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This thesis addresses two important issues that are applicable to chaotic

communication systems: synchronization of chaos and controlling chaos. Syn-

chronization of chaos is a naturally occurring phenomenon where one chaotic

dynamical system mimics dynamical behavior of another chaotic system. This

phenomenon can be used in chaotic communication system as a mechanism for

information decoding whereas controlling chaos can be used to encode informa-

tion into the dynamics of the system. Apart from this particular application, the

phenomenon of chaotic synchronization is a popular topic of research, in general,

and has attracted much attention within the scientific community. Controlling

chaos is another potential engineering application. A unique property of control-

ling chaos is the ability to cause large long-term impact on the dynamics using

arbitrarily small perturbations.



This thesis is broken up into three chapters. The first chapter contains a brief

introduction to the areas of research of the thesis work, as well as the summaries

the work itself. The second chapter is dedicated to the study of a particular

situation of chaotic synchronization which leads to a novel structure of the basin

of attraction. This chapter also develops theoretical scalings applicable to these

systems and compares results of our numerical simulations on three different

chaotic systems (two discrete maps and one continuous flow) with theoretical

results.

The third chapter consists or two logically connected parts (as both of them

study chaotic dynamics of systems that can be modeled with delayed differential

equations). The first and the main part presents a study of a chaotically behav-

ing traveling wave tube, or TWT, with the objective of improving efficiency of

satellite communication systems. In this work we go through an almost complete

design cycle, where, given an objective, we begin with developing a nonlinear

model for a generic TWT; we then study numerically the dynamics of the pro-

posed model; we find conditions where chaotic behavior occurs (we argue that

TWT in chaotic mode could be more power efficient); then we use the idea of con-

trolling chaos for information encoding; we support the concept with numerical

simulations; and finally analyze the performance of the proposed chaotic commu-

nication system. The second part of this chapter describes an experiment with a

pair of electronic circuits modeling the well-known Mackey-Glass equation. De-

spite the simplicity of the circuits, they represent a powerful experimental tool,

as they are capable of exhibiting various types of dynamic behavior (fixed point,

limit cycle, chaos including high-dimensional chaos with Lyapunov dimension

>10). A simple experiment where human voice was encoded into chaotic sig-



nal had been conducted which showed a possibility of engineering application of

chaos to secure communications.
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Chapter 1

Introduction

Synchronization of chaos and controlling chaos are two subjects that are key to

the use of chaos as a mean of information transport. Synchronization of dynam-

ical systems is an ability of one system to mimic dynamical behavior of another

system in a precise manner. The phenomenon of chaotic synchronization was

described for the first time by Afraimovich et al. [1] and later applied to secure

communications by Pecora and Carroll and [2]. Suppose that the dynamics of

two systems are each described in terms of a set of, say, N state variables; Then,

if viewed as parts or subsystems of a bigger system, a higher dimentional state

space with dimention 2N can be introduced to simultaneously describe the dy-

namical behavior of both subsystems. If the dynamics of both subsystems are

independent, all 2N state variables will be required to describe dynamical be-

havior of the overall system. If, however, the subsystems are either partially

or fully synchronized, the resulting dynamics of the bigger system will be lim-

ited to a lower dimentional subspace which we call a ”synchronization manifold”,

or in more general terms, an ”invariant manifold”. In the case where the syn-

chronization manifold is transversely attractive, the chaotic systems will always

synchronize. In general, however, the presence of an invariant manifold does not
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manifold

x

x

invariant 

Figure 1.1: Graphical representation of invariant manifold for a general example

described by Eq.(1.1)

guarantee synchronization. Synchronization persists for initial conditions lying in

the invariant manifold (see Fig.1.1). However, an initial condition not in the in-

variant manifold may or may not lead to chaotic synchronization. The dynamical

behavior of coupled chaotic systems, therefore, will be influenced by the stability

properties of the chaotic dynamics in the invariant manifold. Therefore, studying

properties of invariant manifolds is useful in terms of characterizing chaos-based

communication systems where synchronization of chaos is being used as a means

of information transmission-decoding process. An example of a system that has

an invariant manifold is the following:

dx

dt
= F (x),

dx̂

dt
= F (x̂) + K(x − x̂) (1.1)

If x = x̂ initially, then the coupling term on the right side of the dx̂
dt

equation is

identically zero, and x = x̂ is true for all time.

Examples show that dynamical systems that exhibit chaotic dynamics on an
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invariant manifold embedded in their state space may yield novel dynamical be-

haviors. One such situation is the case where the chaotic set in the invariant

manifold is attracting on average but has within it invariant subsets that are

repelling transverse to the invariant manifold. In appropriate circumstances this

leads to so called “riddling” of the basin of attraction (see Fig.1.2, Ref. [3,4]). In

Chapter 2 of this thesis we consider a related, but different, situation where there

is both a nonattracting chaotic set and an attractor which is “absolutely attract-

ing” in the invariant manifold. Here by “absolutely attracting” we mean that the

attractor is attracting for points in the invariant manifold and all invariant sets

within the attractor are transversely attracting (e.g., the absolutely attracting

attractor might be a stable periodic orbit). Thus in the full phase space there

is an open neighborhood of the absolutely attracting attractor that is part of its

basin of attraction. It is found that in such a case the basin boundary of the

attractor in the invariant manifold may be characterized by thin stalactite like

structure emanating from the nonattracting chaotic set in the invariant manifold

(see Fig. 1.3). We employ a Fokker-Planck type model which shows that, near

the invariant manifold, the state space measure (volume) not in the basin of the

attractor on the invariant manifold scales as a power law of the displacement

from the invariant manifold. The solution to the Fokker-Planck model for the

power law exponent is in a good agreement with numerical tests.

Also note that dynamical systems that exhibit chaotic dynamics on an in-

variant manifold embedded in their state space can also be of great interest in

situations other than communicating with chaos. To emphasize the universality

of this work, it is worth mentioning a recent study [5] which addresses a com-

mon predator-pray model yielding a very similar situation, where the basin of
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the attractor can be characterized by the stalactites-like structure described in

Chapter 2.

Chapter 3 of this thesis is mainly devoted to the control of chaotic behavior in

a traveling wave tube (TWT). Traveling wave tubes [6–8] are microwave-range,

high-power amplifiers commonly used on communication satellites. We model

TWT dynamics using a delay differential equation. In other situation where re-

lated delay models are used, similar behavioral patterns are observed. We believe,

therefore, that results of this study are applicable in a variety of situations where

one is attempting to build a chaotic communication system in which chaotic oscil-

lations are utilized for information transmission and where a physical mechanism

introduces signal propagation delay in the transmitter signal generator. We will

refer to the class of such systems as time-delayed feedback dynamical systems.

Time-delayed feedback dynamical systems have recently received much atten-

tion [9–15,17]. Examples of such systems are: ring lasers [11,14,17], where light

travels inside a closed loop which contains a nonlinear optical amplifier; another

example is a Mackey-Glass equation [9, 12, 13] which represents a mathematical

model for haematologic disorders (we conducted an electronic experimental im-

plementation of this system; see Sec.3.2); yet another example is our nonlinear

model of a traveling tube amplifier (TWT) [15,16,18–22] (see Sec.3.1).

A general form for a class of such dynamical systems is

ẋ(t) + x(t) = f(p, x(t − τ)), (1.2)

where x is the state variable of the system and p is a bifurcation parameter. (Note

that x can be complex in general. In the case of the TWT model, an important

factor determining qualitative behavior is than the ratio between the delay time

τ and the decay time of x(t) [the latter is normalized to one in Eq.(1.2)].
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Despite the variety of nonlinearities which can arise in such systems, many

such systems share similar properties and exhibit similar behavior. One common

observation for the class of dynamical systems described by Eq.(1.2) is the pres-

ence of a low-dimensional chaotic attractor for relatively small delays τ , which

transforms into a more complicated (i.e., higher dimensional) chaotic attractor for

higher values of τ and eventually becomes very high-dimensional (“very” means

Lyapunov dimension [see Ref. [23]] DL ≥ 10) for relatively large values of τ (see

Fig.(1.4)).

Three possible applications of time-delayed feedback dynamical systems to

chaotic communications are:

1. Implementation of high-speed dynamic memory in systems similar to a ring

laser [14]. Numerous self-sustaining modes can be excited in such a system,

and therefore short bit sequences can be written, stored and erased at a very

high speed. This application holds promise for a storage device for ultra-

high speed data, although it might be difficult to use such a memory element

in practice. Aida and Davis built and demonstrated such a device [14].

2. Controlling the symbolic dynamics of a chaotic transmitting system for dig-

ital communications [24–27]. Our research in Chapter 3 reports on develop-

ing a nonlinear model for a TWT operating in the saturation regime [15,16].

Our theoretical model for the TWT accounts for power saturation, phase

nonlinearity, and reflections from the mismatched load. This model exhib-

ited a rich variety of dynamical behavior. We have found that for certain

sets of parameters of the model we can observe a low-dimensional chaotic

flow in a higher dimensional phase space. The symbolic dynamics of such

flow can be controlled [25–27]. This approach was proven to work well with

6



our TWT model using computer simulations, although a real experiment

has not been performed yet. We have studied both the first-order model as

well as a more complex second-order model of TWT; both models yielded

similar behavior. We have also analyzed performance of a chaotic TWT

based communication system in noisy environment.

Reference [16] was dedicated to the time-domain modeling of an existing

TWT. The objective was to study a combined effect of the saturation and

reflections on the distortion of high-rate (100 Megasymbols/sec) QAM-

modulated signal. The novelty of the time-domain model is that it allowed

us to relate digital performance to the physical characteristics of the device.

