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 High intensity beams that are space-charge dominated are important for 

applications such as free electron lasers that require high intensity and low emittance 

beams. Modulations in energy or density can induce space-charge waves at low 

energies which could be problematic at higher energies. This thesis is a study of 

longitudinal space-charge waves induced by energy modulations within a highly 

space-charge dominated beam propagating in the University of Maryland Electron 

Ring (UMER). Using an induction cell, we present the first UMER experimental 

results on the design and application of the cell to place energy perturbations. We 

compare the results to one-dimensional cold fluid theory and simulation. We allow 

the perturbation to propagate for over 60 m so that we can get a turn by turn 

measurement of the experimental sound speed. In some of the turn by turn data, we 

obtain a 4.8% disagreement between the experimentally measured sound speed and 

theory.   
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Chapter 1: Introduction 

Intense particle beams are of interest in many applications requiring high 

quality beams transported over extended distances; such as spallation neutron sources 

[1], accelerator driven High Energy Density Physics (HEDP) [2], and Free Electron 

Lasers (FELs) [3]. In all cases, beams at the source are born as space-charge 

dominated and the performance depends on the quality of the beam at the end of the 

accelerator both transversely and longitudinally. The beam quality can be negatively 

impacted by nonlinear space-charge forces which can result from fluctuations in 

beam density or energy, and can lead to instabilities. 

A detailed understanding of how the collective space-charge effects in a 

space-charge dominated beam can reduce the quality of a beam is key to a successful 

operating machine. This thesis explores how one of these space-charge effects, i.e., 

longitudinal space-charge waves, could be launched with the application of 

longitudinal electric fields. These fields create a velocity modulation within the beam 

that launches a pair of waves traveling along the beam ultimately creating a density 

modulation [4]. 

In section 1.1, we describe the motivation for this work. In section 1.2, the 

background and general history of longitudinal space-charge waves is described and 

finally in section 1.3, we describe the organization of the thesis.     
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1.1 Motivation 

The understanding of longitudinal space-charge waves is important at both 

low-energies as well as high-energies. Beams at the source are likely in the space 

charge dominated regime. Any perturbations in either density or velocity space will 

induce space-charge waves in this regime. Since the wave phase velocity or sound 

speed of these space-charge waves scales as the inverse of gamma to the 5/2 power 

[5], the perturbations will travel along the beam, but if the beam is to be accelerated 

to higher energies these modulations will slow down and eventually become frozen 

into the beam.  

As will be explained in section 2.1, each of these waves carries a velocity 

component that is equal to the beam velocity plus the sound speed for the fast wave 

and the beam velocity minus the sound speed for the slow wave. The off-energy 

particles within the waves interact with a dispersive lattice such as a storage ring, 

which then has the potential to cause problems. Within the magnetic bending sections 

of a ring, the energy modulations can excite Coherent Synchrotron Radiation (CSR), 

which will lead to emittance growth [6], beam instability and micro-bunching [7]. 

This emittance growth would also lead to a decrease in the brightness of the beam 

since it is inversely proportional to the square of the emittance [5].  

With Free Electron Lasers (FELs), emittance growth could also lead to an 

increase in the gain length required to obtain full power in the undulator and also 

decrease the emitted power [3]. Therefore, it is important for machines that contain 

intense beams, to properly study and understand longitudinal space-charge waves, 

how they evolve and propagate on the beam. 
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1.2 Background and history 

 A charged particle beam is a group of particles moving closely along a 

reference trajectory defined by the bending elements. Externally applied focusing 

forces from focusing elements such as solenoidal or quadrupole lens balance the 

space-charge fields or self-fields of the beam which acts to defocus the beam 

transversely. The self-fields consist of an electric field due to the coulomb repulsion 

between electrons, and a magnetic field due to the motion of the charged particles.  

The thermal pressure or emittance of the beam can be attributed to various 

reasons, such as; mismatches between the beam envelope and focusing elements, 

injection errors, can all act to defocus the beam by heating it up. Transverse emittance 

is a measure of the beam quality or the thermal pressure inside the beam, which is the 

product of the beam’s width and the random (or thermal) velocity spread [5].  

In the longitudinal direction, there is also an emittance term and space-charge 

fields present which defocus the beam longitudinally. In order to contain the beam in 

the longitudinal direction, a longitudinal focusing electric field could be used to 

compensate for these forces, or, if there is an appropriate energy versus time slew in 

the beam, a magnetic bunch compressor (a series of dipole magnets in a chicane) 

could be used to compress the beam longitudinally. The types of longitudinal 

focusing fields applied are dependent on the charge distribution of the bunch; i.e. 

compressing a space charge dominated beam with a parabolic line charge profile 

would require different fields then that for a rectangular profile. If the focusing bucket 
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does not match the beam profile or if there are errors in the focusing fields 

themselves, this longitudinal mismatch will launch space-charge waves on the beam. 

 The history of space-charge waves goes back to Simon Ramo and W.C. Hahn 

with their investigations of space-charge waves in vacuum tubes [8, 9]. In the 1950s, 

Birdsall and Whinnery performed calculations of gain and phase of electrons passing 

near lossy walls which was used for beam amplification [10]. 

 The classical method for modeling space-charge waves uses a one-

dimensional cold fluid model [5]. This model treats the particles in the beam as a 

continuous medium and assumes zero temperature to truncate the fluid equation 

hierarchy, resulting in the momentum and continuity equations. By adding a small 

perturbation and linearizing those equations, one obtains a description for the forward 

and backward going waves [5]. 

At the University of Maryland Charged Particle Beam Laboratory, the ability 

to generate controlled perturbations was pioneered through experimental 

investigations of space-charge waves by J.G. Wang and D.X. Wang [11]. They 

observed the evolution of space-charge waves created from electrical perturbations at 

the gun and also the evolution of a single wave where either the slow wave or the fast 

wave was selected based on the initial conditions at the gun. This work was further 

advanced by Hyyong Suk to understand the resistive wall instability [12]. A resistive 

wall adds feedback leading to the decay in amplitude of the fast wave and a growth in 

amplitude of the slow wave. Yun Zou increased the amplitudes of the perturbations, 

so to bring the waves into the non-linear regime where the waves would no longer 

travel in a non-dispersive manner [13]. Yupeng Cui developed the high resolution 
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energy analyzer and Kai Tian measured the velocity profiles of the density initiated 

perturbations with the analyzer, confirming the 1-D cold fluid model [4, 13]. 

With the advent of the University of Maryland Electron Ring (UMER), new 

methods have been developed to generate controlled perturbations. Yijie Huo began 

the work of using an ultraviolet laser focused onto the dispenser cathode of the 

UMER gun, extracting current from the cathode through photoemission [14]. John 

Harris extended this work to more then half the ring and Jayakar C.T. Thangaraj 

continued this work with the multi-turn transport of this laser induced electron beam 

[15]. He also observed an instability when over driving the cathode with the laser, 

which leads to virtual cathode oscillations [16, 17].   

This thesis is a study of longitudinal space-charge waves induced by energy 

modulations using a new technique that utilizes an induction cell. The first UMER 

experimental results are compared to one-dimensional cold fluid theory and 

simulation. Allowing the perturbation to propagate for over 60 m, we obtain a turn by 

turn measurement of the experimental sound speed. In some of the turn by turn data, 

we obtain a 4.8% disagreement between the experimentally measured sound speed 

and theory.   

1.3 Organization of thesis 

In chapter 2, we review the 1-D cold fluid model and dispersion relation for 

longitudinal space-charge waves from which we define the wave speed and g-factor. 

We also compare the characteristics of the waves generated by pure initial density 

perturbations versus pure initial velocity perturbations.  
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In chapter 3, we designed, model, simulate and describe the experimental 

setup for the induction cell, which we operate both as a way to perturb the beam 

velocity and for longitudinal focusing. This cell can also be operated as a wall current 

monitor if the frequency response of the device is readjusted. We go through some of 

the basic limitations of the cell and calculate and compare the focal length of the cell 

to that of quadrupoles within UMER. 

In chapter 4, we present the first UMER experimental results on the 

application of the induction cell to place energy perturbations on the flat region of the 

beam. Both positive and negative perturbations are investigated, comparing the 

experimental results to 1-D cold fluid simulations. We then allow the beam to 

propagate for over 60 m so that the space-charge waves have sufficient time to split 

and experimental sound speeds are extracted on a turn by turn basis. 

Finally, chapter 5 summarizes the new results and explores other topics for 

future research.  



