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In the era of Internet of Things (IoT), researchers have been developing new

technologies and intelligent systems to answer the question of who, what, when,

where, and how of things happening in the environment. Among the various tech-

niques that measure what is happening in the surroundings, wireless sensing stands

out because of its ubiquity and prevalence. On one hand, different indoor activities

bring distinctive perturbations to wireless radio propagation. On the other hand,

thanks to the nature of multipath, indoor environmental information is recorded

and embedded in the wireless channel state information (CSI). Hence, by deploy-

ing wireless transceivers to sense the radio propagation environment and analyzing

the CSI, one can extend human senses and enrich her/his insight into surrounding

environments and activities.

By leveraging the natural multipath propagation of electromagnetic (EM)

waves, radio analytics is proposed as a promising technology that deciphers radio

propagation characteristics and reveals rich environmental information surround-



ing us. As one approach of radio analytics, time-reversal (TR) technique exploits

the information of large degrees-of-freedom delivered by CSI and provides a high-

resolution spatial-temporal resonance, by treating each multipath component in a

wireless channel as a distributed virtual antenna. The TR spatial-temporal reso-

nance is indeed a resonance of EM field in response to the propagation environment,

and it changes whenever the propagation environment changes.

Inspired by the principle of TR and motivated by the development of IoT,

in this dissertation, we propose several radio analytic systems that leverage mul-

tipath information to realize IoT applications of recognizing different events and

identifying people in an indoor environment. In the first part, we design three in-

door monitoring systems that analyze different event-determined features extracted

from either a single CSI sample or a CSI time series. The first proposed indoor

monitoring system distinguishes between different indoor events by matching the

instantaneous CSI to a multipath profile calibrated in a training database whose

similarity is quantified by the time-reversal resonance strength (TRRS). Later on,

we derive the statistics of TRRS, and we propose a new TR based indoor monitoring

system that differentiates between different indoor events based on the statistical

behavior of TRRS. Unlike the previous two indoor monitoring systems which treats

each CSI as an independent feature, we propose the third indoor monitoring sys-

tem by exploiting the temporal information embedded in the CSI time series as an

additional feature to comprehensively understand indoor events. Results of exten-

sive experiments demonstrate the proposed systems as promising solutions to future

indoor monitoring IoT applications.



In the second part of this dissertation, we propose the concept of human ra-

dio biometrics and design a through-the-wall human identification system that is

implemented on commercial WiFi devices. As a human present in an indoor en-

vironment, the radio waves propagate around will interact with the human body

through reflection and scattering. We define human radio biometrics as the attenu-

ation and alteration of wireless signals brought by human. We achieve an accurate

through-the-wall human recognition by utilizing the fact that the radio biometrics

are uniquely determined by the biological characteristics of each human. Through

extensive experiments, we validate the existence of radio biometrics and evaluate

the accuracy of the proposed human identification system. Unlike conventional

approaches for biometric recognition, the proposed radio biometrics system can i-

dentify human through a wall and supports commercial WiFi infrastructure, thus

illustrating its potential for human recognition IoT applications.
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Chapter 1

Introduction

1.1 Motivation

In the era of Internet of Things (IoT), technologies and systems have been

developed to understand and decipher the surrounding environment, by answer-

ing the question of who, what, when, where, and how of everything happening.

Since the past decade, billions of smart objects, a.k.a. the “things”, have been de-

ployed around each individual. Including household appliances, phones and tablets,

vehicles, and almost everything that we can think of, those smart objects can com-

municate and exchange data with each other through internet. As the things form

a giant network, it will be possible to comprehensively track and measure people’s

daily life, and even monitor the entire world through IoT.

Thanks to the ubiquitous deployment of wireless radio devices and the devel-

opment of emerging wireless sensing technologies, it has enabled a plenty of IoT

applications that utilize wireless signals, or more specifically the wireless channel

state information (CSI), to perceive the information hidden in the indoor envi-

ronment. The feasibility of wireless passive sensing relies on multipath propagation.

Multipath propagation is the phenomenon that a transmitted wireless signal reaches
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Figure 1.1: Illustration of an indoor multipath environment.

the receiver through different paths after being reflected and scattered by differen-

t objects in the indoor environment. A typical indoor multipath environment is

demonstrated in Figure 1.1, where the channel between the transmitter (TX) and

the receiver (RX) consists of paths affected by: 1) walls, 2) doors of each room and

3) a present human being. Hence, as long as one of those three factors changes,

the channel changes accordingly and is revealed in the CSI. By deploying wire-

less transceivers indoors, both macro changes introduced by human activities and

moving objects, and micro changes generated by gestures and vital signals, can be

extracted from the CSI and recognized through wireless sensing. Hence, analyzing

how multipath propagation reacts to human activities and indoor objects can enrich

one’s insight into surrounding environments and activities, consequently extending

human senses.

Recently, time-reversal (TR) technique has been proposed as a promising ap-

proach for IoT applications by treating each path of the multipath channel in a rich

scattering environment as a widely distributed virtual antenna [1, 2]. By leverag-
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ing and controlling the virtual antenna, TR technique provides a high-resolution

spatial-temporal resonance. Because it is indeed a resonance of the electromagnetic

(EM) wave to the propagation environment, TR resonance, inherently, is capable

of responding to, indicating and differentiating environmental changes promptly.

Inspired by the principle of TR, radio analytics is proposed as the technique or

the solution that can decipher radio waves to reveal activities and environmental

information around us [2].

The past few decades have witnessed the surging demand of surveillance sys-

tems which aims to recognize individual identities and detect different indoor events.

On one hand, most indoor surveillance systems, nowadays, basically rely on video

recording and require cameras deployments in target areas. Techniques in computer

vision and image processing are applied on the captured videos to extract informa-

tion for real time detection and analysis [3–6]. However, conventional vision-based

indoor monitor systems have many limitations, including privacy violation, suscep-

tibility to malicious attack and indispensable requirements of LOS and illumination.

On the other hand, the capability of performing reliable human identification

and recognition has become a crucial requirement in many applications, such as

forensics, airport custom check, and bank securities. The well-known biometrics

for human recognition include fingerprint, face, iris, and voice, which are inherent

and distinctive to an individual. Even though the current biometrics systems are

accurate and can be applied in all environments, all of them require special devices

that capture human biometric traits in an extremely LOS environment, i.e., the

subject should make contact with the devices.
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Motivated and inspired by the aforementioned problems in current indoor mon-

itoring and human identification applications, in this dissertation, we will illustrate

how radio analytics can be used to achieve high-accuracy indoor monitoring and

human recognition with WiFi. Because of the inherent characteristics of wireless

signals, the proposed indoor monitoring systems and human identification system

can work under non line-of-sight (NLOS) scenario with low complexity algorithms.

1.2 Related Works on Indoor Wireless Sensing

Sensing with the wireless signals to detect indoor events has gained a lot of

attention [7]. By utilizing the fact that the received radio frequency (RF) signals

can be altered by the propagation environment, device-free indoor sensing systems

are capable of capturing activities in the environment through the changes in the

received RF signals. Existing research on wireless passive sensing can be categorized

into different groups based on the features extracted from the wireless channel. To

begin with, traditional wireless passive sensing systems are mainly based on the

received signal strength (RSS) [8–11]. However, due to the fact that the RSS is

coarse-grained and can be easily corrupted by multipath effect, RSS-based sens-

ing systems often require a line-of-sight (LOS) transmission, resulting in a limited

accuracy in indoor activity detection.

In order to improve the accuracy and expand the applicable scenario of tradi-

tional wireless passive sensing, a much more informative feature, the CSI, becomes

prevalent. Since the CSI is typically of high dimensions, it contains more detailed
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information and thus supports fine-grained classification applications. By analyzing

the variations and statistics of CSI, systems have been built to detect indoor human

motions [12–15] and small hand motions [16, 17]. Among most of those works only

amplitude of the CSI was used to detect indoor activities, while the information in

the phase is ignored, due to the randomness of phase distortion in the CSI. Later

in [18–23], the first two largest eigenvalues of the CSI correlation matrix were treat-

ed as features and a support vector machine (SVM) classifier was trained to detect

the presence of moving human. Although both the amplitude and phase informa-

tion of the CSI was utilized in [18], it can only differentiate between the static and

dynamic states in a LOS setting and the phase information was sanitized through

linear fitting which has notable drawbacks. A home intrusion detection system has

been proposed in [24] which treated the amplitude of the CSI as the feature, lacking

study of the false alarm rate and long-term performance.

Moreover, doppler frequency introduced by moving objects has been extracted

from CSI and one could utilize it to detect motion or motion directions [25–27].

However, in order to get accurate Doppler shift frequency, either a high sounding

rate over 1 kHz or a strict LOS transmission is required. In [9, 28, 29], falling down

detection systems have been implemented by analyzing the statistical behavior of

CSI captured within a certain time window, which is useful in elderly monitoring

and well-being applications.

Another category of wireless passive sensing techniques relies on the time-

of-flight (ToF) information embedded in the received signals to track changes of

reflected objects for motion detection or vital sign monitoring. Due to the fact the
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the spatial resolution of CSI is inversely proportional to the bandwidth, in order

to extract the fine-grained ToF information, the ToF based systems often require

either extremely large sensing bandwidths [30–32], or specially designed frequency-

modulated continuous-wave (FMCW) signals [33–37]. Hence, those techniques can-

not be implemented on off-the-shelf WiFi devices and their ability of detecting

multiple indoor events has not been studied yet.

1.3 Dissertation Outline and Contributions

Considering the limitations of current studies discussed in Section 1.2 and

the proliferation of IoT applications in indoor monitoring and human identification,

we are motivated to develop new radio analytic techniques that can not only fully

utilize the information embedded in multipath channels, but also support simple

implementation with commercial WiFi devices.

In this dissertation, we first introduce how to use TR technique to utilize

and analyze indoor multipath profiles for indoor multi-event detection and real-

time indoor monitoring. We propose three different indoor monitoring systems that

exploit CSI with different radio analytic methods, in Chapter 3, Chapter 4, and

Chapter 5. In the second part of this dissertation (Chapter 6), we will introduce

the concept of radio biometrics and describe a system that realizes through-the-wall

human recognition based on biometric information recorded in WiFi signals. The

rest of this dissertation is organized as follows.
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1.3.1 Multipath as Virtual Antenna: Time-Reversal Solution (Chap-

ter 2)

In this chapter, we elaborate on the fundamental theory behind the proposed

radio analytic systems, including multipath propagation and TR technique. Since

each indoor event and/or person present in an indoor environment is associated

with a unique multipath profile and can be mapped in to a distinct point in the

TR space, the similarity between two indoor events and/or different individuals can

be quantitatively measured through time-reversal resonance strength (TRRS). We

define and present the TRRS calculation that will be used in this dissertation.

1.3.2 Indoor Event Detection with Time-Reversal Space (Chapter 3)

In this chapter, we propose a novel wireless indoor events detection system,

TRIEDS. By leveraging TR technique to capture changes in the CSI of the indoor

environment, TRIEDS enables low-complexity single-antenna devices that operate

in the ISM band to perform through-the-wall indoor multiple events detection. In

TRIEDS, each indoor event is detected by matching the instantaneous CSI to a mul-

tipath profile calibrated in a training database using TRRS as the similarity mea-

surement. To validate the feasibility of TRIEDS and to evaluate the performance,

we build a prototype that works on ISM band with carrier frequency being 5.4 GHz

and a 125 MHZ bandwidth. Experiments are conducted to detect the states of the

indoor wooden doors. Compared with previous works on indoor monitoring systems

which require multiple antennas, dedicated sensors, ultra-wideband transmission or
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LOS environment, and rely on only the amplitude information in the CSI, TRIEDS

introduces a novel and practical solution to the indoor monitoring system which can

support through-the-wall detection and only requires low-complexity single-antenna

hardware operating in the ISM band.

1.3.3 Indoor Monitoring: Statistical Learning over Time-Reversal S-

pace (Chapter 4)

In this chapter, we propose a new TR based indoor monitoring system, TRIM-

S, which utilizes both the amplitude and the phase information in the CSI obtained

from off-the-shelf WiFi devices to monitor indoor environments in real time under

both LOS and NLOS sensing scenarios. Unlike the system proposed in Chapter 3

that uses the TRRS directly as a similarity score for differentiating between events,

TRIMS achieves indoor multiple events detection and human motion monitoring by

analyzing the statistical behavior of TRRS. The statistics of TRRS is derived in this

chapter and the performance of TRIMS is evaluated and verified through intrud-

er detection experiments conducted in different single family houses with resident

activities.

1.3.4 Indoor Monitoring: Training with Continuous Channel State

Information (Chapter 5)

In this chapter, we propose an indoor monitoring system that monitors the

occurrence of different indoor events in real time with commercial WiFi devices, by
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exploiting the temporal information embedded in the CSI time series. Since the oc-

currence of an indoor event lasts for a certain period and shares a similar transition

of indoor intermediate states among different instances, event-related information

is embedded not only in each CSI sample but also in how CSI changes along time.

Instead of treating each CSI as an independent feature (Chapter 3 and Chapter 4),

in this chapter, the time series of CSI samples captured continuously is used for

identifying and classifying different indoor events. Algorithms are designed to ex-

tract the most distinct and representative feature sequence and a modified classifier

based on the k-nearest-neighbor (kNN) is proposed to overcome the perturbation

and divergence in the real-time measured features. Moreover, we propose unsu-

pervised auto-retraining algorithms to improve the system robustness in long-term

experiments. We use the door opening and close in smart home scenario as a repre-

sentative set of events to study the CSI time series classification, and the technique

can be generalized to other types of events.

1.3.5 Radio Biometrics: Human Recognition Through a Wall (Chap-

ter 6)

In this chapter, we present a TR human identification system which identifies

individuals through the wall, based on the human radio biometrics extracted form

WiFi signals. We introduce for the first time the concept of human radio biomet-

rics, which account for the wireless signal attenuation and alteration brought by

human. Through experiments, its existence has been verified and its capability in

9



human identification has been illustrated. The procedure to collect human radio

biometrics is named as radio shot. Due to the fact that the dominant component

in the CSI comes from the static environment rather than the human body, the

human radio biometrics are embedded and buried in the multipath CSI. To boost

the identification performance, we design novel algorithms for extracting individual

human radio biometrics from the wireless channel information. With the help of

TR technique and TRRS, human radio biometrics are differentiated between differ-

ent people. Extensive experiments have been conducted using a prototype built on

commercial WiFi devices and results demonstrate the potential of using commercial

WiFi signals to capture human radio biometrics for individual identifications.
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Chapter 2

Multipath as Virtual Antenna: Time-Reversal Solution

The nature provides a large number of degrees of freedom by means of radio

multipath propagation. Through channel sounding, real-time CSI can be estimated

which records information of all scatterers in the multipath propagation environ-

ment. TR technique treats each path of the multipath channel in a rich scattering

environment as a widely distributed virtual antenna and provides a high-resolution

spatial-temporal resonance, commonly known as the focusing effect [1]. As long

as a change occurs on either the device or any scatterer in the environment, the

corresponding multipath channel between the TX and the RX changes accordingly.

Consequently, the TR spatial-temporal resonance changes, which conversely indi-

cates changes in the propagation environment. In physics, the TR spatial-temporal

resonance can be viewed as the result of the resonance of electromagnetic (EM) field

in response to the environment [38].

Inspired by the fundamental physical principle of TR, Radio analytics has

been proposed an emerging technology that infers the propagation environment and

extends the human sense over the world [2]. As fully exploiting the rich multipath

CSI, various types of analytics based on the wireless channel state information (i.e.,

radio analytics) has been developed to enable many cutting-edge IoT applications,
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including the indoor monitoring systems and human recognition systems proposed

in this dissertation.

In this chapter, we give a detailed introduction to the fundamental theory

behind the proposed radio analytics: indoor monitoring systems and human recog-

nition systems. The rest of this chapter is organized as follows. The idea of multi-

path propagation is introduced in Section 2.1, where we explain how to treat each

multipath component as a virtual antenna. In Section 2.2, we provide an overview

for TR technique, introduce the concept of TR space, and define the calculation

of time-reversal resonance strength (TRRS). We summarize this chapter in Section

2.3.

2.1 Multipath

As the transmit signal encounters different scatterers in the environment and

thus travels through different paths during its propagation, the channel between

each TX and RX antenna is a multipath channel.

Because an attenuated copy of the original signal is generated and transmitted

through a different path when the transmit signal gets reflected or scattered by a

scatterer, each scatterer in the environment can be viewed as a virtual antenna that

transmits directly to the RX, in addition to the TX. Moreover, the channel charac-

teristics between the virtual antenna and the RX antenna are determined by both

of the radio paths between the TX and the scatterer and between the scatterer and

the RX. An illustration of scatterers as virtual antennas in a multipath propagation
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Figure 2.1: Illustration of virtual antennas.

environment is depicted in Figure 2.1, where the red arrow represents the LOS path

and the blue arrows represent paths reflected and scattered by scatterers. Green

stars in Figure 2.1 represent scatterers in the environment, which can be viewed as

virtual antennas that transmit an attenuated signal to the RX. All paths together

form a multipath channel between the TX and the RX [39].

The multipath can be effectively harvested by adjusting transmission power

and bandwidth [40, 41]. On one hand, a higher transmission power can lead to a

higher SNR. Consequently, the higher the transmission power is, the more observable

multipath components are. On the other hand, the spatial resolutixon in resolving

independent multipath components, i.e., the resolution to separate radio paths with

different lengths in a multipath propagation, is limited by c/B as marked in Figure

2.1, with c being the speed of light and B being the bandwidth. Therefore, the
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larger the bandwidth is, the better the spatial resolution is and thus the more mul-

tipaths can be revealed. The mathematical explanation of the relationship between

bandwidth and multipath resolution is as follows.

2.1.1 Multipath Channel Profile

In an environment with Kmax independent multipath components existing

between the TX and the RX, the continuous-time multipath channel h(t) is defined

as collections of different radio propagation paths, i.e.,

h(t) =
Kmax∑
k=1

αkδ(t− τk), (2.1)

where Kmax is the number of scatterers in the wireless transmission medium. αk is

the multipath coefficients of scatterer k, and τk is the time delay associated with αk.

The function δ(·) is the delta function. Note that, the delay spread of the channel

is τ = maxk τk.

However, due to the limited bandwidth B, the estimated discrete-time channel

hT at the receiver side is a sampled version of h(t), i.e.,

hT [l] =

∫ l
B

l−1
B

P
( l

B
− t
)
h(t)dt, l = 0, 2, · · · , L− 1, (2.2)

where P (·) is the window function with length 1/B.

Given a delay spread τ , when B ≤ 1/τ , only a single tap is resolved as the

integration of all multipaths. When B > 1/τ , multipath signals received within 1/B

seconds will be integrated into a single tap signal. Consequently, all multipaths can

be resolved when B > 1/∆τmin, where ∆τmin represents the smallest difference in

14



ToF of consecutively received multipath signals. Because signals with ToF differ-

ence equal to or larger than 1/B can be separated under a bandwidth B, a larger

bandwidth enables a higher sampling rate to sample analog signals received from

different paths and resolve more multipath components. Therefore, the number of

resolved channel taps, i.e. length of vector hT , is determined by L = round(τB),

as long as Kmax is large enough to provide enough multipaths whose time delay

difference ∆τmin is close to 0.

Hence, the larger the bandwidth is, the better the spatial resolution is and thus

the more multipaths can be revealed. The performance of wireless sensing depends

greatly on how rich the CSI can be. In the LTE standard the bandwidth is 20MHz,

and in WiFi (the IEEE 802.11n standard) systems the bandwidth is 40 MHz. More-

over, the entire ISM 5G band occupies a total of 125MHz bandwidth. As projected

in 5G, high carrier frequencies with larger bandwidths will be adopted in the future

wireless communication systems [42], which makes the multipath channel of a good

spatial resolution feasible. With more and more bandwidth readily available for

the next generation of wireless sensing, many more smart applications/services will

come true, because richer information becomes available with a wider bandwidth.

2.2 Time-Reversal Resonance

In this section, we review the history of TR technique and introduce the con-

cept of TR space. Multipath profile records changes occurring in the indoor envi-

ronment, as well as the radio biometric information, i.e., how EM wave interacts
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with human bodies. Each indoor event and/or person in the indoor environmen-

t can be represented by a multipath profile, corresponding to a point in the TR

space. If there is a new event or person shows to affect the indoor propagation

environment, current multipath profile changes and fails to generate a high spatial-

temporal resonance with the one mapped in the TR space. With the notion of a TR

space, the similarity between two indoor events and/or individuals can be evaluated

quantitatively and perform indoor event detection and human recognition.

2.2.1 Overview of Time-Reversal Technique

TR signal processing technique is originally proposed in 1957 to compensate

the delay distortion in picture transmission [43]. Then, its applications in acoustic

communications has been studied, and it is validated through a series of theoretical

and experimental works that the energy of the TR acoustic wave is only focused at

the intended locations [44–52].

Later, applications of TR technique in wireless communications have received

an increasing attention. In [38,53–58], the study of TR signal transmission has been

extended to applications related to the electromagnetic (EM) field, which demon-

strates the TR resonance through experiments and justifies the assumption of chan-

nel stationarity and channel reciprocity given that the coherence time is long enough.

Meanwhile, the performance of TR technique has been studied in UWB [59–63], and

with MIMO technology [56,64–67].

Recently, experiments as well as theoretic analysis have been conducted to
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illustrate the potential of TR for future green communications [68, 69]. Later on,

the concept of time-reversal division multiple access was proposed and a system-level

performance analysis was provided in [70]. Moreover, TR waveforming [39,68,71–75]

has been proposed as a novel technique to control virtual antennas distributed in

the environment to take advantages of the spatial diversity and thus achieve a high

degree of freedom.

On the other hand, TR technique can be utilized to detect and track the

changes in a multipath propagation environment with a high accuracy. As capable

of accurately detecting changes in the wireless environment, TR technique was pre-

sented as a promising technique for green Internet of things (IoT) [76] and has been

applied to applications for indoor locationing that achieves a centimeter level accu-

racy [77–80], indoor speed estimation [81], through-the-wall event detection [82–84],

human recognition [85] and breathing rate estimation [86].

2.2.2 Time-Reversal Space

The TR space is used to represent and separate different indoor propagation

environments. The details are as follows.

During the wireless transmission, signals encounter different objects in the

environment, and the corresponding propagation path and characteristics change

accordingly before arriving at the receiver. Hence, each channel multipath profile

is uniquely determined by the indoor environment. As demonstrated in Figure

2.2, each dot in the physical space represents an indoor location or a snapshot of an
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Figure 2.2: Mapping between the physical space and the TR space.

indoor environment, which uniquely determine a multipath profile h(t). By taking a

time-reverse and conjugate operation over the multipath profile, the corresponding

TR signature g(t) is generated. Consequently, each of the points in the physical

space as marked by “A”, “B”, and “C” is mapped into the TR space as “A′”, “B′”,

and “C ′”. When the TR signature is transmitted through a wireless channel, a

unique peak will be generated at the receiver side, known as the spatial focusing

effect, only if the current indoor environment matches the signature.