3. Masking the information bearing signal with a chaotic signal [28–32]. In

this scheme, message recovery is possible due to the synchronization phe-

nomenon. An example showing experimental evidence of synchronization

in time-delayed systems are recent studies of ring-laser systems [11,17]. In

these experiments, the dynamics of one laser was affected by binary digi-

tal information, which was then retrieved from the second nonlinear laser

amplifier through use of a suitable detection scheme.

At the end of Chapter 3 we also include the descripton of the pair of elec-

tronic circuits which are a representation of the Mackey-Glass system. Us-

ing these circuits, we demonstrated the possibility of voice signal encod-

ing and recovery using simple electronic time-delayed nonlinear feedback

circuits. These circuits may also be used to conduct experimental study

of chaotic multiplexing/demultiplexing [33, 34], as well as to characterize

chaotic behavior of time-delayed feedback systems that have more than one

delayed feedback.
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Nonlinear time-delayed feedback loops describe a large class of physical sys-

tems. Therefore, good understanding of the dynamics of such systems will lead

to better understanding of the underlying phenomena occuring in such systems,

with the possibility of new engineering applications.
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Figure 1.4: Similarity between dynamics of Mackey-Glass system (a) and the

model of TWT (b). Both system exhibit low-dimensional behavior for τ ∼ 1 (on

the left) and high-dimensional behavior for τ ≫ 1 (on the right).
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Chapter 2

Stalactite Basin Structure of Dynamical

Systems

with Transient Chaos in an Invariant Manifold

2.1 Introduction

1 Recently, physically important examples of dynamical systems that have in-

variant manifolds embedded in their phase space have been studied, and some

important dynamical consequences of this have been revealed. An important class

of systems that have invariant manifolds are those that possess an appropriate

symmetry. In this case any initial state that has the same symmetry as the sys-

tem evolves to other states that also respect the symmetry of the system. The set

of such symmetric initial states then forms a manifold that is invariant under the

dynamics of the system. An example of an invariant manifold not accompanied

by a symmetry of the dynamical system is the case of one-way coupling of two

1This chapter is a verbatim representation of the paper by V. Dronov and E. Ott, Stalactite

Basin Structure of Dynamical Systems with Transient Chaos in an Invariant Manifold, Chaos,

Volume 10, No. 2, June 2000
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identical oscillators, for which the states where the oscillators are synchronized

form an invariant manifold.

An invariant manifold (whether induced by symmetry or not) can also have

the property that the dynamics restricted to this manifold is chaotic, i.e. initial

states in the manifold can be attracted to some chaotic set A in the invariant

manifold. Thus A is an attractor for initial conditions in the invariant manifold.

Note, however, that A may or may not be an attractor for the full system. Here

by an attractor for the full system we mean that the set A attracts a set of initial

conditions of positive Lebesgue measure in the full phase space [35]. In what

follows, if we say, without qualification, that A is an attractor, then we mean

that it is an attractor for the full system.

Considering the case where A is an attractor, there are typical cases where

there is a small set of points in any neighborhood of the invariant manifold, that

move away from A as the dynamical system evolves. If the global dynamics of the

system is such that these repelled orbits are attracted to a set other than A, then

the basin of attraction of A is riddled [3,4]. That is, if r is any point in the basin of

A, then, for every ν, no matter how small, there is a displacement δ, |δ| < ν, such

that the point r+δ is in the basin of another attractor, and the set of such points,

r + δ, |δ| < ν, has nonzero phase space volume (i.e., positive Lebesgue measure).

This presents a basic obstruction to determinism in such systems: If one does

an experiment by preparing an initial condition and observes that the resulting

orbit goes to A, then no matter how great one’s precision in preparing the initial

condition, one can not be sure that an attempted repeat of the experiment will

result in the same outcome.

The unusual properties of riddled basins have received much attention. Re-

11



cent work [36–39] has investigated the transition to chaotic attractors with riddled

basins and the effect of noise and asymmetry on the dynamics of systems with

riddled basins. To treat the transition to chaotic attractors with riddled basins,

a simple analyzable diffusion model [36] was proposed and scaling relations con-

sistent with numerical simulations were obtained [40].

The main question addressed in this paper is what happens if, instead of a

chaotic attractor embedded in the invariant manifold, there is a chaotic repeller

for the initial conditions in the invariant manifold. By a chaotic repeller we mean

an invariant set on which the dynamics is chaotic, but which does not attract

a positive Lebesgue measure set of initial conditions in the invariant manifold.

Typically, such nonattracting chaotic sets manifest themselves as chaotic tran-

sients [41]. For the case we consider, an initial condition in the invariant manifold

can experience a chaotic transient, after which it is attracted to a periodic orbit

in the invariant manifold.

As we shall show, when a chaotic repeller is in the manifold, the basin of the

periodic orbit attractor in the invariant manifold is no longer riddled, although

it still has unusual properties.

This new situation is illustrated schematically in Fig.2.1, where we use a two-

dimensional x-y representation. In this figure y = 0 represents the invariant

manifold. The dot represents the non-chaotic attractor in the y = 0 invariant

manifold, and the vertical tic marks represent the chaotic repeller in y = 0.

From every point in the chaotic repeller there emanates a cusp-shaped region

(a stalactite) of the basin of the attractor in y 6= 0. Only one of these cusp-

shaped regions is shown in Fig.2.1, but we emphasize that such regions exist for

all points in the chaotic repeller. Note that since the attractor (the dot in Fig.2.1)

12
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Figure 2.1: Schematic of the situation where there is a chaotic repeller (vertical

tic marks) and a periodic orbit (solid dot) in the invariant manifold (y = 0)

attracts a neighborhood of itself, its basin is not riddled. Nevertheless, there is

a remnant of the previously studied riddled behavior in the infinite number of

cusps of the y 6= 0 attractor emanating from the invariant manifold y = 0. To

characterize this situation we shall be interested in the scaling of the size of the

y 6= 0 attractor’s basin in the region near the invariant manifold (y = 0). In

particular, we will consider a horizontal line y = y1 (see Fig.2.1) and ask what

is the Lebesgue measure of x-values in this line that are attracted to the y 6= 0

attractor. We find that for y1 small this measure, denoted P∞(y1), exhibits a

power law scaling, P∞(y) ∼ yα. To arrive at this result, following Ref. [38], we

modify the diffusion model of Ref. [36] previously used for the riddled case to

account for the new situation pictured in Fig.2.1, and we use it to derive results

for the scaling exponent α. We claim that these results are universal in the sense

that they are valid for the class of dynamical systems of the type considered

above.

In order to check our scaling relations numerically we studied three dynamical
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systems. The first two are represented by two-dimensional maps. In the first

two-dimensional map case the dynamics in the invariant manifold is described

by the well-known logistic map, and we will be interested in parameter values

in the vicinity of a type one intermittency transition [42]. In the second two-

dimensional map case the logistic map is replaced with a map [43] exhibiting type

three intermittency [42]. The third example is a system of ordinary differential

equations (a flow) which is a modification of a previously studied system [4]

that describes the motion of a particle in a two-dimensional potential well. As

before, we are interested in parameter values near an intermittency transition.

Our predicted scaling relations were tested for all three numerical models and

reasonably good agreement with the theory was observed.

In a recent paper Lai and Grebogi [44] consider the same situation that we

consider here. A main claim in that paper is that the basin is of a mixed type

with the property that, in the vicinity of the saddle, the basin is riddled, while,

in the region of the attracting periodic orbit in the invariant manifold, the basin

is solid (i.e. it consists of open volumes and is not riddled). Such a mixed basin

cannot occur, and the basin cannot be riddled anywhere. In general, if a basin

is open in any neighborhood N of the attractor, it must be open everywhere.

A simple argument showing this is as follows. Say p is a point in the basin.

Evolving p forward, it must eventually approach the attractor. Thus, at some

finite time, the orbit from p must eventually enter N, say at point p′. The point

p′ in N necessarily has an open neighborhood in the basin. Since p iterates to

p′ in a finite number of iterates, p must also have an open neighborhood in the

basin. Hence, in contradiction to the claim of [44], the basin cannot be riddled

anywhere. Lai and Grebogi [44] also attempt to obtain the scaling P∞(y) ∼ yα.
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However, they use a crude model for the chaotic transient; in particular, in their

model all points in the chaotic transient phase abruptly leave the transient at a

fixed time equal to the average transient lifetime. In fact, there is a continuous

long-time exponential decay of orbits in the chaotic transient, and it is necessary

to include this in the model to obtain the correct scaling and the correct exponent

α.

2.2 The Model

Consider a smooth two-dimensional map of the form,

yn+1 = N(xn, yn, ǫ), (2.1)

xn+1 = M(xn, r). (2.2)

where ǫ and r are parameters. Suppose that N(x, 0, ǫ) = 0 so that there is an

invariant manifold at y = 0. We also assume that N(·) is such that if |yn| >

yc then all subsequent y iterates are also in |y| > yc; in particular, the orbit

never comes back close to the y = 0 plane. Thus there is another attractor (or

attractors) in |y| > yc. Without loss of generality we let yc = 1.

Following Ref. [38] we refer to ǫ as a “normal” parameter since it affects the

dynamics normal to the y = 0 invariant manifold, but has no influence on the

dynamics in the y = 0 invariant manifold [the dynamics in y = 0 is governed by

Eq.(2.2)]. Similarly [38], we refer to r as a “non-normal parameter”.

