
AbstractTitle of Dissertation: Dynamic Time-Based Scheduling for Hard Real-TimeSystemsSeonho Choi, Doctor of Philosophy, 1997Dissertation directed by: Professor Ashok K. AgrawalaDepartment of Computer ScienceIn traditional time-based scheduling schemes for real-time systems time line is explicitly man-aged to obtain a feasible schedule that satis�es all timing constraints. In the schedule the taskattributes, such as task start time, are statically decided o�-line and used without modi�cationthroughout system operation time. However, for dynamic real-time systems, in which new tasksmay arrive during the operation, or tasks may have relative constraints based on information onlyknown at run-time, such static schemes may lack the ability to accommodate dynamic changes.Clearly a solution of dynamic real-time scheduling has to reect the knowledge about tasks andtheir execution characteristics. In this dissertation we present a dynamic time-based schedulingscheme and show its applicability for three problem domains.In dynamic time-based scheduling scheme attributes of task instances in the schedule may berepresented as functions parameterized with information available at task dispatching time. Thesefunctions are called attribute functions and may denote any attribute of a task instance, such aslower and upper bound of its start time, its execution mode, etc. Flexible resource managementbecomes possible in this scheme by utilizing the freedom provided by the scheme.First, we study the problem of dynamic dispatching of tasks, reecting relative timing con-straints among tasks. The relative constraints may be de�ned across the boundary of two con-secutive scheduling windows as well as within one scheduling window. We present the solutionapproach with which we are not only able to test the schedulability of a task set, but also able toobtain maximum slack time by postponing static task executions at run-time.Second, new framework is formulated for designing real-time control systems in which theassumption of �xed sampling period is relaxed. That is, sampling time instants are found adaptivelybased on physical system state such that a new cost function value is minimized which incorporatescomputational costs. We show, for linear time-invariant control systems, that the computationrequirement can be reduced while maintaining the quality of control.

Third, acceptance tests are found for dynamically arriving aperiodic tasks, and for dynami-cally arriving sporadic tasks, respectively, under the assumption that an Earliest Deadline Firstscheduling policy is used for resolving resource contention between dynamic and static(dynamic)tasks.Dynamic time-based scheduling scheme can be applied as solution approaches for these problemsas will be shown in this dissertation, and its e�ectiveness will be demonstrated.

Dynamic Time-Based Scheduling for Hard Real-TimeSystemsbySeonho ChoiDissertation submitted to the Faculty of the Graduate Schoolof the University of Maryland in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy1997Advisory Committee:Professor Ashok K. Agrawala, Chairman/AdvisorProfessor Satish K. TripathiProfessor Moon-Jhong RheeAssociate Professor David MountAssistant Professor Je� Hollingsworth

c Copyright bySeonho Choi1997

DedicationTo my parents and my wife

ii

ContentsList of Tables vList of Figures vi1 Introduction 11.1 Motivation : 11.1.1 Scheduling with Relative Constraints : 11.1.2 Dynamic Adjustment of Timing Constraints : : : : : : : : : : : : : : : : : : : 21.1.3 Scheduling Dynamic Tasks : 21.2 Our Approach : 21.2.1 Dynamic Time-based Scheduling Scheme : 31.2.2 Dynamic Dispatching with Complex Timing Constraints : : : : : : : : : : : : 41.2.3 Dynamic Dispatching with Variable Sampling Periods : : : : : : : : : : : : : 51.2.4 Scheduling Dynamic Tasks : 51.3 Contributions : 51.4 Outline : 62 Prior Work 72.1 Real-Time Scheduling Theory : 72.1.1 Fixed Priority Scheduling : 72.1.2 Dynamic Priority Scheduling : 82.1.3 Static Time-based Scheduling : 82.2 Scheduling with Relative Timing Constraints : 92.3 Control : 102.4 Scheduling Aperiodic and Sporadic Tasks : 102.4.1 Scheduling Dynamic Tasks in Fixed Priority Systems : : : : : : : : : : : : : : 102.4.2 Scheduling Dynamic Tasks in Dynamic Priority Systems : : : : : : : : : : : : 102.4.3 Scheduling Dynamic Tasks in Time-based Systems : : : : : : : : : : : : : : : 112.5 Summary : 123 Scheduling with Relative Constraints 133.1 Problem Description : 133.2 Prior Work : 163.2.1 Static Cyclic Scheduling : 173.2.2 Parametric Scheduling : 183.3 Summary : 22iii

4 Dynamic Dispatching of Cyclic Real-Time Tasks with Relative Constraints 234.1 Dynamic Cyclic Dispatching : 234.1.1 Transforming a Constraint Set into a Constraint Graph : : : : : : : : : : : : 254.1.2 De�nitions for Constraint Graphs : 304.1.3 Characteristics of Constraint Graphs : 334.1.4 O�-line Component : 364.1.5 O�-line Component with Restricted Standard Constraints : : : : : : : : : : : 394.2 Example : 404.3 Summary : 415 Design of a Dynamic Temporal Controller 425.1 Introduction : 425.2 Problem Formulation : 425.3 Temporal Control with Fixed Sampling Times : 445.3.1 Inductive Construction of an Optimal Control Law with T Given : : : : : : : 465.3.2 Dynamic Temporal Control : 505.4 Implementation : 525.5 Example : 525.6 Discussion : 625.7 Summary : 626 Scheduling Aperiodic and Sporadic Tasks 636.1 Introduction : 636.2 Problem Description : 636.3 Dynamic Time-based Scheduling Schemes : 656.3.1 Aperiodic Task Scheduling : 656.3.2 Sporadic Task Scheduling : 736.4 Summary : 777 Conclusion 787.1 Future Research : 78A 80A.1 Proofs for Chapter 4 : 80B 89B.1 Proofs for Chapter 6 : 89
iv

List of Tables

v

List of Figures1.1 Overview of dynamic time-based scheduling scheme : : : : : : : : : : : : : : : : : : 32.1 Example case. : 112.2 No spare capacities can be found. : 123.1 Example Job Sequence : 153.2 Static Cyclic Scheduling : 173.3 Limitation of Static Scheduling Scheme : 183.4 Parametric Calendar Structure : 193.5 Parametric Calendar for Example : 224.1 Constraint Graph for �1;2 : 264.2 Equivalence between Predicates and Graphs : 284.3 Elimination of f22 and s22 from �1;2 : 294.4 �1;2(f12) is denoted as dashed edges meeting with a vertical line. : : : : : : : : : : : 324.5 Homogeneous edge sets, 	1;3(s32) and 	1;3(s22) : 344.6 Overview of o�-line component : 384.7 Parametric bound functions found from sched1;4 : 414.8 Asymptotic parametric bound functions for sched1;1 : : : : : : : : : : : : : : : : : : 415.1 Decomposition of JM into Fi. : 455.2 Two control changing time sets T 1i and T 2i . : 515.3 Cost di�erences between dynamic temporal controller and traditional controller with0:05 sampling period. The maximum cost di�erence is less than 0:03. : : : : : : : : : 545.4 Number of control computation performed by a dynamic temporal controller is shownfor each initial state. Note that the maximum number of control computation is lessthan 20, and for many of initial states they are less than 18. : : : : : : : : : : : : : : 555.5 Cost di�erences between optimal controller with 0:05 sampling period and an optimalcontroller with 0:1 sampling period are depicted for each initial state. The maximumcost di�erence is almost 0:5. : 565.6 Cost di�erences shown in Figure 5.3 and Figure 5.5 are compared together. Note thatfor almost all initial states the dynamic temporal controller outperforms traditionalcontroller with equal sampling period 0:1, even though the number of control com-putations done by a dynamic temporal controller is smaller than that for traditionalcontroller. : 57vi

5.7 Normalize costs from dynamic temporal controller and from traditional controllerwith sampling period 0:1. Costs are normalized by dividing by the cost from tradi-tional controller with sampling period 0:05. : 585.8 Normalized costs from two controllers with adjusted threshold values. One fromdynamic temporal controller and the other from traditional controller with equalsampling period 0:1. : 595.9 Di�erences of worst case normalized costs between a dynamic temporal controllerwith � = 0:01 and a traditional controller with a sampling period 0:1. The compu-tational delays are randomly generated with a normal distribution. For each initialstate, the control trajectories are found 100 times, and the maximum cost amongthem is recorded. : 605.10 Di�erences of average normalized costs between a dynamic temporal controller with� = 0:01 and a traditional controller with a sampling period 0:1. The computationaldelays are randomly generated with a normal distribution. For each initial state, thecontrol trajectories are found 100 times, and the average cost is recorded. : : : : : : 616.1 Deriving !i(0) recursively : 666.2 est(i) and lst(i) for an example task set : 666.3 Joint scheduling of a non-realtime and � : 686.4 Obtaining maximum slack within a scheduling window of a hard aperiodic task A. : 696.5 Example Schedules : 706.6 Deriving virtual deadlines and release times : 716.7 Worst Case for Deadline Determination : 736.8 Under-utilization of the transformed sporadic task : : : : : : : : : : : : : : : : : : : 746.9 � found for an example task set : 756.10
0(t1; t2) for an example task set : 76B.1 Busy period : 90B.2
0 is increased or remains the same in the shifted interval : : : : : : : : : : : : : : : 91B.3
0 is increased or remains the same in the shifted interval : : : : : : : : : : : : : : : 91
vii

Dynamic Time-Based Scheduling for Hard Real-TimeSystemsSeonho ChoiJuly 29, 1997

This comment page is not part of the dissertation.Typeset by LaTEX using the dissertation style by Pablo A. Straub, University of Maryland.0

Chapter 1IntroductionReal-time computer systems are characterized by the existence of timing constraints on compu-tations they carry out. The timing constraints are statically determined at pre-runtime from thecharacteristics of physical systems they interact with. In some real-time systems, called hard real-time systems, a timing failure is considered catastrophic and a guarantee should be given prior toexecution that every timing constraint will be satis�ed. Examples are found in application domainssuch as avionics, process control, automated manufacturing, robotics, etc.Real-time systems of the next generation will be required to interact with more complex anddynamic systems [40, 2]. In such environments it will be required that a mechanism be providedto support high degree of concurrency, and to adapt itself to dynamically changing system state.Dynamic tasks such as aperiodic tasks with or without timing constraints may arrive at any timeinstant during system operation. Transient system overload may occur from dynamic nature of thesystem. Dynamic resource discovery and allocation methods, and methods of dynamically adaptingto changing system conditions to assure or re-negotiate quality of service have to be supported bythe real-time systems.In this dissertation, we concentrate on the issues concerning how to achieve exibility for hardreal-time systems while not sacri�cing the required quality of service. The new scheduling scheme,called dynamic time-based scheduling, is developed for this purpose. Then, this scheme is applied tothree problems. First, it is addressed how to dynamically dispatch tasks in the presence of complextiming constraints such as relative timing constraints. Second, the issues are studied regardingdynamic adjustment of timing constraints, such as dynamic selection of task periods based onphysical system state. Finally, it is studied how to incrementally schedule dynamic tasks such asaperiodic or sporadic tasks. The dynamic time-based scheduling scheme provides a sound basis forrealizing the solution approaches derived.1.1 Motivation1.1.1 Scheduling with Relative ConstraintsIn some real-time systems complex timing constraints exist, such as jitter, separation, and relativedeadline constraints, in addition to release time and deadline constraints [23]. Those constraintsare usually speci�ed between event occurrence times and are based on information(e.g. task com-pletion time) which is only available at run-time. Such timing constraints make it more di�cult toenhance the system with a capability to dynamically allocate CPU times to dynamic tasks while1

not hampering the schedulability guarantee given to tasks with complex timing constraints.In priority-based preemptive systems, one of the approaches to schedule the tasks with jitterconstraints is to separate the constrained event in the task into another task, and to associate highestpriority with it. By doing this, the event occurrence times in consecutive periods can be made tobe more predictable since higher priority tasks preempt lower priority tasks [36]. However, thisapproach can not be used e�ciently when there exist many periodic tasks with jitter constraints,or when other types of relative constraints exist such as separation, or relative deadline constraints.Moreover, it is quite di�cult to exibly incorporate aperiodic task executions by postponing statictask executions, when possible. It is the lack of ability to explicitly control task executions overa time line that causes these problems in priority-based systems. Some work has been done onscheduling aperiodic tasks and slack stealing algorithms in priority based scheduling systems [47,18, 49, 32, 17, 24, 28, 48, 31]. However, most of their work assumes that only release time anddeadline constraints are present. The complexity of optimal slack stealing algorithms in prioritybased systems is high [18, 17].1.1.2 Dynamic Adjustment of Timing ConstraintsUsually, the timing constraints of tasks are statically determined prior to system operation timefrom the characteristics of the physical system. Periodic task model is widely used and assumed inmost real-time systems. One of the reasons for its popularity is that almost every control algorithmis formulated under the assumption of periodicity since it is easy to derive control laws under thatassumption. Regardless of the current state of the system being controlled, the same period is usedfor a control task. The usual determination rule for task period is to select a task frequency to be5-10 times the corresponding system's characteristic frequency. We study the issue of relaxing theperiodicity assumption and propose a new control formulation, called dynamic temporal control,which dynamically decides the periods based on the system information such as current systemstate. To show the feasibility and bene�t of this scheme, a solution approach is presented for alinear-time invariant control systems.1.1.3 Scheduling Dynamic TasksA lot of work has been done on scheduling dynamic tasks such as aperiodic or sporadic tasks forpriority-based scheduling systems [47, 18, 49, 32, 17, 24, 28, 48, 31]. However, only recently someresults have been reported on scheduling aperiodic tasks on the basis of time-based schedulingscheme [22] in the presence of release time and deadline constraints. But, the solution approachpresented in the paper is incomplete as explained in Chapter 2. We apply a dynamic time-basedscheduling scheme for this problem, and develop acceptance tests for dynamically arriving aperiodictasks, and for dynamically arriving sporadic tasks.1.2 Our ApproachTwo categories of tasks are considered in this dissertation:� Static Tasks: Tasks whose invocation times are known at design time. Usually, these areperiodic tasks, or those that have been converted to periodic tasks as in [38].2

� Dynamic Tasks: Tasks whose executions are dynamically requested at run-time. These maybe aperiodic or periodic.In this dissertation every static task is executed in non-preemptive manner. That is, once a CPU isassigned to a task no preemption occurs until the task voluntarily releases the CPU or a maximumexecution time allowed for the task expires.1.2.1 Dynamic Time-based Scheduling SchemeThe dynamic time-based scheduling scheme consists of two components, an o�-line scheduler thatgenerates a dynamic calendar for static tasks, and a dynamic dispatcher that is responsible forscheduling both static and dynamic tasks while maintaining the total order for static tasks foundby an o�-line scheduler. The architecture of this scheduling system is shown in Figure 1.1.
Attributes

Static Task Set

Off-line Scheduler

Dynamic Calendar

Dynamic Tasks Dynamic Dispatcher

On-line Component

Internal System

(e.g. Task Execution History) (e.g. Physical System State)

External System

Execute Tasks
Task

Figure 1.1: Overview of dynamic time-based scheduling schemeA dynamic calendar is constructed from a totally ordered static task set found by an o�-linescheduler. Each task in a dynamic calendar may have functions denoting any of its attributes, suchas the task's valid start time range, its execution mode denoting which version of the task will beexecuted, etc. Those functions are called attribute functions. The functions may be parameterizedwith any information available to the system at the function evaluation time such as any attributevalues of previously executed tasks, or current physical system state, etc.At system operation time, the dynamic dispatcher makes use of any information available to itat a current time instant to dynamically evaluate the attribute functions for the next task in the3

dynamic calendar, and it decides the attributes of the next task(s), such as actual task start time,actual execution mode of the task if multiple task versions exist, etc. Then, it records the decidedattributes of the next task for future usage.1.2.2 Dynamic Dispatching with Complex Timing ConstraintsThe problem of scheduling tasks is studied when there exist complex timing constraints, such asrelative inter-task constraints. The min/max constraints may be given between start or �nish timesof any two tasks. In this dissertation, it is assumed that a lower and upper bound of each task'sexecution time is known at pre-runtime, and the actual execution time may vary within thosebounds. The non-deterministic execution times may make it infeasible to assign static start timesto tasks at pre-runtime in the presence of the relative constraints between start or �nish times oftasks.To incorporate realistic relative constraints such as jitter constraints, a cyclic task model isde�ned with cyclic constraints allowed to be speci�ed across the boundaries of scheduling windows.To apply the dynamic time-based scheduling scheme to this problem, the following questions haveto be answered:� How a total ordering among tasks can be found by the o�-line scheduler?� How a schedulability of a totally ordered task set can be checked in the presence of complextiming constraints?� What is the structure of a dynamic calendar?� How a dynamic calendar should be constructed for the total ordering such that all timingconstraints imposed on tasks are guaranteed to be satis�ed at run-time?� How much is the overhead of dynamic dispatching at run-time?The problem of deterministic scheduling has been well addressed in the literature. The solutionapproaches are based on either heuristic or approximation algorithms, or optimal schemes usingimplicit enumeration methods such as branch and bound search. In this dissertation, it is assumedthat a total ordering of static tasks is given, and the rest of the issues mentioned above are addressed.The dynamic time-based scheme is elaborated as follows for this problem:� Each task in a dynamic calendar has two attribute functions, denoting lower and upper boundsfor the task's start time.� The attribute functions may be parameterized with start and �nish times of already executedtasks.With this re�ned dynamic time-based scheduling scheme, the solution approach is presented inChapter 4. 4

1.2.3 Dynamic Dispatching with Variable Sampling PeriodsTraditional control systems have been designed to exercise controls at regularly spaced time instants.When a discrete version of the system dynamics is used, a constant sampling interval is assumedand a new control value is calculated and exercised at each time instant.In Chapter 5, we propose a new control scheme, dynamic temporal control, in which we not onlycalculate the control value at control computation time but also decide the time instant when thenext control computation is done. The system state at control computation time is also used forobtaining the next control computation time as well as for calculating a new control value. Takinga discrete, linear, time-invariant system, and a cost function which reects a cost for computationof the control values, as an example, we show the feasibility of using this scheme. We implementthe dynamic temporal control scheme in a rigid body satellite control example and demonstratethe signi�cant reduction in cost.Also, the dynamic temporal control technique proposed can be implemented by using the dy-namic time-based scheduling scheme under the assumptions given in Chapter 5.1.2.4 Scheduling Dynamic TasksWe present a solution approach in Chapter 6 for scheduling dynamically arriving aperiodic andsporadic tasks. It is assumed that a total ordering among static tasks is given at pre-runtime,and that only release time and deadline constraints are allowed. The total ordering among statictasks given initially is assumed to be maintained at run-time. Under this assumption, an EDF 1scheduling algorithm is assumed to be used, and acceptance tests for dynamically arriving aperiodictasks, and for dynamically arriving sporadic tasks, are derived, respectively. This solution approachseems to be a sound basis for extending the problem to allow more complex timing constraints.1.3 ContributionsThe main contributions of this dissertation are:� We propose a new dynamic time-based scheduling scheme in which the dispatcher has thecapability to dynamically decide the parameters(attributes) of the future tasks, such as starttime or sampling period, while not a�ecting the guaranteed schedulability of future tasks. Thedynamic decision is done based on the information available to the system at the decisiontime, such as start times and execution times of already executed tasks, or current physicalsystem state and current system load.� We develop a scheduling scheme which handles relative constraints, not only those de�ned be-tween tasks within a scheduling window but also those cyclically de�ned across the boundariesof consecutive scheduling windows. Jitter constraint is a good example of such constraints.� An algorithm is developed for checking the schedulability of a totally ordered cyclic task set.If the task set is schedulable, a dynamic calendar is constructed during the execution of thealgorithm. The algorithm is based on variable elimination techniques. Also, we show thatthe run-time dispatching overhead is small, at most O(N) execution time is spent for each1EDF stands for Earliest Deadline First. 5

task instance for evaluating attribute functions where N is the number of task instances inone scheduling window.� We present a new method for designing control systems in which the sampling periods areadaptively selected based on system states. Traditionally, control processes are implementedunder the assumption of �xed sampling period. It is shown that, by dynamically selectingtiming instants when new controls are calculated, the computational resource requirementcan be greatly reduced while not sacri�cing the quality of control. Linear time-invariantcontrol system is used as an example to show the feasibility of the scheme. This result canbe e�ectively used in an environment where computational resources can become scarce, e.g.,in an overloaded situation.� The acceptance tests are developed for dynamically arriving aperiodic or sporadic tasks whena time-based scheduling scheme is used to schedule static tasks. EDF scheduling algorithmis assumed to be used to resolve the conicts between static and dynamic tasks.1.4 OutlineThe rest of the dissertation is organized as follows. We summarize prior work on real-time schedulingtheory in Chapter 2. Then, in Chapter 3, we formally introduce the problem of scheduling tasks withrelative timing constraints, present more detailed prior works related to the problem. In Chapter 4,we present a solution approach for the problem de�ned in Chapter 3 by utilizing dynamic time-based scheduling scheme. In Chapter 5, the dynamic temporal controller is developed for lineartime-invariant control systems. In Chapter 6, acceptance tests are found for dynamic tasks suchas aperiodic or sporadic tasks on the basis of a dynamic time-based scheduling scheme. Finally,concluding remarks and directions for future work are presented in Chapter 7.
6

