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The effect of brassicaceous cover crops (Brassica juncea/Sinapis alba, B. napus, 

and Raphanus sativus) on plant-parasitic and free-living soil nematode communities, in 

grain agroecosystems, was evaluated in three experiments, at two sites in Maryland.  

Brassicaceous cover crops alone did not suppress plant-parasitic nematodes, however 

when combined with rye (Secale cereale) or clover (Trifolium incarnatum), juvenile (J2) 

Heterodera glycines populations were lower in June, soybean yields were higher, or free-

living nematode abundance was higher. Indices of free-living nematode community 

structure suggested that winter-kill of N-rich radishes activated the bacterivore 

community in early spring resulting in high populations of bacterivore dauer larvae and 

high community structure by summer.  In contrast, nematode communities in spring-

terminated rapeseed and rye plots had high abundances of fungivore nematodes and a 

plant associate/fungal feeder, Coslenchus.  Brassicaceous cover crops in Maryland grain 

rotations may be more useful for managing soil ecology than for biofumigation of plant-

parasitic nematodes.    
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CHAPTER I -- INTRODUCTION 

 

1. Background and Problem Definition 
 
 

Nematodes, being the most abundant multi-cellular organisms on the planet and 

with 15,000 species identified and estimates of 500,000 species extant (Poinar, 1983), are 

important contributors to agroecosystems.  Of the eight feeding groups identified in 

terrestrial nematode communities--plant feeding, fungal feeding, bacterial feeding, 

substrate feeders, predators, eukaryote feeders, animal parasites, and omnivores (Yeates 

et al., 1993)--the plant-parasitic nematodes have received the most attention in terrestrial 

systems due to their direct economic impact on agriculture.  Soybean cyst nematode, 

Heterodera glycines, is a major pest of soybeans, and affects about 40,500 ha of soybean 

on Maryland�s eastern shore (W. Kenworthy, personal communication, 2002).  H. 

glycines remains the leading cause of soybean yield loss in the United States (Wrather 

and Koenning, 2006).  Meloidogyne (root-knot), Pratylenchus (lesion), Tylenchorhynchus 

(stunt), Trichodorus (stubby root), Xiphinema (dagger), and Hoplolaimus (lance) 

nematodes are also problematic for Maryland farmers and nursery growers (Kratochvil et 

al., 2003; S. Sardanelli, personal communication, 2003; Sindermann et al., 1993).   

Incorporation of allelopathic cover crops is one of many ecological management 

tools that have come into use in the last thirty years, as chemical nematicides, high costs, 

and increased rates of biodegradation have narrowed options for chemical control of 

plant-parasitic nematodes (Halbrendt and LaMondia, 2004; Kratochvil et al., 2004; 

Matthiessen and Kirkegaard, 2006).  Glucosinolate-containing brassicaceous cover crops 
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have long been studied in the laboratory for nematode suppression (Chitwood, 2002), and 

field research in Maryland, Pennsylvania and West Virginia showed that rapeseed 

(Brassica napus) was effective in suppressing re-plant disease in peach orchards (Prunus 

sp.) associated with the virus vector Xiphinema (Halbrendt, 1992).  Biofumigation was 

first coined by J. A. Kirkegaard in the context of simulating chemical fumigation (metam 

sodium) with naturally derived compounds in brassicaceous cover crops (Matthiessen and 

Kirkegaard, 2006).  However, it has since been loosely adopted to describe a pest 

suppressive effect that may be the result of a number of processes occurring after biomass 

incorporation.  Organic matter addition to soil, feeds soil organisms, and pest suppressive 

services can be an effect of food web interactions (Watt et al., 2006; Sánchez-Moreno 

and Ferris, 2007).  A number of indices available today enable use of nematode 

community analysis to interpret soil food web conditions as either fertile, stressed (by 

pollution), or structured (Bongers, 1990; Ettema and Bongers, 1993; Ferris et al., 2001).  

Indices have been used to interpret nematode community recovery after chemical 

fumigation (Yeates and van der Meulen, 1996), but there is little evidence in the literature 

of using nematode communities as indicators of biofumigation.  Rather, interest has been 

focused on managing the soil food web via timed application of cover crops or 

management practices, like irrigation, to improve biological sources of fertility in 

synchrony with crop demands (Ferris et al., 2004; Wang et al., 2004). 

 

2. Justification for Research    

 
Brassicaceous cover crops have several characteristics that make them 

particularly worthy of further investigation for plant-parasitic nematode control in 
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Maryland.   Upon enzymatic hydrolysis of glucosinolates in brassicaceous tissue, toxic 

byproducts are released and have been shown to suppress weed seed germination (Brown 

and Morra, 1996; Vaughn and Boydston, 1997; Weil and Kremen, 2007), fungal 

pathogens (Smolinska et al., 2003) and nematodes (Akhtar and Mahmood, 1994; 

Halbrendt, 1996; Mojtahedi et al., 1991; Zasada and Ferris, 2003, 2004).  Opportunities 

for biofumigation may be reduced in Maryland because no-till management predominates 

in grain rotations, precluding the normally recommended maceration and soil 

incorporation of cover crop tissue.  However, winter-freeze of cover crops may provide 

total tissue rupture and enhance chemical reaction rates (Morra and Kirkegaard, 2002).  

The use of volatile winter cover crop decomposition products to directly suppress plant-

parasitic nematodes, when the nematodes are less active in winter, may be transient, and 

additional mechanisms for suppression may be needed to maintain control during the 

cash crop season.  Total nematode community analysis can aid in identifying other bio-

mediated mechanisms of suppression.     

Despite monetary incentives ($30 to $50/acre) in Maryland for cover crops 

planted before November 5, cover crop adoption in the state has been slow and limited 

almost exclusively to rye or winter grains.  Cover crops with multiple benefits, including 

nematode suppression, may gain more rapid adoption.  Other attributes of the 

brassicaceous cover crops, unrelated to allelopathy, include rapid establishment in fall, 

capacity to take up well over 150 kg/ha potentially leachable N in fall (Dean, 2006), rapid 

N mineralization in spring (Kremen, 2006), potential for soil macroporosity and 

compaction alleviation (Williams and Weil, 2004, Chen and Weil unpublished), very 

large phosphorous uptake and release (White and Weil, unpublished data), easy seed-bed 
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planting in spring (winter-kill types only) and coincidence of seasonal growth with 

periods of fallow in Maryland.   

 

3. General Research Approach 

 
The research was conducted on two University of Maryland research stations, the 

Lower Eastern Shore Research and Education Center (LESREC) in Salisbury, MD and 

the Central Maryland Research and Education Center (CMREC) in Beltsville, MD from 

August 2003 through October 2005.  These sites were chosen for their sandy soils which 

are often associated with infestations of plant-parasitic nematodes.  One experiment was 

conducted for two years, and two experiments were conducted for a single year. Cover 

crop treatments were planted in August 2003 followed by soybean cash crops in spring 

2004.  In fall 2004, cover crops were broadcast seeded into standing soybeans for one 

experiment, while other experiments were initiated in fall 2004 by planting cover crops 

into prepared fields in late August.  Corn or soybeans were planted in spring 2005 and 

were harvested in fall.   

All plots were sampled for nematodes in the summer (June) and fall 

(August/September) after winter cover crop termination, in each experiment.  Selected 

treatments from two experiments were also sampled in November and April.  Nematodes 

were isolated using a modified Baermann extraction technique (Christie and Perry, 1951).  

Plant-parasitic nematode genera or families were enumerated for all dates, while total 

community analysis was conducted on selected treatments and dates.  Genera and trophic 

group abundances were analyzed by date and tested for cover crop treatment effects.  

Community indices were used to interpret cover crop effects on soil ecology and when 
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available, data on soil or cover crop attributes were used to enhance community index 

interpretation.  Bulk density and soil moisture were measured on every sample from 

which nematodes were extracted. Other soil properties were measured on selected 

samples or plots, including sand size distribution.   

 

4. General Research Objectives and Hypotheses 
 
The overall objective of this research was to evaluate the response of nematodes to cover 

crops, with emphasis on the brassicaceae family.  The following hypotheses were tested: 

1. Brassicaceous winter cover crops suppress plant-parasitic nematode populations. 

2. Brassicaceous winter cover crops in combination with rye or clover suppress plant-

parasitic nematodes.    

3. Brassicaceous winter cover crops do not suppress free-living nematodes.   

4. Brassicaceous winter cover crops or combinations thereof with rye and clover 

increase cash crop yields.   

5. Different cover crop species affect nematode community indices differentially. 



 

 1 
 

5. References Cited 
 

Akhtar, M., Mahmood, I., 1994. Potentiality of phytochemicals in nematode control: a 
review. Biores. Techn. 48, 189-201. 

Bongers, T., 1990. The maturity index:  An ecological measure of environmental 
disturbance based on nematode species composition. Oecologia 83, 14-19. 

Brown, P.D., Morra, M.J., 1996. Hydrolysis products of glucosinolates in Brassica napus 
tissues as inhibitors of seed germination. Plant Soil 181, 307-316. 

Chitwood, D.J., 2002. Phytochemical based strategies for nematode control. Ann. Rev. 
Phytopath. 40, 221-249. 

Christie, J.R., Perry, V.G., 1951. Removing nematodes from the soil. Proc. Helminth. 
Soc. Wash. 18, 106-108. 

Dean, J.E. 2006. Brassica cover crops for nitrogen retention in the Maryland Coastal 
Plain [Online]. Available by University of Maryland.  
https://drum.umd.edu/dspace/bitstream/1903/3818/1/umi-umd-3663.pdf (verified 
25 May 2007). 

Ettema, C.H., Bongers, T., 1993. Characterization of nematode colonization and 
succession in disturbed soil using the Maturity Index. Biol. Fertil. Soils 16, 79-85. 

Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web 
diagnostics: extension of the nematode faunal analysis concept. Appl. Soil Ecol. 
18, 13-29. 

Ferris, H., Venette, R.C., Scow, K.M., 2004. Soil management to enhance bacterivore 
and fungivore nematode populations and their nitrogen mineralisation function. 
Appl. Soil Ecol. 25, 19-35. 

Halbrendt, J.M. 1992. Novel rotation crops as alternatives to fumigant nematicide 
treatment in deciduous tree fruit production. NE-SARE GRANT 90-12-01. Fruit 
Research Laboratory, The Pennsylvania State University, Biglerville, 20 p. 

Halbrendt, J.M., 1996. Allelopathy in the management of plant-parasitic nematodes. J. 
Nematol. 28, 8-14. 

Halbrendt, J.M., LaMondia, J.A. 2004. Crop rotation and other cultural practices. In:  
Chen, Z.X., Chen, S.Y., Dickson, D.W. (Eds.), Nematology, Advances and 
Perspectives Vol 2: Nematode Management and Utilization. CABI, Cambridge, 
pp. 909-930. 

Kratochvil, R.J., Sardanelli, S., Everts, K., Gallagher, E., 2004. Evaluation of crop 
rotation and other cultural practices for management of root-knot and lesion 
nematodes. Agron. J. 96, 1419-1428. 

Kremen, A.E. 2006. Nitrogen mineralization from brassica cover crops. [Online]. 
Available by University of Maryland. 
https://drum.umd.edu/dspace/bitstream/1903/3821/1/umi-umd-3666.pdf (verified 
25 May 2007).   

Matthiessen, J.N., Kirkegaard, J.A., 2006. Biofumigation and enhanced biodegradation: 
Opportunity and challenge in soil borne pest and disease management. Crit. Rev. 
Plant Sci. 25, 235-265. 



 

 2 
 

Mojtahedi, H., Santo, G.S., Hang, A.N., Wilson, J.H., 1991. Suppression of root-knot 
nematode populations with selected rapeseed cultivars as green manure. J. 
Nematol. 23, 170-174. 

Morra, M.J., Kirkegaard, J.A., 2002. Isothiocyanate release from soil-incorporated 
Brassica tissues. Soil Biol. Biochem. 34, 1683-1690. 

Poinar, G.O. 1983. The natural history of nematodes. Prentice-Hall, Inc., Englewood 
Cliffs, 323 p. 

Sánchez-Moreno, S., Ferris, H., 2007. Suppressive service of the soil food web: Effects 
of environmental management. Agric. Ecosyst. Environ. 119, 75-87. 

Sindermann, A., Williams, G., Sardanelli, S., Krusberg, L.R., 1993. Survey for 
Heterodera glycines in Maryland. J. Nematol. 25, 887-889. 

Smolinska, U., Morra, M.J., Knudsen, G.R., James, R.L., 2003. Isothiocyanates produced 
by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis. 87, 407-
412. 

Vaughn, S.F., Boydston, R., 1997. Volatile allelochemicals released by crucifer green 
manures. J. Chem. Ecol. 23, 2107-2116. 

Wang, K.-H., McSorley, R., Marshall, A.J., Gallaher, R.N., 2004. Nematode community 
changes associated with decomposition of Crotalaria juncea amendment in 
litterbags. Appl. Soil Ecol. 27, 31-45. 

Watt, M., Kirkegaard, J.A., Passioura, J.B., 2006. Rhizosphere biology and crop 
productivity--a review. Aust. J. Soil Res. 44, 299-317. 

Weil, R.R., Kremen, A.E., 2007. Thinking beyond and across disciplines to make cover 
crops pay. J. Sci. Food Agric. 87, 551-557. 

Williams, S.M., Weil, R.R., 2004. Crop cover root channels may alleviate soil 
compaction effects on soybean crop. Soil Sci. Soc. Am. J. 68, 1403-1409. 

Wrather, J.A., Koenning, S.R., 2006. Estimates of disease effects on soybean yields in the 
United States 2003-2005. J. Nematol. 38, 173-180. 

Yeates, G.W., van der Meulen, H.R., 1996. Recolonization of methyl-bromide sterilized 
soils by plant and soil nematodes over 52 months. Biol. Fertil. Soils 21, 1-6. 

Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W., Georgieva, S.S., 1993. 
Feeding habits in soil nematode families and genera--an outline for soil 
ecologists. J. Nematol. 25, 315-331. 

Zasada, I., Ferris, H., 2003. Sensitivity of Meloidogyne javanica and Tylenchulus 
semipenetrans to isothiocyanates in laboratory assays. Phytopath. 93, 747-750. 

Zasada, I., Ferris, H., 2004. Nematode suppression with brassicaceous amendments: 
application based upon glucosinolate profiles. Soil Biol. Biochem. 36, 1017-1024. 

 

 

 



 

 3 
 

CHAPTER II � LITERATURE REVIEW 

 

1. Plant-Parasitic Nematode Control 
 

1.1. Introduction to plant-parasitic nematode management 

Plant-parasitic nematodes continue to cause major yield losses, despite decades of 

research on their control.  Heterodera glycines (soybean cyst nematode), for example, 

remains the leading cause for soybean yield loss in the United States (Wrather and 

Koenning, 2006).  In Maryland, soybean yield loss in 2003-2005 was estimated at 27.7 x 

103 tonnes (Wrather and Koenning, 2006).  Nematodes such as Meloidogyne (root-knot), 

Pratylenchus (lesion), Tylenchorhynchus (stunt), Trichodorus and Paratrichodorus 

(stubby root), Xiphinema (dagger), and Hoplolaimus (lance), Helicotylenchus (spiral) are 

other major plant-parasitic nematodes in Maryland, which have variable and often 

unknown yield impacts on grain, turf, fruit, nursery, and vegetable crops (Kratochvil et 

al., 2004; S. Sardanelli, personal communication, 2003; Sindermann et al., 1993).   

In the last 20 years, suppression of plant-parasitic nematodes using ecological 

practices has received more attention.  This is attributed to increased restrictions on 

nematicides, environmental and health concerns, increased microbial adaptation to 

chemicals (faster degradation), and increased evidence of the important role of biological 

diversity in nematode control (Cohen et al., 2005; Halbrendt and LaMondia, 2004; 

Lavelle et al., 2004).  Today, integrated pest management advocates use of a cadre of 

practices to manage and prevent plant-parasitic nematode outbreaks, including practices 

such as rotation of cash crops, rotation of resistant cultivars, rotation into fallow, rotation 
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into non-host or trap cover crops, incorporation of allelopathic green manures, sanitation 

of equipment, and adjustment of planting dates (Halbrendt and LaMondia, 2004; 

Kratochvil et al., 2004; Wang et al., 2006).  This review will focus on the use of 

brassicaceous cover crops as non-host cover crops, trap crops, and allelopathic green 

manures, with emphasis on species used in this study. 

 

1.2. Mechanisms of control with brassicaceous cover crops 

Brassicaceous cover crops are well known for their potential in biocontrol via the 

glucosinolate compounds found in their tissues.  Glucosinolates alone have not been 

shown to be toxic to organisms; it is the degradation products resulting from a reaction of 

glucosinolates with an enzyme, such as myrosinase or thioglucosidase, which are toxic 

(Donkin et al., 1995; Jing and Halbrendt, 1994).  These hydrolysis products may include 

isothiocyanates (ITCs), thiocyanates, nitriles, and oxazolidine-2-thiones, though ITCs are 

considered the most toxic (Brown et al., 1991).  Glucosinolate degradation products have 

been shown to suppress weed seed germination (Brown and Morra, 1996; Vaughn and 

Boydston, 1997; Weil and Kremen, 2007), fungal pathogens (Abawi and Widmer, 2000; 

Smolinska et al, 2003), and plant-parasitic nematodes (Akhtar and Mahmood, 1994; 

Halbrendt, 1996; Mojtahedi et al., 1991; Zasada and Ferris, 2003, 2004).   

Glucosinolates are found in different physiological parts of plants and can vary in 

quantity based on environmental conditions (Agerbirk et al., 2001; Charron et al., 2004; 

Ciska et al., 2000).  The concentrations and types of glucosinolates in root and shoot 

tissue may be influenced by grazing (Smith et al., 1991), attack by insects (Birch et al., 

1990), plant maturity (Feeny and Rosenberry, 1982), and planting season (Lazzeri et al., 
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2003).  Gardiner et al. (1999) found higher concentrations of glucosinolate-degradation 

products from roots than shoot, despite accounting for only 25% of the plant biomass.  

They proposed that the prolonged release of hydrolysis products from the roots could 

contribute to the potential effectiveness of rapeseed (Brassica napus �Humus� and �Dwarf 

Essex�) as a soil fumigant.  In a greenhouse pot study root leachate, obtained by 

collecting water draining from pots with living rapeseed �Dwarf Essex� plants, did not 

reduce the survival or egg hatching of Rotylenchus reniformis more than the control 

(Wang et al., 2001).  Early studies, in petri dishes, pots, and the field, found that mustard 

root extracts or oil expressed from mustard (B. nigra or Sinapis alba) seed reduced hatch 

of Globodera rostochiensis (then thought to be Heterodera) and in the field increased 

potato yields (Ellenby, 1945; Ellenby, 1951).  These results suggest variable mechanisms 

of nematode suppression from extracts of the living root.  Few studies have macerated 

root material alone for evaluation of its effects on nematodes.  Results from evaluation of 

20 different brassicaceous varieties suggested that aboveground biomass was more toxic 

than belowground biomass and this toxicity increased with plant age, until senescence; 

seed extracts were the most toxic (Halbrendt, 1992).   

The effectiveness of ITCs and other degradation products as biofumigants is 

dependent on many cultural factors, including the manner and environment in which the 

tissue is disrupted.  It is recommended that tissues be macerated, incorporated, and 

irrigated so as to maximize the quantity and depth of soil matrix fumigation (Matthiessen 

et al., 2004).  Options are limited for biofumigation in no-till agriculture, unless tissue is 

ruptured by freezing and thawing.  Morra and Kierkegaard (2002) found high levels of 

ITC in soil (100 nmol/g soil) after freeze-thaw of mustard biomass.  However, Price et al. 
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(2005) observed 81% less allyl-ITC production under cold conditions (15ûC) compared to 

warm (45ûC) when mustard was incorporated into soil.    

The need for irrigation after incorporation is related to the volatile nature of the 

compounds in the soil.  Gardiner et al. (1999) estimated that rapeseed degradation 

products remain in the soil for roughly three days.  Brown et al. (1991) observed 

maximum isothiocyanate production within two hours of amending the soil and a 90% 

decrease within 24 hours, in bioassays using 30 g defatted rapeseed meal/kg soil.  The 

volatile nature of degradation products may imply that suppression of plant-parasitic 

nematodes cannot be maintained over the length of the entire growing season, or that 

nematodes deeper in the soil may be unaffected.  Research in Oregon on root-knot 

nematode, M. incognita, in potato production systems, suggests that mustard and oilseed 

radish may be effective in short-term suppression, but that complementary small doses of 

nematicide are required for full-season suppression (R. Ingham, personal communication, 

2003).   

The effectiveness of brassica cover crops as biofumigants is also largely 

dependent on the quantity of biomass grown.  Commercial methyl isothiocyanates 

fumigants are applied at rates ranging from 517 to 1294 nmol per gram of soil (Brown et 

al., 1991), while incorporation of rapeseed as observed by Gardiner et al. (1999) would 

produce 30 nmol of isothiocyanate per gram of soil under the same hypothetical soil 

conditions.  However, after conducting assays with commercial glucosinolate products on 

the nematode M. javanica to determine lethal concentrations, Zasada and Ferris (2003) 

estimate that 24 dry tons/ha of rapeseed material would be required to have effective 

biofumigation and is realistic in California.  Other climates and producer reluctance to 
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fertilize cover crops may mean that brassica cover crops have less biofumigation 

potential in those regions. 

 

1.3. Nematode interactions with brassicaceous cover crops 

Brassicaceous cover crops may be used as a management tool for plant-parasitic 

nematodes through several mechanisms.  Crop rotation with non-hosts or poor hosts is 

one of many practices used to decrease plant-parasitic nematode populations.  A poor 

host is a plant that does not favor nematode reproduction in the rhizosphere (Rf = Pf/Pi < 

0.1-1.0; Rf = reproduction factor, Pf = final populations and Pi = initial populations).  

Cover crops as trap crops induce hatch (cyst forming nematodes) or allow penetration 

into the roots, but do not favor nematode reproduction, and can be incorporated or 

removed before completion of reproductive cycles to reduce populations.  Brassicaceous 

cover crops, such as oilseed radish (Raphanus sativus) and mustard, bred to be resistant 

to H. schachtii, are effective trap crops (Rf < 0.5) in Wyoming and throughout Europe, 

particularly in Germany (Smith et al., 2004).  Finally, incorporation of cover crops with 

bio-toxic degradation products may directly suppress nematode populations (Chitwood, 

2002).  Optimum practices would involve more than one of these mechanisms 

simultaneously. 

Host suitability of brassica cover crops has been evaluated for a variety of 

nematodes and will be reviewed here by nematode genera common in Maryland.  

Rapeseed cultivars �Bridger�, Gorazinska, and H-47 were poor hosts (females on root:  Rf 

< 0.5) for H. glycines (Bernard and Montgomery-Dee, 1993).  However, in a screening of 

46 cover crops for use in H. glycines management, rapeseed �Dwarf Essex� and oilseed 
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radish (no cultivar given) had egg reproduction factors (Rf = final egg count/50 or 100 

cm3 of soil (Pf): initial egg count/50 or 100 cm3 (Pi)) of 0.90 and 0.85 respectively after 

75 days of cover crop growth, averaged across two greenhouse studies that used clay 

loam soil from the field (Warnke et al., 2006).   

Root knot nematodes, M. incognita, M. javanica, M. chitwoodi, and M. hapla, 

have reproduced (Rf > 1.0; good host) on oilseed radish cultivars �Adagio�, �Trez�, 

�Melodie�, �Renova�, �Siletta�, �Nova�, �Ultimo� or �Silentina� and/or on mustard (S. 

alba) cultivars �Martigena�, �Albatross�, �Emergo�, �Maxi�, �Martigena�, �Metex�, 

�Serval�, or �ISCI 20� (Al-Rehiayani and Hafez, 1998; Curto et al., 2005; Gardner and 

Caswell-Chen, 1994; Viaene and Abawi, 1998).  However radish cultivar �Boss� did not 

support reproduction of M. incognita in a greenhouse study (Curto et al., 2005).  

Rapeseed (B. napus) cultivars �Bridger�, �Gorzanski�, and �H-47� were good hosts (Rf > 

1.0) for root-knot nematode M. incognita (Bernard and Montgomery-Dee, 1993), but 

cultivars �Humus�, �Ceres�, �Westar�, and �Cascade' were poor hosts (Rf = 0.1-1.0) or 

non-host (Rf < 0.1) for root-knot nematode M. chitwoodi race 1 or 2 (Al-Rehiayani and 

Hafez, 1998; Ingham et al., 1999).  Rapeseed cultivars �Jupiter� and �Liradonna� were 

poor hosts for root-knot nematode M. incognita race 2 (Mojtahedi et al., 1991).  In a 

microplot study oilseed radish cultivars �Trez� and �Melodie�, as well as rapeseed cultivar 

�Humus� were poor hosts for M. chitwoodi race 2, contrary to greenhouse study results 

(Al-Rehiayani and Hafez, 1998).   

In a pot study, rapeseed cultivar �Humus� and mustard cultivar �Martigena� had 

the highest final nematode counts of lesion nematode, Pratylenchus neglectus (Al-

Rehiayani and Hafez, 1998), though in another pot study rapeseed cultivars �Bridger�, 
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�Gorazinska�, and �H-47� were poor hosts for lesion nematode P. scribneri (Bernard and 

Montgomery-Dee, 1993).  Oilseed radish and rapeseed were intermediate hosts for P. 

penetrans (Abawi and Ludwig, 1995).  In a field study with potato rotations, populations 

of P. penetrans were sustained and not suppressed after cover cropping with rapeseed 

�Humus� (LaMondia, 2006). 

