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4.2 Comparison of estimated Ĝ from a misspecified model and empirical
distribution G̃ from X0 only. Estimated distributions from X0 (Ĝ,
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Chapter 1

Introduction to Semiparametric Density Ratio Models

1.1 Historical Review of Biased Sampling Models

1.1.1 Nonparametric Maximum Likelihood Estimation

Vardi[1982] studied a length-biased sampling model and developed the asymp-

totic theory for the corresponding nonparametric estimator. If the length of an ob-

ject is distributed according to the cumulative distribution function (cdf) G, and if

the selection probability for any particular object is proportional to its length, then

the following model gives the distribution of the length of sampled objects

F (y) = 1/µ

∫ y

0

xdG(x), y ≥ 0, (1.1)

where µ =
∫∞

0
xdG(x) < ∞ is considered as a normalization constant, which de-

pends on the distribution G. Here the cdf G is unknown and is to be estimated.

The cdf F , the length-biased distribution corresponding to G, is a weighted version

of G in terms of the weight function x.

Vardi[1985] generalized the two-sample biased sampling model (1.1) to allow
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for s + 1 different biased samples as follows:

Fi(y) = Wi(G)−1

∫ y

−∞
wi(x)dG(x), i = 1, . . . , s (1.2)

where wi’s are given nonnegative selection bias weight functions and Wi(G) =

∫∞
−∞ wi(x)dG(x). Suppose we observe s + 1 different independent samples

Xi = (Xi1, . . . , Xini
)

i.i.d.∼ Fi, i = 0, 1, . . . , s,

where we assume G ≡ F0, which is usually referred as the distribution of the refer-

ence sample X0. The problem is to estimate the underlying distribution G. A simple

way to estimate G is on the basis of the reference sample X0 only. But this ignores

the other s samples. We want to find a biased-corrected estimator which corrects

for the biasing involved in the distributions Fi. Vardi[1985] developed methodology

for obtaining a nonparametric maximum likelihood estimate (NPMLE) by using

all the n = n0 + n1 + · · · + ns observations from the s + 1 independent samples.

Gill, Vardi and Wellner[1988] showed the consistency and asymptotic normality of

Vardi’s NPMLE.

In Vardi[1985] original treatment, the weight functions were assumed com-

pletely known. But there are many practical situations in which a complete spec-

ification of the weight functions is too restrictive and mostly unrealistic. One way

to relax the assumption on the weight functions is to assume that the weight func-

tions belong to a parametric family. Therefore, there are two components in the

model that are to be estimated: the unknown reference distribution G and the

parameters involved in the weight functions. These kinds of models are called semi-

parametric biased sampling (selection bias) models. The logistic regression model in
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case-control studies, which will be introduced in the following section, is an example

of semiparametric biased sampling models.

1.1.2 Logistic Regression Models in Case-control Studies

Another important class of biased sampling models was studied in Prentice

and Pyke[1979]. A case-control study is a frequently used tool to study risk factors

related to disease incidence. Suppose that m mutually exclusive and exhaustive

disease groups are defined and let D = i denote the development of the ith disease

during the defined accession period. Let D = 0 indicate the disease-free state at

the end of the accession period. Suppose that a regression vector x = (x1, . . . , xp) is

to be related to disease incidence. Let P (D = i | x) denote the probability that an

individual with regression vector x develops disease D = i in the defined accession

period.

A prospective study in which initially disease-free individuals are followed

throughout the whole period would involve direct sampling from P (D | x). By

comparison, case-control studies involve direct sampling from P (x | D), and each

sample is obtained from each disease category D = 0, 1, . . . , m. Since P (x | D)

does not completely determine P (D | x), the full prospective model can not be

estimated from case-control data alone. However, the odds ratios defined below can

be estimated from P (x | D). The ‘Odds’ for disease D = i for an individual with

characteristics x, relative to that for an individual with some standard regression
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vector x0, is defined as

P (D = i | x)/P (D = 0 | x)

P (D = i | x0)/P (D = 0 | x0)
, i = 1, . . . , m. (1.3)

By applying Bayes’ rule

P (D | x) = P (x | D)P (D)/P (x),

the odds ratio can be written

P (x | D = i)/P (x0 | D = i)

P (x | D = 0)/P (x0 | D = 0)
, (1.4)

i = 1, . . . , m. It follows that odds ratio (1.3) can be estimated from case-control

data.

Logistic regression models are commonly used in analyzing case-control data.

The probability P (D = i | x) that an individual develops disease D = i can be

specified in terms of the logistic regression model

P (D = i | x) = exp(αi + β′ix)/
m∑

j=0

exp(αj + β′jx), i = 0, 1, . . . , m, (1.5)

where βi is a p× 1 vector parameter, with α0 = 0, β0 = 0 for uniqueness. The odds

ratios are easily calculated to be

exp{β′i(x− x0)}, i = 1, . . . , m. (1.6)

The βi’s are usually called the odds ratio parameters.

Let p(x) be the marginal distribution of x, and let πi = P (D = i). Then by

Bayes rule, we have

P (x | D = i) =
P (D = i | x)p(x)

πi

, i = 0, 1, . . . , m,

4



where p(x) is the density function of x, and the πi’s satisfy
∑m

i=0 πi = 1. Therefore,

P (x | D = i)

P (x | D = 0)
=

π0

πi

P (D = i | x)

P (D = 0 | x)
. (1.7)

Substitute (1.5) into the previous formula, and notice that α0 = 0, β0 = 0.

Then the density ratio becomes

P (x | D = i)

P (x | D = 0)
= exp(α∗i + β′ix),

where α∗i = log(π0/πi) + αi.

Let gi(x) denote the conditional density function of P (x | D = i), i =

0, 1, . . . , m. We rewrite the previous formula as

gi(x)

g0(x)
= exp(α∗i + β′ix). (1.8)

This is a ‘tilt density ratio model’. The exponential function exp(α∗i + β′ix) is

the weight function and x is called the distortion function. The function g0(x) is

regarded as the density of the reference sample. Both, the parameters αi, βi, and

the density g0 are to be estimated.

Qin and Zhang[1997] considered the two-sample case of model (1.8), and stud-

ied the asymptotic theory for the estimates of both the parameters and the ref-

erence distribution. A Kolmogorov-Smirnov type statistic was constructed to test

the goodness of fit of model (1.8). Later, Zhang[2000c] extended the study to two-

sample multiplicative-intercept risk models based on case-control data by replacing

the distortion function x with r(x; θ) in model (1.8), where r(·; θ) has a known

form. Fokianos et al[2001] studied model (1.8) based on multiple samples for the
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one-way layout with β′jx replaced by β′jh(x), and developed a statistic for testing

the homogeneity among the samples.

In this dissertation, we extend Qin and Zhang[1997] and Zhang[2000c] to the

multiple-sample case, and obtain the corresponding asymptotic theory for the esti-

mates. In addition, the density ratio model is applied in U.S. mortality forecasting

using multiple short time series.

1.2 Semiparametric Density Ratio Models

Consider the following m + 1 independent samples,

X0 = (x01, . . . , x0n0)
′ ∼ g(x)

X1 = (x11, . . . , x1n1)
′ ∼ g1(x)

...

Xm = (xm1, . . . , xmnm)′ ∼ gm(x), (1.9)

where gj(x) is the probability density of the jth sample. We consider X0 as the

reference sample, and assume its distribution G(x) is unknown. We assume the

density ratio model relative to the reference g(x)

gj(x)

g(x)
= exp(αj + β′jh(x)), j = 1, . . . , m. (1.10)

This in turn gives the tilt model

gj(x) = eαj+β′jh(x)g(x), j = 1, ..., m, (1.11)

where βj is a p× 1 vector parameters, and αj is a scalar parameter, which renders

gj(x) a probability density. In other words, it is a normalization constant. We
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assume α0, β0 are equal to 0 for uniqueness and h(x) is a p×1 vector valued distortion

or tilt function. The “distorted” densities gj, the reference g, as well as the αj and

βj are all unknown, but the distortion function h(x) is assumed known and its choice

depends on the data.

Define the weight functions wj(x) = exp(αj +βjh(x)), j = 1, . . . , m, and make

the following assumption:

Assumption: The first and second moments of h(t) with respect to each

distribution defined in (1.11) are finite,

∫
h(t)wj(t)dG(t) < ∞,

∫
h(t)h′(t)wj(t)dG(t) < ∞, (1.12)

for j = 0, 1, . . . , m.

Example 1.1 Normal distributions. An important special case of (1.10) is ob-

tained in the normal case. Assume that x1 ∼ N(µ1, σ
2
1) and x2 ∼ N(µ2, σ

2
2) with

densities g1 and g2, respectively. Then the density ratio (1.10) becomes

g1(x)

g2(x)
= exp

{
log

(
σ2

σ1

)
+

µ2
2

2σ2
2

− µ2
1

2σ2
1

+

(
µ1

σ2
1

− µ2

σ2
2

,
1

2σ2
2

− 1

2σ2
1

)



x

x2




}
,

(1.13)

with parameters

α = log

(
σ2

σ1

)
+

µ2
2

2σ2
2

− µ2
1

2σ2
1

,

β =

(
µ1

σ2
1

− µ2

σ2
2

,
1

2σ2
2

− 1

2σ2
1

)′
,
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and distortion function

h(x) = (x, x2)′.

Notice that h(x) reduces to x2 when µ1 = µ2 = 0, and (1.13) reduces to

g1(x) = eα+βx2

g2(x) (1.14)

with scalars α, β. The tilt model (1.14) is useful when the distributions are centered

at zero and are symmetric.

Example 1.2 Gamma distributions. Let Xj ∼ gj(x) = Gamma(αγj, βγ), j =

0, 1, . . . , m, with a common scale parameter βγ. Then the weight function is given

by

wj(x|αj, βj) = gj(x)/g0(x) = exp(αj + βj log(x)),

αj = log
Γ(αγ0)

Γ(αγj)
+ (Γ(αγj)− Γ(αγ0)) log βγ,

βj = αγj − αγ0,

where h(x) = log(x) is the distortion function.

Example 1.3 Lognormal distributions. Let Xj ∼ gj(x) = LN(αj, σ
2), j = 0, 1, . . . , m

with a common σ2 parameter. Then the weight function is given by

wj(x|αj, βj) = gj(x)/g0(x) = exp(αj + βj log(x)),

(αj, βj) =

(
µ2

0 − µ2
j

2σ2
,
µ0 − µj

σ2

)
,

The distortion function h(x) = log(x) is the same as in Example 1.2.
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Note that model (1.10) is a biased sampling model with weight function

exp(αi + β′ih(x)) depending on the unknown parameters α = (α1, . . . , αm)′ and

β = (β′1, . . . , β
′
m)′. This is a more general model than that of case-control in-

duced by the logistic regression model. Gill, Vardi and Wellner (1988) have dis-

cussed the biased sampling problem in the case where G(x) belongs to a nonpara-

metric family and the weight functions are completely specified. Here we leave

G(x) nonparametric, but assume that the weight function of the jth sample is

wj(x, θj) = exp(αj + β′jh(x)), where θj = (αj, β
′
j)
′ is unknown.

Denote the combined data from the m + 1 samples by t,

t = (t1, . . . , tn)′ = (X ′
0, X

′
1, . . . , X

′
m)′, (1.15)

where n = n0 + n1 + · · ·+ nm, the total sample size.

1.3 Estimation

In this section, we will give a profiling procedure to estimate the parameters

α = (α1, . . . , αm)′ and β = (β′1, . . . , β
′
m)′. Let θ = (α′, β′)′.

A maximum likelihood estimator of G(x) can be obtained by maximizing the

likelihood over the class of step cumulative distribution functions with jumps at

the observed values t1, . . . , tn. Accordingly, if pi = dG(ti) is the mass at ti, for

i = 1, . . . , n, the likelihood becomes

L(θ, G) =
n∏

i=1

pi

n1∏
j=1

exp(α1 + β′1h(x1j)) · · ·
nm∏
j=1

exp(αm + β′mh(xmj)). (1.16)

We follow a profiling procedure whereby first we express each pi in terms of

9



θ and then we substitute the pi back into the likelihood to produce a function of θ

only. Now for fixed θ, (1.16) is maximized by maximizing only the product term

∏n
i=1 pi, subject to the m + 1 constraints

n∑
i=1

pi = 1,
n∑

i=1

pi[w1(ti)− 1] = 0, . . . ,
n∑

i=1

pi[wm(ti)− 1] = 0 (1.17)

where

wj(t) = exp(αj + β′jh(t)), j = 1, . . . , m.

The maximization employs the method of Lagrange multipliers. First, set up

the objective function

logL(θ, G)− λ0(1−
n∑

i=1

pi)− λ1

n∑
i=1

pi[w1(ti)− 1]− · · · − λm

n∑
i=1

pi[wm(ti)− 1],

i = 1, . . . , n, then differentiate the objective function with respect to pi, and set the

derivative equal 0,

1

pi

+ λ0 − λ1[w1(ti)− 1]− · · · − λm[wm(ti)− 1] = 0, i = 1, . . . , n.

Multiply both sides by pi,

1 + λ0pi − λ1pi[w1(ti)− 1]− · · · − λmpi[wm(ti)− 1] = 0, i = 1, . . . , n. (1.18)

Sum up over i = 1, . . . , n, and apply the constraints (1.17). Then we have

n + λ0 = 0.

Substitute λ0 = −n into (1.18), and solve for pi,

pi =
1

n + λ1[w1(ti)− 1] + · · ·+ λm[wm(ti)− 1]
, i = 1, . . . , n. (1.19)
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Next, substitute pi back into the log likelihood function

logL(θ, G) =
n∑

i=1

log pi +

n1∑
j=1

log w1(x1j) + · · ·+
nm∑
j=1

log wm(xmj)

= −
n∑

i=1

log[n + λ1(e
α1+β′1h(ti) − 1) + · · ·+ λm(eαm+β′mh(ti) − 1)]

+

n1∑
j=1

(α1 + β′1h(x1j)) + · · ·+
nm∑
j=1

(αm + β′mh(xmj)) (1.20)

To get λ1, . . . , λm, we differentiate logL with respect to α1, . . . , αm, respec-

tively, notice (1.19) and apply the constraints (1.17):

∂ logL
∂α1

= −
n∑

i=1

∂λ1

∂α1
(w1(ti)− 1) + λ1w1(ti) + ∂λ2

∂α1
(w2(ti)− 1) + · · ·+ ∂λm

∂α1
(wm(ti)− 1)

n + λ1[w1(ti)− 1] + · · ·+ λm[wm(ti)− 1]

+n1

= −λ1

n∑
i=1

piw1(ti) + n1

= −λ1 + n1. (1.21)

Let ∂ logL
∂α1

= 0, then λ1 = n1. λj = nj, j = 2, . . . , m can be obtained similarly.

Substitute all the λj’s into (1.19). Then we have

pi =
1

n + n1[w1(ti)− 1] + · · ·+ nm[wm(ti)− 1]

=
1

n0 + n1w1(ti) + · · ·+ nmwm(ti)

=
1

n0

· 1

1 + ρ1w1(ti) + · · ·+ ρmwm(ti)
, i = 1, . . . , n, (1.22)

where ρi = ni/n0, i = 1, . . . , n.

After substituting the pi’s back into (1.16), we obtain the profile log likelihood

as a function of θ only,

`(θ) = −n log n0 −
n∑

i=1

log[1 + ρ1w1(ti) + · · ·+ ρmwm(ti)]

11



+

n1∑
j=1

(α1 + β′1h(x1j)) + · · ·+
nm∑
j=1

(αm + β′mh(xmj)). (1.23)

The score equations for j = 1, . . . , m are therefore

∂`

∂αj

= −
n∑

i=1

ρjwj(ti)

1 + ρ1w1(ti) + · · ·+ ρmwm(ti)
+ nj = 0

∂`

∂βj

= −
n∑

i=1

ρjwj(ti)h(ti)

1 + ρ1w1(ti) + · · ·+ ρmwm(ti)
+

nj∑
i=1

h(xji) = 0. (1.24)

The solution of the score equations gives the maximum likelihood estimators

θ̂ = (α̂′, β̂
′
)′, and consequently by substitution also

p̂i =
1

n0

· 1

1 + ρ1 exp(α̂1 + β̂1h(ti)) + · · ·+ ρm exp(α̂m + β̂mh(ti))
(1.25)

and therefore

Ĝ(t) =
1

n0

·
n∑

i=1

I(ti ≤ t)

1 + ρ1 exp(α̂1 + β̂1h(ti)) + · · ·+ ρm exp(α̂m + β̂mh(ti))
. (1.26)

In summary, by following a profiling procedure, we obtained a nonparametric

estimator (1.26) for the reference cdf G, and estimating equations (1.24) for the

parameters θ.
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Chapter 2

Asymptotic Theory for θ̂

In this chapter, we study the asymptotic properties of the estimator θ̂ for the

parameter θ. Let θ0 = (α′
0, β

′
0)
′ be the true values of θ = (α′, β′)′ under the model

(1.11). Throughout this chapter, we assume that the sample size ratio ρj = nj/n0

is positive and finite, and remains fixed as the total sample size n =
∑m

j=0 nj →∞.

A first-order Taylor expansion of ∂`(θ̂)/∂θ around the true θ0 gives

0 =
∂`(θ̂)

∂θ
=

∂`(θ0)

∂θ
+

∂2`(θ∗)

∂θ2 (θ̂ − θ0), (2.1)

where θ∗ is between θ̂ and θ0. For arbitrary θ, Sn(θ) = ∂2`(θ)/∂θ2 is positive-

definite if the model (1.11) is not degenerate. Expression (2.1) can be rewritten

as

n1/2(θ̂ − θ0) = −nSn(θ∗)−1n−1/2∂`(θ0)

∂θ
.

In classical results, Fisher information E(∂`(θ)/∂θ)2 is equal to −ESn(θ),

where E denotes expectation under θ0. However, under the density ratio model

(1.11), ` is a profile log likelihood function, and the contributions to the score

statistic ∂`(θ0)/∂θ from individual samples do not in general have mean zero.
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Consequently, the variance matrix for ∂`(θ0)/∂θ is not −ESn(θ). Assuming that

nj/n0 → ρj, j = 1, . . . , m, as n →∞, we can derive an asymptotic normal distribu-

tion for n1/2(θ̂−θ0) by applying the central limit theorem to `(θ0)/∂θ and showing

Sn(θ∗) to be a consistent estimator of ESn(θ), which later will be denoted by S.

This chapter is organized as follows. The first section gives the structure of

the limit S of matrix −1/nSn(θ0). The second section gives the covariance matrix

of the score statistic ∂`(θ0)/∂θ. In the last section, the large sample normality of θ̂

and strong consistency as an estimator of θ are given in Theorem 2.1.

2.1 The Structure of the Limit Matrix S

We start by calculating the second derivatives of the log likelihood function

with respect to αi’s and βi’s respectively. It is easy to show that

∂2`

∂α2
j

= −
n∑

i=1

(
1 +

∑m
k=1
k 6=j

ρkwk(ti)

)
ρjwj(ti)

(1 +
∑m

k=1 ρkwk(ti))2

∂2`

∂αj∂αj′
=

n∑
i=1

ρjwj(ti)ρj′wj′(ti)

(1 +
∑m

k=1 ρkwk(ti))2

∂2`

∂αj∂β′j
= −

n∑
i=1

(
1 +

∑m
k=1
k 6=j

ρkwk(ti)

)
ρjwj(ti)h

′(ti)

(1 +
∑m

k=1 ρkwk(ti))2

∂2`

∂αj∂β′j′
=

n∑
i=1

ρjwj(ti)ρj′wj′(ti)h
′(ti)

(1 +
∑m

k=1 ρkwk(ti))2

∂2`

∂βj∂β′j
= −

n∑
i=1

(
1 +

∑m
k=1
k 6=j

ρkwk(ti)

)
ρjwj(ti)h(ti)h

′(ti)

(1 +
∑m

k=1 ρkwk(ti))2

∂2`

∂βj∂β′j′
=

n∑
i=1

ρjwj(ti)ρj′wj′(ti)h(ti)h
′(ti)

(1 +
∑m

k=1 ρkwk(ti))2
(2.2)
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where j, j′ = 1, . . . , m, and ∂2`
∂αj∂β′j

= ( ∂2`
∂βj∂αj

)′, ∂2l
∂αj∂β′

j′
= ( ∂2`

∂βj∂αj′
)′. All the second

derivatives form the following matrix

Sn =
∂2`(θ0)

∂θ2 =
∂2`(θ)

∂θ2

∣∣∣∣
θ=θ0

=




∂2`
∂α2

1
· · · ∂2`

∂α1∂αm

...
. . .

