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 Acetonitrile (CH3CN) is a small, aprotic molecule. The apparent simplicity of 

this species belies great complexity in its organization and dynamics in the liquid state. 

Additionally, at silica surfaces, liquid acetonitrile takes on a lipid-bilayer-like structure 

that has great practical importance in batteries, chromatography, and heterogeneous 

catalysis. In this thesis, I use molecular simulations and neutron scattering to explore 

the structure and dynamics of liquid acetonitrile in the bulk and at silica interfaces. 

First, using angularly resolved radial distribution functions, I identify a 

microscopic structure in bulk acetonitrile in which most liquid molecules form 

antiparallel and/or head-to-tail dimers. In contrast to the traditional view of acetonitrile, 

antiparallel dimers are shown to be octupole-paired, as opposed to dipole-paired. 

Further analysis reveals that head-to-tail dimers are the dominant motif and live longer 



  

than antiparallel dimers. I also use angularly resolved radial distribution functions to 

show that this propensity to form head-to-dimers has signatures in the observed 

crystalline polymorphs, and I connect my results using molecular simulation to 

neutron-scattering data that I also collected. 

Second, I present findings on the structure and transport properties of 

acetonitrile at the liquid/silica interface. I use molecular simulations to show that the 

bilayer is exceptionally robust with large changes in temperature. The effects of 

Poiseuille hydrodynamic flow on the surface bilayer suggest where the flow boundary 

may lie, because there is a departure in the vicinity of the walls from the standard 

parabolic fit describing Poiseuille flow. These results will help guide ion-separation 

and ion-current experiments using acetonitrile as a solvent. 

In a separate set of chapters, I present a data analysis protocol for the 

characterization of absorptive linearities and nonlinearities measured using 2-beam 

action spectroscopy. This nonlinear-optical technique, along with the protocol 

described in this thesis, enables the simultaneous determination of the effective order(s) 

of absorption. This method is important in the study of many nonlinear-optical 

phenomena, including multiphoton absorption polymerization. 
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second sublayer are given for (D) f = 0.0 pN, (E) f = 0.5 pN, and (F) f = 1.0 pN. 
 
Figure 6.14 The same polar histograms as in Figure 6.11, except normalized to the f = 
0.0 pN results. 
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Chapter 1: Introduction 
 

1.1 Background 

1.1.1. Small-Molecule Liquids 

Most laboratory chemistry occurs in solution, and liquid water is the universal 

medium for all known life. Despite the importance of liquids, this state of matter is still 

poorly understood. Textbooks on physical chemistry1-3 cover subjects such as solution 

chemistry and the thermodynamics of mixtures, but rarely introduce liquids as a 

fundamental topic. Most textbooks do not mention, with the possible exception of 

water, the structure or other essential features known to exist in all liquids. This void 

in the didactic treatment of liquids might reflect the state of research; such a view of 

liquids is summarized in the 1958 edition of the textbook by Landau and Lifshitz on 

statistical physics:4 

 

Unlike solids and gases, liquids do not allow a general calculation of 
their thermodynamic quantities or even their temperature dependence. 
The reason for this is the presence of strong interactions between the 
molecules of the liquid without having at the same time the smallness 
of vibrations which makes the thermal motion of solids so simple. The 
high intensity of the molecular interaction makes it important to know, 
when calculating thermodynamic quantities, the actual law of 
interaction, which varies for different liquids. The only thing which can 
be done in general form is the study of the properties of liquids near 
absolute zero. 

 

From the point of view of physical chemistry, one of the beguiling aspects of liquids is 

that they are strongly interacting, disordered, many-body systems, as the above quote 

indicates. The comparison to gases and solids is instructive. In contrast to gases, 
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intermolecular interactions are prominent in liquids, and collisions between molecules 

in a liquid are not so sharp or well-defined. In contrast to solids, liquids exhibit 

complicated dynamics: they flow, and collisions are common. These features, which 

make liquids interesting, also make liquids difficult to understand. It is telling, 

however, that the statement by Landau and Lifshitz cannot be found in more recent 

editions of their textbook [e.g., Ref. 5]. The subsequent advent of neutron scattering 

experiments, nonlinear optical spectroscopies, and molecular simulation, along with 

parallel developments in theory, have all improved the understanding of liquids. 

One area of intense research in liquids is the molecular organization, 

intermolecular interactions, and dynamics that occur in liquids confined in single-digit 

nanopores6 or, in a simpler realization, at a liquid/solid interface. By combining 

molecular simulation and experiment, we can develop a better understanding of these 

systems. In addition to being fundamentally interesting to study, these systems are of 

great practical importance in separations, catalysis, nanofluidics, waste remediation, 

and energy storage, among other applications. 

Here we study liquid acetonitrile, an interesting model system. Acetonitrile 

(CH3CN) is a common organic solvent that also is important as a representative strong 

dipolar fluid and the simplest alkyl cyanide. A single acetonitrile molecule (Figure 1.1) 

has a large dipole moment of 3.92 D.7 The molecule is composed of dipolar (−C≡N) 

and weakly dipolar (−CH3) moieties. The molecule has high symmetry and a linear 

core. Its relatively simple molecular structure belies great complexity in the liquid state. 

For many decades, acetonitrile has been known experimentally8-11 to form antiparallel 

dimers in the bulk liquid (i.e., in the pure liquid without any interfaces). The traditional 
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view is that neighboring molecules have a tendency to form so-called dipole-pairs with 

respect to the antiparallel alignment of neighboring cyano groups. Molecular 

simulations have shown the additional presence of head-to-tail dimers12 that 

presumably form due to electrostatic attractions. Together, these results suggest a 

complicated intermolecular structure. 

 

Figure 1.1 Structure of the acetonitrile molecule. 

Molecular simulation, in which classical (Newtonian) physics is used to 

simulate the behavior of a system of interacting particles, gives an atomic, time-

resolved picture of the organization of a liquid. This picture can help us to glean new 

information about the structure and dynamics of liquid acetonitrile. Even the liquid 

structure for a molecule that is as well-studied and simple as acetonitrile is not fully 

known, due in part to the irretrievable loss of angular information associated with 

diffraction experiments on liquids. How a dense liquid fills three-dimensional space is 

not a simple problem; in mathematical physics, such packing problems date back 

centuries to Kepler, and remain unsolved.13 Because representing the structure of a 

molecular liquid is not trivial, there remain important questions about how the structure 

of liquid acetonitrile affects its dynamics. In Chapter 5, I describe a study of bulk liquid 

acetonitrile that combines both molecular simulation and neutron scattering. 

The behavior of liquid acetonitrile at interfaces is considerably different than in 

the bulk liquid. Hard interfaces have so far been studied because they are relatively 
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simple. At hydroxylated silica interfaces, acetonitrile is known to adopt an 

interdigitated, bilayer-like organization that resembles supported biological structures 

such as phospholipid bilayers.14 Near the silica, the cyano groups accept hydrogen 

bonds from the surface silanol (−SiOH) groups to form a sublayer with the acetonitrile 

molecules aligning perpendicularly to the surface. A second sublayer of acetonitrile 

molecules has its methyl groups directed toward the methyl groups of the first sublayer. 

Such tail-to-tail interactions are not common in the bulk liquid. This second sublayer 

has a broader orientational distribution than the first, and the two sublayers are 

interdigitated with respect to one another. 

There have been many experiments that agree with this bilayer picture. The first 

study on this topic was an NMR study on liquid acetonitrile confined in nanoporous 

sol-gel glasses, which found that tighter confinement corresponds to slower overall 

dynamics.15 These data were interpreted using a two-state model that associated a 

surface population with fast spin-lattice relaxational dynamics, and a bulk-like 

population with a slower spin-lattice relaxation time corresponding to that of the bulk 

liquid.15 In agreement with the NMR study, experiments using optical Kerr effect 

(OKE) spectroscopy on acetonitrile confined in sol-gels found that collective 

orientational times also depend on the pore size.16-18 The confined data were fit to the 

sum of three exponentials, with a short decay time associated with the reorientation of 

the bulk-like component, a long decay time associated with the reorientation of the 

surface component, and an intermediate decay time associated with the exchange of 

molecules between the two populations.16,17 Arrhenius plots for the NMR and OKE 

surface relaxation times give a larger value of the static orientational correlation 
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parameter 𝑔# for the confined liquid than for the bulk liquid, suggesting that there is 

significantly increased parallel ordering in the pore surfaces.16 Modifying the surface 

chemistry gives further evidence in support of the bilayer structure. In rendering the 

pore surfaces hydrophobic through silanization, the OKE decays become 

biexponential,16 in agreement with other OKE studies of confined liquids without 

specific surface interactions.18 These data suggest that the exchangeable population 

consists of molecules that are interdigitated among the nonexchangeable population. 

The latter population tends to be more ordered along the surface normal and accepts 

hydrogen bonds from the silanol groups of the silica. 

These experimental findings have been verified extensively by molecular 

simulations.19-23 Simulations of acetonitrile at the liquid/silica interface reveal an 

interdigitated surface structure.21,22 The structure resembles a supported lipid bilayer 

rather than being driven by dipole-pairing. There is no sign of this structuring in the 

bulk liquid, and signs of the structure at flat surfaces propagate for at least four layers 

(~20 Å) into the bulk-like liquid.21,22 A similar structure has been observed in 

simulations of acetonitrile confined in cylindrical pores19,20 and slit-geometries.23 

These simulations confirm the existence of two populations: a nonexchangeable, 

surface population and an exchangeable, bulk-like population.20 Molecular simulations 

can also help answer experimentally-motivated questions about the stability of the 

bilayer with respect to temperature and the transport properties of confined acetonitrile. 

In Chapter 6, I discuss my results of molecular simulations showing the 

persistence of the bilayer with temperature. This finding suggests that temperature can 

be used as a variable for ion-selective separations involving acetonitrile. I also present 
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our preliminary results to study Poiseuille hydrodynamic flow in molecular simulations 

of confined acetonitrile. I discuss the implications for future ion current experiments 

on these systems before concluding with proposals for future research. 

 

1.1.2. Nonlinear Optical Spectroscopy 

Nonlinear optics refers to the nonlinear dependence of the polarization density 

on the electric field of light. Some nonlinear optical techniques can give valuable 

insights into liquid dynamics, but the nonlinear optical methods presented in Chapters 

3 and 4 involve multiphoton absorption (MPA). MPA is a nonlinear-optical effect that 

has been studied extensively over the years. MPA occurs when an atomic or molecular 

system is excited by the simultaneous absorption of two or more photons. 

Characterizing MPA is especially important for many nonlinear systems, including 

those materials that are used in fluorescence imaging24-26 and micro- and 

nanofabrication,27 among other technologies. Many experimental techniques have been 

developed to characterize such nonlinear processes by determining their order and 

magnitude.28 Most research has focused on characterizing two-photon absorption, as it 

is not only the conceptually simplest case of MPA, but also is a suitable means to excite 

many organic materials that absorb in the ultraviolet region of the electromagnetic 

spectrum. Nonlinear absorption can, however, involve more than two photons,29-31 and 

when there are excited-state absorption processes, the order can be considered to be 

effective rather than truly instantaneous.32  

There are both direct and indirect methods for determining the effective order(s) 

of absorption in a material.28 Direct methods measure the intensity of light that is 
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absorbed by the material. Because these methods require high laser irradiance to induce 

a measurable nonlinear signal, they can cause additional phenomena to occur that 

complicate the analysis. In contrast, indirect methods use a secondary observable that 

depends on the MPA cross section. In Chapters 3 and 4, I discuss the development of 

two-beam action spectroscopies, a class of indirect methods that rely on using two 

interleaved, ultrafast pulse trains to generate an observable in the irradiated material by 

linear and/or nonlinear absorption. I focus primarily on the development of a data 

analysis protocol for these spectroscopies that makes it possible to determine two 

different contributions that can contribute to the observable. 

 

1.2 Outline 

The work described in this thesis has two parts. The first is data analysis for 

two-beam action (2-BA) spectroscopies, which are a class of optical techniques for 

determining the order(s) of absorption, as described above. The second is an analysis 

of liquid acetonitrile in the bulk, at interfaces, and in slit-pore geometries to develop 

insights into the structure and dynamics of this liquid for applications such as 

separations and nanofluidics. 

The outline of this thesis is as follows: 

• Chapter 2: The principles of molecular simulation and neutron scattering used 

in this thesis are described. Basic statistical mechanics and the extraction of the 

density of states from inelastic neutron scattering data are discussed. 

• Chapter 3: 2-beam constant-amplitude photocurrent spectroscopy is used to 

study linear and nonlinear absorption by a GaAsP photodiode. A framework is 
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presented for using non-integral 2-BA exponents to determine the relative 

contributions of two absorption mechanisms of different order. The dependence 

of the ratio of the quadratic and linear contributions on the average excitation 

power is used to verify that these are the dominant orders of absorption in the 

photodiode with 800 nm excitation. 

• Chapter 4: Here we develop a theoretical comparison between conventional 

methods that determine the order(s) of absorption using logarithmic plots and 

2-BA-based techniques. We also explore how 2-BA plots arising from two 

orders of absorption deviate from a plot with a single, non-integer exponent. 

We demonstrate that these deviations can usually be used to identify the two 

orders of absorption and their relative contributions to the signal on the basis of 

measurements made at a single value of the observable. 

• Chapter 5: We examine the interplay between organization and dynamics in 

bulk liquid acetonitrile. Using angularly resolved radial distribution functions, 

𝑔(𝑟, 𝜃), derived from molecular simulations, we identify a microscopic 

structure in which most liquid molecules are associated with one or more 

neighboring molecules in octupole-paired, antiparallel and/or offset, head-to-

tail configurations. An analysis of these structural motifs reveals that head-to-

tail dimers are more prevalent and live longer than antiparallel dimers. Finally, 

using both neutron scattering techniques and molecular simulations, we study 

the dynamics in liquid acetonitrile over time scales ranging from subpicosecond 

(the vibrational density of states) to picosecond (rotational/translational 
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motions and the generalized density of states) to tens of picoseconds (self-

diffusivity in the Fickian regime). 

• Chapter 6: The temperature dependence of the acetonitrile bilayer at a flat silica 

interface is investigated using molecular simulations. The bilayer is shown to 

be stable across a wide range of temperatures. Results from nonequilibrium 

molecular dynamics simulations of confined acetonitrile are also presented, 

showing the departure from Poiseuille hydrodynamics flow for the molecules 

at the interface. 

• Chapter 7: Conclusions and future work. 
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Chapter 2: Methods 

2.1 Molecular Simulation 

Molecular simulation is an invaluable tool for understanding the behavior of 

liquids and other many-body systems for which the analytic equations of motion cannot 

be solved exactly. This technique is used to describe the structural, thermodynamic, 

and dynamic behavior of a nanoscale system from the motions of its microscopic 

constituents. This section discusses the principles of the molecular simulations used in 

this thesis in the context of the classical, equilibrium statistical mechanics underpinning 

the technique. 

In molecular simulations, a computer experiment is performed to follow 

explicitly the trajectories of a system that involves many degrees of freedom. The 

molecular models and interparticle interactions used in the simulation are designed to 

mimic the behavior of a real assembly of molecules. The validity of this technique rests 

on simulating the average properties of a large number 𝑁 of particles, which in simple 

cases ranges from a few hundred to a few thousand particles. These particles map out 

a 6𝑁-dimensional phase space that describes the dynamics of the particles in terms of 

their coordinates and momenta. Although these conjugate variables can be used to set 

up the equations of motion for the system, the goal of statistical mechanics and its 

realization in molecular simulations is to avoid doing so. In statistical mechanics, the 

central quantity of interest is the partition function, which connects the microscopic 

properties of the system at equilibrium to its thermodynamic functions. The partition 

function is used to normalize the probability that a system occupies a particular 



 

 

15 
 

microstate. Thermodynamic variables such as entropy and the free energy can then be 

expressed in terms of either the partition function or its derivatives. Different 

expressions for the partition function are given later in this section. 

Even though statistical mechanics simplifies the many-body problem, few 

problems in this field are exactly solvable. To circumvent this problem, early atomistic 

models of liquids consisted of manipulating the packing of ball bearings representing 

atoms.2 The advent of electronic computers allowed for the rapid development of 

computer simulation and concomitant advances in the study of liquids. 

All molecular simulations must start with a configuration and suitable 

interaction potential or force field. The configuration consists of the coordinates of the 

molecules or atoms in a box that is typically on the order of a few nanometers in each 

dimension. Many common force fields are derived within the Born-Oppenheimer 

approximation, where the Hamiltonian of an atomic system can be expressed as a 

function of the nuclear variables. In molecular simulations of liquids, we can ignore 

quantum effects, because the thermal de Broglie wavelength for most liquids is much 

smaller than the interatomic separation. The classical Hamiltonian ℋ for a system of 

𝑁 atoms is then a sum of the kinetic and potential energies, and can be described via 

the set of coordinates 𝒓𝒊 and momenta 𝒑𝒊 of each atom i. In other words, 

ℋ(𝒓, 𝒑) = 𝒦(𝒑) + 𝒱(𝒓) ,    (2.1) 

where we have used a condensed notation such that 

𝒓 = (𝒓%, 𝒓#, … , 𝒓&)      (2.2) 

and 

𝒑 = (𝒑%, 𝒑#, … , 𝒑&) .     (2.3) 
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The kinetic energy 𝒦 then has the form 

𝒦(𝒑) = ∑ 𝒑'#/2𝑚'
&
'(%  ,    (2.4) 

where mi is the mass of the ith atom. The potential energy 𝒱 contains all of the 

information about the interparticle interactions. 

The potential can be decomposed into terms that depend on the atomic 

coordinates:3 

𝒱(𝒓) = ∑ 𝑣%(𝒓') +' ∑ ∑ 𝑣#>𝒓' , 𝒓)? +)*'' ∑ ∑ ∑ 𝑣+(𝒓' , 𝒓) , 𝒓,,*) ))*'' +⋯ .   (2.5) 

The first term represents the effect of an external field and/or walls on the system, and 

the remaining terms represent interparticle interactions for pairs, triplets, and so on. 

Force fields are parameterized such that two-body interactions make up for the lack of 

three-body (triplet) interactions, which are rarely incorporated explicitly into molecular 

simulations. A notable exception is the use in polarizable force fields of mutually 

interacting sites to treat induction effects. Although many-body interactions that cannot 

be treated via a pairwise-additive force field are known to be important,4 an effective 

pairwise approach is easily implemented, and captures many essential features of a 

liquid. Explicit many-body interactions are computationally more expensive to 

incorporate, and so were not used here. 

The pair potential 𝑣#(𝒓' , 𝒓)) consists of a steep, short-range repulsive wall that 

is attributed to non-bonded overlap between neighboring electron clouds (Pauli 

exclusion principle) and a slowly-varying, long-range tail due to attractions between 

instantaneous multipoles (London dispersion forces). A common, effective pair 

potential used in molecular simulations that qualitatively reproduces these features is 

the Lennard-Jones 12-6 potential, given by 
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𝑣-.(𝑟) = 4𝜀[(𝜎/𝑟)%# − (𝜎/𝑟)/] ,    (2.6) 

where the parameters e and s are the well depth and site radius, respectively (Figure 

2.1). The first term in Eq. (2.6) is approximate, and characterizes the short-range 

repulsion, whereas the second term, which can be derived using perturbation theory, 

characterizes the long-range attraction. In practice, the total Lennard-Jones interaction 

potential for a system is truncated at a cutoff distance 𝑟0 due to the short-range nature 

of these interactions. Thus, Eq. (2.6) becomes 

𝐸-. = ∑ ∑ 4𝜀') G>𝜎')/𝑟')?
%# − >𝜎')/𝑟')?

/H&
)*'

&
'(% 							(𝑟 ≤ 	 𝑟0) ,      (2.7) 

where the double sum counts over all pairs. The parameters between unlike sites are 

determined using mixing rules; a popular choice is the Lorentz-Berthelot rules, which 

use the geometric mean for the well depth and the algebraic mean for the site radius, 

i.e., 𝜀') = (𝜀''𝜀)))#, 𝜎') = (𝜎'' + 𝜎)))/2. 

Molecular simulations typically use a cutoff of at least 2.5𝜎 for the Lennard-

Jones interactions because the potential decreases as 1/𝑟/ at large distances. The 

choice of cutoff distance affects computational efficiency, and extending the cutoff 

may require adjusting many other parameters of existing force fields, which is clearly 

not a desirable option. However, the attractive nature of the long-range interactions 

means that truncating them can have non-negligible effects on thermodynamic 

quantities such as the pressure. Truncating the dispersion interactions in this way is 

valid for a bulk liquid, which is homogenous and isotropic beyond the cutoff, but the 

method can produce errors in simulations of interfacial systems.5 In all simulations 

reported in this thesis, the Lennard-Jones interactions for acetonitrile are truncated at a 
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distance of 14 Å, which is consistent with the original parameterization of the force 

field.6 

 

 

Figure 2.1 Lennard-Jones potential vLJ(r) with well depth ε and site radius σ. 

 

For charged and multipolar species, the potential in Eq. (2.1) also includes 

Coulombic terms, which can be either attractive or repulsive. The electrostatic 

interaction between two sites is described by the Coulomb potential 𝐸12: 

𝐸12 =
3#3$

456%7#$
 ,     (2.8) 

where 𝑞' and 𝑞) are the charges on sites 𝑖 and 𝑗, and 𝜀8 is the permittivity of free space. 

The long-range nature of the Coulomb potential, which for charge-charge interactions 

falls off with 1/𝑟, is a problem in molecular simulations using periodic boundary 

conditions because the range of the potential is greater than half the box length. One 

solution would be to increase the size of the box to hundreds of nanometers, and 
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therefore increase the number of particles by several orders of magnitude, thereby 

decreasing the effective range of the potential. Clearly, this solution is not practical. A 

truncation of the potential at a fixed distance is also not a good idea, because the 

resulting sphere might be charged at any given time. One way of circumventing this 

problem is to use a lattice method, such as the Ewald sum,7 originally developed to 

calculate the electrostatic energy of ionic crystals, to take into account the interaction 

of a particle with all of its periodic images. 

The procedure for implementing the Ewald sum can be summarized as follows. 

To take into account periodic boundary conditions, Eq. (2.8) becomes3 

𝐸12 =
%
#
∑ 𝑞'&
'(% O %

456%
∑ ∑ 3$

9𝒓#$;𝒏-9
&
)(%𝒏 P ,   (2.9) 

where the sum over n is a vector of three integers, e.g., n = [0, 1, -1]. For a cubic box 

of length 𝐿, 𝒏𝐿 is the center of each box in the lattice. Note that the self-interaction, 

𝑖	 = 	𝑗 for 𝒏	 = 	 [0, 0, 0], is excluded. In practice, the real-space summation given in 

Eq. (2.9) is computationally infeasible; the sum is not only conditionally convergent, 

but also converges slowly. Ewald summation recasts Eq. (2.9) by splitting the Coulomb 

interaction into two parts: a short-range contribution that is calculated in real space and 

a long-range contribution that is calculated in Fourier (reciprocal) space.  Each point 

charge is surrounded by a Gaussian charge distribution 𝜌=(𝒓) = −𝑞' U
>
5
V
&
' exp(−𝛼𝒓#) 

with width [2/𝛼 and equal magnitude but opposite sign relative to the point charge. 

The effective charge for each charge site then is given by 

𝜌'(𝒓) = [𝑞'𝛿(𝒓 − 𝒓') + 𝜌=(𝒓)]? − [𝜌=(𝒓)]- ,  (2.10) 
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where 𝛿(𝒓 − 𝒓𝒊) is the Dirac delta function. The superscripts 𝑆 and 𝐿 in Eq. (2.10) 

represent the short- and long-range contributions, respectively. Poisson’s equation can 

then be solved to give the electrostatic potential as 

𝐸12 =
1

4𝜋𝜀@
__

𝑞'𝑞)
𝑟')

erfc>√𝛼𝑟')?
&

)*'

&

'(%

+	
1

2𝐿+𝜀@
_ __

𝑞'𝑞)
𝑟')

exp>𝑖𝒌 ∙ (𝒓' − 𝒓))?𝑒𝑥𝑝 h−
𝑘#

4𝛼j
&

)(%

&

'(%@A,A,(

−
𝛼

4𝜋+/#𝜀@
_𝑞'#
&

'(%

						>𝑟') <	𝑟0?	, 

(2.11) 

where erfc(𝑥) = >2/𝜋%/#? ∫ exp(−𝑡#) 𝑑𝑡C
D  is the complementary error function, and 

𝒌 is the reciprocal wave vector chosen such that exp(−𝑖𝒌 ∙ 𝒏𝐿) = 1. The cutoff wave 

vector 𝑘0 is set to 𝑘0 =
#5
-E(

, where 𝑛0 is a positive integer. The Ewald sum introduces 

errors because of the real- and reciprocal-space cutoffs. The errors are, respectively: 

𝛿𝐸F~∑ 𝑞'#q
7(
#-&

GHIJK(>7()'N
(>7()'

&
'(%     (2.12) 

𝛿𝐸O~∑ 𝑞'#q
E(
#-'

GHIJK(5E(/>-)'N
(5E(/>-)'

&
'(%  .   (2.13) 

These two cutoffs have the same accuracy (a tolerance of 1.0 ´ 10-5 is used for the 

simulations reported in this thesis). 

