Abstract

Title of Dissertation: Dynamic Time-Based Scheduling for Hard Real-Time
Systems

Seonho Choi, Doctor of Philosophy, 1997

Dissertation directed by: Professor Ashok K. Agrawala
Department of Computer Science

In traditional time-based scheduling schemes for real-time systems time line is explicitly man-
aged to obtain a feasible schedule that satisfies all timing constraints. In the schedule the task
attributes, such as task start time, are statically decided off-line and used without modification
throughout system operation time. However, for dynamic real-time systems, in which new tasks
may arrive during the operation, or tasks may have relative constraints based on information only
known at run-time, such static schemes may lack the ability to accommodate dynamic changes.
Clearly a solution of dynamic real-time scheduling has to reflect the knowledge about tasks and
their execution characteristics. In this dissertation we present a dynamic time-based scheduling
scheme and show its applicability for three problem domains.

In dynamic time-based scheduling scheme attributes of task instances in the schedule may be
represented as functions parameterized with information available at task dispatching time. These
functions are called attribute functions and may denote any attribute of a task instance, such as
lower and upper bound of its start time, its execution mode, etc. Flexible resource management
becomes possible in this scheme by utilizing the freedom provided by the scheme.

First, we study the problem of dynamic dispatching of tasks, reflecting relative timing con-
straints among tasks. The relative constraints may be defined across the boundary of two con-
secutive scheduling windows as well as within one scheduling window. We present the solution
approach with which we are not only able to test the schedulability of a task set, but also able to
obtain maximum slack time by postponing static task executions at run-time.

Second, new framework is formulated for designing real-time control systems in which the
assumption of fixed sampling period is relaxed. That is, sampling time instants are found adaptively
based on physical system state such that a new cost function value is minimized which incorporates
computational costs. We show, for linear time-invariant control systems, that the computation
requirement can be reduced while maintaining the quality of control.

Third, acceptance tests are found for dynamically arriving aperiodic tasks, and for dynami-
cally arriving sporadic tasks, respectively, under the assumption that an Earliest Deadline First
scheduling policy is used for resolving resource contention between dynamic and static(dynamic)
tasks.

Dynamic time-based scheduling scheme can be applied as solution approaches for these problems
as will be shown in this dissertation, and its effectiveness will be demonstrated.

Dynamic Time-Based Scheduling for Hard Real-Time

Systems

by

Seonho Choi

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1997

Advisory Committee:

Professor Ashok K. Agrawala, Chairman/Advisor
Professor Satish K. Tripathi

Professor Moon-Jhong Rhee

Associate Professor David Mount

Assistant Professor Jeff Hollingsworth

(© Copyright by
Seonho Choi
1997

Dedication

To my parents and my wife

ii

Contents

List of Tables

List of Figures

1 Introduction

1.1

1.2

1.3
1.4

Motivation L e e e e
1.1.1 Scheduling with Relative Constraints
1.1.2 Dynamic Adjustment of Timing Constraints
1.1.3 Scheduling Dynamic Tasks
Our Approach L L o e
1.2.1 Dynamic Time-based Scheduling Scheme
1.2.2 Dynamic Dispatching with Complex Timing Constraints
1.2.3 Dynamic Dispatching with Variable Sampling Periods
1.2.4 Scheduling Dynamic Tasks
Contributions o e
Outline L L e

2 Prior Work

2.1

2.2
2.3
2.4

2.5

Real-Time Scheduling Theory
2.1.1 Fixed Priority Scheduling L .
2.1.2 Dynamic Priority Scheduling 0 oo
2.1.3 Static Time-based Scheduling
Scheduling with Relative Timing Constraints,
Control e
Scheduling Aperiodic and Sporadic Taskso oo
2.4.1 Scheduling Dynamic Tasks in Fixed Priority Systems
2.4.2 Scheduling Dynamic Tasks in Dynamic Priority Systems
2.4.3 Scheduling Dynamic Tasks in Time-based Systems
SUMMATY © « v v v v e vttt e e e e e e e e e e e e e e e

3 Scheduling with Relative Constraints

3.1
3.2

3.3

Problem Description e
Prior Work oL
3.2.1 Static Cyclic Scheduling L oo
3.2.2 Parametric Scheduling
SUMMATY © « v v v v e vttt e e e e e e e e e e e e e e e

iii

4 Dynamic Dispatching of Cyclic Real-Time Tasks with Relative Constraints 23

4.1 Dynamic Cyclic Dispatching o o o 23
4.1.1 Transforming a Constraint Set into a Constraint Graph 25

4.1.2 Definitions for Constraint Graphs., 30

4.1.3 Characteristics of Constraint Graphs 33

4.1.4 Off-line Component o e e 36

4.1.5 Off-line Component with Restricted Standard Constraints 39

4.2 Example . . . oL e e e e 40
4.3 SUIMMATY .« . ¢ v v vt e e e e e e e e e e e e e 41

5 Design of a Dynamic Temporal Controller 42
5.1 Introduction L L 42
5.2 Problem Formulation L o 42
5.3 Temporal Control with Fixed Sampling Times 44
5.3.1 Inductive Construction of an Optimal Control Law with 7 Given 46

5.3.2 Dynamic Temporal Control oo 50

5.4 Implementation L oL oL e e e 52
5.0 Example . . oL 52
5.6 Discussion Lo e e e e e e e 62
BT SUmmaryo .o i o e e e e e e e e e e e 62

6 Scheduling Aperiodic and Sporadic Tasks 63
6.1 Introduction L e 63
6.2 Problem Description L e 63
6.3 Dynamic Time-based Scheduling Schemes 65
6.3.1 Aperiodic Task Scheduling 65

6.3.2 Sporadic Task Scheduling L o L. 73

6.4 SUMMATY . . .« . v v e e e e e e e e e e e e e 77

7 Conclusion 78
7.1 Future Research 78

A 80
A.1 Proofs for Chapter 4 o e 80

B 89
B.1 Proofs for Chapter 6 e 89

v

List of Tables

List

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3

5.4

5.5

5.6

of Figures

Overview of dynamic time-based scheduling scheme 3
Example case. e e e e 11
No spare capacities can be found. L. 12
Example Job Sequenceo L 15
Static Cyclic Scheduling L 17
Limitation of Static Scheduling Scheme 18
Parametric Calendar Structure L oo 19
Parametric Calendar for Exampleo oo 22
Constraint Graph for TV2 26
Equivalence between Predicates and Graphs oo 28
Elimination of f7 and s3 from TV o Lo 29
®L2(f1) is denoted as dashed edges meeting with a vertical line. 32
Homogeneous edge sets, W'?(s3) and W'3(s2)o Lo oL 34
Overview of off-line component L L Lo 38
Parametric bound functions found from sched™® 41
Asymptotic parametric bound functions for sched™> 41
Decomposition of Jpy into Fi. L L e e e 45
Two control changing time sets 7;' and 72, 51
Cost differences between dynamic temporal controller and traditional controller with

0.05 sampling period. The maximum cost difference is less than 0.03.. 54

Number of control computation performed by a dynamic temporal controller is shown
for each initial state. Note that the maximum number of control computation is less
than 20, and for many of initial states they are less than 18. 55
Cost differences between optimal controller with 0.05 sampling period and an optimal
controller with 0.1 sampling period are depicted for each initial state. The maximum
cost difference is almost 0.5. Lo Lo 56
Cost differences shown in Figure 5.3 and Figure 5.5 are compared together. Note that
for almost all initial states the dynamic temporal controller outperforms traditional
controller with equal sampling period 0.1, even though the number of control com-
putations done by a dynamic temporal controller is smaller than that for traditional
controller. L e e 57

vi

5.7 Normalize costs from dynamic temporal controller and from traditional controller
with sampling period 0.1. Costs are normalized by dividing by the cost from tradi-
tional controller with sampling period 0.05., 58
5.8 Normalized costs from two controllers with adjusted threshold values. Omne from
dynamic temporal controller and the other from traditional controller with equal
sampling period 0.1.o Lo 59
5.9 Differences of worst case normalized costs between a dynamic temporal controller
with # = 0.01 and a traditional controller with a sampling period 0.1. The compu-
tational delays are randomly generated with a normal distribution. For each initial
state, the control trajectories are found 100 times, and the maximum cost among
them is recorded. L Lo 60
5.10 Differences of average normalized costs between a dynamic temporal controller with
= 0.01 and a traditional controller with a sampling period 0.1. The computational
delays are randomly generated with a normal distribution. For each initial state, the

control trajectories are found 100 times, and the average cost is recorded. 61
6.1 Deriving w;(0) recursively L L 66
6.2 est(i) and [st(7) for an example task set Lo Lo Lo 66
6.3 Joint scheduling of a non-realtime and I"' 68
6.4 Obtaining maximum slack within a scheduling window of a hard aperiodic task A. . 69
6.5 Example Schedules Lo 70
6.6 Deriving virtual deadlines and release times L. 71
6.7 Worst Case for Deadline Determination 73
6.8 Under-utilization of the transformed sporadic task 74
6.9 T found for an example task set oL oL Lo 75
6.10 Q'(t1,15) for an example task set 76
B.1 Busy period oL 90
B.2 Q' is increased or remains the same in the shifted interval 91
B.3 Q' is increased or remains the same in the shifted interval 91

vii

Dynamic Time-Based Scheduling for Hard Real-Time
Systems

Seonho Choi
July 29, 1997

This comment page is not part of the dissertation.

Typeset by IATEX using the dissertation style by Pablo A. Straub, University of Maryland.

Chapter 1

Introduction

Real-time computer systems are characterized by the existence of timing constraints on compu-
tations they carry out. The timing constraints are statically determined at pre-runtime from the
characteristics of physical systems they interact with. In some real-time systems, called hard real-
time systems, a timing failure is considered catastrophic and a guarantee should be given prior to
execution that every timing constraint will be satisfied. Examples are found in application domains
such as avionics, process control, automated manufacturing, robotics, etc.

Real-time systems of the next generation will be required to interact with more complex and
dynamic systems [40, 2]. In such environments it will be required that a mechanism be provided
to support high degree of concurrency, and to adapt itself to dynamically changing system state.
Dynamic tasks such as aperiodic tasks with or without timing constraints may arrive at any time
instant during system operation. Transient system overload may occur from dynamic nature of the
system. Dynamic resource discovery and allocation methods, and methods of dynamically adapting
to changing system conditions to assure or re-negotiate quality of service have to be supported by
the real-time systems.

In this dissertation, we concentrate on the issues concerning how to achieve flexibility for hard
real-time systems while not sacrificing the required quality of service. The new scheduling scheme,
called dynamic time-based scheduling, is developed for this purpose. Then, this scheme is applied to
three problems. First, it is addressed how to dynamically dispatch tasks in the presence of complex
timing constraints such as relative timing constraints. Second, the issues are studied regarding
dynamic adjustment of timing constraints, such as dynamic selection of task periods based on
physical system state. Finally, it is studied how to incrementally schedule dynamic tasks such as
aperiodic or sporadic tasks. The dynamic time-based scheduling scheme provides a sound basis for
realizing the solution approaches derived.

1.1 Motivation

1.1.1 Scheduling with Relative Constraints

In some real-time systems complex timing constraints exist, such as jitter, separation, and relative
deadline constraints, in addition to release time and deadline constraints [23]. Those constraints
are usually specified between event occurrence times and are based on information(e.g. task com-
pletion time) which is only available at run-time. Such timing constraints make it more difficult to
enhance the system with a capability to dynamically allocate CPU times to dynamic tasks while

not hampering the schedulability guarantee given to tasks with complex timing constraints.

In priority-based preemptive systems, one of the approaches to schedule the tasks with jitter
constraints is to separate the constrained event in the task into another task, and to associate highest
priority with it. By doing this, the event occurrence times in consecutive periods can be made to
be more predictable since higher priority tasks preempt lower priority tasks [36]. However, this
approach can not be used efficiently when there exist many periodic tasks with jitter constraints,
or when other types of relative constraints exist such as separation, or relative deadline constraints.
Moreover, it is quite difficult to flexibly incorporate aperiodic task executions by postponing static
task executions, when possible. It is the lack of ability to explicitly control task executions over
a time line that causes these problems in priority-based systems. Some work has been done on
scheduling aperiodic tasks and slack stealing algorithms in priority based scheduling systems [47,
18, 49, 32, 17, 24, 28, 48, 31]. However, most of their work assumes that only release time and
deadline constraints are present. The complexity of optimal slack stealing algorithms in priority
based systems is high [18, 17].

1.1.2 Dynamic Adjustment of Timing Constraints

Usually, the timing constraints of tasks are statically determined prior to system operation time
from the characteristics of the physical system. Periodic task model is widely used and assumed in
most real-time systems. One of the reasons for its popularity is that almost every control algorithm
is formulated under the assumption of periodicity since it is easy to derive control laws under that
assumption. Regardless of the current state of the system being controlled, the same period is used
for a control task. The usual determination rule for task period is to select a task frequency to be
5-10 times the corresponding system’s characteristic frequency. We study the issue of relaxing the
periodicity assumption and propose a new control formulation, called dynamic temporal control,
which dynamically decides the periods based on the system information such as current system
state. To show the feasibility and benefit of this scheme, a solution approach is presented for a
linear-time invariant control systems.

1.1.3 Scheduling Dynamic Tasks

A lot of work has been done on scheduling dynamic tasks such as aperiodic or sporadic tasks for
priority-based scheduling systems [47, 18, 49, 32, 17, 24, 28, 48, 31]. However, only recently some
results have been reported on scheduling aperiodic tasks on the basis of time-based scheduling
scheme [22] in the presence of release time and deadline constraints. But, the solution approach
presented in the paper is incomplete as explained in Chapter 2. We apply a dynamic time-based
scheduling scheme for this problem, and develop acceptance tests for dynamically arriving aperiodic
tasks, and for dynamically arriving sporadic tasks.

1.2 Owur Approach

Two categories of tasks are considered in this dissertation:

o Static Tasks: Tasks whose invocation times are known at design time. Usually, these are
periodic tasks, or those that have been converted to periodic tasks as in [38].

e Dynamic Tasks: Tasks whose executions are dynamically requested at run-time. These may
be aperiodic or periodic.

In this dissertation every static task is executed in non-preemptive manner. That is, once a CPU is
assigned to a task no preemption occurs until the task voluntarily releases the CPU or a maximum
execution time allowed for the task expires.

1.2.1 Dynamic Time-based Scheduling Scheme

The dynamic time-based scheduling scheme consists of two components, an off-line scheduler that
generates a dynamic calendar for static tasks, and a dynamic dispatcher that is responsible for
scheduling both static and dynamic tasks while maintaining the total order for static tasks found
by an off-line scheduler. The architecture of this scheduling system is shown in Figure 1.1.

Static Task Set

|

‘ Off-line Scheduler ‘

|

Dynamic Calendar

— -
Task
Attributes

Dynamic Dispatcher

I
I
. Dynamic Tasks ———»
I
I

On-line Component

Internal System External System

(e.g. Task Execution History) (e.g. Physical System State)

Figure 1.1: Overview of dynamic time-based scheduling scheme

A dynamic calendar is constructed from a totally ordered static task set found by an off-line
scheduler. Each task in a dynamic calendar may have functions denoting any of its attributes, such
as the task’s valid start time range, its execution mode denoting which version of the task will be
executed, etc. Those functions are called attribute functions. The functions may be parameterized
with any information available to the system at the function evaluation time such as any attribute
values of previously executed tasks, or current physical system state, etc.

At system operation time, the dynamic dispatcher makes use of any information available to it
at a current time instant to dynamically evaluate the attribute functions for the next task in the

dynamic calendar, and it decides the attributes of the next task(s), such as actual task start time,
actual execution mode of the task if multiple task versions exist, etc. Then, it records the decided
attributes of the next task for future usage.

1.2.2 Dynamic Dispatching with Complex Timing Constraints

The problem of scheduling tasks is studied when there exist complex timing constraints, such as
relative inter-task constraints. The min/max constraints may be given between start or finish times
of any two tasks. In this dissertation, it is assumed that a lower and upper bound of each task’s
execution time is known at pre-runtime, and the actual execution time may vary within those
bounds. The non-deterministic execution times may make it infeasible to assign static start times
to tasks at pre-runtime in the presence of the relative constraints between start or finish times of
tasks.

To incorporate realistic relative constraints such as jitter constraints, a cyclic task model is
defined with cyclic constraints allowed to be specified across the boundaries of scheduling windows.
To apply the dynamic time-based scheduling scheme to this problem, the following questions have
to be answered:

¢ How a total ordering among tasks can be found by the off-line scheduler?

e How a schedulability of a totally ordered task set can be checked in the presence of complex
timing constraints?

e What is the structure of a dynamic calendar?

¢ How a dynamic calendar should be constructed for the total ordering such that all timing
constraints imposed on tasks are guaranteed to be satisfied at run-time?

e How much is the overhead of dynamic dispatching at run-time?

The problem of deterministic scheduling has been well addressed in the literature. The solution
approaches are based on either heuristic or approximation algorithms, or optimal schemes using
implicit enumeration methods such as branch and bound search. In this dissertation, it is assumed
that a total ordering of static tasks is given, and the rest of the issues mentioned above are addressed.

The dynamic time-based scheme is elaborated as follows for this problem:

¢ Each taskin a dynamic calendar has two attribute functions, denoting lower and upper bounds
for the task’s start time.

e The attribute functions may be parameterized with start and finish times of already executed
tasks.

With this refined dynamic time-based scheduling scheme, the solution approach is presented in
Chapter 4.

1.2.3 Dynamic Dispatching with Variable Sampling Periods

Traditional control systems have been designed to exercise controls at regularly spaced time instants.
When a discrete version of the system dynamics is used, a constant sampling interval is assumed
and a new control value is calculated and exercised at each time instant.

In Chapter 5, we propose a new control scheme, dynamic temporal control, in which we not only
calculate the control value at control computation time but also decide the time instant when the
next control computation is done. The system state at control computation time is also used for
obtaining the next control computation time as well as for calculating a new control value. Taking
a discrete, linear, time-invariant system, and a cost function which reflects a cost for computation
of the control values, as an example, we show the feasibility of using this scheme. We implement
the dynamic temporal control scheme in a rigid body satellite control example and demonstrate
the significant reduction in cost.

Also, the dynamic temporal control technique proposed can be implemented by using the dy-
namic time-based scheduling scheme under the assumptions given in Chapter 5.

1.2.4 Scheduling Dynamic Tasks

We present a solution approach in Chapter 6 for scheduling dynamically arriving aperiodic and
sporadic tasks. It is assumed that a total ordering among static tasks is given at pre-runtime,
and that only release time and deadline constraints are allowed. The total ordering among static
tasks given initially is assumed to be maintained at run-time. Under this assumption, an EDF !
scheduling algorithm is assumed to be used, and acceptance tests for dynamically arriving aperiodic
tasks, and for dynamically arriving sporadic tasks, are derived, respectively. This solution approach
seems to be a sound basis for extending the problem to allow more complex timing constraints.

1.3 Contributions

The main contributions of this dissertation are:

o We propose a new dynamic time-based scheduling scheme in which the dispatcher has the
capability to dynamically decide the parameters(attributes) of the future tasks, such as start
time or sampling period, while not affecting the guaranteed schedulability of future tasks. The
dynamic decision is done based on the information available to the system at the decision
time, such as start times and execution times of already executed tasks, or current physical
system state and current system load.

o We develop a scheduling scheme which handles relative constraints, not only those defined be-
tween tasks within a scheduling window but also those cyclically defined across the boundaries
of consecutive scheduling windows. Jitter constraint is a good example of such constraints.

e An algorithm is developed for checking the schedulability of a totally ordered cyclic task set.
If the task set is schedulable, a dynamic calendar is constructed during the execution of the
algorithm. The algorithm is based on variable elimination techniques. Also, we show that
the run-time dispatching overhead is small, at most O(N) execution time is spent for each

'EDF stands for Earliest Deadline First.

task instance for evaluating attribute functions where N is the number of task instances in
one scheduling window.

o We present a new method for designing control systems in which the sampling periods are
adaptively selected based on system states. Traditionally, control processes are implemented
under the assumption of fixed sampling period. It is shown that, by dynamically selecting
timing instants when new controls are calculated, the computational resource requirement
can be greatly reduced while not sacrificing the quality of control. Linear time-invariant
control system is used as an example to show the feasibility of the scheme. This result can
be effectively used in an environment where computational resources can become scarce, e.g.,
in an overloaded situation.

e The acceptance tests are developed for dynamically arriving aperiodic or sporadic tasks when
a time-based scheduling scheme is used to schedule static tasks. EDF scheduling algorithm
is assumed to be used to resolve the conflicts between static and dynamic tasks.

1.4 Outline

The rest of the dissertation is organized as follows. We summarize prior work on real-time scheduling
theory in Chapter 2. Then, in Chapter 3, we formally introduce the problem of scheduling tasks with
relative timing constraints, present more detailed prior works related to the problem. In Chapter 4,
we present a solution approach for the problem defined in Chapter 3 by utilizing dynamic time-
based scheduling scheme. In Chapter 5, the dynamic temporal controller is developed for linear
time-invariant control systems. In Chapter 6, acceptance tests are found for dynamic tasks such
as aperiodic or sporadic tasks on the basis of a dynamic time-based scheduling scheme. Finally,
concluding remarks and directions for future work are presented in Chapter 7.

Chapter 2

Prior Work

In this chapter we review previous work on real-time scheduling, and on real-time control systems.
In Section 2.1, some relevant prior work on real-time scheduling theory is presented. In Section 2.2,
prior work on scheduling with relative timing constraints is given. The previous work on design of
real-time control systems is presented in Section 2.3. Finally, previous work on scheduling dynamic
tasks in a time-based scheduling scheme is presented in Section 2.4. Some prior work is presented in
more detail in the second part of Chapter 3 since they are directly related to our solution approach
which will be presented in Chapter 4.

2.1 Real-Time Scheduling Theory

Scheduling algorithms in hard real-time systems may be classified in several ways. One way is to
classify them in terms of how the scheduling is done. Priority-based scheduling schemes resolve the
resource(CPU) contention between different tasks by making use of the fixed or dynamic priorities
of the tasks. Another scheduling approach is time-based scheduling scheme in which the explicit
time line is used to schedule the tasks. In traditional time-based scheduling schemes, all resource
requirements are satisfied by statically assigning time intervals to the task instances at pre-runtime.

Each approach has its own advantages and disadvantages. Even though scheduling in priority
based approach can be done in a simple manner, it lacks the capability of scheduling tasks with
complex constraints such as precedence relations, and relative timing constraints, while the time-
based approaches have that capability.

2.1.1 Fixed Priority Scheduling

In this scheme, fixed priority is assigned to each task which is used at runtime to resolve the resource
contention. A task with a higher priority can preempt any lower priority task and thus the currently
executing task has the highest priority among the tasks currently active(released). It is well known
that rate monotonic scheduling algorithm is optimal for scheduling a set of independent periodic
tasks with deadlines at the end of their periods [36]. It is optimal in a sense that it can schedule
any set of tasks if that is schedulable by any fixed priority scheduling scheme. Any set of n tasks
is schedulable according to rate monotonic scheduling scheme if the total utilization of the tasks
doesn’t exceed n(2'/"—1) which converges to In(2) = 0.69314718 as n goes to oo. This is a sufficient
condition for a given set of tasks and not a necessary condition. The exact schedulability condition

which is necessary and sufficient is found in [30] with the statistical simulation results showing
that in general the utilization of the schedulable task set is higher than In(2).

A deadline monotonic scheduling algorithm is shown to be optimal for a set of tasks which have
deadlines less than or equal to their periods. It assigns priorities according to their deadlines, the
shorter the deadline, the higher priority is assigned regardless of the periods [33, 3]. For a set of
tasks with arbitrary deadlines, it is shown that the optimal priority assignment can’t be done in a
simple priority assignment method, but requires a pseudo polynomial time algorithm [50].

A synchronization protocol becomes necessary when tasks use shared resources such as semaphores.
Sharing resources may lead to a possible priority inversion when a higher priority task is blocked
due to the lower priority task possessing the resource required by a higher priority task. This
priority inversion may cause an unbounded blocking times. To solve this problem, several synchro-
nization protocols have been developed. In a priority ceiling protocol [45], a priority ceiling is first
assigned to each semaphore, which is equal to the highest priority of the tasks that may use this
semaphore. Then, a task, 7, can start a new critical section only if 7’s priority is higher than all
priority ceilings of all the semaphores locked by tasks other than 7. In stack-based protocol [5],
the concept of preemption level is used instead of the priorities to derive the protocol suitable for
both fixed priority and dynamic priority based systems. Also, sharing of multiple-unit resources
becomes possible with this protocol. The word “stack” is used in the sense that a task with higher
preemption level can only preempt and thus block tasks with lower preemption level. Preemption
levels are found statically reflecting synchronization constraints and resource requirements.

2.1.2 Dynamic Priority Scheduling

The priorities of tasks in dynamic priority scheme are decided at runtime. This means that the task
instances from the same task may have different priorities at runtime while in the fixed priority
scheme the same priority is used for scheduling them. The earliest deadline first(EDY') scheduling
algorithm which assigns the highest priority to a task instance with the closest deadline is known to
be optimal for a set of periodic or aperiodic tasks [36, 19]. The necessary and sufficient schedulability
condition for a set of independent tasks with their deadlines equal to their periods is that the total
processor utilization of the tasks should be less than or equal to 1 [36]. A dynamic priority ceiling
protocol [10] and a stack-based protocol [5] have been developed for dynamic priority systems to
enable the use of shared resources and to bound the blocking times. Note that the stack based
resource allocation protocol may be used for both fixed priority and dynamic priority scheduling
algorithms. Also, in [5], it is shown that the stack-based protocol provides a better schedulability
test than that of dynamic priority ceiling protocol.

