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ABSTRACT

The long-run average cost control problem for discrete time Markov chains on a count-
able state space is studied in a very general framework. Necessary and sufficient conditions
for optimality in terms of the dynamic programming equations are given when an optimal
stable stationary strategy is known to exist (e.g., for the situations studied in [5]). A char-
acterization of the desired solution of the dynamic programming equations is given in a
special case. Also included is a novel convex analytic argument for deducing the existence

of an optimal stable stationary strategy when that of a randomized one is known.

Key Words: Markov chains, long-run average cost, optimal control, dynamic program-

ming, stationary strategy.

1. Introduction

In [5], the long-run average cost control problem for a Markov chain on a countable
state space was studied under a very general set-up. The two theoretical issues in this
problem are: (i) establishing the existence of an optimal stable stationary strategy and
(ii) characterizing the same via the dynamic programming equations. The main thrust
of [5] was (i) whereas (ii) was only cursorily touched upon. The present paper has two
objectives. The first is to provide a more elegant alternative for a part of the argument
leading to (i) in [5]. This alternative approach unmasks the underlying convex analytic
structure not apparent in the lengthier argument of [5] and is in the spirit of [6] where
other cost criteria were considered in a similar light. The principal objective of this paper,
however, is to give a detailed treatment of the dynamic programming equations, settling
(ii) above. The class of cost functions considered here is much more general than that of
[5], where the cost functions were assumed to be bounded.

Although this paper is a sequel to [5] in principle, it can be read independently.

The long-run average cost control problem for Markov chains dates back to [9] for

the finite state space case and [7] for the countable state space. In most of its early



development, the problem was treated as the ‘vanishing discount limit’ of the discounted
cost control problem. This classical approach is by now standard textbook material and
the reader is referred to [2], [12] (among others) for a succinct treatment. The shortcoming
of this approach is that it needs a strong uniform stability condition in one of its various
garbs [8]. This condition fails in many applications of interest such as controlled queues, as
evidenced in [11]. Motivated by this, [3] [4] developed an alternative approach for Markov
chains exhibiting a ‘nearest neighbor motion’. The latter feature requires that each state
have only finitely many neighbors and that the minimum path length from state ¢ to any
prescribed finite subset of the state space tend to infinity as ¢ does. The approach was
based on a characterization of the a.s. limit points of the empirical process of the joint
state and control process. It was this approach that was carried over to a much more
general set-up in [5]. The present work complements [5] in the sense already described.

The paper is organized as follows: The second section is devoted to a recapitulation of
the notation introduced in [3] and used throughout [3] — [6]. This notation is not standard,
but turns out to be extremely handy for the approach of [3] — [6] and the present paper.
In section III, we briefly recall a part of the results of [5] and give the alternative exis-
tence argument alluded to above. Section IV states the principal assumptions under which
the dynamic programming equations will be studied and discusses various ramifications
thereof. Section V treats the necessary conditions for optimality in terms of the dynamic
programming equations. The proofs here are very much along the lines of those of [4], sec-
tion 5, except for the extra work needed to take care of a possibly unbounded cost function
and the absence of ‘nearest neighbor motion’ hypothesis. We include the full details in
order to make this account self-contained. The so-called ‘value function’ appearing in the
dynamic programming equations is further studied in section VI. Section VII establishes
sufficient conditions for optimality using the dynamic programming equations. Section
VIII concludes with a discussion of the problem of characterizing the desired solution of
the dynamic programming equations.

Note that we develop the dynamic programming formalism given the existence of an

optimal stable stationary strategy by independent means, e.g., those of [4], [5]. This is the



opposite of the conventional order of things.

2. Notation and Preliminaries

Let X,,n = 1,2,..., be a controlled Markov chain on state space S = [1,2,...] with
transition matrix P, = {[p(¢,, u:)}],%,7€S indexed by the control vector u = [uy,us,...].
Here, u;e D(1),1€S, for some prescribed compact metric spaces D(¢). The functions p(z, , )
are assumed to be continuous. By replacing each D(¢) by IID(k) and p(,5,-) by its
composition with the projection IID(k) — D(z), one may assume that all D(z)’s are replicas
of the same compact metric space D. We do so and then let L denote the countable product
of copies of D with the product topology.

For any Polish space Y, M(Y) will denote the space of probability measures on Y with
the topology of weak convergence and for n = 1,2,...,00,Y"™ will denote the n-times
product of Y with itself.