Suppose that for some value of r, M(x, r) has a chaotic attractor in x and ǫ

is such that riddling occurs. In this case y = 0 is an attractor and its Lyapunov

exponent which we denote h⊥ [calculated by taking a differential y variation of

Eq.(2.1)] is negative, h⊥ < 0. In the riddled case, in any neighborhood of the
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Figure 2.2: Period three window in the bifurcation diagram of the logistic map,

xn+1 = rxn(1 − xn).

y = 0 attractor there are initial conditions that stay in the neighborhood and go

to the attractor, as well as other initial conditions that leave the neighborhood of

y = 0, possibly moving to the |y| > yc attractor. What will happen if we change

r in such a way that, for a typical initial condition x0, M(·) generates a chaotic

transient instead? (For example, if M(·) is the logistic map we can imagine a

change of r such that we enter a periodic window, e.g., the period three window

on the bifurcation diagram of the logistic map; see Fig.2.2.) This means that the

original chaotic attractor in the invariant plane y = 0 does not exist any more

and typical initial conditions in y = 0 eventually go to a nonchaotic attractor

(e.g., a periodic orbit or a fixed point) as n → ∞. There will still exist, however,

an infinite nonattracting set of initial conditions {xinv
0 } (representing the ghost

of the former chaotic attractor) for which infinitely long chaotic orbits can be

generated, and this set has zero Lebesgue measure in x.
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Let 〈h⊥〉 denote the y-Lyapunov exponent for a typical orbit on the y =

0 chaotic invariant set. Here by typical we mean with respect to the natural

transient measure for the x map. In this case 〈h⊥〉 is calculated by sprinkling

N0 initial conditions in y = 0, iterating them for n iterates, discarding those

that are near the nonchaotic orbit (say, further than some appropriate distance

l), calculating the h⊥ exponents over the time interval 0 to n for each orbit not

near the nonchaotic orbit at time n, and averaging these values. In the limit

N0 → ∞, n → ∞, this average is 〈h⊥〉, the y-Lyapunov exponent, calculated

with respect to the natural transient measure for the x map.

We show in the following that the basin of |y| > yc can be in the form of an

infinite set of cusp-shaped regions emanating from the chaotic transient invariant

set in the plane y = 0. We call these cusp-shaped regions stalactites. We show for

our examples that the Lebesgue measure in x of these tongues in a y = y1 cross

section scales as yα
1 , where α > 1. We also give a theory for determining α and

obtain good agreement of the theory with numerical experiments. We note that

stalactite boundaries can occur for both 〈h⊥〉 > 0 and 〈h⊥〉 < 0. For stalactites in

the case 〈h⊥〉 < 0, however, it is also required that the chaotic saddle (although

transversely attracting) have embedded periodic orbits with positive transverse

Lyapunov exponents [44].

2.3 Diffusion approximation

Consider the map (2.1)-(2.2) and assume that there is a fixed point attractor

x = x∗ for almost any initial condition in y = 0. Also assume that there is a

chaotic transient set in y = 0. The transverse tangent map (evolving differential
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Figure 2.3: Markov chain.

y displacements from the invariant set y = 0) is

δyn+1 = Ny(0, xn)δyn,

where Ny(0, x) denotes ∂N/∂y evaluated at y = 0. For an initial condition x0

precisely on the chaotic transient set, the orbit xn is typically chaotic. For x1 on

the nonchaotic attractor in y = 0 (i. e., x = x∗), we have |Ny(0, xn)| < 1. Let

δzn = − ln |δyn|. Then the change in δz is given by δzn+1 = δzn + ∆n, where

∆n = − ln |Ny(0, xn)|. During the chaotic transient xn is chaotic, and hence ∆n

varies in a random manner. After the chaotic transient ∆n
∼= ln |Ny(0, x∗)| < 0.

We follow Ref. [38] and model this situation as follows: ∆n is taken to be of

constant magnitude |∆n| = ∆ when the orbit is on the chaotic transient and

fluctuations in ∆n are modeled by random assignment of its sign ∆n = ±∆,

and we assume that the linearized dynamics is a good approximation to the

actual dynamics for finite y in a neighborhood of y = 0. Thus on any given

ȳ ≡ ln 1/|y| an iterate is represented by the step ȳ → ȳ ± ∆, with ȳ = +∞

(δy = 0) corresponding to y = 0. We consider a Markov chain model described

by a semi-infinite chain of states Si, i = 0, 1, 2, . . . (see Fig.2.3). We call the

chain Si the “chaotic chain”. The model has three parameters β+, β− and η

which represent the probabilities of the following transitions:

18



β+ : Si+1 → Si and S1 → X,

β−: Si → Si+1,

η : Si → Q.

The transition Si+1 → Si (Si → Si+1) represents a step in y away from (toward)

the invariant surface y = 0, and in ȳ it is represented by a step ȳ → ȳ −∆ ( ȳ →

ȳ+∆). X represents the condition |y| > yc for which the orbit goes to an attractor

(or attractors) not in y = 0. After the transition Si → Q (S1 → X) the orbit is

assumed to move uniformly in x (in y) toward the periodic attractor in y = 0

(the attractor in |y| > yc). Once the chaotic chain is exited by transmission to Q

or X, the chaotic transient is considered to be ended. We identify the transverse

Lyapunov exponent with the random walk parameters via 〈h⊥〉 = (β+ − β−)∆.

The question now becomes what is the probability of reaching the state X if

starting at the state Si? Our purpose in introducing this Markov model is to

obtain a result for the scaling of the size of the y 6= 0 attractor basin in the

region near y = 0. In particular, consider the horizontal line y = y1. Different

initial conditions x = x1 on this line produce orbits, some of which go to the y = 0

attractor, and some of which go to the y 6= 0 attractor. We ask what fraction

of the x-Lebesgue measure on y = y1 goes to the y 6= 0 attractor. Denote this

fraction P∞(y1). The above Markov model is relevant to this question in the

following way. If we choose a point x1 at random on the line y = y1, then the

probability that x1 is in the basin of the y 6= 0 attractor is P∞(y1). Furthermore,

as argued in Ref. [36], while the orbit is chaotic, the orbit generated for random

x1 can be regarded as random and as a stochastic process corresponding to a

random walk on the Si chain. However, the orbits following the chaotic transient

can leave the Si chain either by repulsion into the x region where the orbit moves
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toward the nonchaotic orbit (x = x∗ on y = 0; i.e., Si → Q) or by repulsion in

y into the region |y| > yc (i.e., S1 → X). Thus we can identify P∞(y1) with a

random walker’s probability p(i) of reaching X starting at i ∼ ∆−1 ln |yc/y1|. In

particular, the large i scaling of p(i),

p(i) ∼ e−Ki

and the small y1 scaling of P∞(y1)

P∞(y1) ∼ |y1|α

are connected. Thus we now attempt to estimate K from the Markov model.

Once this is accomplished, we will be in a position to use this to conjecture a

general result for α, which we will compare with numerical experiments in Sec.4.

For the purposes of obtaining a solution for p(i), we will apply the diffusion

approximation, valid for (β+ − β−) small [36], to the Markov model. Then the

basic parameters of the diffusion model are the following:

(1) the average drift along the Si chain per iterate, v = 〈δȳ〉, where δȳ is the

increment in ȳ in one time step; by definition of the transverse Lyapunov

exponent v = −〈h⊥〉;

(2) the diffusion per iterate, D = 1
2
〈(δȳ−〈ȳ〉)2〉, where 〈· · · 〉 denotes an average

over the initial random values of x1;

(3) and an average lifetime of a typical chaotic transient τ .

Let P (ȳ, ȳ1, n) be the probability distribution function for ȳ (given that x1 is

randomly chosen on the horizontal line segment y = y1). Considering n to be

approximated by a continuous variable (valid for n ≫ 1), P (ȳ, ȳ1, n) obeys the

following drift-diffusion equation:
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∂P

∂n
+ v

∂P

∂ȳ
= −P

τ
+ D

∂2P

∂ȳ2
. (2.3)

Since we imagine initial conditions all to start at y = y1, we have

P (ȳ, ȳ1, 0) = δ(ȳ − ȳ1), ȳ1 > 0. (2.4)

Since any orbit which crosses y = yc ≡ 1 (ȳ = 0) is lost to the y > 1 attractor,

we have

P (0, ȳ1, n) = 0. (2.5)

As discussed in [36], for this diffusion approximation to be valid we require two

conditions:

• Many steps must be taken to reach y = 1 (corresponding to ȳ = 0), or

ȳ1 ≫ 1.

• The drift on each iterate must be small, which means that |〈h⊥〉| ≪ 1.

In order to solve Eq.(2.3) we will introduce the Laplace transform of P (ȳ, ȳ1, n)

with respect to the continuous time variable n,

P̄ (ȳ, ȳ1, s) =

∫ ∞

0

e−snPdn. (2.6)

Eqs. (2.3)-(2.5) yield

Dd2P̄ /dȳ2 − vdP̄ /dȳ − (s + 1/τ)P̄ = −δ(ȳ − ȳ1) (2.7)

with the boundary condition P̄ (0, ȳ1, s) = 0. Solving Eq.(2.7) is straightforward

(see Appendix).