2.1.3 Static Time-based Scheduling

In a static time-based scheduling scheme, a calendar for a set of task instances is constructed at
pre-runtime. At runtime this calendar is referred to execute each task instance at a scheduled time
instant. Through off-line scheduling, we can schedule any set of tasks with various constraints, such
as complex precedence relation, relative timing constraints, and other synchronization constraints.
Even though the complexity of the off-line scheduling is NP-Complete in general, the scheduling
can be done in a reasonable amount of time in most cases using techniques such as branch and
bound or heuristic search algorithms [52, 21, 12, 56]. It has been shown that the complexity of
non-preemptive scheduling can be dramatically reduced in many cases by decomposition scheduling

approach where task instances are decomposed into a sequence of subsets, which are scheduled
independently [54]. Also, the time based scheduling scheme can efficiently schedule task sets with
relative timing constraints which can’t be easily accommodated in priority-based systems [23, 12].
Because of these reasons, it is claimed that the time-based scheduling scheme is the most appropriate
scheduling approach for hard real-time systems [53].

2.2 Scheduling with Relative Timing Constraints

In some hard real-time systems, relative timing constraints should be satisfied between event oc-
currence times. as well as release time and deadline constraints on tasks. For example, control
output events in two successive instances of a periodic task may have to occur with the jitter re-
quirement satisfied. That is, the difference of two event occurrence times, called jitter, should lie
between a lower and an upper bound. The occurrences of events in different tasks may also be
constrained from the requirements and characteristics of the environment by separation or relative
deadline constraints [23]. These relative constraints have to be enforced in many real-time control
systems such as process control systems and flight control systems [9], etc. For example, in process
control systems, it has been shown that jitter constraints have more influence on control systems
performance than the frequency constraints [29].

Usually, the relative constraints between events are transformed into relative constraints be-
tween start or finish times of the tasks to make feasible the process of scheduling and dispatching
of task instances [26, 23]. In [26] a preemptive fixed priority scheduling algorithm is developed to
schedule periodic tasks with relative deadline constraints between finish times of two successive
instances of periodic tasks. However, other types of relative constraints are not allowed in that
work and it is not possible to flexibly manage slack times at runtime for dynamic tasks. In [23]
dispatching of a totally ordered non-preemptive task instance set with any min/max constraints is
studied and a new scheduling mechanism called parametric scheduling is developed. In that paper,
it is also shown that a traditional static scheduling approach, in which task instance start times are
statically scheduled under the assumption that every task instance spends its worst case execution
time, doesn’t work any more for task instance sets with general min/max constraints even when a
total ordering among them is given. Furthermore, in parametric scheduling scheme, it is possible to
effectively schedule aperiodic tasks at run-time by dynamically managing task instance start times.
However, the task instance set in parametric scheduling scheme consists of a finite number of task
instances with a finite number of constraints. This implies that the approach cannot be applied to
a periodic task model, since periodic tasks may invoke an infinite number of task instances with an
infinite number of relative constraints. In a traditional time-based scheduling scheme the task start
times are statically decided in a scheduling window, and this static schedule is cyclically used at
run-time. In the presence of jitter constraints between start times of non-preemptive task instances,
the problem of finding a static schedule has been addressed in [11]. However, this static cyclic
scheduling approach only allows certain types of min/max constraints to be specified, and it only
works under low utilization. Moreover, it is very difficult to flexibly manage task start times at
run-time to incorporate any dynamic tasks such as aperiodic tasks into the schedule.

2.3 Control

Rich literature exists on the design of controllers. However, nearly all the results develop control
laws under the assumption of equal sampling periods. In addition, taking computation time delay
into consideration for real-time computer control has been studied in several research papers [6,
25, 27, 41, 46, 55]. However, to the best of our knowledge, the dynamic temporal control approach
which is explained in Chapter 5 has not been studied in the past.

In dynamic temporal control, the computational cost is incorporated into the cost function and
the time instants for performing control computations are chosen to minimize this cost function.
With this new approach, we can perform the same quality of control with fewer control computations
compared to the traditional approaches [1].

2.4 Scheduling Aperiodic and Sporadic Tasks

Scheduling of dynamic tasks such as aperiodic or sporadic tasks has been studied extensively for
priority-based scheduling systems. In this section, those works are summarized as well as a recent
work on aperiodic task scheduling problem on the basis of time-based scheduling scheme [22].

2.4.1 Scheduling Dynamic Tasks in Fixed Priority Systems

Hard and non-realtime aperiodic tasks can be scheduled within a fixed priority scheduling scheme.
One approach is to utilize the aperiodic server concept in which a certain percentage of the pro-
cessor utilization is reserved for servicing the aperiodic tasks. That is, one or several periodic
tasks are reserved for servicing aperiodic tasks. Several algorithms have been developed and their
performances have been compared [31, 47]. Another approach is slack stealing approach which
tries to utilize as much processor time as possible by postponing the execution of hard periodic
task executions as long as the schedulability of the hard tasks is not affected [18, 32, 49]. The
optimal slack stealing algorithm is found to be pseudo polynomial [18] and several approximation
algorithms have been proposed [17].

2.4.2 Scheduling Dynamic Tasks in Dynamic Priority Systems

An aperiodic task scheduling problem has been studied under the assumption that only hard
periodic tasks exist [28, 24]. The O(N) acceptance test for a hard aperiodic task is given when
a set of independent periodic tasks is scheduled by EDF where N is the total number of task
instances in an LCM" of the periods of periodic tasks [14, 13, 15]. Aperiodic scheduling schemes
for EDF have been proposed and studied and the Improved Priority Exchange Algorithm is shown
to perform well [48].

YLCM stands for Least Common Multiple.

10

2.4.3 Scheduling Dynamic Tasks in Time-based Systems

The aperiodic task scheduling problem in time-based scheduling scheme has been addressed in the
paper by Fohler et al. [22]. The initial schedule is assumed to be given and the arriving aperiodic
tasks are scheduled at runtime. First, the deadlines of task instances, 7;, in the time-based schedule
are sorted and the schedule is divided into a set of disjoint execution intervals, I;. Then, the spare
capacities are defined for these intervals, which may be used to schedule arriving aperiodic tasks.
Several task instances with the same deadline constitute one interval and the end of an interval,
end(l;), is defined to be the deadline of the last task instance in the interval. The earliest start
time of an interval is defined to be the minimum of the earliest start times of its constituting task
instances. And, the start time of the interval, start(l;) is defined to be the maximum of its earliest
start time or the end of the previous interval. The length of an interval, | I; | is defined to be
end(I;) — start(l;). Then, the spare capacity is defined recursively as:

se(ly) = | L] — Z C; + min(se(li41),0)
€L

se(le) = |1] - Z C;
Tjele

where C; denote the worst case execution time of 7; and I, is the last interval in the schedule.
Note that the spare capacity may have a negative value reflecting the fact that the borrowed spare
capacity from the previous interval is used to schedule the task instances in the current interval.
Figure 2.1 shows an example case of this. In this example, the spare capacities for I and Iy are
found to be:
se(l;)=2-3=-1
se(l;) =8 =34 min(—1,0) =4

These spare capacities are used to schedule arriving aperiodic tasks and adjusted whenever the
aperiodic tasks are accepted.

e
| 11 |
[|
Ta T,

o] 3 7 10 12

R D

‘ 2 To ‘2

| |
R1 D,

Figure 2.1: Example case.

However, no consideration is given about how to obtain correct spare capacities when the
deadlines of the task instances are not in increasing order in the schedule. For example, no correct
spare capacity can be obtained in the example case shown in Figure 2.2.

According to the algorithm presented in that paper, we have two execution intervals, [10, 12]
and [0, 10]. The spare capacities in these intervals are:

s¢([10,12]) = 2—-7=-5
5¢([0,10])) = 10-3-5=2

11

L§! | T
0 7 10 12

Figure 2.2: No spare capacities can be found.

This result shows that, in an execution interval [0, 10], a spare capacity of 2 is found. However, as
can be seen in Figure 2.2, zero spare capacity should have been found in an interval [0, 10]. This
shows that their solution approach is incomplete.

2.5 Summary

We have presented a brief overview of the related work on real-time scheduling and control systems
design. The works by Cheng et al. [11] and Gerber et al. [23] are combined and extended in Chap-
ter 4 for scheduling tasks with relative timing constraints. Our solution approach overcomes the
limitations of those previous approaches and provides more flexible and unified ways for scheduling
tasks with complex timing constraints. Also, Fohler et al. [22] propose a mechanism to flexibly
manage slack times in time-based scheduling scheme. However, their approach is un-necessarily
complicated and incomplete as shown in the previous section. Our approach presented in Chapter 6
provides more intuitive and complete solution. Instead of spare capacities, we define slack values
which can be obtained by postponing static tasks in the schedule, and make use of them to schedule
dynamic tasks.

12

Chapter 3

Scheduling with Relative Constraints

We formulate the problem of scheduling a set of tasks with relative constraints, and present its
solution in the next chapter. We also present some prior works in detail since our solution approach
is based on parametric dispatching approach [23] developed for a transaction scheduling problem.

In Section 3.1, the problem is formally defined. Then two prior works are presented on schedul-
ing with relative constraints, static approach and dynamic parametric approach. Finally, a brief
summary is presented.

3.1 Problem Description

A task instance is called a job and these two terms will be used inter-changeably throughout the
dissertation. Let IV = {r/ | ¢ = 1,..., N} denote an ordered set of N jobs to be dispatched
sequentially in a j-th scheduling window [(j — 1)L, 7] where L is a positive integer denoting a
scheduling window size.. The jobs are executed non-preemptively in this order. At runtime, this
job set will be cyclically scheduled in consecutive scheduling windows. In other words, 77 and Tf
are jobs of the same task.

Then, let I'F =T1UT?U...UT” denote a set of jobs to be executed in a time interval [0, kL].
Each job 7/ (j > 1, 1 <7 < N) has the following set of parameters that may have integer values:
J
K3

¢ A runtime variable s/ denoting the actual start time of Tij

e A runtime variable ef representing the actual execution time spent for Tij
e A runtime variable fZ] = sf + ef denoting the actual finish time of Tij

e A constant lf corresponding to the minimum execution time of Tij

e A constant u! denoting the maximum execution time of 77.

Note that it is simply assumed that execution times of jobs are nondeterministic and bounded
from above and below, which is a realistic assumption in many real-time systems.

Standard constraints are defined next that may be imposed on {s,e! | 1<j <k, 1 <i< N}
for I'L:*,

13

Definition 3.1 (Standard Constraints) A standard constraint involves the variables of at most
two jobs, 71 and Ti(1 < a < b < N, | j—1|< 1), where sl (or si + el) appears on one side of
“<,” and slb (or slb + eé) appears on the other side of the “<.” For two jobs, 77, Té, the following
constraints are permitted(where ¢; is an arbitrary constant) and called relative standard constraints:

l l

sé -8 < ¢ 8y — sé < ¢35
SZL - (Slbl-l- 615) < e Slb - (5{1 + 6(]1;) < ¢ (3.1)
sfl—l—efl—slb < ¢3 sé—l—elb—sfl < ¢r)
sitel—(s,+e) < e shte,—(shteh) < s

In addition, each job has release time and deadline constraints. These constraints are called
absolute standard constraints. A job 1! has the following absolute constraints:

cg < 8 sl +el < e (3.2)

We also include as standard any constraint that can be rewritten in one of the above forms;
e.qg., 8, > slb + elb — el + ¢ falls into this category.

Next, the k-fold cyclically constrained job set is formally defined. * Any I'V* considered in this
dissertation belongs to this class.

Definition 3.2 (k-fold Cyclically Constrained Job Set) A job setT"* =T' uT?uU...UT*
(k=1,2,...,00) is classified as a k-fold cyclically constrained job set if it has the following linear
constraints:

1. The set of standard relative constraints:

Vi€ k) = Aix? + Apx?’ Tl < a (3.3)

where x7 is a 2N -dimensional column vector [s], €], s5,€3, ..., s, en]t. A1, Ay are my X

2N (mq > 0) matrices of 0, 1, or —1, and a is an my-dimensional column vector whose
elements are integers. Included in the my constraints are those denoting the total ordering on
jobs:

Vi€l k] = Vie[l,N) = sf —I—ef < 5?4—1
Viell,k) = sg\, + eg\, < st
2. The set of release time and deadline constraints:

Vj € [1,k] = Bx! <bl (3.4)

Vj e [1,k] = Dx! <d? (3.5)

!Note that & may be equal to co.

14

where b’ is an moy-dimensional column vector of non-positive integers satisfying:
b/ =bt +(1-j)L

and d7 is an ms-dimensional column vector of non-negative integers satisfying:
d =d' +(j - 1)L

We define CY* to represent the logical conjunction of the constraints induced by each row of

(3.3), (3.4), and (3.5).

In the above definition, the same matrices Ay, Ay, B, D are cyclically used to represent the
standard constraints on consecutive job sets.

The example job set shown in Figure 3.1 is presented here with corresponding matrices and
vectors defined in (3.3), (3.4), and (3.5).

Relative Constraints ‘ 15 < f 12— f 11§ 25 ‘
|
== ===
1
r r2
2] [
‘ f <20 ‘ 20<s? ff<40
Absolute Constraints ‘ | ‘ oo o o
} Time
(o]

Figure 3.1: Example Job Sequence

Example 3.1 Consider the example job set depicted in Figure 3.1. Each job set I7,1<j<k,
consists of two jobs, 7{ and 75 (i.e. N = 2), whose execution time bounds are:

1{25 u{:8
I = 8 w, = 10

The standard relative constraints defined within Y or within V1! are:

5 s d-Gled) TR WG A BT
s1+e < s g4t < Gt
Similarly, the set of standard relative constraints across the boundary of IV and IVt! are:
sitei+15 < s e’ i i+ gt
J+1 J+1 7 J S5+ e +18 < s+ e
siotea s ositea+2s S Y S R S e (3.7)
8% -|-€% < 8{+1 2 2 = 2 2

15

Finally, the absolute constraints on IV and TV1+! are:

200 —-1) < s 205 < st

200 —1) < s 205 < sy

s +el < 205 il et < ' (3.8)
1 1> 7 s te < 2005+ 1)

sh4eh < 205 st el™ < 20+ 1)

All standard relative constraints can be denoted by the following inequality:

11 -1 0] [0 0 0 0] [=5]
1 1 -1 0 0 0 0 0 0
0 0 0 0 o 1 1 -1 0 it -5
0 0 0 0 e} I 1 -1 0 e}+1 0
1 1 0 0 P+l -1 -1 0 0 g | <] -15
-1 -1 0 0 *2 1 1 0 0 %2 25
0 0 1 1 e -1 0 0 0 €2 0
0 0 1 1 0 0 -1 -1 —18
L0 0 -1 —1 | L0 0 1 1 | 22

And, the set of absolute constraints is represented by the following inequality:

10 0 0 51 —20(j — 1)
0 0 —1 0| |e | _|—20(-1)
L1 0 0|]|s |~ 205
0 0 1 1]]¢ 205

One traditional approach for scheduling with complex timing constraints is a time-based schedul-
ing scheme that assigns static start times to the jobs in the scheduling window such that the relative
constraints are satisfied if the static schedule is cyclically repeated at runtime. However, this ap-
proach can’t be used in the presence of arbitrary relative constraints between start or finish times
of jobs [23]. Also, this approach suffers from the loss of schedulability problem. Some task sets are
not schedulable in this approach, even though they are schedulable if our approach is employed.
This will be explained through an example later. To cope with some of the above limitations the
parametric scheduling scheme was developed in the context of real-time transaction scheduling [23].
However, as far as we know, the solution approach has not been found for general periodic task
models where jobs in different scheduling windows may have relative constraints. The objective of
the next chapter is to develop a schedulability test for I''**°, and to develop a flexible job dispatching
mechanism for schedulable job sets, I,

3.2 Prior Work

In this section, we briefly describe two scheduling schemes closely related to ours. The first one is
the static cyclic scheduling scheme [11] and the second one is the parametric scheduling scheme [23].

16

3.2.1 Static Cyclic Scheduling

The static cyclic scheduling problem has been studied in [11]. The periodic task model is used,
which means that every job has a release time and a deadline constraints, and only the jitter
constraints between two job start times are allowed. An important assumption made in the work
is that the start times of jobs in IV are statically determined as offsets from the start of the j-th
scheduling window [(j — 1)L, jL], and this schedule is invoked repeatedly by wrapping around the
end point of the current schedule to the start point of the next. In other words, 5?"’1 = s/ + L holds
for all 1 <.

In the presence of jitter constraints, the job start times should be chosen carefully such that
the jitter constraints are satisfied at run-time as well as the absolute constraints. Obtaining the
ordering and job start times is an NP-hard problem, since non-preemptive scheduling problem with
release time and deadline constraints is NP-hard. Several priority based non-preemptive scheduling
algorithms are presented and their performances are compared in [11].

Suppose that a job 7/ belongs to IV, and a job 7'2»]2-|'1 belongs to V!, and they have jitter
constraints ¢; < sf»jl - 5?1 < ey (0 < ¢q <eg <L) From the above assumption, sf»jl =L+ 5?2

J

holds. Thus, a new constraint is created, ¢y — L < 5?2 —8;, < ¢g — L, which is again equal to

L —c < sfl — 5?2 < L — ¢q. Therefore, the jitter constraintslacross the boundary of IV and TVt
are transformed into jitter constraints between two jobs in I'V. As a consequence, if we can find a
static schedule for I'V that satisfy the above transformed constraints and the constraints between
jobs within TV, it is clear that all timing constraints will be satisfied if that schedule is repeatedly

used at run-time. This approach is depicted in figure 3.2.

relative constraint

Figure 3.2: Static Cyclic Scheduling

However, this approach suffers from the following limitations:

e The relative constraints allowed are limited to jitter type constraints between start times of
two jobs.

o The schedulability of job sets are reduced due to the static start time assignments.

o It is very difficult to effectively incorporate dynamic tasks, such as aperiodic tasks, into a
schedule by dynamically adjusting the start times of the jobs.

17

In some real-time applications, the jitter constraints may be imposed between the finish times of the
jobs rather than between the start times [26]. Furthermore, a periodic task may be decomposed
into several subtasks and any kind of standard constraints may be defined between these sub-
tasks [23]. In these cases this static scheduling approach is no more applicable without sacrificing
the schedulability [23].

By transforming the jitter constraints across the boundary of IV and I7*! into those between
jobs within IV, we are affecting the schedulability of job sets. We will show that, under our new
scheduling scheme in which this transformation is not necessary, the schedulability of job sets is
increased, i.e., some job sets are not schedulable according to this scheme whereas it is schedulable
by our scheme.

3.2.2 Parametric Scheduling

Gerber et al. [23] proposes a parametric scheduling scheme in the context of transaction schedul-
ing, in which any standard constraints may be given between jobs in one transaction. Let I =<
T1,...,7n > denote a sequence of jobs constituting one transaction with a set of standard con-
straints, C. Also, let [; and wu; denote a lower and upper bound of 7;’s execution time, respectively.

In the presence of standard constraints between start or finish times of tasks, it may not be
possible to statically assign start times to tasks in the scheduling window by using the maximum
execution time(u!) as the worst case execution time for each job. This is due to the nondeterministic
execution times of tasks and the existence of standard constraints involving the finish times of tasks.
This is well explained with the following example [42].

5

[]
|

0 S 82 5,16 L
2

Figure 3.3: Limitation of Static Scheduling Scheme

Consider a simple example shown in Figure 3.3 which consists of two jobs, 7 and 75. Suppose
that Iy = 2, w3 = 6, and there exists a constraint s; — f; < 3. In this example, it is not possible
to statically assign start times for two jobs due to large variability of first job’s execution time and
due to the existence of relative deadline constraint between first job’s finish time and second job’s
start time. However, if we allow the start time sy for 79 be parameterized with f;, then all the
constraints are satisfied under all execution scenarios.

In [42], a parametric schedulability of II is defined as follows:

Sched = sy ::Vey € [l1,uq] ... iAsy = Ven € [In,un] = C (3.9)

From this Sched predicate, parametric lower and upper bound functions for each start time s;
are obtained by eliminating the variables in an order ey, sy, ..., ;. The parametric lower and

upper bound functions, denoted as F["" and F;'*", are parameterized in terms of the runtime

18

variables, s1, ey, ..., 8;_1, €;_1 of already executed jobs. The parametric calendar structure is
shown in figure 3.4.

FI0 < s < F
Fo(si,e1) <0 sy <0 FP(sy,e)
FI¥(s1,€1,82,...,5N-1,eN—1) < sy < F(s1,€1,52,...,5N_1,EN—-1)

Figure 3.4: Parametric Calendar Structure

This parametric calendar is obtained from an off-line component of the algorithm by applying
variable elimination techniques that will be given later in this section, and the actual bounds of s;
are found at runtime by evaluating the parametric functions in the parametric calendar by using the
start and finish times of already executed jobs, 7, ..., 7i_1. The actual form of these parametric
functions are given in the following proposition which is obtained from the paper by Saksena et
al. [23]. This proposition will be used in deriving our solution approach in Chapter 4.

Proposition 3.1 (Parametric Bound Functions [23]) A parametric lower bound function for
s; is of the following form:
fgﬂn(slv.flv .. '78j—17fj—1)
= max(p1 +c1,p2 + €2, Do+ o,] (3.10)

where each p;, 1 <1 < a, belongs to {s1, f1,...,8i—1, fi—1}, and ¢; is an arbitrary constant.> And,
o' is a non-negative integer.

Similarly, a parametric upper bound function for s; is of the following form:

fgax(slv.flv' . '78j—17fj—1)

= min(q +di,q2+ da, ..., qp + dp, aT7) (3.11)
where each ¢;, 1 <@ <b, belongs to {s1, f1,...,s;_1, fj—1}, and d; is an arbitrary constant..
The main result obtained is that, for an arbitrary set of standard constraints on Il = {7y, ..., 7n},

we can find the parametric calendar in O(N?) time and the run-time evaluation of each bound func-
tion can be carried out in O(NV) time.

By applying this parametric scheduling scheme, we are not only able to schedule any sequence
of jobs with standard constraints, but also able to take advantage of the flexibility offered by the
scheme. That is, the job start times may be decided dynamically at runtime to incorporate other
dynamic activities in the system. Even though this scheme is directly applicable to our k-fold
cyclically constrained job sets, if the number of jobs in T'V* becomes large, the bounds need to be
found on the size of parametric functions and for the memory requirements for them.

In the rest of this section, the parametric scheduling scheme is presented with an example.

?Note that fi=s;i+ei.

19

Elimination of Quantified Variables

Consider a set of linear constraints C' in n variables (z1,22,...,2,),
C = Hx<h

which must be satisfied with respect to some defined existential and universal quantification over
the variables. In this section we show how an innermost universally quantified variable z,, with
associated lower (/,,) and upper (u,) bounds can be eliminated to obtain a new set of equivalent
constraints. The set of constraints ' may be partitioned into three subsets, depending on whether
the coeflicient of z,, is positive, negative or zero. Thus,

C=CpnN CynNCz

where
Cp = {2, 2> Di(x'), 1 << p}
Oy = {2, < E(X), 1<j< g}
CZ = {OSFk(X/), 1§k§7‘}
Di(x"), E;(x"), Fx(x') are linear functions of x’ = [z1,-++,2,_1]7. The elimination of variable z,

leads to a new system of constraints C’ obtained from C by substituting z,, with [, or u,, depending
on its coefficient:

¢ = (Cpht A (CN)un A (Cz)

The following lemma has been derived and proved in the paper by Saksena et al.[23], and shows
the validity of the above variable elimination process.

Lemma 3.1 ([23]) Let C be a system of linear constraints and let C' be the resulting set of con-

straints after eliminating a universally quantified variable ., with lower bound [, and upper bound
wy,. Then the sentence VY, € [l,,,u,]:: C holds if and only if C' holds.

The existential quantifier can be eliminated by using Fourier-Motzkin variable elimination tech-
nique [16].

Fourier-Motzkin Elimination. Consider a system of linear constraints ' in n variables
(21,22,...,2,). We wish to find a system of linear constraints C’ over x' = [2q,...,2,1]7,
such that x’ is a solution to C’ if and only if x’ is a solution to dz,, :: C. As before, the constraints

in €' may be partitioned into three subsets.

T, > Dyx'), 1<i<p
C =z, < Ejx), 1<j<q
0 < Fi(x'), 1<k<r

The elimination of variable z, leads to a new system of constraints:

Di(x') < Ejx'), 1<i<p, 1<j<q
[A— .. — 2 = 7 ? = = 9 = =
¢ =3z, C _{ 0 < Fux), 1<k<r

Again, the following lemma has been derived and proved in the paper by Saksena et al.[23], and
shows the validity of the above variable elimination process.

20

Lemma 3.2 ([23]) Let C be a set of linear constraints. Let C' represent the set of constraints as
a result of eliminating x,, using Fourier Motzkin elimination as described above. Then,

dz,:: C

holds if and only if C' holds.