Chapter 2Prior WorkIn this chapter we review previous work on real-time scheduling, and on real-time control systems.In Section 2.1, some relevant prior work on real-time scheduling theory is presented. In Section 2.2,prior work on scheduling with relative timing constraints is given. The previous work on design ofreal-time control systems is presented in Section 2.3. Finally, previous work on scheduling dynamictasks in a time-based scheduling scheme is presented in Section 2.4. Some prior work is presented inmore detail in the second part of Chapter 3 since they are directly related to our solution approachwhich will be presented in Chapter 4.2.1 Real-Time Scheduling TheoryScheduling algorithms in hard real-time systems may be classi�ed in several ways. One way is toclassify them in terms of how the scheduling is done. Priority-based scheduling schemes resolve theresource(CPU) contention between di�erent tasks by making use of the �xed or dynamic prioritiesof the tasks. Another scheduling approach is time-based scheduling scheme in which the explicittime line is used to schedule the tasks. In traditional time-based scheduling schemes, all resourcerequirements are satis�ed by statically assigning time intervals to the task instances at pre-runtime.Each approach has its own advantages and disadvantages. Even though scheduling in prioritybased approach can be done in a simple manner, it lacks the capability of scheduling tasks withcomplex constraints such as precedence relations, and relative timing constraints, while the time-based approaches have that capability.2.1.1 Fixed Priority SchedulingIn this scheme, �xed priority is assigned to each task which is used at runtime to resolve the resourcecontention. A task with a higher priority can preempt any lower priority task and thus the currentlyexecuting task has the highest priority among the tasks currently active(released). It is well knownthat rate monotonic scheduling algorithm is optimal for scheduling a set of independent periodictasks with deadlines at the end of their periods [36]. It is optimal in a sense that it can scheduleany set of tasks if that is schedulable by any �xed priority scheduling scheme. Any set of n tasksis schedulable according to rate monotonic scheduling scheme if the total utilization of the tasksdoesn't exceed n(21=n�1) which converges to ln(2) �= 0:69314718 as n goes to1. This is a su�cientcondition for a given set of tasks and not a necessary condition. The exact schedulability condition7

which is necessary and su�cient is found in [30] with the statistical simulation results showingthat in general the utilization of the schedulable task set is higher than ln(2).A deadline monotonic scheduling algorithm is shown to be optimal for a set of tasks which havedeadlines less than or equal to their periods. It assigns priorities according to their deadlines, theshorter the deadline, the higher priority is assigned regardless of the periods [33, 3]. For a set oftasks with arbitrary deadlines, it is shown that the optimal priority assignment can't be done in asimple priority assignment method, but requires a pseudo polynomial time algorithm [50].A synchronization protocol becomes necessary when tasks use shared resources such as semaphores.Sharing resources may lead to a possible priority inversion when a higher priority task is blockeddue to the lower priority task possessing the resource required by a higher priority task. Thispriority inversion may cause an unbounded blocking times. To solve this problem, several synchro-nization protocols have been developed. In a priority ceiling protocol [45], a priority ceiling is �rstassigned to each semaphore, which is equal to the highest priority of the tasks that may use thissemaphore. Then, a task, � , can start a new critical section only if � 's priority is higher than allpriority ceilings of all the semaphores locked by tasks other than � . In stack-based protocol [5],the concept of preemption level is used instead of the priorities to derive the protocol suitable forboth �xed priority and dynamic priority based systems. Also, sharing of multiple-unit resourcesbecomes possible with this protocol. The word \stack" is used in the sense that a task with higherpreemption level can only preempt and thus block tasks with lower preemption level. Preemptionlevels are found statically reecting synchronization constraints and resource requirements.2.1.2 Dynamic Priority SchedulingThe priorities of tasks in dynamic priority scheme are decided at runtime. This means that the taskinstances from the same task may have di�erent priorities at runtime while in the �xed priorityscheme the same priority is used for scheduling them. The earliest deadline �rst(EDF) schedulingalgorithm which assigns the highest priority to a task instance with the closest deadline is known tobe optimal for a set of periodic or aperiodic tasks [36, 19]. The necessary and su�cient schedulabilitycondition for a set of independent tasks with their deadlines equal to their periods is that the totalprocessor utilization of the tasks should be less than or equal to 1 [36]. A dynamic priority ceilingprotocol [10] and a stack-based protocol [5] have been developed for dynamic priority systems toenable the use of shared resources and to bound the blocking times. Note that the stack basedresource allocation protocol may be used for both �xed priority and dynamic priority schedulingalgorithms. Also, in [5], it is shown that the stack-based protocol provides a better schedulabilitytest than that of dynamic priority ceiling protocol.2.1.3 Static Time-based SchedulingIn a static time-based scheduling scheme, a calendar for a set of task instances is constructed atpre-runtime. At runtime this calendar is referred to execute each task instance at a scheduled timeinstant. Through o�-line scheduling, we can schedule any set of tasks with various constraints, suchas complex precedence relation, relative timing constraints, and other synchronization constraints.Even though the complexity of the o�-line scheduling is NP-Complete in general, the schedulingcan be done in a reasonable amount of time in most cases using techniques such as branch andbound or heuristic search algorithms [52, 21, 12, 56]. It has been shown that the complexity ofnon-preemptive scheduling can be dramatically reduced in many cases by decomposition scheduling8

approach where task instances are decomposed into a sequence of subsets, which are scheduledindependently [54]. Also, the time based scheduling scheme can e�ciently schedule task sets withrelative timing constraints which can't be easily accommodated in priority-based systems [23, 12].Because of these reasons, it is claimed that the time-based scheduling scheme is the most appropriatescheduling approach for hard real-time systems [53].2.2 Scheduling with Relative Timing ConstraintsIn some hard real-time systems, relative timing constraints should be satis�ed between event oc-currence times. as well as release time and deadline constraints on tasks. For example, controloutput events in two successive instances of a periodic task may have to occur with the jitter re-quirement satis�ed. That is, the di�erence of two event occurrence times, called jitter, should liebetween a lower and an upper bound. The occurrences of events in di�erent tasks may also beconstrained from the requirements and characteristics of the environment by separation or relativedeadline constraints [23]. These relative constraints have to be enforced in many real-time controlsystems such as process control systems and ight control systems [9], etc. For example, in processcontrol systems, it has been shown that jitter constraints have more inuence on control systemsperformance than the frequency constraints [29].Usually, the relative constraints between events are transformed into relative constraints be-tween start or �nish times of the tasks to make feasible the process of scheduling and dispatchingof task instances [26, 23]. In [26] a preemptive �xed priority scheduling algorithm is developed toschedule periodic tasks with relative deadline constraints between �nish times of two successiveinstances of periodic tasks. However, other types of relative constraints are not allowed in thatwork and it is not possible to exibly manage slack times at runtime for dynamic tasks. In [23]dispatching of a totally ordered non-preemptive task instance set with any min/max constraints isstudied and a new scheduling mechanism called parametric scheduling is developed. In that paper,it is also shown that a traditional static scheduling approach, in which task instance start times arestatically scheduled under the assumption that every task instance spends its worst case executiontime, doesn't work any more for task instance sets with general min/max constraints even when atotal ordering among them is given. Furthermore, in parametric scheduling scheme, it is possible toe�ectively schedule aperiodic tasks at run-time by dynamically managing task instance start times.However, the task instance set in parametric scheduling scheme consists of a �nite number of taskinstances with a �nite number of constraints. This implies that the approach cannot be applied toa periodic task model, since periodic tasks may invoke an in�nite number of task instances with anin�nite number of relative constraints. In a traditional time-based scheduling scheme the task starttimes are statically decided in a scheduling window, and this static schedule is cyclically used atrun-time. In the presence of jitter constraints between start times of non-preemptive task instances,the problem of �nding a static schedule has been addressed in [11]. However, this static cyclicscheduling approach only allows certain types of min/max constraints to be speci�ed, and it onlyworks under low utilization. Moreover, it is very di�cult to exibly manage task start times atrun-time to incorporate any dynamic tasks such as aperiodic tasks into the schedule.9

2.3 ControlRich literature exists on the design of controllers. However, nearly all the results develop controllaws under the assumption of equal sampling periods. In addition, taking computation time delayinto consideration for real-time computer control has been studied in several research papers [6,25, 27, 41, 46, 55]. However, to the best of our knowledge, the dynamic temporal control approachwhich is explained in Chapter 5 has not been studied in the past.In dynamic temporal control, the computational cost is incorporated into the cost function andthe time instants for performing control computations are chosen to minimize this cost function.With this new approach, we can perform the same quality of control with fewer control computationscompared to the traditional approaches [1].2.4 Scheduling Aperiodic and Sporadic TasksScheduling of dynamic tasks such as aperiodic or sporadic tasks has been studied extensively forpriority-based scheduling systems. In this section, those works are summarized as well as a recentwork on aperiodic task scheduling problem on the basis of time-based scheduling scheme [22].2.4.1 Scheduling Dynamic Tasks in Fixed Priority SystemsHard and non-realtime aperiodic tasks can be scheduled within a �xed priority scheduling scheme.One approach is to utilize the aperiodic server concept in which a certain percentage of the pro-cessor utilization is reserved for servicing the aperiodic tasks. That is, one or several periodictasks are reserved for servicing aperiodic tasks. Several algorithms have been developed and theirperformances have been compared [31, 47]. Another approach is slack stealing approach whichtries to utilize as much processor time as possible by postponing the execution of hard periodictask executions as long as the schedulability of the hard tasks is not a�ected [18, 32, 49]. Theoptimal slack stealing algorithm is found to be pseudo polynomial [18] and several approximationalgorithms have been proposed [17].2.4.2 Scheduling Dynamic Tasks in Dynamic Priority SystemsAn aperiodic task scheduling problem has been studied under the assumption that only hardperiodic tasks exist [28, 24]. The O(N) acceptance test for a hard aperiodic task is given whena set of independent periodic tasks is scheduled by EDF where N is the total number of taskinstances in an LCM1 of the periods of periodic tasks [14, 13, 15]. Aperiodic scheduling schemesfor EDF have been proposed and studied and the Improved Priority Exchange Algorithm is shownto perform well [48].1LCM stands for Least Common Multiple. 10

2.4.3 Scheduling Dynamic Tasks in Time-based SystemsThe aperiodic task scheduling problem in time-based scheduling scheme has been addressed in thepaper by Fohler et al. [22]. The initial schedule is assumed to be given and the arriving aperiodictasks are scheduled at runtime. First, the deadlines of task instances, �j , in the time-based scheduleare sorted and the schedule is divided into a set of disjoint execution intervals, Ii. Then, the sparecapacities are de�ned for these intervals, which may be used to schedule arriving aperiodic tasks.Several task instances with the same deadline constitute one interval and the end of an interval,end(Ii), is de�ned to be the deadline of the last task instance in the interval. The earliest starttime of an interval is de�ned to be the minimum of the earliest start times of its constituting taskinstances. And, the start time of the interval, start(Ii) is de�ned to be the maximum of its earlieststart time or the end of the previous interval. The length of an interval, j Ii j is de�ned to beend(Ii)� start(Ii). Then, the spare capacity is de�ned recursively as:sc(Ii) = j Ii j � X�j2IiCj + min(sc(Ii+1); 0)sc(Ie) = j Ie j � X�j2IeCjwhere Cj denote the worst case execution time of �j and Ie is the last interval in the schedule.Note that the spare capacity may have a negative value reecting the fact that the borrowed sparecapacity from the previous interval is used to schedule the task instances in the current interval.Figure 2.1 shows an example case of this. In this example, the spare capacities for I2 and I1 arefound to be: sc(I2) = 2� 3 = �1sc(I1) = 8� 3 + min(�1; 0) = 4These spare capacities are used to schedule arriving aperiodic tasks and adjusted whenever theaperiodic tasks are accepted.
1

D 1

2I

τ

I

τ 2

0 7 10 123

2
R D22 τ

R 1
1τ

1Figure 2.1: Example case.However, no consideration is given about how to obtain correct spare capacities when thedeadlines of the task instances are not in increasing order in the schedule. For example, no correctspare capacity can be obtained in the example case shown in Figure 2.2.According to the algorithm presented in that paper, we have two execution intervals, [10; 12]and [0; 10]. The spare capacities in these intervals are:sc([10; 12]) = 2� 7 = �5sc([0; 10]) = 10� 3� 5 = 211

τ 1 τ 2

τ 1

12

τ 2

DR

R D

1 1

22

0 7 10Figure 2.2: No spare capacities can be found.This result shows that, in an execution interval [0; 10], a spare capacity of 2 is found. However, ascan be seen in Figure 2.2, zero spare capacity should have been found in an interval [0; 10]. Thisshows that their solution approach is incomplete.2.5 SummaryWe have presented a brief overview of the related work on real-time scheduling and control systemsdesign. The works by Cheng et al. [11] and Gerber et al. [23] are combined and extended in Chap-ter 4 for scheduling tasks with relative timing constraints. Our solution approach overcomes thelimitations of those previous approaches and provides more exible and uni�ed ways for schedulingtasks with complex timing constraints. Also, Fohler et al. [22] propose a mechanism to exiblymanage slack times in time-based scheduling scheme. However, their approach is un-necessarilycomplicated and incomplete as shown in the previous section. Our approach presented in Chapter 6provides more intuitive and complete solution. Instead of spare capacities, we de�ne slack valueswhich can be obtained by postponing static tasks in the schedule, and make use of them to scheduledynamic tasks.
12

Chapter 3Scheduling with Relative ConstraintsWe formulate the problem of scheduling a set of tasks with relative constraints, and present itssolution in the next chapter. We also present some prior works in detail since our solution approachis based on parametric dispatching approach [23] developed for a transaction scheduling problem.In Section 3.1, the problem is formally de�ned. Then two prior works are presented on schedul-ing with relative constraints, static approach and dynamic parametric approach. Finally, a briefsummary is presented.3.1 Problem DescriptionA task instance is called a job and these two terms will be used inter-changeably throughout thedissertation. Let �j = f� ji j i = 1; : : : ; Ng denote an ordered set of N jobs to be dispatchedsequentially in a j-th scheduling window [(j � 1)L; jL] where L is a positive integer denoting ascheduling window size.. The jobs are executed non-preemptively in this order. At runtime, thisjob set will be cyclically scheduled in consecutive scheduling windows. In other words, � ji and �kiare jobs of the same task.Then, let �1;k = �1 [�2 [: : :[�k denote a set of jobs to be executed in a time interval [0; kL].Each job � ji (j � 1, 1 � i � N) has the following set of parameters that may have integer values:� A runtime variable sji denoting the actual start time of � ji� A runtime variable eji representing the actual execution time spent for � ji� A runtime variable f ji = sji + eji denoting the actual �nish time of � ji� A constant lji corresponding to the minimum execution time of � ji� A constant uji denoting the maximum execution time of � ji .Note that it is simply assumed that execution times of jobs are nondeterministic and boundedfrom above and below, which is a realistic assumption in many real-time systems.Standard constraints are de�ned next that may be imposed on fsji ; eji j 1 � j � k; 1 � i � Ngfor �1;k. 13

De�nition 3.1 (Standard Constraints) A standard constraint involves the variables of at mosttwo jobs, � ja and � lb(1 � a � b � N , j j � l j� 1), where sja(or sja + eja) appears on one side of\�," and slb(or slb + elb) appears on the other side of the \�." For two jobs, � ja, � lb, the followingconstraints are permitted(where ci is an arbitrary constant) and called relative standard constraints:sja � slb � c1sja � (slb + elb) � c2sja + eja � slb � c3sja + eja � (slb + elb) � c4 slb � sja � c5slb � (sja + eja) � c6slb + elb � sja � c7slb + elb � (sja + eja) � c8 (3.1)In addition, each job has release time and deadline constraints. These constraints are calledabsolute standard constraints. A job � ja has the following absolute constraints:c9 � sja sja + eja � c10 (3.2)We also include as standard any constraint that can be rewritten in one of the above forms;e.g., sja � slb + elb � eja + c falls into this category.Next, the k-fold cyclically constrained job set is formally de�ned. 1 Any �1;k considered in thisdissertation belongs to this class.De�nition 3.2 (k-fold Cyclically Constrained Job Set) A job set �1;k = �1 [�2 [: : : [�k(k = 1; 2; : : : ;1) is classi�ed as a k-fold cyclically constrained job set if it has the following linearconstraints:1. The set of standard relative constraints:8j 2 [1; k) :: A1xj + A2xj+1 � a (3.3)where xj is a 2N -dimensional column vector [sj1; ej1, sj2; ej2, : : :, sjN ; ejN]T . A1, A2 are m1 �2N(m1 � 0) matrices of 0, 1, or �1, and a is an m1-dimensional column vector whoseelements are integers. Included in the m1 constraints are those denoting the total ordering onjobs: 8j 2 [1; k] :: 8i 2 [1; N) :: sji + eji � sji+18j 2 [1; k) :: sjN + ejN � sj+112. The set of release time and deadline constraints:8j 2 [1; k] :: Bxj � bj (3.4)8j 2 [1; k] :: Dxj � dj (3.5)1Note that k may be equal to 1. 14

where bj is an m2-dimensional column vector of non-positive integers satisfying:bj = b1 + (1� j)Land dj is an m3-dimensional column vector of non-negative integers satisfying:dj = d1 + (j � 1)LWe de�ne C1;k to represent the logical conjunction of the constraints induced by each row of(3.3), (3.4), and (3.5).In the above de�nition, the same matrices A1, A2, B, D are cyclically used to represent thestandard constraints on consecutive job sets.The example job set shown in Figure 3.1 is presented here with corresponding matrices andvectors de�ned in (3.3), (3.4), and (3.5).
20 40

2515 f 1
2- f 1

1

18 22

5

Time
0

1
20 s f2

2 2
1 2

τ τ τ τ1 2
1 1 2 2

1 2

f

Γ Γ
1 2

Job Set

Absolute Constraints

Relative Constraints

f 2- f 1
2 2

5

Figure 3.1: Example Job SequenceExample 3.1 Consider the example job set depicted in Figure 3.1. Each job set �j , 1 � j � k,consists of two jobs, � j1 and � j2 (i.e. N = 2), whose execution time bounds are:lj1 = 5 uj1 = 8lj2 = 8 uj2 = 10The standard relative constraints de�ned within �j or within �j+1 are:5 � sj2 � (sj1 + ej1)sj1 + ej1 � sj2 5 � sj+12 � (sj+11 + ej+11)sj+11 + ej+11 � sj+12 (3.6)Similarly, the set of standard relative constraints across the boundary of �j and �j+1 are:sj1 + ej1 + 15 � sj+11 + ej+11sj+11 + ej+11 � sj1 + ej1 + 25sj2 + ej2 � sj+11 sj2 + ej2 + 18 � sj+12 + ej+12sj+12 + ej+12 � sj2 + ej2 + 22 (3.7)15

