
ABSTRACT

Title of Thesis: LOW ENERGY WAKE-UP LOGIC

Himabindu Kakaraparthi, Master of Science, 2003

Thesis directed by: Professor Manoj Franklin

Department of Electrical Engineering

Wake-up logic is responsible for informing instructions in the Window that are

waiting to execute, about the availability of their input operands. The

conventional method of wake-up consumes a significant percentage of the

Instruction Window energy. Reducing the wake-up energy also addresses the

Instruction Window hot spot problem caused due to the high power density of

the Instruction Window.

In this work, we investigate the energy and power savings of a low complexity

scheme that stores the dependence relations between instructions in an array and

uses this array to simplify the wake-up. We then present a new wake-up scheme

that further reduces the wake-up energy by using a smaller table to store

dependence relations and dynamically allocates dependence slots to only those

instructions that have dependents in the Window. Our approach leads to savings

of up to 50% in wake-up energy and 15% in the Instruction Window power with

a very slight decrease in IPC. Also, both the schemes are more scalable than the

conventional wake-up scheme with increasing Instruction Window size and Issue

Width.

LOW ENERGY WAKE-UP LOGIC

by

Himabindu Kakaraparthi

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial fulfillment

of the requirements for the degree of

Master of Science

2003

Advisory Committee:

Professor Manoj Franklin, Chair

Professor Bruce Jacob

Professor Donald Yeung

c© Copyright by

Himabindu Kakaraparthi

2003

DEDICATION

To my parents - the best I know.

ii

ACKNOWLEDGMENTS

I want to express sincere gratitude to my advisor, Dr. Manoj Franklin, for all his

time, patience and support. I learnt a lot from him. I also want to thank my

family and friends for not only making this thesis possible but also enjoyable.

Himabindu Kakaraparthi

iii

TABLE OF CONTENTS

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions of this thesis . 3

1.3 Organization of the Thesis . 5

2 Background 6

2.1 Out-of-Order (OOO) Execution . 6

2.2 The Instruction/Execution pipeline 9

2.3 The Instruction Window . 10

2.4 Related Work . 11

3 DL-based Wake-up 15

3.1 Motivation and Outline . 15

3.2 Theory and Implementation . 16

3.3 A Comparison with the N-use scheme 19

iv

3.4 Impact on Performance (IPC) . 20

3.5 Impact of Clock Cycle . 21

3.6 Impact on Area/Space . 22

3.7 Branch Misprediction/Instruction Squashes 23

4 Analysis of Energy Consumption 25

4.1 Energy Consumed in DL-based Wake-up 25

4.2 Energy Consumed in Conventional Wake-up 29

4.2.1 Tag Drive Energy . 31

4.2.2 Tag Match Energy . 32

4.2.3 Match-OR Energy . 33

4.3 A Comparison of the Energy Consumed in the DL-based Scheme

and the Conventional Scheme . 33

4.4 Effect of Dlist Length on Wake-up Energy 35

4.5 Scalability of DL-based Scheme with Instruction Window Size and

Issue Width . 35

5 Need-Based DL (NBDL) Wake-up Scheme 37

5.1 Motivation . 37

5.2 Parent Instructions . 39

5.3 Implementation . 42

5.4 Energy Analysis . 45

5.5 Effect of NBDL scheme on delay . 45

v

5.6 Impact of NBDL scheme on Processor Area 47

6 Experimental Analysis 48

6.1 Experimental Setup . 48

6.1.1 Simulator . 48

6.1.2 Benchmarks . 49

6.1.3 Baseline . 49

6.1.4 Microarchitectural parameters 49

6.1.5 Simulation Parameters . 51

6.2 Results . 51

6.2.1 Performance Results . 51

6.2.2 Energy Savings in Wake-up 56

6.2.3 Instruction Window Power Savings 59

6.2.4 Energy Delay Product . 61

6.2.5 Scalability with Increasing Window Size and Issue Width . . 64

6.2.6 Performance of DL-based and NBDL Schemes for a Split

Window Organization . 67

6.2.7 Overall Processor Power Savings 68

7 Conclusions 69

Bibliography 74

vi

LIST OF TABLES

6.1 Microarchitectural parameters . 50

vii

LIST OF FIGURES

2.1 Instruction Pipeline of an out-of-order execution processor 8

3.1 DL-based wake-up . 17

3.2 Impact of DL-based wake-up on delay 22

4.1 Logical view of the Dlist array . 26

4.2 Conventional wake-up logic . 29

5.1 Percentage of Parent instructions 41

5.2 Need Based DL (NBDL) wake-up 43

5.3 Effect of NBDL scheme on the delay of dispatch stage 46

6.1 Relative IPC of DL-based scheme. Window size 64, Issue Width 4 . 52

6.2 Performance comparison of DL based and NBDL wake-up scheme.

Window size 64, Issue Width 4 . 54

6.3 Relative wake-up energy of DL-based scheme. Window size 64, Issue

Width 4 . 56

6.4 Wake-up energy comparison of DL-based scheme and NBDL scheme.

Window size 64, Issue Width 4 . 58

viii

6.5 Relative Window power of NBDL scheme. Window size 256, Issue

Width 8 . 60

6.6 Wake-up energy delay product as a function of increase in delay . . 63

6.7 Scalability of wake-up energy of NBDL scheme with Window size

and Issue Width . 65

ix

Chapter 1

Introduction

Throughput has always been the primary goal in processor design, especially for

general-purpose processors. In order to achieve greater processing power, many

techniques such as pipelining, caching, parallel execution (superscalar or VLIW),

and out-of-order execution are usually employed. Although these techniques are

quite successful in improving the throughput, they increase the complexity of the

logic involved. This increase in complexity has two main effects - (1) increase in

delay associated with the logic (2) increase in the energy/power consumed by the

logic.

The increase in energy consumption is a serious problem. In fact, present day

general-purpose processors such as the Alpha 21364 and PowerPC 704 dissipate

about 86 and 100 Watt, respectively [1]. Thus, energy has become a significant

factor in processor design. This is also true for embedded systems and laptops

that run on battery power and hence are required to have low energy

consumption in order to be viable. The secondary effect of increased energy

1

consumption is an increased expense for cooling the chip and for packaging. So,

reducing the energy consumption of the processor is a prime concern. A related

problem is the high power density of the Instruction Window, which is at the

heart of current day out-of-order superscalar processors. The high power density

causes a local hot spot. The problems associated with such a hot spot are

difficulties in layout and packaging.

1.1 Motivation

Wake-up energy is a significant part of the Instruction Window energy

consumption. The wake-up logic is responsible for informing waiting instructions

in the Window about the availability of their input operands. Reducing the

wake-up energy addresses the twin problems of high energy consumption and the

Instruction Window hot spot.

An inspection of the conventional method of wake-up shows a remarkable

potential for energy savings. This is because the conventional wake-up involves a

fully associative search: the availability of an operand is fanned out to all

instructions in the Instruction Window. These include instructions that are

ready for issue and instructions waiting on other operands. Huang, et al state

that, most often, each instruction has only 1 or 2 dependents [2]. This means

2

that all other instructions in the Instruction Window do not need this

information and hence there is a lot of redundancy in the broadcast operation.

By eliminating this redundancy, we can save a considerable amount of energy.

1.2 Contributions of this thesis

Recently, some alternate schemes have been proposed to reduce the complexity of

wake-up [3, 4, 5, 6, 7]. All of these are dependency-based schemes. The schemes

maintain tables of dependency relations and index into these tables to find the

dependents of instructions and wake them up. Thus, they eliminate the wake-up

of redundant instructions and wake up only those that are necessary. However,

the energy/power savings for these schemes have not been quantified or analyzed.

In this work,we formulated a wake-up scheme called DL-based (Dependence

List- based) wake-up scheme that is based on the low complexity

dependency-based schemes and investigated the energy/power savings that can

be achieved by the same. It falls into the general class of dependency based

wake-up schemes and it’s energy savings can be considered representative of the

class. The scheme associates a list of dependent instructions with each instruction

in the Window and reads this list to wake up only the necessary instructions

when the producer instruction completes execution. We found that significant

3

savings in energy could be gained with very little reduction in throughput.

Further, we noted that not all instructions in the Instruction Window have

dependents and so we need not allot space to all instructions in the Window to

store the dependency relations as we did in the DL-based scheme. In order to

investigate the possibility of obtaining more energy savings by eliminating this

redundancy, we conducted a study on the average number of Parent instructions

in a program (Parent instructions are instructions in the Instruction Window

that have at least one consumer instructions present in the Window).

Leveraging the results of this study, we propose a scheme that further reduces

the wake-up energy/power consumption. This scheme stores the dependence

relations of only those instructions that have dependents in the Window, i.e. the

Parent instructions. This scheme is called the Need Based DL scheme (NBDL

scheme), because the slots in the table used to store the dependence information

are dynamically allocated based on need. Thus, the size of the table used to store

the dependence information can be reduced from its original size in the DL-based

scheme, giving rise to further energy savings. Our simulation results show that

the NBDL scheme achieves almost as much throughput as the DL-based scheme

while using a dependency table that is half the size of that in the DL-based

scheme. Also, the NBDL scheme is more scalable than the conventional wake-up

logic with increasing Window size and Issue Width.

