought to be 

overstowed.  

 

Figure 2.1: Schematic of a multiple-car carrier truck 

 
Similar to the other stacking problems, stacking containers into the cellular columns 

of a containership or in the storage area of the container yard terminals may result in 

overstowage. The containers are stored in the yard before moving to the bays in the 

vessel. In order to prevent the situations like a container in the yard has to be moved 

so that the container below can be accessed; the terminal managers try to match the 

yard arrangement to the stowage plan. However some containers arrive while the 

loading process has already begun and that makes the overstowage in the yard 
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inevitable. The overstowage in containership occurs mainly because of the stability, 

technical and operational considerations. 

2.4. Complexity of the containership stowage problem 

 

In computing theory, the complexity of an algorithm is measured by the number of 

required operations in term of the size of the problem. For long time computer 

scientists and mathematicians have struggled to find the common features for some 

problems that could determine whether a polynomial time algorithm for solving them 

does or does not exist. Polynomial time refers to the computation time of an 

algorithm, where the running time is less than a polynomial function of the problem 

size. Nondeterministic Polynomial (NP) problems are problems that their solutions 

are verifiable in polynomial time. NP-complete problems are a subset of NP problems 

that are considered the hardest in the sense that no NP-complete problem can be 

solved by any known polynomial time algorithm. It is also proven that if there is a 

polynomial time algorithm for any NP-complete problem then there are polynomial 

algorithms for all NP-complete problems. Thousands of computer scientists have 

been unsuccessful for decades to design polynomial time algorithms for this class of 

problems. Based on the overwhelming empirical evidence many researchers have 

conjectured that there can be no polynomial time algorithm for any NP-complete 

problem; however nobody has been able to prove this. Optimization problems whose 

decision versions are NP-complete are called NP-hard (Papadimitriou and Steiglitz 

1998). Figure 2.2 shows a venn diagram of the conjectured relationships of different 

classes. 
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Figure 2.2: Conjectured relationships between P, NP, and NP-complete 

Researchers have taken different approaches to prove or at least show that the 

containership stowage planning problem with stability constraints is NP-Complete. 

These methods are summarized in this section. 

2.4.1. Connection to capacitated multi-stack overstowage problem 

 
Aslidis (1989) developed an exact analytical algorithm for solving the simplified case 

of single column and single size stacking problem to optimality. He shows that multi-

stack overstowage problems (MSOP) are much harder than their single stack 

counterparts and identifies two possible sources of difficulties for that. First it is the 

problem of assigning the containers to stacks to avoid overstowage. Since the time for 

finding optimal overstowage solution to the one stack problem is non-linear the 

assignment problem alone can make the problem very hard. Secondly the possibility 

of container switching among stacks through the voyage is another complexity factor. 

He presented a model for MSOP and transformed it into a minimum network cost 

flow problem with integrality constraints. By using a decision version of the problem 

he then proves that MSOP belongs to the class of NP problems. To prove that MSOP 
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problem is NP-complete, a general method is to find a known NP-complete problem 

and transform it to MSOP in polynomial time. Although the author found strong 

connection between MSOP and some well known NP-complete problems, he could 

not find a polynomial transformation. Thus Aslidis (1989) failed to mathematically 

prove that MSOP is NP-complete. By bringing the stability and operational 

constraints into MSOP he concluded that there is a very high chance that the problem 

is NP-complete. Introducing different size containers, operational constraints and 

crane utilization considerations adds to the complexity of the problem and one can 

use the same reasoning to consider the extended version of the problem NP-complete 

as well. 

 

2.4.2. Connection to tram dispatching problem 

 
Given a set of arriving trams, a set of departure schedules and a set of depot positions 

consisting of horizontal capacitated stacks, the tram dispatching problem (TDP) is the 

problem of assigning the trams to the stacks such that the cost of operations is 

minimized.  Winter (1999) proved that TDP is NP-complete. Using the binary 

programming model for containership stowage problem by Avriel and Penn (1993), 

the author established a connection between container stowage problem and the tram 

dispatch problem. It was assumed that shift operations for containers and shunting 

operations for trams are of the same nature but different. A transformation model 

from TDP to container stowage problem is presented. Results show that because of 

the NP-completeness of the problem if the stacks contain five or more positions, it is 

impossible to solve instances of more than fifteen trams in reasonable time. The 
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binary model by Avriel and Penn (1993) is developed for problem with uniform 

container size without considering the stability constraints. So based on its connection 

to TDP, it can be concluded that solution to the more comprehensive version of 

containership stowage problem cannot be obtained in polynomial time. 

2.4.3. Connection to the coloring of circle of graphs 

 
Graph coloring is a well known classical problem is graph theory. In general it is an 

assignment of colors to certain objects of a graph (e.g. edges or vertices) subject to 

certain constraints. Vertex coloring as a special case of graph coloring is the problem 

of coloring vertices of a graph such that no two adjacent vertices share the same 

color. Chromatic number of a graph is the least number of colors needed to color the 

graph. The problem of finding the minimum coloring of a graph is NP-hard and its 

corresponding decision problem is NP-complete (Jensen and Bjarne 1995).  

Avriel et al. (1999) considered a containership consisting of a single bay and that has 

C vertical columns and R rows. They called the bay capacitated if each column has a 

finite number of rows and uncapacitated otherwise. Given the transportation matrix 

and uniform size containers they defined the minimum shift problem as the problem 

of finding the stowage plan with the smallest number of shifts. The decision problem 

is the uncapacitated s-shift problem which indicates whether given a transportation 

matrix, a stowage plan with a cost of at most s shifts exists. They established a 

connection between the zero-shift problem and the coloring of overlap graphs. They 

proved that the uncapacitated zero-shift problem is NP-complete and finally 

concluded that uncapacitated shift problem is NP-complete. Since the simplified 
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containership stowage planning problem is NP-complete, the more complicated 

variances which account for stability and other constraints are also NP-complete. 

2.5. Crane scheduling and utilization 

One of the important decisions to be made by terminal operators is the crane 

scheduling, also known as the crane split problem. Quay cranes are the most 

expensive single unit of handling equipment at container terminals. By improving 

quay crane efficiency, ports can increase their productivity and improve their 

throughput.  Depending on the ship size, up to five cranes may simultaneously 

operate on the ship as this number may be doubled at the indented berth terminals. 

Crane scheduling problem is the problem of optimal assignment of quay cranes to the 

ships with respect to technical specifications of the cranes and the vessels. 

Daganzo(1989) proposed a MIP model for static crane allocation problem assuming 

that the berth length is not restricted. The objective function was to serve all the 

vessels and minimize their total delay cost. Exact and approximate solutions were 

presented. Furthermore, Peterkofsky and Daganzo (1990) used branch and bound to 

determine the departure time of multiple vessels and the number of cranes assigned to 

the bays while minimizing the total delay cost. Neither of the above works considered 

the interference among cranes and the precedence relationship among tasks. Lim et. 

al. (2004) introduced spatial constraints to the problem, assuming that cranes cannot 

cross each other. Dynamic programming algorithms, a probabilistic tabu search, and a 

heuristic was proposed to find a job to crane assignment that maximizes the 

throughput. Considered the quay cranes as processors and the vessels as jobs, Guan 

et. al. (2002) show a multiprocessor task scheduling model for berth allocation in 
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which the total weighted completion time of the jobs is minimized. They presented a 

heuristic for the problem and analyzed the worst case instances. More recently, Kim 

and Park (2004) described a mathematical model to determine the sequence of 

discharging and loading operations that a quay crane will perform so that turnaround 

time of a single vessel is minimized. They used branch and bound to obtain the 

optimal solution and developed a lower bound. To overcome the computational 

difficulty, they proposed a greedy randomized adaptive search procedure. Moccia et 

al. (2006) proposed modifications to the model by Kim and Park (2004) and 

formulated the problem as a vehicle routing problem with side constraints. They used 

a branch and cut algorithm for solving large instances of the problem and compared 

their results with the work by former authors. Imai et al. (2007) addressed the berth 

allocation problem with a consideration of serving simultaneously multiple small 

ships at an indented berth terminal. They conclude that although turnaround time of 

mega-ships was faster in such terminals, the total service time for all ships was longer 

than the one in a conventional terminal. 

Other researchers have considered crane scheduling jointly with other decision 

problems at port. Schonfeld and Sharafeldien (1985) developed a model for 

minimizing the total port costs which accounts for the delay costs, mutual 

interference among the cranes, minimum work shifts and storage yard constraints. 

The results showed that total costs can be reduced by increasing the number of cranes 

per berth and berth utilization.  Bish (2003) considered the crane scheduling along 

with storage assignment determination and vehicle dispatching problem and 

developed a heuristic to minimize the maximum turnaround time of all the ships in 
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the planning horizon. Park and Kim (2003) discussed an integer programming model 

for scheduling berth and quay cranes and presented a two-phase solution algorithm. 

In the first phase a near optimal solution for berthing times and positions of the 

vessels is determined and in the second phase the specific operating schedules for 

individual cranes are constructed. 

All previous studies were based on the assumption that all relevant containers are first 

unloaded before any are loaded. Goodchild and Daganzo (2007) studied the benefits 

of crane double cycling where loading and unloading operations are performed 

simultaneously. They formulated the problem as a scheduling problem and solved it 

using commercial solvers for small instances. A fast greedy algorithm and a lower 

bound are developed for real size problems. Zhang and Kim (2009) proposed a mixed 

integer programming model and a gap-based local search approach to maximize the 

number of dual-cycle operations of quay cranes. 

A comprehensive literature review on container terminal operations may be found in 

Steenkan et al.(2004). Previous useful literature reviews are presented in Iris and 

Rene (2003) and Meermans and Dekker (2001). 

2.6. Conclusions 

The containership stowage planning problem which is the problem of stacking 

containers into the cellular columns of a containership is an everyday problem solved 

by the ship planners. Overstowage which is both costly and time consuming occurs in 

containership loading and unloading operations because of inefficient planning, 

technical limitations or both. Researchers have approached the problem as a variation 

of bin packing problem with stability constraints, multi-column stacking problem and 
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assignment problem and have applied interesting techniques to minimize the 

overstowage. However the actual objective of stowage planning is to minimize the 

total time that the vessel spends at all ports. Although reducing overstowage may 

contribute to this goal, the role of other players in the loading and unloading 

operations such as quay cranes should not be ignored. Considering the quay crane 

assignment in containership stowage planning problem has not been addressed in the 

literature. Maximizing the utilization of quay side equipment while minimizing the 

number of overstowed containers can produce a better stowage plan which directly 

translates into cost saving and congestion reduction. This dissertation looks at the 

containership load planning problem from this new perspective.  
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Chapter 3: Problem formulation 
 

3.1. Problem statement 

Container port system consists of different subsystems. Because of the complexity of 

the operations, subsystems have been studied and analyzed individually. Recently 

researchers have paid more attention to the joint optimization of two or more 

subsystems. Containership load planning is an important part of the container 

transportation logistics. The growing competition among ports and increasing 

capacity of the containerships has resulted in congestion in major terminals and has 

put pressure on container terminal managers and shipping companies to improve their 

operations. At the quay side interface of the container port system, berthing time is 

the most important performance measure. Quay cranes are the most expensive 

equipment at port and they play a major role in the terminal productivity. Depending 

on the size of the vessel and availability of quay cranes, usually more than one crane 

will be assigned to a vessel. Assigning more cranes to a vessel might not improve the 

berthing time if the stowage plan of the vessel does not match the crane assignment. 

This research will combine the quay crane assignment with the traditional stowage 

planning problem in order to generate more efficient stowage plans. Instead of 

focusing on minimization of overstowage, the real objective function of the 

containership load planning which is the minimization of overall berthing time at all 

ports will be used. This will be done through maximizing the utilization of quay 

cranes while minimizing the unproductive container moves. Realistic stability and 

operational constraints as well as individual container characteristics are taken into 

account.  
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3.1.1. Modeling contribution 

No optimization model exists in the literature that addresses joint optimization of 

quay crane utilization and stowage planning. Very few mathematical models exist for 

containership stowage planning optimization. Each of these models has its own 

simplifications and shortcomings. More details can be found in section 2.1. To the 

best of our knowledge this is the first mathematical model to minimize total berthing 

time and accounts for containers of different weight, size and type as well as stability 

and real life operational constraints. It also introduces the assignment pattern and 

technical specifications of the quay cranes to the optimization framework. So far 

almost everybody has directly translated the minimization of shifts to the 

minimization of time at port and the ones who have mentioned the necessity of 

paying attention to the horizontal distribution of the containers during stowage 

planning have not considered it in their models (Giemsch, Jellinghaus 2003). This 

research fills this gap. 

3.2. Problem description 

A containership has a cellular structure. The containers are held in bays along the 

length of the ship. The containers are stacked in tiers in each bay. Each of these tiers 

is made up of a number of cells. The position of the container within the ship is 

entirely specified by three indices: bay-row-tier. The layout of bays, rows and tiers 

differs from ship to ship because the location of engine rooms, accommodation 

sections and hull shapes are different in each ship. Figure 3.1 shows the cellular 

structure of a sample containership.  
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Figure 3.1: Cellular structure of a containership (www.containerhandbuch.de) 

 
 
A general layout design can be looked at as a three dimensional matrix. Each element 

of the matrix corresponds to a cell in the vessel. This value might serve as the 

container number assigned to the corresponding cell or simply be a binary digit 

showing the availability of the cell. Specific hull shapes and design structures may be 

addressed by using predefined values in this way. Figure 3.2 shows the general 

layout. 

 

 
 

Figure 3.2: General cellular structure 
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Usually more than one quay crane operate on a containership at each port. Quay 

cranes move horizontally along the ship and load/unload containers to/from the vessel 

using a spreader arm. Horizontal moves are both slow and expensive, so they should 

be avoided as much as possible. These moves are also restricted by technical 

constraints such as no two cranes may work on the same bay simultaneously.  Quay 

cranes are the most expensive single unit handling equipment in container terminals. 

Therefore, by improving crane utilization, ports can reduce ship dwell time, increase 

throughput of the system and improve port productivity. Utilization of each crane is 

determined by dividing the crane busy time over ship dwell time. Distribution pattern 

of containers along the bays plays a crucial role in crane utilization. 

3.3 Containership stability 

 
Safety of the sea vessels, whether they are cruise ships or cargo ships, goes hand in hand with 

their stability. For the cargo and containerships it is crucial that the weight is properly 

distributed through the ship so that the structure is not overstressed and the standard criteria 

of stability are met. A brief summary of Hydrostatic as well as experimental rules of stability 

for containerships is given in this section. 

3.3.1. Hydrostatic rules of stability  

Stability of a vessel is the ability to return to its upright position when disturbed, after the 

disturbing force is eliminated.  Archimedes principle says that a body floating or submerged 

in a fluid is buoyed up by a force equal to the water it displaces. So a ship sinks if weight of 

water displaced by the underwater volume is less than the weight of the ship. One way to 

check for the stability of a ship is by measuring center of gravity (G) and the center of 

buoyancy (B) force. The former is the aggregation of all gravity forces acting downward 
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through ship’s geometric center and the latter is all the buoyancy forces acting upward as on 

force through underwater geometric center. Location of G remains the same unless weight is 

added, removed or shifted. The location of B changes as the ship heels. Depending on the 

location of G and B there exist a righting moment which tends to return the ship to the 

upright position and an upsetting moment which tends to overturn the ship (Barrass and 

Derrett 2005). The meta-center of the ship (M) is the intersection of different lines of 

buoyancy as the sheep heels through small angles. The relationship between M and G 

determines the stability status of the ship. According to the position of M and G three cases 

exist: 

 

1. G under M: Ship is in stable equilibrium meaning that when inclined, it tends to 

return to the initial upright position 

2. G above M: Unstable equilibrium exists. In this situation if the ship is inclined to a 

small angle, it tends to heel over even further. 

3. G coincides with M: Ship is in neutral equilibrium and if inclined to a small angle, it 

will tend to stay in that angle until another external force is applied. 

 

Figure 3.3 shows the forces on a sample vessel. 

 

Figure 3.4: Gravity forces, Buoyancy forces and Meta-center of a ship  
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Another tool to measure the stability is the meta-centric height (GM) which is the distance 

between the meta-center and the center of gravity. The typical working value for GM for 

containerships is approximately 1.5 m. If the GM falls below this threshold the vessel will be 

unstable. Generally speaking the higher density containers must be stored in the lower holds 

of the vessel in order to increase the meta-centric height. 

3.3.2. Experimental rules of stability  

Since calculating the meta-centric height requires detailed information of the containership 

structure, experimental rules of stability have been created by ship planners which are 

applicable to typical containerships. These rules can be categorized as longitudinal, cross and 

vertical equilibrium. 

 
Longitudinal equilibrium 
 
Containers stowed at the bow side of the ship create a tilt which acts as an opposite force to 

the tilt created by the containers at the stern side. If these forces cancel out each other the bow 

and stern will have the same waterline height. Longitudinal equilibrium requires that the 

difference in the height of waterline between bow and stern does not exceed a given 

threshold. Besides safety considerations the longitudinal equilibrium affects the required 

propulsion and the fuel consumption by the engine. Figure 3.5 shows this equilibrium. 

 

 

Figure 3.5: Longitudinal equilibrium  
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Cross equilibrium 
 
Relating to the axis of symmetry going through bow to stern, the containers at the left 

side create a tilt opposite to the one by the containers at the right side. If these tilts are 

not equal the vessel will heel toward the heavier side. To ensure the stability the 

weight difference between the two sides must be kept within a predetermined range. 

Figure 3.6 illustrates this situation. 

 

 

Figure 3.6: Cross equilibrium  

 

Vertical equilibrium 
 
According to the hydrostatic rules the location of center of gravity changes with the 

vertical shift of the weight in the vessel. However the vertical shift does not affect the 

center of buoyancy because the underwater portion of the containership does not 

change. This means that shifting the heavier containers to the lower compartments of 

the vessels increases the GM and improves the stability. This is the reason that empty 

containers are mostly stored above the deck area. The experimental rule of vertical 

stability requires that the total weight of each tier of containers to be less than or 

equal to the total weight of the tier underneath. 
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3.4 Operational consideration 

 
In addition to the vessel stability constraints, a number of operational constraints must be 

satisfied. Generally these constraints relate to the placement restrictions with respect to the 

size, type, content and strength of the containers. Some of these constraints are presented 

below. 

1. Weight of a single column: depending on the structural specification of the 

containership, there is a limit to the maximum weight of a single column of the 

containers that the deck structure can bear. So the weight of individual stacks may be 

restricted. 

2. Racking strength: The containers below deck are stored in cells, however above deck 

there are no cell guides. In this case the containers on the lower tiers hold the 

containers stowed above them. The planners must make sure that the weight of the 

upper containers does not exceed the strength of the base containers. This is one of 

the reasons that empty containers are usually stored above deck. 

3. Container support: standard cells are generally designed for twenty feet containers 

and 40 feet containers require two contiguous 20 feet cells. Each container needs to 

be fixed by four twisters to the upper corners of the containers below it, so smaller 

containers cannot be placed above larger ones.  