In molecular systems, terms representing chemical bonds also contribute to the 

interatomic potential energy in Eq. (2.1). Accordingly, the intramolecular energy 
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𝐸P8EQ1Q is the sum of bond stretching 𝐸RS71S0T, bond angle bending 𝐸P1EQ, and torsional 

rotation 𝐸Q'T1Q7U2: 

𝐸P8EQ1Q = 𝐸RS71S0T + 𝐸P1EQ + 𝐸Q'T1Q7U2 .   (2.14) 

Harmonic contributions are often used for the first two terms in Eq. (2.14), such that 

𝐸RS71S0T =
%
#
𝑘2(𝑙 − 𝑙@)#    (2.15) 

and 

𝐸P1EQ =
%
#
𝑘V(𝜃 − 𝜃@)# ,   (2.16) 

where 𝑙 is the bond length,  𝑙@ is the equilibrium bond length, 𝜃 is the bond angle, 𝜃@ is 

the equilibrium angle, and 𝑘2 and 𝑘V are the force constants for stretches and bends, 

respectively. The interaction sites are often centered on the experimental positions of 

the nuclei, which gives a basic representation of molecular shape, although fictitious 

sites can also be incorporated into the model to improve the electrostatic distribution. 

There are two major classes of molecular simulations, Monte Carlo and 

molecular dynamics. Both methods are based on the above equations. In Monte Carlo 

simulations, a sequence of configurations is generated by random displacements of the 

particles. The acceptance probability of a trial configuration is determined according 

to a specific probability distribution, and averages of quantities are obtained over the 

set of configurations. In molecular dynamics simulations, we typically assume a 

classical dynamical model for the particles, and the trajectories are obtained by 

numerically integrating Newton’s equations of motion. This latter technique gives 

information about the time evolution of the system. Here, we discuss only molecular 

dynamics simulations, which are used far more extensively in this thesis. 
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Conventional molecular dynamics simulations involve numerically 

approximating solutions to the classical (Newtonian) equations of motion for a many-

body system. The equations of motion for the time-evolution of the system can be 

constructed from the potential energy 𝒱 in Eq. (2.1) by calculating the forces 𝒇' acting 

on all of the atoms: 

𝑚'𝒓̈' = 𝒇' ,     (2.17) 

where 

𝒇' = −∇𝒱      (2.18) 

is the force on each atom. 

In a conventional molecular dynamics simulation, the system is assigned a set 

of initial coordinates and a set of velocities drawn from a Maxwell-Boltzmann 

distribution for the given temperature. The temperature 𝑇 is determined from the 

ensemble average of the kinetic energy:3 

+
#
𝑁𝑘W𝑇 = 〈%

#
∑ 𝑚'𝒗'#&
' 〉 ,    (2.19) 

where 𝑘W is the Boltzmann constant. The pressure can then be determined from the 

virial theorem:3 

𝑃 = 𝜌𝑘W𝑇 +
%
+X
〈∑ ∑ 𝒇') ∙ 𝒓')&

)*'
&
'(% 〉 ,   (2.20) 

where 𝜌	= 	𝑁/𝑉 is the number density at volume 𝑉. The factor of 3 in both Eqs. (2.19) 

and (2.20) indicates that the system under study is three-dimensional. Molecular 

dynamics simulations are typically performed in the NPT or NVT ensemble, because 

most experiments are performed at constant temperature and/or pressure. To perform 

such simulations, a thermostat and/or barostat must be used. In this thesis, the Nosé-

Hoover thermostat and barostat are used exclusively. An external degree of freedom is 
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introduced to correct the equation of motion (Eq. (2.17)) with a heat bath (in the case 

of the Nosé-Hoover thermostat) or a pressure bath (in the case of the barostat). The 

effective mass of the bath can be related to the relaxation constant for the thermostat or 

barostat. A large value for the effective mass, and hence for the relaxation constant, 

leads to weak coupling with the molecular system. The artificial degree of freedom 

effectively stretches the timescale of the extended system, so that it is usually necessary 

to equilibrate at the temperature and/or pressure of interest before doing the analysis in 

the NVE ensemble. 

Typically, 1-fs time steps are used to integrate the equations of motion (Eq. 

(2.17)) because this step is ~10× shorter than the timescale of the fastest dynamic 

process, which is typically molecular vibrations involving hydrogen atoms. 

Configurations should be saved on the shortest timescale possible for which the 

correlation is below some predetermined threshold; this correlation can be determined 

from the autocorrelation 𝐴Y(𝜏) for the quantity 𝑄S = 𝑄(𝑡) of interest: 

𝐴Y(𝜏) =
〈Y)Y)*+〉K〈Y)〉'

〈Y)'〉K〈Y)〉'
 .   (2.21) 

This function should approach 0 as 𝜏 → ∞, with 𝐴Y(𝜏) → exp	(−𝜏/Θ) for an 

autocorrelation time Θ. We can also define an integrated autocorrelation time: 

𝜏\ ≡ ∫ 𝐴Y(𝜏)𝑑𝑡
C
@  .     (2.22) 

For a purely exponential autocorrelation function, 𝜏\ = Θ. For a simulation of length 

𝑡S8S ≫ 𝜏\, the variance of the average value 𝑄� of the observable can be written as: 

𝜎Y]
# ≈

#^,
'

S)-)' G∫ 𝜏\𝑑𝑡
S)-)
@ H ,    (2.23) 

which simplifies to 
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𝜎Y]
# ≈

#^,
'

S)-)/_.
  .     (2.24) 

Rewriting Eq. (2.24) as 

𝜎Y]
# ≈

^,
'

E.
  ,     (2.25) 

where 𝑛\ = 𝑡S8S/2𝜏\, we find that the error in any observable in a molecular simulation 

is inversely proportional to the number of independent samples. Moreover, we find that 

the configurations that we use to compute the average value of the observable are 

independent only if they are evenly spaced by at least 2𝜏\ units in time. 

Regardless of the starting conditions, sufficient time must be allowed for the 

system to equilibrate before its analysis via a so-called production run. Equilibrium 

properties are then obtained as time averages of the observable over the trajectory. 

According to the ergodic hypothesis,3 a time average 〈𝐴〉S'`1, 

〈𝐴〉S'`1 =
%

_-/0
∑ 𝐴>Γ(𝑡)?_-/0
_(%  ,  (2.26) 

corresponds to an ensemble average 〈𝐴〉1ER, 

〈𝐴〉1ER = ∑ 𝐴(Γ)a 𝜌1ER(Γ) ,   (2.27) 

where 𝜏8PR indicates the timescale of the measurement, Γ indicates a particular point in 

phase space as introduced previously, and 𝜌1ER indicates the probability density.3 The 

latter can be written as 

𝜌1ER(Γ) = 𝑤1ER(Γ)/𝑄 ,    (2.28) 

where 𝑤1ER(Γ) is a weighting function, and 𝑄 is the partition function defined 

previously. To apply the ergodic hypothesis, we must assume that the probability 

density for the ensemble does not change with the time-evolution of the system. For 
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most molecular simulations, this assumption is valid, and we assume ergodicity rather 

than rigorously prove it. 

For the simulations described in this thesis, we are concerned primarily with 

three ensembles: NVE (microcanonical), NVT (canonical), and NPT 

(isothermal/isobaric). The quasi-classical partition function for 𝑁 particles in the 

microcanonical ensemble is3 

𝑄&Xb =
%
&!

%
T&1 ∫𝑑𝒓𝑑𝒑𝛿[ℋ(𝒓, 𝒑) − 𝐸] ,   (2.28) 

where ℎ is Planck’s constant, the 𝑁! in the denominator reflects the indistinguishability 

of the particles, and the integral denotes integration over all 6𝑁 coordinates. The delta 

function is used to select states with the desired energy 𝐸. For the canonical ensemble, 

the partition function is3 

𝑄&Xd =
%
&!

%
T&1 ∫𝑑𝒓𝑑𝒑 exp[−ℋ(𝒓, 𝒑)/𝑘W𝑇] .   (2.29) 

In this ensemble, the energy can fluctuate and take on any value. Note that Eq. (2.29) 

is simply the Laplace transform of the partition function for the microcanonical 

ensemble given by Eq. (2.28). The exponential term is known as the Boltzmann 

distribution, which gives the probability of the system in a state with a specified energy 

and temperature. In the isothermal/isobaric ensemble, generating state points must 

allow for changes in both volume and energy, and the partition function can also be 

expressed as a function of the microcanonical partition function8 

𝑄&ed = ∫𝑄&Xb𝑑𝐸𝑑𝑉 exp[−(ℋ(𝒓, 𝒑) + 𝑃𝑉)/𝑘W𝑇] .  (2.30) 

The microcanonical ensemble, which represents isolated systems, can therefore be 

regarded as conceptually perhaps the simplest ensemble. 
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 Ensembles fix three macroscopic variables to specify the equilibrium 

thermodynamic state of the system. The equivalence of ensembles for finite systems, 

such as those systems that are studied in molecular simulation, can be shown as 

follows.3 Consider an ensemble for which the partition function and corresponding 

thermodynamic potential are 𝑄O and YO, respectively. In this ensemble, the extensive 

thermodynamic variable 𝐹 is constant. The partition function for an ensemble in which 

the conjugate, intensive variable	𝑓	is constant is given by 

𝑄f = ∫𝑑𝐹′ exp	(−𝐹g𝑓)𝑄Og ,    (2.31) 

and the corresponding thermodynamic potential is 

Ψf = ΨO + 𝐹𝑓     (2.32) 

by a Legendre transformation. The ensemble averages calculated in each ensemble are 

related to one another by 

〈𝐴〉f = exp	(Ψ#) ∫𝑑𝐹′exp	(−ΨOg − 𝐹g𝑓)〈𝐴〉Og .   (2.33) 

In the thermodynamic limit, 〈𝐴〉f = 〈𝐴〉O. For a finite number of particles, we can study 

the behavior of the integral in Eq. (2.33) by expanding it about 〈𝐹〉f in a Taylor series: 

〈𝐴〉f = 〈𝐴〉O(〈O〉2 +
%
#
U h

'

hO'
〈𝐴〉OV

O(〈O〉2
〈𝛿𝐹#〉f +⋯  , (2.34) 

letting 𝐹g = 〈𝐹〉f + 𝛿𝐹′. The fluctuation term 〈𝛿𝐹#〉 can be expressed as 

〈𝛿𝐹#〉f =
h'i2

hf'
= − h〈O〉2

hf
= −𝜕𝐹/𝜕𝑓 .   (2.35) 

Returning to Eq. (2.34), we can truncate it after the second term and re-arrange it as 

〈𝐴〉O = 〈𝐴〉f −
%
#
〈𝛿𝐹#〉f

h'

hO'
〈𝐴〉f ,   (2.36) 

which can be simplified to 
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〈𝐴〉O = 〈𝐴〉f +
%
#
h
hf
Uhf
hO
V h
hf
〈𝐴〉f .   (2.37) 

Thus, the correction term in Eq. (2.34) decreases as 𝒪(𝑁K%) because 𝐹 is extensive, 

and 𝑓 is intensive. The equivalence of ensembles means that we can calculate 

thermodynamic properties of a liquid as averages in any ensemble (see, e.g., Eqs. (2.19) 

and (2.20)). The fluctuations given by Eq. (2.34) are small but measurable in molecular 

simulations, and correspond to thermodynamic derivatives such as the heat capacity, 

which is, for example, easily calculated in the canonical ensemble. 

 Structural and dynamical quantities can also be calculated from molecular 

simulations.3 An example of the former is the pair, or radial, distribution function g(r), 

which gives the probability of finding a pair of atoms at a distance r, relative to the 

probability for a random distribution at the same density. The radial distribution 

function can be calculated as an ensemble average over pairs of atoms: 

𝑔(𝑟) = X
&'
〈∑ ∑ 𝛿(𝒓 − 𝒓')))j'' 〉 .   (2.38) 

The radial distribution function is important for several reasons. First, this function can 

be related, via statistical mechanics, to thermodynamic observables such as the energy 

and the second virial coefficient. Second, this function can be related, through a three-

dimensional Fourier transform, to the static structure factor S(Q) that is obtained via 

diffraction experiments: 

𝑆(𝑄) = 1 + 4𝜋𝜌∫ 𝑟# klm,7
,7

𝑔(𝑟)𝑑𝑟C
@  ,  (2.39) 

where 𝑄 is the momentum transfer, and 𝜌 is bulk density. This relation suggests that 

the radial distribution function can be used to model the structure of liquids. The radial 

distribution function is, in fact, the simplest and most direct way of modeling liquid 
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structure in real space, and as a result, calculations of 𝑔(𝑟) are used extensively in this 

thesis. 

The results of molecular dynamics simulations can also be compared directly 

with experiment in the case of certain dynamical quantities. Spectroscopic information, 

in particular, can be regarded in many cases as the Fourier transform of an appropriate 

time-correlation function. The time integrals of these functions can also be related via 

Green-Kubo formulae9 to transport coefficients such as the self-diffusivity. In this 

thesis, some spectroscopic results, particularly those from neutron scattering, are thus 

presented alongside data from molecular simulations. 

 

2.2 Neutron Scattering 

Molecular dynamics simulations and neutron-scattering experiments probe 

essentially the same length- and time-scales of a liquid. The scales depend on the 

trajectory length and the complexity of the force field in the case of molecular 

dynamics, and the spectrometer and the neutron source in the case of neutron scattering. 

The wavelike nature of neutrons means that the so-called “cold” and “thermal” 

neutrons (E ~ 1 to 60 meV) used in our experiments have wavelengths on the order of 

the interatomic spacings. The terahertz frequencies of the neutrons are close to the 

frequencies of the interatomic motions (e.g., librations), such that resolving collective 

dynamics is possible. Neutron scattering can therefore be used as a sensitive vibrational 

spectroscopy that is complementary to optical spectroscopy. Unlike Raman and 

infrared techniques, however, there are no selection rules for neutron scattering. In this 
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section, we give a brief overview of the principles of inelastic and quasielastic neutron 

scattering, in the context of studying liquid dynamics. 

A scattering event is described by the momentum transfer 𝑸 that occurs: 

ℏ𝑸 = ℏ𝒌' − ℏ𝒌f     (2.40) 

and by the energy transfer 𝐸: 

𝐸 = ℏ',#
'

#`
−

ℏ',2
'

#`
 ,    (2.41) 

where 𝒌' and 𝒌f are the wave vectors of the incident and scattered neutron, 

respectively, ℏ is the reduced Planck’s constant, and 𝑚 is the mass of the particle. The 

events measured in such an experiment are measured as a count rate per flux. The raw 

intensity can be related to a double differential cross-section, which is written as a 

function of 𝑸 and the frequency 𝜔 as 

Q'^
QoQp

= 𝑁𝑏# U,2
,#
V %
#5
𝑆(𝑸,𝜔) ,   (2.42) 

where 𝑑Ω is the element of the solid angle subtended by the scattering event, and 𝑏 is 

the scattering length.10 The cross-section 𝜎 is a measure of the probability that the 

scattering event occurs. The scattering function or dynamic structure factor 𝑆(𝑸,𝜔) 

contains all information about the microscopic dynamics of a system for a process in 

which lowest-order perturbation theory, the so-called Born approximation, holds.9 The 

static structure factor given in Eq. (2.39) is related to 𝑆(𝑸,𝜔) by 

∫ 𝑆(𝑸,𝜔)C
KC 𝑑𝜔 = 𝑆(𝑄) .   (2.43). 

The physical meaning of 𝑆(𝑸,𝜔) becomes apparent by taking the following Fourier 

transform: 

𝑆(𝑸,𝜔) = %
#5 ∫ 𝐹(𝑸, 𝑡) exp(𝑖𝜔𝑡) 𝑑𝑡C

KC  ,  (2.44) 
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where 𝐹(𝑸, 𝑡) is the intermediate scattering function given by 

𝐹(𝑸, 𝑡) = %
&
〈𝜌𝑸(𝑡)𝜌K𝑸(0)〉 .    (2.45) 

The correlation function of the Fourier components of the density given by Eq. (2.45) 

can also be related to the spatial Fourier transform of the van Hove function, i.e.,  

𝐹(𝑸, 𝑡) = ∫𝐺(𝒓, 𝑡) exp(−𝑖𝑸 ∙ 𝒓) 𝑑𝒓 ,  (2.46) 

where the van Hove function 𝐺(𝒓, 𝑡) for a uniform liquid is defined as10 

𝐺(𝒓, 𝑡) = %
&
〈∑ ∑ ∫ 𝛿�𝒓 − 𝒓)(𝑡) + 𝒓'(0)�&

)(%
&
'(% 〉 ,  (2.47) 

Eq. (2.47) can be written as 

𝐺(𝒓, 𝑡) = %
&
〈∫∑ ∑ 𝛿�𝒓g + 𝒓 − 𝒓)(𝑡)�𝛿[𝒓′ − 𝒓'(0)]𝑑𝒓′&

)(%
&
'(% 〉 , (2.48) 

which is equal to 

𝐺(𝒓, 𝑡) = %
&
〈∫ 𝜌(𝒓g + 𝒓, 𝑡)𝜌(𝒓g, 0)𝑑𝒓′〉  (2.49) 

or, more compactly, 

𝐺(𝒓, 𝑡) = %
r
〈𝜌(𝒓, 𝑡)𝜌(𝟎, 0)〉 .     (2.50) 

Thus, the van Hove function is analogous to a time-dependent version of the 𝑔(𝑟) 

discussed in the previous section. The scattering problem is reduced, essentially, to a 

problem in statistical mechanics, and functions such as 𝑆(𝑄), 𝑺(𝑸,𝑤), 𝐹(𝑸, 𝑡), and 

𝐺(𝒓, 𝑡) can be calculated via molecular simulation. Measuring the cross-section as a 

function of 𝑸 and 𝜔 allows for the experimental determination, in principle, of the 

time-dependent pair correlation function 𝐺(𝒓, 𝑡). In practice, however, it is difficult to 

measure the van Hove function experimentally using inelastic neutron or X-ray 

scattering, because to carry out the double Fourier transform requires measurements 
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with good statistics, over large ranges of 𝑸 and 𝜔. Such measurements have only 

recently become possible.11 

To gain insight into the dynamic structure factor 𝑆(𝑸,𝜔), it is useful to separate 

the van Hove function 𝐺(𝒓, 𝑡) into two additive components, a “distinct” contribution 

that correlates at different times the positions of different nuclei, and a “self” 

contribution that correlates the positions of the same nucleus at different times. The 

double differential cross-section in Eq. (2.42) can then be separated as follows: 

Q'^
QoQp

= U Q'^
QoQp

V
08T

+ U Q'^
QoQp

V
'E0

 ,   (2.51) 

where the subscripts “coh” and “inc” refer, respectively, to coherent and incoherent 

processes. In coherent scattering, the neutron measures the decay of the inter-nuclei 

correlations as a function of time and space. In other words, coherent scattering is 

sensitive to collective phenomena, and all permutations of 𝑖 and 𝑗 are used in the 

calculation of the van Hove function in Eqs. (2.47) and (2.48), corresponding to the 

“distinct” part of 𝐺(𝒓, 𝑡). In contrast, in incoherent scattering, there are no interference 

effects, and the neutron probes the decay of the density of a single nucleus as a function 

of time and space. In other words, incoherent scattering is insensitive to the relative 

distances between different nuclei because 𝑖	 = 	𝑗, which corresponds to the “self” part 

of 𝐺(𝒓, 𝑡). 

 To find the explicit forms of the coherent and incoherent parts of the double 

differential cross-section, we must use the fact that 𝑆(𝑸,𝜔) contains a double sum over 

all scatterers: 

𝑆(𝑸,𝜔) = ∑ >𝑏'𝑏)∗?&
',)(% 𝑆',)(𝑸,𝜔) .   (2.52) 

For the coherent (𝑖 ≠ 𝑗) and incoherent (𝑖 = 𝑗) terms, Eq. (2.52) becomes 
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𝑆(𝑸,𝜔) = ∑ 𝑏u𝑏v∗�����&
'j) 𝑆',)(𝑸,𝜔) + ∑ 𝑏u#���&

'(% 𝑆','(𝑸,𝜔) ,  (2.53) 

which can be re-written in the following form: 

𝑆(𝑸,𝜔) = ∑ 𝑏u𝑏v∗�����&
'j) 𝑆',)(𝑸,𝜔) + ∑ >𝑏u#��� − (𝑏�')#?&

'(% 𝑆','(𝑸,𝜔) .  (2.54) 

This separation occurs when there are at least two different nuclei in a sample, each 

nucleus with a different value of the neutron scattering length 𝑏, and the nuclei are 

randomly distributed. Cross-sections for different nuclei inherently have components 

of both coherent and incoherent scattering. Although the coherent scattering cross-

section dominates for most elements, 1H is an important exception, as this atom has an 

incoherent neutron scattering cross-section that is approximately 20 times larger than 

those of most nuclei, and so is a strong incoherent scatterer. 

Because coherent scattering gives information about the correlations that exist 

between all scatterers, there is, in principle, more information associated with coherent 

scattering. It is easier to extract information from incoherent scattering, however, 

because in coherent inelastic scattering it is not possible to calculate the density of 

states by a simple calculation of the eigenvectors of the normal modes.12 In the 

incoherent approximation, in which all scattering is assumed to be incoherent, we insert 

the second term from Eq. (2.54) into Eq. (2.42) to give 

U Q'^
QwQp

V
'E0

= ,2
,#
∑ U𝑏x#��� − >𝑏�x?

#V Sx(𝑸,𝜔)x  .      (2.55) 

We want to extract the density of states from this information. To do so, we need to 

obtain an explicit form for the dynamic structure factor 𝑆(𝑸,𝜔), which is defined as12 

Sx(𝑸,𝜔) = 

%
#5ℏ

∑ ∫ 〈exp>−𝑖𝑸 ∙ 𝒓)(0)?exp>𝑖𝑸 ∙ 𝒓)(𝑡)?〉 exp(−𝑖𝜔𝑡) 𝑑𝑡
C
KC)∈{)3}  .   (2.56)  
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From the Bloch identity,12 we have 

〈exp U−𝑖𝑸 ∙ 𝒖)(0)V exp U−𝑸 ∙ 𝒖)(𝑡)V〉 = 

exp>−2𝑊)(𝑸)?exp〈>𝑸 ∙ 𝒖)(0)?>𝑸 ∙ 𝒖)(𝑡)?〉 ,   (2.57) 

where 𝒖'(𝑡) is the displacement from the nucleus as a function of time, and W(Q) is 

the Debye-Waller factor that also appears in X-ray crystallography. The first term in 

the expansion of 〈>𝑸 ∙ 𝒖)(0)?>𝑸 ∙ 𝒖)(𝑡)?〉 gives the incoherent elastic scattering. The 

next term in this expansion is 

〈>𝑸 ∙ 𝒖)(0)?>𝑸 ∙ 𝒖)(𝑡)?〉 = 

ℏ
#
∑ �G\#(𝑸;))

p#
(𝑛(𝜔') + 1)exp(𝑖𝜔'𝑡)H + G

\#(𝑸;))
p#

𝑛(𝜔')exp(−𝑖𝜔'𝑡)H�'  (2.58) 

with 

𝐴'(𝑸; 𝑗) =
(𝑸∙𝒆#()))∙(𝑸∙𝒆#()))∗

`$
= |𝑸∙𝒆#())|'

`$
 ,  (2.59) 

where 𝒆'(𝑗) is the displacement in the vibrational mode 𝑖, and 𝑛(𝜔) is the Bose 

occupation factor. These equations, along with Eq. (2.57), allow us to re-write Eq. 

