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Black holes have been a subject of fascination since they were first theorized

about over a century ago. There are many questions about them left unanswered.

One of these is how matter is accreted onto these objects when the plasma around

them is rotating in an accretion disk. An answer to this question is likely to be found

in the magnetohydrodynamic processes that occur in the plasma, which require

highly sophisticated numerical simulations to explore. In this thesis, I describe an

analysis of one of the magnetohydrodynamic instabilities found in these simulations

as well as the observational signatures it produces, which might be recognized in

observations of these systems.

For the remainder of this thesis, I will discuss the formation and evolution

of a formal near-peer mentoring program for women in the University of Maryland

physics department. Mentoring programs have been shown to have a number of

benefits for both mentors and mentees. Primary among them is strengthening the

student’s sense of belonging and science identity, which is linked to increased reten-



tion. Given the so-called “leaky pipeline” problem of women leaving physics, a field

where they are already underrepresented, efforts to improve retention are vital and

peer mentoring is one way to do this.
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Preface

Two of the body chapters of this dissertation are papers in various stages of publi-

cation.

Chapter 2 of this dissertation is published as Marshall, Avara, and McKinney

(2018) [1] and is included here in its publish form with minor revisions. I carried

out the writing of this paper and the analysis it contains, under the supervision of

Professor Jonathan McKinney with assistance from Dr. Mark Avara. The work in

Chapter 3 was carried out by me with assistance from Dr. Roman Gold and will be

prepared for publication.

ii



Acknowledgments

I would to thank the countless people who supported me and helped make this

thesis possible. Without the encouragement of my family, friends, colleagues, and

many others, this work would not exist.

First, I would like to thank my advisor, Jonathan McKinney, for his guid-

ance and support throughout my time in grad school. I also want to thank the

other members of my committee: Peter Shawhan, James Drake, Cole Miller, and

Steve Rolston. I am also grateful for the support from the other members of our

research group, Peter Polko, Roman Gold, Jane Dai, and Mark Avara, for helpful

conversations, advice, and friendship.

During my time in grad school, I have gained some wonderful friends. Thank

you to the friends who helped me make it through our first year, both academically

and socially: Joe Garrett, George Hine, Kevin Pedro, and especially Nat Steinsultz,

who forced me to develop a deeper appreciation for 80s music. To John Biddle

and Jack Hellerstedt, for always hanging out in the grad lounge and passing along

your wisdom to us first years. Through my involvement in Women in Physics, I

met and worked with so many amazing people: Michelle Groce, Kristen Burson

(who always seems to have a mentoring program for me to run in her absence),

Rachel Lee, Deborah Hemingway, Hilary Hurst, Holly Tinkey, Liz Friedman, Monica

Gutierrez, Batoul Banihashemi, Sarah Monk, Donna Hammer, Sonali Shukla, and

Jessica Crosby. I have mentored several younger women during my time in graduate

school, both formally and informally, all of whom have supported me just as much as

iii



I have supported them, so thank you to Hannalore Gerling-Dunsmore, Alison Duck,

Meghan Fickett, Kate Collins, and especially Allison Bostrom, my first mentee who

didn’t need a mentor at all, so became a very close friend. I would also like to thank

the women who mentored me even though I wasn’t their formal mentee or even in

their subfield: Shelby Kimmel, Kristi Beck, and Elizabeth Goldschmidt. A special

thanks to Gina Quan for deciding we would be friends, leading to one of the closest

and deepest friendships I have, along with Caroline Figgatt and Lora Price, who

not only helped strengthen me emotionally, but also physically with biweekly trips

to the gym.

To my non-physics friends, Juliet Schuelke, Ashley Fields, Katie Glandon,

Lauren Price, and Amritha Mallikarjun, thank you for reminding me that there was

a world outside my research.

There were many other teachers who encouraged me to pursue this path, from

elementary school through undergrad. In particular, I would like to acknowledge

Mr. Frese, my high school chemistry and physics teacher, who first helped me see

how interesting the laws of nature were. During my years at Miami University, I was

fortunate to learn from so many wonderful and caring professors who went above

and beyond for their students. Thank you to Samir Bali and Stephen Alexander for

giving me the chance to explore a wide range of physics research to determine what

path I should pursue.

I owe so much to my family, who were the first people to encourage my interest

in science, even if I never actually became an astronaut. Thank you to my Grandma

Sue, Aunts and Uncles Donna, Tim, Tracy, and Doug, and cousins Amber, Justin,

iv



Darius, Doug, Jackie, Austin, Brynlee, and Corbyn for all of your support. I espe-

cially want to thank my grandma Sue for helping me furnish my apartment and my

uncle Doug for making sure I always had more chicken than I knew what to do with,

feeding not just me but also many of my grad school friends. To my cousin Jackie

- you might have graduated before me, but I still have more degrees than you! To

Susan for always accepting and caring for me. To Mary for always doing whatever

you could to celebrate with me and make me feel included in the family even though

I was across the country. Thank you to Alex for being a wonderful little brother

and making me feel wise when grad school did the opposite by asking for my advice

and opinion, even if it was just how I thought the Red Wings would do that year.

Thank you to my dad for encouraging me in my scientific pursuits, from taking

me to see Star Wars for the first time to getting optics catalogs to better connect

with my research. Thank you so, so much to my mom, who has done and continues

to do more for me than I can possibly say, including late nights of stargazing and

suggesting I go to grad school in the first place.

I also want to acknowledge the Smith family. While I have only recently joined

the family, you have given me so much advice, encouragement, and support in that

time.

Most importantly, thank you to my husband, Zach. You believed in me even

when I didn’t and I wouldn’t have finished this without your encouragement and

help.

v



Table of Contents

Preface ii

Acknowledgements iii

Table of Contents vi

List of Figures ix

List of Abbreviations x

1 Introduction 1
1.1 Active Galactic Nuclei Observations . . . . . . . . . . . . . . . . . . . 2
1.2 Accretion in Astrophysics . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Magnetic Fields in Accretion Disk Plasma . . . . . . . . . . . . . . . 6

1.3.1 Ideal Magnetohydrodynamics . . . . . . . . . . . . . . . . . . 6
1.3.2 Magnetorotational Instability . . . . . . . . . . . . . . . . . . 7
1.3.3 Magnetic Rayleigh-Taylor Instability . . . . . . . . . . . . . . 10

1.4 Numerical Simulations of Accretion Disks . . . . . . . . . . . . . . . . 13
1.4.1 HARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 ASTRORAY . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Thin MAD Model . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Near-Peer Mentoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 18

2 Accretion Mechanisms in Thin MADs 19
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Stress Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Stress Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



3 Observational Signatures of the Magnetic Rayleigh-Taylor Instability in Thin
MADs 38
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 GRMHD Simulation . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Electron Temperature Prescription . . . . . . . . . . . . . . . 42
3.3.3 General Relativistic Polarized Radiative Transfer . . . . . . . 43
3.3.4 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Simulated Light Curves . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Average Intensity Images . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 Intensity Snapshots . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Structure of the Women in Physics Mentoring Program 60
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 A Brief Review of Mentoring Literature . . . . . . . . . . . . . . . . . 62

4.3.1 Definition and Model . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Sense of Belonging and Mentoring . . . . . . . . . . . . . . . . 64
4.3.3 Benefits of Mentoring . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.3.1 Benefits to Mentees . . . . . . . . . . . . . . . . . . . 65
4.3.3.2 Benefits to Mentors . . . . . . . . . . . . . . . . . . . 66

4.4 Overview of the Women in Physics Mentoring Program . . . . . . . . 67
4.5 Iterations and Improvements . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Group Structure . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.2.1 Application Only . . . . . . . . . . . . . . . . . . . . 70
4.5.2.2 Speed Matching . . . . . . . . . . . . . . . . . . . . . 71

4.5.3 Training and Support . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.4 Incentivizing Requirement Fulfillment . . . . . . . . . . . . . . 74
4.5.5 Assessment and Feedback . . . . . . . . . . . . . . . . . . . . 75
4.5.6 Partnership with Astronomy Gentleladies’ Network . . . . . . 76

4.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 76

A 2013 Mentoring Documents 78
A.1 Program Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.2 End of Semester Survey . . . . . . . . . . . . . . . . . . . . . . . . . 79

B Fall 2018 Mentoring Documents 80
B.1 Program Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.2 Training Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.2.1 Discussion Questions . . . . . . . . . . . . . . . . . . . . . . . 82
B.2.2 Mentoring Suggestion and Campus Resource Guide . . . . . . 83

vii



B.3 Expectations Agreement . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.4 Meeting Status Report . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.5 Fall Semester Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.6 End of Year Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 98

viii



List of Figures

2.1 Quantities used to define the lifetime of the magnetic RT bubble. . . 24
2.2 3D renderings of key moments during the lifetime of the RT bubble . 27
2.3 Long term stress in the disk and corona . . . . . . . . . . . . . . . . . 30
2.4 Division of stress in the RT bubble and the higher density portion of

the disk for the lifetime of the RT bubble . . . . . . . . . . . . . . . . 31
2.5 Decomposition of the total long term stress . . . . . . . . . . . . . . . 32
2.6 Decomposition of the total stress during the lifetime of the RT bubble 33

3.1 Normalized magnetic flux on the BH with relevant time periods high-
lighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Simulated light curves of the simulation after it reaches the MAD state 47
3.3 Normalized ΥH and I vs time for the full simulation . . . . . . . . . . 48
3.4 Normalized ΥH and I vs time for ≈ 50 hours focused on the magnetic

RT event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Simulated time-averaged intensity images for the edge-on case . . . . 51
3.6 Simulated time-averaged intensity images for the tilted case . . . . . 52
3.7 Simulated time-averaged intensity images for the face-on case . . . . . 53
3.8 Simulated intensity snapshots for the edge-on case . . . . . . . . . . . 55
3.9 Simulated intensity snapshots for the tilted case . . . . . . . . . . . . 56
3.10 Simulated intensity snapshots for the nearly face-on case . . . . . . . 57

ix



List of Abbreviations

AGN Active Galactic Nucleus
AGN Astronomy Gentleladies’ Network
APS American Physical Society
BH Black hole
EHT Event Horizon Telescope
GR General Relativity
IAU Internatioal Astronomical Union
IEEE Institute of Electrical and Electronic Engineers
ISCO Innermost stable circular orbit
MHD Magnetohydrodynamics
MRI Magnetorotational instability
RT Rayleigh-Taylor
SMBH Supermassive black hole
STEM Science, Technology, Engineering, and Mathematics
VLBI Very long baseline interferometry
WiP Women in Physics

x



Chapter 1: Introduction

Black holes (BH) are a subject of fascination for astronomers and have been

since Schwarzschild first calculated his solution [2] to Einstein’s field equations [3]

over a century ago. Everything from their very existence to what is beyond the

event horizon to how they form and grow has been debated and studied by both

observers and theorists. One area that links the two groups of scientists is the

intense luminosity seen at the center of galaxies. Observers have studied the exotic

objects that produce this radiation at many different wavelengths and used their

observations to constrain the size of the central object, pointing to the light being

emitted by matter falling onto a supermassive black hole (SMBH) (M > 106M�)

[4, 5]. The exact details of how the matter accretes onto an SMBH cannot be

determined from observations at this time, so sophisticated simulations are studied

in their place, though the Event Horizon Telescope (EHT) is now beginning to probe

this phenomenon using very long baseline interferometry (VLBI). Also of interest

in these systems are the relativistic jets and bursts of particles originating from

these same central regions. In this dissertation, I will describe the study of the

magnetic Rayleigh-Taylor instability in a SMBH accretion disk and its impact on

the mass inflow onto the BH using one such simulations, as well as the observational
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signatures that this instability produces, connecting back to observations. Below I

present a brief overview of the current understanding of BH accretion mechanisms,

then discuss the numerical methods used in the simulations that I studied.

1.1 Active Galactic Nuclei Observations

For many decades, observers have identified objects with very high luminosi-

ties, known as Active Galactic Nuclei, along with other historical names. These

objects emit much higher emission than that produced by the nuclear processes fu-

eling stars, with the emission spanning the electromagnetic spectrum. Seyfert first

identified galaxies with strong emission in 1943 [6]. One of these galaxies (NGC

1275) was included in Baade and Minkowski’s study of radio sources, where they

compared it to Cygnus A, one of the strongest observed radio emitters, bringing more

attention to these exotic objects [7]. A few years after this, Woltjer showed that

these objects must be both massive and confined to a small angular size [8]. Shortly

after this paper, Schmidt discovered the first quasar [9], or quasi-stellar object, the

most luminous type of AGN. A year later, Zeldovich and Salpeter independently

suggested that quasars were powered by accretion onto SMBHs [10, 11].

While these observations were given many different names historically (e.g.

Seyfert galaxy, quasar, blazar, etc. [4, 5]), this is due to variation in a small set of

parameters (e.g. viewing angle, mass and spin of the central object, mass accretion

rate of the system, etc.) rather than fundamental differences of the physical objects

themselves. These objects are identified by certain features, such as very small
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emitting regions (∼ 1 mpc ∼ 3× 107 km), high luminosity (up to 1048 erg s−1), and

broad-band continuum emission [4, 5], though not all subcategories display all of

these properties. Many AGN also exhibit luminosity variability, particularly in the

optical band, and weak polarization [4].

