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A critical and challenging aspect of visual communication technologies is to

immunize visual information to transmission errors. In order to effectively protect

visual content against transmission errors, various kinds of heterogeneities involved

in multimedia delivery need to be considered, such as compressed stream character-

istics heterogeneity, channel condition heterogeneity, multi-user and multi-hop het-

erogeneity. The main theme of this dissertation is to explore these heterogeneities

involved in error-resilient visual communications to deliver different visual content

over heterogeneous networks with good visual quality.

Concurrently transmitting multiple video streams in error-prone environment

faces many challenges, such as video content characteristics are heterogeneous, trans-

mission bandwidth is limited, and the user device capabilities vary. These challenges



prompt the need for an integrated approach of error protection and resource alloca-

tion. One motivation of this dissertation is to develop such an integrated approach

for an emerging application of multi-stream video aggregation, i.e. multi-point video

conferencing. We propose a distributed multi-point video conferencing system that

employs packet division multiplexing access (PDMA)-based error protection and

resource allocation, and explore the multi-hop awareness to deliver good and fair

visual quality of video streams to end users.

When the transport layer mechanism, such as forward error correction (FEC),

cannot provide sufficient error protection on the payload stream, the unrecovered

transmission errors may lead to visual distortions at the decoder. In order to miti-

gate the visual distortions caused by the unrecovered errors, concealment techniques

can be applied at the decoder to provide an approximation of the original content.

Due to image characteristics heterogeneity, different concealment approaches are

necessary to accommodate different nature of the lost image content. We address

this heterogeneity issue and propose to apply a classification framework that adap-

tively selects the suitable error concealment technique for each damaged image area.

The analysis and extensive experimental results in this dissertation demon-

strate that the proposed integrated approach of FEC and resource allocation as

well as the new classification-based error concealment approach can significantly

outperform conventional error-resilient approaches.



ERROR RESILIENCE IN
HETEROGENEOUS VISUAL COMMUNICATIONS

by

Meng Chen

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:

Professor Min Wu, Chair/Advisor
Professor Rama Chellappa
Professor Zhi-Long Chen
Professor K. J. Ray Liu
Professor André L. Tits
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Chapter 1

Introduction

1.1 Motivation

In recent years, we have witnessed a phenomenal growth of digital visual com-

munications. Multimedia bit-stream can be damaged during transmission because of

channel error conditions or bandwidth limitation. Due to the temporal and spatial

prediction in video/image compression, erroneously received samples of compressed

bit-stream can cause the distortion of large portions of visual content. To immunize

visual information to transmission errors becomes a critical and challenging aspect

of visual communication technologies. The demand for such technologies has been

accelerated by a large amount of multimedia service deployments over various types

of networks.

There are two main classes of error-resilient techniques at transport level: error

detection plus retransmission and Forward Error Correction (FEC). Error detection

allows a receiver to check whether the received data has been corrupted during

transmission, so that a request for a retransmission could be initiated if needed. FEC

allows a receiver to reconstruct the original information by introducing information

redundancy. In this dissertation, we focus on error-resilient systems employing FEC
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because FEC can be applied in applications with real-time constraints, where error

detection plus retransmission is less suitable. When the transport layer mechanism,

such as FEC, cannot provide sufficient error protection on the payload stream,

the unrecovered transmission errors may lead to visual distortions at the decoder.

To mitigate the visual distortions caused by the unrecovered errors, concealment

techniques can be applied at the decoder to provide an approximation of the original

content.

Both FEC and error concealment have received a lot of attention in the re-

search community in recent years [67, 59, 52, 76, 35] and have become widely

deployed. However, emerging multimedia service deployment scenarios involving

multi-stream video aggregation pose new challenges for error-resilient techniques.

One major challenge for effectively protecting visual content against transmission

errors is adapting to various kinds of heterogeneities that affect the performance

of error resilience, including compressed stream characteristics, channel condition,

multi-user, and multi-hop heterogeneities. It requires a major research effort to

model and investigate the effective error-resilient techniques and efficient resource

allocation strategies to explore these multiple dimensions of heterogeneities. The

main theme of this dissertation is to analyze, model, and solve error resilience prob-

lems in heterogeneous visual communications to deliver different visual content over

heterogeneous networks with good visual quality. As an example, various types of

highly demanded multimedia services, such as video conferencing, video gaming and

remote teaching, may involve concurrently transmitting multiple video streams in

an error-prone environment, where video content characteristics are heterogeneous,

the user device capabilities vary, and networks are heterogeneous. These challenges

prompt the need for an integrated FEC and resource allocation approach which
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explores multi-stream, multi-user and network heterogeneities. One motivation of

this dissertation is to develop such an integrated approach for multi-stream video

aggregation in emerging applications of multi-point video conferencing. We propose

a distributed multi-point video conferencing system and a packet division multiplex-

ing access (PDMA)-based error protection scheme which is employed in distributed

devices/nodes to minimize the maximal expected video distortion among all aggre-

gated streams. In order to achieve good and fair visual quality of all delivered video

streams to all end users in our distributed multi-point video conferencing system,

we further explore the multi-hop awareness for multi-stream video aggregation over

packet erasure channels.

In general, the transport level mechanisms may not provide sufficient pro-

tection for all the visual content. The unrecovered transmission errors may lead to

visual distortions at the receiver. In this case, error concealment could be performed

at the receiver to reconstruct the loss information. The widely used block-based vi-

sual coding systems have prompted a need of block-based error concealment on the

decoder side. If contiguous image blocks are assembled in the same packet, the loss

of one packet results in the loss of contiguous image blocks. It makes the recovery

of the lost image blocks more difficult. One strategy to overcome this defect is block

interleaving [74]. With block interleaving, the loss of a packet only affects noncon-

tiguous image blocks. The spatial concealment approach using surrounding pixels

information of a lost block is then an effective technique to reconstruct the damaged

visual content. A number of such concealment approaches have been proposed in

recent years [67, 76, 35, 69, 60, 68, 78, 3]. The smoothness and continuity prop-

erties in spatial or frequency domain, the repeating patterns, and other properties

of visual data have been exploited to recover corrupted blocks from the survived
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surroundings. We have observed that different approaches are suitable for different

image characteristics of a corrupted block and its surroundings, and none of the

existing approaches is an all-time champion. This motivates us to explore the image

characteristics heterogeneity for error concealment technique. We found that the

concealment quality could be substantially improved if we could intelligently com-

bine state-of-the-art approaches. The classification technique acts of taking in the

raw data and making a decision on the “category” of pattern [19]. It naturally fits

as a technique to achieve our objective. In this dissertation, we propose using clas-

sification to integrate state-of-the-art error concealment techniques and adaptively

select the suitable algorithm for each damaged image area.

In summary, for a communication system to be effectively resilient to trans-

mission errors, error-resilient techniques should be investigated by exploring vari-

ous types of heterogeneities involved in visual content transmission. Our research

effort involves knowledge in several scientific areas such as resource allocation, op-

timization, and classification, and demonstrates promising frameworks for multi-

media error-resilient approaches. The analysis and extensive experimental results

in this dissertation show that our proposed FEC and resource allocation integrated

approach, and classification-based error concealment approach can significantly out-

perform conventional error-resilient approaches by exploring content characteristics,

channel condition, multi-user, and multi-hop heterogeneities.

1.2 Dissertation Organization

The dissertation presents an integrated framework on FEC and resource allo-

cation for multi-stream video aggregation in Chapters 2–5 and a classification-based

error concealment framework to accommodate image characteristics heterogeneity

4



in Chapter 6.

We propose a distributed framework for realizing multi-point video confer-

encing and a packet division multiplexing access (PDMA)-based error protection

scheme in Chapter 2. PDMA-based error protection scheme is then modeled as an

optimization problem to minimize the maximal expected video distortion among all

aggregated streams in Chapter 3. In Chapter 4, we propose an algorithm to reach

preference consensus for all conferees to accommodate the user preference hetero-

geneity in a multi-point video conferencing system. In order to achieve good and

fair visual quality of all delivered video streams to all end users in our distributed

multi-point video conferencing system, we further explore the multi-hop awareness

in Chapter 5 for multi-stream video aggregation over packet erasure channels and

propose an optimal error protection and resource allocation algorithm. In Chap-

ter 6, we look into how the image characteristics heterogeneity affects the perfor-

mance of different error concealment approaches, and address this issue by proposing

classification-based error concealment framework. Finally, we conclude this disser-

tation and discuss some future perspectives in Chapter 7.
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Chapter 2

Distributed Conferencing System

Transmitting real-time encoded video streams over various types of networks

has been enabled by the rapid development of video coding, communications, and

multimedia display technologies. One emerging application is multi-point video con-

ferencing, which realizes a virtual conference room for multiple participants located

at different geographical areas. There are several design challenges for a multi-point

video conferencing system over packet erasure channels, where the video quality

could be severely degraded due to packet loss. First, as each conferee transmits

his/her real-time compressed video stream through resource-limited links, proper

resource allocation among multiple video streams is important. Second, the chan-

nel conditions in different hops and characteristics of different video streams are

inherently heterogeneous. The optimal error protection for different streams along

various hops may not be the same. An effective error protection solution should

be able to adapt to multi-stream multi-hop heterogeneity, and apply error protec-

tion accordingly. Furthermore, a multi-point video conferencing requires real-time

streaming, whereby a strict delay constraint is imposed to each stream to maintain

the interactivity within a conference session. This demands a solution with short de-
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lay for parameters exchange. In this chapter, we address the aforementioned issues

and propose a distributed multi-point video conferencing system.

A simple realization of multi-point video conferencing can be implemented by

each user sending multiple unicasting streams to all other conferees. In addition

to the inefficiency caused by transmitting redundant copies of video content, it is

difficult for each user to perform timely error protection for each stream to achieve

the optimal video quality, subject to the time-varying channel condition within each

channel, heterogeneous conditions along the streaming path, and a long feedback

delay for end-to-end channel condition.

Although multicasting can alleviate redundant copies of multiple streams, real-

izing a multi-point video conferencing via multicasting still requires obtaining timely

channel information for end-to-end channel condition and needs to consider the het-

erogeneity of channel conditions experienced by all video streams. Optimization

approaches have been proposed for resource allocation in a multicast session. They

can be performed either on the sender side [44, 30] or in a receiver-driven manner

[47, 64, 66]. However, these approaches may not be able to provide good and fair

visual quality for all video conferencing attendees. This is due to the unawareness

of existence of other users’ streams that are aggregated through the same commu-

nication link in different multicast sessions. The communication system is likely

to reserve the same bandwidth for each stream aggregated over a communication

link in different multicast sessions. Given varying content complexity in different

video streams, using the same bit-rate for all streams could result in undesirably

low quality for some video streams and unnecessarily high quality for other video

streams which are displayed in low-resolution[62]. This motivates us to develop a

multi-point video conferencing system, which explores multi-stream heterogeneity
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to address the error protection and resource allocation challenges.

Conventional centralized multi-point video conferencing system could be con-

sidered to explore the multi-stream heterogeneity in terms of bandwidth allocation.

It often deploys a centralized scheme controlled by a multi-point control unit (MCU).

In general, centralized multi-point video conferencing system may encounter the

problem of resource bottleneck at MCU when the number of conferees increases or

the complexity of processing algorithm for each video stream increases. Therefore,

it often focuses on error-free communication channel [63, 17, 38, 20] without con-

sidering error protection for each video stream. In addition, the centralized system

cannot react to the fast changing conditions in both channel and video source owing

to long delay in information exchange. Supporting information exchange locally and

performing joint source and channel coding in a distributed manner can speed up

the reaction to varying channel conditions and adapt to the heterogeneous condi-

tions in different hops [55, 54]. By doing so, we arrive at a distributed design for a

multi-point video conferencing system.

Compared to the transmission of generic data and voice in a distributed system

[8], providing real-time video conferencing service in a distributed system is more

involving. For example, the commonly used variable bit-rate compression for video

poses more difficulties on the network resource allocation than voice transmission

where constant bit-rate compression is generally used. Furthermore, the compressed

video bit-streams exhibit decoding dependency on the previous coded bit-streams

owing to the spatial and temporal prediction. The part of video stream where

corrupted bits cause severe error propagation should have stronger error protection

applied than the rest of video stream. In this chapter, we propose a multi-point video

conferencing system by aggregating multiple streams with unequal error protection
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in a distributed manner. Unlike the traditional time division multiplexing access

(TDMA)-based error protection approach that allocates several complete packets for

each video stream’s source and parity check symbols, we propose a packet division

multiplexing access (PDMA)-based allocation by allowing each packet to carry all

video streams’ source symbols and the parity check symbols. The analytical studies

show that PDMA-based error protection has superior performance comparing to

TDMA-based approach.

This chapter is organized as follows. We introduce a distributed multi-point

video conferencing system in Section 2.1. In Section 2.2, we describe the building

blocks of the proposed conferencing system. Error protection schemes for multi-

stream video aggregation are proposed in Sections 2.3. The analytical studies of

comparing TDMA-based and PDMA-based error protection schemes are presented

in Section 2.4 and chapter summary is presented in Section 2.5.

2.1 System Overview

In this section, we present an architectural overview of a distributed multi-

point video conferencing system. This distributed multi-point video conferencing

system for S participating users is illustrated in Fig. 2.1. There are two types

of nodes in this system, namely, user node (UN) and video combiner node (CN).

Both types of nodes contain two components, namely, a video source module and

a resource allocation module. To transmit a video stream from one user node to

all other user nodes, there are three different kinds of links involved, namely, user

node to video combiner (UNs − CN) through channel Us, video combiner to video

combiner (CNm − CNn) through channel Cmn, and video combiner to user node

(CN − UNs) through channel Vs. Here, s is the user node index, and m and n

9



Figure 2.1: Proposed system topology of a distributed multi-point video conferenc-

ing system. UN stands for user node and CN stands for video combiner node.

are video combiner node indices. Without loss of generality, we consider the case

where one video combiner node serves as a “portal” for a user node. Since the

channel condition is time varying and feedback through multiple hops may introduce

undesirable delay for real-time applications, it is often difficult for each CN node

to be aware of communication links’ channel condition in a conferencing system

other than its transmission channel condition. Therefore, in our distributed video

conferencing system, each CN node performs multi-stream aggregation locally by

applying resource allocation and error protection based on its transmission channel

condition and the rate-distortion (R-D) information of its aggregated video streams.

Specifically, in (UNs −CN) transmission, the video source module located in

UNs captures the video and analyzes the R-D information of the video content for

each incoming video frame. The channel information of outbound link Us is obtained

through feedback channel from CN to UNs . The resource allocation module per-

forms joint optimization by selecting the parameters for source coding and channel

coding based on the R-D and channel information. The compressed video streams
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Figure 2.2: The multi-stream aggregation scheme for the resource allocation module

in a video combiner node.

embedded with R-D information are then transmitted to the corresponding video

combiner.

For (CNm−CNn) transmission, the video source module located in the trans-

mitter node CNm buffers all incoming coded video streams from different users

through UN-CN transmission. After collecting one-frame video data, the video

source module performs channel decoding to obtain the video source bit-streams

and the corresponding R-D information for each video stream. In addition, the

channel information of link Cmn is obtained from the feedback of next-hop video

combiner CNn. Then, the resource allocation module located at video combiner

CNm performs multi-stream optimization to jointly select the parameters of source

coding and channel coding for all incoming streams, and transmits this protected

and merged stream to the next video combiner. (CN−UNs) transmission is similar

to (CNm − CNn) transmission, except that the receiver is a user node instead of a

video combiner node. User s receives all the other users’ video bit-streams from the

nearest video combiner through link Vs.
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In all three types of transmissions, the resource allocation module basically

performs the same joint multi-stream operation, namely, based on video source R-D

of all incoming streams and transmission channel information to perform multi-

stream resource allocation optimization. Fig. 2.2 shows a diagram of the proposed

multi-stream aggregation scheme for the resource allocation module in video com-

biner CNm. The scheme first buffers the incoming video source bit-streams and

obtains the R-D information from video source module. The resource allocation

module performs a joint source/channel optimization and determines a packetiza-

tion assignment plan for the incoming video streams. After these video streams are

packetized according to the plan, they are moved to the output buffer for transmis-

sion. The (UNs − CN) transmission can be treated as a special case with only one

incoming stream.

2.2 Building Blocks: Source and Channel Coding

The video codec for our system should provide high flexibility to facilitate rate

adaptation and provide accurate R-D information with low overhead. We adopt

MPEG-4 Fine Granularity Scalability (FGS) coding [53, 41, 46] in this work to

demonstrate the concept, while the proposed framework can be extended to incor-

porate other scalable codecs. MPEG-4 FGS is a two-layer scheme consisting of a

non-scalable base-layer and a highly scalable FGS enhancement layer. Its enhance-

ment layer for each frame can be truncated at any point to achieve the desired rate,

and the corresponding video quality decreases gracefully with the reduction in rate.

We refer to this enhancement layer as the FGS-layer in this dissertation. The R-D

function of FGS-layer at the frame level can be well approximated as a piecewise lin-

ear line by interpolating the R-D pairs obtained for recovering each complete DCT
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bitplane [77]. Therefore, the R-D function for each video frame can be described

using a small amount of bits.

For error control, we use forward error correction (FEC) codes because it can

be applied to applications with real-time constraints, for which the approach of

error detection plus retransmission is less suitable. A widely deployed FEC code is

Reed-Solomon (RS) code, which achieves the upper bound for the minimum distance

of an (n, k) linear code with code-word length n and the code-word dimension k.

In addition to this Singleton bound [39], “shortening” is another fine property of

the RS code to produce a code-word of any desired size by deleting some symbols

from a RS code-word. The minimum distance of the shortened code-words still

achieves the Singleton bound. This property provides RS code the capability of

easily adapting to desired packet size for packet-based communication protocols.

As video conferencing applications commonly deploy packet-based communication

protocols and errors are primarily due to packet loss, we adopt the RS code for error

recovery.

We focus on the fixed-length packetization because it is a relatively matured

technique and widely used for its simplicity. The FEC coding and packetization for

a single video stream can be achieved as follows: Let L be the number of symbols

carried in a packet and N be the total number of packets. A segment is defined

as the set of symbols located at the same position of each of the N packets. For

the non-scalable base-layer, a strong, equal error protection strategy is applied to

ensure its delivery as shown in Fig. 2.3(a). Because FGS enhancement layer uses

bitplane based coding [53], the decoding of the symbols in its remaining bitplanes

following a lost symbol may not improve the visual quality of the received video bit-

stream. Therefore, FGS enhancement data has a monotonically decreasing priority
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Figure 2.3: Single video stream protection by RS codes. White part indicates the

RS code symbols. The shaded part indicates the source symbols. RS code is applied

segment (column) by segment (column). (a) Equal error protection. (b) Unequal

error protection.

for error protection. We consider an unequal error protection method of multiple

descriptions through forward error correction codes (MD-FEC) [52] for FGS-layer,

which has been shown to achieve good perceptual video quality in delivering single

video stream. Given N packets, MD-FEC fills the FGS bit-stream vertically into

N packets segment by segment in a stair case fashion as shown in Fig. 2.3(b), and

Reed-Solomon (RS) code is applied within each segment. A higher error protection

level of RS code is applied for the segment with higher priority. When the receiver

successfully receives n packets out of N packets, the segments encoded with RS(N, k)

codes can be correctly decoded, if k ≤ n.
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2.3 Error Protection for Aggregated Streams

For our distributed video conferencing system, we assume the outbound link

of a video combiner node can transmit N packets with fixed length L symbols for

every 1/F second. F is the frame rate of video source. We model the channel as

a packet erasure channel in which each packet either arrives intact or is entirely

lost. This can be achieved by inserting a sequence number in each sent packet and

checking the sequence numbers at the receiver.

A logical step for the multi-stream aggregation is to first merge the base-layers

from all streams and then to apply equal error protection to the merged base-layer

stream. To apply unequal error protection to the merged FGS-layers, we examine

two low overhead strategies as shown in Fig. 2.4. The shaded area indicates the

source symbols and the white area indicates the RS code symbols.