(2.56) as 

𝑆x(𝑸,𝜔) =        

∑ 15'6$(𝐐)

#
∑ |𝐐.𝐞#())|'

`3p#' {(𝑛(𝜔') + 1)𝛿(𝜔 − 𝜔')] + [𝑛(𝜔')(𝛿(𝜔 − 𝜔')})∈{)3}  . (2.60) 

Thus, Eq. (2.55) becomes 

U Q'^
QwQp

V
'E0

= ,2
,#
∑ ^#:((x)

�5`3
∑ 𝑒K#�$(3�⃗ )∑ |𝐐.𝐞#())|'

p#' [(𝑛(𝜔) + 1)𝛿(𝜔 − 𝜔')])∈{)3}x  ,   

(2.61) 

where 𝜎'E0(𝜅) = 4𝜋∑ U𝑏x#��� − >𝑏�x?
#Vx , and is the neutron incoherent scattering cross 

section for nuclei of type 𝜅. Eq. (2.61) is the starting point for the analysis of our results 
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in Ch. 5 (see Eq. (5.4)). This equation enables us to obtain the density of states, which 

contains important spectroscopic information. Clearly, a scattering experiment is a long 

way from the single-phonon density of states. As will be demonstrated in this thesis, it 

is significantly easier to use molecular simulation to calculate the density of states, but 

the latter method relies on the quality of the force field, and multiphonon scattering is 

not trivial to incorporate. 

An inelastic neutron-scattering experiment also gives quasielastic information, 

which can be compared to molecular simulation as well as to other types of 

spectroscopy. “Quasielastic” refers to the part of the inelastic-scattering spectrum (i.e., 

𝑆(𝑸,𝜔) vs. 𝜔) in which there is symmetric broadening about the elastic line. The 

scattering function 𝑆(𝑸,𝜔) therefore is determined by of the convolution of one or 

more Lorentzians with the resolution function of the spectrometer. This observation is 

the starting point for the analysis of our results in Ch. 5 (see Eq. (5.8)). 

The energy transfer corresponding to quasielastic scattering corresponds to 

stochastic processes such as the diffusion of a molecule in a liquid due to reorientational 

or translational motions. Unlike periodic motions such as librations and vibrations that 

contribute to the conventional inelastic spectrum, diffusion is not quantized, so the 

energy transfer can be small. Quasielastic neutron scattering is complementary to 

spectroscopic techniques such as dynamic light scattering. Unlike light scattering, 

however, the value of the momentum transfer 𝑸 in quasielastic neutron scattering is 

large, whereas in light scattering, the relatively low 𝑸 limits the analysis of fluctuations 

to the hydrodynamic regime.13 
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Chapter 3: Determination of the Contributions of Two 
Simultaneous Absorption Orders using 2-Beam Action 
Spectroscopy 
 
Adapted from: Liaros, N.; Cohen, S. R.; Fourkas, J. T. Opt. Express 2018, 26, 9492-9501. 
Research designed by: Nikolaos Liaros and John T. Fourkas 
Research conducted by: Nikolaos Liaros and Samuel R. Cohen 
My contribution was to develop the analysis software and the linearization protocol. 
 

3.1 Introduction 

Nonlinear absorption plays a key role in many optical applications.1-21 Although 

nonlinear absorption was first demonstrated more than 50 years ago,22 the accurate 

characterization of this phenomenon remains challenging. For instance, most methods 

for determining the effective order of a nonlinear absorption process rely on making a 

logarithmic graph of an observable as a function of the average excitation power.23 The 

slope of this type of plot should give the order of the dominant absorption process. 

However, the accurate determination of this order requires being able to measure the 

observable over several orders of magnitude of average excitation power. Furthermore, 

such plots are rarely linear, indicating that processes of two or more orders may 

contribute to the signal. Even when the plots are linear, the slope is often not integral, 

again suggesting that multiple processes contribute to the signal. 

We recently introduced a technique24 for the determination of the order of the 

effective absorptive nonlinearity in multiphoton absorption polymerization.19-21 In this 

method, called 2-beam initiation threshold (2-BIT) spectroscopy, two pulse trains that 

are overlapped in space but are interleaved in time are used to expose a photoresist. 

The average power of one pulse train required to reach the polymerization threshold is 

measured as a function of the average power of the other pulse train. The order of the 
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nonlinear absorption process can be determined by plotting one average power versus 

the other. 2-BIT was employed to demonstrate that various photoinitiators are excited 

by either 2-photon or 3-photon absorption with ultrafast pulses tuned in the vicinity of 

800 nm.24  

2-BIT is the first example of a 2-beam action (2-BA) spectroscopy. The 2-BA 

concept can, in principle, be applied to any linear or nonlinear absorption process that 

yields a measureable signal. In the case of the photopolymerization threshold, the 

observable is single-valued. However, for observables that can take on many values, 

one can instead make 2-BA spectroscopy measurements for any desired value of the 

observable. Such a measurement reveals the effective number of photons involved in 

generating the observable at that particular value. This process can be repeated for 

different values of the observable. 

As a representative example of the generalization of 2-BA spectroscopies, here 

we study the linear and nonlinear generation of photocurrent or photovoltage in a 

photodiode. The nonlinear optical production of photocurrent in different types of 

semiconductors has stimulated extensive theoretical and experimental investigations, 

and has found a vast number of applications.25,26 This phenomenon has been used, for 

instance, to autocorrelate ultrafast laser pulses,16,17,27–31 to explore the electronic 

properties of organic32,33 and inorganic34,35 semiconductors, to control photocurrent 

generation through coherence,36-38 to generate electrical power,39 to map the structure 

in composite materials,40 and to “upconvert” mid-infrared light for detection in the 

near-ultraviolet.41 Furthermore, the strong multiphoton absorption generally exhibited 
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by semiconductors has been used for applications such as optical limiting, induction of 

population inversion, processing of signals, and entanglement of photons. 

We characterize the linear and nonlinear generation of photocurrent in a GaAsP 

photodiode with a 2-BA technique that we call 2-beam constant-amplitude 

photocurrent (2-BCAmP) spectroscopy. We use this example to demonstrate that 2-BA 

spectroscopy data offer substantial advantages over logarithmic plots in elucidating the 

nature of such processes. In particular, we introduce a framework for extracting the 

contributions of two different orders of absorption from 2-BA spectroscopy data. We 

also show how the dependence of the contributions of the two different absorption 

orders on the value of the observable can be used to test for self-consistency.  

3.2 Experimental Details 

A schematic of the 2-BCAmP concept is shown in Figure 3.1. The excitation 

source was a tunable, Ti:sapphire oscillator (Coherent Mira 900-F) that can be operated 

in either mode-locked (ML) or continuous-wave (CW) mode. The repetition rate of the 

laser in ML mode was 76 MHz, and the pulse duration was approximately 150 fs. The 

spatially filtered beam was chopped at 1 KHz and then split in two parts. The power of 

each beam was adjusted by means of a motorized half-wave plate and a Glan-Taylor 

polarizer, and the beam powers were measured using a power meter. Each beam was 

passed through a separate variable beam expander to allow for the adjustment of the 

beam spot size at the back aperture of the objective. The lengths of the two beam paths 

were adjusted so that consecutive pulses arrived at the sample with approximately 

equally spaced timings, giving an effective repetition rate of 152 MHz. The two beams 

were combined with a polarizing beam cube and made collinear, and then passed 
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through a quarter-wave plate. 

The two beams were sent through the reflected-light illumination port of an 

inverted microscope and filled the back aperture of a 0.30 NA, 10×, infinity-corrected 

microscope objective (Zeiss, Plan-NEOFLUAR). The objective focused the beams 

onto a GaAsP photodiode (Hamamatsu G1117, with the resin coating removed). 

Average power values cited here were measured at the back aperture of the objective; 

the loss from the objective was ~30%. The beam diameter at the focal plane was 

approximately 3.25 μm. To eliminate any contribution from dark current, the 

photodiode output was sent to a lock-in amplifier (Stanford Research Systems, SR810) 

that was referenced to the chopping frequency. To maximize the signal-to-noise ratio, 

data were collected in current mode at low excitation powers and in voltage mode at 

high excitation powers. The detection mode did not influence the 2-BCAmP exponent. 

 

Figure 3.6 Schematic depiction of a 2-beam constant-amplitude photocurrent experiment. Two trains of 
pulses whose amplitudes can be adjusted independently are interleaved and focused onto a photodiode. 
Multiple sets of average powers for the two pulse trains that generate the same photocurrent (or 
photovoltage) are determined, allowing for the measurement of the effective order of the absorption 
process in the photodiode.  

The GaAsP photodiode was mounted on a motor-driven stage that allowed for 

sample positioning in the plane transverse to the laser beam. A separate motor drive 
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controlled the distance between the objective and the photodiode. The movements of 

the stages were controlled using LabVIEW programs. To control the position of each 

of the two excitation beams focused on the sample, the reflection of each laser beam 

from the photodiode surface was observed in real time using a CCD camera and a 

monitor. For measurements made in ML mode the beams were overlapped on the 

photodiode, whereas for measurements made in CW mode the beams were focused to 

neighboring positions but were not overlapped.  

3.3 Results and Discussion 

Figure 3.2 shows photocurrent excitation data collected for a GaAsP 

photodiode at an excitation wavelength of 800 nm. For one set of data, the laser was 

mode locked and the photodiode was placed at the focal plane of the objective. In this 

case, the slope of the logarithmic photocurrent excitation (PE) plot is 2.02 ± 0.03, which 

is suggestive of 2-photon absorption. The magnitude of the photovoltage is consistent 

with that reported previously.29 For the other set of data the laser was operated in CW 

mode and the photodiode was moved 2.8 mm out of the focal plane of the objective. In 

this case the slope of the logarithmic PE plot is 1.07 ± 0.03, suggesting that the signal 

is dominated by linear absorption. Although the red edge of the specified detection 

range of this photodiode is at 680 nm, there is still a small linear signal even at 

wavelengths of 800 nm and longer due to the Urbach-tail42 absorption of the 

semiconductor. At the highest average excitation powers the plot begins to diverge 

slightly from the fit line. This divergence is even clearer if the slope of the fit is 

constrained to unity, as seen in the dashed line in Figure 3.2(a). The average ML powers 

here range from 0.39 mW to 2.3 mW, corresponding to irradiances of 0.82 to 4.8 
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GW/cm2.  

 

Figure 3.2 (a) Logarithmic photocurrent excitation plots for a GaAsP photodiode for 800 nm excitation 
with a ML laser (at the focal plane) and a CW laser (out of the focal plane). The solid lines are free fits 
and the dashed line is a fit with the slope constrained to 1. (b) 2-BCAmP data collected under the same 
conditions. The error bars are smaller than the symbols in all cases. 

Figure 3.2(b) shows 2-BCAmP plots for ML excitation in the focal plane and 

CW excitation away from the focal plane, for a specific chosen value of the 

photocurrent. In both cases the average laser power for each pulse train is normalized 

by the average power at which that pulse train alone yields the target value of the 

photocurrent. Using these normalized average powers, the 2-BCAmP plot follows the 

equation  

 
𝑃�%E + 𝑃�#E = 1 ,     (3.1) 

 
where n is the order of the absorption process.24 For instance, a linear absorption 

process yields a linear 2-BCAmP plot, a 2-photon absorption process yields a 2-

BCAmP plot that is a quarter of a circle, and so on. The data were fit using a nonlinear 

least squares routine,43 yielding exponents of 1.99 ± 0.03 for the ML case and 0.99 ± 

0.03 for the CW case. Thus, when the observed photocurrent arises through a single 
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absorption order, the 2-BCAmP results are consistent with the exponent derived from 

a conventional logarithmic PE plot. 

We next consider what happens when more than one absorption order 

contributes to the photocurrent. In Figure 3.3(a) we show logarithmic PE plots for 800 

nm ML excitation with the photodiode at the focal plane of the objective and at two 

different distances away from the focal plane. As the distance from the focal plane 

increases, so does the spot size, reducing the peak irradiance and, concomitantly, the 

contribution of 2-photon absorption. Thus, the slope of the PE plot decreases from a 

value of about 2 in the focal plane to a value of about 1.5 when the photodiode is 2.8 

mm from the focal plane. None of the PE traces is completely linear. The in-plane trace 

shows signs of saturation at high average excitation powers, and the out-of-plane traces 

show signs of the slope increasing at higher average excitation powers.  

 

Figure 3.3 (a) Logarithmic PE plots for ML 800 nm excitation, with the GaAsP photodiode different 
distances from the focal plane. (b) 2-BCAmP data collected under the same conditions.  

Figure 3.3(a) illustrates some of the challenges inherent in using logarithmic PE 

plots to determine absorptive nonlinearities. Typically, the slopes of such plots are not 

integers. Furthermore, the accurate determination of the order of an absorption process 
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generally requires data that span several orders of magnitude of average excitation 

power, a problem that is related to the accurate fitting of power-law functions.43 

However, logarithmic PE plots are rarely linear over many orders of magnitude of 

average excitation power.  

Logarithmic PE plots that are not linear or that have non-integer slopes can 

indicate that two or more orders of absorption contribute to the observed signal over 

the range of average excitation powers used. However, even if the two exponents are 

known, accurate fitting to such a function is also challenging, and is rarely performed 

for PE data. Consider the case of two contributions to the absorption that differ by an 

order of one, such that the signal S as a function of irradiance I is given by  

 
𝑆(𝐼) = 𝐴𝐼E + 𝐵𝐼E;%	.     (3.2) 

 
Here, the coefficients A and B encompass the multiphoton absorption cross section, the 

quantum yield for photocurrent generation, and pulse shape factors relating to the 

absorption probability for the respective orders n and n + 1.45 At the irradiance for 

which 90% of the absorption probability is of order n we have  

 
!"!"#

#"!
= !"

#
= $

%
	.     (3.3) 

 
Conversely, at the irradiance for which 90% of the absorption is of order n + 1 we have 
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#
= 9     (3.4) 

 
Thus, going from 90% order n to 90% order n + 1 requires changing the irradiance, and 
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therefore the average excitation power, by a factor of 81. Similarly, if the orders of 

absorption vary by 2, going from 90% order n to 90% order n + 2 requires a factor of 

9 increase in irradiance. Reliable fitting of two different orders of absorption therefore 

generally requires data that span at least two orders of magnitude in average excitation 

power. Even in this scenario, the average excitation powers must lie in the range over 

which the dominant order of absorption changes. If these conditions are not met, as is 

the case for the data in Figure 3.3(a), then it is not possible to make an accurate 

determination of the relative contributions of different absorption orders at any given 

average excitation power for which the slope is not an integer.  

Figure 3.3(b) shows 2-BCAmP data taken at the same three positions as the PE 

data in Figure 3.3(a), all at the same average excitation power of 15.6 mW for a single 

pulse train (this convention is used throughout this chapter when reporting powers). As 

is the case for PE data, the 2-BCAmP data that were not collected at the focal plane 

have best-fit exponents that are not integers. If the exponents between 1 and 2 arise 

from a combination of linear and 2-photon absorption, then we have  

 
𝑎(𝑃�% + 𝑃�#) + 𝑏(𝑃�%# + 𝑃�##) = 1 .    (3.5) 

 
We impose the constraint that a + b = 1, such that a is the fractional contribution of 

linear absorption and b is the fractional contribution of 2-photon absorption in the 

conditions under which the curve was obtained. There is then a unique value of a for a 

given value of n under these conditions. To determine the value of a for a 2-BCAmP 

data set, we make the substitution b = a – 1 in Eq. (3.5) and rearrange to obtain  

 
1 − 𝑃�%# − 𝑃�## = 𝑎(𝑃�% + 𝑃�# − 𝑃�%# − 𝑃�##) .    (3.6) 
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Thus, the slope of a plot of 1 – 𝑃�%# – 𝑃�## as a function of 𝑃�% + 𝑃�# – 𝑃�%# – 𝑃�## will be a. An 

analogous approach can be used to extract the fractional contribution of any pair of 

orders of absorption from a 2-BA spectroscopy plot.  

We show a representative plot of Eq. (3.6), for the 2-BCAmP data obtained 1.26 

mm from the focal plane, in Figure 3.4(a). This approach was used in Figure 3.4(b) to 

determine the fractional contribution of 2-photon absorption at a fixed average power 

as a function of distance from the focal plane, based on the three 2-BCAmP data sets 

in Figure 3.3(b). In the case of a combination of linear and 2-photon absorption, the 

corresponding local slope of a logarithmic plot at a given excitation intensity is one 

plus the fraction of 2-photon absorption. For the data obtained 2.80 mm from the focal 

plane, the corresponding local slope calculated in this manner is 1.51, and for the data 

obtained 1.26 mm from the focal plane the corresponding slope is 1.80. Note that these 

values differ somewhat from the 2-BCAmP exponents, but the 2-BCAmP data allow 

the local slope to be calculated directly.  

These data show that it is straightforward to use 2-BA spectroscopy to 

determine the relative contributions of two different known orders of absorption to an 

observable at a particular value. In contrast, the conventional logarithmic plot method 

requires measuring the observable over orders of magnitude in its value to determine 

the contributions of different orders of nonlinearity.  

The relative contributions of linear and 2-photon absorption should depend on 

the average excitation power in a predictable manner, so we next consider 2-BCAmP 

data obtained with the photodiode 1.28 mm from the focal plane at three different 

average excitation powers: 15.6 mW, 19.2 mW, and 23.2 mW. As can be seen from the 
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data in Figure 3.5(a), the measured exponent changes from 1.72 to 1.80 over this range 

of average excitation powers, with an uncertainty of approximately ± 0.03 in each 

value. It is not possible to determine this small of a change in slope in a logarithmic PE 

plot over such a limited range of average excitation powers.  

 

Figure 3.4 (a) A representative linearized plot used to extract the fractional contribution of linear 
absorption from a 2-BCAmP data set. The line is a linear least-squares fit constrained to pass through 
the origin. (b) Fraction of photocurrent arising from 2-photon absorption at a fixed average laser power 
as a function of the distance of the photodiode from the focal plane.  

Although in this case we can safely assume that the photocurrent should arise 

from linear absorption and 2-photon absorption, the 2-BCAmP data in Figure 3.5(a) 

can in principle be fit to the sum of a linear absorption process and any higher-order 

absorption process, giving different values of a and b. As shown above, if the orders of 

the two contributing absorption processes differ by one, then the ratio of the 

contribution of the higher-order process to that of the lower-order process is BI/A. In 

the 2-BCAmP fits we instead determine the normalized contributions a and b. 

Together, these results imply that b/a should increase linearly with the average power 

of the laser if the photocurrent arises from linear and 2-photon absorption. As can be 

seen in Figure 3.5(b), our results are in good agreement with this prediction. If we 

instead assume that the signal comes from a combination of linear and 3-photon 
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absorption, we can extract different values of a and b from the 2-BCAmP plots. If the 

signal arises from those two orders of absorption, then b/a should scale with the square 

of I. As can be seen from blue symbols in Figure 3.5(b), a plot of b/a as a function of I 

in this case is not a parabola that passes through the origin. Whenever two orders of 

absorption dominate in the generation of an observable, the ability to perform this type 

of consistency check makes it possible for 2-BA spectroscopy to be used to determine 

these orders, even if the orders are not known a priori.  

 

Figure 3.5 (a) 2-BCAmP data for a GaAsP photodiode 1.28 mm from the focal plane of the objective 
for mode-locked 800 nm excitation at three different average powers. (b) Ratio of 2- photon to linear 
absorption as a function of average power from the three 2-BCAmP data sets (red symbols). The solid 
line is a linear least-squares fit, constrained to pass through the origin. The blue symbols are the values 
of b/a for fits to a linear absorption process and a 3-photon absorption process, in which case the ratio 
should depend on the square of the average power.  

As was shown in Figure 3.2, 2-BCAmP measurements can be made not just 

with ML beams, but also with CW beams. Indeed, Ranka et al. observed a deviation in 

linearity in a logarithmic PE plot of data for CW irradiation of a GaAsP photodiode.29 

Their focusing was considerably gentler than what we have used here, so the increase 

in slope that they observed at high power was modest. They attributed this phenomenon 

to thermal effects rather than to the onset of 2-photon absorption.29 To investigate this 
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effect, we performed additional 2-BCAmP measurements with CW beams.  

The CW data in Figure 3.2 were obtained far from the focal plane of the 

objective. Figure 3.6(a) is a logarithmic PE plot for CW irradiation at the focal plane. 

It is clear from this plot that the nonlinear absorption in the photodiode is so strong that 

it can readily be driven by tightly focused CW light. The line in Figure 3.6(a) is a fit to 

a linear term plus a quadratic term, which is consistent with a combination of linear 

and 2-photon absorption. Because the data encompass only about an order of magnitude 

in excitation power, the data can also be fit nearly as well to the sum of a linear term 

and a cubic term.  

Figure 3.6(b) shows corresponding 2-BCAmP data for three different values of 

the excitation power. The exponent for these three plots ranges from 1.31 to 1.56. 

Values of b/a extracted using Eq. (3.6) by assuming the combination of a linear and a 

2-photon absorption process are shown in Figure 3.6(c). This ratio is once again linear 

in the laser power, confirming the orders of absorption that contribute to the 

photocurrent. These data are consistent with the nonlinear response at high average 

excitation powers arising from nonlinear absorption.  

We can compare the data in Figure 3.2(a) and Figure 3.6(a) to test whether 

nonlinear absorption could be of a sufficient magnitude to account for the nonlinearity 

in Figure 3.6(a). We find that CW excitation appears to be more than 34 times as 

efficient at generating a quadratic nonlinearity than is ML excitation. Although it is 

known that a correction must be made for non-square pulse shapes,45 this factor can 

account for only about half of the observed difference in efficiencies.  
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Figure 3.6 (a) A logarithmic PE plot for a GaAsP photodiode for 800 nm CW excitation at the focal 
plane of the objective. The solid line is a fit to a linear term and a quadratic term. (b) 2-BCAmP data for 
different CW laser powers. (c) Ratio of 2-photon to linear absorption as a function of power from the 
three 2-BCAmP data sets. The solid line in the plot is a linear least- squares fit, constrained to pass 
through the origin.  

The rise in temperature in GaAs under CW laser irradiation is known to be 

quadratic in power,46 and we can assume that the same holds for GaAsP. Furthermore, 

the bandgap of GaAs is known to decrease linearly as a function of temperature.47 If 

we assume that the Urbach tail of the GaAsP absorption is a linear (or nearly linear) 

function of frequency at 800 nm, then we would expect that thermal effects would 

exhibit a quadratic power dependence in this system. Thus, either 2-photon absorption 

or thermal effects could be consistent with the observed quadratic contribution at higher 

CW intensities. However, the small temperature rise expected in the Urbach tail46 in 
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conjunction with the weak dependence of the bandgap on temperature47 suggest that 

thermal effects should be minimal in this system. This conundrum is a subject of 

ongoing research.  

3.4 Conclusions 

We have characterized linear and nonlinear absorption in a photodiode using 2-

beam constant-amplitude photocurrent spectroscopy. This work demonstrates the 

generalizability of the 2-beam action spectroscopy concept. Here we report, for the first 

time, 2-BA exponents that, within experimental uncertainty, are not integers. The non-

integer exponents were shown to arise from a combination of linear and 2-photon 

absorption. We presented a framework for extracting the relative contributions of 

different orders of absorption from 2-BA spectroscopy data. We also used the ratio of 

the contributions to validate that the absorption does arise from the two expected 

orders, and that any contribution of thermal effects is negligible.  

The 2-BA spectroscopy approach offers significant advantages over traditional 

logarithmic plots of an observable as a function of average excitation power, 

particularly when multiple orders of absorption are involved. Rather than requiring data 

obtained over several orders of magnitude in the average excitation power (and, 

consequently, even more orders of magnitude in the observable), 2-BA spectroscopies 

can be used to determine the effective exponent at each chosen value of the observable. 