...

∂2`
∂αm∂α1

· · · ∂2`
∂α2

m

∂2`
∂α1∂β′1

· · · ∂2`
∂α1∂β′m

...
. . .

...

∂2`
∂αm∂β′1

· · · ∂2`
∂αm∂β′m

∂2`
∂β1∂α1

· · · ∂2`
∂β1∂αm

...
. . .

...

∂2`
∂βm∂α1

· · · ∂2`
∂βm∂αm

∂2`
∂β1∂β′1

· · · ∂2`
∂β1∂β′m

...
. . .

...

∂2`
∂βm∂β′1

· · · ∂2`
∂βm∂β′m




θ=θ0

, (2.3)

where Sn is an (p + 1)m× (p + 1)m matrix.

Notice that observation xuv from the uth sample has the density function

wu(x)g(x). By the strong law of large numbers, as n →∞, we have

− 1

n

∂2`

∂α2
j

=
1

n

m∑
u=0

nu∑
v=1

(
1 +

∑m
k=1
k 6=j

ρkwk(xuv)

)
ρjwj(xuv)

(1 +
∑m

k=1 ρkwk(xuv))2

= ρj
n0

n

m∑
u=0

ρu
1

nu

nu∑
v=1

(
1 +

∑m
k=1
k 6=j

ρkwk(xuv)

)
wj(xuv)

(1 +
∑m

k=1 ρkwk(xuv))2

→ ρj
n0

n

m∑
u=0

ρu

∫
(

1 +
∑m

k=1
k 6=j

ρkwk(t)

)
wj(t)

(1 +
∑m

k=1 ρkwk(t))2
wu(t)dG(t)

= ρj
n0

n

∫ (1 +
∑m

k=1
k 6=j

ρkwk(t))wj(t)

(1 +
∑m

k=1 ρkwk(t))2

m∑
u=0

ρuwu(t)dG(t)

=
ρj

1 +
∑m

k=1 ρk

∫ (1 +
∑m

k=1
k 6=j

ρkwk(t))wj(t)

1 +
∑m

k=1 ρkwk(t)
dG(t). (2.4)

Similarly,

− 1

n

∂2`

∂αj∂αj′
→ −ρjρj′

1 +
∑m

k=1 ρk

∫
wj(t)wj′(t)

1 +
∑m

k=1 ρkwk(t)
dG(t)
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− 1

n

∂2`

∂αj∂β′j
→ ρj

1 +
∑m

k=1 ρk

∫ (1 +
∑m

k=1
k 6=j

ρkwk(t))wj(t)h
′(t)

1 +
∑m

k=1 ρkwk(t)
dG(t)

− 1

n

∂2`

∂αj∂β′j′
→ −ρjρj′

1 +
∑m

k=1 ρk

∫
wj(t)wj′(t)h

′(t)
1 +

∑m
k=1 ρkwk(t)

dG(t)

− 1

n

∂2`

∂βj∂β′j′
→ −ρjρj′

1 +
∑m

k=1 ρk

∫
wj(t)wj′(t)h(t)h′(t)
1 +

∑m
k=1 ρkwk(t)

dG(t)

− 1

n

∂2`

∂βj∂β′j
→ ρj

1 +
∑m

k=1 ρk

∫ (1 +
∑m

k=1
k 6=j

ρkwk(t))wj(t)h(t)h′(t)

1 +
∑m

k=1 ρkwk(t)
dG(t).(2.5)

Let S be a matrix consisting of the limits of the components of −(1/n)Sn.

Then we have

− 1

n
Sn

a.s.−→ S,

as n →∞.

2.2 Covariance Matrix of the Score Statistic

To show that Var(∂`(θ0)/∂θ) = E(∂`(θ0)/∂θ)2, we need to check that the

expectation of the score statistic ∂`(θ0)/∂θ equals 0. We can write

E

{
∂`

∂αj

}
= −E

{
n∑

i=1

ρjwj(ti)

1 + ρkwk(ti) + · · ·+ ρmwm(ti)
+ nj

}

= −
m∑

u=0

nu∑
v=1

E

{
ρjwj(tuv)∑m

k=0 ρkwk(tuv)

}
+ nj

= −
m∑

u=0

nu

∫
ρjwj(t)∑m

k=0 ρkwk(t)
wu(t)dG(t) + nj

= −n0ρj

∫
wj(t)∑m

k=0 ρkwk(t)

m∑
u=0

ρuwu(t)dG(t) + nj

= −n0ρj

∫
wj(t)dG(t) + nj. (2.6)

Since the integral in the last term equals 1, it follows that E(∂`/∂αj) = 0 from the

definition of ρj. E(∂`/∂βj) = 0 can be obtained from the same reasoning.
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Observations from the same samples are i.i.d., and those from different samples

are independent. Keeping this in mind, and noticing that the index j is fixed, the

variance of ∂`/∂αj is as follows:

Var

[
1√
n

∂`

∂αj

]
=

1

n

n∑
i=1

Var

[
ρjwj(ti)∑m

k=0 ρkwk(ti)

]

=
1

n

m∑
u=0

nu∑
v=1

Var

[
ρjwj(xuv)∑m

k=0 ρkwk(xuv)

]

=
1

n
ρ2

j

m∑
u=0

nu

[∫
w2

j (t)wu(t)

(
∑m

k=0 ρkwk(t))2
dG(t)−

(∫
wj(t)wu(t)∑m
k=0 ρkwk(t)

dG(t)

)2
]

=
n0

n
ρ2

j

[∫
w2

j (t)
∑m

u=0 ρuwu(t)

(
∑m

k=0 ρkwk(t))2
dG(t)−

m∑
u=0

ρu

(∫
wj(t)wu(t)∑m
k=0 ρkwk(t)

dG(t)

)2
]

=
ρ2

j∑m
k=0 ρk

[∫
w2

j (t)∑m
k=0 ρkwk(t)

dG(t)−
m∑

u=0

ρu

(∫
wj(t)wu(t)∑m
k=0 ρkwk(t)

dG(t)

)2
]

=
ρ2

j∑m
k=0 ρk

[∫
w2

j (t)∑m
k=0 ρkwk(t)

dG(t)−
m∑

u=1

ρu

(∫
wj(t)wu(t)∑m
k=0 ρkwk(t)

dG(t)

)2

−
(

1−
m∑

u=1

ρu

∫
wj(t)wu(t)∑m
k=0 ρkwk(t)

dG(t)

)2

 . (2.7)

The second equality is obtained by grouping observations by samples. The third

equality comes from the i.i.d property of observations in the same sample, and

independence among different samples. The fourth equality is obtained by summing

integrals over sample index u. The last equality comes from the fact that, for

j = 1, . . . , m,

ρ0

∫
wj(t)w0(t)∑m
k=0 ρkwk(t)

dG(t) =

∫
wj(t)∑m

k=0 ρkwk(t)
dG(t)

= 1−
m∑

u=1

ρu

∫
wj(t)wu(t)∑m
k=0 ρkwk(t)

dG(t).

This fact will be used frequently in the future.

17



For j 6= j′, the covariance of the derivatives with respect to αj and αj′ is

Cov

(
1√
n

∂`

∂αj

,
1√
n

∂`

∂αj′

)
=

1

n
Cov

(
n∑

i=1

ρjwj(ti)∑m
k=0 ρkwk(ti)

,

n∑
i=1

ρj′wj′(ti)∑m
k=0 ρkwk(ti)

)

=
ρjρj′

n

n∑
i=1

(
E

wj(t)wj′(t)

(
∑m

k=0 ρkwk(ti))2
− E

wj(ti)∑m
k=0 ρkwk(ti)

E
wj′(ti)∑m

k=0 ρkwk(ti)

)

=
ρjρj′

n

m∑
u=0

nu

(∫
wjwj′wudG

(
∑m

k=0 ρkwk)2
−

∫
wjwudG∑m

k=0 ρkwk

∫
wj′wudG∑m

k=0 ρkwk

)

=
n0ρjρj′

n

(∫
wjwj′

∑m
u=0 ρuwudG

(
∑m

k=0 ρkwk)2
−

m∑
u=0

ρu

∫
wjwudG∑m

k=0 ρkwk

∫
wj′wudG∑m

k=0 ρkwk

)

=
ρjρj′∑m
k=0 ρk

(∫
wjwj′dG∑m

k=0 ρkwk

−
m∑

u=0

ρu

∫
wjwudG∑m

k=0 ρkwk

∫
wj′wudG∑m

k=0 ρkwk

)

=
ρjρj′∑m
k=0 ρk

(∫
wjwj′dG∑m

k=0 ρkwk

−
m∑

u=1

ρu

∫
wjwudG∑m

k=0 ρkwk

∫
wj′wudG∑m

k=0 ρkwk

(2.8)

−
(

1−
m∑

u=1

ρu

∫
wj(t)wu(t)∑m
k=0 ρkwk(t)

dG(t)

)(
1−

m∑
u=1

ρu

∫
wj′(t)wu(t)∑m

k=0 ρkwk(t)
dG(t)

))
.

The covariance of the derivatives with respect to αj and βj is

Cov

(
1√
n

∂`

∂αj

,
1√
n

∂`

∂βj

)

=
1

n
Cov

[
−

n∑
i=1

ρjwj(ti)∑m
k=0 ρkwk(ti)

+ nj, −
n∑

i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

+

nj∑
i=1

h(xji)

]

=
1

n
Cov

[
−

n∑
i=1

ρjwj(ti)∑m
k=0 ρkwk(ti)

, −
n∑

i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

+

nj∑
i=1

h(xji)

]

=
ρ2

j

n

m∑
u=0

nu

(∫
w2

jh(t)wudG

(
∑m

k=0 ρkwk)2
−

∫
wjwudG∑m

k=0 ρkwk

∫
wjh(t)wudG∑m

k=0 ρkwk

)

−ρj

n
nj

(∫
w2

jh(t)dG∑m
k=0 ρkwk

−
∫

w2
j (t)dG∑m
k=0 ρkwk

∫
h(t)wj(t)dG

)

=
ρ2

j∑m
k=0 ρk

(∫
w2

j (t)dG∑m
k=0 ρkwk

∫
wjh(t)dG

−
m∑

u=0

ρu

∫
wjwudG∑m

k=0 ρkwk

∫
wjwuh(t)dG∑m

k=0 ρkwk

)

=
ρ2

j∑m
k=0 ρk

[∫
w2

j (t)dG∑m
k=0 ρkwk

∫
wjh(t)dG

)
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−
m∑

u=1

ρu

∫
wjwudG∑m

k=0 ρkwk

∫
wjwuh(t)dG∑m

k=0 ρkwk

−
(

1−
m∑

u=1

ρu

∫
wj(t)wu(t)∑m
k=0 ρkwk(t)

dG(t)

)

·
(∫

wj(t)h(t)dG(t)−
m∑

u=1

ρu

∫
wj(t)wu(t)h(t)∑m

k=0 ρkwk(t)
dG(t)

)]
. (2.9)

In the preceding calculation, the second equality comes from the fact that E( ∂`
∂βj

) =

0. After summing the first integral on the forth line over u, the first integrals on the

fourth line and the fifth line get canceled. The product in the bracket of the last

equality comes from the fact that

∫
wj(t)h(t)∑m
k=0 ρkwk(t)

dG(t) =

∫
wj(t)h(t)dG(t)−

m∑
u=1

ρu

∫
wj(t)wu(t)h(t)∑m

k=0 ρkwk(t)
dG(t). (2.10)

For j 6= j′, The covariance of the derivatives with respect to αj and βj′ is

Cov

(
1√
n

∂`

∂αj

,
1√
n

∂`

∂βj′

)

=
1

n
Cov

(
−

n∑
i=1

ρjwj(ti)∑m
k=0 ρkwk(ti)

, −
n∑

i=1

ρj′wj′(ti)h(ti)∑m
k=0 ρkwk(ti)

+

nj′∑
i=1

h(xj′i)

)

=
ρjρj′

n

m∑
u=0

nu

(∫
wjwj′h

′(t)wudG

(
∑m

k=0 ρkwk)2
−

∫
wjwudG∑m

k=0 ρkwk

∫
wj′h

′(t)wudG∑m
k=0 ρkwk

)

−ρj

n
nj′

(∫
wjwj′h

′(t)dG∑m
k=0 ρkwk

−
∫

wjwj′dG∑m
k=0 ρkwk

∫
h′(t)wj′dG

)

=
ρjρj′∑m
k=0 ρk

[∫
wjwj′dG∑m

k=0 ρkwk

∫
h′(t)wj′dG

−
m∑

u=0

ρu

∫
wjwudG∑m

k=0 ρkwk

∫
wj′wuh

′(t)dG∑m
k=0 ρkwk

−
(

1−
m∑

u=1

ρu

∫
wjwudG(t)∑m

k=0 ρkwk(t)

)

·
(∫

wj′h dG−
m∑

u=1

ρu

∫
wj′wuhdG(t)∑m

k=0 ρkwk(t)

)]
. (2.11)
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The variance of ∂`
∂βj

is

Var

(
1√
n

∂`

∂βj

)
=

1

n
Var

(
−

n∑
i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

+

nj∑
i=1

h(xji)

)

=
1

n
Var

(
n∑

i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

)
+

1

n
Var

(
nj∑
i=1

h(xji)

)

−2
1

n
Cov

(
n∑

i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

,

nj∑
i=1

h(xji)

)

= I + II− 2III. (2.12)

Next, we compute the three components separately.

I =
1

n

m∑
u=0

nu∑
v=1

Var

(
ρjwj(xuv)h(xuv)∑m

k=0 ρkwk(xuv)

)

=
ρ2

j

n

m∑
u=0

nu

[∫
w2

jh(t)h′(t)wu

(
∑m

k=0 ρkwk(t))2
dG(t)

−
∫

wjwuh(t)∑m
k=0 ρkwk(t)

dG(t)

∫
wjwuh

′(t)∑m
k=0 ρkwk(t)

dG(t)

]

=
n0

n
ρ2

j

[∫
w2

j (t)h(t)h′(t)
∑m

u=0 ρuwu(t)

(
∑m

k=0 ρkwk(t))2
dG(t)

−
m∑

u=0

ρu

∫
wjwuh(t)∑m
k=0 ρkwk(t)

dG(t)

∫
wjwuh

′(t)∑m
k=0 ρkwk(t)

dG(t)

]

=
ρ2

j∑m
k=0 ρk

[∫
w2

j (t)h(t)h′(t)∑m
k=0 ρkwk(t)

dG(t)

−
m∑

u=0

ρu

∫
wjwuh(t)∑m
k=0 ρkwk(t)

dG(t)

∫
wjwuh

′(t)∑m
k=0 ρkwk(t)

dG(t)

]
. (2.13)

II =
1

n
Var

[
nj∑
i=1

h(xji)

]

=
nj

n

[∫
h(t)h′(t)wj(t)dG(t)−

∫
h(t)wj(t)dG(t)

∫
h′(t)wj(t)dG(t)

]
.(2.14)

III =
1

n
Cov

(
n∑

i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

,

nj∑
i=1

h(xji)

)
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=
1

n
Cov

(
nj∑
i=1

ρjwj(xji)h(xji)∑m
k=0 ρkwk(xji)

,

nj∑
i=1

h(xji)

)
(2.15)

=
ρj

n
nj

(∫
w2

j (t)h(t)h′(t)∑m
k=0 ρkwk(t)

dG(t)−
∫

w2
jh(t)dG(t)∑m
k=0 ρkwk(t)

∫
h′(t)wj(t)dG(t)

)
.

All the three components are p× p matrices. Therefore,

Var

(
1√
n

∂`

∂βj

)
=

ρ2
j∑m

k=0 ρk

[
−

∫
w2

j (t)h(t)h′(t)∑m
k=0 ρkwk(t)

dG(t)

−
m∑

u=0

ρu

∫
wjwuh(t)∑m
k=0 ρkwk(t)

dG(t)

∫
wjwuh

′(t)∑m
k=0 ρkwk(t)

dG(t)

+2

∫
w2

j (t)h(t)dG(t)∑m
k=0 ρkwk(t)

∫
h′(t)wj(t)dG(t)

]

+
ρj∑m

k=0 ρk

[∫
h(t)h′(t)wjdG(t)−

∫
h(t)wjdG(t)

∫
h′(t)wjdG(t)

]
. (2.16)

The second term inside the bracket on the right hand side of the equality is equal

to

m∑
u=1

ρu

∫
wjwuh(t)∑m
k=0 ρkwk(t)

dG(t)

∫
wjwuh

′(t)∑m
k=0 ρkwk(t)

dG(t)

+

(∫
wjh(t)dG(t)−

m∑
u=1

ρu

∫
wj(t)wu(t)h(t)∑m

k=0 ρkwk(t)
dG(t)

)

·
(∫

wjh
′(t)dG(t)−

m∑
u=1

ρu

∫
wj(t)wu(t)h

′(t)∑m
k=0 ρkwk(t)

dG(t)

)
.

For j 6= j′, the covariance of derivatives with respect to βj and βj′ is

Cov

(
1√
n

∂`

∂βj

,
1√
n

∂`

∂βj′

)

=
1

n
Cov

[
−

n∑
i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

+

nj∑
i=1

h(xji), −
n∑

i=1

ρj′wj′(ti)h(ti)∑m
k=0 ρkwk(ti)

+

nj′∑
i=1

h(xj′i)

]

=
1

n
Cov

(
n∑

i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

,

n∑
i=1

ρj′wj′(ti)h(ti)∑m
k=0 ρkwk(ti)

)

− 1

n
Cov

(
n∑

i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

,

nj′∑
i=1

h(xj′i)

)
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− 1

n
Cov

(
nj∑
i=1

h(xji),
n∑

i=1

ρj′wj′(ti)h(ti)∑m
k=0 ρkwk(ti)

)

+
1

n
Cov

(
nj∑
i=1

h(xji),

nj′∑
i=1

h(xj′i)

)

= I− II− III + IV. (2.17)

The four components are calculated separately,

I =
ρjρj′∑m
k=0 ρk

(∫
wjwj′h(t)h′(t)∑m

k=0 ρkwk(t)
dG(t)

−
m∑

u=0

ρu

∫
wjwuh(t)∑m
k=0 ρkwk(t)

dG(t)

∫
wj′wuh

′(t)∑m
k=0 ρkwk(t)

dG(t)

)
.

II =
1

n
Cov

( nj′∑
i=1

ρjwj(xj′i)h(xj′i)∑m
k=0 ρkwk(xj′i)

,

nj′∑
i=1

h(xj′i)

)

=
ρj

n
nj′

(∫
wjwj′h(t)h′(t)∑m

k=0 ρkwk(t)
dG(t)−

∫
wjwj′h(t)dG(t)∑m

k=0 ρkwk(t)

∫
h′(t)wj′(t)dG(t)

)
.

Similarly,

III =
ρj′

n
nj

(∫
wjwj′h(t)h′(t)∑m

k=0 ρkwk(t)
dG(t)−

∫
wjwj′h(t)dG(t)∑m

k=0 ρkwk(t)

∫
h′(t)wj(t)dG(t)

)
.

For (IV), since j 6= j′, that means observations come from different samples,

so we have

IV =
1

n
Cov

(
nj∑
i=1

h(xji),

nj′∑
i=1

h(xj′i)

)
= 0.

Therefore,

Cov

(
1√
n

∂`

∂βj

,
1√
n

∂`

∂βj′

)
=

ρjρj′∑m
k=0 ρk

(
−

∫
wjwj′h(t)h′(t)∑m

k=0 ρkwk(t)
dG(t) (2.18)

−
m∑

u=0

ρu

∫
wjwuh(t)∑m
k=0 ρkwk(t)

dG(t)

∫
wj′wuh

′(t)∑m
k=0 ρkwk(t)

dG(t)
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+

∫
wjwj′h(t)dG(t)∑m

k=0 ρkwk(t)

∫
h′(t)wj′dG(t) +

∫
wjwj′h(t)dG(t)∑m

k=0 ρkwk(t)

∫
h′(t)wjdG(t)

)
.

The second term inside the parentheses is equal to

−
m∑

u=1

ρu

∫
wjwuh(t)∑m
k=0 ρkwk(t)

dG(t)

∫
wj′wuh

′(t)∑m
k=0 ρkwk(t)

dG(t)

−
(∫

wjh(t)dG(t)−
m∑

u=1

ρu

∫
wj(t)wu(t)h(t)∑m

k=0 ρkwk(t)
dG(t)

)

·
(∫

wj′h
′(t)dG(t)−

m∑
u=1

ρu

∫
wj′(t)wu(t)h

′(t)∑m
k=0 ρkwk(t)

dG(t)

)
.