The traditional strategy shown in Fig. 2.4(a) is a packet-based error protection

strategy with time division multiplexing access (TDMA). As each user is assigned

a set of packets and joint source/channel coding is performed within these assigned

packets, users do not share packets. For user j, the video combiner needs to de-

termine the number of packets, Nj, and select the RS code configuration for each

segment belonging to user j. The second strategy, shown in Fig. 2.4(b), is segment

based, and allows each user to transmit data in all available packets. For user j,

we need to determine the number of segments assigned and the RS configuration

of each segment. We refer to this new error protection strategy as PDMA. The

overhead in the communication protocol introduced by these FEC strategies in-

cludes specifying the number of packets or the number of segments assigned to each

stream, as well as specifying the source symbol assignment pattern for each seg-
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Figure 2.4: FEC strategies for multi-stream aggregation. (a) TDMA: Each stream

is assigned a number of packets; (b) PDMA: Each stream is assigned a number of

segments. White part indicates the RS code symbols. Shaded part indicates the

source symbols.

ment. Further reduction of the communication overhead is possible by computing

the source symbol assignment pattern of each segment on the receiver side that uses

the same optimization algorithm based on the same R-D and channel information

as the transmitter.

2.4 PDMA vs TDMA

Both TDMA-based and PDMA-based error protection approaches have low

overhead for communicating the FEC pattern of merged video streams. Intuitively,

because PDMA-based approach spreads error protection symbols to more packets

than TDMA-based approach, PDMA-based approach may have better performance

in error protection for packet-erasure channel. In addition, for the amount of error

protection applied to the most important part of the source symbols, we observe
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Figure 2.5: Rate-Packet function for one video stream. (a) TDMA-based FEC

approach. (b) PDMA-based FEC approach.

that the actual protection applied in PDMA is more than that of TDMA as shown

in Fig. 2.4 with “p” indicating the protection. Recent analytic studies in [61] have

shown that the PDMA-based scheme has advantages over TDMA-based scheme

in terms of expected throughput using equal error protection. In this section, we

would like to compare PDMA-based scheme with TDMA-based scheme in terms of

expected distortion using unequal error protection.

The expected distortion of delivered video streams is dependent on multiple

factors, such as transmission channel condition, channel coding characteristics and

video scene R-D characteristics. Therefore, it is quite involving to compare PDMA-

based FEC approach vs TDMA-based FEC approach in terms of the expected video

distortion. To shed the light in this issue, we perform analytical studies with some

special-case assumptions for simplification.

We assume that there are J streams to be combined. The overall available

17



number of packets is NF , and the packet length is L symbols. For the TDMA-

based FEC approach, we assign La
j segments and Na

Fj packets to the jth stream.

For PDMA-based FEC approach, we assign Lb
j segments and N b

Fj packets to the jth

stream. Obviously, the following equations hold in our design:

∑J
j=1 Na

Fj = N

La
j = L, ∀j

∑J
j=1 Lb

j = L

N b
Fj = N, ∀j

(2.1)

To facilitate our analysis, we make some assumptions regarding transmission channel

condition, channel coding characteristics and video scene R-D characteristics.

First, we assume that the communication channel is a memoryless packet

erasure channel. The packet successfully receive rate is denoted as p. The probability

of successfully receiving n packets out of NF is:

PNF
n =




NF

n


 (p)n (1− p)NF−n . (2.2)

Second, we make an approximation of the channel coding characteristics.

Without loss of generality, we focus on the distortion analysis of one video stream

j in the merged video streams. Generally, if receiver receives more packets that

contain the source symbols or error protection symbols of stream j, there are more

successfully decoded symbols of stream j. The successfully decoded symbols as a

function of received packets has a stair-case shape as shown in Fig. 2.5. We re-

fer to this function as Rate-Packet (R-P) function. R-P functions are denoted as

ra
n,j = φa

j (n) and rb
n,j = φb

j(n) for TDMA-based approach and PDMA-based ap-

proach. Here, ra
n,j and rb

n,j are successfully decoded symbol rate for TDMA-based

approach and PDMA-based approach, respectively, and n is the number of received
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packets. Since we use the same FEC method within one stream for comparing

TDMA-based and PDMA-based approaches, we assume that there are same num-

ber of source plus FEC symbols assigned to jth video stream in both approaches, i.e.

Na
Fj ·L ≈ NF ·Lb

j. Let
Na

Fj

NF
=

Lb
j

L
= α, we have 0 < α < 1 for J > 1. In addition, we

assume that there are same number of source symbols RFj assigned to this stream

in both approaches. i.e. RFj = ra
Na

Fj ,j = rb
NF ,j. Graceful R-P function with finer

steps is generally desired because of the advantages in designing error protection and

resource allocation strategy. To facilitate our analysis, we use linear function to ap-

proximate the R-P function. Since φa
j (0) = φb

j(0) = 0 and φa
j (N

a
Fj) = φb

j(NF ) = RFj,

we use the following linear function to approximate R-P functions:

ra
n,j = φa

j (n) = βa
j · n

rb
n,j = φb

j(n) = βb
j · n

βa
j =

RFj

Na
Fj

βb
j =

RFj

NF

(2.3)

Note that these linear functions may not be the linear approximation of R-P func-

tions with minimum estimation error, they are special-case assumptions to simplify

the analytical studies and give some insights to the comparison of TDMA-based

FEC and PDMA-based FEC. We use β to denote the ratio of the R-P functions’

slope, i.e., β =
βa

j

βb
j

=
RFj/Na

Fj

NF /RFj
= NF

Na
Fj

= 1
α
.

Third, we use an approximation of video scene R-D characteristics in our anal-

ysis. For multi-layer source codec such as MPEG-4 FGS, different FEC strategies

are likely to be applied to different layer of source symbols as described in the pre-

vious section. For simplicity, our analysis is focus on one layer of source symbols.

R-D characteristics of one layer of a compressed video frame can be approximated
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to a summation of exponential terms [2, 22]:

Dj(r) =
s=S∑
s=1

Cs
1j · e−Cs

2j ·r + Cs
3j (2.4)

Here, Cs
1j, Cs

2j and Cs
3j are all positive constants for a stream, and S is a pre-defined

constant which is common for video frames.

Let EDa
j and EDb

j be the expected distortion of the jth video stream for

TDMA-base approach and PDMA-base approach, respectively. There could be a

certain amount of symbols received for jth stream other than the layer of symbols

we are focused on, and we use R0,j to denote the received symbol rate of other

layers. Let Dj(r) denote the rate distortion function of the jth video stream, the

expectation of the received video stream distortion for TDMA-based FEC approach

is:

EDa
j =

Na
Fj∑

n=0

P
Na

Fj
n ·Dj(r

a
n,j + R0,j) (2.5)

The expectation of the received video stream distortion for PDMA-base FEC ap-

proach is:

EDb
j =

NF∑
n=0

PNF
n ·Dj(r

b
n,j + R0,j) (2.6)

Applying (2.3) to (2.5) and (2.6), we have:

EDa
j =

∑Na
Fj

n=0 P
Na

F1
n ·Dj(β

a
j · n + R0,j)

EDb
j =

∑NF

n=0 PNF
n ·Dj(β

b
j · n + R0,j)

(2.7)

Applying (2.4) to (2.7) and considering

∑N
n=0 PN

n = 1,∀N
∑N

n=0 et·nPN
n = [pet + (1− p)]N ,∀N

(2.8)
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we have

EDa
j =

∑s=S
s=1 {Cs

1j · e−Cs
2j ·R0,j · [p · e−Cs

2j ·βa
j + (1− p)]N

a
Fj + Cs

3j}
EDb

j =

∑s=S
s=1 {Cs

1j · e−Cs
2j ·R0,j · [p · e−Cs

2j ·βb
j + (1− p)]NF + Cs

3j}

(2.9)

To compare EDa
j to EDb

j , we can evaluate the sign of EDa
j − EDb

j .

EDa
j − EDb

j

=
∑s=S

s=1 M s · {[p · e−Cs
2j ·βa

j + (1− p)]N
a
Fj

−[p · e−Cs
2j ·βb

j + (1− p)]NF }

=
∑s=S

s=1 M s · {[p · e−Cs
2j ·

βb
j

α + (1− p)]α·NF

−[p · e−Cs
2j ·βb

j + (1− p)]NF }

(2.10)

Here, M s = Cs
1j · e−Cs

2j ·R0,j is positive. The sign of EDa
j − EDb

j is determined by

the second term in (2.10). To evaluate its sign, let us take a look at a function as

follows:

f(α) = [p · e−Cs
2j ·

βb
j

α + (1− p)]α·NF (2.11)

Applying (2.11) to (2.10), we get:

EDa
j − EDb

j =
s=S∑
s=1

M s · (f(α)− f(1)) (2.12)

We can prove that df(α)
dα

< 0 when 0 < α ≤ 1, so that the second term in (2.12) is

positive. Overall, we get EDa
j − EDb

j > 0, i.e. EDa
j > EDb

j .

In conclusion, the PDMA-based FEC approach may achieve lower expected

distortion with the previously described transmission channel condition, channel

coding characteristics and video scene R-D characteristics assumptions.
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2.5 Chapter Summary

In this chapter, we propose a distributed multi-point video conferencing sys-

tem over packet erasure channels. For this video conferencing system, we propose

TDMA-based and PDMA-based error protection schemes for multi-stream aggre-

gation that explores the multi-stream heterogeneity. Based on analytical studies,

PDMA-based error protection scheme has superior performance in terms of delivered

visual quality.
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Chapter 3

Multi-Stream Joint Error Protection

To realize the multi-point video conferencing system proposed in the previ-

ous chapter, this chapter presents the formulation of PDMA-based error protection

operation in each video combiner as an optimization problem. The TDMA-based

approach can be formulated and solved in the same way by substituting the seg-

ment number with packet number in the problem formulation. Considering the chal-

lenge of supporting real-time multi-point video conferencing, we propose an iterative

fast-search algorithm for PDMA-based allocation and provide simulation results to

demonstrate the superior performance compared to traditional approaches.

This chapter is organized as follows. In Section 3.1, we formulate the error

protection problem for proposed distributed video conferencing system as an opti-

mization problem. In Section 3.2, an algorithm is then proposed to provide optimal

solutions. Section 3.3 presents the experimental results. Discussions and chapter

summary are presented in Section 3.4.
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3.1 Problem Formulation

Suppose there are J video streams to be merged into NF packets and there

are L segments in each packet. The video combiner performs the packet merging

for every incoming video frame. For simplicity, we omit the frame index from the

notation in the subsequent discussions. In order to deploy the PDMA-based error

protection, we need to determine the number of segments Lj to be allocated to the

jth stream and the number of RS protection symbols to be assigned to each segment.

To facilitate the discussion, let aj,l ∈ {0, 1} be an indicator to represent

whether segment l is allocated to user j. The overall segment-to-user assignment

can be represented as A, a J × L matrix with [A]j,l = aj,l. In addition, we use

fi,l ∈ {0, 1} as an indicator to represent whether the number of source symbols

assigned to segment l is greater than or equal to i. The overall source symbol-to-

segment assignment can be represented as F, a NF × L matrix with [F]i,l = fi,l.

Let Dj(r) denote the distortion function of a video frame from jth user when

the receiving rate of FGS-layer source symbol is r. For simplicity, we assume that

the base-layer source symbols of this frame can all be successfully decoded because

of strong error protection. Suppose the receiver located in the next hop receives

exactly n packets when the video combiner sends NF packets, the reconstructed

video quality in terms of distortion to the original video frame for user j can be

represented as follows:

Dj,n(A,F) = Dj(
L∑

l=1

n∑
i=1

ajlf̄il), where f̄il =





fil, if
∑NF

i=1 fil ≤ n

0, if
∑NF

i=1 fil > n
(3.1)

The distortion reduction of correctly receiving one more correct packet after suc-

cessfully receiving n − 1 packets is ∆Dj,n(A,F) = Dj,n−1(A,F) − Dj,n(A,F). Let
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pc be the packet loss rate of the channel from a video combiner to the next hop and

Pc(NF , n) be the probability that the receiver receives at least n packets successfully

when the transmitter sends NF packets. We have:

Pc(NF , n) =

NF∑
α=n




NF

α


 (1− pc)

α (pc)
NF−α . (3.2)

Let Dj,0(A,F) denote the distortion of a video frame when there is no FGS-layer

packet received. The expected distortion of transmitting NF packets of user j using

segment assignment A and RS source symbol assignment F can be expressed as:

EDj(A,F) = Dj,0(A,F)−
NF∑
n=1

Pc(NF , n)∆Dj,n(A,F). (3.3)

To provide good video quality to all users as well as fairness across users, we

formulate the problem as the following min-max optimization problem:

min
A,F

(max
j

wj · EDj(A,F)) (3.4)

subject to





∑L
l=1 aj,l = Lj,

∑J
j=1 Lj = L;

∑J
j=1 aj,l = 1, ∀l;

fi,l ≥ fi+1,l, fi,l ∈ {0, 1}, ∀i, l;
∑NF

i=1 fi,l ≤
∑NF

i=1 fi,l+1, if ∃j, ∃l, s.t. aj,l = aj,l+1 = 1;

Here, wj is the quality weight factor. By setting different wj values for different

video streams, our scheme can achieve differentiated quality among the received

video streams.

In the problem formulation (3.4), the first constraint restricts that there are

a total of L segments to be assigned to J streams. The second constraint is the

segment assignment constraint for A, requiring that each segment can be assigned
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to only one video stream. The third and forth constraints are the source symbol

assignment constraints for F. For unequal error protection, we apply stronger RS

codes for data with higher priority in error protection, i.e.,
∑NF

i=1 fi,l ≤
∑NF

i=1 fi,l+1,

if segments l and l + 1 are allocated to the same video stream. The solution to

(3.4) gives the optimal A and F, which determine the information of the number

of segments allocated to each stream and the number of source symbols assigned to

each segment, respectively.

3.2 Proposed Algorithm

As mentioned in Section 2.2, MPEG-4 FGS is a two-layer video codec and

each layer has different importance for error protection. We adopt different error

protection schemes for each layer. We denote the outbound bandwidth of a video

combiner as Bc bits per second, then the maximum number of packets for a video

frame that the video combiner can send to the next hop is N = bBc/(sFL)c, where

s is the number of bits per symbol and F is the number of video frames per second.

3.2.1 Base-Layer Bandwidth Allocation and Error Protection

Strong equal error protection is applied to the base-layer source symbols. The

encoder generates a base-layer at a low bit-rate Rb
j for a video frame from user j

using a large quantization step, in order to ensure that the bandwidth is enough to

transmit the base-layer and its protection symbols. We aggregate all users’ base-

layer data into NS
B = d∑J

j=1 Rb
j/(sL)e source packets. It has been shown that if the

packet loss rate (PLR) after FEC decoding can be kept below a threshold, PLRB

= 10−3, the distortion caused by the channel error is negligible for MPEG-4 codec
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[24]. We can find the minimum number of FEC packets, NP
B , to achieve the desired

PLR threshold: Pc(N
S
B + NP

B , NS
B) ≥ (1−PLRB)NS

B . The overall number of packets

for the base-layer is NB = NS
B + NP

B .

3.2.2 FGS-Layer Resource Allocation via PDMA Bi-Section Search

A PDMA-based unequal error protection is applied to the FGS-layer source

symbols. After NB packets are assigned to the base-layer, there are NF = N −NB

packets to be assigned to the FGS-layer. We propose a bi-section search algorithm

to solve this PDMA-based unequal error protection problem as formulated in (3.4).

Step 1: Obtain the segment-to-expected-distortion curve.

For a video frame j̄, given Lj̄ segments, we can obtain the corresponding

minimum expected distortion based on MD-FEC [52, 59]. Aiming at minimizing the

expected distortion of a single video stream, the original MD-FEC scheme provides

the solution to the following problem of a single video stream:

EDmin , min
A,F

(EDj̄(A,F)) (3.5)

subject to 



∑L
l=1 aj̄,l = Lj̄;

fi,l ≥ fi+1,l, fi,l ∈ {0, 1},∀i, l;
∑NF

i=1 fi,l ≤
∑NF

i=1 fi,l+1, if ∃l, s.t. aj,l = aj,l+1 = 1;

Here, the matrix components aj,l and fi,l have been defined in Sec. 3.1. aj,l = 1

for l ≤ Lj̄ and j = j̄, aj,l = 0 otherwise. EDj̄ is the expected distortion of stream

j̄. The objective function is to minimize the expected distortion of a single video

stream subject to the bandwidth limitation for this single stream and the constraints

for assignment of RS codes. These constraints are similar to those constraints in

problem (3.4) except only a single video stream is involved.
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For each jth video stream (j ∈ {1, 2, · · · J}) and the available number of seg-

ments Lj (Lj ∈ {1, 2, · · ·L}), the fast algorithm in [59] that has moderate computa-

tional complexity can be used to find the minimum expected distortion EDmin for

problem (3.5). We denote this minimum expected distortion EDmin of jth stream

as Sj for simplicity. For a total of L segments, there are a total of L minimum ex-

pected distortion values Sj. We denote these values and their corresponding segment

numbers as a row vector [Sj, Lj]. We refer to each of such vectors as a “Segment-

Distortion (S-D) pair” and these pairs form a set M for a total of J video streams.

Because the expected distortion Sj can be reduced if more segments are assigned

to this stream, Sj is non-increasing with respect to Lj for a single video stream.

For jth stream, we can then piecewise interpolate Sj with respect to Lj to obtain a

segment-to-expected-distortion curve Sj(Lj). We refer to this curve as a S-D curve.

Step 2: Perform bi-section search.

We can show that the solution of problem (3.4) lies in the set M by the

following two steps.

First, the constraints in (3.5) form a subset of the constraints in (3.4). If there

exists (Ā, F̄) as the solution for (3.4), it should satisfy the constraints in (3.5).

Next, we show the solution of (3.4) achieves the minimum expected distortion

defined in (3.5) and the corresponding Lj segments assigned to a single video stream.

Let j̄ = arg maxj(wj · EDj(Ā, F̄)) and ĒD be the achieved minimum expected

distortion of (3.5) for stream j̄, we get ĒD = minA,F(EDj̄(A,F)) = EDj̄(Ā, F̄).

Obviously, (Ā, F̄) achieves the minimum expected distortion defined as objective

function of (3.5) for j̄th stream.

In summary, if there exists (Ā, F̄) as the solution for (3.4), it also satisfies

constraints of (3.5) and achieves its objective function. Therefore, the minimum
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expected distortion achieved by (Ā, F̄) and its segment assignment lie in M, i.e.,

the S-D pair set M of (3.5).

Since the minimum expected distortion and the corresponding segment as-

signment of (3.4) lie in M, we can find the optimal solution of (3.4) by searching

minimum expected distortion achieved by S-D pairs in M, i.e., solving the following

problem:

min
{Lj}

(max
j

(wj · Sj(Lj))), subject to
J∑

j=1

Lj ≤ L. (3.6)

Each S-D curve Sj(Lj) is non-increasing with respect to the segment number Lj.

To solve (3.6), we perform a bi-section search to obtain the optimal S-D pair for

each stream. Given a distortion value, the bi-section search algorithm calculates

the required number of segments of each stream. If the total number of required

segments is higher than the number of overall available segments, L, the distortion

value can be increased at the next iteration, and vice versa. This search procedure

stops when the total number of required segments is equal to L. As the solution

Lb
j by bi-section search algorithm that achieves the min-max distortion may not be

an integer, we perform a small amount of search on the Lb
j round-up by finding

minLj∈dLb
je,bLb

jc},j∈{1,2,···J}(maxj(wj · Sj(Lj))), subject to
∑J

j=1 Lj = L.