A 2-BA plot does involve a combination of different average excitation powers that 

may span an order of magnitude, but offers the ability to determine a well-defined 

exponent at each chosen value of the observable, as well as the ability to use these 

exponents to test models for the absorption processes that contribute to the signal.  
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The 2-BA spectroscopy approach should be applicable to virtually any 

observable that arises from linear absorption, nonlinear absorption, or any combination 

thereof. The ability to determine unambiguously the orders of absorption that 

contribute to the observable can further provide invaluable mechanistic information 

that can be used to optimize materials. Although the treatment presented here allows 

for the determination of two orders of absorption that contribute to an observable, this 

approach should be able to be extended to a larger number of orders. Such an extension 

will require obtaining 2-BA spectroscopy data over a greater range of values of the 

observable.  
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Chapter 4: Extracting Information on Linear and Nonlinear 
Absorption from Two-Beam Action Spectroscopy Data 
 
Adapted from: Cohen, S. R.; Fourkas, J. T. J. Phys. Chem. A 2019, 123, 7314-7322. 
Research designed by: John T. Fourkas 
Research conducted by: Samuel R. Cohen and John T. Fourkas 
I developed some of this protocol. 
 

4.1 Introduction 

Multiphoton absorption (MPA) is one of the most commonly used nonlinear 

optical phenomena, particularly in ultrafast optics.1-4 MPA is a powerful spectroscopic 

tool5-8 and is also a key enabling technology for applications such as fluorescence 

microscopy,9-15 microfabrication,16-22 and optical data storage.23-26 As a result, it is 

desirable to be able to characterize nonlinear absorption (NLA) processes accurately. 

For instance, it is often advantageous to maximize the MPA cross section of molecules 

or materials to make the nonlinear absorption process as efficient as possible. Accurate 

determination of an MPA cross section requires knowledge of the order of the nonlinear 

absorption as well as the nature of any competing processes, such as excited-state 

absorption (ESA).27-29 Typical methods for characterizing MPA cannot reveal the 

contributions of multiple absorption pathways unambiguously.  

NLA processes can be characterized either directly or indirectly. In the former 

case, the transmission loss of a laser beam is measured.30-32 Most direct techniques 

detect weak MPA over a large background signal, so it is difficult to extract detailed 

information regarding complex photophysical or photochemical processes. Indirect 

methods rely on the detection of some proxy observable, such as emission or 

photocurrent, that is generated by MPA.33-40 The most common method of measuring 

the order of NLA from either direct or indirect methods is to create a logarithmic plot 
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of the observable as a function of irradiance. The order of NLA is determined from the 

slope of such a plot. However, accurate determination of the order of absorption 

generally requires data that span two or more orders of magnitude in the irradiance.41 

Furthermore, it is common for noninteger slopes to be observed, in which case multiple 

orders of absorption and/or other processes such as ESA may be present. Unless 

considerable dynamic range is available, logarithmic plots cannot be used to ascertain 

unambiguously which processes contribute to the observed signal or what the relative 

magnitudes of these contributions are.  

Another approach for characterizing NLA is the Z-scan technique.42-50 The Z 

scan is a direct method in which loss is measured as a function of the distance of the 

sample from the laser focus. The order of MPA in a Z scan is determined by fitting the 

shape of the loss curve. Under favorable conditions, it is possible to ascertain the order 

of a single absorption process from a Z-scan measurement,51,52 but the accurate 

determination of the influence of multiple processes is again challenging.  

A further complication arises when MPA drives an irreversible process, 

particularly one such as photopolymerization, that has an exposure threshold. Under 

such circumstances it is usually not possible to make logarithmic plots, and Z-scan 

studies are not feasible. The usual approach to this problem is to make measurements 

in a medium in which the reactivity of the excited species is unimportant, such as an 

inert solvent. However, there is no guarantee that the absorption process observed 

under such circumstances is the same as the one that leads to the irreversible 

phenomenon in the medium of interest. Alternative approaches that make 

measurements as a function of laser repetition rate39 and/or exposure time40 can also be 
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used to glean insights into the order of NLA. Such methods still cannot provide an 

unambiguous description of the NLA process when multiple channels are involved.  

We have recently developed a class of techniques that address many of the 

shortcomings of conventional methods for determining the effective order of NLA.53-

56 These methods, called two-beam action (2-BA) spectroscopies, rely on using two 

temporally interleaved pulse trains to generate an observable by nonlinear and/or linear 

absorption. By finding different sets of average powers for the two pulse trains that 

lead to the same value of an observable, it is possible to determine the effective order 

of NLA at that specific value of the observable. We have used this technique to probe 

NLA-induced observables including polymerization,53,56 emission,55 and 

photocurrent.54  

As we have shown previously,54 one of the advantages of 2-BA spectroscopies 

is that when multiple phenomena contribute to the measured exponent, it is possible to 

determine the order and/or nature of these phenomena. The strategy that we 

demonstrated for elucidating the different contributions is to make 2-BA measurements 

at a range of values of the observable and then to test the results against a model. The 

above approach is applicable only when 2-BA measurements can be made at several 

values of an observable. There are many situations in which 2-BA measurements can 

be made over only a limited range of observable values. The extreme example of this 

situation is photopolymerization,53 for which there is only one value of the observable 

(the threshold exposure dose).  

Here we explore in more detail the relationship between the analysis of NLA 

via logarithmic plots and 2-BA spectroscopy when two orders of absorption are 
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involved. We demonstrate that under these circumstances the standard equation used 

to fit 2-BA plots is only approximate. We examine six different combinations of orders 

of absorption and show how the 2-BA plot deviates from an “ideal” 2-BA plot with a 

single noninteger exponent as the relative contributions of the two orders are varied. 

Based on these results, we demonstrate how the orders and magnitudes of the two 

absorption contributions can usually be distinguished even if it is only possible to 

obtain data at one value of the observable.  

4.2 Theory 

The concept of 2-BA spectroscopy is illustrated in Figure 4.1(A). Two 

temporally interleaved pulse trains are incident upon the sample of interest at 

irradiances far below the saturation regime, generating an observable signal. If the 

delay time between two temporally adjacent pulses is long enough for the electronic 

excitation to relax completely, then the action of each pulse can be considered in 

isolation. The average power of one of the pulse trains (which we will call beam 1) 

required to attain a particular value of the observable is first determined. Beam 2 is then 

adjusted to have a nonzero average power, and the average power of beam 1 that returns 

the observable to its selected value is determined. This process is repeated until only 

beam 2 has nonzero average power.  

In principle, the average power at which each individual beam gives the desired 

value of the observable should be identical. In practice, these average powers may vary 

slightly. As a result, normalized powers are typically used in 2-BA spectroscopies, i.e., 

the average power of a given beam divided by the average power at which that beam 

alone yields the desired value of the observable. In this situation, for an m-photon 
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absorption process the 2-BA data will adhere to the relation53  

 
𝑃�%` + 𝑃�#` = 1 ,    (4.1) 

 
where an overbar indicates a normalized average power. Thus, m can be determined by 

plotting P̅2 as a function of P̅1 (Figure 4.1(B)). So long as only one order of absorption 

contributes to the observed signal, m will correspond to the order of that process, as 

will the slope of a logarithmic plot, n.  

 

Figure 4.1 (A) Schematic depiction of two-beam action spectroscopy. Two temporally interleaved pulse 
trains with average powers P̅1 and P̅2 are incident on a sample, generating an observable via linear and/or 
nonlinear absorption. (B) Sets of values of P̅1 and P̅2 that lead to the same value of the observable are 
determined, and P̅2 is plotted as a function of P̅1 to determine the order(s) of absorption. The dashed lines 
denote P̅diag. θ is the angle that a line from the origin to a data point makes with the x axis.  

Now imagine that two different orders of absorption, j and k, where j < k, 

contribute to the observed signal. We will refer to this set of exponents henceforth as 

(j,k). In this situation the signal S will be given by  

 
𝑆(𝐼) ∝ 𝐴𝐼) + 𝐵𝐼, ,    (4.2) 

 
where I is the irradiance and A and B are constants that depend on factors such as the 

absorption cross sections of the different orders, the temporal shape of the laser pulses, 

and the quantum yield for the observable.33 It should be noted that j- and k-photon 

transitions using the same source wavelengths typically excite different states. In a 
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traditional measurement, the slope of a logarithmic plot of the signal as a function of 

irradiance at a given irradiance I will then be given by  

 
𝑛 = Q	�m(?)

Q	�m	(�)
= 𝑗 + ∆𝑗 W�;

\�$;W�;
  ,    (4.3) 

 
where Δj = k − j. 

It should be noted that a given value of n could arise from any (j,k). The only 

way to identify these orders via a logarithmic plot is to collect data over a sufficient 

range of irradiance. However, the range of irradiance ΔI required to have the signal 

arise 90% from order j to 90% from order k is54  

 
∆𝐼 = 81

%
∆)� .     (4.4) 

 
Thus, unless Δj is large, it is essential to cover an order of magnitude or more in 

irradiance to be able to determine the orders of the absorption processes from a 

logarithmic plot.  

In the case of 2-BA spectroscopy, the combination of two different orders of 

absorption leads to a plot that follows  

 
𝑎>𝑃�%

) + 𝑃�#
)? + 𝑏>𝑃�%, + 𝑃�#,? = 1 ,   (4.5) 

 
where a + b = 1. This expression can be rearranged to give54  

 
1 − 𝑃�%, − 𝑃�#, = 𝑎>𝑃�%

) + 𝑃�#
) − 𝑃�%, − 𝑃�#,? .   (4.6) 

 
This linearized equation can be used to determine a, and therefore b, at a single value 
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of the observable. However, values of a and b can in principle be found for any (j,k).  

We can interpret a as being the fraction of the absorption arising from order j, 

which implies that  

 
𝑎 = \�$

\�$;W�;
 .     (4.7) 

 
By the same token,  

 
𝑏 = W�;

\�$;W�;
 .     (4.8) 

 
The ratio of the observable arising from order k to that arising from order j is therefore 

  
P
U
= W�;

\�$
= W

\
𝐼∆) .    (4.9) 

 
Thus, if j and k have been chosen correctly, a plot of b/a as a function of I∆j will be 

linear with a slope of B/A and will pass through the origin.54 However, this approach 

requires that a be able to be determined over a sufficient range of irradiance values. 

4.3 Results and Discussion 

We first consider the diagonal of a 2-BA plot, for which P̅1 = P̅2 = P̅diag (Figure 

4.1(B)). The simplest manner of determining the 2-BA exponent m, which we will call 

the three-point method, is to measure the values of P̅1 and P̅2 when only one beam is 

used and then to measure P̅diag. It follows from Eq. (4.1) that  

 
𝑃�Q'U�` = %

#
 .     (4.10) 
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and therefore  

 
𝑚 = �m	(%/#)

�m	(e]<#=>)
 .     (4.11) 

 
In general, it is preferable to use more than three data points to determine m, although 

if the exponent is known to be an integer then the three-point method should generally 

be sufficient. This strategy can be considered as a variation of one developed by 

Wegener and co-workers to measure the effective order of nonlinear absorption in 

multiphoton absorption polymerization.39  

When two orders of absorption contribute to the signal, Eq. (4.5) leads to the 

relation  

 
𝑃�Q'U�, + 𝑎>𝑃�Q'U�

) − 𝑃�Q'U�, ? = %
#
 .   (4.12) 

 
Combining Eq. (4.10) and Eq. (4.12), we find that  

 

𝑎 =
e]<#=>
? Ke]<#=>

;

e]<#=>
$ Ke]<#=>

;  .    (4.13) 

 
Similarly,  

 

𝑏 =
e]<#=>
$ Ke]<#=>

?

e]<#=>
$ Ke]<#=>

;  .    (4.14) 

 
Thus, by determining m along the diagonal it is possible to find the values of a and b 

for a specific (j,k). By the same token, if a, j, and k are known, then m can be found 

using the relation  
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𝑚 =
�m	�e]<#=>

; ;U�e]<#=>
$ Ke]<#=>

; ��

�m	(e]<#=>)
 .    (4.15) 

 
Furthermore, Eqs. (4.3), (4.8), (4.10), and (4.14) can be combined to give an expression 

that allows the slope n of a logarithmic plot to be calculated from the 2-BA exponent 

m measured along the diagonal: 

  
𝑛 = 𝑗 + ∆𝑗 %K#

5(?5$)/?

%K#5∆$/?
 .    (4.16) 

 
In Figure 4.2 we show the dependence of n on m for the six different (j,k) examined 

here. The general behavior that is observed in all cases is that n < m for values below j 

and above k, whereas n > m for values between j and k. When the exponent is either j 

or k, then n = m. For values above k, the dependence of n on m is roughly linear. 

Unfortunately, Eq. (4.16) cannot be inverted to find an expression for m as a function 

of n. However, as shown below, specific expressions exist for m as a function of n for 

any given (j,k).  

Although the above strategy allows for the determination of a from the value of 

m measured along the diagonal, this method offers no direct means of determining what 

the correct (j,k) might be. Furthermore, if a and b are not zero, then in general the only 

places that data points for a specific value of m will be equal to data points for a 

combination of two explicit orders of absorption will be along the axes and on the 

diagonal. However, the deviation of a plot for a single, noninteger exponent m from a 

plot for an explicit (j,k) can provide a substantial amount of information about the true 

values of j and k.  
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Figure 4.2 Plots of the logarithmic plot exponent n as a function of the 2-BA exponent m for six different 
(j,k): (A) sets for j = 1; (B) sets for j = 2; (C) the set for j = 3. The symbols indicate the points at which 
n = m, which occurs when only a single absorption process is present.  

The simplest manner of measuring the deviation between two different 2-BA 

plots is to determine the radial distance between points that are at the same angle θ from 

the x axis (see Figure 4.1(B)). In the case of a plot for a single exponent m, the slope s 

of a line from the origin to a data point at angle θ is given by  

 
𝑠 = tan𝜃 = e]'

e]B
 .    (4.17) 

 
Accordingly, 

 
𝑃�#(𝜃) = 𝑠𝑃�%(𝜃) .    (4.18) 

 
Plugging this result into Eq. (4.1) leads to 

 

𝑃�%(𝜃) = U %
%;R?

V
%/`

 .    (4.19) 

 
To find the coordinates of a data point at angle θ when there are contributions from two 

exponents, we begin by rewriting Eq. (4.5) as  

 



 

 

68 
 

>𝑃�%, + 𝑃�#,? +
U

%KU
>𝑃�%

) + 𝑃�#
)? − %

%KU
= 0 .  (4.20) 

 
Combining this result with Eq. (4.18), we find that  

 

𝑃�%,(𝜃) +
UJ%;R$N

(%KU)J%;R;N
𝑃�%
)(𝜃) − %

(%KU)J%;R;N
= 0 .  (4.21) 

 
The x coordinate can be determined by finding the appropriate root of this polynomial, 

with the y coordinate then following from Eq. (4.18).  

First, we consider the case in which j = 1 and k = 2. The polynomial for which 

we must find the root is  

 
𝑃�%#(𝜃) +

U(%;R)
(%KU)(%;R')

𝑃�%(𝜃) −
%

(%KU)(%;R')
= 0 .  (4.22) 

 
The relevant root of this equation is  

 

𝑃�%(𝜃) =
KU(%;R);�U'(%;R)';4(%KU)(%;R')

#(%KU)(%;R')
 .   (4.23) 

 
Along the diagonal this equation becomes  

 

𝑃�Q'U�(𝜃) =
KU;√U'K#U;#

#(%KU)
 .    (4.24) 

 
Equations (4.3) and (4.8) imply that  

 
𝑎 = ,KE

∆)
 .     (4.25) 

 
Plugging this result into Eq. (4.24) and then using Eq. (4.11), we find that 
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𝑚 = ln(1/2) ln OEK#;√E
'K#E;#

#(EK%)
P±  .   (4.26) 

 
Thus, we are able to use this approach to determine m from n for this particular (j,k). 

The problem of determining m as a function of n reduces to finding 𝑃�Q'U� as a 

function of n for the different (j,k). In general we may need to use different roots to 

determine 𝑃�Q'U� depending on the value of a (and therefore the value of n). The results 

of corresponding analyses for the other five possible (j,k) with individual exponents 

ranging from 1 to 4 are given below. 

A. (1,3) 

The polynomial for which we must find the root for (1,3) is 

 
𝑃�%+(𝜃) + 𝐴(%,+)𝑃�%(𝜃) − 𝐵(%,+) = 0 .   (4.27) 

 
where 

 
𝐴(%,+) =

U(%;R)
(%KU)(%;R&)

     (4.28) 

 
and 

 
𝐵(%,+) =

%
(%KU)(%;R&)

 .    (4.29) 

 
Along the diagonal we have 

 
𝐴(%,+),Q'U� =

+KE
EK%

     (4.30) 

 
and 
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𝐵(%,+),Q'U� =

%
EK%

 .    (4.31)  

 
When a ≤ 1 (n > 1), the relevant root of this equation is 

 

𝑃�%(𝜃) = ²W(B,&)
#

+q
\(B,&)
&

#�
+

W(B,&)
'

4

&

− \(B,&)
+
³²W(B,&)

#
+ q

\(B,&)
&

#�
+

W(B,&)
'

4

&

´

K%

 

 (4.32) 

 
When a > 1 (n < 1) we must use a different root of Eq. (4.28): 

 

𝑃�%(𝜃) = µq− \(B,&)
+
µ >𝑋(%,+) + √3𝑌(%,+)? ,   (4.33) 

 
where 

 

𝑋(%,+) = 𝑐𝑜𝑠 ³%
+
𝑡𝑎𝑛K% h #

W(B,&)
q−

\(B,&)
&

#�
−

W(B,&)
'

4
j´    (4.34) 

 
and 

 

𝑌(%,+) = 𝑠𝑖𝑛 ³%
+
𝑡𝑎𝑛K% h #

W(B,&)
q−

\(B,&)
&

#�
−

W(B,&)
'

4
j´ .   (4.35) 

 
𝑃�Q'U� is found by plugging Eqs. (4.31) and (4.42) into the appropriate root of Eq. 

(4.28). 

 

B. (1,4) 
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The polynomial for which we must find the root in this case is 

 
𝑃�%4(𝜃) + 𝐴(%,4)𝑃�%(𝜃) − 𝐵(%,4) = 0 .   (4.36) 

 
where  

 
𝐴(%,4) =

U(%;R)
(%KU)(%;RD)

     (4.37) 

 
and 

 
𝐵(%,4) =

%
(%KU)(%;RD)

 .    (4.38) 

 
Along the diagonal these become 

 
𝐴(%,4),Q'U� =

4KE
EK%

     (4.39) 

 
and 

 
𝐵(%,4),Q'U� =

+
#(EK%)

 .    (4.40) 

 
We define 

𝑋(%,4) =

²√3q27𝐴(%,4)4 + 256𝐵(%,4)+ + 9𝐴(%,4)#
&

√18&

−
4𝐵(%,4)[2/3

&

²√3q27𝐴(%,4)4 + 256𝐵(%,4)+ + 9𝐴(%,4)#
&

 

  (4.41) 
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When 0 ≤ a ≤ 1 (4 ≥ n ≥ 1) the relevant root of Eq. (4.36) is 

 

𝑃�%(𝜃) = − %
#[𝑋(%,4) +

%
#q

#\(B,D)
��(B,D)

− 𝑋(%,4) .    (4.42) 

 
When a < 0 (n > 4) the relevant root of Eq. (4.36) is 

 

𝑃�%(𝜃) =
%
#[𝑋(%,4) +

%
#q−

#\(B,D)
��(B,D)

− 𝑋(%,4) .    (4.43) 

 
When a > 1 (n < 1) the relevant root of Eq. (4.36) is 

 

𝑃�%(𝜃) =
%
#[𝑋(%,4) −

%
#q−

#\(B,D)
��(B,D)

− 𝑋(%,4) .    (4.44) 

 
 

C. (2,3) 

The polynomial for which we must find the root in this case is 

 
𝑃�%+(𝜃) + 𝐴(#,+)𝑃�%#(𝜃) − 𝐵(#,+) = 0 .   (4.45) 

 
where  

 
𝐴(#,+) =

UJ%;R'N
(%KU)(%;R&)

     (4.46) 

 
and 

 
𝐵(#,+) =

%
(%KU)(%;R&)

 .    (4.47) 
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Along the diagonal these become 

 
𝐴(#,+),Q'U� =

+KE
EK#

     (4.48) 

 
and 

 
𝐵(#,+),Q'U� =

%
#(EK#)

 .    (4.49) 

 
We define 

 

𝑋(#,+) = ²W(',&)
#

−
\(',&)
&

#�
+ q

W(',&)
'

4
−

\(',&)
& W(',&)

#�

&

   (4.50) 

 
When a ≤ 0.6882 (n ≥ 2.31118) the relevant root of Eq. (4.45) along the diagonal is 

 

𝑃�%(𝜃) = 𝑋(#,+) +
\(',&)
'

��(',&)
− \(',&)

+
 .    (4.51) 

 
The upper bound for a corresponds to the value at which the expression in the square 

root in Eq. (4.50) becomes zero. When 0.6882 < a ≤ 0.75 (2.31118 ≥ n ≥ 2.25) the 

relevant root of Eq. (4.45) is 

 
𝑃�%(𝜃) =

%
#
𝐴(#,+)>2𝑌(#,+) − 1? ,   (4.52) 

 
where 
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𝑌(#,+) = 𝑐𝑜𝑠

⎝

⎜⎜
⎛%
+
𝑡𝑎𝑛K%

⎝

⎜
⎛�K

E(',&)
'

D ;
.(',&)
& E(',&)

'F

E(',&)
' K

.(',&)
&

'F

⎠

⎟
⎞

⎠

⎟⎟
⎞

 .  (4.53) 

 
The upper bound for a corresponds to when the term that is not in the square root in 

Eq. (4.50) becomes zero. When 0.75 < a < 3 (2.25 > n > 0) the relevant root of Eq. 

(4.45) is 

 
𝑃�%(𝜃) = − %

#
𝐴(#,+)>2𝑍(#,+) + 1? ,   (4.54) 

 
where 

 

𝑍(#,+) = 𝑐𝑜𝑠

⎝

⎜
⎛%
+
𝑡𝑎𝑛K%

⎝

⎜
⎛�K

E(',&)
'

D ;
.(',&)
& E(',&)

'F

E(',&)
' K

.(',&)
&

'F

⎠

⎟
⎞
− #5

+

⎠

⎟
⎞

 .   (4.55) 

 
 

D. (2,4) 

The polynomial for which we must find the root in this case is 

 
𝑃�%4(𝜃) + 𝐴(#,4)𝑃�%#(𝜃) − 𝐵(#,4) = 0 .   (4.56) 

 
where  

 
𝐴(#,4) =

UJ%;R'N
(%KU)(%;RD)

     (4.57) 

 
and 
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𝐵(#,4) =

%
(%KU)(%;RD)

 .    (4.58) 

 
Along the diagonal these become 

 
𝐴(#,4),Q'U� =

4KE
EK#

     (4.59) 

 
and 

 
𝐵(#,4),Q'U� =

%
EK#

 .    (4.60) 

 
When a ≤ 1 (n ≥ 2) the relevant root of Eq. (4.56) along the diagonal is 

 

𝑃�%(𝜃) = ²%
#
Oq𝐴(#,4)# + 4𝐵(#,4) − 𝐴(#,4)P .    (4.61) 

 
When a > 1 (n < 2) the relevant root of Eq. (4.56) along the diagonal is 

 

𝑃�%(𝜃) = ²%
#
O−q𝐴(#,4)# + 4𝐵(#,4) − 𝐴(#,4)P .    (4.62) 

 
 

E. (3,4) 

The polynomial for which we must find the root in this case is 

 
𝑃�%4(𝜃) + 𝐴(+,4)𝑃�%+(𝜃) − 𝐵(+,4) = 0 .   (4.63) 

 
where  
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𝐴(+,4) =

UJ%;R&N
(%KU)(%;RD)

     (4.64) 

 
and 

 
𝐵(+,4) =

%
(%KU)(%;RD)

 .    (4.65) 

 
Along the diagonal these become 

 
𝐴(+,4),Q'U� =

4KE
EK+

     (4.66) 

 
and 

 
𝐵(+,4),Q'U� =

%
#(EK+)

 .    (4.67) 

 
We define 

 

𝑋(+,4) = ²√3q27𝐴(+,4)4 𝐵(+,4)
# + 256𝐵(+,4)

+ − 9𝐴(+,4)# 𝐵(+,4)
&

   (4.68) 

 
and 

 

𝑌(+,4) =
\(&,D)
'

4
+ �(&,D)

√%�& − 4 �#/+& W(&,D)
�(&,D)

 .   (4.69) 

 
When 0 < a < 1 (4 > n > 3) the relevant root of Eq. (4.63) along the diagonal is 

 

𝑃�%(𝜃) = − \(&,D)
4

− %
#[𝑌(+,4) +

%
#
²
+\(&,D)

'

4
− 𝑌(+,4) +

\(&,D)
&

4��(&,D)
 .   (4.70) 
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When a < 0 (n > 4) the relevant root of Eq. (4.63) along the diagonal is 

 

𝑃�%(𝜃) = − \(&,D)
4

+ %
#[𝑌(+,4) +

%
#
²
+\(&,D)

'

4
− 𝑌(+,4) −

\(&,D)
&

4��(&,D)
 .   (4.71) 

 
When a > 1 (n < 3) the relevant root of Eq. (4.63) along the diagonal is 

 

𝑃�%(𝜃) = − \(&,D)
4

+ %
#[𝑌(+,4) −

%
#
²
+\(&,D)

'

4
− 𝑌(+,4) −

\(&,D)
&

4��(&,D)
 .   (4.72) 

 
In Figure 4.3(A) we plot the difference between the (1,2) curve (from Eq. (4.5)) 

and the single-effective-exponent curve (from Eq. (4.1)) as a function of θ for values 

of a ranging from 0.1 to 0.9. The difference is symmetric about the diagonal because 

the two beams are interchangeable. In all cases the deviation is negative, i.e., the plot 

with a single effective exponential extends a greater distance from the origin than the 

actual plot, except on the axes and on the diagonal. When a is close to 0 or 1, there is 

only a small contribution from one exponent, and the deviations are relatively small. 

