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Abstract

The Shell Standard Control Problem (SSCP), with its hard constraint specifications
and the multiple performance objectives, is clearly the kind of problem to which the
use of an on-line optimizing control algorithm like Quadratic Dynamic Matrix Control
(QDMC) seems to be an appropriate approach. The presence of the hard constraints
in the on-line optimization problem however, makes the overall system nonlinear even
though the process dynamics are assumed linear. The Contraction Mapping Principle
has been applied to the operator mapping the state of the system (plant+controller) at
sampling point k£ to that at £+ 1 to obtain nominal and robust stability conditions for
the nonlinear system. These conditions can be used to analyze the stability properties
of the QDMC algorithm and to obtain design insights by examining their variation
during simulations of the system.

1 Preliminaries

The hard constraint and performance specifications of the SSCP can be described as a QDMC
problem in a relatively straightforward manner, as it is illustrated in [7]. This section will
set some notation for later use.

The properties of the controller are independent of the type of model description used
for the plant (see, e.g., [2]). The impulse response description is a convenient one:

y(k+1) = Hyu(k) + Hou(k — 1) + ... + Hyu(k = N +1) (1)
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where y is the output vector, u is the input vector and N is an integer sufficiently large for
the effect of inputs more than N sample points in the past on y to be negligible.

The QDMC-type algorithms [1,3,4,2] use a quadratic objective function that includes the
" square of the weighted norm of the predicted error (setpoint - predlcted output) over a finite
horizon in the future as well as penalty terms on u or Au:

miny®),..ukrr-n) it (B + D%k +1) fu(k+1-1TBu(k+1-1) )
+Bu(k+ 1= DD Au(k+ 1~ 1)

The minimization of the objective function is carried out over the values of Au(k), Au(k +
1),..., Au(k+ M —1), where k is the current sample point and M a specified parameter. The
minimization is subject to possible hard constraints on the inputs u, their rate of change Au,
the outputs y and other process variables usually referred to as associated variables. The
details on the formulation of the optimization problem can be found in the cited references.
After the problem is solved on-line at k, only the optimal value for the first input vector
Au(k) is implemented and the problem is solved again at k + 1. The optimal u(k) depends
on the tuning parameters of the optimization problem, the current output measurement y(k)
and the past inputs u(k — 1),..., u(k — N) that are involved in the model output prediction.
Let f describe the result of the optimization:

U(k) = f(y(k)’u(k— 1)”u(k_N)) (3)

The optimization problem of the QDMC algorithm can be written as a standard Quadratic
Programming problem:

ming(v) = %vTGv + g% (4)
subject to
ATy > b (5)
where . . ,
v=[Au(k) ... Au(k+M-1)|T (6)

and the matrices G, A, and vectors g, b are functions of the tuning parameters (weights,
horizon, M, some of the hard constraints). The vectors g, b are also linear functions of y(k),
u(k — 1),..., u(k — N). For the 6ptimal solution v* we have [5]:

(% -1

where AT, b consist of the rows of A7, b that correspond to the constraints that are active at
the optimum and A* is the vector of the Lagrange multipliers. The optimal Au(k), descibed
by (3), corresponds to the first m elements of the v* that satisfies (7), where m is the
dimension of u.

The special form of the LHS matrix in (7) allows the numerically efficient computation
of its inverse in a partitioned form [5]:
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Then ) - ,
v = —Hg +Tb : @

M =TTg—Ub | | (10)

and

uB)=u(E-1)+[1 0 ... 0]v¥ (k) ulk = 1),...,u(k = N)) (1)

2 Stability Conditions

Some recent work by the author [8] used the Operator Control Theory framework [6], to
study the properties of the overall nonlinear system. In this approach, the stability and
performance of the nonlinear system can be studied by applying the contraction mapping
principle on the operator F that maps the “state” of the system (plant + controller) at
sample point k to that at sample point k+ 1. The fact that the plant dynamics are assumed
linear allows us to obtain results and carry out computations that are not yet feasible in the
general case. We can define as the “state” of the system at sample point k the following
vector

z1(k) 1
z(k)=| (12)
where
zi(k+1) = u(k) = fly(k),u(k —1),...,u(k = N))
= f(Huwu(k—1)+...+ Hyu(k = N),
u(k —1),...,u(k = N))
 Puk-1),...,u(k—N
- wExEk)) oot =10 (13)
a(k+1) Zulk—1) = ay(k)

zn(k +1) ééfu(k—N+1) ;. zy-1(k)