Once the optimal S-D pairs are obtained from the bi-section search, a com-

plete solution to (3.4) then includes the corresponding segment assignment and

the optimal source symbol assignment within each stream provided by the original

MD-FEC scheme [59].

3.2.3 FGS-Layer PDMA

The real-time interactive nature of video conferencing requires the video streams

to be delivered promptly after being received by each video aggregation combiner
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node. Error protection schemes with high computational complexity can cause un-

desirable delay for video delivery in each video aggregation combiner node. This

motivates us to examine the computationally expensive part of the algorithm and

investigate how to reduce the computational complexity of our proposed PDMA

bi-section search algorithm. Based on our experimental results, one of the most

computationally expensive parts is to obtain L × J S-D pairs of (3.5) in the first

step of bi-section search. The overall computational complexity of this bottleneck

part is O(JNL2), because it involves performing a search for RS code configura-

tion [59] for L× J times and computational complexity of each search is O(NLj).

We now propose a fast algorithm to reduce the computational complexity of

PDMA bi-section search by reducing the number of times to perform the RS code

search described previously. Instead of calculating a total of L × J S-D pairs, this

fast algorithm chooses a good initial segment-partition point, and then exploits an

iterative technique.

Step 1: Initialization. It is critical to start with an initial point, {L(0)
j }, which is

close to the optimal segment-partition. We determine the initial point by considering

an error-free channel and reformulate the problem (3.6) as:

min
{L(0)

j }
(max

j
(wj ·Dj(L

(0)
j ))), subject to

J∑
j=1

L
(0)
j ≤ L. (3.7)

Here, the expected distortion Sj in (3.6) caused by channel errors and rate shaping

is substituted by the deterministic distortion Dj caused by rate shaping only. As

described in Section 2.2, R-D curves are made available to CN node by embedding

them in video streams. Similar to bi-section search on S-D curves described earlier

in this section, we can use bi-section search algorithm on R-D curves to obtain

solution of (3.7), and use this solution, {L(0)
j }, as the initial segment partition of
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PDMA. Since the R-D characteristics of FGS-layer in one scene should not change

dramatically from one frame to the following frame, we can also use the optimal

segment assignment of the previous frame as an initial point of current frame PDMA.

After determining the initial point, we can obtain the expected distortion,

Sj(L
(0)
j ), for each user.

Step 2: Coarse Search. In this step, we determine the searching direction

toward the optimal segment assignment. We take one segment from the video stream

that has the smallest expected distortion and give one more segment to the video

stream that has the largest expected distortion. Assume that k iterations have been

performed, and the streams with the largest and the smallest distortion are jmax

and jmin respectively:

jmax = arg maxj(wj · Sj(L
(k)
j )),

jmin = arg minj(wj · Sj(L
(k)
j )),

ED
(k)
max = max{∀j}(wj · Sj(L

(k)
j )).

(3.8)

We take one segment away from user jmin and allocate it to user jmax:

L
(k+1)
jmax

= L
(k)
jmax

+ 1,

L
(k+1)
jmin

= L
(k)
jmin

− 1,

L
(k+1)
j = L

(k)
j ,∀j 6= jmax, j 6= jmin

(3.9)

The corresponding expected distortion for the two users who are involved in segment

re-allocation, namely, Sjmax(L
(k+1)
jmax

) and Sjmin
(L

(k+1)
jmin

), are also updated. If the ex-

pected distortion difference between Sjmax(L
(k)
jmax

) and Sjmax(L
(k+1)
jmax

) is smaller than δ

, we exclude user jmax in the next iteration, since the expected distortion of stream

jmax would not be significantly improved by assigning more segments to it. δ = 10−3

is used in our experiments. This exclusion process allows segments to be assigned

to video streams that show more significant improvement in expected distortion,
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and the overall average distortion of all streams can be improved with negligible in-

crease in the min-max distortion across streams. The above coarse search procedure

is repeated until ED
(k+1)
max ≥ ED

(k)
max.

Step 3: Finer Search. In coarse search, we only examine the video streams with

the minimum and maximum expected distortion, and change segment assignments

to these two video streams. As it is possible to further reduce the maximum expected

distortion by examining other video streams, we perform a round of finer iterative

search that considers all of video streams to obtain the min-max expected distortion.

Let ED
(k−1)
max be the maximum distortion and denote the corresponding stream

as jmax. In the kth iteration of finer search, we perform J − 1 trials by taking

one segment from stream j and assigning it to stream jmax, j ∈ {1, 2, ......J} and

j 6= jmax. If the maximum distortion by segment reassignment is smaller than

ED
(k−1)
max , it suggests that there exists a better solution than the result in the (k−1)th

iteration. We can use this segment reassignment as a new start-point, and move

to next round of coarse search. Otherwise, if the maximum distortion in no trial

is smaller than ED
(k−1)
max , search is complete and {L(k−1)

j } is the optimal segment

assignment.

The computational complexity of this fast algorithm is O(TNL) + O(T ′JNL),

where T is the number of search iterations in step two and T ′ is the number of search

iterations in step three. The sum of both iterations are typically less than 15 in our

experiments. The computational complexity of PDMA fast algorithm is significantly

reduced from the PDMA bi-section search when the total segment number L is much

larger than 15. ). This PDMA fast algorithm has been implemented in C/C++ with

a moderate amount of optimization and experimented with a PC with Pentium Dual

Core 2.8G Hz CPU and 2G RAM. The average computation time for merging 15

32



QCIF video frames is 25ms. In other words, in the experiment of merging 15 QCIF

video frames, the PDMA fast algorithm can be real-time complemented within the

frame refreshing time ( around 33ms for 30 fps).

The optimal solution to (3.4) is not unique and there may exist several sets

of solutions with the same min-max distortion. We can show by contradiction that

there does not exist a better solution that can achieve smaller min-max distortion

across streams than the one achieved by this PDMA fast algorithm.

Let the set of optimal solution provided by PDMA fast algorithm is {Lopt
j }.

The frame from video stream j̄ has the maximum distortion S̄1 = wj̄ · Sj̄(L
opt
j̄

).

According to the step three of the proposed algorithm, for every video stream j

other than j̄, the expected distortion resulted by assigning one fewer segment than

{Lopt
j } can be larger than the optimal expected distortion:

wj · Sj(L
opt
j − 1) ≥ wj̄ · Sj(L

opt
j̄

) ∀j 6= j̄. (3.10)

Suppose {L?
j} is another set of solution that can provide smaller maximum distor-

tion, denoted as S̄2. The total number of segments in both sets of optimal solutions

should be equal to the maximum number of segments, L:

J∑
j=1

Lopt
j =

J∑
j=1

L?
j = L. (3.11)

Rearranging (3.11), we get
J∑

j=1

(Lopt
j − L?

j) = 0. (3.12)

Since S̄1 > S̄2, we have Lopt
j̄

< L?
j̄
. So, based on (3.12), there exists at least some

β ∈ {1, 2, ...J}, such that Lopt
β > L?

β. From (3.10), we have:

wβ · Sβ(L?
β) ≥ wβ · Sβ(Lopt

β − 1) ≥ wj̄ · Sj(L
opt
j̄

). (3.13)
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As revealed by (3.13), the maximum distortion from the segment assignment set

{L?
j} is not smaller than the maximum distortion achieved by {Lopt

j }. It contradicts

the assumption that set {L?
j} can provide smaller maximum expected distortion

across streams. Therefore, there is no better solution to problem (3.4) that can

achieve smaller min-max distortion across streams than the one achieved by PDMA

fast algorithm.

3.3 Experimental Results

We evaluate the effectiveness of our proposed multi-stream PDMA error pro-

tection scheme (referred to as PDMA-EP in short) by comparing it to two alternative

schemes. In the first alternative scheme referred to as MULTICAST, the bandwidth

is divided evenly among streams. The second alternative scheme uses the same error

protection approach that we proposed for the base-layer, but exploits the TDMA

pattern as shown in Fig. 2.4(a). We refer to this scheme as TDMA Error Protec-

tion, or TDMA-EP in short. We first show the performance characteristics of each

error protection scheme by a single-hop set-up, and then present the result for a

multi-point video conferencing system in a memoryless packet erasure channel.

3.3.1 Single-Hop Experimental Results

In our single-hop experiments, four video streams are aggregated by a video

combiner. These four streams are “Suzie”, “Akiyo”, “Claire” and “Grandma”, and

referred to as stream 1 to 4, respectively. Each stream is encoded into 30 frames per

GOP, and each GOP is led by one I frame followed by 29 P frames. The base-layer

of each stream is encoded with quantization parameter Q = 30. There are 8 bits
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per RS symbol and the encoded bit-stream packet size is 128 symbols(bytes). To

simplify the simulation, in our experiments, the bandwidth is allocated to the source

and FEC symbols only. Communication protocol headers are not included in our

simulation. Without loss of generality, we examine the case of consistent quality

among all users by setting all wj at the same value. Single video stream has frame-

to-frame data rate fluctuation due to different encoding modes, i.e., intra-mode for I

frame and predictive-mode for P frame. If we merge I frames from multiple streams

together, followed by the merge of P frames from multiple streams, the frame-to-

frame data rate fluctuation can be more intense than single video stream. To avoid

this tremendous data rate fluctuation, I, P frames from different streams should be

interleaved before merging. In our experiments, the interleaving pattern is that the

jth stream sends I frame at the time of j · 4, where 4 = 1/30 second.

We first evaluate the performance of PDMA-EP, TDMA-EP and MULTI-

CAST for channels with varying packet loss rate and the same bandwidth (4.2

Mbps). Fig. 3.1 shows the video quality results of aggregating 150 frames from

stream 1 through stream 4, where the left figure shows the average PSNR of all

streams and the right figure shows the minimum PSNR across all streams. The

PSNR results are averaged over frames and repeated 200 test runs. We can see from

these figures that our proposed PDMA-EP scheme consistently outperforms the two

alternatives. At low packet loss rate, the cause of distortion is dominated by rate

shaping for coping with bandwidth limitation, so both PDMA-EP and TDMA-EP

achieve moderate video quality gain over MULTICAST. Although the long term

(averaged) packet loss rate for communication networks is usually small, the chan-

nel condition can be very dynamic. Packet loss rate of 10% or higher is not rare over

a short period of time because of network congestion or extensive noise/interference.

35



(a)

(b)

Figure 3.1: Schemes performance comparison with 4.2 Mbps bandwidth: Aggre-

gating 150 frames from “Suzie”, “Akiyo”, “Claire” and “Grandma”, respectively.

PDMA-EP: Packet division multiplexing access error protection; TDMA-EP: Time

division multiplexing access error protection; MULTICAST: Dividing the bandwidth

evenly among the streams.
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(a)

(b)

Figure 3.2: Schemes performance comparison with 20% packet loss rate: Aggre-

gating 150 frames from ‘Suzie”, “Akiyo”, “Claire” and “Grandma”, respectively.

PDMA-EP: Packet division multiplexing access error protection; TDMA-EP: Time

division multiplexing access error protection; MULTICAST: Dividing the bandwidth

evenly among the streams.
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When the packet loss rate becomes larger, the gain tends to be more significant as

error protection becomes a more effective factor on visual quality in transmission.

In our experiment, when packet loss rate goes up to 40%, both PDMA-EP and

TDMA-EP have up to 1.67 dB and 0.58 dB gain over MULTICAST, respectively.

Comparing the performance of PDMA-EP and TDMA-EP, we observe that PDMA-

EP has up to 1.10 dB gain over TDMA-EP. The performance gain of PDMA-EP

over PDMA-EP is consistent with our analytical studies provided in Section 2.4.

Another observation from Fig. 3.1 is that the difference between minimum PSNR

and average PSNR for both PDMA-EP and TDMA-EP is small, only 0.31 dB for

PDMA-EP and 0.35 dB for TDMA-EP. Such small difference indicates that these

two schemes provide excellent fairness across multiple streams. In contrast, the dif-

ference of minimum PSNR and average PSNR for MULTICAST is as large as 1.62

dB. Because MULTICAST does not dynamically allocate resource to explore the

multi-stream heterogeneity, it does not achieve good fairness of visual quality across

streams.

In the second experiment, we fix the packet loss rate at 20% and evaluate the

performance of these three schemes with a wide range of bandwidth. The results are

shown in Fig. 3.2. Again, our proposed PDMA-EP scheme consistently outperforms

the other two for variant bandwidth limitation. The average PSNR of PDMA-

EP and TDMA-EP has up to 1.48 dB and 0.68 dB gain over MULTICAST in

this experiment, respectively, and PDMA-EP has the average of 0.79 dB gain over

TDMA-EP. When comparing the minimum PSNR across four streams, PDMA-

EP and TDMA-EP have 2.22 dB and 1.38 dB average gain over MULTICAST,

respectively, and PDMA-EP has an average of 0.84 dB gain over TDMA-EP. In

terms of PSNR variation from stream to stream, we have similar observation as the
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Table 3.1: The received video frame distortion with quality weighted factor.

Suzie Akiyo Claire Grandma

Weighed factor: wj 0.1 0.2 0.3 0.4

Average MSE: EDj 33.79 16.29 10.67 8.59

Average weighted MSE: wj · EDj 3.379 3.258 3.201 3.436

first experiment, i.e., both PDMA-EP and TDMA-EP achieve significantly better

fairness across streams than MULTICAST.

The third experiment is to demonstrate the capability of our scheme to provide

desired differential visual quality among aggregated streams. In this experiment, the

equal quality-weight-factor set-up is changed to be w1 = 0.1, w2 = 0.2, w3 = 0.3,

and w4 = 0.4. The overall bandwidth is 3.0 Mbps, and packet loss rate is 10%.

As shown in Table 3.1, the average distortion of each of the four streams differs in

accordance to the specified weight factors. The stream with smaller weight factor

has lower visual quality delivered as desired.

3.3.2 Experimental Results for A Multi-Point Video Conferencing

We implement a multi-point video conferencing system and carry out simu-

lations to evaluate the performance of our proposed error protection scheme. The

topology of a ten-user multi-point video conferencing is shown in Fig. 2.1. We again

compare the performance of PDMA-EP, TDMA-EP and MULTICAST. The input

test video streams of ten users are: Akiyo, Carphone, Claire, Foreman, Grand-

mother, Miss American, Mother & daughter, Salesman, Silent and Suzie. The set-
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Table 3.2: The varying packet loss rate of video conferencing experiment for the

topology shown in Fig. 2.1

Communication link U1 U2 U3 U4 U5 U6

Packet loss rate 0.1 0.3 0.2 0.4 0.4 0.2

Communication link U7 U8 U9 U10 C21 C12

Packet loss rate 0.1 0.4 0.2 0.3 0.5 0.2

Communication link V1 V2 V3 V4 V5 V6

Packet loss rate 0.4 0.1 0.1 0.1 0.2 0.1

Communication link V7 V8 V9 V10 C23 C32

Packet loss rate 0.5 0.2 0.4 0.1 0.4 0.3
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tings of source encoding are the same as described in Section 3.3.1.

Because of the asymmetric data volume of the uplink and the downlink from

user, the bandwidth of uplink is usually much smaller than the downlink bandwidth.

In our experiments, the bandwidth of uplink for each user is set at 3 Mbps and the

bandwidth of downlink for each user is 8.1 Mbps. The communication links between

video combiner nodes are 9 Mbps. We perform experiments with a fixed packet loss

rate at 10% and with varying packet loss rates at different communication links,

respectively. In each experiment for video conferencing, one user receives 90 frames

of video streams from each of the other users. The channel conditions for each of 24

communication links are listed in Table 3.2 and the quality weight factors are set to

be equal for all aggregation communication links.

At 10% packet loss rate for all links, Fig. 3.3 shows the average PSNR and

minimum PSNR across 9 received streams for each user averaged over 100 test runs

and 90 frames. We can see from Fig. 3.3 that PDMA-EP can outperform TDMA-

EP up to 0.8 dB, and outperform MULTICAST up to 1.7 dB. The average gain of

PDMA-EP over TDMA-EP and MULTICAST is 0.7 dB and 1.3 dB, respectively.

For the experiment with varying packet loss rate, we vary the packet loss rate

over a commonly seen range by generating random numbers that are uniformly

distributed on the set {0.1, 0.2, 0.3, 0.4, 0.5}, and then using these random numbers

as the packet loss rates of communication links. The set of the generated packet

loss rates is listed in Table 3.2. Fig. 3.4 shows the average PSNR and minimum

PSNR across 9 received streams for each user averaged over 100 test runs and 90

frames. In this experiment, PDMA-EP can outperform TDMA-EP by up to 0.97

dB, and outperform MULTICAST by up to 2.82 dB in PSNR. The average PSNR

gain of PDMA-EP over TDMA-EP and MULTICAST is 0.76 dB and 1.64 dB,
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respectively. Compared to MULTICAST, both PDMA-EP and TDMA-EP have a

larger gain in minimum PSNR among 9 received streams than the average PSNR.

This is consistent with the single-hop results in Section 3.3.1. The experiments on

other sets of randomly generated packet loss rates show similar results, i.e. PDMA-

EP outperforms TDMA-EP and MULTICAST in terms of the visual quality of

delivered video streams.

3.4 Chapter Summary

In this chapter, we formulate PDMA-based error protection for multi-stream

aggregation to be a min-max optimization problem and propose an iterative search

algorithm to achieve the optimal solution. Compared with TDMA-based and multicast-

based error protection schemes, the proposed error protection scheme has up to more

than 1 dB gain in terms of PSNR of delivered video streams.
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Figure 3.3: Schemes performance comparison with 10% packet loss rate for video

conferencing session shown in Fig. 2.1. PDMA-EP: Packet division multiplexing

access error protection; TDMA-EP: Time division multiplexing access error pro-

tection; MULTICAST: Dividing the bandwidth evenly among the streams. (a):

Average PSNR. (b): minimum PSNR across received 9 streams.
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Figure 3.4: Schemes performance comparison with varying packet loss rate for video

conferencing session shown in Fig. 2.1. PDMA-EP: Packet division multiplexing

access error protection; TDMA-EP: Time division multiplexing access error protec-

tion; MULTICAST: Dividing the bandwidth evenly among the streams. (a) Average

PSNR; (b) minimum PSNR across received 9 streams.
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Chapter 4

User Preference Heterogeneity

In the distributed multi-point video conferencing system examined in the pre-

vious chapter, each user receives all the other users’ video streams. One important

extension of this video conferencing application is that a user may have different

interest or preference in incoming video streams [34, 46, 47, 48]. For example, a

user may want to focus on conferee who is currently talking and want to receive this

stream with higher quality than other streams in which participants have less activ-

ities. To extend our video conferencing system to support the varying preferences,

we have defined the quality weight factor wj in (3.4) to deliver video streams with

differentiated quality. The problem of how to properly set wj remains, especially

at the intermediate communication links, in order to ensure good and fair video

quality for all video conference attendees. This is because a video stream aggre-

gated through the intermediate communication link may be delivered to users with

heterogeneous quality preferences. In this chapter, we discuss how to derive wj to

support the preference of each participant for incoming video streams and solve the

user-preference heterogeneity problem for video conferencing.

A traditional solution of user preference heterogeneity problem is to differ-
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entiate delivered visual quality in the last hop [47, 48]. For a multi-point video

conferencing system involving a mesh of multiple video combiners, this “last-mile”

method would assign equal quality weight factors wj in (3.4) for all (CNm − CNn)

transmissions, and only (CN−UNs) transmission would use the differentiated qual-

ity weight factors that are directly assigned by end users. An underlying assumption

of the “last-mile” solution is that the intermediate communication link has much

larger bandwidth than the last-mile communication link to the end user. Although

this bandwidth assumption is generally true, a video conferencing session shares

this bandwidth with thousands of other applications. The fast deployment of mul-

timedia applications has made the data traffic in the intermediate communication

links increasingly crowded. As a result, bandwidth reservation through Quality of

Service (QoS), such as the Resource Reservation Protocol (RSVP), has been used in

many deployments. The bandwidth of intermediate link available to a multimedia

application may not be significantly larger than the last-mile link. This calls for

investigating how to utilize the user preference information for multi-stream video

aggregation over intermediate communication links. If the intermediate combiner

node can take into account user preference when assigning the quality weight fac-

tors, the quality of delivered video streams can be improved, and better reflects the

users’ preference.