4

1.3 Organization of the Thesis

The organization of the thesis is as follows. Chapter 2 defines the problems in

detail and provides the necessary background. Chapter 3 introduces the

dependency based wake-up scheme of low complexity, i.e. the DL-based scheme,

and its implementation. Chapter 4 analyzes the wake-up energy of the new

scheme and the conventional scheme. Chapter 5 motivates and describes a

scheme for achieving more savings in wake-up energy, i.e. the NBDL scheme.

Chapter 6 provides the experimental framework and presents the results of the

simulations. Chapter 7 presents the conclusions.

5

Chapter 2

Background

This chapter provides the necessary background to understand the problems

addressed in this work and the solutions we propose. We shall briefly describe

the basic concepts of out-of-order execution, the execution pipeline and the

Instruction Window in Sections 2.1 - 2.3. Section 2.4 discusses related work that

has been done to reduce the complexity of wake-up.

2.1 Out-of-Order (OOO) Execution

To improve the processing throughput, pipelining and parallel execution are now

used widely. However, the throughput in both cases is fundamentally limited by

data dependencies. A data dependency exists between an instruction A and an

instruction B if A’s output is an input operand for B or vice versa. These

dependencies are mainly of two types: 1. Artificial dependencies that arise due to

reuse of registers and can hence be avoided; 2. Real dependencies that arise due

6

to actual data flow between instructions. Artificial dependencies are resolved

using renaming. However, the real dependencies are unavoidable and prevent

dependent instructions from executing until the producer instruction completes

execution. This can cause stalls in the pipeline [8]. In order to maintain a stream

of dynamic instructions feeding into the pipeline(s) and to get around this data

dependency problem, out-of-order (OOO) execution is used. This primarily

involves finding independent instructions further down in the dynamic

instruction stream and executing them in a different order from that in the

stream, while still maintaining correctness. The Tomasulo approach for OOO

execution involves instructions executing out-of-order and writing their results to

a Common Data Bus (CDB) from where the results are read by any waiting

dependent instructions [9]. Thus, out-of-order execution is used to improve the

throughput by avoiding stalls in the pipeline arising from some instructions

whose operands are not yet ready.

The increase in throughput is achieved, however, at the cost of increase in

complexity. When compared to an in-order processor, the out-of-order processor

requires extra logic to check for dependecies between instructions and to resolve

artificial dependencies. Also, a buffer is required to store the instructions that

have been fetched but not issued for execution due to data dependencies. This

buffer is called the Instruction Queue (IQ). Also, a mechanism is required to

inform the waiting instructions in the IQ about the fulfillment of their

7

���������

�
	���
����
�
���������������! #"%$'&)(+*-,/.10-2�3�4�576�8�9;:�<�=�>

?A@�B�C7D'E�F

GIH�JLK%M�N

O#P�QSR�T�U�V%W7X

Y[Z1\^]L_S`

Figure 2.1: Instruction Pipeline of an out-of-order execution processor

dependencies (i.e. the availability of their input operands). This mechanism is

called wake-up. Thus, on the whole, the complexity of the instruction pipeline

increases due to out-of-order issue and execution. This leads to a corresponding

increase in the energy/power consumption of the processor.

8

2.2 The Instruction/Execution pipeline

The Instruction pipeline of a typical out-of-order execution, general purpose

processor can be broadly divided into 6 key stages. Figure 2.1 illustrates the

pipeline. In the Fetch stage, instructions1 from the dynamic instruction stream

are fetched from the instruction cache to the fetch buffer. In the Decode stage,

the instructions are decoded and checked for data dependencies, the dependencies

are resolved, and instructions are sent to the IQ. This stage can be subdivided

into Dispatch and Issue. Dispatch involves decoding the instructions and sending

them to the IQ after resolving their data dependencies by renaming, whereas

Issue selects a subset of the instructions in the IQ and sends them to their

respective functional/execution units. This selection is subject to the availability

of input operands of the instructions and the availability of execution units. Any

instruction whose input operand is unavailable can be bypassed by instructions

that are further down in the instruction stream. These waiting instructions are

woken up when their input operands become available. Thus, instructions are

fetched and dispatched to the IQ in the order of their appearance in the

instruction stream but they can be issued to functional units out-of-order. In the

Execute stage, instructions are executed in the functional units. In the next

stage, i.e. the Memory stage, instructions that require memory operations, such

1In this document, we shall refer to dynamic instructions as instructions unless noted other-

wise.

9

as loads/stores, access the memory hierarchy. In the Writeback stage,

instructions that have completed their operations write back their results to the

common data bus from where the results are collected by the dependents (in the

Tomasulo scheme).

Finally, there is the Commit stage that is specific to out-of-order execution.

This is the stage where the outputs of the instructions that have completed

execution are committed. This has to be done in-order (dispatch order) to

support precise interrupts in the face of out-of-order execution. “A pipeline is

said to support precise interrupts if the saved process state (i.e. program counter,

register file, etc) is consistent with the sequential architectural model” [10]. As

instructions are executed out-of-order, additional help is required to maintain the

original sequence of instructions for commit. A structure called the Re-Order

Buffer (ROB) is used to maintain all instructions in dispatch order. The ROB is

written to at dispatch time as instructions dispatch (in-order) and contains the

descriptors or identifiers (IDs) of the instructions.

2.3 The Instruction Window

The ROB and the IQ can be combined to a single storage unit called the Register

Update Unit (RUU) or Instruction Window in general [10, 11]. Instructions are

10

sent to the Window after the dispatch stage and stay there until the end of the

commit stage. The Window is accessed to write instructions at dispatch time, to

select the instructions for execution and to write operands to the respective

functional units at issue time, to write results to the dependents in the Window

and wake them up (broadcast operation) at writeback time. Thus, in a single

cycle, the Window is read/written several times corresponding to instructions in

different stages of the pipeline. This causes the power density of the Instruction

Window to be very high leading to a Window hot spot problem. Ponomarev, et

al estimated that more than 27% of the total power expended within a processor

is dissipated in the Window [12]. A significant part of the Instruction Window

energy is comprised of instruction wake-up energy and hence any reduction in the

wake-up energy correspondingly decreases the power density of the window.

2.4 Related Work

Recently many dependency-based schemes have been proposed to reduce the

complexity of wake-up [6, 7, 4, 3].Dependency relations can be modeled as

producer-consumer relations. Instructions that depend on other instructions can

be considered as the consumers of a value created by the producers. In

conventional wake-up the onus is on the consumers: they store the dependency

relation and listen to the results being broadcasted each cycle to find out when

11

their input operands become available. Dependency based schemes move this

responsibility onto the producers. In these schemes, tables of dependency

relations are maintained and indexed into to find the consumers of each value.

When an instruction completes execution, it finds out who the dependents are

and explicitly wakes them up. This helps in reducing the complexity of wake-up

as it reduces the number of instructions considered for wake-up. A few such low

complexity, dependency-based schemes are discussed next.

Canal and Gonzalez have proposed a low complexity issue logic scheme that

keeps track of dependent instructions using a table [6, 7]. Their scheme partitions

the Instruction Queue into 2 parts: The N use queue and the Separate Ready

Queue (SRQ). The N-use queue has an entry for every physical register in the

architecture and each entry holds the first N dependents of the corresponding

physical register. The SRQ holds instructions that have all of their input

operands available and are ready to execute. Instructions are issued in program

order from the SRQ. When an instruction completes execution, it indexes into

the N-use table entry corresponding to its output register and wakes up the

instructions in that entry. These woken up instructions are then moved to the

SRQ from where they are issued in order.

Soner Onder and Rajiv Gupta present a scheme that also sets up lists of

instructions to be woken up by producer instructions [4]. Each instruction is

12

allowed to wake up two dependent instructions and two siblings each for either of

its input operands. The scheme proposed by Sato, et al stores dependency

information in the form of relations between instructions in a table and is closest

to our low complexity DL-based wake-up scheme [3].

All these studies only look at the performance effects of the reduced

complexity of wake-up logic. They hint that reduced complexity leads to reduced

energy and power too but have not quantified or analyzed it. The DL-based

scheme that we formulated falls into the general class of dependency-based

schemes and hence the energy/power savings obtained with our scheme can be

considered to be representative of that achieved by other such schemes.

Some other schemes have been proposed for low power/energy wake-up logic

and Instruction Window [2, 1, 13, 14, 15]. These schemes are othogonal to our

study and some of them can be combined with our approach to improve

power/energy savings. Huang, et al propose indexing to selectively enable the

comparator of only those instructions that are being woken up [2]. When

multiple instructions are being woken up, the scheme reverts to conventional

wake-up logic. Thus, it is a hybrid scheme. Folegnani and Gonzalez design an

issue logic that saves energy by gating out empty Window entries and ready

instructions for wake-up [1]. Also, they dynamically scale the Instruction Queue

size to suit the program behavior thereby saving energy. Kucuk, et al propose a

13

scheme that dynamically resizes the ROB based on occupancy statistics [13].

Buyuktosunoglu, et al present an adaptive Issue Queue design that varies the

Issue Queue size to match workload demands [14, 15]. Further, they combine this

with fetch gating that gates the fetch mechanism whenever there is a flow

mismatch between instructions fetch and instruction completion.

