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Vibrio orientalis was first isolated from the Yellow Sea in China and described as a 

luminous bacterium. Since the bacterium was named, a surprisingly sparse amount of 

information is available. In this study, the genome of V. orientalis was sequenced; the 

draft genome consists of five contigs.  The genome was explored using a comparative 

genomics approach to describe the genes that are in the genome. Genes and mobile 

elements were compared to other Vibrio species to determine the presence of mobile 

elements related to important cell functions and adaptive functions that provided 

evidence related to the environments in which the bacterium is able to adapt and 

survive. The genome also provided insight into nutrients that the bacterium may be 

able to metabolize.  
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Chapter 1 Introduction   

 

1.1   Vibrio genus  

The genus Vibrio is a member of the Vibrionaceae of the γ-proteobacteria.   

Currently, the genus comprises over sixty species [1].  According to Bergey’s Manual of 

Bacteriology, Vibrio species are Gram negative, motile rods, possessing at least one polar 

flagellum, are capable of facultative fermentation metabolism and are ubiquitous to 

aquatic environs [1, 2].  Vibrios are abundant in marine environments, having the ability 

to grow in a wide range of salinities and habitats, from fresh water to the deep sea [1, 3, 

4].  Vibrios are important for aquaculture, and are involved in nutrient cycling, they 

possess the ability to degrade chitin and similar complex polymers and are found in high 

densities in association with marine organisms [1, 3, 4].   Relationships of Vibrio spp. 

with marine animals range from symbiotic to pathogenic and include fish, shrimp, 

crustaceans, and molluscs [1, 5-7].  Several species, mainly V. cholerae, V. 

parahaemolyticus and V. vulnificus are the cause disease in humans, gastrointestinal 

infections occur via consumption of contaminated food, usually seafood; and vibrios can 

also be associated with wound infections [1, 5].  Vibrio spp. are easily isolated from both 

environmental and clinical samples using selective and non-selective bacteriological 

culture plates [1, 8].  Vibrio spp. are able to grow in neutral and alkaline pH conditions 

and NaCl concentrations of 3% or higher can be used to select for Vibrio species [9].  
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1.2   Vibrio Genomes and Features 

 The genomes of Vibrio spp. contain two chromosomes [8].  This genome feature 

was first discovered by performing Pulse Field Gel Electrophoresis (PFGE) on V. 

cholerae and V. parahaemolyticus, concluding the presence of two replicons [10, 11].  

Heidelberg et al. [12] published the first sequenced genome of the Vibrio genus, 

describing the genome of V. cholerae O1 El Tor N16961.  The study confirmed the 

genome contains two asymmetrical chromosomes and revealed differences in gene 

content of each chromosome [12].  The large chromosome contained genes essential for 

growth, cell function, and pathogenicity [12]. The small chromosome possessed a 

majority of hypothetical protein-coding genes, genes that appear to have been acquired 

by horizontal gene transfer, and some essential genes [5, 12].  The small chromosome 

was described to also possess an integron island or super-integron, described as a capture 

system, whose genes are typically found on plasmids [12].  The authors concluded that 

this genome may be used to elucidate environmental characteristics and gene expression 

patterns important for survival in the natural environment and pathogenicity [12].   

Okada et al. [8] assayed 34 Vibrio species and closely related species to determine 

their genome configuration.  Genome configuration was elucidated through PFGE assays 

performed on undigested DNA. The study confirmed that the asymmetrical two 

chromosome feature is characteristic of all Vibrio species tested and is also characteristic 

of closely related genera, Photobacterium and Salinvibrio, suggesting stability of the two 

chromosome configuration in Vibrionaceae, compared with other bacterial species with 

multiple chromosomes [8].  The authors concluded that, generally, the large chromosome 

has a narrow size range (3.0 to 3.3.  Mb), and the small chromosome has a more variable 
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size range (0.8 to 2.4 Mb) [8].  Studies have attempted to elucidate the different genes 

and functions of the two chromosomes in Vibrio species [5, 8].  Generally, the large 

chromosome contains essential genes that are needed for growth and viability, while the 

small chromosome contains genes that are needed for adaptation, including growth in 

different environments, but also contain genes that are essential for growth and survival, 

which may be a reason for its preservation in Vibrio spp. [5, 8, 13]. Possession of two 

chromosomes has been suggested to be retained because of its contribution to the ability 

of the Vibrio species to utilize adaptation genes to enhance survival [8].   

1.3   Comparative Genomics  

As the number of sequenced genomes increases at a fast rate, the ability to 

compare genomes to elucidate unique and shared characteristics has become more 

feasible.  Whole genome comparisons can be advantageous to detect genomic element 

arrangements of a species compared with others at the group, species, and strain level.  

Comparative genomics can be used to determine relationships among closely related 

strains, providing new insight into the knowledge of the organism, survival, and 

pathogenicity not revealed through biochemical characterization [14].  Chun et al. [14] 

performed whole genome comparisons of twenty three V. cholerae strains by aligning 

genomes to infer the evolution of strains of V. cholerae through comparing genome 

organization and features.  The study focused on the conversions of serogroups, the 

difference between the seventh pandemic and classical strains and identification and 

comparison of genomic islands present on each strain [14].  Comparisons on a smaller 

scale, such as sequences of genes or genomic elements can be used to determine 

relationships between features.  For example, comparative genomics was used to assess 
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the genetic diversity of strains of V.  vulnificus through comparing the variable number 

tandem repeat (VNTR) regions in different strains of the bacterium, utilizing diversity in 

one VNTR region that was used to subtype strains [15]  Genes that are unique to 

pathogenic strains and species can be used as targets for identification and detection of 

species and virulent strains present in samples [16, 17].  For example, a multiplex PCR 

was developed to detect pathogenic strains of V. vulnificus but not other Vibrio spp, and 

non-pathogenic strains [17].  

Species and strain classification can be altered on the basis of comparative 

genome analysis.  For example, Haley et al. [18] identified two novel species of vibrios 

originally classified as V. cholerae through comparing genomes of the two species and 

found closely related species. Through comparing differences in average nucleotide 

identity, gene composition, arrangement, presence of genomic islands and prophages, and 

other genome features, the putative novel species were identified [18].  Next, Lin et al. 

[19] provided evidence of misidentification of two strains originally classified as V. 

harveyi  utilizing comparative genomic hybridization and multi-locus sequence analysis. 

The two strains were identified as V. campbellii strains[19].  

1.4 Evolution of Vibrio species 

Vibrio species like many species evolve via genetic modifications, including 

mutations, gene duplication, lateral transfer of genes, and rearrangements that drive 

evolution and diversification of organisms [1, 13].  Mutations and sequence differences 

can be used to infer the approximate amount of divergence of two species [20].  Genomes 

can be compared to elucidate relationships of bacterial species based on the amount of 

sequence diversity of genes that are highly conserved, such as rRNA and housekeeping 
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genes [20]. The 16S rRNA and other housekeeping genes are used to construct 

phylogenies of species to infer evolution and relationships about species [1]. Gene 

duplication may result in functional divergence, which may enhance the ability to 

survive.  

Horizontal or lateral gene transfer (HGT) drives evolution through incorporation 

of genetic material from one organism to another. The number of genes transferred and 

the ability of the species to be able to utilize foreign genes may offer new capabilities to 

the species [21].  For example, through HGT Vibrio species can become virulent [13, 22, 

23].  Integrons and cassette systems are portions of genomes which have an enhanced 

ability to accept genes through HGT[21].  Vectors that carry genes from one genome to 

another include bacteriophages, transposons, and plasmids.  Genomic Islands are clusters 

of genes that are acquired by HGT.  HGT-introduced DNA sequences in genomes are 

detected through several methods to detect differences in genome sequences [22].  First, 

G+C% is used to identify regions that are not native to the genome.  Next, codon usage of 

the acquired genes may also be different between native and newly acquired genes.  The 

two methods are used to detect recently acquired genes [22]. Another method of detecting 

possible HGT is to compare phylogeny of a particular gene or gene cluster to organism 

phylogenies; phylogenies will be different if the genes of interest in the genome are a 

result of HGT [21, 22]. 

1.4.1   Integrons 

Integrons are genetic systems that enable acquisition, rearrangement and 

expression of genes in gene cassettes through specialized regions in the genome where 

recombination can be easily achieved [24].   Integrons incorporate open reading frames 
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(ORF) into the genome through recombination and convert functional ability of the gene 

[25].  The essential components of an integron typically include an integrase family gene 

(intI), recombination sites, a primary recombination site (attI), and secondary 

recombination sites (attC) [26].  Superintegrons are a class of integrons present in 

genomes of γ-proteobacteria and other bacterial groups [5].  A majority of superintegrons 

are hypothesized to be unique to the host species and a majority of the ORF’s have no 

known function, but contain some proteins involved in adaptive functions, such as 

antibiotic resistance [25, 27].  The superintegron of Vibrio spp. are large gene clusters 

ranging from 72 genes in V. parahaemolyticus to 200 in V.  vulnificus [22]. Rowe-

Magnus et al. [27] performed analysis on several superintegrons of Vibrio spp. and found 

that these genomic structures are at least 100 kb long, and most genes encode 

hypothetical proteins. Integron systems are advantageous because the ability to acquire 

and utilize foreign gene cassettes may enhance flexibility and fitness of organisms 

through rapid adaptation in changing environmental conditions [27] . The superintegron 

is found on the small chromosome in V. cholerae, and on the large chromosome in V. 

parahaemolyticus and V. vulnificus [5]  The integron can be identified through a single 

gene recombination site [24].   

1.4.2   Phages 

Bacteriophages, or simply phages, are viruses that infect bacterial species, and 

have been found to be abundant in marine environments  [5].  Vibrio spp. are associated 

with a wide variety of bacteriophages, most of which are harmless to the host, not related 

to virulence, and are not well characterized [28].  Phages are characterized into two types, 

lytic and lysogenic. Lysogenic phages integrate into the host DNA and multiply with the 
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host, the integrated form is termed a prophage.   These phages are important for 

horizontal gene exchange, and are transferred via transduction, or lysogenic conversions 

[29].  In Vibrio species, phages can play an important role in pathogenicity, such as the 

CTXΦ phage in V. cholerae and V. mimicus, the f237 phage in V. parahaemolyticus, and 

VHML in V. harveyi [1, 13, 23, 30, 31]. CTXΦ prophage is a lysogenic phage that codes 

for the cholera enterotoxin, the principal virulence factor of toxigenic V. cholerae and V. 

mimicus, and other virulence factors essential for infection of the human host [5, 23, 32].  