Finally, the absolute constraints on �j and �j+1 are:20(j � 1) � sj120(j � 1) � sj2sj1 + ej1 � 20jsj2 + ej2 � 20j 20j � sj+1120j � sj+12sj+11 + ej+11 � 20(j + 1)sj+12 + ej+12 � 20(j + 1) (3.8)All standard relative constraints can be denoted by the following inequality:2666666666666664 1 1 �1 01 1 �1 00 0 0 00 0 0 01 1 0 0�1 �1 0 00 0 1 10 0 1 10 0 �1 �1 377777777777777526664 sj1ej1sj2ej2 37775+ 2666666666666664 0 0 0 00 0 0 01 1 �1 01 1 �1 0�1 �1 0 01 1 0 0�1 0 0 00 0 �1 �10 0 1 1 377777777777777526664 sj+11ej+11sj+12ej+12 37775 � 2666666666666664 �50�50�15250�1822 3777777777777775And, the set of absolute constraints is represented by the following inequality:26664 �1 0 0 00 0 �1 01 1 0 00 0 1 1 3777526664 sj1ej1sj2ej2 37775 � 26664 �20(j � 1)�20(j � 1)20j20j 37775One traditional approach for scheduling with complex timing constraints is a time-based schedul-ing scheme that assigns static start times to the jobs in the scheduling window such that the relativeconstraints are satis�ed if the static schedule is cyclically repeated at runtime. However, this ap-proach can't be used in the presence of arbitrary relative constraints between start or �nish timesof jobs [23]. Also, this approach su�ers from the loss of schedulability problem. Some task sets arenot schedulable in this approach, even though they are schedulable if our approach is employed.This will be explained through an example later. To cope with some of the above limitations theparametric scheduling scheme was developed in the context of real-time transaction scheduling [23].However, as far as we know, the solution approach has not been found for general periodic taskmodels where jobs in di�erent scheduling windows may have relative constraints. The objective ofthe next chapter is to develop a schedulability test for �1;1, and to develop a exible job dispatchingmechanism for schedulable job sets, �1;1.3.2 Prior WorkIn this section, we briey describe two scheduling schemes closely related to ours. The �rst one isthe static cyclic scheduling scheme [11] and the second one is the parametric scheduling scheme [23].16

3.2.1 Static Cyclic SchedulingThe static cyclic scheduling problem has been studied in [11]. The periodic task model is used,which means that every job has a release time and a deadline constraints, and only the jitterconstraints between two job start times are allowed. An important assumption made in the workis that the start times of jobs in �j are statically determined as o�sets from the start of the j-thscheduling window [(j � 1)L; jL], and this schedule is invoked repeatedly by wrapping around theend point of the current schedule to the start point of the next. In other words, sj+1i = sji +L holdsfor all 1 � j.In the presence of jitter constraints, the job start times should be chosen carefully such thatthe jitter constraints are satis�ed at run-time as well as the absolute constraints. Obtaining theordering and job start times is an NP-hard problem, since non-preemptive scheduling problem withrelease time and deadline constraints is NP-hard. Several priority based non-preemptive schedulingalgorithms are presented and their performances are compared in [11].Suppose that a job � ji1 belongs to �j , and a job � j+1i2 belongs to �j+1, and they have jitterconstraints c1 � sj+1i2 � sji1 � c2 (0 < c1 � c2 � L). From the above assumption, sj+1i2 = L + sji2holds. Thus, a new constraint is created, c1 � L � sji2 � sji1 � c2 � L, which is again equal toL � c2 � sji1 � sji2 � L � c1. Therefore, the jitter constraints across the boundary of �j and �j+1are transformed into jitter constraints between two jobs in �j . As a consequence, if we can �nd astatic schedule for �j that satisfy the above transformed constraints and the constraints betweenjobs within �j , it is clear that all timing constraints will be satis�ed if that schedule is repeatedlyused at run-time. This approach is depicted in �gure 3.2.
s

s
s

s

j

N

s
s

s
i+1

i
i-1

relative constraint

s1
1

2
1

2

2
2

1
1

j

jFigure 3.2: Static Cyclic SchedulingHowever, this approach su�ers from the following limitations:� The relative constraints allowed are limited to jitter type constraints between start times oftwo jobs.� The schedulability of job sets are reduced due to the static start time assignments.� It is very di�cult to e�ectively incorporate dynamic tasks, such as aperiodic tasks, into aschedule by dynamically adjusting the start times of the jobs.17

In some real-time applications, the jitter constraints may be imposed between the �nish times of thejobs rather than between the start times [26]. Furthermore, a periodic task may be decomposedinto several subtasks and any kind of standard constraints may be de�ned between these sub-tasks [23]. In these cases this static scheduling approach is no more applicable without sacri�cingthe schedulability [23].By transforming the jitter constraints across the boundary of �j and �j+1 into those betweenjobs within �j , we are a�ecting the schedulability of job sets. We will show that, under our newscheduling scheme in which this transformation is not necessary, the schedulability of job sets isincreased, i.e., some job sets are not schedulable according to this scheme whereas it is schedulableby our scheme.3.2.2 Parametric SchedulingGerber et al. [23] proposes a parametric scheduling scheme in the context of transaction schedul-ing, in which any standard constraints may be given between jobs in one transaction. Let � =<�1; : : : ; �N > denote a sequence of jobs constituting one transaction with a set of standard con-straints, C. Also, let li and ui denote a lower and upper bound of �i's execution time, respectively.In the presence of standard constraints between start or �nish times of tasks, it may not bepossible to statically assign start times to tasks in the scheduling window by using the maximumexecution time(uji) as the worst case execution time for each job. This is due to the nondeterministicexecution times of tasks and the existence of standard constraints involving the �nish times of tasks.This is well explained with the following example [42].
1s1 s1

s2

s +60 L+2

<= 3Figure 3.3: Limitation of Static Scheduling SchemeConsider a simple example shown in Figure 3.3 which consists of two jobs, �1 and �2. Supposethat l1 = 2, u1 = 6, and there exists a constraint s2 � f1 � 3. In this example, it is not possibleto statically assign start times for two jobs due to large variability of �rst job's execution time anddue to the existence of relative deadline constraint between �rst job's �nish time and second job'sstart time. However, if we allow the start time s2 for �2 be parameterized with f1, then all theconstraints are satis�ed under all execution scenarios.In [42], a parametric schedulability of � is de�ned as follows:Sched � 9s1 :: 8e1 2 [l1; u1] :: : : : :: 9sN :: 8eN 2 [lN ; uN] :: C (3.9)From this Sched predicate, parametric lower and upper bound functions for each start time siare obtained by eliminating the variables in an order eN , sN , : : :, ei. The parametric lower andupper bound functions, denoted as Fminsi and Fmaxsi , are parameterized in terms of the runtime18

variables, s1, e1, : : :, si�1, ei�1 of already executed jobs. The parametric calendar structure isshown in �gure 3.4. Fmins1 () � s1 � Fmaxs1 ()Fmins2 (s1; e1) � s2 � Fmaxs2 (s1; e1)... ...FminsN (s1; e1; s2; : : : ; sN�1; eN�1) � sN � FmaxsN (s1; e1; s2; : : : ; sN�1; eN�1)Figure 3.4: Parametric Calendar StructureThis parametric calendar is obtained from an o�-line component of the algorithm by applyingvariable elimination techniques that will be given later in this section, and the actual bounds of siare found at runtime by evaluating the parametric functions in the parametric calendar by using thestart and �nish times of already executed jobs, �1, : : :, �i�1. The actual form of these parametricfunctions are given in the following proposition which is obtained from the paper by Saksena etal. [23]. This proposition will be used in deriving our solution approach in Chapter 4.Proposition 3.1 (Parametric Bound Functions [23]) A parametric lower bound function forsj is of the following form: Fminsj (s1; f1; : : : ; sj�1; fj�1)= max(p1 + c1; p2 + c2; : : : ; pa + ca; �minj) (3.10)where each pi, 1 � i � a, belongs to fs1; f1; : : : ; sj�1; fj�1g, and ci is an arbitrary constant.2 And,�maxj is a non-negative integer.Similarly, a parametric upper bound function for sj is of the following form:Fmaxsj (s1; f1; : : : ; sj�1; fj�1)= min(q1 + d1; q2 + d2; : : : ; qb + db; �maxj) (3.11)where each qi, 1 � i � b, belongs to fs1; f1; : : : ; sj�1; fj�1g, and di is an arbitrary constant..The main result obtained is that, for an arbitrary set of standard constraints on � = f�1; : : : ; �Ng,we can �nd the parametric calendar in O(N3) time and the run-time evaluation of each bound func-tion can be carried out in O(N) time.By applying this parametric scheduling scheme, we are not only able to schedule any sequenceof jobs with standard constraints, but also able to take advantage of the exibility o�ered by thescheme. That is, the job start times may be decided dynamically at runtime to incorporate otherdynamic activities in the system. Even though this scheme is directly applicable to our k-foldcyclically constrained job sets, if the number of jobs in �1;k becomes large, the bounds need to befound on the size of parametric functions and for the memory requirements for them.In the rest of this section, the parametric scheduling scheme is presented with an example.2Note that fi = si + ei. 19

Elimination of Quanti�ed VariablesConsider a set of linear constraints C in n variables (x1; x2; : : : ; xn),C � Hx � hwhich must be satis�ed with respect to some de�ned existential and universal quanti�cation overthe variables. In this section we show how an innermost universally quanti�ed variable xn, withassociated lower (ln) and upper (un) bounds can be eliminated to obtain a new set of equivalentconstraints. The set of constraints C may be partitioned into three subsets, depending on whetherthe coe�cient of xn is positive, negative or zero. Thus,C � C P ^ CN ^ CZwhere C P � fxn � Di(x0); 1 � i � pgCN � fxn � Ej(x0); 1 � j � qgCZ � f0 � Fk(x0); 1 � k � rgDi(x0); Ej(x0); Fk(x0) are linear functions of x0 = [x1; � � � ; xn�1]T . The elimination of variable xnleads to a new system of constraints C 0 obtained from C by substituting xn with ln or un, dependingon its coe�cient: C 0 � (CP)xnln ^ (CN)xnun ^ (CZ)The following lemma has been derived and proved in the paper by Saksena et al.[23], and showsthe validity of the above variable elimination process.Lemma 3.1 ([23]) Let C be a system of linear constraints and let C0 be the resulting set of con-straints after eliminating a universally quanti�ed variable xn with lower bound ln and upper boundun. Then the sentence 8xn 2 [ln; un] :: C holds if and only if C0 holds.The existential quanti�er can be eliminated by using Fourier-Motzkin variable elimination tech-nique [16].Fourier-Motzkin Elimination. Consider a system of linear constraints C in n variables(x1; x2; : : : ; xn). We wish to �nd a system of linear constraints C 0 over x0 = [x1; : : : ; xn�1]T ,such that x0 is a solution to C 0 if and only if x0 is a solution to 9xn :: C . As before, the constraintsin C may be partitioned into three subsets.C � 8><>: xn � Di(x0); 1 � i � pxn � Ej(x0); 1 � j � q0 � Fk(x0); 1 � k � rThe elimination of variable xn leads to a new system of constraints:C 0 � 9xn :: C � (Di(x0) � Ej(x0); 1 � i � p; 1 � j � q0 � Fk(x0); 1 � k � rAgain, the following lemma has been derived and proved in the paper by Saksena et al.[23], andshows the validity of the above variable elimination process.20

Lemma 3.2 ([23]) Let C be a set of linear constraints. Let C0 represent the set of constraints asa result of eliminating xn using Fourier Motzkin elimination as described above. Then,9xn :: Cholds if and only if C0 holds.ExampleThis example is based on the work presented in the paper by Saksena et al.[23]. Here, the variableelimination technique is applied to9s1 :: 8e1 2 [5; 8] :: 9s2 :: 8e2 2 [8; 10] :: 9s3 :: 8e3 2 [5; 8] :: 9s4 :: 8e4 2 [8; 10] :: C1;2where C1;2 is a constraint set given on �1;2 in Example 3.1. Initially, since e4 is the innermostuniversally quanti�ed variable, it can be eliminated �rst. The constraints involving e4 in C1;2 are:s4 + e4 � 40s4 + e4 � (s2 + e2) � 2218 � s4 + e4 � (s2 + e2)The elimination of e4 from these constraints results in the following derived constraints:s4 � 30 (e4 := u4 = 10)s4 � (s2 + e2) � 12 (e4 := u4 = 10)10 � s4 � (s2 + e2) (e4 := l4 = 8)Therefore, these three constraints are substituted for the original constraints containing e4. Thus,the complete set of constraints is given below:0 � s1s2 + e2 � 2020 � s3s4 � 30s1 + e1 � s2s2 + e2 � s3s3 + e3 � s4 s2 � (s1 + e1) � 515 � s3 + e3 � (s1 + e1)s3 + e3 � (s1 + e1) � 2510 � s4 � (s2 + e2)s4 � (s2 + e2) � 12s4 � (s3 + e3) � 5 (3.12)Next, an existentially quanti�ed variable s4, which is the innermost one, is eliminated. Theconstraints containing s4 in the above constraint set are:s2 + e2 + 10 � s4s3 + e3 � s4 s4 � s2 + e2 + 12s4 � s3 + e3 + 5s4 � 30 (3.13)From these constraints, the parametric lower and upper bound functions are obtained as follows:Fmin4 (s1; e1; s2; e2; s3; e3) = max(s3 + e3; s2 + e2 + 10)Fmax4 (s1; e1; s2; e2; s3; e3) = min(s2 + e2 + 12; s3+ e3 + 5; 30)21

And, as a result of eliminating s4, the constraints in (3.13) are replaced by the following con-straints: 10 � 12s2 + e2 + 10 � s3 + e3 + 5s2 + e2 + 10 � 30s3 + e3 � s2 + e2 + 120 � 5s3 + e3 � 30 ; s2 + e2 � 20s2 + e2 + 5 � s3 + e3s3 + e3 � s2 + e2 + 12s3 + e3 � 30 (3.14)If we continue this process until s1 is eliminated, then we will obtain all the parametric boundfunctions, or the predicate will turn out to be false during the process. Figure 3.5 shows theobtained parametric bound functions. 0 � s1 � 2max(8; s1 + e1) � s2 � min(10; s1+ e1 + 5)max(20; s1+ e1 + 10; s2 + e2) � s3 � min(22; s1+ e1 + 17; s2 + e2 + 4)max(s3 + e3; s2 + e2 + 10) � s4 � min(30; s2+ e2 + 12; s3 + e3 + 5)Figure 3.5: Parametric Calendar for Example3.3 SummaryWe have formally de�ned the problem whose solution approach will be given in Chapter 4. The k-fold cyclically constrained job set was de�ned that allows standard constraints to be speci�ed acrossthe boundaries of two consecutive scheduling windows as well as within one scheduling window.Also, prior works were presented in detail on scheduling with relative constraints, including theparametric scheduling scheme [23].
22

Chapter 4Dynamic Dispatching of Cyclic Real-Time Tasks withRelative ConstraintsIn this chapter, we present an o�-line algorithm to check the schedulability of a job set, �1;1. And,if they are schedulable, the parametric lower and upper bound functions for each job start time arefound in terms of the start or �nish times of the previous jobs. These bounds can be evaluated atruntime within O(N) time. Suppose that � ji belongs to �j , then the parametric lower and upperbound functions of sji , are parameterized in terms of the start and �nish times of already executedjobs in �j�1 and �j . Another important result is that only N pairs of parametric bound functionshave to be stored and cyclically used at runtime. The o�-line algorithm has a pseudo-polynomialcomplexity O(n2N3), where n is the number of jobs in one scheduling window that have relativeconstraints with jobs in the next scheduling window. If only jitter constraints on periodic tasks areallowed, it can be shown that the o�-line and online components require O(n4N) and O(n) times,respectively. Also, it is shown that, for a certain class of standard constraints, called restrictedstandard constraints, the o�-line algorithm requires at most O(N3 + n5).The rest of this chapter is organized as follows. In Section 4.1, the parametric schedulingapproach is developed by using the quanti�er elimination techniques, and by transforming theconstraint set into an equivalent constraint graph. In Section 4.2, example job sequences are givenwith parametric calendars found from the o�-line algorithm. Finally, a summary of the chapterfollows in Section 4.3.4.1 Dynamic Cyclic DispatchingAs in the parametric scheduling approach developed for transaction scheduling [23], we want todevise a schedulability test and an e�cient dispatching mechanism when an 1-fold cyclically con-strained job set, �1;1, is given with its constraint matrices and vectors. We say �1;k , is schedulableif there exists any method which can successfully dispatch the jobs in �1;k .De�nition 4.1 (Schedulability of �1;k) The k-fold cyclically constrained job set �1;k (1 � k) isschedulable if the following predicate holds:sched1;k � 9s11 :: 8e11 2 [l11; u11] :: 9s12 :: 8e12 2 [l12; u12] :: : : :9skN :: 8ekN 2 [lkN ; ukN] :: C1;k (4.1)where C1;k is a set of standard constraints de�ned on fs11; e11; : : : ; skN ; ekNg.23

Then, the following proposition holds for all k � 1.Proposition 4.1 8k � 1 :: sched1;k+1 =) sched1;kProof: Obvious from the de�nition of a cyclically constrained job set and from the de�nition ofsched1;k in (4.1).Hence, once sched1;k turns out to be False, then all sched1;j , k � j, are False, too. By thisproposition, the schedulability of �1;1 is de�ned.De�nition 4.2 (Schedulability of �1;1) �1;1 is schedulable if and only iflimk!1 sched1;k = TrueIn [23], it is shown that checking Predicate (3.9) is not trivial because of the nondeterministic jobexecution times and because of the existence of standard relative constraints among the jobs. Thisapplies to the above sched1;k predicate, too. The variable elimination techniques are used in [23] toeliminate variables from Predicate (3.9). At the end of the variable elimination process parametricbound functions for si, that are parameterized in terms of the variables in fs1; e1; : : : ; ei�1g, arefound as well as the predicate value.However, if we want to apply the variable elimination technique to sched1;k, the followingproblems have to be addressed �rst:1. On which subset of fs11; e11; : : : ; sji�1; eji�1g does the parametric bound functions for sji depend?2. Is it required to store parametric bound functions for every job in �1;k?3. What parametric bound functions have to be used if k is not known at pre-runtime anddynamically decided at runtime?Let Fmin;ksji and Fmax;ksji denote parametric lower and upper bound functions for sji , respectively,that are found after the variable elimination algorithms are applied to sched1;k. If the number ofvariables is unbounded with which Fmin;ksji or Fmax;ksji is parameterized, then it is not possible toevaluate them at run-time within bounded computation times. Also, if it is required that parametricbound functions for every job in �1;k be stored at runtime, the scheme is not implementable forlarge k because of memory requirements. Finally, if the value of k is not known at pre-runtimeand is decided dynamically at runtime, which is true in most real-time applications, the parametricbound functions to be used have to be selected.In this section, the answers to the above questions are sought by �rst transforming sched1;kinto a constraint graph and by investigating the properties of such graphs. In section 4.1.1 thetransformation rule is presented with lemmas showing the equivalence relationship between sched1;kand its constraint graph with respect to variable elimination process. In section 4.1.2 severalterminologies are de�ned for constraint graphs, and in section 4.1.3 the properties of constraintgraphs are investigated. Then, in section 4.1.4 a complete o�-line algorithm is presented to checksched1;1 and to obtain parametric bound functions for job start times if it is schedulable. Inaddition, for a certain class of standard constraints, it is shown in section 4.1.5 that the o�-linealgorithm can be executed within O(N3 + n5) time by pre-eliminating certain nodes from theconstraint graph. 24