For convenience we introduce the following notation,

Ajj′ =

∫
wj(t)wj′(t)∑m

k=0 ρkwk(t)
dG(t)

Bjj′ =

∫
wj(t)wj′(t)h(t)∑m

k=0 ρkwk(t)
dG(t)

Cjj′ =

∫
wj(t)wj′(t)h(t)h′(t)∑m

k=0 ρkwk(t)
dG(t)

Ej = E(h(xji)) =

∫
wj(t)h(t)dG(t) Ēj =

∫
wj(t)h(t)h′(t)dG(t)

Vj = Var(h(xji))

=

∫
wjh(t)h′(t)dG(t)−

∫
h(t)wjdG(t)

∫
h′(t)wjdG(t)

= Ēj − EjE
′
j,

where Bjj′ and Ej are p× 1 vectors, and Cjj′ , Ēj and Vj are all p× p matrices. The

finitenes of Bjj′ , Cjj′ , Ej and Vj follows from the boundedness of wj(t)/(
∑m

k=0 ρkwk(t))

for all j, along with the Assumption following the density ratio model (1.11).

We can now rewrite the components of the variance-covariance matrix as

Var

(
1√
n

∂`

∂αj

)
=

ρ2
j∑m

k=0 ρk

(
Ajj −

m∑
u=1

ρuA
2
ju − (1−

m∑
u=1

ρuAju)
2

)

Cov

(
1√
n

∂`

∂αj

,
1√
n

∂`

∂αj′

)
=

ρjρj′∑m
k=0 ρk

(
Ajj′ −

m∑
u=1

ρuAjuAj′u
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−(1−
m∑

u=1

ρuAju)(1−
m∑

u=1

ρuAj′u)

)

Cov

(
1√
n

∂`

∂αj

,
1√
n

∂`

∂βj′

)
=

ρjρj′∑m
k=0 ρk

(
Ajj′Ej′ −

m∑
u=1

ρuAjuBj′u

−(1−
m∑

u=1

ρuAju)(E
′
j′ −

m∑
u=1

ρuB
′
j′u)

)

Var

(
1√
n

∂`

∂βj

)
=

ρ2
j∑m

k=0 ρk

(
−Cjj −

m∑
u=0

ρuBjuB
′
ju + 2BjjE

′
j

−(Ej −
m∑

u=1

ρuBju)(E
′
j −

m∑
u=1

ρuB
′
ju)

)
+

ρj∑m
k=0 ρk

Vj

Cov

(
1√
n

∂`

∂βj

,
1√
n

∂`

∂βj′

)
=

ρjρj′∑m
k=0 ρk

(
−Cjj′ −

m∑
u=0

ρuBjuB
′
j′u + Bjj′(E

′
j + E ′

j′)

−(Ej −
m∑

u=1

ρuBju)(E
′
j′ −

m∑
u=1

ρuB
′
j′u)

)
. (2.19)

2.3 Consistency and Asymptotic Normality of θ̂

In this section, first we represent the limit matrix S and the variance-covariance

matrix in terms of matrices. The large sample properties are summarized in Theo-

rem 2.1.

We define matrices,

A = (Aij)m×m, B = (Bij)mp×m, C = (Cij)mp×mp, ρ = diag(ρ1, . . . , ρm)m×m

E =




E1 · · · 0̃

...
. . .

...

0̃ · · · Em




mp×m

Ē =




Ē1 · · · 0̂

...
. . .

...

0̂ · · · Ēm




mp×mp
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1m =




1 · · · 1

...
. . .

...

1 · · · 1




m×m

V =




V1 · · · 0̂

...
. . .

...

0̂ · · · Vm




mp×mp

(2.20)

where 0̃ is a p× 1 vector of 0’s, and 0̂ is a p× p matrix of 0’s.

By introducing the previous notation and (2.19), the variance-covariance ma-

trix has the following structure,

Λ = Var

(
1√
n

∂`

∂θ

)
=

1∑m
k=0 ρk




Λ11 Λ12

Λ21 Λ22


 , (2.21)

where

Λ11 = ρAρ− ρAρAρ− ρ1mρ + ρAρ1mρ + ρ1mρAρ− ρAρ1mρAρ

Λ12 = ρAE ′(ρ⊗ Ip)− ρAρB′(ρ⊗ Ip)− ρ1mE ′(ρ⊗ Ip) + ρAρ1mE ′(ρ⊗ Ip)

+ρ1mρB′(ρ⊗ Ip)− ρAρ1mB′(ρ⊗ Ip)

Λ21 = Λ′12 = (ρ⊗ Ip)EAρ− (ρ⊗ Ip)BρAρ− (ρ⊗ Ip)E1mρ

+(ρ⊗ Ip)E1mρAρ + (ρ⊗ Ip)Bρ1mρ− (ρ⊗ Ip)B1mρAρ

Λ22 = −(ρ⊗ Ip)C(ρ⊗ Ip)− (ρ⊗ Ip)BρB′(ρ⊗ Ip)

+(ρ⊗ Ip)BE ′(ρ⊗ Ip) + (ρ⊗ Ip)EB′(ρ⊗ Ip) + (ρ⊗ Ip)V

−(ρ⊗ Ip)E1mE ′(ρ⊗ Ip) + (ρ⊗ Ip)Bρ1mE ′(ρ⊗ Ip)

+(ρ⊗ Ip)E1mρB′(ρ⊗ Ip)− (ρ⊗ Ip)Bρ1mρB′(ρ⊗ Ip), (2.22)

where Ip is the p× p identity matrix, and ⊗ denotes the kronecker product.

We rewrite some equations in (2.5) as

− 1

n

∂2`

∂α2
j

→ ρj∑m
k=0 ρk

− ρ2
j∑m

k=0 ρk

∫
w2

j (t)∑m
k=0 ρkwk(t)

dG(t).
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− 1

n

∂2`

∂αj∂β′j
→ ρj∑m

k=0 ρk

∫
wj(t)h

′(t)dG(t)− ρ2
j∑m

k=0 ρk

∫
w2

j (t)h
′(t)∑m

k=0 ρkwk(t)
dG(t)

− 1

n

∂2`

∂βj∂β′j
→ ρj∑m

k=0 ρk

∫
wjh(t)h′(t)dG(t)− ρ2

j∑m
k=0 ρk

∫
w2

jh(t)h′(t)∑m
k=0 ρkwk

dG(t).

(2.23)

Using the previous notation, the limit matrix S from displays (2.5) and (2.23)

can be written as

S =
1∑m

k=0 ρk




S11 S12

S21 S22


 , (2.24)

where

S11 = ρ− ρAρ

S12 = ρE ′ − ρB′(ρ⊗ Ip)

S21 = S ′12 = Eρ− (ρ⊗ Ip)Bρ

S22 = (ρ⊗ Ip)Ē − (ρ⊗ Ip)C(ρ⊗ Ip). (2.25)

The limit matrix S and covariance matrix Λ are connected by the following

lemma.

Lemma 2.1 The following relationship between S and Λ holds:

Λ11 = S11 − S11(1m + ρ−1)S11, Λ12 = S12 − S11(1m + ρ−1)S12

Λ21 = S21 − S21(1m + ρ−1)S11, Λ22 = S22 − S21(1m + ρ−1)S12. (2.26)

Therefore, we have

Σ
def
= S−1ΛS−1 = S−1 −

m∑

k=0

ρk




1m + ρ−1 0m×mp

0mp×m 0mp×mp


 . (2.27)
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Proof. Noticing that Eρ = (ρ⊗ Ip)E, the following calculations follow from

(2.22) and (2.25):

S22 − S21ρ
−1S12 = (ρ⊗ Ip)Ē − (ρ⊗ Ip)C(ρ⊗ Ip)

−
(

Eρ− (ρ⊗ Ip)Bρ)

)
ρ−1

(
(ρE ′ − ρB′(ρ⊗ Ip)

)

= (ρ⊗ Ip)Ē − (ρ⊗ Ip)C(ρ⊗ Ip)− Eρρ−1ρE ′ + Eρρ−1ρB′(ρ⊗ Ip)

+(ρ⊗ Ip)Bρρ−1ρE ′ − (ρ⊗ Ip)Bρρ−1ρB′(ρ⊗ Ip)

= (ρ⊗ Ip)Ē − (ρ⊗ Ip)C(ρ⊗ Ip)− EρE ′ + EρB′(ρ⊗ Ip)

+(ρ⊗ Ip)BρE ′ − (ρ⊗ Ip)BρB′(ρ⊗ Ip)

= −(ρ⊗ Ip)C(ρ⊗ Ip)− (ρ⊗ Ip)BρB′(ρ⊗ Ip)

+(ρ⊗ Ip)Ē − (ρ⊗ Ip)EE ′ + (ρ⊗ Ip)BE ′(ρ⊗ Ip) + (ρ⊗ Ip)EB′(ρ⊗ Ip)

= −(ρ⊗ Ip)C(ρ⊗ Ip)− (ρ⊗ Ip)BρB′(ρ⊗ Ip)

+(ρ⊗ Ip)V + (ρ⊗ Ip)BE ′(ρ⊗ Ip) + (ρ⊗ Ip)EB′(ρ⊗ Ip)

and

S211mS12 =

(
Eρ− (ρ⊗ Ip)Bρ

)
1m

(
ρE ′ − ρB′(ρ⊗ Ip)

)

= Eρ1mρE ′ − Eρ1mρB′(ρ⊗ Ip)− (ρ⊗ Ip)Bρ1mρE ′

+(ρ⊗ Ip)Bρ1mρB′(ρ⊗ Ip)

= −(ρ⊗ Ip)E1mE ′(ρ⊗ Ip) + (ρ⊗ Ip)Bρ1mE ′(ρ⊗ Ip)

+(ρ⊗ Ip)E1mρB′(ρ⊗ Ip)− (ρ⊗ Ip)Bρ1mρB′(ρ⊗ Ip).

This completes the derivation of Λ22 = S22 − S21(1m + ρ−1)S12. The rest is similar.
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Now we can write Λ in terms of S,

Λ = S − 1∑m
k=0 ρk




S11

S21


 (1m + ρ−1)

(
S11 S12

)
.

Therefore,

S−1ΛS−1

= S−1 −
m∑

k=0

ρk




S11 S12

S21 S22




−1 


S11

S21


 (1m + ρ−1)

(
S11 S12

)



S11 S12

S21 S22




−1

= S−1 −
m∑

k=0

ρk




1 0

0 0


 (1m + ρ−1)




1 0

0 0




= S−1 −
m∑

k=0

ρk




1m + ρ−1 0

0 0


 .

This completes the proof of (2.27). 2

The following theorem provides the strong consistency and asymptotic theory

of the estimator for θ0.

Theorem 2.1 Suppose that the model (1.11) and Assumption 1.12 hold and that

S is positive definite.

(a) The solution θ̂ to the score equation system (1.24) is a strongly consistent

estimator for θ0.

(b) As n →∞,

√
n




α̂−α0

β̂ − β0




d→ N(p+1)m(0, Σ), (2.28)

where Σ = S−1ΛS−1.
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Before proving the consistency and asymptotic normality of the estimator θ̂,

we first need to formulate some preliminary tools. The profile log likelihood given

by (1.23) can be decomposed into two parts plus a constant,

`(θ) = −n log n0 −
n∑

i=1

log[1 + ρ1w1(ti) + · · ·+ ρmwm(ti)]

+

n1∑
j=1

(α1 + β′1h(x1j)) + · · ·+
nm∑
j=1

(αm + β′mh(xmj))

≡ −n log n0 − `1 + `2,

where

`1 =
n∑

i=1

log[1 + ρ1w1(ti) + · · ·+ ρmwm(ti)],

`2 =

n1∑
j=1

(α1 + β′1h(x1j)) + · · ·+
nm∑
j=1

(αm + β′mh(xmj)).

Then we compare the first derivatives of ` and `1.

∂`1

∂αj

=
n∑

i=1

ρjwj(ti)∑m
k=0 ρkwk(ti)

,
∂`1

∂βj

=
n∑

i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

.

Recall the first derivative of ` (also referred as the score statistic) given in

(1.24). Then we have

∂`

∂αj

= − ∂`1

∂αj

+ nj,
∂`

∂βj

= − ∂`1

∂βj

+

nj∑
i=1

h(xji). (2.29)

This shows that the sum of the derivatives of ` and −`1 are totally independent of

the parameter (α, β). Also, ∂2`/∂θ2 = −∂`2
1/∂θ2, and ∂`2

1/∂θ2 is positive-definite

provided that the model (1.11) is not degenerate.

As we showed before, the expectation of the score statistic E∂`/∂θ = 0. From

(2.29) we have

E(
∂`1

∂αj

) = nj,
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E(
∂`1

∂βj

) = E

nj∑
i=1

h(xji) = njE
jh(t),

where Ej is the expectation with respect to the jth sample under the true parameter

θ = θ0; that is, Ejf =
∫

f(t)wj(t)dG(t).

The strong law of large numbers applied to each of the m + 1 samples, along

with the convergence ni/n → n0ρi, implies the almost sure convergence

1

n

∂`1

∂αj

=
1

n

n∑
i=1

ρjwk(ti)∑m
k=0 ρkwk(ti)

=
n0

n

m∑
u=0

nu

n0

1

nu

nu∑
v=1

ρjwj(xuv)∑m
k=0 ρkwk(xuv)

→ 1∑m
k=0 ρk

m∑
u=1

ρuE
u ρjwj(t)∑m

k=0 ρkwk(t)

= E

[
1

n

∂`1

∂αj

]
=

ρj∑m
k=0 ρk

,

1

n

∂`1

∂βj

=
1

n

n∑
i=1

ρjwk(ti)h(ti)∑m
k=0 ρkwk(ti)

→ 1∑m
k=0 ρk

m∑
u=1

ρuE
u ρjwj(t)h(t)∑m

k=0 ρkwk(t)

= E

[
1

n

∂`1

∂βj

]
=

ρjE
jh(t)∑m

k=0 ρk

.

Therefore,

1

n

∂`1(θ0)

∂θ

a.s.−→ 1∑m
k=0 ρk

(ρ1, . . . , ρm, ρ1E
1h′(t), . . . , ρmEmh′(t))′. (2.30)

Notice that

`2 =

n1∑
j=1

(α1 + β′1h(x1j)) + · · ·+
nm∑
j=1

(αm + β′mh(xmj))

=
m∑

i=1

niαi +

n1∑
j=1

β′1h(x1j) + · · ·+
nm∑
j=1

β′mh(xmj),
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and, therefore,

∂`2(α, β)

∂(α, β)
= (n1, . . . , nm,

n1∑
j=1

h′(x1j), . . . ,
nm∑
j=1

h′(xmj))
′, (2.31)

which is a vector independent of (α, β). Also, `2 is a linear combination of the

parameter vectors (α, β). Therefore,

`2 = (α′, β′)
∂`2(α, β)

∂(α, β)
. (2.32)

The strong law of large numbers and the convergence ni/n → n0ρi imply the almost

sure convergence

1

n

∂`2(α0, β0)

∂(α, β)
→ 1∑m

k=0 ρk

(ρ1, . . . , ρm, ρ1E
1h′(t), . . . , ρmEmh′(t))′ (2.33)

for the true parameter (α, β) = (α0, β0).

Therefore, from (2.30) and (2.33),

1

n

∣∣∣∣
∂`2(α0, β0)

∂(α, β)
− ∂`1(α0, β0)

∂(α, β)

∣∣∣∣
a.s.−→ 0. (2.34)

Next we prove the strong consistency of θ̂ as an estimator of θ0. Since `(θ) is

continuous and differentiable, it takes a maximum on the closed sphere |θ̃−θ0| ≤ ε

around θ0 for any ε > 0. If we can show that this maximum does not occur on the

boundary with probability arbitrarily close to one, then we have a local maximum

θ̂ = θ̂n, within the sphere, for which ∂`(θ̂n)/∂(θ) = 0. Let ε → 0 as n goes to

infinity. Then we have a consistent sequence θ̂n, which converges to θ0.

First apply Taylor expansion to n−1`1(θ̃) at θ0:

1

n
`1(θ̃) =

1

n
`1(θ0) +

(
θ̃ − θ0

)′ 1

n

∂`1(θ0)

∂θ
+

(
θ̃ − θ0

)′ 1

n

∂2`1(θ
∗)

∂θ2

(
θ̃ − θ0

)
,
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where θ∗ lies between θ0 and θ̃. Noticing that ∂2`1(θ
∗)/∂θ2 is positive definite, it

follows that

(
θ′0

1

n

∂`1(θ0)

∂θ
− 1

n
`1(θ0)

)
−

(
θ̃
′ 1
n

∂`1(θ0)

∂θ
− 1

n
`1(θ̃)

)
> 0. (2.35)

Expression (2.34) shows that for sufficiently large n, n−1∂`2(θ0)/∂θ is close

to n−1∂`1(θ0)/∂θ almost surely. Thus, we can replace n−1∂`1(θ0)/∂θ in (2.35) by

n−1∂`2(θ0)/∂θ. Equation (2.31) indicates that ∂`2/∂θ is independent of θ. There-

fore, we have, for sufficiently large n,

0 <

(
θ′0

1

n

∂`2(θ0)

∂θ
− 1

n
`1(θ0)

)
−

(
θ̃
′ 1
n

∂`2(θ0)

∂θ
− 1

n
`1(θ̃)

)

=

(
1

n
θ′0

∂`2(θ0)

∂θ
− 1

n
`1(θ0)

)
−

(
1

n
θ̃
′∂`2(θ̃)

∂θ
− 1

n
`1(θ̃)

)

=

(
1

n
`2(θ0)− 1

n
`1(θ0)

)
−

(
1

n
`2(θ̃)− 1

n
`1(θ̃)

)

=
1

n
`(θ0)− 1

n
`(θ̃)

with probability one. The equality on the third line is obtained from (2.32), which

shows that `2 is a linear functional of ∂`2(θ)/∂θ. Therefore, the local maximum of

` does not occur on the boundary with probability arbitrarily close to one. This

completes the proof of consistency.

For part (b), since θ̂ is strongly consistent as an estimator of θ0, we expand

∂`(θ̂)/∂θ at θ0,

0 =
∂`(θ̂)

∂θ
=

∂`(θ0)

∂θ
+

∂2`(θ0)

∂θ2

(
θ̂ − θ0

)
+ op(δn),

where δn = |θ̂−θ0| → 0, as n →∞. Since for sufficiently large n, − 1
n
Sn = S +op(1)

by the law of large numbers, and n−1/2∂`(θ0)/∂θ = Op(1) by the central limit
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theorem, it follows that

(
θ̂ − θ0

)
= −S−1

n

∂`(θ0)

∂θ
+−S−1

n op(δn)

= (
1

n
S−1 + op(1/n))

∂`(θ0)

∂θ
+ (

1

n
S−1 + op(1/n))op(δn)

=
1

n
S−1∂`(θ0)

∂θ
+ op(1/

√
n)),

From (2.21), we have

Λ = Var

(
1√
n

∂`(θ0)

∂θ

)
.

By the central limit theorem and the fact that E (∂`(θ0)/∂θ) = 0,

1√
n

∂`(θ0)

∂θ

d−→ N(m+1)p(0, Λ). (2.36)

The fact that −(1/n)Sn → S, along with Slutsky’s theorem and Lemma 2.1, gives

√
n

(
θ̂ − θ0

)
= S−1 1√

n

∂`(θ0)

∂θ
+ op(1)

d→ N(p+1)m(0, S−1ΛS−1)

= N(p+1)m(0, Σ).

This completes the proof of Theorem 2.1. 2

The result of this theorem indicates that the asymptotic distribution
√

n(β̂−

β0) has mean zero and variance matrix S−1
22 . This gives a very convenient procedure

for investigating β̂, and for testing hypothesis about β0.
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Chapter 3

Asymptotic Theory for Ĝ

The multi-sample semiparametric density ratio model given in (1.11) is con-

structed by multiplicative exponential distortions of the reference distribution. Dis-

tortion functions are assumed to be nonnegative and of a known finite-dimensional

parametric form, and the reference distribution G is left unknown. In the preceding

chapter, we have obtained a strongly consistent constrained maximum likelihood

estimator for (α0, β0), and established the corresponding asymptotic normality the-

ory. In this chapter, we will investigate the large sample behavior of Ĝ given by

(1.26) as an estimator for G.