The largest deviations are observed when a = 0.5. In all cases, the largest deviation is 

observed at an angle that lies in the range from roughly 5° to 15°. The larger the value 

of a, the smaller the angle at which the largest deviation is observed.  
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Figure 4.3 Difference between Eq. (4.5) and Eq. (4.1) with m determined along the diagonal for a 
combination of linear and quadratic components as a function of the amplitude of the linear component, 
a. The panels show results for a values in the ranges (A) 0.1 to 0.9, (B) -0.1 to -0.9, and (C) 1.1 to 1.9.  

Although in most circumstances the contributions of two different orders of 

absorption are expected to be additive, it is also possible for them to be of opposite 

sign. One example of this situation would be a system in which linear absorption 

generates fluorescence but two-photon absorption populates a dark state. We should 

therefore also consider values of a that are less than zero or greater than 1. We 

investigate the former case in Figure 4.3(B) for values of a ranging from -0.1 to -0.9. 

In this case the deviation is positive and grows in magnitude as |a| increases. The angle 

of maximum deviation also increases as |a| increases.  

In Figure 4.3(C) we plot the deviation for values of a ranging from 1.1 to 1.9. 

We note that when a > 1 the quantity 1−a is negative, and so the other root of Eq. (4.22) 

(with a negative sign before the square root) is used. This range of a was chosen 

because the slope of a logarithmic plot is 0 when a = 2 (see Eq. (4.25)). In this case the 

deviation is also positive. The maximum deviation grows with increasing a but 

becomes smaller again as a approaches 2. The angle at which the maximum deviation 

occurs also decreases with increasing a.  

Plots corresponding to Figure 4.3 for the other five pairs of combinations of 

exponents from 1 to 4 are given in Figures 4.4-4.8. The same general trends are 
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observed for these other sets of exponents. The deviations are negative for 0 < a < 1, 

and are generally positive for a < 0 and a > 1, although for large enough values of a the 

deviations can become negative. The angle at which the maximum deviation occurs 

shifts in the same manner as a is varied, but for fixed a the angle at which the largest 

deviation occurs generally becomes larger as the exponents become larger. The 

magnitudes of the deviations are also dependent upon (j,k).  

 

Figure 4.4 The difference between Eq. (4.5) and Eq. (4.1) with m determined along the diagonal for 
(1,3) as a function of the amplitude of the linear component, a. The panels show results for a values 
ranging from (A) 0.1 to 0.9; (B) -0.1 to -0.9; and (C) 1.1 to 1.5. 

 
Figure 4.5 The difference between Eq. (4.5) and Eq. (4.1) with m determined along the diagonal for 
(1,4) as a function of the amplitude of the linear component, a. The panels show results for a values 
ranging from (A) 0.1 to 0.9; (B) -0.1 to -0.9; and (C) 1.1 to 1.25. 

 
Figure 4.6 The difference between Eq. (4.5) and Eq. (4.1) with m determined along the diagonal for 
(2,3) as a function of the amplitude of the quadratic component, a. The panels show results for a values 
ranging from (A) 0.1 to 0.9; (B) -0.1 to -0.9; and (C) 1.1 to 1.25. 
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Figure 4.7 The difference between Eq. (4.5) and Eq. (4.1) with m determined along the diagonal for 
(2,4) as a function of the amplitude of the quadratic component, a. The panels show results for a values 
ranging from (A) 0.1 to 0.9; (B) -0.1 to -0.9; and (C) 1.1 to 1.25. 

 

Figure 4.8 The difference between Eq. (4.5) and Eq. (4.1) with m determined along the diagonal for 
(3,4) as a function of the amplitude of the cubic component, a. The panels show results for a values 
ranging from (A) 0.1 to 0.9; (B) -0.1 to -0.9; and (C) 1.1 to 1.25. 

It is also useful to consider how the deviations for a fixed value of m depend on 

(j,k). As a representative case, in Figure 4.9 we plot the deviations for m = 2.5 for the 

six different (j,k). Two general trends are apparent in this plot. First, the deviations are 

positive when j and k are both less than m or both greater than m, and are negative when 

m is between j and k. Second, for deviations of the same sign, the magnitude of the 

deviation grows with the ratio k/j.  
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Figure 4.9 Difference between Eq. (4.5) and Eq. (4.1) for m = 2.5 for each of the different (j,k) examined. 

As discussed above, 2-BA spectroscopy data can generally be fit to Eq. (4.6) 

for multiple (j,k). The correct values of j and k can be determined by determining a and 

b for different values of m and finding which set of exponents is consistent with Eq. 

(4.9). However, it is worthwhile to consider whether there are conditions under which 

(j,k) can be determined from data obtained for a single value of m and what data would 

be required to make such a determination. Making a measurement for a single value of 

m requires fewer experiments than making measurements for multiple values. 

Furthermore, in the case of processes with thresholds, such as photopolymerization, it 

is not possible to make measurements at different values of m.  

As a representative example, we consider the case in which m = 2.1. In Figure 

4.10 we plot Eq. (4.6) for data corresponding to (1,2). The data points are color-coded 

based on their angles relative to the x axis in a 2-BA plot. Given any significant 

experimental uncertainty, the data could also be fit well to (2,3), (2,4), and (3,4). 

Equivalent plots for (1,3) and (2,3) are shown in Figures 4.11 and 4.12, respectively. 

In the former case, any combination other than (1,2) might reasonably fit the plots given 

a noise level that is typical experimentally. In the latter case, (1,3) could likely be ruled 
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out as well. Plots for the other three combinations of j and k for m = 2.1 are given in 

Figures 4.13-4.15. 

 

Figure 4.10 Plots of Eq. (4.6) using different (j,k) for data generated using (1,2) and m = 2.1. The data 
points are color-coded on the basis of their angles θ relative to the x axis in a 2-BA plot (see the legend). 
φ is the angle a line from the origin to a data point makes with the x axis.  

 

Figure 4.11 Plots of Eq. (4.6) using different (j,k) for data generated using (1,3) and m = 2.1. The data 
points are color-coded on the basis of their angles θ relative to the x axis in a 2-BA plot (see the legend).  
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Figure 4.12 Plots of Eq. (4.6) using different (j,k) for data generated using (2,3) and m = 2.1. The data 
points are color-coded on the basis of their angles θ relative to the x axis in a 2-BA plot (see the legend).  

 
Figure 4.13 Plots of Eq. (4.6) using different (j,k) for data generated using (1,4) and m = 2.1. The data 
points are color-coded on the basis of their angles θ relative to the x axis in a 2-BA plot (see the legend).  
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Figure 4.14 Plots of Eq. (4.6) using different (j,k) for data generated using (2,4) and m = 2.1. The data 
points are color-coded on the basis of their angles θ relative to the x axis in a 2-BA plot (see the legend).  

 
Figure 4.15 Plots of Eq. (4.6) using different (j,k) for data generated using (3,4) and m = 2.1. The data 
points are color-coded on the basis of their angles θ relative to the x axis in a 2-BA plot (see the legend).  

Although the plots of Eq. (4.6) for the specific (j,k) of interest do not always 

yield a clear sense of the appropriate sets of exponents, it should be noted that plots for 

other sets of exponents can be quite revealing. For instance, in the (2,3) case, the data 

points for plots for (1,2) are entirely in the second quadrant. However, in the (1,3) case, 

the data points for plots for (1,2) are in the first and second quadrants. Thus, even when 

a plot for a given j and k ends up not to be linear, it can still give insight into the actual 
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values of (j,k). When m is not an integer, it is therefore generally useful to make plots 

of Eq. (4.6) for all six (j,k) explored here, even when not all of these (j,k) are physically 

plausible.  

An additional approach that can be used to analyze 2-BA data that have a 

noninteger m is to plot the angles that the data points in Eq. (4.6) make with the x axis 

(φ) as a function of the angle θ derived from the 2-BA plot (see Figure 4.10). Such plots 

can complement plots of Eq. (4.6), giving insight into which orders of absorption 

contribute to the signal in 2-BA spectroscopies. In many cases such plots in conjunction 

with plots of Eq. (4.6) can lead to an unambiguous determination of two different orders 

of absorption that contribute to 2-BA spectroscopy data. In Figure 4.16 we show the 

angular plots corresponding to the plots in Figures 4.10-4.12. In Figure 4.17 we show 

the angular plots corresponding to the plots in Figures 4.13-4.15. In conjunction with 

plots of Eq. (4.6), these angular plots provide clear distinctions among different (j,k) in 

most cases, with the one exception in this example being that it remains difficult to tell 

the difference between (2,3) and (2,4).  

 

Figure 4.16 Angle that plots of Eq. (4.6) make with the x axis (φ) as a function of the 2-BA plot angle 
θ for m = 2.1 and different (j,k) using the data in (A) Figure 4.10, (B) Figure 4.11, and (C) Figure 4.12.  
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Figure 4.17 Angle that plots of Eq. (4.6) make with the x axis (φ) as a function of the 2-BA plot angle θ 
for m = 2.1 and different (j,k) using the data in (A) Figure 4.13, (B) Figure 4.14, and (C) Figure 4.15.  

Once a noninteger value of m has been measured along the diagonal in a 2-BA 

spectroscopy experiment, it is useful to make plots of Eq. (4.6) and the associated 

angular plots for the different (j,k) examined here. Such plots will reveal the angles at 

which 2-BA data will provide that greatest degree of discrimination among different 

possible (j,k). The most useful angles for measuring 2-BA data are typically ones at 

which there is a substantial deviation from linearity observable when incorrect (j,k) are 

tested. 

4.4 Conclusions 

2-BA spectroscopies are a useful alternative to traditional logarithmic plots for 

determining the order(s) of absorption that contribute to an experimental observable. A 

measured exponent that is nonintegral is generally indicative of a signal that is 

generated by two (or more) orders of absorption. In such situations, logarithmic plots 

and 2-BA plots yield different effective exponents. We have developed a mathematical 

description of the relationships between these exponents for six different pairs of 

absorption orders: (1,2), (1,3), (1,4), (2,3), (2,4), and (3,4).  

We have demonstrated previously how 2-BA measurements made at different 

values of the observable can be used to make an unambiguous determination of which 
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two orders of absorption contribute to an observable.54 However, in some 

circumstances the observable may be single-valued, as in the case of a 

photopolymerization threshold.53 Here we have presented general principles for data 

analysis that, in most cases, can lead to the unambiguous determination of the orders 

of absorption at a single value of the observable. The crux of this strategy is the fact 

that 2-BA plots for pairs of contributions differ from “idealized” plots for a single 

noninteger exponent. The form of this deviation is dependent upon the orders of 

absorption that contribute to the signal. Furthermore, analyzing 2-BA data assuming 

pairs of orders of absorption other than the pair that contributes to the signal can provide 

a characteristic signature of the actual orders of absorption.  

Based on the results presented here, we suggest the following approach for 

analyzing 2-BA data. First, for a given value of the observable, the three-point method 

should be used to determine the 2-BA exponent m via Eq. (4.11). At this point, the 

expected shapes of plots of Eq. (4.6) and plots of φ as a function of θ can be determined. 

These plots will give guidance regarding the range of values of θ that will be most 

useful for distinguishing among different plausible (j,k). Additional 2- BA 

measurements can then be made in this range.  

The ultimate success of this approach depends upon a number of factors. First, 

as discussed above, in some relatively rare cases this strategy on its own will not allow 

for distinction between two or three (j,k). However, practical considerations may still 

allow the appropriate set to be determined under such circumstances. Second, 

experimental uncertainty can be a limiting factor in such analysis. The higher the 

precision and accuracy of the 2-BA data, the better is the ability to distinguish among 
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different (j,k). Finally, in some cases a 2-BA signal with a noninteger exponent will not 

arise from two independent contributions. For instance, the observable may arise from 

two sequential contributions (e.g., absorption followed by ESA) or more than two 

contributions. Although the framework developed here does not describe such 

situations, in practice the inability to describe 2-BA data within this scheme can be 

taken to be indicative of the need for a more complex model. For noncumulative 

observables (e.g., fluorescence and photocurrent, as opposed to photopolymerization), 

one way to test for phenomena such as thermal effects or interpulse ESA is to compare 

results when the beams are overlapped in space and when they are not overlapped in 

space. If the data are not the same in these two cases, then additional effects must be 

considered. We have shown previously how to model the signal in the presence of 

intrapulse ESA when there is also two-photon or three-photon absorption,55 and similar 

approaches can be used for related cases. 
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Chapter 5: Structure and Dynamics of Bulk Acetonitrile: 
Molecular Simulation and Neutron Scattering 
 
Adapted from: Cohen, S. R.; Plazanet, M.; Rols, S.; Voneshen, D. J.; Fourkas, J. T.; Coasne, B. (in 
preparation). 
Research designed by: John T. Fourkas and Benoit Coasne  
Research conducted by: Samuel R. Cohen, Marie Plazanet, Stéphane Rols, David J. Voneshen, John T. 
Fourkas, and Benoit Coasne 
I did simulations, experiments, analyzed the data, and am co-writing the paper. 
 

5.1 Introduction 

Acetonitrile (methyl cyanide) is an aprotic organic molecule with a large, 

permanent dipole moment of 3.92 D.1 The amphiphilic character of this molecule 

makes acetonitrile (ACN) a good solvent for many dipolar and non-dipolar solutes. 

Accordingly, both neat ACN and its binary mixtures with water are commonly used as 

the solvent medium for many reactions and separations.2,3 ACN has also served, for 

several decades, as an important model system for the study of molecular liquids, due 

to the combination of its strong dipolar interactions and its nonassociated character.4-43 

Despite the fact that ACN is a simple, small molecule that is aprotic, the liquid 

nevertheless exhibits unexpectedly complex behavior. Perhaps the most notable feature 

of this liquid is its short-range structure and strong orientational correlations.4-11 The 

most commonly cited feature of this structure is the propensity for the cyano groups of 

neighboring molecules to align antiparallel to one another.4-8 This behavior is often 

attributed to dipole-dipole interactions, although reference interaction-site model 

(RISM) calculations12 and integral equation methods13 can reproduce the structure of 

this liquid without taking into account explicit attractive interactions, indicating that 

the molecular shape plays an important role in this organization as well. 
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Many theoretical,12,13,16-19 molecular simulation,20-35 and experimental4-11,36-43 

studies have explored the intermolecular organization and dynamics of ACN. Despite 

many decades of investigation, there are important outstanding questions regarding the 

properties of the bulk liquid, particularly with regard to the details of its orientational 

ordering and the relationship of this ordering to dynamics and solvation. For example, 

it is not yet well understood how the organization about a molecule depends on 

intermolecular distance in the liquid state. Previous molecular simulations using three- 

and six-site models for ACN revealed oscillations in an orientational correlation 

function extending out to at least 10 Å from a central molecule, but these works focused 

solely on the relative orientation as a function of the distance from this molecule.23,32-

34 A more recent study applied a reverse Monte Carlo approach to X-ray and neutron 

diffraction data to explore the joint orientational and positional ordering in ACN.29 

The organization and dynamics of neat ACN at interfaces,44-46 in mesoporous 

media,47-51 and mixed with bulk52-57 and interfacial58-62 water are examples of topics of 

considerable current interest that require a more detailed understanding of the 

microscopic properties of neat acetonitrile. These are some of the outstanding problems 

that have been a driving force in the active development, characterization, and 

comparison of force fields for liquid ACN.30-35,63-74 With these issues in mind, we report 

the results of molecular simulations and neutron scattering experiments on bulk ACN. 

We employ a widely-used and reliable force field for ACN68 to undertake an in-depth 

characterization of this liquid’s structure and dynamics. We also benchmark our results 

against experimental data from the literature and from our own inelastic and 

quasielastic neutron scattering studies.  
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In Section 5.2, we describe the technical details of the molecular simulations 

and neutron-scattering experiments. In Section 5.3, we benchmark the force field by 

comparing simulated structure factors with those obtained from neutron-diffraction 

experiments. To gain further insight into the microscopic structure, we calculate 

angularly resolved radial distribution functions, g(r,q), which provide deeper insight 

into the organization of the liquid than is possible using conventional radial distribution 

functions. These two-dimensional distribution functions allow us to elucidate the 

details of the molecular associations among nearest-neighbor ACN molecules, which 

we divide into antiparallel and head-to-tail configurations. We then explore the 

connections between structure and dynamics by determining typical pairing times 

between acetonitrile molecules using the formalism of mean-first passages. We explore 

additional dynamical properties of ACN, including different vibrational densities of 

states, which we discuss in light of our experimental results obtained via quasielastic 

and inelastic neutron scattering (self and collective diffusivity and generalized density 

of states). In Section 5.4, we give concluding remarks and directions for future work. 

5.2 Computational and Experimental Methods 

5.2.1. Molecular Simulation  

5.2.1.1. Model 

Liquid ACN was simulated using the flexible, 6-site, all-atom model developed 

by Nikitin and Lyubartsev,68 which has been shown to reproduce the density, the heat 

of evaporation, and the site-site radial distribution functions of this liquid accurately. 

The model also reproduces the experimental values for the self-diffusion coefficient 
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and the dielectric constant of the liquid to a good approximation. An ACN molecule, 

with the atom labels and partial charges used in this work, is shown in Figure 5.1(A). 

The non-bonded interactions are described via a pair potential given by 

 

𝐸E8EKP8EQ1Q = ∑ ∑ Å4𝜀') ÆO
^#$
7#$
P
%#
− O^#$

7#$
P
/
Ç + %

456%

3#3$
7#$
È)j''  .  (5.1) 

 

This potential consists of 12-6 Lennard-Jones and Coulombic terms, where i and j are 

on different molecules, 𝜀') and 𝜎') are the Lennard-Jones parameters for the potential-

well depth and characteristic site radius, respectively, 𝑟') is the separation distance 

between sites i and j, 𝜀@ is the permittivity of vacuum, and 𝑞' and 𝑞) are the charges on 

sites i and j, respectively. For atoms on the same molecule, the only non-bonded 

interactions considered are the 1,4 interactions. The 1,4 electrostatic interactions are 

scaled by a factor 0.83, and the 1,4 Lennard-Jones interactions are scaled by a factor 

0.5. The energy Ebonded of the intramolecular terms is 

 

𝐸P8EQ1Q = ∑ 𝐾7(𝑟 − 𝑟@)#P8EQR +∑ 𝐾V(𝜃 − 𝜃@)#UE�21R ,           (5.2) 

 

where 𝐾7 is the harmonic bond coefficient, r is the bond distance, 𝑟@ is the equilibrium 

bond distance, 𝐾V is the harmonic angle coefficient, and 𝜃@ is the equilibrium value of 

angle 𝜃. The CT-YC-YN angle is 180˚, the HC-CT-YC angle is 110˚, and the HC-CT-

HC angle is 109.5˚. The total energy of the system is the sum of the bonded and non-

bonded energies. Long-range Coulombic interactions were included using Ewald 
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summation with a precision of 10-5. The cut-off distances for the Lennard-Jones 

interactions and the real-space part of the Ewald sum were both set to 14 Å. Figure 

5.1(B) shows a representative configuration from a simulation of the bulk liquid. 

 

 

Figure 5.7 (A) An acetonitrile molecule, showing the label and partial charge for each atom type. 
Representative molecular configuration at T = 298 K for (B) bulk liquid acetonitrile; the red frame 
indicates the molecular simulation box used in the calculations. 

 

5.2.1.2. Molecular Dynamics Simulations 

Molecular dynamics simulations were performed with LAMMPS75 using the 

interaction potentials in Eqs. (5.1) and (5.2). The equations of motion were integrated 

with a time step of 1 fs. Configurations and thermodynamic data were stored every 5 

fs, except in the calculation of the velocity autocorrelation function, for which such 

information was stored every 1 fs. All of the initial configurations were built using 

PACKMOL,76 and the simulations were preceded by an energy minimization with an 

energy tolerance of 10-6. The simulations for the bulk liquid used a 36 Å×36 Å×36 Å 

box with periodic boundary conditions. A simulation was performed to measure the 

density of the bulk liquid by equilibrating in the isothermal/isobaric (NPT) ensemble at 

298 K and 1 bar for 200 ps using a Nosé-Hoover thermostat and barostat77 with 30 fs 

and 1000 fs relaxation constants, respectively. Using the equilibrated systems, the 
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simulation was then run in the NPT ensemble up to 2 ns. All other simulations were 

equilibrated in the NVT ensemble at 298 K for 200 ps using a Nosé-Hoover thermostat 

with a 30 fs relaxation constant. Using the equilibrated systems, the simulations were 

then run in the NVE ensemble up to 2 ns for the bulk liquid. 

 

5.2.2. Neutron-Scattering Experiments 

Neutron-scattering measurements were performed at ISIS (UK) on the LET 

time-of-flight spectrometer. Based on the repetition-rate multiplication, energies of 

1.78, 2.83, 5.18, 12.39, and 60.11 meV were selected from the incoming beam. 

Scattered neutrons were monitored on detector banks covering the angular range from 

5° to 135°. Because all incident energies gave consistent data, we present here only 

data recorded with Ei = 2.83 meV, which best cover the energy and q ranges of interest, 

enabling a resolution of 70 µeV for the elastic line. Data were reduced using standard 

routines included in Mantid,78 and fitting of the data was performed in the Large-Array 

Manipulation Program (LAMP).79 

 

5.2.2.1. Inelastic Neutron Scattering 

Scattering involving energy transfers larger than ~1 meV that arises from a 

periodic excitation is considered to be inelastic. Scattering in such a process is not 

limited by any selection rules, and multiphonon processes occur. The double 

differential cross section of neutron scattering can be written as:80 
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where kwe and kf are the wave vectors of the incident and scattered neutrons, Ω is the 

scattering solid angle, 𝜔 is the angular frequency, 𝑞⃗ is the momentum transfer, W(𝑞⃗) is 

the Debye-Waller factor, n(𝜔) is the Bose occupation factor, m the mass of the 

scattering atom, and 𝑒'(𝑗) its displacement in the vibrational mode i, 𝜎'E0(𝜅) the 

neutron incoherent scattering cross section of the atoms of type 𝜅. For an isotropic and 

incoherent sample, one can simplify Eq. (5.3) to obtain:80  
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where 𝜎'E0(𝜅) is the neutron incoherent scattering cross section, and 𝑔)(𝜔) is the 

density of states of atom j of type 𝜅 for all the modes i:  

 

𝑔)(𝜔) = ∑'|𝑒'(𝑗)|#𝛿(𝜔 − 𝜔') .    (5.5) 

 

Summing Eq. (5.4) over all atoms j and type 𝜅, we obtain:  

 

U Q'^
QwQp

V
'E0

= ,2
,#
𝑞# &

�5
𝑒K#�(3) =(p)

p
(𝑛(𝜔) + 1) ,   (5.6) 

 



 

 

103 
 

where 𝐺(𝜔) is the generalized density of states (GDOS) given by 

 

𝐺(𝜔) = ∑ ^#:((x)
`3

&
x(% 𝑔x(𝜔) ,     (5.7) 

 

and 𝑔x(𝜔) is the partial density of states for all of the atoms N of a given chemical 

species 𝜅. The quantity 𝑔x(𝜔) is experimentally accessible using inelastic neutron 

scattering. In the case of ACN, the experimentally-derived GDOS is dominated by the 

hydrogen contribution. When H is replaced by D (ACN-d3), one must invoke the so-

called “incoherent approximation”81 to derive 𝐺(𝜔). The use of this approximation 

necessitates averaging the coherent cross section over a large domain of momentum 

transfer, which is assured in our experiments by the use of a detector bank covering a 

range of scattering angles. 