 

 7 

 

 

Chapter 2: Theory of Space-Charge Waves 

 In this chapter we review the theory of longitudinal wave propagation in a 

beam that is highly space charge dominated. The purpose of this chapter is to analyze 

what happens to the wave polarities and their corresponding amplitudes when an 

initial perturbation is either a pure density modulation or a pure velocity modulation. 

In section 2.1, the one-dimensional cold fluid model is presented along with the 

sound speed 
s

C , and the dispersion relation for an infinitely long cylindrical beam 

inside a conductive pipe. In section 2.2, the evolution of the velocity and density 

initiated perturbations are analyzed in terms of their polarities and amplitudes for both 

the fast and slow waves launched on the beam. 

2.1 Analysis of space-charge waves using the one 

dimensional fluid model 

 The cold fluid model represents the beam as a continuous 1-D fluid and 

assumes zero temperature so as to truncate the fluid equation hierarchy. This 

corresponds to a laminar beam where all the electrons are moving in parallel layers. It 

is also assumed that the beam is an infinitely long cylinder of charge with an average 

radius equal to R , inside a drift tube of radius b where the line-charge density is given 

by λ . The beams velocity is given by v  and so the product vλ  is equal to the beam 

current I .  
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For small perturbations we can linearize the momentum and continuity 

equations by writing the line charge density, velocity and beam current as the sum of 

constant plus perturbed quantities [5]. 

( ) ( )

( ) ( )

( ) ( )

0 1

0 1

0 1

,

,

,

i t kz

i t kz

i t kz

z t e

v z t v v e

I z t I I e

ω

ω

ω

λ λ λ −

−

−

= +

= +

= +

    (2.1) 

The quantities with the subscript 0 represent the constant or “DC” part of the beam 

and the subscript 1 represents the time and space varying perturbations. After 

linearizing the continuity and momentum equations and performing the necessary 

Fourier transforms, we obtain the dispersion relation as well as the sound speed of the 

beam [5]. 

( )
2 2 2 2

0 03 2

0 0 04
s

q g
v k k C k

m
ω λ

γ πε γ
− = =     (2.2) 

03 2

0 0 04
s

q g
C

m
λ

γ πε γ
=     (2.3) 

Where q  is the electron charge, m  the electron mass, 0γ  the Lorentz factor, 0ε  the 

relative permittivity and the variable g  is a geometry factor that accounts for the 

transverse forces [5]. 

2 ln
b

g
R

 
=  

 
     (2.4) 

Here we assume a long beam so that the radius doesn’t change and zero 

pressure, so that the beam is fully space-charge dominated. The phase velocities of 

the two space-charge waves are equal to the beam velocity plus the sound speed for 

the fast wave and the beam velocity minus the sound speed for the slow wave. 
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0

0

f s

s s

v v C

v v C

= +

= −
     (2.5) 

The quantities 
f

v  and 
s

v  are the fast wave and slow wave velocities respectively. 

Since the phase velocities are independent of frequency, the space-charge waves are 

non-dispersive and so the shape of the wave will not be distorted as it propagates 

along the beam. 

2.2 Velocity versus density perturbations 

The analytical solution for the propagation of space-charge waves uses the 

linearized continuity and momentum equations, which are then Laplace transformed 

in both time and space. Solving the algebraic equations and applying inverse 

transformations, the perturbed line-charge density, velocity and current are obtained, 

where the sign on top of the 
0 s

z
p t

v C

 
 
 

−
∓

 smooth varying function of magnitude 

equal to unity is for the slow wave and the sign on the bottom is for the fast wave 

[11]. We also assume the initial density or velocity perturbation is launched at 0t
+=  

where we use 
( )1

0

0, 0v t

v
δ

+=
=  to denote the magnitude of the velocity perturbation at 

0 , 0t z+= =  and 
( )1

0

0, 0I t

I
η

+=
=  to denote the magnitude of the current perturbation 

at 0 , 0t z+= = .  

( ) ( )0 0

0

1 ,
2 s s

v z
z t p t

C v C
λ

λ
δ η δ
   

  
   

= − −∓ ∓
∓

   (2.6 a) 
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( ) ( )0

0 0

1
2

, s

s

v C z
v p t

v v C
z t δ η δ

   
− −  

   
= ∓

∓
    (2.6 b) 

( ) ( )0 0

0 0

1 ,
2

s

s s

I C
I

v

v z
z t p t

C v C
δ η η δ
   

  
   

= + − −∓ ∓
∓

  (2.6 c) 

We can rewrite equations 2.6a, b and c by converting the equations into the beam 

frame by using 0z z v t
∗ = − . 

( ) ( )0 0

1 ,
2 s s

v z
z t p t

C C
λ

λ
δ η δ

∗   
  

   
= − ±∓ ∓    (2.7 a) 

( ) ( )0

0

1
2

, s

s

v C
v

v

z
z t p t

C
δ η δ

∗  
−   

   
= ±∓     (2.7 b) 

( ) ( )0 0

0

1 ,
2

s

s s

I C
I

v

v z
z t p t

C C
δ η η δ

∗   
  

   
= + − ±∓ ∓   (2.7 c) 

The signs in the unity function ( )p t  are flipped so that the fast wave is the sign on 

the bottom and the sign on top is the slow wave. 

Space-charge waves can be launched from either an initial density 

perturbation or an initial velocity perturbation. If an initially pure density perturbation 

was placed onto the beam then δ  must be set to zero. With that condition we obtain 

from eqn 2.7a, b and c, 

( ) 0

1 ,
2 s

z
z t p t

C
λ

λ
η

∗ 
    

 
= ±      (2.8 a) 

( ) [ ]1
2

, s

s

C
v

z
z t p t

C
η

∗ 
 
 

= ±∓      (2.8 b) 

( ) 0

0

1 1,
2

s

s

I C
I

v

z
z t p t

C
η

∗    
    
     

= ±∓∓    (2.8 c) 
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The amplitudes of the line-charge density function for both the fast and slow waves in 

equation 2.8a has the same polarity as the perturbation, whereas the velocity space 

function, eqn. 2.8b, the amplitude of the slow wave has the opposite polarity. The last 

equation, 2.8c, can be approximated by assuming 
0

1s
C

v
≪  so it can be rewritten as 

eqn. 2.9. 

( ) 0

1 ,
2 s

I
I

z
z t p t

C
η

∗ 
    

 
= ±      (2.9) 

So similar to the case of the line-charge density, the current function also has the 

same polarity for both the fast and slow wave as the initial perturbation. 

If an initially pure velocity perturbation was placed onto the beam then η  

must be set to zero. 

( ) 0 0

1 1,
2 s s

v

C

z
z t p t

C
λ

λ
δ

∗    
±    

     
= ±∓    (2.10 a) 

( ) 0

0

1 1
2

, s

s

v C
v

v

z
z t p t

C
δ

∗    
±    

    
= ±      (2.10 b) 

( ) 0 0

0
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2

s

s s

I v C
I

C v

z
z t p t

C
δ

∗    
−    

     
= ±∓    (2.10 c) 

If we once again make the approximation that 
0

1s
C

v
≪  or 0 1

s

v

C
≫ , then equations 2.10 

can be simplified even further. 

( ) 0 0
1 ,

2 s s

v z
z t p t

C C
λ

λ
δ

∗   
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   
= ±∓    (2.11 a) 



 

 12 

 

( ) [ ]0

1
2

,
s

v
v

z
z t p t

C
δ

∗ 
 
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= ±      (2.11 b) 

( ) 0 0
1 ,

2 s s

I
I

v z
z t p t

C C
δ

∗   
  

   
= ±∓    (2.11 c) 

In this case we have the opposite scenario. The amplitudes of the velocity function, 

eqn. 2.11b, have the same polarities for both the fast and slow wave functions as the 

initial perturbation, whereas in line-charge density space, eqn. 2.11a, the slow wave 

has the opposite polarity.  

The difference between an initial pure density perturbation or an initial pure 

velocity perturbation is the polarities of both waves in either velocity or line-charge 

density space.   
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Chapter 3: Design of the Induction Cell 

In Chapter 1 we discussed the need for longitudinal electric fields. For that 

purpose we use an induction cell to place either accelerating or decelerating fields in 

the longitudinal direction of varying pulse amplitudes. In this chapter, we discuss the 

construction and operation of the induction cell and its counterpart, the wall current 

monitor. In section 3.1 we examine the circuit model of a passive parallel RLC circuit 

used to measure the beam current. In section 3.2 we add the high-voltage modulator 

to the circuit and use it to apply longitudinal electric fields to the beam. In section 3.3 

we examine the ferrite limitations, both in terms of the induction cell and the wall 

monitor. In section 3.4 we discuss the electrostatic approximation of the induction 

cell and calculate the radial field component and finish with the beam optics transfer 

matrix and a comparison to the quadrupoles in UMER.  