A control strategy (CS) is a sequence {£,}, &, = [€n(1), €n(2),...] of L-valued random

variables such that for 1S, n > 1,
P(Xpi1 = 1t/ Xy Emym < n) = p(X,, 1, &a(X0))- (2.1)

We say that {X,} is governed by {&,} whenever (2.1) holds. If {£,} are identically dis-
tributed and &, is independent of X, m < n;€m, m < n, for each n, we call the control
strategy a stationary randomized strategy (SRS). We call it a stationary strategy (SS) if
in addition to the above, the law of &,,n > 1, is assumed to be a Dirac measure. The
motivation for this nomenclature is self-evident.

We assume throughout that {X,} has a single communicating class under any SRS. If
{X,} is positive recurrent under an SRS, call the latter a stable SRS or SSRS. A stable
SS (or SS8) is defined analogously.

Let {£,} be an SRS. Let ®cM (L) denote the common law of ,,n > 1. As well shall
be interested only in the law of the process (Xn, £.(X5)), n > 1, it suffices to consider
® of the form ® = IIg;, &;eM (D) for ieS. We shall denote this SRS by ~[®] and the
corresponding transition matrix by P[®] = [[[ p(¢, J, u)d;,(du)]] If the SRS is stable, it will



have a unique invariant probability measure denote by 7[®] = [7[®](1), 7[®](2),...]eM(S).
For f : S — R and measurable g : S x D — R, define

5 f(@)rl@)),

go(t) = /g(i,u)@;(du), €8,
Cy2] = Z.‘I@ (5)7[2](2)

Cy[®]

whenever the quantity on the right is defined. If & = §; (i.e., the Dirac measure at &)
for some £eL,~[®] is an SS and will be denoted by v{¢}. Correspondingly, we replace
P(8],7(8], C/[8], C,[8] by P{€} = Pe, (£}, Cy{£},Cy €} resp.

Let k: S x D — R* be continuous. Define

'szn = %Zk(Xmasm(Xm)) (22)
m=1
Yoo = liminfh, (2.3)

Our objective is to a.s. minimize ¥, over all CS. If this is achieved for some CS, that
CS will be said to be optimal.

Note that under an SSRS «[®] or an SSS v{¢}, ¢ — Ci[®] as. (¢¥n — Ci{€} as,
resp.) where +00 is a possible value for Ci[®], Cx{£}. Our aim will be to show the existence

of an optimal SSS and characterize the same. Thus it is natural to impose the condition

that for at least one SSS 4{£},Cr{€} < 0. Let

b= sisansC"[(I)]
« = o

Then 8 < a.
Finally, let 7(¢) = min{n > 1|X,, = i}(= oo if X,, # ¢ for all n),7cS.

3. Existence of an Optimal SSS

Consider the following two sets of assumptions:

(A1) lim inf min k(z, w)&n>p (3.1)

1—00



(A2) Tlup E[r(1)*/X; =1] < co. (3.2)

Remarks More directly verifiable conditions that imply (3.2) are given in [5], Section IX.
These are either conditions on the graph of the chain or require the existence of a suitable
‘Liapunov function’. See [5] for details.

In [5], it was proved that under (A1) or (A2) and for bounded k,
(1) %o > B as.
(2) There exists an SSRS «[®] such that Cy[®] = S
B8 B=«
(4) There exists an SSS v{¢} such that C,{¢} = a.

™o

In this section, we provide an alternative argument to deduce (3), (4) from (2). We
proceed through a sequence of lemmas.

For an SSRS 4[®], define #[®|eM (S x D) by [ fd#[®] = C;[®] for all bounded contin-
uous f : S X D — R. For an SSS v{¢}, define #{&}eM(S x D) analogously.
Lemma 3.1 The set B = {#{®]|7[®| an SSRS } is convex and closed in M(S X D).
Proof Let ~[®,],~[®,] be two SSRS with &; = I;®y;, &5 = IL;®y. Let 0 < a < 1 and
define @ = II;&; by

&; = (am[®1](i) &1 + (1 — ) [®2](3)82:) / (am[®](5) + (1 — a)7[@]a(3)) , 4eS.
From this definition and the fact that
78] P[®:] = x[&:], i = 1,2,
it is easily seen that
(an[®1] + (1 = a)7[®2]) P[®] = (an[@1] + (1 — a)7[®,]) .

Thus
7[®] = am[®1] + (1 — a)7[B,].

Hence

7[®](5)&: = an[®1](3)®ui + (1 — a)7[®2] () Dai, 1€S,



implying
7[®] = aft[®1] + (1 — a)#[Ds].