1.2 Accretion in Astrophysics

Accretion is the process where matter in a gravitational potential is pulled onto

the central object, increasing the mass of that object. In astrophysics, accretion

is divided into two regimes, depending on the angular momentum of the matter

surrounding the central object. When this accreting matter, predominantly gas

or plasma, but which might include dust grains or other solids, has low angular

momentum, it is in the Bondi regime, where it plunges into the central object. In

the simplest case, the matter has no angular momentum and falls directly onto the

central object at a rate determined by just the mass of the object and the speed of

sound in the gas [12]. This regime is useful for defining a characteristic luminosity,

found by balancing the inward gravitational force with the outward radiative force

of fully ionized hydrogen undergoing spherically symmetric accretion, known as the

Eddington luminosity,

LE =
4πcGM

κ
≈ 1.25× 1038 M

M�
erg s−1, (1.1)

where c is the speed of light, G is the gravitational constant, M is the mass of the

central object, κ = 0.4cm2 g−1 is the opacity of Thompson scattering, and M� is the
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mass of the Sun. The luminosity can also be written as a function of the accretion

rate, Ṁ ,

L = ηṀc2, (1.2)

where η is the radiative efficiency. From this, a scale for the rate of accretion can

be found,

ṀE =
LE
ηc2
≈ 1.4× 1018 M

M�
g s−1, (1.3)

for a value of η ≈ 0.1. This value can be used to separate different subcategories of

accretion regimes.

While this regime has provided a useful reference point for understanding

accretion, gas with low enough angular momentum per unit mass to be in this

category is uncommon in astrophysical environments. Also, Bondi accretion does

not consider the effects of radiative transfer, further limiting its usefulness [13].

The second accretion regime occurs when the specific angular momentum of

the gas is high relative to GM/c. Due to conservation of angular momentum, this

matter cannot fall directly onto the central object, but will orbit it at the radius

where the centrifugal force is comparable to the gravitational force, forming an

accretion disk. Only when angular momentum is transported away from the gas

can it accrete onto the central object, dissipating energy through some form of

turbulence as it does so. The mechanisms by which energy is dissipated and angular

momentum is transported out of the disk further divides this regime.

Efficient radiation of energy in an accretion flow will lead to a geometrically

thin, optically thick disk known as the α-disk model from Shakura and Sunyaev [14],
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in which α characterizes the transport of angular momentum in the disk. Specifically,

they propose a viscosity

ν = αcsH, (1.4)

where cs is the speed of sound in the plasma and H is the scale height of the disk.

Intuitively, this formulation makes sense, as eddies created by the turbulence driving

angular momentum transport would be limited by the fundamental properties of the

disk.

Novikov and Thorne [15] use the same form to characterize their thin disk

model. While Shakura and Sunyaev neglected the spin of the SMBH in their treat-

ment of accretion, Novikov and Thorne extend this model to the Kerr metric, the

solution to the Einstein field equations for a rotating BH [16, 17]. This model, while

simple, has been the foundation of accretion disk theory since it was developed. It

has been particularly successful modeling luminous AGN and X-ray binaries (XRBs)

in the thermal state of their outburst cycle [18, 19].

On the other hand, there are also models with radiatively inefficient accretion

flows (RIAF), which can again be divided into different cases based on the accretion

rate. For Ṁ & ṀE, the disk falls into the slim disk model, characterized by an

optically thick gas and cold accretion flow [20, 21]. This model has been used to

study systems like ultraluminous X-ray sources [22, 23]. For very low accretion rates

(Ṁ . 10−2ṀE), the disk becomes optically thin and geometrically thick, with a hot

accretion flow [24]. This type of model includes the advection-dominated accretion

flow (ADAF), which has been used to model the accretion of Sgr A* [25, 26] and
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other low-luminosity AGNs [27].

1.3 Magnetic Fields in Accretion Disk Plasma

1.3.1 Ideal Magnetohydrodynamics

While the previous discussion has largely neglected how magnetic fields af-

fect accretion, focusing on angular momentum and energy, they are part of the

turbulence-driving viscosity found in the α-disk model. To include them, consider

the simplest treatment of the plasma-magnetic field interaction: ideal magnetohy-

drodynamics (MHD). The equations that govern ideal MHD are

∂ρ

∂t
+∇ · [ρv] = 0, (1.5)

∂ρv

∂t
+∇ · [ρvv −BB + P] = 0, (1.6)

∂E

∂t
+∇ · [(E + P )v −B(B · v)] = 0, (1.7)

∂B

∂t
−∇× [v ×B] = 0, (1.8)

where P is the pressure tensor with components P = Pgas +B2/2,

E =
Pgas

Γ− 1
+

1

2
ρv2 +

B2

2
(1.9)

is the total energy density, and B2 = B ·B. To close this set of equations, the ideal

gas pressure, Pgas = (Γ − 1)ug, where Γ is the ratio of specific heats and ug is the
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internal energy density, is used.

The equations above are the non-relativistic conservation of rest mass (Eqn.

1.5), momentum (Eqn. 1.6), and energy (Eqn. 1.7) equations and the induction

equation (Eqn. 1.8), derived from Faraday’s law and the ideal Ohm’s law equa-

tions. In this form, these equations represent a plasma with no source terms in a

Minkowski spacetime, not the more complex version solved in BH accretion disk

simulations, but are more familiar to most and therefore better for developing an

intuitive understanding of the environment. The relativistic versions used in the

simulations can be found in Gammie et al. [28], specifically their equations 2 (con-

servation of particle number), 4 (four energy-momentum equation using the MHD

stress-energy tensor found in equation 11), and 18 (the induction equation, which

is subject to equation 19).

1.3.2 Magnetorotational Instability

A breakthrough in disk theory was made in 1991 when Balbus and Hawley [29,

30] showed that the magnetorotational instability (MRI), an MHD instability that

arises in weakly magnetized plasma, leads to a turbulent viscosity, which is necessary

as the shear viscosity does not generate enough angular momentum transport when

compared with observations. This instability was first studied by Velikhov [31] and

Chandrasekhar [32] and agrees with the suggestion in Shakura and Sunyaev [14]

that magnetic turbulence drove angular momentum transport.

In its simplest form, the MRI occurs in an environment with a magnetic field
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oriented along a given axis (e.g. ẑ) with a perturbation along an orthogonal axis

(e.g. r̂) in the presence of a shear along the third axis (e.g. φ̂). These conditions

are easily satisfied by a differential rotating accretion disk. To develop an intuitive

understanding of this process, consider the following mechanical model from Bal-

bus and Hawley’s 1998 review [30]. Two point masses, minner at radius rinner and

mouter at radius router, are connected by a weak, massless spring, representing the

weak magnetic field. While they are initially close, as these masses rotate at their

different radii, they are separated further by the more rapid rotation of minner. This

separation stretches the spring, creating a small restoring force, transferring angu-

lar momentum from minner to mouter. This causes minner to fall to an even smaller

radius and mouter to move to a larger radius, which stretches the spring even more,

increasing the force on the masses, and creating a run away process.

More formally, a dispersion relation can be derived by considering a small

displacement ξ = (ξr, ξφ, 0) with a spatial and temporal dependence ei(kz−ωt) in the

equatorial plane of a disk with a weak vertical (ẑ) magnetic field and following the

procedure outlined in Balbus and Hawley [33]. This leads to a perturbation in the

magnetic field

δB = ∇× (ξ ×B) = ikBξ. (1.10)

Moving to a frame rotating with angular velocity Ω necessitates adding Coriolis and

centrifugal forces to the equation of motion. The centrifugal force almost balances

the radial gravitational force, leaving a residual force. The equations of motion are
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then

d2ξr
dt2
− 2Ω

dξφ
dt

= −
[
(kvA)2 +

dΩ2

d ln r

]
ξr, (1.11)

d2ξφ
dt2

+ 2Ω
dξr
dt

= −(kvA)2ξr. (1.12)

These lead to a dispersion relation of

ω4 − ω2

[
κ2 + 2(kvA)2

]
+ (kvA)2

[
(kvA)2 +

dΩ2

d ln r

]
= 0, (1.13)

where vA = B/
√

4πρ is the Alfven speed and κ is the epicyclic frequency

κ2 = 4Ω2 +
dΩ2

d ln r
=

1

r3

d(r4Ω2)

dr
. (1.14)

The MRI is unstable if

dΩ2

d ln r
< 0 (1.15)

and the maximum growth rate is

|ωmax| =
1

2

∣∣∣∣ dΩ2

d ln r

∣∣∣∣, (1.16)

which is 0.75Ω in a Keplerian disk, meaning the MRI operates on a suborbital time

scale, rapidly amplifying the magnetic field.

An issue with the MRI turbulent disk model is that of the magnetic field

structure. First, many SMBH systems have been found to have large scale ordered

fields [34, 35, 36], rather than the weaker fields generated by the MRI. Second, the
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MRI-generated field does not sustain relativistic jets [37, 38], a key component of

SMBH accretion systems that astronomers seek to understand through simulations.

These issues show that a different field topology is needed to better explain these

phenomena. One alternative structure is a disk with a strong poloidal field built up

on the BH [39, 40], known as the ‘magnetically arrested disk’ (MAD). However, the

MRI is suppressed in simulations with such strong fields [40, 41]. This agrees with

the analogy presented above, for a strong spring would lead to the oscillation of the

masses, rather than the stretching leading to the run away process [30]. This means

another generator of turbulence must be present. One possibility, the magnetic

Rayleigh-Taylor (RT) instability is the focus of the next chapter and a description

of it is given in the next section.

1.3.3 Magnetic Rayleigh-Taylor Instability

The magnetic RT instability was suggested as a possible driver of turbulence

leading to angular momentum transport and accretion several decades ago by El-

sner and Lamb [42, 43] and Arons and Lea [44], Arons and Lea [45], who focused

on neutron star accretion. This instability has been studied in thin accretion disk

simulations by many since then [46, 47, 48]. In particular, Li and Narayan [49]

studied the magnetic RT instability at the interface of a high density, weakly mag-

netized accretion disk and a low density, strongly magnetized magnetosphere around

a compact central object, applicable to either a neutron star or BH, depending on

the angular velocity profile.
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The magnetic RT instability occurs in an environment where a high density

fluid is suspended against gravity over a lower density fluid with a magnetic field

oriented parallel to the interface. If this interface is perturbed, the system will move

toward a lower potential energy state as regions, or “fingers”, of high density fluid

push downwards into the lower density fluid, which will move upwards in so-called

“bubbles” at the same time.

To understand the instability in an accretion disk, we follow the derivation

presented in Li and Narayan [49]. Consider linear perturbations to the density gas

pressure, velocity, and magnetic field in the disk plane



δρ

δp

δv

δB


=



ρ1(r)

p1(r)

u(r)r̂ + v(r)φ̂

B1(r)ẑ


ei(kφ−ωt). (1.17)

Assuming an incompressible fluid and neglecting resistivity and viscosity, to first

order, the following wave equation is found

1

rρ0

d

dr

(
rρ0

d(ru)

dr

)
−k

2

r2

[
Ω2
eff

(ω − kΩ)2

d ln ρ0

d ln r
− 2ξ

k(ω − kΩ)

d(ln ρ0ξ)

d ln r
+1

]
ru = 0, (1.18)

where

Ω2
eff = − 1

rρ0

dpt,0
dr

(1.19)
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is the effective angular velocity and

ξ =
1

2r

d

dr
(r2Ω) (1.20)

is the vorticity frequency. For a system with a continuous angular momentum profile,

such as a BH, Ω(r) = Ωm(r/rm)−q, where Ωm is the angular velocity at the interface

and q is the index, which ranges from 0 to 2 in Li and Narayan [49], but realistically

is more likely to be from 3/2 (Keplerian) to 2. ω will be an eigenvalue of Eqn.

1.18 and frequencies with Im(ω) > 0 are unstable. They also find a more rigorous

stability condition

−
(

Ωeff

Ω

)2(
d ln Ω

d ln r

)−2
d ln ρ0

d ln r
<

1

4
, (1.21)

but do not consider it for their paper, finding the less formal condition sufficient for

their work.

This instability is seen frequently in MAD simulations, as the innermost re-

gions of the accretion disk create the appropriate environment for it to develop. My

graduate studies have focused on how it affects the accretion rate of a thin MAD,

described in more detail below, using both qualitative and quantitative methods. I

then set out to find the effects the magnetic RT instability have on observations of

SMBHs, as might be found by the EHT. These ideas are discussed in the next two

chapters.
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1.4 Numerical Simulations of Accretion Disks

Since it has only recently become possible to observe the innermost regions

close to the BH in SMBH accretion disk systems, as only the EHT has the res-

olution and sensitivity to image structures on the scale of a few rg and even it

cannot yet probe the smallest interactions leading to MHD turbulence, many nu-

merical methods were developed to understand the underlying physics, improving

as technology allowed for more detailed simulations. These simulations were then

linked to observations by the EHT and other telescopes through ray tracing and

radiative transfer schemes, simulating observations of the modeled systems. Here I

will discuss the particular methods used in my work presented in this dissertation,

HARM [28, 38, 40] and ASTRORAY [50, 51, 52, 53]. For a more complete review

of numerical techniques used in astrophysics, see Font’s Living Review [54].

1.4.1 HARM

HARM, or High Accuracy Relativistic Magnetohydrodynamics, is a general

relativistic (GR) MHD integrator. The first such code was created by Wilson in 1977

[55], who solved the GRMHD equations in the Kerr metric, but these techniques

were not strongly pursued until the MRI was re-discovered by Balbus and Hawley

[29] and the importance of magnetic fields in accretion disks was revealed. HARM

uses a finite-volume method, where quantities are volume-averaged over grid cells

and the flux between cells is computed, allowing the volume integrated quantities

to be conserved to machine precision. HARM employs a conservative scheme rather
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than a non-conservative one, which integrates the internal energy instead of the

total energy. In addition to greater accuracy, conservative schemes that are total

variation stable are guaranteed to converge to a weak solution of the equations in

one dimension [56, 57], which is a good place to start even for multidimensional

flows. The conserved quantities updated at each timestep in HARM are

U ≡
√
−g(ρut, T tt , T

t
i , B

i), (1.22)

where uµ is the four-velocity, T µν is the stress-energy tensor, and Bi is the mag-

netic field three-vector. These quantities are updated with fluxes F. A vector of

“primitive” variables is also needed. These are

P = (ρ, u, vi, Bi), (1.23)

where u is the internal energy and vi = ui/ut is the 3-velocity. These quantities are

interpolated to model the flow within zones.