The “state” vector z(k) is defined so that knowledge of it allows the computation of z(k+1)
by applying the plant and controller equations on it. Indeed the operator F' that maps z(k)

to z(k + 1) is given by
U(z(k))

.'El(k)
z(k+1) = F(z(k)) = : (14)

2na(k)

Note, however, that although f is known, since it describes the on-line optimizing control
algorithm and it involves only the process model, U is not exactly known, because it involves
the “true” plant impulse response coefficients Hy,..., Hy. :

Convergence of the successive substitution z(k + 1) = F(z(k)) to the unique fixed point
ofﬁ the contraction implies stability of the overall nonlinear system; fast convergence implies

3



good performance. The use of the contraction mapping principle allows the development of
conditions for robust stability and perfor’mance in terms of some induced matrix norm of the
derivative F' of the above operator F.

Let J; be a set of indices for the active constraints of (4) and Jl, y Jn correSpond to
all possible active sets of constraints when all zs in the domain of F are- cons1dered Every
such J; corresponds to an A; and a b;. It was shown in [8] that for all zs that correspond
to the same J; and for which an infinitecimal change in their value does not change the set
of active constraints, the derivative of ¥ and therefore of F' exist and it ha,s the same value
that depends on the particular set J;:

( (sz\I')J.' (sz\p)J.' ce (vrn_x\p)-]& (VIN\I’)JG ]
I 0 0 0
F) = 0 I e 0 0 (15)
|0 0 ... 10|

where from (13) it follows that

(ijq’)J; = (Vr,'f)l.' + (Vyf)J.' HJ' (16)

The derivatives of f can be computed easily from (11):
(Ve )= [T 0 ... 0](=H5 Vg +T5Vab) (17)

where the derivatives of g, b; are constant since g, b are linear functions of y(k), u(k —1),...,
u(k ~ N). The same expression as in (17) is also true for the derivative with respect to y(k),
the current measurement. Also note that in the case of z,, the identity matrix I should be
added to the RHS of (17).

It turns out that F(z) is quasi-linear and that it is differentiable everywhere except the-
points where an infinitecimal change will change the set of active constraints at the optimum
of (4). The following theorems were proven in [8]. The terms stability and instability of the
control system are used in the global sense over the domain of F' under consideration.

Theorem 1 F is.a contraction if and only if there exists a consistent mdtria: norm ||.||, for
which
|F7ll<1, i=1,...,n (18)

The practical use of (18) is limited by the fact that ﬁﬁding an appropriate consistent norm
is not a trivial task. The following three theorems provide conditions which are more readily
computable.

Theorem 2 The control system is asymptotically stable if

| (Ve ¥)y; (VxQ\I!)J‘ vor (VWi llo <1, 1=1,...,n (19)



where - , ,
HBleo = maxz bi;| , ~(20)
1=1

Note that for single-input single-output plants (19) becomes

oV . ,
Zl axJ' =1,...,n (21)
2

which for the unconstrained case is simply a sufficient condition for the closed-loop poles to
lie inside the Unit Circle.

Theorem 3 F.can be a contraction only if
p(F;) <1, i=1,...,n (22)

where p(A) is the spectral radius of A. Note that if the optimization (4) is not subject
to (5), then n = 1 and (22) becomes sufficient as well, because, given a matrix one can
always find a consistent norm arbitrarily close to its spectral radius. The reason that (22)
is not sufficient in general is that such a consistent norm is in general a different one for two
different matrices (different J;s), while (18) requires the same norm for all ¢. In the case of
n = 1, (22) translates to the requirement that the closed-loop poles of the system are located
inside the Unit Circle.

If (22) is not true, then F is not a contraction. This however does not necessarily imply
that the control system is unstable. The following theorem provides a condition that is
sufficient for instability.

Theorem 4 The control system is unstable if
p(F3.)>1, i1=1,...,n (23)

Theorem 4 can be used to predict instability of the overall nonlinear system. Theorem 3
on the other hand does not seem at a first glance to be of much use, since violation of (22)
does not necessarily imply instability. From a practical point of view, however, violation of
that condition for some i, should be taken as a very serious warning that the control system
parameters should be modified. The reason is that when in the region of the domain of F
that corresponds to that z, the system will behave as a virtually unstable system, the only
hope for stability being to move to a region with p(F) < 1. It might be the case that for a
particular system in question this will always happen, makmg this system a stable one. But
even in this case, a temporary unstable-like behavior might occur, thus making the control
algorithm practically unacceptable.

