Noisy Time Series Prediction using Symbolic Represenatio
and Recurrent Neural Network Grammatical Inference

Steve Lawrencé Ah Chung Tsdj, C. Lee Gilesf
{lawrence,giles}@research.nj.nec.com, Ah_Chung TsoiQuow.edu.au

' NEC Research Institute, 4 Independence Way, Princeton854®
2 Faculty of Informatics, University of Wollongong, NSW 2522stralia

Technical Report
UMIACS-TR-96-27 and CS-TR-3625
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

Abstract

Financial forecasting is an example of a signal processiaglem which is challenging due
to small sample sizes, high noise, non-stationarity, amdlimearity. Neural networks have been
very successful in a number of signal processing applicati®e discuss fundamental limita-
tions and inherent difficulties when using neural netwodtglie processing of high noise, small
sample size signals. We introduce a new intelligent signatgssing method which addresses
the difficulties. The method uses conversion into a symlreficesentation with a self-organizing
map, and grammatical inference with recurrent neural nedsvaVe apply the method to the pre-
diction of daily foreign exchange rates, addressing diffies with non-stationarity, overfitting,
and unequad priori class probabilities, and we find significant predictabiliticomprehensive
experiments covering 5 different foreign exchange ratég method correctly predicts the direc-
tion of change for the next day with an error rate of 47.1%. &irer rate reduces to around 40%
when rejecting examples where the system has low confidenite prediction. The symbolic
representation aids the extraction of symbolic knowledgmfthe recurrent neural networks in
the form of deterministic finite state automata. These aataraxplain the operation of the sys-
tem and are often relatively simple. Rules related to wedhvtan behavior such as trend following
and mean reversal are extracted.

* http://www.neci.nj.nec.com/homepages/lawrence

fLee Giles is also with the Institute for Advanced Computerd®is, University of Maryland, College Park, MD 20742.
¥ http://www.neci.nj.nec.com/homepages/giles.html

1 Introduction

1.1 Predicting Noisy Time Series Data

The prediction of future events from noisy time series dateommonly done using various forms
of statistical models [20]. Typical neural network modeis alosely related to statistical models,
and estimate Bayesiam posteriori probabilities when given an appropriately formulated peab
[38]. Neural networks have been very successful in a numigegittern recognition applications. For
noisy time series prediction, neural networks typicallgeta delay embedding of previous inputs
which is mapped into a prediction. However, high noise, lmgh-stationarity time series prediction
is fundamentally difficult for these models:

1. The problem of learning from examples is fundamentalipdised, i.e. there are infinitely
many models which fit the training data well, but few of thesaeayalize well. In order to form
a more accurate model, it is desirable to use as large artgesait as possible. However, for the
case of highly non-stationary data, increasing the sizéd®training set results in more data
with statistics that are less relevant to the task at hamiphgsed in the creation of the model.

2. The high noise and small datasets make the models proneitfitiing. Random correlations
between the inputs and outputs can present great diffictitiy.models typically do not explic-
itly address the temporal relationship of the inputs — dngy tlo not distinguish between those
correlations which occur in temporal order, and those whimot.

Ouir first step is to use recurrent neural networks (RNNs)uRent neural networks employ feedback
connections and have the potential to represent certaipatational structures in a more parsimo-
nious fashion [10]. RNNs address the temporal relationshtpeir inputs by maintaining an internal
state. RNNs are biased towards learning patterns whichr @e¢emporal order —i.e. they are less
prone to learning random correlations which do not occuemgoral order.

However training RNNs tends to be difficult with high noisgajawith a tendency for long-term
dependencies to be neglected (experiments reported io@fdfa tendency for recurrent networks
to take into account short-term dependencies but not lemg-tiependencies), and for the network
to fall into a naive solution such as always predicting thestmemmmon output. We address this
problem by converting the time series into a sequence of signising a self-organizing map (SOM).
The problem then becomes one of grammatical inference —rttégtion of a given quantity from
a sequence of symbols. It is then possible to take advanfaipe &nown capabilities of recurrent
neural networks to learn grammars [50] in order to captusepaadictability in the evolution of the
series.

'For exampleg(t), z(t — 1), z(t — 2),...,z(t — N + 1) form the inputs for a delay embedding of the previdis
values of a series [49, 41].

The use of a recurrent neural network is significant for twasoms: firstly, the temporal relationship
of the series is explicity modeled via internal states, aadondly, it is possible to extract rules
from the trained recurrent networks in the form of deterstinifinite state automata [1%] The
symbolic conversion is significant for a number of reasohs:quantization effectively filters the data
or reduces the noise, the RNN training becomes more efeecivd the symbolic input facilitates the
extraction of rules from the trained networks.

Financial time series data typically contains high noisg significant non-stationarity. In this paper,
the noisy times series prediction problem considered ipthdiction of foreign exchange rates. A
brief overview of foreign exchange rates is presented im# section.

1.2 Foreign Exchange Rates

The foreign exchange market is the world’s largest markih more than $US 1.3 trillion changing
hands every dayhttp://www.c-c.ch/forex.htm). The most important currencies in the market
are the US dollar (which acts as a reference currency), {enése Yen, the British Pound, the Ger-
man Mark, and the Swiss Franc [32]. Foreign exchange ratabiexery high noise, and significant
non-stationarity. Many financial institutions evaluategtction algorithms using the percentage of
times that the algorithm predicts the right trend from todatil some time in the future [32]. Hence,
this paper considers the prediction of the direction of gieaim foreign exchange rates for the next
business day.

The remainder of this paper is organized as follows: seQidescribes the data set we have used,
section 3 discusses fundamental issues such as ill-poséteprs, the curse of dimensionality, and
vector space assumptions, and section 4 discusses thergffitarket hypothesis and prediction mod-
els. Section 5 details the system we have used for predicfiomprehensive test results are contained
in section 6, and section 7 considers the extraction of sjyimbata. Section 8 provides concluding
remarks, and Appendix A provides full simulation details.