14

Chapter 3

DL-based Wake-up

This chapter presents and explains a low complexity, dependence based wake-up

scheme called the Dependency List (DL) based wake-up scheme. Section 3.1

motivates the discussion and outlines the scheme. Section 3.2 describes the

DL-based wake-up scheme in detail and Section 3.4 analyzes the performance of

the DL-based scheme when compared to conventional, associative wake-up.

3.1 Motivation and Outline

As described in Chapter 1, the conventional wake-up involves considerable

redundancy in the broadcast process. However, if we eliminate the broadcast to

reduce the energy consumption, the dependency information has to be stored

elsewhere. This can be done by associating a list of dependent instructions with

each instruction in the Instruction Window. Once an instruction completes

execution, it can read this list and wake up only those instructions that are in its

15

dependency list. The DL-based scheme that we formulate is based on this idea.

3.2 Theory and Implementation

The DL-scheme associates each instruction with a list of dependent instruction

identifiers. These lists of instruction identifiers (IDs) are called Dependence lists

(Dlists). A new set of buffers called the Dlist array is added to the

microarchitecture. The instructions are stored in the Window and the

corresponding Dlists are stored in the Dlist array. Thus, each instruction in the

Window is statically associated with an entry in the Dlist array. We use the

Window slot number of an instruction as its identifier. At decode/dispatch time,

each instruction accesses the Register Availability Table (RAT) to find out if its

input operands are ready. If they are, then the instruction is dispatched to the

Instruction Window straight away as usual. If any input operand is not available

at this time, the instruction is still dispatched, but additionally, the instruction is

required to register with its producer instruction as a dependent. The RAT

provides the details of this operand’s producer, i.e., the Window slot number of

the producer instruction. Using this index provided by the RAT, the dependent

instructions index into the Dlist array and enter their ID in the producer’s Dlist.

If an instruction has two non-ready input operands, it writes its ID to the Dlists

of both the producers. On completion of execution, the Dlist of the instruction is

16

read and the corresponding instructions are set to ready, i.e., they are woken up.

The Dlist array look-up can be overlapped with the reading of operands from the

Window to the functional units or the instruction execution itself.

���������	�
���
 ����� �����

������� �

�� "!$#&%('")+*-,/.1032543687(9&:(;=<?>A@CBCDFEHG1I�J

KML

NPO

Q�R�S�T

U�V5WAXZY\[]	^/_/`�acb�dFe(f\g

h	i+jlk5m$n&o+prq�sut1vxw/yHz"{x|/}x~&�����H�A�5�����������

Figure 3.1: DL-based wake-up

Figure 3.1 illustrates the DL-based wake-up scheme. The figure shows how

each entry in the Window is statically associated with an entry in the Dlist array.

Also, note that each row in the Dlist array has two columns, i.e., each row can

17

hold the IDs of two dependent instructions. This parameter, i.e. the number of

columns in the array, is called the Dlist length. In Figure 3.1, the instruction I1 is

currently in the Window slot number 1, i.e. WIN 1. It produces an output IN1

that is used by the succeeding instruction I2. Thus, instruction I2 depends on

instruction I1 through the operand IN1. At dispatch time, instruction I2 queries

the RAT for its input operands. The instruction indexes into the RAT using IN1

and finds that IN1 is not available and that I1 is producing it. I2 is dispatched to

the Window slot WIN 2. Simultaneously, it obtains the Window slot number of

the producer instruction (WIN 1). I2 now uses this slot number to index into the

Dlist array and writes its ID, i.e. WIN 2, to the Dlist array as depicted in the

figure. Thus, the Window slot number of an instruction is used as its ID when

making entries in the producer’s Dlist. When I1 completes execution, it indexes

into the associated slot in the Dlist array and wakes up the instructions waiting

on it, i.e. I2.

The number of instructions within the Dlist of each instruction (Dlist length)

determines the number of dependent instructions that can be woken up by a

producer instruction.If the number of dependent instructions that arrive in the

Window before the producer completes execution is greater than Dlist length,

instruction dispatch is stalled. This is because dispatch has to be carried out in

order and an instruction cannot be dispatched unless its input operands are

already available or its corresponding dependence relation has been stored

18

somewhere. So, if the producer’s Dlist is full, instruction dispatch can proceed

only when the producer instruction completes execution and writes the result to

the register file from where it is read by the dependent instructions.

3.3 A Comparison with the N-use scheme

Canal and Gonzalez’s scheme is similar to the DL-based scheme. However, their

scheme is more complicated and there are significant changes to the Issue stage

architecture. As described in Section 2.4, their scheme partitions the Instruction

Queue into two parts and instructions are issued from only the SRQ. Thus, this

scheme consumes a significant amount of energy in moving instructions from one

queue to other. Also, the performance degrades because instructions are

constrained to issue only from the SRQ and the SRQ might overflow in which

case dispatch needs to be stalled. Also, by partitioning the IQ into two parts, the

use of a Register Update Unit (RUU) in this architecture is disallowed. This is

because instructions need to be maintained in dispatch order in the RUU and not

moved after that.

19

3.4 Impact on Performance (IPC)

In this subsection, we look at how our DL-based wake-up scheme affects the

performance (measured in Instructions Per Cycle or IPC). A significant reduction

in the IPC would render a scheme undesirable. The loss of IPC can be attributed

to the dispatch stalls that occur when there is no free space in the producers’

Dlists. As we increase the size of the Dlists we can accommodate more

instructions in the Dlist and hence move closer to the ideal/ conventional case,

which has a Dlist length of infinity. However, increasing the Dlist length increases

the energy consumed because of the increase in the size of the Dlist array. Thus,

this parameter represents a trade-off between energy and performance.

An important observation in this regard is that as the Window size increases,

we are able to accommodate more instructions in the Window and hence look

deeper into the instruction stream to exploit more parallelism in the program.

This implies that more dependent instructions may be accommodated in the

Window in case of the conventional wake-up scheme. However, our DL-based

scheme is unable to use this expanded Window as well because of the limited

number of Dlist slots per instructions. Dispatch is stalled when there is no space

in the producer instructions’ Dlists even though there is space in the Window to

accommodate these instructions. Hence the increase in IPC with an increased

Window size is slower in case of DL-based wake-up when compared to the case of

20

conventional wake-up. This implies that the relative IPC of the DL-based scheme

may decrease slightly with increasing Window size.

3.5 Impact of Clock Cycle

Since the DL-based scheme introduces a new piece of logic in the dispatch stage,

it affects the delay of this stage. Any change in the delay of any stage of the

pipeline impacts the clock cycle. Hence, it is important to study the effect of the

scheme on the delay of the dispatch stage. As discussed in Section 3.2, the Dlist

array update takes place after the RAT look-up in the dispatch stage, and before

the issue stage. Thus, the update lies on the critical path of the pipeline.

Figure 3.2 shows how the Dlist of a producer can be updated in parallel with

writing the consumer instruction to the Window. Since each entry of the

Window is statically mapped to an entry in the Dlist, the Dlist update involves

just indexing into the Dlist array and writing to it. The only excess delay of such

an update in comparison to a Window write would be the delay involved in

decoding an index in the array. Hence, we expect that the impact of the

DL-based wake-up scheme on the delay of the dispatch stage is not significant.

21

���������
	���

���
���������������

�! #"%$�&
'!(*)�+�,�-

.0/21�3!4�5
687:9<;>=

?<@BADC�E

Figure 3.2: Impact of DL-based wake-up on delay

3.6 Impact on Area/Space

The DL-based wake-up scheme introduces a new array (Dlist array) into the

microarchitecture. However, we think that this will not increase the processor

area. This is because the DL-based scheme merely moves the storage of the

dependency relations from the consumers to the producers. Thus, the tags which

were stored in the Window in the conventional scheme are now stored in the

Dlist array in the DL-based scheme. The decoder logic of the Dlist array is the

only additional space consumer. On the other hand, a significant amount of area

is saved since the Window is no longer a CAM array and all the comparators are

eliminated.

22

3.7 Branch Misprediction/Instruction Squashes

So far, we have discussed the DL based wake-up assuming that there are no

instruction squashes. In case of instruction squashes due to branch

mispredictions or interrupts, additional mechanisms are required to maintain the

accuracy of wake-up while using the DL-based wake-up. This is because, if a

consumer instruction is squashed and its Window entry is filled with another

independent instruction, the producer of the squashed instruction might wake-up

an instruction incorrectly. To prevent this scenario, the Dlist of the squashed

instruction’s producer needs to be cleared to reflect the instruction squash. This

can be implemented in a few different ways depending on whether space or delay

is the primary constraint.

One way would be to use the RAT to find the producers of the squashed

instruction and then clear their Dlists. The RAT is typically backed up to the

last consistent copy in case of an instruction squash. Using this RAT, the

producers of the squashed instruction can be found out and their Dlists can be

cleared. However, this will lead to a significant increase in delay of dispatch stage

due to the serial process. A better alternative would be to maintain the

producers’ tags along with each instruction in the Window and use these to

directly index into the corresponding Dlists to clear the entries. This maintains

the delay characteristics and slightly increases the space required.