Brassica cover crops which host nematodes, but are also highly suppressive when 

incorporated as a green manure, may also be a viable option for producers.  In Maryland, 

two successive plantings and incorporations of rapeseed cultivar �Dwarf Essex� is 

recommended for pre-planting conditions for perennial small fruits and orchards (Fiola, 

2007; Steiner, 2002).  In a SARE project conducted in Maryland and Pennsylvania, 

rapeseed and mustard (white and black) suppressed Xiphinema sp. as effectively as 

nematicides, but it required a full year of two successive cover crop plantings.  Jing and 

Halbrendt (1994) found that rapeseed cultivar �Humus� extracts were the most toxic, 

from either the plant tissue or seed, in petri dish bioassays with Caenorhabditis elegans.  

In a greenhouse study mustard �Black Ebony� was more effective than rapeseed and 

suppressed Tylenchulus semipenetrans by 76% compared to a control; however, in  

complementary field studies (Australian orchards) mustard had variable effects on 

Paratrichodorus, suppressing it by 58% compared to weeds in one experiment and 

having no effect, compared to weeds in another experiment (Walker and Morey, 1999).  

Another study showed no effective suppression by rapeseed on Meloidogyne juveniles, 

but low glucosinolate concentrations due to incorporation of six month old tissue may 

explain the lack of effect (Johnson et al., 1992).  A vineyard inter-row field study found 

suppression of M. javanica across a large range of brassicaceous cover crops, but did not 
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find a correlation with tissue glucosinolate contents (McLeod and Steel, 1999).  Potter et 

al. (1999) found a significant negative correlation between 2-phenylethyl glucosinolate in 

the root and host susceptibility to P. neglectus.  These studies suggest that suppression of 

nematodes by brassicaceous cover crops is a complex interaction between plant 

properties and individual nematode genera sensitivities.   

Despite numerous bioassays providing evidence of the direct chemical 

suppressive effects of brassicaceous cover crops on nematodes (Donkin et al., 1995; Jing 

et al., 1994; Zasada and Ferris, 2004), achieving these conditions in the field, where soil 

properties interfere with chemical availability, may be unrealistic.  Results observed in 

the field may be misinterpreted as direct chemical effects.  Increasing research suggests 

that complex interactions in the rhizosphere between various members of the food web 

may be the cause of observed pest suppression or provide potential for future 

opportunities of pest suppression (Bjørnlund et al., 2006; Dong and Zhang, 2006; Seigies 

and Pritts, 2006; Wang et al., 2001; Watt et al., 2006).   

Apart from resistant trap crops bred to resist nematodes like H. schachtii (Smith et 

al., 2004), integrated biocontrol may be the only solution for suppression of cyst-forming 

nematodes.  The Pf/Pi from a 56 day fallow period after brassicaceous cover crop 

amendment averaged 1.1 across two experiments, showing little potential for suppression 

of H. glycines by incorporation of brassicaceous cover crop biomass (Warnke et al., 

2006).  In another experiment, juvenile populations of H. glycines added to pots with 

freshly incorporated brassicaceous cover crops were sampled after 56 days of soybean 

growth in the same pots and were not lower than the control for oilseed radish, and 

mustard �Domo�, but were lower g-1 root for rapeseed �Glacier� (Riga et al., 2001).  In a 
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field experiment, H. glycines egg density after growth and incorporation of a canola 

rotation crop did not differ from the control (Miller et al., 2006).  Niblack (2005) 

suggested that the only truly effective control for H. glycines is to rotate cash crops and 

susceptible cultivars, and soil sample for detection and monitoring.   

To advance glucosinolate-pest suppression systems further, more research should 

be conducted in the field.  Many nematodes are less active when soil temperatures are 

cooler (Al-Rehiayani and Hafez, 1998; Gardiner and Caswell-Chen, 1994), and 

greenhouse studies may not be simulating these conditions.  The ability of microbes to 

adapt to chemicals and thereby enhance their degradation, is a serious concern, as farmers 

seek alternatives to methyl bromide (Matthiessen and Kirkegaard, 2006), and implies that 

even bio-fumigating cover crops need to be rotated.  

 

1.4. Conclusion 

In conclusion, the variability between studies may be the result of inconsistency 

in growing appropriate biomass quantity, glucosinolate production, or inappropriate 

plant/cultivar selection for the targeted pest.  However, in the context of an era of 

glyphosate resistant crops, where less skill and knowledge are needed for production 

success, it is unlikely that a system requiring so much fine tuning will be adapted.  More 

brassicaceous cover crop research should be conducted within the context of integrated 

pest management, within long-term rotations, and regionally focused.  This would enable 

consideration of practical concerns related to the targeted cash crop rotations, the climate, 

the dominant soil types, and the likelihood of adoption.        
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2. Free-Living Nematode Community as Indicators 

 

2.1. Introduction to nematode community indicators 

Decades of research in plant-parasitic nematode ecology ultimately evolved into a 

growing interest in total nematode community ecology.  Early interest (1970s) in the total 

nematode community, within an agricultural context, was partly inspired by studies 

relating net primary productivity to total nematode abundance within different ecosystem 

types, together with surprisingly little immediate effect on plant biomass response when 

nematicides killed large percentages of the nematode community (Yeates and Coleman, 

1982).  The role of nematodes in the soil food web became a topic of increasing 

importance.  Simple microcosm studies with bacteria, protozoa and nematodes revealed 

that nematodes increased plant growth and/or N mineralization relative to microcosms 

without nematodes (Anderson et al., 1983; Ingham et al., 1985).  It soon became evident 

that bacterivore nematodes were key regulators in organic matter decomposition both 

through transport of bacteria (on the cuticle and in the coelom), through predation and 

excretion of waste NH4
+, and through grazing which stimulates compensatory bacterial 

growth (Freckman, 1988).   

Subsequently, it became readily apparent that nematode communities would serve 

as good indicators of environmental quality in terrestrial ecosystems, whereas initially 

(1970s) nematode genera and total nematode abundance/copepod ratios were indicators 

in aquatic environments (Neher, 2001a).  According to Schloter et al. (2003) faunal 

indicators in the soil food web should be ubiquitous across environments, abundant and 
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important in ecosystem function, and have high diversity.  Nematodes, being the most 

abundant mesofauna on earth, being highly diverse (15,000 species to date) (Poinar, 

1983), occupying primary through quaternary levels of the food chain, and being easily 

extracted from the soil, clearly meet the criteria for serving as an environmental indicator.  

Their inability to directly move soil particles, in contrast to �ecosystem engineers� (Jones 

et al., 1994), also makes them favorable indicators because their abundance and diversity 

is a direct reflection of the interaction between soil physical, chemical, and biological 

properties.      

The 1990s was a progressive decade for research in nematode ecology, including 

such seminal works as the Maturity Index (MI) (Bongers, 1990) and classification of 

genera into trophic groups (Yeates et al., 1993).  The Maturity Index was proposed in 

conjunction with categorization of nematode families into a colonizer-persister (cp) scale 

(1-5), representing a gradation of r- (opportunistic, fecund, generalists) and K- (persisters, 

low reproductive rates, specialists, large body sizes) selected strategies.  The index was 

originally proposed for the Netherlands but has been adapted world-wide (Bongers, 

2007).  The MI is calculated by weighting the proportion of each cp group by their 

respective cp rank, thus the index is sensitive to high abundances of either low or high 

cp-ranked nematodes.  The cp scores were assigned to nematode families primarily by 

sensitivity to pollution (toxicity or eutrophication) and secondarily by life-history 

characteristics such as reproductive capacity and strategy, under the assumption that as 

time increased after a disturbance a greater increase of cp-4 and -5 nematodes would be 

found (Bongers, 1990).  Thus, the index is a broad measure of community succession 

after a disturbance.  The intent of the index was to provide a signal about environmental 
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quality which would then require further investigation.  Taxonomic resolution could then 

remain coarse and the index remain practical for quick environmental assessment.   

A reference, or control, was recommended for correct assessment of the signal.  In 

agricultural systems, native prairie, perennial agriculture systems, and organic systems 

have all been proposed as standards for undisturbed or sustainable environmental 

conditions (Neher, 2001b; Yeates and Bongers, 1999).  However, standards have limited 

relevance at larger geographical scales where differences in climate result in greater 

variability.  Neher et al. (1998) concluded that comparisons of index values in 

agricultural systems (annual v. perennial crops) were reliable within a state, but were not 

comparable between states, using North Carolina and Nebraska as models.  In 

ecotoxicology research, it was suggested preferable to identify a local standard for each 

site of interest, since soil properties such as organic matter, pH, and texture have a strong 

influence on nematode communities and bioavailability of contaminants (Sochová et al., 

2006).  Since agriculture is a disturbance regime, it may be more informative to also have 

a local reference in agroecosystem studies.    

The development of the enrichment index (EI), channel index (CI), and structure 

index (SI) in 2001 (Ferris et al.) magnified potential for use of nematodes as indicators in 

agricultural systems.  The EI is calculated using a basal and enrichment component, 

which include cp-2 fungivores and bacterivores (persistent, stress tolerant decomposers) 

and cp-1 bacterivores and cp-2 fungivores (opportunistic enrichment responders) 

respectively.  The enrichment component and basal component both include cp-2 

fungivores because fungivores can contribute to N mineralization and respond rapidly to 

organic matter resources (Chen and Ferris, 1999).  The enrichment and basal components 
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are weighted based on the expected response in abundance of cp-1 bacterivores (index 

weight of 3.2) relative to the other persistent enrichment responders, cp-2 bacterivores or 

fungivores (index weight of 0.8).  The CI uses similar components and the same 

weightings as the EI, but reflects the dominance of the cp-2 fungivore activity.  As the CI 

increases, it indicates a greater proportional activity of the fungal community. 

The SI is calculated using the basal component and structure component, the latter 

comprised of cp 3-5 nematodes.  Each cp level in the structure trajectory is weighted 

based on the relationship between connectance (potential food web linkages) and richness 

(linkages = constant x (richness)2) from several studies averaged together (Ferris et al., 

2001).  Diversity of genera within a cp group increased linearly (by 0.5) with each 

increase in cp value, inclusive of lower cp values.  The constant in the relationship was 

derived from choosing 5 as representative of the highest level of connectance in a food 

web and dividing by the square of 2.5 (relative richness of the community with cp 2-5 

compared to a community with only cp-2 nematodes).  Correlation between nematode 

biomass and weightings in the EI and SI support the accuracy of the weightings in 

representing relative energy and carbon transfer among different trophic levels of the 

food web (Ferris et al., 2001).   

Graphical viewing of cp groups or indices is advantageous for improving 

interpretation.  Cp-triangles were introduced by de Goede et al. (1993) and were used to 

trace the relative shift in cp group dominance over time.  Ferris et al. (2001) proposed the 

EI and SI as trajectories which could be graphed together.  Index values could be graphed 

over time, and disturbances should be reflected in movement of values from one quadrant 

to another, signifying a range from stressed and disturbed (D) to enriched and stable (B).  
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More recently, Ferris and Bongers (2006) proposed using biomass estimations of 

bacterivore and fungivore nematodes in an Enrichment Profile (EP) to more accurately 

visualize the relative activity of bacterial and fungal decomposition pathways.  Nematode 

biomass, and not abundance, was correlated with mineralized nitrogen in laboratory 

studies with different bacterivore genera (Ferris et al., 1998), and biomass depiction over 

time in a field study, revealed the relative impact of a single species (Ferris et al., 1996).   

 

2.2. Applications in agriculture: organic matter amendments 

Attention to free-living nematodes as indicators in agricultural systems has been 

largely focused on understanding the decomposition food web dynamics.  More 

specifically, there is interest in synchronizing biological fertility and crop needs, by 

understanding how amendments of varying C/N ratios alter the timing of C and N 

mineralization (Ferris and Matute, 2003).  Ferris et al. (2004) observed increased EI 

values during the tomato season, when the soil food web was primed by cover cropping 

and irrigation the previous fall.  Wang et al. (2004) recommended that sunnhemp 

(Crotalaria juncea) be grown so that incorporation of the amendment would precede crop 

needs by two weeks, based on decomposer succession of litterbags containing ground and 

dried sunnhemp material. 

Nematode bacterivore dynamics during decomposition of amendments are 

similarly reported across studies, supporting the utility of the MI as an indicator for 

biological fertility.  Bacterivores capable of forming dormant stages (cp-1), dauer larvae 

or dauerlarvae (Fuchs, 1914), generally peak 2-3 weeks after enrichment (Bouwman et 

al., 1993; Ettema and Bongers, 1993; Georgieva et al., 2005a; Wang et al., 2004).  Dauer 
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formation has been reported in several studies using amendments with low C/N ratio 

(vetch roots and banana slices) (Georgieva et al., 2005a, 2005b; Ferris and Bongers, 

2006).  During succession cp-2 bacterivores replace cp-1 bacterivores, and this occurs 

when food supplies are too low to sustain the metabolic demands of cp-1 bacterivores 

(Ettema and Bongers, 1993).  Fungivores, like Aphelenchoides and Filenchus, have been 

observed to respond like opportunists (McSorley and Frederick, 1999), and therefore 

their inclusion in the numerator of the EI is justified.   

Decomposer succession is strongly influenced by the C/N ratio of the 

amendments. Bouwman et al. (1993) observed Cephalobidae (cp-2) nematodes replace 

Rhabditidae (cp-1) nematodes in glucose and proteose-peptone amended pots by week 

eight, while Aphelenchoididae (cp-2 fungivores) were dominant in wheat straw and 

decomposing wheat root amended pots by week eight of an incubation experiment.  

Ferris et al. (1998) predicted that residues with C/N ratios higher than 32:1 are likely to 

result in N limitation for plant growth in the presence of nematodes, and laboratory 

research with sand columns indicated that different C/N ratios of amendments resulted in 

different amounts of bacterivore-mediated mineralized N, though variation existed 

between species.  In a field study, the slope of the CI, or rate of change from bacterial to 

fungal activity, was negatively correlated with the rate of change of cumulative N 

mineralized, and wheat straw amendments (with C/N ratios of 75.9) decreased N 

mineralization and increased the rate of change of the CI (Ferris and Matute, 2003).  

Georgieva et al. (2005b) observed correlation between bacterivore biomass and residue 

decomposition of vetch roots in early decomposition of a pot litterbag study, while 

fungivore nematodes correlated with rye decomposition in later stages of decomposition.   
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Conservation of carbon in the trophic food web is another research focus.  The 

abundance of higher trophic feeding nematodes requires efficient carbon transfer from 

lower trophic levels to higher, which therefore may be enhanced through the 

metabolically slow fungal detrital pathway (Ferris and Bongers, 2006).  Succession to 

higher cp groups (3-5) is also influenced by the C/N ratio of the organic amendment 

(McSorley and Frederick, 1999; Wang et al., 2004).  Succession of omnivores was 

particularly rapid in the low C/N (19) ratio sunnhemp material (Wang et al., 2004), and in 

an apple orchard study the SI was highest over three years in an apple orchard mulch 

study where paper mulch or paper mulch and municipal compost were applied (Forge et 

al., 2003).  Wang et al. (2004) observed that long term (5 yr., C/N 35) inputs of 

composted yard waste had significantly higher EI values and lower CI values compared 

to no inputs, but SI values were not different, despite 6% higher organic matter levels in 

plots receiving long term compost.  These results may suggest that carbon quality, rather 

than quantity alone, is an important factor in stimulating the fungal decomposition 

pathway and ultimately greater succession. Additional motivation for feeding the soil 

food web carbon is for potential suppression of fungal pathogens by fungivores (Chen 

and Ferris, 1999; Okada et al., 2005). 

The underlying assumption in managing for high SI values is that higher 

connectance, stability, and diversity, represented by the presence of higher abundances of 

omnivores and predators, increases food web resilience (rapid recovery from 

disturbance), potential for top-down food web regulation, and bio-control of plant-

parasitic nematodes (Ferris and Bongers, 2006).  Wang et al. (2006) observed 2.7 to 7.3 

times higher percentages of plant-parasitic nematodes in anhydrous ammonia fertilized 
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plots compared to plots fertilized with sunnhemp, though no data about plant (squash) 

yields/biomass were provided.  This hypothesis has yet to be clearly proven, and as 

Yeates and Wardle (1996) suggest, higher plant yields may be more related to better 

nutrient cycling than to reduced plant parasitism. 

Weaknesses in index utility include inconsistent responses of genera or families 

within cp groups to disturbances.  Yeates and van der Meulen (1996) showed that cp 

characterization of genera were not accurate when, for example, Aporcelaimus showed 

evidence of rapid recolonization when soils were sampled 52 months after fumigation.  

Fiscus and Neher (2002) identified that genera have different sensitivities to the direct 

and indirect effects of chemical and physical disturbances.  For example, Ekschmitt and 

Korthals (2006) observed that fungivore decline was correlated with heavy metal 

contamination, but that it was an indirect effect of a decline in their food resource and not 

a response to direct toxicity.  Other difficulties arise from knowledge gaps about feeding 

habits, particularly for the Tylenchidae.  Feeding habits of higher trophic nematodes can 

also vary with life stage, risking mistaking algal, bacterial, or fungal feeding for 

successional maturity (Ettema and Bongers, 1993).  Inclusion dauer larvae in EI 

calculation has not been proven appropriate, though it has been calculated as such (Okada 

and Harada, 2007). 

Another weakness of indices is their calculation as proportions, whereby an 

increase in both lower and higher cp groups can prevent detection of treatment effects on 

food webs (Wang et al., 2003; Okada and Harada, 2007).  This might be resolved through 

simultaneous graphical depiction of several indices, including trophic group maturity 

indices such as the FuMI (fungivores cp 2-4) and BaMI (bacterivores cp 1-4).  The BaMI 



 

 20 
 

has only been reported in a few studies (Ferris et al., 1996, Wasilewska 1998, 2004), but 

has shown lower BaMI values with either enrichment or early succession stages 

(disturbance).  No treatment effects of the FuMI were found in the vetch amendment 

study by Ferris et al. (1996), and it has not been mentioned in other studies.  Integration 

of these indices into graphical depiction with the EI, SI, and CI would enable better 

detection of treatment effects masked by proportions.   

An alternative to indices is the use of nematode groups, genera or species as 

indicators.  For agricultural systems, bacterivore, fungivore, and herbivore guilds (groups 

sharing the same resource base) are proposed as indicators of carbon flow (Ferris and 

Bongers, 2006).  Fiscus and Neher (2002) identified nematode genera sensitive to direct 

and indirect chemical and physical disturbances.  Ekschmitt and Korthals (2006) 

identified six genera whose presence (tolerance) reliably indicated various metal 

contaminants.  Todd et al. (2006) identified ten genera best representing native prairie 

communities, though some species within a genus were better indicators than others.   

One precaution in developing both indices and sentinel taxa is the importance of 

scale.  The concept of a �nematode community� in the soil implies an interacting group of 

nematodes across different trophic levels. Nematodes are often studied at a much larger 

scale than the scale at which nematodes interact.  Decomposition dynamics in the 

rhizosphere are likely to be different than many of the studies focusing on decomposition 

in the bulk soil because of continuous labile C inputs from root exudates (Brussard, 1998; 

Ruf et al., 2006).  The use of matric potential has enabled some interpretation of 

nematode dynamics at the pore scale (Görres et al., 1999; Neher et al., 1999; Savin et al., 

2001, Yeates et al., 2002).  Increasing interest in how environmental heterogeneity 
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influences decomposition and ecological function may propel more investigation of 

nematode communities as they exist and function in intact soil matrices (Bonkowski, 

2000; Mikola and Sulkava, 2001), and this type of investigation may help to explain the 

strong influence of site properties (soil and climate) on nematode communities 

(Bjørnlund and Christensen, 2005; Frouz et al., 2001; Wardle et al., 2006; Yeates et al., 

2006).  

 

2.3. Conclusion 

In conclusion, nematode community analysis is useful for identifying enrichment 

of the food web through addition of organic amendments.  Succession after enrichment 

disturbances has been verified in many studies, proving the MI useful at least for its 

original intent as an environmental signal.  Indices at the resolution of family may be 

useful for long term monitoring of ecosystem recovery, while more knowledge about 

genera feeding habits, biomass, and sensitivities to disturbance may be necessary for 

developing a decision-making framework for biological fertility (and potentially pest) 

management.  Future research may benefit from developing indices for isolated 

disturbances, using sentinel taxa or groups, and then viewing all the indices together for 

graphical interpretation.  Verification of index relevance should continue to be done 

through use of current food web models.  Potential for estimating, optimizing, and 

synchronizing biological fertility with crop demands exists, as field research across 

diverse soil properties, cropping systems, and climates continues to inform our 

knowledge about nematode response and behavior.  
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CHAPTER III �MANAGEMENT OF PLANT-PARASITIC NEMATODES IN 
MARYLAND GRAIN PRODUCTION SYSTEMS WITH BRASSICACEOUS AND 

RYE COVER CROPS 
 

Abstract 
 

Soil nematodes in grain crop agroecosystems were studied in three experiments at 

two sites in Maryland, to test the hypothesis that glucosinolate-containing brassicaceous 

cover crops would suppress plant-parasitic nematodes.  Cover crops tested included 

mustard blend (Brassica juncea and Sinapis alba) �Caliente�, rapeseed (B. napus) 

�Essex�, rapeseed (B. napus) �Humus�, oilseed radish (Raphanus sativus) 

�Adagio�/�Colonel�, and forage radish (R. sativus) �Dichon�.  These were combined with 

rye (Secale cereale) �Wheeler� and crimson clover (Trifolium incarnatum) in Experiment 

1.  Heterodera glycines increased more than ten-fold over the two years in which 

susceptible soybeans were grown; it was not suppressed by brassicaceous cover crops.  

Dolichodoridae nematodes declined over the two years in all treatments of the same 

experiment. Rye had opposite effects on Dolichodoridae in two experiments.  

Trichodoridae nematodes were 2-4 times higher in mustard plots than in other 

brassicaceous treatments during cover crop growth, and 1.8 times higher than in oilseed 

radish plots during the entire two years, in Exp. 1.  In two of the three experiments, rye 

favored high abundances of Trichodoridae in June.  Combination of brassicaceous cover 

crops with rye and clover decreased H. glycines J2 abundances, and/or increased soil 

moisture, or non-parasitic nematode abundances on one or more sample dates.  In 

laboratory bioassays, all cover crop tissues reduced survival of Meloidogyne incognita or 

H. glycines J2 compared to unamended controls.  Bioassays results suggested that 
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rapeseed biomass production in 2005 in Exp. 1 was insufficiently high for suppression of 

H. glycines J2.  Bioassay results suggested radish biomass production was sufficient for 

suppression.  The failure to observe suppression in the field with radish cover crops may 

have been related to freeze-termination of this cover crop, when soil temperatures depress 

nematode activity.  Future brassicaceous biofumigation studies in Maryland should target 

high value production systems that allow for more intensive and flexible management of 

cover crops.   

 

 

1.  Introduction 

 

Cover crops are an important tool in integrated pest management and are 

beneficial to soil health (Abawi and Widmer, 2000; Vargas-Ayala and Rodriguez-

Kabana, 2001).  Brassicaceous cover crops have received more attention as reports of 

nematode suppression (Zasada and Ferris, 2003), soil pathogen suppression (Oliver et al., 

1999; Smolinska et al., 2003), and weed suppression (Petersen et al., 2001) have 

increased.  The agents of suppression appear to be volatile biotoxic degradation products 

that are released when glucosinolates in the plant tissue are hydrolyzed by myrosinase, 

either stored separately in the plant or located in the soil (Sarwar and Kirkegaard, 1998).  

The concentrations and type of glucosinolates in root and shoot tissue, however, may be 

influenced by cultivar (Eberlein et al., 1998), above-ground or below-ground grazing 

(Birch et al., 1990; Smith et al., 1991; van Darn et al., 2003), plant maturity at time of 

incorporation (Mojtahedi et al., 1991), and environmental factors like day length, season, 
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or climate (Ciska et al., 2000; Lazzeri et al., 2003; Charron et al., 2004).  It is 

recommended that plant tissues be macerated to enhance biotoxic chemical production 

and irrigated to promote chemical penetration of the soil (Matthiessen et al., 2004). These 

environmental and management conditions have contributed to conflicting reports among 

studies regarding the practical efficacy of brassicaceous cover crops for pest 

management.   

Nevertheless, research suggests that cultivars of brassicaceous cover crops 

possess suppressive qualities for specific nematodes and can be useful in plant-parasitic 

nematode management. Rapeseed cultivars �Humus� and �Essex� are known to produce 

2-phenylethyl glucosinolate, which results in the toxic 2-phenylethyl isothiocyanate 

(ITC) upon degradation (Eberlein et al., 1998; Gardiner et al., 1999).  Mustard (Sinapis 

alba) has been combined with radish (Raphanus sativus) as a green manure for 

suppression of Heterodera schachtii (Wilson et al., 1993) and mustard suppressed 

Tylenchulus semipenetrans by 76% compared to the control in a greenhouse study 

(Walker and Morey, 1999).  Mustard (B. juncea) seed meal amendment suppressed M. 

javanica 100% when applied at a rate of 2.0% w/w, and T. semipenetrans showed 100% 

mortality at 0.9% w/w in a lab bioassay (Zasada and Ferris, 2004).  Where oilseed radish 

�Adagio�, bred to resist H. schachtii, was grown in the field, populations of H. schachtii 

were reduced by 50-75% (Koch and Gray, 1997).   