3.1 Wall Current Monitor 

 In this section, we discuss how to use a parallel RLC circuit to measure the 

image current traveling on the beam pipe. 

 In UMER, there are three breaks in the beam pipe with a glass insulator 

installed between the sections of pipe for the vacuum inside the system. These glass 

gaps create the discontinuity in the conduction path for the image current or return 

current traveling along the beam pipe. The return current path is completed because 

of ground loops within the supporting structure of UMER.  
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Fig 3.1. Glass gap (cross-sectional view) 

 

The radius R of the beam pipe is 2.54 cm and the gap separation, d, is 5.08 mm. The 

beam pipe is mounted to a support plate called a cluster plate with brackets that 

support the pipe. The electrical contact is made by the bracket and the pipe on either 

side of the glass gap. 

 
Fig 3.2. Cluster plate assembly 

 

The inductance term or the L of the circuit comes from the ground loop which 

was calculated to be 7.5 nH. Inductance calculations will be reviewed in section 3.3. 

Because the resistance of the glass gap is very large, the L/R time constant for this 

Image Current 

b Glass 

Beam pipe 

d 

V2 V1 

Glass gap 

Cluster Plate 

Dipole Bracket 

Ground Loop 

Pipe 
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circuit is extremely small. This leads to an induced voltage drop across the gap only 

during the rising/falling edges of a square beam current pulse. A short time constant 

for a high-pass filter means that the 3 dB point of the filter is large in frequency 

space.  

In-order to lower the frequency of the pole so that we can measure the entire 

100 nsec beam current pulse with minimal droop, we need to extend the time constant 

of the circuit by adding a resistor across the gap to lower the R and load a ferrite 

torrid on one side of the gap to increase the inductance of the circuit. An acceptable 

L/R time constant for this 100 nsec beam with a 2% droop would be 4.95 µsec 

using1

t

L

Re

−

 
 
 − . 

 

 
Fig 3.3. Wall current monitor 

 

 Before we can measure a voltage using an oscilloscope, we need to 

understand the current paths and directions so that we can get the polarity of the 

voltage correct and prevent any accidental short of the measurement with the 

oscilloscope. As the beam current propagates within UMER, the image current will 

be propagating in the opposite direction. Since the image current loops the ferrite 

toroid through the ground loop, this will induce a magnetic flux inside the material. 

I2 

IInduced 

IBeam Image Current 
I1 

Center 

Conductor 

GND 

Conductor 

+    ∆∆∆∆V        - 
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Because of Lenz’s law, an equal and opposite current will be generated to oppose the 

change in flux, we will call that IInduced = -I2. There will also be a current flowing 

through the resistor across the gap called I1. The beam image current can be 

calculated from eqn. 3.1, 

 1 2

1
BeamImageCurrent

V
I I I Vdt

R L

∆
= + = + ∆∫  (3.1) 

where the ∆V is a measured voltage across the circuit. 

There is also a capacitance term associated with the equivalent RLC circuit 

due the separation of the beam pipe within the glass gap section that has been 

neglected. If the capacitance is small enough so that the low-pass pole it creates is 

much higher then the fastest rise time of the square beam current pulse, then the 

capacitance term can be neglected. Using an LC meter, the measured capacitance of 

the gap is 22 pF.  So if we use a 2 Ω resistor across the gap, the RC time constant 

would be 0.044 nsec which corresponds to a frequency of 3.61 GHz. The high-

frequency pole of this circuit is above the ~1 GHz rise time of the injected square 

beam pulse so the circuit will not lose any information in the beam up to the 3 dB 

point. If we use a ferrite toroid with a measured inductance of 9.81 µH, then the low-

frequency pole of the circuit will have a 4.9 µsec time constant which would 

correspond to a 2% droop. The ferrite properties relevant to its choice for UMER 

along with a calculation of the inductance will be discussed in section 3.3. 
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Fig 3.4. Equivalent RLC circuit with the beam image current source  

 

 
( )

( ) 2

BeamImageCurrent

V s sLR

I s s LRC sL R
=

+ +
 (3.2) 

 In this equivalent circuit model, the beam image current is treated as an ideal 

current source with infinite impedance. The circuit contains two poles, a high-pass 

pole with a 3 dB point at s = L/R and a low-pass pole with a 3 dB point at s=1/RC. 

The net circuit forms a band-pass filter and has a frequency response. 

 
Fig 3.5. Bode plot of circuit model (R = 2 Ω, L = 9.81 µH, C = 22 pF) 

 

 Another way of reading the bode diagram is to view the beam image current 

as composed of multiple frequencies. If any of the frequencies are within the pass-

+ 

  ∆∆∆∆V 

- 

 

    IBeam Image Current 

 

Bandwidth = 3.62GHz 

3.62 GHz 32.4 kHz 
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band of the circuit, then the impedance seen by the current will be 2 Ω. If any of those 

frequencies are outside of the pass-band, they will be attenuated. 

3.2 Induction System 

 In this section, we will discuss how to use the parallel RLC circuit to apply a 

potential difference across the gap and apply energy (velocity) perturbations. In 

section 3.2.1 we will examine the simple high-voltage modulator model that will be 

used to drive these perturbation fields and compare the results to a bench test of the 

real circuit. In section 3.2.2 we will examine the circuit model for a coaxial 

transmission line connecting the modulator and induction cell. In section 3.2.3, 

modify the parallel RLC circuit to be an induction cell and finally in section 3.2.4, 

simulate the entire circuit and compare it with test results of the real circuit.  

3.2.1  Simple High-Voltage Modulator Model 

 Since we need to apply kilo-volt delta functions (ear-fields) with a very short 

pulse width into a low impedance load, a prepackaged switch made by BEHLKE was 

the best candidate for the application. The specifications for the HTS 80-12-UF are 

displayed in table 3.1. 

Table 3.1. Specifications of HTS 80-12-UF [18] 

Parameter Value 

VMAX 8000 volts 

IPEAK 120 amps 

Pulse Width 10 nsec 

Closed-state Resistance 4.5-11.3 Ω 

tON Delay 60 nsec 

tON Rise-time 2.0 nsec 
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The high-voltage modulator is composed of two of these HTS switches 

connected in a bipolar arrangement to provide a positive ear-field and a negative ear-

field. Since the circuit internals are not provided by the manufacturer, a simple switch 

model that takes into account the specifications of the HTS units was developed in-

order to simulate the circuit in PSpice. 

 
Fig 3.6. Simple high-voltage modulator circuit model 

 

Each of the HTS 80-12-UF units were modeled with an ideal on-switch and an 

ideal off-switch in series. The rise/fall times of each of the switches was set to 2.0 

nsec as the HTS 80-12-UF units. The closed-state resistance of all the ideal switches 

was set to 2.25 Ω so that each pair would be equal to 4.5 Ω. The open-state resistance 

was arbitrarily set to 1 Meg since it was not specified in the BEHLKE document. The 

period of time that both ideal on and off switches are “on,” was initially equal to the 

pulse width specifications, i.e. 10 nsec.    

The RC filters shown in the circuit are used as a storage element for charge 

that is independent of the capacitors internal to the variable power supplies. The 

Closing Switch at 120 nsec 

Opening Switch at 30 nsec 

RC Filters 
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charging time for either of them is 0.22 msec so if the system is pulsed at 60 Hz, the 

filters have plenty of time to charge. The peak current that either filter can support is 

2.2 kA for a 10 nsec pulse using 
Q CV

I
t t

∆
= =

∆ ∆
 with 1V kV= .  

A PSpice simulation was performed on the circuit model with the voltage 

plotted across the 50 Ω resistor versus time. 

 
Fig 3.7. Simulated (blue) and real (red) voltage output from modulator  

across a 50 Ω resistor  

 

 In the figure, the voltage output measured from bench test results of the real 

circuit is not well modeled by the simulation based on the specifications from the 

manufacture. Both the amplitude of the pulses and the rise times of the simulated 

pulses are inaccurate. The data from the actual circuit was taken with a 1 GHz 

oscilloscope and a 1 GHz 100x probe, so the measurement apparatus should not be 

the cause of the discrepancy.  There may be parasitic capacitances affecting the pulse 

from the switches or there may be a problem with the specifications of these switches. 