2 Exchange Rate Data

The data we have used is publically availablett(p://www.cs.colorado.edu/"andreas/
Time-Series/Data/Exchange.Rates.Daily) and was first used by Weigend et al. [48]. The
data consists of daily closing bids for five currencies (GarmMark (DM), Japanese Yen, Swiss
Franc, British Pound, and Canadian Dollar) with respechéoUWS Dollar and is from the Monetary
Yearbook of the Chicago Mercantile Exchange. There are 8@4& points for each exchange rate
covering the period September 3, 1973 to May 18, 1987. Inrashto Weigend et al., this work

“Rules can also be extracted from feedforward networks [21448, 2, 39, 25], however the recurrent network approach
and deterministic finite state automata extraction seeicp&arly suitable for a time series problem.

3

considers the prediction of all five exchange rates in tha dat prediction for all days of the week
instead of just Mondays.

3 Fundamental Issues

This section briefly discusses fundamental issues relatéeatning by example using techniques
such as multi-layer perceptrons (MLPs): ill-posed proldethe curse of dimensionality, and vector
space assumptions. These help form the motivation for oumnethod.

The problem of inferring an underlying probability distiiion from a finite set of data is fundamen-
tally an ill-posed problem because there are infinitely mswolytions [26], i.e. there are infinitely
many functions which fit the training data exactly but diffierother regions of the input space. The
problem becomes well-posed only when additional condtaire used. For example, the constraint
that a limited size MLP will be used might be imposed. In thase, there may be a unique solution
which best fits the data from the range of solutions which tleeleh can represent. The implicit
assumption behind this constraint is that the underlyimgetafunction is “smooth”. Smoothness
constraints are commonly used by learning algorithms [¥ifhout smoothness or some other con-
straint, there is no reason to expect a model to perform wellrseen inputs (i.e. generalize well).

Learning by example often operates in a vector space, i.aineiébn mappingR”™ to R™ is ap-
proximated. However, a problem with vector spaces is thatrépresentation does not reflect any
additional structure within the data. Measurements tharelated (e.g. from neighboring pixels in
an image or neighboring time steps in a time series) and maasumts that do not have such a rela-
tionship are treated equally. These relationships canlemiyferred in a statistical manner from the
training examples.

The use of a recurrent neural network instead of an MLP withiredew of time delayed inputs
introduces another assumption by explicitly addressiegemporal relationship of the inputs via the
maintenance of an internal state. This can be seen as stmtlae use of hints [1] and should help to
make the problem less ill-posed.

Thecurse of dimensionalityefers to the exponential growth of hypervolume as a funatibdimen-
sionality [5]. Considerx; € R™. The regressiony = f(x) is a hypersurface iR". If f(x) is
arbitrarily complex and unknown then dense samples ardareztjto approximate the function ac-

curately. However, it is hard to obtain dense samples in bigtension3. This is the “curse of
dimensionality” [5, 14, 15]. The relationship between thepling density and the number of points
required isx Na [15] wheren is the dimensionality of the input space aNds the number of points.
Thus, if N7 is the number of points for a given sampling density in 1 digi@m, then in order to keep
the same density as the dimensionality is increased, théauaf points must increase according to
N7

It has been suggested that MLPs do not suffer from the curdienansionality [13, 4]. However, this
is not true in general (although MLPs may cope better thaaratiodels). The apparent avoidance
of the curse of dimensionality in [4] is due to the fact that tbnction spaces considered are more
and more constrained as the input dimension increases $®ilarly, smoothness conditions must
be satisfied for the results of [13].

The use of a recurrent neural network is important from tiegvpioint of the curse of dimensionality

because the RNN can take into account greater history ofrjnat.i Trying to take into account

greater history with an MLP by increasing the number of dethiynputs results in an increase in the
input dimension. This is problematic, given the small numifedata points available. The use of
a self-organizing map for the symbolic conversion is alspantant from the viewpoint of the curse

of dimensionality. As will be seen later, the topographigaler of the SOM allows encoding a one
dimensional SOM into a single input for the RNN.

4 The Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) was developed in 19¢%bFama [11, 12] and found broad
acceptance in the financial community [33, 45, 3]. The EMHitsnweak form, asserts that the
price of an asset reflects all of the information that can laiobd from past prices of the asset, i.e.
the movement of the price is unpredictable. The best piiedidor a price is the current price and
the actual prices follow what is called a random walk. The EMHbased on the assumption that
all news is promptly incorporated in prices; since news igradictable (by definition), prices are

Kolmogorov's theorem shows that any continuous functiom afimensions can be completely characterized by a
one dimensional continuous function. Specifically, Kolmaay’s theorem [28, 29, 30, 15] states that for any contisuou
function:

2n+1 n
fl@y,@a, .. en) = Y g5 (Ain(ﬂ?i)) @
j=1 i=1

where{\;}7 are universal constants that do not depend of); }3"** are universal transformations which do not depend
on f, andgs(u) is a continuous, one-dimensional function which totallprmetterizesf (z1, z2, . .., z») (g7 is typically
highly non-smooth). In other words, for any continuous fiowt of n arguments, there is a one dimensional continuous
function that completely characterizes the original fioret As such, it can be seen that the problem is not so much
the dimensionality, but the complexity of the function [L6¢. the curse of dimensionality essentially says thatigm h
dimensions, as fewer data points are available, the tangetibn has to be simpler in order to learn it accurately ftbm
given data.

unpredictable. Much effort has been expended trying togoomdisprove the EMH. Current opinion
is that the theory has been disproved [42, 24], and much es@suggests that the capital markets
are not efficient [34].

If the EMH was true, then a financial series could be modelatie@addition of a noise component
at each step:

z(k+1) = z(k) + e(k) 2
wheree(k) is a zero mean Gaussian variable with variamc&he best estimation is:
Z(k+1) = z(k) (3)

In other words, if the series is truly a random walk, then thstkestimate for the next time period is
equal to the current estimate. Now, if it is assumed thaktiea predictable component of the series
then it is possible to use:

z(k+1)=x(k)+ f(z(k),z(k —1),... ,x(k—n+1)) + €(k) 4)

wheree(k) is a zero mean Gaussian variable with variamcand f(-) is a non-linear function in its
arguments. In this case, the best estimate is given by:

2k +1) = a(k) + fxk),ak —1),... ,z(k —n+1)) 5)

Prediction using this model is problematic as the seriemnafbntains a trend. For example, a neural
network trained on section A in figure 1 has little chance afegalizing to the test data in section B,
because the model was not trained with data in the range exbwgrthat section.