 

5.2.2.2. Quasielastic Neutron Scattering 

Quasielastic neutron scattering (QENS) refers to the symmetric broadening of 

the elastic line by the scattering of neutrons from diffusive excitations, such as 

rotational and translational dynamics. The QENS signal, from which S(q,ω) is 

extracted, can be sliced at constant q and described in a first approximation by a sum 

of Lorentzian functions: 

 

𝑆(𝑞, 𝜔) = 𝑒K#�(3){∑ 𝐴'(𝑞) × 𝐿'(𝑞, 𝜔)' } ⊗ 𝑅(𝑞, 𝜔) + 𝑏(𝑞) ,  (5.8) 
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where the Li(q,ω) are the Lorentzian contribution to the QENS signal, the Ai(q) are the 

corresponding amplitudes, R(q,ω) is the resolution function of the instrument, and b(q) 

is the flat background. The widths and amplitudes of the Lorentzians as a function of q 

enable the determination of the rotational or translational nature of the dynamics. 

We further refined the model using a sum of two terms describing molecular 

rotations convolved with the translational dynamics, so that we obtain: 

 

 ,  (5.9) 

where ⟨𝑢#⟩ is the mean-squared displacement and I(q)El is the remaining elastic peak 

arising from the sample holder. This latter feature was fitted with an elastic peak by 

multiplication with the delta function 𝛿(𝜔). The first and second rotational 

contributions correspond to the spinning and tumbling of the molecule. The 

translational contribution can be written as:82 

𝑆(𝑞, 𝜔)d =
%
5

�G
p';�G

'  ,     (5.10) 

where Гd is the half-width at half maximum of the translational Lorentzian function, 

and is defined as: 

𝛤d =
�G3'

%;_�G3'
  ,      (5.11) 

where 𝐷d is the self-diffusion constant and 𝜏 is the residence time. we assume isotropic 

rotational contributions such that the rotational contribution can be written as:82 
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𝑆(𝑞, 𝜔)F = 𝐴@(𝑞)𝛿(𝜔) + ∑ 𝐴'(𝑞)
%
5

�#
(p)';�#

'
C
'(%  ,    (5.12) 

with 

𝐴'(𝑞) = (2𝑖 + 1)𝑗'#(𝑞𝑅)      (5.13) 

and 

𝛤' = 𝑖(𝑖 + 1)𝐷F ,     (5.14) 

where R is the radius of rotation. 𝐷F is the isotropic rotational diffusion constant, which 

is related to the characteristic rotational time by tR  = 1/(2DR). 

 

5.3 Results and Discussion 

5.3.1. Structure 

To compare the structure of the simulated liquid with experimental 

measurements, the total static structure factor 𝑆(𝑞) was calculated for three different 

ACN isotopologues. The total structure factor is proportional to the differential 

scattering cross-section that is measured in diffraction experiments. For a polyatomic 

system such as ACN, the total structure factor is essentially a weighted sum of the 

partial structure factors.83 The partial structure factors 𝑆>�(𝑞) for 𝑁`82 molecules 

consisting of atoms a and b were calculated according to84 

𝑆>�(𝑞) = Ö %
&?-H

𝜌3>𝜌K3
� × ,                                           (5.15) 

where 𝜌3> and 𝜌K3
�  are the Fourier components of the microscopic density, 
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𝜌3> = ∑ 𝑒K'3∙7I,#&I
'(%                                                   (5.16) 

and 

𝜌K3
� = ∑ 𝑒'3∙7J,#&J

'(%                                                    (5.17) 

for the numbers 𝑁> and 𝑁� of atoms in the system with position vectors 𝑟>,' and 𝑟�,' for 

the ith atom of type a and b, respectively, and q is the magnitude of the scattering wave 

vector. The brackets in Eq. (5.15) denote an ensemble average. To obtain the total 

structure factor, the partial structure factors were multiplied by the corresponding 

neutron coherent scattering lengths 𝑏>, 𝑏� of each component according to 

𝑆(𝑞) = ∑ 𝑏>𝑏�𝑆>�(𝑞)/
>,�(% ∑ 𝑏>

#/
>(%±  ,                                          (5.18) 

where the choice of denominator normalizes the function to 1 at large q. 

The simulated structure factors for the three isotopologues are plotted in Figure 

5.2, and the corresponding experimental static structure factors for CD3C15N and 

CD3C14N are shown for comparison. There is excellent agreement between the 

simulated and experimental static structure factors for these liquids. Note that we could 

not find any experimental results for CH3CN in the literature, presumably because the 

strong incoherent background from the hydrogen atoms masks most of the signal. A 

sharp diffraction peak in the vicinity of q = 1.5 to 2 Å-1 is present in all cases, and is 

indicative of short-range order. However, it is difficult to interpret the structure factors 

qualitatively beyond this observation. It is more informative to study pair correlations 

in real space via partial radial distribution functions. 
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Figure 5.8 Static structure factor S(q) for bulk ACN at 298 K as obtained from molecular simulations 
(black) and neutron-diffraction experiments9,10 (red), where q is the magnitude of the scattering wave 
vector. The three sets of data are for different isotopologues, with deuterium/hydrogen and/or 14N/15N 
isotopic substitutions. The S(q) for the three different isotopologues are offset vertically for clarity. 

 
The center-of-mass radial distribution function and partial radial distribution 

functions are shown in Figure 5.3. In previous works, the partial radial distribution 

functions for ACN have been found to be quite sensitive to the dipole-dipole 

interactions.23,32,34 In contrast, the structure factors have been shown to be reproducible 

without taking attractive interactions into account explicitly,12,13 which led to the 

conclusion32 that structure factors are not particularly sensitive to details of the 

intermolecular effects of electrostatic attractions. The subset of partial radial 

distribution functions shown in Figure 5.3 that have been reported previously are 

essentially the same as in prior work,68 and all of the partial radial distribution functions 
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are similar to those reported for extensively-studied three-32,33,65 and six-site64,66 models 

and reverse Monte Carlo simulations.29 Although only a single replica was simulated, 

the radial distributions for both the bulk (Chapter 5) and interfacial (Chapter 6) 

simulations are identical regardless of where in the trajectory the analysis begins. This 

observation suggests that there is stabilization of structural properties. 

 
 

Figure 5.3 Simulated radial distribution function g(r) between different acetonitrile atom types and for 
the molecular center of mass (COM) in the bulk liquid at 298 K. In both panels, some of the functions 
are offset vertically for clarity. 



 

 

109 
 

 

To gain deeper insight into the orientational ordering of liquid ACN, we 

calculated angularly resolved radial distribution functions, g(r,q). By normalizing the 

data to the value of g(r) for each r, these plots give the probability that two ACN 

molecules with selected sites separated by a distance r make an angle q. Here, q is 

calculated from the dot product between unit vectors on different molecules, as 

determined using the CT-YN vector in the direction of YN on each molecule. In 

polyatomic liquids, g(r,q) can be considerably more informative than a traditional 

radial distribution function.56,85,86 In Figure 5.4, we show g(r,q) for the molecular 

center-of-mass, along with the corresponding g(r). The center-of-mass g(r,q) shows 

that there are two distinct populations contributing to g(r) at short distances. The first 

peak in g(r) arises from antiparallel pairs of molecules with a center-of-mass separation 

on the order of 3.8 Å (configuration 1 in Figure 5.4). We note that these molecules are 

not dipole-paired in the traditional sense in which this term is used for acetonitrile, in 

which the cyano groups of the two molecules interact with one another;4 rather, the 

molecules align as to allow for favorable interactions among all of the complementary 

partial charges on the atoms (see Figure 5.1). We therefore refer to this motif as 

octupole pairing. The second peak arises from a population of head-to-tail pairs with a 

broad distribution of angles centered around ~90° (configuration 2 in Figure 5.4). Note 

that the area under this second peak is much larger than that under the first peak. The 

center-of-mass separation in the latter pairs decreases with increasing q.  
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Figure 5.4 The center-of mass g(r,q) and g(r) for acetonitrile, along with representative configurations 
from the indicated regions. 

 

For comparison with the reverse Monte Carlo work of Pothoczki and Pusztai,29 

we show in Figure 5.5 our distance-dependent, normalized angular probability 

distribution gCT-CT(r,cosq) alongside that from the reverse Monte Carlo study. We note 

that q and cosq have both been used for the abscissa in previously published angularly 

resolved radial distribution functions.87-89 We have chosen to use q here to maintain a 

linear scale. In Figure 5.6, we show the normalized angularly resolved g(r,q), 

calculated with respect to the distances between the centers of mass, alongside the 

corresponding g(r,cosq). Despite the fact that the two plots differ substantially in 

appearance, we demonstrate in Figure 5.7 that the angular integral of each normalized 

function at fixed r is the same.  
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Figure 5.5 Comparison of gCT-CT(r,cosq) calculated (A) from a molecular dynamics simulation (this 
work) using the force field of Nikitin and Lyubartsev68 and (B) by the reverse Monte Carlo method29 
using the OPLS-AA90 force field as a constraint. In each case the corresponding g(r) is shown for 
comparison. The data in panel (B) for both gCT-CT(r) and the unnormalized gCT-CT(r,cosq) were provided 
by one of the authors (S. Pothoczki) of the reverse Monte Carlo study. In (A) the bin size is 0.1 Å in r 
and 0.05 in cos q. In (B) the bin size is 0.1 Å in r and 0.10 in cos q. The difference in bin sizes in q is 
responsible for the different z scaling of the two heat maps. 

 

Figure 5.6 Angularly resolved radial distribution functions calculated with respect to the center-of-mass 
separation. Panel (A) shows g(r,q) and panel (B) shows g(r,cosq). Note that in (B) the cosq axis goes 
from 1 to -1 for ease of comparison. The corresponding g(r) is shown next to each heat map. These two 
plots indicate that the two different representations highlight different features of the orientational 
distribution. The bin size in r is 0.1 Å in each plot. The bin size in q is 4° and the bin size in cosq is 0.05. 
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Figure 5.7 Integral of normalized g(r,q) and g(r,cosq) with respect to q and with respect to cosq, 
respectively, at a center of mass-center of mass distance of r = 3.85 Å. The integrals extend from 180° 
to cos-1(cosq) and -1 to cosq, respectively. The close correspondence between the two plots indicates 
that the heat maps in Fig. 5.5 display the same data, despite their different appearances. 

 

As shown in Figure 5.5, our molecular simulation results are in good agreement 

with the results of Pothoczki and Pusztai,29 which were obtained using the reverse 

Monte Carlo method with the OPLS-AA90 force field as a constraint. It is interesting to 

note that these two distinct numerical approaches lead to similar microscopic 

organization despite very different hypotheses. Molecular dynamics relies purely on a 

force field, whereas reverse Monte Carlo consists of an error minimization between the 

experimental and simulated radial distribution function. In particular, even though the 

reverse Monte Carlo calculations in [29] are further constrained by the use of the 

OPLS-AA force field, this force field differs from the one used in our molecular 

dynamics simulations, and so cannot be the source of the similarities. Reconstruction 

of a fully three-dimensional picture of a material from knowledge of lower-order 

correlation functions is a well-known inverse problem,91 and from this perspective it 

can be understood that one-dimensional structural functions, which give pair 



 

 

113 
 

information, under-constrain the problem of liquid structure. It is therefore not obvious 

that the microscopic organization in the two models should be the same, and our 

comparison of the models highlights the ability of multidimensional visualizations to 

reveal liquid structure. Our results show that molecular simulation can reveal details 

that are inaccessible using either the reverse Monte Carlo method or experiment.  

In Figure 5.8, we show the angularly resolved radial distribution functions 

involving the physical centers of the methyl (Me) and cyano (CN) groups, i.e., gMe-

Me(r,q), gMe-CN(r,q), and gCN-CN(r,q). The corresponding g(r) is presented in each case 

for comparison. Our choice of these two functional groups was inspired by 

investigations into nanostructural organization in ionic liquids,92 and by molecular 

simulations55,57 of acetonitrile-water mixtures that showed evidence of 

microheterogeneities when examining differences in the partial radial distribution 

function between the methyl group and the central carbon of ACN at different 

concentrations. Although our results do not provide unambiguous evidence of such 

organization in bulk ACN, these angularly resolved radial distribution functions 

provide a wealth of new information about the organization of this liquid.  

The Me-Me partial radial distribution is broad and relatively featureless. 

Correspondingly, gMe-Me(r,q) (Figure 5.8) is also relatively featureless, indicating that 

the methyl groups do not have a preference for specific directional interactions. It is 

notable, however, that this distribution peaks at an angle of ~90° for the initial 

maximum in g(r), and there is a low probability for relative orientations near 0° and 

180° through the entire range of r investigated. There is a roughly monotonic decrease 

in the closest distance between methyl groups with increasing angle between 
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molecules. There is lobe in the distribution at a distance of approximately 5 Å arising 

from roughly antiparallel, octupole-paired molecules (configuration 3), and another 

lobe at approximately 6 Å arising from offset, head-to-tail molecules (configuration 4). 

The peak at ~90˚ indicates that this population is composed largely of offset, head-to-

tail pairs rather than end-on, head-to-tail pairs (configuration 5).  

 
Figure 5.8 Radial distribution functions and angularly resolved radial distribution functions for 
acetonitrile with respect to the methyl-methyl distance, the methyl-cyano distance, and the cyano-cyano 
distance for different molecules, with the angle q defined as described in the text, along with 
representative configurations from the indicated regions. Note each representative configuration in the 
figure is unique. 

 

The pronounced first peak in gMe-CN(r) is qualitatively similar to the first peak 

in the gCT-YN(r) corresponding to the CT-YN distance (Figure 5.3), which has been 

interpreted previously in simulations of both three-32 and six-site34 models of ACN to 

reflect the head-to-tail alignment of neighboring dipoles. The gMe-CN(r,q) in Figure 5.8 

instead reveals the presence of structures in which the nitrogen atom associates with a 

methyl group in an offset head-to-tail fashion, with angles ranging from small acute 

angles (configuration 6) to large acute angles (configuration 7) to octupole pairs 
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(configuration 8). Even the pairs at small acute angles are dominated by offset, rather 

than true, head-to tail structures.  

Based on previous work, gCN-CN(r) is expected to reflect dipole pairing of cyano 

groups.32 However, the first feature of gCN-CN(r) exhibits two peaks. The corresponding 

angularly resolved radial distribution function (Figure 5.8) demonstrates that these 

peaks correspond to two different types of local structures. The peak at shorter 

separations corresponds to antiparallel, octupole-paired dimers (configuration 9), in 

which the nitrogen atom of one molecule is associated with a hydrogen atom of another 

molecule. Here, and in the other angularly resolved radial distribution functions, we 

find no evidence for a significant population of dipole-paired dimers. The other 

dominant structural motif in liquid acetonitrile, the formation of head-to-tail dimers, is 

observed in all of the angularly resolved radial distribution functions shown here. In 

gCN-CN(r,q) in Figure 5.8, the peak at larger separations arises from dimers in which one 

cyano group associates with a methyl group in an offset, head-to-tail fashion 

(configuration 10).  
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Figure 5.9 Histograms comparing the probability distributions for neighbors that are (A) antiparallel and 
(B) head-to-tail for different sets of criteria. In both cases, the qualitative characteristics of the 
distributions are not highly sensitive to the selection criteria. 

To analyze the population of head-to-tail dimers, we isolated molecular pairs 

based on gMe-CN (r,q). We investigated several sets of reasonable criteria for dimers 

based on r and q. All of the sets tested gave qualitatively similar results, revealing a 

population of neighboring head-to-tail dimers, with many molecules forming dimers 

with more than one neighbor. In Figure 5.9 we show a comparison of the populations 

of dimers for the different sets of criteria. Here we use the criteria 3.5 Å ≤ rMe-CN ≤ 4.2 

Å and 0˚ ≤ q ≤ 90˚. We isolated molecular pairs meeting these criteria and calculated 

the angle a formed by the unit vector along the principal molecular axis of a molecule 

1 with the unit vector between the methyl group of a molecule 1 and the cyano group 

of a molecule 2, as indicated schematically in Figure 5.10. We used this information to 

assess whether head-to-tail pairing predominantly involves end-on or offset 

associations. Figure 5.10 shows the probability that two acetonitrile molecules that 

meet the above criteria are separated by a distance r and make an angle a. Note that we 

have normalized the data to P(r), the probability of the molecules in the pair having a 

center-of-mass separation of r for each r. The probability P’(a) of the molecules in the 
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pair having an angle a is also shown. For end-on dimers, we would expect the latter 

distribution to be peaked at a relatively small value of a, with the center-of-mass 

separation decreasing with increasing a. The fact that the peak at an angle of ~97° 

indicates, however, that offset head-to-tail dimers dominate this population. This 

picture is confirmed by the representative pair configuration shown (configuration 11). 

The appearance of molecular pairs at angles greater than 90˚ (configurations 11 and 

12) is a clear sign that offset pairing is dominant. An end-on configuration is also shown 

(configuration 13) for comparison. 

 

Figure 5.10 Analysis of head-to-tail dimers, with the angle a defined by the unit vector along the 
principal molecular axis of a molecule 1 with the unit vector between the methyl group of the molecule 
1 and the cyano group of a molecule 2. The directions of the unit vectors are illustrated schematically in 
the figure. The probabilities P(r) and P’(a) are defined as described in the text. 
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Together, these results point to the existence of two distinct pair populations in 

liquid acetonitrile: antiparallel, octupole-paired molecules, and offset, head-to-tail 

molecules. It is interesting to explore whether these same motifs are prominent in the 

common crystalline phases of acetonitrile. We therefore determined the angularly 

resolved radial distribution functions for the a and b crystalline polymorphs of 

acetonitrile, based on crystallographic data.93 The g(r,q) for the Me-CN and CN-CN 

interactions for both phases are shown in Figure 5.11. For the high-temperature a 

polymorph, gMe-CN(r,q) in Figure 5.8 reveals the presence of a substantial population of 

perpendicular, end-on, head-to-tail dimers (configuration 14) and parallel, offset 

dimers (configuration 15) that are not common in the liquid. There are also dimers that 

are arranged in a perpendicular, offset, head-to-tail fashion (configuration 16) and an 

octupole-paired fashion (configuration 17) that correspond strong with the liquid 

structure. The corresponding gMe-CN(r,q) for the b polymorph also features end-on, 

head-to-tail dimers (configuration 18) and offset parallel dimers (configuration 19) that 

do not have a strong presence in the liquid. The highest peak in this angularly-resolved 

radial distribution function is for roughly perpendicular, offset, head-to-tail dimers 

(configuration 20), again as found in the liquid. 

The plot of gCN-CN(r,q) for the a polymorph shown in Figure 5.11 reveals 

populations of octupole-paired dimers (configuration 21), and perpendicular, offset, 

head-to-tail dimers (configuration 22), as in the bulk liquid. There are also offset 

parallel dimers (configuration 23) that are not present in the bulk liquid, as well as 

roughly perpendicular head-to-tail dimers at larger separations (configuration 24) that 

are found in the bulk liquid. In the b polymorph, the largest peak arises from offset 
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parallel dimers (configuration 25) that do not have a strong presence in the liquid. There 

are also two peaks corresponding to roughly perpendicular head-to-tail dimers 

(configurations 26 and 27) that are important in the liquid. The angularly resolved 

radial distribution functions for the Me-Me and center-of mass separations tell a similar 

story (Figure  5.12). We can conclude that the offset parallel dimers that are seen in the 

crystalline phase are driven by packing constraints, whereas the offset, head-to-tail and 

octupole-paired dimers present in all three phases are energetically favorable.   

 

 

Figure 5.11 Radial distribution functions and angularly resolved radial distribution functions for 
crystalline acetonitrile with respect to the methyl-cyano distance for the a polymorph (top left) and the 
b polymorph (top right) as well as with respect to the cyano-cyano distance for the a polymorph (bottom 
left) and for the b polymorph (bottom right). 
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Figure 5.12 Radial distribution functions and angularly resolved radial distribution functions for 
crystalline acetonitrile with respect to the center-of-mass distance for the a polymorph (top left) and the 
b polymorph (top right) as well as with respect to the cyano-cyano distance for the a polymorph (bottom 
left) and for the b polymorph (top right). 

 

To analyze the pairing in the liquid in more detail, we created a 2-D histogram 

of the number of paired antiparallel and head-to-tail molecules (Figure 5.13), with the 

pairing for antiparallel molecules defined, based on gCN-CN(r,q), by the criteria 3.1 Å ≤ 

rCN-CN ≤ 4.6 Å and 135˚ ≤ q ≤ 180˚ (for a comparison of different criteria, see Figure 

5.9). The 1-D probabilities P(n) for either antiparallel or head-to-tail dimers are given 

alongside the 2-D histogram. It is clear from Fig. 5.13 that molecules are not necessarily 

paired only to a single neighbor, and molecules participating in head-to-tail pairs are 
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rarely paired only to one neighbor. It is noteworthy that less than 2% of molecules are 

unpaired at any given time. The lifetimes of pairs are discussed in Sec. 5.3.2.1.  

 

 
Figure 5.13 Probability that an acetonitrile molecule is associated with antiparallel (AP) or head-to-tail 
(HT) neighbors, as defined in the text. 

 

5.3.2. Dynamics and Vibrational Properties 

5.3.2.1. Molecular Dynamics 

Figure 5.14 shows the mean-squared displacements (MSDs) as a function of 

time for each atomic site, as determined from the molecular dynamics trajectory. As 

expected, in the long-time limit, all atomic MSDs merge, as rotations and individual 

motions become negligible compared to the typical center-of-mass displacements. In 

this long-time limit, the self-diffusivity can be obtained from such atomic MSDs using 

the Einstein equation, Ds ~ Dr2/6t.84 From the MSD, we calculated a value of 3.79×10-

5 cm2/s for the self-diffusion coefficient (Table 5.1). This self-diffusivity is somewhat 

lower than the experimental value, in agreement with previous results.68 Additional 
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useful dynamical information can be inferred from short-time behavior of the atomic 

MSDs in Figure 5.14. The hydrogen atoms, which are light, move in a superdiffusive, 

ballistic regime at short times, due to the spinning of the molecule about its long axis 

(which is the same as methyl-group rotation). Because spinning constrains the 

hydrogen atoms to move in circles, the hydrogen-atom MSD only appears ballistic on 

sufficiently short time scales. The fact that the hydrogen atoms are farther from the 

molecular center of mass than are any other atoms means that tumbling rotation makes 

this MSD larger than any of the other atomic MSDs until the Fickian limit is reached. 

Conversely, the central carbon (YC) is close to the center of mass, which means that 

its MSD is the least affected by tumbling, and is slightly smaller than the values for the 

other atomic sites until the Fickian limit is reached. 

 

 
Figure 5.14 Mean-squared displacement as a function of time for each atomic site. The line indicates 
the Fickian limit, in which the MSD is given by 6Dt. 
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Table 5.6 Self-diffusivity for acetonitrile and acetonitrile-d3, along with a comparison to values from 
the literature. 

 
Property Simulation (this work) Experiment (literature or this work) 

Self-diffusivity (10-5 cm2/s) 3.79a 4.12b, 4.2c, 4.3d, 4.31e, 4.34f, 4.37g,h, 4.7i, 5.0j, 4.24 

Self-diffusivity, ACN-d3 (10-5 cm2/s) 3.64a 4.04j, 4.14l, 3.94 
 

a Calculated via mean-squared displacement. b Determined in Ref. [94] from conductivity measurements. 
c Determined in Ref. [42] from quasielastic neutron scattering measurements. d,e Determined, 
respectively, in Refs. [95] and [96] from NMR spin echo measurements. f Determined in Ref. [97] via 
an open-ended capillary method. g-l Determined, respectively, in Refs. [98], [99], [43], [7], [100], and 
[98] from NMR spin-echo measurements. 
 