Example

This example is based on the work presented in the paper by Saksena et al.[23]. Here, the variable
elimination technique is applied to

Jsy 1 Vey € [5,8] :: Isg 12 Vey € [8,10] :: sz :: Ves € [5,8] 12 Tsy : Vey € [8,10] :: CH2

where C%? is a constraint set given on I''? in Example 3.1. Initially, since e4 is the innermost
universally quantified variable, it can be eliminated first. The constraints involving e4 in C!? are:

sS4+ €4 < 40
sqteqs—(sg+e) < 22
18 < syt eq—(s2+e2)

The elimination of e4 from these constraints results in the following derived constraints:

S4 < 30 (eq:= uqg = 10)
sS4 —(s24+e) < 12 (eq:= uqg = 10)
10 S S84 — (82 + 62) (64 = l4 = 8)

Therefore, these three constraints are substituted for the original constraints containing e4. Thus,
the complete set of constraints is given below:

0

S1

<
$9 + e 2 20 82_(81+61) <5
? 2(2) < . 15 < s34e3—(s1+e€)

= s3tes—(s1+e) < 25

s < 30 (3.12)

s 4 e < . 10 < sq4—(s2+e2)
51 N el < 52 54— (s2+e€) < 12
2= s4—(ss+e) < 5
83 +e3 < o8y

Next, an existentially quantified variable s;, which is the innermost one, is eliminated. The
constraints containing s4 in the above constraint set are:

84 < sy teg+ 12
21 € ——II—_10 E 54 s4 < s3+es3+5 (3.13)
53 €3 X 54 sS4 S 30

From these constraints, the parametric lower and upper bound functions are obtained as follows:

f;{nin(slv €1, 52, €2, 33, 63) maX(SS + €3, 52 + €2 + 10)
fiﬂax(slv €1,52,€2,S53, 63) = min(82 + €2 + 127 53 + €3 + 57 30)

21

And, as a result of eliminating sy, the constraints in (3.13) are replaced by the following con-

straints:
10 < 12
sg+e2+10 < s3+e3+H sa+e < 20
sg+e+10 < 30 - sgt+e2+H < s3tes (3.14)
s3t+e3 < Sy +eg+ 12 s3te3 < sytey+12
0 S 5 $3 + €3 S 30
s3+ez < 30

If we continue this process until sy is eliminated, then we will obtain all the parametric bound
functions, or the predicate will turn out to be false during the process. Figure 3.5 shows the
obtained parametric bound functions.

0 S 81 S 2
max(8,51+e1) < sp < min(10,8 + e +5)
max(20,s1 + €1 + 10,52 +€2) < s3 < min(22,s1+ €1+ 17,55+ e3 +4)
max(ss + €3, 82 + €2+ 10) < 54 < min(30,s534+ ez + 12,53 + €3+ 5)

Figure 3.5: Parametric Calendar for Example

3.3 Summary

We have formally defined the problem whose solution approach will be given in Chapter 4. The k-
fold cyclically constrained job set was defined that allows standard constraints to be specified across
the boundaries of two consecutive scheduling windows as well as within one scheduling window.

Also, prior works were presented in detail on scheduling with relative constraints, including the
parametric scheduling scheme [23].

22

Chapter 4

Dynamic Dispatching of Cyclic Real-Time Tasks with
Relative Constraints

In this chapter, we present an off-line algorithm to check the schedulability of a job set, I'**°. And,
if they are schedulable, the parametric lower and upper bound functions for each job start time are
found in terms of the start or finish times of the previous jobs. These bounds can be evaluated at
runtime within O(N) time. Suppose that 77 belongs to I'7, then the parametric lower and upper
bound functions of sf, are parameterized in terms of the start and finish times of already executed
jobs in T/~ and IY. Another important result is that only N pairs of parametric bound functions
have to be stored and cyclically used at runtime. The off-line algorithm has a pseudo-polynomial
complexity O(n*N?), where n is the number of jobs in one scheduling window that have relative
constraints with jobs in the next scheduling window. If only jitter constraints on periodic tasks are
allowed, it can be shown that the off-line and online components require O(n*N) and O(n) times,
respectively. Also, it is shown that, for a certain class of standard constraints, called restricted
standard constraints, the off-line algorithm requires at most O(N? + n®).

The rest of this chapter is organized as follows. In Section 4.1, the parametric scheduling
approach is developed by using the quantifier elimination techniques, and by transforming the
constraint set into an equivalent constraint graph. In Section 4.2, example job sequences are given
with parametric calendars found from the off-line algorithm. Finally, a summary of the chapter
follows in Section 4.3.

4.1 Dynamic Cyclic Dispatching

As in the parametric scheduling approach developed for transaction scheduling [23], we want to
devise a schedulability test and an efficient dispatching mechanism when an oo-fold cyclically con-
strained job set, TV, is given with its constraint matrices and vectors. We say I'V*, is schedulable
if there exists any method which can successfully dispatch the jobs in I''*,

Definition 4.1 (Schedulability of I'"*) The k-fold cyclically constrained job set T''F (1 < k) is
schedulable if the following predicate holds:

sched"* = sl Vel eI}, ul] 2 3sd i Vel e [, ud] : ...
sk 0 Veky e [1K, uky] 2 cbF (4.1)
where CY* is a set of standard constraints defined on {si,el,.. .,sﬁ\,, e?\,}.

23

Then, the following proposition holds for all £ > 1.
Proposition 4.1

VE>1 = sched" "' — sched"*

Proof: Obvious from the definition of a cyclically constrained job set and from the definition of
sched™ in (4.1). m

Hence, once sched'™ turns out to be False, then all sched', k < j, are False, too. By this
proposition, the schedulability of I'''* is defined.

Definition 4.2 (Schedulability of I'l>*) T s schedulable if and only if

lim sched“* = True
k—oo

In [23], it is shown that checking Predicate (3.9)is not trivial because of the nondeterministic job
execution times and because of the existence of standard relative constraints among the jobs. This
applies to the above sched™* predicate, too. The variable elimination techniques are used in [23] to
eliminate variables from Predicate (3.9). At the end of the variable elimination process parametric
bound functions for s;, that are parameterized in terms of the variables in {sy,ey,...,e;_1}, are
found as well as the predicate value.

However, if we want to apply the variable elimination technique to sched"*, the following
problems have to be addressed first:

1. On which subset of {s{,¢i,.. .,5?_1, ef_l} does the parametric bound functions for sf depend?
2. Is it required to store parametric bound functions for every job in I'*?

3. What parametric bound functions have to be used if k is not known at pre-runtime and
dynamically decided at runtime?

Let]—"T?m’k and fT?ax’k denote parametric lower and upper bound functions for sf, respectively,
5] 57

7

that are found after the variable elimination algorithms are applied to sched™. If the number of

variables is unbounded with which]—"Tgbm’k fT?ax’k is parameterized, then it is not possible to
B S

evaluate them at run-time within bounded computlation times. Also, if it is required that parametric
bound functions for every job in I'"* be stored at runtime, the scheme is not implementable for
large k because of memory requirements. Finally, if the value of £ is not known at pre-runtime
and is decided dynamically at runtime, which is true in most real-time applications, the parametric
bound functions to be used have to be selected.

In this section, the answers to the above questions are sought by first transforming sched'*
into a constraint graph and by investigating the properties of such graphs. In section 4.1.1 the
transformation rule is presented with lemmas showing the equivalence relationship between sched"*
and its constraint graph with respect to variable elimination process. In section 4.1.2 several
terminologies are defined for constraint graphs, and in section 4.1.3 the properties of constraint
graphs are investigated. Then, in section 4.1.4 a complete off-line algorithm is presented to check
sched™ and to obtain parametric bound functions for job start times if it is schedulable. In
addition, for a certain class of standard constraints, it is shown in section 4.1.5 that the off-line
algorithm can be executed within O(N?® + n®) time by pre-eliminating certain nodes from the
constraint graph.

24

4.1.1 Transforming a Constraint Set into a Constraint Graph

We want to apply the variable elimination algorithms to sched'™ for some fixed k, and want to
find out answers to the previously raised three questions. For that purpose, we first transform
the predicate into a constraint graph and apply node elimination algorithms(corresponding to
the variable elimination algorithms) to the graph. Then, the properties of the constraint graphs
created during the node elimination process are examined. Working on constraint graphs, instead
of constraint sets themselves, makes it easier to infer and prove useful properties. In this section,
the transformation rules are given for a set of jobs and its associated constraint set.

Let Il = {ry,72,...,7n} be a finite set of jobs with a set of standard constraints, C. Consider
eliminating quantified variables from the following predicate:

Sched = sy 2 Vey € [ly,uq] ... 3sy =2 Veny € [In,un] =2 C

Then, predicates on subsets of {sy,e,...,Sn,en} are defined next that are found after elimi-
nating variables.

Definition 4.3 Sched(s,)(1 < a < N) is defined to be a predicate on a set of variables {s1,e1,...,5,}
that are found after eliminating variables of < fn,Sn,..., fa > from Sched. Sched(e,) is defined
stmilarly.

That is, Sched(s,) can be expressed as
Sched(s,) = dsy :: Vey € [l uq] ... 354 10 C(8,)

It will be shown that Sched(or Sched(s,), or Sched(e,)) can be transformed into a directed
graph, which is called a constraint graph, such that the variable elimination process can be mapped
into a corresponding node elimination operation in the graph. Note that, in the following defini-
tion of a constraint graph, semi-exclusive-ORed edges are defined, which will be used in defining
restricted paths in constraint graphs. Also, vy —L. v, denotes an edge from a node v1 to a node vy
with a weight w, and < vy Ty 22 a3 v; > denotes a path from a node v; to a node v; with
a weight sum w = Z;;ll w;. v; ~ v; denotes that there exists a path from v, to v;, and v, A
denotes that there exists a path from vy to vy whose weight sum is w.

The following rule is used to transform a predicate into a constraint graph. Here, the semi-
exclusive-ORed edges denote a pair of edges that cannot be arbitrarily placed in a restricted path

that will be defined in Definition 4.6.

Definition 4.4 (Constraint Graph) A constraint graph G(V, E) is found from
Sched (or Sched(s,), or Sched(e,)) as follows:

1. node set 'V is obtained as follows:

e eV
o s, fi €V forl <1< N where f; = s; + €.

2. edge set F is obtained as follows:

o For each tuple < s;, f; >, add the following semi-exclusive-ORed edges to F':

25

(a) si = [,
(b) fi = si
e For each constraint in C that can be converted to:
(a) v; —v; < (vi,v; € {s;, i |1 <i<N}): add v, < v to E.
(b) v; <ec: add vg — v; to E.
(¢c) —v; <e: add v; == vy to E.

Definition 4.5 The constraint graph found from Sched(s,) is denoted as G(s,).t Similarly, G(f,)
represents a graph found from Sched(e,).

Figure 4.1 shows a graph created from the example job set I'''? defined in Example 3.1. Note
that vg is an extra node created to represent a constant 0 that is used to specify absolute constraints
such as the release time and the deadline constraints. In the figure, the edges connected by & are
semi-exclusive-ORed edges.

Figure 4.1: Constraint Graph for I'l:2

Note that there may exist only one edge from one node to another from the uniqueness of
inequality in the constraint set. For example, if there are two constraints v1 —v9 < ¢q and v1—v9 < ¢9
in C, then one of them is redundant. Therefore, we can denote an edge from vy to vy in a constraint
graph as vy — vy without its weight specified. Also, note that any edge from f; to s; is semi-
exclusive-ORed to any edge from s; to f;. That is, even if any of these two edges is created from
another constraint in C rather than from the minimum or maximum execution time constraint,
they are semi-exclusive-ORed.

Definition 4.6 (Restricted Path) In a constraint graph, a path, < v — vy 2 ... v;_y a3
v; >, 15 called a restricted path from vy to v; if the following is satisfied:

o If f; — s; appears in the path, then its semi-exclusive-ORed edge s; — f; may appear at most
once in the path, and vice versa.

o [f two semi-exclusive-ORed edges, f; — s; and s; — f;, appear in the path, then they belong
to a sub-path < f; — s; — f; >.

!The full notation would be G(s,)(V, E). But, if no confusion is caused, G(s,) will be used in this chapter.

26

Note that if a sub-path < f; — s; — f; > appears once in the path, then neither f; — s; nor
s; — f; should appear at another place in the path, and vice versa.

Definition 4.7 (Restricted Cycle) A restricted cycle in a constraint graph is defined to be a
cycle? such that

1. it satisfies the definition of a restricted path.
2. it is not a sub-path of < f; — s; — f; > forany1 < j < N.

For example, a path < f; — s; — f; — s; — f; > is a restricted cycle while a path < f; — s; —
f; > is not. Also, a restricted path without any restricted cycle in it is called an acyclic restricted
path.

The elimination algorithm of a node f, from a graph G/(f,) is presented next.

Algorithm 4.1 (Elimination of f, from a Graph G(f,)) Elimination of f, from G(f,) is per-
formed by the following algorithm.

1. For each edge pair, < y ~% fu, fo ~2 s, >, that are not semi-exclusive-ORed in G(f,):

wi1+w
o create an edge y =7 s,.

(a) If y = s, and wy + wy < 0, then return False.?
(b) If y = s, and wy + wy > 0, then remove this edge.*

+wa

(¢) If there already exists an edge y ~— s, before creating y WITY2 5., then the edge with
less weight remains, while the other is removed.

2. For each edge pair, < s, — fo, fo —2 2 >, 2 # 8,, that are not semi-exclusive-ORed in

G(fa):

wi1+w2
o create an edge s, — z

(a) If there already exists an edge s, ~ z before creating s, vty z, then the edge with

less weight remains, while the other is removed.

3. Set V.=V — {f.} and remove all edges to or from f, in G(f,).

Let Elim(G(f.), fa) denote a new graph created after eliminating f, from the graph G(f,)
according to Algorithm 4.1 in case False is not found. In this case, the following lemma proves the
equivalence, with regards to the graph transformation rule, between the elimination of an universal
quantifier from the predicate and the elimination of a node, f,, from the constraint graph.

Lemma 4.1 Elim(G(f,), fa) is equal to G(s,).

2A cycle is defined to be a path <y — v1 ... — v; — y > where ¢ > 1, or to be a path < y — y >.
3This is because y—y=0<w +ws <0is a contradiction.

*This is because y —y = 0 < w; 4 wy is a tautology.

27

Proof: Given in appendix.

Next, we show how a node corresponding to an existential quantifier s, may be eliminated from

the graph G(s,).

Algorithm 4.2 (Elimination of s, from a Graph G(s,)) Elimination of s, from G(s,) is per-
formed by the following algorithm.

1. For each edge pair, <y —% 54,8, —2 2z >, in G(8,):

wi1+w2
o create an edgey ——" z.

(a) If y = z and wy + wy < 0, then return False.
(b) If y = z and wy 4+ wy > 0, then remove this edge.

w1+w2

(¢) If there already exists an edge y —— z before creating y =" z, then the edge with
less weight remains, while the other is removed.

2. Set V. =V — {s,} and remove all edges to or from s, in G(s,).

Similarly, let Elim(G(sq4),s,) denote a new graph created after eliminating s, from the graph
((s4) according to Algorithm 4.2 in case False is not found. Then, the following lemma shows the
equivalence between the elimination of a node in the graph and the elimination of an existential
quantifier from the constraint set.

Lemma 4.2 Elim(G(s,),s,) is equal to G(fu_1).
Proof: Given in appendix.

By inductively applying Lemma 4.1 and 4.2, the equivalence relationship between node elimina-
tion and variable elimination processes can be established. This relationship is shown in Figure 4.2
with respect to the constraint graph derivation rules.

Graph Transform

Sched(e) — = G(fq

| I
| Variable Elimination | Node Elimination

\
Sched(s,) ——— G(s9

1 1
Sched(eq.) —— G(fqa)

Figure 4.2: Equivalence between Predicates and Graphs
The elimination process of nodes, f, and s,, from the graph G(f,) can be viewed as preserving

the connectivity between any two nodes in {wg,s1, fi,...,Sa—1, fa—1} through f, and s, in G(f,).
That is, if there exists any restricted path from y to z only through s, and f, in G(f,), then a

28

new edge from y to z is created to maintain the connectivity from y to z even after f, and s, are
eliminated. This is formally proved in Lemma 4.3.

Figure 4.3 shows a graph and its node elimination processes for sched!? that is derived from
I't? in Example 3.1.

Figure 4.3: Elimination of f7 and s from I'"?

The following proposition describes a necessary condition for Sched to be true in terms of its
constraint graph.

Proposition 4.2 If a constraint graph for Sched has a negative weight restricted cycle, then
Sched = False.

Proof: Given in appendix.

The following lemma shows how the connectivity is maintained during the node elimination
process, which is quite an useful property that will be frequently used throughout this chapter.

Lemma 4.3 Let {vg, s1, f1,52, f2,- s 8a-1, fa—1,5a, fa}, 1 < a < N, denote a node set of G(f,)
that is found after eliminating nodes of < fn, sy, fN—1, SN=1, -+ fat2, Sa+2, fat+1, Say1 > from
G(fn). Also, assume that no contradiction has been found yet. Then, the following two conditions
are equivalent:

1y 2z € G(f.)

29

2. there exists a minimum weight acyclic restricted path y > z in G(fy) where all intermediate®
nodes of the path belong to {Sqi1, fastis- -, SN, [N }.C

Proof: Given in appendix.

In the next corollary it is assumed that v and v" denote any two nodes that are located consec-
utively in a sequence < vg, $1, f1,...SN, [N >.

Corollary 4.1 Let {vg,s1, f1,...,v}, denote a node set of G(v) that is found after eliminating
nodes of < fx,sn,...,v > from G(fn). Also, assume that no contradiction has been found yet. If
an edge from y to z exists in G(v), then there exists a path from y to z in G(fn) whose intermediate
nodes belong to {v', ..., sn, fn}.

Proof: Given in appendix.

For example, in the example shown in figure 4.3, after eliminating {fZ,s2} an edge f1 RN f?is
created since, in the initial graph, there exists a minimum weight acyclic restricted path < f} 22
2 -1 53 SN J# > whose weight sum is 12 and whose intermediate nodes belong to {s3, f2}.
Also, an edge f1 2, /4 is created in G12(f2), since there exists a minimum weight restricted path

22 ~10 8 ~18
< f3 =5 f2 == st — f} == f} > without any intermediate restricted cycle.

4.1.2 Definitions for Constraint Graphs

In this section, we define several terms for constraint graphs. They will be used in deriving and
proving the properties of constraint graphs in the next section. In this section, it is assumed that
an initial graph is obtained from the predicate sched'* that is defined in (4.1) for I'VF,

Before defining terminologies for constraint graphs, the following function is defined on node
sets of constraint graphs.

Definition 4.8 (g,) g, is an one-to-one mapping
{s]. /] | L<i< N Amax(L,—y+1) < j}

— {sf,ff | 1<:< NAmax(y+1,1)<j}

by the following rule:

0 if v = vg.
g,(v) =< T ifv=s! where 1 <i< N,
Y ifv=f! where 1 <i<N.

g~(V') on a node set V is defined to be a set of g.(v) where v is an element of V.

*{v1,v2,...,v;} is a set of intermediate nodes of a path < y — v1 — v2...v; — z > where i > 1, or {} is an
intermediate node set if the path consists of one edge.

6y — z may also be considered as a path whose intermediate nodes belong to {sa+t1, fat1,-..,5n5, fv}-

30

For example, 5?1 in I'/* can be related to a node 5?2 in I'72 by
852 = g(]é—]&)(sgl)
In this case 5?2 is called a corresponding node of 5?1 in a job set I'2, and vice versa.

As in Definition 4.3, sched'*(s!) (1 <i < N A1 < j < k) is defined to be a predicate on a set
of variables {s},el,..., s/} that is obtained after eliminating the variables, eﬁ\,, sﬁ\,, ow €l from
sched"®. That is, it can be expressed as

schedl’k(sf) = 3s1 = Ve € [l1,1] = ...Elsf i’ Cl’k(sf)

where Cl’k(sf) is a set of standard constraints obtained after variable elimination. schedl’k(ef) is
defined similarly. Also, as in Definition 4.5, the graphs found from the above predicates are denoted
as follows:

. Gl’k(sf) denotes a graph constructed from schedl’k(sf).

. Gl’k(fij) denotes a graph constructed from schedl’k(ef).

Note that, from Cl’k(sf)(or Gl’k(sf)), we can find out the parametric lower and upper bound

functions for s/ in the forms presented in Proposition 3.1.

First, several terms are defined for constraint graphs. Let & denote a subset of edges in a graph
GYE(s), (or GYF(f7)) in the following two definitions.

Definition 4.9 (Node Set from &) Node(E) denotes a set of nodes that are connected by any
edge in E.

Definition 4.10 (Preceding Node Set from &) PrecNode(E) is defined to be a subset of Node(E)
in the graph such that v € PrecNode(&) if and only if

o there exists a node v' that lies after v in the sequence < v, st .,sf(, fZ]) > satisfying:

vV EEV Y —veEE
In the example constraint graph shown in Figure 4.1 let & be {f] — f2, s3 — f2 vy — f2}.
Then, a node set from &, Node(&) is found to be {vg, f}, s, f2}. Also, the preceding node set,
PrecNode(€), is {vo, f3, 53}
In the following definition, let y and 2z denote any two consecutive nodes in the sequence
< vo,s%,fll,s%,le,...,S}V,f}v,sf,flz,...,...,slf,ff,...,s?v,f]@ >.

Definition 4.11 (Crossing Edge Set over a Node y) A crossing edge set ®'*(y) is defined to
be a set of edges vi — vy In Gl’k(f]’{,) satisfying either of the following two conditions:

1. vy €< vg, 81, fl oo,y > and vg €< z,. .., 8K, R >
2. vg €< vg, 81, fl, .y > and vy €< z,. .., 8K R >

For example, in Figure 4.4, ®12(f1) is shown with dashed edges. Informally speaking, any
edges created in Gl’k(y) after eliminating nodes < z,.. .,sﬁv,fﬁ; > may connect only the nodes
that belong to PrecNode(®'*(y)). This is proved in Proposition 4.4.

31

B L o2

o

e SO oG

J .

J A I
|

a5 7 18 -
! -

220 _
. -

» o i

I

Figure 4.4: ®%2(f}) is denoted as dashed edges meeting with a vertical line.

Definition 4.12 (Created Edge Set in Gl’k(ff)) A created edge set \Ill’k(fg), 1<j<k—1,1s
defined to be a set of edges vy —— vy in Gl’k(ff) where vy, vy satisfy the following condition:

o there exists a path vy ~ vy in GYF(f§) such that

1. it has at least one intermediate node.

2. all of its intermediate nodes belong to {vo, si, fi, ..., sk, f&} — {vo, si, f, ..., ff}

\Ill’k(sf) is defined similarly.

That is, a created edge set in Gl’k(fij) contains edges that could be created during the variable
elimination process. Note that, if a newly created edge is implied by an already existing edge
in Gl’k(f]]{,) with a less weight and thus removed during the elimination process as explained in
Algorithm 4.1 and 4.2, then the already existing edge is included into the created edge set instead
of the removed one that is actually created during the variable elimination process. In figure 4.5,
the constraint graph is shown corresponding to Example 3.1. Dashed edges are used to represent
Uh3(s3) and W3(s3).

Next, the semi-homogeneity and homogeneity relationships are defined between two edge sets

in two constraint graphs that are found during variable elimination processes from two job sets,
'V and TY(k < 1), respectively.

Definition 4.13 (Semi-homogeneous Edge Sets) Let & and & be subsets of
edges in GVF(f1) and GUU(f?) (or, GYE(sP) and GY(s?)), respectively, where k < I A j; <
k N jo < 1. Then, & is semi-homogeneous to & if and only if

(& l=1E& A (v =2 €8) = (93,—) (V1) = G- (v2) € &)
Here, note that, if &; is semi-homogeneous to &, then
(03 = va €&) = (9(j1-52)(03) = Y(j1-5)(va) € &1)

holds, too, since | & [=| & | and & is mapped onto & under the index function g which is

one-to-one.

J2—71)

The homogeneity relationship is defined next which is stronger than semi- homogeneity rela-
tionship. Again, let & and & be subsets of edges in GVF(f") and GY(f7) (or, GMF(s!") and
GU(s1?)), respectively, where k <1 A j3 <k A jg < 1.

32

Definition 4.14 (Homogeneous Edge Sets) & is homogeneous to &, denoted as & ~ &, if
and only if

1. & and & are semi-homogeneous.

2. For two nodes vy (# vo), v2(# o),
(1 == 02 €&1) <= (9ip=in) (1) == G(i—in)(2) € &)

3. For two nodes vy, vy, where vy # vy,

W w+(i2—j1)L
(0o = vy € &) = (v " TET Y(ir—ir)(v2) € &)

4. For two nodes vy, vy, where vy # vy,
w—(j2—j1)L
) =

(v, = vy €&) < (9= (01 vo € &)

Homogeneity relations are commutative and transitive, i.e.,
((:1 ~ 52 R 52 ~ gl

(51 Ngz)/\(gz ~ ((:3) —— ((:1 ~ ((:3

which can be easily proved from the definition of homogeneity. Two homogeneous created edge
sets, U13(s3) and W13(s2), are shown in Figure 4.5 with dashed edges where I = 20.

A constant, n, is defined next that will be used in obtaining a complexity bound of our algorithm.
Definition 4.15 (n) n =| PrecNode(®VF(f)) |, k>2

Note that | PrecNode('iI)l’k(f]{,)) | is same forall 2 < k and all 1 < j < k—1 from the definition of a
cyclically constrained job set and the definition of a preceding node set. n—1 is the number of jobs
in one scheduling window that have standard relative constraints with jobs in the next scheduling
window.

4.1.3 Characteristics of Constraint Graphs

From now on, the properties of constraint graphs will be examined that remain true during the
node elimination process. Note that, from Proposition 4.2 if a negative weight restricted cycle
exists in the constraint graph, Algorithm 4.1 or 4.2 will detect it and return False. In this case the
predicate sched"* is false and the job set T'V'™ is not schedulable as well as I''"*. If a constraint
graph appears in any of the following propositions, it is assumed that no contradiction has been
found in the process of obtaining that graph. First, it is shown that the parametric bound functions
for s! found from a constraint graph Gl’k(sf) depend on the start or finish times of the jobs in
I7-! and IV that are already executed. This means that the number of jobs it may actually be
dependent on is shown to be bounded by O(N). This bounds the number of variables to O(NV)
that have to be used in evaluating parametric bound functions at runtime.