This chapter provides the proof of the weak convergence of the stochastic pro-

cess
√

n(Ĝ(t) − G(t)) to a Gaussian process. First express
√

n(Ĝ(t) − G(t)) as a

sum of two components
√

n(Ĝ(t)− G̃(t)) +
√

n(G̃(t)−G(t)), where G̃(t) is the em-

pirical distribution of the reference sample X0 only. The asymptotic properties of

√
n(G̃(t) − G(t)) are well-known from empirical process considerations. Therefore,

the goal is to prove the weak convergence of
√

n(Ĝ(t) − G̃(t)). By the strong con-

sistency of θ̂ from Theorem 2.1, a Taylor expansion of Ĝ(t) at the true parameter
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θ0 approximates Ĝ(t) uniformly in t. The approximation H1(t)−H2(t) is given in

Lemma 3.4. Hence the asymptotic properties of
√

n(Ĝ(t)− G̃(t)) are equivalent to

those of
√

n(H1(t)−H2(t)− G̃(t)), which involves only the true parameter θ0.

The first step is to prove the joint weak convergence of the finite-dimensional

distributions of
√

n(H1(t) − H2(t) − G̃(t)). This can be easily achieved by the

multivariate central limit theorem after obtaining the variance-covariance structure.

The finite-dimensional convergence is provided in Lemma 3.5, and the variance-

covariance structure is given by (3.22).

The second step is to prove the tightness of
√

n(H1(t) − H2(t) − G̃(t)). Cal-

culations show that both
√

n(H1(t) − G̃(t)) and
√

nH2(t) can be decomposed into

sums of empirical processes. Each empirical process is evaluated at a function f(·)

in a Donsker class; that is, Pnf = n−1
∑n

i=1 f(Ti), where Pn = n−1
∑n

i=1 δTi
is an

empirical measure defined on i.i.d. observations T1, . . . , Tn. Therefore, the weak con-

vergence of each empirical process follows from the classical Donsker theory. The

tightness of
√

n(H1(t)−H2(t)− G̃(t)) also follows from Lemma 3.6 and Lemma 3.7,

and the weak convergence of
√

n(Ĝ(t)−G(t)) is stated in Theorem 3.9.

This chapter is organized as follows. The first section introduces some basic

concepts in weak convergence. The second section reviews the classical results from

empirical processes. Both of these two sections provide important results which will

be applied in the proof of weak convergence of
√

n(Ĝ(t) − G(t)). The last section

gives the complete proof.
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3.1 Weak Convergence of Stochastic Processes

In this section, we introduce the basic concepts behind weak convergence that

will be applied later to prove asymptotic results. Before we proceed to weak con-

vergence, we need some topological concepts to specify the structure of metric or

topological spaces.

Compactness: A subset of a topological space is compact if each of its open

covers has a finite subcover. A subset of Euclidean space Rp is called compact if it

is closed and bounded. In Euclidean space Rp, every sequence in a compact set has

a convergent subsequence, the limit point of which belongs to the set. A relatively

compact set is a subset whose closure is compact. In metric spaces, every sequence

in a relatively compact subset has a convergent subsequence but the limit may not

be in the set.

Separability: A topological space is called separable if it contains a countable

dense subset; that is, a set with a countable number of elements whose closure is

the entire space. Obviously, the real line R is separable since the rational numbers

form a countable dense subset. More generally, Euclidean space Rp is separable,

as the set of all points with rational coordinates is dense. Another example is the

space C[0, 1] of continuous functions on the unit interval [0, 1] with the supremum

metric, which has a dense subset of polynomials with rational coefficients (this is

the Weierstrass approximation theorem).

Completeness: A metric space (S, d) is said to be complete (or Cauchy) if
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every Cauchy sequence of points in S has a limit that is also in S. It is easy to see

that every compact metric space is complete. In fact, a metric space is compact if

and only if it is complete and totally bounded.

Let (S, d) be a metric space with the metric d, equipped with topology S,

where S is the Borel σ-field on S, the smallest σ-field containing the open sets, and

let Pn and P be Borel probability measures on (S,S). We say the sequence Pn

converges weakly to P , if and only if

∫

S
fdPn →

∫

S

fdP, for all f ∈ Cb(S),

where Cb(S) denotes the set of all bounded, continuous, real functions on S. Weak

convergence is denoted by

Pn
d→ P.

Equivalently, if Xn and X are S-valued random variables with distributions Pn and

P respectively, then Xn weakly converges to X if and only if

Ef(Xn) → Ef(X), for all f ∈ Cb(S). (3.1)

A thorough investigation of the classical theory of weak convergence based on these

definitions can be found in Billingsley (1999).

The classical theory requires that Pn be defined on the Borel σ-field S for

each n, or equivalently, that Xn is a Borel measure map for each n. Provided that

(Ωn,An, Pn) and (Ω,A, P ) are the underlying probability spaces respectively, this

means that X−1
n (D) ∈ An for every Borel set D ∈ S. This required measurability
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usually holds when S is a separable metric space such as Rp or C[0, 1] with supremum

metric. However, this requirement can easily fail when the metric space S is not

separable. For example, this happens when S is the Skorohod space D[0, 1] of all

the right continuous functions on [0, 1] with left limits, equipped with the metric

induced by the supremum norm ‖P (f)‖D[0,1] = supf∈D[0,1] ‖P (f)‖.

This difficulty arises in empirical processes. Suppose that i.i.d. random vari-

ables X1, . . . , Xn are defined as the coordinate projections on the product probability

space ([0, 1],A, λ)n, where λ denotes the Lebesgue measure on [0, 1] and A the Borel

σ-field. The empirical distribution function Fn is the random function

Fn(t) =
1

n

n∑
i=1

I[0,t](Xi), 0 ≤ t ≤ 1,

and the uniform emiprical process is

Gn =
√

n(Fn(t)− t), 0 ≤ t ≤ 1.

Both Fn and Gn are maps from [0, 1]n into D[0, 1], but neither of them is a Borel

measurable map if D[0, 1] is endowed with the supremum norm.

To deal with this problem, Skorohod (1956) and Billingsley (1999) endowed

D[0, 1] with the Skorohod metric under which D[0, 1] is separable and the classical

theory could be applied without difficulty. Another idea is to drop the requirement

of Borel measurability of Xn and meanwhile requiring (3.1), where the expectations

are to be interpreted as outer expectations (Van der Vaart and Wellner (1996) Sec-

tion 1.2). This idea is used to formulate Donsker’s theorem in Van der Vaart and

Wellner (1996). However, in this section, we still follow the procedure in Billingsley

(1999) and Ethier and Kurtz (1985) by endowing D[0, 1] with the Skorohod metric
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to formulate the criteria for weak convergence.

Let P(S) denote the family of Borel probability measures on S. We topologize

P(S) with the Prohorov metric

dp(P,Q) = inf{ε > 0 : P (F ) ≤ Q(F ε) + ε; for all F ∈ C},

where C is a collection of closed subsets of S and

F ε = {x ∈ S : inf
y∈F

d(x, y) < ε}.

In Ethier and Kurtz(1985) Section 3.1 it is proved that dp is a metric. Provided

that S is separable, dp(Pn, P ) → 0 is equivalent to Pn
d→ P .

Theorem 3.1 (Ethier and Kurtz(1985), Theorem 1.7) If S is separable, then P(S)

is separable. If in addition (S, d) is complete, then (P(S), dp) is complete.

A probability measure P is said to be tight if for each ε > 0 there exists a

compact set K ⊂ S such that P (K) ≥ 1 − ε. A family of probability measures

M ⊂ P(S) is tight if for each ε > 0 there exists a compact set K ⊂ S such that

infP∈M P (K) ≥ 1− ε.

Lemma 3.1 (Ethier and Kurtz(1985), Lemma 2.1) If (S, d) is complete and sepa-

rable, then each P ∈ P(S) is tight.

The following theorem gives the connection between relative compactness and

tightness, which is usually called Prohorov’s theorem.

Theorem 3.2 (Ethier and Kurtz(1985) Theorem 2.2) Let (S, d) be complete and

separable, and let M⊂ P(S). Then the following are equivalent:
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(a) M is tight.

(b) M is relatively compact.

From Theorem 3.2, we have the following corollary.

Corollary 3.1 Let (S, d) be complete and separable, and suppose that {Pn} and P

belong to P(S). If Pn
d→ P , then {Pn} is tight.

Proof. Since dp(Pn, P ) → 0 is equivalent to Pn
d→ P . Then Pn

d→ P implies

dp(Pn, P ) → 0. Therefore, {Pn} is relatively compact. By Theorem 3.2, it follows

that {Pn} is tight. 2

Now we consider the space D[0,∞) of real functions f on [0,∞) that are right

continuous and have left limits: for t > 0,

f(t+) = lim
s↓t

f(s) exists and f(t+) = f(t),

f(t−) = lim
s↑t

f(s) exists.

Functions having these two properties are called cadlag functions. Most stochastic

processes arising in applications have the property that almost every sample path is

a cadlag function. For example, classical empirical processes and Poisson processes

have sample paths which are cadlag functions.

Theorem 3.3 (Ethier and Kurtz(1985), Theorem5.6) The space D[0,∞) endowed

with the Skorohod metric ds is complete and separable.

Skorohod metric is introduced both in Section 3.5 of Ethier and Kurtz(1985)

and Section 12 of Billingsley(1999). Replacing (S, d) by (D[0,∞), ds), Theorems 3.1

and 3.2 still hold.
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The next theorem provides an important criterion for judging weak conver-

gence. It is equivalent to the Theorem 7.8 in Ethier and Kurtz (1985) and Theorem

13.1 in Billingsley (1999).

Theorem 3.4 Let Y1, . . . , Yn and Y be stochastic processes with sample paths in

D[0,∞). If {Yn} is tight and there exists a dense set D ⊂ [0,∞) such that

(Yn(t1), . . . , Yn(tk))
d→ (Y (t1), . . . , Y (tk)) (3.2)

for every finite set {t1, . . . , tk} ⊂ D, then Yn converges weakly to Y .

The finite dimensional convergence (3.2) gives the structure of the limit pro-

cess, and the tightness guarantee the existence of a convergent subsequence. Given

the sequence of processes {Yn}, usually the finite dimensional convergence can be

checked directly. To prove tightness, a criterion listed in Chapter 3 of Billingsley

(1999) may be applied. But we mainly use the the result from Corollary 3.1.

3.2 A Brief Review of Empirical Process Theory

Before we proceed to describe the asymptotic properties of Ĝ, we first introduce

the classical asymptotic results for empirical processes. Let T1, . . . , Tn be a real-

valued random sample from a distribution function F . The empirical distribution

function is defined as

Fn(t) =
1

n

n∑
i=1

I[Ti<t]. (3.3)

This is a natural estimator for the underlying distribution F . Because nFn(t) is

binomially distributed with mean nF (t), this estimator is unbiased. Furthermore,
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it is also consistent by the law of large numbers:

Fn(t)
a.s.→ F (t), for every t.

By the central limit theorem, it is asymptotically normally distributed with mean 0

and variance F (t)(1− F (t)):

√
n(Fn(t)− F (t))

d→ N(0, F (t)(1− F (t))).

These results are obtained by considering Fn(t) as an estimator for each t

separately. On the other hand, the empirical distribution of a random sample is

the uniform discrete measure on the observations. To study the convergence of

√
n(Fn(t) − F (t)), we have to consider Fn(t) as a random function Fn(t, ω), and

Fn(·, ω) is a sample path. This leads to the law of large numbers and central limit

theorems that are uniform in classes of functions.

We define the following uniform distance

|Fn − F |∞ = sup
t
|Fn(t)− F (t)|,

which is known as the Kolmogorov-Smirnov statistic. The following Glivenko-

Cantelli theorem extends the law of large numbers to random functions and gives

uniform convergence.

Theorem 3.5 (Glivenko − Cantelli) If T1, . . . , Tn are i.i.d. random variables

with distribution F , then ‖ Fn − F ‖∞ a.s.−→ 0.

This means that the sample paths of Fn(t) get uniformly closer to F as n

increases; hence Fn, which we observe, approximates F better and better as we

collect more observations.
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By the multivariate central limit theorem, we have the weak convergence of

the joint finite dimensional distributions:

√
n(Fn(Ti1)− F (Ti1), . . . , Fn(Tim)− F (Tim))

d→ (GF (Ti1), . . . ,GF (Tim)),

where (i1, . . . , im) ⊂ (1, . . . , n), and the vector on the right hand side has a multi-

variate normal distribution with mean 0 and covariances

EGF (Tiu)GF (Tiv) = F (Tiu ∧ Tiv)− F (Tiu)F (Tiv). (3.4)

This suggest that the sequence of empirical processes
√

n(Fn − F ) converges in

distribution to a Gaussian process GF with mean 0 and covariances (3.4). According

to an extension of Donsker’s theorem, this is true in the sense of weak convergence of

these processes in the Skorohod space D[−∞,∞) equipped with the uniform norm.

Theorem 3.6 (Donsker) If T1, . . . , Tn are i.i.d. random variables with distribu-

tion F , then the sequence of empirical processes converges weakly

√
n(Fn − F )

d−→ GF

in the Skorohod space D[−∞,∞]. The Gaussian process GF has mean 0 and covari-

ances (3.4).

The limit process GF is known as the F -Brownian bridge process, and it is a

standard Brownian bridge if F is the uniform distribution on [0, 1]. Obviously, the

F -Brownian bridge can be obtained as G0 ◦ F from a standard Brownian bridge G0.

The name ”bridge” results from the fact that the sample paths of the process are

pinned at zero at the endpoints −∞ and ∞. Therefore, the Brownian bridge is not
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a process with independent increments, which is true for Brownian motion.

Modern empirical process theory views the empirical measure as a stochastic

process indexed by a large class of functions F . To avoid problems of measurability,

the following convergence in distribution is defined using outer expectation as in

Van der Vaart and Wellner (1996). Suppose independent and identically distributed

random variables T1, . . . , Tn are from a probability distribution P on a measurable

space (X ,A). We define the empirical measure of a sample of random elements

T1, . . . , Tn as

Pn = n−1

n∑
i=1

δTi
,

where δx is the Dirac measure at x. Given a measurable function f : X 7→ R,

let Pnf be the expectation of f under the empirical measure Pn, and Pf be the

expectation of f under P . Thus

Pnf =
1

n

n∑
i=1

f(Ti), Pf =

∫
fdP. (3.5)

Based on this definition, the resulting stochastic process, as f ∈ F varies, is just

{Pnf : f ∈ F}. Actually, (3.3) is a realization of (3.5) when f is the indicator

function I(−∞,t].

Let F be a class of measurable functions f : X 7→ R. Under the supremum

norm ‖P‖F = supf∈F ‖Pf‖, if

‖Pn − P‖F → 0,

where the convergence is in outer probability almost surely, then we call F a
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Glivenko-Cantelli class, or also a P-Glivenko-Cantelli class, to point out the

dependence on the underlying measure P .

Assume

sup
f∈F

‖f(x)− Pf‖ < ∞, for every x.

Under this condition, the empirical process {Pnf : f ∈ F} can be viewed as a map

into `∞(F), where `∞(F) is a set of uniformly bounded real functions on F . Under

this setup, we wish to investigate the convergence

Gn =
√

n(Pn − P )
d→ G, in `∞(F), (3.6)

where G is a tight Borel measurable element in `∞(F). A class F is called P-

Donsker if (3.6) holds. It is known that the collection of all indicator functions of

lower rectangles {I(−∞,t] : t ∈ R̄p} is Donsker for any underlying law of i.i.d. random

variables T1, . . . , Tn in R̄p, where R̄ is the extended real line [−∞,∞].

The structure of the limit process G follows from the convergence of the finite

dimensional distributions. The multivariate central limit theorem gives that for any

finite set f1, . . . , fk,

(Gnf1, . . . , Gnfk)
d→ Nk(0, Σ),

where the (i, j)th element of the covariance matrix Σ is P (fi − Pfi)(fj − Pfj). It

follows that the limit process Gf : f ∈ F must be a zero-mean Gaussian process

with covariance function

EGf1Gf2 = Pf1f2 − Pf1Pf2.

It is also called the P -Brownian bridge. The result in Theorem 3.6 is a special case
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when F is a collection of the indicator functions I(−∞,t].

Whether a given class F is a Glivenko-Cantelli or Donsker class depends on

the size of the class. A relatively simple way to measure the size of a class is to use

entropy numbers. Consider F as a subset of a metric space (such as (Lr(P ), ‖ · ‖P,r),

the space with Lr-norm). The covering number N(ε,F , ‖ ·‖) is the minimal number

of balls {g : ‖g − f‖ < ε} of radius ε needed to cover the set F . The entropy

(without bracketing) is the logarithm of the covering number. Given two functions

l and u, the bracket [l, u] is the set of all functions f with l ≤ f ≤ u. An ε-bracket

is a bracket [l, u] with ‖u − l‖ < ε. The bracketing number N[](ε,F , ‖ · ‖) is the

minimum number of ε-brackets needed to cover F . The entropy with bracketing is

the logarithm of the bracketing number.

Under the Lr(P )-norm

‖f‖P,r = (

∫
|f |rdP )1/r,

the covering and bracketing numbers are related by

N(ε,F , Lr(P )) ≤ N[](2ε,F , Lr(P )).

An envelope function of a class F is any function x 7→ F (x) such that |f(x)| ≤

F (x), for every x and f . The uniform entropy numbers (relative to Lr) are defined

as

sup
P

log N(ε‖F‖P,r,F , Lr(P )),

where the supremum is over all probability measures P on (X ,A) with 0 < PF r <

∞.
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Now a heuristic summary of the two types of limit theorems below is as follows:

SLLN or Glivenko-Cantelli theorem: Let F be a class of measurable functions

such that N[](ε,F , L1(P )) < ∞ for every ε > 0. Then F is a Glivenko-Cantelli

class.

CLT or Donsker theorem: Let F be a class of measurable functions that

satisfies the uniform entropy bound

∫ ∞

0

sup
P

√
log N(ε‖F‖P,2,F , L2(P ))dε < ∞. (3.7)

If PF 2 < ∞, then F is P -Donsker.

To verify the hypothesis on uniform entropy numbers and bracketing numbers,

we introduce the notion of Vapnik-Červonenkis class of sets, or simply VC-class. A

collection C of subsets of the sample space X picks out a certain subset of the finite

set {x1, . . . , xn} ⊂ X if it can be written as {x1, . . . , xn} ∩ C for some C ∈ C. The

collection C is said to shatter {x1, . . . , xn} if C picks out each of its 2n subsets. The

VC-index V (C) of C is the smallest n for which no set of size n is shattered by C. A

collection C of measurable sets is called a VC-class if its index V (C) is finite.

The subgraph of a function f : x 7→ R is the subset of X ×R given by

{(x, t) : t < f(x)}.

A collection F of measurable functions on a sample space is called a VC-subgraph

class, if the collection of all subgraphs of the functions in F forms a VC-class of sets

in X ×R. Let V (F) be the VC-index of the set of subgraphs of functions in F . We

have the following theorem (Van der Vaart and Wellner (1996), Theorem 2.6.7).
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Theorem 3.7 For a VC-subgraph class of functions with measurable envelope func-

tion F and r ≥ 1 one has for any probability measure P with ‖F‖P,r > 0,

N(ε‖F‖P,r,F , Lr(P )) ≤ KV (F)(16e)V (F)(1/ε)r(V (F)−1), (3.8)

for a universal constant K and 0 < ε < 1.

This theorem shows that a VC-subgraph class satisfies the uniform entropy

condition (3.7). This indicates that a collection F of measurable functions is P -

Donsker for any underlying measure P if the envelope function is square integrable

and F is a VC-subgraph class. The next lemma gives a basic method for generating

VC-subgraph classes (Van der Vaart and Wellner(1996), Lemma 2.6.15).

Lemma 3.2 Any finite dimensional vector space F of measurable functions is a

VC-subgraph class of index smaller than or equal to dim(F) + 2.

The next lemma is useful for proving almost surely uniform convergence.

Lemma 3.3 Let T1, . . . , Tn be i.i.d. random variables with probability measure P

and corresponding distribution function F . Suppose that f is a Borel measurable

function satisfying
∫ |f |dP < ∞. Let Gn(t) = 1/n

∑n
i=1 f(Ti)I[Ti≤t] and G(t) =

∫
f(y)I[y≤t]dF (y). Then sup−∞≤t≤∞ |Gn(t)−G(t)| a.s.→ 0.