The f237 phage is associated with several serovars of V. parahaemolyticus, including 

O3:K6 and other emerging serovars that are related to pandemic spread of disease caused 

by V. parahaemolyticus [30]. Genomic analysis can be used for both identification and 

sequence analysis of phages [5].   

1.4.3   Genomic Islands 

Genomic Islands are large DNA clusters that have been acquired by HGT.  

Genomic islands are linked to pathogenicity potential in several Vibrio species.  In V. 

cholerae, pathogenicity island 1 and 2 (VPI-1 and VPI-2) are present in all V. cholerae 

O1 and O139 serotypes that are toxigenic and VSP-1 and VSP-2 are specific to the 

seventh pandemic strains of V. cholerae. These islands carry genes that enhance the 

virulence potential of pathogenic V. cholerae strains [14, 33, 34].  In V. 

parahaemolyticus, genomic islands V-Pal-1, 4, 5, and 6 are present on all pandemic 

strains [35] .  In V. vulnificus, differences in genomic islands in strains have been 

suggested to be a source of genome plasticity and a genomic island, RegionXII, has been 

linked with higher pathogenic potential of virulent strains [36, 37].  Genomic islands can 

be identified through comparative genomics, searching for common characteristics of 
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genomic islands,  including differences in codon usage compared with the rest of the 

genome, the G+C% content and genes that are related to mobile elements [38, 39].   

1.5   Vibrios and the Environment  

Vibrio species are ubiquitous to the marine environment.  Vibrios are widely 

distributed around the world and have been isolated from a variety of environments, 

ranging from coastal, open and deep water environments [1, 40-43].  Vibrio species can 

constitute up to 40% of the total bacterial populations in coastal and ocean environments 

[3].   Little is known about the distribution and ecology of Vibrio species in benthic 

environments, however it has been suggested that it serves as a reservoir for Vibrio 

species, including V. parahaemolyticus and V. cholerae [3, 40].  In one study, the 

population of Vibrio species in the benthic environments did not change, while the water 

column was found to be dynamic [40].   

1.5.1   Temperature, Salinity and Growth of Vibrio species 

Temperature significantly influences abundance of Vibrio species and exerts a 

domint impact on isolation and growth of these organisms. Temperature accounts for 

about 48% of variability of isolation of Vibrio species, including 47% in V. vulnificus 

according to one report [44].   In general, V. cholerae, V. parahaemolyticus, and V. 

vulnificus show a pattern of higher abundance and more frequent isolation in summer 

months,  directly correlated with changing temperature [40, 44, 45]. Salinity also 

associated with the isolation and growth of Vibrio species and the latter generally are 

inversely correlated with salinity, however, population dynamics of each species is 

different based on their optimal salt requirement, for example, between 5 to 10 ppt for V. 

vulnificus and 2 to 14 ppt for V. cholerae  [45, 46].   
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1.5.2   Vibrios and association with aquatic organisms 

Commensal association with aquatic organisms is considered a survival strategy 

of vibrios in the marine environment, providing habitat, vehicles of transport, and 

protection from predators [7].  These organisms are commonly found in association with 

marine animals, such as chitinous organisms, plankton, and algal cells [3, 7].  Vibrio spp. 

are capable of utilizing chitin, a polymer of N-acetylglucosamine (GlcNAc), one of the 

most abundant polymers in nature and have been suggested to contribute to the 

breakdown of other polymers in the marine environment [3, 47].   Vibrio species 

associate and attach to chitinous organisms, such as the exoskeletons of zooplankton, that 

provide habitat and nutrients for several Vibrio species, including V. parahaemolyticus, 

V. cholerae, V. vulnificus, V. mimicus, and V. cincinnatiensis. These associations 

represent a notable portion of Vibrio species in the natural environment [48-50]. 

Zooplankton associations can account for up to 40% of Vibrio species in the water 

column in the Chesapeake Bay and vary with respect to species and season [41].  Vibrio 

species are associated with large and small zooplankton and these associations may offer 

a competitive advantage over other heterotrophic bacteria, which are not able to attach to 

zooplankton [48-50]. Attachment to zooplankton is suggested to help survival of Vibrio 

species in winter months, by providing protection from colder temperatures [49]. 

Zooplankton blooms are correlated with Vibrio populations, having the same seasonal 

abundance patterns, with the highest numbers in the spring and summer months [48, 50]. 

Vibrio species also participate in symbiotic relationships.  The association of V. fischeri 

with Euprymna scolopes is mutually beneficial, where V. fischeri provides luminescence 

to the squid species for protection against predators, and V. fischeri colonizes the light 

organ of the squid species [6, 51-53].   
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1.5.3   Vibrios and nutrients  

Vibrio spp. are involved in the cycling of important nutrients, including carbon, 

nitrogen and phosphorus in the marine environment [4].  These organisms can adapt to 

grow in both high nutrient and nutrient-limiting environments utilizing organic matter as 

a carbon source [4].  The ability of Vibrio spp. to store excess carbon may provide an 

advantage in nutrient limited environments and competition for nutrients.  In carbon 

limited environments, V. cholerae alters expression and may enhance virulence [4, 54].  

Vibrio species are involved in nitrogen fixation, nitrate reduction, and ammonification 

[4].  Gene targets for nifH and nasA can be used to detect the ability of nitrogen fixation 

and nitrate reduction respectively.  The widespread presence of the nasA gene in Vibrio 

spp. suggests that vibrios are able to consume nitrate and reduce nitrate to ammonia [4, 

55] . Chitinases and proteases hydrolyze nitrogenous polymers to simpler units and 

recycle them into the environment, producing one of the largest pools of amino sugars in 

the oceans [4, 56].  Phosphorous is utilized by Vibrio species, for functional biological 

processes, including nucleic acid and phospholipid synthesis.   Alkaline phosphatase 

works to supply phosphate pools when phosphorus is limited and has been detected in 

several Vibrio species [4].   5’ Nucleotidase is an enzyme that supplies phosphorus, and 

activity is not limited by high levels of phosphorus. It has been detected in all Vibrio 

genomes and works to increase phosphate pools [4].  Vibrios are also able to break down 

toxic polycyclic carbons, found in marine sediments [1] 
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1.5.4   Environmental Stressors  

Vibrio species have evolved to be able to survive in response to environmental 

stressors.  Environmental stressors include changing temperature, salinity, pH, grazing, 

nutrient limitation, and combinations of these factors.  Vibrio species in nature have rapid 

growth cycles when nutrients and growth conditions are favorable and have long 

generation times and non-growth periods when conditions are not ideal for growth [57].  

Presence of genes related to the ability to respond to changes in the environment in the 

genome may give insight into the adaptation abilities of a species to survive when facing 

changing environmental conditions. Vibrio species populations can change throughout 

the year, and water temperature is a good predictor of the occurrence of different species 

[58].  Temperature shock genes are present in many Vibrio species and aid the ability of 

species to adapt to changing temperatures [59, 60].  For example, exposure to cold 

temperatures resulted in up-regulation of two cold shock proteins in V. parahaemolyticus, 

and expression of one protein was correlated with decreasing temperatures [59]. The 

expression of the other protein was initiated and stayed at a constant expression level 

during exposure to cold temperatures [59]. Adaptation to changes in pH is also facilitated 

by specific genes and operons, specifically for response to acidic conditions [61, 62].   

The ability to form biofilms aid the survival of Vibrio species by protecting against 

grazing pressures, UV light, acidic conditions, dehydration, oxidative environments and 

antimicrobial agents.[63].  Biofilm formation is dependent on the ability to produce 

exopolysaccharides and is associated with the rugose morphology of a cell, quorum 

sensing, and hapR [57].    
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1.5.5   Quorum Sensing  

Quorum sensing is a process where cells detect cell density via extracellular 

signaling molecules called autoinducers, which increases as cell density increases [64-

66]. Accumulation leads to activation of signaling cascades that lead to coordinated 

cellular processes[64-66]. Quorum sensing coordinates cellular processes that are 

beneficial with high cell density, including bioluminescence, virulence gene expression, 

and biofilm formation [66, 67]. In V. harveyi and V. cholerae, parallel sensing systems 

exist that respond to different quorum molecules and activate appropriate signaling 

cascades in response to the density of different cells [65, 67]. Autoinducer (AI)-2, first 

described in V. harveyi, is subsequently found in a wide range of bacteria, and the 

signaling cascade that responds to AI-2 is suggested to be identical in all species [66, 68, 

69]. AI-2 production is dependent on the presence of the gene luxS and luxS mutants lack 

AI-2 production [66, 69]. AI-2 has been suggested to be able to regulate interspecies cell-

to-cell communication [66, 69]. The AI-2 in V. harveyi controls expression of the density 

dependent luciferase operon [66, 69].  When AI-2 accumulates, it causes activation of a 

gene cascade linked with de-activation of a repressor, in turn linked with transcription of 

a number of processes in V. harveyi and V. cholerae [65, 67].    

1.6   Vibrio infections  

Several Vibrio species are characterized as the causative agent of disease in 

marine animals and humans. Fish pathogens include V. anguillarum, V. damsela, V. 

parahaemolyticus, V. vulnificus, V. harveyi, and V. alginolyticus [1]. V. anguillarum 

affects a variety of fish species, including salmon and rainbow trout, serotypes O1 and 

O2 are associated with fish infection [70].  V. damsela has been isolated from ulcers in 
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damselfish and human wounds [71, 72]. V. harveyi is a serious pathogen and is able to 

infect a range of animals, such as shrimp and sharks; however, mechanisms for infection 

have yet to be fully understood [73].  It has been suggested that virulence is acquired 

through mobile elements because of the difference in phylogenies between species and 

virulence factors of several Vibrio species [73].  Corals are infected by V. choralliiltyicus 

and V. shilonii, that  have been linked to coral bleaching [1].     

Vibrio species infect humans upon consumption of contaminated water and food, 

and are also associated with systemic and wound infections [1, 44, 74].   Eleven Vibrio 

spp. have been linked to human infection, however, three species, V. cholerae, V. 

vulnificus, and V. parahaemolyticus are very important because of the diseases they cause 

are globally distributed, and has devastating effect [5, 75]. There are more than 250 

serogroups of V. cholerae, of which only serogroups O1 and O139 are capable of causing 

epidemics. They contain multiple virulence factors and produce cholera toxin and toxin 

co-regulated pilus, essential for infection [5, 75, 76]. V. parahaemolyticus causes over 

half of all food poisoning outbreaks of bacterial origin and has a wide range of serovars 

that are linked with disease. However, the O3:K6 serovar has emerged to be the main 

disease-causing serovar in recent years [5, 75, 77]. The chief virulence factor of 

pathogenic V. parahaemolyticus is its thermostable direct hemolysin (TDH) [5, 75, 78].  