Therefore, in the TR space, the similarity between two indoor events and/or

radio biometrics can be quantified by TRRSs. The higher the TRRS is, the more

similar two indoor events and/or radio biometrics are. Similar events or radio bio-

metric information constrained by a threshold on TRRS can be viewed as coming

from the same class. By leveraging the high degrees-of-freedom in multipath infor-

mation using TR techqniue, we can monitoring indoor environment and detecting
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event occurrence in real time. Moreover, wireless human recognition is accomplished

by deciphering the radio biometric information embedded in the CSI.

2.2.3 Time-Reversal Resonance

When the propagation environment changes, the involved multipath signal

varies correspondingly and consequently the spatial-temporal resonance as well as

TRRS also changes. In this part, we define the TRRS and provide the calculation

details for time domain CSI and the frequency domain CSI.

2.2.3.1 Calculating Time-Reversal Resonance Strength with Channel

Impulse Response

When sensing in the time domain, the CSI is in the form of the channel

impulse response (CIR), hT =
[
hT [0], hT [2], · · · , hT [L− 1]

]
, as defined in (2.2) and

the subscript (·)T denotes the time domain CSI. The definition of the TRRS is given

as follows.

Definition: The TRRS T R(hT,1,hT,2) between two CIR samples hT,1 and

hT,2 is defined as

T R(hT,1,hT,2) =
max

i

∣∣∣(hT,1 ∗ gT,2)[i]
∣∣∣2(∑L−1

l=0 |hT,1[l]|2
)(∑L−1

l=0 |hT,2[l]|2
) , (2.3)

where “∗” denotes the convolution and gT,2 is the TR signature of hT,2 as,

gT,2[k] = h∗
T,2[L− k − 1], k = 0, 1, · · · , L− 1, (2.4)

where (·)∗ denotes taking conjugation.
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The resonating strength defined in (2.3) is similar to the definition of cross-

correlation coefficient between hT,1 and hT,2 as the inner product of hT,1 and h∗
T,2,

which is equivalent to (hT,1 ∗ gT,2)[L − 1]. However, the numerator in (2.3) is the

maximal absolute value in the convolved sequence. The operation of finding the

maximum is important, in terms of combating any possible synchronization error

between two CSI estimations, e.g., the first several taps of CSI may be missed or

added in different measurements. Hence, due to its robustness to the synchronization

errors in the CSI estimation, the TRRS is capable of capturing all the similarities

between multipath CSI samples and increasing the accuracy.

2.2.3.2 Calculating Time-Reversal Resonance Strength with Channel

Frequency Response

The CSI obtained from OFDM based WiFi devices is in the frequency domain,

i.e., the CSI is in the form of the channel frequency response (CFR). Given the

definition of h(t) in (2.1), the CFR becomes

h(f) =
Kmax∑
k=1

αke
−j2πfτk , (2.5)

where f denotes the center frequency of each subcarrier. Given the number of

accessible subcarriers to be L, the the CFR can be rewritten as

hF [l] =
Kmax∑
k=1

αke
−j2πτk

l+1
NTs , l = 0, 1, · · · , L− 1, (2.6)

where the subscript (·)F denotes the frequency domain CSI, l is the subcarrier index,

L is the total number of subcarriers, Ts = 1/B which is defined in (2.2), and N is

the size of the DFT as well as the number of samples for each OFDM symbol.
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Due to the existence of the carrier frequency offset (CFO), the sampling fre-

quency offset (SFO) and the symbol timing offset (STO), the estimated CFR is

corrupted with random phase distortion. Therefore, considering the phase distor-

tion in the CFRs, the calculation of TRRS is defined as follows.

Definition: The TRRS T R(hF,1,hF,2) in frequency domain between two

CFRs hF,1 and hF,2 is defined as

T R(hF,1,hF,2) =

max
ϕ

∣∣∣∑
k

hF,1[k]gF,2[k]e
jkϕ
∣∣∣2(∑L−1

l=0 |hF,1[l]|2
)(∑L−1

l=0 |hF,2[l]|2
) , (2.7)

where gF,2 denotes the TR signature in the frequency domain for CFR hF,2, defined

as

gF,2[k] = h∗
F,2[k], k = 0, 1, · · · , L− 1. (2.8)

In (2.7), the numerator is similar to the one in (2.3) and the operation of

taking maximal value is to addressing the misalignment of random linear phase

offset between two CFRs. In the real application, the calculation of numeration is

approximated by fast Fourier transform (FFT) with a length of 512 or 1024.

However, given two CFRs that have been individually compensated for the

phase distortion, the (2.7) can be rewritten as

T R(hF,1,hF,2) =

∣∣∣∑k hF,1[k]gF,2[k]
∣∣∣2(∑L−1

l=0 |hF,1[l]|2
)(∑L−1

l=0 |gF,2[l]|2
)

=

∣∣∣∑k hF,1[k]h
∗
F,2[k]

∣∣∣2(∑L−1
l=0 |hF,1[l]|2

)(∑L−1
l=0 |hF,2[l]|2

)
(2.9)

where L is the length of the CFR vector, k is the subcarrier index.

In Chapter 3, we use the definition of TRRS as the one in (2.3) because
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the prototype we built probes the multipath channel in time domain. However, in

Chapter 4 and Chapter 6 where proposed systems are implemented using commodity

WiFi devices, (2.9) and (2.7) are adopted respectively.

2.3 Summary

In this chapter, we introduce the fundamental theory behind radio analytics,

including multipath propagation and TR technique. By treating each multipath

component as a virtual antenna and leveraging the high degrees-of-freedom in mul-

tipath information, radio analytic systems are proposed in this work to interpret

an indoor environment and detect indoor events in real time, and even identify the

human being present in the environment without the help of cameras. The details

of the proposed systems are discussed in the following chapters.
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Chapter 3

Indoor Event Detection with Time-Reversal Space

The past few decades have witnessed the increase in the demand of surveillance

systems which aims to capture and to identify unauthorized individuals and events.

With the development of technologies, traditional outdoor surveillance systems be-

come more compact and of low cost. In order to guarantee the security in offices

and residences, indoor monitoring systems are now ubiquitous and their demand is

rising both in quality and quantity. For example, they can be designed to guard

empty houses and to alarm when break-in happens.

Currently, most indoor monitor systems basically rely on video recording and

require cameras deployments in target areas. Techniques in computer vision and

image processing are applied on the captured videos to extract information for real

time detection and analysis [3–6,87,88]. However, conventional vision-based indoor

monitor systems have many limitations. They cannot be installed in places requiring

high level of privacy like restrooms or fitting rooms. Owing to the prevalence of

malicious softwares on the Internet, vision-based indoor surveillance systems may

lead to more dangers than protections, contradicting their intention. Moreover,

vision-based approaches have a fundamental requirement of a LOS environment

with enough illumination is indispensable.
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In this chapter, we propose a TR based wireless indoor events detection sys-

tem, TRIEDS, capable of through-the-wall indoor events detections with only one

pair of single-antenna devices. We utilize the TR technique to capture the varia-

tions in the multipath CSI due to different indoor events, and propose TRIEDS for

indoor event detection. More specifically, thanks to the nature of TR that captures

the variations in the CSI, maps different multipath profiles of indoor events into

separate points in the TR space, and compresses the complex-valued features into

a real-valued scalar called the spatial-temporal resonance strength, the proposed

TRIEDS supports simplest detection and classification algorithms with a good per-

formance. Compared with previous works on wireless indoor monitoring systems

which require multiple antennas, dedicated sensors, ultra-wideband transmission or

LOS environment, and rely on only the amplitude information in the CSI, TRIEDS

introduces a novel and practical solution which can well support through-the-wall

detection and only requires low-complexity single-antenna hardware operating in

the ISM band.

The rest of this chapter is organized as follows. The details of how TRIEDS

works are studied and analyzed in Section 3.1, involving an offline training phase and

an online testing phase. Moreover, extensive experiments of TRIEDS in detecting

indoor events in real office environments are conducted and the experimental results

are investigated in Section 3.2. Based on the results in Section 3.2, we further discuss

how the system parameters, human motions will affect the accuracy of TRIEDS.

Finally, conclusions are drawn in Section 3.4.
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3.1 Proposed Algorithms

In this part, we present a detailed introduction to the proposed TR based

indoor events detection system, TRIEDS. The proposed TRIEDS exploits the in-

trinsic property of TR technique that the spatial-temporal resonance fuses and com-

presses the information of the multipath propagation environment. To implement

the indoor events detection based on the TR spatial-temporal resonances, TRIED-

S consists of two phases: the offline training and the online testing. During the

first phase, a training database is built by collecting the signature g of each indoor

events through the TR channel probing phase. After training, in the second phase,

TRIEDS estimates the instantaneous multipath CSI h for current state and makes

the prediction according to the signatures in the offline training database by means

of the strength of the generated spatial-temporal resonance. The detailed operations

are discussed in the followings.

3.1.1 Phase 1: Offline Training

As discussed above, TRIEDS leverages the unique indoor multipath profile

and TR technique to distinguish and detect indoor events. During the offline train-

ing phase, we are going to build a database where the multipath profiles of any

targets are collected and stored the corresponding TR signatures in the TR space.

Unfortunately, due to noise and channel fading, the CSI from a specific state may

slightly change over the time. To combat this kind of variations, for each state, we

collect several instantaneous CSI samples to build the training set.
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Figure 3.1: An example of indoor CSI.

Specifically, for each indoor state Si ∈ D with D being the state set, the

corresponding training CSI, a.k.a. CIR, is estimated and form a matrix HT,i as,

HT,i = [hT,i,t0 , hT,i,t1 , · · · , hT,i,tN−1
], (3.1)

where N is the size of the CSI samples for a training state. hT,i,tj represents the

estimated CSI vector of state Si at time tj and HT,i is named as the CSI matrix for

state Si. An example of estimated indoor CSI obtained by the prototype in Figure

3.2 shown in Figure 3.1, where the total length of the CSI is 30. From Figure 3.1(a),

we can find out that there exist at least 10 to 15 significant multipath components.

The corresponding TR signature matrix Gi can be obtained by time-reversing

the conjugated version of HT,i as:

Gi = [gT,i,t0 , gT,i,t1 , · · · , gT,i,tN−1
], (3.2)

where the TR signature is defined in (2.4). Here, the superscript ∗ on a vector

variable represents the conjugate operator. L denotes the length of a CSI vectors
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and k denotes the index of taps. Then the training database G is the collection of

Gi’s.

3.1.2 Phase 2: Online Testing

After constructing the training database G, TRIEDS is ready for real-time

indoor events detection. The indoor events detection is indeed a classification prob-

lem. Our objective is to detect the state of indoor targets through evaluating the

similarity between the testing TR signatures and the TR signatures in the training

database G. The raw CSI information is complex-valued and of high dimensions,

which complicates the detection problem and increases the computational complex-

ity if we directly treat the CSI as the feature. To tackle this problem, by leveraging

the TR technique, we are able to naturally compress the dimensions of the CSI

vectors through mapping them into the strength of the spatial-temporal resonances.

When comparing two estimated multipath profiles, they are first mapped into

the TR space where each of them is represented as one TR signature. Then the

TRRS as defined in (2.3) is a metric that quantifies the similarity between these

two multipath profiles in the mapped TR space. The higher the TRRS is, the more

similar two multipath profiles are in the TR space.

During the online monitoring phase, the receiver keeps matching the current

estimated CSI to the TR signatures in G to find the one that yields the strongest TR

spatial-temporal resonance. The TRRS between the unknown testing CSI HT,test
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and state Si is defined as

T RSi
(HT,test) = max

hT∈HT,test

max
hT,i∈HT,i

T R(hT ,hT,i), (3.3)

where HT,test is a group of CSI samples assumed to be drawn from the same state

as

HT,test = [hT,test,t0 , hT,test,t1 , · · · , hT,test,tM−1
], (3.4)

and M is the number of CSI samples in one testing group, similar to the N in the

training phase defined in (3.1).

Once we obtain the TRRS for each event, the most possible state for the

testing CSI matrix HT,test can be found by searching for the maximum among

T RSi
(HT,test), ∀ i, as

S∗ = argmax
Si∈D
T RSi

(HT,test), (3.5)

The superscript ∗ on S denotes the optimal.

Besides finding the most possible state S∗ by comparing the TR spatial-

temporal resonances, TRIEDS adopts a threshold-trigger mechanism, in order to

avoid false alarms introduced by events outside of the state class D. TRIEDS re-

ports a change of states to S∗ only if the TRRS T RS∗(HT,test) reaches a predefined

threshold γ.

Ŝ =


S∗, if T RS∗(HT,test) ≥ γ,

0, otherwise,

(3.6)

where Ŝ = 0 means the state of current environment is not changed, i.e., TRIEDS is

not triggered for any trained states in D. According to the aforementioned detection
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Figure 3.2: Prototype of TRIEDS.

rule, a false alarm for state Si happens whenever a CSI is detected as Ŝ = Si but it

is not from state Si.

Although the algorithm for TRIEDS is simple, the accuracy of indoor events

detection is high and its performance is validated through multiple experiments in

the next section.

3.2 Experimental Results

To empirically evaluate the performance of TRIEDS, we conduct several exper-

iments for door states detection in a commercial office environment with different

transmitter-receiver locations, using the prototype in Figure 3.2. The prototype

operates at 5.4 GHz band with a bandwidth of 125 MHz

To begin with, a simple LOS experiment for validating the feasibility of TRIED-

S is conducted in a controlled environment, with 7 transmitter locations, one receiver

location and two events. Then, the validation is further extended to both LOS and
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NLOS cases in a controlled office environment with 3 receiver locations, 15 loca-

tions for transmitter and 8 targeted doors made of wood. Meanwhile, experiments

are conducted in an uncontrolled indoor environment during normal working hours

with people around. Furthermore, the performance of the proposed TRIEDS is also

compared with that of the RSS-based indoor monitoring approach, which can be

easily extracted from the channel information and classified the using kNN method.

To further evaluate the accuracy of the proposed TRIEDS in real environments, the

performance of TRIEDS with intentional human movements is studied. Last but

not least, results of TRIEDS being as a guard system to secure a closed room are

discussed.

3.2.1 Experimental Setting

The prototype of the proposed TRIEDS requires one pair of single-antenna

transmitter and receiver that work on the ISM band with the carrier frequency

being 5.4 GHz and a 125 MHz bandwidth. Moreover, during the experiment, the

system runs with a channel probing interval around 20 millisecond (ms). A snapshot

of the hardware device for TRIEDS is shown in Figure 3.2 with the antenna installed

on the top of the radio box.

The experiments are carried out in the offices at the 10th floor in a commercial

building of 16 floors in total. The experimental offices are surrounded by multiple

offices and elevators. The detailed setup is shown in the floorplans in Figure 3.3.

During the experiments, we are detecting the open/closed states of multiple wooden
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(a) Setting 1. (b) Setting 2.

Figure 3.3: Experimental setting for TRIEDS: floorplans

doors labeled as D1 to D8. The TX-RX locations include both LOS and NLOS

transmissions.

In TRIEDS experiments, the receiver and the transmitter are placed on the

top of stands at the intended locations, with the height from the ground being 4.3

ft and 3.6 ft respectively, as shown in Figure 3.4(a) and Figure 3.4(b).

In all the experiments, we choose the number of the training CSI and the

testing CSI to be N = 10 and M = 10 as defined in (3.1) and (3.4).

3.2.2 Feasibility Validation

To begin with, the feasibility for the proposed TRIEDS to detect indoor events

is verified in a LOS case where the receiver is placed inside room 3 as shown in

Figure 3.3(a), and the transmitter is moving along the 7 locations marked by “△”

in a vertical line with the dot nearest to the targeted door being labeled as index
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(a) The receiver. (b) The transmitter.

Figure 3.4: Experimental setting for TRIEDS: devices.

Location Index 1 2 3 4 5 6 7

False Alarm Rate (%) 0 0 0 0 0 0 0

Detection Rate (%) 100 100 100 100 100 100 100

Table 3.1: Performance of the proposed TRIEDS in easy case.

“1”. Our task is to detect whether the wooden door D3 is closed or open.

The multipath CSI samples for D3 open and closed are obtained through

TR channel probing phase and the corresponding TR signatures are stored in the

database. In the testing phase, we keep listening to the multipath channel and

matching the collected testing CSI to the database for. With any threshold γ smaller

than 0.97, we can achieve the perfect detection for all the 7 transmitter locations as

in Table 3.1.
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In this case, the proposed TRIEDS indeed performs a detection for the events

on the LOS path between the transmitter and the receiver. Through this simple

experiment, we have demonstrated the feasibility of TRIEDS to use the TR spatial-

temporal resonance to capture the changes in the indoor multipath environmen-

t. Next, the performance of TRIEDS is further evaluated under more complicated

changes of the multipath environment and with both LOS and NLOS TX-RX trans-

missions.

3.2.3 Single Door Monitoring

In this part, the experiments are conducted to understand how locations of the

receiver, the transmitter and the targeted objects affect the performance of TRIEDS.

The receiver is placed at location “RX(A)”, “RX(B)” and “RX(C)”, whereas the

transmitter is moving along 15 locations separated by 0.5 meters in a horizontal line

as marked by grey dots in Figure 3.3(b). The objective of TRIEDS is to monitor

the states of wooden door D1. During the experiment, for each location and each

indoor event, we measure 3000 samples of the CSI which takes about 5 minutes by

using our built prototype, leading to a total experimental time to be 10 minutes for

each TX-RX location.

Here, the location “RX(A)” (LOC A) represent a throuth-the-wall detection

scenario in the absence of a LOS path between the transmitter and the receiver,

and between the receiver and where the indoor event happens. Under the case

when the receiver is at the location “RX(B)” (LOC B), there is always a LOS path
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between the receiver and where the indoor event happens, since they are in the same

room. However, the LOS path between the transmitter and the receiver disappears

regarding most of the possible transmitter locations, and it exists only if the trans-

mitter, the receiver and the door D1 form a line. However, the transmitter and

the receiver always perform LOS transmission when the receiver is at the location

“RX(C)” (LOC C). Meanwhile, the door D1 to be detected falls outside of the LOS

link between the transmitter and the receiver.

3.2.3.1 LOC A: NLOS case

As we discussed above, when the receiver is on LOC A in room 2, there is no

LOS path between the receiver and the transmitter, and the receiver and door D1

are isolated by walls. One example of the multipath CSI for the open and the closed

state of door D1 is shown in Figure 3.5. In Figure 3.5 where only the amplitudes of

the CSI are plotted, it is clear to observe a change in how the energy is distributed on

each tap. In the proposed TRIEDS, not only the amplitude information but also the

phase for each tap is taken into consideration by means of the TR spatial-temporal

resonance.

From the experiment, with a threshold γ no larger than 0.9, we can achieve

a perfect detection rate and zero false alarm rate for all 15 transmitter locations.

Hence, we can conclude that TRIEDS is capable of detecting an event in a NLOS

environment with through-the-wall detection and the distance between the receiver

and the transmitter has little effect on the performance.
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Figure 3.5: Multipath profiles (amplitude part) of door D1 under LOC A.

3.2.3.2 LOC B: LOS and NLOS case

When the receiver is on LOC B in room 1, as the transmitter moving from the

location “1” to the location “4” (the 4th dot right to the one marked as “1”), the

transmission scenario between the transmitter and the receiver is NLOS due to the

absence of a direct LOS link. Then, the trasmission scenario become LOS, when

the transmitter is on the location “5” to the location “6”. When the transmitter

moves farther away (i.e., from the dot “7”), there is no LOS path again between

the transmitter and the receiver and the transmission scenario becomes NLOS. In

Figure 3.6(a) and Figure 3.6(b), examples of the CSI for each event are plotted to

demonstrate the changes in the amplitudes of the multipath profile corresponding

to the indoor event.

Considering the accuracy for TRIEDS, with a threshold γ ≤ 0.9, the detection
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(a) A multipath profile (amplitude part) when

TX on location “1” (NLOS).
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(b) A multipath profile (amplitude part) when

TX on location “5” (LOS).

Figure 3.6: Multipath profiles of door D1 for LOC B under NLOS and LOS scenarios.

rate for all 15 transmitter locations is higher than 99.9%. Except when the trans-

mitter is at the location “6”, the detection probability drops to 95.9%. Nevertheless,

the corresponding false alarm rates are all below 0.1%. Since the experiment is car-

ried out in a commercial office building, there exist outside activities that we cannot

control but indeed change the multipath CSI to fall out the collected indoor events.

So the reason for the detection probability at the 6th location being 95.9% might be

the existence of uncontrollable outside activities. For example, the elevator running

which may greatly change the outside multipath propagation because it is close to

the environmental office and is made of metal. Moreover, generally, TRIEDS is

robust to the various distances between the transmitter, the receiver and where the

indoor event happens.
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3.2.3.3 LOC C: LOS case

When the receiver is on LOC C outside room 2, no matter where the trans-

mitter is, they are transmitting under LOS scenario, which leads to a dominant

multipath component exists in the multipath CSI.

The LOS transmission brings difficulties to indoor events detection when event

locates outside of the LOS path between the transmitter and the receiver. The rea-

son for that can be decomposed into two parts. In the first place, in this experiment,

the object door D1 is located parallel with the transmission link between the trans-

mitter and the receiver, and has little influence to the dominant LOS component

in the multipath profile. Secondly, since more energy is focused on the LOS path

dominant in the CSI, the other multipath components that contain the event infor-

mation are more noise-like and less informative. Hence, as most of the information

for the event is buried in the CSI components with only a few energy, it is hard to

detect an event happening outside the direct link between the transmitter and the

receiver in a LOS-dominant wireless system. This can be shown by an example of

the multipath CSI with respect to the open and closed states of door D1 in Figure

3.7, where the dominant path remains the same and contains most of the energy in

the CSI.

In the experiment, TRIEDS yields a 100% detection rate and a 0 false alarm

rate for all the 15 transmitter locations with the threshold γ ≤ 0.93. The experi-

mental result supports our claim that the proposed TRIEDS can capture even minor

changes in the multipath profile by using TR technique.
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Figure 3.7: Multipath profiles (amplitude part) of door D1 under LOC C.

3.2.4 TRIEDS in Controlled Environments

In the previous sections, we have validated the capability of the proposed

system of detecting two indoor events with both LOS and NLOS transmission in

controlled indoor environments. In this part, we are going to study the performance

of TRIEDS in detecting multiple indoor events. Moreover, the performance compar-

ison between the RSSI-based indoor detecting approach and the proposed TRIEDS

is further investigated.

In the experiment, the receiver is placed on either LOC B in room 1 or LOC

C outside room 2, whereas the transmitter moves and stops on every two grey dots

that are separated by 1 meter, named from “axis 1” to “axis 4” respectively. In total,

we have 2 receiver locations and 4 transmitter locations, i.e., 8 TX-RX locations.

The objective of TRIEDS is to detect which wooden doors among D1 to D8 is closed
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State Index Description

S1 All the doors are open.

Si+1 Door Di closed and the others open, ∀i = 1, 2, · · · , 8.

Table 3.2: State list for TRIEDS to detect.

versus all other doors are open, as labeled in Figure 3.3(b). During the experiment,

for each TX-RX location and each event, we measure 3000 CSI samples which takes

approximately 5 minutes, leading to a total monitoring time of 45 minutes. In Table

3.2 is the state table describing all the indoor events in the experiment.

As we claimed and verified in the single-event detection experiment that the

proposed TRIEDS can achieve highly accurate detection performance by utilizing

the spatial-temporal resonance to capture changes in the multipath profiles. In

this section, we evaluate the capability of TRIEDS of detecting multiple events

in a controlled indoor environment. The performance analysis for normal office

environment during working hours will be discussed later.