In the mid-Atlantic region, rapeseed was included in a rotation for suppression of 

Meloidogyne and Pratylenchus, however suppression was not observed in that rotation 

(Everts et al., 2006).  In a regional small fruit study, two successional plantings and 

incorporations of rapeseed �Essex� and mustard �Black Ebony� suppressed Xiphinema sp. 
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as well as nematicides (Halbrendt, 1992), and rapeseed has been recommended for over a 

decade for suppression of replant disease for orchard renovation (Steiner, 2002).   

Soybean cyst nematode, H. glycines, is a major pest of soybean (Glycine max), 

particularly on sandy soils in the mid-Atlantic region (Sindermann et al., 1993).  Soybean 

cyst nematode affects approximately 40,500 ha of soybeans in Maryland (W. Kenworthy, 

personal communication, 2003), and H. glycines continues to be the leading cause for 

soybean yield loss in the United States (Wrather and Koenning, 2006).  However, few 

studies have investigated the use of brassicaceous cover crops in the field to suppress H. 

glycines in the mid-Atlantic region or elsewhere (Miller et al., 2006).  

The primary objective of this study was to evaluate the ability of brassicaceous 

cover crops to suppress plant-parasitic nematodes known to cause economic damage in 

soybean and corn in Maryland.  The following hypotheses were tested: 1) brassicaceous 

cover crops will suppress populations of plant-parasitic nematodes, whether or not fresh 

biomass is incorporated into the soil, 2) combination with rye or clover will not decrease 

brassicaceous cover crop suppression of plant-parasitic nematodes, 3) cover crops will 

not suppress non-parasitic nematodes, 4) cover crops will increase grain crop yields.  An 

additional objective was to use soil properties to help explain the results.       

 

2. Materials and Methods 

 

2.1. Experiment 1 

Experiment 1 was conducted at the University of Maryland Lower Eastern Shore 

Research and Education Center (LESREC) in Salisbury, MD (N38û22�, W75û39�).  The 
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soil transitioned from a Hammonton series (coarse-loamy, siliceous, semiactive, mesic, 

aquic Hapludult) to a Galestown series (siliceous, mesic, psammentic Hapludult) from 

east to west across the field.  The depth to subsoil clay (argillic horizon) in the eastern 

end was 20-60 cm closer to the soil surface than in the western end.  Average (n=4) 

surface soil properties (0-15 cm) were loamy sand texture, pH 6.8, and organic matter 9.7 

mg/g. Sand and clay contents ranged from 83% and 5% at the eastern end to 90% and 3% 

on the western end.  Precipitation and temperature at LESREC during the study are 

shown in Figure 3.1; sprinkler irrigation was used to supplement rainfall at this site.   

Experiment 1 was initiated in August 2003 and data collection was completed in 

fall 2005.  A baseline survey of nematode populations and soil parameters across the 

experimental site was conducted and was used to establish the randomized complete 

block design with two blocks located on the Hammonton soil in the eastern and two 

blocks on the Galestown soil in the western end of the field site.  Prior to the experiment, 

the field was cropped with a soybean-corn (Zea mays) -wheat (Triticum aestivum) 

rotation using conventional tillage.  Plots were 3 x 9 m with all planting and tillage 

operations conducted parallel to (not across) the plot boundaries.  The treatment structure 

was a 6 x 3 factorial, with brassicaceous and non-brassicaceous cover crops as the 

treatment factors.  The six levels of brassica treatments were mustard blend (S. alba and 

B. juncea) �Caliente�, rapeseed (B. napus) �Dwarf Essex� (hereafter referred to as 

�Essex�) and �Humus�, forage radish (Raphanus sativus) �Dichon', oilseed radish (R. 

sativus) �Adagio�, and a weedy control.  The three levels of the non-brassica cover crops 

were rye (Secale cereale) �Wheeler�, crimson clover (Trifolium incarnatum) �Dixie�, and 

a no cover crop, unweeded control.  The dominant weeds in the control in summer 2004 
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were nutsedge (Cyperus esculentus), wild mustard (Brassica sp.), grasses, and cutleaf 

evening-primrose (Oenothera laciniata). 

Cover crop seeds were broadcast by hand into bare tilled soil on 25 August 2003 

and plots were then cultipacked to ensure good seed-soil contact.  Seeding rates were 4.5 

kg/ha mustard blend, 9 kg/ha rapeseed cultivars, 14.6 kg/ha radishes, 45 kg/ha for rye in 

combination, 126 kg/ha for rye alone, 34 kg/ha for crimson clover, and 17 kg/ha for 

crimson clover in combination.  Cover crops were fertilized with 90 kg/ha N as 

ammonium sulfate and ammonium nitrate on 15 September 2003, to assure adequate 

nitrogen and sulfur nutrition for vigorous cover crop growth.  A second application of 46 

kg N/ha as ammonium sulfate was applied on 22 October.   

Cover crop biomass in selected treatments was collected from 0.25 m2 quadrats 

on 18 October 2003 and 28 April 2004.  Cover crops were incorporated and killed with 

three passes of a disk harrow and a rear-mounted solid-wheel cultipacker on 28 April 

2004. A soybean cyst susceptible, glyphosate tolerant soybean, cultivar �NK/Syngenta 

S39Q4�, was planted in 38 cm rows on 12 May 2004 at a seeding rate of 101 kg/ha. No 

further cultivation was performed after cover crop incorporation.  To permit data 

collection on weed establishment for complementary studies, application of herbicide (N-

(phosphonomethyl)glycine), at a rate of 0.96 L/ha active ingredient, was delayed until 15 

June 2004.  On 29 June 2004, a mixed fertilizer high in K was applied (36 kg N/ha, 22 kg 

P/ha, and 112 kg K/ha) in response to K deficiency symptoms on clover and low K levels 

on soil test reports.   

On 15 September 2004 cover crop treatments for the second year were established 

by broadcasting seed into the standing soybean canopy (growth stage R7).  Seeding rates 
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were 50% higher than in 2003 to compensate for lack of soil incorporation.  On 22 

September, 59 kg/ha N as ammonium sulfate was broadcast into plots.  On 18 October 

2004 soybeans were combine-harvested over living cover crops.  Yield subsamples were 

taken to the laboratory and dried at 65ûC for determination of moisture content.  Biomass 

was collected for winter-susceptible cover crops on 13 December 2004 from two 0.25 m2 

quadrats per plot.  On 13 and 14 April 2005, the biomass was determined for winter-

surviving cover crops and weeds and then plants were rotary mowed to 7.6 cm above the 

soil surface.  All plots then received one pass of a chisel plow (15 cm deep) followed by 

2 passes of a disk harrow with solid wheel cultipacker.  On 10 May 2005 the plots were 

fertilized with 12 kg P/ha, 84 kg K/ha, 28 kg S/ha, 1 kg B/ha,  tilled with two passes of 

the disk harrow, and sown with soybeans (same cultivar as previous year) in 38 cm rows 

at a rate of 500,000 seeds/ha. On 10 June 2004, herbicide (N-(phosphonomethyl)glycine) 

was applied at 0.62 L/ha active ingredient. In response to spider mite infestation, the 

pesticide cyhalothrin, lambda ((RS)-alpha-cyano-3-phenoxybenzyl 3-(2-chloro-3,3,3-

trifluoropropenyl)-2,2,-dimethylcyclopropanecarboxylate) was sprayed at a rate of 0.03 

L/ha active ingredient on 15 July 2004.  Soybeans were harvested with a combine on 2 

November 2005, nearly a month after maturity because of rain.  Yield sub-samples were 

taken to the laboratory and dried at 65ûC for determination of moisture content.    

 

2.2. Experiment 2   

Experiment 2 was located in the unused middle portion of the same field used for 

Exp. 1 and was also a randomized complete block design with plot size 3 x 9 m.  Prior to 

planting, this area had been kept in fallow with repeated disking, since fall 2003.  
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Experiment 2 included six cover crop treatments: mustard blend �Caliente�, rapeseed 

�Essex�, forage radish �Dichon�, oilseed radish �Adagio�, cereal rye �Wheeler�, and an 

unweeded control. On 27 August 2004, cover crops were broadcast seeded (same rates as 

in Exp. 1) into tilled soil and then cultipacked. A total of 100 kg N/ha as ammonium 

nitrate was broadcast by hand on 1 September and 22 September 2004.  Cover crop 

biomass was collected from 0.25 m2 quadrats on 8 November 2004 for rapeseed, forage 

radish, and rye treatments and 15 November 2004 for oilseed and mustard treatments.  

Biomass collection of winter-surviving cover crops, and plot management was the same 

as in Exp. 1 (2005) for the rest of the season, apart from planting of glyphosate tolerant 

corn �Pioneer 34B62� on 9 May 2005 in 76 cm rows at a rate of 64,467 seeds/ha.  Corn 

plots also received two applications of nitrogen at a rate of 67 kg N/ha on both 4 and 13 

June.  Corn was harvested on 26 September 2004 with a combine. 

 

2.3. Experiment 3 

An experiment was established at the Central Maryland Research and Education 

Center (CMREC), Laurel, MD (N39û1�, W76û51�).  The soils transitioned from a 

Rosedale series (loamy, siliceous, semiactive, mesic Arenic Hapludult) at the northern 

end to an Evesboro series (mesic, coated-lamellic Quartzipsamment) at the southern end 

of the field.  The significance of this transition was a difference in subsoil texture, with a 

sandy loam or finer, beginning at 60-80 cm and redoximorphic features beginning at 80-

100 cm.  This suggests more subsoil moisture in the northern half of the field.  Surface 

soil texture was a loamy sand throughout the field (85.9 ± 1.2% sand, 9.8 ± 0.9% silt, 4.4 
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± 0.3% clay; n=4) with pH 6.5 (June 2003) and organic matter 16.9 mg/g.  The 

precipitation and temperature during the study is shown in Figure 3.1. 

A randomized complete block design experiment was initiated in August 2004 

and completed in fall 2005.  The field was managed with no-till techniques for five years 

prior to the experiment and remained in no-till management during the experiment.  The 

land was fallow the previous winter and was in soybean at early pod fill (growth stage 

R6) just before planting the cover crop treatments.  Soybeans were mowed on 18 August 

2004 and their residue was used as a source of fertility for fall planted cover crops (the 

tissue contained 208 kg N/ha).  Plot size and orientation of operations was the same as in 

Exps. 1 and 2.  Cover crop treatments were the same as in Exp. 2 except mustard blend 

was not included and oilseed radish cultivar �Colonel� was used instead of �Adagio�.   

Cover crops were no-till drilled on 25 August 2004 at 16.5 kg/ha radish seed, 8 

kg/ha rapeseed seed, and 126 kg/ha rye seed.  Cover crop plant biomass (dry matter) was 

determined on 30 October 2004 for all treatments and on 23 April 2005 for winter-

surviving cover crops (rapeseed and rye).  The cover crops were then killed with 

herbicide (N-(phosphonomethyl)glycine) at 2.3 L/ha active ingredient on 27 April 2005.  

Lime was spread on 5 May 2005 at a rate of 1100 kg/ha based on soil test 

recommendation.  Corn (Pioneer �34B62�) was planted on 10 May 2005 in 76 cm wide 

rows using a no-till planter and a second application of herbicide was applied on 4 June at 

a rate of 1.7 L/ha active ingredient.  Corn was fertilized with 146 kg/ha N using 30% 

urea-nitrate dribbled between the rows on 15 June 2005.  Corn silage yield was 

determined on 12 September 2005 by cutting all corn plants at 2.5 cm above ground level 
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from two center rows of corn, 3 m in length, in each plot.  This material was weighed in 

the field and a sub-sample was dried for several days at 65ûC for moisture determination. 

 

2.4. Cover crop biomass determination   

Cover crop biomass (dry matter) was determined by harvesting plant material 

from an area of 0.25 m2  on each end of the plot.  Shoot biomass was harvested by 

clipping plants 1 cm above the soil surface. Under favorable moisture conditions, the 

fleshy roots were also harvested by gently pulling them out of the soil.  During dry 

conditions, when pulling roots was not possible, only the shoots were collected.  Roots 

were washed in the field or lab to remove adhering soil.  Plant matter was either weighed 

fresh in the field and sub-samples collected, or if small enough, the entire sample was 

taken back to the lab.  Samples were collected in cloth bags and placed in an oven to dry 

for several days at 65ûC and weighed. 

 

2.5. Soil sampling and soil properties 

Soil samples to a depth of 15 cm of soil were collected in September and October 

2003, April, June, September, and November of 2004, and April, June, and August of 

2005 from selected treatments in Exp. 1.  Samples were collected in June and August 

2005 from Exp. 2 and 3.  All soil samples were taken from the rhizosphere (0-8 cm 

distance from the plant) of the cover crops or cash crops and sampling in the edges of the 

plot was avoided to prevent edge effects.  Twelve 2.3 cm cores were collected and 

combined from each plot.  Samples were transported to the laboratory in coolers and kept 

at 6 ûC for one to seven days before nematode extraction.  To determine bulk density for 
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each sample, the entire composite soil sample was weighed and field water content 

determined on a small subsample.  Sand content was determined for samples from 

brassicaceous treatment levels taken in September 2004 in Exp. 1.  Sand fractions were 

then separated into coarse (0.5-1.0 mm), medium (250-500 µm), and very fine (53-106 

µm) size fractions (modified from Kilmer and Alexander, 1949). 

 

2.6. Nematode/cyst extraction and identification 

Before opening the plastic bags, in which soil samples were sealed in the field, the 

soil inside was gently crumbled and mixed.  Nematodes were extracted with a modified 

Baermann funnel technique (Christie and Perry, 1951).  A volume of approximately 250 

cm3 of soil was weighed and submerged in approximately 1.6 L of tap water and stirred.  

Samples were allowed to settle for 135 seconds before the slurry was decanted into a 20- 

(850 µm) and 325-mesh (45 µm) stack of sieves. Nematodes on the 325-mesh sieve were 

washed onto a Baermann funnel, with tissue (Kleenex) supported by a plastic mesh grid.  

After 48 hours, nematodes were drained from the funnels into 20 ml glass vials.  Samples 

were stored at 4ûC for 12 to 72 hours before removing 15 ml of supernatant water.  Five 

ml of 10% formalin (1 ml glycerol, 28 ml formaldehyde, 72 ml distilled water) was added 

to the remaining 5 ml of sample at 55-65ûC (Grewal et al., 1990).  Alternatively, 4 ml of 

10% formalin and 1 ml of streptomycin (5g 100 ml-1 water) (K.-H. Wang, personal 

communication, 2004) were added to a 5 ml sample, to deter bacterial degradation of 

samples.  Preserved samples were stored at 4ûC.  In April 2005, samples were not fixed 

until 10 days after extraction because of their use in a laboratory bioassay.   
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For Exp. 1, cysts were extracted according to Krusberg et al. (1994) from all 

treatments in September 2004 and from selected treatments August 2005 (cover crops not 

in combination and the control).  Ten percent of the sample was counted (Krusberg et al., 

1994) on white filter paper under a dissecting microscope. 

Vermiform nematodes for Exp. 1 were enumerated by placing a 0.5 ml aliquot in 

a three-dimensional cell counting slide. Additional water was added to fill the 2.3 ml 

capacity of the slide.  An inverted microscope with up to 400x magnification was used to 

identify nematodes to genus or family.  When total nematode count was less than 50, a 

second aliquot was counted.  For Exps. 2 and 3, nematode aliquots were centrifuged at 

1700 rpm for 3 minutes and prepared on a microscope slide for viewing at 400-1000x 

magnification with differential interference contrast microscopy (DIC) optics (Olympus 

BX51 microscope; Olympus America, Inc., Center Valley, PA).  Because of use in a 

complementary total community study (Ch. IV), proportionally more nematodes were 

identified in Exps. 2 and 3 (at least 150 ± 15 non-parasitic nematodes).  Total sample 

counts for all experiments were calculated based on the soil bulk density, soil water 

content, volume of soil sampled in the field and lab (for nematode extraction), and the 

proportional volume of nematodes counted.   

Nematodes identified as Dolichodoridae included species Tylenchorhynchus 

claytoni (Z. Handoo, personal communication, 2005) and genera Quinisulcius, were not 

distinguished at lower magnifications initially, and therefore were grouped for analysis.  

Trichodoridae nematodes included Trichodorus sp. and Paratrichodorus sp. which were 

also not distinguished initially. 
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2.7. Lab Bioassay 1 

A nematode bioassay evaluating toxicity of macerated cover crop tissue was 

conducted using greenhouse-cultured Meloidogyne incognita.  The experimental design 

was a randomized complete block design, with incubation petri dishes as the blocking 

factor.  The treatment structure was an incomplete 6 x 22 factorial, with treatment factors 

of biomass type (rapeseed �Essex�, mustard blend �Caliente�, forage radish �Dichon�, 

oilseed radish �Adagio�, a biomass control, rye �Aroostock�, and a �no biomass� control), 

plant part (roots and shoots), and biomass rate (1% and 5% w/w).  Three large and three 

small plants were collected of each cover crop type in late fall 2003.  Roots of rye were 

not included and the same control (no biomass) was used for the two biomass rates, 

resulting in a total of 20 treatments. 

Assay units were comprised of two small plastic cylinders, one fitting inside the 

other (3 cm diam.), with fine fabric (25 µm mesh) stretched across the inner cylinder 

(Zasada and Tenuta, 2004).  Fresh plant material was chopped with a small electric 

blender, and then weighed to 0.05 ± 0.01 g and 0.25 ± 0.01 g and mixed with 5.0 ± 0.01 g 

of pre-weighed sand.  The sand biomass mixture was poured into the assay unit and  

immediately followed by addition of 1 ml aliquot of nematode inoculum.  Treatment 

applications were prepared and applied sequentially rather than by block, for efficiency.  

As a result, time of treatment application was recorded specifically for each assay unit 

and subsequent procedures were done according to the amount of time lapsed after 

aliquot application.  Aliquots contained roughly 270 ± 15 nematodes (n=5).  Each block 

or large petri dish with lid (containing 20 assay units) was placed in the same incubation 

chamber at 25 ûC.  At precisely 24 hours after addition of the nematode aliquot for each 
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unit, the unit was transferred to a small petri dish filled with water so that the cloth 

suspended sand-biomass mixture was just touching the surface of the water.  This 

resulted in immediate saturation of the pore matrix.  Over the course of the next 48 hr 

period, nematodes unaffected by the decomposition residues passed through the cloth and 

into the water of the petri dish.  At the end of this period, assay units were removed from 

the small petri dishes, and nematodes were counted in each dish within two days.   

 

2.8. Lab Bioassay 2 

In the second lab bioassay, plant material was collected from field blocks in Exp. 

1 and the corresponding block number was maintained for the bioassay.  The plant 

materials applied consisted of rapeseed �Essex� and �Humus� root and shoot material, and 

a biomass control of rye �Wheeler� shoot, each at 0.12 ± 0.01 g fresh plant matter/g dry 

sand.  Two randomized complete block designs, one for each cultivar, were created, since 

the nematodes used for this assay consisted of a mixed community which was sampled 

and extracted from the field plots in which the brassicaceous plant material was grown.  

Each nematode community was added to the root and shoot of the corresponding 

brassicaceous cultivar and block from which it was extracted, as well as to rye shoot 

material, and a biomass-free control.  On average 210 ± 14 nematodes (n=3) were added 

to each assay unit.  Units and incubation procedure were the same as in Bioassay 1.  

Nematodes were identified to genera for plant-parasites and non-plant-parasitic 

nematodes were also counted. 
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2.9. Statistical Analysis   

Nematode genera, cyst counts, or summer crop yield were the response variables 

measured from at least one of the three randomized complete block design experiments.  

Analysis of variance (ANOVA) was performed using the MIXED procedure in SAS 

software version 9.1 (SAS Institute, Inc., Cary, NC, 2003), with block as a random factor.  

For Exp. 1, data collected from control plots and plots treated with the five brassicaeous 

treatment alone, were analyzed as a repeated measures ANOVA within each trial year 

and then were analyzed separately on each date.  Data from Exp. 1, having a factorial 

treatment structure, were analyzed as a repeated measures over the two years if no 

interaction was detected, or analyzed by date separately.  Data from Exp. 2, Exp. 3, and 

the bioassays were analyzed on each date. 

In all experiments, data were ln(x + 1000) or sqrt(x + 1000) transformed if 

histograms and the Shapiro-Wilks test indicated that residuals were not normally 

distributed or if residuals increased variance with the mean.  The GLIMMIX procedure 

was used when data fit a Poisson or negative binomial distribution.  Pairwise multiple 

mean comparisons of the response variables were made after significant overall F-test 

using the Tukey (HSD) method.  Differences were considered significant at P < 0.10.  All 

data presented in tables are untransformed, arithmetic means and standard errors of the 

mean.  
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3. Results and Discussion 
 
 
3.1. Effects on Heterodera glycines and soybean yields 

Heterodera glycines juveniles (J2) increased in abundance dramatically over the 

two years of susceptible soybean, whether or not brassicaceous winter cover crops were 

grown (Fig. 3.2A; Table 3.1).  Among the five brassicaceous cover crop alone treatments 

and the control, oilseed radish (P < 0.03) and forage radish (P < 0.09) had higher 

abundances of H. glycines J2 compared to the control across dates in the second 

experiment year, though significant differences were only detected on the November 

sample date (Fig. 3.2A).  Main effect means of H. glycines J2 abundances were higher in 

forage and oilseed radish in June 2005 (P ≤ 0.07) compared to treatments without 

brassicaceous cover crops (Table 3.1).  In a greenhouse study, where H. glycines infected 

soil was collected in fall, brassicaceous cover crops had significantly higher egg densities 

at the end of the cover crop growing period than monocots, legumes, and other dicots 

(Warnke et al., 2006).  Oilseed radish (0.88) egg density change after 75 days of cover 

crop growth was not significantly different than the control (0.70), however (Warnke et 

al., 2006).  Sampling of J2 stages instead of egg density in this study, makes 

interpretation of results more difficult.  Higher H. glycines J2 populations in radishes, for 

example, may not be more problematic than populations in other treatments, if egg 

production was equivalent or less.  There were no treatment effects on cyst abundances in 

2004 (139 ± 13 103/m2) or in 2005 (78 ± 8 103/m2).  The lower abundance of H. glycines 

J2 across treatments in August (compared to June, Fig. 3.2A), is probably a temporal 

effect on J2 activity in soil rather than a decrease in reproductive potential, because soils 

in August were warm (25 ûC) and dry (8.4 g water/g dry soil) and there was no rain or 
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irrigation for six days prior to sampling.  Considering the more than ten-fold increase in 

H. glycines J2 over the two years, this study agrees with other studies that suggest 

brassicaceous cover crops do not decrease H. glycines reproductive potential either 

during cover crop growth or after green manure incorporation (Riga et al., 2001; Miller et 

al., 2006; Warnke et al., 2006).   

Combination of brassicaceous cover crops with rye and crimson clover, however, 

resulted in lower H. glycines J2 abundances in June.  Rye suppressed H. glycines J2 

abundance compared to brassicaceous cover crops (main effect means) by 38% (P < 

0.09) in June 2004 and 57% (P < 0.0001) in June 2005 (Tables 3.1).  Clover main effect 

means for H. glycines J2 populations were 43% lower compared to brassicaceous main 

effect means in June 2005 (Table 3.1).  However, neither rye nor clover alone was 

different from the weedy control plot alone in either year (simple effect means; Table 

3.1).  

There were no treatment effects on soybean yield in 2004, however main effects 

means of soybean yield were 59% and 25% higher in rye (1851 kg/ha) than in the control 

(1166 kg/ha, P < 0.001; brassicaceous cover crops alone + weedy control) or crimson 

clover (1480 kg/ha, P < 0.10), respectively in 2005.  Low yields across treatments in 

2005 (1503 kg/ha), compared to 2004 (3579 kg/ha), can be explained by only 10 cm total 

precipitation, including irrigation, during pod-fill (Brevedan and Egli, 2003) in August 

and September, followed by high rainfall in October (20 cm), which delayed harvest and 

caused bean rot.  Soybeans at the same location, in maturity group III, matured by 1 

October and yielded 4102 kg/ha on average (Kenworthy et al., 2006).   
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Some yield loss, however, may be attributable to damage from H. glycines (Fig. 

3.3A).  Nonlinear regression of soybean yield and H. glycines J2 suggests that yield 

decreases exponentially with increasing abundance of H. glycines.  This supports current 

management recommendations in Maryland to take preventative measures if one cyst is 

found per 250 cm3 of soil (Sardanelli et al., 1983).  While the trend appears to be 

primarily a difference in years, reduced yields in the same plots in block 1 where H. 

glycines J2 populations were high in both years (Fig. 3.3B), suggests that the nematodes 

contributed to significant yield reductions in 2005.  In both years, H. glycines J2 

abundance in June was negatively correlated with yield (2004 r=-0.451, P < 0.0001; 2005 

r=-0.436, P < 0.0001).  Overall, more significant effects on H. glycines J2 and yield were 

detected in 2005 than in 2004, possibly as a result of weather, accumulated cover crop 

effects on soil properties, increased root density in continuous soybean (Nickel et al., 

1995), or as a function of higher nematode densities, possibly already at equilibrium 

(Ferris, 1985; Chen et al., 2001). 

 H. glycines J2 populations were particularly low in Exp. 2 because of 

management in repeated disked fallow the year prior to treatment application (Table 3.2). 