The simulated vibrational density of states 𝑔(𝜔) was calculated for each atom, 

and for the center of mass, using 

𝑔(𝜔) = %
#5
Re�FT>𝐶(𝜏)?�  ,       (5.19) 

where 𝐶(𝜏) = ⟨𝑣(0) ∙ 𝑣(𝜏)⟩ is the velocity autocorrelation function. Figure 5.15 shows 

these velocity autocorrelation functions. For the calculation of the simulated vibrational 

density of states, only the first half of the velocity autocorrelation function was used, 

and the autocorrelation function was padded with zeros out to ~65 ps. A Savitzky-

Golay filter was used to smooth the data. The GDOS was obtained by weighting the 

vibrational densities of states for each atomic site according to Eq. (5.7), using the 

neutron incoherent scattering cross sections. The low-frequency GDOS is shown in 

Figure 5.16(A). This region of the spectrum corresponds to intermolecular modes. The 

partial densities of states for each site and for the center of mass are shown in Figure 

5.16(B). In the case of the center-of-mass vibrational density of states, the low-
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frequency region reflects the influence of molecular tumbling, and thus can be 

regarded, in a sense, as a single-molecule analog to the low-frequency Raman 

spectrum. In Figure 5.16(A), we also show the density of states as obtained from 

inelastic neutron scattering; these data will be discussed in detail in Section 5.3.2.2. In 

the simulated data, modes due to the intramolecular part of the force field appear at 

higher frequencies, as shown in Figure 9(B). Table 5.2 lists the modes and their 

assignments. We also performed a normal-mode analysis along the molecular axis, 

using the force constants reported in Ref. [68] along with a unified methyl group. This 

analysis was found to give similar frequencies for the CT-YC and YC-YN stretches.  
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Figure 5.15 Acetonitrile velocity autocorrelation functions for (A) HC, (B) CT, (C) YC, (D) YN, and 
(E) the center of mass. 
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Table 5.7 Type of intramolecular mode and corresponding experimental frequency. The approximate 
frequencies of the modes in the model are also given. 
 

Mode Experimenta (cm-1)  Simulation (cm-1)  Degeneracy 

CCN bend 379 631 2 

CC stretch 917 832 1 

CH3 rock 1040 956 2 

CH bend 1372 1318 1 

CH bend 1440 1388 2 

CN stretch 2253 1722 1 

CH stretch 2943 2921 1 

CH stretch 3003 3036 2 
a Ref. [40]. 

 
Figure 5.16 (A) Low-frequency region of the simulated generalized density of states for ACN, along 
with an overlay of the experimental, height-normalized inelastic neutron spectra for ACN and ACN-d3. 
(B) Full spectra of the simulated vibrational density of states for ACN calculated with respect to the 
molecule center of mass (COM, top spectrum) and for each atomic site on the molecule. The densities 
of states are offset vertically for clarity. 

 

We investigated the pairing lifetime for both the antiparallel and head-to-tail 

configurations, as defined in Section 5.3.1.1. WE employed the formalism of Impey et 

al.,101 in which the mean first passage time102 is used to calculate 𝛹(𝑡)𝑑𝑡, the 

probability that a molecule remains paired at a time t after being paired at a time t = 
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0.103,104 As proposed by Impey et al.,101 we introduce a tolerance time t*, that allows 

two molecules to be unpaired for a time t*. In other words, if the molecules unpair for 

a shorter time than t* but are paired both before and after, then these molecules are still 

considered as having remained paired. 𝛹(𝑡, 𝜏∗)𝑑𝑡 is the probability that a molecule 

remains continuously paired to any molecule at a time t after being paired at a time t = 

0. As discussed by Laage and Hynes,105 transition-state theory is a more robust tool for 

determining pairing times, as the approach used here is t*-dependent. The t* approach 

is however sufficient to investigate the phenomena in which we are interested, 

particularly because our neutron scattering experiments have a time resolution of ~1 

ps. Thus, t* = 1 ps is ideal for comparison of our simulations with our experimental 

data.  

Figure 5.17 shows 𝛹(𝑡, 𝜏∗) for both antiparallel and head-to-tail configurations 

for different t*. It is clear that the typical antiparallel pairing time is shorter than the 

head-to-tail pairing time. This observation is consistent with the histogram in Figure 

5.13, which indicates that the population of head-to-tail pairs is larger than that of 

antiparallel pairs. A molecule in a head-to-tail pair has a longer pairing lifetime because 

it has many nearest neighbors with which it may pair in this configuration. As t* 

increases, we find that the majority of molecules that participate in head-to-tail pairs 

remain paired almost continuously. In contrast, for molecules participating in 

antiparallel pairs, even when the value of t* is large, the pair lifetime is considerably 

shorter than that for head-to-tail pairs. 
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Figure 5.17 Mean first passage times for molecules in pairs, calculated following the methodology of 
Impey et al.101 The solid lines correspond to antiparallel pairs and the dashed lines correspond to head-
to-tail pairs. The curves are color-coded by the tolerance time t*; note that results are only shown for 
head-to-tail pairs out to t* = 1 ps. 

 

5.3.2.2. Neutron scattering  

Neutron scattering data for ACN and ACN-d3 provide complementary 

information, due to the different neutron scattering cross sections of hydrogen and 

deuterium. In particular, because of the large incoherent cross section of hydrogen, the 

spectrum of ACN is dominated by information on the individual dynamics of hydrogen, 

i.e., the methyl group. 

 

Neutron GDOS. The generalized densities of states extracted from neutron scattering 

measurements are shown in Figure 5.16(A). The most striking feature is the intensity 

and width of the low-frequency region, extending up to 500 cm-1. We assign this feature 

in the experimental neutron density of states to the intense scattering from the methyl 

group, arising from librational motion and broadened by multiphonon contributions, 
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eventually convolved with the translational dynamics. For the deuterated sample, the 

intensity between 150 and 300 cm-1 also suffers from imperfect subtraction of the 

empty cell in this region (DOS of aluminum, see Figure 5.18). The small bump at 390 

cm-1 in the ACN-d3 spectrum corresponds to the IR- and Raman-active CCN bending 

mode,40 which does not have a strong intensity in inelastic neutron scattering.  

 

 
 

Figure 5.18 Spectrum for the aluminum that was used as the cell for the inelastic neutron-scattering 
experiments. The intensity of the spectra for ACN and ACN-d3 is affected by imperfect subtraction of 
the features in the aluminum data between 150 and 300 cm-1. 

 

QENS. The quasielastic signal gives insight into diffusional dynamics. As shown in 

Figure 5.19, the spectra at different q values are well reproduced by our simulations. 

Our first analysis of the experimental data was based on a model composed of two 

Lorentzian contributions, without making any specific hypothesis about the diffusive 

dynamics. The widths of the two contributions for ACN and ACN-d3 are shown in 
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Figure 5.20. Figure 5.20(A) shows a clear translational contribution, with the width 

linearly varying with q2, whereas Figure 5.20(B) shows broad contributions with a 

mixed localized and translational character. Both types of dynamics in ACN-d3 are 

slowed down at momentum values approaching the maximum of the structure factor, a 

typical effect observed in coherent neutron scatterers that is described as de Gennes 

narrowing.106 A more refined model was therefore proposed based on two isotropic 

rotational contributions, convolved by the same translational dynamics, and modeled 

by a jump diffusion behavior. We constrained the rotational radii to 1.03 and 1.9 Å, 

corresponding, respectively, to the spinning and tumbling of the molecule. The de 

Gennes narrowing was taken into account by constraining DT of the deuterated 

compound to follow the modulation of the structure factor, according to the relation 

Гd =
�G3'

%;_�G3'
%

?(3)
  .     (5.20) 

Using this framework, We were able to extract the translational and rotational diffusion 

coefficients, residence times tres, and spinning and tumbling times tspin and ttumbling, 

respectively (Table 5.3). The spinning mode has a short characteristic time (~0.2-0.3 

ps), which is in agreement with previous QENS42 and NMR107 studies. The tumbling 

mode has a longer characteristic time (1.6-2 ps), which also is in agreement with 

previous spectroscopic work.41 We also fitted the simulated S(q,w) with the same 

model. Constraining the translational diffusion coefficient to 3.79 × 10-5 cm2/s, as 

extracted from the MSD, and the rotational radius as 1.03 Å and 1.9 Å from the 

experimental data, We find rotational constants of 1.79 ± 0.07 and 0.26 ± 0.02 ps-1 for 

the tumbling and spinning motions, respectively, in excellent agreement with the values 
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extracted from the experimental spectra. We should note that We could not find any 

experimental evidence for the dynamics of the dimers. 

 

Figure 5.19 S(q,w) as a function of energy transfer w for ACN obtained from (A) molecular dynamics 
simulations and (B) quasielastic neutron scattering. The legends indicate the different values of q that 
were used. The quasielastic neutron scattering experiments were performed on LET (at ISIS, UK) with 
an incident energy Ewe = 2.83 meV. 
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Table 5.8 Translational diffusion coefficients DT, rotational diffusion coefficients for tumbling 
Drot,tumbling and spinning Drot,spin, along with residence times tres, and spinning and tumbling times tspin 
and ttumbling, respectively, for both acetonitrile and acetonitrile-d3. 

 
Species DT (10-5 cm2/s) Drot,tumbling (ps-1)  Drot,spin (ps-1) tres (ps) ttumbling (ps) tspin (ps) 

ACN 4.24 ± 0.3 0.26 ± 0.03 1.77 ± 0.1 0.42 ± 0.1 1.94 ± 0.02 0.29 ± 0.02 

ACN-d3 3.94 ± 0.4 0.3 ± 0.03 1.91 ± 0.15 0.42 ± 0.1 1.66 ± 0.01 0.26 ± 0.02 

 

 

Figure 5.20 (A) The QENS data from Figure 5.19(B) were analyzed with a sum of two Lorentzian 
contributions whose full-widths at half maximum (FWHMs) are shown on panels (A) and (B). (A) 
FWHM of the translational contribution, with the values for Ds(ACN) and Ds(ACN-d3) as in Table 5.1. 
The data for ACN-d3 exhibit de Gennes narrowing at q ~ 1.6 Å-1, which is at the maximum of the 
structure factor S(q) (also shown for comparison). The fit is to the data for ACN. (B) The larger 
contribution is characteristic of a fast transition fitted with a jump-diffusion model, and is assigned to 
the coupling between translation and the rotation of the methyl groups.  
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5.4 Discussion and Conclusions 

We have presented a detailed investigation of the structure and dynamics of 

bulk liquid ACN based on a combination of molecular simulation and neutron-

scattering experiments. Our structural results obtained using molecular simulation 

reveal a complex organization in which molecules tend to form oriented dimers with 

their neighbors. Such marked pairing, which leads to characteristic pairing times that 

extend beyond the typical rotational and translational times, results from many-body 

interactions. Although the classic picture of pairing in ACN involves the antiparallel 

organization of neighboring cyano groups via dipole pairing, we find that antiparallel 

organization is best described as octupole pairing. Furthermore, head-to-tail pairing is 

an even more prevalent and robust motif. However, as discussed above, this head-to-

tail pairing does not predominantly involve end-on interactions. Rather, the nitrogen 

atom of one molecule has a propensity to interact with the hydrogen atoms on the side 

of the methyl group of another molecule. 

These results suggest that the microscopic organization of ACN is determined 

by a complex interplay among different structural motifs. ACN dimers in vacuum and 

in helium droplets are known to take on an antiparallel structure.108 Free trimers are 

believed to be “liquid-like,” whereas in helium droplets the preferred trimer structure 

consists of a dimer with an associated monomer.108 The free tetramer has a structure 

composed of two perpendicular dimers (S4 symmetry), whereas in a helium droplet the 

molecules form a ring with alternating dipole pairing (D2d symmetry).108 In contrast, 

the common crystalline phases of acetonitrile are characterized by head-to-tail 
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interactions rather than antiparallel interactions,93 as shown above. As in our 

simulations, the head-to-tail interactions are predominantly offset, rather than end-on. 

The strong contrast between the crystal structure and the cluster structure may reflect 

packing constraints, e.g., the inability to create a stable, 3D, space-filling structure 

whose main motif is octupole dipole pairing. A liquid is three-dimensional, but does 

not fill space in a regular pattern. From this perspective, it is perhaps not surprising that 

our simulations indicate that the liquid has elements of both the cluster and crystalline 

structure. We do observe a significant population of antiparallel dimers and trimers, 

but head-to-tail structures are considerably more prevalent.  

Our pairing analysis of the antiparallel and head-to-tail motifs found in the bulk 

liquid shows that nearly all of the molecules are paired at any given time, and most of 

them are paired to more than one neighbor. Additionally, the antiparallel pairing 

lifetime – as defined using the formalism of mean first passage time while allowing for 

a short escape time in pairing – is shorter than the head-to-tail pairing lifetime. This 

finding, which is not unique to a particular choice of initial conditions, is consistent 

with the fact there are more head-to-tail paired molecules than antiparallel paired 

molecules. Our results can be understood based on the idea that head-to-tail dimers, 

unlike antiparallel dimers, do not experience any strong directional forces. The 

prominence of head-to-tail dimers is presumably an entropic effect, which further 

suggests that this feature is not unique to the force field used here. 

Our findings highlight the ability of angularly-resolved radial distribution 

functions, g(r,q), to provide a wealth of information about the organization of bulk 

liquid acetonitrile. Although this methodology has previously been used previously to 
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study microheterogeneities in simulations of ACN/water mixtures,56 the angularly-

resolved radial distribution functions in that work were not calculated with respect to 

the functional groups of ACN. Doing so can be expected to yield greater insight. In 

studies of the liquid at silica interfaces, applying the pairing analysis may also be 

helpful in teasing out details of the bilayer-like organization that forms in those 

systems.46 In particular, using the angularly-resolved radial distribution functions and 

pairing analysis to study the population of tail-to-tail dimers at the silica interface is 

expected to reveal key details about the ACN bilayer. 
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Chapter 6: Robustness of the Bilayer Structure in Acetonitrile at 
the Liquid/Silica Interface 
 
Research designed by: John T. Fourkas and Benoit Coasne  
Research conducted by: Samuel R. Cohen, John T. Fourkas, and Benoit Coasne 
I did simulations and analyzed the data. 
 

6.1 Introduction 

Liquid acetonitrile (ACN) forms an interdigitated, bilayer-like structure at a 

silica surface.1 Recent research has shown that in electrolyte solutions at this interface, 

an unexpected, concentration-dependent surface charge is present,2 and that there is 

little to no effect of added salt on the organization, orientation, or electric field of the 

liquid. In this chapter, we discuss some preliminary results on interfacial ACN, in 

particular seeking to understand the robustness of the ACN bilayer with temperature 

and where flow occurs to help understand the electrolyte results.  

 

6.2 Computational and Experimental Methods 

6.2.1. Molecular Simulation  

6.2.1.1. Model 

 Liquid acetonitrile was simulated using the force field3 described in Chapter 5 

of this thesis. Figure 6.1(A) shows a representative configuration from a simulation of 

ACN at the liquid/vapor interface. 

For the simulations involving hydroxylated silica, the Lennard-Jones (LJ) 

parameters and partial charges of the atoms were taken from the work of Lee and 

Rossky.4 Figure 6.1(B) shows the crystalline silica substrate used in this work and the 
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partial charges and labels of the silanol atoms. The silica surface has a hydroxyl density 

of 4.50/nm2, in agreement with previous work by Hu and Weeks.5 All silicon and 

oxygen atoms in the silica were treated as fixed, with the oxygen in the silanol groups 

in the z = 0 plane. The hydrogens were allowed to rotate freely by constraining the 

length of the O−H bond to be 1.0 Å. The harmonic Si−O−H bending potential is 

109.27˚. 

The mixed LJ interactions between all atoms were treated using the usual 

Lorentz-Berthelot combining rules, as described in Chapter 2. Figures 6.1(C) and 

6.1(D) show representative configurations from simulations of ACN at the liquid/silica 

interface and confined in a silica slit-pore. For the simulations at the liquid/silica 

interface, a slab geometry was used with a repulsive wall located at z = 100 Å and an 

additional 50 Å of vacuum that is not shown in the figure. 
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Figure 6.1 (A) Representative molecular configuration at T = 298 K for the liquid/vapor interface. (B) 
Top view of the hydroxylated silica substrate used in this work, showing the label and partial charge for 
the silanol atom types. Representative molecular configurations at T = 298 K for (C) the liquid/silica 
interface and (D) a slit-pore. For each representative configuration, the red frames indicate the molecular 
simulation box used in the calculations. 

 

6.2.1.2. Molecular Dynamics 

Molecular dynamics simulations were performed in LAMMPS.7. The equations 

of motion were integrated with a time step of 1 fs. All of the initial configurations were 

built using PACKMOL,8 and the simulations were preceded by an energy minimization 

with an energy tolerance of 10-6. 

The simulations for the bulk liquid were performed with 529 molecules in the 

isothermal/isobaric (NPT) ensemble in a box with periodic boundary conditions at 

temperatures ranging from 248 K to 348 K and a pressure of 1 bar. The systems were 

equilibrated for 200 ps using a Nosé-Hoover thermostat and barostat9 with 30 fs and 

1000 fs relaxation constants, respectively. Using the equilibrated systems, the 

simulations were then run in the NPT ensemble up to 2 ns. The simulations for the 

liquid/vapor systems (Figure 6.1(A)) used a 36 Å × 36 Å × 36 Å box of the liquid 
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extended in the z-direction (values of Lz up to 836 Å were used to test for the presence 

of finite-size effects). These simulations were equilibrated in the NVT ensemble at 298 

K for 200 ps using the same Nosé-Hoover thermostat as in the simulations of the bulk 

liquid. Using the equilibrated systems, the simulations were then run in the NVE 

ensemble up to 1 ns. Long-range Coulombic interactions were included using Ewald 

summation with a precision of 10-5. The cut-off distances for the Lennard-Jones 

interactions and the real-space part of the Ewald sum were both set to 14 Å. 

For the simulations at the interface (Figure 6.1(C)), 864 ACN molecules were 

confined between a silica substrate and a repulsive wall in a 40.5368 Å × 35.1059 Å × 

100 Å box. A slab geometry with periodic boundary conditions in the x- and y-

dimensions was used. As mentioned above, there was an additional 50 Å of vacuum 

between z = 100 Å and z = 150 Å. For the slit-pore geometry (Figure 6.1(D)), 864 ACN 

molecules were confined between two silica surfaces with their silanol oxygen atoms 

separated by a z-distance of 56.09703 Å. Periodic boundary conditions were employed 

in the latter case. In the slab geometry, long-range Coulombic interactions were 

included using the particle-particle-particle mesh method with a precision of 10-5, 

whereas the simulations in the slit-pore geometry used the same Ewald sum parameters 

as described above. The cut-off distances for the Lennard-Jones interactions and the 

long-range solver were both set to 14 Å. A first slab simulation was run in the NVT 

ensemble for 1 ns at 348 K, then separate NVT simulations were performed at each 

temperature for 200 ps to equilibrate the systems. The production runs were 40 ns. This 

time was selected to obtain good statistics for the density profiles. For the slit-pore 
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geometry, the system was equilibrated at 298 K in the NVT ensemble for 300 ps. 

Production runs lasted 3 ns, also in the NVT ensemble. 

 

6.3 Results and Discussion 

6.3.1 Static Properties 

6.3.1.1. Interfacial Thermodynamics 

To validate the performance of the ACN force field for interfacial properties, 

the bulk saturating vapor pressure was determined using a combination of Grand 

Canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. First, 

starting from the coexisting gas/liquid acetonitrile system shown in Figure 6.1(C), 

GCMC simulations were performed at different chemical potentials µ at T = 298 K. In 

these simulations, the system with a constant volume V is placed in contact with an 

infinite reservoir of acetonitrile molecules at constant µ and T, so that the number of 

acetonitrile molecules is allowed to change. In this direct coexistence method applied 

to the Grand Canonical ensemble,10 depending on the chemical potential µ, the system 

will either evolve toward the gas phase or the liquid phase. If µ is above the chemical 

potential at saturation, µ0, all of the gas will transform into the liquid phase. On the 

other hand, for µ < µ0, the liquid phase will evaporate. By performing such GCMC 

simulations for many chemical potentials, µ0 was estimated with an error bar smaller 

than a few percent. Second, starting from an empty simulation box, a GCMC simulation 

was performed to estimate the gas density at the gas/liquid coexistence condition for T 

= 298 K, r(µ0,T). In parallel, MD simulations in the isothermal/isobaric ensemble 
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(NPT) were performed for the gas phase at different pressures. This second set of 

simulations allowed us to estimate the gas density as a function of pressure, r(P,T) (see 

Figure 6.2). The saturating vapor pressure P0 was then estimated by finding the gas 

pressure for which r(P0,T) = r(µ0,T). For the 6-site acetonitrile model considered in 

this paper, P0 was found to be equal to 17.9 kPa (see Table 6.1). Although this value is 

greater than the experimental value of ~12 kPa, it should be noted that such 

disagreement is not unusual for force fields that are not specifically developed to match 

this specific interfacial property. Finally, by performing separate MD simulations of 

the liquid and the gas at their determined densities at P0, the heat of vaporization was 

calculated using the relation 

∆𝐻�U� = 𝐻�UR − 𝐻2'3�'Q ,    (6.1) 

where H = U + P0V is the enthalpy, U is the internal energy determined from the 

simulation, P0 is the saturating vapor pressure determined previously, and V is the 

volume of the simulation box. We found ∆𝐻�U� =33.1 kJ/mol, which is in excellent 

agreement with the experimental value of 33.225 kJ/mol (Table 6.1).11 
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Figure 6.2 Data from simulations in the isothermal/isobaric ensemble used to calculate the saturating 
vapor pressure. The linear fit is constrained to go through the origin. The error bars represent the 95% 
confidence levels. 

 

To study the liquid/vapor interface, a liquid slab of ACN molecules in contact 

with the gas phase was simulated, as illustrated in Figure 6.1(C). The surface tension g 

for the liquid was calculated using the Kirkwood-Buff integral: 

 

 

𝛾 = %
# ∫ O⟨𝑃zz⟩ −

%
#
>⟨𝑃xx⟩ + ß𝑃yyà?P

-K
@ dz ,   (6.2) 

 

where ⟨𝑃¢¢⟩ represents the ensemble average of the normal pressure, and 

%
#
>⟨𝑃DD⟩ + ß𝑃££à? represents the ensemble average of the tangential pressure. The factor 
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½ in Eq. (6.2) takes into account the two interfaces in the system that arise from the use 

of periodic boundary conditions. These different contributions were calculated using 

the virial expression for the pressure tensor,12 

 

𝑃𝑉 = ∑ 𝑚ia𝑣ia𝑣ia +∑ 𝑟ia𝑓ia',U',U  ,    (6.3) 

 

where the sum runs over each site a of each molecule i. Here, mia, via, ria and fia are the 

mass, velocity, position, and force, respectively, acting on site a of molecule i. To check 

that our surface-tension calculations were not affected by finite-size effects, different 

liquid slab thicknesses from 3.6 to 12.5 nm were considered. A typical example of the 

time evolution for the normal and tangential pressures, as well as the surface tension 

itself, are shown in Figure 6.3. The calculated value for the surface tension of 28.7 

mJ/m2 is in excellent agreement with the experimental value of 28.2 mJ/m2 (Table 

6.1).13 It can be concluded, therefore, that even though our chosen force field1 was not 

originally developed to treat such phenomena, interfacial behavior is reproduced well 

with this model.  

 

 
Figure 6.3 (A) Normal pressure, (B) tangential pressure, and (C) surface tension for the gas/liquid 
interface with Lz = 108 Å.  
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Table 6.9 Some thermodynamic and transport properties for acetonitrile, along with a comparison to 
experimental values from the literature. 

 
Property Simulation (this work) Experiment (literature) 

Surface tension (mJ/m2) 28.7 28.2a  

Saturating vapor pressure P0 (kPa) 17.9 11.7b, 12.5c 

Liquid density at P0 (g/cm3) 0.761 0.7795c 

Gas density at P0 (mol/m3) 4.9157 5.29c 

Heat of vaporization (kJ/mol) 33.1 33.225d 

Viscosity (cP) 0.307 0.333e,f, 0.3358g, 0.3369h, 0.3417i, 

0.3426j, 0.354k, 0.3693l, 0.370m 
 

a Ref. 13. b Determined from the semi-empirical Antoine equation of state published in Ref. 14. c Ref. 
15. d Ref. 16. e-m Ref. 17. 
 