3.2.4.1 Evaluations on LOC B

To begin with, the performance of TRIEDS when the receiver is on LOC B is

studied. In Figure 3.8, we show how the TRRS varies between different events.

Due to the fact that door D5 and D6 are closed to each other whereas they are

far away to the receiver and the transmitter, the introduced changes in the multipath

profiles of both of them are similar. Consequently, the resonance strength between
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Figure 3.8: Resonance strength map with RX on LOC B and TX on the 1st green

dot (axis 1).

states S6 and S7 is relatively higher than other off-diagonal elements, but it is still

smaller than the diagonal ones in Figure 3.8 that represent the in-class resonance

strength. Similar phenomenon happens between states S8 and S9.

In Figure 3.9 and Figure 3.10, examples of the receiver operating characteristic

(ROC) curves for detecting states of indoor doors are plotted for both the proposed

TRIEDS system and the conventional RSSI approach. Here, the legend “aixs i”,

i = 1, 2, 3, 4, denotes the location of transmitter to be on the (2 ∗ i − 1)th grey dot

in Figure 3.3(a).

As shown by Figure 3.9 and Figure 3.10, the proposed TRIEDS outperforms

the RSSI-based approach in distinguishing between one door is closed (i.e., Si, i ≥ 1)

versus all doors are open (i.e., S0), by achieving perfect detection and zero false alarm

rate. Note that S9 is the state of door D8 which is blocked from the TX-RX link by
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Figure 3.9: ROC curve for distinguishing between S1 and S2 under LOC B.

a closed office, as an example, Figure 3.9 demonstrates the superiority of TRIEDS in

performing a through-the-wall detection. Meanwhile, the performance of the RSSI-

based approach degrades as the distance between where the indoor event happens

and the TX-RX gets smaller. By leveraging the TR technique, TRIEDS is capable of

capturing the changes in a multipath environment in a form of multi-dimensional and

complex-valued vector with high degree of freedoms, and of distinguishing between

different changes in the TR spatial-temporal resonance domain. However, the RSSI

based approach tries to monitor the changes in the environment through a real-

valued scalar, which due to its dimension loses most of the distinctive information.

Furthermore, the accuracy of detection of TRIEDS improves as the distance

between the transmitter and the receiver increases. So does the RSSI-based method.

The reason is that when the transmitter and the receiver get far away, more energy

will be distributed to the multipath components with longer distance and thus the
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Figure 3.10: ROC curve for distinguishing between S1 and S9 under LOC B.

sensing system will have a larger converage. The overall performance obtained by

averaged on all possible events shows that TRIEDS outperforms the RSSI approach

in Table 3.3.

3.2.4.2 Evaluations on LOC C

Experiments are further conducted to evaluate the performance of indoor mul-

tiple events detection in a LOS transmission scenario by putting the receiver on LOC

C. In Figure 3.11, we show the strengths of the TR spatial-temporal resonances be-

tween different indoor events. When the receiver and the transmitter transmit in a

LOS setting, the CSI is LOS-dominant such that the energy of the multipath profile

is concentrated only on a few taps. It makes the coverage of TRIEDS shrink and

degrades the performance of TRIEDS, especially when the indoor events happen far

from the TX-RX link as shown in Figure 3.11.
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LOC B axis 1 axis 2 axis 3 axis 4

Detection Rate TRIEDS (%) 99.12 99.5 99.67 99.81

False Alarm TRIEDS (%) 0.88 0.5 0.33 0.19

Detection Rate RSSI (%) 89.41 91.16 92.07 93.07

False Alarm RSSI (%) 10.59 8.84 7.93 6.93

Table 3.3: False alarm and detection probability for multi-event detection on LOC

B in controlled environment.

Examples of ROC curves to illustrate the detection performance of both TRIED-

S and the RSSI-based approach are plotted in Figure 3.12 and Figure 3.13. The

performance of the proposed TRIEDS working in a LOS environment is similar to

that in a NLOS environment. Generally, TRIEDS achieves a better accuracy for

events detection with a lower false alarm rate, compared with the RSSI-based ap-

proach. In both scenarios, TRIEDS achieves almost perfect detection performance

in differentiating between Si, i ≥ 1 and S0. Moreover, the RSSI method has a better

accuracy in the LOS case than that in the NLOS case.

The corresponding overall performance comparison for TRIEDS and the RSSI-

based method is shown in Table 3.4. It is obvious that the farther the receiver and

the transmitter are separated, the better accuracy TRIEDS achieves. Moreover,

compared with Table 3.3, the accuracy of RSSI-based method improves a lot in LOS

environment, whereas the one of TRIEDS degrades slightly. Moreover, comparing
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Figure 3.11: Resonance strength map with RX on LOC C and TX on the 1st green

dot (axis 1).

the results in Table 3.3 and Table 3.4, the detection performance for TRIEDS de-

grades a little when the receiver and the transmitter change the transmission scheme

from NLOS to LOS. Because of the dominant LOS path in LOS transmission, the

ability to perceive multipath components which is far away from the direct link

degrades, leading to a worse detection accuracy.

3.2.5 TRIEDS in Normal Office Environments

In this part, we repeat the experiments in the previous section during working

hours in weekdays, where approximately 10 individuals are working in the exper-

iment area, and all offices surrounding and locating beneath or above the experi-

mental area are occupied with uncontrollable individuals.

The proposed TRIEDS achieves similar accuracy compared with that of the
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Figure 3.12: ROC curve for distinguishing between S1 and S2 under LOC C.

controlled experiment. The overall false alarm and the detection rate for TRIEDS

and the RSSI-based approach are shown in the Table 3.5 and Table 3.6.

The results in Table 3.5 and Table 3.6 are consistent with the results in Table

3.3 and Table 3.4. The performance for TRIEDS is superior to that of the RSSI-

based approach, by realizing a better detection rate and a lower false alarm rate.

Even in the dynamic environment, the proposed TRIEDS can maintain a detection

rate higher than 96.92% and a false alarm smaller than 3.08% under the NLOS

case, whereas a detection rate higher than 97.89% and a false alarm smaller than

2.11% under the LOS case. Moreover, as the distance between the receiver and the

transmitter increases, the accuracy of both methods improves. In the comparison

of Table 3.3, 3.4, 3.5 and 3.6, we claim that the proposed TRIEDS has a better

tolerance to the environment dynamics.
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Figure 3.13: ROC curve for distinguishing between S1 and S9 under LOC C.

3.2.6 TRIEDS with Intentional Human Movements

To investigate on the effects that the human movements have on the perfor-

mance of TRIEDS, we conduct experiments with none, one and two individuals keep

moving back and forth in the shaded area as Figure 3.14 shows. Meanwhile, the

transmitter and the receiver are placed to detect the states of two adjacent doors

labeled as “D1” and “D2”. The list of door states is in Table 3.7. For each set of

experiments, TRIEDS detects the states of the two doors for 5 minutes during the

normal working hours.

Interference caused by the human movements changes the multipath propaga-

tion environment and brings in the variations in the TR spatial-temporal resonances

during the monitoring process of TRIEDS. Fortunately, due to the mobility of hu-

man, the introduced interference keeps change and the duration for each interference
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LOC C axis 1 axis 2 axis 3 axis 4

Detection Rate TRIEDS (%) 99.09 99.28 99.31 99.35

False Alarm TRIEDS (%) 0.91 0.72 0.69 0.65

Detection Rate RSSI (%) 97.24 97.66 97.8 97.88

False Alarm RSSI (%) 2.76 2.34 2.2 2.12

Table 3.4: False alarm and detection probability for multi-event detection on LOC

C in controlled environment.

LOC B axis 1 axis 2 axis 3 axis 4

Detection Rate TRIEDS (%) 96.92 98.95 99.23 99.4

False Alarm TRIEDS (%) 3.08 1.05 0.77 0.6

Detection Rate RSSI (%) 92.5 94.16 94.77 95.36

False Alarm RSSI (%) 7.5 5.84 5.23 4.64

Table 3.5: False alarm and detection probability for multi-event detection on LOC

B in normal environment.

is short. To combat the resulted burst variations in the TRRSs, we adopt the ma-

jority vote method combined with a sliding window to smooth the detection results

over time. Supposing we have the previousK−1 outputs S∗
k , k = t−K+1, · · · , t−1

and the current result S∗
t , then the decision for time stamp t is made by majority

vote over all S∗
k , k = t−K + 1, · · · , t, so on and so forth for all t. K denotes the
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LOC C axis 1 axis 2 axis 3 axis 4

Detection Rate TRIEDS (%) 97.89 98.94 99.18 99.36

False Alarm TRIEDS (%) 2.11 1.06 0.82 0.64

Detection Rate RSSI (%) 96.73 97.19 97.35 97.43

False Alarm RSSI (%) 3.27 2.81 2.65 2.57

Table 3.6: False alarm and detection probability for multi-event detection on LOC

C in normal environment.

State 00 01 10 11

D1 Open Open Closed Close

D2 Open Closed Open Closed

Table 3.7: State list for study on human movements.

size of the sliding window for smoothing.

In Table 3.8, we compare the average accuracy over all states for TRIEDS with

or without the smoothing algorithm in the absence of human movements (HM), and

in the presence of the intentional persistent human movements performed by one

individual and two individuals. Here, the length of the sliding window is K =

20. First of all, the accuracy of TRIEDS reduces as the number of individuals

increases, performing persistent movements near the location of the indoor events

to be detected, the transmitter and the receiver. Moreover, the adopted smoothing
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Figure 3.14: Experiment setting for study on human movements.

Experiment No HM One HM Two HM

No Smoothing 97.75% 87.25% 79.58 %

With Smoothing 98.07% 94.37% 88.33 %

Table 3.8: Accuracy comparison of TRIEDS under human movements.

algorithm improves the robustness of TRIEDS to human movements and enhances

the accuracy by 7% to 9% compared with that of the case without smoothing.

Meanwhile, during the experiments, we also find that the most vulnerable state is

state “00” where all doors are open, such that with human movements TRIEDS is

more likely to yield a false alarm than other states. The reason is that as human

moves close to the door location, the human body, viewed as an obstacle at the door

location, is similar to a closed wooden door, and hence the changes in the multipath

CSI are also similar, especially for D1.
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Figure 3.15: Experiment setting for guard test.

3.2.7 For through-the-wall Guard

Unlike the previous experiments where we are trying to detect the door states,

in this part, TRIBOD is functioning as a through-the-wall guard system. The

objective for TRIEDS is to secure a target room through walls and to alarm not

only when the door state changes but also when unexpected human movements

happen inside the secured room. The system setup is shown in Figure 3.15, where

the secured room is shaded.

In this experiment, the transmitter and the receiver of TRIEDS, marked as

purple and green dots, are placed in two rooms respectively as shown in Figure 3.15.

TRIEDS is aimed to monitor and secure the room in the middle, and to report as

soon as the door of the secured room is open or someone is walking inside the

secured room. TRIEDS only collects the training data for normal state, i.e., door is

closed and no one is walking inside the room. The training database consists of 10

samples of the CSI. Once TRIEDS starts monitoring, it will keep sensing the indoor
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Figure 3.16: Resonating strength of guard system.

multipath channel profile, and compare it with the training database by computing

the time reversal resonance strength according to (2.3) and (3.3).

An example is shown in Figure 3.16, where we can see a clear cut between

the normal state and the intruder state, and between the normal state and the

state where someone is walking inside the room. The threshold 1 is the threshold

for detecting when the indoor states deviates from the normal state, leading to a

100% detection rate and 0 false alarm. Whereas the threshold 2 is for differentiating

between the intruder state( i.e., door is open) and the state when someone is walking

inside the secured room with the door is closed, based on which TRIEDS only has

3% error by classifying the human activity state as the intruder state. Even with a

single-class training dataset, TRIEDS is capable of distinguishing between different

events and functioning as an alarm system to secure the rooms through the walls.
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3.3 Discussion

3.3.1 Impact of System Parameters

1. Sampling Frequency: In this work, the sampling frequency of TRIEDS is 50

Hz, i.e., TRIEDS senses the multipath environment every 20 ms. Since usually

the changes of door states happen in 1 to 2 seconds (s), current sampling

frequency is enough for capturing binary changes for doors. In order to detect

and monitor the entire transition of the changes or other changes happen in a

sudden, a higher sampling frequency is indispensable.

2. Size of Training and Testing Group: In the current experiments, we choose

both the training group size M in (3.1) and the testing group size N in (3.4) as

10, to address the variations of noise in the CSI estimation. We have studied

the performance of TRIEDS with different sizes of training and testing group.

It is found out that with a size greater than 10, the performance does not

improve much but a larger delay for acquiring more CSI samples is introduced.

Hence, in this work, without sacrificing the time sensitivity of TRIEDS, the

size of 10 (i.e., a sensing duration of 0.2s) is adopted.

3.3.2 Impact of Human Motion Interference

TRIEDS utilizes the TR technique to map multipath profiles of indoor events

into separate points in the TR space, due to the fact that different indoor events

and human movements alter the wireless multipath profiles differently.
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In Section IV-G, the experimental results of applying TRIEDS in a through-

the-wall guard task are discussed. As shown in the Figure 3.16, in most cases,

given the door close event with no human motions, the TRRS of the same event

with human motions drops. However, the degradation in the TRRS introduced

by human motions is small, whereas the gap between the TRRS of the door close

event and that of the door open event is significantly large. The reason is that

due to the small size of human body compared to indoor objects like doors, human

body only alters a small portion of multipath components when moving not close to

the transmitter or the receiver, resulting in sparse changes in the amplitude or the

phase of a couple of taps in the CSI. Consequently, the point of door close event with

human motions locates at the “proximity” of the point of the static door close event,

i.e., the two points are quite similar measured by the TRRS. They can be viewed as

a single cluster given a proper threshold on the TRRS. However, when the human

motions are close to the transmitter or the receiver, there is a chance that the altered

multipath profile differs a lot from the one of the static indoor event, leading to a

great attenuation in the TRRS, and thus a different cluster in the TR space as well as

a miss detection in TRIEDS. Moreover, as discussed in Section IV-F, the detection

accuracy drops compared to the case without intentional motions with intentional

human movements. It is because that due to the existence of moving human bodies,

the CSI or the multipath profiles in the environment deviate accordingly and keep

changing. However, with the help of smoothing over the time domain, the dynamic

changes in multipath profiles introduced by human motions can be trimmed out.
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3.4 Summary

In this chapter, we proposed a novel wireless indoor events detection sys-

tem, TRIEDS, by leveraging the TR technique to capture changes in the indoor

multipath environment. TRIEDS enables low-complexity devices with the single

antenna, operating in the ISM band to detect indoor events even through the wall-

s. TRIEDS utilized the TR spatial-temporal resonances to capture the changes in

the EM propagation environment and naturally compresses the high-dimensional

features by mapping multipath profiles into the TR space, enabling the implemen-

tation of simple and fast detection algorithms. Moreover, we built a real prototype

to validate the feasibility and to evaluate the performance of the proposed system.

According to the experimental results for detecting the states of wooden doors in

both controlled and dynamic environments, TRIEDS can achieve a detection rate

over 96.92% while maintaining a false alarm rate smaller than 3.08% under both

LOS and NLOS transmissions. The proposed TRIEDS introduces a novel idea to

apply the TR technique to capture the variations in the multipath propagation

environments for future surveillance systems.
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Chapter 4

Indoor Monitoring: Statistical Learning over Time-Reversal Space

Thanks to its capability of capturing the difference between different CSI, TR

technique has been applied to wireless event detection in an indoor environment [82].

Even though the proposed system achieved an accuracy over 96.9% in detecting

multiple events by utilizing information in the complex valued CSI, the system

required a transmission under 125MHz bandwidth which can not be implemented

with commodity WiFi. Moreover, it has no experimental results which evaluates the

accuracy in motion detection. Meanwhile, it lacks a long-term study on performance

in practical use with critical interference introduced by resident activities.

Given the limitation of the aforementioned study and other wireless sensing

technique discussed in Section 1.1, we are motivated to develop a new indoor moni-

toring system that not only can fully utilize the information embedded in multipath

channels, but also support simple implementation with commercial WiFi devices

while maintaining a high detection accuracy. To achieve this goal, we propose

TRIMS (abbreviation for the TR based Indoor Monitoring System), which utilizes

both the amplitude and the phase information in the CSI obtained from off-the-shelf

WiFi devices and succeeds in monitoring indoor environments in real time under

both LOS and NLOS sensing scenarios. In particular, TRIMS is implemented on
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off-the-shelf WiFi devices which operate around 5.8 GHz with 40 MHz bandwidth,

and capable of both multi-event detection and motion detection.

Moreover, unlike the aforementioned works that use the TRRS directly as

a similarity score for recognition and localization, TRIMS relies on the statistical

behavior of TRRS to differentiate different events. The statistics of TRRS is derived

in this chapter and used as features in TRIMS for event detection and motion

monitoring.

The rest of this chapter is organized as follows. We introduce the theoretical

foundation of the proposed system and derive the statistics of TRRS in Section

4.1. Section 4.2 presents an overview of the proposed TRIMS as well as the details

of both the event detector and the motion detector in TRIMS. The performance

of TRIMS is studied and evaluated in Section 4.3, where the long-term behavior

of TRIMS is also investigated. We briefly discuss the future works as well as the

limitations in Section 4.4. This chapter is concluded in Section 4.5.

4.1 System Model

In this section, the theoretical foundation of the proposed smart radio system,

TRIMS, is discussed. We derive the statistics of intra-class TRRS, which later is

used as the feature for the event detector in TRIMS.
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4.1.1 Statistics of TRRS

Based on the assumption of channel stationarity, if CFRs hF,0 and hF,1 are

captured from the same indoor multipath propagation environment, we can model

hF,1 as

hF,1 = hF,0 + n (4.1)

where n is the Gaussian noise vector, n ∼ CN (0, σ
2

L
I), and E

[
∥n∥2

]
= σ2 with ∥ · ∥2

representing the L2-norm of a vector.

Without loss of generality, we assume unit channel gain for hF,0, i.e.,∥hF,0∥2 =

1. Then, the TRRS between hF,0 and hF,1, as defined in (2.9), can be calculated as

T R(hF,0,hF,1) =

∣∣∣∑k h
∗
F,0[k](hF,0[k] + n[k])

∣∣∣2
∥hF,0∥2∥hF,0 + n∥2

=

∣∣∣1 + hH
F,0n

∣∣∣2
∥hF,0 + n∥2

(4.2)

where (·)H denotes the Hermitian operator, i.e., transpose and conjugate.

Based on (4.2), we introduce a new metric γ and its definition is given by the

following.

γ = 1− T R(hF,0,hF,1) = 1−

∣∣∣1 + hH
F,0n

∣∣∣2
∥hF,0 + n∥2

=
∥n∥2 −

∣∣∣hH
F,0n

∣∣∣2
∥hF,0 + n∥2

(4.3)

According to the Cauchy-Schwartz inequality, we can have |hH
F,0n|2 ≤ ∥n∥2∥hF,0∥2,

with equality holds if and only if n is a multiplier of hF,0, which is rare to happen

since n is a Gaussian random vector and hF,0 is deterministic. Hence, we can assume

∥n∥2 > |hH
F,0n|2 given ∥hF,0∥2 = 1, leading to γ > 0.

By taking the logarithm on both sides of (4.3), we have

ln(γ) = ln
(
∥n∥2 − |hH

F,0n|2
)
− ln

(
∥hF,0 + n∥2

)
. (4.4)
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Let us denote X = 2L
σ2 ∥n∥2, Y = 2L

σ2 |hH
F,0n|2 and Z = 2L

σ2 ∥hF,0 + n∥2. It is easy

to prove that X ∼ χ2(2L), Y ∼ χ2(2) and Z ∼ χ′2
2L(

2L
σ2 ). Here, χ

2(k) denotes a chi-

squared distribution with k degrees of freedom, and χ′2
k (µ) represents a non-central

chi-squared distribution with k degrees of freedom and non-centrality parameter µ.

By utilizing the statistics of X, Y , and Z, we can have the following properties as

E
[
∥n∥2

]
= σ2,Var

[
∥n∥2

]
= σ4

L
,

E
[
|hH

F,0n|2
]
= σ2

L
,Var

[
|hH

F,0n|2
]
= σ4

L2

E
[
∥hF,0 + n∥2

]
= 1 + σ2,Var

[
∥hF,0 + n∥2

]
= σ4+2σ2

L
(4.5)

where E[·] denotes the expectation and Var[·] represents the variance.

According (4.5), it is reasonable to establish the following approximation as

|hH
F,0n|2 ≃ σ2

L
, whose mean square error of approximation is equal to Var

[
|hH

F,0n|2
]
=

σ4

L2 . Considering that in a typical OFDM system σ4 usually has a magnitude smaller

than 10−4 after normalization while L2 is about 104, we have Var
[
|hH

F,0n|2
]
= σ4

L2 →

0. Then, substituting |hH
F,0n|2 with σ2

L
, (4.4) becomes the following.

ln(γ) ≃ ln
( σ2

2L
X − σ2

L

)
− ln

( σ2

2L
Z
)

= ln(σ2) + ln
( 1

2L
X − 1

L

)
− ln

( σ2

2L
Z
)

(4.6)

Moreover, considering that it is typical to have L > 100 and σ2 < 10−2 in

a real OFDM system, 1
2L
X − 1

L
→ 1 with a mean square error being 1/L2 + 1/L

which approximates to 0. Similarly, it is easy to derive that σ2

2L
Z → 1. By utilizing

the linear approximation of logarithm, i.e., ln(x + 1) ≃ x when x → 0, along with
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1
2L
X − 1

L
→ 1 and σ2

2L
Z → 1, (4.6) can be approximated as follows.

ln(γ) ≃ ln(σ2) +
( 1

2L
X − 1

L
− 1
)
−
( σ2

2L
Z − 1

)
= ln(σ2)− 1

L
+

1

2L

(
X − σ2Z

)
(4.7)

Referring to the definition of X and Z, the last term in (4.7) can be rewritten

as

X − σ2Z =
2L

σ2
∥n∥2 + 2L∥hF,0 + n∥2 =

2L∑
i=1

Wi

where Wi is defined as follows.

Wi =


w2

i − (
√
2Lℜ{hF,0[k]}+ σwi)

2, if i = 2k

w2
i − (

√
2Lℑ{hF,0[k]}+ σwi)

2, if i = 2k − 1

(4.8)

Here, wi is independent and identically distributed (i.i.d.) with wi ∼ N (0, 1),∀i.

ℜ{·} denotes the function to take the real part of a complex value while ℑ{·} for the

imaginary part. Given the statistics of wi, the mean and variance of Wi are derived

and listed in (4.9) and (4.10), respectively,

E
[
Wi

]
=


1− 2Lℜ{hF,0[k]}2 − σ2, if i = 2k

1− 2Lℑ{hF,0[k]}2 − σ2, if i = 2k − 1

(4.9)

and

Var
[
Wi

]
=



2
(
1 + σ4 + (2Lℜ{hF,0[k]}2 − 1)σ2

)
,

if i = 2k

2
(
1 + σ4 + (2Lℑ{hF,0[k]}2 − 1)σ2

)
,

if i = 2k − 1

(4.10)

Due to the fact that L > 100 in typical OFDM system,
∑2L

i Wi will exhibit

an asymptotic behavior, according to the Central Limit Theorem. Hence we define
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Figure 4.1: Examples for evaluating the derived statistical model.

a new normal-distributed variable S2L as follows.