V. vulnificus has a large heterogeneity in the infections it causes, where three biotypes are 

linked with disease and biotype 1 is predominantly associated with human disease [5, 

79].  V. vulnificus has been described as an opportunistic pathogen, and its major 

virulence factor is the capsular polysaccharide (CPS) and iron availability of the host [75, 
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79]. Host susceptibility also plays a large role in the progression of disease in V. 

vulnificus [80].   

1.7   Luminescence  

Vibrio spp. are among the most widely studied bacteria with respect to 

bioluminescence [81].  Bioluminescence is catalyzed by the luciferase enzyme in the 

presence of oxygen.  Luminescent bacteria are found in the ocean, free living or often in 

symbiotic relationships [81]. For example, the bacterium receives nutrients and a habitat 

optimal for its growth and the host receives ability of bioluminescence to protect it from 

predators, like the relationship of V. fischeri with Euprymna scolopes and in V. logei and 

two squid species [6, 51-53, 82].  Luminescence is dependent on density of the cells, and 

luminescence related transcription is under the control of a repressor, and transcription is 

activated at high cell densities when it is beneficial [65, 69, 81, 83].   

1.7.1   lux Operon  

All bioluminescent strains of Vibrio species possess the lux operon, which is 

linked with the ability of bioluminescence [81].  The core of the lux operon is the gene 

cluster of five genes, luxCDABE associated with all lux systems in luminescent bacteria 

[81].  The luxA and luxB genes code for the alpha and beta subunits of luciferase, forming 

heterodimer luciferase enzymes that catalyze luminescence. The two genes have 30% 

amino acid identity, suggesting they arose from gene duplication [81].   luxC, lux D, and 

luxE  are the three genes that form a fatty acid reductase complex [84]. The lux operon is 

regulated by quorum sensing and in V. harveyi the lux operon transcription is controlled 

by the luxO gene [85]. V. fischeri is the only species that contain regulatory genes in 

association with the lux operon [84].  Urbanczyk et al. [86] concluded that the lux operon 
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is predominantly vertically transferred. They also suggested that there are rare HGT 

events responsible for lux operon acquisition, as is the case for V. vulnificus [86]. In this 

case, the likely donor is V.  harveyi, due to the presence of the luxH gene in the operon, 

and the close relationship to V. harveyi in phylogenetic analysis [86].  V.  vulnificus strain 

VVL1 is the only strain of V. vulnificus that is luminescent and the presence of the lux 

operon and luminescence capabilities suggests that this strain acquired these genes 

through HGT [86].     

1.8   Vibrio orientalis  

Vibrio orientalis was first isolated and described in 1983 with a group of 

luminous bacteria from the coast of China in the Yellow Sea [87].  The luminous isolates 

were characterized by assessing phenotypic characteristics, including swarming, shape of 

cells, flagella, and ability to utilize 82 organic compounds as energy sources [87]. The 

G+C% content of DNA (45.4) was determined by density gradient analysis [87].  V.  

orientalis was described as a novel species because of its ability to accumulate poly- β-

hydroxybutyrate as a reserve product and utilize DL- β-hydroxybutyrate, putrescine, and 

sperimine as sole or principle sources of carbon, characteristic only to this species, 

compared with other luminescent bacteria isolated [87].  V. orientalis grows at 4C, but 

not at 40C [87].  It also utilizes sucrose and cellobiose as sole or principle sources of 

carbon, but not glucuronate, α-ketoglutarate, and γ-aminobutyrate [87].   Anti-serum to 

the iron-containing superoxide dismutase of several Vibrio species was used to determine 

that V. orientalis is a member of the genus Vibrio [87].  V. orientalis ATCC 33934 

(CIP102891) is additionally characterized by having a single, sheathed polar flagellum, 

and is the type strain of the species [87].  
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After the initial characterization of V. orientalis, there have been only a sparse 

number of publications related to V. orientalis, with a majority of publications 

mentioning the bacterium in relation to luminescence genes and ability, as  a reference 

strain in papers describing novel species, and in description of the taxonomy of the genus 

Vibrio [88, 89].  V. orientalis has also been isolated in the western Mediterranean Sea 

while in studies of V. vulnificus, along with several other Vibrio spp[90].  Interestingly, in 

this study, V. orientalis was not isolated at temperatures below 15C [90].   

In this study, the genome of V. orientalis CIP 102891 is described to further 

understand its growth and survival mechanisms, comparing them to other available 

Vibrio species genomes. This was carried out by employing a comparative genomics 

approach to describe genome characteristics and features.  

The V. orientalis genome was explored to understand its relationship to its 

environment and ecological conditions. By exploring adaptation mechanisms and 

survival related genes, it may give some insight into what environs this bacterium may 

potentially be isolated. These may help increase the ability to isolate and test for the 

presence of this organism when identifying related species. The study also explored 

virulence related mechanisms in virulent Vibrio spp. found on the V. orientalis genome 

that may not necessarily indicative of virulence potential. The presence of these virulence 

related genes may be important for environmental function.  
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Chapter 2   Materials and Methods  

 

2.1   Genome Sequencing 

Draft sequences were obtained from a blend of Sanger and 454 sequencing 

technologies and involved paired end Sanger sequencing of 8kb plasmid libraries with 5x 

coverage data, 454 pyrosequencing with 20x coverage data, and optional paired end 

Sanger sequencing with 35kb fosmid libraries to 1-2X coverage data.  The optional 

paired end sequencing was done based on complexity of the repeats.  The combined data 

gave a total of 6.5x coverage.  To construct the contigs, a collection of custom software 

and targeted reaction types were used.  Phred/Phrap/Consed software package was used 

to assemble the reads for quality assessment.  Solexa data was used to help distinguish 

low quality regions and to help with some gap closure.  Missing-assemblies were 

corrected with Dupfinisher and with transposon bombs of the contigs.  Gaps were closed 

using Consed, primer walking, or PCR reactions.  Gene finding and annotation were 

achieved using an automated annotation serve, RAST [91].   

2. 2   Comparative Genomics  

Dispensable and unique genomic regions were found using whole genome 

comparisons with closely related species.  Genome to genome comparisons were 

completed using approaches described by Chun et al. [14] to compare the genome of V. 

orientalis CIP102891 to available Vibrio genomes in the pipeline. The homologous 

regions were identified and used to assess relationships between the species. Nucleotide 

similarity was calculated through pairwise alignment of genes and gene clusters using the 
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Geneious interface [92]. Gene clusters and region compositions were discovered and 

compared using Rapid Annotations using Subsystems Technology(RAST) [91]. 

Average nucleotide Identity (ANI) was calculated using a reciprocal BLASTN 

analysis for the genome.  The average similarity between genomes was measured for all 

conserved protein-coding genes, following the methods of Konstantinidis and Tiedje 

[93]. ANI was calculated using a java based interface, the Jspecies program [94]  

2. 3   Identification of Genomic Islands 

Putative genomic islands (VoGI) were identified on the draft genome using the 

web-based application program IslandViewer [95]. The program uses three methods to 

find genomic islands in sequences. It uses two sequence composition methods and one 

method for comparative analysis [95].  The genomic islands that were found were 

numbered VoGI1 through VoGI4.  Each genomic island (GI) was compared to known 

sequences using NCBI BLASTX to search for regions of the islands that showed 

significant similarity to other species of the genus Vibrio. Regions were compared to 

other species with similar genes and order using RAST to compare contents of the island 

[91].  

2. 4   Sequence Alignment  

Multiple sequence alignment was achieved through ClustalW [96].  ClustalW 

alignment is based on how similar each sequence in the multiple alignments is to each 

other using pairwise comparisons of all of the sequences.  Next, it takes into account 

amino acid substitution matrices, residue specific gap penalties, and locally reduced gap 

penalties, and gives more leniencies to positions at the beginning of the alignments.  

Multiple sequence alignments were constructed utilizing the MEGA5 program [97] .   
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2. 5   Phylogeny Construction  

Multiple sequence alignments from MEGA5 were used to construct phylogenetic 

trees using neighbor-joining statistical methods in the MEGA5 program [98].  The 

distances were calculated using the Kimura-2 evolutionary model [99].   Bootstrap values 

were also constructed using the MEGA5 program.   
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Chapter 3   Results and Discussion  

 

3.1   Genome Features of V. orientalis  

The genome of V. orientalis CIP102891 (Accession number ACZV00000000) 

compromises ca.  4,698,244 base pairs (bp), with a G+C% content of 44%.  The genome 

encodes 128 structural RNAs and 4,303 open reading frames (ORF), as predicted by 

RAST.   Like all other Vibrio species, the V. orientalis genome contains two 

chromosomes.  The large chromosome (C-I), not closed, consists of four contigs (ctg 76, 

77, 78 and 80).  The small chromosome (C-II) is closed (ctg 79) and is 1,579,959 bp.   

The average nucleotide identities between V. orientalis and several Vibrio species 

are shown in Table 1. The ANI was calculated based on BLAST [94]. Based on the table 

below, the highest ANI is with Vibrio harveyi, Vibrio EX25 and Vibrio 

parahaemolyticus, which suggests a close relationship among these genomes.  
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Table 1. Average Nucleotide Identity of 
V. orientalis CIP102891 to other Vibrio 
species 

Species ANI 

Vibrio anguillarum 72.69 
Vibrio cholerae 71.93 

Vibrio EJY3 74.06 
Vibrio Ex25 74.7 

Vibrio fischeri 71.37 
Vibrio furnissii 72.23 
Vibrio harveyi 74.93 

Vibrio parahaemolyticus 74.14 
Vibrio splendidus 73.72 
Vibrio vulnificus 73.03 
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V. orientalis contains seven rRNA operons, compared with V. cholerae, V. 

parahaemolyticus, and V. vulnificus, which have eight, ten and eight operons, 

respectively. The V. orientalis genome contains more rRNA operons than the genomes of 

V. alginolyticus, V. coralliilyticus, and V. shilonii, and the same number as V. mimicus. 

The relative fitness of V. orientalis can be inferred by rRNA copy number. The number 

of rRNA copy numbers infers the relative ability to adapt to changing ecological 

conditions, response time, and growth rate in response to an influx of nutrients and 

resources that are beneficial [100]. As little as a loss of one rRNA copy number can result 

in the decreased ability to grow rapidly in response to exposure to beneficial conditions, 

and increased lag time to initiate growth, and decreased growth rate [100].  