Another implementation that trades off space for delay involves making a copy of

23

the Dlist array whenever a branch instruction is handled. Whenever, a

misprediction occurs, the Dlist array is simply backed up to the last consistent

copy. This will eliminate incorrect wake-ups. This implementation is similar to

that of the RAT. Because branch misprediction now requires only a change in the

base pointer to the Dlist array, the delay involved is insignificant. However, there

is an increase in the space consumption, as multiple copies of the Dlist array are

now required to be stored in the microarchitecture.An important point to note is

that instruction squashes do not impact the wake-up energy savings as such

because the process of wake-up itself remains the same. The overall Window

energy would include the energy involved in bringing the Dlist array to a

consistent state. However, in this thesis we have not quantified this additional

energy consumed for instruction squashes.

24

Chapter 4

Analysis of Energy Consumption

In this chapter, we present a detailed analysis of the individual components of

the energy consumed in the case of the DL-based wake-up and the conventional

wake-up in Section 4.1 and 4.2. A comparison between the energy consumption

of these two schemes is presented in Section 4.3. Section 4.4 deals with the effect

of the parameter Dlist length on the energy consumption of the DL-based scheme

and Section 4.5 studies the scalability of the schemes with Instruction Window

size and Issue Width.

4.1 Energy Consumed in DL-based Wake-up

A logical view of the Dlist array can be given as follows: The array consists of

word lines and bit lines running across the array. The individual bits in a word

line are stored in transistors. The bit lines run perpendicular to the word lines.

Figure 4.1 gives the logical view of the Dlist array.

25

Decoder

Bit lines

Word lines

Bits

Figure 4.1: Logical view of the Dlist array

In the DL-based scheme, wake-up takes place as follows: the Window slot

number of the completing instruction is used to index into the Dlist array and

the corresponding entry is read. The ready bits of the instructions in the entry

are then set to 1. Thus, this is a table look-up, i.e. a RAM based scheme. Each

table access consists of the following steps.

(1) The index in the array is supplied to the decoder that decodes it into the

corresponding entry or word in the array.

(2) The required word line is then raised.

(3) All the bit lines are raised and the data is read from/written to the bit

lines.

Correspondingly, the energy consumed in a Dlist array access can be divided

into three main components: decoder energy, word line energy, and bit line

26

energy.

EnergyDL = EnergyDLdecoder + EnergyDLwordline + EnergyDLbitline (4.1)

The decoder energy is proportional to the number of rows in the structure.

However, a component of the decoder energy is also proportional to the number

of bits required to decode an address in the array which is log DLsize. Thus, for

the Dlist array, the decoder energy can be approximated as follows.

EnergyDLdecoder ∝ DLsize(1 + log DLsize) (4.2)

where DLsize is the number of entries in the Dlist array.

The word line energy is proportional to the word line length. The length of each

word line is given as follows:

Wordlinelength = cols × (CellWidth + ports × BSpacing) (4.3)

where cols is the number of columns in the array, CellWidth is the width of each

cell in the array, and BSpacing is the spacing between the bit lines. The Dlist

array has 2.IW write ports and IW read ports, where IW is the Issue Width.

This is because each instruction may write to the Dlist array twice, once for each

dependent operand, and read the Dlist array once. Therefore,

WordlinelengthDL = Dlistlength×log WINSIZE(CellWidth+3×IW×BSpacing)

(4.4)

where WINSIZE is the number of rows in the Window. Putting the above

27

equations together,

EnergyDLWordline ∝ Dlistlength × log WINSIZE × IW (4.5)

Similarly, the bit line energy is proportional to the bit line length.

Bitlinelength = rows × (CellHeight + ports × WSpacing) (4.6)

where rows is the number of rows in the array, CellHeight is the height of each

cell in the array and WSpacing is the spacing between the word lines. For the

Dlist array, the bit line length is given by

BitlinelengthDL = DLsize × (CellHeight + 3 × IW × WSpacing) (4.7)

The bit line energy is the energy required to raise all the bit lines in the array.

Therefore,

EnergyDLbitline ∝ Dlistlength × log WINSIZE × DLsize × IW (4.8)

As we see from Equation 4.8, the bit line energy is the largest contributor as

it includes the energy to drive all the bit lines spanning the Window.

We make two observations from this analysis:

1. From Equation 4.2, we conclude that the decoder energy increases

non-linearly with the Dlist array size.

2. From Equation 4.8, we infer that bit line energy increases linearly with the

Dlist array size and non-linearly with the Window size.

28

�

�
�
�

���

�

�

	

�

�

��

������� ������� ��� �"! #�$&%('

)�*�+�, -�.�/�0 1�2 3"4 5�6&7(8

9;:�<�=?>A@CB D�EGF"H

IKJ&LCMONQP

RKS&TCUOVQWYX?Z�[]_^a` b c

d
e

f
g

Figure 4.2: Conventional wake-up logic

4.2 Energy Consumed in Conventional Wake-up

In conventional superscalars, the Instruction Window is designed as a Content

Addressible Memory (CAM). Each entry in the Window holds one instruction.

The tags (identifiers) of both the input operands of the instruction are stored in

the Window [5]. Also, each instruction has two ready bits - one for each of its

operands (Rdy L, Rdy R). These bits indicate the availability of the

corresponding input operand of the instruction. When both of them are set to

ready, the instruction is ready to execute and is considered for issue by the select

logic.

29

Figure 4.2 illustrates the conventional wake-up logic. Tag lines run across the

length of Window. These lines are used to broadcast the tags of instructions

completing execution. At any time, there can be at most Issue Width (IW)

instructions completing execution where Issue Width is the maximum number of

instructions that can be allocated execution units in any cycle. Each instruction

completing execution broadcasts its tag to the Window. Hence there are IW tags

and IW * tagsize number of taglines. Along with these lines, there are match

lines running across the width of the Window. There is one match line per

broadcasted tag per instruction operand in the Window. When the tags are

broadcast, each operand’s tag is compared with all the broadcasted tags in

parallel. If there is a mis-match, the corresponding match line is pulled low. All

the match lines for each operand are then OR-ed together. Thus, if any of the

broadcasted tag matches with a tag an operand is waiting on, the output of the

OR block is 1. This is used to set the corresponding ready bit of the operand.

When both the ready bits are set to 1, the instruction is ready to execute. This is

how wake-up is achieved.

The conventional wake-up is performed in three steps:

1. The tag is broadcasted to the entire Window.

2. The tag is compared to the stored tags and the match line is pulled low if

there is a mis-match.

3. All the match lines for each stored tag are OR-ed together to check for

match.

30

Corresponding to the three steps, the energy consumed can be divided into

three parts: tag drive energy, tag match energy and match-OR energy.

EnergyConv = Energytagdrive + Energytagmatch + EnergymatchOR (4.9)

4.2.1 Tag Drive Energy

The tag drive process can be further split into two steps:

(1) drive the tag onto the tag lines

(2) write the tag to each entry in the Window.

Thus, tag drive energy can be expressed as:

Energytagdrive = Energydrive + Energywrite (4.10)

The drive energy is proportional to the overall length of the tag lines. The

length of each tag line is given by

taglinelength = rows × (CellHeight + ports × Mspacing) (4.11)

where Mspacing is the spacing between the match lines. For the Window

taglinelengthCAM = WINSIZE × (CellHeight + IW × Mspacing) (4.12)

There is one tag line for each bit in the tag. Therefore,

Energydrive ∝ WINSIZE × IW × log WINSIZE (4.13)

The tag write is similar to a write in an array as analyzed in Section 4.1.

However, in this case it is a write to all entries in the Window, whereas in the

31

case of the Dlist array access, it is a write to a single entry. Hence, all the word

lines have to be raised in the case of a tag write. The bit line energy and the

word line energy can be calculated using the formulae in Section 4.1. Therefore,

Energywrite = EnergyCAMbitline + EnergyCAMwordline (4.14)

BitlinelengthCAM = WINSIZE × (CellHeight + IW × Mspacing) (4.15)

WordlinelengthCAM = log WINSIZE × (CellWidth + IW × Tspacing) (4.16)

where Tspacing is the spacing between the tag lines. Using the above equations,

EnergyCAMbitline ∝ WINSIZE × log WINSIZE × IW (4.17)

EnergyCAMwordline ∝ WINSIZE × log WINSIZE × IW (4.18)

Thus, from Equations 4.10, 4.13, 4.14, 4.16 and 4.17,

Energytagdrive ∝ WINSIZE × log WINSIZE × IW (4.19)

4.2.2 Tag Match Energy

Tag match energy is the energy consumed in driving the match lines. This is

proportional to the length of the match line length and can be computed similar

to wordline power above.

MatchlinelengthCAM = log WINSIZE × (CellWidth+ IW ×Tspacing) (4.20)

Energytagmatch ∝ WINSIZE × log WINSIZE × IW (4.21)

32

4.2.3 Match-OR Energy

The match-OR energy is the energy to required to OR all the match lines to

check if there was a match. This depends on the number of inputs to the OR

block which is equal to the Issue Width. This energy, however, is quite less when

compared to tag drive and tag match energy.

4.3 A Comparison of the Energy Consumed in

the DL-based Scheme and the Conventional

Scheme

In Section 4.2.1, we described how a tag write energy can be modeled to a table

access where all the entries are being written. The Dlist array and the Window

have the same number of rows. If the Dlistlength is set to 1, then both the

structures have the same granularity of access. Thus, the tag write energy can be

directly compared to the energy consumed in one Dlist access. Since tag write

involves writing to all entries in the window, energy consumed for it is much

higher than that consumed for a single Dlist access.