S2L =

∑2L
i Wi + 2Lσ2√
4L(1 + σ4)

∼ N (0, 1) (4.11)

After substituting (4.11) into (4.8), we finally get the statistical distribution

of γ as follows.

ln(γ) ≃ ln(σ2)− 1

L
+

1

2L

2L∑
i=1

Wi

= ln(σ2)− 1

L
− σ2 +

√
4L(1 + σ4)

2L
S2L

∼ N

(
ln(σ2)− 1

L
− σ2,

1 + σ4

L

)
(4.12)

Hence, the metric γ, i.e., 1−T R(hF,0,hF,1), follows the log-normal distribution

with the location parameter µlogn = ln(σ2)− 1
L
−σ2 and the scale parameter σlogn =√

1+σ4

L
.

The derived statistical model is verified by fitting over real measured CSI sam-

ples and CSI samples generated from the model in (4.1), as shown in Figure 4.1.

Firstly, we adopt the Kolmogorov-Smirnov test (K-S test) to quantitatively evaluate
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the accuracy of the derived log-normal distribution model on the real CSI measure-

ments. The score of K-S test is denoted as D which measures the difference between

the empirical cumulative distribution function (E-CDF) and the log-normal cumu-

lative distribution function (CDF). As depicted by the example in Figure 4.1(a) and

Figure 4.1(b), the log-normal distribution fits better over CSI samples captured from

real channels, compared with the normal distribution. Moreover, the derived log-

normal distribution model is further investigated on simulated CSI samples through

studying the mean square errors of parameter estimations against the SNR, a.k.a.,

σ−1 in dB. As plotted in Figure 4.1(c), in terms of parameter estimation for the log-

normal distribution, the derived model is accurate with almost zero mean square

error, especially when SNR is high.

4.2 Proposed Algorithms

Can WiFi perceive an indoor environment? To answer this question, in this

chapter, we propose an intelligent indoor monitoring system, TRIMS, which enables

real-time indoor monitoring with commercial WiFi devices by leveraging TR tech-

nique. This novel indoor monitoring system consists of the following components.

1. Event Detector: With the purpose of perceiving a monitored environment

and recognizing specific events, an event detector is included in TRIMS. The

proposed event detector in TRIMS relies on TR technique to evaluate the

difference and similarity between various indoor events. It consists of an offline

training phase where the CSI and corresponding statistics of training events
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are learnt and an online monitoring phase where the event detector of TRIMS

will report the occurrence of trained events in real time. The details are

discussed in Section 4.2.1.

2. Motion Detector: TRIMS not only has the functionality of detecting the oc-

currence of trained events, it is also capable of detecting dynamics in the

environment, i.e., motion inside the protected area. The proposed motion de-

tector leverages fluctuations in TRRS values within a time window to indicate

environmental dynamics and the sensitivity is auto-adapted for each environ-

ment through the training phase. In Section 4.2.2, we will introduce details of

the proposed motion detector in TRIMS.

4.2.1 TRIMS: Event Detector

By leveraging the fundamental theories and techniques proposed in Section

4.1, we design a real-time event detection module in TRIMS, utilizing the statistics

of TRRS between the CSI as the metric for categorizing indoor environments and

recognizing different indoor events. In this section, the details of statistics based

event detector are introduced, and the diagram illustrating how the event detector

works is shown in Figure 4.2. The details are discussed in the following.

4.2.1.1 Offline Training Phase

In the offline training phase, the proposed system aims to build a database that

stores, for each of the training events, the log-normal statistics of TRRSs between
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Figure 4.2: Diagram of the proposed event detector in TRIMS.

the intra-class CSI and a representative CSI sample.

Specifically, for each indoor event Si ∈ S with S being the set of indoor events

to be monitored, the corresponding CFRs are obtained through channel sounding

and estimated at the receiver side as,

HF,i =
[
h
(1)
F,i, h

(2)
F,i, · · · , h

(M)
F,i

]
, i = 1, 2, · · · , N (4.13)

where N is the size of S, i.e., the number of events of interest, M is the number

of links between the transmitter and the receiver. Each link represents the channel

between a single TX-RX antenna pair. The dimension of HF,i is L × M with L

being the number of active subcarriers in a wireless OFDM system. The statistics

of intra-class TRRS is estimated through the following steps.

• Preprocessing: A phase sanitization algorithm is applied to compensate all

CFRs for phase offsets, which are introduced by CFO, SFO and STO.

• CSI Representative Generation: For each link m, a CSI representative is

63



found for every indoor event Si in the training set. The CSI representative is

selected as the one that is most similar to all other CFRs on link m from Si.

In particular, to quantitatively evaluate the similarity, the pair-wise TRRSs

on link m between all the CFRs collected for indoor event Si are calculated

first. Then the CSI representative is selected on link m for event Si as the one

that is most similar to the majority of other CSI samples in the same class.

Hrep,i is the collection of CSI representatives on all links for event Si, which is

defined as follows.

Hrep,i =
[
h
(1)
rep,i, h

(2)
rep,i, · · · , h

(M)
rep,i

]
, ∀i (4.14)

• Lognormal Parameter Estimation: Once the CSI representative is select-

ed, the log-normal distribution parameters can be estimated from intra-class

TRRSs. For link m and event Si, the TRRSs between the CSI representative

h
(m)
rep,i and all other realizations h

(m)
F,i (n), ∀ n are calculated using (2.9) and

denoted as

T R(m)
i (n) = T R

(
h
(m)
rep,i,h

(m)
F,i (n)

)
, n = 1, 2, · · · , Z − 1 (4.15)

where n is the realization index of CFRs collected for event Si, and Z is

the total number of CFRs. Then the log-normal parameters (µ
(m)
i , σ

(m)
i ) of

γ = 1− T R(m)
i for event Si on link m are estimated by

µ
(m)
i =

1

Z − 1

Z−1∑
n=1

ln
(
1− T R(m)

i (n)
)

(4.16)

σ
(m)
i =

√
V ar

[
ln
(
1− T R(m)

i

)]
(4.17)
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where V ar[·] is the sample variance function.

The training database is built with the collection of CSI representatives and

log-normal distribution parameters for all the trained events. All the trained

events can be divided into two groups: the normal events group Snormal where

no alarm will be sounded when being detected, and the abnormal events group

Sabnormal where an alarm will be reported to users when an abnormal event is

detected.

• Threshold Learning: Based on the knowledge of Hrep and Qrep, the system

builds the normal event checker and the abnormal event checker, through

which the label of the testing CSI sample is determined in the monitoring

phase. To determine whether event a testing CSI sample HF,test belongs to an

event Si, a score is calculated first as

Wi,test =
M∏

m=1

W(m)
i,test =

M∏
m=1

F
(µ

(m)
i ,σ

(m)
i )

(
1− T R(m)

i,test

)
(4.18)

where T R(m)
i,test = T R

(
h
(m)
rep,i,h

(m)
F,test

)
. W (m)

i,test is the statistical metric on link m

of HF,test conditioned on event Si, defined as the value of log-normal CDF of

1 − T R(m)
i,test with parameter being µ

(m)
i and σ

(m)
i . The operation

M∏
m=1

(·) fuses

the information among all links. F(µ,σ)(x) represents the CDF of log-normal

distribution with parameters (µ, σ) and the variable x.

The smaller the value ofW(m)
i,test is, the higher the probability for HF,test belong-

ing to event Si is. Two thresholds γnormal and γabnormal are required for the

normal event checker and the abnormal event checker to define the boundary

for the value of metricWi,j. Consequently, when the value ofWi,test falls below
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the threshold γnormal or γabnormal, HF,test is viewed as from event Si. Hence,

in order to correctly distinguish different events, both γnormal and γabnormal

are carefully learned based on the metrics Wi,test where HF,test is replaced by

Hrep,j during the training phase. The criteria for choosing γnormal and γabnormal

are as follows.

γnormal = min
Si∈Snormal, Sj∈Sabnormal

Wi,j

γabnormal = min
Si∈Sabnormal, Sj∈S, Sj ̸=Si

Wi,j

(4.19)

4.2.1.2 Online Monitoring Phase

The statistics based event detector is designed to identify the real-time indoor

events with the knowledge of training database. Once the occurrence of a trained

event is detected, the system will decide to sound an alarm based on the character-

istics of that event. If an untrained event is detected, the system will also notify

user about the situation. The details are discussed as follows.

During the monitoring phase, the receiver keeps monitoring the environment

by collecting the CSI as HF,test =
[
h
(1)
F,test, h

(2)
F,test, · · · , h

(M)
F,test

]
.

• Statistical Metric Calculation: Since the obtained CSI measurementHF,test

is corrupted by random phase offsets, a phase sanitization algorithm is applied.

After that, for each trained indoor event, the TRRS between the CSI represen-

tative and the testing measurement is calculated. Given the TRRSs between

the testing CSI sample and trained events, the statistical metric Wi,test be-

tween HF,test and the trained event Si is calculated using (4.18).
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• Decision: The statistical metric W(m)
i,test is a monotonic function of T R(m)

i,test

which depicts the similarity between the testing CSI samples and the CSI

representative of event Si. In other words, the more similar two CSI samples

are, the smaller the value of Wi,test is. The detailed decision protocol based

on Wi,test is described in the following.

1. Step 1 - normal event checker :

To begin with, the event detector checks whether the environment is

normal, i.e., only one of the normal events in Snormal occurs, by the

following rule.

Devent =



arg min
Si∈Snormal

Wi,test,

if min
Si∈Snormal

Wi,test ≤ γnormal

go to Step 2 , otherwise

(4.20)

2. Step 2 - abnormal event checker :

In order to determine which trained abnormal event in Sabnormal occurs,

it follows the rule below:

Devent =



arg min
Si∈Sabnormal

Wi,test,

if min
Si∈Sabnormal

Wi,test ≤ γabnormal

0, otherwise

(4.21)

where Devent = 0 indicates the occurrence of some untrained event.

To summarize, the event detector labels the CSI sampleHF,test by the following
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rule.

Devent =



arg min
Si∈Snormal

Wi,test,

if min
Si∈Snormal

Wi,test ≤ γnormal

arg min
Si∈Sabnormal

Wi,test,

if min
Si∈Snormal

Wi,test > γnormal and

min
Si∈Sabnormal

Wi,test ≤ γabnormal

0, otherwise

(4.22)

4.2.2 TRIMS: Motion Detector

TRIMS is designed not only to determine which trained indoor event happens,

but also to detect if environment has any dynamics by means of a motion detector

proposed in TRIMS.

Motion always introduces fluctuations in the radio propagation environment,

leading to significant changes of TRRSs between CSI samples within a time window.

The impact introduced by motion is larger compared to the impacts brought by

channel fading and noise, especially when motion happens close to the transmitter

or the receiver. In this part, we propose a motion detector which uses the variance

of TRRSs between CSI samples within an observation window as the metric to

indicate the indoor dynamics. The proposed motion detector consists of two phases:

an offline training phase and a real-time monitoring phase. The flow chart of the

proposed motion detector is depicted in Figure 4.3.
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Figure 4.3: Diagram of the proposed motion detector in TRIMS.

4.2.2.1 Phase I. Offline Training

In the training phase, the proposed motion detector is trained with the dy-

namics, measured by the variance of a TRRSs time sequence, under both the static

state and the dynamic state with motion in the indoor environment. The detailed

steps are listed as follows.

• Data Acquisition: First, the state of an indoor environment is divided into

two classes: S1 where the environment is static, and S0 where there is some

motion happening in the monitoring area. The CSI is collected continuously in

time for both classes as HF,i(t) = [h
(1)
F,i(t), h

(2)
F,i(t), · · · , h

(M)
F,i (t)], where H0(t)

is collected when the environment is static and H1(t) is from the dynamic

environment. t is the time instance when the CFR is captured. The phase

offset in CFRs is compensated individually and independently before learning

the dynamics.
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• Dynamics Acquisition: After time sequences of CFR measurements under

both static state S0 and dynamic state S1 are obtained, the environmental dy-

namics is evaluated by tracking the variance of TRRSs within a time window.

To study the variance under both states Si, i = 0, 1, a sliding window with

lengthW samples and overlapW−1 is applied on the time sequence ofHF,i(t).

For example, in a window of length W , CFRs from HF,i(t0) to HF,i(t0+(W −

1) ∗ Ts) are stored, where Ts is the channel probing interval. Within each

window, the corresponding TRRS sequence between t0 and t0 + (W − 1) ∗ Ts

is denoted as T R
(
HF,i(t0),HF,i(t)

)
, t0 ≤ t ≤ t0 + (W − 1) ∗ Ts, which is

calculated as follows.

T R
(
HF,i(t0),HF,i(t)

)
=

M∑
m=1

T R
(
h
(m)
F,i (t0),h

(m)
F,i (t)

)
M

(4.23)

Then the dynamics within the time window can be quantitatively evaluated by

the variance of
{
T R

(
HF,i(t0),HF,i(t)

)
, t0 ≤ t ≤ t0 + (W − 1) ∗ Ts

}
, which is

denoted as σi(t0), i = 0, 1. In order to have a fair and comprehensive analysis,

multiple σ′
is, i = 0, 1 are captured at different time.

• Threshold Learning: After dynamics acquisition, multiple instances of σ0

and σi are obtained, and the threshold γmotion for differentiating between S0

and Si is determined by

γmotion =



αmaxt σ0(t) + (1− α)σ1(t),

if maxt σ0(t) ≤ σ1(t)

maxt σ0(t), otherwise,

(4.24)
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where σ1(t) denotes the average of multiple σ′
1s captured at different time.

α, 0 ≤ α ≤ 1, is a sensitivity coefficient for motion detections in that the

sensitivity of the proposed motion detector increases as α decreases.

4.2.2.2 Phase II. Online Monitoring

During the online monitoring phase, the dynamics in the environment is tracked

by comparing the variance on real-time TRRSs with γmotion as:

Dmotion(t0) =


1, σtest(t0) ≥ γmotion,

0, otherwise,

(4.25)

where σtest(t0) is the variance on the testing TRRS sample sequence within a window

of length W and overlap W − 1 at time instance t0. Dmotion(t0) = 1 indicates

the existence of motion, i.e., someone is moving inside the monitoring area, while

Dmotion(t0) = 0 means the environment is static.

4.2.3 TRIMS: Time Diversity for Smoothing

In a real environment, noise in wireless transmission and outside activities exist

and corrupt the estimated CSI, leading to a misdetection or a false alarm in both

the event detector and the motion detector of TRIMS. However, by leveraging the

fact that these interferences are typically sparse and abrupt, a smoothing method

relying on the time diversity is proposed to address that problem.

The essential idea of the proposed time-diversity smoothing algorithm is by

applying the majority vote over decisions of each testing CSI sample, assuming that
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the typical indoor event lasts for a couple of seconds. In both of the event detector

and the motion detector, decisions will be accepted only if they are consistent along

a short time period. The details are as follows.

With the help of a sliding window SW whose length is W and overlap length

is O, the decisions Dout(n) at time index n is obtained through

Dout(w) = MV
{
Din(1 + (w − 1) ∗O), · · · , Din(W + (w − 1) ∗O)

}
(4.26)

where Din(w) is the input decision sample at time index w, MV{·} is the operator

for taking majority vote. The corresponding time delay introduced by the sliding

window SW is in general (W − O) × T , where T is the time interval between

consecutive Din samples.

For example, in order to alleviate false alarms introduced by outside activities

and imperfect CSI estimation to the proposed event detector, a two-level time-

diversity smoothing is applied as follows.

1. Level I: A majority vote is applied directly on the raw decisions Dmotion of

each single CSI sample. Given a sliding window SW1 whose length is W1 and

overlap length is O1, the decisions of index w, DMV 1(w), is obtained from

taking a majority vote over Devent(i+ (w − 1) ∗O1), 1 ≤ i ≤ W1.

2. Level II: A second sliding window SW2 is applied on DMV 1(w) with length

W2 and overlap O2. Consequently, the final decision output is Dfinal(n). The

system suffers a time delay (W2 −O2)× (W1 −O1)× Ts.
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(a) The floorplan of House #1 (b) The floorplan of House #2.

Figure 4.4: Experimental setting for TRIMS: floorplans.

4.3 Experimental Results

In order to evaluate the feasibility and the performance of the proposed TRIMS

in indoor monitoring, extensive experiments have been conducted.

4.3.1 Experimental Setting

We build a prototype on commodity WiFi devices performing 3× 3 multiple-

input and multiple-output (MIMO) transmission at 5.845GHz carrier frequency un-

der the IEEE 802.11n standard. According to the IEEE 802.11n standard, both

2.4GHz band and 5GHz band support a 40 MHz bandwidth and the CSI at those

two bands should share the same resolution. Therefore, with the obtained CSI,

the proposed system should achieve a detection performance at 2.4GHz similar to

that from 5.8GHz. In the prototype, the CSI is extracted from the Qualcomm net-

work interface card (NIC) and composed by a complex-valued matrix for accessible

subcarriers on all 9 links. With a single pair of devices, we conduct extensive ex-
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State Index Description State Index Description

e1 All doors are closed. e2 Front door open.

e3 Back door open. e4 Bob’s room door open.

e5 Study room door open. e6 Alice’s room door open.

e7 Restroom door open. e8 Window 1 open.

e9 Window 2 open.

Table 4.1: Events of interest in House #1.

periments in two real indoor environments: House #1 and House #2 with regular

residence activities, whose floorplans are shown in Figure 4.4(a) and Figure 4.4(b).

The locations of the transmitter and the receiver are marked on both floorplans.

4.3.2 TRIMS: Event Detection Performance

We start from the performance study of the proposed event detector in TRIMS

and experiments are conducted in both facilities. In order to learn the statistics of

intra-class TRRS, at least 300 realizations of CFRs corresponding to each indoor

propagation environment should be collected. Furthermore, the CSI sounding rate

is 100Hz in the training phase, while it becomes 30Hz in the real-time monitoring

phase for the event detector in TRIMS. The two-level time diversity algorithm is

applied in the event detector with W1 = 15, O1 = 14,W2 = 45, O2 = 15, considering

that 30 CSI samples are collected per second.
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(a) ROC performance for all events (TX in the

foyer).
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(c) ROC performance for all events (TX out-

side the study room).
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outside the study room).

Figure 4.5: ROC performance for the proposed event detector.

4.3.2.1 Study on Location of TX-RX

As discussed in the previous sections, the proposed event detector is aimed at

monitoring and detecting indoor events by leveraging the TR technique to capture

changes in the CSI. Different events introduce different changes, depending on not

only the characteristics of each indoor event but also the distance between the event

location to the transceivers. The closer the indoor event is, the larger impact it

introduces. Hence, it is crucial to study how the locations of the TX and the RX
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affects the performance of the proposed event detector.

In House #1, we study the impact of TX-RX locations on TRIMS’s perfor-

mance in the event detection and the events of interest are listed in Table 4.1, while

the candidate locations of TX and RX are labeled with “TX 1” and “RX 1” in

Figure 4.4(a). The receiver is fixed in the study room while the transmitter is lo-

cated either in the foyer against a wall or outside the restroom. The performance

is evaluated through the receiver operating characteristic (ROC) curve, where the

x-axis is the false alarm rate of an event ei, i.e., the probability of other events being

misclassified as ei, whereas the y-axis is the detection rate of ei.

As shown in Figure 4.5(a), the proposed event detector fails to differentiate

between the CSI of e1, e6 and e7, in that the false alarm rates of e1, e6 and e7 are

extremely high under the same detection rate, compared with others. The reason is

that the changes in the wireless multipath channel introduced by e6 and e7 are too

small for the proposed event detector to capture. A possible reason is that event e6

and e7 are far from the TX and the RX, when both devices are located in the front

part of the house. Similarly, in Figure 4.5(c), when the TX is put outside the study

room, i.e., in the back part of the house, event e2 and e8 are too far away while e9

is outside the circle range defined by the line segment between the TX and the RX.

Consequently, the proposed event detector has an ambiguity over e1, e2, e8 and e9.

Here, we introduce the concept of “target event”, to whom the proposed event

detector has a perfect accuracy, as shown in Figure 4.5(b) and Figure 4.5(d). The

target events are those events that satisfy a rule-of-thumb, which says that in order

to have it detected, the event should either be close to the TX-RX link or have a
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LOS path to one of the devices, given the location of the TX and the RX. Under the

rule-of-thumb, the target event is able to change the CSI between the TX and the

RX in a way that is significant enough. The proposed event detector can achieve a

perfect ROC performance for target events.

4.3.2.2 Operational Test in House #1

In this part, to further study the performance of TRIMS in the real-time event

monitoring, we imitate several intrusion and postman cases with locations of TX

and RX being “TX 2” and “RX 2”. In the intrusion test, an intruder enters the

house from a door and walks inside the house before leaving from the same door.

On the other hand, in the postman test, some one is walking outside the front door

of each house to imitate a postman.

Moreover, in this part, the system is only trained for event e1, e2 and e3. In

Figure 4.6, the system output is plotted along the time. The y-axis is the output

decision, where “Allclosed” indicates e1, “Front” and “Back” represent e2 and e3

respectively, and “Unknown” means untrained events happening. Take Figure 4.6(a)

as an example. The proposed event detector outputs state 1, i.e., “all doors are

closed”, during the test. As shown in Figure 4.6(c), during the test, the proposed

event detector first reports e1 for about 20 seconds and then detects the occurrence

of e2 when the front door is opened at the time index of the 20th second, with a

single detection over the untrained event, i.e., the output falls to “Unknown”. The

system starts to report e1 when the front door is closed at around the 30th second.

77



20 40 60
Unknown

Allclosed

Front

Back

time (second)
(a) Test under all doors closed.

10 20 30 40 50
Unknown

Allclosed

Front

Back

time (second)
(b) Postman test with someone walking out-

side the front door.
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the 55th second) and closing (around the 35th

and the 65th second) back door from the out-

side the house twice.
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(f) Test when an intruder comes in (around

the 60th second), walks inside, and leaves

(around the 120th second) through back door.

Figure 4.6: System output of the proposed event detector for operational tests in

House #1.
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Figure 4.6(a), 4.6(c) and Figure 4.6(d) illustrate the ability of the proposed

event detector to perfectly monitor and detect the trained events in real time when a)

the environment is quiet and all doors are closed, b) the front door is opened and then

closed twice from the outside, and c) the back door is opened and closed twice from

the outside. In Figure 4.6(b), we simulate the postman case where someone wanders

outside the front door, close to the target event. The proposed event detector shows

its robustness to outside activities by reporting no false alarms in the postman case.

In the next test, we simulate intrusions made by an intruder through the front door

and the back door and the intruder is required to leave through the same door after

walking inside the house for a certain period. As demonstrated in Figure 4.6(e)

and Figure 4.6(f), the proposed event detector succeeds in capturing the intrusion.

Moreover, between the door opening in both figures, the decision of the proposed

event detector may become “Unknown” which is owing to the interference to the

multipath channel brought by human motion inside the house.

4.3.2.3 Long-Term Test in House #1

Furthermore, we conduct a long-term monitoring test for the proposed event

detector in TRIMS in House #1 for 6 days. The result is compared with that of a

commercial home security system whose contact sensors are installed on the front

and back door. During the first 6 days, TRIMS has 0 false alarm when the ground

truth state of the indoor environment is e1. It detects with 100% accuracy over 21

times of front door opening while detects 15 out of 18 times of back door opening,
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i.e., an average accuracy of 92.31%.