From (16) we see that Fj. depends on the impulse response coefficient matrices Hy,...,
Hpy of the actual plant. These matrices are never known exactly and so in order to guarantee
stability for the actual plant, one has to compute the conditions of Section 2 not just for
the model, but for all possible plants. To do so, one needs to have some information on the
possible modeling error associated with the H;s. Let H be the set of possible values for these
C(gefﬁcients. Then



Theorem 5 The control system is asymptotically stable for a?l plants with coefficients in 'H .
if ' , _
» S;l{p ” (V_II\I’)_}‘ (Vlz\p)Ji ce (VG‘N\I’)-H ”00 <l, z=1,...,n ) (24)

Theorem 6 F' can be a contraction for all plants with coefficients in H only if

supp(F",l.') <1, i=1,...,n (25)
H

3 A Robust Linear Control Stabilization Interpreta-
tion of the Necessary Conditions

In order to carry out the maximizations over H described by (25), (24), one needs to
parametrize the “uncertain” Hy,..., Hy, in terms of a fewer “uncertain” parameters. For
example, in the simple case where the linear plant dynamics are described by the transfer
function %T’ where K, 7, are within some ranges, we can write Hi,..., Hy, as functions
of K, 7, and compute sup,, as supg ,. However, the situation is usually more complex, a
fact that makes the efficient parametrization of the modeling error in H,,..., Hy, a very
important research topic.

The following re-formulation of the necessary conditions of the previous section, allows
us to bypass the problem of dealing with uncertainty in the Hs directly, and use the tools
that were developed for Robust Linear Control (e.g., the structured singular value) to treat
any of the types of model error that can be handled by that theory. Consider a standard

feedback controller C(z). Then
u(z) = C(2)(r(z) — y(2)) (26)

where r is the setpoint vector. Define

Coe) ¥ = [1 = (Ve o™ = = (Ve o™ (Vs (27)

Since the plant is assumed to be open-loop stable, for stability of this linear control system
we need that the closed-loop transfer function between u and r or d (disturbance) be stable.

" From (26), (27) we get by using (1)

u(®) == [[ = (Va2 = . = (Ve Wz ™] (T () (28)

where (ij\p)J‘ is given by (16). Hence, stability of the linear unconstrained system under
feedback control Cj,(z) is equivalent to stability of the transfer matrix in (28), which is
equivalent to (22) since F, is the companion matrix of the denommator of (28). Hence we
have

Theorem 7 F can be a contraction only if all feedback controllers Cy,(z), i = 1,...,n, pro-
duce a stable system when applied to the unconstrained process.

Theorem 8 F can be a contraction for all plants in a set I1, only if all feedback controllers
C;J‘(Z), t = 1,...,n, stabilize all plants in the set II.
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The advantage of Thm. 8 over Thm. 6-lies in the fact that through Thm. 8 we can handle
any set II that Robust Linear Control theory can. This new interpretation of the conditions
also indicates that robust performance conditions can be formulated for the same set of
feedback controllers. For the sufficient conditions a similar formulation may be possxble but
it would probably involve some conservativeness.

4 Practical Interpretation of a Condition Violation

Conditions (22), (19) can be used to examine the nominal stability of the system for a
particular selection of tuning parameters. An important question however is what are the
implications if for a particular A; the conditions are not satisfied. This would only be relevant
if the particular combination of active constraints at the optimum can actually occur during
the operation of the control system. The following is a procedure that can decide if a certain
set of active constraints at the optimum is relevant.