   

3.2. Effects on other plant-parasitic nematodes 

Dolichodoridae nematodes declined over time in the brassicaceous cover crops 

alone and control plots in Exp. 1 (Fig. 3.2B).  The opposing trends of H. glycines J2 and 

Dolichodoridae may be the result of intraspecific competition as described by Brinkman 

et al. (2004).  However, strongly negative correlations between the genera were not 

observed on any single date.  Analysis of data from all plots in Exp. 1 revealed cover 
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crop treatment effects on Dolichodoridae only in June 2005 when populations were two 

times higher in rye plots than clover plots (P < 0.03, Table 3.3).  Dolichodoridae declined 

over time, probably because soybean is a poor food source for this nematode family in 

Maryland (S. Sardanelli, personal communication, 2007).  No treatment effects on 

Dolichodoridae were found in Exp. 2.  In contrast, Dolichodoridae populations in corn in 

Exp. 3, in June, were 2.6 to 3.4 times lower after rye than after no-cover and oilseed 

radish (P < 0.10).  In August, Dolichodoridae populations were 71% lower after rye than 

after no-cover (P < 0.03).  It is unclear what caused this suppression, but it is noteworthy 

considering the total non-parasitic nematode community abundance in rye was almost 

twice as high as the control (Table 3.4).  Exp. 3 was the only experiment managed 

without tillage, and undisturbed soils have been shown to have more natural pest 

suppressive capacity than disturbed soils (Sánchez-Moreno and Ferris, 2007).  However, 

populations of Dolichodoridae were sufficiently low that yield loss would not be 

expected, even in the control, and complementary research (Ch. IV) suggest that plant 

associates (fine root hair feeders not considered economic pests) dominated non-parasitic 

populations in rye.     

Mustard and rye cover crops appeared to favor Trichodoridae nematodes at 

LESREC.  In Exp. 1, populations were on average two times higher in mustard (484 x 

103/m2) in October 2003 compared to forage radish (P < 0.05), oilseed radish (P < 0.07), 

and the control (P <0.03) (rapeseed not sampled; simple effect means), and were on 

average 4 times higher (64 x 103/m2) than all brassicaceous cover crops alone and the 

control (P < 0.05) in April 2004 (not detected in rapeseed �Essex�) (Fig 3.2C).  Averaged 

across two years, the brassicaceous main effect mean of Trichodoridae nematodes was 



 

 48

1.5 to 1.8 times higher in mustard compared to oilseed radish (P < 0.09) (Table 3.5).  In 

Exps. 1 and 2, rye (June 2004 main effect means for Exp. 1; June 2005 for Exp. 2) had 

higher abundances of Trichodoridae nematodes than the control (Tables 3.2 and 3.5).  

There were no treatment effects on Trichodoridae in Exp. 3. 

 

3.3. Effects on non-parasitic nematodes 

 Cover crops did not have a biofumigation effect on non-parasitic nematodes, but 

instead a stimulatory effect.  Sampling shortly after incorporation may have shown more 

of a biofumigation effect, however, compared to the 6 + weeks that elapsed before 

sampling in this study.  Combination of brassicaceous cover crops with rye or clover in 

Exp. 1 resulted in greater abundances of the total nematode community, compared to the 

brassicaceous cover crops alone.  Treatments including clover had on average 1.3 times 

more non-parasitic nematodes than brassicaceous cover crops alone from June 2004 to 

June 2005 (Table 3.6).  Rye main effect means were 1.6 times higher in June 2005 than 

the control (brassicaceous cover crops and the weedy control).  In Exp. 2, non-parasitic 

nematode abundances averaged 2.5 times higher than the control across June and August. 

In Exp. 3, non-parasitic nematode abundance was on average 1.6 times greater in rye 

plots than in the control plots, across June and August, though only significantly different 

in August (Table 3.6).  These results may suggest that suppression of H. glycines J2 in 

rye was biologically mediated, rather than a direct chemical suppression.   
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3.4. Influence of soil properties   

Soil moisture influenced results in Exp. 1.  Soybean yield in Exp. 1 was strongly 

correlated with soil moisture, and H. glycines J2 populations were more strongly 

associated with yield in the wettest block than in the other blocks (Fig. 3.3B; Table 3.7).  

Soil moisture main effect means were higher in rye in June 2005 (14.3 g H20/g dry soil), 

compared to the brassicaceous (13.1 g H20 g-1 dry soil; P < 0.01) and clover (13.7 g 

H20/g dry soil) main effect means, which may explain the higher yields in rye in 2005.  

Previous studies show that rye cover crops have yield enhancing effects during droughty 

periods (Williams and Weil, 2004).  These results confirm studies reporting 

environmental stresses, such as low soil moisture, to be either interactive with H. glycines 

or dominant in predicting soybean yield response (Donald et al., 2006; Koenning and 

Barker, 1995).   

Dolichodoridae nematodes were strongly correlated with soil moisture, sand 

content, and sand grain sizes in Exp. 1 (Table 3.7).  This may be the first report of 

correlations between sand grain sizes and abundance of a nematode genus in a field 

study.  A laboratory study on nematode locomotion reported that sand contents greater 

than 80% increased locomotion of nematodes (Hunt et al., 2001), and early laboratory 

studies found that the movement of H. schachtii (18 µm wide) was restricted when 

particle sizes were <150 µm (Wallace, 1958).  Dolichodoridae nematodes in this study 

(similar in width to H. schachtii juveniles) were positively correlated with particle sizes 

53-106 µm in diameter, suggesting that the mixed grain sizes of field soil enabled 

movement (indicated by presence and survival) and that moisture retention, rather than 

habitable pore space, was the underlying association between Dolichodoridae and very 
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fine sand grains.  McSorley (1997) reported correlations of cumulative rainfall (2 weeks) 

with nematode genera in an orchard and pasture, but did not find a significant correlation 

with Tylenchorhynchus (the dominant Dolichodoridae genera in this study), despite also 

being on a sandy soil (80-90% sand).  The orchard soils were Pineda fine sands, and thus 

it is possible no correlation was observed because of smaller sand grain sizes capable of 

retaining moisture.  The droughty conditions and coarser sand in Exp. 1 may have 

interacted with incompatible food resources for Dolichodoridae, in this study. The latter 

in particular may explain why these strong associations were not observed with other 

plant-parasitic nematodes in this study.   

Bulk density measurements were used to express data on an area basis using field 

soil volumes.  Table 3.8 illustrates how sampling after tillage (September 2003) and 

sampling after a period of soil settling can change the bulk density of the soil.  If 

nematode abundance is not expressed on the basis of field soil volume, gross errors may 

be made by confounding changes in nematode abundances with changes in soil density. 

 

3.5. Why did bio-fumigation fail? 

Effectiveness of brassicaceous biofumigation is dependent on production of 

sufficient quantities of glucosinolates in plant tissue and sufficient rupture of tissue to 

facilitate hydrolysis and release of biotoxic degradation products (Zasada and Ferris, 

2004).  In a review on brassicaceous biofumigation (Matthiessen and Kirkegaard, 2006), 

biomass quantities between 3,000 and 17,000 kg/ha dry matter (B. napus and B. juncea) 

successfully suppressed nematodes compared to other biomass controls, however other 

studies in the review, with equal quantities of brassicaceous biomass, did not report 
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suppression.  The sensitivity of glucosinolate production to environmental conditions 

(Ciska et al., 2000) and plant type or part (Kirkegaard and Sarwar, 1998), as well as 

conditions necessary for ITC evolution may account for the different rates of success 

among studies.   

While cover crops were not analyzed for glucosinolate contents or isothiocyanate 

evolution potential, bioassays in the laboratory were conducted to assess potential for 

suppression.  In the first bioassay, results suggested that a rate of 50 g fresh plant 

matter/kg dry soil should provide effective suppression of M. incognita  (Fig. 3.4B,D).  

Assuming incorporation to a 15 cm depth and a bulk density of 1.5 g/cm3, the field 

biomass production needed, equivalent to the 1% and 5% rate (g fresh plant matter/kg dry 

soil) used in the bioassay, was approximately 3,400 and 16,900 kg dry matter/ha, 

respectively (85% tissue moisture content).  Root tissue was generally more suppressive 

than shoot tissue, within an amendment application rate in bioassay 1.  Rapeseed root 

suppressed M. incognita at the lower rate by 86% compared to the unamended control (P 

< 0.0007).  This supports studies showing higher glucosinolate concentrations in rapeseed 

roots than shoots (Eberlein et al., 1998; Gardiner et al., 1999).   Lack of suppressive 

effects in the field by rapeseed, despite having sufficient quantities of biomass (if roots 

are included; Table 3.9) may be a result of ineffective incorporation practices.   

In 2004 of Exp. 1, cover crops were not macerated prior to incorporation, and it 

did not rain until several days later.  Cover crops were not incorporated in Exp. 3 because 

the field was in no-till management.  Tissue maceration, irrigation, and incorporation are 

recommended practices for bio-fumigation with brassicaceous cover crops (Matthiessen 

et al., 2004).  Brown et al. (1991) observed maximum ITC production within two hours 
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of amending the soil with rapeseed meal and a 90% decrease within 24 hours.  Thus, 

volatilization of ITCs without water to improve penetration into the soil may have 

contributed to the lack of detectable effects on plant-parasitic nematodes.  It is also 

possible that the bioassay may also have overestimated the potential for suppression in 

the field by rapeseed, because plants were collected in late fall, rather than in April when 

rapeseed was incorporated in the field.  Plants that are two months old, have higher 

biofumigation potential than senescing plants (Mojtahedi et al., 1991). 

 Winter-killing oilseed radish leaf tissue suppressed M. incognita by 57% 

compared to the unamended control at the lower rate (10 g/kg or 2,250 kg dry matter/ha, 

assuming 90% moisture, P < 0.0036) in bioassay 1 (Fig. 3.4A).  This rate of biomass 

production was achieved in all experiments (Table 3.9 and 3.10).  It is possible that 

greenhouse cultured M. incognita is more sensitive to the breakdown products of 

brassicaceous oilseed radish leaf tissue than the nematodes in the field studies, however, 

it is likely that other factors also contributed to the ineffectiveness of  biofumigation in 

the field.  The advantages of total tissue rupture from freezing (Morra and Kirkegaard, 

2002), may be offset by targeting a pest, such as nematodes, when they are least active 

because of cold temperatures.  Also, Price et al. (2005) observed 81% less allyl-ITC 

production under cold conditions (15ûC) compared to warm (45ûC) when mustard was 

incorporated into soil.  Low abundances of Trichodoridae in November and April of Exp. 

1 may suggest that in Maryland summer and fall are better seasons for detection (and 

potentially for biofumigation), as was the case for Pratylenchus and Meloidogyne 

(Kratochvil et al., 2004).   
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In the second bioassay, nematodes used in this experiment were extracted from 

field plot soil in April 2005 from the rhizosphere of the rapeseed cultivar corresponding 

to that of the lab bioassay.  Rapeseed cultivars �Essex� and �Humus� were similar in their 

suppressive effect on H. glycines J2 (Fig. 3.5A-D).  Rapeseed roots suppressed non-

parasitic nematodes as much as H. glycines J2, but shoots did not suppress non-parasitic 

nematodes as much as H. glycines.  This bioassay shows that rapeseed biomass quantities 

in all experiments were insufficiently high (< 8,400 kg dry matter/ha) to result in H. 

glycines J2 suppression.  In addition, this high rate of biomass amendment only reduced 

populations by about 50%, suggesting that either the tissue was not very chemically 

potent or H. glycines J2 are not very sensitive to the rapeseed and rye decomposition 

products.  Suppression of M. incognita and H. glycines J2 with rye shoots in both 

bioassays may be the result of hydroxamic acids in rye residues (McBride et al., 2000; 

Zasada et al., 2005) or may indicate that oxygen was depleted during decomposition of 

the plant material (another possible way that the bioassay may overestimating fumigation 

potential in the field).  Since biomass quantities of rye were low in 2005 of Exp.1, when 

suppression of H. glycines J2 was observed with rye (and clover), it is more likely that 

indirect green manure effects, such as soil moisture, were associated with suppression in 

that year. 

 

4. Conclusion 

   

Brassicaceous cover crops, as managed in these experiments, showed little 

potential for plant-parasitic nematode suppression.  It should be noted that cover crops in 



 

 54

this study were not always mowed for maceration and were incorporated during 

flowering, were winter-freeze killed, or were no-till terminated with herbicide.  These 

management practices were used because they were appropriate within the agronomic, 

economic, and environmental constraints of Maryland grain farmers.  Successive planting 

of an H. glycines susceptible soybean cultivar, however, is not a standard practice and 

was done to increase infestations for testing biofumigation potential.  The apparently 

higher H. glycines J2 populations in radish plots on some dates in this study suggest that 

future research should assess the reproductive potential of this nematode on radishes.  

Other plant-parasitic nematodes in these experiments were particularly low in 

abundance.  However, since prevention of population increase is the best nematode 

management practice, biofumigation studies on low populations are not irrelevant, 

especially prior to planting a crop favorable as a food source.  Dolichodoridae nematodes 

declined over time in Exp. 1, apparently because soybean was an unfavorable food 

source.   

Grain farmers in Maryland may best take advantage of N-scavenging attributes of 

radishes and rapeseed, while potentially ameliorating plant-parasitic nematode 

infestations, by combining brassicaceous cover crops with rye or clover.  Combination of 

rye or clover with brassicaceous cover crops decreased H. glycines J2 in June 2005 (Exp. 

1) and increased soybean yield or non-parasitic nematode abundance on other sample 

dates.  Increased soil moisture in rye plots may have been associated with effects on H. 

glycines J2 and yield (Exp. 1).  Dolichodoridae nematodes were lower in rye plots in Exp. 

3 in June and August (during corn growth) compared to the control.  Trichodoridae 
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nematodes, however, appeared to increase under rye cover cropping and this may be a 

concern for some production systems.     

Soil properties were useful for explaining some results.  Soybean yield was 

strongly correlated with soil moisture and H. glycines J2 were particularly negatively 

associated with yield in the wettest block of the field.  Thus H. glycines J2 did not appear 

to be the leading cause for yield loss, but rather an interactive factor with soil moisture.  

Dolichodoridae nematodes were strongly associated with soil moisture and texture, 

including very fine sand grain sizes, and therefore dry conditions in the absence of a 

favorable food source may have fostered its decline.  Expression of nematode abundance 

on an area basis, facilitated by measurement of bulk density with each sample, may 

improve the accuracy with which research can measure differences in nematode 

populations among seasons, sites and management regimes. 

Amendment of fresh biomass to nematode populations in laboratory bioassays is 

an affordable and effective means of estimating biofumigation potential in field studies.  

Results suggested that sufficient quantities of rapeseed biomass were grown for M. 

incognita suppression.  Since M. incognita was not present in field sites, lack of 

suppression of other plant-parasitic nematodes may have been due to differing 

sensitivities of genera to decomposition products.  Interaction with soil properties, 

incomplete hydrolysis of glucosinolates, or insufficient penetration of degradation 

products into the soil may also explain the lack of effects in the field.  The second 

bioassay suggested that insufficient biomass quantities of rapeseed were grown for 

suppression of H. glycines J2.  Winter-freezing cover crops showed potential for 

biofumigation in lab bioassays, and sufficiently high biomass was grown in the field. 
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Therefore lack of suppressive effects suggests that winter freeze-fumigation is ineffective 

for nematode pests which are relatively inactive during cold conditions.   

In conclusion, brassicaceous biofumigation of nematodes is an unlikely option for 

grain farming systems typical of the mid-Atlantic region.  Laboratory bioassays suggest 

that brassicaceous cover crops have potential for nematode suppression, but this may 

require fall incorporation and management intensive practices.  Therefore, future studies 

in brassicaceous bio-fumigation should target fruits, vegetables, and nursery plant 

systems that allow more flexibility in cover crop management. 
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Figure 3.1.  Daily precipitation and average high and low temperatures 
at LESREC (A) and CMREC (B) over the two year experiment.  
Vertical arrows indicate irrigation events.   
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Figure 3.2. Abundance of H. glycines juveniles (J2) (A), Dolichodoridae nematodes (B), 
and Trichodoridae nematodes (C) in Exp. 1 from September 2003 to August 2005.  
Radish cover crops and mustard winter-killed in mid to late December, and rapeseed and 
weeds in the control were terminated by incorporation in mid to late April.  September 
2003 represents pre-treatment populations since cover crops were in cotyledon stage.  
Notice y axis values are different, and some treatments were not sampled in October 
2003 or April 2004. Means presented with the same letter are not significantly different at 
(P < 0.10) (HSD) (n=4).   
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Figure 3.4.  Effect of cover crop tissue on survival of Meloidogyne incognita in 
Bioassay 1.  An aliquot of nematodes was applied to bioassay units containing a 
mixture of sand and plant shoot material at a rate of 10 g kg-1 fresh biomass (A) or 
50 g kg-1 fresh biomass (B).  Root material was applied at the same rates, 
respectively (C,D). Nematodes were incubated in 3 cm d.m. plastic cylinders with 
the sand/fresh plant biomass mixture for 24 hours before contact with water (48 
hours) enabled them to move out of the cylinder. Means represented with the same 
letter are not significantly different at P < 0.10 (HSD) (n=3).  
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Figure 3.5.  Effects of cover crop tissues on survival of H. glycines (A,B) and non-
parasitic nematodes (C,D) in Bioassay 2.  Nematodes used in the bioassay were mixed 
communities extracted from field plots growing rapeseed �Essex� (A,C) and rapeseed 
�Humus� (B,C) and then treated with corresponding macerated rapeseed tissue at a rate of 
25 g/kg dry sand.  Nematodes were incubated in 3 cm diam. plastic cylinders with the 
sand/fresh plant biomass mixture for 24 hours before contact with water (48 hours) 
enabled them to move out of the cylinder.  Means represented with the same letter are not 
significantly different at P < 0.10 (HSD) (n=4). 
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CHAPTER IV-- NEMATODE COMMUNITY RESPONSE TO BRASSICACEOUS 
AND RYE WINTER COVER CROPS 

 
 
Abstract 
 
 

Fall planted cover crops have the potential to benefit cash crops in the following 

year by altering the soil ecology.  This study evaluated the effects of cover crops (forage 

radish (Raphanus sativus) �Dichon�, oilseed radish (Raphanus sativus) 

�Adagio�/�Colonel�, rapeseed (Brassica napus) �Essex�, mustard blend (Sinapis alba and 

B. juncea) �Caliente�, rye (Secale cereale) �Wheeler�) on the soil nematode communities 

at two sites in Maryland.  Samples were taken from the upper 15 cm of soil two or three 

times per year and extracted nematodes were identified to genera or family.  The 

enrichment index (EI), channel index (CI), structure index (SI), bacterivore and fungivore 

maturity indices (BaMI, FuMI), and total community maturity index 2-5 (ΣMI25, MI25) 

were calculated as measures of the nematode community response to cover crops.  Large 

populations of dormant (dauer) bacterivore Rhabditidae nematodes were found in radish 

cover crop plots four to eight months after radish winter freeze-kill, and EI values in 

radish plots were higher than in control plots in 2005 experiments, six months after radish 

winter freeze-kill.  Spring-terminated cover crops favored fungivore decomposition 

channels, evidenced by high CI values.   Large abundances of the plant associate 

(potentially facultative hyphal feeder), Coslenchus, in rapeseed and rye plots contributed 

to this effect.  Despite repeated agronomic disturbances such as tillage, N applications, 

and herbicide treatments, SI, BaMI, FuMI, and ΣMI25 values were frequently higher in 

winter-terminated cover crop plots than spring-terminated cover crop plots.  Future 

research should investigate the ecological niches of dauer larvae and Coslenchus.  In 
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addition, a cover crop combination of radish, plus rye or rapeseed, should be investigated 

for potential to optimize simultaneously both bacterial and fungal decomposition 

pathways and both basal and structured components of the nematode community. 

 

1.  Introduction 
 
 

Cover crops continue to receive attention for their ability to suppress pests and 

improve soil health (Fageria et al., 2005).  Brassicaceous cover crop green manures have 

been used to successfully suppress pests (Matthiessen and Kirkegaard, 2006), including 

plant-parasitic nematodes (Halbrendt, 1996; Aballay et al., 2004; Rahman and Somers, 

2005), diseases (Smolinska et al., 2003; Seigies and Pritts, 2006), and weeds (Petersen et 

al., 2001; Ercoli et al., 2007).  Other benefits such as nitrogen capture in late fall and 

winter (Kristensen and Thorup-Kristensen, 2004; Dean, 2006; Kremen, 2006) and 

compaction alleviation (Williams and Weil, 2003; Weil and Kremen, 2007), make 

brassicaceous cover crops an attractive tool for farmers in Maryland.  Many studies have 

reported the ecological effects of cover crops or biomass amendments on the free-living 

nematode community (McSorley and Frederick, 1999; Porazinska et al. 1999; Bullock III 

et al., 2002; Forge et al., 2002; Ferris and Matute, 2003; Ferris et al., 2004; Wang et al. 

2004; Wang et al. 2006), but none have monitored total nematode communities during 

brassicaceous cover crop growth or after application of brassicaceous cover crops as 

green manures.     

Several nematode community indices have been developed to detect ecological 

changes in the soil, and these have proven useful for interpreting the ecological impacts 

of agricultural management practices such cover cropping.  The maturity index (MI) 
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(Bongers, 1990) was proposed to use nematode communities as signals of environmental 

disturbance, either through enrichment or pollution.  The MI is derived from 

classification of nematodes into guilds, or groups of different genera that perform similar 

ecosystem functions.  Nematodes are grouped into different numerical categories, 1-5, 

based on their tendency to behave like an opportunistic r-selected colonizer (1) or a 

generalist K-selected persister (5), and weighted with their respective colonizer-persister 

(c-p) rank.  Elements used to determine their c-p rank included sensitivities to physical or 

chemical disturbance, reproductive rates, body size, and adaptations to adverse 

environmental conditions (Bongers and Bongers, 1998).  Hundreds of published articles 

have utilized the free-living and total community MI to interpret environmental 

conditions (Bongers, 2007), supporting its utility as a measure of ecosystem change, 

disturbance, or succession.  During succession or maturation of the nematode community, 

cp-1 enrichment responders decline and are replaced by cp-2 generalists (Ettema and 

Bongers, 1993), who are better adapted to scavenge food from surfaces, compared to the 

cp-1 filter feeders (Bouwman and Zwart, 1994).  As abundances of cp-3-5 nematodes 

increase, cp-2 nematodes remain as the basal part of the food web, though this guild may 

be represented by other organisms than nematodes (Bongers and Ferris, 1999).  The 

ecological interpretation of high MI values may include stability (less disturbance), 

diversity, more niche partitioning, leveling in resource availability after N rich 

amendment, and/or a less stressed habitat (Ettema and Bongers, 1993; Bongers and 

Ferris, 1999; Háněl, 2003; Neher et al., 2005; Darby et al., 2007).   

Various adaptations of the MI have been developed over time, including the 

bacterivore maturity index (BaMI) or fungivore maturity index (FuMI) (Ferris et al., 
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1996a; Bongers et al., 1997) and the maturity index cp 2-5 (MI25) (Bongers and 

Korthals, 1993) or total maturity index cp 2-5 (ΣMI25) (Yeates, 1994).  Wasilewska 

(1998) showed that the BaMI decreased in nutrient rich conditions created by insect or 

sheep excrement.  Higher values of the BaMI have been associated with steady 

decomposition rates and a stable environment (Wasilewska, 2004).  No treatment effects 

were detected by the FuMI in an organic tomato study with vetch organic matter 

amendment (Ferris et al., 1996a).  The MI25 and ΣMI25 exclude the variability created 

by short-term opportunistic cp-1 bacterivores, providing better measures of stability 

across scales (Neher and Campbell, 1996).  The ΣMI25 was used to effectively detect 

differences in both tillage and fertilizer treatments in a Japanese agricultural study, with 

higher values reflecting no-till treatment and lower values reflecting conventional 

fertilizer treatment (Okada and Harada, 2007).     

The development of the enrichment index (EI), structure index (SI), and channel 

index (CI) has enabled further interpretation of ecosystem status (Ferris et al., 2001).  

These indices have different weightings for cp groups than the maturity indices.  

Weightings in the EI reflect observed bacterivore and fungivore responses (nematode 

abundance and biomass) after enrichment with organic matter (Ferris et al., 2001), and 

for the SI, represent the linear increase in diversity and connectance associated with each 

increase in trophic level (Table 4.1).  Together the EI and SI represent independent 

trajectories of nematode community dynamics.  Ferris et al. (2001) proposed graphing 

values together in a box plot, with quadrants representing a range from stressed and 

disturbed (D) to enriched and stable (B).  High EI values have been observed after 

amendment with low C/N ratio organic matter, representing opportunistic bacterivore 
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nematode activity, whereas high CI values have been observed after amendment with 

high C/N ratio material, in forests, and in dry or acidic conditions, representing fungivore 

activity (Ferris et al., 2001; Ferris and Matute, 2003; Neher et al., 2005).  High SI values 

may be found after enrichment of the food web, after addition of high carbon sources, or 

in undisturbed environments, representing an abundance of higher trophic groups and 

greater niche partitioning (Ferris et al., 2001; Forge et al., 2002; Okada and Harada, 

2007).   

Nematodes provide a relatively simple way to assess the soil biological condition 

because they occupy every level of the food web and are easy to extract from the soil.  

Since nematode community dynamics reflect combined soil chemical, physical, and 

biological properties over time, nematode community analysis offers insight into how 

particular agricultural tools, such as cover crops, may be managed to optimize their 

impact.  The objective of this study was to determine the effects of brassicaceous and rye 

cover crops on the nematode community, via analysis of nematode genera, trophic group 

and community indices. 