The degradation in the accuracy is because the wireless channel keeps fad-

ing along the time while the training data for front door opening and back door

opening is not updated. Hence, there eventually will be a mismatch between the

testing CSI measurements and the training profiles. Considering the channel fading,

the proposed event detector is designed to have an automatic updating scheme for

e1, i.e., it will periodically update the training data of e1 as long as the environ-

ment is recognized as in the state of all doors closed by the event detector. The

periodic refresh of e1 training metrics is to address the uncontrollable changes in

the indoor environment but fails to fully resolve the problem. Due to the difficulty

of labelling the testing CSI measurements from door opening in an unsupervised

way, in this chapter we do not consider to update the training data for other events

automatically.

4.3.2.4 Operational Test in House #2

In this part, the performance of TRIMS in real-time event monitoring is stud-

ied in House #2 with the event list being in Table 4.2. Moreover, all the parameters

and hardware settings are as the same as the ones in House #1.

To begin with, the proposed event detector is set to monitor when (a) the

environment is quiet and all doors are closed, (b) someone opens the front door and

then closes it from the outside (twice), and (c) someone opens the back door and

then closes it from the outside (twice). The results are shown in Figure 4.7, where
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State Index Description

e1 All doors are closed.

e2 Front door open.

e3 Back door open.

Table 4.2: Events of interest in House #2.

the decision output being “Unknown” means that an untrained event is happening,

“Allclosed” indicates that environment is in the all-doors-closed and quiet, and

“Front” and “Back” represent front door and back door is opening, respectively. All

figures can be interpreted in the same way as those in Figure 4.6. The proposed event

detector succeeds in capturing the trained events perfectly without false alarms.

4.3.2.5 Long-Term Test in House #2

Furthermore, the long-term behavior of the proposed event detector in TRIMS

is investigated in House #2 through a test that lasts for 2 weeks. During the long-

term test, resident activities are more often than that in House #1 and thus the

indoor environment changes every day which might jeopardize the proposed event

detector trained in day 1. Every day during the long-term test, tester performed the

same operational test as in the previous part to evaluate the detection performance

of the proposed event detector. The system outputs along the time are plotted in

Figure 4.8, where y-axis is the system output with “unknown”, “Allclosed”, “Fron-

t” and “Back” representing the occurrence of untrained events, e1 “all doors are
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and the 64th second) back door from the out-

side the house twice.

Figure 4.7: System output of the proposed event detector for operational tests in

House #2.

closed”, e2 “front door is opened” and e3 “back door is opened”, respectively.

As shown in Figure 4.8(a), Figure 4.8(b) and Figure 4.8(g), the proposed event

detector is good at detecting the trained events with no false alarm during the same

day when the system is trained. However, after 1 week or even 2 weeks, with the

original training database built on day 1, the proposed system fails to detect the

trained events and has a high false alarm rate on e2, as shown in Figure 4.8(l),

4.8(n), 4.8(c), 4.8(e), 4.8(h) and 4.8(j). For example, as depicted in Figure 4.8(l),

the system keeps reporting “front door is opened”, when the ground truth of the
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Figure 4.8: System output of the proposed event detector for long-term tests in

House #2.
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indoor state being e1 “all doors are closed”. With uncontrolled resident activities,

the indoor environment changes resulting in a different multipath profile not only

for e1 but also for e2 and e3. With the help of the auto-update of e1, the proposed

event detector is able to detect the trained events e2 and e3 during the 2-week

experiment with no false alarm. The results are as shown in Figure 4.8(m), 4.8(o),

4.8(d), 4.8(f), 4.8(i) and 4.8(k).

As demonstrated by examples in Figure 4.8, with an automatic and periodic

update of the training data for e1, TRIMS can maintain its accuracy in differenti-

ating between and recognizing trained events in a single family house with normal

resident activities during 2 weeks. The monitoring results of TRIMS in the 14-day

experiment is compared with the history log provided by a commercial home securi-

ty system. In general, the proposed event detector captures the incidents of e2 and

e3, i.e., opening the front or the back door from the outside of the house, with an

accuracy being 95.45% while a single misdetection happens on day 13.

4.3.3 TRIMS: Motion Detection Performance

The performance of the motion detector is tested in House #1 with the TX and

RX devices located at positions marked by “TX 2” and “RX 2” in Figure 4.4(a).

The parameter α defined in (4.24) is set to be either 0.8 or 0.2, while W = 30

indicates a 1-second window of continuously collected CSI as defined in (4.23). For

the Dmotion(t0) in (4.25), we apply a time-diversity smoothing with only one-level

majority vote whose W = 45 and O = 15, to eliminate any possible false alarms
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Walking Location Detection Rate α = 0.8 Detection Rate α = 0.2

Postman 0% 0%

Laundry Room 100% 81.25%

Alice’s Room 3.92% 0%

Study Room 1.92% 0%

Center of the house 83.33% 75.93%

Kitchen 48% 36%

Living Room 30.91% 0%

Restroom 0% 0%

Table 4.3: Detection rate for motion at different locations under 0 false alarm rate.

due to burst noise or error in the CSI estimation.

During the training phase, the proposed motion detector learns the threshold

γmotion based on the data from 1-minute monitoring data collected under e1, and

someone walking in and around the center of the house.

Given a zero false alarm, the detection rates of motion at different locations

are listed in Table 4.3. The proposed motion detector is intelligent in that it learns

and adapts its sensitivity automatically based on the characteristics of the radio

propagation environment where it is deployed, through the training phase. The

change that motion introduces to the channel is proportional to the amount of the

reflected signal energy that is generated by the moving object and collected at the
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receiver. Hence, by relying on the motion detector, TRIMS succeeds in captures

motion inside the house occurring close to the devices or have a LOS path to either

the TX or the RX. However, due to the large path loss for EM waves penetrating

multiple walls, motion occurring inside the Alice’s room or restroom will have no or

tiny impacts on the CSI measurements and thus cannot trigger the motion detector.

Moreover, a smaller value of α indicates the system being less sensitive and a smaller

coverage of monitoring area.

4.4 Discussion

In this section, we are going to discuss some limitations of TRIMS proposed

in this chapter, along with topics for further extending the proposed system.

4.4.1 Retraining TRIMS

As discussed in the long-term test in Section 4.3, the system keeps automati-

cally and periodically updating the training data of e1, i.e., the state of that all doors

are closed, based on its real-time detection results. Due to the difficulty in labelling

the testing CSI of door opening in an unsupervised way, the proposed auto-updating

scheme can only work for e1. As verified by experiments, with that automatic updat-

ing scheme, the proposed system is robust to normal EM perturbations introduced

by noise and slight environmental changes. However, environmental changes affect

not only the CSI of state e1, but also that of event e2 and e3. If the environment

changes significantly from that when e2 and e3 were trained, the proposed system
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would fail to find a match between the testing CSI and the one in the training

database. That is when the system needs re-training, and it can be determined by

comparing the very first e1 training data with the current one. Through experiments

we found that when the TRRS between the earliest e1 training CSI and the current

CSI measured under e1 drops below an empirical threshold of 0.7, the proposed

system requires retraining over all states.

4.4.2 Monitoring with Multiple Transmitters

In current days, there are more than one device that usually connects to the

same WiFi router in an office or at home, which inspires us to extend the proposed

system by developing TRIMS to accommodate more transmitters. The performance

of TRIMS can be improved since the information has more degrees of freedom by

means of an increased spatial (device-level) diversity. Moreover, as shown in Section

4.3, for a single pair of the TX and the RX devices, it has a limited coverage in

detecting events and motion. By deploying more transmitters at different locations,

the monitoring area will be expanded. However, it requires further study to optimize

the performance of the multi-TX TRIMS and will be one of our future work.

4.4.3 Detecting Dynamic Events

In the current event detector of TRIMS, the training database is built upon

static CSI measurements collected for each events. Each dynamic event can be

decomposed into several intermediate states sampled during its occurrence. Since
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the intermediate state can be viewed as static, the proposed algorithm can be applied

to detect the occurrence of its intermediate states. Consequently, the state transition

that depicts the occurrence of dynamic events can be captured, and thus dynamic

events can also be monitored by the proposed system. Moreover, the authors are

working on a new method for monitoring indoor dynamic events and details will be

discussed in a future paper.

4.4.4 Identifying Motion

In this chapter, the proposed motion detector in TRIMS manage to detect

the incidents of motion. Nevertheless, it is worthwhile to study how to utilize the

TR technique to extract the characteristics of a motion with WiFi signals, e.g.,

the direction and the velocity. The potentiality of extracting motion information

and even identifying motion with commercial WiFi devices is beneficial to various

applications like elderly assistance and life monitoring.

4.4.5 Potential of TRIMS

The proposed TRIMS is not confined by WiFi and can be applied to other

wireless technologies as long as CSI with enough resolution can be obtained. The

spatial resolution of CSI is determined by the transmission bandwidth of the RF

device. UWB communication whose bandwidth exceeds 500MHz can provide CSI of

a finer spatial resolution and enable a better discrimination than WiFi does. How-

ever, UWB-based indoor monitoring systems require to deploy specially designed
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RF devices and the coverage is small. On the other hand, as demonstrated by ex-

periments, with the help of TRIMS, commercial WiFi devices with only a 40MHz

bandwidth can support high-accuracy indoor monitoring. Due to the explosive pop-

ularity of wireless devices, increasing wireless traffic clogs WiFi and collisions delay

the CSI probing with an unknown offset, which introduces difficulty to real-time

wireless sensing systems. Taking advantage of the proposed smoothing algorithm,

TRIMS is robust to non-uniform CSI probing and packages loss. Moreover, thanks

to the ubiquitous deployment of WiFi, the proposed system is ready and can be

easily put into practice for smart home indoor monitoring. In general, the proposed

system can be integrated with all kinds of wireless technologies where CSI with

enough resolution is accessible.

4.5 Summary

In this chapter, we presented a smart radio system, TRIMS, for real-time

indoor monitoring, which utilizes TR technique to exploit the information in mul-

tipath propagations. Moreover, the statistical behavior of intra-class TRRS was

analyzed theoretically. An event detector was built, where different indoor events

are differentiated and quantitatively evaluated through TRRS statistics of the asso-

ciated CSI. Furthermore, a motion detector was designed in TRIMS to detect the

existence of dynamics in the environment. The performance of TRIMS was studied

through extensive experiments with TRIMS’s prototype implemented on a single

pair of commodity WiFi devices. Experimental results demonstrate that TRIMS
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addresses the problem of recognizing different indoor events in real-time. In gen-

eral, TRIMS succeeds in achieving a high accuracy in long-term indoor monitoring

experiments, demonstrating its prominent and promising role in future intelligent

WiFi-based low-complexity smart radios.

90



Chapter 5

Indoor Monitoring: Training with Continuous Channel State

Information

During the wireless transmission, wireless signals propagate through a multi-

path channel such that the received signal consists of copies of the transmitted signal

reflected and scattered by different objects in the environment. When an object in

the indoor environment moves, the resulted propagation path changes accordingly,

leading to a new multipath profile. On the other hand, the occurrence of an indoor

event consists of multiple states, each of which corresponds to a single multipath

profile. In other words, the evolving of an indoor event is equivalent to a transi-

tion between multiple intermediate states, which uniquely determines the order and

composition of a sequence of multipath profiles, a.k.a., the CSI. By leveraging the

concept of TR space, each indoor event in the physical space is mapped into a u-

nique trajectory of points in the TR space. Therefore, the indoor event information

is embedded not only in the CSI domain but also in the temporal domain of a CSI

time series.

In this chapter, we propose an indoor monitoring system that monitors the

occurrence of different indoor events in real time with commercial WiFi devices.

Different from the previous works proposed in Chapter 3 and Chapter 4 where each
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indoor event is only represented by a specific multipath profile, the proposed system

in this chapter also exploits the temporal information embedded in the CSI time

series. Since the occurrence of an indoor event lasts for a certain period and possesses

a similar transition pattern among different realizations, information is embedded

not only in each CSI sample but also in how CSI changes along time. Instead of

treating each CSI as an independent feature, the time series of CSI samples captured

continuously is used for identifying and classifying different indoor events.

The rest of this chapter is organized as follows. System model is introduced

in Section 5.1. In Section 5.2, we present the detailed algorithms for the proposed

system, including the feature extraction algorithm, the classification algorithm for

real-time monitoring, and the proposed unsupervised retraining algorithm. The

performance of the proposed system is studied and evaluated through extensive ex-

periments in Section 5.3 and Section 5.4. This chapter is summarized and overviewed

in Section 5.5.

5.1 System Model

As discussed in Section 2.1, during the wireless transmission, wireless signals

propagate through a multipath channel such that the received signal consists of

copies of the transmitted signal reflected and scattered by different objects in the

environment. Multipaths can be viewed as virtual antennas and the CSI records the

information of objects indoors. Suppose one of the virtual antenna is moving while

others are static, then the corresponding CSI as defined in (2.6) can be decomposed
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as

hF (l, t) = α∆(t)e
−j2πτ∆(t) l+1

NTs +
∑
k

αke
−j2πτk

l+1
NTs , l = 0, 1, · · · , L− 1, (5.1)

where hF (l, t) is the time-varying CFR coefficient on subcarrier l, α∆(t) and τ∆(t)

denote the multipath coefficient and ToF associated to the moving antenna at cur-

rent instance t.

When the virtual antenna is moving, a sequence of (α∆(t), τ∆(t)) is uniquely

associated to the moving path. Hence, the CFR coefficient hF (l, t) is determined

by the moving path of the virtual antenna. Let hF (t) denote the CFR vector as

hF (t) =
[
hF (0, t), · · · , hF (L− 1, t)

]
. Because each indoor event Si involves a set of

moving virtual antennas, each Si uniquely determines a sequence of CFR hF,i(t)’s.

In other words, with the help of multipath information in hF,i(t)’s, current indoor

state can be deciphered by finding out which event is happening. Ultimately, changes

introduced by human activities and moving objects can be extracted from the CSI

and recognized through wireless sensing.

Moreover, the trajectory of a moving virtual antenna in the physical space

corresponds to a continuous logical trajectory in the TR space, represented by a

time sequence of CSI.

Recall the CSI definition in (5.1) at time instance t, then we can have the CFR

at time instance t+ δt (δt > 0) as

hF (l, t+ δt) = α∆(t+ δt)e−j2πτ∆(t+δt)fl +
∑
k

αke
−j2πτkfl . (5.2)

Assuming α∆(t + δt) = α∆(t) during short time period, the difference between

hF (l, t+∆t) and hF (l, t) on subcarrier l becomes
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∣∣∣hF (l, t+ δt)− hF (l, t)
∣∣∣

≤
∣∣∣α∆(t)

∣∣∣∣∣∣e−j2πflτ∆(t)
(
e−j2π

fl
c

∫ t+δt
t v(u)du − 1

)∣∣∣
=
∣∣∣α∆(t)

∣∣∣∣∣∣e−j2π
fl
c

∫ t+δt
t v(u)du − 1

∣∣∣,
(5.3)

where v(u) is the time-varying moving speed of the moving virtual antenna with

respect to the TX-RX link,
∫ t+δt

t
v(u)du represents path length change between

time interval (t, t + δt) of the propagation path associated to the virtual antenna.

Moreover,
∣∣∣e−j2π

fl
c

∫ t+δt
t v(u)du − 1

∣∣∣ = 0, if and only if fl
c

∫ t+δt

t
v(u)du ∈ Z where Z is

the set of integer.

In other words, ∀ϵ > 0,
∣∣∣e−j2π

fl
c

∫ t+δt
t v(u)du − 1

∣∣∣ < ϵ/
∣∣∣α∆(t)

∣∣∣ holds for all δt ∈{
δt |

∫ t+δt

t
v(u)du = c

fl
k, k ∈ Z

}
. Here, c

fl
is the wave length of EM waves under

center frequency fl, which is equal to 6 cm in WiFi 5G band. Hence, ∀ϵ > 0, ∃δ > 0

such that ∣∣∣hF (l, t+ δt)− hF (l, t)
∣∣∣ < ϵ, and δ > δt, (5.4)

which proves the continuity of hF (l, t) on t.

Therefore, when a virtual antenna is moving, the corresponding CSI changes

continuously. As stated in [83, 85], each indoor location or an indoor state can be

viewed as a unique point in the TR space which is represented by a multipath profile.

Since each position of a moving virtual antenna uniquely relates to a unique multi-

path profile (a.k.a. CFR), the moving trajectory in the physical space corresponds

to a continuous logical trajectory in the TR space.
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5.1.1 Multi-Antenna Diversity

MIMO transmission introduces a large number of degrees of freedom delivered

through spatial diversity for RF sensing. Suppose there is a number of |S| indoor

events to be monitored and let h
(m,n)
F,i [k] denote the kth complex-valued CSI vector,

a.k.a., CFR, measured on the link between the mth TX antenna and the nth RX

antenna during event Si ∈ S. h
(m,n)
F,i [k] is captured at time instance kTs, with

Ts being the channel probing interval. To fully utilize the spatial diversity, we

concatenate CSI vectors from different links into a single column vector as the

augmented CSI by

HF,i[k] =
[
h
(1,1)
F,i [k]T, · · · , h

(NTX ,NRX)
F,i [k]T

]T
. (5.5)

Here, HF,i[k] is a complex-valued column vector of length L×NTX×NRX , L denotes

the number of accessible subcarriers, and NTX and NRX denote the number of TX

and RX antennas respectively.

A real-valued waveform vector Gi[k] is generated by concatenating the real

and imaginary part of the obtained augmented CSI HF,i[k], i.e.,

Gi[k] =
[
ℜ
{
HF,i[k]

T
}
, ℑ
{
HF,i[k]

T
}]T

, (5.6)

where ℜ{·} and ℑ{·} are operations to take the real and imaginary part of a complex

value.

Even though information on all transmission links is included inGi[k]’s, the di-

mension of feature increases dramatically and makes the classification more difficult.

In this work, we propose a feature extraction algorithm that performs refinement

and dimension reduction on Gi[k]’s.
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5.2 Proposed Algorithms

In this section, the design of the proposed indoor monitoring system is present-

ed. During the training phase, feature extraction algorithms are designed to refine

the most distinct and representative sequence of CSI from the entire time series as

the training template. Moreover, principle component analysis (PCA) is adopted

to remove the correlation among different subcarriers and links, and to reduce the

noise, in pursuit of a compact representation for training series.

Real-time monitoring faces several practical challenges, including unknown

start and end point of event occurrence, event inconsistency, accurate detection

with low latency. To address those challenges, in this work, a modified classifier

based on the k-nearest-neighbor (kNN) is proposed to overcome the perturbation

and divergence in the real-time measurements. The similarity between training and

testing feature series can be evaluated through either Euclidean distance or dynamic

time warping (DTW).

Long-term robustness is another challenge in real-time indoor monitoring sys-

tem, due to the inevitable and unpredictable changes in the environment along time.

In this work, an automated unsupervised retraining algorithm is designed for the

proposed system that guarantees high accuracy against environmental changes. The

system diagram is illustrated in Figure 5.1 where through the proposed feature ex-

traction algorithm, effective features will be extracted from the raw training CSI

time series collected during event occurrences and stored in the training database.

On the other hand, in the online monitoring phase, the system first judges if the
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Figure 5.1: System diagram.

environment is dynamic based on the incoming testing CSI series after preprocess-

ing. Then an event detector is applied to the testing feature generated from the

raw CSI series to determine which event is happening, if the proposed dynamic de-

tector detects dynamics in the environment. Moreover, the proposed auto-updating

algorithm works to unsupervisedly gather new candidate training sequence from the

testing time series.

The detailed algorithm design is discussed in the following.

5.2.1 Algorithms for Feature Extraction

In this part, we introduce the proposed algorithm that refines the measured

CSI time series and extracts distinct features for all indoor events of interest during

the training phase.
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(a) Before Gaussian filtering.
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(b) After Gaussian filtering.

Figure 5.2: Waveform Spectrogram: example of waveform series before and after

low pass filtering.

5.2.1.1 Refinement of CSI Time Series

The essential part of the proposed algorithm is to extract the most represen-

tative segment in the CSI time series captured during the occurrence of each indoor

event for building a good classifier later.

Low-Pass Filtering: CSI measurements provided directly by commercial WiFi

devices are often inherently noisy, due to thermal noise, noise from analog-to-digital

converters, and changes in transmit power and rates. To make the measured CSI

training sequences helpful and useful in representing different indoor events, the

noise must be first removed from the CSI time series. In the proposed system, a

Gaussian filter with length 1
3Ts

is applied to the waveform sequence Gi[k]’s for each

event Si, where Ts is the channel probing interval.

An example of waveform series before and after passing through the Gaussian

filter is shown in Figure 5.2, where the waveform series is measured during a door
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open/closed event with a sounding rate of 30 Hz. Compared with Figure 5.2(a), the

waveform series in Figure 5.2(b) exhibits a much smoother transition pattern.

In the training phase the CSI time series received at the RX may capture

some indoor status similar to other indoor events at the beginning and the end

part of the series. Resembling CSI sub-sequences, captured from different indoor

events, introduce ambiguity into pattern matching and degrade the classification

performance. On the other hand, from our observation on real data and the channel

model in (2.6), information among different subcarriers and links are highly corre-

lated. Therefore, it is necessary for applying PCA over training waveform series to

generate a compact representation, given the high dimension of data. In order to

learn an efficient PCA projection matrix, it is important to keep only the dynamic

and distinct transition pattern of the waveform series, and discard all the static

part. As shown in Figure 5.2(b), it is clear that the significant segment in Gi[k]’s

approximately starts from the 70th sample to the 240th sample, while others only

contain useless static information.

To address that, a waveform extraction algorithm is proposed to track the

change in waveform series and extract the most representative and dynamic segment.

Taking into consideration that different links may capture different environmental

information, the proposed waveform extraction evaluates link-wise dynamics. To do

so, the waveform Gi[k] is first decomposed into NTX ×NRX sequences, and can be

rewritten as

Gi[k] =
[
G

(1,1)
i [k]T, · · · ,G(m,n)

i [k]T, · · · ,G(NTX ,NRX)
i [k]T

]T
, k = 1, 2, · · · ,M, (5.7)
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Algorithm 1 Waveform Extraction

Input: G
(m,n)
i [k], k = 1, 2, · · · ,M, ∀(m,n) captured for event Si as defined in (5.8)

after Gaussian filtering.

Output: index ks,i and ke,i s.t. Gi[k], ks,i ≤ k ≤ ke,i only contains significant

variations

1: Calculate D
(m,n)
δ [k] = F

{∣∣∣(G(m,n)
i [k + δ] − G

(m,n)
i [k]

)
· /G(m,n)

i [k]
∣∣∣}, k =

1, 2, · · · ,M − δ, with “·/” denoting element-wise division between vectors and

F{·} being the function to take median value among all elements in a vector.

2: Obtain the best link among all (m,n) ∈ {1 ≤ m ≤ NTX , 1 ≤ n ≤ NRX} by

(m∗, n∗) = argmax
(m,n)

M−δ∑
k

D
(m,n)
δ [k].