The convexity follows. Now let 4[®,],n = 1,2,..., be SSRS such that #[®,] — #
for some #eM(S x D). Let meM(S), = = [x(1),7(2),...], be the image of # under
the projection S x D — S. Then #[®,] — 7 in M(S). Disintegrate & as #({¢} x 4) =
7(¢)pi(A), €S, A a Borel subset of D, where p;e M (D) for each ¢. Define peL by v = I;p;.

Since p(-,7,+), j€S, are continuous,
[ (5, )d1®4] = [ o5, )d#, jes.

Thus
[ @] P[®n] — mP[p]

termwise. Since 7[®,] — 7 and #[®,|P[®,] = 7[®,], for n > 1, we have 7P[p] = m, i.e.,
7 = 7[p]. Hence # = #[p| and we are done. QED

Let 4[®],® = II;®; be an SSRS such that for some 7,65 and 0 < a < 1, there exist
©1, P2 in M(D) such that

/p(ia,-,u)i),-o(du) = a/p(io,-,u)tpl(du) +(1-— a)/p(io,-,u)tpz(du),
[ #lios s w)er(de) # [ bl s u)ipa(du) (3.3)

as vectors, the integrations being termwise. Without any loss of generality, we shall assume
that 7, = 1.
Lemma 3.2 #[®] is not an extreme point of B.
Proof Define ®;eM(L) by ®; = ¢; x H]i";zéj, 1 = 1,2. Let 7,7, 72 denote the first return
time to 1 under [®],v[®1],7[®2] resp. when the chain starts at 1. It is easily seen that
B} = 1+ % [ p(1,5,0)1(du)Blr/ X: = j]
i#1
= a (1 + E/p(l,j,u)wl(du)E['r/Xl = ]])
J#1
+(1—a) (1 + 3 [ 21,3, u)ps(du) Elr/ X, = J'})

i#1
= aE[n]+ (1 — a)E[r].



Since E[r] < oo, E[r;] < oo for ¢ = 1,2, implying that ~[®;],s = 1,2, are SSRS. If
7[®] = 7[®;] = 7[P2], the equation

> nled(k) [ ol g, w)dis(du) = x(@(5), i=1,2,

contradicts (3.3) for some j. Hence any two of «[®],n[®,],7[®,] are distinct from each

other. Let be(0,1) be such that
a = br[®,](1)/(br[@1](1) + (1 — b)w[@.](1)).
Argue as in the proof of the preceding lemma to conclude that
7| @] = bR[Dy] + (1 — b)7 [Py

The claim follows. QED

Corollary 3.1 The extreme points of B are of the form #{¢} where &cL satisfies:
(* For each ¢€S, p(t, -, £) is an extreme point of {p(,-, &')|€'eL} C M(S)

Theorem 3.1 If an optimal SSRS exists, an optimal SSS satisfying (*) exists. (In partic-
ular, § = o).

Proof Let v[®] be an optimal SSS. Let S = SU{oco} be the one point compactification of
S. We may view B as a subset of M (S x D) by identifying each element of M (S x D) with
that element of M(S X D) that coincides with it when restricted to S x D and has zero
mass at {oo} x D. Let B denote the closure of B in M(S x D). Viewing #[®| as an element
of B, Choquet’s theorem [10] implies that #[®] is the barycenter of a probability measure
v supported on the set of extreme points of B. Since #[®] has no mass at {oo} X D, v is

a.s. supported on the set of extreme points of B itself. Letting E denote the latter set,

[ ( / kdv‘r) V(dR) = C4[3).

Thus if there is no #eE such that [kd#t = C;[®], there would necessarily exist a #eE for
which [ kd#t < C,[®]. By the preceding corollary, each #¢FE is of the form #{{} for some
SSS ~v{¢} satisfying (*). Thus we have a contradiction to the optimality of 4[®] unless
Ci[®] = Cx{¢} for some SSS v{&} with #{£}eE. QED.



Remark As in [5], one can prove that (A1) or (A2) imply (1), (2) above. (Though k
is assumed to be bounded in [5], this part of the arguments of [5] goes through without
any difficulty for the more general k’s considered here.) The above can then replace the
arguments of [5] to deduce (3), (4) from (1), (2). This alternative approach is both simpler

and says more.

4. Stability Under Local Perturbation

In later sections, we shall give necessary and sufficient conditions for an SSS v{¢} to be
optimal, using the ‘dynamic programming’ equations. Some of these were stated without
detailed proofs for bouded k in [5]. We make the following two assumptions:

(1) There exists an optimal SSS. (This would be implied, e.g., by (A1) or (A2).)

(2) (Stability under local perturbation) If y{¢} is an SSS satisfying Cx{£¢} < oo, then
for any ¢'eL such that &'(¢) # €(7) for at most one 7eS,v{¢'} is an SSS and C,{¢'} < 0.