In Eq.(2.3), the term P/τ is the rate at which orbits leave the chaotic transient

to move toward the attractor in y = 0. Thus the probability of going to the
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attractor in the invariant manifold is

Py=0 =
1

τ

∫ ∞

0

∫ ∞

0

P (ȳ, ȳ1, n)dȳdn (2.8)

and, therefore, the probability of getting attracted to the y > 1 attractor is

P∞ = 1 − Py=0 = 1 − 1

τ

∫ ∞

0

∫ ∞

0

P (ȳ, ȳ1, n)dȳdn. (2.9)

Performing the integration we finally get

P∞ = yα
1 , α =

[
√

〈h⊥〉2 + 4D/τ − 〈h⊥〉
]

/2D. (2.10)

The special case of small D (D/〈h⊥〉2τ ≪ 1) yields,

α ∼=















(〈h⊥〉τ)−1 for〈h⊥〉 > 0,

−〈h⊥〉/D for〈h⊥〉 < 0.

(2.11)

Note that, as expected, the result for 〈h⊥〉 < 0 and τ → ∞ agrees with the

result for the exponent in the case of a riddled basin attractor, Ref. [36]. In the

examples that follow 〈h⊥〉 > 0.

2.4 Numerical experiments

The universality of the phenomena addressed in this paper implies that very gen-

eral results may be extracted from simple models that incorporate the essential

features responsible for this phenomena. In this spirit we introduce three illus-

trative examples.

A. Example 1. The first example is the following two-dimensional map:

xn+1 = M1(xn, r) = rxn(1 − xn) (2.12)

yn+1 = N1(xn, yn, ǫ, ǫ′) = {1 + ǫ − ǫ′[1 − cos(2πxn)]}yn + y3
n. (2.13)
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This system has N1(x, 0, ǫ, ǫ′) = 0. Therefore, y = 0 is an invariant manifold for

the map. The dynamics on this invariant manifold are generated by the logistic

map and are independent of the parameters ǫ and ǫ′. Therefore, the parameters

ǫ and ǫ′ are normal parameters for the system (2.12)-(2.13). The value of r was

chosen to be 3.837 which corresponds to the case of a period three attractor in the

period-three window of the logistic map (see Fig.2.2). This implies that typical

initial conditions in 0 < x0 < 1 and y0 = 0 may generate chaotic transients. The

average lifetime τ of such a transient depends on r and in our case is numerically

determined to be τ = 21.41. Note that if yn > [1
3
(2ǫ′ − ǫ)]1/2 then yn+1 > yn and

the orbit evolves toward y = ∞, which we regard as the attractor not in y = 0.

A numerical approximation to the basins of attraction is shown in Fig.2.4(a)-(b).

To generate this figure we use a 5000 × 5000 grid of initial conditions, and we

iterate each initial condition until it either reaches y > [1
3
(2ǫ′ − ǫ)]1/2 (in which

case we plot a black dot at the location of the initial condition) or else reaches a

very small value of y, y < 2× 10−5. In the later case we presume that, with high

probability, the orbit will go to the y = 0 attractor. (This is justified by the scaling

P∞ ∼ yα). We see in Fig.2.4(a)-(b) that there are many thin downward pointing

black regions. From numerical examination of some of them by magnification of

the horizontal scale we find that these thin black regions apparently extend down

and touch the invariant set. They are stalactites referred to in Sec.1. The reason

the stalactites appear in Fig.2.4(a)-(b) to terminate before reaching y = 0 is that

they become so thin as y is decreased that they eventually fail to be resolved by

our grid of initial conditions. In our simulations we took ǫ′ = 0.8 and varied the

value of ǫ. For each value of ǫ we calculated 〈h⊥〉, D, αth and αexp. The data is

presented in the Table 2.1.
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Figure 2.4: (a)-(b) shows basins of attraction for (2.12)-(2.13) for ǫ = 0.926 and

0.928 respectively. To obtain (c) we uniformly sprinkle L = 1.5 × 106 initial

conditions in y0 = 0, 0 < x0 < 1. We then iterate them 200 iterates and find

that there are l = 950 orbits which still stay at a distance larger than 0.1 from

the period three attractor. Then we plot 1
2
〈z2

n〉IC versus n, where 〈. . .〉IC denotes

an average over the l = 950 orbits still not near the period three attractor. The

value of D is then estimated as the slope of the straight line fit to the numerical

data; (d) the fraction of initial conditions going to y = ∞ as a function of y.

αexp is obtained as the slope of the straight line fit to the data in a log-log scale.

(c)-(d) correspond to the situation where ǫ = 0.926.

To obtain the values of 〈h⊥〉 for the chaotic transient set (second column of

Table 2.1) we first uniformly sprinkle many initial conditions in y0 = 0, 0 < x0 <

1. We then iterate these initial conditions M iterates. At time M ≫ 1 most of

the sprinkled orbits will be close to the attractor (say within a distance of 0.1).

However, if the number of sprinkled orbits is large, there will still be orbits that

are not near the attractor. We make the number of initial conditions sprinkled

large enough so that there are still many initial conditions not near the attractor
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ǫ 〈h⊥〉 D αth αexp

0.920 0.0164 0.000920 2.49 2.14

0.923 0.0200 0.000917 2.12 2.16

0.926 0.0233 0.000885 1.87 1.93

0.928 0.0256 0.000864 1.72 1.74

Table 2.1: Data for Example 1.

at time M . We then approximate 〈h⊥〉 by

〈h⊥〉 ∼=
〈

1

M

M
∑

n=1

| ln N1y(xn, 0)|
〉

IC

,

where N1y(x, y) = ∂N1/∂y and 〈. . .〉IC denotes an average over those initial

conditions whose orbits are not near the attractor in y = 0 at time M . The

value of D (third column of Table 2.1) was obtained by noting that the quantity,

zn =
n

∑

m=1

(ln |N1y(xm, 0)| − 〈h⊥〉)

undergoes unbiased diffusion while the orbit is in the chaotic transient. Thus we

plot 1
2
〈z2

n〉IC versus n, and estimate D as the slope of a straight line fit to the data

(see Fig.2.4(c) for an example of such a plot). The fourth column of Table 2.1,

αth, is then given by inserting 〈h⊥〉 and D, as found above, into Eq.(2.10). The

value of the experimental exponent αexp (fifth column of Table 2.1) was obtained

by estimating the fraction of “black” dots in the basin of attraction (those that

lead to y → ∞) as a function of y, and plotting this fraction as a function of

y using a log-log scale. We find that, for sufficiently small y, such plots are, in

accord with the predicted yα dependence, well-fit by a straight line (see Fig.2.4(d)

for example). The slope of such a fit gives αexp. One can see from the Table 2.1

that αexp agrees reasonably well with its predicted value αth.
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Figure 2.5: Bifurcation diagram for (2.14).

B. Example 2. We consider the two-dimensional map,

xn+1 = M2(xn, r) = xn[r(12.3 − 7r)x4
n − r(11.3 − 7r)x2

n + x2
n − r] (2.14)

yn+1 = N2(xn, yn, ǫ, ǫ′) = {1 + ǫ − ǫ′[1 + cos(πxn)]}yn + y3
n. (2.15)

This system has the same general properties as in the map of the previous exam-

ple. However, M2(xn, r), the map in the invariant manifold, is an example [43]

exhibiting type iii intermittency [42]. The bifurcation diagram for M2(·) is shown

in Fig.2.5. This map has a period one orbit at x = 0. As the parameter r in-

creases through rc = 1, this period one orbit becomes unstable, experiencing an

inverse period doubling bifurcation. The map has a chaotic attractor for r > 1.

The parameter r was taken to be equal to 0.95; M2(·) is contracting at the fixed

point x = 0 and repelling on a transient. For this value of r, we obtain τ = 28.0.

The basin of attraction is shown in Fig.2.6. The table below gives the values of

〈h⊥〉, D, αth and αexp for ǫ′ = 0.1, and two different values of the other normal

parameter ǫ:

C. Example 3. The third system we studied is a modification of a flow that
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Figure 2.6: Basin of attraction for (2.14)-(2.15) obtained on 2000 × 2000 grid of

initial conditions. r = 0.95, ǫ = 0.135, ǫ′ = 0.1.

ǫ 〈h⊥〉 D αth αexp

0.150 0.005 0.011 1.59 1.62

0.155 0.010 0.011 1.40 1.42

Table 2.2: Data for Example 2.

describes the motion of a particle in a two dimensional (x, y) double potential

well [4] V (r) = (1 − x2)2 + (x + x̄)y2. The particle is a subject to friction and

time harmonic forcing,

d2r/dt2 = −γdr/dt −∇V (r) + f0 sin(ωt)x̂. (2.16)

Here x̂ is the unit vector in the x-direction and γ, f0, ω and x̄ are parameters.

For appropriate (γ, f0, ω, x̄) this system is known to exhibit a riddled basin [4].

The phase space of this problem is five-dimensional with coordinates x, dx/dt, y,

dy/dt, and θ = (ωt) mod 2π. From the symmetry of the potential the problem is

invariant with respect to y → −y, and, therefore, y = dy/dt = 0 specifies a three

dimensional invariant hyperplane in the full five-dimensional phase space. The

dynamics in this invariant hyperplane is obtained by setting y and dy/dt equal
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Figure 2.7: Bifurcation diagram for (2.17).

to zero in (2.16). This yields

d2x/dt2 + γdx/dt − 4x(1 − x2) = f0 sin(ωt). (2.17)

We analyzed Eq.(2.16) in terms of a stroboscopic Poincare section corresponding

to the period of the forcing, i.e. we consider the times ωt mod 2π = 0. This lead

to a four-dimensional discrete-time mapping.