4. Refrigerated containers: refrigerated containers (reefers) are used for transporting 

perishable goods. They need to stay connected to the electricity outlet for the safety 

of their contents. There are also containers that require ventilation. These containers 

must be placed in certain areas of the vessel where their requirements can be met. 

5.  Hazardous containers: the placement of the containers containing hazardous 

materials is governed by the hazardous materials safety regulations. According to 

Code of Federal Regulations hazmat containers must be separated from other hazmat 
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and reefer containers by a minimum distance (CFR, Title 49, Transportation, Parts 

100-185).   

 

On June 22nd 2007, a large number of containers carried by the Ital Florida – a 3450 TEU 

fully cellular containership - were damaged at the Port of Trieste because of improper lashing 

and weight distribution. Figure 3.7 shows the incident. 

 

 

Figure 3.7: Damaged containers on Ital Florida (www.cargolaw.com) 

 

3.5 Assumptions 

Using the general cellular layout for the containership, each cell is identified using 

three indices: bay-row-tier. This address is a system of numerical coordinates relating 

to length, width and height of the containership. The route which the ship takes in her 

voyage and the sequence of the ports at which she stops are fixed and known. At each 

port a set of containers must be picked up and some containers must be unloaded. The 

number of containers to be loaded/unloaded at each port as well as the complete 

relevant information of the containers including weight, size, type and destination are 

also known. More than one quay crane may be assigned to a vessel at each port. The 
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number of available quay cranes, the range of bays in which they can operate on the 

ship as well as the technical parameters of the cranes are known.  

3.6. Mathematical model 

Based on the assumptions in the former section, a mathematical model that minimizes 

the ship’s berthing time at all ports by minimizing the number of re-handlings and 

maximizing crane utilization is developed. The model is a binary integer 

programming model which observes the stability and operational constraints. 

3.6.1. Parameters  

 
C  Set of all containers  

TF  Set of 20 ft containers 

R  Set of refrigerated containers 

H  Set of hazmat containers 

N  Set of all ports  

)(cO  Origin of container c 

)(cD  Destination of container c 

)(cW  Weight of container c 

)(cT  Size of container c in TEU 

tNQ  Number of quay cranes at port t 

)( ,tkQS  Start bay of crane k at port t 

)( ,tkQE  End  bay of crane k at port t 

)(max tW  Ship weight capacity at port t  

columnW  Maximum weight allowed for a column 

kP  Handling time of a container by crane k 

LRB  Left-Right balance threshold 

BSB  Bow-Stern balance threshold 
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CWL  Crane workload balance threshold 

 
Total weight limit of the ship might be different at different ports since the berthing 

depth limit is port specific and the ship draft must meet that limit.  

 
 

3.6.2. Decision variables  

 

⎩
⎨
⎧

=
0
1,,

,
zyx

tcδ  
If cell (x,y,z) is assigned to container c at port t; 

Otherwise 

⎩
⎨
⎧

=
0
1

, tcU  
If container c is unloaded at port t; 

Otherwise 

⎩
⎨
⎧

=
0
1

,, tdcI  

If container c is on top of container d at port t; 

Otherwise 

⎩
⎨
⎧

=
0
1

,, tkcJ  

If container c is handled by crane k at port t; 

Otherwise 
 

δ’s serve as assignment variables. They determine whether a given cell is occupied 

by a given container at a given port. The specific hull shape and design of a given 

containership can be addressed by assigning dummy containers  to the virtual cells 

which do not physically exist. Index variables I ’s keep track of the relative location 

of each two containers at any port. Decision variables U’s  show if the container has 

been unloaded at a port either because of rehandling or simply because it has reached 

the final destination. J ’s  are crane assignment variables and show the cranes that 

handle a container at each port. 
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3.6.3. Objective function 

 
The difference between the time of which the ship is released and the arrival time at 

port is called dwell time. The objective function minimizes the total dwell time at all 

ports which is as follows: 

∑ ∑∑∑
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Since this objective function is nonlinear we transfer the crane utilization 

considerations to the constraints and use (3.2) as objective function.  
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This objective function minimizes the total number of unloading and rehandling 

activities over the voyage. 

3.6.4. Cell assignment constraints 

The cell assignment constraints are written as follows. 
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Constraints (3.3) force a container to be assigned to a cell at its origin port and stay 

aboard up to its destination. Constraints (3.4) and (3.5) prohibit a container to be 

assigned to a cell before its origin or after its destination port. Constraints (3.6) ensure 

that an individual cell will be assigned to no more than one container at each time. 

Constraints (3.7) ensure a container will not be put on top of an empty cell. 

3.6.5. Stability constraints 

The stability constraints based on experimental rules of stability are written as 

follows. 
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The stability of the vessel must be maintained through the entire voyage. Constraints 

(3.8) and (3.9) are the horizontal and cross equilibrium stability showing that the 

weight difference between the right and the left and between bow side and stern side 

bays are within acceptable thresholds.  Constraints (3.10) indicate that the weight of 

each tier must be equal to or lighter than the weight of the tier underneath. Constraints 

(3.11) and (3.12) limit the total weight of the containers on board for the vessel and 

for each column respectively.  

To be more accurate (3.8) and (3.9) can be rewritten based on torque rather than 

weight as (3.13) and (3.14).  
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The horizontal torque by each container is calculated in relation to the axis of 

symmetry going through the ship from the bow to the stern, while the cross torque is 

evaluated in relation to the mid line of the ship. The total left side and right side 

torque could differ only within the given threshold. The same argument is valid for 

the total bow side and stern side torques. The minor imbalance caused by the 

accepted threshold will be corrected using the ballast water. 
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3.6.6. Shift constraints 

The shift constraints are written as follows. 

 
1)(, =cDcU  c∀  (3.15) 
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Constraints (3.15) force a container to be unloaded at its destination port. Constraints 

(3.16) determine whether a container is on top of another one at certain port. 

Constraints (3.17) enforce that a container cannot be positioned both under and above 

another container at the same time. Constraints (3.18) ensure a container to be 

unloaded if the container underneath has to be unloaded at a port. Constraints (3.19) 

and (3.20) imply that if the position of a container in the vessel changes from one port 

to another, the container must be rehandled in order to shift the position. 

3.6.7. Different size containers constraints 

 
The most common container sizes in business are 20 feet and 40 feet. In this 

formulation a container of size S TEU (20 feet equivalent unit) is treated as S 

individual 20’ containers. Having { }Scccc ,...,, 21= : 
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When assigning a multi-section container to the bay located at the end side of the 

vessel (3.21) makes sure that there is enough room available for all the sections. 

Constraints (3.22) force all the cells occupied by a multi-section container to stick 

together horizontally and (3.23) implies that all cells occupied by such a container 

must be unloaded should one of the sections be unloaded. This definition expands the 

flexibility of the formulation to address different stowing policies. Similar equations 

can be written for containers with irregular heights. 

With the presence of multi-section containers, the objective function in equation (3.2) 

must be changed as follow.  
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In (3.24) )(cT  is the TEU size of container c. Having this parameter as the 

denominator avoids double counting of the container moves for multi-section 

containers because all the sections are moved together as one piece.  

 

3.6.8. Crane utilization constraints 

The crane utilization constraints are as follows. 
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Given the number of quay cranes at each port and the range of bays on which the 

cranes will operate, constraints (3.25) through (3.28) find the cranes that perform the 

load/unload for each container at its origin and destination port, and ensure that only 

one crane will perform the handling.  Should a container be shifted at any port, 

constraints (3.29) and (3.30) find the crane that does the shifting at that port. 

Constraints (3.31) balance the load among available cranes at each port. It is required 

that the difference between the workload of any crane and the average workload over 

all cranes at a port does not exceed a given threshold.  
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3.6.9. Operational constraints 

The formulation is able to embrace other technical and operational considerations. 

For example in case of having containers of different sizes the operator may forbid 

putting large size containers on top of smaller ones (e.g. 40ft containers are not 

allowed on top of 20ft containers). Equation (3.32) formulates this rule.  
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In a reverse situation the following constrains can be used. 
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It is important to note that based on the operational rules only one set of constraints 

(3.32), (3.33) or neither of them should be in effect. 

As an example to specific design constraints consider a vessel that allows 40 ft 

containers only in specific bays while no such restriction is imposed on 20 ft 

containers. If a vessel can accommodate 40 ft containers only in bays with even 

indices the following constraint may be used. 
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This basically forces all the sections of a multi-section container to avoid odd bays. 
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The regulations regarding special type containers can be formulated in a similar 

fashion. For example perishable commodities are loaded into refrigerated containers. 

These containers should be plugged into electricity outlets which are available only in 

some sections of the vessel.  Equation (3.35) implies this regulation. 
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When having hazmat containers mixed with other cargo, appropriate rules must be 

observed. For example if a special safety standard forbids storing a hazmat container 

adjacent to a refrigerated container the following constraints should be added to the 

model. 
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Constraints (3.36) and (3.37) avoid horizontal adjacency and (3.38) forbid vertical 

adjacency of each two hazmat and refrigerated containers.  

3.7. Summary and conclusion 

 
A binary integer programming model is proposed to solve the containership loading 

problem which is the problem of assigning containers to the cells of a containership 

that calls multiple ports. The objective function minimizes the total turnaround time 
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of the vessel at all ports which is different from the objective function of stowage 

planning. The containers have different types, sizes and weights. Stability 

considerations are addressed in the form of cross and horizontal equilibrium, tier 

equilibrium and single column constraints. These are experimental rules of stability; 

however more accurate forms of stability such as meta-centric height calculations can 

be modeled using the given notation as long as they are linear or can be approximated 

by linear functions. Operational rules regarding the placement of different size 

containers as well as special purpose containers (e.g. hazmat) are modeled as 

constraints. This optimization model tries to maximize the utilization of the quay 

cranes while minimizing the number of shifts in order to minimize the overall time 

that the vessel spends at all visiting ports. The model is flexible and can easily 

embrace new operational rules and constraints.  
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Chapter 4: Formulation validation 

 

4.1. Generating sample problems 

To validate the mathematical model in chapter 3, sample problems have been 

generated and solved using commercial solver CPLEX 12.0. Each problem consists 

of following elements: 

1. Number of ports to be visited 

2. Number of cranes at each port plus the operating range of each crane  

3. Dimensions of the containership )( ZYX ××  

4. List of containers to be transported. Each container has an identification 

number, origin port, destination port, size, type and weight 

The list of the containers is randomly generated for each example such that the basic 

feasibility requirement is met. To define basic feasibility a transportation matrix T is 

built based on the list of the containers: 
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If pL and pU  are the lists of containers to be loaded and unloaded at port p  
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Since the unloading is done before the loading starts, the problem is feasible only if at 

each port there are at least  pL  cells available in the vessel after all pU  containers 

are removed. A program source code is developed to generate such problems. 

4.2. Model verification 

To verify the accuracy of the mathematical model, formulations are generated for 

several sample problems and solved using CPLEX solver. A computer program is 

developed for analyzing the output by calculating some performance measures and 

visualizing the results. 

4.2.1. Sample problem from Avriel and Penn (1993) 

As it was mentioned in the literature review Avriel and Penn (1993) developed an 

integer programming model to minimize number of shifts in stowage planning with 

single size containers. Stability constraints are not considered in this model. A sample 

problem is reported in their paper and solved to the optimality. To make sure that the 

model in chapter 3 is able to produce optimal solution for the same problem, a 

formulation is generated by relaxing crane utilization and stability constraints. The 

containership in this example calls five ports. The ship has one bay consisting of two 

rows and five columns. Table 4.1 shows the transportation matrix. 

 

Table 4.1: Transportation matrix for Avriel and Penn (1993)  

From/To 2 3 4 5
1 4 4 2 0
2 0 2 0 1
3 0 0 0 5
4 0 0 0 1
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Although the total number of containers is 19, the total number of unload operations 

is reported to be 20. This means that at least one shift is necessary. The output from 

the new model confirms this. Figure 4.1 is a graphical representation of port by port 

view of the solution. Each rectangle represents a container painted in two colors. The 

narrow color bar shows the origin port of the container and the wide bar is color 

coded to show the port of destination. The container assignment in this figure shows 

the stowage planning upon leaving the port. Some containers may be marked with a 

black or a red dot on their top right corner. The black dot means that the container 

will be unloaded at the next port while the red dot means that the container will be 

shifted at the next port. The black frame surrounding the container means that the 

container has been shifted in that port. In this example container 13 must be shifted at 

port 4. 

 

Figure 4.1: Solution to the original sample problem 
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4.2.2. Sample problem from Avriel and Penn (1993) with stability constraints 

Assume that all containers in the previous example are of the same weight and each 

weigh 1 unit. It can be observed that the previous solution is not conforming with 

stability constraints since at ports 2, 3 and 4 total weight on the right side is not equal 

to the total weight on the left. If we allow 1 unit tolerance in the weight difference 

only ports 3 and 4 will violate the stability. We solve the problem again considering 

stability constraints with 1 unit threshold. The optimal solution can be seen in Figure 

4.2. 

  

Figure 4.2: Optimal solution with stability constrains 

 

Number of shifts has increased to 2 in this case. This means that observing stability 

constraints may come at cost of extra shifts. Had we set the stability weight threshold 

to zero the problem would have been infeasible. This is because at ports 2 and 4 no 

arrangement of the containers will result in such balance. In the real operations 

imbalances are taken care of by using ballast water. 
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Consider the case that in the above example all containers with even numbers weigh 

twice as much as the ones with odd numbers. If we formulate and solve the problem 

based on these new assumptions and set the stability tolerance to 1 weight unit, the 

number of shifts in the optimal solution will be 3.  

 

4.2.3. Effect of stack size on computational time 

In this example, a containership will visit five ports. The transportation matrix is 

shown in Table 4.2, with a total of 38 containers of the same size and weight.  

 

Table 4.2: Transportation matrix for the sample problem 

From/To 2 3 4 5 
1 8 8 4 0 
2  4 0 2 
3   0 5 
4    2 

 

Mathematical models are generated for five hypothetical containerships with 

approximately the same capacity (20-21 TEU) but different structures. To investigate 

the effect of stack size on computational time, the objective function minimizes the 

number of shifts at all ports while the crane and stability constraints are relaxed. 

Optimal solutions are obtained for all hypothetical containerships using the CPLEX 

solver. The ships’ structures and the corresponding computational times are 

summarized in Table 4.3. 
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Table 4.3: Ship configuration and running time for optimal solution 

Ship Bay Row Tier Capacity 
(TEU) 

Number 
of binary 
variables 

Total 
number of 
constraints 

Number 
of shift 

constraints 

Running 
time 

(Second) 
1 5 2 2 20 11020 86174 85674 521 
2 4 1 5 20 11020 128384 127854 2011 
3 3 1 7 21 11210 142595 142050 93465 
4 2 1 10 20 11020 142454 141914 386142 
5 1 1 20 20 11020 149489 148944 NA 

 

The number of constraints in the formulation rises as the size of the stack increases. 

Most of the constraints relate to shift operations.  It can be observed that for this 

example the running time grows dramatically with the increase in the number of tiers. 

For ship 5 the solver could not reach optimality in one week.  

To investigate the pattern of the running time growth, four additional transportation 

matrices were generated and the solution was collected for ship structures 1 through 4 

(optimal solution could not be obtained for containership 5). For each ship, average 

running time was calculated using the five recorded running times. The results are 

shown in Figure 4.3. The graph suggests that the running time rises exponentially as 

the height of the stack increases. This was expected from the literature since the 

problem is NP-Complete.  
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Figure 4.3: Average running time vs. ship structure 

4.2.4. Sample problem for different size containers 

This example aims to verify the situation of having a mix of 20’ and 40’ containers 

and the related operational policies. A containership with 5 bays, 1 row and 3 tiers is 

visiting three ports and is transporting 14 containers, 3 of which are 40’ and the rest 

are 20’. The stability constraints are in place with threshold set as 1 weight unit. All 

containers are of the same weight. If 40’ containers are not allowed on top of 20’ 

units, the optimal solution will look like what is shown in Figure 4.4. 

 

 

Figure 4.4: Results for no 40’ container on top of 20’ policy 

1 2 3 4

Ship Structure

C
PU

 T
im

e 
(s

ec
on

d)
CPU Time



 63 
 

 

Containers 2, 7 and 12 are 40’ and are marked with asterisk. Since this figure shows 

the stowage planning upon leaving each port, there is no need to display the results 

for port 3 because the ship is empty then. No shift is necessary in this case. However 

if the regulation is changed such that 20’ containers are not allowed on top of 40’ 

containers, shifting of container 7 at port 2 will be inevitable. Figure 4.5 shows the 

optimal solution based on this regulation. 

 

 

Figure 4.5: Results for no 20’ container on top of 40’ policy 

 

4.3. Crane workload balancing 

As it has been mentioned in the problem statement, the objective function of the 

stowage planning must be to minimize the total ship turnaround time at all ports. Part 

of this may be achieved by minimizing the shifts; however that is not the only factor. 

Knowing the assignment of quay cranes at teach port, efficient use of this equipment 

must be considered in the stowage planning. The next two examples try to highlight 

the difference between using minimizing total time at ports as objective function and 
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the traditional stowage planning objective function which is the minimization of the 

shifts. 

 

4.3.1. Crane workload balancing with single size containers 

The containership in this example has 4 bays, 1 row and 5 tiers. There are five ports 

to be visited and 38 containers of the size 20’ to be transported. The stability 

tolerance is set to a maximum of 1 weight unit. This example explores the effect of 

crane split on the solution. It is assumed that two cranes are available at each port, 

and each crane can handle one container per unit time. Handling includes loading a 

container at its origin, unloading at destination or shifting the position at an 

intermediate port. Four scenarios are compared in this example. In the first two 

scenarios all containers are assumed to have the same weight, while in scenarios 3 

and 4, the containers departing from port 2 are four times heavier than the others. 

Scenarios 2 and 4 are the cases with the optimization of total turnaround time as the 

objective function while scenarios 1 and 3 are the classic stowage planning problems. 

Figure 4.6 shows the stowage plan for the second scenario.  

 

Figure 4.6: Stowage planning results for scenario 2 
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The operational range of each quay crane is shown in Figure 4.6. The last port is not 

displayed since the ship is empty after the operations are completed at that port. Total 

number of container handlings, total time spent at all ports, utilization of each crane 

and average carne utilization for each scenario are presented in Table 4.4. Utilization 

of each crane at each port is calculated by dividing the crane busy time over the total 

time that the vessel spends at the port. For scenarios 1 and 3 total time at all ports is a 

direct output of the model and the total number of handlings is calculated using the 

final value of the decision variables. The reverse happens in scenarios 2 and 4 in 

which the total number of handlings is obtained by the objective function and total 

time at all ports is calculated using the output variables. 