3.2   Housekeeping gene based phylogeny 

The phylogeny of the vibrios was constructed using seventeen housekeeping 

genes listed in Table 2.  All housekeeping genes were annotated in RAST and were 

downloaded off the RAST annotation website for consistency when constructing the trees 

[91].  Each housekeeping gene was separately aligned through multiple sequence 

analysis. The aligned sequences were concatenated to construct a tree and fifteen species 

were compared (Figure 1). Based on this phylogenetic tree, V. orientalis is most closely 

related to V. coralliilyticus, a coral pathogen, whose pathogenicity is dependent on 

temperature [1]. The phylogenetic analysis also confirms that V. orientalis is closely 

related to V. parahaemolyticus, V. harveyi, and Vibrio sp EX25. The tree has a different 

phylogeny than the phylogeny presented by Thompson et al. [1]. 
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Table 2. Genes used to construct a phylogenetic tree.  

Gene Product EC number 

aminopeptidase P EC 3.4.11.1 
alaS alanyl-tRNA synthetase EC 6.1.1.7 
aspS aspartyl-tRNA synthetase EC 6.1.1.12 
gltX glutamyl-tRNA synthetase EC 6.1.1.17 
gyrB DNA gyrase subunit B EC 5.99.1.3 
hisS histidyl-tRNA synthetase EC 6.1.1.21 
ileS isoleucyl-tRNA synthetase EC 6.1.1.5 
infB initiation factor 2 

metG methionyl-tRNA synthetase EC 6.1.1.10 

mreB rod shape-determining protein MreB 
pntA transhydrogenase alpha subunit EC 1.6.1.2 
pheT phenylalanyl-tRNA synthetase  beta chain EC 6.1.1.20 

pyrH uridylate kinase EC 2.7.4.- 

rpoB RNA polymerase, beta subunit EC 2.7.7.6 
rpsH 30S ribosomal subunit protein S8 
topA Topoisomerase I EC 5.99.1.2 
valS valyl-tRNA synthetase EC 6.1.1.9 
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Figure 1. Phylogenetic tree based on seventeen housekeeping genes.  This tree was 
constructed using the neighbor-joining statistical model and distances were calculated 
using the Kimura-2 parameter model.  Bootstrap values are shown at the junctions. V. 
orientalis is highlighted in blue.  
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3.3   Mobile Elements  

3.3.1   Genomic Islands  

Four putative genomic islands were found using IslandViewer [95] and are named 

VoGI1 through VoGI4.  VoGI1 and VoGI2 are found on ctg 78 (C-I). VoGI3 and VoGI4 

are found on ctg 79(C-II).  Fig. 2 shows the location of each genomic island on each 

contig. The figures are outputs of IslandViewer. On contig 78, the genomic islands are 

situated closely on the genome.  

VoGI1 (VIA_00509 to VIA_00535) is 30,396 bp has a G+C% content of 39%.  

Genes related to O-antigen biosynthesis are found on the island. The O-antigen 

biosynthesis region in several Vibrio species is flanked by a gmhD (also rfaD) gene and 

the rjg gene [101, 102]. The gmhD gene (ADP-L-glycero-D-manno-heptose-6-epimerase) 

(VIA_00536) flanks the island in V. orientalis and is downstream of the wblB gene. This 

gene has 76% similarity with that of V. cholerae and 79% similarity with V. 

parahaemolyticus. The rjg gene is not present on the island, but is found on ctg80 

(VIA_2224), and shows 69% similarity to V. cholerae MO45 wbfZ gene and 67% 

similarity to V. splendidus LPG32 beta-lactamase fold involved in RNA processing. Two 

genes in VoGI1show high similarity to the O-antigen synthesis genes of V. cholerae O22, 

the wblB gene and the UDP-glucose dehydrogenase encoding gene (VIA_000534 and 

VIA_000535). The wblB gene coding region is part of serogroup O22 biosynthesis and 

has been described as highly similar to lacA in E. coli [103].   The wzm gene is also found 

in the island and may possess a similar function to the V. cholerae wzm gene that codes 

an integral membrane protein acting as a pore that exports the O-antigen [102, 104]. The 
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genes that are present in VoGI1 are listed in Table 3. VoGI1 likely codes for the genes 

necessary for O-antigen synthesis of V. orientalis.  
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Figure 2. The outputs of IslandViewer show the location of each genomic island on the 
contig where it is found. The different colors represent the method used to predict the 
genomic islands on each contig shown in the legend.  
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Figure 3. VoGI1 of V. orientalis. The flanking gene, gmhD is blue. Genes similar to V. 
cholerae O22 synthesis are green and the 26 ORF’s present on the island are defined by 
black arrows.   
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Table 3. Genes and flanking genes of VoGI1.  

Locus ID Product 
VIA_000508 CDP-diacylglycerol--serine O-phosphatidyltransferase (EC 2.7.8.8) 
VIA_000509 UDP-glucose lipid carrier transferase 
VIA_000510 COG0438: Glycosyltransferase 
VIA_000511 glycosyltransferase 
VIA_000512 Wzm 
VIA_000513 hypothetical protein 
VIA_000514 Nucleoside-diphosphate sugar epimerase/dehydratase 
VIA_000515 putative glucosyl transferase 
VIA_000516 hypothetical protein 
VIA_000517 hypothetical protein 
VIA_000518 pilin glycosylation protein 
VIA_000519 pilin glycosylation protein 
VIA_000520 Lipid carrier : UDP-N-acetylgalactosaminyltransferase (EC 2.4.1.-) 
VIA_000521 probable glycosyltransferase 
VIA_000522 putative glycosyl transferase 
VIA_000523 putative glycosyl transferase 
VIA_000524 hypothetical protein 
VIA_000525 hypothetical protein 
VIA_000526 UDP-N-acetylglucosamine 2-epimerase (EC 5.1.3.14) 
VIA_000527 hypothetical protein 

VIA_000528 
UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase          

(EC 2.3.1.-) 
VIA_000529 Glycosyltransferase 
VIA_000530 hypothetical protein 
VIA_000531 glycosyl transferase, group 1 
VIA_000532 DegT/DnrJ/EryC1/StrS family protein 
VIA_000533 probable acetyltransferase 

VIA_000534 UDP-glucose/GDP-mannose dehydrogenase 
VIA_000535 WblB protein 
VIA_000536 ADP-L-glycero-D-manno-heptose-6-epimerase (EC 5.1.3.20) 
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VoGI2 (VIA_000539 to VIA_000550) is 10,363bp and has a G+C% content of 

41%.  A majority of the genes present on this island are linked with core oligosaccharide 

synthesis. In V. cholerae, the O-antigen synthesis gene cluster and the core 

oligosaccharide biosynthesis cluster are adjacent to one another and share the gene gmhD 

(VIA_000536) [102]. The rfaD gene has been documented to be required for 

lipopolysaccharide synthesis [105]. Ca. 75% of the island shows nucleotide similarity to 

V. splendidus LGP32 (VIA_00540 to VIA_00546) with overall similarity of 70%, as seen 

in Fig 4. Core oligosaccharide in Vibrio species is similar.  Two genes, 

phosphopantetheine adenylyltransferase and ADP-heptose--lipooligosaccharide 

heptosyltransferase II, found on VoGI2 show at least 60% nucleotide similarity to several 

species in the Vibrio genus, including V. cholerae, V. vulnificus, V. fischeri, V. 

alginolyticus and V. parahaemolyticus and are linked to core lipopolysaccharide 

synthesis. The lipid A synthesis gene is present between VoGI1 and VoGI2 (VIA_0537).   

The genes on the island are listed in Table 4. VoGI2 likely encodes the genes required for 

biosynthesis of core oligosaccharide synthesis of V. orientalis. 
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 Figure 4. VoGI2 of V. orientalis. 12 ORF’s that are a part of the island are outlined in 
black. The genes not calculated to be in the island are outlined in blue. Genes conserved 
in the Vibrio genus that have similarity are green. Lipid A biosynthesis gene is shown in 
yellow. ORF’s that are similar to V. splendidus are outlined in a dashed pattern.   
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Table 4. VoGI2 genes and flanking genes 

Locus ID Product 
VIA_000538 Glycosyltransferase 
VIA_000539 Phosphopantetheine adenylyltransferase (EC 2.7.7.3) 

VIA_000540 
ADP-heptose--lipooligosaccharide heptosyltransferase II (EC 

2.4.1.-) 
VIA_000541 putative LPS core biosynthesis-related protein 
VIA_000542 3-deoxy-D-manno-octulosonic acid kinase (EC 2.7.1.-) 
VIA_000543 hypothetical protein 
VIA_000544 3-deoxy-D-manno-octulosonic-acid transferase 
VIA_000545 3-deoxy-D-manno-octulosonic-acid transferase (EC 2.-.-.-) 

VIA_000546 
ADP-heptose--lipooligosaccharide heptosyltransferase II (EC 

2.4.1.-) 
VIA_000547 putative lipopolysaccharide A protein 
VIA_000548 O-antigen ligase 
VIA_000549 3-deoxy-D-manno-octulosonic-acid transferase 
VIA_000550 Formamidopyrimidine-DNA glycosylase (EC 3.2.2.23) 
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Table 5.  VoGI3 and flanking genes  

Locus ID Product  
VIA_000969 Peptidyl-prolyl cis-trans isomerase ppiC (EC 5.2.1.8) 
VIA_000970 Recombinase 
VIA_000971 hypothetical protein 
VIA_000972 hypothetical protein 
VIA_000973 hypothetical protein 
VIA_000974 hypothetical protein 
VIA_000975 hypothetical protein 
VIA_000976 hypothetical protein 
VIA_000977 type IIs modification methyltransferase 
VIA_000978 restriction endonuclease 
VIA_000979 hypothetical protein 
VIA_000980 hypothetical protein 
VIA_000981 hypothetical protein 
VIA_000982 Cytochrome c4 
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VoGI-3 is found on contig 79 and is 11,807bp (VIA_000969 to VIA_000982), 

with G+C% of 37%.  VoGI3 has no significant similarity to any known sequences in the 

NCBI database.  The majority of the island consists of hypothetical proteins and is 

flanked by a peptidyl-prolyl cis-trans isomerase, and cytochrome c4.  This island also 

includes recombinase gene, methyl-transferase, and restriction endonuclease.   