Real Circuit 

Simulated 

Circuit 
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In either case, in order for the PSpice model to better simulate the real 

modulator circuit, the rise times of each of the ideal switches were modified as well 

as the period of time that both switches are closed was modified. All the rise/fall 

times of the ideal switches were changed from 2 nsec to 40 nsec and the period of 

time that both switches are “closed” was changed from 10 to 15.3 nsec and the circuit 

was simulated again. 

 
Fig 3.8. Modification of simulation to better represent real circuit 

 

 These particular pulse specifications forms triangular shaped pulses that 

represent the real circuit output. The FWHM of the actual circuit is 8.8 nsec and the 

FWHM of the simulated circuit is 7.39 nsec. The real circuit is slightly wider in 

width. The pulse does not reach the full potential provided by the resistive divider 

from the internal switch resistance and the 50 Ω, due to the fact that the switches 

open sooner then the actual rise time. This cuts the pulse amplitude by 38%. We can 

calculate this by taking the ratio of the switch “close time” to the rise time and 

multiply that by the maximum potential from the resistive divider. 

Simulated 

Circuit 
Real Circuit 

Triangular 

shape 
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3.2.2  Transmission Line Circuit Model 

 General two-wire transmission lines can be used everywhere in the lab and a 

segment of transmission line connects the high-voltage modulator to the induction 

cell. The type of transmission line used is RG-58 coaxial cable. Such a transmission 

line can be modeled as a differentially lumped circuit distributed along the length of 

the transmission line as shown in [Fig 3.9]. For a differential length ∆x, the elements 

that make up the model are two series elements, the resistance per unit length and 

inductance per unit length and the shunt element is the capacitance per unit length.  

 
 Fig 3.9. Transmission line circuit model [19] 

 

 For a coaxial transmission line, the formulas for capacitance and inductance 

per unit length are derivable from Maxwell’s equations 3.3 and 3.4 respectively [19]. 

 
2

ln

C
b

a

πε
=

 
 
 

 (3.3) 

 ln
2

b
L

a

µ

π

 
=  

 
                                                    (3.4)  

Where a, is the radius of the inner conductor and b is the radius of the outer 

conductor. 

 ∆∆∆∆x 
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Fig 3.10. Coaxial Transmission Line (cross-sectional view) 

 

The resistance term is usually measured since it depends on the material used 

for the center conductor and if the center conductor is stranded or solid. The 

measured values for RG-58 as given from BELDEN are displayed in table 3.2. 

Table 3.2. RG-58 Specifications [20] 

Parameters Values 

Capacitance/∆x 30.8 pF/ft 

Inductance/∆x 0.077 µH/ft 

Resistance/∆x 10.8 Ω/1000ft 

 

 The impedance of the cable can be calculated using eqn. 3.5, which for the 

specifications listed, is 50 Ω. 

o

L
Z

C
=                                                             (3.5) 

3.2.3  Induction Cell Circuit Model 

 The induction cell is the same circuit as the wall current monitor, a parallel 

RLC circuit, except for the modification to the resistance term. The resistance term is 

modified so that when a segment of transmission line is connected between the 

modulator and the cell, the pulse will be properly terminated. The resistance term of 

the cell was changed to 50 Ω. This changes the poles of the circuit and equivalently 

a  b 

 ∆∆∆∆x 
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its band of operation. The bode plot of the pass-band range is reduced from that of the 

wall current monitor.    

 
Fig 3.11. Bode plot of circuit model (R = 50 Ω, L = 9.81 µH, C = 22 pF) 

 

 This modification changes the low frequency pole to 811 kHz and the high 

frequency pole to 144 MHz which will modify the measurement of the beam current 

and in turn limit the use of the induction cell as a wall current monitor. The calculated 

droop of the detector will be 40% for the 50 Ω resistor which is extremely poor for a 

wall current monitor capturing a square beam current pulse. The reduction in the 

pass-band width also limits the frequency of the signal applied to the induction cell 

which is critical for the applied pulsed fields. The pulse width of the fields is 15 nsec, 

taking the gaussian pulse as a half period sine wave, then the frequency content of the 

applied signal is 33 MHz which is in the pass-band of the device.  

Bandwidth = 143.9MHz 

144.7 MHz 811.2 kHz 
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3.2.4  Entire Circuit Model 

            The entire circuit [Fig. 3.12] consists of the modulator, the induction cell and 

a segment of transmission line connecting the two.  

 
Fig 3.12. Entire circuit model in pspice 

 

 Each section of the circuit is outlined with circles and labels. There is an 

additional component that has been added and not yet described, the 50 Ω resistor 

before the segment of RG-58. Before simulating the circuit in pspice, we will explain 

the reason for the additional resistor. 

 After the modulator fires and a pulse is sent down the transmission line, the 

current then splits up into the three elements of the parallel RLC circuit of the 

induction cell. When the modulator turns off, an induced pulse is reflected back up 

the transmission line to the modulator which is “off” by that time and so the pulse 

will reflect again back down the transmission line because of the high impedance 

open-state of the BEHLKE switches since
1 50

1
1 50

L O

L O

Z Z Meg

Z Z Meg

− −
Γ = = ≈

+ +
. So a 50 Ω 

resistor is placed at the entrance point of the transmission line so that the pulse 

reflected back from the induction cell up the transmission line is terminated.       

50ohm 

Termination 

RG-58 

Induction cell 
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 Now we can perform a PSpice simulation of the whole circuit allowing 

enough time for both HTS circuit models to send a pulse. The simulation output along 

with the real circuit output is displayed in figure 3.13 below as the voltage across the 

50 Ω resistor inside the induction cell.   

 
Fig 3.13. Simulated and real voltage across 50 Ω resistor inside induction cell 

 

 The simulation results compare very nicely with the real circuit performance. 

The amplitude has decreased from 364 volts in figure 3.8 to 210 volts with the 

additional components attached for a 1kV charge on the modulator capacitors.  

The one feature of the real circuit that was not seen in simulation was the 

bump in the output waveform. This will be important for ear-field focusing, because 

the beam bunch will have to fit inside the ear-fields and so any “noise” or improper 

terminations of the initial decelerating pulse would affect the beam. This bump in the 

real circuit output seems to be an under-damped response of either the coax cable or 

the induction cell or a combination of the two. The measured damping coefficient 

from the plot is approximately 60 nsec. If we assume the switches are off so they are 

Bump 
Real circuit 

Simulated 

Circuit 
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at a high impedance state, we can disconnect the transmission line and induction cell 

from the rest of the circuit. Taking the pulse frequency to be 33 MHz and calculating 

the impedance of the circuit, we get from MATLAB 25.8289 3.1574Z j= − . The real 

part of the impedance comes from the two 50 Ω resistors in parallel and the 

imaginary part is the equivalent capacitance since its negative. The calculated 

equivalent capacitance is 1.52 nF. If we use the damping coefficient of a parallel RLC 

circuit, 2RC , then the calculated time constant is 76.3 nsec. This agrees with the 

measured value.   

3.3 Design Considerations and Limitations 

 This section describes the saturation limits of ferrites in terms of the volt 

second product and how the circuit operates to prevent saturation of the material as 

well as why the specific material was chosen. We also review and calculate the power 

dissipated in the ferrite and suggest methods to what could be done to minimize 

power dissipated. The section ends with a calculation of the inductance of the ferrite 

toroid. 

The modulator source drives a current density around the ferrite toroid, 

creating a time varying magnetic field intensity inside the toroid equal to
2

JA
H

rπ
=

�
�

. 

Because of Lenz’s law, we will have an equal and opposite current generated to 

oppose the change in flux, the induced current. The time varying magnetic field will 

also induce an electric field or a voltage drop across the gap from faraday’s law. What 

limits the ability to induce a voltage drop across the gap is the
dB

dt

�

term. If this term 
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goes to zero, we have the electrostatic condition, namely 0E∇× =
�

. This means that 

the curl or the sum of all voltages around the loop, thinking in terms of circuit theory, 

is zero.  

 

 

Fig 3.14. Curl of electric field within the induction cell 

 

The point at which this term goes to zero is at the top of the hysteresis curve, 

the saturation point or 
S

B , where the magnetic flux density does not change anymore 

with a change in magnetic field intensity. To calculate the limit, use eqn. 3.6, 

 V t BA∆ ∆ = ∆  (3.6) 

Loop 
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where the V t∆ ∆  is the volt-second product, which is the applied pulse voltage to the 

core multiplied with the pulse rise-time. The cross-section area of the core, and B∆  

gives the change in magnetic flux. The ferrite is picked based on a material with a 
S

B  

well above the typical flux swing of the circuit so saturation does not happen easily. 