Section A Section B

v

WK\A

Price

v

Time

Figure 1. An example of the difficulty in using a model traireda raw price series. Generalization to section
B from the training data in section A is difficult because thed®l has not been trained with inputs in the range
covered by section B.

A common solution to this is to use a model which is based offitsteorder differences (equation 7)
instead of the raw time series [20]:

dk—+1)=f(o(k),0(k—1),... ,0(k—n+1)) +v(k) (6)
where
Sk +1) 2 a(k +1) — (k) (7)
andv(k) is a zero mean Gaussian variable with variasmcén this case the best estimate is:

S(k+1) = f(6(k),6(k —1),... ,6(k —n+1)) 8)

This typically has the effect of reducing the non-statidyeanf the series.

5 System Details

Raw Preprocessing Quantization/ Crarmimetitesil Rul
Time — (Differencing Symbth T > Extr;lcfion . Rules
Series & Log Encoding (RNN)

Compression) (SOM)

! '

Prediction Prediction
Automata

Figure 2. A high-level block diagram of the system used.

A high-level block diagram of the system used is shown in g2ir The raw time series values are
y(k), k = 1,2,...,N wherey(k) € R. These denote the daily closing bids of the financial time
series. The first difference of the serigék), is taken as follows:

(k) =y(k) —y(k —1) 9)

This produces(k), 0(k) € R,k =1,2,...,N — 1. In order to compress the dynamic range of the
series and reduce the effect of outliers, a log transfoonaif the data is used:

(k) = sign(d(k))(log(|o (k)| + 1)) (10)

resulting inz(k),k = 1,2,...,N — 1, (k) € R. Asis usual, a delay embedding of this series is
then considered [49]:

X(k,dy) = (z(k),z(k —1),z(k — 2),...,x(k — d, + 1)) (11)

whered; is the delay embedding dimension and is equal to 1 or 2 forxtperenents reported here.
X(k,d,) is a state vector. This delay embedding forms the input t&tB#. Hence, the SOM input
is a vector of the lasi; values of the log transformed differenced time series. Thpu of the SOM

is the topographical location of the winning node. Each negeesents one symbol in the resulting
grammatical inference problem. A brief description of tleéf-srganizing map is contained in the
next section.

The SOM can be represented by the following equation:
S(k) = g(X(k,d)) (12)

whereS(k) € [1,2,3,...ns], andng is the number of symbols (nodes) for the SOM. Each node in
the SOM has been assigned an integer index ranging from & touimber of nodes.

An Elman recurrent neural network is then uswadich is trained on the sequence of outputs from the
SOM. The Elman network was chosen because it is suitabl&égorioblem (a grammatical inference
style problem) [10], and because it has been shown to perficeliin comparison to other recurrent
architectures (e.g. see [31]). For the ElIman network:

O(k+1)=Clz +c (13)
and
zy = Iy, (Azy_1 +Bug +b) (14)

whereC is any, x n, vector representing the weights from the hidden layer tmtiiput nodesy,

is the number of hidden nodes, is the number of output nodes, is a scalarz, z, € R"*, is an
ny X 1 vector, denoting the outputs of the hidden layer neuransis ad, x 1 vector as follows,
whereds is the embedding dimension used for the input window of symtiat is presented to the
SOM:

S(k)
S(k—1)
u, = S(k—2) (15)

S(k—dy+1)

A and B are matrices of appropriate dimensions which representetb@back weights from the
hidden nodes to the hidden nodes and the weights from thelayer to the hidden layer respectively.
F,, is an, x 1 vector containing the sigmoid function& is ann; x 1 vector, denoting the bias
of each hidden layer neuro® (k) is an, x 1 vector containing the outputs of the network, is 2
throughout this paper. The first output is trained to prettietprobability of a positive change, the
second output is trained to predict the probability of a tiggahange.

“Elman refers to the topology of the network — full backpraogtémn through time was used as opposed to the truncated
version used by Elman.

Thus, for the complete system:
O(k+1)=Fi(6(k),0(k —1),6(k —2),6(k —3),d(k — 4)) (16)
which can be considered in terms of the original series:

O(k +1) = Fa(y(k),y(k = 1),y(k —2),y(k = 3),y(k —4),y(k - 5)) 7

The following sections describe the self-organizing magurrent network grammatical inference,
dealing with non-stationarity, controlling overfitting, priori class probabilities, and a method for
comparison with a random walk.

5.1 The Self-Organizing Map
5.1.1 Introduction

The self-organizing map, or SOM [27] is an unsupervisediegrprocess which learns the distribu-
tion of a set of patterns without any class information. Atguat is projected from a possibly high
dimensional input spacg to a position in the map, a low dimensional display spBcd he display
spaceD is often divided into a grid and each intersection of the ggidepresented in the network
by a neuron. The information is encoded as the location ofctimated neuron. The SOM is unlike
most classification or clustering techniques in that itraits to preserve the topological ordering
of the classes in the input spa&ein the resulting display spac®. In other words, for similarity
as measured using a metric in the input spSicthe SOM attempts to preserve the similarity in the
display spacé.