In previous work using the model (2.16), the parameters γ, f0 and ω were

chosen so that (2.17) had a chaotic attractor. In this case, appropriate choice of

the parameter x̄ yields basin riddling for the y = 0 attractor. Here we consider a

modification of (2.16) such that the dynamics in y = 0 is such that the attractor

is periodic, but there is also a chaotic transient. In particular, we replace x̄ by a

time periodic quantity x̄ = x̄0 + x̄1 sin(ωt−φ) and set the parameters at x̄0 = 4.4,

x̄1 = 2.9 and φ = 0.15, γ = 0.05, and ω = 3.5. Varying the remaining parameter

f0 we obtain a bifurcation diagram for Eq.(2.17) (see Fig.2.7). As f0 is decreased

there is a type iii intermittency transition to chaos [similar to the map (2.15)].

For f0 = 4.0 the average lifetime of a chaotic transient is τ = 12.0. In order

to estimate 〈h⊥〉 we integrated the equations for the tangent vector representing
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Figure 2.8: Numerical basin for (2.16) obtained on 1000×1000 initial conditions.

We iterate each initial condition forward in time until the trajectory either gets

very close to the invariant plane y = 0 (|y| < 10−8, |vy| < 10−9, and y · vy < 0),

or else is definitely in the repelling region (|y| > 20, |vy| > 100, and y · vy > 0).

Black dots correspond to initial conditions eventually attracted to ∞.

〈h⊥〉 D αth αexp

0.030 0.0285 1.26 1.29

Table 2.3: Data for Example 3.

the infinitesimal variations from the invariant plane y = vy = 0 : dδy/dt =

−γδvy − 2(x + x̄)δy, dδy/dt = δvy, where δy and δvy are infinitesimal variations

(2.8). The results are presented in Table 2.3 and we again find reasonably good

agreement between our estimates of αth and αexp.

2.5 Conclusion

In this paper we have considered systems with an invariant manifold in which

are located both a nonattracting chaotic set and a nonchaotic attractor (e.g., a
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periodic orbit). Thus, in this situation, typical initial conditions in the invariant

manifold may yield orbits that experience chaotic transients before approaching

the chaotic attractor. It is found that the basin boundary separating the basins of

the attractor in the invariant manifold and another attractor not in the invariant

manifold is characterized by stalactite like structure, thin cusp-shaped regions

extending down to touch the invariant manifold at the location of points in the

nonattracting chaotic set. Using a random walk model, we have obtained a

scaling relation for the variation of the measure of the basin of the attractor not

in the invariant manifold. In particular, we show that this basin’s measure in a

surface at a small distance y from the invariant manifold scales as a power law

yα, and we have obtained a theoretical prediction for the scaling exponent α.

This prediction has been tested with good results by comparison with various

numerical experiments.

Appendix

The solution to Eq.(2.7) subject to the boundary condition P̄ (0, ȳ1, s) = 0 is

P̄ (ȳ, ȳ1, s) =















A(exp[−κaȳ] − exp[κbȳ]), 0 < ȳ < ȳ1,

B exp[−κaȳ], ȳ > ȳ1,

(2.18)
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where

κa =
1

2D

(

√

〈h⊥〉2 + 4D(s + 1/τ) + 〈h⊥〉
)

,

κb =
1

2D

(

√

〈h⊥〉2 + 4D(s + 1/τ) − 〈h⊥〉
)

,

A = − exp[−κbȳ1]

(κa + κb)D
,

B = −exp[−κbȳ1] − exp[κaȳ1]

(κa + κb)D
.

Thus

∫ ∞

0

P̄ (ȳ, ȳ1, s)dȳ =

∫ ȳ1

0

P̄ dȳ +

∫ ∞

ȳ1

P̄ dȳ

= A[(1 − exp[−κaȳ1])/κa − (exp[κbȳ1] − 1)/κb] + B exp[−κaȳ1])/κa

=
1 − exp[−κbȳ1]

s + 1/τ
.

Finally,

Py=0 =
1

τ

∫ ∞

0

∫ ∞

0

P (ȳ, ȳ1, n)dȳdn

=
1

τ

∫ ∞

0

P̄ (ȳ, ȳ1, 0)dȳ

= 1 − exp[−αȳ1] = 1 − yα
1 ,

where α is κb with s set equal to zero. Thus

P∞ = 1 − Py=0 = yα
1 ,

which is Eq.(2.10).
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Chapter 3

Time-delayed feedback dynamical systems and

their application to communications

3.1 Communication with a Chaotic Traveling

Wave Tube Microwave Generator

3.1.1 Introduction

1 In the system we envision, the signal sent by the transmitter is generated by

a traveling wave tube (TWT) oscillator [6–8] operating in the chaotic regime.

That is, under the supposed operating conditions, the TWT naturally produces

a narrow band microwave signal with temporally chaotic phase and amplitude

variations. We show that, if suitable small perturbations are applied to the

TWT, the symbolic dynamics of the chaotic TWT can be controlled. Following

the idea of Hayes et al. [25, 26], the information being transmitted is encoded in

1Section 3.1 is a verbatim representation of the paper by Vasily Dronov, Matthew R. Hen-

drey, Thomas M. Antonsen, Jr., and Edward Ott, Communication with a Chaotic Traveling

Wave Tube Microwave Generator, published in Chaos 14, 30 (2004).

32



the controlled symbolic dynamics of the chaos.

Detection of the signal at the receiver can be accomplished by use of a replica

of the transmitter’s chaotic TWT oscillator. The small received signal is ampli-

fied by the replica receiver system through the phenomenon of synchronization

of chaos [2]. This provides a potentially simple, cheap, and compact amplifier

for the detector system, which is only possible because the original signal was

produced by a chaotic system. A notable feature of this scheme is that, in the

ideal case, the signal amplification is in principal distortionless, even though the

process is nonlinear (the nature of distortionless amplification is explained in Sec.

3.1.5). In applications where the benefits of receiver simplicity and compactness

are paramount (e.g., satellite-based communication), our scheme may provide

advantage.

In Sec. 3.1.2 we describe a model for a TWT feedback oscillator. In Sec.

3.1.3 we investigate this model through numerical simulations, display its chaotic

behavior and characterize this behavior. Section 3.1.4 discusses how, following

the scheme of Refs. [25, 26], information can be encoded in the TWT oscillator

output through control of the symbolic dynamics of the chaos. Section 3.1.5

discusses the possibility of using the phenomenon of synchronization of chaotic

systems for the purpose of efficiently amplifying and retransmitting a chaotic

signal of the type discussed in Sec. 3.1.4. A noise analysis of such a chaos-

based communication system is given in Sec. 3.1.6. Section 3.1.7 presents further

discussion and summarizes our conclusions.

Finally, we wish to emphasize that our motivation for considering TWT os-

cillator operation in the chaotic regime is the possibility of attaining improved

power efficiency and device compactness. In particular, unlike some other work
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Delay  τ
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Figure 3.1: Schematic of the free-running chaotic oscillator.

using chaos in communications [31,32], secrecy is not one of our goals.

3.1.2 The Model

In this section we review a model for the nonlinear operation of a TWT which

can be made to oscillate by adding feedback. We model the TWT in the following

way. Assume that the signal at the input is Aineiωct where Ain(t) is the complex

envelope of the signal and ωc is the carrier or reference frequency. The linear

behavior of the tube is modeled as a first-order bandpass filter with the bandwidth

2∆ω, centered near the carrier frequency. The linear gain of the filter is GL.

Nonlinearity arises due to power saturation as the electron beam bunches toward

the output end of the TWT. A small fraction ρ of the output is then fed back into

the the input through a feedback line with delay time τ . Performing a frequency

shift ω → ω−ωc we translate the analysis to low frequency (i.e. Aine
iωct → Ain) so

that the time variation of the complex variable Ain represents the slow amplitude

and phase modulation of Re[Aineiωct]. A schematic diagram of the model in this

low-frequency representation is shown in Fig.3.1.
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The input Āin(ω) and the output Ā(ω) of the first-order low-pass filter with

the bandwidth 2∆ω are related by

Ā(ω) =
GLĀin(ω)

1 + iω/∆ω

and, therefore,

Āin(ω) =
Ā(ω)(1 + iω/∆ω)

GL

,

in the frequency domain, and

Ain(t) =

[

(∆ω)−1 d

dt
+ 1

]

A(t)

GL

,

in the time domain. In general the frequency dependence of the linear transfer

function for a TWT is more complicated than a simple first order band pass filter.

We adopt the first order band pass filter here because that is the simplest model

giving a nonzero memory time. Since TWT amplifiers are broadband, our model

can be realized by inserting a narrow band first order filter in the signal path.

The TWT output (Fig.3.1) is

R(t) = A(t)
eiη|A(t)|2

1 + |A(t)|2 , (3.1)

where the term [exp (iη|A(t)|2)][1 + |A(t)|2]−1 models the nonlinearity of the

TWT with η being a parameter characterizing the quadratic phase nonlinearity,

and the coefficient of |A(t)|2 in the denominator of (3.1) can be set to one using a

suitable normalization of A(t). This model of the nonlinearity is one of a class of

models due to Saleh [18] which have been used in the community [19] to simulate

communications systems with TWT’s. Since Ain(t) = ρR(t − τ), the equation

for A(t) becomes

dA(t)

dt
+ A(t) = kA(t − τ)

eiη|A(t−τ)|2

1 + |A(t − τ)|2 , (3.2)
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where k is the loop gain, k = ρGL, and the bandwidth ∆ω has been normalized to

unity by means of a rescaling of the time variables, i.e., t → t∆ω and τ → τ∆ω.