For the ferrite material used in UMER, CMD5005, the saturated magnetic flux 

density is 3200 gauss [21]. The pulse rise-time from the modulator is 8.8 nsec and the 

cross-sectional area of the core is 22.82 cm
2
. The largest beam current of 104 mA will 

require the largest focusing field, 1.4893 kV [see section 3.5] so the change in 

magnetic flux will be 57.4 gauss per pulse.  

After applying a pulse to the ferrite core, it needs to be reset so that we don’t 

work the material up the hysteresis curve and into saturation. Typically a negative 

pulse in the form displayed in figure 3.15 is applied in the reverse direction from the 

initial pulse to drive the material back down the hysteresis curve [22]. This can also 

decelerate the beam coming through the induction cell if the modulator that supplies 

the negative pulse is triggered while the beam is still in the induction cell.  

 

 
Fig 3.15. Pulse configuration that supports core resetting 

 

 The power loss in the material must also be considered with ferrites because 

the joule heating could lead to the material reaching the Curie temperature which 

Decelerate 

or reset 

Accelerate 
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would render it useless as a ferrite. The CMD5005 has a curie temperature of 130 
o
C 

[21].  

The loss can be traced using the loss curve for the given material where the 

bottom axis of the plot is the rise-time of the pulse applied in microseconds for full 

saturation. The vertical axis is the loss in J/m
3
. Since we have a field of 57.4 gauss in 

the ferrite for a pulse rise time of 10 nsec, then the approximate time it would take to 

reach full saturation for CMD 5005 would be 557 nsec, using the saturation flux 

density 3200 gauss. So the loss in the ferrite would be approximately 110 J/m
3
 for full 

flux swing to the saturation point of the material. The volume of the ferrite is 

0.000347 m
3
 so the loss would be 38.2 mJ. 

 

Fig 3.16. Power loss curve for CMD 5005 and other materials [22] 

 

A way to minimize this loss would be to slow the rise time of the pulser. 
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Fig 3.17. Reset pulse with minimized
dB

dt
 

Since it takes longer for the material to switch from one state to the other, the 

change in magnetic flux stayed the same but the rise time increased. A longer rise 

time means there is less J/m
3 

loss in the material using the loss curve. In the limit, if 

the signal was DC, then the dipole moments in the material would not reorient 

themselves and so no energy would be loss in the ferrite. The loss would be in the DC 

power dissipated in the wire wrapped around the ferrite.   

The inductance of the ferrite material is also a key factor in the choice of 

ferrite, which brings us to the permeability of the material. The initial permeability of 

the ferrite specified from CMI, is 1300 [21]. To calculate the inductance of the ferrite 

toroid, we can use the formula for the coax cable, eqn. 3.4. The outer radius of the 

toroid is 6.6 cm and the inner radius is 3.0 cm. The height of the material is 3.1 cm, so 

the calculated inductance of the toroid is 7.93 µH and the measured value used in the 

simulations and other calculations is 9.81 µH. To measure the approximate 

inductance due to the ground loop through the cluster plate, we divide by the initial 

permeability of the ferrite using the ferrite as an amplifier. This is 7.5 nH. 

3.4 Transverse Effects from the Induction Cell 

 In this section we relate the potential drop across the glass-gap to the potential 

inside the beam pipe in the vicinity of the gap region. This allows us to study the 

Minimizing
dB

dt
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transfer matrix of the induction cell and its focusing component. In section 3.4.1, we 

examine the validity of the electrostatic solution in comparison to the electromagnetic 

problem. In section 3.4.2, we calculate the on-axis potential and in section 3.4.3 

calculate the radial component of potential. Finally in section 3.4.4 we will compare 

the focusing strength of a UMER quadrupole to the focusing strength of the induction 

cell; even though the elements are different, this gives the relative difference between 

the focal lengths of each device. 

3.4.1  Validity of Electrostatic Solution 

In order to view the similarities, we must draw both problems. In the top 

figure we have the ferrite material loaded inside a cavity which shorts either side of 

the gap that is a distance S. The curl of the electric field is zero at DC, i.e. the gap is 

shorted and in the time varying case as long as there is a
dB

dt

�

term from the ferrite 

because of the current loop around the ferrite, then we can induce the voltage across 

the gap. This can be equivalent to having two separate conductors that are not tied 

together by a cavity as long as R S≫ , l R≫ and h R≫  [23].    
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Fig 3.18. Electromagnetic problem versus electrostatic problem 

 

 The voltage induced across the gap is just V∆ , as long as were concerned only 

with the electric field near the gap and not at the back wall of the cavity or near the 

ferrite material. 

3.4.2  On-axis Potential 

 The field lines within the induction cell can be calculated using Laplace’s 

equation in cylindrical coordinates in the form shown below with no potential 

variation in the theta direction. The geometry of the problem is outlined in section 

3.1, figure 3.1. Because of the argument in section 3.4.1, this is a purely electrostatic 

problem with two different pipes each with a radius of R and separated by a 

negligible distance with a potential drop across them, i.e. the bipotential lens. This 

solution also ignores beam loading and so the self fields of the beam are ignored. 

Using separation of variables with a solution of the form ( ) ( ) ( ),z r F z G rφ =  and 

appropriate boundary conditions, we obtain a solution for the on-axis potential eqn. 

3.7 [24, 25]. 

dB
ds

dt∫  

S  

l  

S  

l  

l  

l  

dB
V ds

dt
∆ = −∫  

h  

h  

Gap R  

R  
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 ( ) 2 1 2 1 1.32
tanh

2 2

V V V V
z z

R
ϕ

+ −  
= +  

 
  (3.7) 

For a potential difference across the gap ( 2 1V V V∆ = − ) and using 2 100V =  volts, 

1 0V =  volts and 2.54R =  cm we get a plot of the on-axis potential. 

 
Fig 3.19. On-axis ( )0r = potential 

 

3.4.3  Radial Component 

 If we look at the potential off-axis, there will be a radial-dependent potential 

term that will focus the beam transversely as well as accelerate the beam as it exits 

the lens of the induction cell. If we substitute a power series expansion of the form 

( ) ( ) 2

0

, n

n

n

z r a z rϕ
∞

=

=∑  into Laplace’s equation and take the necessary derivatives, we 

obtain eqn. 3.8 [24, 25]. 
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ϕ ϕ

∞

=

−  
=  

 
∑  (3.8) 

Writing out the first three terms of the expansion and calculating the on-axis 

derivatives, a contour plot of the solution is displayed in figure 3.20.  
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 If we look at the contour plot, any particles traveling in the center of the 

acceleration gradient will not experience a radial component. When the particles are 

in the edges of the fields, there will be a component in the radial direction that will 

distort the beam size in the transverse plane.  

 
Fig 3.20. Contour plot of potential 

 Since the derivation assumes the pipe’s separation distance d is small in 

comparison to the pipe radius, so that the lens is narrow, the potential variation is 

fairly constant over a radius of 5 mm with a variation of 2.3%, assuming the beam is 

in the center of the induction cell and is laminar. So for all the beams that could be 

launched into the UMER lattice, only the 104 mA and 78 mA beams will experience 

a non-planar longitudinal accelerating gradient, assuming the quadrupoles are 

operating at there nominal current of 2.21 A. 

3.4.4  Beam-Optics Transfer Function  

The focal lengths for the various focusing fields can be calculated using eqn. 

3.9 [24, 25]. 

 

1

41 3 1.32
log 2

8

o o i i

i i i o o
f b

ϕ ϕ ϕ ϕ
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   + 
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−    
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The potential
i

ϕ is in the image plane,
o

ϕ is in the object plane of the induction cell and 

b is the beam pipe radius. So the pipe in the object plane would be held at potential 

V2 and the pipe in the image plane would be held at V1. 

 The transfer matrix in the thin lens approximation has the form of 

1 0

1
1

f

 
 
 − 
 

, 

where f is defined as the focal length of the focusing element. For a quadrupole in 

UMER the focal length is 0.158 m using the thin-lens approximation 
1

eff
l

f
κ= [5]. 

κ for a magnetic quadrupole is defined as 0

0

qB

mav
κ

γ
= , where 0B  is the integrated 

gradient, q  charge of an electron, γ  the Lorentz factor, a  the diameter of the 

quadrupole aperture, m  the mass of an electron, 0v  the velocity of the beam and 
eff

l  

is the effective length of the quadrupole [5]. The peak integrated field per amp for the 

quadrupoles in UMER is 13.438 G/A where the operating current in the quadrupoles 

is 2.21 A [26]. The effective length of the quadrupoles is 3.72 cm [26]. 