4.1.1 Transforming a Constraint Set into a Constraint GraphWe want to apply the variable elimination algorithms to sched1;k for some �xed k, and want to�nd out answers to the previously raised three questions. For that purpose, we �rst transformthe predicate into a constraint graph and apply node elimination algorithms(corresponding tothe variable elimination algorithms) to the graph. Then, the properties of the constraint graphscreated during the node elimination process are examined. Working on constraint graphs, insteadof constraint sets themselves, makes it easier to infer and prove useful properties. In this section,the transformation rules are given for a set of jobs and its associated constraint set.Let � = f�1; �2; : : : ; �Ng be a �nite set of jobs with a set of standard constraints, C. Considereliminating quanti�ed variables from the following predicate:Sched � 9s1 :: 8e1 2 [l1; u1] :: : : :9sN :: 8eN 2 [lN ; uN] :: CThen, predicates on subsets of fs1; e1; : : : ; sN ; eNg are de�ned next that are found after elimi-nating variables.De�nition 4.3 Sched(sa)(1 � a � N) is de�ned to be a predicate on a set of variables fs1; e1; : : : ; sagthat are found after eliminating variables of < fN ; sN ; : : : ; fa > from Sched. Sched(ea) is de�nedsimilarly.That is, Sched(sa) can be expressed asSched(sa) � 9s1 :: 8e1 2 [l1; u1] :: : : :9sa :: C(sa)It will be shown that Sched(or Sched(sa), or Sched(ea)) can be transformed into a directedgraph, which is called a constraint graph, such that the variable elimination process can be mappedinto a corresponding node elimination operation in the graph. Note that, in the following de�ni-tion of a constraint graph, semi-exclusive-ORed edges are de�ned, which will be used in de�ningrestricted paths in constraint graphs. Also, v1 w�! v2 denotes an edge from a node v1 to a node v2with a weight w, and < v1 w1�! v2 w2�! : : : wi�1�! vi > denotes a path from a node v1 to a node vi witha weight sum w = Pi�1j=1wj . v1 ; vi denotes that there exists a path from v1 to vi, and v1 w; videnotes that there exists a path from v1 to v2 whose weight sum is w.The following rule is used to transform a predicate into a constraint graph. Here, the semi-exclusive-ORed edges denote a pair of edges that cannot be arbitrarily placed in a restricted paththat will be de�ned in De�nition 4.6.De�nition 4.4 (Constraint Graph) A constraint graph G(V;E) is found fromSched (or Sched(sa), or Sched(ea)) as follows:1. node set V is obtained as follows:� v0 2 V� si, fi 2 V for 1 � i � N where fi = si + ei.2. edge set E is obtained as follows:� For each tuple < si; fi >, add the following semi-exclusive-ORed edges to E:25

(a) si li�! fi(b) fi �ui�! si� For each constraint in C that can be converted to:(a) vi � vj � c (vi; vj 2 fsi; fi j 1 � i � Ng): add vj c�! vi to E.(b) vi � c: add v0 c�! vi to E.(c) �vi � c: add vi c�! v0 to E.De�nition 4.5 The constraint graph found from Sched(sa) is denoted as G(sa).1 Similarly, G(fa)represents a graph found from Sched(ea).Figure 4.1 shows a graph created from the example job set �1;2 de�ned in Example 3.1. Notethat v0 is an extra node created to represent a constant 0 that is used to specify absolute constraintssuch as the release time and the deadline constraints. In the �gure, the edges connected by � aresemi-exclusive-ORed edges.
v

+ + + +ss s
0

0

f) ff f

0
20

40

25 22

-18-15

-20

0 0

5 5
8

-10

5

-8

8

-10

5

-8
1 2 2
1 1 1 1

1
2s2 2

1 1 2 2
2)))Figure 4.1: Constraint Graph for �1;2Note that there may exist only one edge from one node to another from the uniqueness ofinequality in the constraint set. For example, if there are two constraints v1�v2 � c1 and v1�v2 � c2in C, then one of them is redundant. Therefore, we can denote an edge from v1 to v2 in a constraintgraph as v1 ! v2 without its weight speci�ed. Also, note that any edge from fi to si is semi-exclusive-ORed to any edge from si to fi. That is, even if any of these two edges is created fromanother constraint in C rather than from the minimum or maximum execution time constraint,they are semi-exclusive-ORed.De�nition 4.6 (Restricted Path) In a constraint graph, a path, < v1 w1�! v2 w2�! : : : vi�1 wi�1�!vi >, is called a restricted path from v1 to vi if the following is satis�ed:� If fj ! sj appears in the path, then its semi-exclusive-ORed edge sj ! fj may appear at mostonce in the path, and vice versa.� If two semi-exclusive-ORed edges, fj ! sj and sj ! fj, appear in the path, then they belongto a sub-path < fj ! sj ! fj >.1The full notation would be G(sa)(V;E). But, if no confusion is caused, G(sa) will be used in this chapter.26

Note that if a sub-path < fj ! sj ! fj > appears once in the path, then neither fj ! sj norsj ! fj should appear at another place in the path, and vice versa.De�nition 4.7 (Restricted Cycle) A restricted cycle in a constraint graph is de�ned to be acycle2 such that1. it satis�es the de�nition of a restricted path.2. it is not a sub-path of < fj ! sj ! fj > for any 1 � j � N .For example, a path < fj ! sj ! fj ! sl ! fj > is a restricted cycle while a path < fj ! sj !fj > is not. Also, a restricted path without any restricted cycle in it is called an acyclic restrictedpath.The elimination algorithm of a node fa from a graph G(fa) is presented next.Algorithm 4.1 (Elimination of fa from a Graph G(fa)) Elimination of fa from G(fa) is per-formed by the following algorithm.1. For each edge pair, < y w1�! fa; fa w2�! sa >, that are not semi-exclusive-ORed in G(fa):� create an edge y w1+w2�! sa.(a) If y = sa and w1 + w2 < 0, then return False.3(b) If y = sa and w1 + w2 � 0, then remove this edge.4(c) If there already exists an edge y w0�! sa before creating y w1+w2�! sa, then the edge withless weight remains, while the other is removed.2. For each edge pair, < sa w1�! fa; fa w2�! z >, z 6= sa, that are not semi-exclusive-ORed inG(fa):� create an edge sa w1+w2�! z.(a) If there already exists an edge sa w00�! z before creating sa w1+w2�! z, then the edge withless weight remains, while the other is removed.3. Set V = V � ffag and remove all edges to or from fa in G(fa).Let Elim(G(fa); fa) denote a new graph created after eliminating fa from the graph G(fa)according to Algorithm 4.1 in case False is not found. In this case, the following lemma proves theequivalence, with regards to the graph transformation rule, between the elimination of an universalquanti�er from the predicate and the elimination of a node, fa, from the constraint graph.Lemma 4.1 Elim(G(fa); fa) is equal to G(sa).2A cycle is de�ned to be a path < y ! v1 : : :! vi ! y > where i � 1, or to be a path < y ! y >.3This is because y � y = 0 � w1 +w2 < 0 is a contradiction.4This is because y � y = 0 � w1 +w2 is a tautology. 27

Proof: Given in appendix.Next, we show how a node corresponding to an existential quanti�er sa may be eliminated fromthe graph G(sa).Algorithm 4.2 (Elimination of sa from a Graph G(sa)) Elimination of sa from G(sa) is per-formed by the following algorithm.1. For each edge pair, < y w1�! sa; sa w2�! z >, in G(sa):� create an edge y w1+w2�! z.(a) If y = z and w1 + w2 < 0, then return False.(b) If y = z and w1 + w2 � 0, then remove this edge.(c) If there already exists an edge y w0�! z before creating y w1+w2�! z, then the edge withless weight remains, while the other is removed.2. Set V = V � fsag and remove all edges to or from sa in G(sa).Similarly, let Elim(G(sa); sa) denote a new graph created after eliminating sa from the graphG(sa) according to Algorithm 4.2 in case False is not found. Then, the following lemma shows theequivalence between the elimination of a node in the graph and the elimination of an existentialquanti�er from the constraint set.Lemma 4.2 Elim(G(sa); sa) is equal to G(fa�1).Proof: Given in appendix.By inductively applying Lemma 4.1 and 4.2, the equivalence relationship between node elimina-tion and variable elimination processes can be established. This relationship is shown in Figure 4.2with respect to the constraint graph derivation rules.
q)

Sched(e q

G(s

)

Node Elimination

Sched(s q

G(f q)

)

Sched(e q-1) G(f q-1)

Graph Transform

Variable EliminationFigure 4.2: Equivalence between Predicates and GraphsThe elimination process of nodes, fa and sa, from the graph G(fa) can be viewed as preservingthe connectivity between any two nodes in fv0; s1; f1; : : : ; sa�1; fa�1g through fa and sa in G(fa).That is, if there exists any restricted path from y to z only through sa and fa in G(fa), then a28

new edge from y to z is created to maintain the connectivity from y to z even after fa and sa areeliminated. This is formally proved in Lemma 4.3.Figure 4.3 shows a graph and its node elimination processes for sched1;2 that is derived from�1;2 in Example 3.1.
v

0v

0v

s 1
1

1f 1 s1
2 f 2

1 s2
1 f

2

1
s2

2

s2
2f

2

1
s2

1

s2
1

f 2
1

f 2
1

s1
2

s1
2

1f 1

1f 1

s 1
1

s 1
1

f
2

1

+ + + +

+ + +

+ + +

0

)

0
f

0
20

40

25 22

-18-15

-20

0

0
20

25

-20

0

20

25 12

-15
30

-20

-10

0

5

5 5

55

00

0 0

12

-15

-5

30

2
2

8

-10

5

-8

8

-10

5

-8

5

-8

8

-10

5

-8

5

-8

8

-10

5

-8

))))

)))

))Figure 4.3: Elimination of f22 and s22 from �1;2The following proposition describes a necessary condition for Sched to be true in terms of itsconstraint graph.Proposition 4.2 If a constraint graph for Sched has a negative weight restricted cycle, thenSched = False.Proof: Given in appendix.The following lemma shows how the connectivity is maintained during the node eliminationprocess, which is quite an useful property that will be frequently used throughout this chapter.Lemma 4.3 Let fv0; s1; f1; s2; f2; : : : ; sa�1; fa�1; sa; fag, 1 � a � N , denote a node set of G(fa)that is found after eliminating nodes of < fN , sN , fN�1, sN�1, : : :, fa+2, sa+2, fa+1, sa+1 > fromG(fN). Also, assume that no contradiction has been found yet. Then, the following two conditionsare equivalent:1. y w�! z 2 G(fa) 29

2. there exists a minimum weight acyclic restricted path y w; z in G(fN) where all intermediate5nodes of the path belong to fsa+1; fa+1; : : : ; sN ; fNg.6Proof: Given in appendix.In the next corollary it is assumed that v and v0 denote any two nodes that are located consec-utively in a sequence < v0; s1; f1; : : :sN ; fN >.Corollary 4.1 Let fv0; s1; f1; : : : ; vg, denote a node set of G(v) that is found after eliminatingnodes of < fN ; sN ; : : : ; v0 > from G(fN). Also, assume that no contradiction has been found yet. Ifan edge from y to z exists in G(v), then there exists a path from y to z in G(fN) whose intermediatenodes belong to fv0 ; : : : ; sN ; fNg.Proof: Given in appendix.For example, in the example shown in �gure 4.3, after eliminating ff22 ; s22g an edge f12 12�! f21 iscreated since, in the initial graph, there exists a minimum weight acyclic restricted path < f12 22�!f22 �10�! s22 0�! f21 > whose weight sum is 12 and whose intermediate nodes belong to fs22; f22g.Also, an edge f12 2�! f12 is created in G1;2(f21), since there exists a minimum weight restricted path< f12 22�! f22 �10�! s22 8�! f22 �18�! f12 > without any intermediate restricted cycle.4.1.2 De�nitions for Constraint GraphsIn this section, we de�ne several terms for constraint graphs. They will be used in deriving andproving the properties of constraint graphs in the next section. In this section, it is assumed thatan initial graph is obtained from the predicate sched1;k that is de�ned in (4.1) for �1;k.Before de�ning terminologies for constraint graphs, the following function is de�ned on nodesets of constraint graphs.De�nition 4.8 (g) g is an one-to-one mappingfsji ; f ji j 1 � i � N ^max(1;� + 1) � jg�! fsji ; f ji j 1 � i � N ^max(+ 1; 1) � jgby the following rule: g(v) = 8><>: v0 if v = v0.sj+i if v = sji where 1 � i � N .f j+i if v = f ji where 1 � i � N .g(V) on a node set V is de�ned to be a set of g(v) where v is an element of V .5fv1; v2; : : : ; vig is a set of intermediate nodes of a path < y ! v1 ! v2 : : : vi ! z > where i � 1, or fg is anintermediate node set if the path consists of one edge.6y ! z may also be considered as a path whose intermediate nodes belong to fsa+1; fa+1; : : : ; sN ; fNg.30

For example, sj1i in �j1 can be related to a node sj2i in �j2 bysj2i = g(j2�j1)(sj1i)In this case sj2i is called a corresponding node of sj1i in a job set �j2 , and vice versa.As in De�nition 4.3, sched1;k(sji) (1 � i � N ^ 1 � j � k) is de�ned to be a predicate on a setof variables fs11; e11; : : : ; sjig that is obtained after eliminating the variables, ekN , skN , : : :, eji , fromsched1;k. That is, it can be expressed assched1;k(sji) � 9s11 :: 8e11 2 [l11; u11] :: : : :9sji :: C1;k(sji)where C1;k(sji) is a set of standard constraints obtained after variable elimination. sched1;k(eji) isde�ned similarly. Also, as in De�nition 4.5, the graphs found from the above predicates are denotedas follows:� G1;k(sji) denotes a graph constructed from sched1;k(sji).� G1;k(f ji) denotes a graph constructed from sched1;k(eji).Note that, from C1;k(sji)(or G1;k(sji)), we can �nd out the parametric lower and upper boundfunctions for sji in the forms presented in Proposition 3.1.First, several terms are de�ned for constraint graphs. Let E denote a subset of edges in a graphG1;k(sji), (or G1;k(f ji)) in the following two de�nitions.De�nition 4.9 (Node Set from E) Node(E) denotes a set of nodes that are connected by anyedge in E.De�nition 4.10 (Preceding Node Set from E) PrecNode(E) is de�ned to be a subset of Node(E)in the graph such that v 2 PrecNode(E) if and only if� there exists a node v0 that lies after v in the sequence < v0; s11; f11 ; : : : ; sji (; f ji) > satisfying:v ! v0 2 E _ v0 ! v 2 EIn the example constraint graph shown in Figure 4.1 let E be ff12 ! f22 , s22 ! f22 , v0 ! f22 g.Then, a node set from E , Node(E) is found to be fv0; f12 ; s22; f22g. Also, the preceding node set,PrecNode(E), is fv0; f12 ; s22g.In the following de�nition, let y and z denote any two consecutive nodes in the sequence< v0; s11; f11 ; s12; f12 ; : : : ; s1N ; f1N ; s21; f21 ; : : : ; : : : ; sk1; fk1 ; : : : ; skN ; fkN >.De�nition 4.11 (Crossing Edge Set over a Node y) A crossing edge set �1;k(y) is de�ned tobe a set of edges v1 ! v2 in G1;k(fkN) satisfying either of the following two conditions:1. v1 2< v0; s11; f11 ; : : : ; y > and v2 2< z; : : : ; skN ; fkN >.2. v2 2< v0; s11; f11 ; : : : ; y > and v1 2< z; : : : ; skN ; fkN >.For example, in Figure 4.4, �1;2(f12) is shown with dashed edges. Informally speaking, anyedges created in G1;k(y) after eliminating nodes < z; : : : ; skN ; fkN > may connect only the nodesthat belong to PrecNode(�1;k(y)). This is proved in Proposition 4.4.31

v

+ + + +sss s

0

f)ff f

25 22

-18

0 0

5 5

0
20

-15

-20
40

0

5

-8

8

-10

5

-8

8

-10

1 1
1
1 1

1 2 2
2 2 22

2 21 1)))Figure 4.4: �1;2(f12) is denoted as dashed edges meeting with a vertical line.De�nition 4.12 (Created Edge Set in G1;k(f ji)) A created edge set 	1;k(f ji), 1 � j � k� 1, isde�ned to be a set of edges v1 w�! v2 in G1;k(f ji) where v1, v2 satisfy the following condition:� there exists a path v1 ; v2 in G1;k(fkN) such that1. it has at least one intermediate node.2. all of its intermediate nodes belong to fv0, s11, f11 , : : :, skN , fkNg � fv0, s11, f11 , : : :, f ji g.	1;k(sji) is de�ned similarly.That is, a created edge set in G1;k(f ji) contains edges that could be created during the variableelimination process. Note that, if a newly created edge is implied by an already existing edgein G1;k(fkN) with a less weight and thus removed during the elimination process as explained inAlgorithm 4.1 and 4.2, then the already existing edge is included into the created edge set insteadof the removed one that is actually created during the variable elimination process. In �gure 4.5,the constraint graph is shown corresponding to Example 3.1. Dashed edges are used to represent	1;3(s32) and 	1;3(s22).Next, the semi-homogeneity and homogeneity relationships are de�ned between two edge setsin two constraint graphs that are found during variable elimination processes from two job sets,�1;k and �1;l(k � l), respectively.De�nition 4.13 (Semi-homogeneous Edge Sets) Let E1 and E2 be subsets ofedges in G1;k(f j1i) and G1;l(f j2i) (or, G1;k(sj1i) and G1;l(sj2i)), respectively, where k � l ^ j1 �k ^ j2 � l. Then, E1 is semi-homogeneous to E2 if and only ifj E1 j=j E2 j ^ [(v1 ! v2 2 E1) =) (g(j2�j1)(v1)! g(j2�j1)(v2) 2 E2)]Here, note that, if E1 is semi-homogeneous to E2, then(v3 ! v4 2 E2) =) (g(j1�j2)(v3)! g(j1�j2)(v4) 2 E1)holds, too, since j E1 j=j E2 j and E1 is mapped onto E2 under the index function g(j2�j1) which isone-to-one.The homogeneity relationship is de�ned next which is stronger than semi- homogeneity rela-tionship. Again, let E1 and E2 be subsets of edges in G1;k(f j1i) and G1;l(f j2i) (or, G1;k(sj1i) andG1;l(sj2i)), respectively, where k � l ^ j1 � k ^ j2 � l.32

De�nition 4.14 (Homogeneous Edge Sets) E1 is homogeneous to E2, denoted as E1 � E2, ifand only if1. E1 and E2 are semi-homogeneous.2. For two nodes v1(6= v0), v2(6= v0),(v1 w�! v2 2 E1) () (g(j2�j1)(v1) w�! g(j2�j1)(v2) 2 E2)3. For two nodes v0, v2, where v2 6= v0,(v0 w�! v2 2 E1) () (v0 w+(j2�j1)L�! g(j2�j1)(v2) 2 E2)4. For two nodes v1, v0, where v1 6= v0,(v1 w�! v0 2 E1) () (g(j2�j1)(v1) w�(j2�j1)L�! v0 2 E2)Homogeneity relations are commutative and transitive, i.e.,E1 � E2 () E2 � E1(E1 � E2) ^ (E2 � E3) =) E1 � E3which can be easily proved from the de�nition of homogeneity. Two homogeneous created edgesets, 	1;3(s32) and 	1;3(s22), are shown in Figure 4.5 with dashed edges where L = 20.A constant, n, is de�ned next that will be used in obtaining a complexity bound of our algorithm.De�nition 4.15 (n) n =j PrecNode(�1;k(f1N)) j; k � 2Note that j PrecNode(�1;k(f jN)) j is same for all 2 � k and all 1 � j � k�1 from the de�nition of acyclically constrained job set and the de�nition of a preceding node set. n�1 is the number of jobsin one scheduling window that have standard relative constraints with jobs in the next schedulingwindow.4.1.3 Characteristics of Constraint GraphsFrom now on, the properties of constraint graphs will be examined that remain true during thenode elimination process. Note that, from Proposition 4.2 if a negative weight restricted cycleexists in the constraint graph, Algorithm 4.1 or 4.2 will detect it and return False. In this case thepredicate sched1;k is false and the job set �1;1 is not schedulable as well as �1;k. If a constraintgraph appears in any of the following propositions, it is assumed that no contradiction has beenfound in the process of obtaining that graph. First, it is shown that the parametric bound functionsfor sji found from a constraint graph G1;k(sji) depend on the start or �nish times of the jobs in�j�1 and �j that are already executed. This means that the number of jobs it may actually bedependent on is shown to be bounded by O(N). This bounds the number of variables to O(N)that have to be used in evaluating parametric bound functions at runtime.Proposition 4.3 In a graph G1;k(sji), if sji is connected to a node v, thenv 2 PrecNode(�1;k(sji)) [Pwhere P = fy j y 2< v0; sj�11 ; f j�11 ; : : : ; f ji�1 > ^ (y ! sji 2 G1;k(fkN) _ sji ! y 2 G1;k(fkN))g33

v

s 2
1 f

2
1 s2

2

0v

s1
1 f1

1 s 1
2 f 2

1 s 2
1 f

2
1 s2

2+ + +0

25

-15

5

0

5

0
-20

20 30
-28

12

-10

0-8

0

-10

5

-8

5 58

)))