Let AT, b consist of the rows of AT, b that correspond to *he inactive constraints at the
optimum. Then by using (9), (10) we see that in order for such a combination to be possible
at the optimum we need to have

AT(~Hg+Th)>b (29)
TTg-Ub>0 (30)

Since g, b are linear combinations of the past manipulated variables and the current mea-
surement, (29), (30) can be combined with the hard constraints on the past us, the past
Aus and the output y(k) to constitute a system of linear inequalities that have to have a
feasible solution over the values of the past inputs and the current measurement. Note that
depending on the estimate of expected disturbances, one may wish to modify the bounds
on y(k) that are used in the above problem. If the problem has no feasible solution, then
the fact that for that particular A the stability conditions are not satisfied, is of no practical
importance. -

Note that the above procedure can also serve to construct a sequence of possible past
inputs that can lead to a situation during the opera,tlon of the control system where the
stability conditions are not satlsﬁed

5 Analysis of Simulation Results

The computation of the stability conditions at all possible combinations of active constraints
at the optimum of the on-line optimization problem can be extremely time-consuming and
therefore a systematic method that does not have to check all possibilities is needed. Since
no such method for checking the conditions is currently available, the following procedure
for providing the designer with insights on tuning the controller parameters can be used.
For a given set of values for the tuning parameters, the designer can simulate the overall
system for certain disturbances and/or setpoints that he considers of practical relevance.
Such simulations can show instability or simply bad behavior at certain points during the
siﬁmulation. This behavior which stops short of instability might be captured as a violation of

T



condition (22) which is necessary for F to be a contraction. By computing these conditions
at every sampling point during the simulation and by studying the robustness properties of
the Cj,s that correspond to the points where the conditions were violated, the designer may
be able to improve the tuning parameters. :

6 Illustrations

6.1 Robust Stability ‘of a SISO proce"ss

Consider the process model .
D = 31

A sampling time T = 0.1 will be used and the control algorithm will minimize on-line the
objective function

P

min ek +DIT%e(k+ D)+ Awk+ 1= 1T D*Au(k+1 -1 32
o, Ty D ek DTe(E + 1)+ Aulk 4 1= )T DAk + 1= 1)]  (32)

To allow the analytic study of the properties of the control system we shall choose the
parameters to be P = M =T = 1. A choice of D = 0, when there are no hard constraints,
will result in an IMC controller that inverts the model [3].

Let us now consider a model-plant mismatch caused by a delay term in the plant:

6—0.153

s+1
For this plant, robust linear control theory can easily show that the control system will be
unstable for D = 0. D has to ber increased over D = 0.2 to stabilize it. The choice D = 0.4
results in reasonable performance.

Our interest in this example has to do with the effect of hard constraints on its output.
Let us specify a lower bound of —1 and an upper bound of +1 for y and include these
constraints in the on-line optimization problem. Since the horizon P = 1, it is not possible
for both to be active at the optimum. In this case n = 3, corresponding to (i) no active
constraints, (ii) upper constraint active, (iii) lower constraint active. Analytic computaion
of ¢j(z), 1 = 1,2,3, results in the expressions

p(s) = (33)

Cle(Z) =H1/[ (D2+H12)+(H1H2—H12—D2)2_1 (34)
+H1(H3 — H2)2"2 + ...+ Hl(HN — HN_l)z_N'H —_ HlHNz‘N] :
cn(2) = cn(2) = 1/[ Hi+ (Hy ~ Hy)z™!
+(Hs — Hy)z7% + ...+ (Hy — Hy_1)z"t' — Hyz™V]

One can easily see from these exressions that cj, and c;, correspond to an IMC controller
that inverts the process model, the same as ¢,, for D = 0. The difference is that D does not
appear in (35) and therefore this controller will be unstable when the model-plant mismatch
is present. The question that arises now, is the one discussed in Section 4. For the case of
tlge upper constraint and for a setpoint equal to zero, (30) predicts that if the system is at

(35)
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Figure 1: Constrained; D=0.4 and d=1.70

equilibrium, a disturbance of magnitude greater than 1.6 will result in an on-line optimization
where the upper constraint is active. The system could however manage to return to the
contraction region of no active constraints. Indeed for a disturbance of 1.7, as Fig. 1 shows,
the system is still stable, although at the edge of instability. An increase of the disturbance
to 1.75 however results in an unstable system as Fig. 2 shows. Note that D = 0.4 is being
used; although D does not appear in (35), it does play a role on whether the constraints are
active at the optimum. Both simulations use the plant of (33).

Let us now remove the constraints from the optimization problem and repeat the sim-
ulation for the same d = 1.75 and D = 0.4. The result is shown in Fig. 3. The response
is reasonable and the constraints are virtually satisfied, although they were removed from
the optimization problem. This example is not meant to suggest that output constraints
should not be included in the optimization, but merely to point out that their effect should
be studied carefully before their inclusion and to demonstrate that the stability conditions
that were provided in this paper can predict this effect successfuly.