Energywrite > EnergyDL (4.22)

The other component of tag drive energy is the drive energy that is consumed in

writing the tag on to the tag lines in the window. This is comparable to the

33

bitline energy of a Dlist access, and hence to the total energy of a Dlist access

(since bit line energy constitutes most of the access energy).

Energydrive ≈ EnergyDL (4.23)

Thus,

Energytagdrive = Energywrite + Energydrive > 2 × EnergyDL (4.24)

⇒ EnergyConv > 2 × EnergyDL (4.25)

As most instructions have at least one operand ready at the time of dispatch,

they access the Dlist at most twice. Because the conventional wake-up consumes

more power than two Dlist accesses, energy can be saved by using the DL-based

scheme instead of the conventional scheme.

It must be noted that an increase in execution time degrades the throughput

and also increases the energy consumption. This increase in energy consumption

is because all the pipeline units now run for a longer time. The units can be

selectively shut down when they are idle. This is called clock gating. However

clock gating is not perfect and so the units consume a small amount of power

even when they are idle. Therefore, in this work, we aim to reduce both the

wake-up energy and power while retaining most of the performance.

34

4.4 Effect of Dlist Length on Wake-up Energy

The comparison we made above is based on a microarchitecture that has a Dlist

length set to 1, i.e. the DL-1 scheme. Here, we analyze how the wake-up energy

of the DL-based scheme varies with the Dlist length. As the Dlist length is

increased, the number of entries in each row, i.e. the number of columns, of the

Dlist array increases. This increases the number of bit lines in the Dlist array,

with a proportional increase in the bit line energy. As the conventional wake-up

scheme is independent of the Dlist length, the savings in energy with respect to

the conventional scheme decrease with increasing Dlist length.

4.5 Scalability of DL-based Scheme with

Instruction Window Size and Issue Width

During the Select phase, all the instructions in the Instruction Window that

haven’t completed execution are searched to find ready instructions that can be

issued to the functional units to execute. So, increasing the Window size

increases the depth of the dynamic instruction stream that is searched to find

instructions that can be executed in parallel. This increases the chances of

finding independent instructions that can be executed in parallel and hence

Instruction Level Parallelism (ILP) increases. Also, throughput can be increased

by increasing the number of instructions allowed to execute in parallel. Typically

35

the Issue Width that can be sustained is limited by the ILP that can be found in

the program. Hence, the Window size and the Issue width are typically increased

in tandem to achieve higher performance.

However, as the Window size and Issue Width increase, the tag line length,

the match line length, and the size of tag increase. There is a non linear

dependence of the tag drive energy and tag match energy on both the Window

size and the Issue Width. Thus, conventional wake-up energy increases rapidly

when these parameters are increased [16]. On the other hand, the decoder energy

per access in the DL-based scheme is independent of the Issue Width. The

dependence of bit line energy and word line energy on Issue Width is similar to

the tag drive energy and tag match energy. So, both the conventional and the

Dlist scheme scale almost equally with Issue Width. However, there is a

difference in their scalability with Window size. As we described in Section 4.2,

EnergyConv ∝ WINSIZE × log WINSIZE (4.26)

This is not true for the Dlist energy as the word line energy is proportional to

log WINSIZE and a component of the decoder energy is proportional to

WINSIZE only. Because of this, overall wake-up energy in the DL-based scheme

varies slower than that in the conventional scheme. Thus, the DL-based wake-up

scheme is more scalable and the energy savings increase with the Window size

and the Issue Width.

36

Chapter 5

Need-Based DL (NBDL) Wake-up Scheme

Having studied the DL-based scheme, we now present a scheme with potential

improved energy savings in wake-up. This scheme is called Need Based DL

(NBDL) wake-up scheme. The motivation for this scheme is presented in

Section 5.1. Section 5.2 discusses a study to find the possibility of further

wake-up energy savings that forms the basis for the NBDL scheme. Finally,

Section 5.3 outlines the scheme and its implementation with the help of an

illustration.

5.1 Motivation

In Chapter 3 we presented the DL-based scheme, which reduces the wake-up

energy consumption while still keeping the overall IPC close to conventional.

However, it is to be noted that a considerable amount of energy is still being

consumed in the DL-based wake-up scheme for each Dlist array access. The main

37

reason is the size of the Dlist array. It has as many entries as the RUU and hence

a lot of energy is consumed in decoding the address and in driving the bit lines.

The long bit lines that run through the entire length of the array are undesirable

from both energy and delay points of view [16].

Based on our observations of Section 4.1, we know that one way of reducing

both the decoder energy and bitline energy is by reducing the number of rows in

the array structure, i.e. the number of entries in the Dlist array. Currently this is

set to the Window size. This is because the DL-based scheme implicitly assumes

that an instruction can be dependent on any other instruction in the window,

i.e., all the instructions in the Window could be producing values that are used

by other instructions in the Window. So, one way of reducing the energy is

reducing the Dlist array size. However, blindly reducing the Dlist array size could

have a negative impact on the performance. One way would be to construct a

Dlist array of only n entries, where n is size to which the Dlist array is to be

scaled, and to allot all the available slots to the instructions in a First Come First

Served (FCFS) order. Since an instruction cannot be dispatched unless its

dependence relation has been stored, this would lead to dispatch stalls after the

first n instructions. Therefore, though this scheme would be simple to implement,

it would decrease the processing throughput. Essentially, it would have a similar

effect as reducing the Window size. A better, and more efficient, scheme would

be to allocate the slots in the Dlist array to only instructions that need them. To

38

evaluate the possible energy savings from such a scheme, we conduct the

following study.

5.2 Parent Instructions

Parent instructions can be defined asun-issued producer instructions within the

Instruction Window that have consumers, also within the Window. Consumer

instructions arriving at the Window after their producers complete execution can

read the outputs from the register file or could have the outputs dynamically

forwarded to them. In the case of Parent instructions, both producer and

consumer instructions co-exist in the Window and the producer instructions have

not completed execution. An important observation is that only these Parent

instructions need slots in the Dlist array to store dependency relations.

Therefore, it is sufficient to assign slots in the Dlist array table to these

instructions. This implies that the Dlist array size needs to be equal to the

number of Parent instructions in the application, on an average. Hence, the

required Dlist array size needs to be big enough to accommodate the average

number of Parent instructions.

Another point to note here is that, as the Window size increases, the number

of dependent instructions in the Instruction Window increases. This is because

39

we now look deeper into the dynamic instruction stream and hence the

possibility that the instructions dependent on a particular instruction entering

the Window while the producer instruction is waiting to execute or is executing

is higher. Thus, the number of Parent instructions in a benchmark is a function

of the Window size.

The savings obtained by restricting the Dlist array size to the number of

Parent instructions in the Window on an average will be considerable only if

there are a significant amount of non-Parent instructions. Examples of

non-Parent instructions are instructions like stores, branches, dead instructions,

and instructions that are separated from their consumers by a large distance.

In order to investigate the possible savings by eliminating excess Dlist slots,

we first collected data on the average number of Parent instructions in the

Instruction Window at any time for 8 benchmarks in the Spec2000 benchmark

suite. The Window sizes were varied and accordingly the Issue Widths were also

varied. The results are shown in Figure 5.1. On an average, we found that

around 60% of the instructions in the Window at any time are producer

instructions. This implies that 40% of the instructions in the Window are

non-Parent instructions and hence do not need Dlist array slots. This implies

that the Dlist array size can be made to be 60% of the Window size. These

results were leveraged to design a new wake-up scheme to gain significantly

higher energy savings over the DL-based scheme described in Chapter 3.

40

bzip2 gcc gzip mcf parser twolf vortex vpr average

Benchmarks

0

10

20

30

40

50

60

70

80

90

100

%ofparentins
tructionsinth
ebenchmark

Figure 5.1: Percentage of Parent instructions

41

5.3 Implementation

The NBDL scheme is similar to the DL-based scheme described before since the

dependence relations are again stored in an array (Dlist array). However there

are some changes. The Dlist array is no longer as big as the Window. Rather,

the average number of Parent instructions in the Window for that particular

Window size is used to arrive at a good size for the Dlist array. (The average

number of Parent instructions over a general benchmark suite can be computed

by profiling.) Also, the Dlist array and the Window do not have a static

relationship now. Instead, the Dlist array entries are allocated to the instructions

in the Window dynamically, based on need.

The NBDL scheme can be described as follows: at dispatch time, the RAT is

queried to see if the instruction’s input operands are available. If they are, the

instruction is dispatched to the Window. The RAT also contains one bit to

indicate if the instruction producing that particular operand has a Dlist entry or

not. If the operands of any instruction are not ready and the producer instruction

already has a Dlist entry, then the dependent makes an entry in this particular

Dlist slot. If the producer is not ready and has no Dlist slot, then the allocation

logic assigns a Dlist slot to it subject to availibility of slots, and the process of

storing the ID of the dependent in this slot follows as before. Thus, Dlist slots are

allotted dynamically based on need. When an instruction completes execution,

42

���

���

���	�

���

�������

����������� �! �"#!$&% '�(*)

+�,.- /
021436587:9<;�=4>@?