+ + +s sf

5

0

f

-18

5

0

25

-20 40

-15

-40

12

50

-10

0

-48

-10

5

-8

2
2

3 3 3
1 1 2

8

)))
-8

Figure 4.5: Homogeneous edge sets, 	1;3(s32) and 	1;3(s22)Proof: Given in appendix.Similar result holds for a graph G1;k(f ji).Then, the following proposition implies that the set of nodes, to which additionally creatededges in G1;k(sji)(or G1;k(f ji)) may be connected, is a subset of the set, PrecNode(�1;k(sji))(orPrecNode(�1;k(f ji))).Proposition 4.4 Node(1;k(sji)) � PrecNode(�1;k(sji))Node(1;k(f ji)) � PrecNode(�1;k(f ji))Also, j 	1;k(f jN) j � n(n � 1) holds.Proof: Given in appendix.These two propositions give an upper bound on the actual number of nodes sji may be connectedto in G1;k(sji), which is O(N). If only jitter constraints are allowed from periodic tasks, it iseasy to see that sji in G1;k(sji) is connected to at most O(n) number of jobs. This is becausej PrecNode(�1;k(sji)) j� n and j P j� 2.Then, an interesting property of an additionally created edge set, 	1;k(f jN), is given in thefollowing proposition. After eliminating 4N variables of the last 2N jobs (belonging to �k and�k�1) from sched1;k, we periodically obtain semi-homogeneous created edge sets once eliminatingeach 2N variables for �j , 2 � j � k � 2.Proposition 4.5 An edge set 	1;k(f jN) is semi-homogeneous to 	1;k(f j�1N) for 2 � j � k � 2.34

Proof: Given in appendix.In addition, the edge weight change patterns between two semi-homogeneous edge sets, 	1;k(f j�1N)and 	1;k(f jN), are presented in the following proposition.Proposition 4.6 Consider two semi-homogeneous created edge sets, 	1;k(f j�1N) and 	1;k(f jN),where 2 � j � k � 2. Suppose v1 w�! v2 2 	1;k(f jN) and g(�1)(v1) w0�! g(�1)(v2) 2 	1;k(f j�1N).Then, the following is satis�ed:1. If v1 6= v0 and v2 6= v0, w0 � w2. If v1 = v0 and v2 6= v0, w0 � w � L3. If v1 6= v0 and v2 = v0, w0 � w + LProof: Given in appendix.Once we �nd two homogeneous created edge sets, 	1;k(f jN) and 	1;k(f j�1N) for some j, then thefollowing proposition enables us to stop the variable elimination process, since homogeneous creatededge sets will be found to the ones already obtained, if the node elimination process continues.Proposition 4.7 If an edge set 	1;k(f jN) is homogeneous to an edge set 	1;k(f j�1N), where 2 �j � k � 2, then8l : 2 � l � j � 1 :: 8i : 1 � i � N :: 	1;k(f li) � 	1;k(f ji) ^ 	1;k(sli) � 	1;k(sji)Proof: Given in appendix.More generalized result is presented next which holds whenever two homogeneous edge sets,	1;k(f jN) and 	1;k(f j�1N), are found during the variable elimination process.Proposition 4.8	1;k(f j�1N) � 	1;k(f jN) =) (8i : 1 � i :: 	1;k+i(f (j�1)+iN) � 	1;k+i(f j+iN))Proof: This is obvious from the cyclic structures of constraint graphs, G1;k(fkN) andG1;k+i(fk+iN),and from Proposition 4.6 and 4.7.From the de�nition of homogeneity between edge sets in constraint graphs, the following propo-sition is derived.Proposition 4.9 Suppose 	1;k1(sji) � 	1;k2(sli) holds. Then,1. the set of edges to sji in G1;k1(sji) is homogeneous to the set of edges to sli in G1;k2(sli).2. the set of edges from sji in G1;k1(sji) is homogeneous to the set of edges from sli in G1;k2(sli).35

Note that from the set of edges to sji in G1;k1(sji) we can obtain the parametric upper boundfunction Fmax;k1sji for sji , and from the set of edges from sji in G1;k1(sji) we can obtain the parametriclower bound function Fmin;k1sji for sji by inversely transforming the edge set into constraints. Twoparametric lower (upper) bound functions for sji and sli are de�ned to be homogeneous if they satisfycondition 1(2) in the above proposition. If Fmin;k1sji and Fmin;k2sli are homogeneous, it is denoted as:Fmin;k1sji � Fmin;k2sliWe have the following lemma from Proposition 4.7 and 4.8.Lemma 4.4 If 	1;k(f j�1N) � 	1;k(f jN) holds for 2 � j � k � 2, then1. 8l : 2 � l � j � 1 :: 8i : 1 � i � N :: Fmin;ksli � Fmin;ksji ^ Fmax;ksli � Fmax;ksji2. 8a : 1 � a :: Fmin;k+as(j�1)+ai � Fmin;k+asj+ai ^ Fmax;k+as(j�1)+ai � Fmax;k+asj+aiThis lemma enables us to obtain asymptotic 7 parametric bound functions, Fmin;1sji and Fmax;1sji ,once we �nd two homogeneous created edge sets during node elimination process from the constraintgraph. By using asymptotic parametric bound functions at run-time we can guarantee that theconstraint set C1;k will be satis�ed with any arbitrary value of k.Note that asymptotic parametric bound functions, Fmin;1sji and Fmax;1sji , are parameterized interms of the variables in fsj�11 ; f j�11 ; : : : ; f ji�1g and in terms of the index variable j. By knowingthe scheduling window(job set) index j at run-time, only one pair of asymptotic parametric boundfunctions need to be stored for all sji where i is �xed and j � 2. In addition to this, another pairof parametric bound functions needs to be stored for s1i .4.1.4 O�-line ComponentIn this section, a 4N -node graph, called basis graph, is obtained to which we can cyclically applyvariable elimination algorithm without explicitly obtaining a large constraint graph G1;k(fkN) forlarge k. That is, by recursively applying variable elimination algorithm to this smaller graph, itcan be decided whether the created edge set sequence, 	1;k(f jN), j = k; k� 1; : : :, will converge ornot.De�nition 4.16 (Basis Graph) A basis graph Gb(Vb; Eb) is de�ned as a subgraph of G1;2(f2N) asfollows.81. Vb = Vb;1 [Vb;2 [fv0g where:Vb;1 = PrecNode(�1;2(f1N))� fv0gVb;2 = fs21; f21 ; : : : ; s2N ; f2Ng7\Asymptotic" means \converging" in the sense that homogeneous parametric bound functions will be found tothe ones already obtained, if the variable elimination process continues.8G1;2(f2N) is found from �1;2. 36

2. All edges in G1;2(f2N) connecting any two nodes in Vb are included into Eb.Then, the variable elimination process for a graph G1;k(fkN) can be transformed into an equiv-alent one by using a basis graph as follows:Algorithm 4.3 Cyclic algorithm to obtain G1;k(f2N).� Input: k, Basis Graph Gb(Vb; Eb)� Output: G1;k(f2N)1. Initialize i = 1.2. Initialize G1in(Vb; E1in) = Gb(Vb; Eb).3. From i = 1 to i = k � 2 repeat the following:(a) Eliminate, from Giin(Vb; Eiin), the nodes of Vb;2 by alternately using Algorithm 4.1 and4.2.(b) If False is returned from Algorithm 4.1 or 4.2, then return False.(c) Let Giout(Vb;1 [fv0g; Eiout) denote the resulting graph.(d) If i � 2 and Giout(Vb;1 [fv0g; Eiout) = Gi�1out (Vb;1 [fV0g; Ei�1out), then return Giin(Vb; Eiin).(e) Let Gi+1in (Vb; Ei+1in) = Gb(Vb; Eb)(f) For each edge v1 w12�! v2 in Giout(Vb;1 [fv0g; Eiout),i. If v1 6= v0 and v2 6= v0, add an edge g(1)(v1) w12�! g(1)(v2) toGi+1in (Vb; Ei+1in).ii. If v1 = v0, add an edge g(1)(v1) w12+L�! g(1)(v2) to Gi+1in (Vb; Ei+1in).iii. If v2 = v0, add an edge g(1)(v1) w12�L�! g(1)(v2) to Gi+1in (Vb; Ei+1in).(g) Set i = i+ 1.At step 3� (d) the graph Giin(Vb; Eiin) is returned. By utilizing Proposition 4.7, this graph canbe shown to be equal to G1;k(f2N). Once we �nd homogeneous created edge sets on Vb;1 [fv0g atstep 3�(d), asymptotic parametric bound functions for job start times can be found from the graphG1;k(f2N). From this graph the variables in the sequence < f2N ; s2N ; : : : ; f21 ; s21 > are eliminated toobtain the parametric bound functions for each s2i , 1 � i � N . During this elimination process, theweights of edges connected to or from v0 have to be modi�ed appropriately to reect schedulingwindow index j � 2 as well as the node index of the graph. For example,� if an edge v0 w�! s2i is obtained after eliminating < f2N ; s2N ; : : : ; f2i >, then a formula sji �w + (j � 2)L must be used in deriving asymptotic parametric bound functions for sji .� if an edge s2i w�! v0 is obtained after eliminating < f2N ; s2N ; : : : ; f2i >, then a formula �w +(j � 2)L � sji must be used in deriving asymptotic parametric bound functions for sji .� if an edge s1a w�! s2i , is obtained after eliminating < f2N ; s2N ; : : : ; f2i >, then a formula sji �sj�1a � w must be used in deriving asymptotic parametric bound functions for sji .37

After obtaining asymptotic parametric bound functions for sji , 2 � j, we can also �nd parametricbound functions for �1 by eliminating nodes from G1;k(f1N).Note that, at each iteration in the above algorithm, no explicit transformation of node indicesare performed by using g(�1). This is because our purpose is to check the schedulability and obtainasymptotic parametric bound functions, and this may be done without explicit knowledge of nodeindices. The key property that this algorithm makes use of is that the basis graph is recursivelyused and transformed until the schedulability is checked. It is clear that this algorithm producesexactly the same result (True or False) and graph as the node elimination algorithm applied toG1;k(fkN) does.The following theorem provides an upper bound on the number of loop iterations in Algo-rithm 4.3 that have to be performed before the schedulability is checked.Theorem 4.1 If Algorithm 4.3 doesn't terminate within n2 � n+ 2 loop iterations, then sched1;1is not schedulable.Proof: Given in appendix.Therefore, we obtain the �nal algorithm for checking sched1;1 and deriving asymptotic para-metric bound functions if �1;1 is schedulable. The overview of o�-line component is shown inFigure 4.6.
Homogeneous

Created Edge Sets
are found

fN
2

G()

fN
2

G()

s j

i
for , j=2,3,...

Parametric Bound Functions

, i=1,2,...,N, i=1,2,...,N

k=n2-n+4

No

Algorithm 3

with

G b
(Vb , bE)

Eliminate variables

from

Parametric Bound Functions

for s
i

1

Not Schedulable

YesFigure 4.6: Overview of o�-line componentFrom Theorem 4.1 the total complexity of the o�-line algorithm is O(n2N3), since each loopiteration of Algorithm 4.3 may take at most O(N3) computation time [23]. If only jitter constraintsare allowed from periodic tasks, then the o�-line algorithm will be �nished within O(n4N) timewhere n is the number of periodic tasks that have jitter constraints, since each loop iteration inthis case takes at most O(n2N) time. This is because j PrecNode(�1;k(sji)) [P j � n + 2 holds,and because from Proposition 4.3 we know that at most O(n) number of edges exist in G1;k(sji)38

that are connected to or from sji . This implies that the elimination of sji from the graph G1;k(sji)will require at most O(n2) time, and eliminating nodes of one job set requires O(n2N) time. Also,the on-line component in this case requires at most O(n) execution time.4.1.5 O�-line Component with Restricted Standard ConstraintsFor a certain class of standard constraints, called restricted standard constraints, it will be shownthat the o�-line component can be carried out in O(N3 + n5) time instead of O(n2N3) time.De�nition 4.17 (Restricted Standard Constraints) For two jobs, � ja and � lb,where (j = l � 1) _ (j = l ^ a < b), the following constraints are de�ned as restricted standardconstraints: sja � slb � c1sja + eja � slb � c2 slb � sja � c3slb + elb � sja � c4 (4.2)Also, as in the de�nition for standard constraints, release time and deadline constraints canalso be classi�ed as restricted standard constraints. We also include as restricted standard anyconstraint that can be rewritten in one of the above forms.For this class of constraints the following lemma makes it possible to pre-process the basis graphand to obtain a smaller graph that can be used in the o�-line algorithm instead of the basis graph.This graph is called a compact basis graph.Lemma 4.5 ([42]) If �1;k is constructed with restricted standard constraints, it is schedulable ifand only if it is schedulable for the maximum execution times of the jobs.Let the following be a predicate representing a schedulability for a job set �.Sched � 9s1 :: 8e1 2 [l1; u1] :: : : :9si :: 8ei 2 [li; ui] :: 9sN :: 8eN 2 [lN ; uN] :: CFrom Lemma 4.5 this predicate is equivalent to the following predicate where C only consists ofrestricted standard constraints.9s1 :: : : : :: 9si :: : : : 9sN�1 :: 9sN :: C[ej=uj : 1 � j � N]where ej=uj denotes a substitution of uj for a variable ej . In other words, Sched can be checkedby �rst replacing every universally quanti�ed variable ej with uj for 1 � j � N , and then byeliminating existentially quanti�ed variables sN , : : :, s1.However, eliminating the existentially quanti�ed variables, sN , sN�1, : : :, si+1, in any orderwill produce the same constraint graph G(si). This is because there exists no exclusively-ORededges between nodes in fv0; si+1; si+2; : : : ; sNg after substituting the maximum execution times forthe variables ej , 1 � j � N , and because any minimum weight acyclic restricted paths throughthe nodes of fsi+1; : : : ; sNg are preserved in the remaining constraint graph after eliminating thevariables sj , i+ 1 � j � N , regardless of the elimination order.This property is used to �nd a compact basis graph from sched1;2(f2N) as follows:39

Algorithm 4.4 (Compact Basis Graph) Algorithm to obtain a compact basisgraph.� Input: sched1;2(f2N)� Output: Compact Basis Graph Gcb(Vcb; Ecb)1. Let G0(V 0 ; E 0) denote a graph from a predicate that is found by substituting uj for eachuniversally quanti�ed variable ej in sched1;2(f2N).2. Let �0(s1N) denote a crossing edge set of s1N found from G0(V 0 ; E 0).3. Let G00(V 00 ; E 00) denote a graph found after eliminating the following nodesfrom G0(V 0 ; E 0). fs21; s22; : : : ; s2Ng � g(1)(PrecNode(�0(s1N)))4. Let Gcb(Vcb; Ecb) be a subgraph of G00(V 00 ; E 00):(a) Vcb = Vcb;1 [Vcb;2 [fv0g where:Vcb;1 = fs11; s12 : : : ; s1Ng \ PrecNode(�0(s1N))Vcb;2 = g(1)(Vcb;1)(b) All edges in G00(V 00 ; E 00) connecting two nodes of Vcb de�nes Ecb.We can apply Algorithm 4.3 to this compact basis graph instead of the basis graph. This limitsthe complexity of obtaining homogeneous created edge sets to O(N3 + n5) instead of O(n2N3).Once we �nd homogeneous created edge sets on Vcb;1, asymptotic parametric bound functionscan be found by �rst unrolling the �nal graph from the algorithm to obtain G1;1(f2N) and thenby eliminating from this graph the nodes in the sequence < f2N ; s2N ; : : : ; f21 ; s21 >. During thiselimination process, as in Section 4.1.4 the weights of edges connecting v0 have to be modi�edappropriately to reect scheduling window index as well as the node indices of the graph.4.2 ExampleThe asymptotic parametric bound functions are found for the job set, �1;1, in Example 3.1. Fig-ure 4.7 shows the parametric bound functions found from �1;4, and Figure 4.8 shows asymptoticparametric bound functions for sched1;1.It is clear from this �gure that the following hold:Fmin;4s21 � Fmin;4s31Fmax;4s21 � Fmax;4s31Fmin;4s22 � Fmin;4s32Fmax;4s22 � Fmax;4s32Note that n =j PrecNode(�1;4(f12)) j= 3, and n2 � n + 2 = 8 is the iteration bound given inTheorem 4.1. But, Algorithm 4.3 found homogeneous created edge sets after 3 loop iterations.This shows that the upper bound on the number of loop iterations given in Theorem 4.1 is nottight in general. 40

0 � s11 � 2max(8; s11 + e11) � s12 � min(10; s11+ e11 + 5)max(20; s12+ e12; s11 + e11 + 10) � s21 � min(22; s11+ e11 + 17; s12 + e12 + 4)max(28; s21+ e21; s12 + e12 + 10) � s22 � min(30; s12+ e12 + 12; s21 + e21 + 5)max(40; s22+ e22; s21 + e21 + 10) � s31 � min(42; s21+ e21 + 17; s22 + e22 + 4)max(48; s31+ e31; s22 + e22 + 10) � s32 � min(50; s22+ e22 + 12; s31 + e31 + 5)max(60; s32+ e32; s31 + e31 + 10) � s41 � min(62; s31+ e31 + 17; s32 + e32 + 4)max(s41 + e41; s32 + e32 + 10) � s42 � min(70; s32+ e32 + 12; s41 + e41 + 5)Figure 4.7: Parametric bound functions found from sched1;4Fmins11 = 0Fmaxs11 = 2Fmins12 = max(8; s11 + e11)Fmaxs12 = min(10; s11+ e11 + 5)Fminsj1 = max(20 + (j � 2)20; sj�12 + ej�12 ; sj�11 + ej�11 + 10)Fmaxsj1 = min(22 + (j � 2)20; sj�11 + ej�11 + 17; sj�12 + ej�12 + 4)Fminsj2 = max(28 + (j � 2)20; sj1+ ej1; sj�12 + ej�12 + 10)Fmaxsj2 = min(30 + (j � 2)20; sj�12 + ej�12 + 12; sj1+ ej1 + 5)Figure 4.8: Asymptotic parametric bound functions for sched1;14.3 SummaryIn this chapter, we presented a solution approach for the problem de�ned in Chapter 3. A new tech-nique, called dynamic cyclic dispatching, is developed based on the dynamic time-based schedulingscheme introduced in Chapter 1.A schedule(ordering) ofN jobs is assumed to be given on a scheduling window, and it is requiredthat this schedule be repeated at run time. The relative constraints may be cyclically de�ned acrossthe boundaries of the scheduling windows as well as between jobs in one scheduling window.Unlike static approaches which assign �xed start times to jobs in a scheduling window, ourapproach not only allows us to exibly manage the slack times with the schedulability of a job setnot a�ected, but also yields an guaranteed schedulability in the sense that, if other dispatchingmechanism can dispatch the job sequences satisfying all given constraints, then our mechanism canalso schedule them.A pseudo-polynomial time o�-line algorithm is presented to check the schedulability of a cycli-cally constrained job set and to obtain parametric lower and upper bound functions for each jobstart time. The o�-line algorithm requires at most O(n2N3) time where n is the number of jobsin a scheduling window that have relative constraints with jobs in the next scheduling window.Then, the parametric bound functions for each start time can be evaluated by an on-line algorithmwithin O(N) time. In addition, with restricted standard constraints it is shown that the o�-linecomponent requires at most O(N3 + n5) execution time.41