5.1.2 Algorithm

We give a brief description of the SOM algorithm, for moreailst see [27]. The SOM defines
a mapping from an input spad@” onto a topologically ordered set of nodes, usually in a lower
dimensional spacP. A reference vectoy; = 11, ftio, -, ftin] . € R™, is assigned to each node in
the SOM. Assume that there abé nodes. During training, each input,c R", is compared tan;,

i =1,2,..., M, obtaining the location of the closest mat¢h (— m.|| = min;{||z — m;||}). The
input point is mapped to this location in the SOM. Nodes in$l@M are updated according to:

mi(t + 1) = m;(t) + hei(t)[2(t) —m(t)] (18)

wheret is the time during learning arfd.;(¢) is theneighborhood functigra smoothing kernel which
is maximum atn.. Usually,h;(t) = h(||r. —ri||, t), wherer. andr; represent the locations of nodes
in the SOM output spac®. r. is the node with the closest weight vector to the input sarapkb

r; ranges over all nodes.;(¢) approaches 0 d¢. — ;|| increases and also aspproacheso. A
widely applied neighborhood function is:

[Ire — ril|?
hei = a(t) exp <_T(t)> (19)
wherea(t) is a scalar valued learning rate an() defines the width of the kernel. They are generally
both monotonically decreasing with time [27]. The use of tlegghborhood function means that
nodes which are topographically close in the SOM structueenaoved towards the input pattern
along with the winning node. This creates a smoothing effddth leads to a global ordering of
the map. Note that(¢) should not be reduced too far as the map will lose its topdacaporder if
neighboring nodes are not updated along with the closest.nblde SOM can be considered a non-
linear projection of the probability density(z), of the input patterns: onto a (typically) smaller
output space [27].

5.1.3 Remarks

The nodes in the display spagtencode the information contained in the input sp&e Since
there areM nodes inD, this implies that the input pattern vectarss R"™ are transformed to a set
of M symbols, while preserving their original topological aridg in R"™. Thus, if the original input
patterns are highly noisy, the quantization into the setfo6ymbols while preserving the original
topological ordering can be understood as a form of filteriftge amount of filtering is controlled by
M. If M is large, this implies there is little reduction in the nottent of the resulting symbols.
On the other hand, i/ is small, this implies that there is a “heavy” filtering effe@sulting in only
a small number of symbols.

5.2 Recurrent Network Prediction

In the past few years several recurrent neural network t@athires have emerged which have been
used for grammatical inference [7, 19, 16]. The inductiorredatively simple grammars has been

addressed often — e.g. [46, 47, 16] on learning Tomita grasmfda] . It has been shown that a

particular class of recurrent networks are Turing equivia]€0].

The Elman neural network has feedback from each of the hiddees to all of the hidden nodes,
as shown in figure 3. The set 8 symbols from the output of the SOM are linearly encoded into a
single input for the EIman network (e.g. M = 3, the single input is either -1, 0, or 1). The linear
encoding is important and is justified by the topographiagdleo of the symbols. If no order was
defined over the symbols then a separate input should be aiseddh symbol, resulting in a system
with more dimensions and increased difficulty due to theeofslimensionality. In order to facilitate
the training of the recurrent network, an input window of 3swesed, i.e. the last three symbols are
presented to 3 input neurons of the recurrent neural network

10

Outputs

Hidden Nodes -

- Elman
Inputs - network
S S S
Sequence of symbols § X
e o () [1D Self-organizing Map
Delay embedded

pre-processed series

Pre-processed series

Figure 3. The pre-processed, delay embedded series isrtethirdo symbols using a self-organizing map. An
Elman neural network is trained on the sequence of symbols.

11

5.3 Dealing with Non-stationarity

The approach used to deal with the non-stationarity of tipeagiin this work is to build models based
on a short time period only. This is an intuitively appealagproach because one would expect that
any inefficiencies found in the market would typically nostldor a long time. The difficulty with
this approach is the reduction in the already small numbéradiing data points. The size of the
training set controls a noise vs. non-stationarity traflg&6]. If the training set is too small, the
noise makes it harder to estimate the appropriate mappfrthe ttraining set is too large, the non-
stationarity of the data will mean more data with statistieat are less relevant for the task at hand
will be used for creating the estimator. We ran tests on a sagof data separate from the main tests,
from which we chose to use models trained on 100 days of dataggpendix A for more details).
After training, each model is tested on the next 30 days ai.d&@he entire training/test set window
is moved forward 30 days and the process is repeated, adatepidigure 4. In a real-life situation

it would be desirable to test only for the next day, and adgahe windows by steps of one day.
However, 30 days is used here in order to reduce the amoumngputation by a factor of 30, and
enable a much larger number of tests to be performed (i.ein@%tas many predictions are made
from the same number of training runs), thereby increasamjidence in the results.

‘ Training set 4 Test set 4 ‘ etc.
‘ Training set 3 Test set 3

‘ Training set 2 Test set 2 ‘
Training set 1 Test set 1

mout M .H“l ‘x‘l LI “H L ‘H‘““““ h, ‘h“hl) h ny
U R TR

Time

Figure 4. A depiction of the training and test sets used.

5.4 Controlling Overfitting

Highly noisy data has often been addressed using techngyadsas weight decay, weight elimina-
tion and early stopping to control overfitting [48]. For thgeoblem we use early stopping with a
difference: the stopping point is chosen using multipléstes a separate segment of data, rather than
using a validation set in the normal manner. Tests showedusiag a validation set in the normal
manner seriously affected performance. This is not vergriging because there is a dilemma when

12

choosing the validation set. If the validation set is chosefore the training data (in terms of the
temporal order of the series), then the non-stationaritthefseries means the validation set may be
of little use for predicting performance on the test seth# validation set is chosen after the train-
ing data, a problem occurs again with the non-stationarityis-desirable to make the validation set
as small as possible to alleviate this problem, however ¢heannot be made too small because it
needs to be a certain size in order to make the results galligtvalid. Hence, we chose to control
overfitting by setting the training time for an appropriatepping pointa priori. Simulations with a
separate segment of data not contained in the main datagpeadix A for more details) were used
to select the training time of 500 epochs.

We note that our use of a separate segment of data to seieatgraet size and training time are not
expected to be ideal solutions, e.g. the best choice foetpasameters may change significantly over
time due to the non-stationarity of the series.