Both U and P are used within the code, but P is not updated directly. Instead,

P(U) is found at the end of each timestep using a Newton-Raphson routine [13, 58].

Originally, F was evaluated using a MUSCL scheme with the “HLL” approach [59],

but more advanced forms are used for the work presented here.

To preserve ∇ ·B = 0, zone centered (or flux-interpolated) constrained trans-

port [60] is used. In this method, F is evaluated at the grid cell edges, which are used

to updated the fluxes at the cell center, smoothing them and ensuring ∇ ·B = 0.
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1.4.2 ASTRORAY

ASTRORAY [50] is a GR polarized radiative transfer code that can be applied

to the output of GRMHD simulations like the HARM code described above. It

models synchrotron emissivities, absorptivities, Faraday rotation and conversion

from low luminosity AGNs and jets, using a thermal isotropic distribution function

for electrons. The governing equation for nonrelativistic radiative transfer is

dS

ds
=



εI

εQ

0

εV


−



ηI ηQ 0 ηV

ηQ ηI ρV 0

0 −ρV ηI ρQ

ηV 0 −ρQ ηI


S, (1.24)

where S = (I,Q, U, V )T is the polarization vector where the components are the

Stokes’ parameters, εi are the emission coefficients,

ηI = Im(α22 + α11)/ν, (1.25)

ηQ = Im(α11 − α22)/ν, (1.26)

ηV = 2Re(α12)/ν, (1.27)

(1.28)

are the absorption coefficients,

ρV = 2Im(α12)/ν, (1.29)
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is the Faraday rotation coefficient,

ρQ = Re(α22 − α11)/ν, (1.30)

is the Faraday conversion coefficient, ν = ω/2π, and αij is the 4× 4 response tensor

derived for thermal physics. This is then extended to GR in a locally-flat co-moving

frame by generalizing S to a set of photon occupation numbers N = S/ν3.

The code traces a uniform grid of geodesics from the image plane to the SMBH

and integrates the intensity of the fluxes along them back to the image plane. To

account for the evolution of the model as the light propagates, a number of data

files before and after the current time are included in the calculation to simulate

the spectra. This allows the user to select a set of files large enough to accurately

generate the spectrum without needing to include the full simulation time, which

would be too time-consuming.

1.4.3 Thin MAD Model

The work presented in Chapters 2 and 3 was done using the MADiHR simu-

lation, a GRMHD model of a thin (ratio of half-height H to radius R, H/R ≈ 0.1)

MAD around a moderately rotating BH (a/M = 0.5) from Avara et al. [41]. This

model was initially in a near-MAD state and becomes MAD out to a large radius

as magnetic flux is advected inwards throughout the duration of the simulation.

The initial state was Keplerian with a rest-mass density profile that was

Gaussian in angle and ρ ∝ r−0.6. Close to the innermost stable circular orbit
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(ISCO), the density is tapered and the disk is truncated at rISCO. In the corona,

ρ = 10−4(r/rg)
−3/2, where rg = GM/c2. The disk is expected to be radiation

pressure dominated, so the adiabatic index Γ = 4/3 is chosen.

The magnetic field is initially polodial with a nearly-MAD flux (plasma beta

β = Pgas/Pb = 50) inside r = 30rg and weaker sub-MAD flux (β = 200) outside this

transition radius.

An ad hoc cooling function and temperature ceiling were implemented to keep

the disk close to H/R ≈ 0.1. See section 2.3 of Avara et al. [41] for full details.

The simulation has a resolution of Nr×Nθ×Nφ = 192× 96× 208. The radial

grid spans from Rin = 0.75rH (where rH is the horizon radius) to Rout = 104rg. The

θ grid ranges from 0 to π. The radial and θ grids are similar to the mapping used

in McKinney et al. [40], except for a smooth arctan transition from exponential to

hyper-exponential radial grid spacing and ηjet = 0 for the θ grid spacing. The φ

grid is equally spaced, ranging from 0 to 2π, with periodic boundary conditions.

The radial boundary conditions are identical to McKinney et al. [40] and the polar

boundary conditions are transmissive.

1.5 Near-Peer Mentoring

I have also spent much of my time as a doctoral student organizing and running

a formal near-peer mentoring program through the University of Maryland (UMD)

Women in Physics (WiP) group. After participating as a mentor in the first semester

of the program’s existence and gaining many benefits from it, I became the official
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WiP mentoring coordinator. In the five years since, I have expanded the program

and adapted the original components to better support the women participating

in the program, both the graduate student mentors and undergraduate student

mentees. These programs have many benefits, chief among them improved retention

rates, which are important in fields such as physics where the percentage of women

earning bachelor’s degrees has stagnated at 20% [61].

1.6 Structure of the Dissertation

Accretion in astrophysical environments has many complexities that cannot

be fully understood with today’s telescopes, so simulations made using sophisticated

codes such as those described above are vital to understanding these processes.

In chapter 2, I perform an analysis of the effects of the magnetic Rayleigh-

Taylor instability in a thin MAD simulation. This includes the use of a three-

dimensional visualization technique that I developed to better understand the evo-

lution of the magnetic field structure during the magnetic Rayleigh-Taylor eruption.

Chapter 3 examines the observational signature of the same magnetic Rayleigh-

Taylor event seen in chapter 2 and the relationship between the variations of the

magnetic field on the black hole horizon and observed AGN variability.

Chapter 4 describes the structure of the WiP formal near-peer mentoring pro-

gram, including a review of the relevant literature to examine the benefits that

similar programs provide to the participants.
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Chapter 2: Accretion Mechanisms in Thin MADs

2.1 Abstract

In accretion disks with large-scale ordered magnetic fields, the magnetorota-

tional instability (MRI) is marginally suppressed, so other processes may drive an-

gular momentum transport leading to accretion. Accretion could then be driven by

large-scale magnetic fields via magnetic braking, and large-scale magnetic flux can

build-up onto the black hole and within the disk leading to a magnetically-arrested

disk (MAD). Such a MAD state is unstable to the magnetic Rayleigh-Taylor (RT) in-

stability, which itself leads to vigorous turbulence and the emergence of low-density

highly-magnetized bubbles. This instability was studied in a thin (ratio of half-

height H to radius R, H/R ≈ 0.1) MAD simulation, where it has a more dramatic

effect on the dynamics of the disk than for thicker disks. Large amounts of flux are

pushed off the black hole into the disk, leading to temporary decreases in stress,

then this flux is reprocessed as the stress increases again. Throughout this process,

we find that the dominant component of the stress is due to turbulent magnetic

fields, despite the suppression of the axisymmetric MRI and the dominant presence

of large-scale magnetic fields. This suggests that the magnetic RT instability plays

a significant role in driving angular momentum transport in MADs.
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2.2 Introduction

Accretion disks are a central focus of interest in high energy astrophysics. From

observations of AGN and similar objects, it is known that matter is flowing onto

the central black hole (BH) of the system due to the release of intense radiation and

emergence of powerful jets. Shakura and Sunyaev [14] treated angular momentum

transport in accretion disks as parameterized by an effective viscosity that was

likely magnetic in origin. They described the stress using the so-called α viscosity

prescription.

A critical breakthrough was when Balbus and Hawley [29, 30] found that

weak magnetic fields are unstable to differential rotation and this can drive an-

gular momentum radially outward, allowing gas to move radially inward. This

instability leads to an effective viscosity by ultimately leading to turbulence and a

self-sustaining dynamo. However, in disks with strong magnetic fields, suggested

by Narayan et al. [39], the axisymmetric MRI is suppressed, meaning some new

mechanism may be driving the angular momentum transport.

One possible source of stress leading to accretion onto compact objects is the

effective viscosity generated by turbulence driven by the magnetic RT instability, as

suggested in Elsner and Lamb [42, 43] and Arons and Lea [44, 45]. Since then, there

have been many studies of this instability. Kaisig et al. [46], Lubow and Spruit [47],

and Spruit et al. [48] examine the magnetic RT instability in a thin accretion disk

with a vertical magnetic field. Li and Narayan [49] consider the interface between an

infinitely thick accretion disk and magnetosphere around a central compact object,
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generalized to be applicable to both neutron stars and BHs. Stone and Gardiner [62,

63] examine the magnetic RT instability in an astrophysical plasma with a variety

of strong magnetic field configurations. Much work has also been studying the effect

of this instability on neutron star accretion [64, 65, 66, 67, 68, 69, 70, 71]. It has also

been seen in BH accretion disk systems [40, 41, 72, 73]. In these environments, the

magnetic barrier is unstable and leads to null points in the magnetic field, allowing

magnetic interchange between magnetic flux and mass. Once turbulence develops,

a spectrum of modes develops. The large-scale modes correspond to a large portion

of magnetic flux being ripped off the black hole. This magnetic flux pushes back

into the disk, creating a low-density region, which we refer to as a bubble, in its

wake. This process occurs many times during the thin (half-height H to radius R,

H/R ≈ 0.1) MADiHR simulation presented in Avara et al. [41]. Both the magnetic

RT-driven turbulence and the large-scale magnetic flux seem likely drivers of angular

momentum transport.

We study the magnetic-RT-driven turbulence and the large-scale magnetic

interchange events and how these affect the effective viscosity and accretion rate

of the disk. In Section 2.3, we describe the selection and visualization techniques

developed as well as the stress calculations that were done. We discuss the results

in Section 2.4, and provide conclusions in Section 2.5.
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2.3 Methods

In this study, we use the MADiHR initially MAD thin disk (H/R ≈ 0.1)

simulation around a BH with dimensionless spin of a/M = 0.5, where a is the BH

spin and M is the mass of the BH, presented in Avara et al. [41]. In the simulation,

there are many times when the disk is disrupted by the magnetic flux coming off

the BH due to the magnetic RT instability, the largest of these being the focus of

this study.

To study the effects the magnetic RT instability has on the accretion rate of

the disk, we need to know the mass accretion rate Ṁ ,

Ṁ =

∣∣∣∣∫ ρurdAθφ

∣∣∣∣ , (2.1)

where ρ is the density, ur is the radial 4-velocity, and dAθφ is the differential surface

area, and ΥH , the strength of the dimensionless magnetic flux on the horizon,

ΥH(r) ≈ 0.7

∫
dAθφ0.5|Br|√
〈ṀH〉

∣∣∣∣
r=rH

, (2.2)

with horizon radius rH , radial magnetic field strength Br in Heaviside-Lorentz units

and time averaged Ṁ on the horizon 〈ṀH〉 ≈ 5.75. ΥH drops as large amounts of

magnetic flux push into the disk as a result of the magnetic RT instability, shown in

Fig. 2.1, so it can be used to define the lifespan of the RT bubble we studied, which

is associated with the largest drop in ΥH . We define the time period of interest by
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finding the two maxima around this decrease in ΥH , showing the bubble emerges at

31016 rg/c and dissipates at 33240 rg/c.

After identifying the period of interest, we study the RT bubble using both

visualizations (Section 2.3.1) and calculations (Section 2.3.2).

2.3.1 Visualization

In this paper, we first perform a qualitative analysis of the magnetic RT in-

stability. Detailed instability analyses are difficult (Li and Narayan [49]), and in the

magnetic RT case are limited to very simple magnetic, density, and velocity profiles.

Like Hirose et al. [74] and building on the density profiles of the equatorial plane

of Igumenshchev [72], we sought to use 3D renderings to understand the structure

of the magnetic field. We also generate a movie showing the evolution of the field.

These renderings were made using vis5D+ 1. Following prior work by McKinney

et al. [40], to generate the frames, the coordinate basis quantities are converted

to an orthonormal basis using the full metric in Kerr-Schild coordinates. This or-

thonormal basis is then converted to spherical polar coordinates and then Cartesian

coordinates. We do not convert to Boyer-Lindquist time, and instead stick with

Kerr-Schild time that is horizon-penetrating. The data is also interpolated from the

original grid to a Cartesian grid. A resolution of 4003 grid cells covers the inner

region from -40 rg to 40 rg to focus on the disk very close to the black hole.

To track the magnetic field evolution through the lifetime of the RT bubble, we

select certain magnetic field lines in the low density region and follow them through

1Freely available at: https://github.com/pseudotensor/Vis5dPlus .
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Figure 2.1: Quantities used to define the lifetime of the magnetic RT bubble. The
upper panel shows the mass accretion rate through the BH, while the bottom panel
shows the normalized magnetic flux threading it. The time period being studied is
highlighted in blue with red dashed lines marking the times displayed in Fig. 2.2.
The normalized flux provides a clearer picture of the dynamics around the BH, so
it is used to determine the interesting time period. As magnetic Rayleigh-Taylor
events occur, large amounts of magnetic flux move off the BH, but return to the BH
as the bubble dissipates, so it is used to determine the lifespan of the RT bubble.
For this project, we looked at the drop in magnetic flux that occurs between 31016
rg/c and 33240rg/c.
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the time period of interest. We initially select field line seedpoints in the RT bubble

and disk midplane from the areas with high magnetic flux. This is done by creating

an unnormalized probability distribution for the midplane. The function used was

P (r, φ) =


∣∣∣∣ BzaH√
〈Ṁ〉〈ΥH〉

∣∣∣∣ , for r ≤ rH∣∣∣∣ r
rH

BzaH√
〈Ṁ〉〈ΥH〉

∣∣∣∣ , for r > rH

, (2.3)

with vertical magnetic field strength Bz, aH is the surface area of the upper half

of the horizon, and time-averaged 〈ΥH〉 ≈ 5.0 as reported in Avara et al. [41]. We

developed this prescription based on ΥH , with a dimensionless factor added to the

disk term to remove the radial dependence of the magnetic field. To normalize

this probability for use in selecting seedpoints, points with P ≤ 10 were set to 0

and Pmax (t) = 5985.1 is set to 1, and a linear function was created from those

fixed values. We chose to use the maximum single cell value of P (t) rather than

an arbitrary cap to allow the probability function to most accurately represent the

high flux regions.