 

2. Materials and methods 

 

2.1. Experiment 1 

This field trial was conducted at the University of Maryland Lower Eastern Shore 

Research and Education Center (LESREC) in Salisbury, MD (N38û22�, W75û39�).  The 

soil transitioned from a Hammonton series (coarse-loamy, siliceous, semiactive, mesic, 

aquic Hapludult) to a Galestown series (siliceous, mesic, psammentic Hapludult) from 
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east to west across the field.  The depth to subsoil clay (argillic horizon) in the eastern 

end was 20-60 cm closer to the soil surface than in the western end.  Average surface soil 

properties (0-15 cm) were loamy sand texture, pH 6.8, and organic matter 9.7 mg/g 

(n=4).  Sand and clay contents ranged from 83% and 5% at the eastern end to 90% and 

3% on the western end.  Precipitation and temperature at LESREC during the study are 

shown in Figures 4.1 and 4.2.  Sprinkler irrigation was used to supplement rainfall at this 

site (Fig. 4.1).   

Experiment 1 was initiated in August 2003 and data collection was completed in 

fall 2004.  A baseline survey of nematode populations and soil parameters was conducted 

prior to establishment of experimental plots in a randomized complete block design with 

two blocks located in the eastern and two blocks in the western end of the field.  Prior to 

the experiment, the field was cropped with a soybean (Glycine max)-corn (Zea mays)-

wheat (Triticum aestivum) rotation, using conventional tillage.  Plots were 3 x 9 m with 

all planting and tillage operations conducted parallel to (not across) the plot boundaries.  

The treatments evaluated in this experiment included five brassicaceous cover crops--

mustard blend (Sinapis alba and Brassica juncea) �Caliente�, rapeseed (B. napus) �Essex� 

and �Humus�, forage radish (Raphanus sativus) �Dichon', and oilseed radish �Adagio�--

and a weedy control.   

Cover crop seeds were broadcast by hand into bare tilled soil on 25 August 2003 

and plots were then cultipacked.  Seeding rates were 4.5 kg/ha mustard blend, 9 kg/ha 

rapeseed, and 14.6 kg/ha radishes.  Cover crops were fertilized with 90 kg/ha N as 

ammonium sulfate and ammonium nitrate on 15 September 2003, to assure adequate 
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nitrogen and sulfur nutrition for vigorous cover crop growth.  A second application of 45 

kg N/ha as ammonium sulfate was applied on 22 October.  

Cover crop biomass was collected from 0.25 m2 quadrats on 18 October 2003 and 

28 April 2004.  Winter-surviving cover crops were killed by incorporation when all plots 

were disked three times and cultipacked on 28 April 2004. A soybean cyst susceptible, 

glyphosate tolerant soybean, cultivar �NK/Syngenta S39Q4�, was planted in 38 cm rows 

on 12 May 2004 at a seeding rate of 101 kg/ha. No further cultivation was performed 

after cover crop incorporation.  To permit data collection on weed establishment for 

complementary studies, application of herbicide (N-(phosphonomethyl)glycine) at a rate 

of 0.96 L/ha active ingredient was delayed until 15 June 2004.  The soybeans were 

sidedressed with an 8-11-30 (N/P/K) fertilizer at a rate of 36 kg N/ha, 22 kg P/ha, and 

112 kg K/ha on 29 June 2004.  On 18 October 2004 soybeans were combine-harvested 

and sub-samples were collected for laboratory for determination of moisture content.   

 

2.2. Experiment 2 

Experiment 2 at LESREC was located in the unused middle portion of the same 

field used for Exp. 1.  Exp. 2 was also a randomized complete block design with plot size 

3 x 9 m.  Prior to planting this area had been kept in fallow with repeated disking since 

fall 2003.  Experiment 2 included six cover crop treatments: mustard blend �Caliente�, 

rapeseed �Essex�, forage radish �Dichon�, oilseed radish �Adagio�, cereal rye �Wheeler�, 

and a weedy control. On 27 August 2004, cover crops were broadcast seeded (same rates 

as in Exp. 1, and 126 kg/ha rye) into tilled soil and then cultipacked. A total of 100 kg 

N/ha as ammonium nitrate was broadcast by hand on 1 September and 22 September 
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2004.  Cover crop biomass was collected from 0.25 m2 quadrats on 8 November 2004 for 

rapeseed, forage radish, and rye treatments and 15 November 2004 for oilseed and 

mustard treatments.  On 13 and 14 April 2005, the plant biomass was collected for 

winter-surviving cover crops and weeds (in the controls only).  All plots were then rotary 

mowed, leaving a plant height of 7.6 cm above the soil surface.  All plots were tilled to 

incorporate plant biomass by one pass of a chisel plow (15 cm deep) followed by 2 passes 

of a disk harrow with solid wheel cultipacker.  On 9 May 2005, plots were again disked 

twice, fertilized with 12 kg P/ha, 84 kg K/ha, 28 kg S/ha, 1 kg B/ha, and sown with 

glyphosate tolerant corn �Pioneer 34B62� in 76 cm rows at a rate of 64,000 seeds/ha.  On 

10 June 2004, herbicide (N-(phosphonomethyl)glycine) was applied at 0.62 L/ha active 

ingredient. Nitrogen (34-0-0) was applied at a rate of 67 kg N/ha on both 13 June and 24 

June 2005.  In response to spider mite infestation, the pesticide cyhalothrin, lambda 

((RS)-alpha-cyano-3-phenoxybenzyl 3-(2-chloro-3,3,3-trifluoropropenyl)-2,2,-

dimethylcyclopropanecarboxylate) was sprayed at a rate of 0.03 L/ha active ingredient on 

15 July 2004.  Corn was combine harvested on 26 September 2004.       

 

2.3. Experiment 3  

Experiment 3 was established at the Central Maryland Research and Education 

Center (CMREC), Laurel, MD (N39û1�, W76û51�).  The soils transitioned from a 

Rosedale series (loamy, siliceous, semiactive, mesic Arenic Hapludult) at the northern 

end to an Evesboro series (mesic, coated-lamellic Quartzipsamment) at the southern end 

of the field.  The significance of this transition was a difference in subsoil texture with a 

sandy loam or finer texture beginning at 60-80 cm and redoximorphic features beginning 
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80-100 cm deep in the northern half of the field.  This suggests more subsoil moisture in 

northern half of the field.  Surface soil texture was a loamy sand throughout the field 

(85.9 ± 1.2 % sand, 9.8 ± 0.9 % silt, 4.4 ± 0.3 % clay; n=4) with pH 6.5 (June 2003) and 

organic matter 16.9 mg/g.  The precipitation and temperature during the study are shown 

in Figures 4.1 and 4.2.     

The experiment was initiated in August 2004 and completed in fall 2005 as a 

randomized complete block design.   The field was no-till managed for five years prior to 

the experiment and remained in no-till management during the experiment.  The land was 

fallow the previous winter and cropped to soybean prior to cover crop planting.  

Soybeans in early pod fill (growth stage R6) were mowed on 18 August 2004 to provide 

an organic source of nitrogen (the residue contained 208 kg N/ha) for fall planted cover 

crops.  Cover crops were no-till drilled on 25 August 2004 at 16.5 kg/ha radish seed 

(forage �Dichon� and oilseed �Colonel�), 8 kg/ha rapeseed �Essex� seed, and 126 kg/ha 

rye �Wheeler� seed.  Plot size and orientation of operations was the same as in the 

LESREC experiments.   

Cover crop plant biomass (dry matter) was determined from two 0.25 m2 quadrats 

per plot on 30 October 2004 for all treatments and on 23 April 2005 for winter-surviving 

cover crops (rapeseed and rye).  The cover crops were then killed with herbicide (N-

(phosphonomethyl) glycine) at 2.3 L/ha active ingredient on 27 April 2005.  Lime was 

spread on 5 May 2005 at a rate of 1100 kg/ha based on soil test recommendation.  Corn 

(Pioneer �34B62�) was planted on 10 May 2005 in 76 cm wide rows and a second 

application of herbicide was applied on 4 June at a rate of 1.7 L/ha active ingredient.  

Corn was fertilized with 146 kg/ha N using 30% urea-nitrate dribbled between the rows 
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on 15 June 2005.  Corn silage yield was determined on 12 September 2005 by cutting all 

corn plants at 5 to 10 cm above ground level from two center rows of corn, 3 m in length, 

in each plot.  This material was weighed in the field and a sub-sample was dried for 

several days at 65ûC for moisture determination.        

 

2.4. Cover crop biomass determination 

Cover crop biomass was determined by harvesting plant material from an area of 

0.25 m2 on each end of the plot.  Samples were harvested at least 30 cm from the plot 

borders to avoid an edge effect.  Under favorable moisture conditions, the fleshy roots 

were also harvested by gently pulling them out of the soil.  When biomass samples were 

collected during dry conditions and pulling roots was not possible, only the shoots were 

collected.  Roots were washed either in the field or lab to remove adhering soil.  Plant 

matter was weighed fresh if sub-samples were collected.  Samples were placed in cloth 

bags and oven dried for several days at 65 ûC and weighed.  To determine the quality of 

plant residues associated with selected treatments, samples were ground and analyzed for 

total N content by a high temperature combustion method (CHN 2000 analyzer; LECO, 

St. Joseph, MI). 

   

2.5. Soil sampling and analysis 

 Soil samples to a depth of 15 cm were collected in April (from selected 

treatments), June, and September 2004 for Exp. 1; June and August 2005 for Exp. 2; and 

November 2004, June and August 2005 for Exp. 3.  The cover crops were growing when 

soil samples were taken in April 2004 (for rapeseed �Essex�) and November 2004 (for 
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forage and oilseed radish, rapeseed, and the weedy control).  All soil samples were taken 

approximately 60 cm or more distance from the plot borders and within 8 cm from the 

stem of cover crop or cash crop plants.  Twelve 2.3 cm diameter subsample cores were 

collected and combined from each plot.  Samples were transported to the laboratory in 

coolers and kept at 6 ûC for 1-7 days before nematode extraction.   

 To determine bulk density for each sample, the entire composite soil sample was 

weighed and field water content determined on a small subsample.  In a complementary 

study, samples from September 2004 Exp. 1 were separated into very coarse (1.0-2.0 

mm), coarse (0.5-1.0 mm), medium (250-500 µm), fine (106-250 µm), and very fine (53-

106 µm) size sand fractions (modified from Kilmer and Alexander, 1949).   

 

2.6. Nematode extraction and identification 

Before opening the plastic bags, in which soil samples were sealed in the field, the 

soil inside was gently crumbled and mixed.  Nematodes were extracted with the modified 

Baermann funnel technique (Christie and Perry, 1951).  A volume of approximately 300 

cm3 of soil was weighed and submerged in approximately 1.6 L of tap water and stirred.  

Samples were allowed to settle for 135 seconds before the slurry was decanted into a 20- 

(850 µm) and 325-mesh (45 µm) stack of sieves.  Nematodes retained on the 325-mesh 

sieve were washed onto a Baermann funnel.  After 48 hours, nematodes were drained 

from the funnels into 20-ml glass vials.  Samples were stored at 4ûC for 12 to 72 hours 

before removing 15 ml of supernatant water.  Five ml of 10% formalin (1 ml glycerol, 28 

ml formaldehyde, 72 ml distilled water) was added to the remaining 5 ml of sample at 55-

65ûC (Grewal et al., 1990).  Alternatively, 4 ml of 10% formalin and 1 ml of 
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streptomycin (5g 100 ml-1 water) (K.-H. Wang, personal communication, 2004) were 

added to a 5 ml sample.  Preserved samples were stored at 4 ûC.   

Nematode community identification was primarily conducted at 400-1000x 

magnification with differential interference contrast microscopy (DIC) optics (Olympus 

BX51 microscope; Olympus America, Inc., Center Valley, PA).  Slides were prepared by 

sampling an aliquot size estimated to have at least 150 ± 15 free-living nematodes (not 

including dauer larvae); additional aliquots were taken if necessary.  Each aliquot was 

centrifuged at 1700 rpm for 3 min, allowed to settle, and the supernatant removed with a 

pipette.  The remaining liquid was removed with a pipette and placed on a slide; slides 

were sealed with clear nail polish.  Nematodes were identified to genus level when 

possible (Bongers, 1988).  Total numbers of nematodes/m2 was calculated by using data 

on soil bulk density, soil water content, volume of soil sampled in the field and lab (for 

nematode extraction), and the proportional volume of nematodes counted.    

Dauer larvae (Fuchs, 1915) were identified by the presence of an obstruction in 

the buccal cavity�either a mass of cuticle in a �plug�, lip-like plugs, or dense cuticle 

throughout the buccal cavity (I. Zasada, personal communication, 2003).  Often the 

specimens appeared to be molting from this state, which may have been the result of 

fixation though it was not apparent in non-dauer specimens.  The dauer were relatively 

small in size (~430 µm long, ~25 µm wide), and round bacteria in the body, a 

characteristic common to the entomopathogenic dauer larvae, were not observed.   
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2.7. Nematode indices 

 Formulas used to calculate community ecology indices are shown in Table 4.1.  

Dauer larvae were not included in any of the index calculations, to limit indices to active 

feeding populations.  Dauer formation is known to extend the life span of Caenorhabditis 

elegans 8-16 weeks compared to the average 2-week life span (Riddle and Albert, 1997).  

Therefore, in this study, it cannot be determined whether populations of dauer larvae are 

indicators of present or historical enrichment conditions, nor can it be discerned if dauer 

populations are daily fluctuating with increases in dauer formation or recovery as 

observed by Zelenev et al. (2004).  Influence of other factors apart from food resources, 

including abiotic factors (Golden and Riddle, 1984b), provides additional reason to 

exclude them from calculation of the EI.   

Consistent with Bongers et al. (1997), Tylenchidae plant associates were not 

included in the FuMI or BaMI; half the Tylenchidae abundances were grouped as 

fungivores for calculation of the EI, CI, and SI (H. Ferris, personal communication, 

2007).   

 

2.8. Statistical analysis 

The nematode response variables (genera/family abundance, trophic group 

abundance, or community indices) collected from the three randomized complete block 

design experiments, with either six or five treatment levels each, were analyzed with 

treatments as explanatory variables and block as a random factor, using SAS 9.1 (SAS 

Institute Inc., Cary, NC, USA) software.  Data were transformed (ln(x + 1000) or sqrt(x + 

1000)) as needed and analysis of variance (ANOVA) was performed using the SAS 
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MIXED procedure or the GLIMMIX procedure, with either a Poisson or negative 

binomial distribution and log or logit function, respectively.  Pairwise multiple mean 

comparisons of the response variables were made after significant overall F-test using the 

Tukey (HSD) method.  Variables presented across time in figures were analyzed as a 

repeated measures ANOVA, using the SAS MIXED procedure with REPEATED option 

and a covariance structure that best modeled the nature of the temporal correlations.  The 

interaction term was dropped from the model on condition that P > 0.60 and normality or 

homogeneity of variance were not compromised.  In cases of significant interaction with 

time, data were analyzed as a split-plot in time (two dates) or separately by date.  

Variance grouping using the REPEATED statement of the MIXED procedure was used 

when the residual variances were significantly heterogeneous as indicated by the Null 

Model Likelihood Ratio Test.  Analysis of covariance (MIXED procedure) with 

covariates initial Coslenchus populations or soil moisture was performed for Coslenchus 

abundance and the EI, respectively, for Exp. 1.   The SAS CORR procedure was used to 

perform correlation analysis between nematode and soil parameters.  Contrasts were 

performed on community indices comparing winter-terminated cover crops to spring-

terminated cover crops.  The weedy control was not included in the contrasts because of 

uncertainty and variation regarding the date of kill for various weed species.  Canonical 

Discriminate Analysis (CDA) was performed to further elucidate whether the total 

nematode community responded to timing of kill or type of cover crop.  CDA was 

performed, using the SAS CANDISC procedure, on data from Exps. 1 and 2 (LESREC), 

where the winter-killing mustard treatment was included.  Data from the June sample 

dates were grouped into 16 categories of c-p groups by trophic classification and ln(x + 
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1000) or sqrt(x + 1000) transformed prior to analysis.  Any variable that indicated an 

abnormal value after transformation was removed from CDA, which is highly sensitive to 

outliers. 

 

3. Results 
 
 
 

Nematode genera identified were similar among the three experiments and are 

listed in Table 4.2.  Total nematode abundance ranged between 1.9 and 2.7 billion/m2 in 

Exp. 1, 1.5 and 3.2 billion/m2 in Exp. 2, and 1.3 and 1.8 billion/m2 in Exp. 3.  Bacterivore 

Alaimuscp-4 and fungivore Leptonchuscp-4 were more prevalent in Exps. 1 and 2 than Exp. 

3.  Generally trophic group populations were highest in June compared to the other dates, 

however, in Exp. 3 bacterivore populations were highest in November (P < 0.001).  Plant 

associates were highest in April (P < 0.05) in Exp. 1.  The dominant genera are 

characterized by site in Appendix I.  Tables 4.3, 4.4, and 4.5 present abundances, when 

cover crop treatments affected genera, families, or trophic groups on at least one 

sampling date within an experimental year.  There were no correlations among summer 

crop yield and nematode community indices across experiments, and there were no cover 

crop effects on soybean or corn grain yield.  Cover crop N contents are presented in 

Table 4.6, for those cover crops where data were available.  Cover crop biomass averaged 

between 3,000 and 5,200 kg/ha across experiments, with largest biomass values obtained 

in Exp. 1 and in the rapeseed treatment across sites (6,300 kg shoots + roots/ha). 

Canonical discriminant analysis, using normalized cp-trophic group abundances 

in June from Exps. 1 and 2, separated cover crop treatments (Wilks Lambda P = 0.0001) 
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(Fig. 4.3).  Only the first canonical variable (CANVAR1) was significant (P = 0.0001), 

and it discriminated the radishes from the other treatments (rapeseed �Essex�, mustard, 

and the control).  The importance of the response variables in the construction of 

CANVAR 1 can be shown by the loadings of the response variables on the function 

(Table 4.7).  Such loadings are the correlation coefficient between the responses and the 

function.  The highest loadings were negative and were for cp-4 plant-parasitic 

nematodes and dauer larvae.  Still significant, though not as high, were the positive 

loadings for cp-2 bacterivores, fungivores, and plant associates.     

 

3.1. Bacterivore nematode activity 
 

Across all three experiments, dauer larvae were high in forage and oilseed radish 

plots (Fig. 4.4).  Across all dates and seasons (except in November in Exp. 3 when and 

where no treatment effect was detected), dauer larvae populations in the forage radish 

plots ranged from 3.5 to 15.7 times higher than the controls.  Dauer larvae abundance in 

oilseed radish plots was 2.5 to 9.9 times higher than in the controls in April or June, 

across experiments.  In August, dauer larvae populations in oilseed radish plots were 7.1 

times higher than the control in Exp. 3.  Dauer larvae abundance in rye plots was 3.3 

times greater than the controls in Exp. 3 across June and August, and 3.7 times greater 

than the controls in August in Exp. 2.  Dauer larvae abundance in rapeseed �Essex� was 

different from the controls (on average 3 times higher) only in Exp. 2.  

In June 2005, six months after freeze-kill of the radishes, EI values in radish plots 

were 1.2 times higher than the controls in Exp. 2 and 1.6 times higher in forage radish 
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plots than the controls in Exp. 3 (Fig. 4.5).  Across time, cover crop plots had higher EI 

values in Exp. 3 than the control.   

Bacterivore nematode activity was strongly associated with soil properties in Exp. 

1.  Effects on the EI were detected only with use of soil moisture as a covariate (Fig. 4.5), 

and the EI was positively correlated with percent fine sand (of the total sand fraction) in 

April (Fig. 4.6a.).  In June, dauer larvae in radish plots were strongly negatively 

correlated with percent sand (Fig. 4.6b).  

 

3.2. Fungivore nematode activity  

Contrasts showed that spring-terminated cover crops had higher fungivore 

abundance, Coslenchus abundance, and CI values than winter-terminated cover crops 

(Table 4.8).  Fungivore abundance in rapeseed �Essex� plots was on average 2.5 times 

higher than the control plots in Exp. 1, across time (Fig. 4.7); abundance of cp-2 

fungivores, primarily Aphelenchoides, contributed to this effect (Table 4.3), and was 

higher in rapeseed �Essex� across dates compared to all other treatments (P < 0.03).  In 

Exp. 2, total fungivore abundance was 4.0 to 9.8 times greater in rye than other 

treatments (except rapeseed �Essex�) in June (P < 0.10) and 2.6 to 3.7 times greater in rye 

than mustard (P < 0.09), forage radish (P < 0.01) or the control (P < 0.05) in August (Fig. 

4.7).  Differences in Exp. 2 were also primarily the effect of Aphelenchoides (Table 4.4).  

In Exp. 3, abundance of fungivores was on average 1.5 times higher in rapeseed �Essex� 

plots than the control plots across time (Fig. 4.7).  Rye had 2.3 to 2.6 times more total 

fungivores than forage or oilseed radish in August (P < 0.04), but was not different from 
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the control across dates.  Diphtherophora was the dominant fungivore in rye plots in Exp. 

3 (Table 4.5).   

 Rapeseed and rye dramatically increased populations of the plant associate 

(presumed facultative root hair/hyphal feeder) Coslenchus compared to the control (Fig. 

4.8) and winter-killed cover crops (Table 4.8).  In Exp. 1, rapeseed �Essex� had 13.2 

times more Coslenchus than the other treatments across time, including April when 

rapeseed was growing.  However, analysis with initial populations as a covariate revealed 

only greater abundance of Coslenchus in rapeseed �Essex� compared to oilseed radish in 

April (P < 0.04).  In Exps. 2 and 3, together rapeseed and rye had 5.4 and 8.7 times more 

Coslenchus than all other treatments, respectively, across June and August.   

Across experiments, the CI, which includes half of the plant associates as cp-2 

fungal feeders, was higher in rapeseed �Essex� or rye plots compared to radish plots and 

in some cases, higher than in the control plots (Fig. 4.9).  In Exp. 1, CI values were on 

average 2.3 times higher in rapeseed �Essex� plots than the radish and control plots across 

time, and were on average 3 times higher in rapeseed �Essex� plots compared to radish 

plots in Exp. 2 in June.  In Exp. 3, CI values were on average 2.1 times higher in rapeseed 

�Essex� plots compared to radish plots across June and August.  The CI was on average 

3.3 times higher in rye plots than in the radish plots in Exp. 2 in August, and was on 

average 2.2 times higher than radish plots across June and August in Exp. 3.   

 

3.3. Nematode community succession and structure 

Contrasts between winter and spring-terminated cover crops revealed higher 

maturity indices (BaMI, FuMI, ΣMI25) or SI values in spring and summer across 
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experiments in plots that had winter-terminated cover crops (Table 4.9).  The BaMI and 

FuMI did not show consistent trends across experiments for a particular cover crop 

treatment (Appendix V).  Cover crops only affected the MI25 in the 2005 experiments.  

In Exp. 2, forage (3.12; P < .07) and oilseed (3.41; P < 0.005) radishes were higher than 

rye (2.99) across time, and in Exp. 3 in June, forage (3.39; P < 0.03) and oilseed (3.33; P 

< 0.08) radish were higher than rapeseed �Essex� (3.01).  The ΣMI25 was low across 

experiments in rapeseed �Essex� and rye compared to the radishes (Fig. 4.10).  On 

average, across dates in Exp. 1, the ΣMI25 was 5.2% higher in forage radish than in 

control plots.  In Exp. 3 in June, the ΣMI25 was 7.2% higher in forage radish plots than 

in controls.  The SI had a similar trend as the ΣMI25, but fewer differences among 

treatments (Fig. 4.11).  The SI was 11% higher in forage radish plots than rapeseed 

�Essex� plots across dates (P < 0.06) in Exp. 1, and SI values in the forage radish, oilseed 

radish, and control plots were 1.7 to 1.8 times higher than in rye plots (P < 0.05) in June 

in Exp. 2.  In Exp. 3, SI values in forage and oilseed radish plots were 25 to 26% higher 

than in rapeseed �Essex� plots (P < 0.01) and 13 to 14% higher than in rye plots (P < 

0.06) across June and August.  The SI in control plots was 19% higher than in rapeseed 

�Essex� plots across June and August (P < 0.05).  Nematode genera with cp ranks 3-5, 

which contributed to higher SI values in winter-killed cover crop plots in one or more 

experiment, included bacterivores (Cylindrolaimus), fungivores (Leptonchidae), 

omnivores (Aporcelaimellus), and predators (Mylonchulus) (Tables 4.3, 4.4, and 4.5).  

Rapeseed and rye also had high abundances of cp-4-5 nematodes (Ecumenicus, 

Mylonchulus, Alaimus, Mesodorylaimus), but because abundances of lower ranked 

nematodes were also high, this was not evident in the SI.   
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4. Discussion 

 

Cover crops had long lasting effects on the nematode community, however 

nematode response to cover crops was almost never an effect of cover cropping in 

general, compared to the control, but rather appeared to be a response to winter or spring-

termination of cover crops or the type of cover crop.  With an average weed biomass 

across sites and season of 1769 kg/ha, the control often had similar values as at least one 

other cover crop treatment.  Presumably a significant portion of weed biomass was killed 

in both winter and spring.  Multiple fertilizer applications on corn, or nodulation in the 

case of soybean, were necessary to avoid severe plant nitrogen deficiency, but may have 

reduced cash crop dependency on biological fertility. This reduced dependency may 

explain the lack of correlation between cash crop yields and nematode indices.  