Note that our modeling of a TWT as consisting of linear and nonlinear stages

(as illustrated in Fig.3.1) is only an approximation and that such a sharp de-

composition does not truly exist. Nevertheless, it has been found [18, 19] that

Eq.(3.2) is very effective at modeling real TWT experiments. Also note that the

model variable A(t), the output of the fictious linear stage, is not a measurable

physical quantity, but that R(t), given in Eq.(3.1) in terms of A(t), does represent

a measurable physical quantity.

It is also important to mention that, while a wide variety of TWT models

exist [8,18,19] with varying complexity [20–22], the unique property of our model

is that it is perhaps the simplest that is able to describe the behavior of a TWT

oscillator with feedback.

3.1.3 Chaotic Behavior

The right-hand side of Eq.(3.2) contains a delayed argument A(t−τ). Thus (3.2)

is an infinite dimensional dynamical system (to evolve A(t) forward from t = τ ,

we must specify the function A(t) in 0 ≤ t ≤ τ). The dynamics of the system can,

however, be finite dimensional or even low dimensional. In particular, the system

state may asymptote to a low dimensional subset of the infinite dimensional state

space. This subset is called an attractor. We are interested in the case where

the system motion on the attractor is chaotic. In the case of low dimensional

chaotic dynamics, it is often feasible to find a phase space partition and the

corresponding symbolic dynamics for the chaotic attractor. However, there is no
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common recipe for finding a parameter set that makes the dynamics chaotic and

low-dimensional. A powerful tool that can be helpful in this situation is the set

of Lyapunov exponents for the system. Our goal is to arrive at a situation where

the largest Lyapunov exponent is positive (yielding chaos) while others are either

zero or negative (in order to provide contraction of the flow in the directions

normal to the expansion direction).

In order to compute the Lyapunov exponents we consider an infinitesimal

variation from A(t), denoted δA(t). Equation (3.2) yields the following linearized

equation for δA,

d[δA(t)]

dt
+ δA(t) = k

eiη|A(t−τ)|2

1 + |A(t − τ)|2

×
[

δA(t − τ) + A(t − τ){iη − 1

1 + |A(t − τ)|2} (3.3)

× {A(t − τ)δA∗(t − τ) + A∗(t − τ)δA(t − τ)}
]

,

where δA∗ is the complex conjugate of δA. In order to compute the first N

exponents, we start with N unit norm orthogonal functions δAi = ui on the

interval [0, τ ], i.e.,

(

ui(t), ui(t)

)

= ‖ui(t)‖2 =
1

τ

∫ τ

0

{Re[ui(t)]Re[ui(t)] + Im[ui(t)]Im[ui(t)]}dt = 1,

(

ui(t), uj(t)

)

=
1

τ

∫ τ

0

{Re[ui(t)]Re[uj(t)] + Im[ui(t)]Im[uj(t)]}dt = 0, for i 6= j.

Following the procedure described, for example, in Ref. [23], p. 148, we inte-

grate (3.3) with these initial conditions and periodically use a Gram-Schmidt

algorithm to renormalize the functions δAi, keeping them orthogonal as we inte-

grate the flow forward in time. The i’th Lyapunov exponent λi is computed as

the average rate of exponential growth of the norm of the function δAi(t), i.e.,
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Figure 3.2: Lyapunov exponents as functions of k, τ = 0.530 and η = 1.0.

λi = limT→∞
1
T

log

[

‖δAi(T )‖/‖δAi(0)‖
]

, where the subscript label i is chosen so

that λ1 ≥ λ2 ≥ λ3 ≥ . . ..

Figure 3.2 shows results of a computation of the first four Lyapunov exponents

for τ and η fixed and k varied. Only the positive and least negative exponents

are plotted. Two other exponents are identically zero by virtue of the invariance

of Eq.(3.2) under time translation and under change of the phase of A [i.e., A →

Aexp(iϕ), where ϕ is a constant]. In Fig.3.3(a) we show |R(t)| versus |R(t−7τ/4)|

for k = 7.142, τ = 0.530, η = 1.0. Figure 3.3(b) shows the return map |Rm+1| =

f(|Rm|), where |Rm| is the value of |R(t)| at the m-th passage of |R(tm − 7τ/4)|

through the value 0.425 going from left to right (i.e., d|R(t − 7τ/4)|/dt > 0 at

t = tm). We note that the return map is nearly one-dimensional, indicating that

the dimension of the attractor in Fig.3.3(a) is near (but slightly bigger than) two.

3.1.4 Encoding Information via Controlling Chaos

A. Choosing a partition and an appropriate set of symbols
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Figure 3.3: (a): Uncontrolled attractor for k = 7.142, τ = 0.530 and η = 1.0. (b):

Return map for the same attractor using the surface of section |R(t − 7τ/4)| =

0.425.

Partitions give a rule which assigns a symbol whenever the state is in a certain

portion of the phase space. For the return map in Fig.3.3(b), a natural way

to choose the partition is to divide the map at its maximum, so that the left

side corresponds to “0” and the right-hand side to “1”. Such a partition rule

is often called a two-level quantizer. Note however, that this partition rule is

not robust with respect to assigning correct symbols near the maximum of the

curve; i.e., noise or a small error in measuring |Rm| will result in an incorrect

symbol assignment. To make our communication system robust to noise, we will
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introduce a “noise-resisting gap”(Sec.3.1.4C). That is, we restrict the dynamics

so that the orbit never falls within an interval of width 2∆R centered at the

maximum of the curve in Fig.3.3(b). (e.g., [24].)

B. Learning the grammar of the symbolic dynamics of the system

(which symbol sequences are allowed)

Starting off with a particular value of |Rm| and iterating the map N −1 times

forward, one obtains a binary string of length N ; examining many such strings

originating from different initial conditions gives the collection of binary strings of

length N allowed by the dynamics. Such a collection forms the symbolic grammar

of the system. In what follows, to transmit a message consisting of an arbitrary

sequence of bits, we code the message in such a way that in can be represented

as a different bit string (possibly of length greater than its original length) such

that any substring of length N (with N suitably chosen) within this new string

does not violate the grammar restrictions of the free running system.

C. Encoding information by means of controlling the symbolic dynam-

ics

For dynamics as in Fig.3.3, techniques for encoding binary data by controlling

chaos have been described in a number of papers [24–27]. The main idea is to

utilize the exponential divergence of the flow by applying tiny perturbations to the

system in such a way as to cause a prescribed symbolic sequence to be followed.

The method can be split into two parts [24–26]:

• Learn the dynamics of the free-running system

Letting the flow for our system (3.2) evolve in time, we record |Rm| along

with the bit string of length N following this |Rm|. (In our numerical

examples we use N = 5.) A convenient way to represent this bit string is to
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assign to |Rm| an integer number n between 0 and 2N−1. For our system all

the |Rm|’s leading to the same bit sequence n fall within a narrow interval.

Taking the averages s(n) of the |Rm| values in the interval corresponding

to n, we obtain a table s(n). Thus, if we can set |R| to s(n), the orbit will

follow the bit sequence n on the surface of section. For example, in the

case when we are willing to increase immunity to noise by means of using a

”noise-resisting gap”, we only consider bit strings of a length N that never

enter the gap. This, of course, introduces additional grammar restrictions.

For example, in the case where the gap width is 2∆R = 0.01, the sequence

”00000” must be ruled out when message coding is done.

• Learn the dynamics of the perturbed system

We now apply a small reference perturbation of amplitude pref to the system

after every N crossings of the surface of section. Following an orbit for a

long time, we record the values of |Rm| just before the perturbation and

note the bit string n that they lead to. Averaging such values we obtain a

second table, w(n). Thus the quantity w(n) is simply a perturbed version

of s(n). In our numerical experiments the reference perturbation is a small

pulse of fixed duration and amplitude applied to the input of the TWT.

Having found s(n) and w(n) and assuming that the effect of the small

perturbation is linear, we now make the orbit follow a desired sequence n0

by applying a perturbation of amplitude

p = [|Ri| − s(n0)]d(n0),

where

d(n) =
pref

w(n) − s(n)
.
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Figure 3.4: Schematic of the controller.

An overall view of the encoding scheme is represented pictorically in Fig.3.4.

The controlled attractor is shown in Fig.3.5. Note that by construction, any

segment of the controlled orbit of a length N (and, therefore, the whole

orbit) avoids the noise-resisting gap of width 2∆R indicated in Fig.3.3(b).

Therefore, the controlled orbit will also avoid all the post images of that

gap. Thus, as compared to the attractor in Fig.3.3, the controlled attractor

(Fig.3.5) is permeated by gaps.

3.1.5 Synchronization and Retransmission

TWT’s are commonly used in satellite communication systems. As an example,

we imagine that the encoded chaotic signal generator described in Sec. 3.1.4

is transmitting from a ground-based station to a satellite. We wish to receive

a signal on the satellite, amplify it, and retransmit it back to the ground. In

our communication system we attempt to use another TWT that is an identical
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Figure 3.5: Controlled attractor for N = 5 and gap-size 2∆R = 0.01. A random

sequence of bits was used for generating the message.

(or nearly identical) replica of the original TWT to amplify and retransmit the

received signal. Using a low power pre-amplifier, we envision restoring the signal

from the receiving antenna to the (small) amplitude ρR at the input of the

transmitting TWT. Ideally (in the absence of noise and channel distortion) the

input to the TWT on the ground (from the feedback) and the TWT on the

satellite (from the preamplifier) will be identical. Thus they produce identical

outputs, and the TWT on the satellite accomplishes distortionless amplification

to high power even though it is operating in a fully nonlinear regime. (This

scheme may be regarded as a variant on ideas related to synchronization of chaotic

systems [2, 31,32].)
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Figure 3.6: Schematic of the receiver.