A�B@CEDGF

H�IGJLKNM@O
P�Q6R6S!TVU@W:X:Y8Z

[�\^]@_�`La!b�c:dfehg�i6j8kmlGnmoqphr shtvuxwLy{z}|:~ ����� ���������N�h���h�����������

Figure 5.2: Need Based DL (NBDL) wake-up

43

the corresponding Dlist array slot is read and the dependent instructions are

woken up. Subsequently, the producer instruction’s Dlist slot is freed.

If, at any point, the producer instruction cannot be assigned a Dlist slot

because there are no more free Dlist slots or if the Dlist of a producer is already

full, then the instruction dispatch is stalled until further slots are available. As

the Dlist array and Window no longer have a static, one-to-one mapping, the

Window entries now need to store a tag corresponding to the index allotted to

them in the Dlist array. But this is not a problem because this tag just takes the

place of the tags of the input operands in the case of conventional wake-up and

does not increase the space or energy consumption of the Window.

Figure 5.2 illustrates the NBDL wake-up scheme. In the figure, instruction I2

is dependent on instruction I1 for its input operand IN1. At dispatch time, the

instruction indexes into the RAT using IN1. The Dlist available bit is read and if

the bit is 0, a fresh Dlist entry is allocated to the producer and the bit is set to 1.

The index to the allocated slot, DL 2, is given to the dependent instruction. The

dependent instruction is dispatched to the next RUU slot RUU 2. I2 now enters

its ID , RUU 2, in the producer’s Dlist. The Dlist index, DL 2 is also written to

the RUU slot of the producer so that it can be read at wake-up. Thus, only those

instructions that require Dlists are identified and allotted space in the array.

Wake-up takes place similar to the DL-based scheme - when an instruction

44

completes execution, the Dlist of the instruction is read using the stored index

and the dependent instructions are woken up. Again, the Dlist array look-up can

be carried out in parallel with the operand reading to the functional units and

the execution of the instructions itself.

5.4 Energy Analysis

The energy consumption of the NBDL-based scheme can be analysed similar to

DL-based scheme in Chapter 4. All the components of the energy are the same.

The energy savings in NBDL scheme when compared to the DL-based scheme

arise from the fact that the Dlist array is of a smaller size, i.e., it has fewer rows.

This in turn reduces both the bit line energy and decoder energy proportionally.

As all the energy components of the NBDL scheme are similar to the DL-based

scheme, they vary similaryly with Window size and Issue Width and this implies

that the NBDL scheme scales better than the conventional scheme with Window

Size and Issue Width.

5.5 Effect of NBDL scheme on delay

Figure 5.3 depicts the dispatch stage of an out-of-order superscalar processor

implementing the NBDL scheme for wake-up. It can be seen that the logic in the

dispatch stage is similar to that in the DL-based scheme. The additional

45

���������
	���

�������
���
���������

 �!#"%$�&

')(
*,+.-0/01 2 3�4

576�8:9<;.=
>�?�@�A
B:CEDGFIH

J�K�LIM%NPO�QSR)T�U�V

Figure 5.3: Effect of NBDL scheme on the delay of dispatch stage

46

component is the allocation logic that dynamically allocates Dlist array slots to

instructions in the Window. A simple implementation of this allocation logic is

implementing the Dlist array as a queue and allocating Dlist slots from the tail.

The Dlist slots can be freed when the corresponding instructions commit. In this

way, the allocation logic would only have to check if the head and tail pointer are

equal to check if there are any more free slots in the Dlist array. Since it involves

only a pointer comparison, the allocation logic has very little delay. Hence, we

estimate that the NBDL scheme does not significantly increase the delay of the

dispatch stage. This means that the clock cycle of the processor would not be

considerably affected.

5.6 Impact of NBDL scheme on Processor Area

The microarchitecture of the NBDL scheme is similar to that of the DL-based

scheme. The only difference is that, since the Dlist entries are dynamically

allocated to the instructions in the Window, the instructions in the Window now

need to store a pointer to their corresponding Dlist array entry. If an instruction

does not have a Dlist entry, this pointer is set to invalid. However, the size of this

pointer is lg DLsize where DLsize is the number of rows in the Dlist array. We

estimate that this additional storage is not significant. Again, we note that since

the Window is no longer a CAM, it occupies much lesser space. Thus, we infer

that the NBDL scheme would not increase the processor area significantly.

47

Chapter 6

Experimental Analysis

This chapter presents the experimental results and discusses their ramifications.

Section 6.1 gives the details of the experimental setup. Section 6.2.1 presents the

performance results of both the schemes in comparison with the conventional

scheme. The wake-up energy savings obtained by both the schemes (DL-based

and NBDL) are discussed in Section 6.2.2. The Instruction Window power

savings are described in Section 6.2.3. Finally, section Section 6.2.5 provides the

details on the scalability of our schemes.

6.1 Experimental Setup

6.1.1 Simulator

We used the sim-outorder of the SimpleScalar that simulates an out-of-order,

superscalar processor as the baseline. It is a performance level simulator[17]. We

extended this to simulate the DL-based scheme and the NBDL scheme. This

48

primarily involved adding a Dlist array and an allocation logic to the underlying

architecture. We used Sim-wattch, which is an add-on tool for SimpleScalar, to

obtain energy and power estimates[18].

6.1.2 Benchmarks

We selected a subset of the SPEC2000 benchmark suite:bzip2, gcc, gzip,

mcf, parser, twolf, vortex and vpr to run simulations. 500 million

instructions of each benchmark were simulated after fast forwarding 200-500

million instructions depending on the length of each benchmark’s initialization

segment.

6.1.3 Baseline

We chose the conventional associative wake-up as the baseline. We simulated

three wake-up schemes: the conventional, the DL-based and the NBDL scheme.

The savings are quantified as relative energy of the new schemes in comparison

with the conventional wake-up energy.

6.1.4 Microarchitectural parameters

The pricipal parameters of the microarchitecture used for the simulations are

given in Figure 6.1

49

���������	��
���
�� �����

��������� �"!$#&%(')�*�+

,.-0/21235476"8�9�:�; <�=?>

@BADCFEHG$IKJ

LNM�OKP�QSRHT$U�VXWZY\[�]K^�_

`�a�b0ced�f$g�hHi�j7kml�n(oqp

r&s7t�u�v�wyx{zH|H}�~����

���H�0���7�������y�{�H�

�.�N�

50

6.1.5 Simulation Parameters

The Window size is varied from 32 entries to 256 entries and the Issue Width is

increased correspondingly in order to study the scalability aspects of the new

schemes. The Dlist length, i.e. the number of dependent instructions a producer

instruction can keep track of, is varied between 1 and 4. In the NBDL scheme,

the Dlist array size is made half the size of the Window.

6.2 Results

6.2.1 Performance Results

Figure 6.1 shows the relative IPC achieved by the DL-based wake-up scheme for

Dlist lengths 1, 2, and 4 with respect to the baseline conventional wake-up

scheme. The baseline IPC (1.0) is also shown. The results are shown for eight

benchmarks in the SPEC2000 suite. The Window size is set at 64 and Issue

Width at 4. The last set of columns shows the average over all the eight

benchmarks. The DL-based wake-up schemes with Dlist lengths 1, 2 and 4 are

named DL 1, DL 2, and DL 4 respectively. The baseline conventional wake-up

scheme is called Conv.

Figure 6.1 shows that the relative IPC in most cases is less than 1. This

implies that the throughput decreases when we move to the DL-based wake-up

51

bzip2 gcc gzip2 mcf parser twolf vortex vpr average

benchmarks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

RelativeIPC
DL1DL2DL4
Conv

Figure 6.1: Relative IPC of DL-based scheme. Window size 64, Issue Width 4

52

from the conventional wake-up. This decrease is because of the dispatch stalls

that arise from lack of space in the producer’s Dlist. Because the number of

instructions in a producer’s dependence list is restricted, instructions that cannot

be accommodated in the producer’s Dlist cannot be dispatched until the

producer instruction completes execution and writes the result to the register file.

And because dispatch is in order, no other instructions can be dispatched until

the stalled instruction is dispatched.

Another observation from the graph is that as the Dlist length increases, i.e. as

we go from DL 1 scheme to DL 4 scheme, the average relative IPC increases.

This can be explained as follows: In the case of conventional wake-up, we can

accomodate any number of dependents of an instruction as long as there is space

in the Window because the availability of operands is fanned out to the entire

Instruction Window. Therefore, the effective Dlist length is infinity and hence

the dispatch stalls are completely avoided. Thus, as Dlist length is increased, the

performance of the DL-based wake-up scheme moves towards that of the

conventional wake-up scheme. On an average, DL 1 achieves 86% of the

performance of the conventional wake-up scheme and DL 2 and DL 4 achieve

95% and 98% respectively. DL 2 achieves most of the IPC of the conventional

wake-up scheme. This confirms the fact that most instructions have at most 2

dependents [2]. In conclusion, all the DL-based schemes achieve most of the

throughput of the baseline scheme, especially the DL 2 and DL4 schemes.

53

DL 1 DL 2 DL 4

Dlist length

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

R
el

at
iv

e
IP

C

DL scheme
NBDL scheme

Figure 6.2: Performance comparison of DL based and NBDL wake-up scheme.