After the initial points are chosen, they are propagated forward in time using

the local fluid flow velocity. While this neglects magnetic diffusion processes, such as

reconnection, it does a reasonable job of keeping the field tied to the fluid flow. To

ensure the time-step used for each field line was small enough to accurately follow

its motion, the local Keplarian period is compared to the time between data files. If

the Keplarian period is much shorter than this time, an integer number of substeps

is used to interpolate between the data files, with the seedpoints’ new locations
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calculated using a velocity that is linearly interpolated between data files. After

each step forward, the flux of the new position is checked using Equation 2.3. If the

new probability is 0, meaning the point is now outside the RT bubble, we drop that

point and a new one is randomly chosen to replace it.

To visually represent the amount of flux in the disk at a given time, we vary

the number of seedpoints displayed. As the flux in the disk grows, the number of

seedpoints N(t) at a given time t ranged from Nmin = 15 to Nmax = 30 as

N(t) = max

(
Nmax

∑
P (t)

(
∑
P )max

, Nmin

)
, (2.4)

increasing as flux moved into the disk from the BH and decreasing as the flux was

reprocessed by the disk. Finally, we fix a set of four field lines to r = 0.75rH initially

evenly spaced in φ over the upper hemisphere of the horizon to show the evolution

of the field in the jet region during this time. In Fig. 2.2, we show the field structure

at four characteristic times: before the bubble forms, the emergence of the bubble

from the BH, the peak of the bubble’s size, and the dissipation of the bubble.

2.3.2 Stress Analysis

Because of the large vertical magnetic field that characterizes the MAD state,

we want to consider not only the usual Maxwell stress,

αrφ = − brbφ
〈Pb + Pgas〉

, (2.5)
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(a) Quiescent (b) Emergence

(c) Peak (d) Dissipation

Figure 2.2: 3D renderings of key moments during the lifetime of the RT bubble in
a cube −40rg ≤ r ≤ 40rg on each side. Field lines chosen from the flux proba-
bility distribution are shown in white and the field lines fixed to the horizon are
yellow. The disk is shown in red, while the corona is blue. From this, we see
that as the RT bubble evolves, the magnetic field becomes less cohesive and more
turbulent as in Fig. 2.2(c) , then returns to the previous orderly structure as the
bubble dissipates (Fig. 2.2(d)). A video of the bubble’s evolution can be found here:
https://youtu.be/Sfh9O6Nm5Cc and a video of the seedpoints being followed in the
midplane can be found here: https://youtu.be/74CuoWN2HjI
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but also look at any vertical analog that might lead to angular momentum carried

off in a wind,

αzφ = − bzbφ
〈Pb + Pgas〉

, (2.6)

where Pb = bµbµ/2 is the magnetic pressure, Pgas = (Γ−1)ug is the ideal gas pressure

with adiabatic index Γ = 4/3. bµ is the contravariant fluid-frame magnetic 4-field

and is related to the laboratory-frame 3-field by bµ = Bνhµν/u
t, where hµν = uµuν+δµν

is a projection tensor and δµν is the Kronecker delta function.

Though we know the axisymmetric MRI is suppressed in this simulation as

reported in Avara et al. [41], the magnetic RT instability itself creates turbulence.

Therefore, to separate the contributions to the angular momentum transport due

to turbulence vs. the large vertical field, we decompose the magnetic field into a

mean field term plus fluctuations (bµ = 〈bµ〉+ δbµ). Then the (unnormalized) stress

decomposition became

αµφ = 〈bµbφ〉+ 〈bµ〉δbφ + δbµ〈bφ〉+ δbµδbφ (2.7)

The total radial and vertical stresses as well as the decomposed stress terms

are calculated in both the disk and corona. These regions were defined only in terms

of angular extent, with no density weighing or other such factors. The angle was

chosen using half-height to radius H/R ≈ 0.1 and the small angle approximation to

give θ = 0.1, so the disk is defined as π
2
± 0.1 and the corona is π

2
± 0.1 to π

2
± 0.2.

In Fig. 2.3, the total stress results are plotted from the start of the simulation until
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after the bubble being studied dissipated (33240 rg/c), while in Fig. 2.5, the stress

decomposition is shown.

We also examine the differences between the stress in the RT bubble and

in the high density area. The regions are separated using the plasma parameter

β = Pgas/Pb as a filter, with β ≤ 0.1 considered the RT bubble region and higher

values being the higher density region. The total stress in these areas is shown in

Fig. 2.4 and the stress decomposition over the lifetime of the RT bubble is shown

in Fig. 2.6.

2.4 Results and Discussion

2.4.1 Visualization

In the first snapshot Fig.2.2(a), we see the steady state of the disk. The field

on the BH is helical and very tightly wound and the field in the disk has the same

general shape, though looser in structure. Moving forward in time to the emergence

of the bubble (Fig. 2.2(b)), the magnetic field in these regions begin to unwind and

become less ordered. This is even more prominent in the snapshot of the bubble

at its maximal size, Fig. 2.2(c). Here the field is much more tangled, having been

swept back by the slower rotation of the bubble in the disk. Also, the field in the

jet region is almost vertical, with much less winding. Finally, as the bubble begins

to dissipate in Fig. 2.2(d), the field becomes ordered again with the field in the jet

region twisting up once more, which is also discussed in Igumenshchev [72].
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Figure 2.3: Long term stress in the disk (black) and corona (red). The vertical stress
is shown as a dashed line, while the radial stress is solid. The time period being
studied is highlighted in blue with vertical dashed lines marking the times displayed
in Fig. 2.2. As the bubble emerges, the radial stress in both regions decreases,
but grows as the bubble dissipates, indicating that stress, and therefore accretion,
increase after the lifetime of the bubble; however, the vertical stress increases slightly
while the bubble is moving through the disk.

2.4.2 Stress Analysis

In Fig. 2.3, we plot the total radial stress integrated over all φ, 10rg ≤ r ≤

40rg, and the θ ranges given above for the disk and corona are shown. The vertical

stress is integrated over the same φ and radial regions, but the upper and lower halves

of the θ region are calculated separately, then subtracted from each other to ensure

that positive stress corresponds to outgoing angular momentum transport. The
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Figure 2.4: Division of stress in the RT bubble (black) and the higher density portion
(red) of the disk for the lifetime of the RT bubble. The radial stress is shown as a
solid line, while the vertical stress is a dashed line. The vertical dashed lines mark
the times displayed in Fig. 2.2. As the bubble expands, the radial stress in the
bubble decreases, while the vertical stress increases. Outside the bubble, both the
radial and vertical stress start to increase as the bubble dissipates around 32000
rg/c, with the radial stress almost doubling by the time the bubble disappears.

radial stress through the disk is the dominant term, much higher than the vertical

stress even with the large vertical field that characterizes the MAD state. In the

corona, radial stress is also higher than the vertical term. However, the vertical stress

in the corona is slightly higher than in the disk, indicating the vertical outflows are

more prominent there. The radial stress is always positive, corresponding to outward

angular momentum transport and enhanced accretion, while the vertical stress is

negative at some times, but is usually positive.
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Figure 2.5: The decomposition of the total stress (blue solid line) into mean field
(black solid), purely turbulent (red dashed), and 2 mixed terms (〈bi〉δbφ as a red
solid lines and δbi〈bφ〉 as a black dashed line). The time period being studied is
highlighted in blue with vertical dashed lines marking the times displayed in Fig.
2.2. The upper panels show the radial stress decomposition in the disk (left) and
corona (right) while the lower panels are the vertical stress in the disk (left) and
corona (right). In both regions, the radial stress is dominated by purely turbulent
component, despite the suppression of the MRI. As for the vertical stress, in the
disk, the stress components fluctuate around 0, but seem to be net positive. In
the corona, the turbulent terms are negative, but the mean field term is positive,
meaning it contributes to outward angular momentum transport.
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Figure 2.6: The decomposition of the total stress (blue solid line) into mean field
(black solid), purely turbulent (red dashed), and 2 mixed terms (〈bi〉δbφ as a red
solid lines and δbi〈bφ〉 as a black dashed line). Vertical dashed lines mark the times
displayed in Fig. 2.2. The upper panels show the radial stress decomposition inside
(left) and outside (right) the RT bubble while the lower panels are the vertical stress
inside (left) and outside (right) the RT bubble. The total vertical stress is close to 0
for the lifetime of the bubble and we see that the component terms mostly balance
themselves out. In both regions, the total radial stress is dominated by the purely
turbulent term and positive, leading to angular momentum transport.
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Looking more closely at the terms of the stress decomposition in Fig. 2.5, in-

tegrated over the same volume as Fig. 2.3, we see that the leading component of the

radial stress is the purely turbulent term, even though the MRI is suppressed. This

turbulence can easily be driven by the magnetic RT-instability instead of the MRI.

This agrees with Fig. 2.2(c), which shows the magnetic field structure becoming

less ordered and more turbulent as the RT bubble reaches its maximum extent. The

mean field term also contributes positive stress, therefore outward angular momen-

tum transport, in both the disk and corona with roughly the same strength. The

mixed radial stress terms are the smallest components and mostly negative, meaning

inward angular momentum transport opposing accretion. In the vertical case, the

mean field and the purely turbulent components are roughly equal in magnitude in

both regions. In the disk, all terms of the decomposition fluctuate around the mean

field term at 0. Other than the 〈bz〉δbφ at early times, most of these fluctuations are

positive, so angular momentum is transported out of the system except at for these

early times. In the corona, though the purely turbulent or mixed terms fluctuate

into negative values often, the mean field term is positive, meaning that the ordered

field in the corona is prominent in the accretion process.

At the time the magnetic bubble emerges off the BH, the radial stress decreases

while the vertical increases. Overall, this means the stress in the disk is lowered by

the emergence of the bubble, hindering accretion. Looking at Fig. 2.4, the RT

bubble contributes much less radial stress, up to a factor of four less at times.

For the total vertical stress, though, the bubble actually has a higher contribution

until it starts to dissipate. Once again, the turbulent component is the dominant
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contribution to the stress, as seen in Fig. 2.6. The mixed terms again become

negative in both parts of the disk. Interestingly, in Fig. 2.6(c), the mean field

term is actually negative until the bubble begins to dissipate and the vertical flux

is reprocessed into the disk. As the bubble dissipates, the stress begins to rise again

in both parts of the disk and a spike can be seen in Fig. 2.3 after it is reabsorbed by

the disk. The strength of the turbulent stress indicates that a secondary instability

is creating a turbulent field in the wake of the RT bubble.

2.5 Conclusions

We studied how the magnetic RT instability affects the evolution and angular

momentum transport in thin accretion disks in the MAD state by investigating the

largest of many RT bubbles produced in the MADiHR simulation from Avara et al.

[41]. We started by developing the first 3D visualization technique to select and

follow magnetic field lines in the high flux regions of the bubble. This showed us

how the emergence of the RT bubble leads to less ordered magnetic field in the disk

and less twisted up field in the jet region, indicating that the magnetic RT insta-

bility is leading to a secondary turbulence in the disk. This visualization method is

applicable to many other situations where the magnetic field is disrupted, such as

magnetic field inversions or magnetic plasma instabilities in other disk geometries.

We also examined the effects of the RT bubble through stress calculations. We

found the dominant contribution to the stress in both the disk and corona is the

radial term with the vertical stress up to four times smaller than the radial term.
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We also saw that the emergence of the RT bubble corresponds to a reduction in

radial stress in both the disk and corona, but an increase in the vertical stress.

When the stress terms are decomposed into mean field, purely turbulent, and

mixed components, we measure the turbulent component to be dominant, despite

the suppression of the MRI. Only in the vertical stress is the mean field contribution

as strong as the turbulent one. As seen in the visualization, this turbulence is linked

to the emergence of the bubble, so could be due to a secondary instability caused

by the magnetic RT instability.

In the bubble itself, the stress is suppressed much more than in the higher

density region. Though the vertical stress is much smaller than the radial stress, it

is stronger in the bubble than the disk until the bubble starts to dissipate. As seen

in the disk, the turbulent field is the dominant driver of the stress, while the mean

field term is a factor of 3-4 smaller. Again, this is consistent with the disordered

field lines seen in the visualization.

These results are limited by the simplified treatment of the thermodynamics

of the accretion disk. To keep the disk close to the target scale height of H/R ≈ 0.1,

an ad hoc cooling function was employed, rather than a more complete handling

of the thermodynamics. While this might have kept the disk thinner than a more

complex cooling function, we see similar low-density regions created by the magnetic

RT instability in simulations of thicker disks, so our results would still hold if the

disk in this work were thicker.

The extra dissipation produced by the thin MAD state could lead to more

emission from near and within the inner-most stable circular orbit (ISCO). In prior
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studies of the emission, the corrections to the spin predictions are minimal except at

low spin [75] with higher-energy emission from near the ISCO. Indeed, the emission

is marginally optically thin and could be dominated by non-thermal emission. Our

results suggest that, despite the magnetic field having a large-scale ordered compo-

nent in the MAD state, the disk is still dominated by turbulent viscosity driven by

magnetic RT instabilities and the MRI. The magnetic RT instabilities form even

within the ISCO due to the magnetic field piling-up against the BH, and so they

could be an important source of extra emission from within the ISCO.

We hope our visualization and basic analysis of the stress in the accretion disk

will drive more analytical and simulation work to understand the origin of angular

momentum transport in MADs. We cannot conclude that the MRI is unimpor-

tant in MADs, but the magnetic RT plays an important role in controlling the

effective viscosity by developing vigorous turbulence throughout the flow. While

existing analytical analysis of magnetic boundaries in disks cannot be easily applied

to these simulations, we plan to next study the magnetic stability directly within

the simulation by tracking passive mode growth as done in Guan and Gammie [76].