Note that this type of synchronism-based system is only possible because our

information-bearing controlled signal is one of the naturally occurring chaotic

orbits of the original transmitting TWT. We have also tested the robustness of

our amplification scheme to noise (see Chapter 3.1.6).

We believe that such a system offers potential advantages with respect to

compactness, an important consideration for a satellite system where weight is a

prime concern. Also, there is some indication that TWT’s operated in the chaotic

regime may have enhanced power efficiency as compared to TWT’s operating in

their stable linear range [7]. This again may be advantageous since the need for

expulsion of waste heat from the satellite is lessened.

3.1.6 Noise Analysis

We consider three issues: (1) bandwidth efficiency, (2) bit error rate (BER)

dependence on signal-to-noise ratio (SNR), and (3) the effect of synchronization

on SNR.
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(1) Bandwidth efficiency.

Bandwidth efficiency is defined as the ratio of the bit rate to the signal bandwidth.

The bit rate is determined by the number of crossings of the Poincare plane

per unit time and is approximately 0.5 bits per unit of our normalized time

variable; the bandwidth can be estimated as the portion of power spectrum of

the signal (see Fig.3.7) containing 99% of total power, which is approximately 1.

Therefore, the bandwidth efficiency is approximately 0.5. For comparison, the

bandwidth efficiency of a binary PSK (phase shift keying) [45] or FSK (frequency

shift keying) [45] modulated signal is 0.5. Thus, our scheme uses bandwidth at

least as efficiently as some traditionally used modulation techniques. (Detailed

information on different types of modulation techniques and their properties can

be found in [45].)

(2)BER dependence on SNR.

An upper bound for BER (assuming that “0”’s and “1”’s are equally likely to
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occur) is derived in the appendix and is given by

Pe ≤
1

2
erfc

(

∆R̂√
N0fB

)

<
e
−

(∆R̂)2

N0fB

2
√

π
,

where fB is the bandwidth of the signal, ∆R̂ is a noise-resisting gap of the

received chaotic attractor (signal), and N0 is the noise power spectral density at

the receiver input. Thus the BER becomes very small for (∆R̂)2 ≫ N0fB. Note

that N0fB represents the effective power of the interfering signal (noise), whereas

(∆R̂)2 is determined by the relative size of the noise-resisting gap as well as the

overall size of the chaotic attractor (signal strength or power, speaking in practical

terms) at the receiver input. Therefore, there exist two ways of improving BER

performance: boosting the signal power, and increasing the relative size of the

noise-resisting gap. A bigger gap requires a more restricted symbolic dynamics;

therefore, less data can be sent. While the output power of TWT is limited

by its physical design, the gap size can be controlled by altering the symbolic

dynamics [24] of the TWT, and therefore, offers a rather flexible means of tuning

a chaotic TWT for either better BER performance or higher data rate.

(3)Effect of synchronization on SNR.

In our numerical tests we added to the chaotic signal a filtered low-frequency

Gaussian noise component with a frequency bandwidth of approximately 1. In

this case, the cutoff frequency of the linear component in our TWT model (see

Fig.3.1) will lie beyond the bandwidth of the noise component, and therefore, the

linear low-pass portion of our TWT model will not filter incoming noise. In this

scenario, any improvement in BER performance must be attributed to the effect of

synchronization. Numerical simulations show that the SNR after synchronization

(SNR at the output of the receiving TWT vs. SNR at the receiving antenna)

increases by approximately 11.3 dB.
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Figure 3.8: Time series of: (a) noisy chaotic signal, (b) chaotic signal prior adding

noise, and (c) signal filtered by means of chaotic synchronization (c). One can

clearly see that time series (c) and (b) look almost indistinguishable, eventhough

time series (a) is quite different.

Another set of numerical simulations showed that the BER at the output of

the synchronized TWT was an order of magnitude less than that at the input

of the receiving TWT for an input SNR equal to 32 dB. The time series that

illustrates the effect of synchronization are shown in Fig.3.8.

An important issue relevant to the overall performance of our communication

scheme concerns the optimal gap size ∆R. As we have shown earlier, ∆R can be

viewed as a variable that allows one to optimize a given chaotic communication

system for a particular application, or meet certain design constraints. One

such constraint could be a given threshold for BER. Another constraint could

be to maximize information throughput (data with no errors) of the TWT-based

chaotic communication system. Unfortunately, there is no clear relation between

information throughput and the size of ∆R. Although increasing ∆R greatly

improves robustness to noise, the entropy of the map describing dynamics of the
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TWT decreases, and the effective data rate in the communication system also

decreases. On the other hand, the Channel Coding Theorem [45] states that

there exists an error control coding algorithm such that the probability of an

error can be made smaller than any ǫ > 0 provided that the code rate is smaller

then channel capacity C. In other words, the channel capacity C determines an

upper bound on the amount of error-free information that can be sent through

the channel. So the answer can be found by looking at the gap size, bit rate,

and SNR in a more general way: the optimum gap size in this case would simply

maximize the channel capacity C for a given value of the noise power density at

the receiver input.

To summarize the results of this section, we addressed two key components of

communication system design, bandwidth efficiency and performance in a noisy

environment. We also identified a mechanism that can be used to optimize the

performance of the proposed communication system.

3.1.7 Future Work

Summarizing our work, we have developed a model of a proposed chaotic com-

munication system where controlling chaos is used as an alternative means of

“modulation” for encoding of binary information. We have shown using numeri-

cal simulations that, while the proposed communication system in some aspects

behaves as good as conventional ones, it also offers potentially new benefits.

We believe that our work may be relevant in situations where the main con-

cern is increase of the compactness and power efficiency of the amplifier (as, for

example, in the case where the amplifier is on a space satellite).

While traditional modulation techniques, such as PSK (phase shift keying)
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and QAM (quadrature amplitude modulation) [45], allow avoidanceof unmod-

ulated spectral components and, therefore, achieve high power efficiency, these

techniques can only be used with linear TWTs. On the other hand, TWT’s in

general are known to be more power efficient when operating in the nonlinear

regime, when chaotic modulation can be utilized.

A qualitative analysis of the chaotic attractor in Fig. 3.5 reveals that the

chaotic flow produced by our model can be characterized by small relative am-

plitude variation and absence of rapid transitions in phase. As a result, a large

fraction of spectral power is being contained in the periodic (unmodulated) spec-

tral component. In contrast, conventional modulation techniques, such as QAM

and PSK, are characterized by fast transitions in phase, which allows utilization

of the transmitted energy in a very efficient manner.

We note, however, that the large unmodulated component in our numeri-

cal example is a characteristic of our particular example and not of the general

proposed method. Thus it remains a problem for future study to find and char-

acterize chaotic TWT operation that yields chaotic signals that have a smaller

unmodulated component [46].

Thus, it is not yet clear whether overall performance of the chaotic satellite

communication system that we propose is better than that of traditionally used

ones. A clear answer to this question awaits experimental implementation and

test of our proposed system [46].

3.1.8 Appendix: derivation of the upper bound for BER

Let R̂ be a “modulated” chaotic signal R(t) received by the second TWT. Clearly,

R̂ will be considerably attenuated. Therefore, the new attractor obtained from R̂
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Figure 3.9: (a): Attractor obtained from the second order model for k = 14.855,

τ = 0.5313 and η = 0.725. (b): Normalized power spectral density for the second

order model for the same set of parameters

will be a scaled-down version of the one in Fig.3.5. Sampling the values of |R̂(tn)|

at the surface of section of the new attracor obtained from the received signal

and comparing them to the value of R̂ at the middle of its noise resisting gap,

one interprets |R̂(tn)| either a “0” or a “1”. Due to noise in the channel, some

of the bits in the receiver will be read incorrectly. We are going now to estimate

the fraction of incorrectly transmitted bits or BER.

For convenience, in the following, we regard the receiving TWT as acting

like a linear amplifier (i.e., we neglect the nonlinearity in (3.2)). Suppose that

white Gaussian noise w(t) with the power spectral density N0/2 is added to the

signal at the receiver input. We model the effect of the slow wave structure
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of the receiving TWT as a first-order low-pass filter. What we sample at the

output of the receiving TWT is a true signal |R̂(tn)| plus y(tn), where y(t) =
∫ ∞

−∞
h(τ)w(t − τ)dτ . For the first-order low-pass filter with cutoff frequency

ω0, h(t) = ω0u(t)e−iω0t, where u(t) is a step function. Now we make another

assumption; we assume that, in the absence of noise, |R̂(tn)| = R̂± = λ ± ∆R̂.

In other words, we assume that the signal is always measured at the edge of

the noise-resisting gap, where the value of the measured signal is closest to the

threshold λ and, thus errors are the most likely to occur. Therefore, we are going

to estimate an upper bound for the BER. Since errors occur due to y(t), and

since y(t) is a Gaussian process, we would like to find the variance of y(t).

σ2
y = E[y2] = ω2

0E

[∫ ∞

0

∫ ∞

0

e−ω0τ1e−ω0τ2w(t − τ1)w(t − τ2)dτ1dτ2

]

= ω2
0

∫ ∞

0

∫ ∞

0

e−ω0τ1e−ω0τ2E[w(t − τ1)w(t − τ2)]dτ1dτ2

= ω2
0

∫ ∞

0

∫ ∞

0

e−ω0τ1e−ω0τ2Rw(t − τ1, t − τ2)dτ1dτ2.