VoGI-4 is found on contig 79 and is 25,046bp (VIA_001514 to VIA_001545) 

with G+C% content of 45%.  VoGI-4 contains genes related to bacteriophage 

incorporation and synthesis, including a head protein, and a probable bacteriophage 

integrase.  Bacteriophage related genes are flanked by a hypothetical protein 

(VIA_001505) and an integrase gene (VIA_001543) found on the island. These genes 

show high similarity to genes flanking bacteriophage K139.  The nucleotide sequences of 

the hypothetical protein of V. orientalis and phage protein found on bacteriophage K139 

are 63% similar, and the intergase genes found on the two genomes are 68% similar. The 

genes in the island have a similar gene arrangement to bacteriophage K139.  

Bacteriophage K139 is found in V. cholerae O139, characterized as a lysogenic prophage 

and is also present in all V. cholerae O1 classical strains [106].  The order of genes is 

almost identical between VoGI-4 and V. cholerae O139.   The phage replication protein 

gene is similar to V. cholerae, V. parahaemolyticus, V. shilonii, and V. harveyi.  The 

relative organization of the genes is also similar to V. harveyi VHML phage [107]. The 

presence of this island suggests that V. orientalis incorporated a bacteriophage and codes 

for a prophage incorporated into the genome.  
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Figure 5. VoGI4 of V. orientalis, ORF’s in the island outlined by black arrows black 
arrows.  ORF’s not calculated to be part of the island outlined in blue. Genes related to 
phage synthesis are labeled. The flanking genes of phage-related genes are in red.  
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Table 6. VoGI4 extended to include phage genes and flanking genes. 

Locus ID Product 
VIA_001505 hypothetical protein 
VIA_001506 hypothetical protein 
VIA_001507 hypothetical protein 
VIA_001508 hypothetical protein 
VIA_001509 Probable tail fiber protein 
VIA_001510 hypothetical protein 
VIA_001511 Putative bacteriophage protein 
VIA_001512 hypothetical protein 
VIA_001513 COG5283: Phage-related tail protein 
VIA_001514 orf30 
VIA_001515 orf29 
VIA_001516 putative phage lysozyme 
VIA_001517 hypothetical protein 
VIA_001518 hypothetical protein 
VIA_001519 hypothetical protein 
VIA_001520 Conserved hypothetical phage protein 
VIA_001521 hypothetical protein 
VIA_001522 hypothetical protein 
VIA_001523 phage head completion protein (GPL) 
VIA_001524 Probable terminase, endonuclease subunit 
VIA_001525 Major capsid protein precursor 
VIA_001526 Probable capsid scaffolding protein 
VIA_001527 Possible [Haemophilus phage HP1] orf16-like phage protein 
VIA_001528 phage portal protein, pbsx family 
VIA_001529 hypothetical protein 
VIA_001530 Replication gene A protein 
VIA_001531 hypothetical protein 

VIA_001532 
COG0030: Dimethyladenosine transferase (rRNA 

methylation) 
VIA_001533 hypothetical protein 
VIA_001534 hypothetical protein 
VIA_001535 hypothetical protein 
VIA_001536 Phage regulatory protein like CII 
VIA_001537 hypothetical protein 
VIA_001538 hypothetical protein 
VIA_001539 putative bacteriophage CI repressor protein 
VIA_001540 protein phosphatase 2C domain protein 
VIA_001541 Protein kinase 
VIA_001542 Protein kinase 
VIA_001543 Probable bacteriophage integrase 
VIA_001544 hypothetical protein 
VIA_001545 Deoxyribodipyrimidine photolyase (EC 4.1.99.3) 
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3.3.2   Integron  

The V. orientalis genome contains a gene associated with super-integron 

structures in Vibrio species.  The intI4 gene (VIA_000915), found on the small 

chromosome, codes for an integrase gene that is part of the super integron cassette in 

several Vibrio species. The integrase gene is one of three key components essential for a 

functioning integron [26]. The intI4 gene of V. orientalis shows 62.4% nucleotide 

similarity to the intI4 gene of V. cholerae N16961,  65.1% similarity to the intIA gene of 

V. parahaemolyticus, and 68.5% nucleotide similarity to the intIA gene of V. vulnificus 

YJ016. Downstream from the intI4 gene, a conserved cluster of ribosomal genes and the 

initiation factor, 50S ribosomal protein L20, 50S ribosomal protein L35, and initiation 

factor IF3 (VIA_000912 to VIA_00914)  are found (Fig. 6).  This cluster is on the 

genome of V. cholerae, V. parahaemolyticus, and V. vulnificus downstream of SI in the 

three genomes. The presence of the intI4 gene may be indicative of a super integron 

system in the V. orientalis genome and the ability to incorporate and utilize foreign 

ORF’s for adaptation and a variety of other functions [25-27].  Downstream of the intI4 

gene, there are several ORFs that code for hypothetical proteins, another characteristic of 

superintegrons which code for a majority of non identifiable genes [108]. When the first 

25 kb downstream of intI4 was searched through NCBI BLAST, a majority of similarities 

within the NCBI database  are  from identified genes, but not the hypothetical proteins. 

Majority of the first 25kb do not show any significant similarity to known sequences in 

the NCBI database. Analysis is needed on two components that are essential for an 

integron, the attI and attC primary and secondary recombination sites respectively. The 



 

38 
 

analysis of these sites, which allows expression and integration into the genome, will give 

more insight into the genes that are in the integron and the size of the integron.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 
 

 

 

 

 

 

Figure 6.  The figure illustrates location of the intI4 gene in the small chromosome. The 
three ribosomal related genes are orange. The first eight ORF’s are labeled upstream from 
the intI4 gene.  
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3.4   Plasmid Elements  

parB is present on both C-I, on ctg78 and C-II. Two plasmid related genes parD 

(VIA_002806) and parE (VIA_002805) are located on ctg 80 and compromise the parDE 

operon. The parDE operon codes for a toxin-antitoxin (TA) system that has been 

documented as a region of the broad host range plasmid RK2 and RP4 and codes for two 

small proteins, ParD and ParE [109]. The two proteins are required for stabilization of the 

plasmids [109]. The parE gene codes for a toxin protein that inhibits cell growth and cell 

death via cell filamentation, demonstrated by E. coli [109]. The  parD gene codes for 

antitoxin protein to ParE, preventing its activity and allowing for normal cell growth 

[109]. The parDE operon acts to ensure retention of the RK2 plasmid of the cells by 

mediating toxic activity and cell killing of daughter cells that lack a plasmid [109]. TA 

systems have been shown to abundant in free-living prokaryotes, and have been 

suggested to be linked with pathogenicity of bacteria [110]. The parDE operon may or 

may not be linked with a plasmid element in V. orientalis, as seen with other TA systems 

in prokaryotic cells. Analysis is needed in order to determine whether an RK2 or a related 

plasmid is stabilized by this operon.   

3.5  Virulence Factors  

The V. orientalis genome contains several commonly characterized virulence 

factors that are present in virulent Vibrio species.  Genes coding for hemolysins, lipases, 

RTX toxins, siderophores, and sialidases are found on the genome on both chromosomes 

(Table 7).  Several putative hemolysins and a hemolysin precursor are present in the 

genome.  This suggests the ability of V.  orientalis to disrupt epithelial cells and enter the 

blood stream of its host [5].  In the genome, lipases, phospholipases, and lipase chaperone 
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genes are present. These genes are linked with disease processes, affecting cellular 

physiology, and may be linked with cell hemolysins [111].  There are no known illnesses 

which have been caused by Vibrio orientalis. Genes and processes related to virulence 

can also be linked with enhanced survival in changing environments, ensuring survival in 

a range of environments that may not be ideal for growth.  
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Table 7: Some virulence related genes in V. orientalis  

  Location Gene 
L

ip
as

es
 

VIA_000042 Lysophospholipase L2 (EC 3.1.1.5) 
VIA_000837 Lysophospholipase (EC 3.1.1.5) 
VIA_002638 Lipase chaperone 
VIA_002639 Lipase precursor (EC 3.1.1.3) 
VIA_003192 phospholipase 

H
em

ol
ys

in
s 

 

VIA_000216 Putative hemolysin 

VIA_000250
Hemolysins and related proteins containing CBS 

domains 
VIA_000497 Hemolysin 
VIA_000965 Hemolysin 
VIA_001036 putative hemagglutinin/hemolysin-related protein 
VIA_001112 Thermolabile hemolysin precursor 
VIA_001977 Putative hemolysin 

VIA_002221
Hemolysins and related proteins containing CBS 

domains 
VIA_003159 Hemolysin/cytolysin 
VIA_003847 Putative hemolysin 

R
T

X
 

to
xi

n 

VIA_001744 RTX toxins and related Ca2+-binding proteins 

S
id

er
op

ho
re

s 
 

VIA_001325
Utilization protein for unknown catechol-siderophore 

X 

VIA_001472
Ferric siderophore transport system, periplasmic 

binding protein TonB 

VIA_001473
Ferric siderophore transport system, biopolymer 

transport protein ExbB 
VIA_001844 Aerobactin siderophore receptor iutA 

VIA_003084
Ferric siderophore transport system, periplasmic 

binding protein TonB 

VIA_003086
Ferric siderophore transport system, biopolymer 

transport protein ExbB 
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3.5.1   Sialic Acid Operon   

The sialic acid operon, present on Vibrio Pathogenicity Island (VPI) 2 of V. 

cholerae is also present on the small chromosome of the V. orientalis genome 

(VIA_001776 to VIA_001788).  Sialic acid can be utilized as the sole carbon source and 

components of the operon are vital to the capability of an organism to utilize this acid as 

a carbon source. Genes responsible for sialic acid metabolism are shown in Figure 7. The 

operon contains three core enzymes, the nan cluster in V. cholerae, E. coli, and related 

species [112, 113].  The nan cluster consists of the N-acetylneuraminate (NAM) lyase 

(nanA), the NAM kinase (nanK), and NAM-6-phosphate epimerase (nanE). Minimally, 

nanA, nanE, and nanK  make up a complete nan system and these genes code for proteins 

upregulated in the presence of sialic acid to catabolize sialic acid [113]. A lack of 

evidence exists linking ability of catabolism of sialic acid and its role in pathogenicity of 