Proposition 4.3 In a graph Gl’k(sf), if sf s connected to a node v, then
v € PrecNode(q)l’k(sf)) U p

where P={y | ye<vo,s| 7 fL > ANy — s € GUE(fE) Vv sl — y e GUR(FE))

7

33

Figure 4.5: Homogeneous edge sets, ¥13(s3) and W?(s3)

Proof: Given in appendix.

Similar result holds for a graph Gl’k(fg).

Then, the following proposition implies that the set of nodes, to which additionally created
edges in G1*(s!)(or GY*(f!)) may be connected, is a subset of the set, PrecNode(®'*(s!))(or
PrecNode('iI)l’k(fg))).

Proposition 4.4
Node(\Ill’k(sf)) C PrecNode(@l’k(sf))

Node(WHF(1)) C PrecNode(®V*(f1))
Also, | \Ill’k(f]]\,) | < n(n—1) holds.

Proof: Given in appendix.

These two propositions give an upper bound on the actual number of nodes SZ may be connected
to in Gl’k(sf), which is O(N). If only jitter constraints are allowed from periodic tasks, it is
easy to see that sf in Gl’k(sf) is connected to at most O(n) number of jobs. This is because
| PrecNode(q)l’k(sf)) |<nand|P|<2.

Then, an interesting property of an additionally created edge set, \Ill’k(f]@), is given in the
following proposition. After eliminating 4N variables of the last 2N jobs (belonging to I'* and
I'*=1) from sched'*, we periodically obtain semi-homogeneous created edge sets once eliminating
each 2N variables for 17,2 <j <k — 2.

Proposition 4.5 An edge set \Ill’k(f]]\,) is semi-homogeneous to \Ill’k(f]]{l) for2<j<k-2.

34

Proof: Given in appendix.

In addition, the edge weight change patterns between two semi-homogeneous edge sets, \Ill’k(f]]{l)
and \Ill’k(f]]\,), are presented in the following proposition.

Proposition 4.6 Consider two semi-homogeneous created edge sets, \Ill’k(f]]{l) and \Ill’k(f]@),

where 2 < j < k — 2. Suppose v; — vy € \Ill’k(f]]\,) and g_1y(v1) ~— g(_1y(v2) € WH(]]{1).
Then, the following is satisfied:

1. If v1 # vy and vy # vg, w < w
2. If vy = vg and vy # vy, w <w-— 1L
3. If v1 # v and vy = vy, w <w4+ L

Proof: Given in appendix.

Once we find two homogeneous created edge sets, \Ill’k(f]]\,) and \Ill’k(f]]{l) for some j, then the
following proposition enables us to stop the variable elimination process, since homogeneous created
edge sets will be found to the ones already obtained, if the node elimination process continues.

Proposition 4.7 If an edge set \Ill’k(f]]\,) is homogeneous to an edge set \Ill’k(f]{fl), where 2 <
7 <k-—2, then

VI:2<1<j—1:Vi:l1<i<N = Wbk~ \Ill’k(ff) A ULF(shy ~ \Ill’k(sf)
Proof: Given in appendix.

More generalized result is presented next which holds whenever two homogeneous edge sets,
ULE(FL) and WLF(471, are found during the variable elimination process.

Proposition 4.8
W) W) = (i1 < s W T A)

Proof: This is obvious from the cyclic structures of constraint graphs, G**(f¥) and Gl’k"'i(fﬁf"i),
and from Proposition 4.6 and 4.7. m

From the definition of homogeneity between edge sets in constraint graphs, the following propo-
sition is derived.

Proposition 4.9 Suppose \Ill’kl(sf) ~ Wlk2 (b)) holds. Then,

1. the set of edges to s! in G1*1(s!) is homogeneous to the set of edges to st in G2 (sh).

7

2. the set of edges from s! in Gl’kl(sf) is homogeneous to the set of edges from st in G1*2(sh).

35

Note that from the set of edges to sf in Gl’kl(sf) we can obtain the parametric upper bound
function F*" for s7, and from the set of edges from s/ in 11 (s!) we can obtain the parametric
57

7

lower bound function]—"Tgbm’kl for sf by inversely transforming the edge set into constraints. Two
57

7

parametric lower (upper) bound functions for sf and sﬁ» are defined to be homogeneous if they satisfy
condition 1(2) in the above proposition. If]—"Tgbm’kl and]—":l“n’kr‘) are homogeneous, it is denoted as:
57 :

7 2
fmin,kl ~ min,ks

7 4
83 S,

We have the following lemma from Proposition 4.7 and 4.8.

Lemma 4.4 If \Ill’k(f]]{l) ~ \Ill’k(f]]\,) holds for 2 < j <k —2, then

J J
Si i Si

LVIi2<I<j—1 uVitl<i<N o Fmba Frimk g grenk o greck

. . min,k+a min,k+a maz,k+a maz,k+a
2. Va 01 S a fs(,‘]_l)-l-a ~ fsq+a A fg(]—l)-l-d ~ fsj+a

This lemma enables us to obtain asymptotic " parametric bound functions, fT?m’oo and F"4%
s s

once we find two homogeneous created edge sets during node elimination process from the constraint
graph. By using asymptotic parametric bound functions at run-time we can guarantee that the
constraint set CVF will be satisfied with any arbitrary value of k.

Note that asymptotic parametric bound functions, fgm’oo and fgax’oo, are parameterized in

terms of the variables in {5{_1, {_1, .. .,fij_l} and in terms of the index variable j. By knowing
the scheduling window(job set) index j at run-time, only one pair of asymptotic parametric bound
functions need to be stored for all s! where ¢ is fixed and j < 2. In addition to this, another pair

of parametric bound functions needs to be stored for s!.

4.1.4 Off-line Component

In this section, a 4 N-node graph, called basis graph, is obtained to which we can cyclically apply
variable elimination algorithm without explicitly obtaining a large constraint graph GV*(f&) for
large k. That is, by recursively applying variable elimination algorithm to this smaller graph, it
can be decided whether the created edge set sequence, \Ill’k(f]]\,), j=kk—1,... will converge or
not.

Definition 4.16 (Basis Graph) A basis graph Gy(V}, Ey) is defined as a subgraph of GY*(f%) as
follows.®

1. Vo =Vp1 U Vi o U{vg} where:
Vir = PrecNode(q)l’z(f}V)) —{vo}

2 2 2 2
%,2:{817f17"'78N7fN}

T«Asymptotic® means “converging” in the sense that homogeneous parametric bound functions will be found to
the ones already obtained, if the variable elimination process continues.

8G12(f%) is found from I''2.

36

2. All edges in GY2(f¥) connecting any two nodes in V, are included into Ej.

Then, the variable elimination process for a graph Gl’k(f]’{,) can be transformed into an equiv-
alent one by using a basis graph as follows:

Algorithm 4.3 Cyclic algorithm to obtain GV*(f%).
o Input: k, Basis Graph Gy(Vy, Ey)
o Output: GV*(f3)
1. Initialize i = 1.
2. Initialize G}, (Vy, E})) = Gp(Vi, Ey).
3. Fromi =1 toi=Fk—2 repeat the following:

(a) Eliminate, from G (Vy, E¢.), the nodes of Vi, 5 by alternately using Algorithm 4.1 and

4.2
(b) If False is returned from Algorithm 4.1 or 4.2, then return False.
(¢c) Let Gt (Vo1 U{vo}, EL,,) denote the resulting graph.
d) If i > 2 and G* Vi1 U{vo JE? GZIVMU o}, Ei- , then return G% (Vy, E¢).

out out out out mn mn
(e) Let GEH(Vy, ESFY) = Gy(Vi, Ey)
(f) For each edge vy 2 vy in G° (Vi1 U {vo}, EL),
i. If vy # v and vy # vo, add an edge g1)(vy) T, g)(vz2) to
Gt (Vo, B,

. If vy = vy, add an edge g(l)(vl) wiztL g(l)(vg) to Gj:l(%,Eﬁl).

iii. If vy =vo, add an edge gy(v1) "2=" gy (02) to GIF (Ve ELFY).
(g) Seti=1+1.

At step 3 — (d) the graph G°,(V4, E¢,) is returned. By utilizing Proposition 4.7, this graph can
be shown to be equal to Gl’k(sz\,). Once we find homogeneous created edge sets on Vj1 U {vg} at
step 3—(d), asymptotic parametric bound functions for job start times can be found from the graph
Gt k(fz) From this graph the variables in the sequence < [, 8%y [, > are eliminated to
obtain the parametric bound functions for each s?, 1 <7 < N. During this elimination process, the
weights of edges connected to or from vy have to be modified appropriately to reflect scheduling
window index j > 2 as well as the node index of the graph. For example,

e if an edge vy — s? is obtained after eliminating < I%4,8%, ..., f2 >, then a formula sf <

w+ (j — 2)L must be used in deriving asymptotic parametric bound functions for sf

e if an edge s? — 1y is obtained after eliminating < J%,8%, ..., f >, then a formula —w +
(7 —2)L < s! must be used in deriving asymptotic parametric bound functions for s!.

° if{ an edge sl - s?, is obtained after eliminating < T3, 8%y J2 >, then a formula sf —
5371 < w must be used in deriving asymptotic parametric bound functions for s!.

37

After obtaining asymptotic parametric bound functions for sf, 2 < j, we can also find parametric
bound functions for I'' by eliminating nodes from GU*(f4).

Note that, at each iteration in the above algorithm, no explicit transformation of node indices
are performed by using g(_y). This is because our purpose is to check the schedulability and obtain
asymptotic parametric bound functions, and this may be done without explicit knowledge of node
indices. The key property that this algorithm makes use of is that the basis graph is recursively
used and transformed until the schedulability is checked. It is clear that this algorithm produces
exactly the same result (True or False) and graph as the node elimination algorithm applied to
GUE() does.

The following theorem provides an upper bound on the number of loop iterations in Algo-
rithm 4.3 that have to be performed before the schedulability is checked.

Theorem 4.1 If Algorithm 4.3 doesn’t terminate within n? — n + 2 loop iterations, then sched'>
s not schedulable.

Proof: Given in appendix.

Therefore, we obtain the final algorithm for checking sched™ > and deriving asymptotic para-
metric bound functions if IV is schedulable. The overview of off-line component is shown in
Figure 4.6.

G,(\4, ,Ep)

with k=n%n+4

|

Homogeneous
No

Created Edge Sets [~ Not Schedulable
are found

Algorithm 3

G(t2) lvas

Eliminate variables

from G(f2)

T

Parametric Bound Functions Parametric Bound Functions
for s, i=1,2,..N for s, j=2,3,.., i=1,2,...,N

Figure 4.6: Overview of off-line component

From Theorem 4.1 the total complexity of the off-line algorithm is O(n?N?), since each loop
iteration of Algorithm 4.3 may take at most O(N?) computation time [23]. If only jitter constraints
are allowed from periodic tasks, then the off-line algorithm will be finished within O(n*N) time
where n is the number of periodic tasks that have jitter constraints, since each loop iteration in
this case takes at most O(n?N) time. This is because | PrecNode(®'*(s!))U P | < n + 2 holds,

and because from Proposition 4.3 we know that at most O(n) number of edges exist in G*(s!)

38

that are connected to or from sf This implies that the elimination of sf from the graph Gl’k(sf)
will require at most O(n?) time, and eliminating nodes of one job set requires O(n?N) time. Also,
the on-line component in this case requires at most O(n) execution time.

4.1.5 Off-line Component with Restricted Standard Constraints

For a certain class of standard constraints, called restricted standard constraints, it will be shown
that the off-line component can be carried out in O(N? 4 n®) time instead of O(n*N?) time.

Definition 4.17 (Restricted Standard Constraints) For two jobs, 71 and 7},
where (j =1—1) V (j =1 ANa <b), the following constraints are defined as restricted standard
constraints:

7ol
. S 5?;
J J_

Sa—l_ea 5

c slb - sé

Co sé—l—elb—sfl

€3 (4.2)

IANIA
IANIA

Cq

Also, as in the definition for standard constraints, release time and deadline constraints can
also be classified as restricted standard constraints. We also include as restricted standard any
constraint that can be rewritten in one of the above forms.

For this class of constraints the following lemma makes it possible to pre-process the basis graph
and to obtain a smaller graph that can be used in the off-line algorithm instead of the basis graph.
This graph is called a compact basis graph.

Lemma 4.5 ([42]) If IV is constructed with restricted standard constraints, it is schedulable if
and only if it is schedulable for the maximum execution times of the jobs.

Let the following be a predicate representing a schedulability for a job set II.
Sched = Jsy 2 Yey € [ly,uq] .. 385 0 Ve € [, uy] i sy 0 Veny € [In,un]: €

From Lemma 4.5 this predicate is equivalent to the following predicate where C only consists of
restricted standard constraints.

dsq oo ndsp o dsyog sdsy i Clej/uy 0 1 < j < NJ

where e;/u; denotes a substitution of u; for a variable e;. In other words, Sched can be checked
by first replacing every universally quantified variable e; with u; for 1 < j < N, and then by
eliminating existentially quantified variables sy, ..., s1.

However, eliminating the existentially quantified variables, sy, sy—1, ..., S;+1, in any order
will produce the same constraint graph G(s;). This is because there exists no exclusively-ORed
edges between nodes in {vg, S;y1,Sit2,...,Sn} after substituting the maximum execution times for
the variables e;, 1 < 5 < N, and because any minimum weight acyclic restricted paths through
the nodes of {s;11,...,8n} are preserved in the remaining constraint graph after eliminating the
variables s;, ¢ +1 < j < N, regardless of the elimination order.

This property is used to find a compact basis graph from sched"*(f%) as follows:

39

Algorithm 4.4 (Compact Basis Graph) Algorithm to obtain a compact basis
graph.

o Input: sched2(f%)
o Output: Compact Basis Graph G o4(Vey, Fep)

1. Let G/(V/,El) denote a graph from a predicate that is found by substituting u; for each
universally quantified variable e; in schedV2(f%).

2. Let @l(s}v) denote a crossing edge set of sk found from G/(V/, El).
3. Let G”(V”, E”) denote a graph found after eliminating the following nodes
from G' (V' E").
{51,583, s 58} — g)(PrecNode(® (sy)))

4. Let G(Viy, Ewy) be a subgraph of G (V" , E"):
(a) Vip = Vepa U Vg2 U{vg} where:
Vap1 = {57,85...,5n} N PrecNode(®'(s)))
Veb2 = 9(1)(Vcb,1)
(b) All edges in G”(V”, E”) connecting two nodes of Vo, defines Fp.

We can apply Algorithm 4.3 to this compact basis graph instead of the basis graph. This limits
the complexity of obtaining homogeneous created edge sets to O(N? 4 n®) instead of O(n’*N?).
Once we find homogeneous created edge sets on V1, asymptotic parametric bound functions
can be found by first unrolling the final graph from the algorithm to obtain G1°°(f%) and then
by eliminating from this graph the nodes in the sequence < f%,s%.,...,ff,s} >. During this
elimination process, as in Section 4.1.4 the weights of edges connecting vy have to be modified
appropriately to reflect scheduling window index as well as the node indices of the graph.

4.2 Example

The asymptotic parametric bound functions are found for the job set, I'''*°, in Example 3.1. Fig-
ure 4.7 shows the parametric bound functions found from I''**, and Figure 4.8 shows asymptotic
parametric bound functions for sched' .

It is clear from this figure that the following hold:

min,4 min,4
f52 ? ~ fsg ?
1 1

F,s% A Fsg !
max,4 max,4
F,s% A F,sg !

Note that n =| PrecNode(®*(f})) |= 3, and n? — n + 2 = 8 is the iteration bound given in
Theorem 4.1. But, Algorithm 4.3 found homogeneous created edge sets after 3 loop iterations.
This shows that the upper bound on the number of loop iterations given in Theorem 4.1 is not
tight in general.

40

0 < 5% < 2
max(8,s1 +e1) < s& < min(10,s1 + e} +5)
max(20,s) + el sl +el +10) < s < min(22,s] +ef + 17,51 +€d +4)
max(28,s7 + e sl +el +10) < 85 < min(30,s) +el + 12,87 + €7+ 5)
max(40,s5 + e, 87 + e +10) < 87 < min(42,s7 +ef + 17,85+ €2+ 4)
max(48,s7 + €7, 55 +e5+10) < 53 < min(50,5 + el + 12,57 + €7 +5)
max(60,s;5 +e3,s7 +e3 +10) < s7 < min(62,s7 +ef + 17,55 + €3 +4)
max(s] +ef,s5 +e5+10) < 55 < min(70,s5 + €5 + 12,87 + €] +5)

Figure 4.7: Parametric bound functions found from sched'+*

Frmo =0

1

;7;(11’ — 2

1.

Sr?m = maX(8, 8% + e%)

2

70T = min(10,s] 4 €] +5)

2 4 4 4 4
Frim = max(204+(f - 2)20,8,7 ey sy ke +10)

1 4 4 4 4
Frer = min(22+ (G- 202008 e+ 175 b +d)
Frim = max(28+4(j —2)20,s] +ef, 55 +e5 " +10)

2 4 4 4 4
Fe = min(30 + (j — 2)20, 85 + e~ + 12,50 + ¢l + 5)

Figure 4.8: Asymptotic parametric bound functions for sched'>

4.3 Summary

In this chapter, we presented a solution approach for the problem defined in Chapter 3. A new tech-
nique, called dynamic cyclic dispatching, is developed based on the dynamic time-based scheduling
scheme introduced in Chapter 1.

A schedule(ordering) of N jobs is assumed to be given on a scheduling window, and it is required
that this schedule be repeated at run time. The relative constraints may be cyclically defined across
the boundaries of the scheduling windows as well as between jobs in one scheduling window.

Unlike static approaches which assign fixed start times to jobs in a scheduling window, our
approach not only allows us to flexibly manage the slack times with the schedulability of a job set
not affected, but also yields an guaranteed schedulability in the sense that, if other dispatching
mechanism can dispatch the job sequences satisfying all given constraints, then our mechanism can
also schedule them.

A pseudo-polynomial time off-line algorithm is presented to check the schedulability of a cycli-
cally constrained job set and to obtain parametric lower and upper bound functions for each job
start time. The off-line algorithm requires at most O(n*N?) time where n is the number of jobs
in a scheduling window that have relative constraints with jobs in the next scheduling window.
Then, the parametric bound functions for each start time can be evaluated by an on-line algorithm
within O(N) time. In addition, with restricted standard constraints it is shown that the off-line
component requires at most O(N? + n®) execution time.

41

Chapter 5

Design of a Dynamic Temporal Controller

5.1 Introduction

In this chapter, we consider the issue of how a dynamic temporal controller can be constructed. In
dynamic temporal control, the regular sampling interval assumption is relaxed, and computational
costs are incorporated into the cost function. At run-time new controls are computed and exercised
at chosen time instants such that the cost function is minimized. The feasibility of this new scheme is
demonstrated by obtaining dynamic temporal control laws for linear time-invariant control systems.

In Section 5.2, we formulate the dynamic temporal control problem and introduce computation
cost into performance index function. The solution approach for linear time-invariant systems is
discussed in Section 5.3. In Section 5.4, implementation issues are addressed. We provide an
example of controlling rigid body satellite in Section 5.5 . In this example, a dynamic temporal
controller is designed. Results show that the dynamic temporal control approach performs better
than the traditional sampled data control approach with the same number of control exercises.
Section 5.6 discusses the issues arising from the application of dynamic temporal controls to the
design of real-time control systems. Finally, Section 5.7, we present a summary.

5.2 Problem Formulation

In dynamic temporal control, the control changing time instants are chosen such that a cost function
is minimized which incorporates computational costs as well as state, input costs. We consider a
steady state control problem on a finite time line [0,7]. To formulate the dynamic temporal control
problem for a discrete, linear time-invariant system, we first discretize the time interval [0, 7] into
M subintervals of length A =T¢/M. Let Dy = {0,A,2A,...(M —1)A} denote M time instants
that are regularly spaced. Here, control exercising time instants are restricted within Djys for the
purpose of simplicity. The linear time-invariant controlled process is described by the difference
equation:

2(k+1) = Ax(k)+ Bu(k) (5.1)

where k is the time index. One unit of time represents the subinterval A, whereas x € R™ and
u € R! are the state and input vectors, respectively.
It is well known that there exists a steady state optimal control law [20, 39]

w(i)= file(i)] i=0,1,..,M—1 (5.2)

42

that minimizes the quadratic performance index function (Cost)

M-1
T = 30 T (RIQa(k) + " () Ru(k)] + 7 (M)Q(M) (53)
k=0

where Q € R™*" is positive semi-definite and R € R*! is positive definite.

As we can see, traditional controller exercises control at every time instant in D. However, in
temporal control, we are no longer constrained to exercise control at every time instant in D. In
dynamic temporal control we require that the control be exercised with the following steps: At time
ti,t; € Dy and 1 <1,

1. Compute a current state z(;)

2. Compute 6(;)

3. Compute and apply u(t;) to the system
4. Repeat the process at t;41 = ¢; + 6(¢;)

Note that t;, 1 < ¢, denote control changing time instants, and (¢;) denotes the time interval
between i-th control exercise and (¢ 4 1)-th control exercise.

For the purpose of simplicity, dual mode dynamic temporal control is considered. That is, 6(¢;)
may take one of the following two values:

o aA
o LA

a and b are positive integers(a < b) such that b is an integer multiple of a. Also, it is assumed that
b divides M without any remainder. bA is called a base sampling period and aA is called a rapid
sampling period. Let M = b where [3 is a positive integer.

In addition to the above assumption, we further assume that at all time instants in {0, bA,
2bA, ..., (f —1)bA} new controls are computed. Let each time interval [(7 — 1)bA, ibA] of size bA
be called a frame for 1 < i < 3. The sampling period decision function é is evaluated at only time
instants that are start times of frames, and once §(ibA) is decided it will be enforced during the
next time frame [¢bA, (74 1)bA]. In other words, if 6(¢bA) = aA the control computations will be
done at A, (ib+ a)A, ..., (ib+ b — a)A. And, if §(ibA) = bA the control computations will be
done only at ¢bA in [ibA, (i + 1)bA). Under these assumptions the steps performed by a dynamic
temporal controller can be summarized as follows: At time bA, 0 < i< [—1,

1. Compute a current state z(ibA)
2. Compute 6(:bA) = g;(z(ibA))

(a) If 6(ibA) = aA

o Att; = (ib+ ja)A for 0 < j < (b/a—1), compute and apply u(t;) = h;;(z(t;))
(b) If 6(ibA) = A

e compute and apply u(ibA) = h;(z(ibA))

43

3. Repeat the process at (¢ + 1)bA if ¢ < 3 — 1.

This new formulation of dynamic temporal control makes it possible to find a good approximation
approach to optimal control laws as can be seen in later sections of this chapter.

We want to find a feedback control law, g;, h;, and h;; for ¢ = 0,1,2,...,8 -1 and j =
0,1,...,(b/a — 1), that minimizes a new performance index function

Iy = Jutpy (5.4)

Here, p1 is the computation cost of exercising control with a rapid sampling period instead of a base
sampling period in one frame, and v denotes the number of frames in [0, M A] done with a rapid
sampling period. Hence, exercising controls with a rapid sampling period increases the cost term
1. So, if exercising control with a rapid sampling period doesn’t reduce the term Jy; by more
than this increase, exercising control with a base sampling period is likely to be a better choice.
This is a key idea of the solution approach given in the next section.

This new cost function is different from Jjs in two aspects. First, the concept of computational
cost is introduced in J]/W as ft -y term to regulate the number of frames with rapid sampling periods.
If we do not take this computation cost into consideration « is likely to become 3. If computation
cost is high (i.e., p has a large value) then v is likely to be small in order to minimize the total
cost function. Second, in dynamic temporal control, not only do we seek control law u(z(t)), but
also the control exercising time instants and the number of control changes. In the next section, we
present in detail specific techniques for finding a dynamic temporal control law with performances
close to optimal solutions.

5.3 Temporal Control with Fixed Sampling Times

Let 7 = {tg,t1,12,...,t,—1} denote a set of control changing time instants where tg = 0, t; = n1 A,
co ty—1 = ny_1A. That is ng, nq, ..., n,_1 are the indices for control changing time instants. In
this section, an optimal control law is derived when 7 is given which minimizes the cost function
Jar. In the next section, the results developed in this section will be used in devising good heuristics
for deciding é values minimizing J]/W.
Assume that 7 is given. Then a new control input calculated at ¢; will be applied to the actuator
for the next time interval from #; to ¢;41. Our objective here is to determine the optimal control
law

uw’(n;) = file(ny)] i=0,1,...,v—1 (5.5)

that minimizes the quadratic performance index function (Cost) Jps which is defined in (5.4).

The principle of optimality, developed by Richard Bellman[7, 8] is the approach used here. That
is, if a closed loop control u®(n;) = f;[z(n;)] is optimal over the interval #g <t < ¢,, then it is also
optimal over any sub-interval ¢, <t <1,, where 0 < m < v. As it can be seen from Figure 5.1,
the total cost Jy; can be decomposed into F;s for 0 < ¢ < v where

F;

xT(nz)Qx(nZ) + xT(ni + DQz(n; + 1) (5.6)
el (ni + 2)Qx(ni + 2)+ ... + 2T (nig1 — 1)Qu(niy1 — 1)
(nig1 — nz)uT(nz)Ru(nz)

44

State Cost

A
S
Fom
Fv—l F\,
/
N, L — I l ! ! > time
123 nv-m nvn-!l-l" nvm+i]' nv-l - n,
T
. u(n,)
u(n,.,)
/

Control Input Cost

Figure 5.1: Decomposition of Jys into F;.