 

Table 4.4: Summary of the results for four scenarios 

 Port 1 Port 2 Port 3 Port 4 Port 5 Total 
number of 
container 
handlings 

Total 
time at 

all 
ports 

Average 
crane 

utilization 
% 

Crane 
utilization 

% 

Crane 
utilization 

% 

Crane 
utilization 

% 

Crane 
utilization 

% 

Crane 
utilization 

% 
1 2 1 2 1 2 1 2 1 2 

Scenario 1 100 100 100 56 73 100 20 100 100 100 42 46 84.9 
Scenario 2 100 100 100 100 100 85 100 80 100 100 43 40 96.5 
Scenario 3 100 100 100 100 100 77 100 60 100 100 41 42 93.7 
Scenario 4 100 100 88 100 92 100 100 100 100 100 42 41 98 
 

The number of handlings in scenario 2 is slightly greater than scenario 1, however the 

average crane utilization is 14% higher than that of scenario 1. By distributing 

workload between cranes properly, 13% improvement in total berthing time is 

achieved in this example. Similar comparison between scenarios 3 and 4 shows 2.5% 

improvement in berthing time. Solutions details including the input and output for 

scenario 3 are provided in Appendix B. 
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4.3.2. Crane workload balancing with different size containers 

This example illustrates a case with mixed size containers. A containership with six 

bays, two rows and three tiers will visit four ports. There are 44 containers to be 

transported of which 16 are 40’ and 28 are 20’ containers. It is assumed that there are 

two cranes available at ports 1 and 4, and three cranes at ports 2 and 3.  

Similar to previous example two scenarios are tested. The summary of the results is 

shown in Table 4.5.While total number of handlings is equal in both cases, optimizing 

the crane utilization has improved the total berthing time by 7% in this example.   

 

Table 4.5: Summary of the results for two scenarios 

 Port 1 Port 2 Port 3 Port 4 Total 
number of 
container 
handlings 

Total 
time 
at all 
ports 

Average 
crane 

utilization 
% 

Crane 
utilization 

% 

Crane 
utilization % 

Crane 
utilization % 

Crane 
utilization 

% 
1 2 1 2 3 1 2 3 1 2 

Scenario 1 100 93 40 40 100 80 80 100 100 100 61 57 83.3 
Scenario 2 93 100 100 86 71 100 93 86 100 100 61 53 92.9 

 

4.3. Summary 

The examples in this chapter demonstrate the potential for saving in the total ship 

turnaround time if an appropriate objective function is used in stowage planning 

optimization. While minimizing shifts helps to reduce the turnaround time, it should 

not be used as the objective function. The results show that concurrent maximization 

of crane utilization and minimization of shifts improves the overall turnaround time at 

all ports. The model balances the tradeoff between the crane utilization and extra 

container movements.  
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The results also show that the model in its current form is capable of handling 

required operational and technical constraints. Unfortunately since the problem is NP-

Complete even the small size problems can be very computationally expensive. 

Running time is highly correlated with the height of the stack and grows 

exponentially as the stack size increases. No analytical method exists for solving 

multi-column stacking problem with stability constraints according to the literature. 

Thus heuristics are needed to deal with the real size containership loading problem.  
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Chapter 5: An algorithm for containership load planning 
optimization 
 

5.1. Introduction to optimization 

According to the Merriam-Webster dictionary the optimization is defined as “an act, 

process, or methodology of making something (such as a design, system, or decision) 

as fully perfect, functional, or effective as possible”. Optimization techniques have 

been used in a broad range of engineering applications in order to find the best 

possible solution within the limits and constraints of a problem. Differentiation and 

gradient based optimization, hill climbing and linear programming are among the 

well known traditional mathematical approaches for solving engineering problems. 

However in many real optimization problems the corresponding mathematical 

function is not well-behaved, the solution space is discrete or the problem is multiple 

criteria. In such cases these conventional methods will either fail to cope with the 

complexity of the problem or simply need extensive computational resources. 

Solution techniques such as evolutionary algorithms will be helpful in this kind of 

situation.  

5.1.1. Evolutionary algorithms 

Conventional optimization techniques are often incapable of dealing with non-linear 

multi-criteria optimization problems. In such cases a random search in the solution 

space in hope of finding the optimal feasible point is an alternative method. However 

performing a random search in an unsystematic manner can be extremely inefficient. 

Many efforts have been made to add intelligence to the random search procedures in 
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the past decades. Evolutionary Algorithms as a class of intelligent search methods are 

results of such efforts. 

Evolutionary Algorithms imitate the mechanisms inspired by biological evolution 

namely reproduction, mutation, recombination, natural selection and survival of the 

fittest. Individuals of the population are represented by candidate solutions to the 

optimization problem, and the fitness function determines the environment within 

which the solutions live. Evolution of the population is then simulated by applying 

the above operators iteratively. Genetic Algorithm is the most popular variant in this 

class. 

Evolutionary Algorithms are not the only intelligent search methods inspired by ideas 

from the nature. Simulated Annealing, Tabu Search, Ant Colony and Harmony 

Search are examples of meta-heuristics which work based on the behavior of natural 

systems.  

Simulated Annealing is based on the process of heating and controlled cooling of a 

material. It basically traverses the search space by replacing the current solution with 

a random nearby solution. The neighbor will be accepted if it is superior. For an 

inferior neighbor the acceptance probability depends on the difference between the 

corresponding function value and a global temperature parameter. Altering the 

temperature parameter during the process modifies the nature of the search.  

Tabu Search is similar to the Simulated Annealing with the difference of generating 

more than one neighboring solution at each step. It moves to a better mutated solution 

by picking the neighbor with best fitness of those generated. Cycles are prevented by 

maintaining a tabu list of solutions which is being updated throughout the process. 
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Moving to the solutions that contains elements of the tabu list is prohibited. The idea 

came from observation of human behavior which appears to operate with a random 

element leading to inconsistent behavior given similar circumstances (Glover and 

Laguna 1997). 

Ant Colony Algorithm is a probabilistic technique for optimization that hires a large 

number of artificial ants to incrementally build the final solution. It works by 

mimicking the movements of the ants in the real world. While searching for food or 

returning to their colony, ants lay down pheromone trails on their path which will be 

used by later ants to guide their search. As the time goes by, however, the pheromone 

trail starts to evaporate, lowering the attractiveness of the trail. This technique usually 

outperforms other meta-heuristics in routing problems such as traveling salesman 

problem when the graph changes dynamically (Dorigo Marco, Thomas Stützle 2004). 

Harmony Search is another meta-heuristic which simulates the improvisation process 

by a musical band. While improvising each musician plays a note until finding the 

best harmony all together. Based on this idea decision variables in an optimization 

problem will accept different values and interact with each other to find the best 

solution vector all together. 

5.1.2. Genetic Algorithms 

Genetic Algorithm (GA) is an adaptive heuristic search method based on the 

evolutionary idea of natural selection which represents processes in natural system for 

evolution, specifically the principle of survival of the fittest by Charles Darwin. As 

such it performs an intelligent directed random search within a defined search space 

to optimize a problem. Genetic Algorithms use a vector of numbers to represent 
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decision variables. They pursue an iterative process in which several solution points 

are being explored simultaneously at each step. The only information required for 

search is a fitness assessment. An illustration of the general process is shown in 

Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Flowchart of Genetic Algorithm 

 

In summary genetic algorithms have been widely used to solve optimization problems 

where the analytical and other evolutionary methods fail. Some advantages and 

features of the genetic algorithms are as follow: 
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• They run simultaneous search over multiple regions of the search space rather 

than a unique point since a population is investigated at each step. This makes 

genetic algorithm suitable for parallel computing. 

•  They work with both continuous and discrete parameters as well as 

combination of them. 

• They can handle a large number of parameters. 

• They do not need a profound knowledge about the mathematical structure of 

the solution space in order to solve the problem. 

• They can optimize multi-objective optimization problems to provide a list of 

solutions instead of a single one. 

• Genetic algorithms are stochastic, not deterministic. 

• They can work with incomplete information and noisy data.  

• Genetic algorithms are flexible in cooperating with other techniques and can 

be part of hybrid methods. 

• They have been successfully applied to a large number of complex problems 

in different fields of engineering. 

• Genetic algorithms perform a very large number of objective function 

evaluations. Hence if such evaluations are computationally expensive, then 

the convergence might take a long time. 

 

The following definitions are often used in genetic algorithm literature: 

• Chromosome: The data structure that holds a potential solution. 



 73 
 

• Gene: Fraction of a chromosome that represents a parameter in a potential 

solution. 

• Individual: Collection of a chromosome and its fitness value.  

• Alleles: The set of values that a gene can accept. 

• Locus: The position of the gene on the chromosome. 

• Genotype: In Biology a genotype is the total genetic information of an 

organism or phenotype and it can consist of one or more chromosomes. In 

most genetic algorithm applications however, a unique chromosome contains 

the total genetic information of the organism (solution), so this unique 

chromosome also represents the genotype of the organism. Because of that the 

terms genotype and chromosome are often used interchangeably in genetic 

algorithms context. 

• Phenotype: The solution or organism built based on a genotype. For example 

if a chromosome represents the location of the containers in a containership 

stowage plan, the encoded locations will represent the genotype of the 

stowage plan while the actual vessel loaded based on that stowage plan makes 

the respective phenotype. 

The complete terminology of the genetic algorithms can be found in Rawlins (1991). 

5.2. Genetic Algorithm for containership load planning 

As it was mentioned in the literature review in Chapter 2, containership stowage 

planning with uniform size containers is NP-Complete. Introducing multiple-size 

containers and crane assignment to the stowage planning adds to the complexity of 

the problem and because of that the mathematical model described in chapter 3 is 
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incapable of solving the real size problems. To overcome the large number of 

variables and constraints, the model can be reformulated to assign groups of 

containers to the bays of the vessel rather than individual ones. Grouping can be done 

based on a given property such as size, type or destinations and this will reduce the 

problem size significantly and such model can be solved using branch and bound 

methods. The assignment of individual containers into the cells in each bay is done in 

another step.  However the drawback of the simplification by decomposition is the 

inflexibility in dealing with constraints specially while trying to optimize crane 

utilization. This method accompanied by a tabu search was developed by Wilson and 

Roach (1999), (2000) to solve stowage planning. One of the most challenging issues 

in combinatorial optimization is to deal with the combinatorial explosion effectively, 

such that the algorithm can generate solutions to the real world size problems in a 

timely manner. Genetic Algorithms have been successfully applied to the 

containership stowage planning problem before by Todd and Sen (1997) and 

Debrovsky et al. (2002). They solved instances of the containership where all the 

containers are of the same size. The former researchers used transverse as well as 

vertical center of gravity to address the stability while the latter group only used the 

horizontal equilibrium.    

5.2.1. Genetic encoding 

In a genetic algorithm each potential solution is represented by a string with a fixed 

bit-length known as chromosome that encodes the decision variables. This 

representation is a key part of the genetic algorithm because the genetic operators 

directly manipulate the chromosomes as representatives of the solutions. “The 
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complexity of a problem largely depends on the interactions between variables of a 

solution. A stochastic search process like evolution will perform well on a complex 

problem only when the search distribution is adapted to these interactions, i.e., when 

the search distribution obeys these dependencies between variables (Toussaint 

2005)”. To have a successful and efficient use of the genetic algorithm, it is crucial to 

find a proper representation of the problem, also known as genetic encoding and 

develop appropriate operators that conform to the characteristics of the problem. In 

other words the efficiency of the natural evolution process to perform an intelligent or 

learned exhaustive search for optimal or near optimal solution within a complex 

structure in which the fitness is measured by the interaction among variables, highly 

depends on a genetic representation that is both expressive and evolvable. In most 

genetic algorithms the individuals are represented by fixed-length binary strings that 

consist of genes with values of 0 or 1. The genetic encoding does not have to be 

binary, other types of encoding such as real-number encoding, integer or literal 

permutation encoding, and general data structure encoding can be used for different 

optimization problems. According to Collins and Eaton (1997) there does not exist a 

single encoding strategy that performs well on all optimization problems.  

Infeasibility and Illegality are two common issues while developing the genetic 

encoding. There are two categories of spaces in each genetic algorithm: genotype 

space and phenotype space. Genetic operators work on genotype space where they 

manipulate different parameters of the problem. Evolution and selection on the other 

hand are done in phenotype space where the chromosomes are being evaluated. The 

mapping from genotype to phenotype space is a major contributing factor in the 
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performance of the genetic algorithm. Infeasibility happens when a solution decoded 

from a chromosome falls outside of the feasible region of the problem. Illegality 

refers to the case that a chromosome does not correspond to any solution of given 

problem at all. Infeasibility originates from violation of constraints and by penalizing 

the unsatisfied constraints the algorithm will direct the search toward the feasible 

region. Illegality however is a result of genetic operators where a generated offspring 

does not represent a valid solution to the problem. A good genetic encoding and 

proper design of genetic operators decreases the illegality. “Because an illegal 

chromosome cannot be decoded to a solution, the penalty techniques are inapplicable 

to this situation. Repair techniques are usually adopted to convert an illegal 

chromosome to a legal one (Cheng and Gen 2000)”. Figure 5.2 shows the phenotype 

and genotype space for a typical problem.  

 

 

 

 

 

Figure 5.2: Infeasibility and Illegality 

 

A new genetic encoding for containership loading problem is designed in this 
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planning problem are reviewed. The terms complete and compact encoding in 

stowage planning was first introduced by Debrovsky et al.(2002).  

 
Complete encoding by Todd and Sen (1997) 
 

In a complete encoding the whole layout of the vessel at each port is encoded into the 

chromosomes. In other words each gene represents a cell and alleles are the set of all 

the container numbers to be transported. So for an X-TEU containership visiting N  

ports the genotype consists of a string of integers with a length equal to XN × . This 

encoding is trivial and easy to implement but it has some shortcomings. Evaluating 

the fitness of the chromosomes requires the processing of the complete layout for four 

criteria: unloading, proximity, transverse center of gravity and vertical center of 

gravity. This is very time consuming especially when the population size goes up. But 

the main drawback is the illegality of the resulting offspring by the crossover 

operator. The crossover operator is designed to restrict an individual to mate only 

with the individuals who are located in its close surroundings in the criteria space. 

Omission and duplication of containers in the resulting strings can occur as a result of 

such restriction. To fix the inconsistency in the results, a repair procedure is used 

which manipulates the offsprings after the crossover is done. This repair routine is not 

only time consuming, but also will partially destroy some of the inherited information 

that are accumulated during previous iterations. 

 
Compact encoding by Debrovsky et. al. (2002) 
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To overcome the disadvantages of the complete encoding, the compact encoding 

introduces a new representation which stores only the changes in the layout that result 

from the loading and unloading along the route instead of the complete layout. It 

reduces the processing time for evaluating the chromosomes, preserves the 

consistency of the layout, insures the legitimacy of the crossover operator and allows 

convergence to good solutions within a reasonable time by decreasing the search 

space and storage resource consumption. For a containership visiting N ports, the 

genotype is divided into N  sections. Each section consists of four lists: (1) list of 

columns for loading the containers originated at the corresponding port, (2) list of 

columns for loading the containers that were unloaded due to necessary shift, (3) list 

of columns for loading the containers that were unloaded due to voluntary shift, (4) 

list of columns from which the containers should be unloaded because of voluntary 

shifts. To simulate the ship unloading and loading operations two auxiliary vectors 

are hired for each port. One of these vectors contains the destinations of the loading 

containers which can initially be acquired from the transportation matrix. The other 

vector which is two dimensional is a column waiting list which keeps the column 

information for the containers to be loaded at the port and is obtained from decoding 

the corresponding solution chromosome. The total number of shifts will be known 

only after running the solution decoding procedure. 

Although this encoding has reported to be more efficient than the complete encoding, 

it does not account for multiple-size containers. Both complete and compact 

encodings presented above must undergo significant changes to be able to handle mix 

of 20 and 40 ft containers. The reported real size problem solved using this encoding 
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had single size and uniform weight containers. Handling the stability was 

demonstrated by keeping the horizontal tilt within a threshold. However to enforce 

the vertical stability constraints which are a major source of mandatory shifts would 

be challenging for this method because of the genotype structure. 

 
Assignment policy based encoding  
 

As it was mentioned before the containers differ in weight, size and type. Export 

containers arrive to the container yard before the containership arrives, although some 

of them might arrive while the loading of the vessel has already started. Due to the 

shortage of space the terminal managers usually stack the containers in the terminal. 

It is a common practice to group the containers based on properties such as weigh, 

size or destination and then allocate the groups to the yard stacks .If the configuration 

of the stacks conforms to the stowage plan of the containership the unnecessary 

reshufflings of the containers at the yard can be minimized.  

For loading the containers into the vessel on the other hand different strategies exist. 

The quay crane drivers may load the containers into the cells at one row and then 

move to the adjacent row, or they may fill up one column and then move to the next 

column in the row. Figure 5.3 illustrates these strategies. 
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Figure 5.3: Horizontal and vertical loading strategies 

 

The key idea for assignment policy based genetic representation comes from the 

combination of above grouping and loading strategies in the container terminal. In 

fact instead of searching for the favorite container to cell assignment pattern the 

search can be done to find the best combination of sorting, grouping and loading 

strategy at each port. Each chromosome string consists of several sections each of 

which corresponding to a visiting port. Each section then is divided into two 

subsections to represent sorting method and assignment strategy respectively. These 

subsections are represented by binary strings.  

Four basic properties of the containers are size, weight, destination and type. One can 

sort a list of containers based on each of these criteria or any combination of them. 

For example the list can be sorted by destination only or by destination first, then 

weight and then size. Furthermore each criterion can be applied ascending or 

descending. Total number of sorting possibilities can be calculated as follow: 
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Total sorting combinations: 6322
4

1

4 =×∑
=r

r
rP  

There might be cases that none of the above sorting methods will suit the problem. To 

address this situation another sort based on random key is added to the pool of sorting 

options, so that containers can be retrieved and allocated in a predetermined random 

order. 

Containers in the sorted list then can be retrieved and assigned to the available cells in 

the vessel. Initially at the first port all the cells are available. After berthing at each 

forthcoming port, first the containers that have reached their destinations will be 

unloaded. Because the containers are only accessible from the top of the stack, all the 

containers that block the access to container that should be unloaded must be 

removed first. These are the containers that have not reached their final destination 

yet, but must be shifted in order to allow access to the container below them. These 

containers must be loaded back into the vessel, along with the containers that 

originate from the current port. They may be given a location that is different from 

their former location in the ship. The recently emptied cells will be included in the set 

of available cells in the vessel. The allocation of export containers can be done 

horizontally or vertically as illustrated in Figure 5.3. In vertical policy the cells of 

each column are assigned from bottom to the top due to the fact that excluding the 

most bottom cell, a container can be stored in a cell only if the cell under it is not 

empty. For horizontal policy cells can be picked row-wise or bay-wise. In other 

words the cells can be picked horizontally either from bow side to the stern side and 

then from shore side to the water side or vice versa. In addition to that there are plenty 

of other orders in which the bays and rows can be picked. For example in selecting 
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the bays one strategy can be picking one bay after another from bow to stern while an 

alternative strategy is to pick every other bay from the opposite direction. 