V. cholerae in the human host [112].  However, sialic acid catabolism may help V. 

cholerae survive in the gastrointestinal tract and thereby offer a competitive advantage 

during infection in mucous rich environments. This mechanism may enhance the ability 

to degrade the mucin layer of the gasterointestinal tract and play a role in pathogenesis of 

the bacterium in the human host [112, 114].  The tripartite ATP-independent periplasmic 

(TRAP) transporter genes are also present in the nan operon. The TRAP system has been 

suggested to increase uptake affinity via the periplasmic binding component of the 

transporter system. Defects in the TRAP genes prevents sialic acid transport [113].  The 

V. orientalis genome possesses an extra copy of the nanA gene, however, one copy, 

VIA_001780 does not show any significant similarity to any sialic acid related genes, and 

may have been a result of a mis-labeled gene or sequencing error.  The two core regions, 

the TRAP transport system and the nan cluster, are shown in Table 8 and Figure 7.  The 
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V. orientalis genome does not have a sialidase gene, as V. cholerae; however, there are 

species that lack this enzyme, yet are able to catabolize sialic acid [113].  The presence of 

genes related to the sialic acid catabolic pathway, including core genes of the nan cluster, 

and presence of a transmembrane protein, suggests that V. orientalis is able to utilize 

sialic acid as a carbon and energy source, with a selective advantage where sialic acid is 

available.  It also points to V. orientalis having a commensal relationship with aquatic 

animals.  
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Table 8. Sialic Acid operon in Vibrio orientalis and Vibrio cholerae. 

The genes that are labeled the same gene in V. orientalis and V. cholerae are 
highlighted in blue.  The different genes are highlighted in pink. 

  Location Gene 
V

. o
ri

en
ta

li
s 

VIA_001776 hypothetical protein 

VIA_001777 
Sialic acid-induced transmembrane protein 

YjhT(NanM), possible mutarotase 

VIA_001778 
Sialic acid-induced transmembrane protein 

YjhT(NanM), possible mutarotase 
VIA_001779 Sialic acid utilization regulator, RpiR family 
VIA_001780 N-acetylneuraminate lyase (EC 4.1.3.3) 
VIA_001781 N-acetylneuraminate lyase (EC 4.1.3.3) 

VIA_001782 
TRAP-type transport system, large permease 

component, predicted N-acetylneuraminate transporter 

VIA_001783 
TRAP-type transport system, small permease 

component, predicted N-acetylneuraminate transporter 

VIA_001784 
TRAP-type transport system, periplasmic component, 

predicted N-acetylneuraminate-binding protein 

VIA_001785 
N-acetylmannosamine-6-phosphate 2-epimerase (EC 

5.1.3.9) 
VIA_001786 N-acetylmannosamine kinase (EC 2.7.1.60) 

VIA_001787 
N-acetylglucosamine-6-phosphate deacetylase (EC 

3.5.1.25) 
VIA_001788 drug resistance transporter, Bcr/CflA subfamily 

 

  

V
. c

ho
le

ra
e 

N
16

96
1 

VC1748 hypothetical protein 

VC1748 hypothetical protein 
VC1749 Sialic acid-induced transmembrane protein YjhT 
VC1750 Sialic acid-induced transmembrane protein YjhT 
VC1751 Sialic acid utilization regulator, RpiR family 
VC1752 N-acetylneuraminate lyase (EC 4.1.3.3) 

VC1753 
TRAP-type transport system, large permease 

component, predicted N-acetylneuraminate transporter 

VC1754 
TRAP-type transport system, small permease 

component, predicted N-acetylneuraminate transporter 

VC1755 
TRAP-type transport system, periplasmic component, 

predicted N-acetylneuraminate-binding protein 
VC1756 hypothetical protein 

VC1757 
N-acetylmannosamine-6-phosphate 2-epimerase (EC 

5.1.3.9) 
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VC1758 N-acetylmannosamine kinase (EC 2.7.1.60) 

VC1759 
N-acetylglucosamine-6-phosphate deacetylase (EC 

3.5.1.25) 
VC1760 Sialidase (EC 3.2.1.18) 
VC1761 Predicted transcriptional regulator 
VC1762 DNA repair protein RadC 
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Figure 7. Sialic acid metabolism genes in the V.  orientalis genome,  found on contig 79 
on the small chromosome.  
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 3.5.2   Late infection induced genes  

Late infection induced genes in V. cholerae N16961 are genes induced late in the 

infection cycle of the bacterium.  These genes have been hypothesized to increase fitness 

of the bacterium when introduced back into the environment [115]. Several genes 

presented in the study by Lombardo et al. [115] are homologous to genes in the V. 

orientalis genome.  The presence of homologous genes in the V. orientalis genome may 

give insight into genes that enhance fitness of V. orientalis in the environment. There 

were no homologous genes to those in V. cholerae that increased ability to infect hosts 

[115]. The homologous genes include those related to metabolism and increased ability to 

survive in the marine environment after leaving the host environment.  One homologous 

gene, the activator of the cis dctQM operon, C4-dicarboxylate transport transcriptional 

regulatory protein,  activates a transporter for malate, succinate and fumerate, enhancing 

the ability to utilize carbon sources for growth [115].  A gene  coding for a glycerol 

kinase was found and is a key enzyme related to the carbon cycle [115]. The presence of 

these genes suggest that V. orientalis is able to utilize these proteins in the environment, 

giving insight into the mechanisms it may use [115].  

3.5.3   Siderophores  

The possession of a sideorophore mediated transport system is related to 

increased virulence in bacterial pathogens, including Aeromonas salmonicida, V.  

anguillarum, Salmonella enterica, and V.  harveyi infection in vertebrates [116]. Two 

copies of tonB and exbB siderophore transport system genes are present in the V. 

orientalis genome on ctg79 and ctg80. The tonB, exbB, exbD genes (VIA_1472 to 

VIA_1474) are found on ctg79 and are required for a high affinity iron transport system 
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described in V. cholerae and E. coli [117]. This operon has been linked with the uptake of 

heme, vibriobactin, and ferrichrome in V. cholerae [117].  The genes are involved in 

coupling energy from the cytoplasm membrane to the outer membrane receptors, and to 

stabilize the inner membrane [117].  They are linked with ferrous iron and an ABC 

transporter for iron uptake, but the genome does not contain genes coding for vibriobactin 

found in other Vibrio species [117].  The presence of the siderophore related gene cluster 

suggests an ability of V. orientalis to transport ferrous iron and respond to low iron 

environments.   

3.5.4   Pilus  

Pili are hair like filaments that extend from the bacterial surface and allow 

different species to attach and colonize different niches [118].  Type IV pili (TFP) are the 

most widespread among bacteria and are the only type of pili found in both Gram-

negative and Gram-positive bacteria [118]. Type IV pili promote bacterial attachment and 

colonization of biotic and abitoic surfaces, and facilitate adhesion by directly or indirectly 

promoting inter-bacterial interaction and biofilm formation [118]. There are two subtypes 

of type IV pili, type IVa pili and type IVb. The presence of genes the pilMNOPQ  gene 

cluster (VIA_004139 to VIA_004143) on the V. orientalis genome are indicative of type 

IVa pili synthesis by the bacterium, and is one of the most conserved clusters of this type 

of pili syntehsis [118].   The presence of pilin synthesis related genes and the 

organization of these genes in the V. orientalis genome indicate V. orientalis produces 

type IVa pili and can attach and colonize different niches. 

Genes coding for the mannose-sensitive haemagglutinin (MSHA) pilus, 

associated with several Vibrio species and also classified as a type IVa pili, is present in 
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the V. orientalis genome [119].  MSHA pilus plays a role in biofilm formation and 

colonization in V. cholerae, V. parahaemolyticus, and V. vulnificus [119-121].  The 

MSHA gene cluster, mshQPODCABFGENMJIH (VIA_004012 to VIA_004012) is found 

on ctg77 in V. orientalis. The gene cluster is required for assembly and secretion of 

MSHA pili and is organized into two operons, one for structural proteins, and the other 

for secretion in the V. cholerae El Tor genome [121]. In V. cholerae El Tor, the MSHA 

pilus promotes adherence to exoskeletons of planktonic crustaceans and oysters, in 

addition to host colonization factors, and acts as a receptor for bacteriophage [119]. The 

mshA codes for a major structural subunit of the MSHA pilus and a defect in this gene 

can render a species unable to form biofilms[121]. The mshA is also essential for 

colonization of E. scolopes by V. fischeri [122].  The presence of the MSHA gene cluster 

indicates that V. orientalis may be able to assemble and secrete the MSHA pilus. This 

suggests that the bacterium is able to form biofilms and colonize and adhere to marine 

organisms, enhancing its survival in the environment.   

Another TFP is present in the V. orientalis genome, the tight adherence (tad) 

cluster. The genes are on a  genomic island, the widespread colonization island (WCI) 

[123].  Tad related genes are found in genomes of both Gram-negative and Gram-positive 

bacteria [123]. The tad gene cluster is coded by tadV/cpaA to tadG (VIA_001291 

VIA_001303) on ctg79 of the V. orientalis genome and tad related gene clusters were 

also found on another region of ctg79 and ctg 80.  V. cholerae and V. vulnificus both code 

for the tad TFP and both gene content and organization are conserved in V. orientalis, 

compared with the tad gene clusters of the two other Vibrio species [123].  The tad 

operon codes for a hypothetical structure of the tad secretion system, and also is required 
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for assembly of adhesive fimbrial low-molecular weight protein flp pili, essential for 

biofilm formation, colonization, and pathogenesis [123]. The flp proteins are coded by 

these genes form a monophyletic group within the type IVb prepilin genes [123].  The 

presence of the tad gene cluster, and the same gene content and organization as other 

species in the V. orientalis genome suggests V. orientalis may have a functional tad 

secretion system and the related ability to assemble pili facilitating non-specific binding, 

enhancing biofilm formation and colonization of surfaces.  

3.6   Luminescence  

 V.  orientalis is a luminescent bacterium , as was first described when the species 

was named [87].  The lux operon, as in all other luminescent bacteria, is found in the 

genome of V. orientalis.  In addition to the core genes, the luxH gene is present on the V. 

orientalis genome. Previously, luxH was found only in V. harveyi, and not in other lux 

operons of the genus Vibrio, with the exception of V. vulnificus VVL [81, 84].  The V. 

orientalis genome does not possess regulatory lux genes luxI and luxR, which are found 

in V.  fischeri lux operons [81].  The core lux genes, luxC, luxD, luxA, luxB, luxE, luxD, 

and luxG, present in all luminescent Vibrio species, were compared, along with different 

lux accessory genes present on each of the species that possess lux operon (Fig. 8) [81].  