Proof. Let Pn = (1/n)
∑n

i=1 δTi
, and let F be the collection of all indicator

functions of the form I(−∞,t]. It is known that F is P -Donsker. By Example 2.10.10

in Van der Vaart and Wellner(1996), F · f is also P -Donsker, and consequently

P -Glivenko-Cantelli as well. Noticing that Gn(t) = Pn(f · I(−∞,t]) and G(t) =
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P (f · I(−∞,t]), it follows by the Glivenko-Cantelli theorem that

sup
−∞≤t≤∞

|Gn(t)−G(t)| = sup
g∈F·f

|Png − Pg| a.s.→ 0.

2

3.3 Asymptotic Distribution for Semiparametric

Model

The estimator Ĝ is a weighted discrete measure on observations. Motivated by

the empirical distribution, we are going to develop the asymptotic distribution for

√
n(Ĝ−G) in a semiparametric model in a way similar to the nonparametric case.

However, unlike the nonparametric case, the estimator Ĝ in the semiparametric

model is related to the parameters (α, β), and has to be estimated in terms of

the estimators of the parameters. This makes the covariance structure of the limit

processes more complicated than that in the nonparametric case.

3.3.1 An Approximation of Ĝ(t)

Let G̃(t) denote the empirical distribution based on the reference sample X0 =

(x01, . . . , x0n0):

G̃(t) =
1

n0

n0∑
i=1

I[x0i<t]. (3.9)

The semiparametric estimator for G is

Ĝ(t) =
1

n0

·
n∑

i=1

I(ti ≤ t)∑m
k=0 ρk exp(α̂k + β̂kh(ti))

=
1

n0

·
n∑

i=1

I(ti ≤ t)∑m
k=0 ρkwk(ti; α̂k, β̂k)

,

49



where wk(ti; α̂k, β̂k) = exp(α̂k + β̂kh(ti)). Define

H1(t; α, β) =
1

n0

·
n∑

i=1

I(ti ≤ t)∑m
k=0 ρkwk(ti; αk, βk)

.

For convenience, without further notice we write H1(t) = H1(t; α0, β0). Apparently,

Ĝ(t) is a realization of H1(t; α, β) at (α̂, β̂).

Differentiate H1(t; α, β) with respect to α and β respectively. Then we have

∂H1(t; α, β)

∂αj

= − 1

n0

n∑
i=1

ρjwj(ti)I(ti ≤ t)

(
∑m

k=0 ρkwk(ti; αk, βk))2

∂H1(t; α, β)

∂βj

= − 1

n0

n∑
i=1

ρjwj(ti)h(ti)I(ti ≤ t)

(
∑m

k=0 ρkwk(ti; αk, βk))2
, (3.10)

where j = 1, . . . , m. Next, take the expectation of the derivatives evaluated at

(α0, β0)

E

(
∂H1(t; α0, β0)

∂αj

)
= − 1

n0

E

(
n∑

i=1

ρjwj(ti)I(ti ≤ t)

(
∑m

k=0 ρkwk(ti))2

)

= −
m∑

i=0

ni

n0

∫
ρjwj(y)wi(y)I(y ≤ t)

(
∑m

k=0 ρkwk(y))2
dG(y)

= −ρj

∫
wj(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

= −ρjAj(t),

where Aj(t) =
∫ wj(y)I(y≤t)Pm

k=0 ρkwk(y)
dG(y).

Similarly,

E

(
∂H1(t; α0, β0)

∂βj

)
= − 1

n0

E

(
n∑

i=1

ρjwj(ti)h(ti)I(ti ≤ t)

(
∑m

k=0 ρkwk(ti))2

)

= −ρj

∫
wj(y)h(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

= −ρjBj(t),

where Bj(t) =
∫ wj(y)h(y)I(y≤t)Pm

k=0 ρkwk(y)
dG(y).
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By the law of large numbers, we have

∂H1(t; α0, β0)

∂αj

a.s.−→ −ρjAj(t)

∂H1(t; α0, β0)

∂βj

a.s.−→ −ρjBj(t), as n →∞.

In fact, the almost sure convergence holds uniformly in t. This can be seen from the

boundedness of wj(t)/(
∑m

k=0 ρkwk(t)) and the assumption that the second moments

of h are bounded with respect to all the sample distributions. We have

−∂H1(t; α0, β0)

∂βj

− ρjBj(t)

=
1

n0

n∑
i=1

ρjwj(ti)h(ti)I(ti ≤ t)

(
∑m

k=0 ρkwk(ti))2
−

m∑
i=0

ni

n0

∫
ρjwj(y)wi(y)h(y)I(y ≤ t)

(
∑m

k=0 ρkwk(y))2
dG(y)

= ρj

m∑
i=0

(
1

ni

ni∑

l=1

ρiwj(xil)h(xil)I(xil ≤ t)

(
∑m

k=0 ρkwk(xil))2

−
∫

ρiwj(y)wi(y)h(y)I(y ≤ t)

(
∑m

k=0 ρkwk(y))2
dG(y)

)
. (3.11)

By applying Lemma 3.3 to the inside of the parentheses of (3.11), we have

sup
−∞<t<∞

∣∣∣∣
∂H1(t; α0, β0)

∂αj

− (−ρjAj(t))

∣∣∣∣
a.s.−→ 0

sup
−∞<t<∞

∥∥∥∥
∂H1(t; α0, β0)

∂βj

− (−ρjBj(t))

∥∥∥∥
a.s.−→ 0, j = 1, . . . , m. (3.12)

Denote

Ā(t) = (A1(t), . . . , Am(t))′, B̄(t) = (B′
1(t), . . . , B

′
m(t))′.

Lemma 3.4 The function Ĝ(t) has an approximation uniformly in t,

Ĝ(t) = H1(t)−H2(t) + Rn(t),

where H1(t) is defined as before and

H2(t) =
1

n

(
Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
S−1




∂`(α0,β0)

∂α

∂`(α0,β0)

∂β


 , (3.13)
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and the remainder term Rn(t) satisfies sup−∞<t<∞ |Rn(t)| = op(n
−1/2).

Proof: By the strong consistency of the estimator (α̂, β̂), the Taylor expan-

sion of Ĝ(t) at (α0, β0) gives

Ĝ(t) =
1

n0

·
n∑

i=1

I(ti ≤ t)∑m
k=0 ρkwk(ti; α̂k, β̂k)

= H1(t; α0, β0) +




∂H1(t;α0,β0)

∂α

∂H1(t;α0,β0)

∂β




′ 


α̂−α0

β̂ − β0


 + op(δn)

= H1(t) +




E
∂H1(t;α0,β0)

∂α

E
∂H1(t;α0,β0)

∂β




′ 


α̂−α0

β̂ − β0


 + Rn1(t) + op(δn)

= H1(t)−
(

ρ1A1(t), . . . , ρmAm(t), ρ1B
′
1(t), . . . , ρmB′

m(t)

)



α̂−α0

β̂ − β0




+Rn1(t) + op(δn)

= H1(t)−
(

Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)



α̂−α0

β̂ − β0


 + Rn1(t) + op(δn)

= H1(t)− 1

n

(
Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
S−1




∂`(α0,β0)

∂α

∂`(α0,β0)

∂β




+ op(n
−1/2) + Rn1(t) + op(δn)

= H1(t)−H2(t) + Rn(t) (3.14)

where δn = ‖(α̂, β̂)− (α0, β0)‖ and

Rn1 =




∂H1(t;α0,β0)

∂α − E
∂H1(t;α0,β0)

∂α

∂H1(t;α0,β0)

∂β
− E

∂H1(t;α0,β0)

∂β




′ 


α̂−α0

β̂ − β0


 ,

Rn(t) = op(n
−1/2) + Rn1(t) + op(δn).
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The sixth equality of (3.14) follows from Theorem 2.1. By Theorem 2.1 again, it

follows that δn = op(n
−1/2). The uniformly almost sure convergence of (3.12) and

the part (b) of Theorem 2.1 imply that sup−∞<t<∞ |Rn1(t)| = op(n
−1/2). As a result,

sup−∞<t<∞ |Rn(t)| = op(n
−1/2). The proof is complete. 2

Therefore, H1(t)−H2(t) is an approximation of Ĝ uniformly in t. In order to

derive the asymptotic distribution of
√

n(Ĝ−G), we start from
√

n(Ĝ− G̃) in that

√
n(Ĝ−G) =

√
n(Ĝ− G̃)−√n(G̃−G),

where G̃ is the empirical distribution of the reference sample, and
√

n(G̃ − G) is

the corresponding classical empirical processes. By Lemma 3.4,
√

n(Ĝ− G̃) can be

approximated by
√

n(H1(t)−H2(t)− G̃).

3.3.2 Variance-covariance Structure

It is well-known that weak convergence of stochastic processes is determined

by the convergence of finite-dimensional distributions and tightness. The behavior

of the limit of the finite dimensional distributions determines the law of the limit

process. Next, we will start investigating the structure of the finite-dimensional

distributions of
√

n(H1(t)−H2(t)− G̃).

First we show that E

(√
n(H1(t) − H2(t) − G̃)

)
= 0. That E(H2(t)) = 0

follows from E∂`(α0, β0)/∂(α, β) = 0, and E(H1(t)− G̃) = 0 can be seen from the

following derivation:

E(H1(t)) =
1

n0

· E
n∑

i=1

I(ti ≤ t)∑m
k=0 ρkwk(ti)

=
1

n0

m∑
j=0

nj

∫
wjI(y ≤ t)∑m
k=0 ρkwk(y)

dG(y)
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=
m∑

j=0

ρj

∫
wjI(y ≤ t)∑m
k=0 ρkwk(y)

dG(y) = G(t),

E(G̃(t)) = E

(
1

n0

n0∑
j=1

I[x0j<t]

)
= G(t).

Then we have

Cov

(√
n(H1(t)− G̃(t)−H2(t)),

√
n(H1(s)− G̃(s)−H2(s))

)

= n

[
E

(
(H1(t)− G̃(t))(H1(s)− G̃(s))

)
− E

(
(H1(t)− G̃(t))H2(s)

)

−E

(
H2(t)(H1(s)− G̃(s))

)
+ E

(
H2(t)H

′
2(s)

)]
.

Notice that

H1(t)− G̃(t)

=
1

n0

m∑
j=1

nj∑
i=1

I(xji ≤ t)∑m
k=0 ρkwk(xji)

− 1

n0

n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)
, (3.15)

then

E

(
(H1(t)− G̃(t))(H1(s)− G̃(s))

)

=
1

n2
0

{
E

[
m∑

j=1

nj∑
i=1

I(xji ≤ t)∑m
k=0 ρkwk(xji)

·
m∑

j=1

nj∑
i=1

I(xji ≤ s)∑m
k=0 ρkwk(xji)

]

− E

[
m∑

j=1

nj∑
i=1

I(xji ≤ t)∑m
k=0 ρkwk(xji)

·
n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ s)∑m

k=0 ρkwk(x0i)

]

− E

[
n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)
·

m∑
j=1

nj∑
i=1

I(xji ≤ s)∑m
k=0 ρkwk(xji)

]

+ E

[
n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)
·

n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ s)∑m

k=0 ρkwk(x0i)

]}

≡ 1

n2
0

{I − II − III + IV } .

Since observations within the same sample are i.i.d., and observations from different

54



samples are independent, it follows that

I =
m∑

j=1

nj

∫
wj(t)I(y ≤ t ∧ s)

(
∑m

k=0 ρkwk(y))2
dG(y)

+
m∑

j,j′=1

njnj′

∫
wj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
wj′(t)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y)

−
m∑

j=1

nj

∫
wj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
wj(t)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y)

= n0

∫ ∑m
j=1 ρjwj(t)I(y ≤ t ∧ s)

(
∑m

k=0 ρkwk(y))2
dG(y)

+n2
0

m∑

j,j′=1

ρjρj′

∫
wj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
wj′(t)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y)

−n0

m∑
j=1

ρj

∫
wj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
wj(t)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y).

The first term on the right hand side of the first equality gives the expectation of

the product of the pair of same observations. The second term gives the products

of the expectations of the pairs of all the observations. The third term gives the

products of the expectations of the pairs of same observations. The difference of

the last two terms gives the products of the expectations of the pairs of different

observations.

The second term on the right hand side of the second equality can be rewritten

as

n2
0

∫ ∑m
j=1 ρjwj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫ ∑m
j′=1 ρj′wj′(t)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y).

Expressions II and III involve only the product of the pairs of different obser-

vations. Therefore, there are only products of expectations of the pairs of different

observations in the calculation:

II =
m∑

j=1

njn0

∫
wj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫ ∑m
k=1 ρkwk(y)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y)
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= n2
0

∫ ∑m
j=1 ρjwj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫ ∑m
k=1 ρkwk(y)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y),

III = n2
0

∫ ∑m
j=1 ρjwj(t)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y)

∫ ∑m
k=1 ρkwk(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

= II.

Similar to the calculation of I, we have

IV = n0

∫
(
∑m

j=1 ρjwj(t))
2I(y ≤ t ∧ s)

(
∑m

k=0 ρkwk(y))2
dG(y)

+n0(n0 − 1)

∫ ∑m
j=1 ρjwj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫ ∑m
k=1 ρkwk(y)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y).

Notice that the sum of the first term of I and the first term of IV equals

n0

∫ ∑m
j=1 ρjwj(t)I(y ≤ t ∧ s)∑m

k=0 ρkwk(y)
dG(y).

After collecting terms, then we have

E

(
(H1(t)− G̃(t))(H1(s)− G̃(s))

)

=
1

n2
0

{
n0

∫ ∑m
j=1 ρjwj(t)I(y ≤ t ∧ s)∑m

k=0 ρkwk(y)
dG(y)

−n0

m∑
j=1

ρj

∫
wj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
wj(t)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y)

−n0

∫ ∑m
j=1 ρjwj(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫ ∑m
k=1 ρkwk(y)I(y ≤ s)∑m

k=0 ρkwk(y)
dG(y)

}

=
1

n0

{
m∑

j=1

ρjAj(t ∧ s)−
m∑

j=1

ρjAj(t)Aj(s)−
m∑

j=1

ρjAj(t)
m∑

j=1

ρjAj(s)

}
.

(3.16)

Recall the definition of H2(t) from Lemma 3.4. Then we have

E

(
(H1(t)− G̃(t))H2(s)

)
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=
1

n

(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




E

[
(H1(t)− G̃(t))

∂`(α0,β0)

∂α

]

E

[
(H1(t)− G̃(t))

∂`(α0,β0)

∂β

]


 .

Notice that the index j is fixed in the following calculation.

E

[
(H1(t)− G̃(t))

∂`(α0, β0)

∂αj

]

= E

{[
1

n0

m∑
u=1

nu∑
i=1

I(xui ≤ t)∑m
k=0 ρkwk(xui)

− 1

n0

n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)

]

·
[
−

n∑
i=1

ρjwj(ti)∑m
k=0 ρkwk(ti)

+ nj

]}

=
1

n0

{
−E

[
m∑

u=1

nu∑
i=1

I(xui ≤ t)∑m
k=0 ρkwk(xui)

n∑
i=1

ρjwj(ti)∑m
k=0 ρkwk(ti)

]

+E

[
n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)

n∑
i=1

ρjwj(ti)∑m
k=0 ρkwk(ti)

]}

≡ 1

n0

{−I + II} .

Similar to the calculation in (3.16), we have

I = E

[
m∑

u=1

nu∑
i=1

I(xui ≤ t)∑m
k=0 ρkwk(xui)

·
m∑

u=1

nu∑
i=1

ρjwj(xui)∑m
k=0 ρkwk(xui)

+
m∑

u=1

nu∑
i=1

I(xui ≤ t)∑m
k=0 ρkwk(xui)

·
n0∑
i=1

ρjwj(x0i)∑m
k=0 ρkwk(x0i)

]

=
m∑

u=1

nu

∫
ρjwj(y)wu(y)I(y ≤ t)

(
∑m

k=0 ρkwk(y))2
dG(y)

+
m∑

u,u′=1

nunu′

∫
wu(t)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(t)wu′(y)∑m

k=0 ρkwk(y)
dG(y)

−
m∑

u=1

nu

∫
wu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)wu(y)∑m

k=0 ρkwk(y)
dG(y)

+
m∑

u=1

nun0

∫
wu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)∑m

k=0 ρkwk(y)
dG(y)

= n0

∫
ρjwj(y)

∑m
u=1 ρuwu(y)I(y ≤ t)

(
∑m

k=0 ρkwk(y))2
dG(y)

+n2
0

∫ ∑m
u=1 ρuwu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)

∑m
u′=1 ρu′wu′(y)∑m

k=0 ρkwk(y)
dG(y)
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−n0

m∑
u=1

ρu

∫
wu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)wu(y)∑m

k=0 ρkwk(y)
dG(y)

+n2
0

∫ ∑m
u=1 ρuwu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)∑m

k=0 ρkwk(y)
dG(y).

and

II = E

[
n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)
·

m∑
u=1

nu∑
i=1

ρjwj(xui)∑m
k=0 ρkwk(xui)

+

n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)
·

n0∑
i=1

ρjwj(x0i)∑m
k=0 ρkwk(x0i)

]

=
m∑

u=1

nun0

∫ ∑m
k=1 ρkwk(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)wu(y)∑m

k=0 ρkwk(y)
dG(y)

+n0

∫
ρjwj(y)

∑m
k=1 ρkwk(y)I(y ≤ t)

(
∑m

k=0 ρkwk(y))2
dG(y)

+n0(n0 − 1)

∫ ∑m
k=1 ρkwk(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)∑m

k=0 ρkwk(y)
dG(y)

= n2
0

∫ ∑m
k=1 ρkwk(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)

∑m
u=1 ρuwu(y)∑m

k=0 ρkwk(y)
dG(y)

+n0

∫
ρjwj(y)

∑m
k=1 ρkwk(y)I(y ≤ t)

(
∑m

k=0 ρkwk(y))2
dG(y)

+(n2
0 − n0)

∫ ∑m
k=1 ρkwk(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)∑m

k=0 ρkwk(y)
dG(y).

Therefore,

E

[
(H1(t)− G̃(t))

∂`(α0, β0)

∂αj

]

=
m∑

u=1

ρu

∫
wu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)wu(y)∑m

k=0 ρkwk(y)
dG(y)

−
∫ ∑m

k=1 ρkwk(y)I(y ≤ t)∑m
k=0 ρkwk(y)

dG(y)

∫
ρjwj(y)∑m

k=0 ρkwk(y)
dG(y)

= ρj

m∑
u=1

ρuAu(t)Auj − ρjAj

m∑
u=1

ρuAu(t)

= ρj

m∑
u=1

ρuAu(t)Auj − ρj(1−
m∑

u=1

ρuAuj)
m∑

u=1

ρuAu(t), (3.17)
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where

Aj =

∫
wj(y)∑m

k=0 ρkwk(y)
dG(y),

and the last equality is due to Aj = 1−∑m
u=1 ρuAuj.

We have

E

[
(H1(t)− G̃(t))

∂`(α0, β0)

∂βj

]

= E

{[
1

n0

m∑
u=1

nu∑
i=1

I(xui ≤ t)∑m
k=0 ρkwk(xui)

− 1

n0

n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)

]

·
[
−

n∑
i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

+

nj∑
i=1

h(xji)

]}

=
1

n0

{
−E

[
m∑

u=1

nu∑
i=1

I(xui ≤ t)∑m
k=0 ρkwk(xui)

n∑
i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

]

+E

[
n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)

n∑
i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

]

+E

[
m∑

u=1

nu∑
i=1

I(xui ≤ t)∑m
k=0 ρkwk(xui)

nj∑
i=1

h(xji)

]

−E

[
n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)

nj∑
i=1

h(xji)

]}

=
1

n0

{−I + II + III − IV } .