Cover crops had a distinct impact on the nematode community composition, as 

evident in the canonical discriminant analysis (Fig. 4.3; Table 4.7).  Dauer larvae and cp-

4 plant-parasitic nematodes (Trichodorus, Paratrichodorus, and Longidorella) 

contributed most to cover crop means separation, though cp-2 bacterivores, fungivores, 

and plant associates also contributed.  The CDA suggests that the radishes had impacts on 

the nematode community that were distinct from mustard, which was also a winter-

killing cover crop.  Therefore, cover crop type, probably defined by root exudate and/or 

tissue decomposition chemistry, appears to have a role in nematode community response.  

Several studies have found plant identity effects on nematode communities (De Deyn et 

al., 2004; Wardle et al., 2006)  Van Diepeningen et al. (2006) discriminated between 

brassicaceous (unidentified species) cover crops and legumes and grains, in Dutch 
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agricultural fields, with bacterivore genera and the cp-4 predator Mylonchulus.  That 

mustard, rapeseed, and weeds were not significantly discriminated from one another 

suggests similarity among their resource quality, in contrast to the radishes. 

  

4.1. Bacterivore nematode activity 

The greater abundance of dauer larvae in radish plots compared to rapeseed or rye 

plots (Fig. 4.4) may have been related to the higher N contents in radish tissues compared 

to rapeseed and rye in this study (Table 4.6).  The nitrogen data in Table 4.6 and a 

complementary N uptake research on the same plots used in this study showed that 

radishes had lower C/N ratios (C/N≈10) and mineralized N faster than other cover crops 

(C/N ≈ 24) in spring (Kremen, 2006).  High dauer populations have been reported in 

several studies after the addition of low C/N ratio amendments.  Dauer comprised 80% of 

nematode populations (in fine textured soil types) after only two weeks of enrichment 

with banana slices in a simple laboratory study (Ferris and Bongers, 2006).  Large 

populations of dauer larvae were observed after vetch root burial (C/N=8), in contrast to 

rye root burial (C/N=22) in both field and pot studies (Georgieva et al., 2005a, 2005b).  

Dauer larvae are also prolific in cow dung pats, where they phoretically disperse to new 

environments via beetles (Sudhaus et al., 1988).   

The specific mechanism that induces dauer formation appears to be a low ratio 

between cues from bacteria (yeast-like carbohydrate) (Golden and Riddle, 1984b) and a 

dauer pheromone (pyran ring-heptanoic acid complex) (Jeong et al., 2005).  It is well 

known that bacterivore nematode populations increase shortly after bacterial populations 

surge in response to nutrient enrichment (Anderson et al., 1983; Ferris et al., 1996b, 
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1998; Zelenev et al., 2004), and therefore bacterivore nematode overgrazing is the likely 

cause of dauer formation (Georgieva et al., 2005b; Zelenev et al., 2004) during 

decomposition of organic matter with high N contents.  However, other factors may also 

induce or influence dauer formation.  Root tip exudates of both radish and corn, but not 

mustard, were found to induce a period of quiescence for C. elegans, lasting 5 days 

(Hubbard, et al. 2005).  In a laboratory study with C. elegans, all the nematodes formed 

dauer larvae at 25 ûC, whereas at 17.5 ûC only 0-10% formed dauer larvae (Golden and 

Riddle, 1984a).  There is no information on the influence of cold temperatures on dauer 

formation.  Radishes decomposed in a freezing and thawing environment in winter and 

early spring, and it is unknown whether this influenced dauer formation.  Magid et al. 

(2004) observed complete disintegration of radish leaf tissue after 35 days at 9 ûC in a 

laboratory study, during which time they observed a rapid increase in amoebae and 

bacterivore nematode activity and then a sudden drop in abundance, which they attributed 

to lack of oxygen.   

Lower dauer formation in rapeseed and rye may have been due to a shorter period 

of intense bacteria-mediated decomposition.  As the microbial community mediates 

decomposition of more recalcitrant forms of carbon in rye plant tissue, fungi and 

fungivores become more active (Lundquist et al., 1999).  Rye roots added to the soil in a 

litterbag pot study, with higher C/N ratio (22) than vetch roots (8), lower lignin content, 

and higher non soluble C, had 16-38 times higher large-diameter-fungal biomass over the 

12 week study (Georgieva et al., 2005a).  In a complementary field study, six weeks after 

addition of rye root litterbags to the soil, fungi were the dominant microbe in rye litterbag 

soil (Georgieva et al., 2005b).  Allelopathic chemicals, in both rye and rapeseed, known 
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to suppress plant-parasitic nematodes and soil pathogens (McBride et al., 1999, 2000; 

Zasada et al., 2005), may have been an additional limiting influence on dauer abundance 

(and their bacteria prey).  

Enriched conditions, as indicated by the EI, in radish plots in June may have been 

the result of spring tillage, which is known to mineralize microbial biomass (Kristensen 

et al., 2003), or growth and turnover of roots from summer crops (Ferris and Matute, 

2003).  Priming of the food web earlier in the season (late winter-early spring) may also 

account for the higher EI values in June.  For an organic tomato system in California, 

Ferris et al. (1996a) concluded that activation of the bacterivore food web earlier in the 

season would synchronize tomato nutrient demands during fruit set with the one month 

lag period between organic matter amendment and bacterivore response.  In a subsequent 

study, Ferris et al. (2004) observed higher summer EI values in tomato plots treated 

previously with winter cover crops and fall irrigation.  Thus, early decomposition of 

radishes in this study and higher rainfall in 2005 (2.2 times more precipitation during the 

period between April tillage and June soil sampling compared to 2004; Figs. 4.1, 4.2), 

may explain the high EI values in the 2005 experiments in June (Fig. 4.5).   

Evidence of enrichment through organic matter addition was particularly 

pronounced in Exp. 2 in rye plots (Table 4.4).  Opportunist cp-1 bacterivores were more 

abundant in rye plots than other treatments, but because of equally high abundances of 

cp-2 fungivores and cp-2 bacterivores, the EI did not reflect these differences.  It is not 

clear why this response was observed with rye.  Total N applied as shoot biomass was not 

different between rapeseed and rye in Exp. 2.  Several extreme rainfall events in 2005 

(Fig. 4.1) may have contributed to the formation of an active decomposer community in 
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rye plots 6+ weeks after incorporation.  In a grassland study, Murray et al. (2006) 

observed a stronger influence of soil moisture on the nematode community than increased 

primary productivity of plants.     

Differences in precipitation between 2004 and 2005 at LESREC probably also 

account for the stronger association with soil properties in Exp. 1.  In April, in Exp. 1, 

there was no precipitation for nearly a week prior to sampling, and treatment effects on 

the EI were observed only with the use of moisture as a covariate, which was greater in 

the bare radish plots.  The positive correlation between the EI and fine sand grain fraction 

(Fig 4.6a) in April, suggests that in particularly sandy soils, sand grain sizes, rather than 

simply percentages of sand, silt, and clay, may have a strong influence on nematode 

communities and their prey during droughty periods.  Association of dauer larvae in 

radish plots with sand content in June (Fig. 4.6b), is probably related to soil moisture 

(Chen and Glazer, 2004), habitable pore space (Elliot et al., 1980), and/or association of 

fine textured minerals with bacteria (Rønn et al., 2001).  There are only a few studies 

describing the effect of soil texture on dauer formation (Ferris and Bongers, 2006; van 

Diepeningen et al., 2006).   

 

4.2. Fungivore nematode activity 

The fungivore nematode community was considerably more active in spring-

terminated cover crops compared to winter-terminated cover crops (Table 4.8), and this 

may have been due to higher C/N ratios (Table 4.6) resulting from a longer growing 

period and/or winter stress.  Several studies have shown that organic matter additions 

with higher C/N ratios stimulate nematode fungivore activity (Forge et al., 2003; 
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Georgieva et al., 2005) and the CI has been shown to be a good indicator of a shift 

towards proportionally greater fungivore activity (Ferris et al., 2001; Ferris and Matute, 

2003).  The high abundances of fungivores in rapeseed �Essex� (Fig. 4.7), despite 

evidence of rapeseed being a suppressor of fungal pathogens (Smolinska et al., 2003) and 

a poor host for mycorrhizae (Glenn et al., 1988), warrants further research on the 

decomposition food web of rapeseed.  Rapeseed �Humus� was only present in one 

experiment, but lack of differentiation from the control, in contrast to rapeseed �Essex�, 

with regard to fungivore abundance (Fig. 4.7), Coslenchus abundance (Fig 4.8), CI values 

(Fig. 4.9), may suggest that cover crop biomass quality or decomposition chemistry 

differed between the two cultivars.  The timing of bloom differed between rapeseed 

�Humus� and rapeseed �Essex�, and soil biology may be sensitive to slight differences in 

chemical composition (Gardiner et al., 1999). 

      The uncertainty surrounding trophic classification of Coslenchus sp. and other 

Tylenchidae (Bongers and Bongers, 1998; Yeates, 1987) is a problem magnified in this 

study.  Large populations of Coslenchus were observed in rapeseed and rye (Fig. 4.8), 

and inclusion of half their abundance as cp-2 fungivores resulted in the detection of more 

treatment differences.  High initial populations of Coslenchus were primarily found in 

rapeseed plots in Exp. 1, but high abundances of Coslenchus in rapeseed and rye in the 

other two experiments suggests that an attribute of either the living or decaying 

rhizosphere or tissue-amended soil, sustained these populations.  Ilmarinen et al. (2005) 

reported that Coslenchus populations paralleled root biomass trends as plants were 

defoliated at different times during the growing season, while arbuscular mycorrhizal 

population trends were unaffected by defoliation.  Other members of the Tylenchidae 
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family also correlated positively with root biomass in a grassland study (Viketoft et al., 

2005).  In this study, populations were abundant during soybean and corn growth in 

summer, and not high during rapeseed growth in November in Exp. 3 (Fig. 4.8). More 

frequent sampling during cover crop growth and across experiments would have helped 

clarify whether the living roots of cover crops were influential in hosting high 

Coslenchus populations.     

Increasing indications of fungal feeding behavior in Tylenchidae nematodes 

(Hàněl, 2003; Magnusson, 1983; McSorley and Frederick, 1999; Okada et al., 2005) 

suggests that Coslenchus should be targeted for further study.  Yeates et al. (1993) 

classified Coslenchus and Tylenchidae nematodes as epidermal cell/root hair feeders, but 

facultative root hair-fungal hyphae may be more accurate than categorization into one 

group.  It remains to be understood how to appropriately place them in index calculations 

based on ecological behavior.  This study suggests that like Aphelenchoides (Tables 4.3 

and 4.4) (Porazinska et al., 1999; Wang et al., 2004), Coslenchus also can respond like an 

opportunist r-selected organism.  Similarly, McSorley and Frederick (1999) observed 

rapid increases of another Tylenchidae nematode, Filenchus, after organic matter 

addition.    

 

4.3. Nematode community succession and structure 

Winter-terminated cover crops had higher BaMI, FuMI, ΣMI25, and SI values 

relative to spring-terminated cover crops (Table 4.9), despite the other disturbances 

which followed their addition to the soil, including tillage in April (Exps. 1 and 2), tillage 

and fertilization (P, K, B, S) in May at planting (Exp. 2), herbicide spray in April and 
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early June (Exp. 3), and lime application at planting in May (Exp. 3).  Exposure to 

inorganic nitrogen fertilizers in a lab study, decreased abundance of cp-4 and cp-5 

nematodes (Tenuta and Ferris, 2004), but high BaMI, FuMI, ΣMI25, and SI values in 

winter-killed cover crops suggested that cover crop effects were stronger than the 

potentially disturbing influence of nitrogen fertilization.  Fewer effects on the BaMI or 

FuMI at CMREC may be the result of no-till management practices, lime application in 

spring, or fertilization with organic matter in the fall.  Low soil pH has been shown to 

increase fungivore abundance, though often attributed to indirect effects on soil moisture 

or food resources (Korthals et al., 1996; Murray et al., 2006).   

Fiscus and Neher (2002) showed that direct and indirect effects of disturbance can 

have different impacts on the same genera.  While nematode response to direct and 

indirect effects cannot be distinguished in this study, it is likely that winter-terminated 

cover crops had more indirect effects on nematode communities, particularly in summer 

and fall, while spring-terminated cover crops may have had some direct effects, 

especially in June.  Plant-parasitic nematodes, for example, may have been directly 

affected by spring-terminated covers.  Inclusion of plant-parasitic nematodes in the 

ΣMI25 showed more treatment effects, compared to the MI25, which excludes all plant 

nematodes, or compared to the SI, which includes half of the plant associates (Figs. 4.10 

and 11; MI25 not shown).  Bongers (1990) noted that when a nematode community had a 

lower MI due to enrichment, generally the density (abundance per volume of soil) of 

nematodes was higher.  In this study, rapeseed �Essex� or rye treatments had greater 

abundances of nematodes in June 2005 (Exps. 2 and 3) than control plots (Tables 4.4 and 

4.5).  Inclusion of plant parasites in the ΣMI25 contributed to detection of more treatment 
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differences because on some dates (both in June or August) percentages of plant parasites 

(excluding plant associates) were significantly lower in rapeseed �Essex� or rye compared 

to the control plots or a radish plot (data not shown).  Inclusion of the total plant associate 

abundance also contributed to greater detection of treatment effects, and may account for 

the similarities between the trends of the ΣMI25 and the SI.  These results may suggest 

that cover crop termination in spring has a greater influence in disturbing plant-parasitic 

nematode community structure, whether through indirect or direct effects, than winter-

killed cover crops which may have little opportunity to influence plant-parasitic 

nematodes through indirect effects in the short-term.      

Overall, nematode communities had surprisingly abundant and diverse 

populations of cp 3-5 nematodes in this study, despite cultivation and numerous 

agronomic disturbances.  According to Ferris et al. (2001) SI values greater than 50 

indicate a stable community.  Structure index values were rarely below 50 on any 

sampling date in this study.  One possible explanation may be the abundant habitable 

pore space (Elliot and Coleman, 1980) in the loamy sand surface soil texture of the 

experimental sites.  In a grassland nematode community comparison, Yeates and Bongers 

(1999) show that sandy soils had higher MI values, omnivorous nematode abundance, 

and fungivore abundance.  These observations suggest that absolute values of nematode 

indices cannot be compared without consideration of soil texture.  

It is possible also that high index values observed in this study were the result of 

uncertainties with regard to assignment of some genera into feeding groups.  

Mylonchulus is in the Mononchidae family, and like Mononchus, probably feeds on 

bacteria as a juvenile (Yeates, 1987).  Tylencholaimus (included in Leptonchidae) has 
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been considered a facultative root hair/fungal feeder (Sohlenius, 1977), and 

Aporcelaimus, related to Aporcelaimellus, has been observed to rapidly recolonize 

fumigated soils (contrary to K-selected behavior) (Yeates and van der Meulen, 1996), 

which may be an effect of feeding on algae, common to other Dorylaimidae (Ettema and 

Bongers, 1993).  Observation of algae in the gut, indicated by green pigmentation, of 

omnivore and predator nematodes was common in this study.   

 

5. Conclusion 

 

Fall planted cover crops altered nematode communities and these effects lasted 

six to nine months after cover crop termination.  Radishes and mustard winter-killed, 

while rapeseed cultivars and rye were terminated in spring; weeds were probably 

terminated in both seasons.  Nematode community composition in summer and fall after 

cover crop termination appeared to reflect the timing and identity of the organic material 

additions, though the effects could not be isolated in this study.  Response variables 

measured in control plots tended to be similar to either winter or spring killed cover crops 

and rarely opposite in trend from cover crops as a group.   

Decomposition of N rich radishes stimulated dauer formation, which were present 

in high numbers even in summer and fall.  High EI values in radish plots in summer of 

the 2005 experiments may have been partly a result of dauer larvae recovering from 

dormancy.  Further research, in the laboratory and the field, is needed to understand how 

dauer larvae influence N-mineralization, especially when they recover from dormancy, 

potentially months later.  Dauer larvae may also serve as a food source for nematodes or 
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other organisms of higher trophic levels.   This potentially would transfer carbon more 

efficiently (given that nematodes in the dauer state are rich in lipids), and according to 

Ferris and Bongers (2006) higher sustained populations of upper trophic levels increases 

opportunity for plant-parasitic nematode control through top-down predation.    

Rapeseed and rye increased fungivore activity as indicated by higher abundances 

of fungivores, high CI values, and possibly indicated by high populations of Coslenchus.  

Further studies on Tylenchidae, and especially Coslenchus, feeding preferences and 

responses to organic matter amendment are needed to determine the ecological and 

management implications of these population increases.  This is also particularly 

important with regard to understanding how Tylenchidae should be placed in community 

indices.  Allocation of half the abundance of plant associates as fungivores may have 

overestimated treatment effects determined by index values.   

By summer or fall, community succession was greater following winter-killed 

cover crops than following spring killed cover crops, as indicated by higher FuMI, BaMI, 

ΣMI25 or SI values in contrasts.  Lower MI values in these experiments were indicative 

of a highly active decomposer community and therefore may be more preferable in 

agronomic systems.  However, greater community resilience and diversity may also be 

important for top-down regulation of the food web.  Future studies should investigate the 

potential for both sustained active bacterivore and fungivore decomposer communities, 

and simultaneously basal and structured food webs, by combining forage radish with rye 

or rapeseed �Essex� into a single cover crop treatment.  Future research should also 

include a fine-rooted, high carbon biomass cover crop, such as winter-killing oats, to help 
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elucidate whether timing of cover crop termination or cover crop chemistry is more 

dominant in shaping the soil food web under similar environmental conditions. 
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Table 4.2.  Free-living nematode community index calculations. 

 Index  Calculationa  
    
 BaMIb cp-1(1) + cp-2(2) + cp-3(3) + cp-4(4)   
 FuMIc cp-2(2) + cp-3(3) + cp-4(4)   
 ΣMI25d cp-2(2) + cp-3(3) + cp-4(4) + cp-5(5)  
 MI25e cp-2(2) + cp-3(3) + cp-4(4) + cp-5(5)  
    
    
 basal component (b) (cp-2 bacterivores + cp-2 fungivores)*0.8  
 enrichment component (e) (cp-1 bacterivores*3.2) + (cp-2 fungivores*0.8)  
 structure component (s) cp-3(1.8) + cp-4(3.2) + cp-5(5.0)  
    
 EIbf (e/(e+b))*100  
 CIbf ((cp-2 fungivores*0.8)/e)*100  
 SIf (s/(s+b))*100  
    

a Indices calculated using proportions for maturity indices (Bongers, 
1990) and abundances for calculation of b, e, s, which are used in 
proportions for calculation of EI, CI, and SI (Ferris et al., 2001). 

b Dauer larvae were not included as cp-1 bacterivores for these 
calculations. 
c Plant associates were not included in calculation of this index. 
d Total maturity index including plant parasites, plant associates, and 

free-living nematodes ranked cp 2-5 (Yeates, 1994). 
e Includes only free-living nematodes (Bongers and Korthals, 1993). 
f half of plant associate abundance was assigned to the fungivore 

trophic group (H. Ferris, personal communication, 2007). 
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Figure 4.1.  Daily precipitation and daily average high and low 
temperatures for 2003-2005 at A) LESREC and B) CMREC. Solid 
horizontal arrows indicate duration of cover crop growth and dashed 
lines represent cash crop growth. Vertical arrows indicate irrigation 
events (available at LESREC only). 
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Figure 4.2.  Average monthly rainfall during experimental 
years by site compared with monthly normals from 1971-
2000 (Maryland State Climatologist Office, 2007). 
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Table 4.2. Nematode genera found across all dates from two sites in Maryland, 
grouped within respective trophic classifications (Yeates et al., 1993) and assigned 
superscript numbers signifying colonizer-persister ranks (Bongers and Bongers, 
1998) used for index calculations in this study.  

     
 Bacterivores Fungivores Omnivores Predators 
 Acrobeles2 Aphelenchoides2 Aporcelaimellus5 Anatonchus4 
 Acrobeloides2a Aphelenchus2 Dorylaimidae4 Clarkus4 
 Alaimus4 Diphtherophora3 Ecumenicus4 Discolaimus5 
 Amphidelus4 Leptonchidae4e Lordellonema4 Mylonchulus4 
 Anaplectus2 Leptonchus4 Mesodorylaimus4 Nygolaimus5 
 Bastiana3 Tylolaimophorous3 Microdorylaimus4 Paractinolaimus5 
 Bunonema1   Paraxonchium5 
 Ceratoplectus2   Predator (Trischistoma)3f

 Cervidellus2   Qudsianematidae4g 
 Cruznema1   Seinura2 
 Cylindrolaimus2   Thonus4 
 dauer larvae (Rhabditidae)b    
 Diploscapter1 Plant Associates Algivores Plant Parasites  
 Drilocephalobus2 Boleodorus2 Achromadora3 Helicotylenchus3 
 Eumonhystera2 Coslenchus2  Heterodera3 
 Mesorhabditis1 Ditylenchus2  Hoplolaimus3 
 Odontolaimus3 Filenchus2  Longidorella4 
 Panagrolaimidae1c Laimaphelenchus2  Paratrichodorus4 
 Plectus2 Miculenchus2  Pratylenchus3 
 Prismatolaimus3 Psilenchus2  Quinisulcius2 
 Pristionchus1 Tylenchidae2  Trichodorus4 
 Prodontorhabditis1d   Tylenchorhynchus2 
 Rhabditidae1   Xiphinema5 
 Rhabditis1    
 Teratocephalus3    
 Tylocephalus2    
 Wilsonema2    
 Zeldia2    
        

a  Acrobeloides was the dominant genera, but this group may include some 
similar genera like Cephalobus.   

b  Rhabditidae dauer larvae were not used in index calculations.   
c  Panagrolaimidae were primarily Panagrolaimus or Panagrobelus.   
d Prodontorhabditis abundance also included Protorhabditis, due to name 

recording errors. 
e  Leptonchidae included Tylencholaimus and Tylencholaimellus.   
f   Predator included Tobrilus and Trischistoma, though predominantly the 

latter.     
g   Qudsianematidae was used to represent an unknown nematode genera 
resembling Labronema.   
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Table 4.6. Percent N in cover crop dry matter before cover crop 
termination. Data from three experiments at two sites in Maryland. Data 
were not available for all treatments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

a  Planting dates of cover crops for Exp. 1, Exp. 2, and Exp. 3 were 25, 27, 
and 25 August respectively.  Winter-kill date for radishes was early 
December in 2004 and late December to early January for 2005.  Spring 
cover crops were terminated on the cover crop harvest date in Exps. 1 and 2 
and in Exp. 3 were herbicide-sprayed on 27 April 2005.   
 
 
 
 

    
Site 
             Harvest Datea Cover crop 

Plant Part 
(root/shoot) % N 

    
Experiment 1       

25-Apr-04 Rapeseed E R 0.89 
 Rapeseed E S 1.87 
 Rapeseed H R 0.91 
 Rapeseed H S 1.61 
 Weeds S 1.65 
    
Experiment 2       

8-Nov-04 Forage R 2.00 
 Forage S 4.44 
    

13-Apr-05 Rapeseed E S 2.89 
 Rye S 2.24 
    

Experiment 3       
30-Oct-04 Forage R 3.12 

 Forage S 3.94 
 Oilseed R 2.86 
 Oilseed S 3.94 
    

23-Apr-05 Rapeseed E R 1.42 
 Rapeseed E S 2.66 

 Rye S 1.61 
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Figure 4.3.  Results of canonical discriminant analysis of 
cover crop treatments using abundances of nematodes in 
cp-trophic groups from Exps. 1 and 2 sampled in June.  
Canonical variables (CANVARs) are linear functions 
derived by assigning coefficients to each trophic group 
variable such that the CANVAR will maximally 
discriminate between cover crop means.  CANVAR 1 and 
2 represented 71% and 20% of the variation, respectively, 
and CANVAR1 significantly discriminated between 
cover crop treatments (P < 0.01). 
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Table 4.7. Correlation coefficients (loadings) of trophic 
group variables with canonical variables (CANVARs) 1 
and 2, depicted in Fig. 4.3.  High loadings of nematode 
parameters on CANVARs indicate those variables 
which contributed the most to the CANVAR�s 
discrimination between treatments.     