That is, from (5.1),

o () Q) + (Av(ni) + Bu(ni))TQ(Aa(ni) + Bun) (5.7)
(A%2(n;) + ABu(n;) + Bu(n:))TQ(A%x(n;) + ABu(n;) + Bu(n;))

o (AT T () AV T2 By + L 4 ABu(ng) + Bu(ni)TQ
(Amr=mi g () 4 A2 By(ng) + .. 4 ABu(ng) + Bu(ng))

+ (g1 — ni)ul (n;) Ru(n;)

F o=

I
I

This can be rewritten as

Ty41 —ni—l

Fo= af(n)Qe(n) + Y [Aje(ni) + Bju(ni)]" QA 2 (ni) + Bju(n;)] (5.8)

7=1
+ (nip1 — nz)uT(nz)Ru(nZ)
where A; = A/ and B; = Zi;é AFB.

Then Jp; can be expressed as
Jy=kh+FH+FHB+ ... +F,. (5.9)
Let 5, be the cost fromi=v-m+1tot=uw:

Sm=Fp—mi1+ Foempy2+ o+ For+ F,, 1<m<v+ 1. (5.10)

45

These cost terms are well illustrated in the above Figure 5.1.

Therefore, by applying the principle of optimality, we can first minimize 57 = F,,, then choose
F,_1 to minimize Sy = F,_1 + F, = 57 + F,—1 where 57 is the optimal cost occurred at ¢,. We
can continue choosing F,_, to minimize S35 = F,_o + F,_1 + F, = F,_o + 59 and so on until
Sy+1 = Jas is minimized. Note that 51 = F, = xT(nU)Qx(nU) is determined only from z(n,) which
is independent of any other control inputs.

5.3.1 Inductive Construction of an Optimal Control Law with 7 Given

We inductively derive an optimal controller which changes its control at v time instants g, 11,

.o ty—1. As we showed in the previous section, the inductive procedure goes backwards in time
from S¢ to S¢,,. Since $; = F, = 2T (n,)Qx(n,) + u’ (n,)Ru(n,) and z(n,) is independent of
u(n,), we can let u’(n,) = u®(M) = 0 and S¢ = 2T (n,)Qz(n,) where @ is symmetric and positive
semi-definite.

Induction Basis: S§ = 27 (n,)Qz(n,) where Q is symmetric.

Inductive Assumption: Suppose that
58, = 2T (01)P(v = 10+ 1)yt
holds for some m
where 1 <m < v and P(v —m+ 1) is symmetric.

We can write 57, as

So = [A(nl,_m+1—ny_m)$(nl/—m) + B(nl,_m+1—nl,_m)u(nl/—m)]T (5.11)
Plv—m+1)-
I:A(nu—m-l-l_nu—m)w(nl’_m) —I_ B(ny—m+1_nv—m)u(nl/_m)]

From the definition of 9, and (5.8),
Sm—l—l = STOn + Fy—m

= Sp 42 (ny—m)Q(ny—) (5.12)
nl/—m-l-l_nu—m—l
+ Z [ij(nl,_m) + Bju(nu—m)]TQ[ij(nl,_m) + Bju(nu—m)]
=1

+ (nu—m—l—l - nu—m)uT(nu—m)Ru(nu—m)
And the above equation becomes

Sm+1 = [Any—m+1_nv—mx(nl’_m) —I_ Bnu—m+1_nv—m u(nl’_m)]TP(l/ - m —I_ 1) (513)
[Anv—m+1_nv—mx(nl’_m) + an—m+1_nv—m u(ny—m)]

+ fT(”u—m)Qx(nu—m)
+ Z [ij(nl,_m) + Bju(nu—m)]TQ[AJw(nu—m) + Bju(nu—m)]

i=1

+ (nu—m—l—l - nu—m)uT(nu—m)Ru(nu—m)

46

If we differentiate 9,41 with respect to u(n,_y,), then

8Sm-l-l _ T

Dulngm) memr—rwem Plv—m+1An,_ 1 —nm®(M—m) (5.14)

—I_ (Agy_m_l.l_ny—m P(V - m —I_]‘)Bnu—m+1_nv—m)Tx(nl’_m)

—I_ QBEV_m+1—ny_mP(V —m —I_]‘)Bnu—m+1_nv—m u(nl’_m)

Ny—m+1—Nv—m—1
+ Z [QB;TFQij(nl,_m) + QB;fFQBju(ny_m)]
=1
+ 2(nu—m—l—l - nu—m)Ru(nu—m)
= UBY o P —mt DA (5.15)

Ny—m+1—Nv—m—1

+ > B QA a(ny—m)

=1
T
—I_ 2{Bnl’—777f‘|'1_nl/—rn‘F)(l/ —m —I_]‘)Bny—m+1—ny—m
Ny—m41—TNy—m—1
+ Z B]TQBJ + (Mymm1 — Ny) RJu(n,)
J=1

Note that P(r —m+ 1) is symmetric and the following three rules are applied to differentiate S, 1

above.
" (+TQr) = 20
—(z"Qz) = x
O0x
g T
5, Qy) = Qy
0
5T Q) = Qe
Let %‘i’:_’iﬂ—) = 0, from Lemma 5.1 and Lemma 5.2 given later we can obtain u°(n,_.,) which
minimizes 5,11 and thus obtain 57 .
uo(nl’_m) = _{B/Z/—‘y_m_l.l_ny—m P(V —m+]‘)Bnu—m+1_nv—m (516)
Ny—m+1—Nv—m—1
+ Z B]TQB] + (nu—m—l—l - nu—m)R}_l
i=1
B?%—‘l,_m+1—ny_mp(l/ —m —I_]‘)Anv—m-l-l_nl/—m
Ny—m+1—Nv—m—1
+ Z B]TQAj}x(nl,_m)
i=1
= —K(v—m)x(ny,—m)
where K (v —m) is defined in (5.16).
Therefore, we can write
Anu—m+1_nv—mx(nl’_m) —I_ Bny—m+1_nv—muo(nl’_m) = (517)

[Anu—m+1_nv—m - Bnu—m+1_nv—m]((l/ - m)]x(nl’_m)

47

If we use (5.16) and (5.17), we have

0
m+1

I

This equation can be rewritten as

0
Sm—l—l

{lAns s = = Brus = K (v = m)]a(ny)} (5.18)
Plv—=m+1{[An,_ii—nem = Brugi = K (v = m)]x(ny—)}
2T () Qx(ny_)
Y A B mleOn)10
{[A; — B K (v — m)]e(ny—m)}
(st = o)0 =)y)T RIE (0 =) ()]
= xT(nl’_m){[Anv—m+1_nv—m - Bny—m+1—nu—mK(V - m)]T (5.19)
P(V —m+ 1)[Anu—m+1—nu—m - Bnu—m+1—nu—m I((V - m)]
+ Q
s ST = BK - m)QLA, — B K (= m)
+ (Memg1 = M) KT (v = m)RK (v — m)}a(ny_p).

2T (ny—pm) P(v — m)a(n,_m)

where P(v —m) is obtained from K(v —m) and P(r —m+1) as in (5.19). Also note that knowing
P(v —m+ 1) is enough to compute K (v — m) because other terms of (5.16) are known a priori.

Therefore, we find a symmetric matrix P(v —m) satisfying 52, .| = 27 (ny_p) P(v = m)a(ny_p).
From (5.16) and (5.19), we have the following recursive equations for obtaining P(v — m) from

P(v—m+ 1) where m = 1,2,...,v.
K(v—m) = gy_m+1_m_mp(y —m+ 1) By i —rm (5.20)
Ny—m+1—Nv—m—1
+ Z B]TQB] + (nu—m—l—l - nu—m)R}_l
i=1
T
nl,_m+1—nl,_mP(l/ —m —I_]‘)Any—m+1_nv—m
Ny—m+1—Nv—m—1
+ > B QA;}
i=1
P(V - m) = [Anu—m+1_nv—m - Bnu—m+1_nv—m]((l/ - m)]T (521)
P(V —m+ 1)[Anu—m+1_nv—m - Bnu—m+1_nv—m]((l/ - m)]
+ @

48

Ny—m+1—Ny—m—1
+ > [A; — B;K (v —m)]"Q[A; — B;K(v — m)]
7=1
+ (Mgt — My) KT (v = m)RK (v — m)

Also, we know that at each time instant n,_,, A

w(Ny—m) = —K(v—m)x(n,_p) (5.22)

Hence, with P(v) = @, we can obtain K (i) and P(¢) for ¢t = v — 1,v — 2, ..., 0 recursively using
(5.20) and (5.21). At each time instant n;A, ¢ = 0,1,2,...,v — 1 the new control input value will
be obtained using (5.22) by multiplying K (i) by z(n;) where z(n;) is the estimate of the system
state at m;A. Also, note that the optimal control cost is J§, = S2,; = 27 (0)P(0)2(0) where P(0)
is found from the above procedure.

To prove the optimality of this control law we need the following lemmas.

Lemma 5.1 If () is positive semi-definite and R is positive definite, then P(i), i = v,v — 1,v —
2,...,0, matrices are positive semi-definite. Hence, P(i)s are symmetric from the definition of a
positive semi-definite matriz.

Proof Since P(v) = @ , from assumption P(v) is positive semi-definite. Assume that for
k =141, P(k)is positive semi-definite. We use induction to prove that P(¢) is semi-definite. Note
that () is positive semi-definite and R is positive definite. From (5.21) we have

P(l) = [Am‘+1—m‘ - Bni+1—ni]((i)]TP(i + 1) (5'23)
[Am‘+1—m‘ - Bm‘+1—ni I((i)]
+ Q

s Y A - BKGTQL - B

+ (nig1 —) KT())RK (i)

Since P(i¢+ 1) and @ are positive semi-definite, R is positive definite, and (n;41 — n;) > 0, it
is easy to verify that for Yy € R™ : y” P(i)y > 0. This means that P(7) is positive semi-definite.
This inductive procedure proves the lemma.

Lemma 5.2 Given 7, the inverse matriz in (5.20) always exists.

Proof Let V = B Plv—m+1)B

Ny—m+41—Nv—m
+ Z?;]m“_n”_m_l BTQB;+ (ny—m41 — ny—pm)R. From Lemma 5.1, P(v — m + 1) is positive semi-
definite. Therefore, Yy € R™ : yTVy > 0 because () is positive semi-definite, R is positive definite

and ny_m41 — Ny—m > 0. This implies that V' is positive definite. Hence the inverse matrix exists.

Ny—m+1—"Nv—m

49

Theorem 5.1 Given 7, K(i) (i = 0,1,2,...,v — 1) obtained from the above procedure are the
optimal feedback gains which minimize the cost function Jy; (and J]/W) on [0, MA].

Proof Note that given 7, Jys is a convex function of u(n;),7 = 0,1,...,v — 1. Thus the
above feedback control law is optimal.

Suppose that 73 and 7; denote two sets of control changing time instants.

Lemma 5.3 If 7y C 7y, then Jy; > J3; o where J3; and J3; 5 are the optimal costs of controls
which change controls at time instants in Ty and Ty respectively.

Proof Suppose that Jy;, < Jjis,, then, in controlling the system with 75, if we do not
change controls at time instants in 7o — 77 and change controls at time instants in 7; to the same
control inputs that were exercised to get J3,, with 7;, we obtain Jjs which is equal to J3,;,. This

contradicts the fact that Jj;, is the minimum cost obtainable with D, since we have found JAMQ
which is equal to J§;, and therefore less than J3; ,. Hence, J3,; > J3;,.

This lemma implies that if we do not take computation cost, p, into consideration, then the
more control exercising points, the better the controller is (less cost). With the computation cost
being included in the cost function, the statement above is no longer true. Therefore we need to
search for an optimal 7 which minimizes the cost function J]/W. The following sections provide a
detailed discussion on searching for such an optimal solution. Note that if we let 7 = Dps then the
optimal temporal control law is the same as the traditional linear feedback optimal control law.

5.3.2 Dynamic Temporal Control

In this section, we design a dynamic temporal controller by introducing a heuristic for §(ibA)
function. The heuristic tries to estimate how much performance gain(reduction of Jys term in Jy;)
and how much performance loss (increase of py term) will incur if a rapid sampling period is used
in the next frame. If the performance gain is greater than or equal to a given threshold 8, then
0(i) = aA, otherwise 6(7) = bA.

By making use of the results developed in the previous section, we can obtain an optimal control
law for 7, = {ibA, (i + 1)bA, ..., (3 — 1)bA} on a time interval [ibA, BbA] where 0 < i < 3 — 1.
Let K1(z) and P1(i) denote two matrices found from 7' by applying the algorithm given in the
previous section.

Consider another control changing time instants set 7.2 = {ibA, (ib+ a)A, ..., (ib+ b — a)A,
(i4+1)bA, ..., (f—1)bA} where 0 < ¢ < f—1. Also, let Ky(¢) and Py(¢) denote two matrices found
from 72 by applying the algorithm given in the previous section. Also, let K5(7,7),0 < j < (b/a—1),
denote a gain matrix obtained for time instant (ib+ ja)A.

Two control changing time sets, 7.! and 72, are depicted in Figure 5.2.

From Lemma 5.3 we know that 2 (ibA) Py(i) z(ibA) is less than or equal to 2T (ibA) Py(i)
z(ibA). Furthermore, x7(4bA) Py(i) z(ibA) is less than or equal to a7 (ibA) P,(i) 2(ibA) where

50

i (i+1)ba (b (B-1)bA Bba

Figure 5.2: Two control changing time sets 7;' and 7.2

P.(i) is a matrix found from any arbitrary control changing time instant set on [¢bA, 3bA] conform-
ing to the assumptions given in the problem formulation section, i.e., the same sampling period is
enforced during one frame.

In addition, the cost 27 (ibA) P2(i) z(ibA) is less than or equal to 27 (ibA) Py(i) 2(ibA) where
Py(i) is a matrix found from any arbitrary control changing time instant set on [:bA, 3bA] that
contains time instants bA, (b4 a)A, ..., (ib+b—a)A, i.e., a rapid sampling period is used in the
first frame [ibA, (7 4+ 1)bA].

From these facts, it can be said that a cost @7 (ibA) Py(7) z(ibA) is a lower bound of the costs
found from any control changing time instant sets on [ibA, BbA] that conform to the assumptions,
and a cost 2T (ibA) Po(i) z(ibA) is a lower bound of the costs found from any control changing
time instant sets that enforce rapid sampling period in the first frame [ibA, (i 4+ 1)bA).

In our solution approach, the above costs are used at time tbA to estimate the performance gain
of using a rapid sampling period in the next frame [:bA, (¢ 4+ 1)bA]. This is a heuristic approach,
and the effectiveness of this approach is validated through an example in a later section.

We present a heuristic dynamic temporal control law which performs the following steps at each
frame start time:

1. Compute a current state z(ibA)

2. If 2T (b A)Y(P1(7) — Poi))x(ibA) < 0, let 6(i) = bA.
Otherwise, let 6(7) = aA.
(a) If 6(3) = aA,
o At each time instant ¢; = DA + jaA, 0 < j < (b/a— 1),
apply u(t;) = —Ka(i,7)z(t;)
(b) If 6(7) = bA,
o u(ibA) = —K1(2)z(ibA)

3. Repeat the process at (i + 1)(bA)

The following theorem proves that the dynamic temporal control using the above control law
guarantees the cost term Jys of Jy, to be less than or equal to 27 (0) P;(0) #(0) which is a cost for
7, with only a base sampling period enforced on the entire interval [0, T].

Theorem 5.2 If the above dynamic temporal control law is used, the cost Jy; of J]/W 15 less than
or equal to z7(0)P1(0)x(0) where P1(0) is obtained from Tg.

51

Proof Suppose that C'4(xq) denotes a set of time instants at which new controls are ex-
ercised according to the above dynamic temporal control law for a given initial state zg. Let
IY(z0) = {i | 1< i< 3} denote a set of frame indices at which a rapid sampling period is used.
Also, let iy € I%(xo) denote a smallest index in I%(xg), and iy € I%2o) denote a second smallest
index, and so on. Consider two control changing time sets, 7! and ’TOI, where in ’TOI only ¢1-th frame
uses a rapid sampling period. Also, suppose that for these two control changing time sets, K1({)
is used if [-th frame uses a base sampling period, and Kz(l,J) is used if [-th frame uses a rapid
sampling period. Under these assumptions, it is clear that the control cost (without computation
cost) for 7! is greater than or equal to that for 7, when the same initial state z is used.

Consider two control changing time sets, ’TOI and ’TOH, where in ’TOH 11-th and 25-th frames use a
rapid sampling period. Also, suppose that for these two control changing time sets, K1(!) is used
if [-th frame uses a base sampling period, and Kz({,7) is used if [-th frame uses a rapid sampling
period. Under these assumptions, it is clear that the control cost (without computation cost) for
7, is greater than or equal to that for 7; , when the same initial state z¢ is used.

If we transitively apply this process, we can conclude that, for the same initial state zg, the
control cost (without computation cost) for 7 is greater than or equal to that obtained by applying
the dynamic temporal control law. This proves the theorem.

5.4 Implementation

To implement dynamic temporal control, we need to calculate and store K1(7) and Ko(¢, j) matrices,
and use them when controlling the system. The number of matrices that need to be stored is
O(B+(b/a)pB), which is O((b/a)3). Note that in traditional optimal linear control a similar matrix
is obtained and used at every time instant in Djys to generate control input value.

In dynamic temporal control, there is a CPU time overhead for calculating a7 (ibA) (Py(4) —
Pa(i)) x(ibA) at the start of each frame. This calculation can be done within O(n?) time. This
calculation has to be done once each frame. More discussion is presented in a discussion section on
this overhead.

In order to implement temporal control we require an operating system that supports scheduling
control computations at specific time instants, and allows dynamic selection of sampling periods.
The Maruti system developed at the University of Maryland is a suitable host for the implementa-
tion of dynamic temporal control [43, 35, 34]. In Maruti, all executions are scheduled in time and
the time of execution can be modified dynamically, if so desired. This is in contrast with traditional
cyclic executives often used in real-time systems, which have a fixed, cyclic operation and which
are well suited only for the sampled data control systems operating in a static environment. It
is the availability of the system such as Maruti that allows us to consider the notion of dynamic
temporal control, in which time becomes an emergent property of the system.

5.5 Example

To illustrate the advantages of a dynamic temporal control scheme let us consider a simple example
of rigid body satellite control problem [51]. The system state equations are as follows:

52

0 1 0
wk+1) = l—1 2]$(k)+[0.00125]“(k)
yhy = [1 1]ak)

where k represents the time index and one unit of time is the discretized subinterval of length
A = 0.05. The linear quadratic performance index Jys in (5.4) is used here with the following

parameters.
_ 10
N 0 1

= 0.0001
40
0.05
1

= 4 (5.24)

-a DR x O

The objective of the control is to drive the satellite to the zero position and the desired goal
state is x; = [0, 0]7.

We applied the dynamic temporal control law with an initial state space {(z1,z2) | 0.2 <
x1,22 < 0.8} with the following parameter:

9 = 0.01 (5.25)

The performance of the dynamic temporal controller is compared to that of traditional optimal
control with a sampling period 0.05. In Figure 5.3 the cost differences between dynamic temporal
controller and a traditional optimal controller are depicted for each initial state (21, z2). Note that
the maximum cost difference is less than 0.03. In Figure 5.4 the number of control computation
performed by a dynamic temporal controller is shown for each initial state. Note that the maximum
number of control computation is less than 20, and for many of initial states they are less than 18.

To estimate how much cost reduction is achieved through dynamic temporal control, we compare
its performance with that of traditional optimal controller with 0.1 sampling period, i.e., sampling is
done at 20 regular spaced time instants. In Figure 5.5 the cost differences between optimal controller
with 0.05 sampling period and an optimal controller with 0.1 sampling period are depicted for each
initial state (z1,22). Note that the maximum cost difference is almost 0.5. The cost differences
shown in Figure 5.3 and Figure 5.5 are compared together in Figure 5.6. Note that with almost
all initial states the dynamic temporal controller outperforms traditional optimal controller with
sampling period 0.1, even though the number of control computations done by a dynamic temporal
controller is smaller than that for optimal controller.

If we normalize the costs from dynamic temporal controller and from traditional controller with
sampling period 0.1, by dividing by the cost from traditional controller with sampling period 0.05,
we obtain graphs shown in Figure 5.7.

The Figure 5.7 shows two graphs, one for normalized costs from dynamic temporal controller
and the other for normalized costs from traditional controller with a sampling period 0.1. Note that

53

Figure 5.3: Cost differences between dynamic temporal controller and traditional controller with
0.05 sampling period. The maximum cost difference is less than 0.03.

54

Nunber

Figure 5.4: Number of control computation performed by a dynamic temporal controller is shown
for each initial state. Note that the maximum number of control computation is less than 20, and
for many of initial states they are less than 18.

55

Figure 5.5: Cost differences between optimal controller with 0.05 sampling period and an optimal
controller with 0.1 sampling period are depicted for each initial state. The maximum cost difference
is almost 0.5.

56

Cost

F N W b~ O

Figure 5.6: Cost differences shown in Figure 5.3 and Figure 5.5 are compared together. Note that
for almost all initial states the dynamic temporal controller outperforms traditional controller with
equal sampling period 0.1, even though the number of control computations done by a dynamic
temporal controller is smaller than that for traditional controller.

57

Figure 5.7: Normalize costs from dynamic temporal controller and from traditional controller with
sampling period 0.1. Costs are normalized by dividing by the cost from traditional controller with
sampling period 0.05.

58

Figure 5.8: Normalized costs from two controllers with adjusted threshold values. One from dy-

namic temporal controller and the other from traditional controller with equal sampling period
0.1.

for some initial states the optimal controller outperforms dynamic temporal controller. However,
this is from using uniform threshold value 8 for the entire initial state space. As a result of using one
threshold value, the number of control computations over initial state space shows non-uniformity
as can be seen in Figure 5.4. By adjusting threshold values for some initial state, we can obtain
more uniform graphs. This is seen from Figure 5.8 which is found after using different(smaller)
threshold values for the initial states that results in higher normalized costs in Figure 5.7.

The differences between normalized costs shown in Figure 5.8 is not so big, less than 0.01.
However, the advantage of dynamic temporal scheme is more clearly seen from the following ex-
periment. Usually, in concurrent real-time systems, the actual control update time instants for
one periodic control task varies in consecutive periods. This is from the variations of task exe-
cution times and also from the resource contention between different tasks. The delay of control
update from the ideal control updating time instant is called computational delay. Computational
delay has an adverse effect on control algorithm’s performance. Figure 5.9 shows the differences of

59

Figure 5.9: Differences of worst case normalized costs between a dynamic temporal controller with
= 0.01 and a traditional controller with a sampling period 0.1. The computational delays are
randomly generated with a normal distribution. For each initial state, the control trajectories are
found 100 times, and the maximum cost among them is recorded.

worst case normalized costs between a dynamic temporal controller with # = 0.01 and a traditional
controller with a sampling period 0.1. The computational delays are randomly generated with a
normal distribution in [0, A], and they are injected into the system trajectory. For each initial
state, the control trajectories are found 100 times, and the maximum cost among them is recorded.
The graph shows that using a dynamic temporal controller reduces normalized costs.

Finally, Figure 5.10 shows the differences of average normalized costs between a dynamic tem-
poral controller with 8 = 0.01 and a traditional controller with a sampling period 0.1. Again, the
computational delays are randomly generated with a normal distribution. For each initial state,
the control trajectories are found 100 times, and the average cost is recorded. This figure shows
that the differences are not as large as in Figure 5.9 since they are from average costs.

60

Figure 5.10: Differences of average normalized costs between a dynamic temporal controller with
= 0.01 and a traditional controller with a sampling period 0.1. The computational delays are
randomly generated with a normal distribution. For each initial state, the control trajectories are
found 100 times, and the average cost is recorded.

61

5.6 Discussion

In the previous section, we showed by using an example that the number of control computations can
be dramatically reduced by using dynamic temporal control law, while not sacrificing the quality of
control. Employing the dynamic temporal control methodology in concurrent real-time embedded
systems will have a significant impact on the way computational resources are utilized by control
tasks. A minimal amount of control computations can be obtained for a given regulator by which
we can achieve almost the same control performance compared to that of traditional controller with
equal sampling period. This significantly reduces the CPU times for each controlling task and thus
increases the number of real-time control functions which can be accommodated concurrently in
one embedded system. Particularly, in a hierarchical control system if dynamic temporal controllers
can be employed for lower level controllers the higher level controllers will have a great degree of
flexibility in managing resource usages by adjusting computational requirements of each lower level
controller. For example, in emergency situations the higher level controller may force the lower
level controller to run as infrequently as they possibly can (thus freeing computational resources for
handling the emergency). In contrast, during normal operations the temporal control tasks may
run as necessary, and the additional computation time can be used for higher level functions such
as monitoring and planning, etc.

As is mentioned in Section 5.4, there is an associated CPU overhead with dynamic temporal
controller. At start of each frame the sampling period decision has to be done, which requires
O(n?) execution time. However, this computation is required once every frame, and we can get
benefits by reducing the number of context switches in concurrent real-time systems.

More work needs to be done on the effects of computational delays and variations on control
systems performance when dynamic temporal controls are used.

5.7 Summary

In this chapter, we proposed a dynamic temporal control technique based on a new cost function
which takes into account computational cost as well as state and input cost. In this scheme new
control input values are defined at time instants which are not necessarily regularly spaced. For
the linear control problem we showed that almost the same quality of control can be achieved while
much less computations are used than in a traditional controller.

The proposed formulation of dynamic temporal control is likely to have a significant impact on
the way concurrent embedded real-time systems are designed. In hierarchical control environment,
this approach is likely to result in designs which are significantly more efficient and flexible than
traditional control schemes. As it uses less computational resources, the lower level temporal
controllers will make the resources available to the higher level controllers without compromising
the quality of control.