In this section, we shall make a few remarks about these conditions.

(i) If k is bounded, (2) is implied by the condition: For any v{¢},~{¢'} is also an
SSS whenever £'(z) = £(7) for all but one 7€S. Conversely, if k is bouded away from zero
from below, (2) implies the above.

(ii) If all SS are SSS and k is bounded, (2) trivially holds.

(i) (2) holds whenever each state in S has only finitely many neighbors, i.e., for each
1S, there is a finite set B; C S such that p(i,,-) = 0 for 7 £R;. To see this, pick 7 =1
for example. If v{¢} is a SSS and C,{{} < oo,

Elr()/X1=1] = 1+ 3 pL,4,¢0)Elr(1)/X1=4]<oo

JjeR\{1}
7(1)-1
E[ D k(Xm E(Xn))/Xa=1] = k(1,€(1)) + Z\:{}p(l,j,é(z'))
T(1)-1
xE| }; E(Xm, €(Xn))/X1=3] = C{€}E[r(1) —1/X1=1] < o0

Hence under ¥{¢} (and therefore under v{¢'} ),

a;j & E[r(1)/Xy=j] <o VjeR,



(1>

E[ Z k Xm’fm( ))/Xl —.7] < oo VJERI\{l}

Thus under 4{¢'},

Er(1)/X:1=1=1+ Y. »p(1,5,€(1))a; < o0
JjeR\{1}

Z E(Xm, €n(Xn)] = (L EW) + 3 p(L5, €' ()b < 00

jeR\{1}

In particular, this situation covers controlled queueing networks.

(iv) The following example describes a situation where (2) fails: Relabel S as {ago, a10,
@11, @20, G21, A22, G30, 31, 032, G335 Q405 . - -} Let D = [1.5,3]. Let p(¢,7,u) =1 VYueD, ¢ =
UmnyJ = Gmny1),m =1,2,..., n=0,1,...,m — 1, and for ¢ = @pm,J = @oo,m = 1,2,....
Let f(a) = Z,n"* for aeD and p(ago, amo, @) = f(a) 'm™*,m=1,2,....

Let {X,} be a Markov chain governed by the SS which picks the control o whenever
the chain is in agg. (The transition probabilities for all transitions except those out of ago

are control-independent.) Letting 7 = inf{n > 1|X,, = ago}, we have

oo}

Elr/X1 = ae] = f(a)—l Z (m +2)m

m=1
which is finite for ae(2,3] and oo for ae[l1.5,2].

As an immediate consequence of these assumptions, we have the following:

Lemma 4.1 Let v{¢} be an SSS for which C;{£} < co. Then for any ¢S, ueD,
7(1)

>_p(t,5,u Ee{Zk X, £(Xom))/ X1 = j] < 00, (4.1)
Zp 1,5, u) Eg[r(1)/ X1 = j] < o0, (4.2)

where E¢| | denotes the expectation under y{£}.

Proof Note that

(1) (1)
00 > B> k(X €(X0))/ X1 =1] > aEg[Zk X, §(Xn))/ X1 = J]

n=1
where

= P({Xa,n > 2} hits j before hitting 1/X; = 1) > 0.
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Thus
7(1)

Ef[Zk Xnaf ))/Xl_-”

oo Vjes8.
Similarly,

(4.3)
E¢r(1)/X; =j] < o0 VjeS

(4.4)
Let {£,,} denote a CS such that ¢, = € for n > 2 and ¢ () = u for some fixed 1eS, ueD

Let {X]}{X.} be the chains governed by {¢!},v{£} resp. with X} = X; =1 Let 7'(s) =
inf{n > 1|X!, = 1}. Then

r(1)
k(i,u)+§p(i,], )E Zlk X, E(X ))/Xl-J}
[r'(1)
- E Zlk 1€ X'))]
T'(l
E Zlk XINI{' (1 )<f'(i)}]
[

E (2;1 k(X & (X' (1) >T'(i)}}

Defining peL by ©(5) = £(7) for ¢ # 5 and (i) = u, the above is

7(1)

7(1)
Zk n (X,

Zk ns(Xn))/ X1 = }
7(1)

> k(X €(Xn)) /%, *z} <o

by virtue of (4.3). (4.1) follows. (4.2) follows from (4.4) by analogous arguments

n)/X1=1| +E,

+E,

QED.
Necessary Conditions for Optimality

This section establish necessary conditions for the optimality of an SSS in terms of the
dynamic programming equations (Theorem 5.1 below)

Let v{¢} be an SSS. Define V{¢}

= [V{&(1),V{£}(2),...]" by
r(1)-1
V(EHD) = Be | 2 (H(Xns €0) ~ GHEN/Xs =i, 325,
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This is well-defined by virtue of (4.3), (4.4). By Lemma 4.1,

> (5, 5,w)V{E}({)

jes
is also well-defined for ueD. Let 1, = [1,1,...]T,U = the infinite identity matrix [[6;]] and
Qe = [k(1,£(1)),k(2,£(2)),...]F. The following lemma is recalled from [4].