Before we can calculate the focal length of the induction cell, we need to 

calculate E∆ the ear-field energy required for any of the UMER beams using eqn. 

3.10, 

( ) ( )
2 2

0 0 0

1 1
2 2

2 2
s s s

E m C v mv mC v C∆ = + − = +   (3.10) 

where
s

C is the sound speed [refer to section 2.1] and m the mass of an electron. The 

ear-field energy is the energy spread from the main beam energy due to head and tail 

expansion. The head of the beam is accelerated from the main beam and the tail of the 



 

 37 

 

beam is decelerated from the main beam. To calculate the correct
s

C  for each of the 

beam currents, the average radius must be properly calculated without neglecting 

space-charge or the operating point of the quadrupoles [refer to section 4.1.1]. The 

focal length for the induction cell is then calculated with eqn. 3.9 where 
o beam

Eϕ = the 

main beam energy and
i beam

E Eϕ = − ∆ is the main beam energy minus the ear-field 

strength for a decelerating ear-field. To calculate the focal length for an accelerating 

ear-field, 
i beam

Eϕ = and
o beam

E Eϕ = − ∆ . The calculated focusing strengths and focal 

lengths for all beam currents are displayed in table 3.3, assuming the quadrupoles are 

operating at full current. 

Table 3.3 Ear-field strengths and focal lengths 

Beam 

Current 

Average 

Radius 

    

s
C (m/s) 

beam
E E− ∆  Beam Tail - 

Accelerating  

Focal Length (m) 

Beam Head - 

Decelerating  

Focal  Length (m) 

0.7 mA 1.44 mm 2.97E5 9.7987keV 740.7 748.3 

7.0 mA 3.06 mm 8.06E5 9.4485keV 94.3 97.0 

23 mA 4.70 mm 1.31E6 9.0995keV 33.8 35.4 

78 mA 8.24 mm 1.96E6 8.6313keV 13.7 14.7 

104 mA 9.40 mm 2.13E6 8.5107keV 11.4 12.3 

 

As the beam current increases, the sound speed increases and so the required focusing 

field increases and the focal length of the induction cell decreases. The induction cell 

is a weak focusing element for any beam current in comparison to the quadrupoles 

short focal length. At the shortest focal length, the induction cell is still a factor of 72 

greater then the quadrupoles. 
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Chapter 4: Energy Modulations 

 This chapter reports on the first attempts to use an induction module to 

deliberately place energy modulations on the flat top region of the space-charge 

dominated beam propagating within the UMER lattice. The purpose of the 

experiment is to verify that an initial energy modulation converts into a density 

modulation as predicted by the cold fluid model. The conversion of energy 

modulations to density modulations is analogous to the conversion of density 

modulations into energy modulations [4]. In section 4.1 the experimental setup is 

described, In section 4.2, the results of the initial perturbation experiment are 

compared to the one-dimensional cold fluid model.  

4.1 Experimental Procedures 

 In this section, the experimental setup is described. The layout of the UMER 

ring and its parameters as well as the diagnostics used, namely the Beam Position 

Monitors (BPM) [27] and the wall-current monitor [refer to section 3.1] is reviewed 

in section 4.1.1. The timing of the experiment is outlined in section 4.1.2.   

4.1.1  Hardware and Experimental Setup 

 The schematic of the University of Maryland Electron Ring (UMER) is 

displayed in fig. 4.1.  
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Fig. 4.1 UMER optics diagram 

 

The beam is born from a dispenser cathode in a Pierce-type electron gun with an 

anode grid [28].  

Table. 4.1 UMER system parameters 

Beam Energy 10 keV 

/v cβ =  0.197 

Pulse Length 20-100 ns 

Ring Circumference 11.52 m 

Lap Time 197 ns 

Pulse Repetition Rate 15-60 Hz 

FODO Period 0.32 m 

Zero-Current Phase Advance, 0σ   76 0  

Zero-Current Betatron Tune, 0ν  7.6 

Tune Depression ≥ 0.2 

 

Induction 

Module RC4 

Wall Current 

Monitor 

3.82 m 

7.66 m 

0 m 

BPM RC5 

BPM RC6 

BPM RC9 

BPM RC11 

BPM RC12 

0.64 m 



 

 40 

 

 An aperture wheel immediately downstream of the electron gun anode is used 

to aperture the full 10 mm beam, resulting in various beam currents with the same 

initial transverse current densities.  

Table. 4.2 Aperture radius and beam current exiting the gun 

Aperture 

Radius 

Beam 

Current 

0.25 mm 0.7 mA 

0.875 mm 7.0 mA 

1.5 mm 23 mA 

2.85 mm 78 mA 

Full Beam 104 mA 

 

The 1.4 m injection/matching section has a solenoid and six quadrupoles after 

the electron gun. The injected beam current is measured using a Bergoz FCT-082-

20:1 fast-current transformer located in the injection line after the second quadrupole 

[29].  

Once the beam is injected into the ring, the quadrupole focusing lattice 

contains the beam transversely. Table 4.3 shows the calculated average radius for 

each beam current with the quadrupoles operating at their nominal operating current 

of 2.21 A and at 83% of the nominal operating current. 

Table. 4.3 Average calculated radius in ring [30] 

Beam 

Current 
ε ε ε ε (µµµµm) 

 un-normalized 

Average Beam 

Radius @ 100%    
Average Beam 

Radius @ 83%    

0.7 mA 7.6 1.44 mm 1.64 mm 

7.0 mA 25.5 3.06 mm 3.58 mm 

23 mA 39.0 4.70 mm 5.66 mm 

78 mA 86.6 8.24 mm 10.06 mm 

104 mA 97.3 9.40 mm 11.51 mm 
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With a lattice periodicity S equal to 0.32 m and a zero-current phase advance 0σ of 

76 0 , the betatron oscillation wavelength 0λ is equal to 1.51 m using 0

0

2 Sπ
λ

σ
=  with no 

space-charge [5].  

When we have space-charge, the betatron wavelength increases to λ and is 

defined by eqn. 4.1, 

2 2 S

k

π π
λ

σ
= =      (4.1) 

where k is the wave number andσ is the phase advance with space-charge. To 

calculate the phase advance with space-charge, we can use the smooth approximation,  

( )2

0 1 u uσ σ= + −       (4.2)   

where u is a parameter defined as 
02

KS
u

σ ε
= [5]. The variable K is equal to the 

generalized perveance andε is the un-normalized emittance.  

( )
3

0

2I
K

I βγ
=       (4.3) 

Here the characteristic current 0I  is equal to 17 kA for electrons, I  is the beam 

current, β  is the ratio of the beam velocity to the speed of light and γ  is the Lorentz 

factor. For the 23 mA beam, the wavelength with space-charge is 3.55 m, where the 

phase advance with space-charge is 32.4 0  assuming the quadrupoles are operating at 

100% of their normal operating current.  
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To calculate the average radius R  shown in table 4.3, for a periodic focusing 

channel with space-charge we can use eqn. 4.4, again using the smooth 

approximation [5]. 

 2

0 1R R u u= + +      (4.4) 

0R  is the average radius without space-charge and u is the same parameter as defined 

earlier.  

The induction module [refer to Ch. 3.2-3.3] is installed at RC4 which is 3.82 

m from the gun and the wall-current monitor is installed at RC10, 7.66 m from the 

gun. 

 The BPMs are used to monitor the beams transverse centroid position as well 

as current profiles. 

       

Mechanical Drawing       Photograph 

Fig. 4.2 BPM and phosphor screen 

 

A cube containing a mirror and phosphor screen is mounted underneath the BPM in 

order to perform first-turn transverse measurements. When the BPM is inserted into 

the beam path, a charge is induced on one of the electrodes equal to eqn. 4.5 [31, 32]. 

2
o

L
Q I

vπ

Φ
=      (4.5) 

Phosphor 

Screen 

Cube 

BPM 
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0

ln

L
C

b

a

εΦ
=

 
 
 

     (4.6) 

 
Fig. 4.3 Electrode schematic [31] 

 

In the electrode schematic, the capacitance between the electrode and beam pipe is 

given by eqn. 4.6. Here a is the radius of the electrode and b is the radius of the beam 

pipe. The length of the electrode out of the page (z-axis) is given by L , the angular 

segment of each electrode is given by Φ , relative permittivity in vacuum is 0ε , and 

beam current is I . The distance between adjacent BPMs in the ring is 0.64 m from 

center to center, therefore the BPM in RC5 is 4.46 m away from the gun.  