Combination of vertical and horizontal assignment strategy and the orders in which 

cells can be picked in each strategy creates a pool of possibilities to choose from. 

Stowage plan at each port can be constructed by allocating the sorted list of 

containers to the containership cells according to the encoded sorting method and 

assignment strategy for that port. Figure 5.4 is a visual representation of this concept. 

The generated stowage plan then can be analyzed to evaluate the fitness of the 

solution. 

 

Figure 5.4: Different sorting and assignment policies for loading a containership 

 

Usually a major part of the stowage pattern remains intact between two consecutive 

ports. Its implication for the new encoding is that the stowage plan for the next port 

will be built based on the remaining stowage pattern at the current port after 
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unloading is complete. However based on the structure of the program and the 

characteristics of the containers no feasible or competitive solution might be 

generated if the existing stowage plan is fixed. To address that issue and to make sure 

that the genetic algorithm can exploit the solution space effectively an extra bit is 

added to the genotype which determines whether the existing stowage plan at the 

current port should be relaxed. In other words if the aforementioned gene has the 

value of 1, all the containers already loaded in the vessel will be subject to cell 

allocation along with the export and shift containers. Although a large number of 

these containers might end up staying in the same positions, it is important to keep the 

options open for the algorithm to look for optimal allocation. Figure 5.5 shows an 

illustration of assignment based genetic encoding. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Illustration of assignment policy based genetic encoding 

 
It can be observed that the length of the solution string is a function of the number of 

ports and is independent of the number of containers and the layout of the vessel. The 
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sort and assignment policy information for each port can be stored in 4 bytes, so the 

length of each chromosome is N*4  byte which is very compact and memory 

efficient. 

5.2.2. Evaluation of solution 

The selection mechanism of genetic algorithm looks at the fitness value of each 

chromosome to decide its fate. The better the value of the fitness is, the higher is the 

chance of advancing to the next generation. The objective function of the 

containership loading problem with quay crane assignment consideration is to 

minimize total turnaround time at all ports. This is an appropriate objective function if 

the value of time at all ports is equal. Otherwise by multiplying the turnaround time at 

each port by its cost parameter we can build an economical objective function to 

minimize total cost of the operations at all ports. However the objective function 

value is one of the components of the fitness function. With the presence of stability 

and operational constraints, more components must be added to the fitness evaluation 

function to penalize the violation of the corresponding constraints. Imposing penalty 

to the solutions that do not satisfy the constraints helps the genetic algorithm and its 

operators to move toward the feasible area of the solution space. Evaluation of a 

chromosome needs four steps: first is to decode the solution, second is to transform 

the decoded genotype to the corresponding phenotype, third is the analysis of the 

resulting phenotype and the final step is to calculate the final fitness value by 

summation of normalized objective function  and the penalties. 
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Decoding a solution 
 

Since all the information is in binary string format, bitwise operators are hired for 

decoding the solution. For every section of the chromosome, the locus (position of 

genes in the genotype) is known and fixed. By using binary shift operator, the desired 

section can be repositioned to the rightmost part of the chromosome string. In a unary 

right shift operation, all the bits in the binary string are shifted to their immediate 

right position, the first bit will be lost and a 0 will fill the empty position of the 

leftmost bit. A binary mask is needed which has the same length as the chromosome. 

Every bit in the mask equals 0 except for the k rightmost bits where k is the length of 

the section to be decoded. The shifted chromosome and the mask serve as the 

operands to a binary “AND” operator which extracts the binary value of the section. 

This binary number then is converted to decimal to represent the gene value. The 

example below shows how to extract the vertical assignment policy from the given 

chromosome. We already know that this policy is stored at the two rightmost bits of 

the string so no binary shift is necessary in this case: 

 Solution:  100101011011011110100110 
 Mask: 000000000000000000000011 
  ------------------------------------ 
 Result (Binary): 000000000000000000000010    
    Decimal value: 2 
 

Assuming bits are numbered from right to left starting from 0; if the bay selection 

policy is stored in bits 2 to 5 then the following example shows how to decode that 

information: 
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 Solution:  100101011011011110100110 
 Binary shifted solution: 001001010110110111101001 
 Mask: 000000000000000000001111 
  ------------------------------------ 
 Result (Binary): 000000000000000000001001    
    Decimal value: 9 
 

After all sections of the chromosome are decoded the corresponding stowage pattern 

can be constructed. 

 
Creating the stowage pattern 
 

As it was shown in Figure 3.2, the general layout of a containership can be looked at 

as a three dimensional matrix. This however is not true in the real world since the hull 

shape of the vessels and the location of the engine and accommodation rooms are 

different at each vessel. To keep the generality and without losing flexibility, a four 

dimensional data structure is designed to save the produced stowage pattern by a 

decoded solution. This data structure is referred to as the allocation matrix. The fourth 

dimension in the allocation matrix corresponds to the ports of visit and the three 

dimensions correspond to the cellular structure of the vessel. Each element in this 

data structure holds an integer value which shows the container number to which the 

cell is allocated to. In order to account for the containership design an extra three 

dimensional matrix of integers called layout mask matrix is introduced. The layout 

mask matrix has the same dimensions as the allocation matrix and is constructed 

based on the specific design of the vessel. Prior to allocating a container to a cell, the 

counterpart element in the layout mask matrix is checked, if it holds a value of zero it 

shows that the cell does not physically exist and thus cannot be allocated. Figure 5.6 
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demonstrates a sample bay from the cross section of a sample vessel and the 

construction of the vessel layout mask matrix. 

The layout mask matrix is an input to the algorithm. If the layout design of the vessel 

is available in electronically interchangeable format (e.g. XML3), the mask matrix can 

be automatically created based on that.  

The allocation matrix is empty at the beginning of the evaluation and will be filled up 

by the container numbers based on the decoded solution and the layout mask. Let 

)( pΠ be the stowage pattern at port p  and N  be the total number of visiting ports. 

Also let pU , pL  and pS be the set of containers that must be unloaded, loaded and 

shifted at port p respectively.  

 

Figure 5.6: Construction of the vessel layout mask matrix 

 
                                                 
3 Extensible Markup Language 
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Figure 5.7 shows the vessel layout mask matrix designed for a 10500 TEU 

containership with 42 bays, 14 tiers and 22 rows.  The layout can be further 

customized to account for the restricted areas of the vessel that may either be not be 

accessible temporarily or permanently.  

 

 
 

Figure 5.7: Sample of vessel layout mask matrix for a mega containership  

 
The following procedure shows the main steps for creating the stowage pattern. 
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Procedure: Create Stowage Pattern 

Initialization: Φ←Π )( p  

For 1←P to N   

{ 

Decode the gene values for port p. 

Set: )1()( −Π←Π pp . 

Un-assign all the containers in pU  from )( pΠ and calculate pS  

If reassignment bit is 0 then  

{ }pp SLT ,=  

Else 

  { }aboardcontainersallSLT pp ,,=  

  Φ←Π )( p  

Sort T according to the decoded sorting method 

Allocate all the containers in T to )( pΠ  with respect to the decoded assignment 

policy and the layout mask matrix 

} 
 

Calculating the crane operations 
 

By now the stowage pattern for all ports from the solution has been generated and 

saved in the allocation matrix. This matrix must be analyzed to measure different 

contributing factors in the fitness function. A simple procedure is developed to count 

the number of container loading, unloading and shifting at each port and for each 

crane. Since the loading starts only after all the unload containers are processed, this 

procedure starts with the containers that are to be unloaded. Those containers are the 

containers that either have reached their final destination, or must be unloaded 

temporarily in order to allow access to the containers under them. If containers of 
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different size are mixed, the procedure accounts for the proper number of crane 

operations to retrieve a container. Figure 5.8 depicts an example. 

 

 

Figure 5.8: Stowage of different size containers 

 

In figure 5.6 the two designated containers have reached their destinations while the 

other containers are to be transported to the forthcoming ports. In case (a), the two 

containers on the top must be also unloaded before then the 20’ container can be 

retrieved and then must be put back to the vessel which accounts for a total of 5 crane 

operations. The total number of crane operations for unloading the 40’ container in 

(b) will be 9 since all four containers on top must be shifted. This is based on the 

assumption that quay cranes can handle only one container per move regardless of the 

size of the container. This assumption however is not restricting since the procedure 

can be modified to support different crane characteristics such as double lifting. Total 

number of bays on the vessel is denoted by B . Consider BNC ×:  an array of integers 

for storing the total number of required crane operations per each bay.  The create 

stowage pattern procedure must be called and )( pΠ  should be populated before the 



 91 
 

number of crane operations can be counted. The crane operations counting procedure 

is as follow. 

 

Procedure: Count crane operations 

Initialization: Φ←C  

For 1←P to N   

{ 

 For 1←b to B   

 { 

  For each container j  in pU that belongs to bay b in )( pΠ  

   If there is no container on top j  then 

    1],[],[ += bpCbpC  

    Remove j  from )( pΠ  

   Else 

    For each container k  blocking access to j  

     Remove k  from )( pΠ  

     1],[],[ += bpCbpC  

     If  P  is the final destination of k  then 

      Remove k  from pU  

     Else  

      Add k  to pS  

  For each container j  in pp SL U that belongs to bay b in )( pΠ  

   1],[],[ += bpCbpC  

 } 

}  
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Calculating turnaround time at each port 
 

After creating the stowage pattern and counting total number of crane operations at 

each bay, the ship turnaround time can be calculated. Turnaround time of a vessel at a 

port also known as dwell time is the difference between the time that the vessel 

berths, and the time that she is released and may leave the port. Since the time at port 

is very valuable we assume that unloading the vessel starts right after berthing and the 

vessel leaves the port after last container is loaded and the crane operations do not 

suspend in the middle of operation. This requires careful coordination and planning at 

the container yard between the yard cranes and internal trucks, straddle carriers, 

AGV’s or any other form of in yard equipment used for horizontal transportation of 

the containers. While unloading the vessel, movement of the import containers from 

the vessel to the yard should be planned properly such that quay cranes do not waste 

any time waiting for horizontal transportation. Also at the loading time a smooth flow 

of the export containers from the yard to the vessel will keep the quay cranes busy 

during the operations.  

Quay cranes have different technical specification which determines their 

performance and capacity. Other factors such as weather conditions and visibility 

may also affect the performance of the cranes. Although the quay cranes at a specific 

port are usually homogenous, to generalize the solution algorithm we assume that not 

only the quay cranes at ports of call could be different, but also individual cranes at 

each port may be non-homogenous. We also assume that all the cranes that are 

assigned to a vessel work side by side and the vessel can be released only when the 

last remaining container is loaded onto the vessel by the respective crane. The 



 93 
 

horizontal divide and the operational range of the cranes are determined by the 

technical constraints. Generally a crane may not interfere with a neighboring crane on 

a common bay, so the minimum unit of horizontal separation between two adjacent 

cranes is one bay. Utilization of a crane can be defined as the percentage of the time 

that the crane is busy and is calculated by the total crane busy time over the 

turnaround time at port. The crane busy time is composed of two components: 

horizontal movement time and container handling time. The horizontal movements do 

not occur very frequently and are required only when the crane has finished the job 

on a bay and needs to proceed to the next bay. So the major fraction of the crane busy 

time is the container handling time. Container handling is performed using the 

spreader arm and is composed of one horizontal and two vertical moves by the 

spreader arm as shown in Figure 5.9. 

 

 

 

 

 

 

 

 

Figure 5.9: Three steps of spreader arm movement for handling a container 

 

The time required for step 1 is the same for all the containers handled by the crane. 
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The completion time of steps 2 and 3 however depend on the position of the container 

in the vessel. The farther the container is from the berth line and the deeper the 

container is in the vessel, the higher is the time to handle the container.  

The assignment of quay cranes to the vessel and the technical specifications of each 

crane at all ports is assumed to be known in this study. Given the stowage pattern and 

the set of available cranes, the solution to the crane split problem determines the ship 

turnaround time at port. As it was mentioned in section 2.5, crane split problem is in 

the class of scheduling problems and has been discussed as an independent problem 

or jointly with berth allocation problem in the container literature. To evaluate a 

candidate solution by the genetic algorithm we need to have the ship turnaround time 

at each port and for that matter we need to solve the crane split problem for each port. 

A large number of chromosomes are to be evaluated in each iteration of GA and to 

reach the convergence many iterations are required. Kim and Park (2004) report an 

average of 457 seconds CPU time for solving a problem with three homogenous 

cranes and 25 tasks. The computational burden of the crane split solution methods 

makes it impossible to use them in the evaluation procedure of our proposed genetic 

algorithm. To overcome that difficulty a heuristic procedure is proposed to 

approximate the crane split and total ship turnaround time. This procedure uses the 

output provided by the “Count Crane Operations” procedure in the former section as 

an input. Having B bays and pQ  quay cranes available at port p , the procedure 

begins with dividing the bays into pQ  subsets with 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

pQ
B  bays at each of sets. If B  is 

not divisible by pQ  then the number of bays in the last subset will be equal to
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⎦

⎥

⎢
⎢
⎣

⎢
− p

p

Q
Q
BB . Then starting from the first crane it considers each crane with the 

crane right after it. It looks for any potential improvement in the turnaround time that 

might be achieved by separating a bay from the operational range of one crane and 

appending it to the other one. As it was mentioned before the number of crane 

operations at each port are known at this time and given by matrixC . The following 

notation is used in the proposed procedure. 

 

f
qpR . : Index of the first bay in the operating range of crane q at port p  

l
qpR . : Index of the last bay in the operating range of crane q at port p  

qpBT . : Busy time of crane q at port p  

qp.α : Required time to handle one container by crane q at port p  

qp.β : Required time for horizontal movement to adjacent bay for crane q at port p   

pTT : Turnaround time at port p  

  

Procedure: Calculate crane split and turnaround time 

Initialization: qpRRBT
l

qp

f

qpqp ,0,, ,,, ∀=  

For 1←P to N   

{ 

 1=i  

For 1←q to 1−pQ   

{ 
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  f
qpR . = i , l

qpR . = 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+

p

f
qp Q

BR .  

  1. += l
qpRi  

 } 

 f
Qp p

R . = i , l
Qp p

R . = 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+

p

f
Qp Q

BR
p.  

For 1←q to pQ   

{ 

 qp
f

qp
l

qpqp
RRb

qp RRbpCBT
l

qp
f

qp

,,,,
]..[

, ).(.],[
,,

βα −+= ∑
∈

  

} 

For 1←q to 1−pQ   

{ 

 Crane range adjustment for cranes q and 1+q :  

 If  1,, +> qpqp BTBT  then 

  1,, +−= qpqp BTBTγ , 1.. −= l
qp

l
qp RR , 1.. −= f

qp
f

qp RR  

  Recalculate 1,, , +qpqp BTBT  

  If  γ≥− +1,, qpqp BTBT  then 1.. += l
qp

l
qp RR , 1.. += f

qp
f

qp RR  

 Else 

  qpqp BTBT ,1, −= +γ , 1.. += l
qp

l
qp RR , 1.. += f

qp
f

qp RR  

  Recalculate 1,, , +qpqp BTBT  

  If  γ≥− +1,, qpqp BTBT  then 1.. −= l
qp

l
qp RR , 1.. −= f

qp
f

qp RR  

} 

{ }
pQpppp BTBTBTMaxTT ,2,1, ,...,,=  

}  
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After calling this procedure crane utilization at each port and total turnaround time at 

all ports can be calculated as follow. 

pqpqp TTBTU /,, =  

∑
=

=
N

p
pTTTimeTurnaroundTotal

1
 

Figure 5.10 shows how the crane split approximation procedure works for a small 

example. The ship in this case has 6 bays and there are 3 cranes available. The 

number on each bay indicates the total number of crane operations required for the 

bay. Bays are numbered from stern to bow in increasing order. 

 

 

Figure 5.10: Illustration of crane split approximation procedure 

 

At the first step two bays are assigned to each crane. It is assumed that each container 

can be handled in one time unit and also the crane can move horizontally to the 

adjacent bay in one time unit. Crane 1 for example must handle 13 containers in bays 

1 and 2 and will need to do one horizontal displacement, which makes its total busy 

time equal to 14. The crane busy time for each crane as well as turnaround time and 

crane utilization for each step is shown in the figure. After the initial assignment the 
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procedure tries to reassign the bays to the cranes if doing so decreases the turnaround 

time. In step 2 by separating bay 2 from crane 1 and assigning it to the operational 

range of crane 2, turnaround time will decrease by 4 units and finally in the last step 

by assigning bay 4 to crane 3, turnaround time is improved by 1.  

 

Objective function 
 

As it was mentioned before, the conventional objective function of the containership 

stowage planning is to minimize the total number of container movements at all ports. 

However the solutions results in chapter 4 show that this objective function does not 

represent the true objective function of the problem which is the minimization of total 

turnaround time at all ports. By using the suggested procedures we can calculate the 

value of either of these objective functions for each solution. In next chapters we will 

use the conventional objective function for verification of the genetic algorithm and 

creating base case scenarios. Another advantage of these procedures is the capability 

of creating economical objective functions. If the monetary value for each unit of 

time per port is given we can easily apply the time value parameter to the total 

turnaround time equation in order to minimize the total cost of operations.  

pportatunittimeoneofValue

TTCostlOperationaTotal

p

p

N

p
p

:
1

δ

δ×= ∑
=  

Similar cost minimization equation may be written for the situation that per TEU cost 

of handling the containers at each port is given and the cost parameter varies over 

ports or is different for different cranes. 
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5.2.3. Handling the constraints 

 
The solution space for a constrained combinatorial problem can be divided into two 

regions: feasible and infeasible. Searching for optimal solution must be performed 

inside the feasible region. The assignment based genetic encoding for containership 

loading problem resolves the issue of illegality, however it may generate infeasible 

solutions. Infeasibility occurs as a result of violating the constraints. There are three 

ways to deal with infeasible chromosomes: reject, repair and penalty. Rejecting 

involves the elimination of infeasible chromosome from the generation. Repair 

methods try to find the genes that cause the infeasibility and modify their values to 

satisfy the feasibility criteria. Penalty methods identify the violated constraints and 

impose a penalty to the fitness value of the corresponding chromosome for each 

violation. The penalty can be fixed or be proportional to the deviation of the 

constraint from the acceptable range. The rejection method takes away any possibility 

of the chromosome for appearing in the next generations and may increase the 

convergence time dramatically. Choosing among the repair and penalty methods 

depends on the nature of the problem. A drawback of the repair method is that it 

interferes with the learning mechanism of the genetic algorithm by changing parts of 

the information. This might affect the convergence of the algorithm even more if 

repairing the infeasible chromosome asks for extensive modifications. The penalty 

method does not change the chromosomes; however it has the disadvantage of 

introducing the penalty term to the fitness function. Finding proper value for the 

penalty terms may be a complicated task especially if several constraints of different 

types are to be considered. In the proposed assignment policy based encoding it is 
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very difficult and time consuming to modify the genes in order to remove the 

infeasibility because the genes hold the policy and sorting codes instead of actual 

stowage of the vessel. So the penalty method is used in this research for enforcing the 

constraints.  