A phylogenetic tree was constructed, based on core Vibrio lux genes to compare Vibrio 

species that possess the lux operon (Fig 9).  The V. orientalis lux operon is most closely 

related to the V. harveyi lux operon and also has the same lux operon genes, including the 

same accessory gene. The luxG and luxH gene in V. orientalis, show 92.3% and 96.6% 

nucleotide sequence similarity, respectively, to V. harveyi lux genes. The close 

relationship of the V. harveyi and V. orientalis lux operon supports the hypothesis that the 
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lux operon is vertically acquired. The presence of a luxH gene in the V. orientalis 

genome, not discovered in other lux operons, further supports vertical acquisition of the 

operon coding for luminescence because of similar whole lux operons possessed by 

closely related species. The presence of the lux operon in V. vulnificus has been suggested 

to be due to HGT because it is the only strain of the V. vulnificus that is described as 

luminescent and the close evolutionary relationship of the lux operon compared with the 

lux operon of V. harveyi  [86]. 

 Vibrio orientalis contains a luxO repressor (VIA_003573) gene and a putative 

luxO gene (VIA_003054).  In V. harveyi, LuxO represses luminescence at low cell 

density, and is deactivated in the presence of auto inducers [85]. The luxO genes of V. 

orientalis and V. harveyi have 75.2% nucleotide similarity. The presence of the luxO 

gene suggests that V. orientalis luminescence is under the control of LuxO repression at 

low cell densities and luminescence is density dependent in V. orientalis [85].     
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Figure 8. Visual alignment of the lux operon of species compared in the phylogenetic tree.  The core genes are aligned 
in the middle, and different accessory genes are found at the ends of both sides of the operon.  Direction of open 
reading frames are shown by arrows and genes are blue.  
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Figure 9.  Relationship of the core lux operon of Vibrio species. The lux genes and 
spacer regions were taken as one sequence and compared. Bootstrap values are 
labeled.  
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3.7   Survival in the Environment  

Vibrio orientalis was first isolated from the Yellow Sea off the coast of China 

and grows at 4C but not at 40C. A second strain was isolated from shrimp in the 

same study [87].  Survival mechanisms in response to changing conditions in the 

environment are advantageous to toxigenic species where these mechanisms may 

enhance infection. Survival mechanisms include ability to adapt to changing 

temperature, pH, nutrient levels, and association with marine organisms.    

3.7.1   Outer Membrane Proteins  

Outer membrane proteins (OMPs) compose about half of the outer membrane 

mass of Gram-negative bacteria and play a key role in the ability of species to adapt 

to changing environments.  Vibrio orientalis codes for an array of OMPs, including 

the ompW precursor, ompU, ompX, ompK, ompTolC.  OmpW precursor is located on 

ctg79 of the V. orientalis genome (VIA_001481). The ompW gene codes for an 

osmotic stress response protein in V. alginolyticus and V. parahaemolyticus. OmpW 

protein senses salinity stress in response to changing sodium chloride concentrations 

in the surrounding environment [124-126]. Both ompU and ompX are activated in 

response to low osmolarity [127]. The ompU transcription is induced by bile salts in 

V. fischeri, V. anguillarum, and V. cholerae and promotes enhanced survival in 

response to exposure to bile salts, including formation of porins in V. cholerae [128, 

129]. The OmpU protein also enhances the ability of V. fisheri to colonize and form 

biofilms by V. anguillarum [128, 129]. ompU is regulated by toxR in V. cholerae, and 

has been suggested to have adhesion properties which may enhance pathogenicity and 

colonization of the small intestine [130]. The ompU genes of V. orientalis and V. 
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cholerae N16961 share 78% nucleotide similarity. ompX is linked with iron 

homeostasis in E.  coli and is also associated with serum resistance and linked with 

virulence properties [131].  OmpK is a common outer membrane protein present in 

many Vibrio species and has been suggested as a receptor for vibriophage KVP40 in 

V.  parahaemolyticus [132].  The ompK gene in V. orientalis (VIA_003242) has high 

nucleotide sequence similarity to ompK of V. vulnificus (82%), V. parahaemolyticus 

(84%), and V. alginolyticus (80%).  Lastly, the outer membrane protein tolC gene is 

found on ctg80 (VIA_003865). This gene has been linked to bile resistance and 

colonization inside the intestine and is needed to transport proteins required for RTX 

secretion [133].  The TolC protein is an exit duct for proteins and drugs and is 

required for colonization of V. cholerae [134]. The presence of outer membrane 

proteins in the V. orientalis genome suggests that V. orientalis may have a capability 

to monitor osmolarity in the environment, transcribe appropriate proteins when 

exposed to bile salts, and enhance formation of biofilms and colonization of marine 

animals. Further work is needed to determine which OMPs are upregulated when V. 

orientalis is exposed to high salt concentrations.  

3.7.2   Flagellum  

Vibrio orientalis possesses a single, sheathed, polar flagellum [87].    Five 

regions on the V. orientalis genome code for polar flagellar proteins, all found on C-I, 

ctg80. Many genes are conserved, compared with the flagellar genes of V. cholerae 

and V. parahaemolyticus [135].  The first region (VIA_003630 to VIA_003647) 

codes for Region1, and includes genes for basal body rod, rings, hook, ring, and the 

filament.  flgMN are the regulatory genes for region 1. The second region codes 
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(VIA_002333 to VIA_002357) for the basal body, switch, and export, and filament.   

Region 3 codes for export, regulation, and chemotaxis (VIA_002394 to VIA_002405) 

and shows the same organization as V. cholerae [135]. Region 4 and 5, both code for 

flagella motor rotation genes, motAB (VIA_002298 and VIA_002299), and motY 

(VIA_003595) [135, 136], respectively, and are found on different regions of the 

genome, similar to V. cholerae and V. parahaemolyticus [135]. The two regions 

containing flagellin genes,  flaC  flaD (VIA_003631 and VIA_003630) and flaF flaD 

flaB (VIA_002333 to VIA_0023335) are different in V. orientalis, compared with 

flagellin genes in V. cholerae, V. parahaemolyticus, and V. anguillarum, with regard 

to content [137]. Like V. cholerae and V. anguillarum, V. orientalis lacks a third 

flagellin gene in region 1, and has a total of five flagellin genes, compared with six in 

V. parahaemolyticus [137]. The flaA gene is critical for motility in V. cholerae as is 

the  flaC in V. parahaemolyticus [137]. The flaC gene in V. orientalis may by critical 

for motility due its location, compared with the flaC and flaA gene location of V. 

parahaemolyticus and V. cholerae, respectively. The organization of genes coding for 

flagellum biosynthesis in the V. orientalis genome are similar to V. cholerae, but are 

different with respect to the flagellin genes and regulatory regions [137]. The genes 

that code for flagellin, export and regulation are usually species specific, and is the 

case for V. orientalis CIP102891.  

 

 

 

 



 

58 
 

3.7.3   Nitrogen and Phosphorus Metabolism  

Cycling of carbon, nitrogen and phosphorus are important functions in all 

Vibrio species [4] and Vibrio orientalis possess several genes related to nitrogen 

metabolism.  First, exposure to nitric oxide activates a mechanism to detoxify via the 

nitric oxide reductase operon. The norR, norV, and norW genes are present in tandem 

on the genome on the small chromosome (VIA_001885 to VIA_001887). norR codes 

for nitric oxide reductase transcriptional regulator. In E. coli, the NorR protein senses 

exposure to nitric oxide, and activates the transcription of norVW, together coding for 

nitric oxide reductase activity [138]. The presence of this operon suggests that V. 

orientalis may be able to survive in the presence of highly reactive nitrogen 

containing chemicals in the environment.  The nitrate reductase gene napA is present 

on the V. orientalis genome, coding for a complex in the periplasmic compartment 

and is widely distributed throughout the genus Vibrio [139]. The napA gene 

(VIA_000987) codes for the large subunit of the nitrate reductase complex the 

presence of nitrate reductase genes indicates V. orientalis has a functional nitrate 

reductase complex in the periplasmic compartment and, thus, is able to reduce nitrate 

to ammonia, contributing to the nitrogen cycle in the marine environment.  

Several subsystems are involved in processing phosphorus, the genes for 

which are present on the V. orientalis genome, including genes for phospholipid 

synthesis and DNA and RNA synthesis.  The inorganic phosphate specific transporter 

(pst) system is coded by pstSCAB-phoU (VIA_002173 to VIA_002179) codes for a 

high affinity inorganic phosphate transport system , and is also a regulator of the 

phoBR complex [140, 141]. The phosphate (pho) regulon, present in both V. cholerae 
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and E. coli [140, 141], is controlled by the phoBR complex (VIA_002171 and 

VIA_002172) that activates transcription of the Pho regulon, activated in response to 

low inorganic phosphate, maintaining phosphate homeostatsis and is turned off by 

high concentrations of inorganic phosphate in the environment [140, 141]. PhoB has 

also been implicated in controlling expression of virulence genes essential to V. 

cholerae[140]. The phoB of V. orientalis shows 83% nucleotide similarity to that of 

V. cholerae and 84% nucleotide similarity to V. vulnificus and 82% to V. 

parahaemolyticus. The presence of a pho regulon indicates that V. orientalis is able to 

transport and sequester inorganic phosphate in response to exposure to low inorganic 

phosphate environments.  

The ability of V. orientalis to metabolize these nutrients, and contribute to the 

nutrient pool gives insight into the role of the bacterium in the environment. 

However, which compounds are preferentially metabolized by this bacterium remain 

to be determined.  

3.7.4   Utilization of Iron 

The iutA (VIA_001844) gene is present on the V. orientalis genome and is 

linked with iron uptake and transcribed in response to low iron availability [142, 

143]. The iutA gene in V. orientalis and V. splendidus shows 75.5 % nucleotide 

similarity. The iutA genes of V. vulnificus, V. mimicus, V. furnissii, and V. fischeri all 

have at least 70% nucleotide similarity to those of V. orientalis.  The IutA protein is 

an outer membrane protein that functions as a ferric aerobactin receptor and is 

important for utilization of ferric aerobactin in iron limiting conditions in Vibrio 

species and E. coli [142]. The iutA gene is found in tandem to ferric aerobactin 
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transporter genes (VIA_001840 to VIA_001842). The presence of iutA genes and 

transporter genes suggest an ability of V. orientalis to uptake and use aerobactin in 

iron limiting conditions and thereby survive and grow under iron limiting conditions.    