4.1 User Preference Heterogeneity Problem Formulation

As discussed above, for a (CN − UNs) link, the quality weight factor wj for

delivering the jth stream to users can be set according to users’ preference. For a

(CNm−CNn) link, delivering a video stream with quality lower than users’ desired

level may result in large maximum weighted distortion across streams defined in
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(3.4). It is desirable to deliver a video stream with higher visual quality than

the highest quality that all video conferencing users demand for that stream. More

generally, we develop a mechanism for the end users in a conferencing system to first

reach a consensus about the visual quality they demand, then aggregate multiple

streams in an optimal way so that each stream can be delivered with quality close

to or higher than the “consensus” quality.

To facilitate our discussion, we quantify the preference of user s for stream j

as θs,j. Note that θs,s = 0, and θs,j is normalized so that
∑J

j=1 θs,j = 1. Although we

may be able to find optimal solution with packet loss rate taken account, considering

the delay to transmit channel condition to video combiners, it is difficult for video

combiners to be fully aware of the time varying channel condition. Since a higher

throughput generally leads to higher visual quality for a video stream, by assuming

the transmission channels are error-free, we simplify the problem of optimizing the

visual quality of video conferencing to a problem of optimizing the throughput of

video streams for end users over error-free channels. We now consider how to reach a

consensus on user desired throughput from video combiner CNm to CNn. We denote

Φ as the set containing the indices of user nodes whose streams are transmitted

through video combiner CNm to CNn, and denote Ψ as the set containing the indices

of user nodes whose received streams are transmitted through video combiner CNm

to CNn. Let J = |Φ| be the number of streams to be merged and S = |Ψ| be

the number of users who receive those streams. Here, the operation | · | is to get

the number of elements in a set. Let wj be the normalized quality weight factor

for stream j in Φ, and
∑

j∈Φ wj = 1. We use BV
s to denote the bandwidth of a

(CN − UNs) link Vs, and BC to denote the bandwidth of a (CNm − CNn) link

Cmn. For user s in Ψ, the throughput of stream j along the (CN −UNs) link Vs are

47



considered as user s’s preference. In other words, if the bandwidth utilization of link

Vs is πs ∈ [0, 1], the amount of data that user s receives for stream j is θs,j · πs ·BV
s .

Based on the definition, the throughput of this stream j transmitted from CNm to

CNn is wj · BC . Therefore, considering the stream j for user s ∈ Ψ in link Vs, the

bandwidth utilization is:

πj
s = min

{
1,

wjB
C

θs,jBV
s

}
. (4.1)

For the (CNm − CNn) link Cmn, we would like to choose wj such that the

bandwidth utilization can be efficient for all of user s, s ∈ Ψ. For all the streams

transmitted from CNm to CNn, we formulate a consensus problem to maximize the

minimum bandwidth utilization for all users in Ψ:

max
{wj ,∀j∈Φ}

min
{j∈Φ; s∈Ψ}

πj
s, subject to

∑
j∈Φ

wj = 1; (4.2)

4.2 Proposed Consensus Algorithm

The formulated optimization problem (4.2) can be solved by:

wj =
wj∑

j∈Φ wj

, where wj = max {θs,jB
V
s , ∀s ∈ Ψ} (4.3)

To verify that (4.3) is the optimal solution to (4.2), we first rearrange the inner

objective function in problem (4.2) as:

min
{j∈Φ; s∈Ψ}

πj
s = min

j∈Φ
{min

s∈Ψ
πj

s} = min
j∈Φ

{1, wjB
C

θsj ,jBV
sj

}, where sj = arg max
s∈Ψ

{θs,jB
V
s }.
(4.4)

Bringing in the solution (4.3) into the minimization function in (4.4), we have:

min
{j∈Φ; s∈Ψ}

πj
s = min{1, BC

∑
j∈Φ wj

}. (4.5)
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We consider the following two cases for the optimality of (4.3).

Case 1: BC <
∑

j∈Φ wj.

Suppose {w?
j , j ∈ Φ} is a set of optimal solution and π? j

s is the correspond-

ing bandwidth utilization. Then, {w?
j} and {wj} should satisfy the constraint in

problem (4.2):
∑
j∈Φ

w?
j =

∑
j∈Φ

wj = 1. (4.6)

Rearrange (4.6), we have
∑

j∈Φ(w?
j − wj) = 0.

Suppose there exists a w?
α > wα for α ∈ Φ. Then there exists at least w?

β <

wβ for some β 6= α, β ∈ Φ. Then,

w?
βBC

θsββBV
sβ

<
wβBC

θsββBV
sβ

(4.7)

From (4.4), (4.5), and (4.7), the minimum bandwidth utilization satisfies:

min
{j∈Φ; s∈Ψ}

π? j
s < min

{j∈Φ; s∈Ψ}
πj

s. (4.8)

This is a contradiction to w?
j being the optimal solution. Therefore, wj = w?

j , ∀j ∈ Φ

is the optimal solution.

Case 2: BC ≥ ∑
j∈Φ wj.

From (4.5), we have min{j∈Φ; s∈Ψ} πj
s = 1, which has achieved the maximum

possible bandwidth utilization. Thus, {wj} is the optimal solution. Note that in

this case, {wj} may not be the unique solution that provides maximum bandwidth

utilization.

The consensus approach is suitable for the video conferencing system where

the link to end user is relatively dedicated to a single user, such as the broadband

DSL or cable modem links. In this case, the bandwidth of end user link is quite

stable and can be known to all video combiner nodes. When end user bandwidth
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BV
s is the same from user to user, consensus algorithm (4.3) can be simplified to

wj =
wjP

j∈Φ wj
, where wj = max {θs,j, ∀s ∈ Ψ}. This simplified approach can be used

when the exact bandwidth for end users are not known, but approximately the same

from user to user.

When the channel condition is taken into account, though (4.3) may not give

optimal video quality anymore, our experimental results presented in the next sec-

tion show that the proposed throughput-based optimal approach can still provide

significant gain.

4.3 Experimental Results

To evaluate the effectiveness of our proposed consensus strategy, we first per-

form experiments on a two-CN-node case, then the experimental results on a multi-

point video conferencing system with multiple hops are presented.

4.3.1 Experimental Results for A Two-CN-Node Case

The topology of this case is shown in Fig. 4.1, where UN4 and UN5 have

significantly different preference for the video streams from UN1, UN2 and UN3.

The preference values are listed in Table 4.1. We study the video combiner CN1 to

illustrate the performance of our proposed consensus strategy. In this experiment,

the packet loss rate is set to be 0.1 for all the communication links. The bandwidth

is set to be 1.2 Mbps for U1, U2 and U3, 2.1 Mbps for V4 and V5; the bandwidth

limitation for C12 ranges from 2.1 Mbps to 4.5 Mbps. The three input frames

for UN1, UN2 and UN3 are from “Suzie,”“Akiyo” and “Claire,” respectively. The

traditional “last-mile” solution [47, 48] would set the quality weight factors as 1/3
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Figure 4.1: A two-video-combiner case: “Suzie”,“Akiyo” and “Claire” are aggre-

gated from UN1, UN2 and UN3, to UN4 and UN5. UN4 is interested in receiving

“Suzie” and “Akiyo” with the preference factor of 0.2 and 0.8; UN5 is interested in

receiving “Akiyo” and “Claire” with the preference factor of 0.3 and 0.7 respectively.

for the aggregation link C12, while the proposed consensus algorithm described in

Section 4.2 gives the quality weight factors as listed in Table 4.1.

Fig. 4.2 shows the maximum of weighted distortion across streams received by

each user, defined as the objective function to be minimized in (3.4). The results are

averaged over 100 test runs. As we can see, by utilizing user preference information

more effectively, the consensus strategy can provide much higher quality than the

traditional “last-mile” solution. The improvement in the PSNR of the stream that

has the maximum weighted distortion is up to 2.13 dB in this experiment. When the

bandwidth of C12 is large enough so that the throughput of every video stream ag-

gregated over C12 is larger than the throughput of the same video stream aggregated

over V4 and V5, the performance of these two strategies become the same. This is
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Table 4.1: Consensus strategy:“Consensus” column shows the preference value after

the consensus procedure.

Video streams User4’s User5’s Consensus

from user node UNx preference preference preference

UN1 0.2 0.0 0.12

UN2 0.8 0.3 0.47

UN3 0.0 0.7 0.41

because that, in this case, the assumption of the “last-mile” solution becomes valid,

i.e. the intermediate links have unlimited bandwidth [47, 48]. This observation is

also consistent with our analysis in Section 4.2. The Case 2 in Section 4.2 indicates

that, when the bandwidth of Cmn is large enough, the bandwidth utilization is 100%

and the optimal solution may not be unique.

4.3.2 Experimental Results for A Multi-Point Video Conferencing

We also perform an experiment on the ten-user multi-point video conferencing

shown in Fig. 2.1 to compare the performance of proposed consensus algorithm to the

“last-mile” solution. The encoded format of input streams is the same as described

in Section 3.3.1. The bandwidth is set the same as the experiment in Section 3.3.2,

and the packet loss rates are listed in Table 3.2. To simulate the varying user

preference for different incoming video streams, we generate 90 random numbers

which are uniformly distributed on the set {1, 2, 3, 4, 5}, where 1 indicates the lowest
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Figure 4.2: Schemes performance comparison with packet loss rate 10%. The band-

width is 2.1 Mbps for V4 and V5, and 1.2 Mbps for U1, U2 and U3. The three input

streams for UN1, UN2 and UN3 are “Suzie”,“Akiyo” and “Claire”, respectively.
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preference and 5 is the highest. These 90 random numbers are then grouped into

10 groups and normalized per group. We then use each group of numbers as the

user preference for one user as shown in Table 4.2. Since a conference attendee’s

own stream does not need to be transmitted to himself/herself, the user preference

values in the diagonal line of Table 4.2 are always zero.

In this experiment, one user receives 90 frames of video streams from all the

other users. For both the consensus approach and “last-mile” approach, quality

weight factor wj in Equation (3.4) for Vi link is set to be the value in ith row jth

column of Table 4.2. For intermediate links C12, C21, C23, and C32, our proposed

consensus approach derives the quality weight factors as listed in Table 4.3, while

for the “last-mile” approach, wj is set to be the same value for all streams for

C12, C21, C23, and C32. Fig. 4.3 shows the PSNR of the stream that has the maximum

weighted distortion across 9 received streams for each user. It is averaged over

repeated 100 test runs and 90 frames. We can see that the consensus approach

either performs the same as “last-mile” approach or performs better. It has up to

2.64 dB gain improvement in this minimum PSNR over “last-mile” approach. For

user 1-3 and user 8-10, consensus solution performs better and the average gain in

terms of the PSNR of the stream that has the maximum weighted distortion is 1.24

dB. For user 4-7, the intermediate links that aggregate multiple streams towards

them are C12 and C32. Since C12 and C32 only aggregate three streams, these two

links have relatively larger bandwidth per stream when we compare the bandwidth

per stream to V4, V5, V6 and V7, where 9 streams are aggregated. Therefore, “last-

mile” solution and consensus solution have the same performance for user 4-7.
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Table 4.2: The user preference for incoming stream from user USx to receiving node

UNx. The video conferencing topology is shown in Fig. 2.1.

Preference US1 US2 US3 US4 US5 US6 US7 US8 US9 US10

UN1 0 0.16 0.06 0.13 0.09 0.16 0.13 0.02 0.09 0.16

UN2 0.08 0 0.12 0.12 0.15 0.12 0.08 0.03 0.15 0.15

UN3 0.14 0.24 0 0.05 0.09 0.24 0.05 0.05 0.09 0.05

UN4 0.15 0.08 0.04 0 0.04 0.15 0.12 0.18 0.12 0.12

UN5 0.16 0.11 0.06 0.13 0 0.16 0.03 0.13 0.06 0.16

UN6 0.14 0.09 0.04 0.16 0.14 0 0.04 0.16 0.09 0.14

UN7 0.03 0.12 0.06 0.15 0.15 0.09 0 0.09 0.15 0.15

UN8 0.19 0.07 0.07 0.14 0.14 0.07 0.11 0 0.14 0.07

UN9 0.05 0.10 0.05 0.24 0.10 0.18 0.13 0.10 0 0.05

UN10 0.16 0.08 0.03 0.16 0.16 0.06 0.06 0.16 0.13 0
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Table 4.3: The consensus preference of link Cmn for incoming stream from user USx

Preference US1 US2 US3 US4 US5 US6 US7 US8 US9 US10

C12 0.50 0.32 0.18 0 0 0 0 0 0 0

C21 0 0 0 0.13 0.15 0.24 0.13 0.04 0.15 0.16

C23 0.18 0.09 0.07 0.22 0.15 0.17 0.12 0 0 0

C32 0 0 0 0 0 0 0 0.37 0.30 0.33
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Figure 4.3: Schemes performance comparison in terms of average PSNR (dB) for

video conferencing session shown in Fig. 2.1. The packet loss rates are shown in Ta-

ble 3.2; The user preferences are listed in Table 4.2. Last Mile: Last-mile approach;

Consensus: Proposed consensus approach.
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4.4 Chapter Summary

To accommodate the user preference heterogeneity in a multi-point video con-

ferencing system, in this chapter, we propose a distributed algorithm to reach con-

sensus among all conferees. This algorithm is performed in each intermediate hop

for aggregated streams, and thus the perceptual quality of delivered video streams

can be improved compared to the “last-mile” solution.
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Chapter 5

Multi-Hop Awareness

Distributed communication systems have advantages of flexible resource allo-

cation and scalability for transmitting large number of multimedia streams. Mul-

timedia services deployed over distributed systems have attracted a lot of research

attention [8, 51, 75, 1] in recent years. The deployment of such multimedia systems

often involves concurrently transmitting multiple video streams over sequential mul-

tiple hops. In a multi-hop environment, data payload arrives at an end user after

being aggregated over a series of distributed nodes. In addition to performing the

store-and-forwarding functions, most nodes in these systems are powerful comput-

ing devices. These nodes can implement complicated and intelligent tasks over all

protocol layers, including source coding and decoding, channel coding and decoding,

active routing, and quality-of-service (QoS) provisioning.

In a sequential multi-hop environment, a simple way to apply source and

channel coding for multimedia data payload is to consider multiple hops from a

transmitter to an end user as one communication link, and then process the data

payload based on end-to-end channel condition. This approach may not achieve low

visual distortion for delivered content because the bandwidth and error condition of
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each hop may be different. In order to improve visual quality of delivered content,

it has been suggested in the recent literature [56, 43, 31, 36] that applying hop-

by-hop processing based on each hop’s resource and channel condition can result in

significant improvement in terms of the visual quality of transmitted streams. In [56],

an overlay system is designed by partitioning end-to-end path into segments, and

channel decoding and re-encoding is done in the intermediate nodes. An algorithm

was proposed in [43] to reduce end-to-end delay of video stream transmission in a

multi-hop wireless environment. In [31] and [36], algorithms were proposed to adjust

rate allocation and channel coding in a coordinated fashion to minimize the visual

distortion of a video stream transmitted over multiple parallel paths between two

nodes.

Although hop-by-hop processing methods address some issues of video stream

transmission in a multi-hop environment, transmitting multiple video streams over

multiple unreliable hops faces more challenges. First, the data traffic in the interme-

diate communication hops has become increasingly crowded due to the fast-pace of

multimedia application deployments. As a result, bandwidth reservation by Qual-

ity of Services (QoS) mechanism, such as Resource Reservation Protocol (RSVP),

has been used in many deployments. Since a video application can have a limited

bandwidth assigned in each communication hop, resource allocation across multiple

video streams over multiple hops is essential for delivering multiple video streams

with good visual quality. Considering that video streams transmitted over a hop

may then be aggregated over multiple hops with heterogeneous channel conditions,

in addition to the multi-stream and user preference heterogeneities discussed in the

previous chapters, resource allocation needs to explore the bandwidth difference of

multiple hops. Second, information loss caused by channel errors, such as the fading
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or interference in wireless channel and congestion in wireline channel, creates an-

other challenge for multi-hop multi-stream video applications. In real-time services,

where the low delay is expected, FEC is a promising error-resilient technique. Sup-

ported by powerful distributed nodes, the idea of multi-hop FEC for single video

stream transmission was explored in literature [56, 32, 21]. In these methods, each

transmitter node solves FEC problem based on resource availability and channel

reliability of one hop. There is no overall consideration of sequential multiple hop’s

resource and channel condition in these prior arts.

Given a limited amount of bandwidth, applying FEC and bandwidth allocation

locally in one node may not achieve good visual quality for every aggregated video

streams in a multi-hop multi-stream environment. As an example shown in Fig. 5.1,

video streams 1 and 2 are first transmitted over hop 1, stream 1 is then transmitted

over hop 2 to an end user, and stream 2 is transmitted over hop 3 to another end

user. With the known channel condition of hop 1, i.e., bandwidth and channel

error, the source and FEC symbols can be optimally assigned to achieve good visual

quality for both video streams and maintain fairness across streams based on the

algorithm proposed in Section 3.2. Similarly, with the known channel condition of

the hop 2, the source and FEC symbols can be optimally assigned for stream 1 to

achieve the minimum visual distortion of delivered content. Assuming hop 2 has

severe channel loss, strong FEC should be applied to stream 1 achieve optimal visual

quality. The strong FEC with limited bandwidth may result in that the number of

source symbols of stream 1 demanded for optimal error protection assignment is less

than the number of source symbols received. Certain number of source symbols of

stream 1 delivered over hop 1 may be wasted and not aggregated over hop 2. In other

words, even if these wasted source symbols are not successfully delivered over hop 1,
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the visual quality of stream 1 should not be degraded for end user. However, after

aggregated over hop 1, stream 2 is transmitted over a hop with relatively low channel

loss. There are more source symbols of stream 2 demanded than received from hop

1. The video content loss of stream 2 over hop 1 cannot be recovered in hop 2, no

matter how much bandwidth is available and how strong FEC is applied. In order to

improve the visual quality of stream 2 delivered to end user, we should allocate more

bandwidth to stream 2 in hop 1. In this way, visual quality of stream 2 delivered

to the end user can be improved without degrading the visual quality of stream 1

delivered to the end user. This better strategy of bandwidth allocation requires hop

1 to be aware of the channel condition of hops 2 and 3. This observation motivates

us to investigate the multi-hop awareness for multiple video streams’ transmission.

If we allocate resource and apply FEC to multiple video streams with multi-hop

awareness, we should be able to improve the overall visual quality of the delivered

video streams.

Based on multi-hop awareness, we propose a multi-hop multi-stream video ag-

gregation scheme. This scheme searches for an optimal resource allocation and FEC

configuration that provides good and fair visual quality to all video stream con-

sumers. It explores the heterogeneity in the content characteristics, and in channel

conditions of multiple hops. We also discuss practical issues of multi-hop awareness

when applying the proposed scheme to real-time video applications. The simula-

tion results show that our proposed scheme can outperform the scheme without

multi-hop awareness in terms of the visual quality of delivered content.

The rest of this chapter is organized as follows. In Section 5.1, we formulate

the multi-hop multi-stream video aggregation problem as an optimization problem.

In Section 5.2, we propose an algorithm to solve this problem. Experimental results
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are shown in Section 5.3 and conclusions are drawn in Section 5.4.

5.1 Multi-Hop Multi-Stream Aggregation Problem Formulation

Using the same building blocks as described in Section 2.2 of Chapter 2 [15], in

this section, we formulate the multi-hop multi-stream video aggregation over packet

erasure channel as an optimization problem. The problem formulation explores

the heterogeneity in video stream characteristics and channel conditions, as well

as multi-hop awareness. Although multi-hop multi-stream video aggregation can

be applied in many multimedia applications, the example application we focus on

is the proposed distributed multi-point video conferencing system as illustrated in

Fig. 2.1.