 
Instability penalty 
 

As it was discussed in 3.3.1, GM is a proper measure of stability for the 

containerships. The deviation of GM from the permitted threshold can be imposed as 

penalty to the fitness function. Measuring the GM however needs detailed 

information about the structural design of the specific vessel. To generalize the 

solution approach the experimental rules of stability are used in this research. After 

decoding the solution and generating the stowage pattern for each port, different 

stability measures may be easily computed according to the containers weight 

information and their position in the vessel. Cross equilibrium can be measured based 

on the axis of symmetry going from bow to the stern. The total weight or momentum 

of the containers at either side must be calculated and the difference must not exceed 

a given value. The penalty is calculated by multiplying the penalty parameter by the 

magnitude of the violation, so that the solutions that are farther from the feasible 

region receive higher penalties. Similarly, longitudinal and vertical equilibrium will 

be measured and the evaluation function will receive penalty for their violation. 

Theoretically speaking tightening the constraints will shrink the feasible region and 

will make it more difficult for the algorithm to converge to possible optimal or 

suboptimal solutions if any.  
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Violation of operational constraints  
 

Similar to the stability constraints, the necessary information for checking the 

operational constraints is retrievable from the stowage pattern and the container 

information list. A very important constraint in the mathematical problem presented 

in chapter 3 is that the cell under a container cannot be empty. This constraint is 

naturally taken care of in the assignment policy based encoding because all the 

policies start assigning cells to containers from the first unassigned cell at the bottom 

of the column. Another operational constraint prohibits storing a heavy container on a 

lighter one. As it was shown in Table 1.1 average standard weight of an empty 

container ranges from 2.3 to 4 tons, while the maximum average weight of a full 

container to be stowed in a containership is 24 and 30 tons for 20' and 40' containers 

respectively. For implementing the container weight constraint a simple procedure 

goes through the stowage plan and compares the weight of each container with the 

container immediately on top. If the difference between the two weights cannot be 

tolerated it will be counted as one violation. The tolerance is a parameter that can be 

decided by the ship planner, i.e. 5% weight difference might be considered 

acceptable. Total number of container weight violations is then multiplied by its 

penalty parameter and will be applied to the fitness functions. Similar approach is 

used to account for other operational constrains such as regulations for stowing 

special containers or rules for mixing the containers of different sizes.  

Similar cost minimization equation may be written for the situation that per TEU cost 

of handling the containers at each port is given and the cost parameter varies over 

ports or is different for different cranes. 
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5.2.4. Genetic operators and chromosome selection 

Genetic algorithm is an iterative process which works on a generation of 

chromosomes. It starts with a population of randomly generated individuals. At each 

step of the algorithm genetic operators manipulate the current generation and then a 

selection procedure chooses the individuals that will advance to the next generation 

based on their fitness value.  The two classical operators of the genetic algorithm are 

crossover and mutation. Crossover is a binary operator that performs the exchange of 

information between two individuals that are randomly selected for breeding to create 

new individuals. Mutation on the other hand is a unary operator which modifies a 

randomly selected individual. Both of these operators are important to the genetic 

algorithm. Crossover enables the algorithm to extract the best genes from different 

individuals and combine them to create potentially superior offsprings whereas 

mutation introduces diversity to the population and thereby decreases the possibility 

of converging into local optima. Without mutation it is very likely that the algorithm 

could only produce individuals whose genes are a subset of the combined genes in the 

initial population. The genetic operators and the mechanism for selecting the 

individuals are discussed in this section. 

 
Crossover 
 
 
Recombination in genetic algorithm is done by crossover operator. After randomly 

selecting two parents, there are several methods that crossover can be applied. 

One-point crossover:  the classical one point crossover splits each parent into two 

parts from a randomly selected crossover point and recombines the swapped sections 
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of the parent to create two new children. This operator is more likely to keep together 

the neighboring genes, but it can never keep together genes from opposite ends of the 

chromosome. Figure 5.11 (a) shows and example. 

 

Figure 5.11: (a) one-point crossover (b) two-point crossover 

 

Two-point crossover:  this operator requires two random crossover points to be 

selected. Each parent then is split into three parts according to the crossover points 

and the children are created by recombining the sections of the parents as it is shown 

in Figure 5.11 (b). Unlike one-point crossover it is possible to keep the genes from 

both ends of the chromosome together while maintaining the block structure of the 

chromosomes.  

k-point crossover: it is a generalization of the two-point crossover and applies the 

same idea to k randomly generated crossover points. De Jong (1975) and Goldberg 

(1989) conclude that the two-point gives an improvement, but adding further 

crossover points may reduce the performance of the algorithm.   
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In all above cases the crossover points will be located at the starting position of the 

gene values for a particular port. In other words the crossover points do not break the 

encoded sorting and assignment policy information for any particular port and 

because of that the integrality and legality of the generated children is guaranteed. 

Uniform crossover: in this method for each bit position on the two children, 

corresponding bits in the parents are swapped with a fixed probability. The 

probability value determines the degree in which each parent contributes to each child 

and is typically 0.5. This method has the disadvantage of destroying the building 

blocks of the genes. 

Cut and splice crossover: this method is a variant of the two-point cross over with the 

difference that crossover points on both parents are independent. This results in 

chromosomes with variable length. The proposed chromosome structure in this 

research is fixed length so this operator will not be a candidate. 

The crossover operator has a probability cP  which determines the percentage of the 

chromosomes that undergo crossover. At the crossover step of the GA, a random 

number in the range of [0, 1] is generated for each chromosome. If the number is 

below cP then the individual will be selected for crossover. The type of the crossover 

operator and the value for cP  will be discussed in chapter 6. 

 
Mutation 
 
 
After applying the crossover and adding the new children to the generation the 

enlarged population undergoes mutation with probability mP . Mutation is applied by 

randomly selecting a bit on the candidate chromosome and switching its value. In the 
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proposed genetic encoding for containership loading problem, mutation can be 

interpreted as modifying the sorting or assigning strategy at a port from one strategy 

to another. The value for the mutation parameter mP  will be analyzed in chapter 6. 

 
Selection and migration 
 
 
In the selection phase of the genetic algorithm a set of chromosomes from the current 

generation are chosen for breeding in the next generation. The selection process 

works in the favor of the individuals with better quality by giving them a higher 

chance for migration. The two well known classical methods for selection are roulette 

wheel and tournament methods. 

Roulette wheel method: this is the most common method in which the selection 

chances are proportional to fitness. It starts with normalizing the evaluated fitness of 

all the chromosomes by multiplying the fitness value of each individual by a fixed 

number such that the sum of all fitness values over the population equals 1. Each 

individual then will be assigned a circular sector of the roulette wheel. The angle of 

the sector is equal to ff i 2π where if  is the fitness of chromosome i and f is the 

fitness of the whole population (Holland 1975). Individuals can be chosen randomly 

one after another by spinning the wheel. To implement the wheel spinning process the 

population is sorted by descending normalized fitness values. A random number r  is 

generated in the range of 0 to 1 and the first individual whose normalized fitness 

value is greater than r  is chosen.  

Tournament method: the simplest form of this method is binary tournament selection. 

Randomly picked pairs of individuals are selected from the population and the one 
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with higher fitness value is copied to the mating pool. The process continues until the 

population is full. 

 

Elitism 
 
 
The idea behind elitism is to ensure that the current generation is at least as fit as the 

previous generation. It is done by directly copying the fittest individual to the next 

generation. Elitism is believed to speed up the search, that is, to converge faster 

toward the optimal point. However, there are some arguments which criticize this 

strategy, since it can prematurely limit the search in local optima.  

 

Termination criteria 
 

The process of creating generations continues until the termination criterion is met. 

There are several criteria to stop the genetic algorithm and selecting the proper 

criteria usually depends on the application. The most common termination conditions 

are as follow. 

• Maximum number of iterations has reached 

• Maximum time for running the algorithm has reached 

• The average fitness of the population has reached a steady state, that is, the 

absolute difference between the average fitness of the two most recent 

generations is belowε .  Another variant of this criterion is when the 

percentage of the improvement in average fitness compared to that of previous 

generation is below a certain percentage value. 
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The termination condition can also be a combination of the above items. 

 

5.3. Summary 

 
In this chapter after a brief review on the evolutionary algorithms, a genetic algorithm 

for optimizing containership load planning considering crane split is proposed. A new 

genetic representation based on combination of sorting and assignment policy is 

proposed which is very compact and expressive. The idea behind the proposed 

encoding comes from the grouping and storing practices in the container yard in 

which the containers are sorted and grouped based on their common property such as 

weight, size, type or destination. A data structure called vessel layout mask matrix is 

designed to represent the cell availability of the containership. Required procedures 

for decoding a solution, generating stowage pattern based on the decoded solution 

and analyzing the generated stowage pattern for calculating the components of the 

evaluation function are discussed. It is shown that the algorithm is capable of dealing 

with different objective functions for the problem including the conventional 

objective function of the stowage planning, temporal objective function and 

economical objective function. The algorithm uses penalty method for handling the 

constraints. The designed crossover and mutation operators ensure the legality of the 

generated offsprings. The roulette wheel method is used for selecting the individuals 

to build the next generation. Different termination conditions are defined and will be 

implemented.  
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Chapter 6: Analysis of genetic algorithm parameters and lower 
bound 
 

The proposed genetic algorithm in chapter 5 has been implemented using C++ 

language. To analyze the performance of the solution method and to find the 

appropriate set of parameters for the genetic algorithm a large set of sample problems 

have been generated and solved.  

6.1. Generating sample problems 

To estimate the value of the parameters and analyze the performance of the proposed 

genetic algorithm we need to run the algorithm on variety of sample problems with 

different sizes and structures. As it was mentioned in 4.1 the generated problems must 

be compatible with the capacity of the containership, that is, neglecting the stability 

and operational constraints the container to vessel assignment problem must be 

feasible. Besides that, it is important to generate scenarios to resemble the situations 

in which the containership operates under capacity or the emphasis is put on certain 

ports. The underlying structure of the transportation matrix plays a crucial role in the 

complexity of the containership loading problem. Figure 5.1 depicts an example. In 

this figure a 2000 TEU containership is considered to visit four ports under two 

scenarios. Each solid arc shows the flow of the containers between the corresponding 

ports and the demand can be seen in the transportation matrices. The numbers at the 

bottom show the percentage of the ship’s capacity that is full while moving from one 

port to another. As it is shown in figure 6.1 (a) the vessel in this case is fully utilized 

to transport a total of 2000 containers. This number is the same for the case in figure 
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6.1 (b), however the vessel could have transported more containers as it is not full all 

the time. Even though both cases have equal number of ports and containers with the 

exact same containership, the complexity of their stowage planning problem is 

different. In the second case the issue of overstowage does not exist because the 

containers of different destinations are not present in the vessel simultaneously. The 

stowage planning at this case is reduced to a simple container to cell assignment with 

stability and operational constraints. This however is different for the first case as 

overstowage might be inevitable. 

 

Figure 6.1: Transportation matrices for two different scenarios 

 

Besides the structure of the demand, the property of the containers i.e. weight, size, 

and type may contribute to the level of complexity. Consider two set of containers for 

the case presented in figure 6.1 (b) where one set has 2000 containers of uniform 
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weights as opposed to the other set where weights vary across the containers. The 

case with different weights is more challenging since it has more binding operational 

constraints. The above example shows that the complexity of the containership 

loading problem is not governed only by the size of the problem, but also it depends 

on the structure of the demand matrix and the characteristics of the containers. 

The following pseudo-code is designed to generate random test problems of different 

sizes for the containership loading problem with respect to the ship capacity. 

 

Procedure: Generate test problem 

Input the capacity of the ship, number of ports, maximum load ratio, containers 

weight range, percentage of containers of different size and type. 

For 1←P to N    

{ 

Available capacity = Capacity * maximum load ratio - Sum of the containers 

 that have been loaded at the ports preceding P  + Sum of the 

 containers  that have been unloaded at port P and its  

 preceding ports 

Generate ( PN − ) random demands, one for every port succeeding P , such 

that sum of the generated demand is less than or equal to the available 

capacity. 

Apply the percentage of different size containers to the demand and adjust the 

numbers. 

} 

D  = total generated demand (total number of containers) 
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For 1←c to D    

{ 

 Generate random weight for container c within the specified weight range. 

 Store the origin, destination, weight, size and type of the container c . 

} 

 

6.2. Genetic algorithm parameters 

 
There are several parameters in each genetic algorithm that contribute to the accuracy 

and the performance of the algorithm. The population size, crossover and mutation 

ratio and termination criteria are the main parameters to be decided. Like other 

evolutionary algorithms, the value of the genetic algorithm parameters depends on the 

nature of the problem and has to be tuned for the specific problem representation.  

Alander (1992) studied the optimum population size of the genetic algorithms as 

function of problem complexity and concluded for problems coded as bit-strings, the 

length of the string in bits for sequential machines is a good approximation for the 

optimum population size.  De Jong (1975) recommended population size, the 

mutation rate and the crossover rate to be 100, 0.001 and 0.6 respectively. We set the 

population size to 100 and analyze the value for crossover and mutation parameters 

based on this assumption.  

The relative importance of crossover and mutation in genetic algorithm has been 

subject of discussion in the genetic algorithm literature. Although some researchers 

suggest that crossover operator alone is sufficient for evolving the solution, other 
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studies confirm that the power of mutation operator cannot be neglected (Schaffer et 

al. 1989) and crossover has no general advantage over mutation (Fogel and Atmar 

1990).  In other words crossover is explorative and discovers promising areas in the 

search space by gaining information on the problem while mutation is exploitative 

which uses the information to improve the optimization within a promising area. In 

fact cooperation and competition coexist between these two operators (Eiben and 

Smith 2003). 

6.2.1. Crossover and mutation parameter 

To capture the effect of different mutation and crossover values on the performance 

of the genetic algorithm and quality of the solution, a set of test problems have been 

generated using the procedure described in 6.1. Four containerships with the 

capacities of 500, 1000, 2000 and 3000 TEU are considered, each of which visiting 

five ports.  

After running some pilot experiments we decided to analyze cP , mP  in the ranges of 

[0.1.0.8] and [0.005...0.5] respectively. Starting from the lowest value we increase cP  

by 0.1 at each step and increase mP  by 0.05. This creates 90 ( cP , mP ) combinations. 

The stability rules of cross and longitudinal equilibrium are enforced. Each of the 

generated test problems were solved for every ( cP , mP ) pair which makes 360 cases. 

To make the results comparable the termination criteria was set to 500 iterations of 

the genetic algorithm. For each case total number of container handling at all ports 

was chosen as an indicator of the solution quality. Figure 6.2 shows the results for the 
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1000 TEU containership. In this case ( cP , mP ) = (0.6, 0.2) has generated better quality 

solutions in 500 iterations.   

 

Figure 6.2: Crossover and mutation ratio analysis for 1000 TEU case 

 

Since the containerships in the four considered cases are of different capacity, the 

result for each case has been converted to a scale of 1 to 100. The best solution 

among 90 combination of ( cP , mP ) has been given the score 100 and the other 

solutions have been given a score proportional to their deviation from the best 

solution. The average score of results over the four cases for each ( cP , mP ) is 

presented in figure 6.3 and table 6.1. The results show that by setting cP , mP  equal to 

0.6 and 0.15 respectively, better quality solutions are obtained within 500 iterations.  
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Figure 6.3: Overall crossover and mutation ratio analysis 

 

Table 6.1: Normalized solution quality for overall crossover and mutation ratio 

analysis in four containership classes 

  Pc 
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pm 

0.05 36 56 79 73 87 86 82 71 60
0.1 43 63 82 80 90 93 89 78 67

0.15 50 70 85 87 97 100 96 80 70
0.2 46 66 81 83 93 96 92 81 71

0.25 42 62 77 79 89 92 88 77 66
0.3 38 58 73 75 85 88 84 73 62

0.35 35 55 70 72 82 85 81 70 59
0.4 32 52 67 69 79 82 78 67 56

0.45 31 47 62 64 74 77 73 62 51
0.5 30 42 57 59 69 72 68 57 46
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6.2.2. Population size 

 
Genetic algorithm needs memory to store the population. The larger the population 

size, the more memory is required. Besides the memory requirement concerns, 

increasing the population size usually results in increase of running time at each step 

of the algorithm. This happens because more chromosomes will be subject to 

crossover, mutation and fitness evaluation in a larger population. But at the same time 

if the population size is not large enough, then the algorithm might converge to a 

suboptimal solution prematurely due to limiting the diversity of the solutions. Having 

fixed the parameters for crossover and mutation, we can analyze the effect of the 

population size on the solution quality. The 1000TEU containership case from the 

previous section is used. To investigate the effect of population size on the running 

time, the problem is solved for three cases. The objective function in all cases is the 

minimization of the total turnaround time, but the constraints are different. In case 1 

only horizontal and cross equilibrium constraints are enforced. In case 2 the vertical 

equilibrium is added and finally in case 3 placing any heavy container on a lighter 

one is also prohibited. The average weight of the 1896 containers in this problem is 

25.55 tons with the standard deviation equal to 14.03. The weight threshold for the 

equilibrium constraints is 10% (e.g. if the weight difference between two containers is 

less than 10% they are treated equally).  

Figure 6.4 illustrates the increase of CPU time based on the population size for fixed 

crossover and mutation ratio parameters and fixed number of iterations in each case. 

Since the number of iterations is fixed the quality of solution for each population size 

is different from the others. Investigate the mutual impact of the population size and 
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the number of iterations on the solution quality, the convergence criteria is modified 

for figure 6.5. For this experiment the algorithm is set to stop when the average 

fitness value of the population does not improve by a margin of 0.001 compared to 

the prior iteration. The 1000 TEU containership described in section 6.2.1 is used and 

the vertical and horizontal equilibrium constrains are enforced. As figure 6.5 shows 

the results of this example, when the population size is small a higher number of 

iterations are needed to reach the targeted solution quality. Although the number of 

iterations is less as the population size grows, the CPU time goes up as a result of 

having a larger number of chromosomes. A population size of 100 in this case seems 

to be an acceptable tradeoff point between population size and number of required 

iterations.  

 

 

Figure 6.4: Effect on population size on CPU time 
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Figure 6.5: Effect on population size on CPU time and number of GA iterations 

 

6.2.3. Two-point crossover vs. classic crossover 

Classic and two-point crossover operators have been implemented. To evaluate their 

performance we applied the variation of the genetic algorithm using each operator to 

the same 1000 TEU containership problem having fixed the number of genetic 

iterations. If the number of iterations is large enough the results from test problems 

show that the quality of the solution by both methods are approximately the same, 

however the two-point crossover slightly speeds up the convergence. Figure 6.6 

shows the comparison graph between the best fitness value of each generation versus 

the iteration number for the two operators. 
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Figure 6.6: Comparison between one and two point cross over operators for a sample 

problem 
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vessel, 40 sample problems for eight class of containerships were generated. Ten 

ports are considered in these problems and for each class of vessels five origin-

destination matrixes were generated. Stability constraints are enforced such that the 

maximum horizontal and vertical imbalance is limited to maximum 5%. The 

containers are of different weight generated based on a uniform random distribution 

of U(3,25). Table 6.2 shows the characteristics of the problems and the average CPU 

time for each class.  