The high voltage modulator is located right next to the cell itself along with a 

digital delay generator for TTL level signals. An Agilent oscilloscope is used for 

digitizing the voltage waveforms sent to the cell and the reference timing information 

from the BPM at RC3. A Tektronix oscilloscope is used to digitize the voltage output 

from the wall current monitor and the BPMs in the experiment.  
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Fig. 4.4 Signal and TTL connection diagram 

 

 The purpose of the Stanford Generator is to branch off the single pulse 

coming from the master pulse generator to both of the HTS switches individually. 

This allows the ability to adjust the time between the positive and negative pulses 

applied to the induction cell. If both pulses are set with a given width between each 

other, then the master pulse generator can be used to adjust the phase delay between 

the time at which the modulator is pulsed and where the beam is located in the ring at 

a given time. 

4.1.2  Timing 

Timing is important during the experiment because the only measure of the 

beams location prior to the induction cell is the BPM in RC3. The amount of time it 

takes for the 10 keV beam to propagate from RC3 to the induction cell is 10.94 nsec.  

T B L R 

DG535 
Stanford 

digital delay 
generator 

 

MSO6102A 
Agilent 

Oscilloscope 

 

DPO7254 
Tektronix 

Oscilloscope 

 

To master 
pulse 

generator 
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Fig. 4.5 Simple timing diagram 

 

 The timing diagram displays the time where the beam should be located from 

chamber to chamber. Either the positive or negative ear-field could be placed in the 

middle of the beam by adjusting the phase delay of the master pulse generator, though 

the diagram is shown with the negative ear-field placed in the middle of the beam. 

Both pulses must be always on to reset the ferrite continuously as discussed in section 

3.3. 

4.2 Experimental Data 

 In this section, we present results of the experiment and compare to the one-

dimensional cold-fluid simulation so that we can understand what is happening to the 

perturbation. Initially in section 4.2.1, we apply a perturbation with the induction cell 

on the 23 mA beam to understand how the perturbation is evolving from an initial 

energy perturbation to a density modulation with the use of the one-dimensional fluid 

model. In section 4.2.2, the perturbation experiment will be repeated but this time 

Negative Perturbation 
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allow the beam and waves to propagate for over 60 m so that the waves can fully 

separate. From this we can compare the experimentally measured sound speed with 

the corresponding theoretical value. We also report on the steepening of the waves 

due to the acceleration/deceleration of the electrons in the tip of the wave itself. 

4.2.1  Initial energy perturbation experiment 

 The waveform applied to the induction cell, that is used to perturb the beam 

has a FWHM of 8.8 nsec. 

 
Fig. 4.6 Normalized negative perturbation  

 

 The magnitude of the perturbation applied to the 23 mA beam was 300 V. The 

voltage induced on the BPM plates was then captured using an oscilloscope, from 

BPMs RC5 to RC13. The quadrupoles in the ring were powered at 100% of their 

normal operating current, which is a factor for the beam size and the theoretical 

calculations of sound speed of the 1-D code. 

 

FWHM 8.8 nsec 
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Fig. 4.7 Results of negative 300 V perturbation experiment and 1-D code  

 

 In Fig 4.7, the blue curves in the mountain range plot are the normalized 

integrated signals from the BPMs and the red curve is the simulation of the space-

charge waves from the one-dimensional fluid code. The red curves do not represent 

the beam ends seen in the experimental results since the 1-D space-charge wave 

model ignores the eroding beam ends. In this simulation, the ratio of current 

perturbation to beam current,η , was equal to zero. The ratio of the velocity 

perturbation to the velocity of the beam,δ , was equal to 0.173 assuming the average 

beam size in the ring was 4.53 mm and the actual measured beam current was 20.72 

mA. 

As the beam and the perturbation continue on from chamber to chamber, the 

difference in peak-to-peak current of the perturbation increases. This increase arises 

from the summation of the overlapping fast and slow waves. If two Gaussian pulses 

Fast wave Slow wave 

RC = 13 

 

RC = 12 

RC = 11 

RC = 9 

 

RC = 7 

 

RC = 6 

RC = 5 
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with opposite polarity are directly on top of each other, there sum is zero. Once these 

pulses begin separating, the one pulse begins to move in the forward direction and the 

other in the backward direction and there sum is non-zero, (see Fig. 4.8). Once the 

pulses had fully separated, the peak-to-peak amplitude of the resulting sum is equal to 

the sum of the fast wave magnitude and the slow wave magnitude.   

 
Fig. 4.8 Difference of Gaussians 

 

A difficulty arises in measuring the time separation (∆t) of the peaks during the 

increase in the wave amplitude, until each of the waves has fully separated and the 

amplitude is at its peak. This will impact the experimentally measured
s

C as described 

later in section 4.2.2. The simulation results for this particular experiment agree well 

with the experimental results. 

 The perturbation experiment and simulation was repeated with a perturbation 

of opposite polarity.  

t∆  

Fast wave 
Slow wave 
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Fig. 4.9 Results of positive 300 V perturbation experiment and 1-D code  

 

With the negative perturbation experiment as well as the positive, the energy 

perturbation appears as a current modulation by RC5 and the amplitude of the pulse 

continued to grow because of the wave separation, however, with a positive 

perturbation, the wave polarities flip in current space. For the simulation of this 

experiment, the ratio of the velocity perturbation to the sound speed for this 

experiment was equal to 0.173 and the average beam size as well as beam current and 

the value ofη was the same as in the previous experiment. 

 A comparison of Figs. 4.7 and 4.9 shows that in the case of the positive 

perturbation, the simulation does not agree as well with the experiment as in the case 

the negative perturbation experiment. The possible reason for this may have to do 

with scraping of the fast wave against the beam pipe, which may be similar to what 

was exhibited in reference [33] by Kai Tian.  

Slow wave 
Fast wave 

RC = 13 

 

RC = 12 

RC = 11 

RC = 9 

 

RC = 7 

 

RC = 6 

RC = 5 
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The experimental widths of both the fast and slow waves are very close to the cold-

fluid simulation but the amplitude of the fast wave does not agree as well as the slow 

wave with the cold-fluid simulation results. Since there is more charge in the region 

of the fast wave, the beam size will grow. Coupled with this is the fact that the waves 

carry a velocity modulation with them that is different from the main beam energy. 

The dispersion function associated with the lattice elements will shift the centroid of 

the perturbation from the main beam. So if the main beam is closer to one side of the 

pipe then the other within the induction cell, this will result in a polarity dependent 

perturbation loss mechanism. Scraping against the beam pipe resulting in a loss of 

current within the fast wave for a positive perturbation as seen in figure 4.9 but for 

negative perturbations, there will be no scraping of the slow wave as seen in figure 

4.7.  

4.2.2 Energy perturbation experiment over a long path 

 Using the ability of UMER to transport current over long distances, we can 

examine the waves propagate on the main beam from turn to turn while 

experimentally measuring the sound speed and comparing that to the theoretical value 

defined in section 2.1 [eqn. 2.3].  

We can calculate the speed of the wave in the beam by measuring the time 

separation of the peaks (∆t) after traveling a distance ∆z from the point of application 

of the perturbation: 

2 2

0

2
s s

z
v C C

t

∆
− =

∆
     (4.7) 

solving the quadratic equation 4.7 for 
s

C , we obtain the sound speed.  
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During this experiment, a negative 50 V energy perturbation was placed on 

the flat-top region of the 7 mA beam. The perturbation converted into a current 

modulation and back into an energy modulation and continues to oscillate back and 

forth eventually splitting into fast and slow waves. The quadrupoles for these 

experiments are operating at 83% of their nominal value. Fig 4.10 was created by 

taking the current profile from the wall current monitor at subsequent laps of the 

beam, every 197 nsec, and then plotting them vertically with an offset. The 0
th

 turn 

represents the initial lap before the beam interacts with the same lattice elements 

again. The head and tail spikes in fig. 4.10 is a result of noise in the electronic pulse 

sent to the UMER gun. The gun is similar to a triode vacuum tube or a MOSFET and 

can be biased to operate in the saturation regime or the linear amplification regime. 

Any noise in the pulse delivered between the grid-cathode would not be amplified as 

much as if it were biased to operate in the linear amplification regime. Since the gun 

is normally biased to operate in the saturation regime, the spikes are not severe. 
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Fig. 4.10 Total current measurement at RC10 for the 7 mA beam  

and negative 50 V perturbation 

The δ for this perturbation is 0.0707δ = . 