To achieve good visual quality of a single video stream delivered in a multi-

hop environment, each transmitter node should perform FEC and rate shaping in a

distributed manner [11, 56, 43, 31]. Similarly, multi-stream aggregation scheme can

be performed in each transmitter node in the multi-hop multi-stream environment

to obtain good visual quality. Multiple video streams are merged frame-by-frame

as described in the previous chapters. For simplicity, we omit the frame index from

the notation in latter discussions.

Suppose there are J video streams to be transmitted over K communication

hops to U end users with fixed packet length L, for kth hop, we first use equal error

protection algorithm described in Section 3.2 to apply error protection to base-

layers of multiple video streams. Then, there are N packets and L segments left

to be used for FGS-layers. In order to deploy the PDMA-based error protection,

we need to determine the number of segments Lj to be allocated to the jth stream

in the kth hop, and the number of RS protection symbols to be assigned to each

62



Figure 5.1: A simple example of multi-hop multi-stream video aggregation. White

part indicates source symbols and shaded part indicates error protection symbols.

Optimal: The amount of source symbols to achieve optimal visual quality. Available:

The amount of source symbols received from the previous hop.
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segment. We use aj,l to represent the number of source symbols of stream j that

is allocated for segment l. If a segment l is assigned to stream j, we have aj,l > 0.

Otherwise, aj,l = 0. The overall segment-to-stream assignment can be represented as

a J×L matrix A with [A]j,l = aj,l. Note that in order to reduce the communication

overhead of representing the assignment pattern, we assume each segment can only

be assigned to one stream. Therefore, there is only one non-zero element in each

column of A. The number of non-zero elements in jth row of A is then the number

of segments we determine to assign to stream j.

We define NZ() as the function that obtains the number of non-zero elements in

a column or row vector. For PDMA-based multi-stream video aggregation strategy,

we have NZ(acl) = 1, ∀l ∈ {1, 2, ...L}, where acl denote the lth column vector

of A. Bandwidth constraint for multi-stream aggregation can be represented as

∑J
j=1 Lj = L, where Lj = NZ(arj) and arj denotes the jth row vector of A. For

unequal error protection, we apply stronger RS codes for more important data, i.e.,

aj,l1 ≤ aj,l2 , if l1 < l2 and segments l1 and l2 are allocated to the same video

stream.

To provide good video quality to all end users as well as fairness across users,

we formulate the multi-hop multi-stream video aggregation problem for hop k as

the following min-max optimization problem:

min
A

( max
{u∈{1,2,...U},j∈{1,2,...J}}

(wu,j · EDu,j(A))) (5.1)

subject to 



NZ(acl) = 1, ∀l ∈ 1, 2, ...L

NZ(arj) = Lj,
∑J

j=1 Lj = L

aj,l1 ≤ aj,l2, if aj,l1 > 0, aj,l2 > 0, and l1 < l2

∑L
l=1 aj,l ≤ Rpj
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Here, EDu,j is the expected distortion of stream j received by end user u, and Rpj

is the rate of source symbols correctly received from the pervious hop. wu,j is the

user preference factor of user u for stream j. The larger wu,j indicates that user

u desires higher visual quality of stream j. It is normalized for each user u, i.e.

∑J
j=1 wu,j = 1.

In (5.1), the fourth constraint is the multi-hop constraint. It indicates that

the source symbols available for assignment are the successfully FEC decoded source

symbols received from the previous hop. For a compressed video stream, because

of encoding dependency, some source symbols are dependent on previous part of

source symbols in the same video stream to provide useful information to reduce

the decoded video stream distortion. In a multi-hop environment, if the success-

fully FEC decoded source symbols received from previous hop cannot contribute to

reduce visual distortion of the video stream, these source symbols should not be

further aggregated. Therefore, Rpj in (5.1) only represents the rate of source sym-

bols that can contribute for reducing video stream distortion. For MPEG-4 FGS,

source symbols are obtained bit-plane by bit-plane. If a source symbol is lost, the

contribution of source symbols following this source symbol is negligible to reduce

the video stream distortion. By exploiting UEP in the stair-case fashion [7, 50] to

FGS layer, Rpj, the rate of source symbols that can contribute for reducing video

stream distortion, can be approximated to the rate of successfully FEC decoded

source symbols.

5.1.1 Multi-hop Error Propagation

To solve the formulated problem (5.1), for each hop, we need to determine

the PDMA-based error protection pattern. Since the target function of (5.1) is the
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expected distortion of the streams that end users consume instead of the receiver of

current hop, different kinds of communication hops may have different strategies to

reduce the visual distortion of the streams that end users view. We can categorize

communication hops to two different types and solve (5.1) with different approaches

for each type of hops.

The first kind of hops is a communication link that directly transmits streams

to an end user. We refer to them as EH hops. Since the video stream aggregated

over this hop is directly consumed by end user, the error protection strategy and re-

source allocation for EH hops can be considered independent from other hops. The

visual quality of streams that EH hops aggregate cannot affect the visual quality of

streams that other hops aggregate in the system. To achieve the overall min-max

visual quality of streams received by all end users, the best strategy of EH hops is

just performing an optimized UEP and resource allocation algorithm based on its

own transmission channel condition. The formulated multi-hop multi-stream prob-

lem (5.1) is then simplified to a single-hop multi-stream video aggregation problem

as formulated in our previous study [11] in Chapter 2.

The second kind of hops is an intermediate communication link that does not

directly transmit streams to an end user. We refer to them as IH hops. The video

streams aggregated over this hop are further aggregated over other hops towards

end users. For IH hops, we discuss two different cases for video stream aggregation:

overflow and underflow. Given a fixed bandwidth, if the number of a video stream

source symbols needed for the current hop’s optimal FEC assignment is less than

the number of source symbols correctly received from the previous hop, we refer to

this condition as overflow. Otherwise, if the number of the source symbols needed

for the current hop’s optimal FEC assignment is larger, it is underflow. If overflow
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happens, visual quality of this stream received by end users is not affected by the

video aggregation of previous hop, rather determined by the optimal strategy of

current hop. Based on this observation, if overflow happens in every intermediate

hop in a system, the visual quality of delivered streams is only determined by the

optimal strategy of EH hops. In this case, applying the single-hop multi-stream

scheme [11] in EH hops can achieve the optimal min-max distortion for all video

streams received by end users. However, when underflow happens, the EH hops

do not have enough source symbols to be assigned to achieve the optimal expected

distortion. The delivered visual quality is degraded from the optimal visual quality

that EH hop can deliver if there are enough source symbols received. This hop-

to-hop error propagation caused by underflow can significantly degrade the visual

quality of streams received by end users in a multi-hop multi-stream environment.

5.1.2 Resource Allocation Strategy on Error-Free Channel

For the strategy of each kind of hops, we first consider error-free channel for

simplicity, and then extend it to error-prone channel by considering error protection

in addition to bandwidth allocation. We can reformulate problem (5.1) for error-free

channels as follows:

min
A

( max
{u∈{1,2,...U},j∈{1,2,...J}}

(wu,j ·Dj(Ru,j(A)))) (5.2)

subject to 



NZ(acl) = 1,∀l ∈ 1, 2, ...L

NZ(arj) = Lj,
∑J

j=1 Lj = L

aj,l ∈ {0, N}
∑L

l=1 aj,l ≤ Rpj
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Here, Ru,j is the source symbol rate of stream j received by end user u. We would like

to achieve min-max optimization on Dj(Ru,j), the deterministic distortion instead of

the expected distortion. This deterministic distortion is caused by the rate-shaping

of video streams due to bandwidth limitation. Because there is no error protection

symbols assigned for error-free channel, A has been simplified to only take two

possible values, the length of segment N or zero.

For EH hops, this formulated problem can be easily solved by bi-section search

on R-D curves of aggregated video streams [11]. We apply this approach to every

EH hops, and denote the corresponding rate assignment solution as R̄u,j =
∑L

l=1 aj,l

for stream j user u.

It is not trivial to solve (5.2) for IH hops. Since Ru,j is the rate of video stream

that end user receives, it does not have obvious relation to the rate we should assign

for IH hops. This problem formulation needs further revising. For underflow cases,

because the bandwidth bottleneck is at the IH hop to provide visual quality of stream

j demanded by end users, we should maximize the delivered source symbol rate for

stream j, i.e., minimize the delivered visual distortion for stream j at the IH hop.

For overflow cases, the bottleneck is not at the IH hop, we should maximize the

margin between EH demanded rate and IH provided rate to avoid the bottleneck.

To facilitate our discussion, for an IH hop, we use Θj to denote the index set of end

users that video streams j is aggregated to. For example, in the multi-hop multi-

stream environment shown in Fig. 2.1, for IH hop C12, Θ1 = {4, 5, 6, 7, 8, 9, 10}. Let

DIj be the comparison result of the rate provided by current IH hop and the rate

demanded by EH hops for stream j. We define DIj as:

DIj = Comp(Dj(Rj(A)), max
{u∈Θj}

(Dj(R̄u,j)), δ) (5.3)

Here, R̄u,j is the rate of video stream j that end user u demanded for EH hop to
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achieve the min-max optimal distortion across received streams. To obtain Dj(R̄u,j),

we solve (5.2) for the EH hop that aggregates streams to user u, assuming there are

enough source symbols provided for each aggregated stream. Rj is the rate assigned

in the current hop. We define a function Comp( ) to compare EH demanded rate

and IH provided rate, and the output of Comp( ) is to indicate the objective of our

strategies for overflow and underflow cases:

Comp(x, y, δ) =





x− δy, if x− δy ≤ 0

x, if x− δy > 0
(5.4)

δ ∈ [0, 1] is a relaxation parameter that can be set by system administrator of

a communication system to adjust the usage scale of Dj(R̄u,j), i.e., the feedback

distortion value to IH hops from EH hops. By defining DIj, we can reformulate

(5.2) as:

min
A

( max
{j∈{1,2,...J}}

( max
{u∈Θj}

(wu,j) ·DIj)) (5.5)

subject to 



NZ(acl) = 1,∀l ∈ 1, 2, ...L

NZ(arj) = Lj,
∑J

j=1 Lj = L

aj,l ∈ {0, N}
∑L

l=1 aj,l ≤ Rpj

We find that for δ = 1, if every IH hop in a system seeks the optimal solu-

tion of (5.5) and EH hop seeks the optimal solution of (5.2), the system should

achieve the optimal min-max distortion as defined in (5.2). This can be shown by

contradiction as follows:

Assume every IH hop in a multi-hop multi-stream aggregation system achieves

the optimal solution of (5.5), and every EH hop achieves the optimal solution of
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(5.2). We have the overall min-max distortion as D¦ = wu¦,j¦ ·Dj¦(Ru¦,j¦). Suppose

there exists another optimal min-max distortion D? = wu?,j? · Dj?(Ru?,j?), and

D? < D¦, we can discuss the following three cases for contradictions:

Case 1: If there is no underflow in the EH hop which aggregates stream j¦ to

user u¦, D¦ is then the maximum distortion of video streams aggregated over this

EH hop to user u¦. D? < D¦ is contradict to our assumption that every EH hop

achieves the min-max distortion as defined in (5.2).

Case 2: If there is underflow in the EH hop which aggregates stream j¦ to

user u¦, but not in the stream j¦, we still have D¦ as the maximum distortion of

video streams aggregated over this EH hop. This results in the same contradiction

as Case 1.

Case 3: If there is underflow of stream j¦ for user u¦ in EH hop, there must

exist a hop k, such that

D¦ = wu¦,j¦ ·D(Ru¦,j¦) = max
{j∈{1,2,...J}}

[ max
{u∈Θj}

(wu,j) ·Dk
j (R

k
j )]. (5.6)

Here, Dk
j is the distortion of stream j aggregated over hop k and Rk

j is the correspond-

ing rate the receiver of hop k received. Based on the underflow assumption, we must

have Dk
j¦(R

k
j¦) < maxu∈Θj¦ (Dj¦(R̄u,j¦)). Therefore, the output of function Comp()

in (5.5) is Dk
j¦(R

k
j¦). As the result, D¦ is the min-max distortion achieved by solving

(5.5) for the aggregation hop k. However, D? < D¦ indicates the aggregation hop

k can achieve lower distortion. D? < D¦ is then contradict to our assumption that

every IH hop in a multi-hop multi-stream aggregation system achieves the min-max

distortion as defined in (5.5).

Based on the analytical study of Cases 1-3, D¦ is the optimal min-max video

stream distortion for the multi-hop multi-stream aggregation system.

70



5.1.3 Multi-Hop Multi-Stream Aggregation over Error-Prone Chan-

nel

Based on (5.5), by substituting deterministic distortion by expected distortion,

and rate-based resource allocation by resource allocation that considers PDMA-

based FEC, we now arrive at the problem formulation of multi-hop multi-stream

video aggregation over packet erasure channel:

min
A

(max
{j}

( max
{u∈Θj}

(wu,j) · Comp(EDj(A), min
{u∈Θj}

(ĒDu,j), δ))) (5.7)

subject to 



NZ(arl) = 1,∀l ∈ 1, 2, ...L

NZ(acj) = Lj,
∑J

j=1 Lj = L

aj,l1 ≤ aj,l2, if aj,l1 > 0, aj,l2 > 0, and l1 < l2

∑L
l=1 aj,l ≤ Rj

Here, ĒDu,j is the expected distortion of stream j for the end user u if there

is no underflow. It can be obtained by assuming there are enough source symbols

provided for optimal FEC assignment of each stream and using the single-hop multi-

stream scheme described in Chapter 2 for every EH hops. ĒDu,j is then feedback

to IH hops. By setting ĒDu,j to zero, (5.7) becomes equivalent to single-hop multi-

stream problem formulation (5.1) for EH hops. Therefore, we can use (5.7) as a

unified problem formulation for both IH hops and EH hops in multi-hop multi-

stream aggregation.
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5.2 Proposed Algorithm

5.2.1 An Iterative Search Algorithm

We now propose an iterative search algorithm to solve (5.7). This algorithm

starts from an initial point which is close to optimal solution and iteratively moves

towards the direction of reducing min-max expected distortion.

Step 1: Initialization

For a successful iterative searching algorithm, it is critical to start with an

initial point that is close to optimal solution. This initial point for our formulated

problem (5.7) is the segment assignment {L(0)
j } for PDMA-based error protection.

We can obtain this initial point by using the bi-section search on R-D curves similar

to bi-section search described in Section 3.2.3.

Step 2: Coarse search

In this step, we determine the searching direction towards optimal PDMA-

based FEC segment assignment. For each segment assignment Lj with the available

source symbol rate Rj, we can obtain an expected distortion for every stream j:

EDVj = max
{u∈Θj}

(wu,j) · Comp(EDj(A), min
{u∈Θj}

(ĒDu,j), δ). (5.8)

Assuming that we have performed k iterations, we will find:

jmax = arg maxj(EDVj),

jmin = arg minj(EDVj),

ED
(k)
max = max{j}(EDVj).

(5.9)

We then take one segment from stream jmin and give one more segment to the
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stream jmax:

L
(k+1)
jmax

= L
(k)
jmax

+ 1

L
(k+1)
jmin

= L
(k)
jmin

− 1

L
(k+1)
j = L

(k)
j ,∀j 6= jmax, j 6= jmin

(5.10)

The corresponding expected distortion for the two streams that are involved in

exchanging segments, namely, EDVjmax and EDVjmin
, are also updated. The above

coarse search procedure is repeated until EDV
(k+1)
max ≥ EDV

(k)
max.

Step 3: Fine search

In coarse search, we only examine the video streams with the minimum and

maximum expected distortion, and change segment assignments to these two streams.

In this step, we perform another round of finer iterative search that considers all of

aggregated video streams to obtain the min-max expected distortion. Let EDV
(k−1)
max

be the maximum distortion in the (k − 1)th iteration. In the kth iteration, we per-

form J − 1 trials by taking one segment from stream j, j 6= jmax, and assigning one

more segment to stream jmax. In the jth trial, if the updated maximum distortion is

smaller than EDV
(k−1)
max , it implies that there exists a better solution than the result

in the (k − 1)th coarse search iteration. We will then use the segment assignment

in trial j as a new start-point, and move to next iteration to perform coarse search

again. Otherwise, with a total of J − 1 trials of such examination, if the maxi-

mum distortions in all trials are not smaller than EDV
(k−1)
max , the finer searching is

complete in the kth iteration and {L(k−1)
j } is the optimal segment assignment.

Note that the optimal solution to (5.7) is not unique and there may exist

several sets of solutions with the same min-max distortion. Using the proving-by-

contradiction approach [11], we can show that there does not exist a better solution

that can achieve smaller maximum distortion across streams than the one achieved
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by our proposed algorithm.

5.2.2 Practical Implementation Issues

The key idea of multi-hop awareness is that the pervious hops a video stream

is aggregated over are aware of the condition of the following hops that the same

video stream is going to be aggregated over. This awareness is generally enabled

by feedback. In our formulated problem (5.7), every hop needs to be aware of the

end user optimal expected distortion ĒDu,j to achieve the overall min-max expected

distortion for multi-hop multi-stream system. However, in the practical use, there

are obstacles to obtain ĒDu,j. First, some applications of multi-hop multi-stream

aggregation, such as video conferencing, is real-time. To obtain ĒDu,j, we need to

obtain the R-D information of video streams and channel condition of EH hops,

and then feedback expected distortion information to IH hops. This feedback may

create a delay too long to be acceptable for real-time applications. Second, the

channel condition is varying, it results in the varying optimal expected distortion.

Despite these obstacles, we can take advantage of the strong correlations between

frames to alleviate these problems since the video stream R-D characteristics vary

quite slowly from one frame to the next frame except at scene changes. In addition,

the PDMA-based error protection scheme can further reduce the frame-by-frame

variation of visual quality by exploring heterogeneity in R-D characteristics across

multiple streams. Therefore, we can feedback the expected distortion ĒDu,j of

previous video frames from EH hops to IH hops, then use these feed back values

in (5.7) to obtain optimal solution of current frame. Since most feedback channel

is low rate, we average the optimal expected distortion over a certain number of

frames (30 in our experiments), then feed it back to IH hops.
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Table 5.1: The optimal expected distortion of video streams averaged over every 30

frames

Stream Index 1 2 3 4 5

PSNR(dB) averaged over frames 1-30 30.85 30.95 30.68 30.87 32.90

PSNR(dB) averaged over frames 31-60 31.11 31.05 30.78 31.13 32.98

PSNR(dB) averaged over frames 61-90 30.96 30.97 30.72 30.96 32.97

To show the feasibility of this method, we perform an experiment on the video

conferencing system as shown in Fig. 2.1. We set the bandwidth of uplink for each

user as 3 Mbps and the bandwidth of downlink as low as 2-3 Mbps to avoid underflow

condition. The bandwidth of IH hops is 14.4 Mbps. Input video streams is set to be

the same as experiments described in Section 3.3.2. With the packet loss rate shown

in Table 5.2 and user preference shown in Table 5.3, the optimal expected distortion

of video stream 2-6 that user 1 received and averaged over every 30 frames is shown

in Table 5.1. We can see that the expected distortion remains relatively stable with

less than 0.27 dB difference in terms of PSNR. Other streams received by end users

demonstrate similar characteristics.

In the practical implementation of the proposed algorithm, δ in (5.7) is ad-

justed to make our proposed scheme more adaptive to the varying channel condition

and can be set by a system administrator based on the channel condition of a com-

munication system. If there is no feedback channel bandwidth available or the

channel condition is varying too fast to make the feedback value usable, the system

administrator can set δ to be 0, so that the algorithm will be the same as performing
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FEC and resource allocation with only local information of each hop. If δ is set to

be 1, the feedback expected distortion will be fully used. When channel condition

is varying relatively slower compared to the period between two feedback time, we

should set relatively higher δ with δ ∈ (0, 1).