3: ks,i = argmin
k

{
k|D(m∗,n∗)

δ [k] > γ
}
and ke,i = argmax

k

{
k|D(m∗,n∗)

δ [k] > γ
}
, with

an empirical threshold γ.

where M is the number of samples in the time series, and each G
(m,n)
i [k] is of

dimension 2L × 1 with L being the number of accessible subcarriers on one link,

given by

G
(m,n)
i [k] =

[
ℜ
{
h
(m,n)
F,i [k]T

}
, ℑ
{
h
(m,n)
F,i [k]T

}]T
. (5.8)

Taking into consideration that due to spatial diversity, different links in a MI-

MO transmission may observe different multipath changes introduced by an event.

Hence, the proposed feature extraction algorithm evaluate transition dynamics on

each link. The details are described as in Algorithm 1. An example of applying fea-

ture extraction algorithm onto the waveform series in Figure 5.2 is shown in Figure

5.3(a), where static parts have been discarded.
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(a) Waveform series after feature extraction.
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Figure 5.3: Waveform Spectrogram: example of waveform series before and after

PCA.

5.2.1.2 Denoising and Compact Representation

Unfortunately, only applying a Gaussian filter to the incoming waveform se-

ries does not yield an effective and efficient denoising outcome. Moreover, as we

discussed in the previous section, the channel information on all subcarriers are

highly correlated. Based on that, we proposed to apply PCA for the purpose of

noise removal, de-correlation, and dimension reduction. Also, PCA is applied to

waveform vectors of all indoor events after the process in Section 5.2.1.1, in or-

der to seek an efficient feature representation that amplifies the distinction among

waveforms. The details are as follows.

Let Ωall denote the super waveform matrix generated by

Ωall =
[
G1[ks,1 : ke,1], · · · ,Gi[ks,i : ke,i], · · · ,G|S|[ks,|S| : ke,|S|]

]
, (5.9)

where Gi[ks,i : ke,i] denotes the waveform series after feature extraction for event

Si and Ωall has a dimension of 2L × K|S|. The mean waveform vector G can be
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obtained by

G =
1

K|S|

K|S|∑
k=1

Ωall[k]. (5.10)

The PCA projection is learnt with the correlation matrix of
(
Ωall[k] −G

)
’s.

By taking out the mean waveform G, we anticipate the impact of environmental

background information is mitigated. Meanwhile, the projection matrix Φ of dimen-

sion pc×P is obtained as the collection of normalized eigenvectors of the correlation

matrix of
(
Ωall[k] − G

)
’s, and pc represents the number of principle components

(PCs) to be kept. In practice, the value of pc is selected by picking the first several

largest eigenvalues that contains over 80% of the total energy among all eigenvalues.

Since only the first few PCs are considered, the PCA can be computed efficiently

through thin-SVD.

Then, for each event Si, the final feature vector Zi[k] can be obtained by

Zi[k] = Φ× (Gi[k]−G),∀k, (5.11)

where the projected feature vector Zi[k] is now of length pc. An example of compar-

ison between Gi[k]’s and Zi[k]’s is plotted in Figure 5.3, where the projected feature

series Zi[k]’s exhibits a significant variations among all PC dimensions while changes

in original waveform series Gi[k]’s is too small and too diffused to be observed.

After walking through all the preprocessing algorithms proposed in Section

5.2.1, the final feature waveform Zi[k]’s will be stored in the training database for

all event Si, as the reference for the real-time monitoring.
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5.2.2 Algorithms for Real-Time Monitoring

In this section, we present algorithms designed for real-time monitoring phase,

which addresses event inconsistency and difficulties in locating either the start or

the end point of event occurrence in the incoming testing stream.

5.2.2.1 Challenges in Real-Time Monitoring

Real-time indoor monitoring faces a lot of challenges. On one hand, consid-

ering the low latency requirement for a practical indoor monitoring system, it is

hard to locate either the start or the end point of an event occurrence in the in-

coming infinite testing CSI stream. The real-time indoor monitoring system should

be able to detect the trained event promptly, even before the event stops. Further-

more, in the course of daily monitoring, the event occurrence may be halted due

to unknown reason. Moreover, because the duration of different event may vary,

the length of training feature series is different. In order to have a fair similarity

comparison between the same testing series and different training series with varied

lengths, the training feature sequences need to be trimmed to the same length. As

one of the typical trimming methods, downsampling over training sequences fails to

meet the requirement because of information loss. Unlike downsampling, original

information can be preserved and the problem of different training feature lengths

will be resolved by dividing the training series of varied length into several equal-

length subsequences. As only a part of training information is contained in each

subsequences, the proposed system is required to be able to perform high accuracy
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Figure 5.4: Illustration of event inconsistency.

classification over partial training information.

On the other hand, in practice, the manner of how an event occurs and evolves

will be different when performed by different individuals, resulting in a testing fea-

ture series different from the training one. Moreover, asynchronized sampling during

the event occurrence that is continuous in time also leads to a altered testing feature.

The proposed system should be capable of handling event inconsistency discussed

above.

An example that illustrates event inconsistency is shown in Figure 5.4. In-

coming testing series Ztest[k]’s is denoted by dashed curves where sampled points

are marked by black dots. The bottom two curves represent fixed-length training

series Zi[k]’s and Zj[k]’s. By comparing the dashed curve with both solid curves, it

is observed that Ztest[k]’s contains full information of the curve denoted by Zi[k]’s.

However, because of sampling problem, the sampled version of Ztest[k]’s exhibits a

pattern in red dotted curve, which is similar to Zj[k]’s.
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Figure 5.5: Illustration of monitoring with partial information by sliding window.

5.2.2.2 Monitoring with Partial Training Information

To address the first challenge of partial information monitoring, in this work,

a sliding window with length Twin is applied over the incoming testing stream. In

practice, the window length Twin is selected to be 2 or 3 seconds, considering the

fact that typically an indoor event last for at least 3 seconds.

As demonstrated in Figure 5.5, the incoming testing stream Ztest[k]’s passes

through a sliding window and the newest sample with its Twin/Ts−1 preceding sam-

ples form the current testing window Wtest. Similar to that, the training series Zi[l]’s

for every event is also partitioned into several shortened training window, denoted

as Wi,l’s with Wi,l being the lth training window for training series Zi[l]’s. Then

the similarity comparison is made between testing window Wtest and all training

windows Wi,l’s, for all i’s and l’s.

By applying a sliding window over income testing stream, the proposed sys-

tem is able to promptly report the current indoor state. In practise, the length of

the stride for sliding window, i.e., the number of antecedent feature samples to be

included in Wtest is set to be 1/Ts and the overlap between consecutive training
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window Wi,1 and Wi,2 is set to be 1/2Ts, for the purpose of avoiding misdetection

and unnecessary calculation complexity.

5.2.2.3 Similarity Comparison with Event Inconsistency

In this part, we will present how the proposed system detect current indoor

state based on the information in Wtest. The proposed system adopts a two-stage

detection algorithm: (1) a dynamics detector works first over Wtest to see if the

environment is static or dynamic, (2) an event detector then works to determine

which trained event occurs if the motion detector reports dynamic.

The dynamics detector measures and tracks the variations within Wtest by

βtest =

|Wtest|∑
k=1

∥∥∥ZW,test[k]− ZW,test[1]
∥∥∥2, (5.12)

where ZW,test[k] denotes the k
th sample in Wtest, |Wtest| represents the total number

of samples in Wtest, and βtest is the in-window dynamic metric. When βtest ≥

γdynamic, the proposed dynamics detector considers current indoor environment to

be dynamic and the event detector will respond and work.

Once the system detects dynamics in the environment, it will determine the

current indoor event by comparing Wtest with all training templates Wi,l, ∀ i & l.

Taking into consideration of possible event inconsistency, in this work, we adopt

DTW to measure the similarity between testing and training windows. As proposed

in [89, 90], DTW adopts dynamic programming to obtain minimum distance align-

ment between two time series. The DTW distance is indeed the Euclidean distance

between two time series, calculated along the optimal warping path and under the
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boundary conditions as well as global constraints.

In the proposed algorithm, given two sequences of feature series Z1[l]’s and

Z2[l]’s with equal length L, the DTW optimal cost c is defined as the normalized

distance of a warping path, i.e.,

c(Z1,Z2) =
1

|P ∗|

|P ∗|∑
w=1

∥∥∥Z1[k
∗
1,w]− Z2[k

∗
2,w]
∥∥∥2, (5.13)

where P ∗ denotes the optimal warping path with length |P ∗|, and k∗
1,w and k∗

2,w are

the indexes of Z1[k]’s and Z2[k]’s at the wth point on the path P ∗.

For all possible warping paths P with ( l1,w, l2,w)’s, P
∗ is the optimal one in

that

1

|P ∗|

|P ∗|∑
w=1

∥∥∥Z1[k
∗
1,w]− Z2[k

∗
2,w]
∥∥∥2 ≤ 1

|P |

|P |∑
w=1

∥∥∥Z1[k1,w]− Z2[k2,w]
∥∥∥2, ∀P. (5.14)

With a warping step-size ∆ > 1, i.e., the allowable largest stepsize for path

advancing, the DTW algorithm is able to overcome issues of missing feature samples

introduced by event inconsistency and WiFi traffic collision. In addition, in the

proposed algorithm, the Sakoe-Chiba Band [89] is adopted which reduces the number

of searchable indexes and thus the proposed algorithm benefits from a quick and

low-complexity computation of DTW.

After that, the final distance between Wtest and all training templates Zi’s is

defined based on (5.13) as

ĉ(Wtest,Zi) = min
Wi,l⊆Z′

is
c(Wtest,Wi,l). (5.15)

With the help of DTW, a simple kNN classifier is sufficient to classify testing
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window Wtest. The decision rule is as follows.

Dtest(Wtest) =


argmin

Si∈S
ĉ(Wtest,Zi), if min

Si∈S
ĉ(Wtest,Zi) ≤ γevent

Unknown, otherwise

(5.16)

where γevent is an empirical threshold and Dtest(Wtest) = Unknown indicates the

occurrence of an unrecognized indoor event or indoor state.

5.2.3 Algorithms for Unsupervised Retraining

Another big challenge for real-time wireless indoor monitoring is unpredictable

and inevitable changes in the indoor propagation environment. Due to normal hu-

man activities inside the monitored areas and channel fading, the estimated multi-

path CSI keeps changing along the time and it may result in mismatch between test-

ing and training feature series. It is crucial to design a real-time indoor monitoring

system that can adapt itself to environment changes and maintain its performance

in long term. In this section, we propose an unsupervised automatic retraining al-

gorithm that keeps update the training database of the proposed system on the fly.

The proposed algorithm contains two part: (1) retraining for static environment

and (2) retraining for dynamic events. The details are as follows.

1. Retraining for static environment : Feature sequence from static environ-

ment can be easily and reliably labelled through the proposed dynamic detector.

Hence, in the proposed system, the training series Zi[l]’s that represent a static

environment is periodically updated with the testing series Wtest which is classified

as a static state by the proposed system. In order to guarantee the robustness of

retraining for static state, a boundary condition is set for the candidate feature se-
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ries Wtest to be qualified in that the decision outputs before and after Wtest must be

static consistently for a certain period (e.g., one hour).

2. Retraining for dynamic events : The unsupervised retraining procedure for

trained dynamic events is much more complicated. The criterion to select a qualified

testing series as a new training series for an event can either be too loose which may

introduce more false alarms to the system, or be too strict which may reject all

possible candidates and make the proposed system incapable of self adapting to

environmental changes. In the proposed system, the retraining for dynamic events

works under the following protocols as listed in Algorithm 2.

During the monitoring phase, whenever the system detects the current indoor

states to be a trained events and the distance score ĉ(Wtest,ZDtest) ≤ γun, the cor-

responding testing series Wtest will be stored temporarily in a buffer Wbuffer and the

system decision is put into Dprev. Subsequent Wtest’s will be concatenated into the

same buffer Wbuffer with repeated feature samples being discarded, if their decision

Dtest is as same as Dprev and the distance score satisfies ĉ(Wtest,ZDtest) ≤ γun. When

the current Dtest is different from Dprev or ĉ(Wtest,ZDtest) ≥ γun, one will apply the

proposed transition extraction algorithm over the stored testing features in Wbuffer,

and put the extracted feature sequence into the database as a new training sequence

Ŵ for event Dtest only if the minimum length criterion is satisfied. Lastly, the buffer

Wbuffer is reset and ready for the next coming testing series. In Algorithm 2, γun

is an empirical threshold, chosen to satisfy γun ≤ γevent such that the confidence of

testing samples in Wbuffer belonging to event Dtest is guaranteed. Moreover, as the

system works along time, the number of training series for an event grows. Hence,

109



the proposed system keeps forgetting the oldest training series for each event ob-

tained from Algorithm 2 when the total number of training series for that event

exceeds a predefined capacity.

5.3 Experimental Results

To evaluate the performance of the proposed algorithms, extensive experi-

ments have been conducted to protect a multi-room office from intrusion in various

settings. In this work, we use door open/closed event monitoring as an example

to illustrate the performance of the proposed algorithms. The proposed real-time

indoor monitoring system can be extended to other applications. Contact sensors

as well as a video recording system are used to provide the ground truth in the

experiments.

5.3.1 Experimental Setting

A prototype of the proposed indoor monitoring system is implemented using

a pair of commercial WiFi devices, which performs 2× 3 MIMO transmission with

the carrier frequency being 5.8GHz and under a 40MHz bandwidth. The sounding

rate 1/Ts is 30 Hz.

The experiments are carried out in the offices at the 10th floor in a commercial

building of 16 floors in total. The experimental offices are surrounded by multiple

offices and elevators as discussed before in Section 3.2.1. The experimental setting

is shown in the floorplans in Figure 5.6. The location of the TX and RX are marked
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Algorithm 2 Unsupervised retraining for dynamic events.

Input: Incoming testing stream ZW,test[k]’s as in Wtest, Dtest for Wtest using (5.16).

Output: Candidate training series Ŵ .

1: Initiate Wbuffer ← empty matrix of pc × 0.

2: Wbuffer ← ZW,test[k], if ĉ(Wtest,ZDtest) ≤ γun.

3: while TRUE do

4: Dprev ← Dtest.

5: Wtest ← new testing features ZW,test[k]’s.

6: Obtain Dtest for current Wtest based on (5.16).

7: if Wbuffer is empty then

8: if ĉ(Wtest,ZDtest) ≤ γun then

9: Wbuffer ← ZW,test[k].

10: else

11: if Dprev == Dtest and Dtest ∈ S and ĉ(Wtest,ZDtest) ≤ γun then

12: Wbuffer ← concatenate Wbuffer and ZW,test[k]’s with repeated testing

feature vectors discarded.

13: else

14: Wbuffer ← feature extraction over Gaussian filtered Wbuffer.

15: if |Wbuffer| ≥ |Wtest| then

16: Ŵ ← Wbuffer for event Dtest and is put into training database.

17: Wbuffer ← empty matrix of pc × 0.
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(a) Setting 1. (b) Setting 2.

Figure 5.6: Experimental setting: floorplans.

in Figure 5.6. In setting 1 the system is aimed to monitor both front door and back

door opening events, while the system only monitors the front door in setting 2.

The window length |Wtest| is set to be 3/Ts, representing a window of 3 seconds.

We divide the experiment into two parts. First, the robustness of the proposed

system is evaluated under the existence of event inconsistency (Section 5.3.2), the

existence of outdoor activities (Section 5.3.3), and the existence of indoor activities

(Section 5.3.4). Then, the performance of the proposed system in long-term test is

studied in an experiment lasting for 32 days.

5.3.2 Robustness to Event Inconsistency

In this part, we deploy the system in setting 1 (as shown in Figure 5.6(a)) and

in the training phase, one trainer performs door opening event from door close to

door 90 degree open, at both the front door and the back door once with a normal

speed. Then, in the testing phase, the tester, other that the trainer, intentionally

introduces event inconsistency, by opening the door at the same training speed,
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(a) System output for front door opening test.
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(b) System output for back door opening test.

Figure 5.7: Experimental results: robustness to event inconsistency in setting 1.

twice of the training speed, and half of the training speed. Moreover, the tester also

performs door opening event at the same training speed, but pauses at a 45 degree.

The system output is shown in Figure 5.7, where the x-axis is the time index in

seconds and the y-axis is the event name.

From Figure 5.7, we have the following observations.

• When the speed of door opening is slow, the proposed system sometime may

consider the current environment as static.

• By leveraging DTW, the proposed system can handle the difference in training

and testing speed.

• With the help of sliding window, the proposed system can detect indoor state

with partial training information. Hence, even when the door opening process

is paused at half open which is the middle point of the training series, the

proposed system can still reliably and promptly detect the occurrence of the
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(a) Experimental setting.
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(b) System output.

Figure 5.8: Experimental results: robustness to outside activities (Experiment 1).

event.

In general, the proposed system is robust to event inconsistency.

5.3.3 Robustness to Outside Activities

In this part, we conduct experiments to evaluate how the system responds to

outside activities. The experimental setting is shown in Figure 5.8(a) and Figure

5.9(a), where the tester is random walking in the shaded area close to the target

event.

According to the system outputs of both experiments plotted along the time

in Figure 5.8(b) and Figure 5.9(b), the proposed real-time indoor monitoring system

is insusceptible to activities outside the monitored area.
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(a) Experimental setting.
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(b) System output.

Figure 5.9: Experimental results: robustness to outside activities (Experiment 2).

5.3.4 Robustness to Inside Activities

Because the amount of multipath energy leaks to the outside of monitored

area is limited, the proposed real-time indoor monitoring system is robust to outside

activities. However, as most of the multipaths concentrate inside the monitored area

and especially around the TX/RX device, inside activities perturb the measured

multipath CSI and may introduce a lot of false alarms, posing a great challenge to

the wireless monitoring. In this part, we conduct three sets of experiments to test

the robustness of the proposed system to inside activities.

In Scenario 1 whose setting is shown in Figure 5.10(a), one tester is asked to

walk randomly in the foyer or along the hallway while the system is trained with

front and back door opening events without interruption. From the system output

plotted in Figure 5.10(b), no false alarm is triggered and the system works correctly

along the time.

Then the system is deployed under setting 2 and is trained to monitor the front
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(a) Experimental setting 1.
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(b) System output.

Figure 5.10: Experimental results: robustness to inside activities (Scenario 1).

(a) Experimental setting 2.
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(b) System output.

Figure 5.11: Experimental results: robustness to inside activities (Scenario 2).

door opening events. We start with Scenario 2 where one and two testers are asked

to walk randomly in the shaded area, close to the trained event and the TX/RX.

In this 6 minutes test, the system output, as shown in Figure 5.11(b), is correct no

matter how many people is walking inside the monitored area.

Besides the human walking test in Figure 5.11, we also perform door opening

tests to see whether a similar but untrained event will introduce false alarms to the
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(a) Experimental setting 3.
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(b) System output.

Figure 5.12: Experimental results: robustness to inside activities (Scenario 3).

proposed system. In Scenario 3, one tester is asked to open and close the room 3

door and closet door 4 times, respectively. The experiment setting of Scenario 3 is

shown in Figure 5.12(a).

Based on the experimental experiments in this part, we can conclude that the

proposed real-time monitoring system guarantee its robustness to various indoor

activities.

5.3.5 Long-Term Performance

To evaluate the long-term performance and the unsupervised retraining algo-

rithms of the proposed system, the prototype is deployed in setting 2 for 32 days

without human intervention. The system is aimed to protect the front door and

only gets trained once on the first day. The front door is the major entrance for the

entire office area which is occupied by over 12 people. Moreover, during the testing,

normal work day activities happen inside the testing area and the furniture inside
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(a) Original feature series.
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(b) Example 1.
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(c) Example 2.

Figure 5.13: Examples of feature series generated by Algorithm 2.

Total Duration of Monitoring (seconds) 1,968,420

Total Number of Event Occurrence 2085

Number of Detected Event Occurrence 2078

Detection Accuracy 99.66%

Number of False Alarm (seconds) 17

Table 5.1: Long-term test results.

the foyer and room 3 gets moved from time to time. The result is summarized in

Table 5.1.

According to the results listed in Table 5.1, the proposed system succeeds in

maintaining a high accuracy of trained event detection with the help of the proposed

automatic unsupervised training algorithm. To the best of our knowledge, this

work is the first real-time indoor monitoring system performing fine-grained event

detection that has been tested in a busy office environment for over one month

without human intervention.
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During the 32-day experiments, the front door opening event has been updat-

ed for 475 times in an unsupervised manner, while the latest 19 and the original

one are kept in the database. Examples of new training feature series obtained

from unsupervised retraining during the long-term test are shown in Figure 5.13.

Although same trend exhibits in those three sequences, the new feature series in

either Figure 5.13(b) or 5.13(c) is slightly different from the original training series

in Figure 5.13(a) captured at the initialization.

5.4 Discussion

In this section, we will study the impact of length of sliding window Wtest and

the proposed unsupervised retraining algorithm. Moreover, we will demonstrate

how the proposed system can be utilized for future smart home or smart office

applications.

5.4.1 Impact of Sliding Window Length

In this part, experimental results in Section 5.3.4 are re-evaluated with dif-

ferent lengths of Wtest to study how different lengths of Wtest will affect system

performance. The false alarm rate is studied based on different window length

|Wtest|, and the result is plotted in Figure 5.14 for setting 1 and setting 2.

According to the result in Figure 5.14, for both settings, the false alarm rate

increases dramatically as the window length |Wtest| decreases. That is because the

distinctive information of events is embedded not only in each CSI sample but also
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Figure 5.14: Experimental results: impact of sliding window length.

in the transition information of the CSI time sequence. As we increase the window

length |Wtest|, more environmental information in the CSI is included for event

recognition. Although two events may share resembling individual CSI samples, the

associated CSI time sequence should be differentiable. Hence, as more information is

included as the representative pattern, a higher detection accuracy can be achieved

and fewer false alarms will be triggered by nearby human interference. On the other

hand, with a larger |Wtest|, the system latency increases which is undesirable for

real-time system. Hence, in order to guarantee the performance of the proposed

system, the window length |Wtest| should be carefully selected.

5.4.2 Impact of Unsupervised Retraining

In this part, the long-term system performance with and without the proposed

unsupervised retraining algorithms is compared and discussed. The result without
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Total Duration of Monitoring (seconds) 1,968,420

Total Number of Event Occurrence 2085

Number of Detected Event Occurrence 1844

Detection Accuracy 88.44%

Number of False Alarm (seconds) 2

Table 5.2: Long-term test result without unsupervised retraining for dynamic events.

unsupervised retraining for dynamic events is summarized in Table 5.2.

Comparing Table 5.2 and Table 5.1, the proposed unsupervised retraining

algorithm helps to maintain the detection performance in long term when the back-

ground environment changes along the time. Without the proposed unsupervised

retraining, the detection rate drops from 99.66% to 88.44%. However, because of

the nature of unsupervised labelling, the candidate training series extracted from

testing CSI stream may introduce slight false alarms coming from the interference of

human activities happening before or after the trained events. Overall, the proposed

system equipped with the automatic unsupervised retraining scheme is promising

for real-time indoor monitoring applications.

5.4.3 Potential for Smart Home

In this part, we discuss how the proposed real-time indoor monitoring system

can be deployed in future smart home/office. By performing analytics over the mon-
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Table 5.3: Smart office analysis.

itoring results generated by the proposed system, we can analyze human activities

and behaviors in the monitored area and get the following chart as shown in Table

5.3.