The autocorrelation function of w(t) is Rw(τ1, τ2) = N0/2δ(τ1−τ2), so the integral

above becomes:

σ2
y = ω2

0

∫ ∞

0

e−2ω0τ1dτ1 =
N0ω0

4
.

Remembering that y(t) is a Gaussian process, the pdf of R̂± + y(tn) can be

expressed as

fR̂±
(y) =

1
√

πN0ω0/2
exp

(

−(y + λ ± ∆R̂)2

N0ω0/2

)

(see Fig.3.10).

Here ± refers to the condition that a “1” or a “0” was transmitted (R̂+ + y(tn)

or R̂− + y(tn) was received, respectively).
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For the case of non-coherent detection (when we do not know at what times

the signal needs to be sampled), the effective width of a Gaussian becomes twice

of that of the coherent case described above. Therefore,

fnoncoh
R̂±

(y) =
1√

πN0ω0

exp

(

−(y + λ ± ∆R̂)2

N0ω0

)

.

The probability of an event in which the received symbol is different from what

was transmitted is

Pe± =

∫ ±∞

λ

fR̂±
(y)dy =

1√
πN0ω0

∫ ±∞

λ

exp

(

−(y + λ ± ∆R̂)2

N0ω0

)

dy.

Performing integration one gets a rather simple answer:

Pe = Pe± =
1

2
erfc





√

(∆R̂)2

N0ω0



 . (3.4)

The equation (3.4) gives an upper bound for BER.

52



3.2 Using Time-Delayed Electronic Circuits for

Secure Communications

3.2.1 Introduction

Introduction

There are many examples where chaotic dynamical systems can operate as

a communication system [11, 15, 17, 28, 29, 31–34]. Chaotic signals possess cer-

tain properties that can make use of chaos advantageous. One such property of

chaotic signals is wide-spreading in the frequency domain which makes their per-

formance superior in a multipath environment. Another property which might

be beneficial is the complex structure of chaotic signal. It has been shown [28]

that high-dimensional chaotic waveform behaves very much like a random sig-

nal, i.e., its autocorrelation function is very sharp. This suggests the idea of

using chaos for secure communication. Mixing such a waveform with a small

information-bearing signal would mask the latter, providing, therefore, security

to a certain extent. On the receiving end, where parameters of the dynamical

system generating chaos are known, information-bearing signal can be separated

from chaotic carrier by making use of the chaos synchronization phenomenon.

The phenomenon of chaotic synchronization was described for the first time by

Afraimovich et al [1] and later applied to secure communications by Carrol and

Pecora [2]. Their approach, however, is not free of drawbacks. The main problem

with their scheme is an occasional desynchronization which leads to errors, even

when communication channel is ideal.

A different approach was proposed by Volkovskii and Rulkov, which is char-

acterized by so-called open loop coupling. To clarify this approach, let us assume
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the the dynamics of the chaotic transmitter is described by the following equation:

ẋ(t) + x(t) = F (x(t − τ)).

In this scheme, the information-bearing message s(t) is injected into the state of

transmitting system as follows:

ẋ(t) + x(t) = F (x(t − τ) + s(t)).

The quantity z(t) = x(t−τ)+s(t) is then sent through the channel. The message

is then recovered by estimating the state variable x(t), and subsequently, the

encoded message s(t) in the receiver:

˙̂x(t) + x̂(t) = F (z(t));

x̂(t) synchronizes with the chaotic x(t), and therefore, ŝ(t) = z(t)−x̂(t−τ) = s(t).

The advantage of this approach is that it allows to recover encoded message

ideally (at least if there is no distortion in the channel). An example demonstrat-

ing experimental evidence of synchronization in time-delayed systems are recent

studies of ring-laser systems [11, 17]. In these experiments, the dynamics of one

laser was affected by binary digital information, which was then retrieved from

the second nonlinear laser amplifier through use of a suitable detection scheme.

The type of coupling described above is of particular interest for us since

it allows to combine nonlinear systems with delayed feedback(s) into a chaotic

communication system. There are several properties of nonlinear feedback loops

that make them attractive for use in private communications. One is that the

dynamics of some common sources of signals in well-known communication sys-

tems may be chaotic, and their dynamics is often described by nonlinear delayed

differential equations (DDEs). Examples of such systems are a ring laser, and
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a traveling wave tube (TWT) amplifier [15, 16] which is widely used in commu-

nication satellites. Despite their simplicity, many nonlinear feedback loops are

known to exhibit very complex high-dimensional chaotic dynamics which makes

them attractive from the security point of view. Another attractive property of

chaotic systems is their ability to self-synchronize, obviating the need for precise

clock synchronization of communicating agents.

3.2.2 Experimental Setup

We now describe a simple experiment which demonstrates a practical application

of nonlinear feedback loops for private communication use. We use a pair of

electronic circuits which are an electronic representation of the Mackey-Glass

system which is described by the following delayed-differential equation:

αẋ + x = β
x(t − τ)

1 + x(t − τ)10
.

This system is chaotic for sufficiently large values of ratio of τ to α. Also, the

dimension of the dynamics grows almost linearly with τ
α

and exceeds 10 for τ
α

> 10

A circuit implementation of the Makey-Glass equation is described in detail in

[12]. The simplicity of this dynamical system along with its complex behavior

makes it a good candidate for experimental trial.

In the following we comment on the schematic of the whole communication

setup (see Fig.3.11). The nonlinear element is realized using a complementary

pair of JFET transistors coupled in a special way; the experimental plot of the I-

V curve of such a nonlinearity loaded with 470 Ohm resistor is shown in Fig.3.12.

One can see that for small input voltages, the output current grows almost lin-

early, whereas for large amplitudes, the gain quickly goes to zero. Such a nonlin-

earity mimics analytical function const x
1+x10 . As a consequence, we will see that
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the qualitative behavior of both the numerically integrated Mackey-Glass system

and the modeling electronic circuit are very much alike. To implement the delay

we use an LC network consisting of 25 resonant sections with a total delay time

of 180 µs. We test the delay by measuring its gain as a function of frequency

(Fig.3.13) and observe that its fairly constant up to approximately 20 kHz.

Fig.3.14 shows a single pulse after it has propagated through the delay line.

We choose characteristic times of the system such that the peak of average power

density of the chaotic signal effectively covers the voice signal range (about 2kHz).

This choice provides us with superior masking of an information bearing audio

signal. The characteristic time α is chosen to be 25 µs which corresponds to

τ
α

= 6.6. As the voice signal is extracted in the receiver, it is filtered with a low-

pass filter to reduce a chaotic residual component which is always present due to

non-ideal matching of electronic components. We use second order Chebyshev

filter with a 3 kHz cutoff point.

To extend this idea we mention that success of such an experiment would

very much rely on the ability to have well matched elements in the receiver and

transmitter. The biggest problem comes from JFET nonlinearity since it is de-

scribed by continuous functions (not by just a finite set of parameters) and those

are hard to match. Differences in nonlinearities originate from large deviations

in unit-to-unit transistor characteristics, and are worsened after transistors are

coupled in pairs. To reduce this effect, we vary a load of one of the nonlinearities

and control the linear gain at the same time until we achieve the best possible

match.

A convenient way to input a message is to use the op-amp U3 as an adder. It

is important to remember that unlike in the Mackey-Glass equation, the nonlin-
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earity Q1Q2 in the circuit is not symmetric about zero and it only has a desired

I-V characteristic for positive voltages. Therefore, an input message must have

the same sign as a chaotic signal at the input of U3. Varying the value of resistor

R4 we control the strength of coupling of input signal with the state variable x.

For further references, let us call A a signal at the input of U3 and B a signal at

the end of the delay line.

To test our circuits for masking voice messages, we use a ”Walkman” as a

source of information. The attenuated output of our ”Walkman” is fed into point

A of the transmitter. Attenuation is necessary to keep the perturbation caused

by voice below the threshold for destroying chaotic oscillations. It is important

to remember that chaotic nature of the signal is crucial for both masking and

decoding of messages. Then, the output of U3 (inverted x(t − τ) − s(t)) is

sent through the channel (this is an ideal wired connection in our case) to the

nonlinearity Q3Q4 at the input of the receiver. In the receiver, the estimate

x̂(t − τ) of the x(t − τ) is obtained and then it is subtracted from the received

signal x(t − τ) − s(t). The decoded voice message ŝ(t) is then filtered with the

low-pass filter to reduce the chaotic residue.

Fig.3.15 shows the original voice waveform (a), the reconstructed voice wave-

form (b); also, shown in (c) and (d) are the masked and decoded mesages. One

can see that recovered message closely resembles the original one, and that there

is no evident correlation between the received and decoded messages (good for

privacy!). It is not possible to recognize the encoded message in the transmitted

signal, while the recovered message is of good quality.
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3.2.3 Conclusion

In this work we demonstrated the possibility of voice signal encoding and recovery

using simple electronic time-delayed nonlinear feedback circuits. The distinctive

characteristic of Mackey-Glass system is an ability to exhibit a wide spectrum of

dynamical behaviors, such as periodic and quasi-periodic oscillations, and chaos

which can be high dimentional.

Using the circuits described above, one can perform a variety of experiments,

such as voice masking, and study synchronization as well as generalized synchro-

nization, for an array of chaotic time-delay loops coupled in various ways.
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Figure 3.11: Schematic diagram of our experimental setup.
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Figure 3.12: Transistor-based nonlinearity.
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Figure 3.14: Impulse response of the delay line.
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