5.3 Experimental Results

In this section, we evaluate the effectiveness of our proposed multi-hop multi-

stream video aggregation scheme (MHMS ) by comparing it to an alternative single-

hop multi-stream video aggregation scheme (SHMS ) that we previously proposed

in Chapter 2 [11, 14]. Since both video aggregation schemes use the same building

blocks on source coding, channel coding and packetization, our comparison can

evaluate the performance gain of multi-hop awareness in terms of visual quality of

the delivered video streams.

Our system set-up is a distributed video conferencing system as shown in

Fig. 2.1, and we assume that the channel for each hop is a packet erasure chan-

nel. Due to the spatial and temporal prediction in video compression, burst loss

of packets of a compressed video stream can result in severe degradation of video

stream visual quality. Packets interleaving is a common used technique to prevent

burst packets loss. In terms of the delivered video quality, transmitting interleaved

packets over a memory channel should be equivalent to transmitting packets in

their original order as shown in Fig. 2.3 over a memoryless packet erasure channel.

Therefore, without loss of generality, we can consider that packet loss is memoryless

in our system. The users’ input streams are the same as experiments described in

Section 3.3.2. Each of these ten streams is encoded into 30 frames per GOP and

each GOP is leading by one I frame followed by 29 P frames. The base-layer of
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each stream is encoded with quantization parameter Q = 30. There are 8 bits per

symbol and the encoded bit-stream packet size is 128 bytes.

The same frame interleaving technique as described in Section 3.3.1 is used in

our simulation to avoid tremendous data rate fluctuation from frame to frame when

multiple streams are merged together. Because of the un-symmetric data stream

volume of the uplink and downlink from user, the bandwidth of uplink is usually

much smaller than the downlink bandwidth. In our experiments, the bandwidth of

uplink for each user is 3 Mbps and the bandwidth of downlink for each user is in

the range of 6-9 Mbps. The bandwidth of IH hops is 14.4 Mbps. One user receives

90 frames of video streams from all other users. We would like to vary the user

preference for different incoming video streams, so the user preference value in our

experiments are set in eight different levels from 5 to 40 with step size 5. They are

shown in Table 5.3.

We would like to vary the packet loss rate for different hops and test the

packet loss rates which are common in various types of communication networks,

i.e., less than 40%. Therefore, without losing the generality, we generate random

numbers which are uniformly distributed on the set {0.1, 0.2, 0.3, 0.4}, and then use

these random numbers as the packet loss rates of hops. The generated packet loss

rates are listed in Table 5.2. We collect simulation results in 3 seconds of video

aggregation, i.e. 90 video frames with 30 frames per second, and repeat multiple

runs. The optimal expected distortion of EH hops is feeded back to intermediate IH

hops every 1 second. Our experimental results are shown in Fig. 5.2 and Fig. 5.3.

The frame-by-frame average PSNR across 9 received streams for user 3 are illustrated

in Fig. 5.2. The result is averaged over repeated 100 test runs. We can see from

Fig. 5.2 that MHMS can provide higher video quality than SHMS. The performance
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Figure 5.2: Performance comparison of MHMS vs SHMS schemes: Frame-by-frame

PSNR averaged across 9 received streams for user 3 in Fig. 2.1. MHMS: FEC and

resource allocation with multi-hop awareness ; SHMS: FEC and resource allocation

without multi-hop awareness.

gain in terms of PSNR is up to 1.42 dB. The averaged PSNR across the frames is

improved from 32.67 dB to 33.48 dB with 0.81 dB gain. We observe the similar

performance gain in other user’s received video streams as well, and the gain is up

to more than 1 dB. To summarize the results, Fig. 5.3 shows the PSNR across 90

video frames averaged over 10 users with 9 received streams per user, and repeated

100 test runs. We can see that MHMS outperforms SHMS with PSNR gain up to

0.8 dB. The average PSNR gain is 0.61 dB.

In the previous experiment, δ in (5.7) is set to be 1 to take the full usage

of feedback expected distortion. Our next experiment aims at demonstrating the

effect of setting up different δ for a system. The video stream and channel condition

set-up is the same as in the previous experiment, and Fig. 5.4 shows MHMS gain

compared to SHMS with different δ in terms of the visual quality of user 3 received
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Figure 5.3: Performance comparison of MHMS vs SHMS schemes: Frame-by-frame

PSNR averaged across 10 users with 9 received streams per user. MHMS: FEC and

resource allocation with multi-hop awareness ; SHMS: FEC and resource allocation

without multi-hop awareness.

video streams. We can see from Fig. 5.4 that, for a system with relatively slow-

varying channel condition, the smaller δ will result in less multi-hop awareness gain.

When δ is decreased below certain value (0.8 in Fig. 5.4), the feedback expected

distortion scaled by δ is smaller than the distortion IH hop can provide and this

results in underflow. When every stream in IH hop is underflow, MHMS problem

formulated in (5.7) is equivalent to SHMS problem formulated in Section 3.1, so that

MHMS and SHMS have the same performance. To set a proper δ for a multi-hop

multi-stream aggregation system, a system administrator can perform a calibration

procedure before the system enters the normal operation mode, i.e., setting different

δ for a trial video conferencing session to find out a proper δ that could achieve best

delivered video quality.
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Table 5.2: The channel condition of communication hops shown in Fig. 2.1

Hop U1 U2 U3 U4 U5 U6 U7 U8

Packet loss rate 0.1 0.3 0.2 0.1 0.2 0.2 0.1 0.1

Bandwidth (Mbps) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Hop U9 U10 V1 V2 V3 V4 V5 V6

Packet loss rate 0.1 0.3 0.4 0.1 0.2 0.3 0.4 0.2

Bandwidth (Mbps) 6.9 6.2 6.0 7.8 3.0 3.0 8.4 9.0

Hop V7 V8 V9 V10 C12 C21 C23 C32

Packet loss rate 0.3 0.2 0.4 0.1 0.2 0.4 0.3 0.1

Bandwidth (Mbps) 6.6 8.4 8.1 8.7 14.4 14.4 14.4 14.4

Figure 5.4: Performance comparison with varying δ.
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Table 5.3: The user preference for incoming stream from user USx to receiving node

UNx . The video conferencing topology is shown in Fig. 2.1

Preference US1 US2 US3 US4 US5 US6 US7 US8 US9 US10

UN1 0 5 5 5 5 5 5 10 30 30

UN2 5 0 5 30 30 5 10 5 5 5

UN3 5 5 0 5 5 5 30 30 10 5

UN4 10 15 5 0 10 15 5 5 30 5

UN5 5 10 20 5 0 10 10 10 5 25

UN6 20 30 5 15 5 0 5 5 5 10

UN7 5 5 15 5 20 5 0 15 20 10

UN8 5 10 20 5 10 5 30 0 10 5

UN9 20 5 5 40 5 10 5 5 0 5

UN10 5 10 5 5 30 30 5 5 5 0
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5.4 Chapter Summary

This chapter investigates a multi-stream video aggregation scheme with multi-

hop awareness over packet erasure channels. This video aggregation scheme explores

multi-hop awareness, multi-stream heterogeneity and performs optimization in FEC

and resource allocation to minimize the maximum distortion across all video streams

delivered to all end users. Comparing to the multi-stream video aggregation scheme

without multi-hop awareness, our simulation shows that the proposed scheme has

significant gain in terms of the perceptual quality of delivered video streams. It is

a promising shceme to support multi-stream video aggregation over packet erasure

channel in a multi-hop environment.
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Chapter 6

Classification-Based Error Concealment

Due to various kinds of distortion and failures, part of a compressed image or

video can be damaged or lost during transmission. When the transport layer mech-

anism, such as FEC approaches discussed in the previous chapters, cannot provide

sufficient error protection on the payload stream, the unrecovered transmission er-

rors may lead to visual distortions at the decoder. The widely used block-based

visual coding systems have prompted a need of block-based error concealment on

the decoder side. A number of concealment approaches have been proposed in recent

years [67, 69, 60, 68, 76, 35, 78, 3]. The smoothness and continuity properties in spa-

tial or frequency domain, the repeating patterns, and other properties of visual data

have been exploited to recover corrupted blocks from the survived surroundings.

Through a benchmarking effort on the existing error concealment approaches, we

have observed that different approaches are suitable for different image characteris-

tics of a corrupted block and its surroundings, and none of the existing approaches

is an all-time champion. This motivates us to explore a classification-based con-

cealment approach that can combine the better performance of two state-of-the-art

approaches in the literature. The classification-based approach also helps us achieve
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a better tradeoff between the concealment quality and the computation complexity

on the receiver side. This is because some state-of-the-art approaches have rather

high computation demand, and classification allows the computation power to be

spent more strategically by performing expensive computations only when they are

likely to offer a substantial gain in concealment quality.

The classification in the proposed new framework of error concealment can be

done either on the receiver side or on the sender side. The receiver-side classifi-

cation uses the survived surrounding pixels to determine which candidate conceal-

ment approach would give better concealment quality for each corrupted block. As

shall be seen in this chapter, the proposed receiver-side classification approach does

not require side information and the overall concealment quality can outperform

each candidate alone. To provide more proactive protection and further exploit the

knowledge from the original, uncorrupted image, a few recent works in the litera-

ture [73, 74, 9, 42] have jointly considered the design of sender and receiver systems

to facilitate error concealment. We explore this sender-driven perspective for our

classification-based concealment framework by obtaining a small amount of classi-

fication data on the sender side. As the classification results need to be delivered

as side information from the sender to the receiver, we examine and compare two

approaches for delivering the side information, namely, by attaching as part of the

file header and by embedding in the image signal.

The chapter is organized as follows. Section 6.1 provides a brief description

of the evaluated algorithms and presents benchmarking results on a collection of

natural and artificial images. Since the performance on various images shows the

advantages and disadvantages of different error concealment techniques, a classifi-

cation scheme on the receiver side is proposed in Section 6.2 to take advantages
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of the sweet spots of existing techniques. The sender-side classification-based error

concealment is proposed in Section 6.3 to further improve the concealment quality

by supplying the ground-truth of concealment technique selection to a receiver. We

compare the concealment performance, computation complexity, and bandwidth us-

age of the three proposed schemes as well as their suitable application scenarios in

Section 6.4, and conclude this chapter in Section 6.5.

6.1 Background and Motivation

6.1.1 Prior Work

Early explorations on spatial domain image concealment were reviewed in [67].

Among them, the multi-directional interpolation (MDI) approach performs pixel-

domain interpolation along eight possible edge directions and considers the cases of

both single edge and multiple edges [69]; the projection-onto-convex-sets (POCS)

approach constrains the feasible solution set based on such prior information as

smoothness and neighborhood consistency [60]; and the maximally smooth recovery

(MSR) method makes use of the smoothness property of visual signals and formu-

lates the concealment as a constrained energy minimization problem [68].

Three recent works in [76, 35, 78] have demonstrated performance improve-

ment on classic images such as “Lena” or “Barbara” over the earlier approaches.

The geometric-structure-based (GSB) error concealment by Zeng et al. [76] is a di-

rectional interpolation scheme, which uses the local geometric information extracted

from the surroundings. Two layers of pixels surrounding a corrupted block are con-

verted to a binary pattern to reveal the local geometric structure and to classify

the block as flat or non-flat. For flat blocks, the projective interpolation technique
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of [29] is applied. For non-flat blocks, the edges inside the lost block are estimated

by pairing significant transition points from the aforementioned binary pattern, and

the lost pixels are recovered by bilinear interpolation along the edge directions.

The orientation adaptive sequential interpolation (OASI) scheme by Li et

al. [35] employs a linear regression model. It first estimates the local character-

istics from a neighborhood of about four layers of uncorrupted pixels, and then uses

the model parameters obtained to estimate each missing pixel from its surrounding

pixels. More specifically, the interpolation can be characterized by S =
∑N

k=1 αksk,

where S is an estimate of the missing pixel and sk’s are N neighboring pixels. The

interpolation coefficients αk form a vector α, which can be determined using the

classical least-square method from an M -pixel neighborhood Mn with M > N , i.e.,

α = (CT C)−1Cy. Here, y is an M × 1 vector representing M pixels in the training

area Mn; C is an M × N matrix, and each of its M rows consists of N neighbors

around the corresponding pixel in y. When CT C is singular, αk is set to 1/N .

The long range correlation scheme (LRC) by Zhang et al. [78] exploits the

repeating patterns in an image. It extracts a ring window surrounding the corrupted

area, searches for an area in the image that best matches the pattern of this ring

in a mean-squared error sense, and replaces the corrupted area with the pattern

inside the best matching ring. Long range correlation is also exploited in the recent

image inpainting work by Bertalmio et al. [3], where the basic texture synthesis

procedure for concealing the lost area is similar to the LRC concealment algorithm.

By simultaneously filling in the structure and texture information of missing areas,

the inpainting technique demonstrates excellent subjective quality when the missing

area is relatively small compared with the size of the whole image. It is worth

noticing that the image inpainting technique focuses more on the overall subjective
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quality and is not designed to optimize an objective error measure of the concealment

quality (such as MSE or PSNR) on many small blocks.

6.1.2 Performance Benchmarking

If an image is compressed by a block-based codec and transmitted over an

error-prone channel, the error impairments are likely to be in the block domain. We

focus on isolated block concealment in this work because block-based codecs are

dominant for image or video transmission and the interleaving techniques can be

employed in packetization to prevent the consecutive block loss [74, 37, 6]. Since

different error concealment techniques employ quite different “philosophies,” it was

not conclusive from the literature which one is the best. We attempt to address this

issue through a benchmarking effort, which also sheds light on the design direction

of a new concealment framework that can outperform the existing approaches.

We use a collection of 15 8-bit gray-scaled images with different characteristics

to evaluate the performance of the six approaches reviewed above, namely, MDI,

POCS, MSR, GSB, OASI, and LRC. The names and the corresponding references

for these approaches are listed in Table 6.1. The collection of 15 images is shown

in Fig. 6.11. They can be divided into roughly four categories according to the

visual content, namely, portraits, artificial images, natural scenery images, and rich

texture images. We test the concealment on a typical loss pattern as shown in Fig.

6.1, where a total of 25% blocks are lost in a checkerboard fashion and the block

size is 8× 8. This damage pattern is used throughout all the following experiments

if not specified otherwise. We examine the quality of recovered images in terms

of PSNR and the computation complexity in terms of the concealment speed, and

summarize the results in Table 6.2 and Table 6.3, respectively. All algorithms have
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Figure 6.1: A checkerboard pattern with 25% block loss used in the concealment

experiments.

been implemented in C/C++ with a moderate amount of optimization and the same

speed-up settings, and tested on a 1.20 GHz Pentium-4 PC.

We can see from Table 6.2 that among the three recent techniques reviewed

earlier, the LRC approach does not outperform the GSB and OASI approaches

on most images. One reason is that the checkerboard error pattern leaves a very

limited number of the candidate matching windows that do not suffer from the

loss. The LRC approach does not perform well on most natural scenery images,

either, since there is few repeating pattern. On the other hand, the GSB and OASI

approaches significantly outperform other approaches on these benchmark images,

although neither of the two gives the best performance for all images. The lack

of all-time champion suggests that the image characteristics vary significantly from

one to another, so a single algorithm based on an assumption about one aspect of

the characteristics is not suitable for all images. This motivates us to go one step

further and assemble a recovered image in which each concealed block is the better
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Table 6.1: The names and the references for the benchmarked approaches

Acronym Name Reference

MDI Multi-Directional Interpolation [69]

POCS Projection-Onto-Convex-Sets [60]

MSR Maximally Smooth Recovery [68]

GSB Geometric-Structure-Based [76]

OASI Orientation Adaptive Sequential Interpolation [35]

LRC Long Range Correlation [78]

one selected between the GSB and OASI concealment results. As shown in the last

column (“Better-2”) of Table 6.2, this assembled image gives a much higher overall

concealment quality than using GSB or OASI alone.

In terms of computation complexity measured in concealment speed, Table 6.3

shows that MSR and GSB are the fastest. MDI and OASI are about an order of

magnitude slower, and LRC and POCS are by far the slowest algorithms. Jointly

considering the concealment quality and speed, we see that although GSB and OASI

both have high performance on concealment quality, OASI has relatively high com-

putation complexity. If we could choose the OASI method to conceal corrupted

blocks only when it provides significant performance gain, we would achieve both

higher concealment quality and relatively lower computation complexity. This moti-

vates us to research on an adaptive scheme for selecting error concealment methods

to combine the advantages of these two good performing schemes.
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Table 6.2: Comparison of algorithms in concealment quality PSNR (dB). The

scheme achieving better performance between GSB and OASI is highlighted in bold

italic font. The Better-2 column lists the concealment quality of recovered images

in which each concealed block is the better one selected between GSB and OASI.

Type A: Natural; Type B: Portrait; Type C: Artificial; Type D: Texture.

Type Name MDI POCS MSR LRC GSB OASI Better-2

A Bassharbor 29.47 28.12 28.83 27.84 30.69 30.37 31.46

Blueflower 27.88 27.55 27.09 26.77 29.68 29.85 31.04

House 28.78 26.08 27.00 26.86 29.47 30.00 30.98

NewYork 24.25 21.00 23.66 22.80 24.13 24.52 25.29

Operahouse 30.91 28.88 28.53 29.08 30.88 31.30 32.38

Papermachine 29.77 28.46 25.80 31.78 33.85 33.75 36.12

Watch 31.40 29.59 29.41 31.35 33.77 33.99 35.52

B Lena 32.28 29.49 29.20 30.64 34.43 35.12 36.08

Barbara 27.41 23.35 27.14 29.78 29.26 30.79 31.80

Kid 31.86 29.62 29.57 30.21 33.47 33.45 34.98

Man 27.59 25.41 26.07 25.60 28.77 29.13 30.12

C Circletrain 41.62 34.16 32.11 46.51 48.33 34.90 48.33

Tulip 29.74 28.05 26.71 27.61 33.22 33.47 35.13

Waterfall 27.92 26.36 26.52 26.18 28.79 29.12 30.20

D Bear 30.05 29.55 27.99 27.82 32.33 33.30 34.38
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Table 6.3: Comparison of algorithms in speed (seconds) for concealing the “Lena”

image. All algorithms are tested on a 1.20 GHz Pentium-4 PC.

MDI POCS MSR LRC GSB OASI

Lena 3.03 219.58 0.59 98.45 0.56 7.12

6.1.3 Classification Based Concealment

For a receiver to pick the better one between the two state-of-the-art tech-

niques correctly is a nontrivial task. This is because a receiver does not have the

original undamaged image to compare with and determine which scheme gives bet-

ter performance. Available to a concealment system are only the survived pixels

that surround each corrupted block. If we could establish the connection between

the image characteristics of the survived surrounding pixels and the correct selection

between GSB and OASI using a training set, we could make a smart decision on

which scheme to choose for a new damaged image.

To help exploring a rule in classifying the survived surrounding pixels, we take

a close look at the “Better-2” test from Table 6.2. For each block, we quantify the

error concealment performance of GSB and OASI by

P1 =
∑K

i=1 |C1i −Oi|,
P2 =

∑K
i=1 |C2i −Oi|,

(6.1)

where K is the number of pixels in the block and is 64 in our case; Oi is the original

value of the ith pixel in the block; C1i and C2i are the corresponding recovered

pixel values by GSB and OASI, respectively. We visualize in Fig. 6.2 the scheme

selection for each lost block of the “Lena” image. The gray blocks indicate that GSB
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Figure 6.2: Illustration of better performing concealment schemes between GSB and

OASI on the “Lena” image: OASI performs better (white blocks); GSB performs

better (black blocks); GSB and OASI do not have significant performance difference

(gray blocks).

and OASI do not have significant performance difference (i.e., |P1− P2| < 96); the

white blocks indicate P2 is much smaller for the corresponding blocks; and the

black blocks indicate that P1 is much smaller. From Fig. 6.2, we do not observe any

obvious trend in determining where GSB and OASI would perform better: the black

blocks appear in both edges and some texture areas, and so do the white blocks.