We skip the details of the calculation here since the reasoning is similar to

what we did before:

I = n0

∫
ρjwj(y)h(y)

∑m
u=1 ρuwu(y)I(y ≤ t)

(
∑m

k=0 ρkwk(y))2
dG(y)

+n2
0

∫ ∑m
u=1 ρuwu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)h(y)

∑m
u′=1 ρu′wu′(y)∑m

k=0 ρkwk(y)
dG(y)

−n0

m∑
u=1

ρu

∫
wu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)wu(y)h(y)∑m

k=0 ρkwk(y)
dG(y)

+n2
0

∫ ∑m
u=1 ρuwu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)h(y)∑m

k=0 ρkwk(y)
dG(y);
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II = n2
0

∫ ∑m
u=1 ρuwu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)h(y)

∑m
u′=1 ρu′wu′(y)∑m

k=0 ρkwk(y)
dG(y)

+n0

∫
ρjwj(y)h(y)

∑m
u=1 ρuwu(y)I(y ≤ t)

(
∑m

k=0 ρkwk(y))2
dG(y)

+(n2
0 − n0)

∫ ∑m
u=1 ρuwu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)h(y)∑m

k=0 ρkwk(y)
dG(y);

III = n0

∫
ρjwj(y)h(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

+n2
0

∫ ∑m
u=1 ρuwu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)h(y)dG(y)

−n0

∫
ρjwj(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
wj(y)h(y)dG(y);

IV = n2
0

∫ ∑m
u=1 ρuwu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)h(y)dG(y).

Therefore,

E

[
(H1(t)− G̃(t))

∂`(α0, β0)

∂βj

]

=

∫
ρjwj(y)h(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)−

∫
ρjwj(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
wj(y)h(y)dG(y)

+
m∑

u=1

ρu

∫
wu(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

∫
ρjwj(y)wu(y)h(y)∑m

k=0 ρkwk(y)
dG(y)

−
∫ ∑m

u=1 ρuwu(y)I(y ≤ t)∑m
k=0 ρkwk(y)

dG(y)

∫
ρjwj(y)h(y)∑m

k=0 ρkwk(y)
dG(y)

= ρj

[
Bj(t)− Aj(t)Ej

]
+

m∑
u=1

ρuρjAu(t)Buj − ρjBj

m∑
u=1

ρuAu(t) (3.18)

= ρj

[
Bj(t)− Aj(t)Ej

]
+

m∑
u=1

ρuρjAu(t)Buj − ρj(Ej −
m∑

u=1

ρuBuj)
m∑

u=1

ρuAu(t),

where

Bj(t) =

∫
wj(y)h(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y),
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and the last equality is due to Bj = Ej −
∑m

u=1 ρuBuj.

By expressing the results from (3.17) and (3.18) in matrix, we have




E

[
(H1(t)− G̃(t))

∂`(α0,β0)

∂α

]

E

[
(H1(t)− G̃(t))

∂`(α0,β0)

∂β

]




=




ρA 0

(ρ⊗ Ip)B − E Imp







ρĀ(t)

(ρ⊗ Ip)B̄(t)




−




ρ1m − ρAρ1m 0

Eρ1m − (ρ⊗ Ip)Bρ1m 0







ρĀ(t)

(ρ⊗ Ip)B̄(t)




= SΣ




ρĀ(t)

(ρ⊗ Ip)B̄(t)


 ,

where S and Σ are from Theorem 2.1.

Therefore, the covariance of H1(t)− G̃(t) and H2(s) is

E

(
(H1(t)− G̃(t))H2(s)

)

=
1

n

(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1SΣ




ρĀ(t)

(ρ⊗ Ip)B̄(t)




=
1

n

(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
Σ




ρĀ(t)

(ρ⊗ Ip)B̄(t)


 . (3.19)

Next, we calculate the covariance of H2(t) and H2(s). Since we already know

that the variance of ∂`(θ0)/∂θ is n · Λ, it follows that

E

(
H2(t)H

′
2(s)

)
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=
1

n2

(
Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
S−1E

(
∂`(θ0)

∂θ

∂`(θ0)

∂θ

′)
S−1




ρĀ(s)

(ρ⊗ Ip)B̄(s)




=
1

n

(
Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
S−1ΛS−1




ρĀ(s)

(ρ⊗ Ip)B̄(s)




=
1

n

(
Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
Σ




ρĀ(s)

(ρ⊗ Ip)B̄(s)


 . (3.20)

Furthermore, by the representation of Σ from Theorem 2.1,

(
Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
Σ




ρĀ(s)

(ρ⊗ Ip)B̄(s)




=

(
Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
S−1




ρĀ(s)

(ρ⊗ Ip)B̄(s)




−
m∑

k=0

ρkĀ
′(t)ρĀ(s)−

m∑

k=0

ρkĀ
′(t)ρ1mρĀ(s)

=

(
Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
S−1




ρĀ(s)

(ρ⊗ Ip)B̄(s)




−
m∑

k=0

ρk

m∑
j=1

ρjAj(t)Aj(s)−
m∑

k=0

ρk

m∑
j=1

ρjAj(t)
m∑

j=1

ρjAj(s). (3.21)

Therefore, the results from (3.16), (3.19) and (3.20), along with (3.21) and

the fact n/n0 =
∑m

k=0 ρk give the variance-covariance structure of the process

√
n(H1(t)− G̃(t)−H2(t)),

Cov

(√
n(H1(t)− G̃(t)−H2(t)),

√
n(H1(s)− G̃(s)−H2(s))

)

= n

[
E

(
(H1(t)− G̃(t))(H1(s)− G̃(s))

)
− E

(
(H1(t)− G̃(t))H2(s)

)

−E

(
H2(t)(H1(s)− G̃(s))

)
+ E

(
H2(t)H

′
2(s)

)]
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=
m∑

k=0

ρk

m∑
j=1

ρjAj(t ∧ s)

−
(

Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
S−1




ρĀ(s)

(ρ⊗ Ip)B̄(s)


 . (3.22)

By the multivariate central limit theorem, it is easy to show that the finite

dimensional distributions of
√

n(H1(t)− G̃−H2(t)) converges to a mean zero mul-

tivariate normal distribution with covariance structure determined by (3.22). Con-

sequently, we have the following lemma.

Lemma 3.5 For any finite set (t1, . . . , tk) of points on the real line, let Gn denote

√
n(H1(t)− G̃−H2(t)). Then we have

(Gn(t1), . . . , Gn(tk))
d→ Nk(0, ∆),

where Nk is a mean-zero k-dimensional multivariate normal distribution with co-

variance matrix ∆, of which the (i, j)th element is determined by (3.22).

3.3.3 Tightness

Next, we prove that the process
√

n(H1(t)− G̃−H2(t)) is tight. We prove the

tightness of
√

n(H1(t)− G̃) and
√

n(H2(t)) separately, and the results are presented

in the following two lemmas. The basic idea is to decompose each of these two

processes into several simple processes which converge to Gaussian processes. Recall

from (3.15),

H1(t)− G̃(t) =
1

n0

m∑
j=1

nj∑
i=1

I(xji ≤ t)∑m
k=0 ρkwk(xji)

− 1

n0

n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)
.
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Let

H1j(t) =
1

n0

nj∑
i=1

I(xji ≤ t)∑m
k=0 ρkwk(xji)

, H10(t) =
1

n0

n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)
.

It is easy to check that

E

(
H1j(t)

)
= ρjAj(t), E

(
H10(t)

)
=

m∑
j=1

ρjAj(t).

Therefore,

H1(t)− G̃(t) =
m∑

j=1

H1j(t)−H10(t)

=
m∑

j=1

(
H1j(t)− ρjAj(t)

)
−

(
H10(t)−

m∑
j=1

ρjAj(t)

)
. (3.23)

Lemma 3.6 Process
√

n(H1(t)− G̃(t)) is tight in D[−∞,∞].

Proof. Let F be the collection of all indicator functions of the form I(−∞,t].

Obviously, F is a PXj
-Donsker class, j = 0, 1, . . . , m, where PXj

is the law of Xj,

the jth sample, j = 0, 1, . . . , m. Let

f0(y) =

∑m
k=1 ρkwk(y)∑m
k=0 ρkwk(y)

, fj(y) =
ρj∑m

k=0 ρkwk(y)
, j = 1, . . . , m.

Since all the functions fj, j = 0, 1, . . . , m are uniformly bounded, according to

Example 2.10.10 of Van der Vaart and Wellner (1996, p.192), F ·fj is a PXj
-Donsker

class, j = 0, 1, . . . , m.

Let Pnj = (1/nj)
∑nj

i=1 δxji
be the empirical measure of the jth sample. Then

we have

√
nj(Pnj − PXj

)(I(−∞,t]fj)

=
√

nj

(
1

nj

nj∑
i=1

ρjI(xji ≤ t)∑m
k=0 ρkwk(xji)

− ρj

∫
wj(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y)

)
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=

(
ρj/

m∑

k=0

ρk

)1/2 √
n(H1j − ρjAj(t)), j = 1, . . . , m,

and, similarly,

√
n0(Pn0 − PX0)(I(−∞,t]f0) = (1/

m∑

k=0

ρk)
1/2
√

n

(
H10(t)−

m∑
j=1

ρjAj(t)

)
,

By Donsker’s Theorem,

√
nj(Pnj − PXj

)(I(−∞,t]fj)
d→ Wj in D[−∞,∞], j = 0, 1, . . . , m,

where the Wj are zero-mean Gaussian processes. It follows by Corollary 3.1, that

√
n(H1j−ρjAj(t)), j = 0, 1, . . . , m, are tight in D(−∞,∞). From (3.23),

√
n(H1(t)−

G̃(t)) is tight in D[−∞,∞]. 2

Let

Ul(y) =
ρlwl(y)∑m

k=0 ρkwk(y)
, Vl(y) =

ρlwl(y)h(y)∑m
k=0 ρkwk(y)

,

where l = 0, 1, . . . , m.

From the score equations (1.24), we have

1

n0

∂`

∂αj

=
1

n0

nj∑
i=1

∑m
l=0
l 6=j

ρlwl(xji)
∑m

k=0 ρkwk(xji)
− 1

n0

m∑
l=0
l 6=j

nl∑
i=1

ρjwj(xli)∑m
k=0 ρkwk(xli)

= Pnj

( m∑
l=0
l 6=j

ρjUl

)
−

m∑
l=0
l 6=j

Pnl
(ρlUj)

1

n0

∂`

∂βj

=
1

n0

nj∑
i=1

∑m
l=0
l 6=j

ρlwl(xji)h(xji)
∑m

k=0 ρkwk(xji)
− 1

n0

m∑
l=0
l 6=j

nl∑
i=1

ρjwj(xli)h(xli)∑m
k=0 ρkwk(xli)

= Pnj

( m∑
l=0
l 6=j

ρjVl

)
−

m∑
l=0
l 6=j

Pnl
(ρlVj). (3.24)
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Notice that

PXj

( m∑
l=0
l 6=j

ρjUl

)
=

m∑
l=0
l 6=j

PXl
(ρlUj) =

m∑
l=0
l 6=j

∫
ρjρlwj(y)wl(y)∑m

k=0 ρkwk(y)
dG(y),

and

PXj

( m∑
l=0
l 6=j

ρjVl

)
=

m∑
l=0
l 6=j

PXl
(ρlVj) =

m∑
l=0
l 6=j

∫
ρjρlwj(y)wl(y)h(y)∑m

k=0 ρkwk(y)
dG(y).

Therefore,

1

n0

∂`

∂αj

= (Pnj
− PXj

)

( m∑
l=0
l 6=j

ρjUl

)
−

m∑
l=0
l 6=j

(Pnl
− PXl

)(ρlUj)

1

n0

∂`

∂βj

= (Pnj
− PXj

)

( m∑
l=0
l 6=j

ρjVl

)
−

m∑
l=0
l 6=j

(Pnl
− PXl

)(ρlVj). (3.25)

Let (a1(t), . . . , am(t), b′1(t), . . . , b
′
m(t)) denote the product (Ā′(t)ρ, B̄′(t)(ρ ⊗

Ip))S
−1, where ai(t)’s are scalars and bi(t)’s are p × 1 vectors. From (3.13) and

(3.25), we can rewrite H2(t) as

√
nH2(t) =

√
n

n

(
a1(t), . . . , am(t), b′1(t), . . . , b

′
m(t)

)




∂`
∂α1

...

∂`
∂αm

∂`
∂β1

...

∂`
∂βm




=

√
n

n

(
m∑

j=1

aj(t)
∂`

∂αj

+
m∑

j=1

b′j(t)
∂`

∂βj

)

=

√
nn0

n




m∑
j=1

aj(t)(Pnj
− PXj

)

( m∑
l=0
l 6=j

ρjUl

)
−

m∑
j=1

aj(t)
m∑

l=0
l 6=j

(Pnl
− PXl

)(ρlUj)
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+
m∑

j=1

b′j(t)(Pnj
− PXj

)

( m∑
l=0
l 6=j

ρjVl

)
−

m∑
j=1

b′j(t)
m∑

l=0
l 6=j

(Pnl
− PXl

)(ρlVj)




=
n0

n




m∑
j=1

∑m
k=0 ρk

ρj

√
nj(Pnj

− PXj
)

( m∑
l=0
l 6=j

ρjaj(t)Ul

)

−
m∑

j=1

m∑
l=0
l 6=j

∑m
k=0 ρk

ρl

√
nl(Pnl

− PXl
)

(
ρlaj(t)Uj

)

+
m∑

j=1

∑m
k=0 ρk

ρj

√
nj(Pnj

− PXj
)

( m∑
l=0
l 6=j

ρjb
′
j(t)Vl

)

−
m∑

j=1

m∑
l=0
l 6=j

∑m
k=0 ρk

ρl

√
nl(Pnl

− PXl
)

(
ρlb

′
j(t)Vj

)

 . (3.26)

Equation (3.26) gives the decomposition of the process
√

nH2(t). If we can

show that the collection of functions on which empirical measures are operated is P -

Donsker, the tightness of
√

nH2(t) is followed immediately as in the proof of Lemma

3.6.

Lemma 3.7 Process
√

nH2(t) is tight in D[−∞,∞].

Proof. Let U be a collection of linear combinations of functions {Uk : k =

0, 1, . . . , m}, and V be a collection of linear combinations of functions {Vk : k =

0, 1, . . . , m}. Coefficients are chosen from {ρk : k = 0, 1, . . . , m} and {ak(t), bk(t) :

k = 0, 1, . . . , m}. By Lemma 3.2, both U and V are V C-subgraph classes. Accord-

ing to Theorem 3.7, the covering numbers of U and V are bounded by a polyno-

mial in 1/ε. Therefore, the uniform entropy bound (3.7) is satisfied. Provided

the assumption that the second moments of h(x) are bounded with respect to

PXj
, j = 0, 1, . . . , m respectively, it is easy to check that both the envelope functions

67



of U and V are square integrable with respect to PXj
, j = 0, 1, . . . , m respectively.

Then we can conclude that both U and V are PXj
-Donsker classes, j = 0, 1, . . . , m.

Therefore, processes
√

nj(Pnj
− PXj

)

(∑m
l=0
l 6=j

ρjaj(t)Ul

)
,
√

nl(Pnl
− PXl

)(ρlaj(t)Uj),

√
nj(Pnj

− PXj
)

(∑m
l=0
l 6=j

ρjb
′
j(t)Vl

)
and

√
nl(Pnl

− PXl
)(ρlb

′
j(t)Vj) in equation (3.26)

converge to zero-mean Gaussian processes in D[−∞,∞]. It follows, by (3.26), that

√
nH2(t) is tight in D[−∞,∞]. 2

The tightness derived from Lemmas 3.6 and 3.7, along with the finite dimen-

sional convergence from Lemma 3.5 give the weak convergence of process
√

n(Ĝ−G̃).

Theorem 3.8 The process
√

n(Ĝ − G̃) converges weakly to a zero-mean Gaussian

process W with continuous sample paths in D[−∞,∞], and the covariance matrix

is determined by

EW (t)W (s) =

m∑

k=0

ρk

m∑
j=1

ρjAj(t ∧ s)−
(

Ā′(t)ρ, B̄′(t)(ρ⊗ Ip)

)
S−1




ρĀ(s)

(ρ⊗ Ip)B̄(s)


 .

3.3.4 Weak Convergence of
√

n(Ĝ(t)−G(t))

As we mentioned before,

√
n(Ĝ(t)−G(t)) =

√
n(Ĝ(t)− G̃(t)) +

√
n(G̃(t)−G(t)),
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and
√

n(H1(t) − G̃(t) − H2(T )) is an approximation of
√

n(Ĝ(t) − G̃(t)). The co-

variance structure of the process
√

n(Ĝ(t)−G(t)) can be expressed as

Cov{√n(Ĝ(t)−G(t)),
√

n(Ĝ(s)−G(s))} =

E{√n(Ĝ(t)− G̃(t))
√

n(Ĝ(s)− G̃(s))}+ E{√n(Ĝ(t)− G̃(t))
√

n(G̃(s)−G(s))}

+E{√n(G̃(t)−G(t))
√

n(Ĝ(s)− G̃(s))}

+E{√n(G̃(t)−G(t))
√

n(G̃(s)−G(s))}.

The asymptotic covariance structure of
√

n(Ĝ(t)−G̃(t)) is given by (3.22). And

it is easy to calculate that the covariance matrix of the process
√

n(G̃(t) − G(t)),

the empirical process of the reference sample, is

E{√n(G̃(t)−G(t))
√

n(G̃(s)−G(s))} =
m∑

k=0

ρk

(
G(t ∧ s)−G(t)G(s)

)
. (3.27)

The asymptotic covariance Cov{√n(Ĝ(t)− G̃(t)),
√

n(G̃(s)−G(s))} is equiv-

alent to E{√n(H1(t)− G̃(t)−H2(t))
√

n(G̃(s)−G(s))}. Since G(t) is non-random,

and the expectation of
√

n(H1(t) − G̃(t) − H2(t)) is zero, the expectation can be

simplified as E{√n(H1(t)− G̃(t)−H2(t))
√

nG̃(s)}.

We first start with E{√n(H1(t) − G̃(t))
√

nG̃(s)}. From (3.15) and that G̃ is

the empirical process of the reference sample, we have

E{√n(H1(t)− G̃(t))
√

nG̃(s)} =

n

n2
0

{
m∑

j=1

nj∑
i=1

I(xji ≤ t)∑m
k=0 ρkwk(xji)

n0∑
i=1

I[x0i<s]

−
n0∑
i=1

∑m
k=1 ρkwk(x0i)I(x0i ≤ t)∑m

k=0 ρkwk(x0i)

n0∑
i=1

I[x0i<s]

}

=
n

n2
0

{
n2

0

∫ ∑m
j=1 ρjwj(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y) ·G(s)
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−n0

∫ ∑m
k=1 ρkwk(y)I(y ≤ t ∧ s)∑m

k=0 ρkwk(y)
dG(y)

−n0(n0 − 1)

∫ ∑m
k=1 ρkwk(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y) ·G(s)

}

=
n

n0

{∫ ∑m
j=1 ρjwj(y)I(y ≤ t)∑m

k=0 ρkwk(y)
dG(y) ·G(s)

−
∫ ∑m

k=1 ρkwk(y)I(y ≤ t ∧ s)∑m
k=0 ρkwk(y)

dG(y)

}

=
m∑

k=0

ρk

{
m∑

j=1

ρjAj(t)G(s)−
m∑

j=1

ρjAj(t ∧ s)

}
. (3.28)

The covariance of
√

nH2(t) and
√

nG̃(s) is

E

(√
nH2(t)

√
nG̃(s)

)
=

(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




E

[
G̃(s)

∂`(α0,β0)

∂α

]

E

[
G̃(s)

∂`(α0,β0)

∂β

]


 .

E

[
G̃(s)

∂`(α0, β0)

∂αj

]
=

1

n0

E

{
n0∑
i=1

I[x0i<s]

[
nj −

n∑
i=1

ρjwj(ti)∑m
k=0 ρkwk(ti)

]}

=
1

n0

{
n0njG(s)− n0

m∑
i=0

ni

∫
ρjwj(y)wi(y)∑m

k=0 ρkwk(y)
dG(y) ·G(s)

−n0

∫
ρjwj(y)I[y<s]∑m

k=0 ρkwk(y)
dG(y) + n0

∫
ρjwj(y)∑m

k=0 ρkwk(y)
dG(y) ·G(s)

}

= −
∫

ρjwj(y)I[y<s]∑m
k=0 ρkwk(y)

dG(y) +

∫
ρjwj(y)∑m

k=0 ρkwk(y)
dG(y) ·G(s)

= −ρjAj(s) + ρjAjG(s)

= −ρjAj(s) + ρj(1−
m∑

i=1

ρiAij)G(s).