By injecting modes, we can directly trace their evolution to see if they behave as

expected from the MRI instability or as from the magnetic RT instability.
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Chapter 3: Observational Signatures of the Magnetic Rayleigh-Taylor

Instability in Thin MADs

3.1 Abstract

The inner workings of accreting supermassive black hole (SMBH) systems have

been studied for many years, but these studies have been restricted to simulations

as observational capabilities have been insufficient to probe the details of the com-

plicated plasma and magnetic field interactions occurring in these systems. Since

the Event Horizon Telescope (EHT) has published images of the innermost regions

of the M87 system, we are now in an era where it is possible to look into the heart

of a SMBH accretion disk and detect the signature of the plasma physics occurring

there. To understand what might soon be seen, we have conducted an exploratory

study of the observational signatures of the magnetic Rayleigh-Taylor instability,

which occurs frequently in magnetically arrested disk (MAD) simulations. Our pre-

liminary analysis shows a very strong similarity between the dimensionless magnetic

flux on the black hole (BH) horizon ΥH and the simulated light curves. We also see

visibility nulls in intensity images associated with the low density bubble created by

the magnetic Rayleigh-Taylor (RT) instability.
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3.2 Introduction

AGN have been of great interest to astronomers for many years; however, many

of their features remain unexplained due to the limitations of observational capa-

bilities. Until very recently, the innermost regions, where many exotic phenomena

originate, were unobserved and could only be studied in detail via three-dimensional

(3D) general relativistic magnetohydrodynamic (GRMHD) simulations. Now the

Event Horizon Telescope (EHT) has the ability to probe these regions because of

the high observing frequency (230 GHz), resolution, and sensitivity. Most notably,

in April 2019, the EHT collaboration published the first event-horizon-scale images

of M87 [77, 78, 79, 80, 81, 82], opening a new realm of possibilities in studying

AGNs. As a bridge between the detailed simulations and potential observations,

radiative transfer calculations can be performed to simulate spectra and snapshots.

Many of these studies have been done in preparation for the EHT observations by

members of the collaboration. Many features of M87 and Sgr A* have been inves-

tigated using radiative transfer techniques to simulate EHT results, including jets

[83, 84, 85], magnetic field structure [86], and the geometry of the innermost regions

near the BH [87, 88].

One question in particular that can be studied this way is AGN variability,

which has been a focus of research for many years and is one of the characteristics

that separates AGN from other systems, but a definite cause is not yet known [4, 5].

This variable emission is seen at many wavelengths, over many timescales, and is

common across many different systems, from supermassive black holes (SMBH) to
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solar mass BHs in X-ray binaries, suggesting the existence of a shared physical pro-

cess creating it, likely an accretion process [5, 89, 90]. This could be mediated by

the magnetic field structure near the BH [91]. Park and Vishniac [92] suggest that

radial transport of polodial field is linked to variability and changes in the magnetic

field strength are correlated to variability in a study by Goldston et al. [93]. Dex-

ter and Begelman [94] discuss how the standard disk theory doesn’t fully explain

observations of variable AGN luminosity, but disks supported by large magnetic

fields may offer a better model. Zamaninasab et al. also showed that a disk model

with a higher magnetic field strength, specifically a model that is in the magneti-

cally arrested disk (MAD) state characterized by large polodial magnetic fields, is

an accurate model for radio-loud AGN [35, 95]. The tight correlation they found

between accretion disk luminosity and magnetic flux in the jet, which is related to

the flux on the BH horizon ΥH , reveals an interesting possibility for the source of

AGN variability. In the very thin MAD model presented in Avara et al. [41], the

accretion disk is dramatically affected by these fluctuations, offering an ideal model

to use for the exploration of the link between the magnetic flux and AGN variability.

Using Sgr A* as our physical model, we simulate spectra to probe this possible link.

Previous studies of the variability of Sgr A* have been done using radiative transfer

techniques (e.g. Chan et al. [96] and Medeiros et al. [97]), but these have focused on

the impact of the accretion flow directly rather than the relationship between the

magnetic field structure and variability.

We are also interested in discovering any possible observational signatures the

magnetic RT instability might create. Magnetic RT effects have been observed
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in laboratory plasmas [98, 99], solar prominences (for review, see Hillier [100]),

further out into interplanetary space [101], and supernovae and their remnants [102].

However, while this instability has been seen in simulations of SMBH systems (e.g.

McKinney et al. [40], Avara et al. [41], Marshall et al. [1]), as well as neutron stars

(e.g. Romanova et al. [68], Kulkarni and Romanova [69], Blinova et al. [71]), it has

not be observed in these environments, so we have also created synthetic intensity

images for the largest magnetic RT event that occurs in the simulation to look for

possible observational signatures that could be seen by the EHT, extending the work

done in Chapter 2.

This paper is organized as follows. In Section 3.3, we describe the methods and

model used in this work, including the radiative transfer scheme used to generate

the simulated observations. In Section 3.4, we describe and discuss our preliminary

results, and in Section 3.5, we summarize our findings.

3.3 Method

In this section, we describe the GRMHD simulation that was studied, the

general relativistic polarized radiative transfer technique used, and the parameters

used to generate the simulated data sets.

3.3.1 GRMHD Simulation

For this work, we use a previously published GRMHD simulation created with

the code HARM [28, 40], which solves the ideal MHD equations of motion in a Kerr
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metric [16, 17]. This model is the MADiHR simulation from Avara et al. [41], which

simulates a thin disk (H/R ≈ 0.1) around a moderately spinning BH (a/M = 0.5)

that is initialized with enough magnetic flux to be close to the magnetically-arrested

disk (MAD regime), which it reaches by ∼ 5000rg/c. Because this simulation was

performed using a code without an internal radiative transfer scheme, an ad hoc

cooling function was used to keep the disk thin and radiatively efficient.

Due to the strong vertical magnetic fields (plasma beta β = Pgas/Pb = 50,

where Pgas is the gas pressure and Pb is the magnetic pressure), the axisymmetric

magnetorotational instability (MRI) is suppressed, but there are many events where

the disk is disrupted by a low density bubble created by the magnetic RT instability.

Because of the thinness of the disk, these events have a dramatic effect on the

simulation, the largest of which was studied in the previous chapter (see also [1]).

Here we present simulated observations associated with that event.

3.3.2 Electron Temperature Prescription

While HARM does not directly compute the temperature of either electrons

or protons, it is necessary to know these quantities in order to calculate the emission

from the disk. We follow Shcherbakov et al. [51] in our treatment of them, which is

based on collisionless physics described in Sharma et al. [103]. The simulation data

are extended via power law extension to the Bondi radius of Sgr A*, rout = 3×105rg.

Here the electron and proton temperatures are set to Te = Tp = 1.5× 107K and are

then evolved inwardly as a function of ugas/ρ, the internal energy per unit rest mass,
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considering the rate of proton-electron collisions. Beyond r = 104rg, collisions are

frequent, keeping Te ≈ Tp, but as the radius decreases, the timescale for collisions

increases, and Te deviates from Tp as the electrons become relativistic. The electron-

proton heating ratio is also important for determining the temperatures, as Sharma

et al. [103] found

fe
fp

= Cheat

√
Te
Tp
, (3.1)

where Cheat ∼ 0.3.

3.3.3 General Relativistic Polarized Radiative Transfer

To produce the simulated data, we used ASTRORAY [50, 51], a GR polarized

radiative transfer code that uses data files from GRMHD simulations as inputs. This

code computes the polarized synchrotron emission, absorption, Faraday rotation and

conversion, using a thermal, isotropic electron distribution.

A uniform grid of geodesics are traced from an observer’s image plane to

the SMBH. Along these rays, the polarized fluxes are computed by integrating the

intensities back to the image plane. To account for the changes in the simulation as

the light propagates from the BH to the observer at time t0, we include snapshots

between t0 − ∆t and t0 + ∆t. The value of ∆t is chosen to be large enough to

calculate accurate spectrum, but small enough that the calculations are not overly

time-consuming.

This procedure outputs the Stokes parameters (I,Q, U, V ). Here I is the in-

tensity, V is the circular polarization, with V > 0 corresponding to right circu-
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lar polarization following the IAU/IEEE convention. Linear polarization is LP =√
|Q|2 + |U |2 and the linear polarization direction, known as the electric vector po-

sition angle (EVPA), is found using EV PA = arg(Q + iU)/2, measured EAST

of NORTH. Polarization fractions are normalized by the intensity I and given in

percent.

3.3.4 Model Fitting

The free parameters in this model are

1. inclination i,

2. accretion rate normalization Ṁ ,

3. heating constant Cheat, and

4. time span before and after a given time t0 to account for the evolution of the

simulation, ∆t.

We chose three inclinations for this study: edge-on (90◦), tilted (150◦), and

nearly face-on (170◦). This allowed us to explore the range of possible inclinations,

generalizing the results of this work. The accretion rate was determined by fitting

our simulated flux to the mean value of Fν = 2.64± 0.14 for ν = 230GHz reported

in Shcherbakov et al. [51]. In the present work, we only consider the ν = 230GHz

data, focusing on the EHT’s current observational capabilities. We use the value

of Cheat = 0.3712 from Shcherbakov et al. [51]’s best fit model for spin a/M = 0.5.

Finally, we set ∆t = 240rg/c.
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We studied the inner regions (|r| ≤ 15rg) of the simulation during five time

periods in the simulation, each between 2200rg/c (12.8 hours for Sgr A*) and 2400

rg/c (14 hours for Sgr A*), sampling the data every 4rg/c (1.4 minutes for Sgr A*),

examining the magnetic RT bubble from Marshall et al. [1] (31016− 33232rg/c) as

well as four quiescent periods of similar length (32000-34400 rg/c, 35800-38000 rg/c,

53600-56000 rg/c, and 67000-69268 rg/c). The calm periods were chosen for the

low fluctuations in ΥH , the dimensionless magnetic flux threading the BH horizon,

which is given by

ΥH(r) ≈ 0.7

∫
dAθφ0.5|Br|√
〈ṀH〉

∣∣∣∣
r=rH

, (3.2)

with horizon radius rH , radial magnetic field strength Br in Heaviside-Lorentz units

and time averaged Ṁ on the horizon 〈ṀH〉 ≈ 5.75 (Fig. 3.1). This is coupled with

a lack of large low density bubbles in the video of the disk’s evolution within the

region we are studying (found here: https://youtu.be/t1vaW3ByM8Y). For each of

these time periods, images of the average intensity were plotted, as well as light

curves over the whole simulation for each inclination. Additionally, images of par-

ticular snapshots for the four times highlighted in Chapter 2 (31016 rg/c, 31164rg/c,

31744rg/c, and 32816rg/c) were created and compared to the 3D renderings shown

in Fig. 2.2.

45



0 10000 20000 30000 40000 50000 60000 70000
t[rg/c]

0

2

4

6

8

10

Υ

Figure 3.1: Normalized magnetic flux threading the BH vs time, with the shaded
regions indicating the time periods studied in this paper. The blue period is the
magnetic RT event studied in Marshall et al. [1] from 31016−33232rg/c, while the red
regions are the quiescent times (32000-34400 rg/c, 35800-38000 rg/c, 53600-56000
rg/c, and 67000-69268 rg/c).
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Figure 3.2: Simulated light curves for each of the inclinations (top: edge-on, middle:
tilted, bottom: face-on) studied in this work, from t = 5000rg/c ≈ 30 hours when
the disk reaches the MAD state until t = 69028rg/c ≈ 400 hours. While they are
very similar in shape and amplitude, the edge-on case has both a higher average
and maximum intensity.

3.4 Results and Discussion

3.4.1 Simulated Light Curves

First we present the simulated light curves for the 230 GHz flux in Fig 3.2

at each of the three inclinations considered. We ignore the times before our model

reaches the MAD state (t = 5000rg/c ≈ 30 hours) and ∆t = 240rg/c = 1.4 hours

from the end of the simulation.

We see that while the inclination angle slightly changes the amplitude of the

47



0.0
0.2
0.4
0.6
0.8
1.0

Ed
ge

-o
n

0.0
0.2
0.4
0.6
0.8
1.0

Ti
lte

d

0 50 100 150 200 250 300 350 400 450
t [hours]

0.0
0.2
0.4
0.6
0.8
1.0

Fa
ce

-o
n

Figure 3.3: Normalized ΥH (black) and I (color) versus time for each of the incli-
nations (top: edge-on, middle: tilted, bottom: face-on) from t = 5000rg/c ≈ 30
hours when the disk reaches the MAD state until t = 69028rg/c ≈ 400 hours. Here
we see that the two quantities are remarkably similar in structure, especially after
t = 30000rg/c or 175 hours.

curve, the overall shape is consistent. This indicates that the flux is more strongly

influenced by the underlying physics and intrinsic properties of the system rather

than extrinsic ones such as viewing angle. The edge-on orientation has a marginally

higher intensity than the other inclinations and the face-on inclination has a higher

intensity than the tilted one.

These light curves also appear to share the main features of the ΥH vs t plot

shown in Fig. 3.1. To explore these similarities, we vertically shifted and normalized

these quantities so that they ranged from 0 to 1 in amplitude then plotted them next
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Figure 3.4: Normalized ΥH (black) and I (color) versus time for each of the incli-
nations (top: edge-on, middle: tilted, bottom: face-on) from t = 30000rg/c = 175
hours to t = 38000rg/c ≈ 222 hours. This window includes the magnetic RT event
and the first two quiescent periods and shows that I tends to decrease before ΥH ,
but rises after, broadening the shared features.
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to each other for easier comparison, shown in Fig. 3.3. This shows the magnetic

flux on the horizon and the radio luminosity to be even more strikingly similar,

particularly after t = 30000rg/c (175 hours). Only during the magnetic RT event

studied in Chapter 2, after the low density bubble reaches its maximal size, is there

a large variance between the curves. Neither quantity seems to be leading or lagging

behind the other for the whole period shown, but alternating which signal leads the

other, as I tends to decrease earlier than ΥH and vice versa, as seen in Fig. 3.4.