62

Chapter 6

Scheduling Aperiodic and Sporadic Tasks

6.1 Introduction

In this chapter we develop an approach to addressing the problem of incremental scheduling of
dynamic tasks in a hard real-time system.

Traditionally, the scheduling problem considered for real-time systems is that of generating a
schedule for n tasks. In practice, however, a system may have to accept additional tasks during its
operation. Here, we study the problem of incremental scheduling in dynamic time-based environ-
ment. We assume that we are given a set of n tasks, 7(and all their task instances), along with
a schedule for their execution. We consider adding a task to the schedule. To add a new task, we
have to first analyze the acceptability of it. If this task can not be scheduled without violating
constraints of any of the tasks in 7 then this task is not accepted. If this can be scheduled, we not
only accept the task, but also add it to the schedule.

In Section 6.2 the incremental scheduling problem is formally defined within a time-based
scheduling scheme. The results on incremental scheduling of aperiodic and sporadic tasks are
presented in Section 6.3. Finally, a summary follows in Section 6.4.

6.2 Problem Description

The main problem addressed in this chapter is how to incrementally accept and schedule tasks
while not sacrificing the schedulability of the tasks already accepted.

A task in a real-time system may invoke its corresponding task instances by informing the
system of the release time, deadline, and execution time of the task instance. Tasks in real-time
systems may be classified into single instance task and multiple instance task. Single instance task,
which is also called aperiodic task, invokes its task instance only once, and multiple instance task
invokes its instance repeatedly. Multiple instance tasks are further divided into periodic tasks and
sporadic tasks. A periodic task invokes its instances at regular time intervals(period), whereas a
sporadic task invokes its instances at any time instant with a defined minimum inter-arrival time
between two consecutive invocations.

Any arriving task belongs to one of these classes. A periodic task P is characterized by an
invocation of a sequence of task instances. The following characteristics are assumed to be known
at the arrival time, AP, of the periodic task, P.

63

task invocation time Z? from which the task starts to invoke its instances.
task termination time AP when the task is terminated.

period p

invocation time of the j-th task instance is defined to be If =IP+(j—1)p

relative deadline dP which implies that the absolute deadline of j-th task instance is If + dP.

worst case execution time ¢?

A hard aperiodic task A invokes its task instance only once. A has the following set of param-

eters:

arrival time of the request, A®
ready time R? from which the task instance can start its execution.
relative deadline d* which implies that the absolute deadline is D* = R®* + d*

worst case execution time ¢®

A sporadic task 5 is characterized by an invocation of its task instances with a minimum inter-
arrival time. The following characteristics are assumed to be known at the arrival time, A%, of the
sporadic task, 5.

task invocation time Z° from which the task instances can be invoked.

task termination time A’ when the task is terminated.

minimum inter-arrival time 6

invocation time of the j-th task instance, Z?, can be any time instant satisfying 77 > 77_; +6

relative deadline d* (< §) which implies that the absolute deadline of the j-th task instance
is 72 4+ d°.
J

worst case execution time ¢®

In addition to these, the system may be called upon to handle non-realtime tasks which don’t
have deadlines; Instead, they require as fast completion time as possible(best effort).

For a set of task instances to be scheduled, a traditional time-based scheduling scheme first
finds a complete schedule for them in a given scheduling window. This schedule contains a static
start time, s;, for each task instance, which is decided based on the worst case execution time ¢;
and reflects all task dependencies. However, to enhance the scheduler with the ability to schedule
dynamically arriving tasks, it may change s; at runtime, while conforming to all constraints, such as
release time r;, deadline d;, precedence relations, relative constraints, etc. Clearly, this additional
information has to be kept for each task instance with the schedule. If a new task arrives, based on
the current schedule it needs to be decided whether this new task can be accepted by the system,
and if it can be accepted, a new schedule has to be constructed to incorporate this new task.

64

In a hard real-time environment, tasks may be executed in preemptive or non-preemptive man-
ner. When a task is executed non-preemptively it begins execution at time s; and is assured CPU
access for the time, ¢;, without any interruption or preemption. In preemptive execution, the task
execution may be preempted at some defined time instant, and resumed at a later time instant.
Note that the task preemption and resumption times may be dynamically decided.

We extend the static time-based scheduling scheme into a dynamic time-based
scheduling scheme that enables any dynamically arriving aperiodic, periodic, or sporadic task to
be incrementally scheduled. In a traditional static time-based scheduling scheme, every resource
requirement is met by assigning explicit start times to the task instances. But, in this dynamic
time-based scheduling scheme, the start times no longer have to be statically determined. Instead,
the schedule includes a mechanism for determining the time when a task instance will be started
or resumed based on the information available prior to its start time.

6.3 Dynamic Time-based Scheduling Schemes

Two variations of dynamic time-based scheduling scheme are presented here. In Section 6.3.1, a
mechanism is presented to incrementally schedule aperiodic tasks over a schedule for static tasks
found at pre-runtime. In Section 6.3.2, a mechanism is presented to incrementally schedule spo-
radic(periodic) tasks. In both sections, it is assumed that a valid schedule of static tasks is initially
given with start times of the task instances. We develop acceptance tests for dynamically arriving
aperiodic(or sporadic) tasks under the assumption that the total ordering among the static tasks
is maintained, and EDF scheduling policy is assumed to be used for resolving the CPU contentions
between static and dynamic tasks. Between static tasks, the time-based scheduling scheme is used
in a sense that a total ordering among them is maintained at run-time, and between static(dynamic)
and dynamic tasks, EDF scheduling algorithm is used.

6.3.1 Aperiodic Task Scheduling

In this section, a mechanism is presented to schedule arriving aperiodic tasks. The key idea of this
mechanism is to make use of the fact that the task executions may be dynamically shifted to the
left or to the right in a time line as long as the timing constraints of the tasks can be satisfied. All
task instances in this section are assumed to be preemptable.

Task Model

We assume that an initial schedule of task instances is given in a scheduling window [0, L] and this
schedule is used by dispatcher at run-time. Let I' = {7y, 72,...,7n} be a set of task instances in the
initial schedule. It is assumed that 7; is scheduled before ;41 in the schedule. Fach task instance
7; has the following parameters in the schedule:

e release time R,
e absolute deadline D; (D; < Lforall 1 <i< N)

e worst case execution time C;

65

e runtime variable e; denoting the processing time already spent for 7; up to a current time
instant

e runtime variable w; denoting the latest start(or resume) time of 7;, which is a function of the
current time ¢ and the value of ¢;

e earliest start time est(7)
e latest start time [st(7)

A hard aperiodic task A is defined the same way as in Section 6.2 except that the ready time
is assumed to be equal to its arrival time, i.e, A* = R®. Also, the task instances in I' are assumed
to be preemptable by an aperiodic task and any aperiodic task is assumed to be preemptable by a
task instance in I'.

The values of est(i), Ist(i) , 1 =1,2,..., N, are found as follows:
est(l) = Ry
est(1) = max(R;est(i—1)+C;) fori=2,3,...,N
lSt(N) = Dny—-Cxn
Ist(t) = min(D;,lst(i+1))—-C; fori=N-1,N-2,...,1

If D; <lst(i+ 1), then Ist(¢) value will be decided from D;. And if D; > Ist(i+ 1), then [st(7) will
be decided from Ist(¢ 4+ 1). Fig 6.1 shows an example of these relationships.

’ T ﬂ iTi+l ‘
Ist(i) Ist(i+1) | Ist(i+1)+C;,,

Di
Figure 6.1: Deriving w;(0) recursively

Also, Fig 6.2 shows an example set of task instances with their est(¢) and [st(z7).

R;R> R3z R, Rs
! T [T] [Ts] Ta | [Ts] |
est(1) est(2) est(3) est(4) est(5)
| [7 [%] [7] | Ta] Ts]
! Ist(1) Ist(2) I1st(3) Ist(4) Ist(5)
I D, D2 D3 Da Dy T
Scheduling window for I ‘

Figure 6.2: est(i) and [st(¢) for an example task set

Note that the run-time variable e; is initialized to 0 and w; to [st(7).

66

I' and a set of arriving aperiodic tasks Ay, ..., A; are said to be feasible if and only if there
exists a schedule which satisfies all the timing constraints on I and aperiodic tasks. The optimality
of a scheduling algorithm is defined as:

Definition 6.1 (Optimality) A scheduling algorithm is optimal if and only if the following is
satisfied:

o It can schedule I' and arriving aperiodic tasks whenever there exists a feasible schedule.

Scheduling of Non-realtime Tasks

We can efficiently schedule any non-realtime tasks in a sense that maximum processor time can be
found and used to service non-realtime tasks at any time instant by delaying as much as possible
the executions of task instances. The non-realtime tasks are assumed to be processed by using
FIFO ! scheduling policy.

At a current time instant ¢;, let 7; denote a task instance in I' which is just finished or partially
executed. Also, let ty denote the last time instant when the dispatcher took control before ty,
and let ¢, denote the run-time variable denoting the future time instant when the dispatcher can
take control. The dispatcher takes control whenever a non-realtime task or a task instance in I' is
finished, or whenever t; = t5 holds. Then, at a current time instant ¢; when a dispatcher takes the
control:

If 7; is executed in [tg, 1]
then
let e; =e; +t; — 1o
let w; =w; +t — 1o
If 7; is finished
then
let j=75+1
let 15 = w;
Ift < W
then
if there exists a non-realtime task pending,
then give the processor to the first non-realtime task in the queue
else if R; <ty,
then give the processor to 7;
else let the processor be idle
else
give the processor to 7;

If no non-realtime tasks are pending, the next(or partially executed) task 7; is executed if it is
possible, i.e., the release time of it is reached. Whenever there exists a non-realtime task waiting
in the queue, and the latest start(or resume) time, w;, is not reached for 7; the non-realtime task
will be executed(after preempting 7; if it is already started) until it finishes or w; is reached. If it

FIFO stands for First In First Out.

67

continues its execution until w;, the non-realtime task is preempted and 7; will resume its execution
or start its execution. In other words, the non-realtime tasks have higher priorities until the latest
start(or resume) time of 7; is reached.

Example case is shown in Fig 6.3.

A
d, d=dy=d,

1] T,] | | T L

‘T1W0n—RedtimF T, ‘ ‘ T, ‘ T3 ‘ Ty,
AP / /
/ !/ /
/ 7/ /
/ / /
[4 4
[Tt P Ty | [T [T Ta |
d, B d> =dz;=d4

Figure 6.3: Joint scheduling of a non-realtime and I'

Acceptance Test for A Hard Aperiodic Task

In some real-time systems, there may exist aperiodic tasks that may arrive to the system at any
time instants. At their arrival times, tests should be performed to decide if they can be accepted
to the system or not. Once an aperiodic task is accepted and started it must be completed before
its hard deadline. If it is rejected, then a higher level entity in the application may decide the
following steps to the rejection message. For example, the higher level task may decide to re-invoke
the aperiodic task until it is finally accepted.

In this section, an acceptance test is developed that should be performed at the arrival times of
hard aperiodic tasks. It is assumed that the context switch overheads are small and they are not
taken into account in our work.

The relative deadline of an aperiodic task A is assumed to be less than or equal to the scheduling
window size L. The approach taken in this section treats arriving aperiodic task instances in FIFO
order. This assumption will be removed in the next section.

The acceptance test algorithm follows. Assume that 7; is the next or partially executed task
when the hard aperiodic task, A, arrived at time R®.

At the arrival time, R?, of an aperiodic task, A:

TotalCapacity = w; — R®

k=i4+1
While (TotalCapacity < ¢* and Ist(k) < R* 4 d*)
begin

TotalCapacity = TotalCapacity + lst(k) — Ist(k — 1) — Cj

68

k=k+1
If (TotalCapacity > c*)
then Return(Success)
end
TotalCapacity = TotalCapacity + max(0, R* + d* — Ist(k — 1) — Cy_1)
If (TotalCapacity > ¢*)
then Return(Success)
else Return(Fail)

At the arrival time of an aperiodic task, R®, the acceptance test can be done in O(M) time
within this framework where M denotes the total number of task instance 7;(¢ < j) which satisfies
R* <Ist(j) < R*+d". In this case, the total amount of available processor time for A in [R*, R*+d"]
can be found by the following formula:

QR R*+d%) = w; — R (6.1)
i1

+ Z (Ist(k + 1) = Ist(k) — Cy)
k=1

+ max(0, R + d* — Ist(j') — Cy)

where j/(i < j/) is the last index satisfying w. < R* 4 d°.
Example case is depicted in Fig 6.4 where j =5.

D1 D2 D3 Da Ds
[T [T [T4 T | [Ts |
[T [] [[5[] To [Ts []
W, Ist(2) Ist(3) Ist(4) Ist(5)

[] Available Slack

Figure 6.4: Obtaining maximum slack within a scheduling window of a hard aperiodic task A.

Acceptance Test for A Set of Hard Aperiodic Tasks

In this section, we address the problem of scheduling aperiodic tasks when several such tasks
may arrive at any time instants. In this generalized scheduling model, we need to decide which
scheduling policy is to be used for resolving the resource conflicts between the task instances in T’
and the aperiodic tasks, as well as the conflicts among the aperiodic tasks. For example, we can
assign higher priorities to aperiodic tasks than the task instances in I' as long as the latest start
times of them are not reached, and use an earliest deadline first scheduling algorithm among the

69

aperiodic tasks. However, this algorithm is not optimal as you can see from Fig 6.5. In this figure,
the example task set is shown which is not schedulable according to the above approach. But, there
exists a feasible schedule for this task set as is shown at the bottom of this figure. In the following
subsections, we develop an optimal scheduling algorithm.

| t |
| Ta |
[|
r ‘ T, To
Aa } |
Ao
Stealing M aximum Slacksfrom I
| - |
| Ta |
I |
r T,
Al i |
Az

EDF Scheduling

Figure 6.5: Example Schedules

Deriving Virtual Deadlines and Virtual Release Times

As a first step, we derive a virtual deadline and a virtual release time for each task instance 7;
in I'. This process is necessary to enforce the total order on I' when we employ EDF scheduling
policy to resolve the resource conflicts in an unified manner for all the task instances.

A virtual deadline of 7; is defined by the following recursive equation where D¢ is the original
deadline of 7;:

Dy = Dg
D; min(Diy1 — Cig1, D7) fori=N—-1,N—-2,...,1

If a virtual deadline is missed by some task 7;, then either the deadline of that task itself is missed
or at least one of the following tasks misses its deadline. It is clear that the virtual deadline is
always less than or equal to the original one and the virtual deadline D; is always less than D;yq
by a difference of at least C;yq1,i.e. D; < Dy — Ciyq.

Also, a virtual release time of 7; is defined by the following recursive equation where R is the
original release time of ;. Fig 6.6 explains the virtual release time and deadlines of the example

70

tasks. Virtual release time is necessary to impose a total order on I' when an EDF scheduling
algorithm is used to schedule the tasks.

R, = R
R, = max(Ri—1,R]) fori=2,3,...,N
| e |
| = |
| = |
Ta To T3

Original release times and deadlines

v

To |

T 3 ‘

Tl T2 T3

Virtual release times and deadlines
Figure 6.6: Deriving virtual deadlines and release times

This reduction of scheduling window of each task to [R;, D;] from [R?, D¢] by the introduction
of the virtual deadline is the result of imposing total order on I'.

The following proposition establishes the equivalence between the original task set and the
transformed task set with virtual deadline and release times in terms of the schedulability when an
EDF is used to schedule I' and an additional set of aperiodic tasks. Here, it is assumed that the
total order of the task instances in I' should be kept.

Proposition 6.1 ' and a set of additional aperiodic tasks are schedulable by EDF if and only if T
with virtual deadlines and release times is schedulable with the additional aperiodic tasks by EDF.

Proof Proof can be derived from the theorem in [15].
Optimal Scheduling Algorithm

In this section, the optimal scheduling algorithm is presented and its optimality is proved. We
assume that the task instances in I have virtual deadlines and virtual release times instead of the
original ones. The optimal scheduling algorithm assigns a higher priority to a task instance with a
closer deadline in an unified manner.

At any time instant ¢, let A°4(¢) = {A!?, A5 ..., A%} denote a set of active aperiodic tasks.
Here, active aperiodic task is the aperiodic task that was accepted before ¢ and still needs to be

71

executed. It is obvious that the deadlines of these aperiodic tasks are greater than ¢. The tasks in
A (1) are assumed to be sorted in their increasing order of deadlines. In addition, A?** denotes
a newly arrived aperiodic task at time ¢. The first step of testing the acceptability of A7 is to
insert A7¢ into A%%(t), thus producing A(t) = {41, Az, ..., A,41} in which the tasks are sorted
according to their deadlines in increasing order. Also, let e?(¢) denote the processor time already
spent for A; up to time ¢. Obviously, ef(¢) = 0if A; = A7*". At this point, we derive the following
lemmas and theorem which proves the optimality of the EDF scheduling algorithm proposed above.

The following lemma specifies the necessary condition for A(¢) to be schedulable. Here, let D

(1 <i<m+1)denote a deadline of the i-th aperiodic task, A;, in A(?).

Lemma 6.1 Let A(t) denote a set of aperiodic tasks defined above. If there exists a feasible schedule
for A(t), then

Vi<i<m+1 = QDY) > Z(Cq —ei(1)) (6.2)

Proof Suppose (6.2) is not satisfied for some 1 <k < m 4 1, then

Qt, D) <

J

(¢j = e5(1))

k
=1

This means that the processor demand in [t, D}] required by A(t) exceeds the maximum processor
time in [¢, D}] available for A(¢). The un-schedulability of A(¢) follows.

Lemma 6.2 Let A(t) denote a set of aperiodic tasks defined above. Then A(t) can be scheduled
under the proposed EDF if

Vi<i<m+1 = QDY) > Z(Cq —€ei(t))

Proof The proof can be easily derived from the theorems 3.2 and 3.3 in the paper by Chetto et
al. [13].

Theorem 6.1 Let A(t) denote a set of aperiodic tasks defined above. Then the proposed EDF
scheduling algorithm is optimal and the schedulability condition is:

Vi<i<m+1 = QDY) > Z(C? — (1))
7=1

Proof From Lemma 6.1 and Lemma 6.2, this theorem follows.

Clearly, the condition of the above theorem can be checked within O(M + m) by utilizing the
formula (6.1) where M denotes the total number of task instances in I' whose deadlines are greater
than ¢ and less than or equal to D7 ., i.e., the task instances in I' which may be executed within

72

the range [t, Dy 1]. The first step is to insert the newly arrived aperiodic task into the set of active
aperiodic tasks so that the aperiodic tasks are ordered in increasing order of their deadlines. Then,
the maximum slack times, Q(¢, D?), are found from 7 = 1 to ¢ = m + 1 by making use of Q(t, D¢ ;)
already found.

If multiple aperiodic tasks arrive at ¢, we have to give priorities to these aperiodic tasks to decide
which one has to be accepted and scheduled first. In this case, the above acceptance test is repeated
for each aperiodic task from the one with highest priority to the one with lowest importance. The
total complexity in this case is O(K (M + m)) where K denotes the number of aperiodic tasks
arrived at .

6.3.2 Sporadic Task Scheduling

One of the drawbacks of time-based scheduling scheme is that the sporadic task scheduling becomes
very difficult. The algorithm to transform a sporadic task to an equivalent pseudo-periodic task
has been proposed by Al Mok [38]. From the definition of the sporadic tasks, the events which
invoke the sporadic task instances may occur at any time instant with the minimum inter-arrival
time, 6. And, once the task is invoked, it has to be finished within its relative deadline from the
invocation time, d®. The first step of the transformation is to decide the relative deadline of the
pseudo-periodic task, dP, which is less than or equal to d°. And then, the period, prd?, of the
pseudo task is found from the equation prd? = min(d® — d? + 1, ¢). This is justified from the worst
case scenario which can be seen in Figure 6.7.

State change
t+1

Figure 6.7: Worst Case for Deadline Determination

However, this approach may lead to significant under-utilization of the processor time, especially
when d® is small compared to é, since a great amount of processor time has to be reserved statically
at pre-runtime for servicing dynamic requests from sporadic tasks. This is well explained in Fig 6.8
through a simple example where an equivalent periodic task is to be found from a sporadic task
whose worst case execution time is ¢ = 4, whose relative deadline is d* = 8, and whose minimum
inter-arrival time is 6 = 8. If we employ Mok’s algorithm, the corresponding periodic task has a
worst case execution time ¢ = ¢® = 4, a relative deadline d? = 4(< d*), and a period prd® =
min(d® — dP 4+ 1,6) = 5. The processor utilization of this new periodic task is 4/5 = 0.8.

In our proposed scheduling approach, the incremental scheduling of hard periodic tasks and
sporadic tasks may be decomposed into two steps. We assume that the initial schedule of task
instances is given in a scheduling window [0, L] as in the previous sections. Then, the release times
and deadlines of those task instances are transformed into virtual ones as was done in Section 6.3.1.
And at runtime, every time new sporadic task arrives, the schedulability check is performed to see if

73

| d=5=8 |

I =
Sporadic c® =4

prd® =5 ‘

p
o d=4 . | L | || |
|] 1 1 |

.

p_
Transformed Sproadic ‘ c =4

Figure 6.8: Under-utilization of the transformed sporadic task

the already accepted tasks and this new sporadic tasks can be scheduled using the EDF scheduling
algorithm. And at runtime, the hard task instances from the schedule and the sporadic tasks are
scheduled according to EDF. This can be viewed as merging two task instance streams, one from
hard tasks and the other from sporadic tasks.

Extended Task Model

As in Section 6.3.1, an initial schedule of task instances is assumed to be given in an scheduling
window [0, L] and denoted as I'. Let I' = {7y, 72,...,7n} be a set of task instances where 7; appears
earlier than 7;41. Fach 7; has a following set of parameters in the schedule.

o virtual release time R,
e virtual deadline D;(< L)
e worst case execution time C;

deadlines and virtual release times are obtained as in Section 6.3.1 from the original ones.

Let § = {51,52,...,5n,.} be a set of sporadic tasks which have to be scheduled with T'. For
each sporadic task 5;, the minimum inter-arrival time 4;, the maximum execution time ¢{, and the
relative deadline df (< é;) are assumed to be given. It is also assumed that the 5;s are ordered in
increasing order of their relative deadlines, d?, i.e., d? < df, ;. The objective of this section is to
develop an optimal scheduling algorithm and its schedulability test for I' and S together.

Some additional terms are defined in the following:

e Extended scheduling window for I' and S, [0, LC' M|, where LC' M is the least common multiple
of I and the minimum inter-arrival times of the tasks in §.

e N’ denotes the total number of hard task instances scheduled in [0, LCM]. N' = N(LCM/L)
where [0, L] is the original scheduling window.

e Extended schedule in an extended scheduling window [0,kLC M] is found by repeating k
times the schedule I' and denoted as kI'.

We need to check the schedule in an extended window [0,2LC M] to verify a schedulability of
I' and & according to the following scheduling model.

74

Scheduling Model

The CPU contention among tasks in I' is resolved naturally from the total order among the tasks.
This can be done by using an earliest deadline first scheduling algorithm and by using the virtual
deadlines introduced earlier since R; < R;y1 and D; < D;y7. But, the mechanisms to resolve the
resource contention between tasks from & and those from I' should be provided to enable them to
be scheduled at run-time. We assume that those contentions are also resolved through the same
scheduling algorithm(EDYF'), leading to an uniform scheduling policy for & and I'.

We denote a subset, {7,,7,41,...,75}, of I'in [0, LC'M] as T if:

e 1<a<b<N

o est(j+1)=est(j)+Cjforj=a+1l,a+2,...,0—-1
o est(a)>est(a—1)+Chqifl<a

o est(b+1)>est(b)+ Cpifb+1< N

In this case, we divide the set of task instances in [0, LC' M| into disjoint subsets, Ty, To, ..., T\,
satisfying the above conditions. Let est(T;) denote the earliest start time of the first task instance
in T; and let eft(Y;) denote the earliest finish time of T;. Figure 6.9 shows an example case.

R3 Rs
| T | T | Ts T, | | T | |
(1) et(2) est(3) est(4) est(5)
N/ N A N4
Yl Y2 Y3

Figure 6.9: T found for an example task set

In addition, we define Q/(tl,tz) (0 <ty < LCM A t; < tz < 2LCM) as the maximum
slack time obtainable in [ty, ;] under the assumption that from time 0 up to time instant ¢; task
instances only from I' have been executed with their maximum execution times, i.e., tasks have
started at their earliest start times and spent their worst case execution times. Then, Q/(tl, t3) can
be obtained as follows. First step is to find task instance 7; satisfying:

est(i— 1)+ Cioq1 <t1 At <est(i)+ C;
If t4 < est(1) + Cy, then let 7 = 1. Then,

Q' (ty,15) = Ist(i) =ty + max(0,t; — est(i)) (6.3)
+]§_: (Ist(k + 1) — Ist(k) — Ci) + max(0,t; — Ist(j') — C)
k=1

where j/(i < j/) is the last index satisfying lst(j/) < ty. This process is similar to the one used in
the acceptance test of aperiodic task in Section 6.3.1. An example case is depicted in Figure 6.10.

75

L ot | T, | Ts] L | [1s]
est Y1 eft Y2 Ys
|t |]] [T[] L [ts]| |
est(1) Ist(2) Ist(3) Ist(4) Ist(5) T
ty to

Figure 6.10: Q'(t1,t;) for an example task set

Schedulability Test
The following proposition specifies the necessary condition for I' and & to have a feasible schedule.
Proposition 6.2 [f there exists a feasible schedule for I' and S, then

Vie[1,v] 2 Vt € [est(Y;),est(Y;)+ LCM]

.. Q/(est('ri),t) > i e L(t — 68t('r2'(5)k-|- O — dZ)J (6.4)

k=1

Proof: This is proved in the appendix.