Lemma 5.1 V{{}(1) =0 and
Ce{€}1 = (P{€} - U)V{E} + Q; (5.1)

Proof The first claim follows from the fact that

Ce{&} = D_n{&()k(1,€(2))

ieS

r(1)-1
= E¢ [ Zl k(Xn, £(X0))/ X1 = 1| [E[7(1) = 1/X: = 1]

Since V{£}(1) = 0, one has

V{EH() = k(3 £(0)) — Cel& + E¢

r(1)-1
( Z (k(Xn’ ﬁ(Xn)) - Ck{f})) I{T(l) > 2}/X1 = Z]

= k(i,£(d) — Co{&} + E[V{EH(X)I{r(1) > 2}/ X, =1]
= k(i,€(1)) — Co{€} + E[V{E}(X2)/ X1 = 1]
= k(1,€(4) — Ce{&} + > p(3, 7, €())V{EL()

jeS
for 1eS. (5.1) follows. QED
Let A C S be a finite set containing 1 and &'eL such that £'(7) = &(7) for ¢ £A. Let
A,,n=1,2,... be an increasing family of finite subsets of S containing A and increasing
to S. Define 0,, = min{n > 1|X,, fAn},m =1,2,... and 0 = min{n > 1| X,cA}.
Observe that by the assumptions of the previous section, v{¢'} is an SSS.
Lemma 5.2 lim, 0o Ea[V{H X0, ) I{r(1) > 0,}/X1 =1]=0

Proof For i1 £A,

v{gGE) = E [S(k(xn,f(Xn))—Ck{ﬁ})/)“:’]

rn=1

7(1)-1
+Ee | Y (k(Xa, €(Xn)) — Ce{€})/ X1 = z] ,

n=o
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where we use the fact that V{¢}(1) = 0. The first term on the right remains unchanged
if E¢| | is replaced by Eg| | and k(X,, £(Xy,)) by k(Xn, €'(X,)). The second term is

bounded in absolute value by

7(1)-1
K = max E; [ > (k(Xn, €(X0)) + Ce{€})/ X1 = z] )

1A nel

Let ¢ = max(Cx{¢}, Cr{€'}). Then for i £A,

VIO < Bo [ (00 €06) + /X =] + K.
7(1)-1
< Eu z_:l (k(Xn, f'(Xn)) +c)/ X1 =1 + K.

Hence

|Be[V{E}H( X0, ) I{r(1) 2 0n}/ X1 = 1]]

< Eg

m=0oy

r(1)-1
( > (k(Xm, €'(Xm)) + c)) I{r(1) > 0.}/ X; = 1]
+KE(I{r(1) > 0.}/ X1 = 1]

— 0 as n — oo. QED.

Theorem 5.1 If v{&} is an optimal SSS,
1. = min((P{w} ~ U)V{&) + Q) (52)

Remark By (5.1), it follows that the minimum in (5.2) is attained at ¢ = &.

Proof Suppose not. Then there exist 1€S,ueD and A > 0 such that if peL is defined by
p(5) = &(j) for j # i,0(s) = u, then
Bl = (P{p} —U)V{} +Qp +J, (5.3)

J =10,0,...,0,A,0,...,0] with A in the i-th place. Let {X,} be the chain governed by
v{p} with X; = i. We may take ¢ = 1 by relabelling S if necessary. By our assumptions of
the preceding section, v{ip} is an SSS with Ci{p} < 0o. Set A = {1} and {A,} as above.
By (5.3),

B = E [V{}(Xm+1)/ Xm] = V{EHXm) + k(Xm, p(Xm)) + A{ X = 1}.
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Thus for n > 1,

r(1)Acn—1

Blr(YAon—1) = 2_:1 (Eo[V{EH Xmt1)/ Xm] = V{€}H X)) (5-4)
r{1)Aon—1 7(1)Acs—1

+ 2_: k(Xm, 0(Xm)) + A {X,, =1}

=1

Since V{£}(X;(1)) = V{€}(1) =0, we have

7()Aop—1

E 2;1 (Ew[V{ﬁ}(XmH)/Xm]—V{ﬁ}(Xm))]
7(1)Aon

= -~k Z=:1 (V{€}(Xm) — Ep[V{{}(Xn)/ X —11)}

+E[V{£}(Xan)1{7(1) > O'n}]
=  EV{&H(X:.)I{r(1) > on}]
(by the optional sampling theorem)

— 0 as n — oo,

by Lemma 5.2. Taking expectations in (5.4), letting n — oo and then dividing by E,[r(1)],
we get

B = Culi} + Ar{p}(1) > Cilo},

contradicting the definition of 4. The claim follows. QED.
The function 1+ — V{£}(¢) corresponding to an optimal SSS {¢{} is called the value

function and (5.2) the dynamic programming equations.