Window size 64, Issue Width 4

54

Figure 6.2 shows the relative IPC achieved by the DL based wake-up scheme

and the NBDL scheme for three Dlist lengths. The IPC is averaged over the

same 8 benchmarks as before. In this comparison, the size of the Dlist array is

set to half the size of the Instruction Window, i.e. 50% of RUU size. As noted in

the previous section, 60% of the instructions in the Window need Dlist slots so

the required size of the Dlist array would be 60% of the Window size. We made

the Dlist array slightly smaller, just to make the Dlist array size a power of two.

The Window size is again set at 64 and the Issue Width is 4. Figure 6.2 shows

that even with this smaller size of the Dlist array, the NBDL scheme achieves

almost the same performance as the DL-based scheme. This implies that with

the NBDL scheme, even with a Dlist array size only half the size of that in the

DL-based scheme, the same IPC as in the DL-based scheme can be achieved.

This is a key advantage as a fall in IPC would imply two things: (1) Performance

degradation (2) Increase in overall energy consumption (as described in Section

3.3). The increase in energy consumption is because the units now run for a

longer time and consume a small amount of energy even when they are idle

(imperfect clock gating). On the whole, we see that the NBDL scheme performs

as well as the DL-based scheme. On an average, it achieves 98% of the

performance of the DL-based scheme

55

bzip2 gcc gzip mcf parser twolf vortex vpr average

Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Relativewake
�upenergy

DL1DL2DL4
Conv

Figure 6.3: Relative wake-up energy of DL-based scheme. Window size 64, Issue

Width 4

6.2.2 Energy Savings in Wake-up

Figure 6.3 shows the relative wake-up energy of the DL-based scheme for the

three Dlist lengths compared to the conventional wake-up energy for a Window

size of 64 and Issue Width of 4. The DL-based scheme saves significant amount

of energy for the Dlist sizes 1 and 2, while it consumes more energy for Dlist size

4. This can be explained as follows: as Dlist length increases, the number of

columns in the Dlist array increase and consequently the bit line energy

56

increases. This increases the wake-up energy of the DL-based scheme. On the

other hand, the conventional wake-up scheme is independent of the Dlist length.

So, this energy remains constant as we vary the Dlist length. So, on the whole

the relative energy of DL- based schemes increase as the Dlist length increases.

Correspondingly, the energy savings of the DL based schemes decrease as Dlist

length increases. Figure 6.3 shows that, on an average, DL 1 consumes only 35%

of the conventional wake-up energy and DL 2 consumes 67% of the conventional

energy of wake-up while DL 4 consumes 138% of conventional. This implies that

the DL 4 scheme actually consumes more energy than the conventional scheme.

It can be concluded that the DL 2 scheme, on the whole, is the best choice as it

achieves 95% of the conventional IPC while saving up to 33% of the energy in

wake-up.

Figure 6.4 presents the relative wake-up energy of the DL- based scheme and

the NBDL scheme for different Dlist lengths. The results shown are the wake-up

energies of the DL and NBDL scheme averaged over the eight benchmarks that

were selected. The baseline for comparison for both schemes is the conventional,

fully associative wake-up scheme. The NBDL scheme uses a Dlist array of half

the Window size. The Window size is 64 and Issue Width is 4. The wake-up

energy of the conventional scheme is 1.00.

It can be seen that the NBDL scheme uses significantly less energy when

compared to DL-based scheme. This is because of the size of the Dlist array in

57

DL 1 DL 2 DL 4

Dlist length

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

R
el

at
iv

e
w

ak
e-

up
 e

ne
rg

y

DL scheme
NBDL scheme

Relative wake-up energy of DL and NBDL schemes

Figure 6.4: Wake-up energy comparison of DL-based scheme and NBDL scheme.

Window size 64, Issue Width 4

58

the NBDL scheme is half of that in the DL-based scheme. This implies a 50%

reduction in the number of rows in the DL-based scheme. This in turn gives a

significant reduction in the bit line energy and decoder energy. The NBDL

scheme consumes 26%, 50% and 96% of the wake-up energy of the conventional

scheme for Dlist lengths 1, 2 and 4.

The energy savings of NBDL scheme with respect to the corresponding

DL-based scheme is 10%, 18%, and 38%. This implies that the energy savings of

the NBDL scheme with respect to the DL-based scheme increase with the Dlist

length. As Dlist length increases the number of columns in the Dlist array

increase. This implies that the size of the Dlist array as a whole increases.

Therefore, the energy saved by reducing the number of rows of the array also

increases. Finally, it can be concluded that the NBDL scheme with a Dlist length

size 2 performs the best as it achieves 94% of the performance of the conventional

wake-up scheme while saving 50% of the wake-up energy.

6.2.3 Instruction Window Power Savings

The savings in the Instruction Window power in the NBDL scheme are presented

in Figure 6.5. The NBDL schemes with Dlist lengths 1, 2 and 4 are named

NBDL 1, NBDL 2 and NBDL 4 respectively. Again, the size of the Dlist array is

59

bzip2 gcc gzip mcf parser twolf vortex vpr average 10

Benchmarks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Relativewind
owpowerof
NBDLscheme

DL1DL2DL4
Conv

Figure 6.5: Relative Window power of NBDL scheme. Window size 256, Issue

Width 8

60

half the Window size. The size of the Instruction Window is set to 256 entries.

The Issue Width is 8. The savings in Window power range from 30% for NBDL 1

to 5% in NBDL 4. On an average, the savings in Window power are 18%, 15%

and 7% for Dlist lengths 1, 2 and 4. This implies that even NBDL 4 scheme leads

to a considerable reduction in Window power unlike the corresponding DL 4

scheme that actually burnt more power than the conventional scheme. This is

impressive because the NBDL 4 scheme captures almost 99% of the IPC of the

conventional scheme. This implies that the Instruction Window hot spot problem

can be solved by using the NBDL 4 scheme with almost no decrease in

performance. The overall best results are again for the Dlist length 2. NBDL 2

saves 15% of the Instruction Window power and 50% of wake-up energy

(Figure 6.3) while maintaining good performance.

6.2.4 Energy Delay Product

We showed in Section 6.2.2 that the DL-based scheme and the NBDL scheme

achieve significant savings in wake-up energy. However, they also suffer a slight

throughput decrease. Also, the cycle time of the processor might be affected due

to the extra delay of both these schemes. As all these factors are important, we

evaluate the wake-up energy delay product of the DL-based scheme and the

NBDL scheme relative to the conventional scheme. This measure contains all the

61

factors, and provides a good index to the overall performance of a scheme. The

lower the Energy Delay Product, the better. The Energy Delay Product can be

calculated as follows

EDP = Energy × Delay (6.1)

where EDP denotes the Energy Delay Product. Delay can be expressed as

Delay = CPI × CycleT ime = CycleT ime/IPC (6.2)

where CPI denotes the average number of Cycles Per Instruction, IPC denotes

Instructions per Cycle and CycleTime denotes the cycle time of the processor.

Using the above equations, the wake-up energy delay product of the

DL-based and NBDL schemes can be computed as follows:

EDPDLwkup = EnergyDLwkup × ClockCycleDLwkup/IPCDLwkup (6.3)

EDPNBDLwkup = EnergyNBDLwkup × ClockCycleNBDLwkup/IPCNBDLwkup (6.4)

where the subscripts DLwkup and NBDLwkup indicate the DL-based wake-up

scheme and the NBDL wake-up scheme,respectively

Figure 6.6 shows the variation of the wake-up energy delay product with

percentage increase in cycle time of the processor due to using the DL-based or

the NBDL scheme. This graph gives us an estimate of the increase in the cycle

time that can be tolerated by these schemes to perform better than the

conventional scheme. The graph shows three curves, one for each of the wake-up

schemes: the conventional, the DL 2, and the NBDL 2 . The energy delay

62

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120%%increaseindelayofdispatchstage0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Wake�upener
gydelayprod
uct ConvDL2NBDL2

Figure 6.6: Wake-up energy delay product as a function of increase in delay

63

products are averaged over all the benchmarks and Window sizes. Because the

wake-up energy delay products of the DL-based scheme and the NBDL scheme

are given relative to the conventional scheme, the line corresponding to the

conventional scheme remains flat at 1. As the cycle time increases due to the

excess delay of wake-up, the wake-up energy delay product of the DL-based

scheme and that of the NBDL scheme increases linearly. The point of

intersection of these lines with the line corresponding to the conventional scheme

gives the percentage increase in cycle time above which the conventional scheme

performs better than the respective schemes. From Figure 6.6 we see that this

happens at 40% for the DL-based scheme, and 90% for the NBDL scheme. As

neither of these schemes can cause such a significant increase in delay, we can

conclude that these schemes perform better than the conventional scheme.