The following theorem specifies the sufficient and necessary schedulability condition of the task
set I' and S. The extended schedule in [0,2LC M] is assumed to be given.

Theorem 6.2 ' and § are schedulable according to EDF if and only if

Vie[1,v] 2 Vt € [est(Y;),est(Y;)+ LCM]
.. Q/(est('ri),t) > i e L(t — 68t('r2'(5)k-|- O — dZ)J (6.5)

k=1

Proof: By proposition 6.2 and proposition B.5.

From the above proposition and a theorem, we can know that EDF is optimal for scheduling
I' and §. Finally, we obtain an equivalent condition to (6.5) of the theorem 6.2, which enables us
to reduce the complexity of the schedulability check. This corollary specifies that only the time
instant which is equal to a deadline of some task instance in & needs to be examined at or after
est(T;) in checking the condition (6.5) of the theorem 6.2.

Corollary 6.1 The following two conditions are equivalent to each other:

(1) Vie[l,v] = Vtelest(T;),est(T;)+ LCM]
;0 Q (est(Ty),1) > i ¢ L(t - est(T;): 8k — dZ)J

k=1

76

(2) Vie[l,v] : Vd; € [est(T;),est(T;) + LCM]
'3 Q/(&St(’ri),d}') > gs: CZ . L(d] — 6815(1;;: + 6k — dZ)J

k=1

where d; is the deadline of some task instance in S.

Therefore, the total complexity of the schedulability check algorithm is reduced to O(M/) where
M = o(N" + X0 (LCM/6§)) + 7 (LCM[8;) log(3-7 (LC'M/§;)). The first step is to obtain
the deadlines(d;) of the task instances from § in the window [0, LC'M] and sort them in increasing
order. Then, for each est(T;) (1 < ¢ < v), the second condition of the above corollary is checked
in O(N' 4+ Y7 (LCM/§;)) for the deadlines obtained in the first step. This process is similar to
the one used in Section 6.3.1.

6.4 Summary

In this chapter, we addressed the issue of incremental scheduling on the basis of time-based schedul-
ing scheme. The acceptance tests are developed for dynamically arriving aperiodic tasks, and for
dynamically arriving sporadic tasks, respectively. A mixed scheduling policy was used such that
the total ordering among static tasks is maintained. By making use of this property, we can extend
the approach when there exist complex timing constraints between static tasks such as standard
relative constraints.

7

Chapter 7

Conclusion

A new dynamic time-based scheduling scheme has been developed in this dissertation, and it
is applied as a solution approach to several problems. In the new scheme, task attributes in
the schedule may be represented as functions parameterized with information available at task
dispatching time. By doing so, more freedom is available for a task dispatcher, and flexible resource
management becomes possible at system operation time.

In Chapter 3 and 4, we addressed the problem of scheduling tasks in the presence of relative
timing constraints in addition to release time and deadline constraints. Applying dynamic time-
based scheduling scheme as a solution approach to this problem enables us not only to check the
schedulability of a given cyclically constrained job set, but also to flexibly manage slack times at
system operation time.

In Chapter 5, we addressed the problem of designing a dynamic temporal controller for linear
time-invariant control systems. In dynamic temporal control technique, the fixed sampling period
assumption is relaxed and sampling periods are adaptively decided based on current physical system
state. It is shown that this new technique allows us to greatly reduce the computational resource
requirement while maintaining the quality of control. When multiplexing multiple concurrent
control tasks, especially when a transient overload has occurred, this new scheme provides a sound
basis for increasing the system performance by efficiently distributing computational powers to
tasks. This technique may be implemented by applying the dynamic time-based scheduling scheme,
for example, by parameterizing task execution mode.

Finally, in Chapter 6, incremental scheduling problem is addressed on the basis of time-based
scheduling scheme. That is, the total ordering among static tasks is maintained during system
operation time, while dynamic tasks are executed in slack times available from static tasks. Only
release time and deadline constraints are assumed to exist, and EDF is assumed to be used in
resolving resource contention between dynamic(static) and dynamic tasks.

It is shown in this dissertation that dynamic time-based scheduling scheme may be effectively
used as solution approaches to the problems in dynamic real-time systems.

7.1 Future Research

In this dissertation, a new dynamic time-based scheduling scheme is presented and its applicability
has been shown through examples. In the presence of relative timing constraints, each entry
in the dynamic calendar is parameterized with start or finish times of previous task instances.
However, this restriction may be removed and an entry in the dynamic calendar may be an arbitrary

78

function parameterized with any information available to the system. With this generalization,
other extensions may be possible, especially in the presence of inter-task dependencies, or fault-
tolerance requirements. Clearly, such functions lead to a highly state dependent dynamic schedules.

For example, the dynamic time-based scheduling scheme may be applied to cope with transient
overloads that occur in many real-time systems [4]. In fixed priority-based systems, some work has
been done on this issue [44]. However, as far as we know, no systematic work has been done on
this, especially on time-based scheduling scheme. Dynamic time-based scheduling scheme seems to
be an appropriate framework for this problem.

In Chapter 3 and 4, it is assumed that task order remains fixed throughout the system operation
time. When a new task is to be added to a schedule, the original order may no longer be the best
or most appropriate. In the presence of relative timing constraints, a new task order generated at
run-time should be validated such that every timing constraints will be satisfied. This may require
O(n?N?) time in the worst case if our algorithm is applied. But, if a few task instances in the
near future are allowed to change their orders, it may be possible to develop an algorithm with less
complexity by utilizing that fact.

In Chapter 3 and 4, it is also assumed that a total ordering among tasks is found at pre-runtime
by an off-line scheduler. Previous work by Cheng et al. [11] and Mok et al. [37] use a heuristic
approach called smallest latest start time first to schedule task instances with relative constraints.
However, their heuristics don’t fully reflect the relative timing constraints. Improved heuristic
functions may be developed if the constraint graph structure is utilized.

We considered the scheduling of tasks in uni-processor systems where tasks may have relative
timing constraints. However, if we want to extend the dynamic dispatching approach to distributed
systems, where tasks located in different nodes may have relative constraints, several issues have
to be addressed further such as what kind of information have to be sent out to other nodes, and
how parametric functions can be found.

In Chapter 4, a new controller design method is presented while its implementation issues were
not addressed. As was mentioned in Chapter 4, dynamic time-based mechanism may be utilized to
implement the scheme by creating a variable for each task instance designating its execution mode,
i.e., whether that specific instance will be invoked or not. More work needs to be done on how the
parametric functions can be found in this case.

In Chapter 6, the solution approach is found under the assumption that every task is preempt-
able. An extension of the work needs to be made for non-preemptive tasks.

79

Appendix A

A.1 Proofs for Chapter 4

Proof of Lemma 4.1: It is obvious that there exists an one-to-one correspondence between an
edge pair set in G(f,) from which a new edge will be created after f, is eliminated, and a constraint
in Sched(e,) to be changed after eliminating e,. Also, it is clear that a new constraint created in
Sched(s,) will correspond to a new edge created in G/(s,). Therefore, Elim(G(f,), fa) is equal to
G(8q)-

Proof of Lemma 4.2: The proof for this lemma is similar to that of Lemma 4.1, and is omitted.

Proof of Proposition 4.2: Let m be a negative weight restricted cycle in G(fn) satisfying:
e no restricted cycle appears as a proper sub-cycle of 7.

If there exists a negative weight restricted cycle in G/(fy), then 7 also exists in G(fn). Also, let y
be a node in 7 that appears first in a sequence < vg, $1, f1,...,5n, fv >. Then, 7 can be denoted
as

W1 W2 Wit1
<Y —— V] ——=V3...0 — Y >

where Z;";ll w; < 0. By eliminating nodes that lie after y in the node sequence <

V0,515 f1s- -, 5N. fn >, we will obtain a negative weight edge y —— y where w' < 0. This is
clear from the path preserving property of node elimination algorithms. Then, from the equiva-
lence relationship between constraint graphs and predicates, a contradiction is obtained during the
elimination of the variables from Sched. Therefore, Sched is equal to False. m

Proof of Lemma 4.3: Claim 1: If y - 2 € G(f,) holds where y # z, then there exists an

acyclic! restricted path y T 2in G(fn) where w' < w and all its intermediate nodes belong to
{Sa-l-lvfa-l-lv"'vSNva}‘

If v = fu, then the claim holds. Suppose that there exists an edge y — z in G(f,) where
1<a< N -—1.

For a case when y = #, it can be similarly shown that a restricted path without any intermediate restricted
cycle(i.e., excluding y and z) is obtained, even though the resulting restricted path is not acyclic.

80

Assume that there exists an acyclic restricted path in G(f;) with a weight sum w,a <b < N—1,

<y L ”m L Vy. .. L v; RLELCEN (A.1)
where ¢ > 0, and v; € {Sq41, fag1,-- ., 8, fo} for 1 < j <. If all edges constituting this path exist
in G(fy41) with same weights, then there exists an acyclic restricted path in G/ fp11) with a weight
sum w where all its intermediate nodes belong to {s,11, fat1,---»Sp+1, fo+1}. So, assume that at
least one of these edges is created in G/(fy) just after eliminating fi41 and spqq from G(fp41). Let
J =4Jj1, 42, -sJr}, where 1 <k <i+land 1< j <i+1forl <<k, denote an index set
of edges in the above path which are newly created in G(f;). The indices in J is assumed to be

e
increasing. Fach edge v;,_¢ k)| vj,for 1 <1 <Fk, is created? just after f,1; and spqq are eliminated

from G(fyg1)-

Fact 1: In G(fp41) the weight of an edge sp11 — foy1 is equal to lp41, and the weight of
So41 — Sp41 1 equal to —upyq.

If the fact is not true, then a contradiction should have been derived, which is against the
assumption.

From the node elimination algorithm we know that the edge v;_; oy v;, is created from one
of the following restricted paths in G(fp41) whose weight sum is wy j,:

1 2
Wht1j, Wht1j,
1. < Vjj—1 — Spy1 —— V5 >

W1 B W2 B
b+1,j; —Up41 b+1,j;
2. < Vj—1 — fb-l—l — Sp41 —— Uy >

1 2
Yb+1,i) lb+1 Yb+1,i)
3. < V-1 — Sb41 — fb_|_1 — V5 >
1 2
Wb, —upyq Ip41 Wb,

4o <o = fopt = s = for v >

We can extend the path in (A.1) into a path in G(fy41) by replacing each edge in (A.1) with
an index 7; by one of the above paths via sp4q and fy4q.

If £ =1, i.e., only one edge is created after eliminating fy,41 and spq from G(fp41), then it is
obvious that the extended path is also a restricted path with a weight w in G(fy41). So, assume
that & > 2. In this case, there exists a cycle in the extended path.

First, consider two edges, v;, _; oy v;, and vj,_q ol v;,. For all 16 possible combinations of
the above 4 paths from which these two edges will be created, a restricted cycle is obtained after
extending these two edges in (A.1). For example, if both of these two edges are created from the
paths of the form 4, then the extended path will be of the following form:

< ¥y — U = V..V —
< fog1 = So41 = fog1r = V5 - Vi1 — fog1 >
— Sp41 —>fb_|_1 — Vjy e Vg — 2 >

The inner path, < fi41 — sp41 — fog1 — vj, ... V5,1 — fo41 >, is a restricted cycle, since the
sub-path < v;, ...v;,1 > is a restricted path and neither s,y nor f,1; appears in this sub-path.

?For the purpose of convenience v denotes a node y, and v;41 denotes a node z.

81

Then, from Proposition 4.2 the weight sum of this restricted cycle is non-negative. If it is negative,
then a False should have been derived during eliminating the nodes in {fn,sn,..., fat1sSat1},
which is a contradiction to the assumption. Therefore, if we reduce this restricted cycle into a single
node fp41, then we obtain the following restricted path whose weight sum is less than or equal to
w:

LY =01 = V2. V-1 = fop1 = Sbp1 = fop1 = V0 — 2 >

Wh,i1 Wh,ig :
As a result, two edges, v;, .1 — v;, and v;,_1 —= v;,, are merged into one sub-path

Vi —1 = fo41 = Spr1 — fop1 — vy,

Similarly, for other combinations for two edges, v;, _; oy v;, and v, Thiz vj,, the similar results
can be obtained. .o

If we continue this merging process for an edge, v;,_1 =1 vj,, and for the sub-path < v;, 1 —
fo41 = Sp+1 — fo41 — v, > found above, we will obtain a merged acyclic sub-path from v; _; to
vj, through fy4q or spiq.

Therefore, after £ — 1 iterations of the above process, we will obtain an acyclic restricted path
in G(fy+1) whose intermediate nodes belong to {sq+1, fat1,-- -, Se+1, fo41} and whose weight sum
is less than or equal to w.

Therefore, by inductively applying the above argument, we know that there exists an acyclic
restricted path in G/(fy) whose intermediate nodes belong to {sqy1, fat1,.--,5N, v} and whose
weight sum is less than or equal to w.

Claim 2: If there exists an acyclic 3 restricted path y ~> z in G/(fy) whose intermediate nodes

belong to {s,11, fat1s---»SN, fN}, then y = 2 € G(f,) holds where w < w.
The proof for this claim is similar to that for Proposition 4.2, and is omitted.
From claim 1 and 2 the lemma is proved. m

Proof of Corollary 4.1: Suppose that an edge y — z exists in G/(v). If v = f, for some a, then
from Lemma 4.3 it is obvious that there exists a path y ~ z in G/(fy) whose intermediate nodes
belong to {v',..., sy, fx}. So, assume that v = s, for some a in [1, N].

If there exists an edge from y to z in G(f,), then the condition 2 holds. Hence, further assume
that an edge y — =z is created just after eliminating f, from G(f,). From the node elimination
algorithm, the edge is created from either of the following paths:

1'y_>fa_>5a
2. Sq — fo— 2

From Lemma 4.3 we know that there exist two acyclic restricted paths whose intermediate nodes
belong to {sqy1, fat1,---5SN, fn}. By merging these paths, we obtain a path from y to z whose
intermediate nodes belong to { fu, Sat1, fat1s---, SN, [N}. B

*For a case when y = z, it can be similarly shown that the claim holds for a restricted path without any intermediate
restricted cycle(i.e., excluding y and z).

82

Proof of Proposition 4.3: If there exists an edge connecting sf and v in Gl’k(f]’{,), then it is
obvious that v belongs to a node set P. So, assume that there exists no such edge in G*(fX).

Two cases must be considered.

Case 1: v — sf € Gl’k(sf)

From Corollary 4.1 there exists a path from » to sj in Gl’k(fk) whose intermediate nodes belong
to {fZ], ..,8N, fn}. Note that this path has at least one intermediate node. From the definition
of a crossing edge set &1 (s) it is clear that v € PrecNode(®'*(s))

Case 2: s v € Gb k(Z)

Similarly, the proposition can be proved in this case. m

Proof of Proposition 4.4: Suppose that v belong to Node(\Ill’k(sz)). Then, there exist an edge
v e {vg, st fl,.. .,sf} such that an edge v — v’ exists in G(sf) Then from Corollary 4.1, we
know that there exists a path v ~ v in Gb: k(fk) where all intermediate nodes in the path belong
to {fZ], , sk, f&}. From the definition of W!¥(s) there exist two edges v — vy and vy — o'
in v ~ v where v; and v, belong to {fZ], .. SN,fN} Note that v; may be equal to v. This
means that v is an element of PrecN ode(® k('}). Thus, Node(¥" k()) C PrecN ode(®V*(s!)) is
proved. The second assertion, Node(¥h k(ff)) C Prec]\fode('ib1 k(ff)), can be proved in a similar
way. Also, from these we know that a maximum number of edges in \Ill’k(f]@), 1< <k—-1,is
less than or equal to n(n — 1), since n is the number of nodes in PrecNode(®%%(fi)). m

Proof of Proposition 4.5: Claim 1: If there exists an edge from v; to vy in ¥h k(1), then
there also exists an edge from gg)(v1) to g1y(vz) in U k(f]).

First suppose that v; — vy € Ul k(f] 1) where 1 < 7 — 1 < k — 3. Then, from the definition
of a created edge set, there exists a path from v; to vy that has at least one intermediate node
and whose intermediate nodes belong to {si, f7,.. .,sﬁv,fﬁf}. By applying a technique similar to
the one used in the claim 1 of the proof for Lemma 4.3, we can reduce this path into an acyclic
restricted path from v to vy that has at least one intermediate node. Let this reduced path be
denoted as < vy — x4 — x2... — ¥ — vy >, | > 1, where every intermediate node 5 (1 < h <)

belongs to < sl,fl,. . .,sN,fN >. If all nodes @5, 1 < h <1, belong to {s], f{,..., sk 1, fi=11 then
it is clear from the cyclic nature of constraint graphs that there exists an acyclic restricted path
from g(1)(v1) to g(1y(v2) in GVR(fk) whose intermediate nodes belong to {8]+1, 1]+1, o i3
Hence, assume that there exists at least one x,,, 1 < m < [, that belongs to {s¥, fF, .. .,sﬁv, f}{;}
Note that zy,2; € {s], fi,..., sk, f&}. There are two possible cases to be considered:
1. 24 is located later than z; in the node sequence < 5{, flj, .. .,55\7, fJ]V >

o In this case there exists an acyclic restricted path < vy — 21 ~ 2; — vy > whose inter-
mediate nodes belong to {sj, f7,.. SN,fN} This is because every node in constraint
graphs has an edge to its previous node in the node sequence < si, fl,.. .,5?\7, fN >. In

other words, g1y < v1 — @1 ~ &1 — vy > is an acyclic restricted path from g(l)(vl)
to gqy(v2) in GUE(fX) whose intermediate nodes belong to {8]+1, 1]+1,...,5§“\7f]’§7}.4

4g(a) <y1 — y2... — y; > is defined to be < go)(v1) — 9a)(¥2) .. — ga)(wi) >

83

Hence, from Lemma 4.3 there exists an edge g(1)(v1) — g(1)(v2) in Gl’k(f]@). Because
there exists a path from g(y)(v1) to g(1)(v2) satisfying the condition given in definition
of a created edge set, this edge belongs to W1*(f%)

2. x1 is located before z;.

e Let the reduced path be denoted as < vy — x1 ~ x; ~ x,, — ¥ — vy > wWhere
z; is a first node appearing in this path that lies after z; in the node sequence <
s, fiy ... 8%, f& >. Note that z; € {si,f{,...,sﬁ\}'—l,]]\,+1}. Again, since j +1 < k-1
and every node has a path to its predecessor in the node sequence, there exists an
acyclic restricted path < vy — 2y ~ z; ~ @; — vy > that doesn’t have a node for
a job in I'*. Hence, there exists an acyclic restricted path gy < 11— T~ T~
x; — w9 > whose intermediate nodes belong to {S{H, {H, .. .,sé“\,,f]’{,}. This means
that g(1y(v1) — gay(v2) € Gl’k(f]{,). Also, because the above path satisfies the definition

for a created edge set, this edge belongs to \Ill’k(f]]\,)

Claim 2: If there exists an edge from v3 to v4 in \Ill’k(f]@), then there also exists an edge from
9(-1)(3) to g(_py(va) in WIS, 4

Suppose that there exists an edge from vs to vy in \Ill’k(ffv) Then, from the definition of a
created edge set, there exists a path from v3 to vy that has at least one intermediate node and
whose intermediate nodes belong to {S{H, 1]+1, .. .,sﬁv,fﬁf}. By applying the technique in the
claim 1 of the proof for Lemma 4.3, we can reduce this path into an acyclic restricted path from

v3 to vy that has at least one intermediate node. Let this path be denoted as < v3 ~» v~ vy >

where v belongs to {S{H,]<,+1, <oy 8%, f&}. In this case, the path g(-1) < vz~ '~ vy > s also
an acyclic restricted path in G(fX) whose intermediate nodes belong to {s}, fx, .- .,sf\f_l, ﬁ,—l}.

Then, from Lemma 4.3 there exists an edge g(_1)(v3) — g(—1)(v4) in Gl’k(f]]\,_l). Also, because the
path g_y) < vz ~ v~ vy > satisfies the condition in the definition of a created edge set, this
edge belongs to WH#(]]{1), too.

From Claim 1 and 2, we conclude that \Ill’k(f]]\}) is semi-homogeneous to \Ill’k(f]]\?) for1 <j; <
Jje<k—-2.m

Proof of Proposition 4.6: Irom Lemma 4.3 there exists a minimum weight acyclic restricted
path 7 =< v; <> vy > whose intermediate nodes belong to {S{H, 1]+1, .. .,sﬁv,f]’{,}, and a min-
imum weight acyclic restricted path 7o =< g(_l)(vl) A g(_l)(vg) > whose intermediate nodes
belong to {5{, f{, ooy Sk, fiY. Three cases must be examined:

Case 1: 11 # vg and vy # vg

In this case it is clear that w' is less than or equal to w, since the set of acyclic restricted paths

from vy to vy in GV¥(fE) whose intermediate nodes belong to {8{+1, {+1, ooy 8K R is a subset
of a set of acyclic restricted paths from vy to v in Gl’k(f]]{,) whose intermediate nodes belong to
{8{7fi77"'78§€\77f]]§7}'

Case 2: v1 = vg
The path g(_1)m is also an acyclic restricted path. The weight of a path g_ym; is equal to
w — L, since every edge weight in this new path is the same as that of corresponding edge in m

84

except for the first edge vg — g(_1)(9€1) of g(_1ym1 where zy denotes the first node appearing after
v in m1. The weight of this edge is L less than that of vg — 21 which is the first edge of ;. This
implies w" < w — L from Lemma 4.3.

Case 3: v9 = g

The path g(_1)m is also an acyclic restricted path. The weight of a path g_;ym is equal to
w + L, since every edge weight in this new path is the same as that of corresponding edge in m
except for the last edge g(_l)(xl) — v of g(_1)m. The weight of this edge is L more than the

weight of z; — vg which is the last edge of my. This implies w' < w+ L from Lemma 4.3. &

Proof of Proposition 4.7: Note that two created edge sets, \Ill’k(fg_l) and \Ill’k(fg), can be
shown to be semi-homogeneous by employing similar proof to that for Proposition 4.5 where 2 <
J<k—2

The following claim is proved where 7 is any integer satisfying 1 < < N.

Claim 1: WVF(FI71) ~ OLE(f7)

First, suppose that v; — vy, € \Ill’k(fij_l), where v1 # vg,v3 # vg. Consider a graph
GUE(i 1). From Lemma 4.3, we can find a minimum weight acyclic restricted path within this

graph, T1 =< vy ~*+ vy > whose intermediate nodes belong to {SZ_H , z-l—l ey]Gl, N_l} From the
assumption of homogeneity between vl k(f]) and WLF(FI), every edge #1 — g in G k(f] Y,
where x1,29 € {52+1,...,5§\71 } has the same weight as an edge g(1)(21) — gq)(z2) in

Gt k(f]]\,) This one-to-one correspondence between created edge sets implies that an acyclic re-
stricted path g(;)m1 has the same weight w; as that of 7y, and g(;)m is a minimum weight acyclic
restricted path among the acyclic restricted paths in G'" k(f]) whose intermediate nodes belong
to {SZ_H,.. SN,fN} Hence, g((v1) LN gay(v2) € G k(f]) holds from Lemma 4.3. Because
vl k(ff ') and \Ill’k(ff) are semi-homogeneous, this edge also belongs to W' k(ff)

Second, suppose that v3 ~2 vy € WYA(f7), where v3 # vo,vy # vo. Consider a graph
Gt k(f]). From Lemma 4.3, we can find a minimum weight acyclic restricted path within this
graph, Ty =< v3 ~2 v4 > whose intermediate nodes belong to {SZ_H, f—|-17 .. .,sg\,, f]]\,} Again, from
the one-to-one correspondence between created edge sets, a path g(_;ym2 has the same weight w,
as that of 79, and the path is also a minimum weight acyclic restricted path among the acyclic
restricted paths in G k(f] 1) whose intermediate nodes belong to {SZ_H ooy SN il N } Hence,
g(—1)(v3) == g_py(ve) € G k(771 holds from Lemma 4.3. Because W' k(ff Yy and WhE(f7) are
semi-homogeneous, this edge also belongs to \Ill’k(fij_l).

Therefore, the following is proved where vy # vy and vy # vg:

(1 =02 € WHA(ITY) = (gq)(01) == gay(e2) € UHH(D)

For cases where one of v, or vy is equal to vg, the condition 3 or 4 in the definition of homogeneous
edge sets may be proved in a similar way to the above one by using the definition of homogeneity
between created edge sets and Lemma 4.3.

Therefore, the Claim 1 is proved. Then, from the transitivity of homogeneous relations, it is
clear that the following holds:

VI:2<1<j—1=Vi:l1<i<N = Wbk~ \Illk(f])

85

Claim 2: V[:2<[<j—-1 = Vi:1<i<N = \Illk(Dy~ wlk(s] /)
For fixed [and i, we know that W' RO~ k(f]) holds from claim 1. From this homogeneity,
it is clear that Wl k(by~ k(s) holds from node elimination algorithms. That is, W'*(f!) is

obtained after eliminating f! from G(f!), and ¥ k(f]) is obtained after eliminating f] from G(f])
|

Proof of Theorem 4.1: Let G4(V3, F3) denote a basis graph obtained from an initial constraint
graph for a cyclically constrained job set.

Claim: If the Algorithm 4.3 applied to G4(V;, Ep) doesn’t terminate within n? — n + 2 loop
iterations, then there exists a negative weight cycle in GY*(fX) for k > n?.