The second equality is resulted from the cancelation of the first two terms on the

right side of the first equality. Similarly,

E

[
G̃(s)

∂`(α0, β0)

∂βj

]
=

1

n0

E

{
n0∑
i=1

I[x0i<s]

[
nj∑
i=1

h(xji)−
n∑

i=1

ρjwj(ti)h(ti)∑m
k=0 ρkwk(ti)

]}

=
1

n0

{
n0nj

∫
wj(y)h(y)dG(y) ·G(s)
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−n0

m∑
i=0

ni

∫
ρjwj(y)wi(y)h(y)∑m

k=0 ρkwk(y)
dG(y) ·G(s)

−n0

∫
ρjwj(y)h(y)I[y<s]∑m

k=0 ρkwk(y)
dG(y) + n0

∫
ρjwj(y)h(y)∑m

k=0 ρkwk(y)
dG(y) ·G(s)

}

= −
∫

ρjwj(y)h(y)I[y<s]∑m
k=0 ρkwk(y)

dG(y) +

∫
ρjwj(y)h(y)∑m

k=0 ρkwk(y)
dG(y) ·G(s)

= −ρjBj(s) + ρjBjG(s)

= −ρjBj(s) + ρj(Ej −
m∑

i=1

ρiBij)G(s).

Therefore,

E

(√
nH2(t)

√
nG̃(s)

)

= −
(

Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




ρĀ(t)

(ρ⊗ Ip)B̄(t)




+

(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




ρ1̄m − ρAρ1̄m

Eρ1̄m − (ρ⊗ Ip)Bρ1̄m


 G(s)

= −
(

Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




ρĀ(t)

(ρ⊗ Ip)B̄(t)




+

(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




S11

S21


 1̄mG(s)

= −
(

Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




ρĀ(t)

(ρ⊗ Ip)B̄(t)




+
m∑

k=0

ρk

(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)



1̄m

0̄mp


 G(s)

=
m∑

k=0

ρk

m∑
j=1

ρjAj(t)G(s)
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−
(

Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




ρĀ(t)

(ρ⊗ Ip)B̄(t)


 , (3.29)

where 1̄m is a p× 1 vector of 1’s, and 0̄mp is a mp× 1 vector of 0’s.

Equations (3.28) and (3.29) together give

E{√n(H1(t)− G̃(t)−H2(t))
√

nG̃(s)} =

(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




ρĀ(t)

(ρ⊗ Ip)B̄(t)


−

m∑

k=0

ρk

m∑
j=1

ρjAj(t ∧ s).

(3.30)

The asymptotic covariance structure of
√

n(Ĝ(t)−G(t)) can be obtained from

(3.22), (3.27) and (3.30).

Cov{√n(Ĝ(t)−G(t)),
√

n(Ĝ(s)−G(s))} =
(

m∑

k=0

ρk

)(
G(t ∧ s)−G(t)G(s)−

m∑
j=1

ρjAj(t ∧ s)

)

+

(
Ā′(s)ρ, B̄′(s)(ρ⊗ Ip)

)
S−1




ρĀ(t)

(ρ⊗ Ip)B̄(t)


 . (3.31)

Obviously, the covariance structure of the limit of the finite dimensional dis-

tribution of
√

n(Ĝ(t) − G(t)) is given by (3.31). The corresponding tightness is

followed by the tightness of processes
√

n(Ĝ(t) − G̃(t)) and
√

n(G̃(t) − G(t)), the

first is already given by Theorem 3.8, and the second is well known. Therefore, we

have the following theorem.

Theorem 3.9 The process
√

n(Ĝ(t)−G(t)) converges weakly to a zero-mean Gaus-

sian process in D[−∞,∞], with covariance matrix given by (3.31).
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By now we completed the asymptotic theory for the semiparametric estimator

Ĝ. The main results in this chapter can be reduced to those of the two-sample case

in Qin and Zhang[1997] and Zhang[2000c].
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Chapter 4

Simulation Studies

In this chapter we present simulation studies conducted to illustrate the results

from previous chapters based on the semiparametric density ratio model (1.11).

4.1 Simulation Studies for the Estimation of Pa-

rameters

We generated random samples X0, X1 and X2 from X0 ∼ N(0, 1), X1 ∼

N(0, 2) and X2 ∼ N(0, 4) with density functions g(x), g1(x) and g2(x) respectively.

From example 1.14, the semiparametric density ratio model (1.11) holds:

g1(x) = g(x) exp(α1 + β1x
2),

g2(x) = g(x) exp(α2 + β2x
2) (4.1)

with true parameters (α1, α2, β1, β2) = (−0.34657,−0.69315, 0.25000, 0.37500).

In our simulation, we considered five different combinations of sample sizes,

(n0, n1, n2) = (50, 50, 50), (50, 50, 100), (50, 100, 50), (100, 50, 50), (200, 200, 200). For

each combination, we generated 1000 independent combined random samples from
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X0, X1 and X2. In each case, the average bias and sample variance are obtained

from the 1000 samples. Simulation results are summarized in Tables 4.1, 4.2 and

4.3. From the simulation results of bias and variance in Tables 4.1 and 4.2, we can

see the estimation accuracy improves with the increase of the total sample size n.

The 95% confidence intervals in Table 4.3 are obtained from the covariance matrix

(2.27), and they become narrower as the total sample size n increases.

Table 4.1: Bias of parameter estimates from the semiparametric density ratio model.

Sample Size ρ Bias(α̂1) Bias(β̂1) Bias(α̂2) Bias(β̂2)

(50, 50, 50) (1, 1) -0.01663 0.02337 -0.03752 0.03508

(50, 50, 100) (1, 2) -0.00022 0.00856 -0.02041 0.02142

(50, 100, 50) (2, 1) -0.01865 0.02550 -0.03797 0.03338

(100, 50, 50) (0.5, 0.5) -0.00326 0.00511 -0.02925 0.01811

(200, 200, 200) (1, 1) -0.00017 0.00217 -0.00303 0.00439

4.2 Goodness of Fit Test

The discrepancy between the semiparametric estimator Ĝ and the empirical

estimator G̃ from the reference sample X0 only allows us to assess the validity of

model (1.11). We define the difference between Ĝ and G̃ as

∆n(t) =
√

n |Ĝ− G̃|, ∆n = sup
−∞≤t≤∞

∆n(t). (4.2)
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Table 4.2: Monte Carlo Variance of parameter estimates from the semiparametric
density ratio model.

Sample Size ρ Var(α̂1) Var(β̂1) Var(α̂2) Var(β̂2)

(50, 50, 50) (1, 1) 0.02425 0.01731 0.03362 0.01672

(50, 50, 100) (1, 2) 0.02085 0.01497 0.02276 0.01421

(50, 100, 50) (2, 1) 0.01961 0.01623 0.03168 0.01658

(100, 50, 50) (0.5, 0.5) 0.01773 0.00929 0.02674 0.00828

(200, 200, 200) (1, 1) 0.00611 0.00391 0.00837 0.00374

∆n can be used to measure the departure from the assumption of the semiparametric

density ratio model (1.11).

We showed that
√

n(Ĝ−G̃) converges weakly to a Gaussian process W defined

in Theorem 3.8. Let wα denote the α-quantile of the distribution of sup−∞≤t≤∞ |W (t)|.

By Theorem 3.8,

lim
n→∞

P (∆n ≥ w1−α) = lim
n→∞

P ( sup
−∞≤t≤∞

√
n |Ĝ− G̃| ≥ w1−α)

= P ( sup
−∞≤t≤∞

√
n |W (t)| ≥ w1−α) = α.

Therefore, we reject model (1.11) at level α if

∆n > w1−α.

Since there are no analytic expressions available for the distribution of the supremum

of a Gaussian process W (t) and for the corresponding quantile function, we applied

a bootstrap procedure to simulate the distribution of sup−∞≤t≤∞ |W (t)| and its

quantiles.
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Table 4.3: 95% Confidence intervals for parameters from the semiparametric density
ratio model.

Sample Size ρ α1 α2

(50, 50, 50) (1, 1) (-0.64010, -0.05305) (-1.04119, -0.34511)

(50, 50, 100) (1, 2) (-0.63505, -0.05810) (-0.98391, -0.40238)

(50, 100, 50) (2, 1) (-0.60031, -0.09284) (-1.02833, -0.35796)

(100, 50, 50) (0.5, 0.5) (-0.60319, -0.08996) (-1.00900, -0.37730)

(200, 200, 200) (1, 1) (-0.49333, -0.19981) (-0.86717, -0.51913)

Sample Size ρ β1 β2

(50, 50, 50) (1, 1) (0.02029, 0.47971) (0.14742, 0.60258)

(50, 50, 100) (1, 2) (0.02349, 0.47651) (0.15889, 0.59111)

(50, 100, 50) (2, 1) (0.03402, 0.46598) (0.15327, 0.59673)

(100, 50, 50) (0.5, 0.5) (0.06846, 0.43154) (0.19693, 0.55307)

(200, 200, 200) (1, 1) (0.13515, 0.36485) (0.26121, 0.48879)
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Let X∗
0 , X

∗
1 , . . . , X

∗
m be random samples generated from Ĝ, Ĝ1, . . . , Ĝm respec-

tively, where Ĝ, Ĝ1, . . . , Ĝm are estimated from the combined sample (X0, X1, . . . , Xm).

Let (α̂∗, β̂
∗
) and let Ĝ∗ be the estimates for the parameters and the reference dis-

tribution obtained from (X∗
0 , X

∗
1 , . . . , X

∗
m) as we described before, and G̃∗ be the

empirical distribution from X∗
0 only. Then the corresponding bootstrap version of

the test statistic ∆n is given by

∆∗
n(t) =

√
n |Ĝ∗ − G̃∗|, ∆∗

n = sup
−∞≤t≤∞

∆∗
n(t).

It turns out that that as n →∞,

√
n(Ĝ∗ − G̃∗)

d→ W

in D[−∞,∞], where W is the Gaussian process defined in Theorem 3.8 (the proof is

similar to that in Zhang[2000c]). This shows that the limit process of
√

n(Ĝ∗− G̃∗)

agrees with that of
√

n(Ĝ − G̃). It follows that ∆∗
n = sup−∞≤t≤∞

√
n |Ĝ∗ − G̃∗|

has the same limiting behavior as does ∆n = sup−∞≤t≤∞
√

n |Ĝ − G̃| under model

(1.11). Thus we can approximate the quantiles of ∆n by those of ∆∗
n.

We now have the following decision rule: reject model (1.11) at level α if

∆n > wn
1−α,

where wn
1−α is the (1− α)-quantile obtained from the bootstrap distribution of ∆∗

n.

We now apply the proposed goodness-of-fit test procedure to the data simu-

lated from the previous model (4.1). First we simulated samples X0 ∼ N(0, 1), X1 ∼

N(0, 2) and X2 ∼ N(0, 4) with sample sizes (n0, n1, n2) = (50, 60, 80). Then we ob-

tained (α̂, β̂) for parameters and Ĝ, Ĝ1 and Ĝ2 for distributions from X0, X1, X2
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respectively under the correct model (4.1). To check the validity of model (4.1),

we generated samples X∗
0 , X

∗
1 , X

∗
2 from Ĝ, Ĝ1 and Ĝ2, respectively, with the same

sizes as X0, X1, X2. 1000 bootstrap replications of ∆∗
n are calculated based on

(X∗
0 , X

∗
1 , X

∗
2 ).

The estimated parameters are (α̂1, α̂2, β̂1, β̂2) = (−0.576,−0.84, 0.436, 0.535).

The value of the proposed test statistic ∆n = 1.05, and the observed p-value is

P (∆∗
n > 1.05) = 0.904 based on 1000 bootstrap replications of ∆∗

n. This strongly

suggests to accept model (4.1). The comparison of estimated distributions from

different samples are plotted in Figure 4.1. From the plot we can see that the

estimated distribution Ĝ is close to the empirical distribution G̃ from X0 only,

which supports our conclusion.

Next, we still use the same data generated from X0 ∼ N(0, 1), X1 ∼ N(0, 2)

and X2 ∼ N(0, 4), but we intentionally misspecified the model by replacing the

distortion function x2 with x, that is

g1(x) = g(x) exp(α1 + β1x),

g2(x) = g(x) exp(α2 + β2x). (4.3)

The estimated parameters are

(α̂1, α̂2, β̂1, β̂2) = (−0.00072,−0.03,−0.0015, 0.032).

The value of the proposed test statistic ∆n = 2.31, and the observed p-value is

P (∆∗
n > 2.31) = 0.007 based on 1000 bootstrap replications of ∆∗

n. This implies

a significant difference between the estimated distribution and the empirical dis-

tribution from the reference sample X0, and suggests to reject model (4.3). The
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Figure 4.1: Comparison of estimated Ĝ and empirical distribution G̃ from X0 only.

Estimated distributions from X0 (Ĝ, solid curve), X1 (Ĝ1, blue dotted curve), X2

(Ĝ2, red dash-dot curve), empirical distribution G̃ (green dashed curve).
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plot in Figure 4.2 shows the obvious difference between Ĝ and G̃. Moreover, Figure

4.2 indicates that the estimated distributions Ĝ1 and Ĝ2 are close to Ĝ. But from

the original random samples we generated, the difference among them should be

significant.
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Figure 4.2: Comparison of estimated Ĝ from a misspecified model and empirical

distribution G̃ from X0 only. Estimated distributions from X0 (Ĝ, solid curve),

X1 (Ĝ1, blue dotted curve), X2 (Ĝ2, red dash-dot curve), empirical distribution G̃

(green dashed curve).

Since the density ratio model (1.11) requires that the distortion function h(x)

to be specified first, it is possible that the model could be misspecified as shown

in (4.3). To reduce the chance of misspecifying a model, specifying a more general
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distortion function would be helpful. Let’s consider again the data we simulated

earlier for model (4.1). We assume that h(x) = exp(α + βx + γx2). Then the tilted

model is

g1(x) = g(x) exp(α1 + γ1x + β1x
2),

g2(x) = g(x) exp(α2 + γ2x + β2x
2). (4.4)

The estimated parameters are

(α̂1, α̂2, γ̂1, γ̂2, β̂1, β̂2) = (−0.562,−0.860, 0.023, 0.139, 0.427, 0.539).

Both γ̂1 and γ̂2 are close to 0, and the rest are close to the true parameters. The

proposed test statistic ∆n = 0.92, and the observed p-value is P (∆∗
n > 0.92) = 0.89

based on 1000 bootstrap replications of ∆∗
n. This says that model (4.4) is acceptable.

4.3 Confidence Bands for G

We obtained the limiting process for Ĝ in Theorem 3.8 and Theorem 3.9, and

we will demonstrate that the results can be used to construct confidence bands for

G under model (1.11).

We can show that the stochastic process
√

n(Ĝ∗ − Ĝ) converges weakly to

the Gaussian process given in Theorem 3.9. The proof is similar to that in Zhang

(2000). Therefore, the limit of ∆n = sup−∞≤t≤∞
√

n |Ĝ(t) − G(t)| agrees with the

limit of its bootstrap counterpart ∆∗
n = sup−∞≤t≤∞

√
n |Ĝ∗(t)− Ĝ(t)| almost surely.
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As a result, we can approximate the quantiles of ∆n by those of the distribution of

∆∗
n.

For α ∈ (0, 1), let

wn
1−α = inf{y|P ∗(∆∗

n ≤ y) ≥ 1− α},

then a 1− α level bootstrap confidence band for G is given by

(
Ĝ(·)− wn

1−α/
√

n, Ĝ(·) + wn
1−α/

√
n
)

. (4.5)

The confidence bands in (4.5) are forced to be symmetric and have the same width

at all points regardless of the amount of data-support.

A pointwise symmetric confidence interval can be calculated by estimating the

covariance matrix (3.31). Let V (ti) be the estimated variance for Ĝ(ti) at each point

ti from (3.31). Then a 1−α level pointwise confidence interval for Ĝ(ti) is given by

(
Ĝ(ti)− z1−α/2

√
V (ti), Ĝ(ti) + z1−α/2

√
V (ti)

)
, (4.6)

where z1−α/2 satisfies P (Z ≤ z1−α/2) = 1−α/2 with Z ∼ N(0, 1). These confidence

intervals in (4.6) do not hold simultaneously for all the data points. An alternative

is the 1− α Bonferroni simultaneous confidence intervals given by

(
Ĝ(ti)− tn−1

1−α/2n

√
V (ti), Ĝ(ti) + tn−1

1−α/2n

√
V (ti)

)
, (4.7)

where tn−1
1−α/2n is the (1− α

2n
) percent cutoff point of the tn−1 distribution with degree

of freedom n − 1. A plot of the bootstrap confidence bands, pointwise confidence

intervals and Bonferroni simultaneous confidence intervals is shown in Figure 4.3.
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Figure 4.3: Estimated cdf Ĝ (black thick curve), 95% confidence band (blue curve),

95% Bonferroni simultaneous confidence intervals (red dotted curve), 95% pointwise

confidence intervals(green dashed curve).
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Chapter 5

Application of Density Ratio Models to Mortality

Forecasting

5.1 Introduction

The US Government has been collecting mortality data from death registration

records assembled by state vital statistics offices since 1900. The data are broken

down mainly by state, race, gender, and age, and are published in the form of death

rates and life expectancies decennially and/or annually for over 100 years. The

process of collecting and recording these data evolved over time. Thus, before 1933,

mortality data were not from the US as a whole but only from death registration

areas, and electronically documented mortality data are available only from the late

1960’s on. In this study we shall use well documented mortality time series from

1970 to 2002. This gives us relatively short annual time series consisting of a little

over 30 observations for each given age, stratified by factors such as state, gender

and race. Prediction of future annual death rates based on these time series must

take into account their short length.
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The National Center for Health Statistics (NCHS), a US Government agency,

compiles statistical information important for public health and health policy. An

important goal of NCHS is forecasting annual age specific mortality patterns. The

objective of the present study is to address this problem, using relatively short

historical time records, by following a two-stage procedure whereby each short series

is modeled as a first order autoregressive process, and then the resulting residuals

are combined or merged in some fashion to provide estimates of future predictive

distributions.

Addressing short time records in a forecasting problem, in this paper we apply

a semiparametric forecasting method advanced recently in [17]. The method com-

pensates for short individual records by combining them via a density ratio model

as described in Section 5.2. Accordingly, the residuals from several different fitted

models are combined in this way in order to estimate the entire future conditional

distributions of interest. From this we obtain future conditional probabilities as well

as the conditional expectation of future values given past information, the most com-

mon predictor. We focus primarily on the prediction of centered annual age-specific

log death-rates for the entire US using data from 1970 to 2002.

The plot of US age-specific annual mortality as a function of age resembles a

pointed hook with a rather long handle, surprisingly similar to a dentist probe, as

seen from Figure 5.1. Wei [30] fitted to these data the eight parameter model of

Heligman and Pollard (HP) [15], demonstrating that the HP model captures well

the pointed hook pattern of mortality versus age. Figure 5.1 also shows that the

hook pattern repeats itself year after year persistently, and that in general annual
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death-rates decline, again quite persistently. The decline in death-rate for fixed age

as a function of time is shown in Figure 5.2 on a log-scale for several ages. These

time series appear almost as parallel straight lines, but when drawn separately they

are much more oscillatory.

Comparison of Log Death Rate Curves for Years
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Figure 5.1: Log death-rate as a function of age

Let m(x, t) denote the log death-rate matrix, where x and t are indices for

age and time (by year), respectively, and let d(x, t) denote the centered log death-

rate matrix, d(x, t) = m(x, t) −∑
t m(x, t)/n. We model d(x, t) instead of m(x, t)

in order to compare our method with that of Lee and Carter (LC) [19] who also

use centered data. Plots of d(x, t) are shown in Figure 5.3 as a function of x for

some fixed t, and also as a function of t for various fixed ages x. From the plots

we see that neighboring time series d(x, t) and d(x′, t), where x and x′ are close,

e.g. ages 60 and 61, behave quite similarly. To compensate for short time records,
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Figure 5.2: Age-specific time series

the semiparametric method combines information from several age-wise neighboring

time series.

5.1.1 The Lee-Carter Model

The model proposed by Lee and Carter [1992] is used by the U.S. Census

Bureau as a benchmark for their population forecasts, and its use has been recom-

mended by the two most recent U.S. Social Security Technical Advisory Panels. It

also appears to be the dominant method in the academic literature and is used widely

by scholars forecasting all-cause and cause-specific mortality around the world. See

[18],[20]. The LC model is based on principal components. If n denotes the number

of mortality time series, each corresponding to a specific age, the LC model searches

for the first principal component in n dimensional time series data, and solves for
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Centered Year-Specific Log Death Rate Curves
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Figure 5.3: Plots of centered log death-rates d(x, t) as a function of x (top) for fixed

t and vice versa (bottom).
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the age and time parameters by using singular value decomposition. A careful ex-

amination of the LC model was undertaken by Girosi and King [14]. Using USA

mortality data they found that the LC model explains approximately 93% of the

variance of death data from all causes, 90% from cardiovascular, and only 63% of the

variance in stomach cancer death. They bring examples from other countries where

the first principal component accounts for a much smaller percent of the variance.