5.5 A Priori Data Probabilities

For some financial data sets, it is possible to obtain goadtsslsy simply predicting the most com-
mon change in the training data (e.g. noticing that the chamgrices is positive more often than it
is negative in the training set and always predicting pesifor the test set). Although predictability
due to such data bias may be worthwhile, it can prevent tteodisy of a better solution. Figure 5
shows a simplified depiction of the problem — if the naive 8oty A, has a better mean squared error
than a random solution then it may be hard to find a betterisolué.g. B. This may be particularly
problematic for high noise data although the true naturb@étror surface is not yet well understood.

o\ B A

Weight Parameter

Figure 5. A depiction of a simplified error surface if a naiedusion, A, performs well. A better solution, e.g.
B, may be difficult to find.

Hence, in all results reported here the models have beeemex\ from acting on any such bias by
ensuring that the number of training examples for the pasitnd negative cases is equal. The training
set actually remains unchanged so that the temporal ordestidisturbed but there is no training
signal for the appropriate number of positive or negativenegles starting from the beginning of the
series. The number of positive and negative examples isalpiapproximately equal to begin with,
therefore the use of this simple technique did not resulénldss of many data points.

13

5.6 Comparison with a Random Walk

The prediction corresponding to the random walk model is&tguthe current price, i.e. no change. A
percentage of times the model predicts the correct chamget(@om no change) cannot be obtained
for the random walk model. However, it is possible to use nwddth data that corresponds to
a random walk and compare the results to those obtained katheial data. If equal performance
is obtained on the random walk data as compared to the reallan no significant predictability
has been found. These tests were performed by randomizingldksification of the test set. For
each original test set five randomized versions were credied randomized versions were created
by repeatedly selecting two random positions in time andpgivey the two classification values
(the input values remain unchanged). An additional benétihis technique is that if the model is
showing predictability based on any data bias (as discusstt previous section) then the results
on the randomized test sets will also show this predictgilie. always predicting a positive change
will result in the same performance on the original and timeloanized test sets.

6 Experimental Results

We present results using the previously described systehaltarnative systems for comparison. In
all cases, the Elman networks contained 5 hidden units aa&@®M had one dimension. Further
details of the individual simulations can be found in apperfAl Figure 6 and table 1 shows the
average error rate as the number of nodes in the self-orggmzap (SOM) was increased fra2rto

7. Results are shown for SOM embedding dimensions of 1 and &ulRere shown using both the
original data and the randomized data for comparison wigtmdam walk. The results are averaged
over the 5 exchange rates with 30 simulations per exchangeara 30 test points per simulation,
for a total of 4500 test points. The best performance wasramdawvith a SOM size of 7 nodes and
an embedding dimension of 2 where the error rate was 47.1%teat indicates that this result is
significantly different from the null hypothesis of the ramdized test sets at = 0.0076 or 0.76%

(t = 2.67) indicating that the result is significant. We also consedes null hypothesis corresponding
to a model which makes completely random predictions (spording to a random walk) — the result
is significantly different from this null hypothesis at= 0.0054 or 0.54% ¢ = 2.80). Figure 7 and
table 2 shows the average results for the SOM size of 7 on tiddinal exchange rates.

In order to gauge the effectiveness of the symbolic encodithrecurrent neural network, we inves-
tigated the following two systems:

1. The system as presented here without the symbolic ergioden the preprocessed data is
entered directly into the recurrent neural network withihet SOM stage.

2. The system as presented here with the recurrent netwoldcesl by a standard MLP network.

14

54 -

3 Embedding dimension +——
ol Embedding dimension 2--x---
g 92r Randomized embedding dimension-1 *----
% 51 Randomized embedding dimension-2&---
b s0f s i
& 49+
|
48 -
47 +
46 L | | | . | |
! 2 3 4 5 6 7 8

SOM Size

Figure 6. The error rate as the number of nodes in the SOM isased for SOM embedding dimensions of 1
and 2. Each of the results represents the average over tlkvilinal series and the 30 simulations per series,
i.e. over 150 simulations which tested 30 points each, o0480ividual classifications. The results for the

randomized series are averaged over the same values whirdinelomized series per simulation, for a total of
22500 classifications per result (all of the data availatde not used due to limited computational resources).

SOM embedding dimension: 1
SOM size 2 3 4 5 6 7
Error 485| 47.5| 48.3| 48.3| 48.5| 47.6
Randomized error 50.1 | 50.5| 50.4 | 50.2 | 49.8 | 50.3

SOM embedding dimension: 2
SOM size 2 3 4 5 6 7
Error 48.8| 47.8| 47.9| 47.7| 476 | 47.1
Randomized error 49.8 | 50.4 | 50.4 | 50.1 | 49.7 | 50.2

Table 1. The results as shown in figure 6.

Exchange British | Canadian| German| Japanese Swiss
Rate Pound| Dollar Mark Yen Frank
Embedding dimension 1 48.5 46.9 46 47.7 48.9
Embedding dimension 2 48.1 46.8 46.9 46.3 47.4
Randomized embedding dimension 150.1 50.5 50.4 49.8 50.7
Randomized embedding dimension 250.2 50.6 50.5 49.7 49.8

Table 2. Results as shown in figure 7.

15

54 -
53 | Embedding dimension +——
Embedding dimension 2------
52 Randomized embedding dimension-1 -
51

50
49
48
47
46
45 | | | | |
BP CD DM JY SF

Exchange Rate

Test Error %

Figure 7. Average results for the five exchange rates usmgedl test data and the randomized test data. The
SOM size is 7 and the results for SOM embedding dimensionsaofi1? are shown.

Tables 3 and 4 show the results for systems 1 and 2 above. Tioerpance of these systems can be
seen to be in-between the performance of the null hypotleésisandom walk and the performance
of the hybrid system, indicating that the hybrid system @sult in significant improvement.

Error 49.5
Randomized error 50.1

Table 3. The results for the system without the symbolic dimzp i.e. the preprocessed data is entered directly
into the recurrent neural network without the SOM stage.

SOM embedding dimension: 1
SOM size 2 3 4 5 6 7
Error 49.1| 49.4| 49.3| 49.7| 49.9| 49.8
Randomized error 49.7 | 50.1| 49.9| 50.3 | 50.0 | 49.9

Table 4. The results for the system using an MLP instead dRtiN.