Total Canonical Structure
Trophic group and cp rank CANVAR 1 CANVAR 2
   

Dauer larvae -0.72**** 0.36* 
Bacterivores cp-1 -0.16 0.34* 
Bacterivores cp-2 0.28� 0.18 
Bacterivores cp-4 -0.16 -0.15 
Fungivores cp-2 0.39* 0.59**** 
Fungivores cp-3 0.03 0.24 
Fungivores cp-4 0.10 -0.06 
Predators cp-5 -0.20 -0.07 
Omnivores cp-4 0.06 -0.13 
Omnivores cp-5 -0.07 -0.13 
Plant Associates cp-2 0.33* 0.58**** 
Plant Parasites cp-3 -0.12 -0.29� 
Plant Parasites cp-4 -0.74**** 0.33* 
          
�, *, **, ***, **** P ≤ 0.10, P ≤ 0.05, P ≤ 0.01, P ≤ 0.001, P ≤ 
0.0001   
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Figure 4.4.  Dauer larvae populations over time at two sites in 
Maryland after cover crop treatments sown in fall (August) and 
terminated in December/January (radishes and mustard) or mid-late 
April (rapeseed and rye).  Capital letters represent means across three 
dates, and lower case letters represent means on a single date or 
across two dates.  Means with the same letter are not significantly 
different at P ≤ 0.10 (HSD) (n=4).   
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Figure 4.5.  Enrichment index (EI) over time at two sites in 
Maryland after cover crop treatments were sown in fall (August) 
and terminated in December/January (radishes and mustard) or 
mid-late April (rapeseed and rye).  Capital letters represent means 
across three dates, and lower case letters represent means on a 
given date.  Means with the same letter are not significantly 
different at P ≤ 0.10 (HSD).  Soil moisture was used as a covariate 
at LESREC Exp. 1 (n=4). 
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Figure 4.6.  Correlation between the 
enrichment index (EI) or dauer larvae 
abundance with soil textural properties at 
LESREC.  Data were collected from plots 
planted to cover crops in August 2003, 
which winter freeze-killed (radishes) or 
were terminated by incorporation in April 
2004 (rapeseed and weeds):  rapeseed 
�Essex� (squares), forage radish (black 
triangles), oilseed radish (gray triangles), 
and no cover crop (X).  
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Figure 4.7.  Total fungivore abundance (not including plant associates) 
over time at two sites in Maryland after cover crop treatments were 
sown in fall (August) and terminated in December/January (radishes and 
mustard) or mid-late April (rapeseed and rye).  Notice y axis values are 
different for each experiment.  Capital letters represent means across 
three dates, and lowercase letters represent means on a given date or 
across two dates.  Means with the same letter are not significantly at P ≤ 
0.10 (HSD) (n=4).  
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Figure 4.8.  Coslenchus population densities over time at two sites in 
Maryland after cover crop treatments were sown in fall (August) and 
terminated in December/January (radishes and mustard) or mid-late 
April (rapeseed and rye).  Capital letters represent means across three 
dates, and lowercase letters represent means on a given date.  Means 
with the same letter are not significantly at P ≤ 0.10 (HSD) (n=4).  
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Figure 4.9.  The channel index (CI) over time at two sites in 
Maryland, after cover crop treatments were sown in fall (August) 
and terminated in December/January (radishes and mustard) or 
mid-late April (rapeseed and rye).  Capital letters represent 
means across three dates, and lowercase letters represent means 
on a given date or across two dates.  Means with the same letter 
are not significantly different at P ≤ 0.10 (HSD) (n=4). 
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Table 4.9.  Contrasts between winter-susceptible (radishes and mustard) and winter-
hardy (rapeseed and rye) cover crops for community indices related to stability.  
Contrasts were conducted for each date or set of dates graphed in Appendix V, Figures 
4.10 and 4.11. 

Site Date Covers Contrasted 
Winter 

Terminated 
Spring  

Terminated 
Bacterivore Maturity 
Indexa       
Exp. 1 April-Sept radishes v. rapeseed 'Essex' 1.88 1.70* 
 April radishes v. rapeseed 'Essex' 1.90 1.65** 
 June radishes/mustard v. 'Essex'/'Humus' 1.76 1.66 
 September Radishes/mustard v. 'Essex'/'Humus' 1.91 1.81 
Exp. 2 June-Aug Radishes/mustard v. 'Essex'/rye 1.87 1.69*** 
Exp. 3 Nov-Aug radishes v. rapeseed 'Essex' 1.91 1.81 
 June radishes v. rapeseed 'Essex'/rye 1.77 1.91 
 Aug radishes v. rapeseed 'Essex'/rye 2.09 1.94� 
Fungivore Maturity 
Indexb       
Exp. 1 April radishes v. rapeseed 'Essex' 3.52 3.23� 
 June-Sept radishes/mustard v. 'Essex'/'Humus' 3.00 2.89 
Exp. 2 June radishes/mustard v. 'Essex'/rye 2.56 2.20** 
 August radishes/mustard v. 'Essex'/rye 3.02 2.74� 
Exp. 3 November radishes v. rapeseed 'Essex' 2.44 2.64 
 June radishes v. rapeseed 'Essex'/rye 2.78 2.83 
 August radishes v. rapeseed 'Essex'/rye 2.71 2.86 
    
ΣMI 2-5c       
Exp. 1 April-Sept radishes v. rapeseed 'Essex' 3.08 2.87**** 
 June-Sept radishes/mustard v. 'Essex'/'Humus' 3.15 3.01** 
Exp. 2 June radishes/mustard v. 'Essex'/rye 2.75 2.42*** 
 August radishes mustard v. 'Essex'/rye 3.33 2.91**** 
Exp. 3 Nov radishes v. rapeseed 'Essex' 2.83 2.88 
 June radishes v. rapeseed 'Essex'/rye 3.21 2.75**** 
 August radishes v. rapeseed 'Essex'/rye 2.94 2.75* 
Structure Indexd       
Exp. 1 April-Sept radishes v. rapeseed 'Essex' 83.3 78.1* 
 June radishes/mustard v. 'Essex'/'Humus' 88.0 81.4* 
 Sept radishes/mustard v. 'Essex'/'Humus' 80.4 78.4 
Exp. 2 June-Aug radishes/mustard v. 'Essex'/rye 75.8 59.9**** 
Exp. 3 November radishes v. rapeseed 'Essex' 74.4 76.4 
 June-Aug radishes v. rapeseed 'Essex'/rye 85.0 71.2*** 
          

�, *, **, ***, **** P ≤ 0.10, P ≤ 0.05, P ≤ 0.01, P ≤ 0.001, P ≤ 0.0001  
a Dauer larvae not included.  
b Plant associates not included.  
c Total free-living and plant-parasitic nematodes cp-2-5.   
d Half of plant associate abundance was assigned to the fungivore trophic group.
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Figure 4.10.  Total Maturity Index 2-5 (ΣMI25) over time at two 
sites in Maryland, after cover crop treatments were sown in fall 
(August) and terminated in December/January (radishes and 
mustard) or mid-late April (rapeseed and rye).  Capital letters 
represent means across three dates, and lowercase letters represent 
means on a given date or across two dates.  Means with the same 
letter are not significantly different at P ≤ 0.10 (HSD) (n=4). 
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Figure 4.11.  The structure index (SI) over time at two sites in 
Maryland, after cover crop treatments sown in fall (August) and 
killed in December/January (radishes and mustard) or mid-late 
April (rapeseeds and rye).  Capital letters represent means 
across three dates, whereas lowercase letters represent means at 
a given date or across two dates.  Means represented with the 
same letter are not significantly different HSD (P ≤ 0.10) (n=4). 
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CHAPTER V � CONCLUSION 
 

 
Nematodes, being the most abundant mesofauna on earth, are significant 

contributors to agroecological processes.  Decades of research on controlling plant-

parasitic nematodes has mostly informed us that common sense practices like crop 

rotation, equipment cleaning, resistant cultivars, frequent population monitoring, and 

maintenance of an ecologically active soil are the most effective means for preventing 

yield loss caused by plant-parasitic nematodes.  Increased research on cover crop use for 

nematode control has added a few cover crops like sunnhemp and sorghum-sudangrass to 

the management tool box (Kratochvil et al., 2004; Wang et al., 2006), however not all 

agronomic crop rotations will accommodate these summer cover crops.  This research 

showed little potential for nematode suppression by brassicaceous cover crops in 

Maryland grain cropping systems, as managed in these experiments.  Bioassays 

suggested that insufficient quantities of rapeseed biomass were grown in one year.  In 

other years, lack of maceration, irrigation, or incorporation may have resulted in 

insufficient isothiocyanate evolution, an important agent of biocontrol with brassicaceous 

cover crops (Matthiessen et al., 2004).  Sufficient quantities of radish biomass were 

grown, and therefore it appears that suppression of nematodes in winter, when nematodes 

are less active, may not be an effective means of control.  This study did, however, show 

the beneficial effect of rye and clover when combined with brassicaceous cover crops.  

Rye increased yields in 2005 apparently due to greater soil moisture.  Heterodera 

glycines was suppressed in rye, relative to brassicaceous cover crops, in June of both 

years, for unknown reasons.  Total nematode abundances were increased by rye or clover 
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across experiments on at least one date.  Increased abundances of Trichodoridae in rye 

plots in two experiments may be associated with greater total nematode populations.   

Future research should focus on building soil capacity to provide pest suppression 

(Sánchez-Moreno and Ferris, 2007).  Polyculture cover crops should be used, and they 

should be selected for their differing quality (soluble, non-soluble, lignin, etc.) of carbon, 

which is likely to sustain a more diverse array of bio-control organisms (Sun and Liu, 

2006).  More attention should be given to plant-parasitic nematodes in the context of soil 

ecology, rather than pest suppression.  Some studies have shown that moderate plant-

parasitic nematode populations can support plant growth by increasing the amount of root 

exudates leaking into the soil and thereby increasing microbial activity in the rhizosphere 

(Bardgett et al., 1999; Tu et al., 2003).  Other studies suggest that plant-parasitic 

nematode diversity prevents population explosions of one type of plant-parasitic 

nematode (common to soils after fumigation) and that plant health is improved under a 

diversity of plant-parasitic nematodes (Lavelle et al., 2004).  Future research should look 

for correlation between free-living nematodes and plant-parasitic nematodes to identify 

possible synergies between genera or guilds.  Sensitivity or insensitivity of plant-parasitic 

nematodes to pollutants (Pratylenchus to copper) (Ekschmitt and Korthals, 2006) and 

physical disturbance (Trichodorus to compaction) (Bouwman and Arts, 2002) suggests 

that plant-parasitic nematodes could be incorporated into indices designed for specific 

disturbances.  Strong correlations between Dolichodoridae nematodes and sand grain 

sizes (n=24) or soil moisture (n=76), observed in this study, may have been confounded 

with absence of a good host.  However, the correlations may also be indicative of an 
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ecological attribute of the Dolichodoridae family, associated with moisture or pore space 

that could eventually be useful in a disturbance index. 

 Free-living nematode community analysis has made rapid progress in the last 

decade.  Indices are being used to refine timing of management practices, such as cover 

crop biomass amendment and irrigation, to maximize synchrony of nutrient availability 

with cash crop demands (Wang et al., 2004; Ferris et al., 2004).  Winter-kill of radishes 

and mustard increased community succession by summer, compared to spring-terminated 

cover crops, despite other disturbances.  Spring-termination of rapeseed and rye increased 

fungivore activity.  Canonical Discriminant Analysis (CDA), using nematode response 

variables to create linear functions which maximally separate treatment means, showed 

that mustard affected the nematode community differently than radishes.  Therefore, 

cover crop type and not only timing of termination influenced nematode community 

response.  Several studies show that plant or litter identity affects the nematode 

community more than plant or litter diversity (De Deyn et al., 2004; Wardle et al., 2006).  

Large quantities of N in radishes distinguished this cover crop from the others and 

activated the bacterivore food web component in early spring.  Higher carbon contents of 

rapeseed and rye probably were probably strongly associated with fungivore response.  

Use of radishes in organic production systems may be an effective means of priming the 

food web for optimum nutrient availability during crop demand.  Spring-terminated cover 

crops increased total nematode population density and reduced percentages of plant-

parasitic nematodes on some dates.  It was not clear if destabilization of the plant-

parasitic nematode community was more beneficial for plant growth.  Application of 

fertilizers probably reduced cash crop dependency on biological fertility and increased 
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tolerance of root-herbivory, which may explain why correlations between nematode 

indices and summer crop yield were not observed.   

 Two major effects on nematodes caused by cover crops in this study were 

problematic for placement in index calculations�dauer larvae and Coslenchus (a plant 

associate abundant in rapeseed and rye).  Standardization of the enrichment index (EI) 

and dauer abundance showed that the presence of dauer larvae populations was not 

always indicative of enriched conditions, as defined by the EI (Appendix VI).  Inclusion 

of half of the plant associate abundance in the EI, channel index (CI), and structure index 

(SI) accounted for many treatment effects, but is justifiable in that the weightings are 

derived from nematode community analysis that includes plant associates as part of the 

cp-2 guild.  Continued evidence of fungal feeding behavior in the Tylenchidae family 

(McSorley and Frederick, 1999; Okada et al., 2005) also supports allocation to the 

fungivore group, though Coslenchus has yet to be studied intensively.    

 Soil texture was an influential property in this study, both for general site 

characterization and in influencing nematode community structure on a given date.  The 

two Maryland sites had large abundances of omnivores and predators and rarely had 

degraded structure (SI < 50), which is probably a texture effect given the repeated 

disturbances in agricultural regimes.  Dauer larvae and the EI were correlated with 

percent sand or sand size fractions on some dates, suggesting an interaction between 

bacterivore prey and soil texture.  A growing body of literature shows the strong 

influence of soil properties on nematode community structure (Bjørnlund and 

Christensen, 2005; Frouz et al., 2001; Griffiths et al., 2002, 2003).  Future researchers 

might consider developing indices which are calculated only with sentinel taxa�genera 
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or families known to be good indicators for a given condition�sensitive to soil 

properties, such as texture, moisture, pH, salinity, or organic matter.  Standardization of 

index data, with graphical depiction, as illustrated in Appendix VI (Fig. 5-7), could then 

be used to elucidate what environmental properties are might be driving or masking signs 

of stress in the soil food web.      

 Brassicaceous cover crops have attributes attractive to farmers, and therefore 

nematode faunal analysis should continue to be used for understanding how to best fit 

these cover crops into rotations and how to meet the management goals of grain 

production systems in Maryland.  More frequent sampling during cover crop growth and 

immediately after termination is recommended, as well as research on sites with different 

soil textures and without fall fertilization.    
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APPENDIX I � SAS CODES 
 

1. Analysis of Covariance with Full Factorial Data 
 
title1 Lesrec over time; 
dm 'log;clear;out;clear;'; 
PROC IMPORT OUT= WORK.lesovertime  
            DATAFILE= "C:\Documents and Settings\Lisa\My Documents\My Do 
cuments\My Documents\Lisa Research\Field Work\LESREC\Nematodes\Data for 
Thesis\Field 39 main experiment ppn over time with April 3.xls"  
            DBMS=EXCEL REPLACE; 
     SHEET="factorial exp$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
data new; 
set lesovertime; 
if month='JUN_FIVE'; 
logdolich=log(dolich_area + 1000); 
run; 
 
proc sort data=new; 
by month; 
run; 
 
proc mixed data=new; 
class brass nonbrass rep  ; 
model DOLICH_AREA= brass|nonbrass|pctmois /ddfm=satterth outp=d; 
random rep; 
lsmeans brass nonbrass   /pdiff adjust=tukey; 
run; 
quit; 
*Non-significant interactactions were dropped step-wise from the model 
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2. C-p Trophic Group Classifications and One-way ANOVA (Mixed and Glimmix) 
With MACRO for Letter Assignment to Means 
 
title1 Lesrec Interseed and Insurance community; 
dm 'log;clear;out;clear;'; 
 
PROC IMPORT OUT= WORK.means  
            DATAFILE= "C:\Documents and Settings\Lisa\My Documents\My 
Documents\My Documents\Lisa Research\Field Work\Les_Hay\Final Spreadsheet 
Community ID Les Hay New2.xls"  
            DBMS=EXCEL REPLACE; 
     SHEET="By Area$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
quit; 
data newmeans; 
set means; 
where uniqueid ='h'; 
Totalnod=(Total_msq - Dauer); 
 
euc=(Achromadora + Achromadora2); 
 
plantassoc=(Boleodorus+ Coslenchus + Ditylenchus +Filenchus + Psilenchus 
+Tylenchidae + Tylenchus +Miculenchus + Laimaphelenchus); 
 
fung=(Aphelenchoides + Aphelenchus + Diphtherophora+ Leptonchus+ 
Tylencholaimus+ Tylencholaimellus+ Tylolaimophorous); 
 
bact=(Acrobeles + Acrobeloides + Alaimus + Amphidelus + Anaplectus +Ceratoplectus+  
Cervidellus + Cruznema +Cylindrolaimus +Bastiana +Diploscapter + Drilocephalobus 
+ Eucephalobus + Eumonhystera + Eumonhystera2 + Eumonhystera3 
+Mesorhabditis +Panagrolaimidae +Plectus +Prismatolaimus +Pristionchus 
+Prodontorhabditis +Rhabditidae+ Rhabditis+ Tylocephalus + Wilsonema 
+ Zeldia +Bunonema +Cephalobus+ Odontolaimus + Teratocephalus); 
 
bactd=bact + dauer; 
 
ppn=( Helicotylenchus+ Heterodera +Hoplolaimus+ Longidorella +Paratrichodorus 
+Pratylenchus +Quinisulcius +  Trichodorus + Tylenchorhynchus + Xiphinema + 
Pungentus + Macroposthonia); 
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predator=(Clarkus + Discolaimus +Mylonchulus + Nygolaimus +Paractinolaimus 
+Paravulvus +Tobrilus + Seinura + 
Thonus + Thonus_Han + Paraxonchium + Triplya + Anatonchus); 
 
omni= (Aporcelaimellus + Aporcelaimus +Dorylaimidae +Dorylaimus2 +Dory1
 +Dory2 +Ecumenicus 
+ Eudorylaimus +Labronema +Lordellonema +Mesodorylaimus +Microdorylaimus + 
Sectonema); 
 
bactone= (Cruznema + Diploscapter+ Panagrolaimidae +Mesorhabditis +Pristionchus 
+Prodontorhabditis+ Rhabditidae 
+ Rhabditis+ Bunonema ); 
 
bacttwo= (Acrobeles + Acrobeloides + Anaplectus +Ceratoplectus + Cervidellus + 
Cylindrolaimus + Drilocephalobus 
+ Eucephalobus + Eumonhystera + Eumonhystera2 + Eumonhystera3 + Plectus + 
Tylocephalus + Wilsonema+ 
Zeldia + Cephalobus); 
 
bact3= (Bastiana +Odontolaimus + Prismatolaimus +  Teratocephalus); 
bact4= (Alaimus + Amphidelus ); 
fung2= (Aphelenchoides + Aphelenchus ); 
fung3= (Diphtherophora + Tylolaimophorous ); 
fung4= (Leptonchus + Tylencholaimus + Tylencholaimellus); 
pred2= Seinura; 
pred3= (Tobrilus +Triplya); 
pred4= (Clarkus +Mylonchulus +Thonus + Thonus_Han + Anatonchus); 
pred5= (Discolaimus + Nygolaimus +Paractinolaimus + Paravulvus + Paraxonchium); 
omni4= (Dorylaimidae+ Dorylaimus2 +Dory1 + Dory2+ Ecumenicus 
+ Eudorylaimus +Labronema +Lordellonema +Mesodorylaimus +Microdorylaimus); 
omni5= (Aporcelaimellus + Aporcelaimus +Sectonema ); 
ppn2=(Quinisulcius + Tylenchorhynchus); 
ppn3=( Helicotylenchus+ Heterodera +Hoplolaimus+ Pratylenchus + Macroposthonia); 
ppn4= (Longidorella +Paratrichodorus + Trichodorus  ); 
ppn5=Xiphinema; 
 
Cephalobidae=(Eucephalobus + Acrobeloides); 
Thon=(Thonus + Thonus_Han); 
Dorylaimidaetot=(Dorylaimidae + Dorylaimus2 + Dory1 + Dory2 + Eudorylaimus); 
Qudsianematidae=Labronema; 
Aporcelaimidae=Sectonema; 
Leptonchidae= Tylencholaimellus + Tylencholaimus; 
Totalbactd=bact + Dauer; 
Tylenchs=Tylenchidae + Tylenchus; 
Tylenchids=Tylenchs + Filenchus; 
PredatorsTob=Tobrilus + Triplya; 
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logpred5=sqrt(pred5 + 1000); 
BaMI= (bactone/bact) + (bacttwo/bact)*2 + (bact3/bact)*3 + (bact4/bact)*4; 
sqrtbami=sqrt(BaMI); 
 
run; 
 
proc mixed data=newmeans; 
class cover rep; 
model BaMI= cover/ddfm=satterth outp=f; 
random rep; 
lsmeans cover/pdiff adjust=tukey; 
 
*begin MACRO code 
ods output diffs=ppp; 
ods output lsmeans=mmm; 
ods listing exclude diffs; 
ods listing exclude lsmeans; 
run; 
%include 'c:\Documents and Settings\Lisa\My Documents\stats\pdmix800.sas'; 
%pdmix800(ppp,mmm,alpha=.10,sort=yes); 
 
*end MACRO code 
 
proc univariate normal plot data=f; 
var resid; 
run; 
 
proc plot data=f; 
plot resid*pred; 
plot resid*cover; 
run; 
quit; 
 
proc glm data=newmeans; 
class cover; 
model BaMI =cover/ss3; 
means cover/hovtest welch; 
run; 
quit; 
 
proc glimmix data=newmeans; 
class cover rep; 
model BaMI = cover/ddfm=satterth dist=nb; 
random rep; 
lsmeans cover/pdiff adjust=tukey ilink lines;run; 
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3. Community Indices with Variance Grouping and Correlation 
 
title1 Lesrec Exp. 1 and 2 Community; 
dm 'log;clear;out;clear;'; 
PROC IMPORT OUT= WORK.community2  
            DATAFILE= "C:\Documents and Settings\Lisa\My Documents\My 
Documents\My Documents\Lisa Research\Field Work\Les_Hay\Final Spreadsheet 
Community ID Les Hay New2.xls"  
            DBMS=EXCEL REPLACE; 
     SHEET="By Area$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
quit; 
data indices; 
set community2; 
where uniqueid ='g' ; 
 
*Indices; 
 
Totalnod= (Total_msq - dauer); 
one=(Cruznema + Diploscapter + Panagrolaimidae + Mesorhabditis + Pristionchus + 
Prodontorhabditis + Rhabditidae 
+ Rhabditis+ Bunonema); 
 
two= (Acrobeles + Acrobeloides + Anaplectus + Aphelenchoides + Aphelenchus + 
Ceratoplectus + Cervidellus + Coslenchus + Cylindrolaimus + Boleodorus + 
Ditylenchus + Drilocephalobus + Eucephalobus 
+Eumonhystera + Eumonhystera2 + Eumonhystera3+ Filenchus +Miculenchus 
+Plectus +Psilenchus +Quinisulcius+ Seinura +Tylenchidae + Tylenchus + 
Tylenchorhynchus+ Tylocephalus+ Wilsonema+ Zeldia + 
Laimaphelenchus+ Cephalobus); 
 
three= (Achromadora + Achromadora2 +Bastiana +Diphtherophora + Helicotylenchus+ 
Heterodera +Hoplolaimus +Odontolaimus + Pratylenchus+ Prismatolaimus+ Tobrilus 
+Triplya+ Tylolaimophorous + Macroposthonia + Teratocephalus); 
 
four= (Alaimus + Amphidelus + Clarkus + Dorylaimidae+ Dorylaimus2 +Dory1
 + Dory2+ Ecumenicus + Eudorylaimus +Labronema +Leptonchus +Longidorella 
+Lordellonema +Mesodorylaimus +Microdorylaimus+Mylonchulus +Paratrichodorus 
+Thonus + Thonus_Han + Trichodorus+ Tylencholaimus + Tylencholaimellus 
+Pungentus + Anatonchus); 
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five= (Aporcelaimellus + Aporcelaimus +Discolaimus + Nygolaimus +Paractinolaimus 
+Paravulvus+ Paraxonchium +Sectonema +Xiphinema); 
 
pp3=(Helicotylenchus +Hoplolaimus +Heterodera +Pratylenchus + Macroposthonia); 
pp4=(Longidorella +Paratrichodorus+Trichodorus+ Pungentus); 
pp5=(Xiphinema); 
 
free3=three-pp3; 
free4=four-pp4; 
free5=five-pp5; 
 
freetothi=free3 + free4 + free5; 
 
freetot= (one + free2 + free3 + free4 + free5); 
 
/*Ferris et al. 2001 Indices*/ 
 
bacttwo= (Acrobeles + Acrobeloides + Anaplectus +Ceratoplectus + Cervidellus + 
Cylindrolaimus + Drilocephalobus+ Eucephalobus + Eumonhystera + Eumonhystera2 + 
Eumonhystera3 + Plectus + Tylocephalus + Wilsonema+Zeldia + Cephalobus); 
 
bacttwop= (Acrobeles + Acrobeloides + Anaplectus +Ceratoplectus + Cervidellus + 
Cylindrolaimus + Drilocephalobus 
+ Eucephalobus + Eumonhystera + Eumonhystera2 + Eumonhystera3 + Plectus + 
Tylocephalus + Wilsonema+ 
Zeldia + Cephalobus)/Totalnod; 
 
bactonep=(Cruznema + Diploscapter+ Panagrolaimidae +Mesorhabditis +Pristionchus 
+Prodontorhabditis+ Rhabditidae 
+ Rhabditis+ Bunonema )/Totalnod; 
 
bactone= (Cruznema + Diploscapter+ Panagrolaimidae +Mesorhabditis +Pristionchus 
+Prodontorhabditis+ Rhabditidae 
+ Rhabditis+ Bunonema ); 
 
bact3= (Bastiana +Odontolaimus + Prismatolaimus +  Teratocephalus); 
bact4= (Alaimus + Amphidelus ); 
fung2= (Aphelenchoides + Aphelenchus); 
logfung2=log(fung2 +1000); 
plantassoc=(Boleodorus+ Coslenchus + Ditylenchus +Filenchus + Psilenchus 
+Tylenchidae + Tylenchus +Miculenchus + Laimaphelenchus); 
 
fungpa=plantassoc/2; 
 
split=fungpa + fung2; 
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b2=(bacttwo + split)*(0.8); 
e2=(bactone*3.2) + (split*0.8); 
s=(1.8*free3) + (free4*3.2) + (free5*5.0); 
 