We further explore if one could deduce some simple rules from the spatial char-

acteristics of survived pixels surrounding the lost blocks. We define a smoothness

feature from four layers of survived surrounding pixels as follows. First, we group

the pixels into a total of 48 segments, and each segment has 2× 2 pixels, as shown

in Fig. 6.3(a). For each segment, we generate a binary value characterizing smooth-
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ness: if the range of the pixel intensity in the segment exceeds a pre-determined

threshold of 15, we use “1” to indicate it as a non-flat segment; otherwise, we use

“0.” Next, the binary values from different segments are scanned according to the

order in Fig. 6.3(b) to form a feature vector, which is a binary sequence. We count

the total number of ones in the feature vector (i.e., the number of non-flat segments)

for each of the 15 images used in our benchmark test. For each possible count of

non-flat segments, we also compute the ratio of the number of blocks where OASI

performs better versus those where GSB performs better. The relation is visualized

in Fig. 6.4, where we can see a general trend that GSB is likely to perform better

on smooth blocks, and OASI tends to be better for texture blocks. But, the curve

is not monotonic and the ratios do not deviate much from one, suggesting that we

cannot reliably determine the better performing concealment scheme just based on

the non-flat segment count of the surviving surroundings.

The difficulty for a receiver in arriving at a simple rule to determine the better

performing scheme can be tackled in two ways. If the decision is to be made solely on

the receiver side, there is a need of employing advanced classification tools to group

all possible surrounding pixel patterns into two classes, one class favoring the use of

OASI for concealment, and the other class favoring GSB. Alternatively, we can avoid

the difficult task of receiver-side classification by determining the classification in-

formation on the sender side where the uncorrupted image is available for providing

ground-truth, and by sending such extra information to the receiver through attach-

ment or data embedding techniques. In the next two sections, we will present the

details of the proposed receiver-side and sender-side schemes, respectively. While

we use OASI and GSB as building blocks to investigate our proposed framework of

classification-based concealment, the new framework is general so that it can be eas-
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Figure 6.3: Feature extraction from survived surrounding pixels: (a) grouping of

survived pixels into small 2 × 2 segments. (b) scanning order for constructing a

feature vector.

ily extended to incorporate other appropriate concealment schemes and perceptual

criteria.

6.2 Receiver-Side Adaptive Block Concealment Using SVM Classifi-

cation

6.2.1 Classification Based on Support Vector Machine (SVM)

We formulate a receiver’s choice of concealment scheme for each block as a

supervised classification problem. Each error concealment method is considered as

a class, and a feature vector is extracted from the pixels that surround an image

block. In the training stage, we collect a number of feature vectors from training

images, and label every feature vector xi with a ground-truth class corresponding to
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Figure 6.4: Examining the feasibility of a simple smoothness measure for distin-

guishing the better performing scheme: X-axis represents the number of non-flat

segments in survived surroundings; and Y-axis represents the ratio of the block

counts where OASI performs better to those where GSB is better.
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the best concealment method for the associated block. We train the classifier using

these feature-class pairs.

We adopt support vector machine (SVM) classifiers, as they often exhibit

good generalization performance [19, 26, 40] with theoretical insights of structural

risk minimization [4, 65]. The design of an SVM classifier can be boiled down to a

convex quadratic programming problem with global optimal solutions in training.

For our two-class pattern classification problem that decides between the GSB and

OASI concealment approaches, two kernel functions have been used to search for the

optimal classification solution, namely, a linear kernel function and a radial kernel

function.

Linear SVM The linear SVM determines a linear discriminant function (a hy-

perplane) that gives the maximum separation margin between the two classes of

training data [4]. The optimization problem can be formulated as

minimize f(w, b) = ‖w‖2, (6.2)

subject to yi(x
T
i w + b)− 1 ≥ 0, (6.3)

where xi is the ith training feature vector, and yi ∈ {−1, 1} represents the corre-

sponding class label. The separating hyperplane is parameterized by a vector w

and a scalar b, where w is the norm of the separating hyperplane. The Lagrangian-

multiplier formulation for this constrained optimization problem is

Lp =
1

2
‖w‖2 −

l∑
i=1

αiyi(x
T
i w + b) +

l∑
i=1

αi, (6.4)

where {αi} is a set of Lagrangian multipliers. Now, the problem is reduced to mini-

mizing Lp with respect to w and b under the restrictions of (1) the derivatives of Lp
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with respect to all αi’s vanish, and (2) αi ≥ 0. For this convex quadratic program-

ming problem, it is well established that the solution can be obtained through the

Karush-Kuhn-Tucker (KKT) conditions, or through an easier dual problem [4].

When the training data of the two classes are linearly separable, the linear-

kernel SVM approach gives a classifier in the form of a hyperplane separating the

two classes of training data with the largest margin. If the training data are not

linearly separable, a positive slack variable ξi (ξi ≥ 0) can be introduced to alleviate

the sensitivity of noisy training patterns [57]:

yi(x
T
i w + b)− 1 + ξi ≥ 0, (6.5)

and

Lp =
1

2
‖w‖2 + C

l∑
i=1

ξi −
l∑

i=1

αi[yi(x
T
i w + b)− 1 + ξi]−

l∑
i=1

uiξi, (6.6)

where C is a parameter adjusting the relative penalty given to the classification

errors on the training data.

To use a trained classifier to classify a new test sample z, we evaluate the sign

of the following function

f(z) = wTz + b =
Ns∑
i=1

αiyix
T
i z + b. (6.7)

Here, w is explicitly determined by a set of Ns support vectors, which are such

training vectors that lie closest to the hyperplane separating the two classes [4]. The

sign reflects on which side of the decision boundary that z lies and thus determines

the classification result.

Handling nonlinearity The feature vector as an input to a classifier for the

concealment problem can be the pixel pattern surrounding a lost block, or some
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Figure 6.5: Handling the nonlinearity by a divide-and-conquer technique that trains

a set of classifiers, one for each subset of the feature space.

statistics generated from the pattern (such as the binary feature vector defined in

Section 6.1). The dimension of such feature vectors is rather high. Furthermore, the

training features for each class may have complicated distributions, and in general

are far from separable by a linear discrimination function in the original vector

space. The non-separability by a linear discrimination function can be handled in

two ways. One is extending the linear SVM with the kernel technique, and the other

is dividing the vector space into groups and finding one classifier for each group.

Nonlinear classification functions [4] can be built by replacing the dot-product

term <xi,xj> = xT
i xj in the linear-kernel SVM by an appropriate kernel function

K(xi,xj). This is equivalent to transforming feature vectors to a higher dimensional

space H through a mapping Φ : Rd → H, and then finding a linear SVM classifier in

this new space with K(xi,xj) = <Φ(xi), Φ(xj)>. The radial basis kernel function
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in the form of

K(xi,xj) = e−‖xi−xj‖2/2σ2

(6.8)

is commonly used for its good generalization capabilities, especially when very lim-

ited information is available about the data distribution and separability for all

classes. σ is the width of the radial basis. It affects the classification performance

substantially, and will be addressed later in the section.

An alternative way to dealing with the nonlinearity is to use a divide-and-

conquer technique. The idea is illustrated by the two-dimensional example shown

in Fig. 6.5, where the two classes of data represented in Fig. 6.5(a) are not linearly

separable. However, if we divide the space into four stripes as shown by the dashed

lines in Fig. 6.5(b), the data within each stripe become more separable by a linear

function. The subdivision of the feature space naturally accommodates the nonlin-

earity in the class boundary, yet the training process is comprised of training a set

of relatively simple linear SVMs. Subdividing the feature space into non-overlapped

subsets can be done through dividing the dynamic range of some feature elements, or

according to the norm of the feature vector. The latter reflects the overall smooth-

ness of the surrounding pattern for the feature vector defined in Section 6.1, as the

L1 norm of the vector gives the total number of non-flat 2 × 2 segments over the

48 pixel segments surrounding a lost block. Recalling the trend seen in Fig. 6.4

on the classes as a function of the overall smoothness, the subdivision allows us to

naturally adapt to the changing cluster characteristics.

The nonlinearity in the classification can also be handled using a combina-

tion of the above two approaches. This hybrid approach divides the feature space

into subsets and provides a nonlinear SVM (such as the radial kernel function) for

each subset. It offers a great amount of flexibility, allowing the subsets to use dif-
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ferent kernel parameters (such as σ in the radial basis function), or even different

kernels. The nonlinear SVM obtained for each subset of feature space can have

a much smaller number of support vectors, hence be considerably simpler than a

nonlinear SVM trained for the entire space. As such, the hybrid approach has a low

computation complexity in both the training and test phases.

Determining kernel parameters In practice, the relation between the classifi-

cation accuracy on the training set and on the test set relies highly on the general-

ization capability of the classifier. In SVMs, there are several important parameters

affecting the generalization capability, such as C in (6.6) and σ in (6.8). Choosing

SVM kernel parameters can be viewed as a validation process, and evaluating the

performance of the trained model on a validation set is a general approach to select

kernel parameters. Based on this approach, we propose the following pre-processing

procedure for choosing the kernel parameters.

Step-1 Dividing the training samples into two subsets, A and B: in each iter-

ation below, we use set A for training, and set B for testing.

Step-2 Choosing kernel parameters and constructing a new training set R: we

adjust kernel parameters σ(1) and C(1) so that the sum of training errors on A and

test errors on B is minimized. More generally, we may employ an objective function

using a weighted sum of the two types of errors, and low error rate on the test set

is often desirable to ensure a good generalization capability of the classifier. Since

SVM is known to generalize well and does not usually suffer from as much overfitting

problem as the conventional classifiers, we choose to minimize the sum of errors (i.e.

with equal weights) for simplicity. A new training set R is then generated consisting

of the support vectors from set A and the successfully classified samples from set B.

100



Step-3 Switching subsets: we switch set A with set B and repeat Step 2. We

record the kernel parameters as σ(2) and C(2), and denote the new training set as S.

The union of set R and set S becomes the final training set T .

Step-4 Determining kernel parameters: the kernel parameters obtained from

the two above iterations provide a search range for determining the final parameters.

For example, σ(1) and σ(2) specify a range over which we will search for the final

value of σ that can minimize the training error on set T . Other kernel parameters

can be jointly determined through the search.

In addition to determining kernel parameters, we also filter out the samples

that have very similar values but different class labels. These samples are usually

located in such region of the feature space that is difficult to classify and they can

make the classification boundary very complex. Removing them from the training

set helps improve the generalization capability of the classifier.

6.2.2 Overall Algorithm

The overall algorithm of our proposed receiver-side classification-based block

concealment is summarized in Fig. 6.6. Below we explain a few additional details of

the training and concealment processes.

Selection of training data We choose a set of training images that represent a

variety of characteristics. Because of the spatial correlation in most natural images,

we use about one fourth of blocks in the checkerboard pattern from each training

image as candidates to form a training set. As discussed earlier, we further filter out

the blocks where different concealment schemes do not give substantially different

performance.
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Figure 6.6: Block diagram of the proposed receiver-side classification-based conceal-

ment approach.
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Construction of feature vectors Since different spatial block concealment tech-

niques may use different sets of surrounding pixels, the feature vectors derived for

classification should come from the union of the sets of pixels used by these tech-

niques. For example, GSB often uses two surrounding layers to extract the geomet-

ric structure information, while OASI uses four surrounding layers to compute the

interpolation coefficients. The classification region should therefore includes four

surrounding layers of pixels. For block size of 8 × 8, 192 pixels are involved in

classification.

While the pixels can be used directly as features, they often require a sophisti-

cated kernel function to ensure separability and incur high computation complexity.

We generate a more compact feature vector from pixel values using a similar ap-

proach as described in Section 6.1.3 and summarized as follows. We first partition

the four surrounding layers of pixels into segments, as illustrated in Fig. 6.3(a). For

the ith segment of 4 pixels, the feature value vi characterizes the smoothness of the

segment and is computed as

vi = floor[(max{pk} −min{pk} − s)/Qv] + 1, (6.9)

where {pk} are the pixels in the ith segment, the floor function returns the largest

integer less than or equal to the input. The two parameters s and Qv control the

sensitivity of the feature. We choose s = 15 and Qv = 50 based on our experimental

results. We then use these feature values to construct a feature vector. The ordering

of features in the feature vector does not affect the performance of a trained SVM

classifier since the kernel functions widely used in SVM classification are invariant

with respect to the ordering of features. We have tried another scanning order in

our previous experiments, which produced similar classification result [12].
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Subgrouping As discussed earlier, to handle the nonlinearity of the class bound-

ary, we divide the feature space into n subsets and train an SVM classifier for each

subset. We use a simple empirical rule based on the number of nonzero values in a

feature vector to perform the partitioning.

Pre-processing of training samples The feature vectors we used for training

are divided into set A and B. Each set includes images from all four representative

categories mentioned before, namely, portraits, artificial images, natural scenery

images, and rich texture images. We determine in this step the kernel parameters

and training set using the approaches described in Section 6.2.1.

Concealment process After the training process is performed off-line, the pa-

rameters of trained SVM classifiers are stored in the receiver system. To conceal a

corrupted image block, the receiver system use the same approach as in the training

process to construct feature vector and identify to which subgroup the feature vector

belongs to. The classification result will then determine which concealment scheme

to use.

6.2.3 Experimental Results and Performance Analysis

In this section, we present the experimental results on the proposed block

concealment method using receiver-side classification. We use the SVMlight toolkit

[28] to accomplish this classification task. SVMlight is an implementation of SVM

based on the optimization algorithm in [27].

A total of 15 images are used for training and 13 for testing, which are shown

in Fig. 6.11 and Fig. 6.12. There are a total of 5,562 blocks in the training images
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and 3,804 blocks in the test images having substantially different concealment per-

formance by GSB and OASI. These blocks are used to evaluate the classification

accuracy.

We first train a linear SVM using the 48-dimension feature vectors of all train-

ing blocks. The classification accuracy of this trained linear SVM on the test blocks

is only 50.55%. The failure of this classification experiment indicates the high non-

linearity in the boundary of the two classes. We then examine the effects of various

approaches in handling the nonlinearity. The simulation results of this exploration

are shown in the first row of Table 6.4. We compare the cases of no subgrouping,

16-group subgrouping, and 48-group subgrouping. For these three cases, the kernel

parameters are chosen that can provide the highest classification accuracy on three

of the training images, “Lena,” “Barbara,” and “Bassharbor.” We also consider the

case of applying pre-processing with 48-group subgrouping for thorough selection of

kernel parameters and filter out noisy samples, using the approaches described in

Section 6.2.1. As shown in the table, subgrouping significantly improves the classi-

fication accuracy by more than 15%; and pre-processing and finer subgrouping can

further improve the classification accuracy.

Based on results from the above exploration, we finally adopt 48 subgroups

with pre-processing procedure for our training process, and examine the concealment

performance of the proposed receiver-side classification-based scheme on the 13 8-

bit gray-scaled test images. The classification accuracy for each subgroup ranges

from 58.82% to 83.09%, and the overall classification accuracy is 67.11%. From the

comparison of concealment results with that of GSB [76] and OASI [35] in Table 6.5,

we can see that the classification-based method with a linear kernel has up to 0.84

dB gain when compared to the GSB method and up to 1.06 dB gain when compared
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Table 6.4: Overall classification accuracy on the 13 test images

1 group Subgroup-16 Subgroup-48 Subgroup-48

with Pre-processing

Linear SVM 50.55% 65.96% 66.26% 67.11%

Radial SVM 65.54% 66.75% 67.17% 70.16%

to the OASI method.

We then train a radial basis kernel SVM to evaluate how well it handles the

nonlinearity of training data. The pre-processing and subgrouping are also evaluated

for this nonlinear kernel. As with the linear kernel, the radial basis kernel can also

benefit from the pre-processing and finer subgrouping for improving the classification

accuracy, although the improvement due to grouping is less significant on the radial

basis kernel than on the linear kernel. This latter aspect is expected as the radial

basis kernel has a good capability of handling the nonlinear classification boundary

even without subgrouping. The classification accuracy for each group ranges from

60.00% to 80.53%, and the overall classification accuracy is 70.16%. As shown in

Table 6.5, the classification-based method using the radial basis kernel SVM has up

to 0.94 dB gain compared to the GSB method and up to 1.26 dB gain compared

to the OASI method. The proposed scheme consistently outperforms the two prior

algorithms on all test images. As an example, we show a portion of the “Nickel”

image in Fig. 6.7, and we can see that the proposed concealment scheme provides

better visual quality and leaves fewer artifacts.

It is worth noting that a radial basis kernel gives about 3% higher classification

106



accuracy than a linear kernel, under the same 48-group subgrouping and preprocess-

ing procedure. The small improvement in classification accuracy, however, does not

always translate into the improvement of concealment quality. For example, we can

see from Table 6.5 that radial basis kernel provides slightly better concealment for

some test images, while linear kernel is better for others. This is because the set of

accurately classified blocks may be different by the two kernel techniques, and the

quality gain on the slightly bigger set of accurately classified blocks may not always

offset the quality loss on the falsely classified ones. On the other hand, we see that

the classification-based schemes give consistently higher concealment quality than

the two current state-of-the-art algorithms. With more accurate classification, the

concealment quality can be further improved. Along the line of seeking for more

accurate classification information, we are inspired by the growing importance of in-

volving both sender and receiver in efficient and reliable visual communications. In

the next section, we investigate what role the sender system can play in facilitating

the classification-based concealment.

6.3 Block Concealment with Sender-Supplied Classification Informa-

tion

The receiver-side classification algorithm proposed in Section 6.2 outperforms

the conventional error concealment approaches. Coming with such benefit is the

increase in computation complexity at receiver-side for performing classification.

The increased complexity may pose a challenge for systems that have very limited

computation resources and/or stringent real-time rendering constraints. If some

parts of the concealment task could be moved to the sender side, it would help
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Figure 6.7: Visual quality comparison of three concealment schemes: (a) original

image; (b) corrupted image; (c) recovered image using GSB; (d) recovered image

using OASI; and (e) recovered image using the classification-based method.
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Table 6.5: Comparison of concealment quality in PSNR (dB) of existing concealment

schemes and the proposed receiver-side classification-based approaches. Type A:

Natural; Type B: Portrait; Type C: Artificial; Type D: Texture.

Type Name GSB OASI Better-2 Linear Radial

Kernel Kernel

A Fishingboat 30.93 31.10 32.28 31.36 31.64

Goldhill 32.35 32.41 33.52 32.63 32.84

Peppers 35.18 35.55 36.72 36.02 35.79

Skylinearch 32.01 31.34 33.22 32.40 32.60

Lochness 32.74 32.33 33.40 32.78 32.78

Bellflower 33.27 33.70 35.57 34.12 34.21

Brandyrose 39.47 39.27 40.42 39.86 39.80

Lake 28.54 28.73 30.14 29.10 29.04

F14 38.64 38.86 39.88 38.75 39.05

B Elaine 35.17 35.93 36.35 35.85 35.96

Couple 30.74 31.06 32.22 31.49 31.43

C Nickel 29.05 28.55 30.53 29.33 29.58

D Baboon 26.11 26.48 27.12 26.62 26.62
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reduce the computation burden on the receiver side, as demonstrated in recent

works [73, 74].

An important benefit of moving the classification task from a receiver to a

sender is that it allows for an easy access of the perfect classification information.

This is because the sender has full reference to the original, uncorrupted image, and

can compare the concealment quality by various techniques to obtain the ground

truth about which technique works better. The higher accuracy of the classification

information can further improve the overall concealment quality upon what we have

achieved in Section 6.2, which is an even more attractive advantage than the reduced

receiver-side computation complexity.