Chapter 5Design of a Dynamic Temporal Controller5.1 IntroductionIn this chapter, we consider the issue of how a dynamic temporal controller can be constructed. Indynamic temporal control, the regular sampling interval assumption is relaxed, and computationalcosts are incorporated into the cost function. At run-time new controls are computed and exercisedat chosen time instants such that the cost function is minimized. The feasibility of this new scheme isdemonstrated by obtaining dynamic temporal control laws for linear time-invariant control systems.In Section 5.2, we formulate the dynamic temporal control problem and introduce computationcost into performance index function. The solution approach for linear time-invariant systems isdiscussed in Section 5.3. In Section 5.4, implementation issues are addressed. We provide anexample of controlling rigid body satellite in Section 5.5 . In this example, a dynamic temporalcontroller is designed. Results show that the dynamic temporal control approach performs betterthan the traditional sampled data control approach with the same number of control exercises.Section 5.6 discusses the issues arising from the application of dynamic temporal controls to thedesign of real-time control systems. Finally, Section 5.7, we present a summary.5.2 Problem FormulationIn dynamic temporal control, the control changing time instants are chosen such that a cost functionis minimized which incorporates computational costs as well as state, input costs. We consider asteady state control problem on a �nite time line [0; Tf]. To formulate the dynamic temporal controlproblem for a discrete, linear time-invariant system, we �rst discretize the time interval [0; Tf] intoM subintervals of length � = Tf=M . Let DM = f0;�; 2�; : : :(M � 1)�g denote M time instantsthat are regularly spaced. Here, control exercising time instants are restricted within DM for thepurpose of simplicity. The linear time-invariant controlled process is described by the di�erenceequation: x(k + 1) = Ax(k) +Bu(k) (5.1)where k is the time index. One unit of time represents the subinterval �, whereas x 2 Rn andu 2 Rl are the state and input vectors, respectively.It is well known that there exists a steady state optimal control law [20, 39]uo(i) = fi[x(i)] i = 0; 1; :::;M � 1 (5.2)42

that minimizes the quadratic performance index function (Cost)JM = M�1Xk=0 [xT (k)Qx(k) + uT (k)Ru(k)] + xT (M)Qx(M) (5.3)where Q 2 Rn�n is positive semi-de�nite and R 2 Rl�l is positive de�nite.As we can see, traditional controller exercises control at every time instant in D. However, intemporal control, we are no longer constrained to exercise control at every time instant in D. Indynamic temporal control we require that the control be exercised with the following steps: At timeti, ti 2 DM and 1 � i,1. Compute a current state x(ti)2. Compute �(ti)3. Compute and apply u(ti) to the system4. Repeat the process at ti+1 = ti + �(ti)Note that ti, 1 � i, denote control changing time instants, and �(ti) denotes the time intervalbetween i-th control exercise and (i+ 1)-th control exercise.For the purpose of simplicity, dual mode dynamic temporal control is considered. That is, �(ti)may take one of the following two values:� a�� b�a and b are positive integers(a < b) such that b is an integer multiple of a. Also, it is assumed thatb divides M without any remainder. b� is called a base sampling period and a� is called a rapidsampling period. Let M = �b where � is a positive integer.In addition to the above assumption, we further assume that at all time instants in f0, b�,2b�, : : :, (� � 1)b�g new controls are computed. Let each time interval [(i� 1)b�; ib�] of size b�be called a frame for 1 � i � �. The sampling period decision function � is evaluated at only timeinstants that are start times of frames, and once �(ib�) is decided it will be enforced during thenext time frame [ib�; (i+ 1)b�]. In other words, if �(ib�) = a� the control computations will bedone at ib�, (ib+ a)�, : : :, (ib+ b � a)�. And, if �(ib�) = b� the control computations will bedone only at ib� in [ib�; (i+ 1)b�). Under these assumptions the steps performed by a dynamictemporal controller can be summarized as follows: At time ib�, 0 � i � � � 1,1. Compute a current state x(ib�)2. Compute �(ib�) = gi(x(ib�))(a) If �(ib�) = a�� At tj = (ib+ ja)� for 0 � j � (b=a� 1), compute and apply u(tj) = hi;j(x(tj))(b) If �(ib�) = b�� compute and apply u(ib�) = hi(x(ib�))43

3. Repeat the process at (i+ 1)b� if i < � � 1.This new formulation of dynamic temporal control makes it possible to �nd a good approximationapproach to optimal control laws as can be seen in later sections of this chapter.We want to �nd a feedback control law, gi, hi, and hi;j for i = 0; 1; 2; :::; � � 1 and j =0; 1; : : : ; (b=a� 1), that minimizes a new performance index functionJ 0M = JM + � � (5.4)Here, � is the computation cost of exercising control with a rapid sampling period instead of a basesampling period in one frame, and denotes the number of frames in [0;M�] done with a rapidsampling period. Hence, exercising controls with a rapid sampling period increases the cost term� � . So, if exercising control with a rapid sampling period doesn't reduce the term JM by morethan this increase, exercising control with a base sampling period is likely to be a better choice.This is a key idea of the solution approach given in the next section.This new cost function is di�erent from JM in two aspects. First, the concept of computationalcost is introduced in J 0M as � � term to regulate the number of frames with rapid sampling periods.If we do not take this computation cost into consideration is likely to become �. If computationcost is high (i.e., � has a large value) then is likely to be small in order to minimize the totalcost function. Second, in dynamic temporal control, not only do we seek control law u(x(t)), butalso the control exercising time instants and the number of control changes. In the next section, wepresent in detail speci�c techniques for �nding a dynamic temporal control law with performancesclose to optimal solutions.5.3 Temporal Control with Fixed Sampling TimesLet T = ft0; t1; t2; : : : ; t��1g denote a set of control changing time instants where t0 = 0, t1 = n1�,: : :, t��1 = n��1�. That is n0, n1, : : :, n��1 are the indices for control changing time instants. Inthis section, an optimal control law is derived when T is given which minimizes the cost functionJM . In the next section, the results developed in this section will be used in devising good heuristicsfor deciding � values minimizing J 0M .Assume that T is given. Then a new control input calculated at ti will be applied to the actuatorfor the next time interval from ti to ti+1. Our objective here is to determine the optimal controllaw uo(ni) = fi[x(ni)] i = 0; 1; :::; �� 1 (5.5)that minimizes the quadratic performance index function (Cost) JM which is de�ned in (5.4).The principle of optimality, developed by Richard Bellman[7, 8] is the approach used here. Thatis, if a closed loop control uo(ni) = fi[x(ni)] is optimal over the interval t0 � t � t� , then it is alsooptimal over any sub-interval tm � t � t� , where 0 � m � �. As it can be seen from Figure 5.1,the total cost JM can be decomposed into Fis for 0 � i � � whereFi = xT (ni)Qx(ni) + xT (ni + 1)Qx(ni + 1) (5.6)+ xT (ni + 2)Qx(ni + 2) + :::+ xT (ni+1 � 1)Qx(ni+1 � 1)+ (ni+1 � ni)uT (ni)Ru(ni)44

Control Input Cost

State Cost

time
1 2 3 ν -m ν -m+1 ν -1

0

m+1

-1

......

......

u
o
(

u
o
(

n n

n
n

n
-mν n

Fν

Fν

Fν -1

ν

-1ν

S

-m

-m

n +1

)
)

n ν

Figure 5.1: Decomposition of JM into Fi.That is, from (5.1),Fi = xT (ni)Qx(ni) + (Ax(ni) +Bu(ni))TQ(Ax(ni) + Bu(ni)) (5.7)+ (A2x(ni) +ABu(ni) + Bu(ni))TQ(A2x(ni) + ABu(ni) +Bu(ni))+ :::+ (Ani+1�ni�1x(ni) +Ani+1�ni�2Bu(ni) + :::+ABu(ni) +Bu(ni))TQ(Ani+1�ni�1x(ni) +Ani+1�ni�2Bu(ni) + :::+ ABu(ni) +Bu(ni))+ (ni+1 � ni)uT (ni)Ru(ni)This can be rewritten asFi = xT (ni)Qx(ni) + ni+1�ni�1Xj=1 [Ajx(ni) +Bju(ni)]TQ[Ajx(ni) +Bju(ni)] (5.8)+ (ni+1 � ni)uT (ni)Ru(ni)where Aj = Aj and Bj =Pj�1k=0AkB.Then JM can be expressed asJM = F0 + F1 + F2 + :::+ F� : (5.9)Let Sm be the cost from i = � �m+ 1 to i = �:Sm = F��m+1 + F��m+2 + :::+ F��1 + F� ; 1 � m � � + 1: (5.10)45

These cost terms are well illustrated in the above Figure 5.1.Therefore, by applying the principle of optimality, we can �rst minimize S1 = F� , then chooseF��1 to minimize S2 = F��1 + F� = So1 + F��1 where So1 is the optimal cost occurred at t� . Wecan continue choosing F��2 to minimize S3 = F��2 + F��1 + F� = F��2 + So2 and so on untilS�+1 = JM is minimized. Note that S1 = F� = xT (n�)Qx(n�) is determined only from x(n�) whichis independent of any other control inputs.5.3.1 Inductive Construction of an Optimal Control Law with T GivenWe inductively derive an optimal controller which changes its control at � time instants t0; t1,: : :, t��1 . As we showed in the previous section, the inductive procedure goes backwards in timefrom So1 to So�+1. Since S1 = F� = xT (n�)Qx(n�) + uT (n�)Ru(n�) and x(n�) is independent ofu(n�), we can let uo(n�) = uo(M) = 0 and So1 = xT (n�)Qx(n�) where Q is symmetric and positivesemi-de�nite.Induction Basis: So1 = xT (n�)Qx(n�) where Q is symmetric.Inductive Assumption: Suppose thatSom = xT (n��m+1)P (� �m+ 1)x(n��m+1)holds for some mwhere 1 � m � � and P (� �m+ 1) is symmetric.We can write Som asSom = [A(n��m+1�n��m)x(n��m) + B(n��m+1�n��m)u(n��m)]T (5.11)�P (� �m+ 1) �[A(n��m+1�n��m)x(n��m) + B(n��m+1�n��m)u(n��m)]From the de�nition of Sm and (5.8),Sm+1 = Som + F��m= Som + xT (n��m)Qx(n��m) (5.12)+ n��m+1�n��m�1Xj=1 [Ajx(n��m) + Bju(n��m)]TQ[Ajx(n��m) + Bju(n��m)]+ (n��m+1 � n��m)uT (n��m)Ru(n��m)And the above equation becomesSm+1 = [An��m+1�n��mx(n��m) +Bn��m+1�n��mu(n��m)]TP (� �m+ 1) (5.13)[An��m+1�n��mx(n��m) +Bn��m+1�n��mu(n��m)]+ xT (n��m)Qx(n��m)+ n��m+1�n��m�1Xj=1 [Ajx(n��m) + Bju(n��m)]TQ[Ajx(n��m) + Bju(n��m)]+ (n��m+1 � n��m)uT (n��m)Ru(n��m)46

If we di�erentiate Sm+1 with respect to u(n��m), then@Sm+1@u(n��m) = BTn��m+1�n��mP (� �m+ 1)An��m+1�n��mx(n��m) (5.14)+ (ATn��m+1�n��mP (� �m+ 1)Bn��m+1�n��m)Tx(n��m)+ 2BTn��m+1�n��mP (� �m+ 1)Bn��m+1�n��mu(n��m)+ n��m+1�n��m�1Xj=1 [2BTj QAjx(n��m) + 2BTj QBju(n��m)]+ 2(n��m+1 � n��m)Ru(n��m)= 2fBTn��m+1�n��mP (� �m+ 1)An��m+1�n��m (5.15)+ n��m+1�n��m�1Xj=1 BTj QAjgx(n��m)+ 2fBTn��m+1�n��mP (� �m+ 1)Bn��m+1�n��m+ n��m+1�n��m�1Xj=1 BTj QBj + (n��m+1 � n��m)Rgu(n��m)Note that P (��m+1) is symmetric and the following three rules are applied to di�erentiate Sm+1above. @@x(xTQx) = 2Qx@@x(xTQy) = Qy@@y (xTQy) = QTxLet @Sm+1@u(n��m) = 0, from Lemma 5.1 and Lemma 5.2 given later we can obtain uo(n��m) whichminimizes Sm+1 and thus obtain Som+1.uo(n��m) = �fBTn��m+1�n��mP (� �m+ 1)Bn��m+1�n��m (5.16)+ n��m+1�n��m�1Xj=1 BTj QBj + (n��m+1 � n��m)Rg�1fBTn��m+1�n��mP (� �m+ 1)An��m+1�n��m+ n��m+1�n��m�1Xj=1 BTj QAjgx(n��m)= �K(� �m)x(n��m)where K(� �m) is de�ned in (5.16).Therefore, we can writeAn��m+1�n��mx(n��m) + Bn��m+1�n��muo(n��m) = (5.17)[An��m+1�n��m � Bn��m+1�n��mK(� �m)]x(n��m)47

If we use (5.16) and (5.17), we haveSom+1 = f[An��m+1�n��m �Bn��m+1�n��mK(� �m)]x(n��m)gT (5.18)P (� �m+ 1)f[An��m+1�n��m �Bn��m+1�n��mK(� �m)]x(n��m)g+ xT (n��m)Qx(n��m)+ n��m+1�n��m�1Xj=1 f[Aj � BjK(� �m)]x(n��m)gTQf[Aj � BjK(� �m)]x(n��m)g+ (n��m+1 � n��m)[K(� �m)x(n��m)]TR[K(� �m)x(n��m)]This equation can be rewritten asSom+1 = xT (n��m)f[An��m+1�n��m �Bn��m+1�n��mK(� �m)]T (5.19)P (� �m+ 1)[An��m+1�n��m �Bn��m+1�n��mK(� �m)]+ Q+ n��m+1�n��m�1Xj=1 [Aj � BjK(� �m)]TQ[Aj �BjK(� �m)]+ (n��m+1 � n��m)KT (� �m)RK(� �m)gx(n��m):= xT (n��m)P (� �m)x(n��m)where P (� �m) is obtained from K(� �m) and P (� �m+1) as in (5.19). Also note that knowingP (� �m+ 1) is enough to compute K(� �m) because other terms of (5.16) are known a priori.Therefore, we �nd a symmetric matrix P (��m) satisfying Som+1 = xT (n��m)P (��m)x(n��m).From (5.16) and (5.19), we have the following recursive equations for obtaining P (� � m) fromP (� �m+ 1) where m = 1; 2; :::; �.K(� �m) = fBTn��m+1�n��mP (� �m+ 1)Bn��m+1�n��m (5.20)+ n��m+1�n��m�1Xj=1 BTj QBj + (n��m+1 � n��m)Rg�1fBTn��m+1�n��mP (� �m+ 1)An��m+1�n��m+ n��m+1�n��m�1Xj=1 BTj QAjgP (� �m) = [An��m+1�n��m �Bn��m+1�n��mK(� �m)]T (5.21)P (� �m+ 1)[An��m+1�n��m �Bn��m+1�n��mK(� �m)]+ Q 48

+ n��m+1�n��m�1Xj=1 [Aj �BjK(� �m)]TQ[Aj � BjK(� �m)]+ (n��m+1 � n��m)KT (� �m)RK(� �m)Also, we know that at each time instant n��m�uo(n��m) = �K(� �m)x(n��m) (5.22)Hence, with P (�) = Q, we can obtain K(i) and P (i) for i = � � 1; � � 2; :::; 0 recursively using(5.20) and (5.21). At each time instant ni�; i = 0; 1; 2; :::; � � 1 the new control input value willbe obtained using (5.22) by multiplying K(i) by x(ni) where x(ni) is the estimate of the systemstate at ni�. Also, note that the optimal control cost is JoM = So�+1 = xT (0)P (0)x(0) where P (0)is found from the above procedure.To prove the optimality of this control law we need the following lemmas.Lemma 5.1 If Q is positive semi-de�nite and R is positive de�nite, then P (i); i = �; � � 1; � �2; :::; 0; matrices are positive semi-de�nite. Hence, P (i)s are symmetric from the de�nition of apositive semi-de�nite matrix.Proof Since P (�) = Q , from assumption P (�) is positive semi-de�nite. Assume that fork = i+1, P (k) is positive semi-de�nite. We use induction to prove that P (i) is semi-de�nite. Notethat Q is positive semi-de�nite and R is positive de�nite. From (5.21) we haveP (i) = [Ani+1�ni �Bni+1�niK(i)]TP (i+ 1) (5.23)[Ani+1�ni �Bni+1�niK(i)]+ Q+ ni+1�ni�1Xj=1 [Aj � BjK(i)]TQ[Aj � BjK(i)]+ (ni+1 � ni)KT (i)RK(i)Since P (i + 1) and Q are positive semi-de�nite, R is positive de�nite, and (ni+1 � ni) > 0, itis easy to verify that for 8y 2 Rm : yTP (i)y � 0. This means that P (i) is positive semi-de�nite.This inductive procedure proves the lemma.Lemma 5.2 Given T , the inverse matrix in (5.20) always exists.Proof Let V = BTn��m+1�n��mP (� �m+ 1)Bn��m+1�n��m+Pn��m+1�n��m�1j=1 BTj QBj +(n��m+1�n��m)R. From Lemma 5.1, P (��m+1) is positive semi-de�nite. Therefore, 8y 2 Rm : yTV y > 0 because Q is positive semi-de�nite, R is positive de�niteand n��m+1 � n��m > 0. This implies that V is positive de�nite. Hence the inverse matrix exists.49

Theorem 5.1 Given T , K(i) (i = 0; 1; 2; :::; � � 1) obtained from the above procedure are theoptimal feedback gains which minimize the cost function JM (and J 0M) on [0;M�].Proof Note that given T , JM is a convex function of u(ni); i = 0; 1; :::; � � 1. Thus theabove feedback control law is optimal.Suppose that T1 and T2 denote two sets of control changing time instants.Lemma 5.3 If T1 � T2 , then JoM;1 � JoM;2 where JoM;1 and JoM;2 are the optimal costs of controlswhich change controls at time instants in T1 and T2 respectively.Proof Suppose that JoM;1 < JoM;2, then, in controlling the system with T2, if we do notchange controls at time instants in T2 � T1 and change controls at time instants in T1 to the samecontrol inputs that were exercised to get JoM;1 with T1, we obtain ĴM;2 which is equal to JoM;1. Thiscontradicts the fact that JoM;2 is the minimum cost obtainable with Dq since we have found ĴM;2which is equal to JoM;1 and therefore less than JoM;2. Hence, JoM;1 � JoM;2.This lemma implies that if we do not take computation cost, �, into consideration, then themore control exercising points, the better the controller is (less cost). With the computation costbeing included in the cost function, the statement above is no longer true. Therefore we need tosearch for an optimal T which minimizes the cost function J 0M . The following sections provide adetailed discussion on searching for such an optimal solution. Note that if we let T = DM then theoptimal temporal control law is the same as the traditional linear feedback optimal control law.5.3.2 Dynamic Temporal ControlIn this section, we design a dynamic temporal controller by introducing a heuristic for �(ib�)function. The heuristic tries to estimate how much performance gain(reduction of JM term in J 0M)and how much performance loss (increase of � term) will incur if a rapid sampling period is usedin the next frame. If the performance gain is greater than or equal to a given threshold �, then�(i) = a�, otherwise �(i) = b�.By making use of the results developed in the previous section, we can obtain an optimal controllaw for T 1i = fib�; (i+ 1)b�; : : : ; (� � 1)b�g on a time interval [ib�; �b�] where 0 � i � � � 1.Let K1(i) and P1(i) denote two matrices found from T 1i by applying the algorithm given in theprevious section.Consider another control changing time instants set T 2i = fib�; (ib+ a)�; : : : ; (ib+ b � a)�,(i+1)b�; : : : ; (�� 1)b�g where 0 � i � �� 1. Also, let K2(i) and P2(i) denote two matrices foundfrom T 2i by applying the algorithm given in the previous section. Also, let K2(i; j), 0 � j � (b=a�1),denote a gain matrix obtained for time instant (ib+ ja)�.Two control changing time sets, T 1i and T 2i , are depicted in Figure 5.2.From Lemma 5.3 we know that xT (ib�) P1(i) x(ib�) is less than or equal to xT (ib�) P2(i)x(ib�). Furthermore, xT (ib�) P1(i) x(ib�) is less than or equal to xT (ib�) Pa(i) x(ib�) where50