Table 5.3 indicates active and inactive hours of the office area where the long-

term experiment is conducted. That measured human behavioral information can

incorporate with applications like smart air conditioner, smart lights and other smart

devices, to create a smart office environment, which is energy efficient and user-

friendly.

5.5 Summary

In this chapter, we proposed a real-time indoor event monitoring system that

utilizes CSI time series to differentiate between indoor states. A feature extraction

algorithm was designed to extract and refine a low-dimensional feature from mea-

sured CFR sequences. To address practical issues of real-time monitoring, e.g., event
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inconsistency and unknown start and end point in the incoming testing stream, we

proposed a sliding window based classification algorithm with the help of DTW to

measure the similarity between training and testing features. Moreover, we designed

an automatic unsupervised retraining algorithm to improve the system performance

in long-time monitoring. We conducted extensive experiments to demonstrate the

potential of the proposed system in future real-time indoor monitoring applications.
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Chapter 6

Radio Biometrics: Human Recognition Through a Wall

Nowadays, the capability of performing reliable human identification and recog-

nition has become a crucial requirement in many applications, such as forensics,

airport custom check, and bank securities. Current state-of-the-art techniques for

human identification rely on the discriminative physiological and behavioral char-

acteristics of human, known as biometrics.

Biometric recognition refers to the automated recognition of individuals based

on their human biological and behavioral characteristics [91, 92]. The well-known

biometrics for human recognition include fingerprint, face, iris, and voice. Since

biometrics are inherent and distinctive to an individual, biometric traits are widely

used in surveillance systems for human identification. Moreover, due to the diffi-

culty for biometrics counterfeit, techniques based on the biometrics have clear-cut

advantages over traditional security methods such as passwords and signatures in

countering the growing security threats and in facilitating personalization and con-

venience. Even though the current biometrics systems are accurate and can be

applied in all environments, all of them require special devices that capture human

biometric traits in an extremely LOS environment, i.e., the subject should make

contact with the devices.
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Another category of biometrics is gait analysis and it relies on the individ-

ual walking pattern to distinguish between different identities. Conventional gait

recognition requires high-speed cameras, wearable sensors and floor sensors [93]. Re-

cently, gait recognition has been extended to RF platform where the Doppler shift

or the time-of-fligh (ToF) of the signal reflected by human body is used to extract

individual gait pattern [34, 94, 95]. However, to get a high-resolution gait profile,

it relies on special devices to scan over ultra-wide spectrum and LOS transmission

is often required to guarantee the accuracy of gait extraction. Moreover, the com-

putational complexity introduced by the necessary image processing and machine

learning algorithms for gait recognition is high. Unlike the aforementioned system,

in this work, a novel concept of radio biometrics is proposed, and accurate human

identifications and verifications can be implemented with commercial WiFi devices

in a through-the-wall setting.

In [96], researchers studied the relationship between the EM absorption of hu-

man bodies and the human physical characteristics in the carrier frequency range of

1 to 15 GHz, in which the body’s surface area is found to have a dominant effect on

absorption. Moreover, the interaction of EM waves with biological tissue was stud-

ied [97] and the dielectric properties of biological tissues were measured in [98, 99].

According to the literature, the wireless propagation around the human body high-

ly depends on the physical characteristic (e.g., height and mass), the total body

water volume, the skin condition and other biological tissues. The human-affected

wireless signal under attenuations and alterations, containing the identity informa-

tion, is defined as human radio biometrics. Considering the combination of all the
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physical characteristics and other biological features that affect the propagation of

EM waves around the human body and how variable those features can be among

different individuals, the chance for two humans to have the identical combinations

is significantly small, no matter how similar those features are. Even if two have

the same height, weight, clothing and gender, other inherent biological characteris-

tics may be different, resulting in different wireless propagation patterns round the

human body. Take the DNA sequence as an example. Even though all humans are

99.5% similar to any other humans, no two humans are genetically identical which

is the key to techniques such as genetic fingerprinting [100]. Since the probability

of two individuals to have exactly the same physical and biological characteristics

is extremely small, the multipath profiles after human interferences are therefore

different among different persons. Consequently, human radio biometrics, which

record how the wireless signal interacts with a human body, are altered accordingly

to individuals’ biological and physical characteristics and can be viewed as unique

among different individuals. One example is that the face recognition has been im-

plemented for many years to distinguish from and recognize different people, thanks

to the fact that different individuals have different facial features. Human radio

biometrics, which record how RF signals respond to the entire body of a human,

should contain more information than a face, and thus become more distinct among

humans.

In this chapter, we show the existence of human radio biometrics and present

a human identification system that can discriminate individuals even through the

walls in a NLOS condition. Using commodity WiFi devices, the proposed system
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captures the CSI and extracts human radio biometric information from WiFi signals

using TR technique. This procedure is called radio shot. By leveraging the fact

that broadband wireless CSI has a significant number of multipaths, which can be

altered by human body interferences, the proposed system can recognize individuals,

utilizing not only the face, but also the entire individual physical characteristic

profiles.

• We introduce for the first time the concept of human radio biometrics, which

account for the wireless signal attenuation and alteration brought by human.

Through experiments, its existence has been verified and its ability for hu-

man identification has been illustrated. The procedure to collect human radio

biometrics is named as radio shot.

• Due to the fact that the dominant component in the CSI comes from the static

environment rather than human body, the human radio biometrics are embed-

ded and buried in the multipath CSI. To boost the identification performance,

we design novel algorithms for extracting individual human radio biometrics

from the wireless channel information.

• Radio biometrics extracted from the raw CSI are complex-valued and high-

dimensional, which complicates the classification problem. To address this

problem, we apply the TR technique to fuse and compress the human radio

biometrics and to differentiate between radio biometrics of different people, by

using the strength of the spatial-temporal resonances.

• For performance evaluation, we build the first prototype that implements the
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TR human identification system using off-the-shelf WiFi chipsets, and test in

an indoor office environment during normal working hours.

The rest of this chapter is organized as follows. We introduce the theoreti-

cal foundation of the proposed system and define the human radio biometrics in

Section 6.1. Section 6.2 presents the proposed novel algorithms for extracting indi-

vidual human radio biometrics from the wireless channel information and the human

recognition method using TR technique. The performance of the proposed system

is studied and evaluated through extensive experiments with results being presented

in Section 6.3. We briefly discuss the limitation of the proposed system and compare

it with the RSSI based approach in Section 6.4. This chapter is concluded in Section

6.5.

6.1 System Model

The proposed system is built upon the fact that the wireless multipath comes

from the environment where the EM signals undergo different reflecting and scatter-

ing paths and delays. According to the literature, the wireless propagation around

the human body highly depends on the physical characteristic (e.g., height and

mass), the total body water volume, the skin condition and other biological tissues.

Since it is rare for two individuals to have exactly the same biological physical char-

acteristics, the multipath profiles after human interferences are therefore different

among different persons. The human radio biometrics, which record how the wireless

signal interacts with a human body, is altered accordingly to individuals’ biological
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TX RX

Figure 6.1: RF reflections and scattering.

physical characteristics and can be viewed as unique among different individuals.

Through WiFi sounding, the wireless CSI is collected, as well as the human radio

biometrics.

Mathematically, the indoor CSI (a.k.a. Channel frequency response, CFR) for

the mth link with the presence of human body can be modeled as the sum of the

common CSI component and the human affected component:

h
(m)
F,i = h

(m)
F,0 + δh

(m)
F,i , i = 1, 2, · · · , N, (6.1)

where N is the number of individuals to be identified. h
(m)
F,i is a L×1 complex-valued

vector, which denotes the CSI when the ith individual is inside. L is the number of

subcarriers, i.e., the length of the CSI. h
(m)
F,0 , defined as the static CSI component, is

generated from the static environment in the absence of human, and δh
(m)
F,i denotes

the perturbation in the CSI introduced by the ith individual. Here, the δh
(m)
F,i is the

raw human radio biometric information of the ith individual embedding in the CSI

of the mth link.
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At the receiver side, after each channel state sounding, we can collect a L×M

raw CSI matrix for each individual as

HF,i = [h
(1)
F,i, h

(2)
F,i, · · · , h

(M)
F,i ], ∀ i, (6.2)

with the corresponding human radio biometric information matrix being

δHF,i = [δh
(1)
F,i, δh

(2)
F,i, · · · , δh

(M)
F,i ], ∀ i, (6.3)

where M is the number of links between the transmitter and the receiver.

At this point, for human identification and recognition, there are two major

problems:

1. both δHF,i and HF,i are L×M complex-valued matrix. Without appropriate

data processing, the classification problem based on the raw data is complex-

valued and of high computation complexity.

2. Since we have no idea of what h
(m)
F,0 is, it is hard to extract the buried bio-

metric information δHF,i directly from the CSI measurement HF,i. Moreover,

the embedded human radio biometric information δH is small compared with

other CSI components in measurement H. In order to improve the identifi-

cation performance, we need to remove the common components from each

CSI measurement, and to extract and refine the embedded human biometrics

features after taking the radio shot.

To tackle the first problem, we incorporate the TR technique to reduce the

data dimension by quantifying the similarity between two measurements using TR
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spatial-temporal resonance. Specifically, for two CSI measurements HF,i and HF,j

obtained through a MIMO transmission, we can obtain a 1×M TRRS vector as

[T R(h(1)
F,i,h

(1)
F,j), T R(h

(2)
F,i,h

(2)
F,j), · · · , T R(h

(M)
F,i ,h

(M)
F,j )], (6.4)

where T R(h(2)
F,i,h

(2)
F,j) is calculated using (2.7). Then, the TRRS between HF,i and

HF,j is defined as the average of the TRRSs on each of the links,

T R(HF,i,HF,j) =
1

M

M∑
m=1

T R(h(m)
F,i ,h

(m)
F,j ). (6.5)

Furthermore, for the second problem, data post-processing algorithms are pro-

posed to refine the human radio biometrics from the raw CSI information as dis-

cussed in Section 6.2.

We show an example of the TRRS matrices of each link for different CSI

measurements captured by our prototype in Figure 6.2. Due to the different spatial

distributions of each link, how the human body affects the CSI of each link varies.

Some link succeeds in capturing the human biometric information and shows distinct

TRRSs between different individuals as in Figure 6.2(c). Whereas, some link fails

and the TRRSs between test subjects are similar as shown in Figure 6.2(e).

6.2 Radio Biometric Refinement Algorithms

Consider the simplified example in Figure 6.1. In an indoor wireless signal

propagation environment, the human body acts as a reflector and the red dots

represent the reflecting and scattering point due to the human body and other

objects. Since the wireless signal reaches the receiving antenna from more than
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Figure 6.2: TRRS map for each link.

one path, the human radio biometrics are implicitly embedded in the multipath

CSI profile. However, the human body may only introduce a few paths to the

multipath CSI, and the energy of those paths is small due to the low reflectivity and

permittivity, compared with other static objects such as the walls and furniture. As

a result, the human radio biometrics, captured through radio shot, are buried by

other useless components in the CSI. Without a refinement of the radio biometric

information, the common feature h
(m)
F,0 in the CSI dominates in the TRRS in (6.4).

To address the above problem, we propose several post-processing algorithms
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to extract the human radio biometrics and magnify the difference among individuals.

Specifically, we develop a background subtraction algorithm such that the common

information in the CSI can be removed and the distinctive human radio biometrics

are preserved. By leveraging the TR technique, the human radio biometrics in the

form of complex-valued matrices are related to the corresponding individual through

a real-valued scalar, the TRRS.

The design of the proposed time reversal human identification system exploits

the above idea and is made up of two key components:

• Human radio biometrics refinement: This module extracts the human biomet-

ric information from the raw CSI measurement which is a 9 × 114 complex-

valued matrix. Due to the independency of each link, the background for

each link should be calculated and compensated individually. An important

consideration is that, for each CSI measurement, it may be corrupted by the

SFO and the STO. Hence, before background calculation and compensation,

the phase of each CSI measurement should be aligned first. After alignment,

based on the assumption that the human radio biometrics only contribute s-

mall changes in the multipath, the background can be obtained by taking the

average of several CSI measurements.

• TR-based identification: Once the 9 × 114 complex-valued human radio bio-

metric information is refined, this component simplifies the identification prob-

lem by reducing the high-dimension complex-valued feature into a real-valued

scalar. By leveraging the TR technique, the human radio biometrics are
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mapped into the TR space and the TRRS quantifies the differences between

different radio biometrics.

6.2.1 Phase Alignment Algorithm

Considering the phase errors, each CSI h
(m)
F can be mathematically modeled

as:

h
(m)
F [l] =

∣∣∣h(m)
F [l]

∣∣∣ exp{− j(kϕlinear + ϕini)
}
, l = 0, 1, · · · , L− 1, (6.6)

where ϕlinear denotes the slope of the linear phase. ϕini is the initial phase, and both

of them are different for each CSI.

Unfortunately, there is no way to explicitly estimate either ϕlinear or ϕini. To

address the phase misalignment among the CSI measurements, for each identification

task, we pick one CSI measurement in the training database as the reference and

align all the other CSI measurements based on this reference.

To begin with, we find the linear phase difference δϕlinear between the reference

and other CSI samples. For any given CSI hF,2 with the reference h1 from the same

link, we can have

δϕlinear = argmax
ϕ

∣∣∣∑
l

hF,1[l]h
∗
F,2[l] exp

{
jlϕ
}∣∣∣. (6.7)

To align the linear phase of the CSI hF,2 according to the reference, we simply

compensate for this difference on each subcarrier through

ĥF,2[k] = hF,2[k] exp
{
− jkδϕlinear

}
, k = 0, 1, · · · , L− 1. (6.8)

Once upon all the linear phase differences of the CSI measurements have been

compensated based on the reference, the next step is to cancel the initial phase of

134



the CSI for each link, including the reference. The initial phase is obtained as the

phase on the first subcarrier for each CSI ∠ĥF [0], and can be compensated as

halign = ĥF exp
{
− j∠ĥF [0]

}
. (6.9)

In the following discussion, both the background and the refined human bio-

metric information are extracted from the aligned CSI measurements halign. To

simplify notation, we will use hF instead of halign to denote the aligned CSI in the

rest of this chapter.

6.2.2 Background Subtraction Algorithm

In the proposed CSI model in (6.1), the radio biometrics δh
(m)
F,i also involves

two parts: the common radio biometric information and the distinct radio biometric

information. Thus, h
(m)
F,i can be further decomposed as following:

h
(m)
F,i = h

(m)
F,0 + δh

(m)
F,i,ic + δh

(m)
F,i,c, ∀i,m, (6.10)

where δh
(m)
F,i = δh

(m)
F,i,c + δh

(m)
F,i,ic. δh

(m)
F,i,c denotes the common radio biometric infor-

mation, which is determined by all the participants in the identification system.

Meanwhile, δh
(m)
F,i,ic is the corresponding distinct radio biometric information, re-

maining in the extracted radio biometrics after taking out the common biometric

information.

The background CSI components for several CSI measurements of N individ-

uals can be estimated by taking the average over the aligned CSI as:

h
(m)
bg =

1

N

N∑
i=1

h
(m)
F,i∥∥∥h(m)
F,i

∥∥∥2 . (6.11)
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Then the human radio biometrics for each individual can be extracted through

subtracting a scaled version of the background in (6.11) from the original CSI.

h̃
(m)
F,i = h

(m)
F,i − αh

(m)
bg , (6.12)

where α is the the background subtraction factor, 0 ≤ α ≤ 1. It can not be too

close to 1 as the remaining CSI will be noise-like. The impact of α is studied in

Section 6.3.2.

After obtaining the refined radio biometrics h̃
(m)
i for each link, the classification

problem based on the TRRS in (6.15) becomes:

î =


argmax

i
T R(H̃F , H̃F,i), if max

i
T R(H̃F , H̃F,i) ≥ µ,

0, otherwise,

(6.13)

where H̃i is the refined radio biometric information matrix for individual i and

H̃F,i = [h̃
(1)
F,i, h̃

(2)
F,i, · · · , h̃

(M)
F,i ], ∀ i. (6.14)

H̃F,i is an approximation of the distinctive component in the human radio biometric

information matrix δHF,i defined in (6.3).

An example is shown in Figure 6.3, where the TRRS T R(HF ,HF,i) before

background subtraction is plotted in Figure 6.3(a) while that of T R(H̃F , H̃F,i) is

in Figure 6.3(b), with the background as the average of all CSI measurements in

training database. The comparison between two figures demonstrates that the re-

finement of human radio biometrics helps to improve the sensitivity of TRRS for

differentiating between individuals. The proposed background subtraction algorith-

m suppresses the spatial-temporal resonance of the CSI between different classes

while maintaining strong resonance within the same class.
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Figure 6.3: Comparison on TRRS maps with and without background subtraction.

For the proposed system, if there are K subjects to be identified, the com-

putational complexities for building the training database and testing are both

O(M × (K + 1) × N log2N), where M is the number of either the training CSI

samples or the testing CSI samples for each subject. N is the search resolution for

ϕ in (6.7), where typical values for N are 512 and 1024.

In the following discussion, to simplify notation, we will use HF,i instead of

H̃F,i) to denote the refined CSI samples, a.k.a. the distinctive component in the

human radio biometric information, in the rest of this chapter.

6.2.3 Identification Methodology

After taking the radio shot, by means of the TR signal processing, the high-

dimension complex-valued human radio biometrics embedded in the CSI measure-

ments are mapped into the TR space, and the feature dimension is reduced from

L × M to 1. The human recognition problem can be implemented as a simple

multi-class classification problem as following.
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For any radio biometric measurement HF , given a training database consisting

of the radio biometric samples of each individual HF,i, ∀ i, the predicted individual

identity (ID) is obtained based on the TRRS as:

î =


argmax

i
T R(HF ,HF,i), if max

i
T R(HF ,HF,i) ≥ µ,

0, otherwise,

(6.15)

where T R(HF ,HF,i) is calculated using (6.5) with refined biometric measurement,

µ is a predefined threshold for triggering the identification, and î = 0 denotes an

unidentified individual.

6.3 Experimental Results

By leveraging the TR technique to capture human radio biometrics embedded

in the CSI of WiFi signals, the proposed system is capable of identifying differen-

t individuals in real office environments with high accuracy. In this section, the

performance of human identification is evaluated. For the proposed system, the

training, i.e., taking the radio shot, is simple and can be done in seconds.

6.3.1 Experimental Setting

The evaluation experiments are conducted in the office at the 10th floor of a

commercial office building with a total of 16 floors. The floorplan of the experiment

office is shown in Figure 6.4(a). Surrounding the experiment area, there are 4

elevators and multiple occupied rooms. All the experiments are conducted during

the normal working hours in weekdays, so that outside the experiment office there
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(a) Indoor experiment floorplan

with dimensions.

(b) Transmitter or receiver de-

vices.

(c) Test room configuration

(room 1).

Figure 6.4: Experiment setting: floorplan and device.

Test Subject ♯1 ♯2 ♯3 ♯4 ♯5 ♯6 ♯7 ♯8 ♯9 ♯10 ♯11

Height (cm) 172 164 173 168 176 170 170 172 180 166 155

Weight (kg) 74 53 70 90 90 90 70 69 75 68 45

Gender (M/F) M F M M M M F M M M F

Glasses (Y/N) Y N Y Y Y Y N Y Y Y N

Table 6.1: Physical characteristics of test subjects in human identification experi-

ment.

are many activities, such as human walking and elevator running, happening at the

same time as the experiments run. In Figure 6.4 the experiment configurations of

the transmitter, the receiver and individuals are demonstrated. Both WiFi devices

are placed on the cart or table with height from the ground being 2.8ft as shown

in Figure 6.4(b). When taking the radio shot, each individual, to be recognized,

stands in the center of the room 1, as marked by the footprint.
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Furthermore, in the experiments, we build the training database with 50 CSI

measurements for each class, while the size of the testing database for identification

is 500 CSI measurements per class. The physical characteristics of test subjects are

listed in Table 6.1. The first five subjects participate in experiments in Section 6.3.2

and Section 6.3.3, while all the 11 subjects take part in the identification experiment

in Section 6.3.4. The 2nd individual is the subject in the verification experiments in

Section 6.3.5.

6.3.2 Study on Background Subtraction

To begin with, we first quantitatively study the impact of the proposed back-

ground subtraction and biometrics refinement algorithms on human recognition.

The experiment setup is shown in Figure 6.5. When the transmitter (bot) is on

location denoted as “A”, the receiver (RX) is placed on the locations denoted from

“Loc 1” to “Loc 5”. Otherwise when the bot is on location “B”, the receiver is on

“Loc 6” to “Loc 10” respectively. These 10 TX-RX locations can represent LOS

scenario (“Loc 1”), NLOS scenarios (“Loc 2” to “Loc 6”), and through-the-wall

scenarios (“Loc 7” to “Loc 10”).

As shown by Figure 6.3, after refinement the spatial-temporal resonance be-

tween the training and the testing CSI from different classes is suppressed a lot

while maintaining a high TRRS for the CSI from the same class. In Table 6.2, the

performance matrices for human identification are listed to show the performance

improvement after refining the radio biometrics. Each element of the performance
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Figure 6.5: Experiment setting for background subtraction study.

(a) No background subtraction. (b) After background subtraction with α = 0.5.

Table 6.2: Performance matrix of individual identification with and without back-

ground subtraction.

matrix is the probability for that the TRRS between the training and the testing

classes is higher than the threshold µ. A higher value in the diagonal means a larg-

er chance of correct identifications. However, larger off-diagonal elements indicate

higher false alarm rates because it implies that the testing sample may be misclas-

sified to the wrong training class with a higher probability if the testing class has

never been included in the training set.
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Both of the matrices in Table 6.2 have the same threshold µ = 0.9 as defined in

(6.15) and (6.13). Without background subtraction, although the diagonal value can

reach 100%, the off-diagonal ones can be as high as 99.99% as shown in Table 6.1(a).

A high off-diagonal value implies a larger chance to have a false alarm between these

particular training and testing classes. Nevertheless, after background subtraction,

when using the refined radio biometrics for identification, the largest off-diagonal

value drops to 0.24% while maintaining the diagonal elements higher than 96.35%.

6.3.2.1 Background Selection

How to choose the background CSI components is essential for a good radio

biometrics refinement. In this part, we study the performance of identification under

three schemes: no background subtraction, subtraction with the static environment

background, subtraction with the background consisting of static environment and

common radio biometrics. We compare the ROC curves in Figure 6.6. The ROC

curves, which are obtained by averaging the ROC performance measured at all 10

TX-RX locations, show how the identification rate and false alarm rate vary as

the decision threshold µ changes. The red dashed line denotes the performance

when using all the CSI measurements in training data set as the background (i.e.,

the background consisting of static environment and common radio biometrics),

while the blue solid line and green dotted line represent the case of no background

subtraction and subtraction with the static environment background, respectively.

Here, the background subtraction factor is α = 0.5. The performance of the system
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Figure 6.6: Evaluation on ROC curves for background selection.

using all the training CSI measurements outperforms the others. The reason is that,

by taking the average of the CSI samples from all the classes as the background, we

effectively eliminate the high correlated and similar component in radio biometrics

for different individuals, which is the estimation of h
(m)
F,0 +δh

(m)
F,i,c as defined in (6.10),

and thus enlarge the difference between the radio biometrics of different people.