6.3.1.2. Structure 

 To compare the structure of ACN at the liquid/silica interface with that of the 

bulk liquid, we calculated the angularly resolved radial distribution function gMe-Me(r,q) 

(Figure 6.4) for both systems. Calculation of this function with respect to the methyl-

methyl distance enables us to look for evidence of the tail-to-tail dimers that might be 

expected to be dominant given the lipid-bilayer-like organization at the interface. 

Moreover, the effects of isotopic dilution on the symmetric methyl stretch at the 

interface is sensitive to the distance, strength, and relative orientation of the methyl 

transition dipole moments, facilitating a comparison between simulation and 

experiments that have been performed in our laboratory. For the interface, we restricted 

our analysis to pairs where both molecules were near the surface, as defined by the first 

minimum in the density profile with respect to the center-of-mass separation.5 The bulk 

gMe-Me(r,q) was shown previously in Chapter 5 (Figure 5.8). As shown in the difference 

map (Figure 6.4), there are pronounced differences between gMe-Me(r,q) for the interface 
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and the bulk populations. In contrast to the interfacial system, the bulk liquid is 

dominated by offset, head-to-tail dimers (configuration 1). These results are in 

agreement with our findings discussed in Chapter 5. However, the difference map also 

reveals a tail-to-tail population in the bulk (configuration 2) that is not that common in 

the bulk, but is not present at all at the interface. The most common structures at the 

interface that are observed more often than in the bulk are parallel, offset dimers 

(configurations 3 and 4) that are roughly perpendicular to the silica. These dimers 

constitute each sublayer. There are also dimers that are arranged in an octupole-paired, 

antiparallel fashion (configurations 5 and 6) that constitute the interdigitated, first 

bilayer. 
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Figure 6.4 Radial distribution functions and angularly resolved radial distribution functions for 
acetonitrile with respect to the methyl-methyl distance, with the angle q defined as described in Chapter 
5. The difference map between the angularly resolved radial distribution functions at the interface and 
the bulk is also given, along with representative configurations from the indicated regions. 
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Figure 6.5 Methyl-carbon density r(z) of ACN as a function of distance from the interface, normalized 
to the corresponding bulk density rB(T) for each temperature. 

 
Figure 6.6 Nitrogen density r(z) of ACN as a function of distance from the interface for each 
temperature. 
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Figure 6.7 Center-of-mass density r(z) of ACN as a function of distance from the interface, normalized 
to the corresponding bulk density rB(T) for each temperature. 

 
Figure 6.8 Center-of-mass density r(z) of ACN as a function of distance from the interface for each 
temperature. 

 

The temperature-dependent organization of the bilayer structure was also 

investigated. Density profiles with respect to the methyl carbon and nitrogen are shown 

in Figures 6.5 and 6.6, respectively. As in the case of the bulk liquid (Chapter 5), only 

a single replica was used here, but our results for the T = 298 K case are essentially 
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identical to previous work,5,6 again suggesting stabilization of structural properties. The 

peak in the methyl-carbon profile (Figure 6.5) out to z = 4.35 Å represents the first 

bilayer, whereas the peak in the nitrogen profile (Figure 6.6) represents the first 

sublayer of the first bilayer. Density profiles with respect to the center-of-mass 

separation are shown in Figure 6.7. Remarkably, the thickness of the first bilayer is 

nearly invariant with temperature. The bilayer organization is robust, persisting up to 

the boiling point (353 K, experimentally). The scaling with changing temperature is 

described almost entirely by the change in density of the bulk liquid (Figure 6.8). With 

increasing temperature, the size of the first bilayer barely changes at all, as is also 

shown by the orientational profiles in Figure 6.9. The temperature-dependent changes 

in density are reflected in the charge density profiles (Figure 6.10) showing a 

surprisingly significant decrease in the charge density in the first sublayer with 

increasing temperature. This decrease can be attributed to the changing density of the 

liquid, as seen in the unnormalized density profiles in Figure 6.8. In Figure 6.8, the 

large negative values for the charge density at z ~ 2.57 Å correspond to the nitrogen 

atoms of the molecules in the first sublayer, wheareas the pronounced peak at z ~ 3.37 

Å corresponds to the interdigitated second sublayer. At low electrolyte concentrations, 

cations are known to occupy the exterior of the surface bilayer,2 which should 

correspond to the negative region at z ~ 6.1 Å. At higher electrolyte concentrations, 

cations are known to partition to the silica surface,2 which is expected to be near the 

negative region at z ~ 2.57 Å. 
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Figure 6.9 Average orientation of ACN for each temperature as a function of the center-of-mass distance 
from the surface normal 𝒛(. A cosq value of 0 indicates that the cyano groups tend to point toward the 
silica. 

 

 
Figure 6.10 Charge density of ACN for each temperature as a function of the distance from the interface. 

 

6.3.2. Transport Properties 

 We also used nonequilibrium molecular dynamics (NEMD) to investigate 

transport phenomena in ACN confined in a slit-pore (Figure 6.1(D)). In NEMD of 

confined liquids, the collective dynamics are simulated by the Poiseuille 
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hydrodynamics flow due to an external force f.18,19 The force mimics a chemical 

potential gradient, and the system responds to this perturbation with the resulting flux 

reaching a steady-state. In our simulations, we added a force in the x direction parallel 

to the surface. Figure 6.11 gives the velocity in the flow direction as a function of the 

chemical potential gradient. Note that the last three data points correspond to external 

forces (f  > 1.0 pN) that deviate from the linear regime because the thermal energy is 

higher in the flow direction. These data are excluded from the rest of the analysis as 

unphysical. The velocity profile as a function of distance from the center of the pore is 

given in Figure 6.12. This distinctive parabolic profile is characteristic of Poiseuille 

flow, with the maximum velocity in the center of the pore. The negative slip length 

beyond ~2 nm fits well to the Poiseuille profile. In a slit geometry, the Poiseuille flow 

is 

𝑣D(𝑥) =
∆e�L

'

�-¦
ã1 − U#D

�L
V
#
ä ,     (6.4) 

where 𝐷e is the pore diameter, L is the length, P is the pressure, and 𝜂 is the viscosity 

of the liquid. Eq. (6.4) was used to fit the parabolic flow profiles, and the driving force 

f can be converted into a pressure gradient via the Gibbs-Duhem relation, i.e., ∆e
-
= 𝑓𝜌. 

From Eq. (6.4), we extracted a viscosity value of 0.307 centipoise, in good agreement 

with experimental values (see Table 6.1). We can also extract information from the 

Poiseuille flow about the ACN bilayer. From the density profile in Figure 6.10, the first 

bilayer is ~ 2.0-2.8 Å, where the velocity is small due to the strong wall/fluid 

interactions. 
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Figure 6.11 Velocity for ACN in the flow direction as a function of the chemical potential gradient for 
the NEMD simulations. 

 
Figure 6.12 Velocity for ACN confined in a slit-pore geometry. The x-component of the velocities with 
respect to different atomic sites are given, along with the density with respect to HC for comparison. 

 

 To explore the impact of flow on local orientation, we calculated the azimuthal 

angle 𝜙 of the in-plane projection of the molecules. The resulting histograms are shown 

in Figure 6.13, corresponding to flow from 180˚ to 0˚. The marked threefold symmetry 

of the polar histograms is due to the underlying symmetry of the silica substrate. To 

remove this effect, we normalized these data to the case where there is no flow (f = 0.0 

pN). As the flow increases, the molecules tend to align more strongly along the flow 
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direction. For both external forces (f = 0.5 and 1.0 pN), the alignment of the ACN 

molecules in the direction of flow is greater in the second sublayer than in the first, 

though there is some alignment in both sublayers (Table 6.2). Also, as expected, the 

alignment is greater with increasing external force. Preliminary analysis of the 

orientational profiles as a function of flow (not shown) also shows the effects of the 

external force, though the effects are subtle. The average value of the angle q, as 

defined in Figure 6.9, does not change significantly, which indicates that the azimuthal 

projections of the molecules point in the direction of flow, although their magnitude 

does not change. 

 

 
Figure 6.13 Polar histograms of the angle 𝝓, as defined in the text, for the first sublayer with (A) f = 0.0 
pN, (B) f = 0.5 pN, and (C) f f = 1.0 pN. The polar histograms for the second sublayer are given for (D) 
f = 0.0 pN, (E) f = 0.5 pN, and (F) f = 1.0 pN. 
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Figure 6.14 The same polar histograms as in Figure 6.11, except normalized to the f = 0.0 pN results. 

 
 
 
 
 
Table 6.10 Alignment in the direction of flow for ACN molecules in each sublayer, normalized to the 
orientation of the molecules in the absence of any external force. 

External force (pN) Sublayer P(0˚)/P(180˚) 

0.5 1 1.3  

0.5 2 1.5 

1.0 1 1.4 

1.0 2 1.8 

 

6.4 Conclusions 

 We have presented our preliminary results on the effects of temperature and 

hydrodynamic flow on perturbing the bilayer that forms in acetonitrile at liquid/silica 

interfaces. Our structural results reveal the remarkable stability of the bilayer with 

temperature, suggesting temperature can be used as a variable for ion-selective 

separations involving acetonitrile as a solvent. For ion-current experiments that rely on 
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flow, our hydrodynamics results will be useful to determine where the flow boundary 

may lie. Future work will examine the effect of ions on Poiseuille flow and registry 

effects on flow with decreasing pore size. The surface that we used here was flat, and 

the interfacial organization of ACN in confinement in single-digit nanopores is 

expected to exhibit resonances at certain pore diameters, raising questions about ion 

mobility in such systems. 
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Chapter 7: Conclusions 
 
 

7.1 Conclusions and Future Work 

7.1.1. Small-Molecule Liquids 

 Knowledge of the structure and dynamics of small-molecule liquids is essential 

in countless applications. Molecular simulations give time-dependent, atomic-level 

insight into these phenomena, but these simulations are based on models of varying 

complexity and applicability. I demonstrate in this thesis how resolving both angular 

and radial information simultaneously via molecular simulation can reveal sensitive 

details about liquid structure that cannot be accessed experimentally. We cannot glean 

from our data whether our model faithfully reproduces the true local structure of the 

liquid, as liquid structure is mathematically ill-defined. However, the ability of the 

model used here to reproduce the angularly resolved radial distribution function 

obtained using the reverse Monte Carlo method1 is promising, as is the ability of the 

model to reproduce structural motifs seen in clusters2 and crystals.3 A new generation 

of X-ray scattering techniques4-6 may be able to be used to provide more stringent tests 

of force fields. In ongoing and future work, applying the two-dimensional angularly 

resolved radial distribution functions used in this thesis to liquid water may also prove 

insightful. In models of liquid water, it has been recognized7,8 that characterizing the 

structure of the bulk liquid requires the use of multiple order parameters, 

multidimensional orientational pair correlation functions, and more complex triplet pair 

correlation functions. Although the dominant structural motif in water consists of 
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tetrahedral arrangements of neighboring water molecules, it may be fruitful to extend 

the method of angularly resolved radial distribution functions, which relies on pairwise 

information, to study, for instance, the hydrogen-bond angle distribution in water.9 

Extending these results to different force fields might prove insightful.  

Understanding molecular organization, intermolecular interactions, and 

dynamics at liquid/solid interfaces also has great practical importance for emerging 

technologies. Molecular simulations have allowed us to learn surprising new details 

about the bilayer that forms in acetonitrile at the liquid/silica interface. I demonstrate 

in this thesis how molecular simulations can be used to probe changes in the 

organization and transport properties of the bilayer. This information is not easily 

accessible via experiment. In future work, I will study registry effects in confined 

acetonitrile. It would also be interesting to explore the effects of ion mobility on the 

transport properties of confined acetonitrile. These simulations would be of direct 

relevance to ion current experiments and recent research that shows that the distribution 

of ions at the bilayer is governed by the interfacial organization of acetonitrile.10 

Another interesting direction for future research would be to study the interfacial 

behavior of propylene carbonate, which has a gas-phase dipole moment of 4.98 D.11 

There is evidence for the formation of a bilayer structure in nitriles with larger alkyl 

groups than acetonitrile, such as propionitrile (ethyl cyanide).12,13 There is also some 

preliminary evidence (Aluru group) for the formation of a bilayer structure in propylene 

carbonate. It would be interesting to extend the methodology that we developed in this 

thesis to study propylene carbonate, as well as to derive orientational time correlation 
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functions for future vibrational sum-frequency generation spectroscopy studies that 

could be done analogous to previous work on acetonitrile.14   

 In parallel with the work presented in this thesis, I have also performed 

extensive molecular simulations of acetonitrile at amorphous silica interfaces and 

confined in cylindrical silica nanopores. These simulations used the same force fields 

for acetonitrile and silica that I described in this thesis. My results showed a surprising 

lack of a bilayer structure in these ostensibly more realistic systems, which suggests 

that optimizing substrate geometry and the liquid/solid interaction between the force 

fields are not trivial tasks. In future work, it would be interesting to investigate these 

effects more systematically, which could prove useful in reproducing the vast 

experimental evidence for the bilayer structure and studying it systematically in silico. 

 

7.1.2. Nonlinear Optical Spectroscopy 

 The data analysis protocol presented in this thesis has been used to model a new 

spectroscopic method, 2-beam action spectroscopy, enabling for the simultaneous 

determination of the effects of two orders of absorption. These results are important to 

characterize processes involving nonlinear absorption, including multiphoton 

absorption polymerization of nanostructures.15 In future work, it would be desirable to 

develop a theory to disentangle the effects of noncumulative observables that 

complicate experimental efforts, and, ultimately, disentangle the simultaneous effects 

of three orders of absorption. 
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Appendix A: LAMMPS Input File for Simulations of 
Acetonitrile at Silica Interfaces in a Slab Geometry 
 
 This input file was written for LAMMPS to do the simulations of acetonitrile 

at the liquid/silica interface as described in Chapter 6. 

 

 

 

 

variable temperature equal 298.00 # in K 
 
variable HCtype  equal  1  
variable CTtype  equal  2  
variable YCtype  equal  3  
variable YNtype  equal  4  
variable Hstype equal 5 #H 
variable Ostype equal 6 #silanol O 
variable Otype equal 7 #O 
variable Sistype equal 8 #silanol Si 
variable Sitype equal 9 #Si 
variable Ctype equal 10 #hydrophobic wall 
 
# LJ parameters are from Rossky's 1994 JCP paper 
# Note the unit conversion from kJ/mol to kcal/mol 
 
variable HCeps  equal 0.01570 # in kcal/mol 
variable HCsig  equal 2.649532788 # in Angstroms 
variable CTeps  equal 0.10940 
variable CTsig  equal 3.399669508 
variable YCeps  equal 0.13410 
variable YCsig  equal 3.545776898 
variable YNeps  equal 0.13310 
variable YNsig  equal 3.011237667 
variable Hseps equal 0.0 
variable Hssig equal 0.0 
variable Oseps equal 0.15504 
variable Ossig equal 3.15400 
variable Oeps equal 0.15504 
variable Osig equal 3.15400 
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variable Siseps equal 0.12753 
variable Sissig equal 3.79500 
variable Sieps equal 0.12753 
variable Sisig equal 3.79500 
variable Ceps equal 0.066 
variable Csig equal 2.53355 
 
variable timestep equal 1.0000 # in fs 
variable dumptime equal 1000 # output quantities every 1000 time steps 
variable thermotime equal 1000  # output thermo quantities every 1000 time steps 
 
processors * * * 
 
units           real 
 
boundary        p p f # fixed boundaries along z   
 
atom_style      full 
bond_style      harmonic 
angle_style     harmonic 
special_bonds   lj 0 0 0.5 coul 0 0 0.83 
 
pair_style hybrid lj/cut/coul/long 14.0 lj/cut 14.0 
pair_modify pair lj/cut shift yes # for the repulsive wall 
kspace_style pppm 1.0e-5 
kspace_modify slab 3.0 
 
read_data data_ACN_silica.txt 
neighbor        2.0 bin 
 
pair_coeff ${HCtype}   ${HCtype}   lj/cut/coul/long   ${HCeps}  ${HCsig}  
pair_coeff ${CTtype}   ${CTtype}   lj/cut/coul/long   ${CTeps}  ${CTsig} 
pair_coeff ${YCtype}   ${YCtype}   lj/cut/coul/long   ${YCeps}  ${YCsig} 
pair_coeff ${YNtype}   ${YNtype}   lj/cut/coul/long   ${YNeps}  ${YNsig} 
pair_coeff ${Hstype}   ${Hstype}   lj/cut/coul/long   ${Hseps}  ${Hssig} 
pair_coeff ${Ostype}   ${Ostype}   lj/cut/coul/long   ${Oseps}  ${Ossig} 
pair_coeff ${Otype}    ${Otype}    lj/cut/coul/long   ${Oeps}   ${Osig} 
pair_coeff ${Sistype}  ${Sistype}  lj/cut/coul/long   ${Siseps} ${Sissig} 
pair_coeff ${Sitype}   ${Sitype}   lj/cut/coul/long   ${Sieps}  ${Sisig} 
 
pair_coeff * ${Ctype} lj/cut ${Ceps} ${Csig} 2.8438137 # Rmin = 2**(1/6)*Csig 
 
pair_modify     mix arithmetic 
 
bond_coeff  1  100  1.00   # Si(O-H) bond, constant is a random number 
angle_coeff 1  100  109.27 # Si-O-H angle 
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bond_coeff  2  340  1.09  # H-C   bond 
bond_coeff  3  400  1.458 # C-C   bond 
bond_coeff  4  600  1.157 # C-N   bond 
angle_coeff 2  35  109.5 # H-C-H angle 
angle_coeff 3  35  110 # H-C-C angle 
angle_coeff 4  80  180 # C-C-N angle 
 
group  sio2  type ${Ostype} ${Otype} ${Sistype} ${Sitype} ${Ctype} 
group  fluid  type ${Hstype} ${HCtype} ${CTtype} ${YCtype} ${YNtype} 
 
neigh_modify delay 0 every 1 check yes 
 
timestep ${timestep} 
 
fix         3 fluid nvt temp ${temperature} ${temperature} 30.0 # Tdamp = 30.0 fs 
fix         2 sio2   setforce 0.0 0.0 0.0 
fix 1  all shake 0.0001 20 0 b 1  
 
##velocity        fluid create ${temperature} 525232 
 
compute temp_pres all temp 
compute Pres all pressure temp_pres 
 
dump            dmp all custom ${dumptime} dump.lammpstrj id type x y z vx vy vz  
dump_modify     dmp flush yes sort id format "%d %d %.6f %.6f %.6f %.6f %.6f 
%.6f" 
 
thermo          ${thermotime} 
thermo_style custom step temp epair emol ecoul evdwl c_Pres c_Pres[1] c_Pres[2] 
c_Pres[3] c_Pres[4] c_Pres[5] c_Pres[6] 
thermo_modify flush yes 
 
##minimize 1.0e-6 1.0e-8 1000 100000 # energy minimization 
run 40000000 # run simulation for 40 ns 
write_data data.end.txt 
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Appendix B: LAMMPS Input File for Simulations of 
Acetonitrile at Silica Interfaces in a Slit-Pore Geometry 
 
 This input file was written for LAMMPS to do the nonequilibrium molecular 

dynamics simulations of acetonitrile confined between two silica walls as described in 

Chapter 6. 

 

 

 

 

variable temperature equal 298.00 # in K 
variable        F             index  1.0 # pN 
 
 
variable HCtype  equal  1  
variable CTtype  equal  2  
variable YCtype  equal  3  
variable YNtype  equal  4  
variable Hstype equal 5 #H 
variable Ostype equal 6 #silanol O 
variable Otype equal 7 #O 
variable Sistype equal 8 #silanol Si 
variable Sitype equal 9 #Si 
 
# LJ parameters are from Rossky's 1994 JCP paper 
# Note the unit conversion from kJ/mol to kcal/mol 
 
variable HCeps  equal 0.01570 # in kcal/mol 
variable HCsig  equal 2.649532788 # in Angstroms 
variable CTeps  equal 0.10940 
variable CTsig  equal 3.399669508 
variable YCeps  equal 0.13410 
variable YCsig  equal 3.545776898 
variable YNeps  equal 0.13310 
variable YNsig  equal 3.011237667 
variable Hseps equal 0.0 
variable Hssig equal 0.0 
variable Oseps equal 0.15504 
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variable Ossig equal 3.15400 
variable Oeps equal 0.15504 
variable Osig equal 3.15400 
variable Siseps equal 0.12753 
variable Sissig equal 3.79500 
variable Sieps equal 0.12753 
variable Sisig equal 3.79500 
##variable Ceps equal 0.066 
##variable Csig equal 2.53355 
 
variable timestep equal 1.0000 # in fs 
variable dumptime equal 50 # output quantities every 1000 time steps 
variable thermotime equal 100  # output thermo quantities every 1000 time steps 
 
processors * * * 
 
units           real 
 
boundary        p p p 
 
atom_style      full 
bond_style      harmonic 
angle_style     harmonic 
special_bonds   lj 0 0 0.5 coul 0 0 0.83 
 
pair_style      lj/cut/coul/long 14.0 14.0 
kspace_style    ewald 1.0e-5 
 
read_data data_ACN_silica.txt 
neighbor        2.0 bin 
 
pair_coeff ${HCtype}   ${HCtype}   ${HCeps}  ${HCsig} 
pair_coeff ${CTtype}   ${CTtype}   ${CTeps}  ${CTsig} 
pair_coeff ${YCtype}   ${YCtype}   ${YCeps}  ${YCsig} 
pair_coeff ${YNtype}   ${YNtype}   ${YNeps}  ${YNsig} 
pair_coeff ${Hstype}   ${Hstype}   ${Hseps}  ${Hssig} 
pair_coeff ${Ostype}   ${Ostype}   ${Oseps}  ${Ossig} 
pair_coeff ${Otype}    ${Otype}    ${Oeps}   ${Osig} 
pair_coeff ${Sistype}  ${Sistype}  ${Siseps} ${Sissig} 
pair_coeff ${Sitype}   ${Sitype}   ${Sieps}  ${Sisig} 
 
pair_modify     mix arithmetic 
 
bond_coeff  1  100  1.00   # Si(O-H) bond, constant is a random number 
angle_coeff 1  100  109.27 # Si-O-H angle 
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bond_coeff  2  340  1.09  # H-C   bond 
bond_coeff  3  400  1.458 # C-C   bond 
bond_coeff  4  600  1.157 # C-N   bond 
angle_coeff 2  35  109.5 # H-C-H angle 
angle_coeff 3  35  110 # H-C-C angle 
angle_coeff 4  80  180 # C-C-N angle 
 
group  sio2  type ${Ostype} ${Otype} ${Sistype} ${Sitype} 
group  fluid  type ${Hstype} ${HCtype} ${CTtype} ${YCtype} ${YNtype} 
group  fluid_YC type ${YCtype}  
compute acntemp fluid temp/partial 0 1 1 
 
neigh_modify delay 0 every 1 check yes 
timestep ${timestep} 
 
## comment out fixes 1 and 3 if doing an energy minimization 
fix         2 sio2   setforce 0.0 0.0 0.0 
fix 1  all shake 0.0001 20 0 b 1  
fix         3 fluid nvt temp ${temperature} ${temperature} 30.0 # Tdamp = 30.0 fs 
fix_modify      3 temp acntemp 
# Apply the driving force 
variable forcefac equal 0.01439 # pN in kcal/mol/A 
variable extforce equal $(v_F*v_forcefac) 
fix pressure fluid_YC addforce ${extforce} 0 0 
 
 
dump            dmp all custom ${dumptime} dump.lammpstrj id type x y z vx vy vz  
dump_modify     dmp flush yes sort id format "%d %d %.6f %.6f %.6f %.6f %.6f 
%.6f" 
 
thermo          ${thermotime} 
thermo_style custom step temp epair emol ecoul evdwl  
thermo_modify flush yes 
 
##minimize 1.0e-6 1.0e-8 1000 100000 # energy minimization 
run 3000000 # run simulation for 3 ns 
write_data data.end.txt 
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