∆ (β−1) b∆ βb∆(i+2) b∆(i+1)b∆

ib∆ (β−1) b∆ βb∆(i+2)

ib

b

T
∆(i+1)b∆

i
1

(ib+a)∆

i
2

TFigure 5.2: Two control changing time sets T 1i and T 2i .Pa(i) is a matrix found from any arbitrary control changing time instant set on [ib�; �b�] conform-ing to the assumptions given in the problem formulation section, i.e., the same sampling period isenforced during one frame.In addition, the cost xT (ib�) P2(i) x(ib�) is less than or equal to xT (ib�) Pb(i) x(ib�) wherePb(i) is a matrix found from any arbitrary control changing time instant set on [ib�; �b�] thatcontains time instants ib�; (ib+ a)�; : : : ; (ib+ b� a)�, i.e., a rapid sampling period is used in the�rst frame [ib�; (i+ 1)b�].From these facts, it can be said that a cost xT (ib�) P1(i) x(ib�) is a lower bound of the costsfound from any control changing time instant sets on [ib�; �b�] that conform to the assumptions,and a cost xT (ib�) P2(i) x(ib�) is a lower bound of the costs found from any control changingtime instant sets that enforce rapid sampling period in the �rst frame [ib�; (i+ 1)b�).In our solution approach, the above costs are used at time ib� to estimate the performance gainof using a rapid sampling period in the next frame [ib�; (i+ 1)b�]. This is a heuristic approach,and the e�ectiveness of this approach is validated through an example in a later section.We present a heuristic dynamic temporal control law which performs the following steps at eachframe start time:1. Compute a current state x(ib�)2. If xT (ib�)(P1(i)� P2(i))x(ib�)< �, let �(i) = b�.Otherwise, let �(i) = a�.(a) If �(i) = a�,� At each time instant tj = ib�+ ja�, 0 � j � (b=a� 1),apply u(tj) = �K2(i; j)x(tj)(b) If �(i) = b�,� u(ib�) = �K1(i)x(ib�)3. Repeat the process at (i+ 1)(b�)The following theorem proves that the dynamic temporal control using the above control lawguarantees the cost term JM of J 0M to be less than or equal to xT (0) P1(0) x(0) which is a cost forT 10 with only a base sampling period enforced on the entire interval [0; Tf].Theorem 5.2 If the above dynamic temporal control law is used, the cost JM of J 0M is less thanor equal to xT (0)P1(0)x(0) where P1(0) is obtained from T 10 .51

Proof Suppose that Cd(x0) denotes a set of time instants at which new controls are ex-ercised according to the above dynamic temporal control law for a given initial state x0. LetId(x0) = fi j 1 � i � �g denote a set of frame indices at which a rapid sampling period is used.Also, let i1 2 Id(x0) denote a smallest index in Id(x0), and i2 2 Id(x0) denote a second smallestindex, and so on. Consider two control changing time sets, T 10 and T 00 , where in T 00 only i1-th frameuses a rapid sampling period. Also, suppose that for these two control changing time sets, K1(l)is used if l-th frame uses a base sampling period, and K2(l; j) is used if l-th frame uses a rapidsampling period. Under these assumptions, it is clear that the control cost (without computationcost) for T 10 is greater than or equal to that for T 00 , when the same initial state x0 is used.Consider two control changing time sets, T 00 and T 000 , where in T 000 i1-th and i2-th frames use arapid sampling period. Also, suppose that for these two control changing time sets, K1(l) is usedif l-th frame uses a base sampling period, and K2(l; j) is used if l-th frame uses a rapid samplingperiod. Under these assumptions, it is clear that the control cost (without computation cost) forT 00 is greater than or equal to that for T 000 , when the same initial state x0 is used.If we transitively apply this process, we can conclude that, for the same initial state x0, thecontrol cost (without computation cost) for T 10 is greater than or equal to that obtained by applyingthe dynamic temporal control law. This proves the theorem.5.4 ImplementationTo implement dynamic temporal control, we need to calculate and storeK1(i) and K2(i; j) matrices,and use them when controlling the system. The number of matrices that need to be stored isO(�+(b=a)�), which is O((b=a)�). Note that in traditional optimal linear control a similar matrixis obtained and used at every time instant in DM to generate control input value.In dynamic temporal control, there is a CPU time overhead for calculating xT (ib�) (P1(i) �P2(i)) x(ib�) at the start of each frame. This calculation can be done within O(n2) time. Thiscalculation has to be done once each frame. More discussion is presented in a discussion section onthis overhead.In order to implement temporal control we require an operating system that supports schedulingcontrol computations at speci�c time instants, and allows dynamic selection of sampling periods.The Maruti system developed at the University of Maryland is a suitable host for the implementa-tion of dynamic temporal control [43, 35, 34]. In Maruti, all executions are scheduled in time andthe time of execution can be modi�ed dynamically, if so desired. This is in contrast with traditionalcyclic executives often used in real-time systems, which have a �xed, cyclic operation and whichare well suited only for the sampled data control systems operating in a static environment. Itis the availability of the system such as Maruti that allows us to consider the notion of dynamictemporal control, in which time becomes an emergent property of the system.5.5 ExampleTo illustrate the advantages of a dynamic temporal control scheme let us consider a simple exampleof rigid body satellite control problem [51]. The system state equations are as follows:52

x(k + 1) = " 0 1�1 2 # x(k) + " 00:00125 #u(k)y(k) = h 1 1 ix(k)where k represents the time index and one unit of time is the discretized subinterval of length� = 0:05. The linear quadratic performance index JM in (5.4) is used here with the followingparameters. Q = " 1 00 1 #R = 0:0001M = 40� = 0:05a = 1b = 4 (5.24)The objective of the control is to drive the satellite to the zero position and the desired goalstate is xf = [0; 0]T .We applied the dynamic temporal control law with an initial state space f(x1; x2) j 0:2 �x1; x2 � 0:8g with the following parameter:� = 0:01 (5.25)The performance of the dynamic temporal controller is compared to that of traditional optimalcontrol with a sampling period 0:05. In Figure 5.3 the cost di�erences between dynamic temporalcontroller and a traditional optimal controller are depicted for each initial state (x1; x2). Note thatthe maximum cost di�erence is less than 0:03. In Figure 5.4 the number of control computationperformed by a dynamic temporal controller is shown for each initial state. Note that the maximumnumber of control computation is less than 20, and for many of initial states they are less than 18.To estimate how much cost reduction is achieved through dynamic temporal control, we compareits performance with that of traditional optimal controller with 0:1 sampling period, i.e., sampling isdone at 20 regular spaced time instants. In Figure 5.5 the cost di�erences between optimal controllerwith 0:05 sampling period and an optimal controller with 0:1 sampling period are depicted for eachinitial state (x1; x2). Note that the maximum cost di�erence is almost 0:5. The cost di�erencesshown in Figure 5.3 and Figure 5.5 are compared together in Figure 5.6. Note that with almostall initial states the dynamic temporal controller outperforms traditional optimal controller withsampling period 0:1, even though the number of control computations done by a dynamic temporalcontroller is smaller than that for optimal controller.If we normalize the costs from dynamic temporal controller and from traditional controller withsampling period 0:1, by dividing by the cost from traditional controller with sampling period 0:05,we obtain graphs shown in Figure 5.7.The Figure 5.7 shows two graphs, one for normalized costs from dynamic temporal controllerand the other for normalized costs from traditional controller with a sampling period 0:1. Note that53

0.275

0.4

0.525

0.65

0.775

x1 0.275

0.4

0.525

0.65

0.775

x2

0

0.01

0.02

0.03

Cost

0.275

0.4

0.525

0.65

0.775Figure 5.3: Cost di�erences between dynamic temporal controller and traditional controller with0:05 sampling period. The maximum cost di�erence is less than 0:03.
54

0.275
0.4

0.525
0.65

0.775 x1

0.275
0.4

0.525
0.65

0.775x2

10

15

20

Number

0.275
0.4

0.525
0.65

0.775

Figure 5.4: Number of control computation performed by a dynamic temporal controller is shownfor each initial state. Note that the maximum number of control computation is less than 20, andfor many of initial states they are less than 18.
55

0.275

0.4

0.525

0.65

0.775

x1 0.275

0.4

0.525

0.65

0.775

x2

0

0.2

0.4
Cost

0.275

0.4

0.525

0.65

0.775Figure 5.5: Cost di�erences between optimal controller with 0:05 sampling period and an optimalcontroller with 0:1 sampling period are depicted for each initial state. The maximum cost di�erenceis almost 0:5.
56

0.2
0.43

0.66

x1

0.2
0.43

0.66

x2

0

0.1

0.2

0.3

0.4

0.5

Cost

0.2
0.43

0.66

Figure 5.6: Cost di�erences shown in Figure 5.3 and Figure 5.5 are compared together. Note thatfor almost all initial states the dynamic temporal controller outperforms traditional controller withequal sampling period 0:1, even though the number of control computations done by a dynamictemporal controller is smaller than that for traditional controller.
57

0.2
0.43

0.66

x1

0.2
0.43

0.66

x2

1

1.005

1.01

Cost

0.2
0.43

0.66

Figure 5.7: Normalize costs from dynamic temporal controller and from traditional controller withsampling period 0:1. Costs are normalized by dividing by the cost from traditional controller withsampling period 0:05.
58

0.2
0.43

0.66

x1

0.2
0.43

0.66

x2

1

1.005

1.01

Cost

0.2
0.43

0.66

Figure 5.8: Normalized costs from two controllers with adjusted threshold values. One from dy-namic temporal controller and the other from traditional controller with equal sampling period0:1.for some initial states the optimal controller outperforms dynamic temporal controller. However,this is from using uniform threshold value � for the entire initial state space. As a result of using onethreshold value, the number of control computations over initial state space shows non-uniformityas can be seen in Figure 5.4. By adjusting threshold values for some initial state, we can obtainmore uniform graphs. This is seen from Figure 5.8 which is found after using di�erent(smaller)threshold values for the initial states that results in higher normalized costs in Figure 5.7.The di�erences between normalized costs shown in Figure 5.8 is not so big, less than 0:01.However, the advantage of dynamic temporal scheme is more clearly seen from the following ex-periment. Usually, in concurrent real-time systems, the actual control update time instants forone periodic control task varies in consecutive periods. This is from the variations of task exe-cution times and also from the resource contention between di�erent tasks. The delay of controlupdate from the ideal control updating time instant is called computational delay. Computationaldelay has an adverse e�ect on control algorithm's performance. Figure 5.9 shows the di�erences of59

0.275

0.4

0.525

0.65

0.775

x1 0.275

0.4

0.525

0.65

0.775

x2

0

0.05

0.1
Cost

0.275

0.4

0.525

0.65

0.775Figure 5.9: Di�erences of worst case normalized costs between a dynamic temporal controller with� = 0:01 and a traditional controller with a sampling period 0:1. The computational delays arerandomly generated with a normal distribution. For each initial state, the control trajectories arefound 100 times, and the maximum cost among them is recorded.worst case normalized costs between a dynamic temporal controller with � = 0:01 and a traditionalcontroller with a sampling period 0:1. The computational delays are randomly generated with anormal distribution in [0;�], and they are injected into the system trajectory. For each initialstate, the control trajectories are found 100 times, and the maximum cost among them is recorded.The graph shows that using a dynamic temporal controller reduces normalized costs.Finally, Figure 5.10 shows the di�erences of average normalized costs between a dynamic tem-poral controller with � = 0:01 and a traditional controller with a sampling period 0:1. Again, thecomputational delays are randomly generated with a normal distribution. For each initial state,the control trajectories are found 100 times, and the average cost is recorded. This �gure showsthat the di�erences are not as large as in Figure 5.9 since they are from average costs.60

0.275

0.4

0.525

0.65

0.775

x1 0.275

0.4

0.525

0.65

0.775

x2

0

0.05

0.1
Cost

0.275

0.4

0.525

0.65

0.775

x1

Figure 5.10: Di�erences of average normalized costs between a dynamic temporal controller with� = 0:01 and a traditional controller with a sampling period 0:1. The computational delays arerandomly generated with a normal distribution. For each initial state, the control trajectories arefound 100 times, and the average cost is recorded.
61

5.6 DiscussionIn the previous section, we showed by using an example that the number of control computations canbe dramatically reduced by using dynamic temporal control law, while not sacri�cing the quality ofcontrol. Employing the dynamic temporal control methodology in concurrent real-time embeddedsystems will have a signi�cant impact on the way computational resources are utilized by controltasks. A minimal amount of control computations can be obtained for a given regulator by whichwe can achieve almost the same control performance compared to that of traditional controller withequal sampling period. This signi�cantly reduces the CPU times for each controlling task and thusincreases the number of real-time control functions which can be accommodated concurrently inone embedded system. Particularly, in a hierarchical control system if dynamic temporal controllerscan be employed for lower level controllers the higher level controllers will have a great degree ofexibility in managing resource usages by adjusting computational requirements of each lower levelcontroller. For example, in emergency situations the higher level controller may force the lowerlevel controller to run as infrequently as they possibly can (thus freeing computational resources forhandling the emergency). In contrast, during normal operations the temporal control tasks mayrun as necessary, and the additional computation time can be used for higher level functions suchas monitoring and planning, etc.As is mentioned in Section 5.4, there is an associated CPU overhead with dynamic temporalcontroller. At start of each frame the sampling period decision has to be done, which requiresO(n2) execution time. However, this computation is required once every frame, and we can getbene�ts by reducing the number of context switches in concurrent real-time systems.More work needs to be done on the e�ects of computational delays and variations on controlsystems performance when dynamic temporal controls are used.5.7 SummaryIn this chapter, we proposed a dynamic temporal control technique based on a new cost functionwhich takes into account computational cost as well as state and input cost. In this scheme newcontrol input values are de�ned at time instants which are not necessarily regularly spaced. Forthe linear control problem we showed that almost the same quality of control can be achieved whilemuch less computations are used than in a traditional controller.The proposed formulation of dynamic temporal control is likely to have a signi�cant impact onthe way concurrent embedded real-time systems are designed. In hierarchical control environment,this approach is likely to result in designs which are signi�cantly more e�cient and exible thantraditional control schemes. As it uses less computational resources, the lower level temporalcontrollers will make the resources available to the higher level controllers without compromisingthe quality of control.
62

Chapter 6Scheduling Aperiodic and Sporadic Tasks6.1 IntroductionIn this chapter we develop an approach to addressing the problem of incremental scheduling ofdynamic tasks in a hard real-time system.Traditionally, the scheduling problem considered for real-time systems is that of generating aschedule for n tasks. In practice, however, a system may have to accept additional tasks during itsoperation. Here, we study the problem of incremental scheduling in dynamic time-based environ-ment. We assume that we are given a set of n tasks, T (and all their task instances), along witha schedule for their execution. We consider adding a task to the schedule. To add a new task, wehave to �rst analyze the acceptability of it. If this task can not be scheduled without violatingconstraints of any of the tasks in T then this task is not accepted. If this can be scheduled, we notonly accept the task, but also add it to the schedule.In Section 6.2 the incremental scheduling problem is formally de�ned within a time-basedscheduling scheme. The results on incremental scheduling of aperiodic and sporadic tasks arepresented in Section 6.3. Finally, a summary follows in Section 6.4.6.2 Problem DescriptionThe main problem addressed in this chapter is how to incrementally accept and schedule taskswhile not sacri�cing the schedulability of the tasks already accepted.A task in a real-time system may invoke its corresponding task instances by informing thesystem of the release time, deadline, and execution time of the task instance. Tasks in real-timesystems may be classi�ed into single instance task and multiple instance task. Single instance task,which is also called aperiodic task, invokes its task instance only once, and multiple instance taskinvokes its instance repeatedly. Multiple instance tasks are further divided into periodic tasks andsporadic tasks. A periodic task invokes its instances at regular time intervals(period), whereas asporadic task invokes its instances at any time instant with a de�ned minimum inter-arrival timebetween two consecutive invocations.Any arriving task belongs to one of these classes. A periodic task P is characterized by aninvocation of a sequence of task instances. The following characteristics are assumed to be knownat the arrival time, Ap, of the periodic task, P . 63

� task invocation time Ip from which the task starts to invoke its instances.� task termination time X p when the task is terminated.� period p� invocation time of the j-th task instance is de�ned to be Ipj = Ip + (j � 1)p� relative deadline dp which implies that the absolute deadline of j-th task instance is Ipj + dp.� worst case execution time cpA hard aperiodic task A invokes its task instance only once. A has the following set of param-eters:� arrival time of the request, Aa� ready time Ra from which the task instance can start its execution.� relative deadline da which implies that the absolute deadline is Da = Ra + da� worst case execution time caA sporadic task S is characterized by an invocation of its task instances with a minimum inter-arrival time. The following characteristics are assumed to be known at the arrival time, As, of thesporadic task, S.� task invocation time Is from which the task instances can be invoked.� task termination time X s when the task is terminated.� minimum inter-arrival time �� invocation time of the j-th task instance, Isj , can be any time instant satisfying Isj � Isj�1+�� relative deadline ds (� �) which implies that the absolute deadline of the j-th task instanceis Isj + ds.� worst case execution time csIn addition to these, the system may be called upon to handle non-realtime tasks which don'thave deadlines; Instead, they require as fast completion time as possible(best e�ort).For a set of task instances to be scheduled, a traditional time-based scheduling scheme �rst�nds a complete schedule for them in a given scheduling window. This schedule contains a staticstart time, si, for each task instance, which is decided based on the worst case execution time ciand reects all task dependencies. However, to enhance the scheduler with the ability to scheduledynamically arriving tasks, it may change si at runtime, while conforming to all constraints, such asrelease time ri, deadline di, precedence relations, relative constraints, etc. Clearly, this additionalinformation has to be kept for each task instance with the schedule. If a new task arrives, based onthe current schedule it needs to be decided whether this new task can be accepted by the system,and if it can be accepted, a new schedule has to be constructed to incorporate this new task.64

In a hard real-time environment, tasks may be executed in preemptive or non-preemptive man-ner. When a task is executed non-preemptively it begins execution at time si and is assured CPUaccess for the time, ci, without any interruption or preemption. In preemptive execution, the taskexecution may be preempted at some de�ned time instant, and resumed at a later time instant.Note that the task preemption and resumption times may be dynamically decided.We extend the static time-based scheduling scheme into a dynamic time-basedscheduling scheme that enables any dynamically arriving aperiodic, periodic, or sporadic task tobe incrementally scheduled. In a traditional static time-based scheduling scheme, every resourcerequirement is met by assigning explicit start times to the task instances. But, in this dynamictime-based scheduling scheme, the start times no longer have to be statically determined. Instead,the schedule includes a mechanism for determining the time when a task instance will be startedor resumed based on the information available prior to its start time.6.3 Dynamic Time-based Scheduling SchemesTwo variations of dynamic time-based scheduling scheme are presented here. In Section 6.3.1, amechanism is presented to incrementally schedule aperiodic tasks over a schedule for static tasksfound at pre-runtime. In Section 6.3.2, a mechanism is presented to incrementally schedule spo-radic(periodic) tasks. In both sections, it is assumed that a valid schedule of static tasks is initiallygiven with start times of the task instances. We develop acceptance tests for dynamically arrivingaperiodic(or sporadic) tasks under the assumption that the total ordering among the static tasksis maintained, and EDF scheduling policy is assumed to be used for resolving the CPU contentionsbetween static and dynamic tasks. Between static tasks, the time-based scheduling scheme is usedin a sense that a total ordering among them is maintained at run-time, and between static(dynamic)and dynamic tasks, EDF scheduling algorithm is used.6.3.1 Aperiodic Task SchedulingIn this section, a mechanism is presented to schedule arriving aperiodic tasks. The key idea of thismechanism is to make use of the fact that the task executions may be dynamically shifted to theleft or to the right in a time line as long as the timing constraints of the tasks can be satis�ed. Alltask instances in this section are assumed to be preemptable.Task ModelWe assume that an initial schedule of task instances is given in a scheduling window [0; L] and thisschedule is used by dispatcher at run-time. Let � = f�1; �2; : : : ; �Ng be a set of task instances in theinitial schedule. It is assumed that �i is scheduled before �i+1 in the schedule. Each task instance�i has the following parameters in the schedule:� release time Ri� absolute deadline Di (Di � L for all 1 � i � N)� worst case execution time Ci 65