 

Table 6.3: Sample problems for different classes of containerships  

Vessle 
Class 

Number 
of 

generated 
problems 

(Bay,Row,Tier) Capacity 
(TEU) 

Average 
number of 
containers 

Average 
CPU 
time 

(Minute) 
1 5 (10,10,10) 1000 2444 2 
2 5 (20,10,10) 2000 5938 11 
3 5 (30,10,10) 3000 9001 21 
4 5 (40,10,10) 4000 10210 28 
5 5 (50,10,10) 5000 12662 49 
6 5 (60,10,10) 6000 16640 75 
7 5 (70,10,10) 7000 18641 126 
8 5 (80,10,10) 8000 22507 137 

 

Figure 6.6 illustrates the increase in the average computational time with respect to 

the containership capacity. It can be observed that the solution to real size problems 

can be obtained in a relatively short time. The solution time for 8000 TEU 

containerships is less than 2.5 hour. 
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Figure 6.6: Average CPU time vs. containership class for 10 ports  
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algorithm for containership load planning, evaluation of the chromosomes makes a 

big fraction of the total CPU time. After crossover and mutation operators are applied 

to the current generation, there are several chromosomes to be evaluated before 

building the next generation. In the presence of multiple processors, the evaluation of 

the chromosomes can be done simultaneously and will reduce the total evaluation 

time of the generation. The implementation of the genetic algorithm in this research 

uses threads and the synchronization classes in C++ to distribute the chromosome 

evaluation tasks over the available processors.  

If the speed of an algorithm is defined as its execution time, then the speedup can be 

defined as the speed of the serial algorithm (execution time on a single processor) 

over the parallel speed (execution time of the parallel algorithm on a multi-

processor). Efficiency of the parallel processing is measured by the speedup divided 

by the number of processors (Lewis and El-Rewini 1992). Amdahl's law is a model 

for the relationship between the expected speedup of parallelized implementations of 

an algorithm relative to the serial algorithm. If F is the fraction of the algorithm that 

is sequential and N is the available number of processors, then according to 

Amdahl’s law the maximum expected speedup by parallelization is 
NFF /)1(

1
−+

. 

Having set the cP , mP  and generation size to 0.6, 0.15 and 150 respectively, on 

average there will be 90 new offspring and 22 mutated chromosomes to be evaluated 

in each generation. So the fraction of the algorithm that is parallel can be 

approximated as follow: 

 75.0
150

22901 =
+

=− F  , 25.0=F  
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According to Amdahl’s law the maximum expected speedup by parallelism on a two 

processor computer is: 

6.1
2/)25.01(25.0

1
=

−+
=SpeedupMax  

Figure 6.7 shows the comparison of the results for the sequential and parallel runs of 

the algorithm on a computer with two processors. 

 

 

Figure 6.7: Sequential vs. parallel CPU time 
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Table 6.3: Summary of the results for sequential and parallel algorithms 

 CPU Time (Sec)  
Ship Size Sequential Parallel Speedup

500 54 36 1.50
800 67 46 1.46
1000 324 232 1.40
2000 677 455 1.49
3000 1021 749 1.36
4000 1204 847 1.42

 Average Speedup = 1.44
 

Figure 6.8 illustrates a snapshot of the CPU usage history in two cases. In 6.8 (a) a the 

sequential algorithm is executed on a two processor machine and in 6.8 (b) the 

parallel algorithm has run on the same machine. The graphs are obtained from the 

task manager program in Microsoft Windows XP. It can be seen that in the second 

case some load is assigned to the additional CPU. 

 

 
Figure 6.8: Snapshot of CPU usage history (a) sequential (b) parallel 
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6.3. Lower bound and algorithm performance  

While developing heuristic algorithms to solve a minimization problem, having a 

lower bound helps to measure the deviation of the solution from that of the exact 

method.  

There exist some traditional methods for developing lower bounds: 

• Linear relaxation: the integrality constraints for some or all the integer 

variables are relaxed while the objective functions and other constraints 

remain intact. 

• Lagrangian relaxation: some constraints especially the tight ones are moved to 

the objective function with a penalty term, where the value and sign of the 

penalty coefficient depend is determined by the nature of the optimization 

problem. 

• Branch and bound: in the branching stage the solution space of the problem is 

systematically split into smaller sections whose union creates the original 

space and in the bounding stage upper and lower limits are assigned to the 

split node. 

 

The complexity level of the containership stowage planning comes from the shift 

constraints to a great extent. The linear relaxation method is not applicable to the 

containership stowage planning problem since all the key variables in the 

mathematical model are binary and relaxing the integrality requirements is not an 

option. The Lagrangian relaxation method was not found to be useful for this problem 

either. This method requires moving the shift constraints as hard constraints (Eq. 3.15 



 125 
 

to 3.20) to the objective function which creates two major issues. First because the 

shift constraints play a fundamental role in determining the value of the unloading 

variables as the building blocks of the objective function, their elimination 

oversimplifies the problem by transforming it to an assignment problem and 

generates a very loose bound. Second bringing these constraints to the objective 

function with a penalty term makes the objective function value of the lower bound 

problem non-comparable with that of the main problem. The branch and bound 

method cannot be applied because the large number of binary variables even for small 

problem instances results in an exponential number of branches. 

Since no contender method among the traditional methods exist, a lower bound 

formulation based on the specific structure of the containership stowage planning is 

developed. 

 

NL-LB: A non-linear formulation  

The idea of reducing unnecessary shifts in containership stowage planning can be 

looked at as minimizing the change in the value of the container location variable at 

two consecutive ports for all containers and over all the ports. It means that wherever 

the container is located in the vessel, it is most desirable to remain at the same 

location thorough the voyage. Therefore in an ideal situation each container will be 

loaded and unloaded exactly once. So the objective function can be built by 

summation of the changes in the location variables for each container between each 

two immediate port. Modeling this objective function calls for calculating the 

absolute value of the difference between the binary location variables of the 
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containers. Since the absolute value function is non-linear, the model will be a 

nonlinear programming model with quadratic objective function and linear 

constraints. The shift constraints can be removed from the formulation because the 

concept of shifts is taken care of in the proposed objective function. However the 

total number of unloading operations is not accurate and may be less than the actual 

number. Figure 6.9 depicts an example. 

 

Figure 6.9: Number of unloading operations for the lower bound  

 

Figure 6.8.a and 6.8.b show a single column of a containership in two different 

situations. Assume that container B has reached its destination, containers A, C and D 

must stay aboard and container B must be loaded at this port. To unload B, first 

containers D and C must be unloaded and then loaded back to the vessel. In fig 6.8.a 

stability and operational constraints have force the new container E to be loaded into 

the cell that belonged to B. Comparing the before and after snapshot shows that only 

two containers have changed position and hence the value of the lower bound 

objective function will be increased by two. On the other hand if like figure 6.8.b the 

new container is to be loaded at the top of the stack, the comparison of the two 
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snapshots shows change of the position for four containers. So the total number of 

container position changes is an estimate of the actual number of unloadings which 

gives a lower bound to the main problem. In an ideal scenario containers are loaded at 

the origin port, travel to their destination and get unloaded. So the total number of 

unloading operations is equal to total number of containers. In this situation the 

change of the position of each container happens only once at the unloading port and 

the gap between the lower bound and the optimal problem is nonexistent.  

 

This lower bound model is as follow: 
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Since the variables are binary and because mathematical solver does not recognize the 

absolute value, the eq. (6.1) can is written as follow: 
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If the objective function of the main problem is considered to minimize the total time 

at all ports, the value of the lower bound objective function cannot be directly 

compared with that, so a post processing routine is hired to generate total time at all 

ports based on the results obtained by solving the non-linear lower bound model. 
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The constraints for the lower bound model are as follow: 
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The solver CPLEX is capable of solving non-linear optimization models if the 

objective function is quadratic and the constraints are linear. The generated lower 

bound model was solved by CPLEX and experiments show that although this method 
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creates very promising lower bounds for small size problems, it is not useful to find 

lower bound to larger problems because the solver is not capable of reaching a 

solution in a timely manner for such problems. Table 6.3 shows the optimal value of 

the objective function, the gap compared to the lower bound generated by linear 

relaxation and the gap measured from the lower bound generated by nonlinear 

formulation for selected problems. Examples 4.2.1 and 4.2.2 and 4.2.4 that were 

discussed earlier in chapter four are used. 

 

Table 6.3: Comparison between lower bound and optimal objective function value for 

sample problems 

Problem Objective 

function 

Lower bound by 

linear relaxation 

Lower bound  by  

NL-LB formulation 

4.2.1 20 19 (5% gap) 20 (0% gap) 

4.2.2 21 19 (10% gap) 21 (5% gap) 

4.2.4  case 1 42 38 (9.5% gap) 39 (7.1 % gap) 

4.2.4  case 3 41 38 (7.3 %gap) 39 (4.8% gap) 
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Chapter 7: Sample containership load planning problems 
 

During the course of this research many attempts were made to obtain real 

containership stowage planning and origin destination data from the shipping lines. 

Unfortunately the industry refused to share data and thus measuring the actual benefit 

of applying the proposed algorithm to the real world practice cannot be made at this 

point. However the algorithm can be applied to simulated data of realistic size and the 

results can be compared with base case scenarios to demonstrate the potential benefits 

of using the solution approach. This chapter provides several examples all of which 

generated using the procedure discussed in 6.1. 

 

7.1. Indented berth terminal operations  

There are two fundamental approaches to deal with the challenge of handling large 

container vessels. The first approach is to increase the capacity of quay cranes which 

can be done through methods such as double cycling or double lifting or both. The 

second approach is to increase the capacity of the quay side interface. This requires 

implementation of indented berth or use of floating cranes which both allow handling 

containers from either side of the vessel. A floating crane is a quay crane mounted on 

a pontoon that can be self propelled. A number of barges or feeders are needed to 

support the floating cranes in moving the containers from/to the vessel. Therefore 

structural change in the berth system is not necessary in the case of floating cranes. 

The indented berth on the other hand has twice as much quay wall as compared to a 

traditional berth and can deploy up to twice as many cranes on a vessel. Figure 7.1 
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shows the layout of an indented berth. Since the vessel is handled from both sides the 

chance of quay side congestion decreases significantly. The system is designed to 

accommodate large vessels, so if small vessels are served, the infrastructure will be 

underutilized. 

 

 

Figure 7.1: Indented berth vs. traditional berth 

 

Figure 7.2 shows a containership at the Ceres Paragon container terminal at the port 

of Amsterdam. To increase the efficiency of the port system, besides optimal berth 

allocation decisions that must be made prior to the arrival, it is important to arrange 

the containers in the vessel in accordance with the configuration of the allocated 

cranes. Previous stowage planning algorithms do not account for the configuration of 

the cranes and thus they do not treat the indented berth terminal planning differently. 

An example is used to demonstrate the advantages of using the proposed solution 

approach in an indented berth operation. 
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Figure 7.2: A vessel entering the Ceres Paragon terminal at port of Amsterdam (photo 

courtesy http://www.portofamsterdam.nl) 

 

To show the effect of considering crane split into stowage planning a 2000 TEU 

container ship is used as an example. This ship visits five ports to transport 3385 

containers. The third port is equipped with an indented berth system. Configuration of 

the cranes and the transportation matrix are presented in figure 7.3 and table 7.1 

respectively. The weights of the containers are generated randomly in the range of 1-

20 tone. Trim, tilt and vertical stability constraints with a maximum 1% tolerance are 

observed. “The technical performance of the cranes is in the range of 50-60 box/hr, 

while in operation the performance is in the range of 22-30 box/h” (Steenkan et al. 

2004). For simplicity and without lack of generality it is assumed that all cranes are 

identical and each can handle 25 containers per hour.  
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Figure 7.3: The shipping route and configuration of cranes at marginal and indented 

berth terminals 

 

Table 7.1: Transportation matrix for indented berth operations problem 

    Destination  
    2 3 4 5 

O
rig

in
  1 463 141 308 685 

2  217 155 319 
3   270 155 
4    672 

      
 

This example is solved for two scenarios. The objective function of scenario I and II 

are minimization of total berthing time and minimization of total shifts respectively. 

Table 7.2 shows the results for each scenario. According to this table, because of the 

proper horizontal distribution of the containers in scenario I, the utilization of 

individual cranes - which is the crane busy time over total time at port – and also 

average utilization of the cranes at each port is improved in 4 out of 5 ports. In 

scenario I, the vessel spend more time for rearranging the containers in the indented 

berth at port 3 compared to scenario II, however significant savings in berthing time 
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at port 4 will be achieved. These improvements may come at cost of more container 

movements. 

 

Table 7.2: Solution results for indented berth operations problem 

Scenario 
 

Port 
1 2 3 4 5 

Crane Crane Crane Crane Crane 
1 2 1 2 1 2 3 4 5 6 1 2 1 2 

I 

# Containers 597 1000 651 641 415 391 359 375 366 343 723 743 918 913 
Utilization (%) 60 100 100 98 100 94 87 90 88 83 97 100 100 99 
Port Time (hr) 40 26.04 16.6 29.72 36.72 
Avg. utilization 80.0% 99.0% 90.3% 98.5% 99.5% 

                

II 

# Containers 1000 597 631 661 175 144 265 107 256 214 808 1048 927 904 
Utilization (%) 100 60 95 100 66 54 100 40 97 81 77 100 100 98 
Port Time (hr) 40 26.44 10.6 41.92 37.08 
Avg. utilization 80.0% 97.5% 73.0% 88.5% 99.0% 

 

 

Table 7.3: Summary of the results for two indented berth operations scenarios 

 
Total Container 

Handling 
Total Berthing 

Time (hr) 
Overall Crane 

Utilization 
I 5050 149.08 93.5% 
II 4352 156.04 83.4% 

 

Although total number of container handlings has gone up by 16% in scenario I 

compared to II, 4% reduction in total berthing time is gained which is the result of 

12% improvement in overall crane utilization.  

7.2. Technical and economical considerations in container load operations  

In all the examples discussed so far, it was assumed that all cranes have similar 

performance. All approaches in the literature have either made the same assumption 

or have not accounted for the impact of crane operations on the stowage planning at 
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all. However in the real world operations this is not the case meaning that technical 

specifications of the quay cranes differ over container terminals. Although it is not 

very common but practically the performance of the quay cranes on a given terminal 

may also be different. Our proposed formulation and solution algorithm is capable of 

accounting for the performance of quay cranes. Consider a containership that visits 

five ports and two cranes are available at each port. If all cranes have the same 

performance, the objective function of the problem will minimize the total turnaround 

time at all ports by optimizing the arrangement of the containers into the vessel with 

respect to the crane utilization and other operation constraints as discussed earlier. 

Now let us assume that the second port upgrades its cranes with the latest technology 

that makes each crane twice as fast. This means that handling time of each container 

will be cut into half at this port. The solution algorithm can take advantage of this 

feature by rearranging more containers at the second port to reduce the time needed 

for the rearrangement at the forthcoming ports if this contributes to overall 

improvement of total turnaround time. Similarly if in any of the given terminals, 

some of the cranes have a higher performance compared to the other ones there may 

be possibility of reducing total turnaround time by assigning more work to the higher 

performance cranes.  

Based on the same argument, by converting time into money one can change the 

objective function of the problem to a function of economic value. So if the time unit 

spent at a given port is more expensive than others the ship planners may save money 

by spending time to rearrange containers in cheaper ports in order to spend less time 

and money in expensive ports. So although the total time spent at all ports and the 
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total number of container handlings may be higher than the original solution, however 

the total cost of all operations could be lower. The following examples investigate 

these scenarios.  

The 2000 TEU containership introduced in section 7.1 is used in this example. The 

vessel visits five ports, each of which make two quay cranes available. The 

transportation matrix is based on table 7.1. Stability constraints including horizontal 

and longitudinal equilibrium with 5% threshold are enforced. Also, weight of each 

tier must not exceed the weight of its underlying tier with an acceptable 1% tolerance.  

First, we set the objective function to minimize total turnaround time. We assume that 

cranes at all ports are of the same type and it takes four time units to move a container 

by each crane. Table 7.4 shows the summary of results including number of container 

shifts mandated by overstowage and turnaround time. As the table shows containers 

will only be shifted at the intermediate ports, because at the first and last port only 

loading and unloading happens respectively. 

 

Table 7.4: Summary results for universal crane characteristics 

  Port 1  Port 2  Port 3  Port 4  Port 5 

Total 

Crane  1  2  1  2  1  2  1  2  1  2 

No of containers  797  800  648  667  454  431  721  742  916  915 

Time unit  3188  3200  2592  2668  1816  1724  2884  2968  3664  3660

Container shifts  0  161  102  58  0  321 

Turnaround time  3200  2668  1816  2968  3664  14316

 

Now we assume that the two cranes at the third port are upgraded, such that each 

crane can handle a container in two time units. In other words cranes at port three are 
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twice as fast as the rest of the cranes. Table 7.5 shows the summary of results for this 

case. As shown in the table, the number of container moves by the cranes at port 3 

has increased drastically by 174%, however the total turnaround time is reduced by 

3.4%. 

 

Table 7.5: Summary results for different crane types at port 3 

  Port 1  Port 2  Port 3  Port 4  Port 5 

Total 

Crane  1  2  1  2  1  2  1  2  1  2 

No of containers  800  797 593 626 776 790 721  715  914 917
Time unit  3200  3188 2372 2504 1552 1580 2884  2860  3656 3668
Container shifts  0  65  783  31  0  879 

Turnaround time  3200  2504  1580  2884  3668  13836

 

If we change the cranes at port three again, and make them four times as fast as the 

rest of the cranes, each container handling will take one time unit by those cranes. 

With all other assumptions remaining intact, the results for this case are reported in 

table 7.6. 

 

 Table 7.6: Summary results for deployment of improved cranes at port 3 

  Port 1  Port 2  Port 3  Port 4  Port 5 

Total 

Crane  1  2  1  2  1  2  1  2  1  2 

No of containers  800  797 589 605 827 814 719  702  916 915
Time unit  3200  3188 2356 2420 827 814 2876  2808  3664 3660
Container shifts  0  40  858  16  0  914 

Turnaround time  3200  2240  827  2876  3664  12987
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Comparison with the case that all cranes are uniform shows 9% improvement in total 

turnaround time that comes with 187% in container shifts. As it is shown in tables 7.4 

through 7.6, the algorithm tries to reshuffle the containers at the port with faster 

cranes, in exchange of saving container shifts at the second and the fourth port. From 

the economical perspective if the shipping line is charged by time, having extra 

container moves at port three in the cases that upgraded cranes are available is 

advised. Otherwise if the ports charge per container handling basis, solution for 

minimizing total container moves should be used. In any case, the algorithm is 

flexible to create appropriate stowage and loading plan with respect to technical and 

economical considerations. 