 
EI= 100*(e2/(e2+b2)); 
SI= 100*(s/(s+b2)); 
CI=100*((split*0.8)/e2); 
 
fung=(Aphelenchoides + Aphelenchus + Diphtherophora+ Leptonchus+ 
Tylencholaimus+ Tylencholaimellus+ Tylolaimophorous); 
 
fung3=(Diphtherophora + Tylolaimophorous); 
fung4=(Leptonchus + Tylencholaimus + Tylencholaimellus); 
 
bact=(Acrobeles + Acrobeloides + Alaimus + Amphidelus + Anaplectus +Ceratoplectus+  
Cervidellus + Cruznema +Cylindrolaimus +Bastiana +Diploscapter + Drilocephalobus 
+ Eucephalobus+ Eumonhystera + Eumonhystera2 + Eumonhystera3 
+Mesorhabditis +Panagrolaimidae +Plectus+Prismatolaimus +Pristionchus 
+Prodontorhabditis +Rhabditidae+ Rhabditis+ Tylocephalus + Wilsonema 
+ Zeldia +Bunonema +Cephalobus+ Odontolaimus + Teratocephalus); 
 
bactd=bact + dauer; 
 
predator=(Clarkus + Discolaimus +Mylonchulus + Nygolaimus +Paractinolaimus 
+Paravulvus +Tobrilus + Seinura + 
Thonus + Thonus_Han + Paraxonchium + Triplya + Anatonchus); 
 
omni= (Aporcelaimellus + Aporcelaimus +Dorylaimidae +Dorylaimus2 +Dory1
 +Dory2 +Ecumenicus+ Eudorylaimus +Labronema +Lordellonema 
+Mesodorylaimus +Microdorylaimus + Sectonema); 
  
IF  COVER='RYE'  or cover='MUSTARD' THEN VARGROUP='A'; ELSE 
VARGROUP='B'; 
IF COVER='FORAGE' or COVER='OILSEED' or cover='MUSTARD' THEN 
KILL='WINTER'; 
IF COVER='RAPEE' or COVER='RAPEH' OR COVER='RYE' THEN KILL='SPRING'; 
if cover='NONE' THEN KILL='NOT'; 
run; 
proc sort data=indices; 
by cover rep ; 
run; 
proc means mean stderr data=indices; 
var EI SI CI mi15 mi25 smi15 smi25 MI35 ppi ppimi BaMI BaMId FB FBB PAF; 
by cover; 
output out=AugInsur;run; 
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proc mixed data=indices; 
class cover rep VARGROUP; 
model CI = cover /ddfm=satterth outp=a; 
*random rep; 
repeated  /subject=rep type=cs  group=VARGROUP  R RCORR; 
estimate 'wintervspring' cover 2 2 0 2 -3 -3; 
*estimate 'wvs' cover 1 0 1 -1 -1; 
lsmeans cover /pdiff adjust=Tukey; 
/* 
ods output diffs=ppp; 
ods output lsmeans=mmm; 
ods listing exclude diffs; 
ods listing exclude lsmeans; 
*/ 
run; 
%include 'c:\Documents and Settings\Lisa\My Documents\stats\pdmix800.sas'; 
%pdmix800(ppp,mmm,alpha=.10,sort=yes); 
run; 
proc univariate normal plot data=a; 
var resid; 
run; 
proc plot data=a; 
plot resid*pred; 
plot resid*cover; 
plot resid*rep; 
run; 
quit; 
 
PROC GLM DATA=INDICES; 
CLASS cover ; 
MODEL CI =cover; 
MEANS cover/ HOVTEST WELCH; 
RUN; 
quit; 
 
proc sort data=indices; 
by  kill; 
run; 
proc means data=indices ; 
var ci si ei bami dauer coslenchus fung; 
by  kill; 
output out=worm; 
run;/* 
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4. Repeated Measures with MACRO for Covariance Structure Selection 
 
title1 Repeated Measures CMREC Community; 
dm 'log;clear;out;clear;'; 
PROC IMPORT OUT= WORK.Power  
            DATAFILE= "C:\Documents and Settings\Lisa\My Documents\My 
Documents\My Documents\Lisa Research\Thesis\ch2\results\Repeated Measures Hay 
Insurance.xls"  
            DBMS=EXCEL REPLACE; 
     SHEET="Sheet1$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
proc print; 
run; 
data home; 
set power; 
IF  COVER='NONE'  then vargroup='a'; else vargroup='b'; 
 
RUN; 
proc sort data=home; 
by cover rep date; 
run; 
 
PROC MIXED DATA=HOME; 
CLASS COVER DATE REP; 
MODEL BaMI= cover |date /ddfm=kr OUTP=life; 
RANDOM rep; 
REPEATED date /subject=cover*rep  r rcorr type=sp(pow)(date); 
LSMEANS  cover date/PDIFF ADJUST=TUKEY ; 
ESTIMATE 'WINTERVSPRING' COVER 1 0 1 -2; 
ods output diffs=ppp; 
ods output lsmeans=mmm; 
ods listing exclude diffs; 
ods listing exclude lsmeans; 
run; 
%include 'c:\Documents and Settings\Lisa\My Documents\stats\pdmix800.sas'; 
%pdmix800(ppp,mmm,alpha=.10,sort=yes); 
run; 
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*MACRO FOR COVARIANCE STRUCTURE 
%MACRO id_cov(covtype, lbl); 
TITLE3 "Covariance Type is &covtype"; 
ODS OUTPUT FITSTATISTICS=fit_&lbl; 
ODS LISTING EXCLUDE ALL; 
PROC MIXED DATA=home; 
class COVER DATE REP vargroup  ; 
MODEL bami= COVER|DATE/DDFM=KR; 
RANDOM REP; 
REPEATED date /SUBJECT=cover*rep TYPE=&covtype  ; 
QUIT; 
 
DATA fit_&lbl; 
SET fit_&lbl; 
FORMAT covtype$ 6.; 
covtype="&lbl"; 
RUN; 
ODS LISTING; 
%MEND id_cov; 
%id_cov(un, un); 
%id_cov(vc, vc); 
%id_cov(cs, cs); 
%id_cov(csh, csh); 
%id_cov(ar(1), ar1 ); 
%id_cov(sp(pow)(date), sp_pow); 
%id_cov(ante(1), ante1); 
 
DATA fitstats; 
SET fit_un; 
RUN; 
%MACRO fitstats(ctype_lbl); 
DATA fitstats; 
SET fitstats fit_&ctype_lbl; 
IF MOD(_N_,4)=1 THEN stat_id='ResLogLike'; 
IF MOD(_N_,4)=2 THEN stat_id='AIC    '; 
IF MOD(_N_,4)=3 THEN stat_id='AICC'; 
IF MOD(_N_,4)=0 THEN stat_id='BIC    '; 
%MEND fitstats; 
%fitstats(vc); 
%fitstats(cs); 
%fitstats(csh); 
%fitstats(ar1); 
%fitstats(sp_pow); 
%fitstats(ante1); 
PROC SORT DATA=fitstats; BY covtype stat_id; 
PROC TRANSPOSE DATA=fitstats OUT=tfits; 
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VAR value; 
ID stat_id; 
BY covtype; 
RUN; 
DATA tfits; SET tfits; DROP _NAME_; RUN; 
TITLE 'Fit Statistics for Candidate Covariance Structures'; 
PROC PRINT DATA=tfits; RUN; 
*END MACRO 
 
PROC UNIVARIATE NORMAL PLOT DATA=life; 
VAR RESID; 
RUN; 
PROC PLOT DATA=life; 
PLOT RESID*PRED; 
plot resid*cover; 
plot resid*rep; 
RUN; 
QUIT; 
PROC GLM DATA=new; 
CLASS cover ; 
MODEL BaMI =cover; 
MEANS cover/ HOVTEST WELCH; 
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5. Split-Plot in Time ANOVA 
 

title1 split-plot Lesrec Insur; 
dm 'log;clear;out;clear;'; 
PROC IMPORT OUT= WORK.split  
            DATAFILE= "C:\Documents and Settings\Lisa\My Documents\My 
Documents\My Documents\Lisa Research\Thesis\ch2\results\Split-plot Lesrec Insurance 
Indices.xls"  
            DBMS=EXCEL REPLACE; 
     SHEET="updated_indices_August$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
DATA NEW; 
SET split; 
if cover='FORAGE' OR COVER='MUSTARD' OR COVER='OILSEED' THEN 
KILL='WINTER'; 
IF COVER='RAPEE' OR COVER='RYE' THEN KILL='SPRING'; 
IF COVER='NONE' THEN KILL='NOT'; 
logdauer=log(dauer + 1000); 
sqrtcosl=sqrt(coslenchus + 1000); 
run; 
proc mixed data=NEW; 
class  cover date rep; 
model BAMI= cover|date/ddfm=satterth outp=dog; 
random rep rep*cover/ G GCORR; 
ESTIMATE 'WINTERVSPRING' COVER 2 2 0 2 -3 -3; 
lsmeans date cover/pdiff adjust=tukey; 
ods output diffs=ppp; 
ods output lsmeans=mmm; 
ods listing exclude diffs; 
ods listing exclude lsmeans; 
run; 
%include 'c:\Documents and Settings\Lisa\My Documents\stats\pdmix800.sas'; 
%pdmix800(ppp,mmm,alpha=.10,sort=yes); 
run; 
proc univariate normal plot data=dog; 
var resid; 
run; 
proc plot data=dog; 
plot resid*pred; 
plot resid*cover; 
run;quit; 
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5. Canonical Discriminant Analysis on Final Sample Dates from 3 Experiments 
   
title CANDISC LESREC JUN DATA; 
dm 'log;clear;out;clear;'; 
PROC IMPORT OUT= WORK.home  
            DATAFILE= "C:\Documents and Settings\Lisa\My Documents\My 
Documents\My Documents\Lisa Research\Thesis\ch2\results\Correlations All Sites All 
Properties23.xls"  
            DBMS=EXCEL REPLACE; 
     SHEET="JUN ALLSITES"; 
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
DATA NEW; 
SET HOME; 
IF date ne 'i'; 
IF COVER NE 'MUSTARD' AND COVER NE 'RAPEH'; 
fung=(Aphelenchoides + Aphelenchus + Diphtherophora+ Leptonchus+ 
Tylencholaimus+Tylencholaimellus+ Tylolaimophorous); 
bact=(Acrobeles + Acrobeloides + Alaimus + Amphidelus + Anaplectus +Ceratoplectus+  
Cervidellus + Cruznema +Cylindrolaimus +Bastiana +Diploscapter + Drilocephalobus 
+ Eucephalobus+ Eumonhystera + Eumonhystera2 + Eumonhystera3 
+Mesorhabditis +Panagrolaimidae +Plectus+Prismatolaimus +Pristionchus 
+Prodontorhabditis +Rhabditidae+ Rhabditis+ Tylocephalus + Wilsonema 
+ Zeldia +Bunonema +Cephalobus+ Odontolaimus + Teratocephalus); 
 
predator=(Clarkus + Discolaimus +Mylonchulus + Nygolaimus +Paractinolaimus 
+Paravulvus +Tobrilus + Seinura +Thonus + Thonus_Han + Paraxonchium + Triplya + 
Anatonchus); 
 
omni= (Aporcelaimellus + Aporcelaimus +Dorylaimidae +Dorylaimus2 +Dory1
 +Dory2 +Ecumenicus+ Eudorylaimus +Labronema +Lordellonema 
+Mesodorylaimus +Microdorylaimus + Sectonema); 
 
PPN= Quinisulcius + Tylenchorhynchus + Helicotylenchus + Heterodera + Hoplolaimus 
+ Pratylenchus + Macroposthonia + Xiphinema + Longidorella + Paratrichodorus + 
Trichodorus; 
 
Cbactone= (Cruznema + Diploscapter+ Panagrolaimidae +Mesorhabditis +Pristionchus 
+Prodontorhabditis+ Rhabditidae+ Rhabditis+ Bunonema );  
 
Cbacttwo= (Acrobeles + Acrobeloides + Anaplectus +Ceratoplectus + Cervidellus + 
Cylindrolaimus + Drilocephalobus 
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+ Eucephalobus + Eumonhystera + Eumonhystera2 + Eumonhystera3 + Plectus + 
Tylocephalus + Wilsonema+ 
Zeldia + Cephalobus); 
Cbact3= (Bastiana + Odontolaimus + Prismatolaimus +  Teratocephalus); 
Cbact4= (Alaimus + Amphidelus ); 
Cfung2= (Aphelenchoides + Aphelenchus ); 
Cfung3= (Diphtherophora + Tylolaimophorous ); 
Cfung4= (Leptonchus + Tylencholaimus + Tylencholaimellus); 
Cpred2= Seinura; 
Cpred3= (Tobrilus +Triplya); 
Cpred4= (Clarkus +Mylonchulus +Thonus + Thonus_Han + Anatonchus); 
Cpred5= (Discolaimus + Nygolaimus +Paractinolaimus + Paravulvus + Paraxonchium ); 
Comni4= (Dorylaimidae+ Dorylaimus2 +Dory1 + Dory2+ Ecumenicus 
+ Eudorylaimus +Labronema +Lordellonema +Mesodorylaimus +Microdorylaimus); 
Comni5= (Aporcelaimellus + Aporcelaimus +Sectonema ); 
Cppn2=(Quinisulcius + Tylenchorhynchus); 
Cppn3=( Helicotylenchus+ Heterodera +Hoplolaimus+ Pratylenchus + Macroposthonia); 
Cppn4= (Longidorella +Paratrichodorus + Trichodorus ) ; 
paf2= (Boleodorus+ Coslenchus + Ditylenchus +Filenchus + Psilenchus +Tylenchidae +
 Tylenchus +Miculenchus +Laimaphelenchus + Aphelenchoides + Aphelenchus); 
 
logfung=log(fung + 1000); 
logbact=log(bact + 1000); 
logppn=log(ppn + 1000); 
logpredator=log(predator + 1000); 
logomni=log(omni + 1000); 
SQRTbone   =SQRT(Cbactone + 1000); 
SQRTbtwo   = SQRT(Cbacttwo + 1000); 
SQRTb3     =SQRT(Cbact3 + 1000); 
SQRTb4    = SQRT(Cbact4 + 1000); 
SQRTf2     =SQRT(Cfung2 + 1000); 
SQRTf3    =SQRT(Cfung3 + 1000); 
SQRTf4    = SQRT(Cfung4 + 1000); 
SQRTp4    = SQRT(Cpred4 + 1000); 
SQRTp5    = SQRT(Cpred5 + 1000); 
SQRTo4    =SQRT(Comni4 + 1000); 
SQRTo5    = SQRT(Comni5 + 1000); 
SQRTppn2    = SQRT(Cppn2 + 1000); 
SQRTppn3    =SQRT(Cppn3 + 1000); 
SQRTppn4    = SQRT(dauer + 1000); 
sqrtpa=sqrt(plantassoc + 1000); 
logbone=log(Cbactone + 1000); 
logbtwo= log(Cbacttwo + 1000); 
logpaf2=   log(paf2 + 1000); 
logb3=   log(Cbact3 + 1000); 
logb4=    log(Cbact4 + 1000); 
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logf2    =log(Cfung2 + 1000); 
logf3=log(Cfung3 + 1000); 
logf4= log(Cfung4 + 1000); 
logp4= log(Cpred4 + 1000); 
logp5= log(Cpred5 + 1000); 
logo4=log(Comni4 + 1000); 
logo5=log(Comni5 + 1000); 
logppn2= log(Cppn2 + 1000); 
logppn3 =log(Cppn3 + 1000); 
logppn4 = log(Cppn4 + 1000); 
logpa= log(plantassoc + 1000); 
logdauer= log(dauer + 1000); 
run; 
 
PROC UNIVARIATE NORMAL PLOT DATA=NEW; 
VAR logbone logbtwo logb3 logb4 logpaf2 logf2 logf3 logf4 logp4 logp5
 logo4 logo5 logppn2 logppn3  logppn4  logpa logdauer 
SQRTbone  SQRTbtwo  SQRTb3    SQRTb4    SQRTf2    SQRTf3   
 SQRTf4    SQRTp4    SQRTp5    SQRTo4    SQRTo5   
 SQRTppn2  SQRTppn3  SQRTppn4 sqrtpa; 
run; 
 
proc candisc data=new ncan=2 out=outcan;  
      class cover;  
var logdauer logbone logb4 logf2 sqrtf3 sqrtf4  logp4 logp5 sqrto5 sqrtpa  logppn ; 
 
%plotit(data=outcan, plotvars=Can2 Can1,  
           labelvar=_blank_, symvar=cover, typevar=cover,  
           symsize=1, symlen=4, exttypes=cover, ls=80,  
           tsize=2.5, extend=close); 
     run; 
     quit; 
proc corr data=outcan; 
VAR logdauer logbone logb4 logf2 sqrtf3 sqrtf4  logp4 logp5 sqrto5 sqrtpa  logppn can1 
can2; 
run; 
quit; 
proc print data=outcan; 
run;quit; 
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APPENDIX II -- SITE CHARACTERIZATION OF NEMATODE COMMUNITIES 
 
 
1. LESREC, Experiment 1 
 

Average total nematode abundances ranged between a low of 1.9 million m-2 in 

September to 2.7 million m-2 in June.  Bacterivores and plant parasites were the most 

abundant trophic groups in this experiment.  Bacterivores did not change in abundance 

over time, while fungivores, omnivores, and predators were highest in June, 

approximately 6 weeks after tillage, and were lowest in September, among the three dates 

sampled.  Plant associates peaked in April and declined over time, while plant parasites 

peaked in September.   

2. LESREC, Experiment 2 
 

Total average nematode abundance in this experiment was highest in June 2005 at 

3.2 million nematodes m-2 and dropped to 1.5 million m-2 by August.  Bacterivores, 

fungivores, and plant associates were most abundant in June, however by August 

dominant trophic groups were bacterivores and plant parasites.  All nematode trophic 

group abundances were highest in June and dropped significantly by August.   

3. CMREC, Experiment 3 

Average total nematode abundances were lowest in November at 1.3 million m-2 

and leveled at 1.8 million m-2 in June and August.  Dominant trophic groups were 

bacterivores and plant parasites, followed by plant associates.  Bacterivores were highest 

in abundance in November, and declined or leveled, respectively, in August.  Plant 

associates, omnivores, and predators peaked in June, and plant parasites peaked in 

August. 
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Trophic Group LESREC Exp. 1 LESREC Exp. 2 CMREC 
Bacterivores Acrobeloides Acrobeles Acrobeles 
 Alaimus Acrobeloides Acrobeloides 
 Mesorhabditis Alaimus Anaplectus 
 Panagrolaimidae Mesorhabditis Mesorhabditis 
 Rhabditis Panagrolaimidae Panagrolaimidae 
  Rhabditis   
    
Fungivores Aphelenchoides Aphelenchoides Aphelenchoides 
 Diphtherophora Aphelenchus Aphelenchus 
 Leptonchus Diphtherophora Diphtherophora  
  Leptonchus  
    
Plant Associates Coslenchus Coslenchus Coslenchus 
    
Omnivores Aporcelaimellus Aporcelaimellus Aporcelaimellus 
 Ecumenicus Ecumenicus Mesodorylaimus 
 Mesodorylaimus Mesodorylaimus Microdorylaimus 
  Microdorylaimus  
    
Predators Discolaimus Discolaimus Clarkus 
 Mylonchulus Mylonchulus Discolaimus 
 Nygolaimus Nygolaimus Mylonchulus 
  Thonus Nygolaimus 
        
    

Table II.1.  List of most common genera/families at each site.   
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APPENDIX IV � OTHER METHODS 

1. Sand size fractionation 

Plastic centrifuge tubes containing 20 g of soil sample and 30 ml of 0.65% sodium 

hexametaphosphate solution were shaken for 21.5 hours.  Cleaned and dried 50 ml 

beakers were pre-weighed and labeled.  Samples were rinsed out of the tubes and into a 

270 mesh screen (0.05 mm diameter).  After thorough rinsing, the sand remaining on the 

sieve was washed into the 50 ml beaker and placed in an oven at 100ûC for several days 

until thoroughly dry.  Each beaker with sand was measured and pre-weighed beaker 

weight was used to obtain the sand size fraction of the soil by subtraction.  The sand was 

then transferred to a stack of sieves and shaken automatically and vigorously for 3 

minutes.  Sand and sieve were weighed together and then sieve alone, to calculate the 

mass of the sand size fraction by subtraction.  The sand was separated into very coarse 

(1.0-2.0 mm), coarse (0.5-1.0 mm), medium (250-500 µm), fine (106-250 µm), and very 

fine (53-106 µm) size fractions. 

 

2. pH 

Samples were weighed (5 g) into scintillation vials.  Distilled water (5 ml) was added to 

the soil and shaken (upright) on a shaker for 5-10 seconds.  Samples were permitted to 

settle for 10-15 minutes and then after calibration of pH electrode using buffers 4.0 and 

7.0, sample pH was measured.  Supernatant was gently stirred with the electrode just 

prior to reading.  During analysis of samples from LESREC Exp. 2, the electrode was re-

calibrated for each block of samples, corresponding to field blocks.  Samples from 

CMREC were analyzed after settling one hour.   
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3. Bulk density 
 
Bulk density was determined by weighing the known volume of soil in each sample bag 

before nematode extraction and removing a ~30 g sub-sample for soil moisture 

determination.  Soil was placed in metal tins, weighed moist, and allowed to dry before 

being heated to 105 ûC for no more than 24 hours. 

 
 
4. Calculation of Nematode Abundance on an Area Basis 

 

(100 - % Moisture determined for BD)/100 = % dry soil 

% dry soil x fresh soil weight from nematode extraction g = g dry soil extracted 

(individuals counted x (10 ml/ # of ml identified) = total number of nematodes/extracted 

sample 

Total number of nematodes/g dry soil extracted = nematodes g-1 dry soil 

Nematodes g-1 dry soil x BD (g/cm3) = nematodes cm-3 

(nematodes cm-3) x (15 cm deep x 100 cm x 100 cm) = nematodes m-2
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APPENDIX V � BACTERIVORE AND FUNGIVORE MATURITY INDICES 

 
 
 
 
 
 
 

Figure V.1.  The Bacterivore Maturity Index over time at two sites in Maryland 
after cover crop treatments were sown in fall (August) and terminated in Dec/Jan 
(radishes and mustard) or mid-late April (rapeseeds and rye).  Summer cash 
crops were either soybean (LESREC Exp 1) or corn (LESREC Exp 2/CMREC).  
The BaMI is calculated by weighting (by their respective cp values) and 
summing the proportions of p-1, cp-2, cp-3, and cp-4, bacterivores to total 
bacterivores (Table 2). Capital letters represent means across three dates, while 
lowercase letters represent means on a given date or across two dates.  Means 
with the same letter are not statistically different at P< 0.10 (HSD) (n=4).  
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Figure V.2.  Fungivore Maturity Index across time at two sites in Maryland 
after cover crop treatments were sown in fall (August) and terminated in 
Dec/Jan (radishes and mustard) or mid-late April (rapeseeds and rye).  The 
FuMI is calculated by weighting (by their respective cp values) and 
summing the proportions of cp-2, cp-3, and cp-4 fungivores to total 
fungivores abundance (Table 4.1).  Facultative root hair-fungi feeders are 
not included in the index.  Letters represent means on a given date or across 
two dates.  Means with the same letter are not significantly different at P < 
0.10 (HSD) (n=4).  
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APPENDIX VI � OTHER GRAPHS OF FAUNAL ANALYSIS 
 
 

  
Figure VI.1. Correlations between predacious 
nematodes and cp-2 bacterivores in Exp. 3 in 
June and August.  Symbols represent cover crop 
treatments: black triangles=forage radish; grey 
triangles=oilseed radish; squares=rapeseed 
�Essex�; X=weedy control.  
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Figure VI.3.  Correlations between nematode parameters or corn silage yield and 
soil properties in Exp. 3. Figure B does not include the outlier (circled). Symbols 
represent cover crop treatments: black triangles=forage radish; grey 
triangles=oilseed radish; filled squares=rapeseed �Essex�; unfilled diamonds=rye; 
X=weedy control.  
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Figure VI.5.  Depiction of standardized treatment mean deviation from the total 
mean of all treatments (including control) for dauer larvae (filled circles) and EI (grey 
filled circles) at a given experiment in fall (September or August).1 

 

                                                
1 Simultaneous depiction of nematode community parameters can assist in interpretation 
of currently available indices.  Interpretation of nematode community response through 
visual means has already been introduced and developed (de Goede et al., 1993; Ferris et 
al., 2001; Ferris and Bongers, 2006), and aggregation of indices for interpretation of C 
and N cycling is a common practice in soil quality evaluation (Schloter et al., 2003).  
Figure 1 suggests that dauer larvae should not be included in calculation of the EI, 
because both similar and opposing deviations from the mean, for different treatments, 
suggest that dauer abundance and the EI may indicate different fertility conditions at 
various times. 
de Goede, R.G.M., Bongers, T., Ettema, C., 1993. Graphical presentation and 

interpretation of nematode community structure:  C-P triangles. Med. Fac. 
Landbouww Univ. Gent. 58, 743-750. 

Ferris, H., Bongers, T., de Goede, R.G.M., 2001. A framework for soil food web 
diagnostics: extension of the nematode faunal analysis concept. Applied Soil 
Ecology 18, 13-29. 

Ferris, H., Bongers, T., 2006. Nematode Indicators of Organic Enrichment. J. Nematol. 
38, 3-12. 

Schloter, M., Dilly, O.M., Munch, J.C., 2003. Indicators for evaluating soil quality. Agr. 
Ecosys. Envir. 98, 255-262. 
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Figure VI.6.  Depiction of standardized treatment mean deviation from the total 
mean of all treatments (including control) for SI, BaMI, FuMI, CI, and EI at a given 
experiment in June. 
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Figure VI.7.  Standardized indices presented for Exp. 1 (A), Exp. 2 (B), and Exp. 3 (C).  
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