6.1 Reject Performance

We used the following equation in order to calculate a confidemeasure for every predictiof:=
Ymaz (Ymaz — Ymin) WhErey,q. is the maximum output, ang,;, is the minimum output (for outputs

which have been transformed using g@tmaxtransformation:y; = % whereu; are the
j=1 J
original outputs,y; are the transformed outputs, ahds the number of outputs). The confidence

16

measurey gives an indication of how confident the network model is facleclassification. Thus,
for a fixed value ofy, the prediction obtained by a particular algorithm can bdéid into two sets,
one set3 for those below the threshold, and another.4ébr those above the threshold. We can then
reject those points which are in g8t i.e. they are not used in the computation of the classifinati
accuracy.

Figure 8 shows the classification performance of the sysgercéntage of correct sign predictions)
as the confidence threshold is increased and more examplegjacted for classification. Figure
9 shows the same graph for the randomized test sets. It caedpetisat a significant increase in
performance (down to approximately 40% error) can be obthlyy only considering the 5-15% of
examples with the highest confidence. This benefit can noeée ®r the randomized test sets. It
should be noted that by the time 95% of test points are rejetie total number of remaining test
points is only 225.

Reject Performance

Percent Correct

0 10 20 30 40 50 60 70 80 90
Reject Percentage

Figure 8. Classification performance as the confidencehbtéss increased. This graph is the average of the
150 individual results.

Reject Performance

RNN Randomized Test——

Percent Correct

0 10 20 30 40 50 60 70 80 90
Reject Percentage

Figure 9. Classification performance as the confidencehibléss increased for the randomized test sets. This
graph is the average of the individual randomized test sets.

7 Automata Extraction

A common complaint with neural networks is that the modeésdifficult to interpret —i.e. it is not
clear how the models arrive at the prediction or classificatif a given input pattern [39]. A number

17

of people have considered the extraction of symbolic kndgagrom trained neural networks for both
feedforward and recurrent neural networks [9, 18, 37]. Eourrent networks, the ordered triple of a
discrete Markov procesggtate; input— next stat¢) can be extracted and used to form an equivalent
deterministic finite state automata (DFA). This can be donelbstering the activation values of the
recurrent state neurons [37]. The automata extracted Wwishprocess can only recognize regular
grammars.

The algorithm used for automata extraction is the same asidszribed in [16]. The algorithm is
based on the observation that the activations of the retistate neurons in a trained network tend to
cluster. The output of each of tié state neurons is divided intgintervals of equal size, yielding"
partitions in the space of outputs of the state neuronstiigidrom an initial state, the input symbols
are considered in order. If an input symbol causes a transiti a new partition in the activation
space then a new DFA state is created with a correspondingiticln on the appropriate symbol. In
the event that different activation state vectors belorthecsame partition, the state vector which first
reached the partition is chosen as the new initial stateulosequent symbols. The extraction would
be computationally infeasible if adf’V partitions had to be visited, but the clusters correspanttn
DFA states often cover a small percentage of the input space.

Sample deterministic finite state automata (DFA) extrafrimuh trained financial prediction networks
using a quantization level of 5 can be seen in figure 10. Thed}a¥e been minimized using standard
minimization techniques [23]. The DFAs were extracted fromtworks where the SOM embedding
dimension was 1 and the SOM size was 2. As expected, the DRActed in this case are relatively
simple. In all cases, the SOM symbols end up representinitjygoand negative changes in the series
— transitions marked with a solid line correspond to positthanges and transitions marked with a
dotted line correspond to negative changes. For all DFA$e dtis the starting state. Double circled
states correspond to prediction of a positive change, atdssivithout the double circle correspond
to prediction of a negative change. (a) can be seen as condisiy to mean-reverting behavior —
i.e. if the last change in the series was negative then the @EAicts that the next change will be
positive and vice versa. (b) and (c) can be seen as variatior{g) where there are exceptions to
the simple rules of (a), e.g. in (b) a negative change cooradp to a positive prediction, however
after the input changes from negative to positive, the ptext alternates with successive positive
changes. In contrast with (a)-(c), (d)-(f) exhibit behawielated to trend following algorithms, e.g.
in (d) a positive change corresponds to a positive predictmd a negative change corresponds to
a negative prediction except for the first negative chantg afpositive change. Figure 11 shows a
sample DFA for a SOM size of 3 — more complex behavior can be isethis case.

°A regular grammalG is a 4-tupleG = {S, N, T, P} whereS is the start symbol)N andT are non-terminal and
terminal symbols, respectively, aftirepresents productions of the foun— a or A — aB whereA, B € N anda € T'.

18

(@) (b) (c)

- ———

(d) (e) (f)

Figure 10. Sample deterministic finite state automata (D&é&jacted from trained financial prediction net-
works using a quantization level of 5.

~~

@

Figure 11. A sample DFA extracted from a network where the S was 3 (and the SOM embedding
dimension was 1). The SOM symbols represent a positived(inks) or negative (dotted lines) change, or a
change close to zero (gray line). In this case, the rules are scomplex than the simple rules in the previous
figure.

19

8 Conclusions

Traditional statistical methods have difficulty with highise, high non-stationarity time series pre-
diction. The intelligent signal processing method preseériere uses a combination of symbolic
processing and recurrent neural networks to deal with fonashdial difficulties. The use of a recurrent
neural network is significant for two reasons: firstly, theperal relationship of the series is explic-
itly modeled via internal states, and secondly, it is pdedib extract rules from the trained recurrent
networks in the form of deterministic finite state automat&e symbolic conversion is significant
for a number of reasons: the quantization effectively filtdre data or reduces the noise, the RNN
training becomes more effective, and the symbolic inpulifates the extraction of rules from the
trained networks. Considering foreign exchange rate ptiedi, we performed a comprehensive set
of simulations covering 5 different foreign exchange ratasich showed that significant predictabil-
ity does exist with a 47.1% error rate in the prediction ofdirection of the change. Additionally, the
error rate reduced to around 40% when rejecting examplesavthe system had low confidence in its
prediction. The method facilitates the extraction of rulMdsch explain the operation of the system.
Results for the problem considered here are positive and #iat symbolic knowledge which has
meaning to humans can be extracted from noisy time serias 8ath information can be very useful
and important to the user of the technique.