7.3. Container load planning for mega containerships 

Like many other industries, transportation companies benefit from economies of scale 

in maritime shipping. Since the cost per TEU reduces with the increase of the 

capacity, there is a powerful trend to build larger vessels. The growth in capacity 

comes with increasing challenges to cope with large amount of containers to be 

transshipped in short periods of time, as the port time is an expensive resource. 

According to the Journal of Commerce, 42 ultra large container carriers (with a 

capacity of more than 10,000 TEU) are in operation in the world’s seas by August 

20104. One of the day to day problems to be solved is stowage planning for mega 

containerships. To show the capability of the proposed algorithm for dealing with 

real-size instances of stowage planning for mega containerships, a sample problem 

for a 12,000 TEU containership in a five port voyage is generated. There are 21,191 
                                                 
4 100th mega containership in Rotterdam, The Journal of Commerce Online, Aug 2010, 
http://www.joc.com/press-release/100th-mega-container-ship-rotterdam last visited: 3/27/2011 
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containers in total with different weights to be transported in this example. The vessel 

has 40 bays, 20 rows and each stack can hold 15 containers. There are four quay 

cranes assigned at the first and second port, six quay cranes at the third and forth port 

and five cranes will empty the ship at the last port. Real life operational constraints 

are imposed in this example. Horizontal and longitudinal stability must be met and 

total weight of each tier must not exceed the weight of the immediate tier underneath. 

A threshold of 5% is applied for both horizontal and longitudinal imbalance. Finally 

to make the problem challenging, in each column the weight of the top containers 

must be less than or equal to the weight of the bottom containers with a 5% 

acceptable weight difference. It is assumed that handling a container by each crane 

takes 1.5 minutes. Table 7.7 shows the summary of the transportation matrix. Table 

7.8 shows a portion of the origin, destination and weight data for the containers. Since 

the complete data is more than 100 pages, complete data file is made available online 

for download5.  

 

Table 7.7: Transportation matrix for a 12,000 TEU containership 

 

 

In total 48,329 crane moves are done in this example which involves 5,974 container 

moves mandated by overstowage. Overall utilization rate for cranes at all ports is  

                                                 
5 http://www.eng.umd.edu/~masoud/dissertation_data 

    Destination  
    2 3 4 5 

O
rig

in
  1 2041 3212 1188 3156

2 645 750 3048
3 1355 1731
4 4065
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Table 7.8: Part of container data for a mega containership example6 

No  O  D  W  No  O  D  W  No  O  D  W  No  O  D  W  No  O  D  W 

1  1  2  27  2042  1  3  45  5254  1  4  78  9168  1  5  19  9964  2  3  39 

2  1  2  15  2043  1  3  90  5255  1  4  94  9169  1  5  25  9965  2  3  95 

3  1  2  11  2044  1  3  41  5256  1  4  63  9170  1  5  21  9966  2  3  92 

4  1  2  73  2045  1  3  46  5257  1  4  89  9171  1  5  35  9967  2  3  55 

5  1  2  32  2046  1  3  71  5258  1  4  37  9172  1  5  18  9968  2  3  27 

6  1  2  95  2047  1  3  47  5259  1  4  42  9173  1  5  59  9969  2  3  18 

7  1  2  47  2048  1  3  56  5260  1  4  60  9174  1  5  38  9970  2  3  35 

8  1  2  53  2049  1  3  82  5261  1  4  72  9175  1  5  20  9971  2  3  86 

9  1  2  26  2050  1  3  41  5262  1  4  94  9176  1  5  37  9972  2  3  53 

10  1  2  99  2051  1  3  27  5263  1  4  66  9177  1  5  48  9973  2  3  3 

11  1  2  60  2052  1  3  63  5264  1  4  74  9178  1  5  91  9974  2  3  62 

12  1  2  27  2053  1  3  50  5265  1  4  24  9179  1  5  52  9975  2  3  97 

13  1  2  56  2054  1  3  5  5266  1  4  84  9180  1  5  37  9976  2  3  27 

14  1  2  16  2055  1  3  34  5267  1  4  50  9181  1  5  30  9977  2  3  39 

15  1  2  15  2056  1  3  79  5268  1  4  5  9182  1  5  23  9978  2  3  68 

16  1  2  51  2057  1  3  15  5269  1  4  14  9183  1  5  36  9979  2  3  48 

17  1  2  41  2058  1  3  15  5270  1  4  55  9184  1  5  21  9980  2  3  42 

18  1  2  93  2059  1  3  74  5271  1  4  11  9185  1  5  85  9981  2  3  10 

19  1  2  86  2060  1  3  94  5272  1  4  47  9186  1  5  98  9982  2  3  71 

20  1  2  82  2061  1  3  18  5273  1  4  83  9187  1  5  99  9983  2  3  20 

21  1  2  62  2062  1  3  81  5274  1  4  26  9188  1  5  19  9984  2  3  2 

22  1  2  12  2063  1  3  45  5275  1  4  50  9189  1  5  44  9985  2  3  54 

23  1  2  13  2064  1  3  58  5276  1  4  12  9190  1  5  52  9986  2  3  15 

24  1  2  95  2065  1  3  8  5277  1  4  20  9191  1  5  60  9987  2  3  10 

25  1  2  22  2066  1  3  15  5278  1  4  4  9192  1  5  68  9988  2  3  21 

26  1  2  61  2067  1  3  36  5279  1  4  71  9193  1  5  76  9989  2  3  12 

27  1  2  43  2068  1  3  60  5280  1  4  50  9194  1  5  91  9990  2  3  8 

28  1  2  52  2069  1  3  90  5281  1  4  87  9195  1  5  76  9991  2  3  65 

29  1  2  94  2070  1  3  52  5282  1  4  68  9196  1  5  77  9992  2  3  69 

30  1  2  23  2071  1  3  45  5283  1  4  10  9197  1  5  59  9993  2  3  95 

31  1  2  78  2072  1  3  18  5284  1  4  78  9198  1  5  55  9994  2  3  1 

32  1  2  39  2073  1  3  55  5285  1  4  47  9199  1  5  36  9995  2  3  71 

33  1  2  35  2074  1  3  56  5286  1  4  41  9200  1  5  58  9996  2  3  65 

34  1  2  31  2075  1  3  41  5287  1  4  96  9201  1  5  43  9997  2  3  44 

35  1  2  85  2076  1  3  18  5288  1  4  34  9202  1  5  47  9998  2  3  90 

38  1  2  8  2079  1  3  10  5291  1  4  23  9205  1  5  23  10001  2  3  46 

 
 

                                                 
6 No: container identification number, O: origin port, D: destination port, W: container weight 
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83%. Table 7.9 shows the details of crane split solution based on the operating range 

of each crane, the number of containers handled by each crane and the crane 

utilization rates. In total the vessel spends 291.7 hour at all ports. The solution for this 

case was obtained in 62957 seconds (17.5 hours) on a computer running Microsoft 

Windows XP 32 bit with two Core Duo 2.66 GHz CPUs and 2 GB of RAM. The 

parallel implementation of the algorithm was used. 

 
Table 7.9: Crane split and utilization rates for 12,000 TEU containership 

 
  Crane number 

Port    1 2 3 4 5  6

1 

Operation bay range  1‐11  12‐20  21‐29  30‐40  N/A  N/A 
No. of containers handled  2100  2700  2700  2097     
Utilization rate per crane  78%  100%  100%  78%     
Average utilization rate  89% 
Time at port (hours)  67.5 

2 

Operation bay range  1‐10  11‐20  21‐30  31‐40  N/A  N/A 
No. of containers handled  1200  2305  1794  1199     
Utilization rate per crane  52%  100%  78%  52%     
Average utilization rate 70%
Time at port (hours)  57.6 

3 

Operation bay range  1‐6  7‐13  14‐18  19‐24  25‐30  31‐40 
No. of containers handled  1043  904  1980  2058  2079  1161 
Utilization rate per crane  50%  43%  95%  99%  100%  56% 
Average utilization rate  74% 
Time at port (hours)  52 

4 

Operation bay range  1‐6  7‐13  14‐18  19‐24  25‐29  30‐40 
No. of containers handled  1281  1703  1883  2184  1877  2081 
Utilization rate per crane  59%  78%  86%  100%  86%  95% 
Average utilization rate  84% 
Time at port (hours)  54.6 

5 

Operation bay range  1‐8  9‐16  17‐24  25‐32  33‐40  N/A 
No. of containers handled 2400 2400 2400 2400  2400  2400
Utilization rate per crane  100%  100%  100%  100%  100%  100% 
Average utilization rate  100% 
Time at port (hours)  60 
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The program also generates the details for placement of individual containers as well 

as operations of each crane including loading, shifting and unloading a container. 

Table 7.10 shows a portion of the output for the above example. Since complete 

output is over 500 pages, the complete solution for interested reader is made available 

online7. In table 7.10, the first column provides container information including 

container identification number, origin and destination port of the container and the 

cell assignment information including bay, row and column. In the second column 

when one of the letters “L”, “U” or “S” are followed by a number it means that the 

container will be “Loaded”, “Unloaded” or “Shifted” by the crane number that 

appears after the indicating letter. The port in which crane operation happens is 

shown by letter “P” followed by the port number. So the first row in table 7 shows 

that container number 10864 which originated from port 2 and is destined to port 4, is 

assigned to the column located at bay 3, row 1 and the vertical position of the 

container in the column is 5 from bottom. This container is loaded to the assigned cell 

by crane 1 in port 2. Later on in port 4 the container is unloaded by crane 1. This 

container does not need to be shifted throughout the voyage. On the other hand 

container 10865 that goes from port 2 to port 4, is assigned to the column at bay 3 and 

row 7 which is the third container in the column. This container is loaded by crane 1 

at port 2, and must be shifted by the crane 1 at port 3. As a result of the shift, this 

container will be relocated to bay 37, row 18.  At the destination port the container 

will be unloaded by crane 6. In total 44824 instructions for container placement and 

handling are generated by the program. The results can be communicated 

electronically to the port authorities, ship planer and other parties involved in XML 
                                                 
7 http://www.eng.umd.edu/~masoud/dissertation_data 
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format. A graphical representation of the complete solution for the mega 

containership is provided in Appendix C. 

 
Table 7.10: Partial solution details for 12,000 TEU containership load plan 

Container information  Crane operations 

#10864 [2,4] (3,1,5)   L1  P2     
#10864 [2,4] (3,1,5)  U1  P4     
#10865 [2,4] (3,7,3)   L1  P2  S1  P3 
#10865 [2,4] (37,18,2)  U6  P4     
#10866 [2,4] (4,3,12)   L1  P2  S1  P3 
#10866 [2,4] (23,4,11)  U4  P4     
#10867 [2,4] (1,6,10)   L1  P2     
#10867 [2,4] (1,6,10)  U1  P4     
#10868 [2,4] (21,19,11)   L3  P2  S4  P3 
#10868 [2,4] (13,11,10)  U2  P4     
#10869 [2,4] (22,17,9)   L3  P2  S4  P3 
#10869 [2,4] (27,13,8)  U5  P4     
#10870 [2,4] (20,19,11)   L2  P2  S4  P3 
#10870 [2,4] (27,14,10)  U5  P4     
#10871 [2,4] (40,6,1)   L4  P2     
#10871 [2,4] (40,6,1)  U6  P4     
#10872 [2,4] (40,13,14)   L4  P2  S6  P3 
#10872 [2,4] (29,11,12)  U5  P4     
#10873 [2,4] (3,9,13)   L1  P2  S1  P3 
#10873 [2,4] (13,17,11)  U2  P4     
#10874 [2,4] (21,12,5)   L3  P2     
#10874 [2,4] (21,12,5)  U4  P4     
#10875 [2,4] (3,16,7)   L1  P2  S1  P3 
#10875 [2,4] (13,14,6)  U2  P4     
#10876 [2,4] (38,10,12)   L4  P2  S6  P3 
#10876 [2,4] (27,13,10)  U5  P4     
#10877 [2,4] (21,12,3)   L3  P2     
#10877 [2,4] (21,12,3)  U4  P4     

 

7.4. Stability constraints and container load planning  

In order to show the impact of enforcing stability constraints - specifically vertical 

stability - on the problem complexity, the example in section 7.3 is used. The 
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constraints concerning the weight of individual containers and the weight of tiers are 

relaxed in this case while the number of visiting ports, availability of the cranes and 

list of containers remain the same. Similar to the previous case, the horizontal and 

longitudinal imbalance threshold is set to 5%. In total 42,387 crane moves are 

involved in this example which calls for only five container moves mandated by over 

stowage. Overall utilization rate for cranes at all ports is 89%. Table 7.11 shows the 

details of crane split and utilization rate. Total turnaround time at all ports is 243.2 

hours. The problem was solved on the same computer as described in previous 

section and the solution was obtained in 13776 seconds (3.8 hours).  

A comparison between these two examples shows that relaxing the vertical stability 

constraints has reduced the solution time from 17.5 hours to 3.8 hours (78% 

reduction). The total ship turnaround time is also reduced from 291.7 hours to 243.2 

hours (17% reduction). This is a result of a sharp decline in number of container shifts 

from 5974 to 5, however in 16285 occasions heavy containers are sitting on top of 

lighter containers in the latter example. Increasing the height of stack and tightening 

the vertical stability constraints dramatically impacts the complexity, running time 

and structure of the solution. A comparison between tables 7.10 and 7.11 shows how 

the arrangements of the quay cranes are adjusted according to the problem 

characteristics. 
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Table 7.11: Crane split and utilization rates for 12,000 TEU containership without 

vertical stability constraints 

  Crane number 
Port    1 2 3 4 5  6

1 

Operation bay range  1‐10  11‐20  21‐30  31‐40  N/A  N/A 
No. of containers handled  2400  2400  2397  2400     
Utilization rate per crane  100%  100%  100%  100%     
Average utilization rate  100% 
Time at port (hours)  60 

2 

Operation bay range  1‐10  11‐21  22‐30  31‐40  N/A  N/A 
No. of containers handled  1500  1676  1620  1688     
Utilization rate per crane  89%  99%  96%  100%     
Average utilization rate  96% 
Time at port (hours)  42.2 

3 

Operation bay range  1‐6  7‐12  13‐18  19‐24  25‐31  32‐40 
No. of containers handled  907  1062  1170  1140  1154  1514 
Utilization rate per crane  60%  70%  77%  75%  76%  100% 
Average utilization rate  76% 
Time at port (hours)  37.9 

4 

Operation bay range  1‐6  7‐12  13‐18  19‐25  26‐31  32‐40 
No. of containers handled  907  1038  1092  1245  1350  1727 
Utilization rate per crane  53%  60%  63%  72%  78%  100% 
Average utilization rate  71% 
Time at port (hours)  43.2 

5 

Operation bay range  1‐8  9‐16  17‐24  25‐32  33‐40  N/A 
No. of containers handled  2400  2400  2400  2400  2400  2400 
Utilization rate per crane  100%  100%  100%  100%  100%  100% 
Average utilization rate  100% 
Time at port (hours)  60 

 

To study the impact of partial vertical stability enforcement, we keep the horizontal 

and latitudinal constraints and only enforce the tier weight imbalance constraints. 

That is total weight of the containers in each tier must be less than or equal to the total 

weight of the containers in the tier immediately under it. The results for this case are 

reported in table 7.12. 
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Table 7.12: Crane split and utilization rates for 12,000 TEU containership with partial 

vertical stability constraints 

  Crane number 
Port    1 2 3 4 5  6

1 

Operation bay range  1‐10  11‐20  21‐30  31‐40  N/A  N/A 
No. of containers handled  2400  2400  2400  2397     
Utilization rate per crane  100%  100%  100%  100%     
Average utilization rate  100% 
Time at port (hours)  60 

2 

Operation bay range  1‐9  10‐20  21‐30  32‐40  N/A  N/A 
No. of containers handled  1590  1580  1627  1717     
Utilization rate per crane  93%  92%  95%  100%     
Average utilization rate  95% 
Time at port (hours)  42.9 

3 

Operation bay range  1‐6  7‐12  13‐18  19‐24  25‐31  32‐40 
No. of containers handled  974  1089  1144  1163  1303  1645 
Utilization rate per crane  59%  66%  70%  71%  79%  100% 
Average utilization rate  74% 
Time at port (hours)  41.1 

4 

Operation bay range  1‐6  7‐12  13‐18  19‐24  25‐31  32‐40 
No. of containers handled  981  1130  1264  1292  1871  1372 
Utilization rate per crane  52%  60%  68%  69%  100%  73% 
Average utilization rate  70% 
Time at port (hours)  46.8 

5 

Operation bay range  1‐8  9‐16  17‐24  25‐32  33‐40  N/A 
No. of containers handled  2400  2400  2400  2400  2400  2400 
Utilization rate per crane  100%  100%  100%  100%  100%  100% 
Average utilization rate  100% 
Time at port (hours)  60 

 

The running time for this case is 17765 seconds (4.9 hours). Total ship turnaround 

time is 250.8 hours and 957 container shifts are required.  In 11,304 cells, individual 

heavy containers are placed on top of lighter containers in a column. Table 7.13 

provides a summary of the results for the three cases discussed in this section. 
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Table 7.13: Comparison of stability constraint enforcement policies on 12,000 TEU 

containership load planning 

Constraints imposed  Imbalance 

threshold 

Running 

time 

(hours) 

Total

turnaround 

time (hours) 

Average 

crane 

utilization 

rate 

Total 

container 

shifts 

Total 

heavy‐on‐

light cases 

Horizontal stability

Longitudinal stability 

Tier weight stability 

Container weight  

5% 

5% 

5% 

5% 

17.5 291.7 83% 5974  0 

Horizontal stability

Longitudinal stability 

Tier weight stability 

5% 

5% 

5% 

4.9 250.8 88% 957  11304

Horizontal stability

Longitudinal stability 

5% 

5% 

3.8 243.2 89% 5  16285

 

7.5. Changes in the demand and container load planning  

In all the examples solved so far, it was assumed that the transportation matrix is 

known and given prior to the ship’s departure. We also started from an empty vessel 

at the first port. However due to the nature of real operations, the demand is subject to 

uncertainty and may change. The following example presents a case that involves 

change in the origin-destination matrix after the departure of the vessel. In order to 

address the issue, we solve the problem again for the forthcoming ports, by starting 

from an initial existing solution as opposed to having an empty vessel. Since the 
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solution approach is agile enough, by solving the problem iteratively throughout the 

operations, the stowage pattern can be adjusted based on the changes in the container 

list. However, we assume that demand fluctuation does not make the problem 

infeasible, such that the demand does not exceed the capacity of the vessel at any 

port. 

Consider a 2000 TEU containership visiting five ports with the initial transportation 

matrix shown in Table 7.14. Stability constraints including horizontal and 

longitudinal equilibrium with 5% threshold are enforced for 4240 containers. Also, 

weight of each tier must not exceed the weight of its underlying tier with an 

acceptable 5% tolerance. Containers have different weight with a random distribution 

and each port has two cranes available. Table 7.15 shows a summary of the results. 