Another gene related to iron sensing is fur, which codes the ferric uptake 

regulation (Fur) protein.  The fur gene in Vibrio orientalis is found on ctg80 

(VIA_002272) and shows at least 80% nucleotide similarity to that of several Vibrio 

species, including V. furnissii, V. cholerae, V. anguillarum, V. vulnificus, V. harveyi, 

V. alginolyticus, and V. splendidus. Fur acts as a repressor and coordinates 

transcription of various genes involved in maintaining iron homeostasis, including 

those related to iron uptake, metabolism, and storage, which are critical for growth. 

Fur also prevents iron toxicity [144]. Fur is deactivated under low iron condition and 

genes involved in uptake and metabolism of iron are activated [144].  Regulation, 

transport and maintenance of iron levels are vital functions.  Hence, presence of fur in 

V. orientalis suggests it is able to protect itself from iron toxicity and the transcription 

is coordinated by the amount of iron in the environment, activating iron uptake, 

storage and metabolism, supporting adaptation of V. orientalis to iron limiting 

conditions.   

3.7.5   Chitin Digestion   

Four copies of chitinases are present on the V. orientalis genome.  As with 

many Vibrio species, V.  orientalis contains genes that code for chitnolytic enzymes 

that play an important role in the breakdown of chitin in the marine environment and 

the recycling of insoluble carbon and nitrogen [145].  Chitinases are crucial in 

colonization of several Vibrio species on surfaces of crustaceans and chitinous 
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zooplankton [48, 145].  Vibrio species are able to utilize chitin as a primary carbon 

and nitrogen source [145, 146].  The breakdown of chitin is a complex process 

involving sensing, attachment, transport, and catabolism [3]. The presence of genes 

encoding chitinases suggests that V. orientalis successfully associates with chitinous 

organisms, including zooplankton and crustaceans, breaking down the chitin when the 

population blooms crash, thus contributing to the recycling of inorganic carbon and 

nitrogen, by utilizing chitin as a carbon and nitrogen source. The association with 

chitinous organisms is an evolved function of V. orientalis in its mutual role in the 

environment.  

3.7.6  Response to environmental stressors   

 Environmental stressors including pH, temperature, grazing and nutrient 

limitation, influence the natural functions of Vibrio species [1].  They must adapt to 

changing environments and have evolved several response mechanisms to combat 

stress when these changes affect the growth and survival of the organisms.  First, the 

V. orientalis genome contains a multiple stress response protein, rpoS (VIA_000249), 

or alternative sigma factor.  The gene shows 77% nucleotide similarity to the same 

gene in the V. harveyi genome, 74% similarity to V. cholerae, and 76% similarity to 

V. vulnificus. RpoS regulates stationary phase response and stress response genes 

including those involved in starvation, osmotic stress, temperature, and pH changes 

[147].  In Vibrio species, response to different stressors is species specific, with other 

response mechanisms in addition to RpoS regulation [147-149].   In V. harveyi, the 

rpoS protein controls response to ethanol changes [149]. RpoS stress regulator works 

in V. cholerae in response to hyperosmotic changes and nutrient deprivation and in V. 
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vulnificus exposure to hydrogen peroxide hyperosmolarity and acidic conditions 

[147-149].  The rpoS of V. orientalis may allow the organism to respond to stressors 

that include changes in osmotic, ethanol, and nutrient pressures; however, specific 

functions of RpoS in V orientalis remain to be defined.  

3.7.6.1 Response to pH  

The V. orientalis genome contains several genes related to response to pH.  

The cad operon, associated with acid stress, is located on ctg78 (VIA_000489 to 

VIA_00491) in its genome and functions to counteract acidification in the external 

environment. It is present in V. cholerae, V. parahaemolyticus, V. vulnificus, and 

other Vibrio species [61, 62, 150]. cadA codes for lysine decarboxolase in V.  

orientalis and is induced when acidification occurs in the external environment [150].  

CadC is responsible for pH regulated expression of cadBA genes through activation 

of a transcriptional promoter not part of the operon [151].  The cadA gene in V. 

orientalis shows at least 77% nucleotide similarity to cadA genes in V. cholerae 

(79.4%), V. parahaemolyticus (77.8%), and V. vulnificus (79.2%).  

Under alkaline conditions, Na+/H+ antiporters help maintain homeostasis of 

bacterial cells [152].  The V. orientalis genome contains nhaA (VIA_003122), nhaC 

(VIA_003518) and nhaD (VIA_001677) genes that code Na+/H+ antiproters.  The 

NhaA antiporter enhances ability to survive under alkaline conditions in V. cholerae, 

E. coli, and V. parahaemolyticus.  The antiporter is activated when the pH is 

increased [152, 153]. The nhaA gene in V. orientalis shows 75% similarity with nhaA 

of V. parahaemolyticus, and 72% to V. cholerae and V. vulnificus.  NhaD antiporter is 

activated and has the highest level of activity at pH 8.5 to 9 [154].  The nhaD gene of 
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V. orientalis has 72% similarity to nhaD in V. parahaemolyticus. A second type of 

antiporter family gene is found on the V. orientalis genome, the nhaP gene 

(VIA_002009). The NhaP Na+/H+ and K+/H+ antiporter is activated under alkaline 

conditions optimally with K+ accumulation and  a pH of approximately 7.75 in V.  

cholerae [155].  The antiporter is also able to work as an Na+/H+ antiporter in the 

absence of K+ [155]. The nhaP gene in V. orientalis shows 65% and 66% nucleotide 

similarity to V. vulnificus and V. cholerae, respectively.  

3.7.6.2    Temperature  

 Temperature is a major factor affecting the ecology of Vibrio species, 

influencing the ability of Vibrio spp. to perform basic cell functions.  Cold shock 

proteins are induced when a cell is exposed to low temperatures and these include 

cspA (VIA_001847), cspD (VIA_002501), and cspE (VIA_002715).  They are 

present on the small chromosome of V. orientalis.  Expression of cspA and cspD is 

induced when V.  vulnificus is exposed to cold temperatures [156].  CspA is a key 

element in triggering the cold shock response [156]. The cspA of V. orientalis and V. 

vulnificus have 75% nucleotide similarity. A second cold shock protein gene cluster, 

paraquat-inducible protein A and B (VIA_002969 and VIA_002968, respectively), is 

present on ctg80 of the V. orientalis genome.  This gene cluster is upregulated during 

cold shock in V. parahaemolyticus [59]. Expression of paraquat-inducible protein A 

is gradually upregulated when cells are exposed to increasingly colder temperatures, 

while paraquat-inducible protein B is upregulated and stays at the same expression 

level while temperatures decrease [59].  The paraquat-inducible A and B genes are 

present in several Vibrio species, including V. vulnificus, V. parahaemolyticus, and V. 
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alginolyticus. V. vulnificus and V. parahaemolyticus show 65% similarity to V. 

orientalis, with respect to these two genes.  

 The V. orientalis genome contains several genes that code for heat shock 

proteins, including groEL (VIA_000501), groES (VIA_000502), dnaK 

(VIA_002241) and dnaJ (VIA_002242).   The rpoH (VIA_000023) gene encodes a 

promoter that is highly expressed under heat shock and transcribes downstream heat 

shock proteins [157].  RpoH controls activation of the chaperone genes, groES and 

dnaK, of the groEL-groES and dnaK-dnaJ clusters that are overproduced when 

exposed to higher temperatures and play a major role in preventing intracellular 

protein aggregation in V. cholerae [158].  When exposed to a temperature increase of 

7C, the genes are induced [158].  The two chaperone genes groES and dnaK of V. 

orientalis have high nucleotide similarity, ≥ 84% and 83% respectively, to several 

Vibrio species, including V. cholerae, V. parahaemolyticus, V. harveyi, V. fischeri 

and V. vulnificus. 

3.7.7   Quorum Sensing  

The ability to quorum sense is important under environmental conditions, 

activating adaptive responses, coordinated expression of virulence, bioluminescence, 

and biofilm formation in Vibrio species [159].  In the V. orientalis genome, genes 

linked with quorum sensing on the genome include luxP (VIA_001151), luxQ 

(VIA_001152), luxS (VIA_003963), luxO (VIA_003573) and (VIA_003054),  

luxU(VIA_003574),  and hapR(VIA_000273). The luxS gene is required for 

production of AI-2, and can detect density of populations around the cell, with the 

capability of sensing both intracellular and intercellular density [65, 159]. LuxP 
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detects AI-2, and causes changes in conformation of the LuxQ protein.  Change in 

LuxQ triggers a signaling cascade related to removal of the phosphate group attached 

to LuxO and deactivates the protein, activating transcription of biofilm formation and 

bioluminescence genes [65]. HapR controls transcription of virulence factors and 

represses biofilm formation in low cell density environments [159].   
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Chapter 4   Conclusion  

 Comparative genomics has permitted exploration of the V. orientalis genome, 

and thereby its characteristics, functions, and features.  The relationship of V. 

orientalis to other species has been be elucidated, notably by using the phylogenies 

that were constructed with homologous genes. Genes acquired via horizontal gene 

transfer provide insight into possible functions the mobile elements can provide, 

especially adaptive functions.  Genes related to adaptive functions give insight into 

the environments to which the bacterium is able to adapt, including temperature and 

salinity regimes. The presence of genes related to colonization of potential hosts 

provides evidence for commensal relationships.  

 Although the genome provides insight into metabolic functions and genetic 

organization of V. orientalis, the most valuable insight provided is that associated 

with the ecology of this bacterium in its natural environment. These insights may 

enhance its identification from environments, and provide identification where the 

bacterium may not have been identified previously.  

 V. orientalis possess genes related with pathogenic potential, and these genes 

may give insight into the environmental function of the bacterium. Genes such as 

those related with nitric oxide metabolism may suggest that V. orientalis may grow in 

volatile environments. The presence of the sialic acid operon and various virulence 

genes that enhance host survival may be related environments that V. orientalis may 

be found. Although the bacterium has not been linked with infections, the presence of 

these virulence genes points to exploration of how these genes offer an advantage to 

possess and retain the genes in the genome.  
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