Appendix A: Simulation Details

For the experiments reported in this papes,= 5 andn, = 2. The RNN learning rate was linearly
reduced over the training period (see [8] regarding learmate schedules) from an initial value of
0.5. All inputs were normalized to zero mean and unit vaganAll nodes included a bias input
which was part of the optimization process. Weights wettglized as shown in Haykin [22]. Target
outputs were -0.8 and 0.8 using thenh output activation function and we used the quadratic cost
function. In order to initialize the delays in the networketRNN was run without training for 50
time steps prior to the start of the datasets. The numberwfitig examples for the positive and
negative cases was made equal by not training on the apgt®prumber of positive or negative
examples starting from the beginning of the training set. (ithe temporal order of the series is
not disturbed but there is no training signal for either a hanof positive or a number of negative
examples starting at the beginning of the series). The SO$Aramed for 10,000 iterations using the
following learning rate schedule&5 x (1 — n;/n;) wheren; is the current iteration number ang;

is the total number of iterations (10,000). The neighbothsize was altered during training using
floor(1+((2/3)ns—1)(1—n;/ny)+0.5). The first differenced data was split as follows: Points 1210
to 1959 (plus the size of the validation set in the validasehexperiments) in each of the exchange
rates were used for the selection of the training dataset #ie training time, and experimentation
with the use of a validation set. Points 10 to 1059 in each efetkchange rates were used for the
main tests. The data for each successive simulation wast tffsthe size of the test set, 30 points, as
shown in figure 4. The number of points in the main tests froohexchange rate is equal to 1,050
which is 50 (used to initialize delays) + 100 (training seg$i+ 30x 30 (30 test sets of size 30). For

20

the selection of the training dataset size and the training the number of points was 750 for each
exchange rate (50 + 100 + 20 test sets of size 30). For theimgrs using a validation set in each
simulation, the number of points was 750 + the size of thedadibbn set for each of the exchange
rates.

Acknowledgments

We would like to thank Doyne Farmer, Andreas Weigend anddfiari Omlin for helpful comments.

References

[1]
[2]

[3]

[4]

[5]
[6]

Y.S. Abu-Mostafa. Learning from hints in neural netwsrlournal of Complexity6:192, 1990.

J.A. Alexander and M.C. Mozer. Template-based algargtfor connectionist rule extraction.
In G. Tesauro, D. Touretzky, and T. Leen, editgkslvances in Neural Information Processing
Systemsvolume 7, pages 609—-616. The MIT Press, 1995.

Martin Anthony and Norman L. Biggs. A computational Iesrg theory view of economic
forecasting with neural nets. In A. Refenes, editdéeural Networks in the Capital Markets
John Wiley and Sons, 1995.

A.R. Barron. Universal approximation bounds for sumssiions of a sigmoidal functionEEE
Transactions on Information Theqr§9(3):930-945, 1993.

R. E. Bellman.Adaptive Control Processe®rinceton University Press, Princeton, NJ, 1961.

Y. Bengio, editor.Neural Networks for Speech and Sequence Recognifibomson, 1996.

[7] A. Cleeremans, D. Servan-Schreiber, and J.L. McClellafinite state automata and simple

[8]

recurrent networksNeural Computation1(3):372—-381, 1989.

C. Darken and J.E. Moody. Note on learning rate schedulestochastic optimization. In R.P.
Lippmann, J.E. Moody, and D. S. Touretzky, editgkglvances in Neural Information Process-
ing Systemsvolume 3, pages 832-838. Morgan Kaufmann, San Mateo, C#,.19

[9] J.S. Denker, D. Schwartz, B. Wittner, S.A. Solla, R. Hosvd.. Jackel, and J. Hopfield. Large

[10]

[11]
[12]

automatic learning, rule extraction, and generalizati@omplex System&:877-922, 1987.

J.L. Elman. Distributed representations, simple resnt networks, and grammatical structure.
Machine Learning7(2/3):195-226, 1991.

E.F. Fama. The behaviour of stock market pricisurnal of Businesslanuary:34—105, 1965.

E.F. Fama. Efficient capital markets: A review of theand empirical workJournal of Finance
May:383-417, 1970.

21

[13] Andras Faragd and Gabor Lugosi. Strong universakistency of neural network classifiers.
IEEE Transactions on Information Thei39(4):1146-1151, 1993.

[14] J.H. Friedman. An overview of predictive learning andndtion approximation. In
V. Cherkassky, J.H. Friedman, and H. Wechsler, editergm Statistics to Neural Networks,
Theory and Pattern Recognition Application®lume 136 ofNATO ASI Series fpages 1-61.
Springer, 1994.

[15] J.H. Friedman. Introduction to computational leagnand statistical prediction. Tutorial Pre-
sented at Neural Information Processing Systems, Dengr,1@95.

[16] C. Lee Giles, C.B. Miller, D. Chen, H.H. Chen, G.Z. Sunda.C. Lee. Learning and extract-
ing finite state automata with second-order recurrent henatavorks. Neural Computation
4(3):393-405, 1992.

[17] C.Lee Giles, C.B. Miller, D. Chen, G.Z. Sun, H.H. ChendaY.C. Lee. Extracting and learning
an unknown grammar with recurrent neural networks. In J.Bod§, S.J. Hanson, and R.P
Lippmann, editorsAdvances in Neural Information Processing Systenmades 317-324, San
Mateo, CA, 1992. Morgan Kaufmann Publishers.

[18] C. Lee Giles and C.W. Omlin. Extraction, insertion arafimement of symbolic rules in
dynamically-driven recurrent neural network¥onnection Scien¢®(3,4):307-337, 1993. Spe-
cial Issue on Architectures for Integrating Symbolic andifé Processes.