 

Table 7.14: Initial transportation matrix  

 

 

 

 

 

Table 7.15: Summary results for all ports using original demand 

  Port 1  Port 2  Port 3  Port 4  Port 5 

Total 

Crane  1  2  1  2  1  2  1  2  1  2 

No of containers  800  799 771 789 471 453 1252  1236  991 1009
Container shifts  0  26  27  72  0  125 

Turnaround time  800  789  471  1252  1009  4321 

 

    Destination  
    2 3 4 5 

O
rig

in
  1 567 51 594 387

2 477 276 214
3 285 138
4 1251
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Now we assume that after leaving the first port, demand for shipping containers from 

port three to port five drops by 100 containers. The new transportation matrix is 

shown in Table 7.16. 

 

Table 7.16: Modified transportation matrix  

 

 

 

 

Having fixed the stowage pattern for the first port, Table 7.16 shows the summary of 

results after solving the problem for ports two through five. 

 

Table 7.17: Summary results for four ports using modified demand 

  Port 1  Port 2  Port 3  Port 4  Port 5 

Total 

Crane  1  2  1  2  1  2  1  2  1  2 

No of containers  800  799 766 788 414 409 1250  1235  943 957
Container shifts  0  20  26  69  0  115 

Turnaround time  800  788  414  1250  957  4209 

 

The containers that were removed from the demand were chosen randomly and 

comparison between tables shows that number of container shifts is decreased by 10 

crane moves.  Have we had the modified transportation matrix before the operation 

starts, we could have solved the problem for all ports based on the new demand. 

Table 7.18 shows the summary of results based on this assumption. 

    Destination  
    2 3 4 5 

O
rig

in
  1 567 51 594 387

2 477 276 214
3 285 38
4 1251
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Table 7.18: Summary results for all ports using modified demand 

  Port 1  Port 2  Port 3  Port 4  Port 5 

Total 

Crane  1  2  1  2  1  2  1  2  1  2 

No of containers  800  799 770 784 413 410 1243  1230  946 954
Container shifts  0  16  26  57  0  99 

Turnaround time  800  784  413  1243  954  4194 

 

As tables 7.17 and 7.18 show, both total turnaround time and number of container 

shifts are slightly higher when solution is adjusted amid the operation. In other words 

in this example the cost of not having perfect information from the beginning of the 

planning stage is 15 time units and 16 container moves.  
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Chapter 8: Summary and future research 

 
Because of the tense competition among ports in recent years, improving the 

operational efficiency of ports has become an important issue in containership 

operations. One of the major performance measures is the berthing time at a port. 

Arrangement of containers both within the container terminal and on the 

containership play a vital role in determining the berthing time. The berthing time of 

a containership is mainly composed of the unloading and loading time of containers. 

Containers are loaded to and unloaded from the containership using quay cranes. The 

problem of allocating quay cranes to ship’s sections is known as crane split. In some 

cases up to ten quay cranes might be allocated to a ship. Technical requirements 

determine the range in which each quay crane can operate. The ship’s turnaround 

time is determined by the time that the last allocated carne finishes its job. Since the 

distribution of containers over the bays affects crane utilization and overall ship 

berthing time, crane split and stowage problem are interrelated. Given the 

configuration of cranes at each visiting port, stowage planning must take into account 

the utilization of quay cranes as well as the reduction of unnecessary shifts 

simultaneously to minimize the total time at ports over the voyage. Integration of the 

stowage plan and the crane split results in a more efficient working instruction which 

increases overall port utilization. 

There are many operational regulations in the real world operation. Some of them 

apply to only certain type of containerships. The designed solution approach should 

adopt these operation requirements. Stability constraints are of the greatest 

importance. The trim of the vessel which is the difference in the height of waterline 
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between bow and stern must not exceed a given threshold. The containers on the bow 

side create a positive tilt while the containers at the stern side create a negative one. 

Total longitudinal tilt is the summation of these two tilts, the closer it gets to zero the 

better the trim is. Same calculations are valid for horizontal stability which is the 

difference between the tilt created by the containers of the left and the ones on the 

right side of the ship. Although the imbalance between left and right, bow and stern 

can be adjusted using ballast water to some extent, it will affect both the draft and the 

performance of the ship and may result in more fuel consumption. Vertical stability 

rules require that the weight on each tier must be greater or equal than the weight on 

the tier immediately over it. There also might be some limitations on the total weight 

of a single column, such as heavy containers must not be put on top of lighter ones. 

This is the reason that all empty containers are loaded above deck. Finally the total 

weight of the cargo must comply with the maximum allowed draft which is the depth 

of vessel below water, therefore at some ports the ship may not be loaded at full 

capacity. 

This dissertation presented an integer programming model and a genetic algorithm 

which focuses on the containership load planning problem during a voyage. A new 

compact and efficient encoding based on sorting and assignment policy is introduced. 

The evaluation procedure of the GA decodes and calculates the value of desired 

elements of objective function based on the encoded solution. Objective function of 

the problem is different from those of traditional stowage planning problems in the 

sense that it tries to minimize the total time spent at all ports by minimizing shifts and 

maximizing crane utilization simultaneously. 
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The solution approach is very flexible and can easily embrace real world constraints 

and parameters such as stability and operational constraints, consideration of various 

cost of time at ports and technical specifications of quay cranes. Solutions obtained 

by GA are compared with the ones from the exact solvers for small size problems and 

in all cases the GA solutions are optimal. However this does not mean that the 

method guarantees optimality. A non linear lower bound model is presented. Results 

of other numerical experiments show that a feasible solution can be reached within a 

reasonable time for practical problems. The numerical experiments affirm that 

significant savings in overall ship turnaround time at ports can be achieved by 

considering stowage planning and crane utilization simultaneously. A parallel version 

of the genetic algorithm is developed and the effect of having multiple processors on 

running time is investigated. 

Crane double cycling is a method of improving efficiency of the cranes at the 

container ports. In a typical container unloading operation, the crane is sent back to 

the vessel empty every time that it unloads a container to berth side. In an attempt to 

reduce the idle cycling time, double cycling solution was introduced in which the 

crane will load a new container every time it has unloaded a container as such the 

total berthing time will improve. Goodchild and Daganzo (2007) studied the impacts 

of crane double cycling on containership turnaround time and results indicate that the 

practice can reduce the ship dwell time on a single port. Schedule planning for double 

cycling is proven to be very difficult for real-world cases. However one can argue 

that in addition to the appropriate crane schedule programming, the stowage planning 

of the vessel is an important factor for an efficient double cycling operation. 
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Especially in the presence of multiple cranes, double cycling can be applied in its full 

potential only if the arrangement and distribution of the containers allows for 

simultaneous loading and unloading operations. Therefore if the ship planners are 

informed in advance that double cycling is practiced in the forthcoming ports, they 

must adjust the storage of the containers to utilize the full potential of the cranes. Due 

to the flexibility in evaluation procedure, the containership load planning solution 

proposed in this dissertation can be extended to account for crane double cycling. 

Incorporating crane double cycling into stowage planning, investigating the impacts 

of double cycling on the ship turnaround time over her journey as opposed to a single 

port and studying the solution time for the combined approach is subject of future 

research. 

In order to increase productivity, ports have been pressuring crane manufacturers to 

increase acceleration, speed and handling capabilities of the cranes. As a result some 

container ports are equipped with cranes that are capable of lifting multiple containers 

at the time (mostly double lifting). Similar to the argument made for the double 

cycling case, it is of special importance to account for such operations at the 

containership stowage planning stage. Again the proposed solution approach can be 

modified to take advantage of potential time savings offered by multi-container lifting 

feature, while designing the stowage planning scheme. Combination of double 

cycling and multi-crane lifting and the impact on containership stowage planning is 

another subject for future research. 

In this research it was assumed that the information is perfect meaning that list of 

containers to be transported is known and is made available in advance. However, 
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similar to any other real transportation system, the containership operations are 

subject to uncertainty. The proposed solution approach addresses the unexpected 

changes in demand by solving the problem iteratively using the updated 

transportation matrix. The algorithm is agile enough to update the stowage pattern 

caused by last minute changes prior to arriving to any future port. Introducing 

stochasticity of the demand to the model and investigating the benefits of such 

approach is an area of future research. One can compare the results of stochastic 

optimization with the results produced by iterative solution of the deterministic model 

under various scenarios. It was also assumed that the containership has enough 

capacity to accommodate all the containers throughout the operations. In case that the 

number of containers exceeds the capacity of the vessel, the algorithm should be able 

to optimally pick and choose the containers to be transported. Enhancing both the 

mathematical model and the algorithm to perform container selection is an interesting 

subject for future studies. 

Numerical experiments show that the complexity of this class of problems goes hand 

in hand with the height of the stack and the enforcement of vertical stability 

constraints. This makes the containership load planning problem a good candidate for 

benchmarking commercial solvers. The sample problems in this dissertation were 

solved using ILOG CPLEX Version 11. A side by side comparison between 

performance of CPLEX and other solvers (e.g. XPRESS, GAMS and LINDO) based 

on generating problems with different degrees of complexity from the proposed 

mathematical model is a subject of future investigation. 
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Finally as it was discussed the containership planning process follows a multi-tier 

hierarchical decision making model which consists of ship routing, berth planning, 

quay crane scheduling and unload/load sequencing. The decision made at a higher tier 

imposes constraints to the solution at lower tier. Potential benefits may be introduced 

to the containership planning process by integrating the decisions at different tiers. 

Joint optimization of operations between the yard operations and stowage planning is 

an example. The integration of load/unload planning with containership ship routing 

problem, and combining berth allocation with containership load planning are 

promising topics for future research.  
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Appendix A: Algorithm Implementation Interface 
 
To implement the solution discussed in this dissertation a computer program is 

written in C++ which has the following features: 

• Generating random test problems in accordance with the procedure described 

in 6.1. 

• Generating input file for CPLEX solver based on the mathematical model 

described in 3.6. 

• Solving the problem based on the proposed algorithm in 5.2. 

• Visualizing the solution provided by the mathematical solver and the genetic 

algorithm. 

• Generating detailed unloading, shifting and loading plan at each port based on 

the solution. 

Figure A.1 shows the main interface of the program where assumptions and 

parameters for the objective function and constraints can be set by the user. In this 

figure an expanded form of the mathematical formulation for a sample problem is 

produced which can be sent to the CPLEX optimization engine. Statistics for the 

number of constrains and variables are provided. Figure A.2 shows the user interface 

for generating random test cases for containership load planning. Sample problems 

are produced based on the specified parameters and layout of the vessel.  The number 

of visiting ports and different characteristics of the containers including weight, size 

and type can be adjusted. Figure A.3 shows the interface for the genetic algorithm 

solver where different parameters for solving the problem can be set. After solving 

the problem summary of the solution attributes is reported and the details of unload, 
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shift and loading plan for containers as well as crane operations at each port is 

reported in a file. The program produces a convergence diagram for the algorithm 

which shows the average, best and worst fitness value of each iteration as shown in 

figure A.4. Even small containership load problems involve a large number of 

variables. This makes keeping track of  location of individual containers in the vessel 

at different ports very difficult for the user. A visualization tool is developed that 

automatically displays the stowage plan of the vessel at different bays and columns of 

the ship is a color coded fashion. The colors show the origin and destination port of 

the container. This tool also provides a graphic indicator for the shifting and 

unloading containers. Figures A.5 and A.6 show a snapshot of this tool.  

 

 

Figure A.1. The user interface and formulation output for a sample problem 
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Figure A.2. Generating a test case 



 169 
 

 

Figure A.3. Solver interface 
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Figure A.4. Convergence diagram for a sample problem 
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Figure A.5. Visual tier by tier presentation of the solution for a sample problem 
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Figure A.6. Visual bay by bay presentation of the solution for a sample problem 
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Appendix B: Solution details for a sample problem  
 
The input and output details of the scenario 3 of the sample problem solved in section 

4.3.1 are as following: 

Program input: 

Container 
number 

Origin 
port 

Destination 
port 

Weight Size 
(number 
TEU) 

Type 

1  1 2 1 1 1 
2  1 2 1 1 1 
3  1 2 1 1 1 
4  1 2 1 1 1 
5  1 3 1 1 1 
6  1 3 1 1 1 
7  1 3 1 1 1 
8  1 3 1 1 1 
9  1 4 1 1 1 

10  1 4 1 1 1 
11  2 3 4 1 1 
12  2 3 4 1 1 
13  2 5 4 1 1 
14  3 5 1 1 1 
15  3 5 1 1 1 
16  3 5 1 1 1 
17  3 5 1 1 1 
18  3 5 1 1 1 
19  4 5 1 1 1 
20  1 2 1 1 1 
21  1 2 1 1 1 
22  1 2 1 1 1 
23  1 2 1 1 1 
24  1 3 1 1 1 
25  1 3 1 1 1 
26  1 3 1 1 1 
27  1 3 1 1 1 
28  1 4 1 1 1 
29  1 4 1 1 1 
30  2 3 4 1 1 
31  2 3 4 1 1 
32  2 5 4 1 1 
33  3 5 1 1 1 
34  3 5 1 1 1 
35  3 5 1 1 1 
36  3 5 1 1 1 
37  3 5 1 1 1 
38  4 5 1 1 1 
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Program output: 
 
 

• Each row starts with the container identification number followed by # 

• [origin port, destination port] 

• L=Load, U=Unload, S=Shift,  number after L,U,S indicates the crane number 

• P=Port, followed by the port number 

 
#1 [1,2] (4,1,4)   L2  P1  U2  P2 

#2 [1,2] (2,1,4)   L1  P1  U1  P2 

#3 [1,2] (2,1,2)   L1  P1  U1  P2 

#4 [1,2] (3,1,5)   L2  P1  U2  P2 

#5 [1,3] (3,1,3)   L2  P1   

#5 [1,3] (3,1,3)   U2  P3 

#6 [1,3] (1,1,3)   L1  P1   

#6 [1,3] (1,1,3)   U1  P3 

#7 [1,3] (1,1,5)   L1  P1   

#7 [1,3] (1,1,5)   U1  P3 

#8 [1,3] (3,1,2)   L2  P1   

#8 [1,3] (3,1,2)   U2  P3 

#9 [1,4] (2,1,1)   L1  P1   

#9 [1,4] (2,1,1)  

#9 [1,4] (2,1,1)   U1  P4 

#10 [1,4] (3,1,1)   L2  P1   

#10 [1,4] (3,1,1)   S1  P3 

#10 [1,4] (2,1,3)   U1  P4 

#11 [2,3] (3,1,5)   L2  P2  U2  P3 

#12 [2,3] (2,1,3)   L1  P2  U1  P3 
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#13 [2,5] (2,1,2)   L1  P2   

#13 [2,5] (2,1,2)   S1  P4 

#13 [2,5] (4,1,2)   U2  P5 

#14 [3,5] (3,1,3)   L2  P3   

#14 [3,5] (3,1,3)   U2  P5 

#15 [3,5] (3,1,4)   L2  P3   

#15 [3,5] (3,1,4)   U2  P5 

#16 [3,5] (3,1,1)   L2  P3   

#16 [3,5] (3,1,1)   U2  P5 

#17 [3,5] (3,1,2)   L2  P3   

#17 [3,5] (3,1,2)   U2  P5 

#18 [3,5] (1,1,5)   L1  P3   

#18 [3,5] (1,1,5)   U1  P5 

#19 [4,5] (2,1,2)   L1  P4  U1  P5 

#20 [1,2] (4,1,5)   L2  P1  U2  P2 

#21 [1,2] (4,1,3)   L2  P1  U2  P2 

#22 [1,2] (2,1,3)   L1  P1  U1  P2 

#23 [1,2] (2,1,5)   L1  P1  U1  P2 

#24 [1,3] (1,1,2)   L1  P1   

#24 [1,3] (1,1,2)   U1  P3 

#25 [1,3] (1,1,4)   L1  P1   

#25 [1,3] (1,1,4)   U1  P3 

#26 [1,3] (3,1,4)   L2  P1   

#26 [1,3] (3,1,4)   U2  P3 

#27 [1,3] (1,1,1)   L1  P1   

#27 [1,3] (1,1,1)   U1  P3 

#28 [1,4] (4,1,1)   L2  P1   
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#28 [1,4] (4,1,1)  

#28 [1,4] (4,1,1)   U2  P4 

#29 [1,4] (4,1,2)   L2  P1   

#29 [1,4] (4,1,2)  

#29 [1,4] (4,1,2)   U2  P4 

#30 [2,3] (4,1,4)   L2  P2  U2  P3 

#31 [2,3] (2,1,4)   L1  P2  U1  P3 

#32 [2,5] (4,1,3)   L2  P2   

#32 [2,5] (4,1,3)   S1  P4 

#32 [2,5] (2,1,1)   U1  P5 

#33 [3,5] (1,1,4)   L1  P3   

#33 [3,5] (1,1,4)   U1  P5 

#34 [3,5] (1,1,2)   L1  P3   

#34 [3,5] (1,1,2)   U1  P5 

#35 [3,5] (1,1,3)   L1  P3   

#35 [3,5] (1,1,3)   U1  P5 

#36 [3,5] (1,1,1)   L1  P3   

#36 [3,5] (1,1,1)   U1  P5 

#37 [3,5] (3,1,5)   L2  P3   

#37 [3,5] (3,1,5)   U2  P5 

#38 [4,5] (4,1,1)   L2  P4  U2  P5 
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Appendix C: Visual solution details for a mega 
containership 
 
This section provides a visual representation of the container stowage planning and 

crane split solved for the mega containership example is section 7.3. A tier-by-tier 

view of the vessel’s layout is used to show the results. Horizontal members from 1-40 

and vertical numbers from 1-20 show the bays and row indexes respectively. Each 

box represents a container which consists of a narrow strip to the left and a wider strip 

to the right. The narrow strip has the color of the origin port and the wide strip 

matches the color of the destination port. The container identification number appears 

on the box. The colors assigned to each port are displayed in the legend section. 

Results are only displayed for ports one to four since the containership is empty at the 

last port. The crane split results in terms of the range of bays that each crane operates 

on is shown at the bottom of each layout. Table C.1 is a guide for interpretation of the 

graphic layout display. 
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Table C.1: Description of graphic symbols for stowage and crane split display 

 

Symbol  Meaning  Sample 

White box   The cell is empty 

 

Colored box without 
frame and with no dots 

The container stays at the corresponding 
cell through next port 

 

Black dot on the top right 
corner 

The container will be unloaded at the 
next port 

 

Red dot on the top right 
corner 

The container will be shifted at the next 
port 

 

Solid black frame around 
the box 

The container is shifted at the current 
port 

Solid black frame around 
the box and a black dot at 
the top right corner 

The container has been shifted at the 
current port and will be unloaded at the 
next port 
 

 

Solid black frame around 
the box and a red dot at 
the top right corner 

The container has been shifted at the 
current port and will be undergo 
another shift at  next port  
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