6. The Value Function

The definition of the value function in the preceding section depends upon our choice
of the specific optimal SSS v{¢} and the state ‘1’. In this section, we eliminate this

dependence.

Lemma 6.1 Suppose W = [W(1),W(2),...] satisfies

pl, = igf((P{go} - U)W + Q)
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and
sup W (1) — V{€}()| < o0

for some optimal SSS v{¢}. Then W = V{&}+ constant x1.. In particular, it W(1) = 0,
then W = V{¢}.

Proof Since
= (P{&} —U)V{&} + Q¢ < (P{&} -~ U)W + Q¢,
we have
(P{&y -U)(W —V{£}) =20

It follows that under v{¢},W(X,) — V{¢}(X.), n > 1, is a bounded submartingale w.r.t.-
the natural filtration of {X,,} and hence converges. Since {X,} visits each ¢S infinitely

often, this is possible only if W(X,) — V{€}(X,), n» > 1, is a.s. a constant sequence.
QED

Lemma 6.2 Let v{¢},V{€} be as above and for some ieS, define V'{¢} = [V'{€}(1),V'{¢}(2),...]*
by

7(i)-1
VI{E}() = B¢l Z (X, £(Xm)) — B)/ X1 = 5]
Then
V'{€} =V{&}+ constant X 1.

Remark Note that (5.2) remains unchanged if we change V {¢} by a constant multiple of
1,.
Proof For any je§,

C r(1)vr(s)

V{0 -V < Bl X (k(Xm (X ))+,3)/X1——J}

| m=r(1)A7(i)
[ (1)
E | > (k(Xm, £(Xm)) + B)/ X1 = ]

| m=1

A

(i)
+E | 3 (k(Xm, §(X ))+ﬁ)/X1—1} (6-1)

m=1
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Since the choice of state ‘1’ in the preceding section was arbitrary, it is clear that (5.2)
also holds with V'{¢} replacing V {£¢}. The claim now follows from (6.1) and the preceding
lemma. QED.

Lemma 6.3 For 1eS,v{&},V{£} as above,

V{£}(1) = min E,

r(1)-1
S k(X 0(Xm) — )/ X1 = ]

m=1

where the minimum is over all SSS v{p}.

Proof For ¢ = 1, the claim follows from the fact that for any SSS ~{p},

r(1)-1
E, [ > (k(Xm,0(Xm)) — B)/ X1 = 1]

= Ep[r(1) - 1}(Ce{p} — B) 2 0=V {}(1).

Take ¢ # 1. Suppose the claim is false. Then for some SSS v{p},

r(1)-1

> (6(Xm, 0(Xm)) — B)/ X1 =1

m=1

B, < V{EY) (6.2)

Consider the chain {X,} with X; = 1 governed by a CS {{,} such that between each
successive returns to state 1, &, = € till {X,,} hits ¢ (if it does) and = ¢ then on till it
returns to 1. From (6.2), it follows that

T(1)-1

(k(Xma £m(Xm)) - ﬂ)

m=1

E <v{¢g@a)=o

under {&,}. Letting {7,,} denote the successive return times to 1, it is not hard to see that
T,'+1—1
S (k(Xm, €m(Xm)) — B), i>1,

m=r;

are i.i.d. Thus by the strong law of large numbers,

[i(k(Xm, m(Xom)) _5)] J1 25

m=1
(1)-1
B[S (X, €n(Xm) — 8)/X: = 1| /E(r(1) = 1] <0,
m=1
This contradicts the optimality of v{&}, proving the claim. QED.

Corollary 6.1 V{¢} above does not depend on our choice of a specific optimal SSS ~{¢}.
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7. Sufficient Conditions for Optimality

In this section, we shall develop suficient conditions for optimality in terms of the
dynamic programming equations. Let 4{¢,} be an optimal SSS and V{£,} the value

function. The traditional form of the sufficient conditions is as follows.