6.2.5 Scalability with Increasing Window Size and Issue

Width

In order to achieve a higher throughput, more instructions should be executed in

a given time period. One way to achieve this is to increase the number of

instructions being executed in parallel per cycle. In order to do this, we need to

find enough independent instructions in the dynamic instruction stream to keep

all the parallel execution units occupied. This, in turn can be achieved by looking

deeper into the dynamic instruction stream. This is implemented by increasing

64

WIN 32, IW 4 WIN 64, IW 4 WIN 128, IW 8 WIN 256, IW 8

Window size, Issue Width

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e
w

ak
e-

up
 e

ne
rg

y

DL
NBDL

Figure 6.7: Scalability of wake-up energy of NBDL scheme with Window size and

Issue Width

65

the Window size. Thus, in order to improve performance, the Issue Width and

Window size will be increased. And so, it is important to study the scalability of

our schemes with these parameters. Figure 6.7 shows the impact of the Window

size and Issue Width on the relative wake-up energy in the DL and NBDL

schemes. The Window size is varied from 32 to 256 entries and the Issue Width

is correspondingly increased from 4 to 8. The results are averaged over the eight

benchmarks. As these parameters are increased, the relative wake-up energy of

both DL and NBDL schemes decreases. The decrease is especially sharp from

Window size 64 to Window size 128. This is because the Issue Width also

increases simultaneously from 4 to 8. The figure shows that as the Window size

and Issue Width increases, the relative wake-up energy of both schemes with

respect to the conventional decreases non-linearly. This implies that both our

schemes are more scalable than the conventional scheme. This is a key advantage

because this implies that energy savings will scale with Window size and Issue

Width. In effect, this implies that the savings will scale with throughput which is

wonderful.

66

6.2.6 Performance of DL-based and NBDL Schemes for a

Split Window Organization

So far, we have only discussed the wake-up energy savings possible for an

architecture that uses a unified Window, to store dynamic instructions

throughout their lifetime. An alternate architecture uses a split Instruction

Queue (IQ) and Re-Order Buffer (ROB) where the IQ holds all the un-issued

instructions and the ROB contains all the instructions that have been dispatched

and not yet committed. In this case, conventional wake-up would involve

broadcasting the availability to only the IQ. As the number of entries in the IQ is

typically about 30-40% of the ROB, the broadcast would be less expensive and as

a result the savings in wake-up energy by using the DL-based scheme or the

NBDL scheme would be somewhat lower. However, using the DL-based scheme is

advantageous as the energy consumption of broadcast will still increase rapidly

with increasing IQ size and Issue Width. The energy consumption of the

DL-based scheme and the NBDL scheme scales better with these two parameters,

and hence these schemes will perform better than the conventional scheme in the

future, even for a split Window architecture.

67

6.2.7 Overall Processor Power Savings

The overall processor power savings for the DL-based scheme averaged over the

four Window sizes (32, 64, 128 and 256) is 25% for DL, 1,6% for DL 2, and 2%

for DL 4. DL 1 achieves very high overall power savings because there is a

significant trade-off of IPC and also a considerable reduction in the wake-up

energy. As DL 2 and DL 4 achieve most of the IPC, the overall power savings

arise only out of the wake-up energy. These figures, however, are conservative

estimates because they do not reflect the fact that the Window writes at dispatch

are smaller for the DL-based scheme. The overall power savings of the NBDL

scheme are about 2% higher than the DL-based scheme.

In summary, we see that all of the DL-based schemes and NBDL schemes

achieve most of the throughput of the baseline scheme, especially with Dlist

lengths 2 and 4. Simultaneously, both these schemes achieve considerable savings

in the wake-up energy and Window power when compared to the conventional

scheme. It can be concluded from the results that a Dlist lenght of 2 performs

the best for both the schemes. For this Dlist length, the DL-based scheme saves

33% of the wake-up energy on the average, while trading off only 2% of the

throughput while the NBDL scheme achieves wake-up energy savings of 50% for

the same small loss of throughput. Window power is also correspondingly

reduced (15% savings for the NBDL scheme).

68

Chapter 7

Conclusions

Energy consumption of a processor is a very important factor in the design of the

processor. The Instruction Window of an out-of-order processor forms the core of

the processor as it houses the dynamic instructions for most of their lifetime.

Consequently, it is accessed several times in the pipeline. This leads to its high

energy consumption. Also, due to the large power consumption just within the

Window region, the power density of the Instruction Window is very high

causing a local hot spot. This causes the cost of cooling and packaging of the

chip to increase. It also causes problems in ensuring chip reliability. In the

current day superscalars, wake-up logic consumes a significant portion of the

Instruction Window energy consumption and hence reducing the wake-up energy

solves the twin problems of high Window energy consumption and the

Instruction Window hot spot.

In this work, we evaluated an alternate wake-up scheme based on maintaining

dependence lists of instructions, effectively moving to a lookup-based wake-up

from conventional associative wake-up. In order to explain the energy savings

69

obtained, we analyzed the energy consumption of the conventional wake-up

scheme and our scheme. We compared the wake-up energy to that of a

conventional superscalar over 4 different Window sizes and corresponding Issue

Widths. Our results show that significant energy savings can be achieved from

this scheme with very little trade-off in performance. Also, the energy savings

increase with increasing Instruction Window size and Issue Width implying that

this scheme is more scalable than the conventional. This is a really important

advantage as both these parameters are going to be increased in the quest for

higher performance.

Our observations from the energy analysis of the DL based wake-up scheme

led us to investigate a possibility of further energy savings. For this purpose, we

did a study on the number of instructions in the window that actually feed other

instructions (Parent instructions). We found that, on an average, only about 60

percent of the instructions in the Window at any time are Parent instructions.

Based on this, we presented the Need Based DL (NBDL)scheme that uses a

smaller array to store dependent information and dynamically allocates Dlist

storage slots to only Parent instructions. Our results indicate that we can save

up to 50 percent of the wake-up energy, i.e. up to 15 percent of the overall

Window power, compared to a processor using the conventional wake-up scheme.

This is significant because the Window energy (IQ + ROB) is one of the highest

consumers of energy in a superscalar. Like the DL-based scheme, our NBDL

scheme is more scalable when compared to the conventional scheme with

70

increasing Window size and Issue Width.

71

BIBLIOGRAPHY

[1] D. Folegnani and A. Gonzalez. Energy-Effective Issue Logic. In Proceedings

of International Symposium on Computer Architecutre, pages 230–239, Jul

2001.

[2] M. Huang, J. Renau, and J. Torrellas. Energy Efficient Hybrid Wakeup

Logic. In Proceedings of International Symposium on Low Power Electronics

and Design, pages 196–201, Aug 2002.

[3] T. Sato, Y. Nakamura, and I. Arita. Direct Tag Search Algorithm on

Superscalar processors. In Proceedings of Workshop on Complexity Effective

Design, International Symposium on Computer Architecture, Jun 2001.

[4] S. Onder and R. Gupta. Instruction Wake-up in Wide Issue Superscalars. In

Proceedings of European Conference on Parallel Computing, pages 418–427,

Aug 2001.

[5] S. Palacharla, N. Jouppi, and J. Smith. Complexity-Effective Superscalar

Processors. In Proceedings of International Symposium on Computer

Architecture, pages 206–218, Jun 1997.

72

[6] R. Canal and A. Gonzalez. A Low Complexity Issue Logic. In Proceedings of

International Conference on Supercomputing, pages 327–335, Jun 2000.

[7] R. Canal and A. Gonzalez. Reducing the Complexity of Issue Logic. In

Proceedings of International Conference on Supercomputing, pages 312–320,

Jun 2001.

[8] J.L. Hennessey and D.A. Patterson. Computer Architecture A Quantitative

approach. Morgan Kauffman, San Francisco, California, 1990.

[9] R.M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic

Units . IEEE Journal Research and Development, 11:25–33, Jan 1967.

[10] J.E. Smith and A.R. Pleszkun. Implementation of Precise Interrupts in

Pipelined Processors. In Proceedings of International Symposium on

Computer Architecture, pages 36–44, Jun 1985.

[11] G.S. Sohi and S.Vajapayem. Instruction Issue Logic for High-Performance

Pipelined Processors. In Proceedings of International Symposium on

Computer Architecture, pages 27–36, Jun 1987.

[12] D. Ponomarev, G. Kucuk, and K. Ghose. Energy-Efficient Design of the

Reorder Buffer. In Proceedings of the International Workshop on Power and

Timing Modeling, Optimization and Simulation, Sep 2002.

[13] G. Kucuk, K. Ghose, D.Ponomorev, and P. Kogge. Energy-Efficient

Instruction Dispatch Buffer Design for Superscalar Processors. In

73

Proceedings of International Symposium on Low Power Electronics and

Design, pages 237–243, Aug 2001.

[14] A. Buyuktosunoglu, T. Karkhanis, D.H. Albonesi, and P. Bose. Energy

Effecient Co-adaptive Instruction Fetch and Issue. In Proceedings of

International Symposium on Computer Architecture, pages 147–156, Jun

2003.

[15] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook, and

D. Albonesi. An Adaptive Issue Queue for Reduced Power at High

Performance. In Proceedings of Workshop on Power-Aware Computer

Systems, ASPLOS, Nov 2000.

[16] S. Palacharla, N. Jouppi, and J. Smith. Quantifying the Complexity of

Superscalar Processors. Technical Report CS-TR-96-1328, Dept of CS,

Univeristy of Wisconsin-Madison, Nov 1996.

[17] D. Burger and T.M. Austin. The SimpleScalar tool set: Version 2.0.

Technical Report CS-TR-97-1342, Dept of CS, Univeristy of

Wisconsin-Madison, Jun 1997.

[18] D. Brooks, V. Tiwari, and M. Martonisi. Wattch: A Framework for

Architectural Level Power Analysis and Optimizations. In Proceedings of

International Symposium on Computer Architecture, pages 87–94, Jun 2000.

74