In this section, we extend the classification-based concealment framework from

a sender-driven perspective to design and evaluate error concealment schemes with

sender-supplied classification information. We shall examine two main approaches

to conveying the classification information from a sender to a receiver: one is by

attaching the side information in the header, and the other is to embed the side

information in the image signal using data hiding technique.

6.3.1 Conveying Classification Information by Attachment

A quite straightforward way to convey the classification information from the

sender to the receiver is to transmit the information along with the image, for

example, in the image header. The side information requires extra bandwidth.

Therefore, this attaching approach may be appropriate depending on the application

and the image size. An alternative approach to avoid the increase in bandwidth is to

encode the image at a lower rate to spare room for the side information. This would

reduce the image quality, leading to a similar tradeoff as in the data embedding
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approach to be discussed in the next subsection.

We present the system block diagram of the sender-side attaching scheme in

Fig. 6.8. On the sender side, in addition to encoding an image as usual, the system

would perform the following tasks:

1. Perform error concealment on each block or some selected blocks using multiple

error concealment methods.

2. Compare the quality of the images obtained by these concealment methods,

and classify each block according to the winning technique.

3. Encode the classification information for each block, possibly using lossless

compression techniques.

4. Attach the classification information to the compressed image bit stream.

On the receiver side upon detecting the corrupted blocks, the receiver will extract the

classification information from the received stream and use this side information to

select the appropriate method for concealing each corrupted block. We can further

apply forward error correction coding with appropriate strengths to protect the

image stream and the side information.

Regarding the detailed encoding method for side information, we denote the

side information for the GSB concealment method as “0,” and that for OASI as

“1.” The side information for all blocks can be put together as a binary sequence.

Recall that GSB concealment has lower computation complexity than OASI. So as

before, we choose the error concealment technique with lower computation complex-

ity for the blocks where the performance of the two concealment methods are not

significantly different. This also helps give a long run of “0” in the side-information
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Figure 6.8: Block diagram of the sender-side attaching approach.
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encoding. We then apply run-length coding and arithmetic coding to compress the

binary sequence of classification information.

We have seen that the attaching scheme trades additional bandwidth for im-

proved concealment quality. The trade-off can be adjusted as follows. For each

block, the performance of each algorithm (P1 and P2) is calculated according to

(6.1). The binary-valued side information L for the block is determined by

L =





1, if P1− P2 > ∆th

0, otherwise
, (6.10)

where ∆th is a threshold. An experiment with different settings of ∆th is performed

on the JPEG compressed “Lena” image with quality factor Q = 80%, where the

image size is 512×512 and the JPEG file size is 303,072 bits. As shown in Fig. 6.9, the

larger ∆th we choose, the lower PSNR we get. On the other hand, since more blocks

are labeled as “0” with a larger ∆th, compressing the classification information

using run-length coding and arithmetic coding will achieve a higher compression

ratio. The results in Fig. 6.9 shows that when ∆th is around 96, the gain in error

concealment quality is significant, yet the additional bandwidth for classification

side information is quite moderate and only about one percent of the image file size.

Thus we use this value to evaluate the overall concealment quality.

The simulation results of the attaching scheme are listed in Table 6.6. The

results suggest that our proposed concealment scheme by attaching classification

information outperforms each individual receiver-side concealment approach. The

error concealment quality can be improved by about 1 ∼ 2 dB when compared to

the better one between the two individual methods. Readers may notice that the

attaching scheme has 0 dB gain on the “Circletrain” image when compared to GSB.

As shown in Fig. 6.11, this artificial image has uniform background and smooth
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Table 6.6: Performance evaluation of the sender-side attaching approach. Type A:

Natural; Type B: Portrait; Type C: Artificial; Type D: Texture.

JPEG file Side info. Gain over Gain over

Type Name size (bytes) size (bytes) GSB (dB) OASI (dB)

A Bassharbor 50,867 368 0.52 1.14

Blueflower 53,528 495 0.87 0.90

House 46,975 361 1.28 1.26

Newyork 73,830 436 0.89 0.67

Operahouse 48,666 365 1.09 0.99

Papermachine 41,773 285 1.95 2.07

Watch 41,773 293 1.23 1.09

B Lena 37,884 287 0.99 0.93

Barbara 50,867 424 2.21 1.12

Kid 30,791 257 1.12 1.08

Man 61,810 431 0.80 0.79

C Circletrain 15,709 124 0 11.19

Tulip 48,641 437 1.45 1.68

Waterfall 44,734 292 0.93 0.75

D Bear 26,089 280 1.32 1.12
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Figure 6.9: Relation of the threshold ∆th versus the concealment quality and the

bandwidth required for side information, respectively, when applying the sender-side

attaching approach on the “Lena” image.
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edges. GSB gives better concealment quality in terms of PSNR for every recovered

blocks, so we cannot get any improvement compared to GSB.

6.3.2 Conveying Classification Information by Embedding

Although the attaching scheme has excellent performance, the additional band-

width for side information may not be available or too pricey in some systems.

Recoding the image part to a slightly lower rate requires a non-trivial amount of

computation complexity to ensure that the total bandwidth of the image plus the

side information is unchanged. A viable alternative to convey side information with

little additional bandwidth is embedding it in the image. More specifically, we

embed 1-bit classification information of a block into its neighboring block. The

embedding will be incorporated in the visual communication system along with

interleaved packetization mentioned at the beginning of the chapter, so that the

neighboring blocks are packed into different packets. In such a way, it is unlikely

for a block and its neighbor holding its classification information to be corrupted

simultaneously. As we shall see later in this subsection, the embedding in neighbor

block has additional advantage when dealing with smooth blocks. We summarize

the system block diagram in Fig. 6.10 and explain a few details of embedding below.

As can be seen from the previous subsection, the amount of classification infor-

mation is on the order of a couple of thousands bits, which calls upon an embedding

technique with quite high embedding rate. Unlike many copyright protection appli-

cations, there is no major adversary to circumvent the embedded data in the error

concealment application, where the side information helps improve the performance

of image communications [70, 10, 58]. The quantization based data embedding is a

common choice to meet these requirements [71].
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We use a simple version of quantization embedding, known as the odd-even

embedding technique [72], to embed the classification information into the image.

To avoid a substantial impact on the compression size and the visual quality of the

image, the classification information for each block is embedded into the last quan-

tized non-zero DCT coefficient in the zig-zag scan order. The coefficient is forced to

be even if we want to embed “0,” or odd if to embed “1,” and the embedding tries

to make minimum necessary changes to enforce such relation. If all the quantized

AC coefficients in a block are zero, which we would encounter for smooth blocks,

we will not make any changes on the coefficients. In this case, the receiver would

consider a “0” is embedded in the block based on the above-mentioned rules, and

apply the concealment technique of lower computation complexity (i.e., GSB) for

the corrupted block. Such an arrangement works well in practice. This is because

GSB usually performs better for blocks with relatively “flat” surrounding; in the

mean time, the characteristics of nearby blocks are likely to be similar and can be

fully exploited by neighborhood embedding presented earlier, where classification

information is embedded into neighboring block.

The experimental results of the embedding scheme are shown in Table 6.7.

The improvement of concealment quality on most images is significant: we have

a 0.14 ∼ 1.94 dB gain compared to GSB, and 0.24 ∼ 1.14 dB gain compared to

OASI. For most images, GSB performs better on some blocks, and OASI performs

better on some other blocks. As such, the quality degradation introduced by the

embedding procedure is overcome by the substantial concealment gain compared to

either GSB or OASI alone. An interesting exception appears on the “Circletrain”

image. Different from other images, GSB is the better selection for all blocks in the

“Circletrain” image and the concealed quality is very high (The PSNR value in dB
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Figure 6.10: Block diagram of the sender-side embedding approach.
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is in the high forties ). The sender-supplied classification information thus provides

no gain when compared to using GSB alone. On the other hand, the embedding

technique inevitably introduces a moderate amount of quality degradation. As the

result, for the “Circletrain” image, the embedding scheme achieves a net loss of 2.8

dB in PSNR compared to GSB, although little visual difference could be visible at

such high PSNR levels. In comparison with OASI, the gain over OASI is over 8 dB

and is much more noticeable.

6.4 Comparisons and Discussions

In the previous two sections, we have proposed three classification-based er-

ror concealment schemes to improve the concealment quality. Among the three

schemes, one performs classification on the receiver side using features derived from

the survived pixels surrounding a corrupted block and an SVM classifier, and the

other two schemes convey the sender-supplied classification information to receiver

by attaching and embedding, respectively. As we can see from Tables 6.5, 6.6, and

6.7, they all improve the concealment quality quite substantially. In this section, we

compare the three schemes, discuss their advantages and shortcomings, and identify

the application scenarios that each scheme is suitable for. We also discuss a few

directions for further extension and generalization.

We first compare the quality of concealed images by these three schemes and

show the results in Table 6.8. For each image, we use the uncorrupted JPEG

compressed version with a quality factor of 80% as reference. Since the attaching

scheme provides the ground-truth of concealment technique selection to the receiver,

it gives the highest concealment quality among the three schemes. The improvement

over the individual concealment schemes is in the range of 0.5 ∼ 1.5 dB. While the
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Table 6.7: Performance evaluation of the sender-side embedding approach. Images

are in the JPEG format with quality factor Q = 80%. Type A: Natural; Type B:

Portrait; Type C: Artificial; Type D: Texture.

PSNR of image Gain over Gain over

Type Name after embedding GSB (dB) OASI (dB)

A Bassharbor 41.89 0.14 0.76

Blueflower 41.73 0.77 0.80

House 42.01 1.00 0.98

Newyork 38.25 0.74 0.52

Operahouse 40.57 0.63 0.53

Papermachine 42.42 1.02 1.14

Watch 42.82 0.74 0.60

B Lena 43.21 0.30 0.24

Barbara 42.25 1.94 0.85

Kid 43.16 0.60 0.56

Man 39.48 0.49 0.48

C Circletrain 47.36 -2.80 8.39

Tulip 42.31 0.78 1.01

Waterfall 40.47 0.62 0.44

D Bear 43.91 0.63 0.43

120



Table 6.8: Comparison of concealment quality in PSNR (dB) by the receiver-side

and sender-side approaches. Images are in the JPEG format with quality factor

Q = 80%.

Image Image GSB OASI Receiver-side Sender-side Sender-side

Type Name Classification Embedding Attaching

Natural Fishingboat 30.81 30.87 31.03 31.55 32.02

Portrait Elaine 35.47 35.18 35.43 35.84 36.22

Artificial Nickel 28.48 28.41 28.71 29.40 29.93

Texture Baboon 26.02 26.19 26.25 26.45 26.74

embedding scheme also provides the ground-truth of most blocks to receiver (except

for some very smooth blocks), its performance is lower than the attaching scheme

by about 0.3 ∼ 0.5 dB. The small quality loss is due to the distortion introduced by

embedding, a price paid for sending side information without additional bandwidth.

The receiver-side classification scheme has the smallest improvement over individual

scheme because the classification result at the receiver is not always accurate.

In addition to the quality of concealed image, other important issues include

computation complexity, bandwidth usage, and complexity associated with overall

system deployment. The receiver-side classification-based error concealment requires

neither side information to be sent nor any special involvement of a sender. It can be

therefore integrated in a standard-compliant coding system. The training involves

a large amount of computation but can be performed off-line. A moderate amount
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of run-time computation power is required from the receiver to extract features and

feed them into a trained SVM classifier to determine which concealment scheme to

use, and this is done only for corrupted blocks. As the classification results are not

always perfect and depend heavily on the generalization capability of the classifier,

the concealment performance may vary substantially from one image to another.

This scheme is suitable for applications where there is limited design flexibility on

the sender side.

The schemes with sender-supplied classification information provides more

proactive protection. They require a significant amount of computation power and

cooperation on the sender side to perform concealment, provide ground-truth on the

concealment scheme to use for every block, and encode or embed the classification

information with the image. The attaching scheme requires additional bandwidth

to deliver the ground-truth of classification. After such an attachment, the resulting

media stream may not be standard-compliant. In contrast, the embedding scheme

can maintain standard compliance of the resulting media stream. This is at an ex-

pense of minor reduction of the perceptual quality in the transmitted image, even

when the transmission is free from error. On the other hand, the more accurate,

sender-supplied classification information provides substantial improvement in con-

cealment quality and also eliminate the computation need on the receiver side for

classification. These schemes are suitable for applications with powerful sender and

simple receiver, and for scenarios where the visual data is encoded once but delivered

and consumed by many users.

The spatial concealment schemes investigated in this chapter can be used for

both image and video transmissions. They can be applied to each corrupted video

frame, and can be used in conjunction with other temporal concealment methods [18,
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33]. The schemes that maintain standard-compliance of the transmitted video, such

as the receiver-end classification and the embedding schemes, allows image/video to

be handled by a number of existing visual communication systems that support the

standard, with little additional changes to the system.

In addition to conveying side information to facilitate concealment, data em-

bedding can also be used for detecting corrupted blocks [16]. For this error detection

purpose on each block, the parity information or some known patterns should be

embedded inside the corresponding block. The receiver will check the correctness

of the parity or the integrity of the patterns to determine whether the block is

corrupted. On the other hand, the side information of a block for facilitating its

concealment must be stored outside that block, as seen in the algorithm presented

in the previous section.

We have so far assumed that the block damage is isolated (i.e., all neighboring

blocks of the damaged one are correctly received). Since consecutive block damage is

a challenge to most error concealment techniques, interleaving techniques have been

suggested in packetization to avoid packing neighboring blocks together [67] [74]. As

such, consecutive block losses rarely happen at a moderate loss rate. In case when

there remain some consecutive block losses, both GSB and OASI techniques have

been demonstrated to handle a small number of consecutive blocks [76, 35]. The

classification can also be extended to cope with this case, for example, to incorporate

the loss of two horizontal or vertical neighboring blocks by training more classifiers.

Since what we have proposed is a general framework, it can be further extended in

several directions. For example, we can incorporate other concealment techniques

and the total number of candidate techniques can be more than two.
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Bassharbor (512x512) Blueflower (512x512) House (512x512)

Newyork (512x512) Operahouse (512x512) Papermachine (512x512)

Watch (512x512) Lena (512x512) Barbara (512x512)

Kid (480x480) Man (512x512) Circletrain (512x512)

Tulip (512x512) Waterfall (512x512) Bear (384x384)

Figure 6.11: The 15 8-bit gray-scaled images are used for training in classification.

The image sizes are listed in parentheses after the image names.
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Fishingboat (512x512) Goldhill (512x512) Peppers (512x512)

Skylinearch (400x400) Lochness (512x512) Bellflower (512x512)

Brandyrose (512x512) Lake (512x512) F14 (496x496)

Elaine (512x512) Couple (512x512) Nickel (256x256)

Baboon (512x512)

Figure 6.12: The 13 8-bit gray-scaled images are used for testing in the classification-

based concealment. The image sizes are listed in parentheses after the image names.
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6.5 Chapter Summary

In this chapter, we present a new, classification-based spatial error conceal-

ment framework for images. Our proposed framework takes advantages of state-

of-the-art concealment techniques and adaptively selects the best suitable one for

each corrupted block. Using the new framework, we have designed concealment

schemes outperforming the current state-of-the-art algorithms in terms of the error

concealment quality on a diverse set of images. The proposed framework also al-

lows the computation power to be spent more strategically by using a computation

demanding algorithm only when it can significantly improve the recovered image

quality.
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Chapter 7

Conclusions and Future Perspectives

This dissertation provides the frameworks to explore heterogeneities in error-

resilient visual communications, such as the characteristics heterogeneity amongst

the content, the different channel condition of communication links, and the different

demand requirement with which multimedia streams are consumed. The challenges

in heterogeneous visual communications urge the need of integrating error-resilient

techniques with other techniques, such as resource allocation or classification. The

proposed FEC and resource allocation integrated approach and classification-based

error concealment approach can successfully adapt compressed streams of visual

content with different characteristics to be resilient to heterogeneous network con-

ditions. More specifically, the main contributions of this dissertation are:

First, we have developed a framework of distributed multi-point video confer-

encing system over packet erasure channels. As presented in Chapter 2, the frame-

work handles the error protection and resource allocation of multiple video streams

in a distributed manner. A PDMA-based error protection scheme performed in each

video stream combiner is proposed to explore the multi-stream heterogeneity.

In Chapter 3, PDMA-based error protection scheme is modeled as an opti-
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mization problem to minimize the maximal expected video distortion among all

aggregated streams. A fast algorithm is proposed to provide the optimal solution.

The simulation results show that our proposed multi-stream video aggregation and

error protection scheme has significant gain over traditional multi-stream error pro-

tection schemes.

In order to deliver video streams to end users with different preferred quality,

we investigate an approach that adapts multi-stream aggregation to user preference

heterogeneity in Chapter 4. We propose a consensus algorithm to perform resource

allocation based on user preference.

In Chapters 2–4, each hop solves its own aspect of FEC problem based on

resource availability and channel reliability of a single hop. There is no overall

consideration of multiple sequential hops’ resource and channel condition. We fur-

thermore find out that, given a limited bandwidth, the method of applying optimal

FEC and bandwidth allocation locally in one node may not achieve the optimal re-

sult for multi-hop multi-stream video aggregation. The fundamental reason is that

the video content loss in the previous hop cannot be recovered in the following hop

no matter how much bandwidth is available and how strong FEC is applied. A

method is then investigated in Chapter 5 to accommodate multi-hop heterogene-

ity in our FEC and resource allocation integrated approach. This method explores

multi-hop awareness and multi-stream heterogeneity. It performs optimization in

FEC and resource allocation to minimize the maximum distortion across all video

streams delivered to all end users. Our simulation results show that the proposed

multi-hop awareness method has significant gain in terms of the perceptual quality

of delivered video streams comparing to the method without multi-hop awareness,.

We address heterogeneity issue involved in error concealment in Chapter 6.
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Due to the large variation of image characteristics, different concealment approaches

are necessary to accommodate different nature of the lost image content. We pro-

pose using classification to integrate state-of-the-art error concealment techniques.

The proposed approach takes advantages of multiple concealment algorithms and

adaptively selects the suitable algorithm for each damaged image area. With grow-

ing awareness that the design of sender and receiver systems should be jointly

considered for the efficient and reliable visual communications, we proposed a set

of classification-based block concealment schemes, including receiver-side classify-

ing, sender-side attaching, and sender-side embedding. Our experimental results

provide extensive performance comparisons and demonstrate that the proposed

classification-based error concealment approaches outperform the conventional ap-

proaches.

In summary, this dissertation presents promising frameworks for heterogeneity

exploration of error-resilient visual communications. The research work in this dis-

sertation can lead to designing a platform for large-scale real-time video streaming

over heterogeneous networks.

In this dissertation, we mainly use effective resource allocation and classi-

fication principles to achieve error resiliency in visual communications involving

many kinds of heterogeneities. For the future directions of our research work, we

are interested in studying if applying operations of introducing redundancy across

multiple multimedia streams can effectively accommodate multi-stream heterogene-

ity in FEC. For example, digital fountain code [5] shows its promising advantages

in asynchronous, one-to-many, and on-demand applications, such as file download

or movie download. Intuitively, if we interleave the source symbols from different

streams with a certain pattern first, allow the operation of introducing redundancy
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(e.g. XOR) in digital fountain code to be applied between symbols from different

streams, there may be advantages for error resiliency in concurrent downloading

multiple video or data streams.

We also have further interests in investigating a combined approach of FEC

and error concealment for error-resilient visual communications. In Section 6.3 of

this dissertation [13], we discussed the method of embedding certain information

into multimedia streams to facilitate error recovery at the decoder. This method

can be viewed as adding redundant information to transmitted multimedia streams

as well. For future perspectives of our research work, some questions arise: What

is the performance of this embedding-based method compared to traditional FEC?

Are there certain characteristics of visual content that favor either of these two

error-resilient techniques? Can we intelligently apply these two techniques at the

same time to achieve optimal error-resilient result? These questions could lead to

interesting research in error-resilient visual communications.
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