Theorem 7.1 Suppose an SSS v{¢} satisfies Cx{€} < oo and

pl, = (P{f} - U)V{So} + Qf' (7'1)

Then v{&} is optimal.

Proof Argue as in the proof of Theorem 5.1 to conclude that

7(1)Aon—1

S k(X €(Xn)) /X = 1}

m=1

+EV{H X, ) I{r(1) > 0n}/ X1 = 1]

ﬂEf[T(l) Ao — 1/X1 = 1] - E€

By Lemma, 6.3, the last term is dominated by

Ee | B¢ T(Iini:—l(k(Xaﬁm, €(Xoutm)) — ﬂ)] /Xan} H{r(1) > on}/ X1 = 1]
7(1)—on—1
= E¢ ( mZ_Z_O (k(Xontms €(Xontm)) — ﬁ)) H{r(1) > on}/ X1 = 1]
— 0 as n — oo.
Thus -1
B2 Ee ;nL:l k(Xm, €(Xm))/ X1 = 1| [Ee[r(1) —1/X1 = 1] = Ci{&}-
Since 8 < Ci{¢} in any case, § = C¢{£} and the claim follows. QED.

We shall consider another variant of this. Call an SSS v{¢} locally optimal if C,{£} <
Ci{¢'} for all ¢ for which £(7) # £'(¢) for at most finitely many .

Theorem 7.2 Suppose an SSS y{¢} satisfies C{{} < co and

Ci{é}1. = m‘pin((P{tp} —U)V{p}+ Qp). (7.2)
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Then v{¢} is locally optimal.

Proof Let ¢'cL be such that &'(7) # &(7) for at most finitely many ¢. Then ~{¢'} is
an SSS by our hypothesis (2) of section IV. Let {X,.} be a chain governed by v{¢'} with

Ce{&} < Eo[V{EH Xnt1)/Xn] — V{EHXn) + £(Xa, £'(Xn))

for n > 1. As in the proof of Theorem 5.1, we can prove that for n > 1,

7(1)Aon—1

C{{3Eglr(1) Aon —1] < Eg 2_:1 k(X €n(Xm))
+Eo[V{€}(Xo,)I{r(1) > on}]

The last term on the right tends to zero as n — oo by Lemma 5.2. Thus letting n — oo in

the above and then dividing through by Eu[r(1) — 1], we get
Ci{€} < Cu{¢'}. QED

Corollary 7.1 Suppose all locally optimal SSS are optimal. Then an SSS v{£} is optimal
if and only if (7.2) holds.

Corollary 7.2  Suppose all SS are SSS and {w{¢}|¢eL} is tight in M(S). In addition,
suppose that k is bounded. Then an SSS 4{¢} is optimal if and only if (7.2) holds.

Proof Let v{&} be an optimal SSS and v{¢} a locally optimal SSS. Define £"¢L by:
£*(2) = &(i) for ¢ < m, = £(7) for ¢ > n. Then P{¢"} — P{&,} termwise. Let n{{"} —
neM(S) along a subsequence. By Scheffe’s theorem, this convergence is also in total

variation. Thus letting » — oo along this subsequence in the equation w{¢"}P{¢"} =

7{¢"}, we get nP{&} =, ie.,, m = n{€}. Thus #{¢"} — #{€} and hence

Cr{€"} — Ci{&} < Cu{&}-

But Ci{¢} < Ci{€"} by local optimality. Thus Cr{¢} = Ci{&,} and v{} is optimal. The
claim follows from the prededing corollary. QED.
It is tempting to conjecture that local optimality always implies optimality. Note also

that whenever this is the case, (7.2) is a much better sufficient condition for optimality
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than (7.1), because all the quantities involved depend only on the SSS v{£} under scrutiny
and no prior knowledge of 8 or V{¢&,} is needed.

8. Characterizing the Solution of the Dynamic Programming Equa-

tions

By a solution of the dynamic programming equations, we mean a pair (¢, W), ceR*, W =

(W (1),W(2),...]7 an infinite column vector, such that
cl, = mein((P{f} — U)W + Q). (8.1)

Clearly, (8,V {&,}) in the foregoing is one solution. Note that if (¢, W) is a solution, so is
(e,W + A1l,) for any AeR.

In this section, we shall give a characterization that isolates the distinguished solution
(8,V{¢&,}) from among the solution set for the special case when (A1) holds.
Lemma 8.1 Under (A1), V{&,}(:),1eS, is bounded from below.
Proof By (A1), A = {ieS|k(i,u) < B for some ueD(:)} is a finite set. Let o = min{n >
1| X,eA}. Then for €S,

[r(1)-1
V{€0}(z) = Efo Z (k(Xma £o(Xm)) - ,B)/Xl - 1:|

m=1

[7(1)—1
> E, | sz (k(Xms &o(Xm)) — B)I{r(1) > 0}/ X1 = 2}
> =B Be[r(1)/ X =] QED

Let G = {f : S — R|f(1) = 0 and inf; f(i) > —o0}.
Lemma 8.2 Let (¢,W)eR' X G be a solution of (8.1). Then ¢ > S.