3.4.2 Average Intensity Images

Here we present the simulated averaged intensity images for the periods iden-

tified above. The images presented here are not adjusted to simulate the effects

of scattering as the radiation passes through the interstellar medium. This will be

accounted for in future work.

Fig. 3.5 shows the average intensity image for the edge-on orientation, Fig. 3.6

shows the tilted orientation, and Fig. 3.7 the nearly face-on orientation. Again, the

edge-on case has a higher intensity than the others, despite little emission coming

from the narrow band of the disk across the center of the image.

In each case, the same features are seen. The image is dimmest during the

period of time over the magnetic RT event (Figs. 3.5(a), 3.6(a), and 3.7(a)), due

to the much lower density of the region while the magnetic RT bubble is moving

through it. This period will be considered in more detail in Sec. 3.4.3.

For the other times considered, the image brightens as the magnetic flux is
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(d) t = 53600− 56000rg/c
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(e) t = 67000− 69268rg/c

Figure 3.5: Simulated time-averaged intensity images for the edge-on case. The disk
creates a void in the image, with the emission being most intense directly above and
below it. Fig. 3.5(a) is the dimmest due to the magnetic RT event, while the periods
with the highest average Υ have the highest average intensity.
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(a) t = 31016− 33232rg/c
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(e) t = 67000− 69268rg/c

Figure 3.6: Simulated time-averaged intensity images for the tilted case. Fig. 3.6(a)
is the dimmest due to the magnetic RT event, while the periods with the highest
average Υ have the highest average intensity, in the edge-on orientation in Fig. 3.5.
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(a) t = 31016− 33232rg/c
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(d) t = 53600− 56000rg/c
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(e) t = 67000− 69268rg/c

Figure 3.7: Simulated time-averaged intensity images for the face-on case. Fig.
3.7(a) is the dimmest due to the magnetic RT event, while the periods with the
highest average Υ have the highest average intensity, in the edge-on orientation in
Fig. 3.5.
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reprocessed in the disk and pushed back onto the BH (Figs. 3.5(b), 3.6(b), and

3.7(b)), before dimming again slightly (Figs. 3.5(c), 3.6(c), and 3.7(c)). At the

end of the simulation, when ΥH is at its highest average value, the images also

reach their highest intensity (Figs. 3.5(d), 3.6(d), 3.7(d), 3.5(e), 3.6(e), and 3.7(e)).

Comparing the time-averaged intensity value, computed from the light curve data

shown above, to the time-averaged ΥH for each period show that there is a linear

relationship between the two quantities. However, due to the broadened structure

seen in Fig. 3.4, it does not seem like a causal relationship, but rather one with a

third quantity driving both.

3.4.3 Intensity Snapshots

We also made snapshots of individual times to compare to the three-dimensional

renderings of specific moments in the lifetime of the magnetic RT event (Fig 2.2 in

Marshall et al. [1]).

In Figs. 3.8, 3.9, and 3.10, the effects of the expansion of the low density

magnetic RT bubble are clearly seen. Particularly at times t = 31164rg/c (Figs.

3.8(b), 3.9(b), and 3.10(b)) and t = 31744rg/c (Figs. 3.8(c), 3.9(c), and 3.10(c)),

the bubble creates a null spot in the image, which moves from the center close

to the BH outwards as the bubble pushes into the higher density disk. After the

bubble moves out to larger radii than shown here (Fig. 3.8(c), 3.9(c), and 3.10(c))

and begins to dissipate at t = 32800rg/c (Figs. 3.8(d), 3.9(d), and 3.10(d)), the

intensity becomes more equal across the whole image again.
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(c) t = 31744rg/c
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(d) t = 32800rg/c

Figure 3.8: Simulated intensity snapshots for the edge-on case for the times shown
in Marshall et al. [1] Fig. 2.2. In Fig. 3.8(a), the beginning of the disruption can
be seen with flares above and below a void in the midplane. Fig. 3.8(b) shows the
void created by the emergence of the magnetic RT bubble. After the bubble moves
beyond the radius shown here (Fig. 3.8(c)), the void fills in even though the average
intensity is lower than the previous time. In the final snapshot (Fig. 3.8(d)), the
image has a more even and higher overall intensity, with a flare close to the disk
midplane.
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(a) t = 31016rg/c
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(b) t = 31164rg/c
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(c) t = 31744rg/c
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Figure 3.9: Simulated intensity snapshots for the tilted case for the times shown
in Marshall et al. [1] Fig. 2.2. In Fig. 3.9(a), the beginning of the disruption is
visible, though not as clearly seen as in the other orientations. Fig. 3.9(b) shows the
void created as the magnetic RT bubble expands. After the bubble moves further
outwards into the disk (Fig. 3.9(c)), the edges of the visible region are dimmed, with
only a few filaments emitting. In the final snapshot (Fig. 3.9(d)), the image has a
more even and higher overall intensity, with a flare close to center of the image.
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(a) t = 31016rg/c
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(b) t = 31164rg/c
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(c) t = 31744rg/c
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Figure 3.10: Simulated intensity snapshots for the nearly face-on case for the times
shown in Marshall et al. [1] Fig. 2.2. In Fig. 3.10(a), the beginning of the disruption
can be seen with a flare at the edge of the bubble. Fig. 3.10(b) shows the void created
by the emergence of the magnetic RT bubble. After the bubble moves beyond the
radius shown here (Fig. 3.10(c)), the edges of the visible region are dimmed, with
only a few filaments emitting. In the final snapshot (Fig. 3.10(d)), the image has a
more even and higher overall intensity, with a flare close to center of the image.
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Another interesting feature is the bright spot in the image at t = 31016rg/c

(Figs. 3.8(a), 3.9(a), and 3.10(a)). It is close to the BH and very near the disk

midplane. This seems related to the higher density patches found at the edges of

the emerging magnetic RT bubble, similar in appearance to the overdense hot spots

studied in Broderick and Loeb [104, 105] and Doeleman et al. [106]. However, this

bright spot is gone by the next snapshot at t = 31164rg/c ≈ 1 hour later when the

low density region moves further into the disk, so it doesn’t orbit the BH as the hot

spots in those paper. Instead, it is similar to the streams formed by the injection of

”clumpy matter” density perturbations found in Chan et al. [107].

3.5 Conclusion

In this work, we have shown that the magnetic flux on the BH, ΥH , is closely

tied to the luminosity at 230GHz using both the simulated light curves (Fig. 3.3)

and the average intensity images. The nature of the relationship is undetermined,

as the light curve structures are generally broader than the corresponding ones seen

in ΥH (Fig. 3.4), making it probable that there is another quantity, such as density,

leading to this behavior in both I and ΥH . We also note that the similarities

between the simulated light curves at the three orientations considered in this work

suggest that the observations are not greatly affected by the external variables such

as viewing angle.

From the snapshots of the magnetic RT event (Figs. 3.8, 3.9, and 3.10),

we see that the large low density bubble has a great effect on the observations,
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from reducing the overall luminosity of the image to creating a void that could

be detectable as a null by the EHT. There is also a flare in the luminosity at

t = 31016rg/c ≈ 180 hours close to the disk midplane at small radii that is likely an

accreting packet of plasma.

Future work will include simulated scattering effects to more accurately depict

what would be observed by the EHT. Gold et al. [86] describe a method for this that

could be applied to the work presented here. As this would broaden the features

observed, we would not expect the similarities between intensity images and the low

density magnetic RT regions to be as clear, though still observable. We will also

explore the polarization measurements also generated by ASTRORAY to search for

more signs of the presence of the magnetic RT instability in SMBH accretion disks.

Furthermore, we will generate synthetic observational data for other frequencies,

particularly 345 GHz, which the EHT expects to observe at in the near future.
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Chapter 4: Structure of the Women in Physics Mentoring Program

4.1 Abstract

In this chapter, I will discuss the motivation for and structure of the UMD

Women in Physics formal near-peer mentoring program. This program was started

in Spring 2013 by Dr. Kristen Bursen to provide additional support to undergrad-

uate women in the UMD physics department through relationships with older stu-

dents. These older students would be able to offer advice on coursework, research,

pursuing a graduate degree, and other topics relevant to the experience of women in

physics. After Dr. Bursen’s graduation, I took over as the mentoring coordinator, a

position I have held since then. During the six years I have overseen the program, I

have adapted it to better meet the needs of the students participating, incorporating

elements from similar programs run through the Compass Project at the Univer-

sity of California Berkeley and Sundial Project at Arizona State University. Key

changes include recruiting upper level undergraduate women as mentors, matching

groups based on the mentee’s preferences (speed matching), and partnering with

the Astronomy Gentleladies’ Network.
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4.2 Introduction

Formal mentoring programs have been popular at universities for several decades,

as they offer many benefits to the students involved in them, including improved

retention rates [108, 109, 110, 111], academic performance [108, 110], and social

connection [111, 112, 113, 114, 115, 116, 117]. These benefits are especially helpful

for women in fields where they are underrepresented [118, 119, 120], such as physics.

While women earn over half of all bachelor’s degrees, only 21% of physics bachelor’s

degrees are earned by women [61]. This fraction has been consistent since 2007 after

several decades of increase. Many efforts and programs have started to address this

persistent gender gap, including mentoring programs. Seymour and Hewitt [119]

found that women in science, technology, engineering and mathematics (STEM) are

more satisfied in their major when they felt welcomed into the community and have

more experienced role models, both of which are provided by mentoring programs.

Whitten et al. [120] also describes mentoring as a part of the support found in

female friendly physics departments.

In particular, peer and near-peer mentoring, where the mentors are closer in

experience (and usually age) than more traditional mentoring relationships between

faculty and undergraduates, has many additional benefits. First, using students

as mentors provides a larger pool of potential mentors. In the case of same-gender

mentoring for women, this broader pool reduces the pressure on the small number of

female faculty members to serve as mentors to the female students in the department

[111, 113, 121, 122]. Second, mentors closer in age and experience to their mentees
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lessens the power differential between them, making peer mentors less intimidating

and allowing the relationship to start on a more open and honest footing [113, 115,

122]. This makes the transition from role model to friend, an important source of

support for underrepresented students [114, 123], easier.

Due to all of these benefits, a formal near-peer mentoring program was started

for women in the University of Maryland Physics department in 2013. It was based

on a component of the Compass Project at the University of California, Berkeley

[124] and is similar to the Sundial Project mentoring program at Arizona State

University [123]. In Section 4.3, I present a brief overview of the literature on

mentoring. I then discuss the original format of the University of Maryland program

in Section 4.4 and how it changed over the years to better meet the needs of the

participants in Section 4.5. Finally, in Section 4.6, I present a summary of these

changes and ideas to improve the program in the future.

4.3 A Brief Review of Mentoring Literature

In this section, I will describe the different ways researchers define and frame

mentoring and the benefits it provides for the participants in mentoring programs.

There are many definitions for what exactly mentoring entails, so a review of the

literature will situate the style of mentoring practiced by the participants of the

University of Maryland Women in Physics program. Finally, I will review some of

the benefits gained from mentoring for both the mentees and mentors.
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4.3.1 Definition and Model

In their reviews of mentoring studies, Jacobi [121] and Crisp [125] found over

fifty different definitions of mentoring. While the many programs described in the

literature lack a common definition, they share many common features to support

students [126]. In particular, Jacobi [121] named fifteen different aspects of a men-

toring relationship, which were grouped into four domains by Nora [110]: 1) psy-

chological or emotional support, 2) role models, 3) goal setting and career paths,

and 4) academic subject knowledge support. These were further reduced to “psy-

chosocial support” (domains 1 and 2) and “academic support” (domains 3 and 4) by

Zaniewski [123] and others. Since there are many other venues for students in the

physics department to receive academic support (e.g. academic advisers, tutoring

through the Society of Physics Students, etc.) and women’s choices about entering

a field of study have been shown to be influenced by their friend group [127, 128],

the Women in Physics mentoring program primarily focuses on providing psychoso-

cial support, though academic support is also provided. We therefore use a holistic

model for mentoring that addresses both elements [113, 123, 129, 130].

Zaniewski [123] defines mentoring as “a dyadic platonic relationship between

a more experienced student (mentor) and a less experienced student (mentee) at

the same institution, with frequent, direct, face-to-face contact. Near-peer mentors

... provide guidance on academic and social issues, and help their mentees form a

more robust institutional network.” This is also the definition used by Women in

Physics.
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4.3.2 Sense of Belonging and Mentoring

Feeling a sense of belonging, defined by Lewis et al. as “...the extent to which

students subjectively perceive that they are valued, accepted, and legitimate mem-

bers...”, in their chosen fields is an important factor in student success and per-

sistence. Even aspects of life that are not focused on social interactions, such as

physics or other academic pursuits, are affected by whether or not a person feels as

if they belong. Many studies have shown that a lower sense of belonging is correlated

with student attrition and that it has a greater effect on women than men. This is

due in part to a lack of ingroup role models and peers lowering sense of belonging

[117, 119, 127, 131].

Sense of belonging is closely tied to a student’s identity as a scientist. This

science identity can be framed as a composite of different yet interacting aspects: 1)

personal identity, or how a student views themself, 2) social identity, how a student

views themself as a member of a group, and 3) physics identity, how a student views

themself relative to some archetypal physicist [132]. Each of these aspects can be

targeted to improve a student’s sense of belonging.

near-peer mentoring can increase belonging by acting on multiple of these

areas. By providing role models with similar personal identities (e.g. both the

mentor and mentee being women), the students’ social identities are targeted and

their belonging will increase. Dasgupta describes this function as “social inocula-

tion” against stereotype threat and other factors that could lower belonging[127].