[19] C. Lee Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, and D. Cheighklr order recurrent networks &
grammatical inference. In D.S. Touretzky, editAdvances in Neural Information Processing
Systems ,2pages 380-387, San Mateo, CA, 1990. Morgan Kaufmann MPelbdis

[20] C.W.J. Granger and P. Newboldrorecasting Economic Time Serief\cademic Press, San
Diego, second edition, 1986.

[21] Yoichi Hayashi. A neural expert system with automatgtiaetion of fuzzy if-then rules. In
Richard P. Lippmann, John E. Moody, and David S. Touretz#tigpes, Advances in Neural In-
formation Processing Systemwelume 3, pages 578-584. Morgan Kaufmann Publishers,.1991

[22] S. Haykin.Neural Networks, A Comprehensive Foundatidacmillan, New York, NY, 1994.

[23] J.E. Hopcroft and J.D. Ulimarntroduction to Automata Theory, Languages, and Compurtati
Addison-Wesley Publishing Company, Reading, MA, 1979.

[24] L. Ingber. Statistical mechanics of nonlinear nonégrium financial markets: Applications to
optimized tradingMathematical Computer Modellingpage in press, 1996.

[25] M. Ishikawa. Rule extraction by successive regulditwa In International Conference on
Neural Networkspages 1139-1143. IEEE Press, 1996.

[26] M.I. Jordan. Neural networks. In A. Tucker, edit@iRC Handbook of Computer Scienpage
in press. CRC Press, Boca Raton, FL, 1996.

22

[27] T. Kohonen.Self-Organizing MapsSpringer-Verlag, Berlin, Germany, 1995.

[28] A.N. Kolmogorov. On the representation of continuousdtions of several variables by super-
positions of continuous functions of one variable and aalditDokl, 114:679-681, 1957.

[29] V. Kurkova. Kolmogorov's theorem is relevaritleural Computation3(4):617-622, 1991.

[30] V. Kirkova. Kolmaogorov's theorem. In Michael A. Arbj editor, The Handbook of Brain
Theory and Neural Networkpages 501-502. MIT Press, Cambridge, Massachusetts, 1995

[31] Steve Lawrence, C. Lee Giles, and Sandiway Fong. Camnm&tt neural networks learn natural
language grammars? Rroceedings of the IEEE International Conference on NeNtivorks
pages 1853-1858. IEEE Press, Piscataway, NJ, 1996.

[32] Jean Y. Lequarré. Foreign currency dealing: A briéfdduction (data set C). In A.S. Weigend
and N.A. Gershenfeld, editor§ime Series Prediction: Forecasting the Future and Underdt
ing the PastAddison-Wesley, 1993.

[33] B.G. Malkiel. Efficient Market HypothesisMacmillan, London, 1987.
[34] B.G. Malkiel. A Random Walk Down Wall Streétlorton, New York, NY, 1996.

[35] C. McMillan, M.C. Mozer, and P. Smolensky. Rule indoctithrough integrated symbolic
and subsymbolic processing. In John E. Moody, Steve J. hiargsal Richard P. Lippmann,
editors,Advances in Neural Information Processing Systamksime 4, pages 969-976. Morgan
Kaufmann Publishers, 1992.

[36] J.E. Moody. Economic forecasting: Challenges and aleugtwork solutions. IfProceedings
of the International Symposium on Atrtificial Neural Netwsatkdsinchu, Taiwan, 1995.

[37] C.W. Omlin and C.L. Giles. Extraction of rules from diste-time recurrent neural networks.
Neural Networks9(1):41-52, 1996.

[38] D.W. Ruck, S.K. Rogers, K. Kabrisky, M.E. Oxley, and B.Buter. The multilayer perceptron
as an approximation to an optimal Bayes estimat&EE Transactions on Neural Networks
1(4):296-298, 1990.

[39] R. Setiono and H. Liu. Symbolic representation of neansworks. Computey 29(3):71-77,
1996.

[40] H.T. Siegelmann and E.D. Sontag. On the computationalep of neural nets.Journal of
Computer and System Sciencgg(1):132-150, 1995.

[41] F. Takens. Detecting strange attractors in turbulerneD.A. Rand and L.-S. Young, editors,
Dynamical Systems and Turbulenpgelume 898 ofLecture Notes in Mathematicpages 366—
381, Berlin, 1981. Springer-Verlag.

[42] S.J. Taylor, editorModelling Financial Time Series). Wiley & Sons, Chichester, 1994.

23

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

M. Tomita. Dynamic construction of finite-state autdm&om examples using hill-climbing.
In Proceedings of the Fourth Annual Cognitive Science Conteygages 105-108, Ann Arbor,
MI, 1982.

G. Towell and J. Shavlik. The extraction of refined ruiesn knowledge based neural networks.
Machine Learning131:71-101, 1993.

George Tsibouris and Matthew Zeidenberg. Testing theient markets hypothesis with gra-
dient descent algorithms. In A. Refenes, editdeural Networks in the Capital Marketdohn
Wiley and Sons, 1995.

R.L. Watrous and G.M. Kuhn. Induction of finite state galages using second-order recur-
rent networks. In J.E. Moody, S.J. Hanson, and R.P Lippmeditors, Advances in Neural
Information Processing Systemsphages 309—-316, San Mateo, CA, 1992. Morgan Kaufmann
Publishers.

R.L. Watrous and G.M. Kuhn. Induction of finite-stat@admages using second-order recurrent
networks.Neural Computation4(3):406, 1992.

A.S. Weigend, B.A. Huberman, and D.E. Rumelhart. Rréuj sunspots and exchange rates
with connectionist networks. In M. Casdagli and S. Eubaulitoes, Nonlinear Modeling and
Forecasting, SFI Studies in the Sciences of Complexitycdeings Vol. X|Ipages 395-432.
Addison-Wesley, 1992.

G.U. Yule. On a method of investigating periodicities disturbed series with special refer-
ence to Wolfer’'s sunspot numbemBhilosophical Transactions Royal Society London Series A
226:267-298, 1927.

Z. Zeng, R.M. Goodman, and P. Smyth. Discrete recumentral networks for grammatical
inference.lEEE Transactions on Neural Networks(2):320-330, 1994.

24