6.2 2 X2 Subsystem of the SSCP

Let us consider the top 2 x 2 part of the Heavy Oil Fractionator of the SSCP [7]. This system
has as outputs 1 and 2, the Top End Point and the Side End Point correspondingly. The



"
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Figure 2: Constrained; D=0.4 and d=1.75
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Figure 3: Unconstrained; D=0.4 and d=1.75
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inputs are the Top Draw and the Side Draw. The transfer function of this subsystem is

.
N
l Y2 ] -
where €, €; represent the model uncertainty and they can take any value between —1 and
+1, 0 corresponding to the nominal model. A sampling time of T' = 6mun is selected which
results in lower and upper constraints of -0.3 and 0.3 for the changes in the inputs. Lower
and upper constraints of -0.5 and 0.5 exist for all the inputs and outputs.

Our goal is to see how the stability conditions can be used to analyze simulation results.
In the objective function of (2) we select P = 6, M = 2, B = D = 0. The minimization is
carried out subject to the above described hard constraints. The Constraint Window for the
outputs is 5-6 for the Top End Point and 3-4 for the Side End Point. Beginning the windows
at earlier times may result in infeasibilities because of the longer time delays. It should be
noted that this selection of parameters is meant as a simple one rather than an “optimal”
one.

The simulation for no model-plant mismatch is shown in Fig. 4, where a disturbance
in the form of simultaneous step changes of 0.5 in the Upper and the Intermediate Reflux
Duties is used. The same disturbance is used in all simulations in this section. Use of the
disturbance transfer function models yields the following output disturbance vector:

503+1 60s+1
(5.39+43.29¢1)e "8 (5.7240.57¢y)e— 14
50s+1 ~60s+1

“‘] © . (36)

U2

{ (4.0542.11¢;)e=278  (1.7740.39¢,)e—?8¢ } {

1.20e—2%7*  1.44e—27¢ 0 5/
S
— 45541 40s+1 *
d(S) = 1.52‘;1'153 1.8321-]5’ J [ 0 5/5 ] (37)
25341 20341 :

Note that the plot of p is the value of the necessary condition for the particular J; occuring
at the sample points during the simulation. When a model-plant mismatch is present, as in
the following simulations; it is computed for the coefficients of the actual plant used in the
simulation.

Next, a mismatch between the model and the plant is assumed, corresponding to ¢; = —1
and €; = 1. The simulation is shown in Fig. 5. By looking just at the outputs and inputs
there is no indication of a potential problem. However by looking at the plot of p we see that
the necessary condition is close to being violated during part of the simulation. It is simple
to check that this part of the simulation corresponds to the case where at the optimum of the
on-line optimization no constraint is active. The problem is not significant in this simulation
because eventually, the lower constraint for the Top Draw becomes active at the optimum -
and we move to a well-behaved region. Let us now repeat the simulation of Fig. 5 but with
the lower constraints for the inputs at -1 rather than -0.5. The simulation is shown in Fig.6
and this time the system sufers from persistent oscillations because the constraint does not
become active early on. Figure 7 repeats the simulation of Fig. 6 but with a larger mismatch.
We are using €; = —1.2 and €; = 1.2. This time we are in the instability region as the plots
show. The question of interest at this point is how can one use the plot of p in Fig. 7 to
make a parameter change so that the system is stabilized. From the previous simulations it
is clear that one way would be to simply increase the value of the lower input constraint,
i.e., use this constraint as a tuning parameter. What is important to note however is the
following;:
\ Tuning Observation
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The values of the hard constraints do not appear in the expressions of the Cj;s; hence
they can influence stability only by keeping a destabilizing J; from occuring. They cannot
- change a Cy; into a stabilizing controller; this can be accomplished only by the parameters

of the objective function. :

Hence it seems that is safer to actually try to find values for the parameters of the
" objective function that make C, stabilizing (where J; is defined to correspond to the case of
no active constraints at the optimum), without changing the values of the hard constraints.
But this is a problem that can be addressed through Robust Linear Control Theory. Use of
the Structured Singular Value shows that a B = 0.2 stabilizes the system. The simulation
is given in Fig. 8. Note that if the problematic C; corresponded to some active constraints,
the situation would stiil be treated through the same tools.
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