This suggests that the first principal component may be insufficient when explaining

the variance in high-dimensional data, and that there are applications where it is

beneficial to add principal components beyond the first one. The method presented

in this paper is very different and seems appropriate for short range forecasting.

Both methods, however, are extrapolative in the sense that future mortality rates

are estimated from past rates. Lee and Carter employed tabulated mortality data

available from 1900 to 1987. However we shall compare the two methods using the

systematically collected annual data from 1970 to 2002.

5.2 An Approach to Semiparametric Time Series

Forecasting

Our approach for tackling the problem of short time series is based on the

semiparametric density ratio model (1.11).
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5.2.1 The Density Ratio Model in Time Series Regressions

Consider the following m = q + 1 time series regressions,

x1t = f1(z1,t−1) + ε1t, t = 1, ..., n1

...

xqt = fq(zq,t−1) + εqt, t = 1, ..., nq

xmt = fm(zm,t−1) + εmt, t = 1, ..., nm (5.1)

where the ni are assumed to be small numbers, the vectors zi,t−1 contain past values

of covariate time series, and the εkt are independent noise components. In practice,

the fi’s are fitted first using the data and the εkt’s are the residuals. Suppose the

εkt have probability densities,

ε1t ∼ g1(x), t = 1, ..., n1

...

εqt ∼ gq(x), t = 1, ..., nq

εmt ∼ gm(x), t = 1, ..., nm (5.2)

Define the reference density g(x) ≡ gm(x) with G(x) ≡ Gm(x) the corresponding

cdf. Then we shall assume the density ratio model relative to the reference g(x) as

given by (1.11),

gj(x) = eαj+βjh(x)g(x), j = 1, ..., q. (5.3)

with scalar αj, vector βj, and a vector valued distortion or tilt function h(x). The

“distorted” densities gj, the reference g, as well as the αj and βj are all unknown,
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but the distortion function h(x) is assumed known and its choice depends on the

data.

We combine all the residuals from the q + 1 regressions into a single vector of

length n = n1 + · · ·+ nq + nm,

t = (t1, . . . , tn)′ = {(ε1t, . . . , ε1n1), . . . , (εqt, . . . , εqnq), (εmt, . . . , εmnm)}′. (5.4)

Maximum likelihood estimates for the αj, βj, and G(x) can be obtained from the

entire vector of residuals t = (t1, . . . , tn)′ by maximizing the likelihood over a class

of step cdf’s with jumps at the values t1, . . . , tn as in section 1.3.

The main point of the semiparametric paradigm discussed here is that the

reference cdf G(x) is estimated from many samples giving an improved estimate as

compared with the empirical cdf which is obtained from the reference sample only.

This fact has been proved from the asymptotic theory for both θ̂ and Ĝ in Chapters

3 and 4. Likewise, we have also shown that quantile estimates obtained by the

semiparametric method from both case and control samples are more efficient than

estimates that are based on the control sample only, ignoring the case information.

More recently Fokianos [2004] showed that by merging information following the

semiparametric paradigm we obtain improved kernel density estimates with the same

bias as the traditional kernel density estimates but with smaller asymptotic variance.

Our data analysis below supports this fact. Moreover, merging information in this

way can result in more powerful tests for distribution equality [9],[10]. Regarding

the uncertainty in Ĝ, we showed that
√

n(Ĝ − G) converges to a Gaussian process

with mean zero and a rather complex covariance structure given by (3.31).
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We shall apply the semiparametric paradigm in forecasting US mortality rates

by combining information, or borrowing strength, from several short US mortality

time series.

5.2.2 Forecasting

The preceding discussion motivates the following time series forecasting method

[17]. Since xm,t+1 = fm(zm,t) + εm,t+1, and εm,t+1 ∼ G, where G is the reference dis-

tribution estimated semiparametrically by Ĝ as in (1.26), we have an approximation

for the predictive distribution at time t + 1 conditional on past data zm,t,

P (xm,t+1 ≤ x | zm,t) = P (xm,t+1 − fm(zm,t) ≤ x− fm(zm,t) | zm,t)

= P (εm,t+1 ≤ x− fm(zm,t) | zm,t)

= G(x− fm(zm,t))

≈ Ĝ(x− fm(zm,t)) (5.5)

All sorts of point predictors can be obtained from (5.5). In particular, a one-step

ahead predictor for xm,t+1 given the past can be approximated by calculating the

(conditional) mean of the shifted distribution Ĝ(x − fm(zm,t)). Approximate pre-

diction intervals can also be obtained from the estimated distribution.
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5.3 One Year Ahead Prediction of US mortality

5.3.1 A Two Stage Procedure

Define ak =
∑

t m(k, t)/n. As mentioned above, we analyze the centered log

death-rate matrix d(k, t), d(k, t) = m(k, t)− ak. For each fixed age k, consider the

annual time series of centered log death-rates from 1970 to 2001. Thus t = 1, 2, ..., 32.

Write xkt = d(k, t). First, to each such time series we fit the first order

autoregressive model with drift ck,

xkt = bkxk,t−1 + ck + εkt, k = 1, . . . , q,m. (5.6)

The drift parameter is added in order to capture a downward trend observed in the

age-specific centered log death-rate time series as exemplified in Figure 5.3. The

coefficient bk and the drift ck are estimated by least squares, and in our application

the εkt are replaced by the residuals derived from the model (5.6). Accordingly, the

functions fk in the system (5.1) are given by fk(xk,t−1) = bkxk,t−1 + ck.

Next, we choose a density ratio model for the residuals. Figure 5.4 shows the

centered log death-rate curves, fitted time series, and histograms of the residuals.

We can see that the residuals are centered around zero and that their histograms

resemble those obtained from small normal samples. This motivates the distortion

model (1.14) with h(x) = x2.

We consider the mth “sample” (εm1, . . . , εmnm) as the reference with distribu-

tion function G and density g. Similarly, assume (εk1, . . . , εknk
) has distribution Gk

and density gk, k = 1, . . . , q. Following the above semiparametric paradigm, and
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Figure 5.4: Plots of age-specific time series (solid line), fitted values (dotted line),

and histograms of the resulting residuals
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combining it with the insight gained from the histograms in Figure 5.4, we assume

the density ratio relationship,

gk(x) = eαk+βkx2

g(x), k = 1, ..., q. (5.7)

An application of the semiparametric procedure to the combined data t defined by

(5.4) gives the semiparametric estimate Ĝ for the reference distribution. Similarly,

from (1.26) and (5.7) we obtain the estimated distribution function of the kth sample

Ĝk from which the predictive distribution is computed by

P (xk,t+1 ≤ x | zkt) ≈ Ĝk(x− bkxkt − ck). (5.8)

5.3.2 Data Analysis

We consider 85 age-specific time series of log death-rates (all-cause) for ages

1, ..., 85, where the age category 85 includes ages 85 and older. To simplify the

analysis, this grouping or lumping of ages 85 and older had to be done at some

point and we chose, somewhat arbitrarily, age 85 as a threshold. However, the data

file does have the specificity to subdivide this category to obtain a more detailed

mortality prediction. Mortality at age 0 is not considered in the present analysis

due to its behavior which is very different from that at other ages. See Figure 5.2.

From the previous discussion the assumption that the density ratio model (5.7)

holds for time series groups corresponding to neighboring ages seems reasonable.

Indeed, in retrospect our data analysis lends credence to this assumption. In our

analysis, therefore, we apply the semiparametric method by combining information

from each of the age groups, consisting of five ages each and dubbed “5-age”, 1 −
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5, 6 − 10, ..., 81 − 85, a total of 17 groups, where the time series “in the middle”

of each group is taken as the reference. For example, in the group 1 − 5, the time

series of age 3 is taken as the reference, meaning that the relevant distribution from

this time series serves as the reference distribution for the group. We applied the

semiparametric model separately to each group to estimate the reference distribution

and the corresponding distorted distributions to obtain predicted mortality curves.

For illustration, consider the age group 31− 35 from 1970 to 2001. The fitted

AR(1) curves and histograms of the residuals are plotted in Figure 5.4. As men-

tioned before, we chose a quadratic distortion function h(x) = x2 due to the rough

symmetry of the residuals around zero, resembling the behavior of normal residuals.

There are altogether 5 residual samples, and the sample of residuals from age 33 is

considered as the reference. The actual conditional point predictions of log death-

rate in 2002 for the age group 31−35 are obtained from (5.8) by computing the first

moments of the shifted predictive distributions Ĝk, k = 31, ..., 35, respectively, with

Ĝ33 as the reference. This analysis is repeated for all 17 groups. The 2002 prediction

results for all ages are compared with the true 2002 log-rates in the tables below.

It is also interesting to compare the results from the 3-age group 32− 34 with

the 5-age group 31 − 35. Figure 5.5 shows the histograms and overlaid estimated

reference density of age 33 obtained from the combined data t for the 3-age and

5-age groups. Since we combined more information in the 5-age group there is a

noticeable improvement in the density fit.

For age group 31− 35, the estimated tilted cdf’s Ĝk(x) from (5.7), each esti-

mated from 5×32 = 160 residuals, and the corresponding empirical cdf’s, each from
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Figure 5.5: Estimated reference pdf of age 33 from the combined data t for the 3-age

group 32-34 (above), and the 5-age group 31-35 (below), respectively.
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32 residuals, are shown in Figures 5.6 for ages 31, 32, 33, 34 (the cdf for age 35 is not

plotted). Since more information is used (or combined) in deriving the Ĝk(x) than

used in obtaining the empirical distributions, the Ĝk(x) are smoother as is evident

from the figure. So, in some sense, the semiparametric cdf’s are smooth versions of

the corresponding empirical distributions.
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Figure 5.6: Comparison of the empirical (solid line) and estimated (dotted line)

cdf’s for the indicated ages. The estimated cdf for age 35 is not shown.

The corresponding 5-age smoothed pdf’s ĝk(x) (solid lines) and their related

histograms are shown in Figure 5.7 for ages 31, 32, 33, 34. For the sake of comparison,

for ages 32, 33, 34 the figure also depicts the 3-age smoothed ĝk(x) (dotted lines).

The estimated pdf for age 35 is not shown. The plots point to the consistency of
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the method in the sense that the 3-age and 5-age estimates are not far apart.
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Figure 5.7: Histograms and overlaid estimated pdf’s for 3-age group 32−34 (dotted

line) and 5-age group 31−35 (solid line). The estimated pdf for age 35 is not shown.

Once the the estimated distributions Ĝk(x) are obtained, we apply (5.8) to

approximate the probability distribution of the one-year-ahead log death-rate in

2002 for for the age group 31-35. The predictive distributions are shown in Figure

5.8. The corresponding estimated probability densities are shown in Figure 5.9.

Moreover, for each year, future conditional probabilities that the death rate is

less than a given value can also be computed from the estimated predictive distri-

butions as shown in Figure 5.10 for the age group 51-55.

As a point predictor we use the mean of the predictive distribution, that is, the

conditional expectation. The corresponding 95% confidence interval is also derived
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from the estimated predictive distribution.
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Figure 5.8: Estimated 2002 predictive distribution functions for the age group 31-35.

The 95% PI’s are bounded by two horizontal dashed lines

The semiparametric predictions from all the age groups for the year 2002 and

the corresponding 95% prediction intervals are shown in Figures 5.11 and 5.12. The

figures also show the 2002 predicted mortality curve from the Lee-Carter model

[19]. Figure 5.11 shows the predicted mortality curves for all ages, and the four

plots in Figure 5.12 are magnifications of sections of Figure 5.11. Table 5.1 is the

numerical counterpart of Figure 5.11. For each age it gives the semiparametric

prediction for 2002 and the corresponding prediction interval (PI), as well as the

Lee-Carter prediction. Comparison by mean square error (MSE) between the two

methods is given in Table 5.2. Generally speaking, compared with the Lee-Carter
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method, the semiparametric method improves the prediction as measured by MSE.

As seen from Figure Figure 5.11 and Table 5.1, almost all the true values fall within

their respective 95% prediction intervals. The improvement of the semiparametric

method is more noticeable for age groups which display more steady and gradual

change of death-rate as in age groups 31-50 and 71-85. From Table 5.2, the overall

prediction MSE from the semiparametric method is 0.104 compared to 0.297 from

the Lee-Carter method. The most significant improvement is for the age groups

31-50 and 71-85, whereas both methods perform quite similarly for all other groups

as we see from Table 5.2.

In the above data analysis we combined information from non-overlapping

5-age groups. The analysis was repeated by using a sliding window of over-
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lapping 5-age groups, each time moving up by a single year. Interestingly, the

MSE results were very close to those reported in Table 5.2, replacing the SP row

(0.104,0.050,0.015,0.030,0.009) by (0.105, 0.051, 0.014, 0.031, 0.008). This suggests

that the choice of the reference time series within an age group may be arbitrary.

We also consider prediction for gender (all-cause female only) and race-specific

(all-cause white female only) mortality rate. Comparison by MSE between the

semiparametric and Lee-Carter methods is given in Tables 5.3 and 5.4. Again, the

overall prediction MSE from the semiparametric method is appreciably smaller than

that from the Lee-Carter method.

Interestingly, we see that the MSE from the semiparametric method is lower

in Table 5.2 than in both Tables 5.3 and 5.4. This is not surprising since more data

are available from the total population, whereas in the other two cases we deal with

subpopulations. The fact that in the three Tables 5.2,5.3, and 5.4, age group 1-30

has a larger MSE than that from the other groups is due to the large variation of

the data associated with that age group.

Since our mortality data are truncated at age 85, we cannot calculate tradi-

tional life tables from the death rate forecasts. Instead we provide in Table 5.5 a

comparison between the true and predicted (by our method) number of survivors

by age and sex out of 100, 000 live births. The true values and their forecasts are

close.
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Table 5.1: Prediction comparison between the semiparametric and Lee-Carter meth-
ods for 2002. The first two rows give the 95% PI bounds for the semiparametric
forecasts, and the rest are the prediction from the semiparametric method (SP),
true values in 2002, and the prediction from the Lee-Carter (LC) method.

Age 1 5 10 15 20 25 30 35 40

Lower -7.637 -8.781 -8.933 -8.038 -7.072 -7.059 -6.977 -6.653 -6.276

Upper -7.516 -8.599 -8.671 -7.856 -6.870 -6.877 -6.755 -6.451 -6.094

SP -7.583 -8.699 -8.819 -7.946 -6.997 -6.991 -6.858 -6.551 -6.178

True -7.646 -8.639 -8.785 -7.955 -6.970 -6.975 -6.868 -6.583 -6.172

LC -7.576 -8.661 -8.835 -7.834 -7.023 -6.996 -6.810 -6.540 -6.252

Age 45 50 55 60 65 70 75 80 85

Lower -5.872 -5.473 -5.165 -4.628 -4.189 -3.776 -3.328 -2.905 -1.926

Upper -5.731 -5.362 -5.064 -4.557 -4.109 -3.695 -3.227 -2.774 -1.835

SP -5.799 -5.431 -5.115 -4.601 -4.166 -3.749 -3.293 -2.842 -1.897

True -5.783 -5.416 -4.996 -4.622 -4.169 -3.733 -3.291 -2.824 -1.903

LC -5.915 -5.534 -5.071 -4.615 -4.157 -3.752 -3.331 -2.874 -1.919
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Table 5.2: Mean square error of (all-cause) prediction from the semiparametric (SP)
and Lee-Carter (LC) methods.

Mean Square Error

Age group 1-85 1-30 31-50 51-70 71-85

SP model 0.104 0.050 0.015 0.030 0.009

LC model 0.297 0.078 0.180 0.026 0.013

Table 5.3: Mean square error of prediction from the semiparametric (SP) and Lee-
Carter (LC) methods for female.

Mean Square Error

Age group 1-85 1-30 31-50 51-70 71-85

SP model 0.187 0.121 0.026 0.032 0.008

LC model 0.619 0.226 0.341 0.027 0.025

Table 5.4: Mean square error of prediction from the semiparametric (SP) and Lee-
Carter (LC) methods for white female.

Mean Square Error

Age group 1-85 1-30 31-50 51-70 71-85

SP model 0.249 0.176 0.031 0.033 0.007

LC model 0.645 0.257 0.329 0.041 0.019
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Table 5.5: Number of survivors by age and sex, out of 100,000 born alive, from both
SP forecasts and true values in 2002

forecast true

Age total male female total male female

0 100000 100000 100000 100000 100000 100000

1 99311 99231 99371 99298 99217 99360

5 99182 99085 99256 99174 99076 99252

10 99107 99004 99186 99098 98992 99184

15 99013 98890 99108 99000 98875 99104

20 98685 98425 98914 98662 98400 98902

25 98219 97717 98679 98192 97691 98662

30 97746 97031 98394 97722 97006 98384

35 97189 96275 98012 97171 96249 98009

40 96384 95221 97425 96386 95228 97422

45 95231 93739 96550 95216 93733 96520

50 93558 91581 95293 93515 91553 95220

55 91205 88625 93446 91128 88521 93381

60 87762 84429 90632 87629 84211 90570

65 82616 78258 86313 82484 77986 86328

70 75218 69571 79978 75148 69339 80074

75 65081 57967 71052 65014 57710 71164

80 51665 43306 58630 51680 43142 58758

85 35348 26897 42244 35442 26938 42330
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5.3.3 Two-Year Ahead Forecasting

So far we discussed one-year ahead prediction. However, our two-step proce-

dure can be extended to multi-year ahead forecasting. One way to proceed is to use

the predicted values from previous steps when making long terms predictions. Thus

in two-year ahead forecasting we use the previous one-year ahead forecasts, and

proceed as above. The prediction error may get amplified through each additional

step even if minor deviation of prediction from true values occur. The results from

this procedure are reported in Table 5.6. Again, the overall MSE is lower for the

semiparametric method as compared with the Lee-Carter method.

A second procedure to forecast j-years ahead is to apply the one-step ahead

forecasting method to residuals resulting from time series regression models where

the present is regressed on the j previous values. Thus in the present case, to get

two-year ahead mortality forecasts we use (5.6) with the modification that xkt is

regressed on xk,t−2. The MSE from this method is reported in Table 5.7. Once

more, the overall MSE is lower for the semiparametric method as compared with

the Lee-Carter method. The disadvantage of this procedure is that some data are

lost due to the larger lag.

5.4 Concluding Remarks

We have used a two-stage forecasting semiparametric procedure suitable for

short time series to obtain forecasts of US age-specific mortality rates. To estimate

conditional predictive distributions, the method combines short time series by ap-
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Table 5.6: Prediction MSE from the semiparametric (SP) and Lee-Carter (LC)
methods for two-year ahead forecasting: Predicted one-year ahead forecasts are
used.

Mean Square Error

Age group 1-85 1-31 31-50 51-70 71-85

SP model 0.180 0.128 0.019 0.026 0.007

LC model 0.389 0.088 0.246 0.033 0.021

Table 5.7: Prediction MSE from the semiparametric (SP) and Lee-Carter (LC)
methods for two-year ahead forecasting: Autoregression lagged by 2.

Mean Square Error

Age group 1-85 1-31 31-50 51-70 71-85

SP model 0.211 0.132 0.048 0.025 0.005

LC model 0.389 0.088 0.246 0.033 0.021
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pealing to a density ratio model. Point predictors as well as future probabilities can

be obtained from the estimated conditional distributions. A comparison with the

well known Lee-Carter singular value decomposition method points to the poten-

tial of the semiparametric method. In general the semiparametric method provides

more precise short term prediction as compared with the Lee-Carter procedure.

The method we used is non-Bayesian. Bayesian methods for forecasting in

short time series are available, a useful special case of which is discussed [3],[16]. In

general Bayesian methods result in relatively large prediction intervals.

Death rates drop rapidly from infants to children, thus, combining data from

this age with other ages to form an age group is less appealing. It seems preferable to

employ methods suitable for univariate time series to forecast the annual mortality

for age zero. When monthly infant death rates are available, the semiparametric

method can be applied to these data to cover age 0 separately.

For convenience, we chose to fit to the mortality rate time series the AR(1)

model (5.6). This of course is only one possibility and there are other choices. For

example, we could set the coefficient bk in (5.6) to be 1, or use an AR(2) model. A

model which provides a better fit could reduce the prediction error.
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