Dennehy and Dasgupta found that this protection against lowered belonging lasts
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even after the mentoring relationship ends[111]. Social support and friendship also

increase sense of belonging by affecting the social identity of the mentee [114, 131].

Additionally, Quan found that interactions with peers can lead to a more

nuanced idea of the archetypal physicist (what she calls the normative identity),

which leads to a stronger physics identity as the archetype and the student’s personal

identity become more aligned. In particular, she describes a case study of a student

who progresses from a strict dichotomy between “smart” and “dumb” students, with

the archetypal physicist being the former, to an understanding that everyone has

strengths and weaknesses, including high achieving physics students [133]. In this

way, mentors can affect the physics identity of the mentees, by providing examples

of how to be a physicist that differ from the common stereotype and sharing their

own struggles in the laboratory or classroom.

4.3.3 Benefits of Mentoring

While much of the mentoring literature is focused on the benefits for the

mentees, near-peer programs are mutually beneficial for both the mentors and

mentees [112, 134]. Here I summarize the primary benefits found in the literature.

4.3.3.1 Benefits to Mentees

In the literature evaluating the impact of mentoring programs on the un-

dergraduate mentees, gains to both the academic and psychosocial domains are

reported. In the academic realm, student participants’ grades were significantly
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higher than non-participants [108, 110, 125]. When Gunn et al. [134] surveyed first-

year mentees in a peer mentoring program, academic support was the most reported

benefit of the program, where they include support directly related to coursework

(e.g. tutoring) as well as broader academic support (e.g. sharing campus resources,

time management) in this category. Zaniewski and Reinhold also find a similar dis-

tribution of topics discussed in their evaluation of the Sundial mentoring program

[123]. Another benefit of mentoring is helping students set goals for their careers,

including plans to earn advanced degrees [111, 134]. Mentoring also improves reten-

tion of students involved [108, 109, 110, 111].

Emotional support was the most commonly reported benefit in the psychoso-

cial domain [134]. Students connect with older students who act as role models and

advisers [111, 112, 113, 134], creating a space for students to discuss concerns that

don’t fit in more academic focused contexts [123]. Frequently, these relationships

evolve into friendships, a key factor in retaining underrepresented students [119, 123],

and this social connection help reduce stress for the mentees [112, 114, 115]. Ad-

ditionally, many of these effects were found to persist a year after the mentoring

relationships ended [111].

4.3.3.2 Benefits to Mentors

In addition to all the benefits to the mentees in near-peer mentoring programs,

mentors also gain from their participation. Studies of the effects of mentoring on

mentors report mentors feeling more engaged with the community and improvements
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to their self-confidence, communication skills, and leadership abilities through acting

as a role model [113, 115, 134, 135, 136]. Mentors also gain a sense of pride from

helping support younger students [137]. In addition, these studies find that mentors

report improved academic skills as well, but due to the difference in population of

the mentors (predominantly graduate students in the WiP program; undergraduate

students in these studies) and structures of programs described, these might not be

found in the UMD WiP program.

4.4 Overview of the Women in Physics Mentoring Program

The Women in Physics mentoring program has a formal near-peer structure,

where mentors are assigned to mentees. This structure was chosen since formal

mentor programs explicitly bring students into community and networks they might

not otherwise become a part of, as mentioned above. Students join the program by

completing an application, the answers of which are used to match mentors with

mentees. After the mentor-mentee dyads are assigned, they are asked to meet

three times each semester (approximately monthly). At the end of the semester, a

survey with both open-ended and Likert scale questions is administered to assess

the program.

Over the years, while this underlying structure has stayed the same, I have

made significant changes to certain elements of the program. When the program

began, the groups were pairs with a single graduate student mentoring a single

undergraduate student. These pairs were matched primarily based on research in-
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terests. Neither the mentors nor mentees had any training to establish what was

expected as a participant in the program. There was no enforcement or incentive to

ensure pairs met the requested number of times. In the following section, I describe

how I have changed these areas of the program to better meet the needs of the

participants, as well as the partnership with AGN this past year. In Appendix A,

I include the original application and end of semester evaluation and in Appendix

B, the current application, training materials, and both the individual meeting and

end-of-semester surveys. While these changes have been made iteratively, I only

included this year’s materials for brevity.

4.5 Iterations and Improvements

4.5.1 Group Structure

Over the years, many changes have been made to the mentoring pairs. Orig-

inally, the mentoring relationship was one graduate student with one undergradu-

ate. Since then, the structure has changed to include small groups and mentoring

“chains”, where a graduate student mentors an advanced undergraduate student

who is mentoring a younger undergraduate, as well as one-on-one pairs.

The pairs were expanded into groups initially due to an imbalance in the

number of mentors and mentees. With their permission, some of the graduate

students were given two mentees. The meeting arrangements were left up to the

group, who could choose to meet all together or have several one-on-one meetings,

as long as the mentor met with each mentee at least three times as the program
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requires. Groups also give younger students multiple connections to the physics

department community, helping them integrate socially.

The mentoring chain was an idea that came out of my experience trying to

mentor two undergraduate women during the 2016-2017 school year. I noticed that

I had fewer answers for the first year student I was mentoring than the other student

did, since I didn’t have as much UMD-specific knowledge, such as information about

on-campus housing, interesting courses to fulfill general education requirements, or

the structure of various math courses. As Gershenfeld discusses, freshmen have

different needs than seniors and therefore need different support from their mentors

[126]. The following year, senior undergraduate students were recruited as mentors

for the youngest mentee applicants, while the senior women were assigned graduate

student mentors. This gave both the younger and older undergraduates mentors

with the knowledge they most needed and multiple role models at different points

of their career for the younger student. In addition to providing mentors with

more institution specific knowledge, adding undergraduates to the pool of mentors

increased the number of mentors available and making it less necessary to have

larger groups.

4.5.2 Matching

As a formal mentoring program, the participants are assigned partners. While

this has the benefit of connecting students with a network and support they might

not have access to through informal relationships, the mentee only benefits if a strong
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connection to the mentor is built. It is therefore important to assign pairs that have

common interests. To that end, participants join the program by completing a

brief application sharing their research and personal interests and these responses

are used in matching. Originally, only the application responses were considered in

the matching process, but more recently, mentors and mentees have been given the

opportunity to meet with each other and share their preferred partners.

4.5.2.1 Application Only

From the program’s beginning in 2013 through 2017, mentors and mentees

were matched using their responses to the application and any personal knowledge

I had of the applicants. The application was modified through the years to provide

more information for the matching process and the preferences of the applicants.

Key additions include asking about hobbies, so that the pairs could be formed based

on shared activities in addition to physics interests, and what the applicant wished

to gain through the program (advice on specific topics, friendship, etc.). Also,

participants were given more control over their matching, through questions about

what aspect they should be matched based on (research interest, hobbies, or other

things to gain from the program) and the size of the group they are in. Finally, if

the applicant has been a participant in the mentoring program previously, they are

able to request the mentor/mentee they were matched with before.

Once the application period ends, the first assignments made are those who

requested the same mentor/mentee from the previous year. If they have chosen not
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to be part of a group, they are then removed from the pool of potential matches;

otherwise, the mentors are still considered as matches for other mentees. After

this, the applicants are sorted based on how they chose to be matched and pairs

are assigned based on the similarities of their responses. Frequently, I know the

applicants and use my knowledge of their personalities to create groups that I believe

are likely to get along. This is helpful as one of the main problems for the program is

pairs not meeting enough over the semester and pairs that have more to talk about

seem more likely to meet often.

4.5.2.2 Speed Matching

While I make every attempt to match mentors and mentees who have multiple

things in common and I believe will build a strong mentoring relationship, there are

group assignments that do not meet often enough. This is one of the weaknesses of

formal mentoring programs, as lack of mentor/mentee choice can reduce interest in

the partnership [121]. To improve the likelihood of good matches, Anna Zaniewski,

who runs the Sundial mentoring program, suggested a new component to the match-

ing process that is used in the Sundial program, where program participants have

the opportunity to meet many possible partners and express preferences on their

matching assignment [123, 138, 139].

For the 2017 and 2018 cohorts, this “speed matching” event was held before

the group assignments were made, where the potential mentors and mentees are

able to meet and talk to one another. It was one hour long, with snacks to promote
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a more social attitude, as suggested in Zaniewski [123]. To enhance this casual atti-

tude, the two events have been held on Friday afternoons. At the event, mentors and

mentees were arranged in concentric circles facing one another. They spoke with the

person across from them for a brief period of time (3-5 minutes, depending on the

number of attendees) before rotating to speak to a different potential partner. The

senior undergraduate students who applied as both mentors and mentees compli-

cated this set up, as they need to speak to both groups. Many of these students had

been mentees the previous year and wanted to be matched with the same mentor,

therefore they only needed to meet the youngest mentees and were just a part of the

mentor circle. The rest of them choose which relationship they want to prioritize

and join the appropriate group (e.g. a senior might feel it is most important to find

a good mentor to help with graduate school applications and would then join the

mentee group.) At the end of the event, the attendees listed their top three choices

for their mentor/mentee.

Since it is unlikely everyone will attend, I share the application responses with

their potential matches after removing any private comments so that the attendees

can learn about possible partners who aren’t there. This also allows those who

don’t attend to get a sense of who they would prefer to be matched with. I ask

those who don’t attend to email me their top three choices. I also ask the upper

level undergraduates who applied as both mentors and mentees to do the same

whichever group they didn’t get to interact with at the event (e.g. for the senior

in the example above, she would email her choices for a younger undergraduate to

mentor).

72



Once all the participants have stated their preferences, matching begins. As

with the application-only matching method, the first step is to match any pairs or

groups from the previous year that have requested to be re-matched. After this, the

student preferences are considered and any pairs that select one another as their

top choice are assigned. From there, I consider any matches in second and third

choices and try to assign pairs from those. This continues until everyone is assigned

to a pair or group. In the case that there are multiple potential pairs based on

the student preferences, I will use any knowledge I have of the participants and the

similarity of their application responses to assign pairs who have common interests.

In addition to adding an element of participant choice to the matching process,

the speed matching event also provides a venue for the mentors and mentees to meet,

making the initial foundation of the relationship stronger than when the applicants

are matched with a stranger.

4.5.3 Training and Support

For the first time in 2018, I held an information and training session for po-

tential mentors. Previously, I distributed guides I created describing the program

requirements, suggestions for activities, and a list of campus resources. The training

started with a group discussion about the different styles of mentoring [113, 126, 140]

and what contributes to a successful mentoring relationship. It also included role-

playing hypothetical scenarios adapted from the American Physical Society (APS)

Physics Research Mentor Training [141] (specifically the scenarios on pages 25, 61,
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and 71), and reviewing the previous years’ documents. The discussion questions

and mentoring guidelines can be found in Appendix B.

Since there are so many roles that a mentor can take, it is important for

each pair or group to identify and communicate their own expectations from the

relationship [126, 140]. To facilitate this, I created and distributed a Mentoring Ex-

pectations Agreement statement (see Appendix B) for the groups to discuss during

their first meeting. The discussion prompts it contains form an explicit groundwork

for the relationship and clarify how the group will operate as they meet through the

year.

4.5.4 Incentivizing Requirement Fulfillment

Another method I have used to ensure that mentoring groups are successful

and meet as frequently as they should, in addition to incorporating student choice

in the matching process, is to offer $5.00 Terrapin Express Dining Cards to the

participants who attend and report at least two meetings each semester (for more

details on the meeting status report, see discussion in section 4.5.5). This also helps

offset the costs of the meetings, which frequently occur over a meal or coffee, for the

participants, though this would be more effective if the gift cards were given at the

beginning of the semester, not the end.
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4.5.5 Assessment and Feedback

As a means of prompting the participants to reflect on the effects of the pro-

gram and solicit suggestions for improvements, I administer several different surveys

over the course of the year. The surveys also allow me to monitor how the groups

are faring and if there are any problems I need to address.

First, there is the short status report the participants are asked to respond to

after each meeting. This survey asks about the activities done and topics discussed,

as well as how well the pairing is working. This last component is particularly

important, so that if any pair are incompatible, they can be reassigned without

losing significant time and chances to meet with a more compatible mentor/mentee.

Since the participants can meet anytime during the semester, I check the response

monthly to see if anyone reported any issues and to track how often pairs have met,

in order to distribute the Terrapin Express cards, as discussed above.

Second, there is the Fall semester survey, which is a slightly longer survey to

probe more in depth how the semester went, if the program is helpful, and if any

changes need to be made in the groups. The fall semester survey is primarily to

uncover any poorly functioning groups who either haven’t met or haven’t responded

to the meeting report. It is more focused on whether there have been meetings and

if the group is getting along than the details about individual meetings asked about

in the status report.

Finally, the end-of-year survey is the longest survey, based off of the culmi-

nating survey from ASUs Sundial mentoring program [139]. This survey solicits

75



feedback on how the program is run, how the individual felt about the program,

and if they thought it was helpful. This is the most important survey for evaluating

the effectiveness of the program and what changes need to be made moving forward.

It has questions about how the group functioned over the year, if the program was

beneficial, and suggestions for improving the program in the future. To ensure most,

if not all, the participants respond, I email each participant individually to ask them

to share their thoughts, rather than an email to the whole group that is easier to

ignore, another suggestion from Zaniewski [138].

4.5.6 Partnership with Astronomy Gentleladies’ Network

In 2018, during a discussion with the AGN officers about possibly planning

joint events with WiP, it was mentioned that AGN was interested in providing

mentoring for the undergraduate women in the astronomy department. Rather

than build their own program, we decided to collaborate. This broadened the pool

of participants, greatly increasing the number of mentors in the program. Also, the

increase in leadership of the program allowed for training to be planned and offered

for the first time.