6.3.2.2 Background Subtraction Factor

After we have determined the optimal background, the next question is to find

the optimal background subtraction factor α. In Figure 6.7, the ROC performance is

plotted to evaluate the impact of different α, considering and averaging over all TX-

RX locations. When α = 0.9, the identification performance is the worst because

the remaining CSI components after background subtraction is noisy and has few

information for human biometrics. Through the experiment, we find α = 0.5 is
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Figure 6.7: Evaluation on ROC curves for background subtraction factor.

optimal for individual identification. In the rest experiments, we adopt α = 0.5 and

the all-CSI background scheme.

6.3.3 Study on TX-RX Locations

Next, we would like to evaluate the impacts of TX-RX configurations on the

performance of human identification. “Loc 1” represents LOS scenario where the

transmitter, receiver and experiment individual are in the same room. “Loc 2”

to “Loc 6” represent the NLOS case where either the transmitter or the receiver

is in the same room with the individual, while the other device is placed outside.

Moreover, in the through-the-wall scenarios, represented by “Loc 7” to “Loc 10”,

the individual to be identified is in the room while both the transmitter and the

receiver are outside and in different locations.

The identification performance of different scenarios is plotted in Figure 6.8.
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Figure 6.8: Evaluation on ROC curves for different TX-RX locations.

The performance comparison can be summarized from the best to the worst as: Loc

7 > Loc 2 > Loc 3 > Loc 10 > Loc 1 >Loc 5 > Loc 9 > Loc 4 > Loc 8 > Loc

6. There is no direct relation between identification performance and the distance

between the transmitter and the receiver. Moreover, the LOS scenario is not the

best configuration for human identification. As we discussed, the human radio bio-

metrics are embedded in the multipath CSI. Due to the independency of each paths

in the multipath CSI, the more paths the CSI contains, the larger number of degrees

of freedom it can provide in the embedded human radio biometrics. Consequently,

owing to the fact that there are fewer multipath components in the CSI of the LOS

scenario, less informative radio biometrics are extracted, which degrades the perfor-

mance of identification. The results in Figure 6.8 also demonstrate the capability of

the proposed system for through-the-wall human identification, in that no matter

which configuration is selected the proposed system has a high accuracy.
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(a) Loc 1. (b) Loc 6. (c) Loc 7.

Table 6.3: Comparison on performance matrices with fixed threshold µ = 0.9.

(a) Loc 1. (b) Loc 6. (c) Loc 7.

Table 6.4: Comparison on performance matrices with the minimum diagonal element

larger than 99%.

6.3.3.1 Special Case Study

To better understand the impact of TX-RX locations on the identification

capability of the proposed system, six examples are investigated and compared in

Table 6.3 by using the performance matrices defined at the beginning of Section

6.3.2.

In Table 6.2(a), 6.2(b) and 6.2(c), the performance matrices for LOS case “Loc

1”, NLOS case “Loc 6” and the through-the-wall case “Loc 7” with the threshold

µ = 0.9 are listed. For “Loc 1”, there is no off-diagonal element larger than 0, but

the diagonal element for the 5th individual is only 51.59%. This is because in the
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LOS configuration the human body to be identified is close to both the transmitter

and the receiver, which leads to stronger radio biometrics embedded in the CSI.

This makes different individuals more distinguishable while making the identification

system sensitive and vulnerable to small variations on the human body, e.g., the

slight inconsistency in poses and standing location of human. “Loc 6” has the

worst performance, since its off-diagonal element could reach 97.32%. Meanwhile,

the through-the-wall scenario “Loc 7” becomes the most ideal configuration for

individual identification in that the minimum diagonal element is higher than 96%

and the largest off-diagonal element is only 0.24%.

Similarly, in Table 6.3(a), 6.3(b) and 6.3(c), with the requirement of the min-

imum diagonal element larger than 99%, the corresponding performance matrices

of the aforementioned three cases are shown. To maintain the diagonal values, the

identification system has to reduce the threshold µ which inevitably introduces larg-

er off-diagonal elements and more false alarms. Except for the ideal configuration

“Loc 7”, the other two examples sacrifice the off-diagonal performance to 91.9% and

99.46% respectively.

We can conclude that among the 10 TX-RX locations tested in the experiment,

“Loc 7” is the optimal configuration for the proposed system, and is adopted in the

following experiments.
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Figure 6.9: ROC curve of identifying 11 individuals.

6.3.4 Human Identification

From the above analysis, we have already observed that the performance of

the proposed human identification system is influenced by both the background sub-

traction and the TX-RX configurations. In this part, the performance is evaluated

in a large data set of 11 individuals, with optimal background subtraction applied

and “Loc 7” TX-RX configuration. The corresponding ROC curve is plotted in

Figure 6.9. With a threshold µ being 0.91, the average identification rate is 98.78%

and the average false alarm rate is 9.75%. This is because, when two individuals

have similar body contour, the possibility of misclassifying between them increases.

However, since not only the contour but also the permittivity and conductivity of

body tissue, which is more distinct for different individuals, will affect the WiFi

signal propagation that encounters the human body, the accuracy of identification

is still high. In the current performance evaluation, the number of participants is
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11. We are inviting more people to participate in the experiment and collecting

more data for further validation and analysis.

6.3.5 Human Verification

In this set of experiments, we study the performance of individual verification

using proposed system. Instead of finding the correct identity among several possible

ones, the individual verification is to recognize a specific individual with variations

in both the human body and the environment.

6.3.5.1 Stationarity over Time

To begin with, the stationarity of human verification performance is discussed.

We collect the CSI measurements for both the empty room and with one individual

inside twice a day for three consecutive days. The TRRS maps are demonstrated in

Figure 6.10. As shown in Figure 6.10(a), if we only use the CSI from the first mea-

surement as the training set, the TRRS within the same class gradually decreases.

This leads to a 90.83% identification rate with the threshold µ = 0.75. However, if

we update the training set every time after measurement and identification, e.g. for

Day 2 morning experiment the training set consists of the CSI from measurements

at Day 1 morning and afternoon, the identification rate increase to 97.35%. The

details of the verification accuracy is listed in Table 6.5. Hence, to combat the vari-

ations over time, the training data set for both identification and verification should

be updated regularly.
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Figure 6.10: Comparison on TRRS map for stationarity study.

Table 6.5: Performance matrix for stationarity study.

6.3.5.2 Other Variations

In this experiment, the impact of other types of variations such as wearing a

coat, carrying a backpack/laptop on the accuracy of verification is discussed. We

consider six classes as listed in the Table 6.6 and the corresponding TRRS map is

shown in Figure 6.11.
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Class Index Coat Backpack Laptop in the backpack

#1 No No No

#2 Yes No No

#3 Yes Yes No

#4 Yes Yes Yes

#5 No Yes No

#6 No Yes Yes

Table 6.6: List of the six variation classes.
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Figure 6.11: TRRS map of variation.

The detailed verification performance is discussed in Table 6.7 where the rela-

tion of the threshold µ and the capability of differentiating between different varia-

tions is studied. Here, the training set only contains the CSI from class #1. A low
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Table 6.7: Identification rate under variations.

threshold µ reduces the sensitivity of the proposed system in verification. When the

threshold µ increases, it may be able to tell whether the individual is wearing a coat

and a backpack, shown by the 0 percentage for class #3 to be misclassified as class

#1 in Table 6.7. In terms of the backpack with or without laptop inside, as they

are shadowed by the human body, the introduced variations have relatively small

impact on the accuracy of verification.

6.4 Discussion

Through the above experiments, the capability of identifying and verifying

individuals through-the-wall of the proposed TR human identification system has

been proved. In this section, the impacts of obstructions and test subjects’ postures

are evaluated and discussed. The performance of the proposed system is further

studied by comparing with a RSSI-based identification system, and the current

limitation of the proposed system is discussed.
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Figure 6.12: Study on impacts of obstructions: test floorplan.

(a) Behind a table. (b) Behind a chair.

Figure 6.13: Study on impacts of obstructions: different obstructions.

6.4.1 Impact of Obstructions

Experiments are conducted to evaluate and compare the identification accu-

racy when there is an obstruction in front of and in the same room with the test

subject. The office configuration is shown in Figure 6.12. The ROC curves for

testing under no obstruction, behind a desk as in Figure 6.13(a) and behind a big
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chair as in Figure 6.13(b) are plotted and compared in Figure 6.14. With a similar

level of false alarm, the average identification rate for the no-obstruction scenario

is 97.57% and the corresponding average false alarm rate is 9.85%. When there is

a table in front of the subject against to the wall, the average identification rate

increases to 99.53% while the average false alarm rate is 8.82%. When a big chair is

put in front of the test subject with a very short distance, the system has an average

identification rate of 97.44% and an average false alarm rate of 8.43%. When there

is an obstruction between the test subject and the transceiver, because of the re-

flections and penetrations, more copies of the transmitted signal are created, along

with more multipath components. If the obstruction does not attenuate the signal

much, most of the signals radiated from the obstruction will eventually encounter

the test subject. Then more radio biometric information can be captured through

the multipath propagation, which helps the identification performance. However,

if the obstruction is thick in size and has a large vertical surface which attenuates

and blocks most of the incoming signals, there will be fewer multipath components

passing through the human body. As a result, less informative radio biometrics are

obtained, compared with the no-obstruction case. Furthermore, as demonstrated

in this experiment, the existence of furniture as the obstruction does not affect the

system much.

However, the multipath profile changes when the obstruction changes, espe-

cially when the obstruction locates between the transmitter and the receiver link

and in front of the test subject. The TR technique is trying to capture the differ-

ence in multipath profile, and of course it will capture the difference introduced by
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Figure 6.14: Study on impacts of obstructions: ROC curves with different obstruc-

tions.

obstruction changes in the meantime. Hence, if an individual is behind a large desk

during the training phase and later stands behind a small desk for the testing, the

proposed system will notice this change in multipath profiles, leading to a mismatch

in the training database.

6.4.2 Impact of Human Postures

Experiments have been conducted to evaluate the effects introduced by human

poses. Under the setting in Figure 6.12, 4 participants are asked to stand at the same

location and perform 5 different poses by lifting their arms with different degrees

and directions, as shown in Figure 6.15. The corresponding ROC curves are shown

in Figure 6.16.

In the experiment, we select 50 samples for each subject under the 1st pose
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Figure 6.15: Study on human pose effects: test poses.

as the training set. When the testing samples come from the same pose, the iden-

tification rate reaches 97.67% with a false alarm rate being 5.58%. However, as the

participants change their poses from the 2nd one to the 5th one, the identification rate

drops from 95.66% to 88.06%, 58.83% and 79.29% with a false alarm rate around

5.6%. The experimental results validate that pose changes will degrade the system

performance. The system is robust to slight changes in posture, e.g., from pose 1 to

pose 2. However, as shown by the ROC curve of testing over pose 4 data with the

pose 1 training in Figure 6.16, when the pose alters the propagation environment

a lot, the proposed TR human identification system fails to find a match in the
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Figure 6.16: Study on human pose effects: ROC curves with different poses.

training database. In the 4th pose, the test subject is asked to lift the left arm with

90 degree and the direction being perpendicular to the link between the transmitter

and the receiver. On the other hand, in the 5th pose, test subjects lift the arm at

the same height but the arm is parallel to the TX-RX link. Compared the result of

testing over the 5th pose with that over the 4th pose, it is noticed that the identifi-

cation accuracy drops more if the pose changes the silhouettes in a manner that is

perpendicular to the TX-RX link.

Hence, when poses or standing locations change, the multipath profiles in the

TR space for a test subjects might fall out of the “proximity” (range of a high

similarity) of his or her self, which results in a reduce in the identification rate.

Moreover, a worse situation is that the changed multipath profiles fall into the

“proximity” of other test subjects which leads to an increase in the false alarm rate.
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Figure 6.17: RSSI values variation of 11 individuals.

6.4.3 Comparison with RSSI-based Approach

Using the standard WiFi chipsets, besides the CSI, in each measurement we

can also obtain a 7×1 RSS vectors, consisting of 6 RSS values for 3 receiving antenna

in each 20 MHz band and 1 overall RSS value. Here, we treat each real-valued 7× 1

vector as the feature and apply the k nearest neighbors (kNN) classifiers to the

measurements.

6.4.3.1 RSSI for Identification

We first test the identification accuracy of the RSSI-based approach on the

dataset of 11 individuals. From the results in Figure 6.17, the RSSI difference

between different individuals is small. The false alarm rate is 68.07% and the i-

dentification rate is only 31.93%, which is far inferior to the proposed identification
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Figure 6.18: RSSI values comparison on stationarity.

system.

6.4.3.2 RSSI for Verification

In Figure 6.18, the stationarity is evaluated and from the plot it is obvious

that the RSS value is not stable over time. Without training database update, the

identification rate for the individual is only 89.67% with a 10.33% possibility that

the individual is misclassified as an empty room. Even with the training database

update, the identification rate does not improve due to the instability of the RSS

values over time.

Furthermore, in terms of verifying individual with small variations as listed in

Table 6.7, the RSSI-based approach can hardly differentiate between different varia-

tions by only using the 7×1 RSS vector as shown in Figure 6.19 and in the confusion

matrix of individual verification in Table 6.8. The reason for its insensitivity to s-

mall variations is the same as that for its incapability in human identification. The
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Figure 6.19: RSSI values comparison on variations.

Table 6.8: Confusion matrix under RSSI-based approach.

7×1 RSS vector feature only captures little human radio biometric information and

loses the individual discrimination.

Hence, even though the RSSI-based approach is robust to the small variations

on human body, it cannot be put into practice for human identification and ver-
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ification. Moreover, since RSSI is only a real-valued scaler which approximately

represents the received signal power, it is less informative, susceptible to noise and

has large intra-class variations which degrades the identification accuracy a lot when

the number of test subjects increases. Compared with the RSSI-based approach,

the proposed TR human identification system succeeds in capturing and extracting

the human radio biometric information embedded in the CSI, and in distinguishing

individuals with high accuracy through-the-wall.

6.4.4 Limitations

At current stage, the proposed TR human identification system exhibits some

limitations:

1. The proposed system adopts a simple model for human radio biometrics em-

bedded in the CSI as shown in (6.1). As a result, the obtained human radio

biometrics δh and the environment component hF,0 is correlated. In other

words, the human radio biometrics δh is location-dependent, which requires

the system to run in an environment consistent over time. Future work in-

cludes developing algorithms to separate the human radio biometrics and the

outside environment.

2. Current system is equipped with only one pair of the transmitter and the re-

ceiver, and hence its performance can be improved by deploying more transceiv-

er pairs to capture fine-grained human radio biometrics from different direc-

tions simultaneously.
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3. In the current work, it is difficult to scientifically prove the uniqueness of

human radio biometrics, when taking into account how complicated the tech-

niques it requires to extract all of these biological features from each individual

are. In the future work, experiments that involve more subjects will be con-

ducted and techniques that can record other biological features will be utilized

to provide more details in human biological characteristics, such as the mus-

cle mass index and the body temperature. With more detailed information

regarding individual biological features besides the common information like

height, weight, gender and clothing, the uniqueness of radio biometrics can be

well studied, tested and verified.

Despite these limitations, we believe the proposed TR human identification

system should be viewed as a milestone in the development of both the human i-

dentification systems and wireless sensing systems. For the current system, it can

be implemented in the environments that remain stationary most of the time. For

example, it can be implemented for identity verification at places like bank vaults

to allow the entry of authorized staff. It can also be used in home security systems,

functioning as wireless electronic keys in vacation houses. Moreover, the location

embedded radio biometrics are helpful in applications that require to tell both who

the test subject is and where the test subject is. Once the environment-independent

radio biometric information is extracted out, the proposed system can work to identi-

fy individuals without being noticed by test subjects and implement in applications

that require no direct contact with test subjects or where there are obstructions
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in-between the sensor and the subject.

6.5 Summary

In this chapter, we presented a TR human identification system to identify

individuals through the walls (i.e., in the absence of any LOS path), based on the

human radio biometrics in WiFi signals. To the best of our knowledge, this is the first

effort to show and verify the existence of human radio biometrics, which can be found

embedding in the wireless CSI. Moreover, we proposed a human recognition system

that extracts the unique radio biometrics as features from the CSI for differentiating

between people through the wall. We defined the term radio shot as the procedure

to take and record human radio biometrics via WiFi signals. Our work demonstrates

the potential of using commercial WiFi signals to capture human radio biometrics

for individual identifications.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Thanks to the multipath propagation, indoor activities affect the surrounding

wireless signal propagation, and information describing those activities is in turn

embedded in the wireless signals. Hence, one can decipher the surrounding envi-

ronment by analyzing instantaneous CSI and extracting activity-induced changes

from it. Radio analytics was proposed as the notion of concept that represents tech-

niques to reveal information of activities and surrounding environments from radio

waves. In these dissertation, we demonstrated the feasibility as well as the capabil-

ity of radio analytics by proposing three indoor monitoring systems and one human

recognition system using WiFi, and evaluating the system performance through

extensive experiments conducted in real indoor environments.

We introduced the fundamental theory behind radio analytics in Chapter 2.

We first elaborated on the concept of treating each multipath component in the CSI

as a virtual antenna, which enables us to analyze, model and extract indoor activ-

ity information and human radio biometrics from measured CSI, and theoretically

supports the proposed systems. Then, we reviewed the history of TR technique and
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described the notion of TR space. Moreover, we defined the TRRS and explained its

calculation for both frequency domain and time domain CSI. By leveraging TRRS,

one can quickly and accurately quantify the similarity between different multipath

profiles.

In Chapter 3, we proposed a TR based wireless indoor events detection sys-

tem, TRIEDS. By representing each indoor event with a specific complex-valued

multipath profile and exploiting TR technique to measure and evaluate the changes

of CSI in the indoor environment, the proposed TRIEDS system was able to achieve

high accuracy through-the-wall multiple-event detection with low-complexity single-

antenna devices that operate in the ISM band. We built a prototype on single-

antenna transceivers which operate on ISM band with the carrier frequency being

5.4 GHz and under a 125 MHZ bandwidth. We deployed the prototype in a multi-

room office to detect the open/close state of wooden doors. Unlike previous works

on wireless indoor monitoring that rely on multiple antennas, dedicated sensors,

ultra-wideband transmission or LOS environment, TRIEDS introduced a novel and

practical solution to future IoT applications.

In Chapter 4, we designed a new TR based indoor monitoring system, TRIMS,

with off-the-shelf WiFi devices. TRIMS was capable of exploiting both the ampli-

tude and the phase information in the CSI and performing real-time indoor environ-

ments monitoring under both LOS and NLOS scenarios. Different from the system

proposed in Chapter 3 that used TRRS directly as a similarity score for event

detection, TRIMS delivered indoor multiple events detection and human motion

monitoring by analyzing the statistical behavior of TRRS. We derived the statistics
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of TRRS in this chapter and evaluated the performance of TRIMS through intrud-

er detection experiments conducted in different single family houses with resident

activities. In general, by achieving a high accuracy in long-term indoor monitor-

ing experiments, TRIMS demonstrated its prominent and promising role in future

intelligent WiFi-based low-complexity smart radios.

At the end of the first part of this dissertation, in Chapter 5, we proposed

an indoor monitoring system that not only analyzed the single CSI sample but

also extracted the temporal information embedded in the CSI time series, which

makes it different from the systems in Chapter 3 and Chapter 4. Because the

occurrence of each indoor event can be decomposed into a continuous transition

between multiple intermediate indoor states, it usually takes several seconds for an

indoor event evolving and a similar CSI transition pattern will be exhibited among

different realizations. In other words, indoor event information is embedded not only

in each CSI sample but also in that of how CSI changes along time. We designed

algorithms to address practical problems in feature extraction, real-time monitoring,

and channel fading or changes in the background environment along the time.Results

from robustness test and long-term experiments indicated that the proposed system

is a promising solution to future IoT applications in indoor monitoring.

Lastly, in Chapter 6 which composes the second part of this dissertation,

we presented a human identification system that can discriminate individuals even

through walls, i.e., in a NLOS condition. The proposed system relied on the hu-

man radio biometric information which records how RF signals interact with and

respond to the entire body of a human that is present in the propagation envi-
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ronment. We modeled the human radio biometrics in the CSI and validated its

existence through experiments. By leveraging TR technique, the proposed system

extracted human radio biometric information from WiFi signals with commercial

WiFi devices. Considering the fact that the dominant component in the CSI comes

from the static environment rather than human body and thus the human radio

biometrics are embedded and buried in the multipath CSI, we designed novel al-

gorithms for extracting individual human radio biometrics and mitigating common

information from the wireless channel information. We conducted extensive experi-

ments to demonstrate the potential of radio biometrics based human identification

using commercial WiFi devices.

7.2 Future Work

With the proliferation of wireless devices that connect and communicate with

each other, wireless sensing makes IoT into practice and has dramatically changed

our daily life. Meanwhile, the concept of radio analytics has gained a lot of attention.

By leveraging the large degree of freedom delivered via multipath propagation, one

can retrieve the environmental information embedded in the CSI and decipher as well

as perceive the surrounding world. In this dissertation, we have demonstrated the

idea and the capability of radio analytics, and proposed wireless indoor monitoring

systems and one through-the-wall human identification systems. However, several

critical issues remain to be resolved.

In our indoor monitoring research, we have demonstrated the performance of
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proposed systems using door opening and closing examples. Because the physical

location of a trained door will not change, its opening and closing event yields a

fixed physical moving trace, resulting in a fixed CSI time series. However, there are

many indoor events that may happen at different locations from time to time. In

other words, such kind of indoor events are only associated with a relative trajectory

of moving paths, with an unknown initial position. Consequently, the corresponding

CSI time series is altered among multiple occurrences of an event. Nonetheless, the

CSI time series captured at different realizations should implicitly possess a distinct

but consistent pattern, thanks to the relative moving trajectory determined uniquely

in the course of an event. Therefore, in the future, we would like to investigate the

possibility of modelling, extracting and analyzing the inherent location-independent

pattern brought by each indoor event to the CSI time series, which will enable new

radio analytic technique with environment independent radio features embedded in

the multipath.

Secondly, in our previous study of indoor monitoring, we model each indoor

event independently, considering at one time only one event will happen and change

the multipath propagation. However, multiple different events may happen in the

same time duration in a real indoor environment. The change introduced to a

multipath profile is indeed a composition or integration of co-occurred events, which

will definitely be different from the change introduced by a single event. Therefore,

to successfully deploy indoor monitoring systems, we need to study and analyze the

decoupling of multi-event changes in CSI and develop the corresponding algorithms.

In our radio biometrics research, we have validated the existence of radio bio-
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metrics and successfully implemented a TR based human identification system which

achieved high accuracy through-the-wall human recognition using radio biometrics.

With the surge of super computers with high computation powers and the ubiquity

of cameras, vision based human identification has entered the era of big data, and

the accuracy along with the robustness of face recognition has been improved a lot

through deep learning. It would be of interest to apply big data approach to the

proposed radio biometrics and analyze how it will affect the radio biometric based

recognition performance. Because the CSI is different from an image which is much

more straight-forward, the existing deep learning methods may not work for radio

biometric based system. In the future, we would like to develop novel deep learn-

ing based algorithms dedicated to radio biometrics. Meanwhile, it is also urgent to

collect more radio biometric information from human groups of various diversity. It

is our belief that radio biometrics can achieve comparable identification accuracy

with vision based approach, but outperforms it in terms of privacy and restriction

of deployment, e.g., no requirement of LOS. We hope that one day the radio bio-

metrics based human identification system will enter our everyday life and become

as prevalent as today’s face recognition.
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