Table 4.4 Measured versus theoretical
S

C values for an injected 7 mA 

beam and negative 50 V perturbation 

Turn Experimental-
S

C (m/s)  Theoretical-
S

C (m/s) Beam Current (mA) 

0  2.60E6 (+/-34.5%) 7.67E5 6.13 

1  9.00E5 (+/-25.1%) 7.66E5 6.10 

2     8.83E5 (+/-14.4%) 7.52E5 5.85 

3   8.47E5 (+/-10.8%) 7.20E5 5.31 

4     8.24E5 (+/-8.5%) 7.10E5 5.15 

5 8.04E5 (+/-7.2%) 6.85E5 4.76 

 

In this and the following experiments, the waves do not clearly separate 

during the 0
th

 and 1
st
 turn. This can be seen in fig. 4.10 by the increase in the wave 

amplitudes from turn 0 to turn 1 as was explained in section 4.2.1. During this 

particular experiment, there was a 22.3% loss in beam current by the 5
th

 turn which 

changed the theoretical value of the sound speed by 11%. If we compare the 

experimental data to the theory, starting from turn 2 to turn 5 and excluding turn 0 

Spikes 

Turn 3 

Turn 5 

Turn 0 

Turn 1 

Turn 2 

Turn 4 

Slow wave 
Fast wave 
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and turn 1, there is at most a 15% disagreement with the theoretical calculations. The 

percent error involved in the experimental measurement is in the placement of the 

cursor on the curve to determine the ∆t. This is displayed in table 4.4 as the 

percentage of the experimental sound speed. 

This same experiment was repeated again but the perturbations level was 

increased to -100 V. 

 

 
Fig. 4.11 Total current measurement at RC10 for the 7 mA beam 

and negative 100 V perturbation 

 

With the increased perturbation level, where δ for this particular perturbation was 

0.1δ = , the measured wave speeds are still within 9.3% of the theoretical values, 

excluding the initial 0
th

 and 1
st
 measured value because of wave separation. 

Increasing the level of the perturbation also helps to reduce the error within the 

measurement, by making the perturbation more noticeable. In figure 4.11, there is 

Turn 5 

Turn 4 

Turn 3 

Turn 2 

Turn 1 

Turn 0 

Wave 

Steepening 
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evidence of wave steepening, [refer to section 4.2.3 for wave steepening]. This 

sharpens the point of the parabolic pulse which helps to reduce the uncertainty in 

where the cursor should be placed to measure the ∆t. The agreement between the 

experiment and theory for turns 2-4, is within 5.2%. The difference between the 

experimental measurement and theory, from turns 2-4 and turn 5 is due to another 

11% loss in beam current between turns 4 to 5.  This would have affected the beam 

size and as a result, the g-factor. Table 4.6 displays the measured and theoretical 

sound speeds for this experiment.  

Table 4.5 Measured versus theoretical
S

C values for an injected 7 mA beam and 

negative 100 V perturbation 

Turn Experimental-
S

C (m/s)  Theoretical-
S

C (m/s) Beam Current (mA) 

0 2.66E6 (+/-34.4%) 7.62E5 6.03 

1 8.45E5 (+/-27.6%) 7.60E5 6.00 

2 7.85E5 (+/-16.7%) 7.51E5 5.84 

3 7.83E5 (+/-5.9%) 7.42E5 5.68 

4 7.78E5 (+/-4.5%) 7.39E5 5.63 

5 7.73E5 (+/-3.6%) 7.01E5 5.01 

 

 

This same experiment and calculations were performed again on the same 7 

mA beam current but the polarity of the perturbation was reversed.  
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Fig. 4.12 Total current measurement at RC10 for the 7 mA beam  

and positive 100 V perturbation 

 

In this case, the waves separate and travel along the beam as before but the wave 

steepening is in the opposite direction, [refer to section 4.2.3 for wave steepening], 

where δ for this particular perturbation was 0.1δ = . The experimentally measured 

sound speed agrees with the theoretical value to within 4.8%; excluding the 0
th

 and 1
st
 

turn in both cases.  

Table 4.6 Measured versus theoretical
S

C values for an injected 7 mA  

beam and positive 100 V perturbation 

Turn Experimental-
S

C (m/s)  Theoretical-
S

C (m/s) Beam Current (mA) 

0 2.78E6 (+/-33.0%) 7.67E5 6.13 

1 8.47E5 (+/-27.2%) 7.57E5 5.94 

2 7.65E5 (+/-17.2%) 7.54E5 5.90 

3 7.65E5 (+/-6.0%) 7.33E5 5.54 

4 7.54E5 (+/-4.8%) 7.24E5 5.38 

5 7.41E5 (+/-3.8%) 7.05E5 5.07 

 

There is still a dramatic loss in beam current, but this time with a positive 

perturbation, the loss spreads out over turns 3 to 5. This is probably due to the same 

Turn 5 

Turn 4 

Turn 3 

Turn 2 

Turn 1 

Turn 0 
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loss mechanism as in section 4.2.1. The fast wave continues to scrap against the beam 

pipe as it propagates in the lattice. This results in a gradual loss of charge in the beam 

as the perturbation and beam propagates. 

4.2.3 Wave Steepening 

The steepening of the waves appeared in fig. 4.11 and 4.12 for the 

experiments with perturbation strengths of 100 V. The direction in which both the fast 

and slow waves steepened was dependent on the initial perturbation polarity. 

 
 Fig. 4.13 Wave steepening in the slow wave 

 

Figure 4.13 is an expanded view of the slow wave in fig. 4.11. The slope continues to 

decrease from -4.3E-4 A/nsec for turn 3 to -1.16E-3 A/nsec for turn 5. The fast wave 

also displays the same wave steepening effect but with opposite polarity. 

If we observe the wave separation in fig. 4.11, each wave has a negative 

velocity profile associated with it as depicted in figure 4.14a. 

Turn 5 

Turn 4 

Turn 3 

Turn 2 
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(a)                (b) 

 Fig. 4.14 Negative and positive wave’s scenario 

When we have wave steepening for the negative wave scenario, the electrons at the 

bottom of both waves have a lower velocity magnitude with respect to the main 

beam. So each wave trough will lag the main beam and steepen to the right. For the 

positive wave scenario, we have just the opposite case. Each peak has a larger 

velocity magnitude with respect to the main beam, so each wave peak will get ahead 

of the main beam and steepen towards the left.    
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Chapter 5:  Conclusion 

 The purpose of this thesis was to design, simulate and test a device to place 

longitudinal electric fields as energy (velocity) perturbations on the beam, as well as 

use a modified version of the device to measure the beam current.  

The one-dimensional cold fluid model was reviewed briefly, extracting out 

that space-charge waves with pure initial velocity perturbations can result in waves 

both in line-charge density space as well as velocity space that are completely 

opposite from the case of pure current perturbations.  

After that, the induction cell was designed and simulated with Pspice. Since 

the BEHLKE switch specifications from the manufacture were not representative of 

the actual circuit, through trial and error, other specifications were found that matched 

bench tests. Then the induction cell was attached to the pulser with RG-58 and finally 

bench tested and compared to PSpice simulation results of the same experiment. The 

ear-fields or gaussians with FWHMs of 8.8 nsec are well within the limitations of the 

ferrite cores in terms of ferrite saturation. The focal length of the induction cell was 

explored and compared with the shorter focal length UMER quadrupoles in order to a 

get a relative idea of the amount of focusing that an induction cell is capable of during 

normal operating potentials. Comparatively, the induction cell is a weak focusing 

element. 

Finally we used the cell to place velocity perturbations, so to study space-

charge waves at short distance from BPM to BPM for half the ring, comparing that to 

1-D fluid simulations, getting fairly good agreement with a negative polarity 
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perturbation. With the opposite perturbation polarity, we get good agreement with the 

slow wave, but the fast wave appears to loose charge, which is most likely due to 

scraping against the beam pipe. Long distance studies were also explored, measuring 

sound speeds for the 7 mA beam over long distances. In some of the data, we obtain 

4.8% disagreement between theoretical and experimental sound speed measurements.      

 

 

Other topics for research: 

 The first topic that should be further investigated is the perturbations 

themselves through time-sliced imaging. We can acquire knowledge of beam size and 

density within the waves over the first turn to help in reducing the discrepancies in 

sound speed from theory to experiment. When an energy analyzer is installed in the 

ring, we can perform 1
st
 turn measurements of the waves in velocity space to confirm 

1-D theory. 

 The Dispersion function associated with the lattice elements can effect the 

perturbation and its resulting waves since they have an energy spread associated with 

them. By including dispersion into the transfer matrices, we could use space-charge 

waves as a probe.  

 These experiments should be simulated in WARP to study the wave 

steepening and its dependence on the amplitude of the velocity functions in velocity 

space.  
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