4.6 Conclusion and Outlook

In order to provide extra community and support to the undergraduate women

of the physics department, attributes that contribute to increased retention and

other benefits, a formal near-peer mentoring program was started by WiP. In the
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years since, the program has grown by expanding the pool of possible mentors to

include advanced undergraduate women, improved the matching method so the

groups are more likely to build strong relationships, and providing compensation for

the participants’ efforts. WiP also partnered with AGN this past year to expand

the program to the astronomy department, a collaboration which allowed mentor

training to be provided for the first time.

There are several additions that could be made to the program further develop

in the future. First, to make meeting easier for the pairs, I think a regular newsletter

with relevant campus events (such as a WiP Professional Development Luncheon

or interesting seminars) would be helpful. Mentoring program specific social events

could be also held to provide additional opportunities for pairs to meet and would

also give participants a chance to interact with the broader program community,

rather than their own small group. I also think a longer mentor training session

would be helpful, to allow more time for discussion and more material to be cov-

ered. This would also provide an opportunity to build even more community in the

department, as the mentors would get to know one another more. Mentee training

could also be added, though there are very few resources available that could be

used. Finally, regular meetings with all of the mentors would also be helpful to the

program. They could discuss challenges they were facing, share ideas to address

them, and get to know one another better, another way to build more community.

A similar meeting for just the mentees would also be beneficial.
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Appendix A: 2013 Mentoring Documents

A.1 Program Application

• Name

• I am a:

– graduate student

– undergraduate student

• Year

• Email address

• Why do you want to be part of the mentoring program?

• How often are you interested in meeting with your mentoring partner(s):(check

all that apply)

– Every week

– Every other week

– Once a month
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• GRADUATE STUDENTS: I would be heartbroken if I didnt get paired with

someone due to lack of undergrads...

– Yes

– No

• GRADUATE STUDENTS: What is your sub-field?

• UNDERGRADUATE STUDENTS: What are you thinking about doing after

college? Are you considering graduate school? If so, do you have particular

sub-field(s) of interest? What?

A.2 End of Semester Survey

• Likert scale questions

– I benefited from my interactions with my mentor/mentee

– My mentor/mentee was a good match for me

– I am interested in being in the program next semester

– I would recommend this program to a friend

• Open response Questions

– What did you like about the program?

– What suggestions do you have for improving the program?

– Any suggestions for activities?

– Do you have any other comments or suggestions about the program?
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Appendix B: Fall 2018 Mentoring Documents

B.1 Program Application

• Name

• Email Address

• What department are you a part of?

• Research Field/Area of Interest

• Are you applying to be a mentor or mentee?

• Year/Class

• How often would you like to meet with your partner?

– Weekly

– Twice a month

– Monthly
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• (Mentors) What do you feel you can offer your mentee? (Mentees) What

would you like to gain from the program?

– Academic support

– Research advice

– Grad school tips

– Life outside academia

– General life tips

– Friendship and community

– Other

• What are your hobbies and interests?

– Outdoorsy things

– Games

– Food and drink

– Movies

– Musics

– Sports

– Other

81



• How would you like to be matched with your mentor/mentee?

– What to get from the program

– Research area

– Hobbies

• Would you want to be in a group?

– Yes

– No

– Doesn’t matter

• If you were in the program last year, who was your mentor/mentee? 1

• If you participated in the program last year, would you like to keep the same

pairing? 1

• Is there anything else you would like potential matches to know?

• Additional private comments 1

B.2 Training Documents

B.2.1 Discussion Questions

• What kinds of mentoring have you experience? What kinds of ways have you

mentored? (in a general sense)

1Responses to these questions were kept private, rather than included in the speed matching
information
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• What are some factors and attributes of successful mentoring relationship?

(smaller details)

• How can you balance giving mentees direct support while helping them main-

tain/foster their independence?

• What do you think is/will be the biggest challenges in mentoring? How would

you address it?

• What kinds of resources do you use in mentoring?

B.2.2 Mentoring Suggestion and Campus Resource Guide

Women in Physics and Astronomy Gentleladies’ Network Mentoring Pro-

gram Suggestions

Suggestions Adapted from materials from the Compass Project and the Sundial

Project

• Take an active, interested role in the relationship. Being “approachable is not

enough. Mentors need to proactively ask questions and check in with their

mentees.

• Communicate frequently. Especially early on in a relationship, frequent (even

brief) check-ins help to develop trust, rapport, and identify issues the mentee

is struggling with

• Meet with your mentee on a regular basis. Being consistent will not only

foster trust, it will avoid damaging the relationship should you or your mentee
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have to cancel on occasion. Establishing a regular schedule is a great item to

discuss when you first meet.

• Find a place to meet that is not distracting and noisy. Meet in a public place,

preferably one that is frequented by other students.

• Define clear expectations and boundaries from the very beginning. Be sure to

ask about your mentees expectations. As a starting point, you can go over the

Mentoring Expectation Discussion Prompts during an early meeting.

• If you are meeting with your mentee infrequently, please be sure to communi-

cate that you are available should the need arise and check in on a regular basis.

You can also try suggesting a meeting with a specific topic (picking classes for

the next semester, finding an REU, etc.) to discuss. If your mentee wants or

needs a mentoring relationship that is more active than you can provide, refer

them to additional resources offered through the school (see Campus Resource

list).

• If your mentee is hesitant or inconsistent in contacting you, continue to make

a regular effort to build the relationship. Try many avenues of communication,

even social media (Facebooks read message notification might increase your

chances of getting a response!). If this is a persistent problem, please let me

know and I’ll try to help.

• Share some of your own relevant stories and experiences. Dont be concerned

about knowing everything they need or having the best advice, but share what
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you can.

• Offer encouragement in both good times and bad. Be aware of signs of stress

from your mentee and of the difference between what is normal and what

would require more attention. Is your mentee becoming frustrated by things

outside of the purview of your normal rapport?

• Listen actively. Ask questions that open a dialog and follow-up questions.

Show interest in your student.

• Demonstrate both faith in the abilities of your student and high expectations

for their success. One without the other can be detrimental to students motiva-

tion. Celebrate accomplishments. Express enthusiasm for when your student

succeeds.

• Be aware that all students do not share the same access to academic networks.

It is important to ask questions before assuming that your mentee is aware of

a resource or skill that may come as second nature to you.

Possible Discussion Topics

• Professional

– Goals, skills and interests

– Time management

– Study habits

– Feeling overwhelmed/doubting ones abilities/impostor syndrome
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– This discussion is better after trust has been established

– Expectations of your school, department and major

– Job or career expectations

• Personal

– Work and school experiences

– Why you both chose your college

– How to develop a sense of belonging

– Maintaining a healthy lifestyle

– Favorite television shows or movies

– Sports and hobbies, both indoor and outdoor

Possible Activities

• On campus

– Coffee or lunch, particularly AGN tea times (Payday Fridays at 4 pm)

and WiP Professional Development Luncheons (TBA)

– Taking a walk

– Visiting the farm

• Off campus

– Cooking or baking together

– Watch a movie
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– Visit the Smithsonians

– Manicures

– Go to the Women in Physics Monthly Social Event

– Hiking, ice skating or other sport/physical activities

– Games at Board and Brew

Campus Resources

• The Writing Center

• Tutoring

– University tutoring

– Society of Physics Student drop-in tutoring

– Student tutors in the Astronomy Undergraduate Interaction Room

• Learning Assistance provides workshops on a range of topics such as time

management and test anxiety and offers academic counseling

• On campus counseling services

– Behavioral Health Center

– Counseling Center (also offers some academic resources)

– Center for Healthy Families

• LGBTQ+ Resources

– LGBT Equity Center
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– Out in STEM and other student groups

• Departmental Resources - For issues more closely related to coursework or

research, here are the people to talk to in each department

– Physics Office of Student and Education Service, particularly Donna

Hammer

– Dr. Hayes-Gerhkey, Astronomy Department academic advisor

B.3 Expectations Agreement

As you start meeting with your mentor/mentee, its best to start with a clear

understanding of what you both expect from the relationship. To help establish

this, here are some guidelines and questions to discuss during your first meeting.

Guidelines (Taken from materials from Arizona State Universitys Sundial Program

[139])

A mentor is:

• A guide with experience and knowledge who is committed to the mutual

growth of the mentor and mentee

• A caring facilitator who helps their mentee make use of resources and increase

their network

• A trusted ally and advocate who works on behalf of their mentees best interests
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• Sets high expectations and has a high level of belief in the capabilities of their

mentee

A mentor is not:

• A (surrogate) parent

• A professional counselor or therapist

• A trained tutor

• A romantic partner

• Judgmental

• Given to gossip

As a mentor, you agree to:

• Not discriminate against your mentee based on religion, national origin, ethnic

heritage, race, sexual orientation, sexual identity, or disability.

• Respect the values of your student mentees and his/her family members

• If you have issues with your mentoring group, you will contact the program

leaders.

• Understand your limits and refer your mentee to resources where appropriate

(e.g. mental health resources).
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• Respect the confidences of your mentee, and ask their permission before dis-

closing your conversations to others (except as required by the UMD student

code of conduct, including your responsibilities as a mandatory reporter).

• Abide by UMD student code of conduct.

As a mentee, you agree to:

• Proactively communicate with your mentoring groups.

• If you have a concern about your mentoring group, contact the program lead-

ers.

• Understand your mentors limits. If they offer to study with you, great, but

dont expect them to be a substitute for a tutor.

• Not discriminate against anyone in your mentoring group based on religion,

national origin, ethnic heritage, race, sexual orientation, sexual identity, or

disability.

• Respect the confidences of your meetings, and ask permission from all mem-

bers before disclosing personal conversations to others (exception: alerting the

program leaders or appropriate UMD staff about specific concerns).

• Abide by the university code of conduct.

Questions

• How often will you meet this semester?

90



• What is the best way to contact you?

• What topics will the relationship focus on (schoolwork, research, general life

issues, etc.)? Generally describe what you hope to gain from the relationship.

• What (if any) are the short term goals for the relationship?

• What (if any) are the long term goals?

• How will we deal with confidential information?

• Any other topics that we should discuss?

B.4 Meeting Status Report

• Name

• Who did you meet with?

• Date of the meeting

• What did you do during the meeting?

• Which of the following topics did you talk about?

– Coursework

– Research

– Employment options/opportunities (short term)

– Employment options/opportunities (long term)
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– Personal lives

– Time management

– Organization

– Social and/or cultural issues

– Other:

• How is your mentor/mentee doing?

• Are you getting along with your mentor/mentee?

• Do you have any concerns about your meeting? For example if you do not

have good rapport, if you feel uncomfortable with them as a mentee/mentor,

if there is something in the mentee/mentor’s behavior that concerns you. This

response will not be shared with your mentee/mentor.

– Yes, I have concerns

– No, everything is fine

• If yes, what is the nature of your concern?

• Additional Comments

B.5 Fall Semester Survey

• Name

• Are you a mentor or mentee?

92



• Who are you paired with?

• How well did you get along with your mentor/mentee this semester?

• How many times have you met this semester?

• Please describe what a typical meeting was like in your group

• If you haven’t met at least 3 times, why not?

• How much have you benefited from your relationship with your mentor/mentee?

(Likert scale question from ”Not at all” to ”Very much”)

• If you have benefitted, how?

• Have you attended any of the large group events? This includes Women in

Physics socials, study hour, and Professional Development Luncheons

• If you’ve been to a large group event, which one(s) and did you enjoy it?

• What do you like about the program?

• What suggestions do you have for improving the program next semester?

• Additional Comments

B.6 End of Year Survey

• Name

• Who were you paired with? 2

2Participants in groups or chains were asked to complete the survey once for each person they
met with.
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• Are you a mentor or mentee?

• How many times have you met with your mentor/mentee this year?

• If you haven’t met at least 3 times each semester, why not?

• How well do you get along with your mentor/mentee?

– Very poorly

– Poorly

– Neutral

– Well

– Very Well

– Other

• What kinds of activities did you do with your mentor/mentee?

– Academic

– Networking

– Non-academic enrichment

– Social

– Other

• What topics did you discuss during your meetings with your mentor/mentee?

– Coursework
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– Research

– Employment options/opportunities (short term)

– Employment options/opportunities (long term)

– Personal lives

– Time management

– Organization

– Social and/or cultural issues

– Other

• Please complete the following sentence: ”Through the mentoring program,

I’ve...”

– bonded with someone else in STEM

– connected more with the WiP and/or AGN community

– met new people in STEM

– Other

• Have you attended any WiP or AGN events that were not specific to the

mentoring program?

• In what ways has the mentoring program contributed to you geeling more

connected to the WiP and/or AGN community? In what ways has it not?

• What do you like about the program?
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• Did any topics or issues come up that you would want training on to have a

more effective mentoring relationship in the future? If so, what?

• What suggestions do you have for improving the program next year?

• If you will be in College Park over the summer, would you like to have another

group event?

• Additional comments

• Mentor-only Questions

– Do you feel like you have benefited from your relationship with your

mentee? (Likert scale question from ”Not at all” to ”Very much”)

– How have you benefited from the program and your relationship? Why

do you invest your time in mentoring?

– Were any of the materials presented at the training useful? If so, which?

• Mentee-only Questions

– How much have you benefited from your relationship with your mentor,

in each of the following ways: (Likert scale question from ”Not at all” to

”Very much”)

∗ Academically

∗ Increased sense of belonging

∗ Stronger support network

∗ Overall
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– Please expand on any of your answers above about the benefits of your

mentoring relationship

– Please describe a time your mentor helped you

– Please finish the following sentence: ”Through conversations with my

mentor, I’ve learned...”

∗ that everyone struggles with STEM

∗ that I am not alone in questioning whether I belong in STEM

∗ about impostor syndrome

∗ to recognize when impostor syndrome is impacting me

∗ to talk openly about failures and setbacks

∗ Other:
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