Suppose that the algorithm doesn’t terminate within n? — n + 2 loop iterations. From Propo-
sition 4.5, we know that \Ill’k(fﬁ,_z), YLk]@_3), .oy WLE(FL) are semi-homogeneous. Thus,
G (ViiU{ve}, BL), 2 < i < n? —n 42, are semi-homogeneous, too. This means that after each
loop 1terat10n for ¢ > 3 in the algorithm, there exists at least one edge in Gout(Vb 1U{we},), 3 <
i < n?—n+2, whose weight has been reduced from the correspondmg onein G LV Ufwo), D).
If not, then the algorithm should have been completed within n? — n + 2 loop iterations at step
3 —(d), because homogeneous created edge sets are already found, which is against the assumption.
For the purpose of clarity, each node v;(€ V;) used in this proof will be denoted as v] to represent

that v; belongs to a node set V4 in a graph G7 (Vi,), or to a node set Vj; U {vg} of a graph
Gout(vb 1U{vo}, Eout)

Let vf2_”+2 — v22_”+2 v1,v3 € Vi1 U{vo}(v1 # v3), denote one such edge in Gout ”"'Z(Vb 1 U
n—H(‘/bl U
{vo}, Eout "1, Equivalently, from the cyclic operation performed at step 3 — (f) in Algorithm 4.3
we can say that v?2_”+2 — v§2_”+2 is an edge in GZu;”H(VbJ U{vo}, Eﬁ_nﬁ) whose weight is
less than or equal to

{vo}, Eout "*2) whose weight is less than that of the corresponding edge in G”

out

o w — 1, if the edge doesn’t connect wy.
o w— L —1,if the edge is from wvy.
o w+ L —1,if the edge is to wvp.

where w is a weight of an edge (g(l)(vl))”2_”+2 — (g(l)(vg))”2_”+2 of ng_”‘i'z(%, Efj_”"'z).

Let py denote a minimum weight acyclic restricted path from v?2_”+2 to v§2_”+2 with a weight

wyg in ng_”‘i'z(%, Efi_”‘i'z) whose intermediate nodes belong to Vj 2. Note that no intermediate
node, if there exists any, is equal to vg. p; exists from Lemma 4.3. Then, after (n? —n + 2)-th loop

iteration, the weight of v{bz}_”"’z — v§2_”+2 will be changed to wyg in Gout "2V, 1U{ve}, Efut_”‘i'z)

sub-claim 1: In ng_”‘i'z(%, Efj_”"'z), p1 has at least one edge connecting two different nodes
that belong to g(;)(Vb 1) U{wo}.

i Suppose the claim is not true. Then, py 1s also a mmlmum weight acyclic restricted path from
o T o vl T with a weight wig in G (v, E” ~"*1) since only the weights of edges
connecting two different nodes of g(;)(V51) U {vo} may be reduced after each loop iteration of the
algorithm. This contradicts to the definition of the path p;.

Then, the following is proved. Here, it is assumed that v3, v4 (v3 # v4) belong to g(1)(Vs1)U{vo},
and thus g(_1)(v3), g(—1)(v4) belong to Vj 1 U {vo}.

86

sub-claim 2: There exists at least one edge in py, vg2_”+2 ot v22_”+2, 03,04 € g(1y(Vo,1)U{vo},
satisfying
w34 < w34

where wa, is a weight of an edge vg2_”+1 — v22_”+1 in ng_”‘i'l(%, Efj_”"'l).

Suppose that the claim is not true. Then, all edges lying in p; that connect two nodes of
91)(Vs,1) U {vo} don’t satisfy the above condition. In other words, all edge weights of p; in
G?i_”‘i'z(%, Egj_”‘i'z) are not reduced compared to the edge weights of p; in G?i_”‘i'l(%, Eﬁ_”"'l).
This means that p; is also a minimum weight acyclic restricted path with a weight wy in

2 2
G _”H(Vb,E% ~"*t1) which is clear from Proposition 4.6. From Lemma 4.3 this implies that
the weight of U?L”"’l — v§2_”+1 in ng_”‘i'l(%, Efi_”‘i'l) is equal to wq9. This contradicts to the
definition of the path p;. Therefore, sub-claim 2 is proved.

Hence, we know that in path p; there exists an edge v3 —% v4 whose weight is less than that

of the corresponding edge vg2_”+1 Tae, v22_”+1 in ng_”‘i'l(%, Efj_”"'l).
From the cyclic operation performed at step 3 — (f) in Algorithm 4.3 and from Lemma 4.3,

we know that there exists a minimum weight acyclic restricted path from g(_y)(vs) to g(_1)(v4) in

G?i_”"'l(%,Efj_”H) whose intermediate nodes belong to V} 2 and which is equal to one of the
following forms:

1. If w3 # vo and vy4 # v,

2. If v3 = vy and vy # v,

n?2—n+1 W?;é;L (n2—n+1

)

g(—l)(v4))

3. If vs # vp and vyq = vy,
(g1)(va)y™* —rHt dE gt
Note that, if any edge weight in the above minimum weight acyclic restricted path is reduced,
the weight of an edge v3 — vy in ng_”'i'z(%, Eﬁ_nﬁ) will also be reduced by at least the same
amount after (n? — n 4 1)-th loop iteration of Algorithm 4.3.
Hence, p; can be denoted as:

2_ 2_ 2_ 2_
< ?]{L n+2 ~s vg n+2 W34 UZ; n+2 ~s ?]; n+2 >
n2—n—|—2 W34 n2—n—|—2 . . .
where the edge v; — v} can be replaced by one of the above minimum weight paths.

Then py can be denoted as:

1 n2—n—|—1

<P T e (gl (o)) T A (g () S~ v T >

where the inner path, < (g(_l)(vg))”2_”+1 ~ (g(_l)(v4))”2_”+1 >, will be reduced to an edge
vg2_”+2 o v22_”+2 after (n? — n + 1)-th loop iteration if Algorithm 4.3 is applied to the above
extended path.
2 W 2_
Note that applying Algorithm 4.3 to this new path will produce an edge v} ~"+? 12 pn°—n+2
and if some edge weight is reduced, wyo will be reduced, too.

From the above result and from ws4 < ws,, we know that the edge weight of g(—1)(v3) —

g(-y(va) in a graph G2, 7" (Vg U {vo}, B0, 71 ds:

87

! .

o wsy, — 1 orless, if v3 # vy and vy4 # vo.
! .

o wyy, — L —1orless, if v3 = vg.
! .

o wy, + L —1orless, if vy = vg.

where w;)4 is an edge weight of v3 — vy in ng_”'i'l(%, ng_”"'l).

This enables us to repeatedly apply the same procedure to a new minimum weight acyclic
restricted path g(_1)(vs) ~ g(_1)(v4) in G?i_”‘i'l(%, Eﬁ_”"'l). Therefore, we obtain the following
extension of path pq:

n?—n+1 ~ < (g(—l)(US))n2_n ~ (g(—l)(UG))n2_n >

(g ()T S g

<ol TR < (gL (va))
>

7’L2—7’L

where the intermediate nodes of < (g(_1)(vs)) ~ (g(_l)(v6))”2_” > in the above path belong
to Vig of G2~ (Vy, ™).

And, this extension may be continued until the following is obtained:

T < (g (03)" T e < (g (05) T

~ < (9 (Vo —nr1)—1)) ~ (Goy (Va2 —np1)))? >~
(g (06))" T > (goay(va)) T

2
n
<

2_
PR nt2

Consider the following set of node pairs in Vj; U{vg} of an(Vb, Efn), 2<j<n?—n+2, that
have been included in the extension of path p; at each iteration of the process.

{(U{F—n-I-Z7 v7212—n+2)7 ((g(_l)(?]:))))712—7%4—17 (g(_l)(v4))712—7%4—1)7 o
((g(—l)(UQ(n2—n—|—1)—1))27(g(—l)(UQ(n2—n+1)))2)}
Note that this set has n? — n + 1 node pairs. Because there exist n nodes in Vii U {vo}, there

may exist only n? — n distinct node pairs. Hence, there should exist at least one node pair that

appears twice in the above node pair set. Let (vfl,vfz)), (vf»g, vf4), [< j, denote two such node pairs

where i1 = i3 A i3 = 24. Therefore, in the extension process of p; performed above, we should have
encountered the following path:

J ! ! J
< v <y =, > vp) > (A.2)

Because the extension process choose an edge vfl — v} in an(Vb,Efn) whose weight is less than
vfl_l — vfz)_l at the (n2 —n + 2 — j+ 1)-th iteration of Algorithm 4.3, we know that the weight of
an edge vf»l

J

— vf»z) is greater than the weight of the edge vfl — v;, since j > [.

This implies that there exists a path that reduces the the edge weight of vfl — vfz) from that
of vfl — 7]21'2 after j-th loop iteration in Algorithm 4.3. Then, from Proposition 4.6 we know that,
after [+ k(j —) loop iteration in Algorithm 4.3 where £ > 1, the edge weight of v;; — v;, in
the resulting graph will be reduced from the corresponding edge weight in the graph found after
I+ (k—1)(5 — 1) loop iteration. This means that the edge weight of v;; — v;, will be infinitely
decreased. But, since every job has a release time and a deadline constraints, this repeated process
will eventually create a negative weight cycle during the variable elimination process applied to a
constraint graph for sched™ .

This contradicts to the assumption, and proves Claim 1 and the theorem. m

88

Appendix B

B.1 Proofs for Chapter 6

The proof of theorem 6.2 is presented here.
Proposition B.1 If ' and S are schedulable then the following condition is satisfied:

Vi€ [1,v] 2 Vit € [est(T),est(Y;)+ LCM]
o Q (est(15),1) > i e L(t - est(T;)kJr 8 — dZ)J

k=1

Proof: Suppose that § and I' are schedulable and the above condition doesn’t hold. Let ¢, be
the first time instant at which the condition is not satisfied. That is, the following is satisfied for
some 4, € [1,v]:

' s R (tv — est(Tiv) + 6y, — dZ)
9 (e (X) 1) < 2| -)

However, from this we can conclude that the task set is not schedulable when all the sporadic tasks
start to be invoked at time est(Y;,) with their minimum inter-arrival times. This is because the
processor demand by § in [est(T;,),1,] exceeds the processor time in [est(Y;,),1,] available for
tasks in §. Therefore, if I' and & are schedulable, the condition is satisfied.

We define a busy period for the given task, a, which belongs to I' or & and denote it as
BP, = [a, f,] where f, is the actual finish time of the task a at run-time. Let D, denote a
deadline of a. Then, let 5 be the last task satisfying the following conditions:

(1) Belorpes

(2) [starts its execution before f,.

(3) [starts its execution at its release time 4.

(4) no idle period exists between rg and f,.

(5) no task whose deadline is greater than D, is executed between rg and f,.

Then, the following proposition claims that the task 3 exists for any given task a.

Proposition B.2 If FDF is used at run-time to schedule I' and S, for any given task o (€ I' or
€S8), the task B(€ I or € §) exists.

89

Proof: It is clear that at the end of the last idle period before f,, the conditions (1), (2), (3),
and (4), hold for some task y whose release time is equal to the end of that idle period. If there
is no idle period before a, then let 3y denote the first task which starts its execution at time 0.
Let (1 denote the last task which starts its execution between the end of the idle period and f,,
and which satisfies all of the conditions from (1) to (4). In this case, 3; is the last task in [rg,, fa]
which starts its execution at its release time. In other words, every task executed between rg, and
fo] has started its execution some time after its release time except (3.

Suppose that the condition (5) is not satisfied in [rg,, fo] and let v denote a task whose start
time is between rg, and f,, and which has a deadline D., greater than D,. But, because D, is less
than D, and EDF is used to schedule the tasks, a contradiction has occurred. 7 should never have
been executed between 7., and f, since the task o has a higher priority than y. Therefore, task
instance 4y satisfies the condition from (1) to (5).

Then, the start time a of the busy period for a is defined to be rg, which is found in the above
proof procedure. Example busy period is depicted in Fig B.1.

r | ‘
[T | [T]
S11 S12 | Siz | e
s, | | | |
Ds,,
’ S22
s, | | |
' H T P52

Figure B.1: Busy period

Here, the earliest finish time of ; is defined as est(i) + C;.
Proposition B.3 The following is satisfied for every i € [2,v 4 1]:
Vi € [eft(Tisy),est(T5)] =2 VI >0 = Q' (ty, 1 4+ 1) > Q' (est(T;), est(T) + 1) (B.1)

Proof: If the time interval [est(T;), est(T;) + [] is shifted to the left by the amount of est(Y;) — #;
which results in a new time interval [t;,?; 4+ [], the slack time is increased by the amount of
est(T;) — t1 and decreased with the amount less than or equal to est(Y;) — ¢1. This is depicted in
Figure B.2.

90

L .

Ta L ‘ l Ts [Ta ‘ l Ts ‘
est Y4 eft Y2 Y3
[[T Ta [Ts
1st(3) Ist(4) 1st(5)
t +
|
est (Y2) est (Y 3) +I
| [T [] Ta [Ts |
I1st(3) I1st(4) Ist(5)
A A
[1 |
t, t 4+l

- INncreased Slack Time

Figure B.2: Q' is increased or remains the same in the shifted interval

Proposition B.4 The following is satisfied for every i € [1,v]:
iy € (est(Ti), eft(Ti)) = VI >0 = Q' (bt 4+ 1) > Q (est(T:), est(Ti) + 1) (B.2)

Proof: If the time interval [est(T;), est(T;) +{] is shifted to the right by the amount of ¢; — est(T;)
which results in a new time interval [t;,?; +], the maximum slack time, Q' is increased or at least
remains the same as can be seen from Figure B.3. This proves the proposition.

D1 D> Ds Da Ds
| T | T [T | Ta] [Ts |
est Y1 eft Y2 Y3
{ X T, | T [| T] Ta | ©s [|
Ist(1) I1st(3) Ist(4) Ist(5)
t . i
est () est (Y ;) +l
[T2] [Ta] T [[T [| Ta | ©s [|
Ist(3) Ist(4) Ist(5)
A A
I t 4+l

Figure B.3: Q' is increased or remains the same in the shifted interval

Proposition B.5 If I and S satisfy the condition of proposition 6.2, then they are schedulable by
EDF scheduling algorithm.

Proof:

91

Suppose that the condition is satisfied for § and I' and some task can’t be finished within its
deadline. Let’s call that task @ (o € I' or @ € §) and the deadline of that task D,. And, let
BP, = [t;, fa] denote a busy period for a. In this case, the actual finish time of «, f,, is greater
than D,,.

Then there are two cases to be considered.

Case l: D, —t; > LCM.

Note that the maximum processor demand in [t;,; + LC'M] by task instances from § is less
than or equal to Q/(ti,ti + LCM) from the condition 6.4. In this case, at t; + LCM a new task
instance starts its execution whose release time is equal to ¢; + LC' M. Then, it is obvious that
the start time of the busy period, t;, should be greater than or equal to t; + LC' M, which is a
contradiction.

Case2: D, —t; < LCOM.

Let 7, be the first task in [¢;, D,] which belongs to I'. First, suppose that this exists. Then, let
T; denote the task group containing 7;.¢,. From the definition of a busy period we know that the
release time of 7,, r,, is greater than or equal to ;. Then from proposition B.3 and B.4,

V>0 = Qi+ 1) > Q(est(Y;),est(T;) + 1)

This means that if the tasks in S starts to invoke their task instances from ¢; with their minimum
inter-arrival times, then they are schedulable with I'. This implies that the task instances invoked
at or after ¢; are schedulable since the worst case scenario is that every 5; € S starts to be invoked at
t; with ¢; inter-arrival time, which is proven to be schedulable. This contradicts to the assumption
that « misses its deadline at D,.

Second, suppose that 7, doesn’t exist. In this case all the task instances executed in the interval
[t;, Do) C [ti, fa] are from S. It is clear in this case from the condition 6.4 that

V>0 Q00> e (L=t + 8, — d3)/61)
k=1

From this, we can conclude that every task instance in [t;, D,] is schedulable, which contradicts to
the assumption that « misses its deadline at D,,.

92

Bibliography

[1]

[7]

[8]

Ashok K. Agrawala, Seonho Choi, and Leyuan Shi. Designing temporal controls. Techni-
cal Report CS-TR-3504, UMIACS-TR-95-81, Department of Computer Science, University of
Maryland, July 1995.

N. C. Audlsey, A. Burns, R. I. Davis, and A. J. Wellings. Integrating best effort and fixed
priority scheduling. In Proceedings of the 1994 Workshop on Real-Time Programming, Lake
Constance, Germany, June 1994.

N. C. Audsley. Deadline monotonic scheduling. YCS 146, University of York, Department of
Computer Science, October 1990.

T. Baker and A. Shaw. The Cyclic Executive Model and Ada. Real-Time Systems, 1(1):7-25,
September 1989.

T. P. Baker. A Stack-Based Resource Allocation Policy for RealTime Processes. In Proceedings,
IFFE Real-Time Systems Symposium, 1990.

A. Belleisle. “Stability of systems with nonlinear feedback through randomly time-varying
delays”. IEFE Transactions on Automatic Control, AC-20:67-75, February 1975.

R. Bellman. Adaptive Control Process: A Guided Tour. Princeton,NJ: Princeton University
Press, 1961.

R. Bellman. Bellman special issue. IFEFE Transactions on Automatic Control, AC-26, October
1981.

T. Carpenter, K. Driscoll, K. Hoyme, and J. Carciofini. Arinc 659 scheduling: Problem
definition. In Proceedings, IEFE Real-time Systems Symposium, San Juan, PR, December
1994.

M. Chen and K. Lin. Dynamic Priority Ceilings: A Concurrency Control Protocol for Real-
Time Systems. Real-Time Systems, 2(4):325-346, 1990.

S. Cheng and Ashok K. Agrawala. Scheduling of periodic tasks with relative timing constraints.
Technical Report CS-TR-3392, UMIACS-TR-94-135, Department of Computer Science, Uni-
versity of Maryland, December 1994.

S. T. Cheng and Ashok K. Agrawala. Allocation and scheduling of real-time periodic tasks with
relative timing constraints. Technical Report CS-TR-3402, UMIACS-TR-95-6, Department of
Computer Science, University of Maryland, January 1995.

93

[13]

[14]

[15]

[16]

[17]

[18]

H. Chetto and M. Chetto. Scheduling Periodic and Sporadic Task in a Real-Time System.
Information Processing Letters, 30(4):177-184, 1989.

H. Chetto and M. Chetto. Some Results of the Earliest Deadline First Algorithm. [FFE
Transactions on Software Engineering, SE-15(10):1261-1269, October 1989.

H. Chetto, M. Silly, and T. Bouchentouf. Dynamic Scheduling of Real-Time Tasks under
Precedence Constraints. Real-Time Systems, 2:181-194, 1990.

G. Dantzig and B. Eaves. Fourier-Motzkin Elimination and its Dual. Journal of Combinatorial
Theory(A), 14:288-297, 1973.

R. I. Davis. Approximate slack stealing algorithms for fixed priority pre-emptive systems.
Technical Report YCS 217 (1993), Department of Computer Science, University of York,
England, November 1993.

R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack time in fixed priority pre-emptive
systems. In Proceedings, IFEE Real-Time Systems Symposium, pages 222-231. IEEE Com-
puter Society Press, December 1993.

M. Dertouzos. Control Robotics: the Procedural Control of Physical Processes. Proceedings
of the IFIP Congress, pages 807-813, 1974.

P. Dorato and A. Levis. “Optimal linear regulators: The discrete time case”. IFEE Transac-
tions on Automatic Control, AC-16:613-620, December 1971.

G. Fohler and C. Koza. Heuristic Scheduling for Distributed Real-Time Systems. MARS 6/89,
Technische Universitat Wien, Vienna, Austria, April 1989.

Gerhard Fohler. Joint scheduling of distributed complex periodic and hard aperiodic tasks
in statically scheduled systems. In Proceedings, IFEE Real-Time Systems Symposium. IEEE
Computer Society Press, December 1995.

R. Gerber, W. Pugh, and M. Saksena. Parametric Dispatching of Hard Real-Time Tasks.
IFEFE Transactions on Computers, 44(3), Mar. 1995.

T.M. Ghazalie and T.P. Baker. Aperiodic servers in a deadline scheduling environment. Real-
Time Systems, 9:31-67, 1995.

A. Gosiewski and A. Olbrot. “The effect of feedback delays on the performance of multivariable
linear control systems”. IEEE Transactions on Automatic Control, AC-25(4):729-734, August
1980.

C. Han, C. Hou, and K. Lin. Distance-Constrained Scheduling and Its Applications to Real-
Time Systems. IFEFE Transactions on Computers. To appear.

K. Hirai and Y. Satoh. “Stability of a system with variable time delay”. IFEF Transactions
on Automatic Control, AC-25(3):552-554, June 1980.

X. Homayoun and P. Ramanathan. Dynamic priority scheduling of periodic and aperiodic
tasks in hard real-time systems. Real-Time Systems, 6(2), March 1994.

94

[29] Seung H. Hong. Scheduling Algorithm of Data Sampling Times in the Integrated Communica-
tion and Control Systems. IEEE Transactions on Control Systems Technology, 3(2):225-230,
June 1995.

[30] J. P. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm: Exact Char-
acterization and Average Case Behavior. In Proceedings, IEFE Real-Time Systems Symposium,
pages 166—171, Dec. 1989.

[31] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic responsiveness in hard real-
time environments. In Proceedings, IEFE Real-Time Systems Symposium, pages 261-270, Dec.
1987.

[32] John P. Lehoczky and Sandra Ramos-Thuel. An optimal algorithm for scheduling soft-
aperiodic tasks in fixed-priority preemptive systems. In Proceedings, IEFFE Real-Time Systems
Symposium, pages 110-123. IEEE, Computer Society Press, December 1992.

[33] J.Y. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of Periodic,
Real-Time Tasks. Performance Evaluation, 2(4):237-250, 1982.

[34] S. T. Levi, Satish K. Tripathi, Scott Carson, and Ashok K. Agrawala. “The MARUTTI hard
real-time operating system”. ACM Symp. on Op. Syst. Principles, Op. Syst. Review, 23(3),
July 1989.

[35] Shem-Tov Levi and Ashok K. Agrawala. Real Time System Design. McGraw Hill, 1990.

[36] C. L. Liu and J. Layland. Scheduling Algorithm for Multiprogramming in a Hard Real-Time
Environment. Journal of the ACM., 20(1):46-61, Jan. 1973.

[37] A. Mok, D. Tsou, and R. Rooij. The msp.rtl real-time scheduler synthesis tool. In Proceedings,
IFFE Real-Time Systems Symposium, Dec. 1996.

[38] A. K. Mok. Fundamental Design Problems for the Hard Real-time Environments. PhD thesis,
MIT, May 1983.

[39] C. L. Phillips and H. Troy Nagle. Digital Control System: Analysis and Design, chapter 10.
Linear Quadratic Optimal Control, pages 356-399. Prentice Hall, 1990.

[40] K. Ramamritham and J. A. Stankovic. Scheduling algorithms and operating systems support
for real-time systems. Proceedings of the IFEFE, 82(1):55-67, January 1994.

[41] Z. Rekasius. “Stability of digital control with computer interruptions”. IFEFE Transactions on
Automatic Control, AC-31:356—359, April 1986.

[42] M. Saksena. Parametric Scheduling for Hard Real-Time Systems. PhD thesis, University of
Maryland, College Park, MD 20742, 1994.

[43] Manas Saksena, James da Silva, and Ashok K. Agrawala. “Design and implementation of
Maruti-I17, chapter 4. Prentice Hall, 1995. In Advances in Real-Time Systems, edited by Sang
H. Son.

95

[44]

[45]

[50]

[51]
[52]

[53]

[54]

L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some practical problems in prioritized
preemptive scheduling. In Proc. IEEE Real-Time Syst. Symp., pages 181-191, Dec. 1986.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach to
Real-Time Synchronization. IEEE Transactions on Computers, 39(9):1175-1185, September
1990.

K. G. Shin and H. Kim. “Derivation and application of hard deadlines for real-time control
systems”. [EEFE Transactions on Systems, Man and Cybernetics, 22(6):1403-1413, November
1992.

B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time systems.
Real-Time Systems, 1(1):27-60, June 1989.

Marco Spuri and Giorgio C. Buttazzo. Efficient aperiodic service under earliest deadline
scheduling. In Proceedings, IEEFE Real-Time Systems Symposium, pages 2-11. IEEE Computer
Society Press, December 1994.

Sandra R. Thuel and John P. Lehoczky. Algorithm for scheduling hard aperiodic tasks in fixed-
priority systems using slack stealing. In Proceedings, IFEFE Real-Time Systems Symposium,
pages 22-33. IEEE Computer Society Press, December 1994.

K. Tindell, A. Burns, and A. Wellings. An Extendible Approach for Analyzing Fixed Priority
Hard Real-Time Tasks. Real-Time Systems, 6(2), March 1994.

G.S. Virk. Digital Computer Control Systems, chapter 4. McGraw Hill, 1991.

J. Xu and D. L. Parnas. Scheduling processes with release times, deadlines, precedence, and
exclusion relations. IEFFE Transactions on Software Engineering, SE-16(3):360-369, March
1990.

J. Xu and D. L. Parnas. On Satisfying Timing Constraints in Hard-Real-Time Systems. In
Proceedings of the ACM SIGSOFT°91 Conference on Software for Critical Systems, pages
132-146, December 1991.

X. Yuan, M. Saksena, and A. Agrawala. A Decomposition Approach to Real-Time Scheduling.
Real-Time Systems, 6(1), 1994.

K. Zahr and C. Slivinsky. “Delay in multivariable computer controlled linear systems”. IFEF
Transactions on Automatic Control, pages 442-443, August 1974.

W. Zhao and K. Ramamritham. Simple and Integrated Heuristic Algorithms for Scheduling
Tasks with Time and Resource Constraints. Journal of Systems and Software, pages 195-205,
1987.

96