Proof Let ¢ > 0. Then there exists an SS y{£} such that
(4 )L > (PLE} — U)W + Qe (52)

Let {X,} be a chain governed by v{¢} with X; = 1. Summing up Xi, X, ..., Xn-th rows

of (8.2), one has

(ct+en > EW(Xan)/Xn] = 2 (W(Xm) = EeW (Xm)/ Xm-1])

m=2
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n

+ 37 k(X €(Xm))- (8.3)

m=1

Let 7, = o(X;,1 < n). Taking successive conditional expectations with respect to #._1, o2, ..

in (8.3), one gets

(c+en > Ef[W(Xn+1)/X1]+E5[zn: k(Xm,E(Xm))/X1l.

m=1

> K4 B3 K €05,

m=1
where K > —oo is a lower bound on W (i),7eS. Divide by n and let n — co. If v{&} is
not an S8, it is not hard to deduce from (A1) that

lim inf %Ef [fj k(Xm, £(Xm))/ X1 = 1

n—o0
m=1

> 1.

Thus

ctex>n>p.

If v{£¢} is an SSS,

lim inf L B¢ [fj K(Xom, €(Xo))/ X1 = 1] > e} > B.

n—oo n m=1
Since € > 0 was arbitrary, the claim follows. QED.
Lemma 8.3 If (8,W),WeG, is a solution of (8.1), then W > V{{,} termwise.

Proof Let 0 < e < n — 8. Then there exists an SS y{&} such that
(B + el 2 (P{&} - U)W + Q. (8.4)

If v{¢} is not an SSS, one may argue as in the proof of the preceding lemma to conclude
that B8 + € > 7, a contradiction. Hence y{¢} is an SSS. Let {£,} be a chain governed by
~{€} with X, = 1 for some ieS. For {0,} as before, one can deduce from (8.4) that

7(1)Aon—1

W) = 2_:1 (k(Xm, €(Xm)) — (B +¢€))
(Ao
= 2 W(Xm) — BeW (Xm)/Xm-1])

m=2

—{—W(X.,(l),\an). (8.5)

S F
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By Fatou’s lemma,
Hminf E¢[W (X, (1)n0.) /X1 = 1] = 11m1nfEe[W( JI{r(1) > 0,}/ X1 = 1]

>0

Thus taking expectations in (8.5) and letting n — oo,

r(1)-1

> (k(Xom, €(Xm)) — (B +€)/ X1 = 2}

m=1

>E£

Since € can be made arbitrarily close to zero,

(1)—1
WE) > Ee| Y. (k(Xm, €(Xm)) — B)/ X1 = z}
m=1
> V{&}H)
where the last inequality follows from Lemma 6.3. QED

Lemma 8.4 For W as above, W =V {{,}.

Proof Let K > 0 be a finite number such that W(¢) > —K for veS. Then for each ¢S,
Yo p(5 5, W)W () + k(i u) = 3 p(, 5, w) (W (5) + K) + k(5,u) — K.
jesS jes

The first term on the right is a monotone increasing limit of continuous functions in the

variable u and hence is lower semicontinuous in u. Since k(z,-) is continuous, the left hand
side above is lower semicontinuous in v and hence attains a minimum at some u;eD. Let
¢ = [ug,us,...JeL.
Then

Bl. = (P{€} — U)W + Q.

By the arguments used in the proof of Lemma 8.2, v{¢{} is an SSS. Since

Bl. < (P{&} —U)V{&} + Qe

we have

(P{&}-U)W —V{&}) <0
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Letting {X,.} be a chain governed by v{¢} with X; = 1, this and Lemma 8.3 imply that
V =W —V{§,} satisfies
V(X,) > 0=V (Xy).

Ef[V(Xn+1)/Xn] < V(Xn)1

n = 1,2,.... This is possible only if V(X,) = o a.s. for each n. Since v{£} is an SSS,
X, = 1 infinitely often a.s. for each 7¢S. Hence V(7) = 0 for 7eS. The claim follows.
QED.

The following theorem summarizes the above.

Theorem 8.1 Among all solutions (¢, W) of (8.1) in R* x G,(8,V{&}), is the unique

solution corresponding to the least value of c.
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