� runtime variable ei denoting the processing time already spent for �i up to a current timeinstant� runtime variable !i denoting the latest start(or resume) time of �i, which is a function of thecurrent time t and the value of ei� earliest start time est(i)� latest start time lst(i)A hard aperiodic task A is de�ned the same way as in Section 6.2 except that the ready timeis assumed to be equal to its arrival time, i.e, Aa = Ra. Also, the task instances in � are assumedto be preemptable by an aperiodic task and any aperiodic task is assumed to be preemptable by atask instance in �.The values of est(i), lst(i) , i = 1; 2; : : : ; N , are found as follows:est(1) = R1est(i) = max(Ri; est(i� 1) + Ci) for i = 2; 3; : : : ; Nlst(N) = DN � CNlst(i) = min(Di; lst(i+ 1))� Ci for i = N � 1; N � 2; : : : ; 1If Di � lst(i+ 1), then lst(i) value will be decided from Di. And if Di > lst(i+ 1), then lst(i) willbe decided from lst(i+ 1). Fig 6.1 shows an example of these relationships.
τ i+1

iD

i+1

τ i

lst(i) lst(i+1) lst(i+1)+CFigure 6.1: Deriving !i(0) recursivelyAlso, Fig 6.2 shows an example set of task instances with their est(i) and lst(i).
τ2 τ τ3 4 τ 5

τ2 τ 3 τ

Γ

4 τ 5

τ1

τ1

est(5)est(1) est(2) est(3) est(4)

lst(1) lst(2) lst(3) lst(4) lst(5)

51 2 3 4D D D D D

R R R RR1 2 3 4 5

Scheduling window forFigure 6.2: est(i) and lst(i) for an example task setNote that the run-time variable ei is initialized to 0 and !i to lst(i).66

� and a set of arriving aperiodic tasks A1, : : :, Ai are said to be feasible if and only if thereexists a schedule which satis�es all the timing constraints on � and aperiodic tasks. The optimalityof a scheduling algorithm is de�ned as:De�nition 6.1 (Optimality) A scheduling algorithm is optimal if and only if the following issatis�ed:� It can schedule � and arriving aperiodic tasks whenever there exists a feasible schedule.Scheduling of Non-realtime TasksWe can e�ciently schedule any non-realtime tasks in a sense that maximum processor time can befound and used to service non-realtime tasks at any time instant by delaying as much as possiblethe executions of task instances. The non-realtime tasks are assumed to be processed by usingFIFO 1 scheduling policy.At a current time instant t1, let �j denote a task instance in � which is just �nished or partiallyexecuted. Also, let t0 denote the last time instant when the dispatcher took control before t1,and let t2 denote the run-time variable denoting the future time instant when the dispatcher cantake control. The dispatcher takes control whenever a non-realtime task or a task instance in � is�nished, or whenever t1 = t2 holds. Then, at a current time instant t1 when a dispatcher takes thecontrol:If �j is executed in [t0; t1]then let ej = ej + t1 � t0let !j = !j + t1 � t0If �j is �nishedthen let j = j + 1let t2 = !jIf t1 < !jthen if there exists a non-realtime task pending,then give the processor to the �rst non-realtime task in the queueelse if Rj � t1,then give the processor to �jelse let the processor be idleelse give the processor to �jIf no non-realtime tasks are pending, the next(or partially executed) task �j is executed if it ispossible, i.e., the release time of it is reached. Whenever there exists a non-realtime task waitingin the queue, and the latest start(or resume) time, !j , is not reached for �j the non-realtime taskwill be executed(after preempting �j if it is already started) until it �nishes or !j is reached. If it1FIFO stands for First In First Out. 67

continues its execution until !j , the non-realtime task is preempted and �j will resume its executionor start its execution. In other words, the non-realtime tasks have higher priorities until the lateststart(or resume) time of �j is reached.Example case is shown in Fig 6.3.
2 = d3 = d4

d1
d2 = d3 = d4

τ τ3 4τ2

τ τ3 4

τ τ3 4τ2

τ

d

1

Non-Realtime

τ 1

τ 1

τ1

A

τ1 τ 1

B

ω

d1

1

ω

τ2

2

Non-Realtime Figure 6.3: Joint scheduling of a non-realtime and �Acceptance Test for A Hard Aperiodic TaskIn some real-time systems, there may exist aperiodic tasks that may arrive to the system at anytime instants. At their arrival times, tests should be performed to decide if they can be acceptedto the system or not. Once an aperiodic task is accepted and started it must be completed beforeits hard deadline. If it is rejected, then a higher level entity in the application may decide thefollowing steps to the rejection message. For example, the higher level task may decide to re-invokethe aperiodic task until it is �nally accepted.In this section, an acceptance test is developed that should be performed at the arrival times ofhard aperiodic tasks. It is assumed that the context switch overheads are small and they are nottaken into account in our work.The relative deadline of an aperiodic task A is assumed to be less than or equal to the schedulingwindow size L. The approach taken in this section treats arriving aperiodic task instances in FIFOorder. This assumption will be removed in the next section.The acceptance test algorithm follows. Assume that �i is the next or partially executed taskwhen the hard aperiodic task, A, arrived at time Ra.At the arrival time, Ra, of an aperiodic task, A:TotalCapacity = !i � Rak = i+ 1While (TotalCapacity < ca and lst(k) � Ra + da)beginTotalCapacity = TotalCapacity + lst(k)� lst(k � 1)� Ck68

k = k + 1If (TotalCapacity � ca)then Return(Success)endTotalCapacity = TotalCapacity +max(0; Ra+ da � lst(k � 1)� Ck�1)If (TotalCapacity � ca)then Return(Success)else Return(Fail)At the arrival time of an aperiodic task, Ra, the acceptance test can be done in O(M) timewithin this framework where M denotes the total number of task instance �j(i � j) which satis�esRa � lst(j) � Ra+da. In this case, the total amount of available processor time forA in [Ra; Ra+da]can be found by the following formula:
(Ra; Ra + da) = !i � Ra (6.1)+ j0�1Xk=i (lst(k + 1)� lst(k)� Ck)+max(0; Ra + da � lst(j 0)� Cj0)where j 0(i � j 0) is the last index satisfying !j0 � Ra + da.Example case is depicted in Fig 6.4 where j 0 = 5.
5

τ τ1 2 τ τ3 4

2

τ 5

τ2τ1τ1 τ 3 τ 4 τ 5

1 2 3 4D D D D D

lst(2) lst(3) lst(4) lst(5)ω1

t t

Available Slack

1Figure 6.4: Obtaining maximum slack within a scheduling window of a hard aperiodic task A.Acceptance Test for A Set of Hard Aperiodic TasksIn this section, we address the problem of scheduling aperiodic tasks when several such tasksmay arrive at any time instants. In this generalized scheduling model, we need to decide whichscheduling policy is to be used for resolving the resource conicts between the task instances in �and the aperiodic tasks, as well as the conicts among the aperiodic tasks. For example, we canassign higher priorities to aperiodic tasks than the task instances in � as long as the latest starttimes of them are not reached, and use an earliest deadline �rst scheduling algorithm among the69

aperiodic tasks. However, this algorithm is not optimal as you can see from Fig 6.5. In this �gure,the example task set is shown which is not schedulable according to the above approach. But, thereexists a feasible schedule for this task set as is shown at the bottom of this �gure. In the followingsubsections, we develop an optimal scheduling algorithm.
1

τ 2

τ 1

τ 2

τ 1

τ 1

τ

Γ

1

2A

A

1

2A

A

τ2

EDF Scheduling

τ 2

Stealing Maximum Slacks from Γ

Γ

Figure 6.5: Example SchedulesDeriving Virtual Deadlines and Virtual Release TimesAs a �rst step, we derive a virtual deadline and a virtual release time for each task instance �iin �. This process is necessary to enforce the total order on � when we employ EDF schedulingpolicy to resolve the resource conicts in an uni�ed manner for all the task instances.A virtual deadline of �i is de�ned by the following recursive equation where Doi is the originaldeadline of �i: DN = DoNDi = min(Di+1 � Ci+1; Doi) for i = N � 1; N � 2; : : : ; 1If a virtual deadline is missed by some task �i, then either the deadline of that task itself is missedor at least one of the following tasks misses its deadline. It is clear that the virtual deadline isalways less than or equal to the original one and the virtual deadline Di is always less than Di+1by a di�erence of at least Ci+1, i.e. Di � Di+1 � Ci+1.Also, a virtual release time of �i is de�ned by the following recursive equation where Roi is theoriginal release time of �i. Fig 6.6 explains the virtual release time and deadlines of the example70

tasks. Virtual release time is necessary to impose a total order on � when an EDF schedulingalgorithm is used to schedule the tasks.R1 = Ro1Ri = max(Ri�1; Roi) for i = 2; 3; : : : ; N
τ

3

3τ 2τ 1

τ 3τ 2τ 1

Original release times and deadlines

Virtual release times and deadlines

τ1

τ2

τ3

τ 1

τ2

τFigure 6.6: Deriving virtual deadlines and release timesThis reduction of scheduling window of each task to [Ri; Di] from [Roi ; Doi] by the introductionof the virtual deadline is the result of imposing total order on �.The following proposition establishes the equivalence between the original task set and thetransformed task set with virtual deadline and release times in terms of the schedulability when anEDF is used to schedule � and an additional set of aperiodic tasks. Here, it is assumed that thetotal order of the task instances in � should be kept.Proposition 6.1 � and a set of additional aperiodic tasks are schedulable by EDF if and only if �with virtual deadlines and release times is schedulable with the additional aperiodic tasks by EDF.Proof Proof can be derived from the theorem in [15].Optimal Scheduling AlgorithmIn this section, the optimal scheduling algorithm is presented and its optimality is proved. Weassume that the task instances in � have virtual deadlines and virtual release times instead of theoriginal ones. The optimal scheduling algorithm assigns a higher priority to a task instance with acloser deadline in an uni�ed manner.At any time instant t, let Aold(t) = fAold1 ; Aold2 ; : : : ; Aoldm g denote a set of active aperiodic tasks.Here, active aperiodic task is the aperiodic task that was accepted before t and still needs to be71

executed. It is obvious that the deadlines of these aperiodic tasks are greater than t. The tasks inAold(t) are assumed to be sorted in their increasing order of deadlines. In addition, Anewt denotesa newly arrived aperiodic task at time t. The �rst step of testing the acceptability of Anewt is toinsert Anewt into Aold(t), thus producing A(t) = fA1; A2; : : : ; Am+1g in which the tasks are sortedaccording to their deadlines in increasing order. Also, let eai (t) denote the processor time alreadyspent for Ai up to time t. Obviously, eai (t) = 0 if Ai = Anewt . At this point, we derive the followinglemmas and theorem which proves the optimality of the EDF scheduling algorithm proposed above.The following lemma speci�es the necessary condition for A(t) to be schedulable. Here, let Dai(1 � i � m+ 1) denote a deadline of the i-th aperiodic task, Ai, in A(t).Lemma 6.1 Let A(t) denote a set of aperiodic tasks de�ned above. If there exists a feasible schedulefor A(t), then 8 1 � i � m+ 1 ::
(t; Dai) � iXj=1(caj � eaj (t)) (6.2)Proof Suppose (6.2) is not satis�ed for some 1 � k � m+ 1, then
(t; Dak) < kXj=1(caj � eaj (t))This means that the processor demand in [t; Dak] required by A(t) exceeds the maximum processortime in [t; Dak] available for A(t). The un-schedulability of A(t) follows.Lemma 6.2 Let A(t) denote a set of aperiodic tasks de�ned above. Then A(t) can be scheduledunder the proposed EDF if8 1 � i � m+ 1 ::
(t; Dai) � iXj=1(caj � eaj (t))Proof The proof can be easily derived from the theorems 3.2 and 3.3 in the paper by Chetto etal. [13].Theorem 6.1 Let A(t) denote a set of aperiodic tasks de�ned above. Then the proposed EDFscheduling algorithm is optimal and the schedulability condition is:8 1 � i � m+ 1 ::
(t; Dai) � iXj=1(caj � eaj (t))Proof From Lemma 6.1 and Lemma 6.2, this theorem follows.Clearly, the condition of the above theorem can be checked within O(M +m) by utilizing theformula (6.1) where M denotes the total number of task instances in � whose deadlines are greaterthan t and less than or equal to Dam+1, i.e., the task instances in � which may be executed within72

the range [t; Dam+1]. The �rst step is to insert the newly arrived aperiodic task into the set of activeaperiodic tasks so that the aperiodic tasks are ordered in increasing order of their deadlines. Then,the maximum slack times,
(t; Dai), are found from i = 1 to i = m+1 by making use of
(t; Dai�1)already found.If multiple aperiodic tasks arrive at t, we have to give priorities to these aperiodic tasks to decidewhich one has to be accepted and scheduled �rst. In this case, the above acceptance test is repeatedfor each aperiodic task from the one with highest priority to the one with lowest importance. Thetotal complexity in this case is O(K(M + m)) where K denotes the number of aperiodic tasksarrived at t.6.3.2 Sporadic Task SchedulingOne of the drawbacks of time-based scheduling scheme is that the sporadic task scheduling becomesvery di�cult. The algorithm to transform a sporadic task to an equivalent pseudo-periodic taskhas been proposed by Al Mok [38]. From the de�nition of the sporadic tasks, the events whichinvoke the sporadic task instances may occur at any time instant with the minimum inter-arrivaltime, �. And, once the task is invoked, it has to be �nished within its relative deadline from theinvocation time, ds. The �rst step of the transformation is to decide the relative deadline of thepseudo-periodic task, dp, which is less than or equal to ds. And then, the period, prdp, of thepseudo task is found from the equation prdp = min(ds � dp+ 1; �). This is justi�ed from the worstcase scenario which can be seen in Figure 6.7.
t

prd
p

d

d d pp

s

State change
t+1Figure 6.7: Worst Case for Deadline DeterminationHowever, this approach may lead to signi�cant under-utilization of the processor time, especiallywhen ds is small compared to �, since a great amount of processor time has to be reserved staticallyat pre-runtime for servicing dynamic requests from sporadic tasks. This is well explained in Fig 6.8through a simple example where an equivalent periodic task is to be found from a sporadic taskwhose worst case execution time is cs = 4, whose relative deadline is ds = 8, and whose minimuminter-arrival time is � = 8. If we employ Mok's algorithm, the corresponding periodic task has aworst case execution time cp = cs = 4, a relative deadline dp = 4(� ds), and a period prdp =min(ds � dp + 1; �) = 5. The processor utilization of this new periodic task is 4=5 = 0:8.In our proposed scheduling approach, the incremental scheduling of hard periodic tasks andsporadic tasks may be decomposed into two steps. We assume that the initial schedule of taskinstances is given in a scheduling window [0; L] as in the previous sections. Then, the release timesand deadlines of those task instances are transformed into virtual ones as was done in Section 6.3.1.And at runtime, every time new sporadic task arrives, the schedulability check is performed to see if73

p

prd

c

=5

d =4

=4Transformed Sproadic

Sporadic =4

= δ =8d
s

sc

p

pFigure 6.8: Under-utilization of the transformed sporadic taskthe already accepted tasks and this new sporadic tasks can be scheduled using the EDF schedulingalgorithm. And at runtime, the hard task instances from the schedule and the sporadic tasks arescheduled according to EDF. This can be viewed as merging two task instance streams, one fromhard tasks and the other from sporadic tasks.Extended Task ModelAs in Section 6.3.1, an initial schedule of task instances is assumed to be given in an schedulingwindow [0; L] and denoted as �. Let � = f�1; �2; : : : ; �Ng be a set of task instances where �i appearsearlier than �i+1. Each �i has a following set of parameters in the schedule.� virtual release time Ri� virtual deadline Di(� L)� worst case execution time Cideadlines and virtual release times are obtained as in Section 6.3.1 from the original ones.Let S = fS1; S2; : : : ; Smsg be a set of sporadic tasks which have to be scheduled with �. Foreach sporadic task Si, the minimum inter-arrival time �i, the maximum execution time csi , and therelative deadline dsi (� �i) are assumed to be given. It is also assumed that the Sis are ordered inincreasing order of their relative deadlines, dsi , i.e., dsi � dsi+1. The objective of this section is todevelop an optimal scheduling algorithm and its schedulability test for � and S together.Some additional terms are de�ned in the following:� Extended scheduling window for � and S, [0; LCM], where LCM is the least common multipleof L and the minimum inter-arrival times of the tasks in S.� N 0 denotes the total number of hard task instances scheduled in [0; LCM]. N 0 = N(LCM=L)where [0; L] is the original scheduling window.� Extended schedule in an extended scheduling window [0; kLCM] is found by repeating ktimes the schedule � and denoted as k�.We need to check the schedule in an extended window [0; 2LCM] to verify a schedulability of� and S according to the following scheduling model.74

Scheduling ModelThe CPU contention among tasks in � is resolved naturally from the total order among the tasks.This can be done by using an earliest deadline �rst scheduling algorithm and by using the virtualdeadlines introduced earlier since Ri � Ri+1 and Di < Di+1. But, the mechanisms to resolve theresource contention between tasks from S and those from � should be provided to enable them tobe scheduled at run-time. We assume that those contentions are also resolved through the samescheduling algorithm(EDF), leading to an uniform scheduling policy for S and �.We denote a subset, f�a; �a+1; : : : ; �bg, of � in [0; LCM] as � if:� 1 � a � b � N� est(j + 1) = est(j) + Cj for j = a+ 1; a+ 2; : : : ; b� 1� est(a) > est(a� 1) + Ca�1 if 1 < a� est(b+ 1) > est(b) + Cb if b+ 1 � NIn this case, we divide the set of task instances in [0; LCM] into disjoint subsets, �1, �2, : : :, ��,satisfying the above conditions. Let est(�i) denote the earliest start time of the �rst task instancein �i and let eft(�i) denote the earliest �nish time of �i. Figure 6.9 shows an example case.
τ2 τ τ3 4 τ

2

5τ1

est(5)

R3 R

1

est(1) est(2) est(3) est(4)

5

Υ Υ Υ3Figure 6.9: � found for an example task setIn addition, we de�ne
0(t1; t2) (0 � t1 < LCM ^ t1 < t2 < 2LCM) as the maximumslack time obtainable in [t1; t2] under the assumption that from time 0 up to time instant t1 taskinstances only from � have been executed with their maximum execution times, i.e., tasks havestarted at their earliest start times and spent their worst case execution times. Then,
0(t1; t2) canbe obtained as follows. First step is to �nd task instance �i satisfying:est(i� 1) + Ci�1 � t1 ^ t1 � est(i) + CiIf t1 � est(1) + C1, then let i = 1. Then,
0(t1; t2) = lst(i)� t1 +max(0; t1� est(i)) (6.3)+ j0�1Xk=i (lst(k + 1)� lst(k)� Ck) + max(0; t2 � lst(j 0)� Cj0)where j 0(i � j 0) is the last index satisfying lst(j 0) � t2. This process is similar to the one used inthe acceptance test of aperiodic task in Section 6.3.1. An example case is depicted in Figure 6.10.75

5

τ τ1 2 τ τ3 4 τ 5

τ2

3

τ1τ1 τ 3 τ 4 τ 5

1 2 3 4D D D D D

lst(2) lst(3) lst(4) lst(5)

t t1 2

1

est(1)

est eftΥ Υ Υ2Figure 6.10:
0(t1; t2) for an example task setSchedulability TestThe following proposition speci�es the necessary condition for � and S to have a feasible schedule.Proposition 6.2 If there exists a feasible schedule for � and S, then8i 2 [1; �] :: 8t 2 [est(�i); est(�i) + LCM]::
0(est(�i); t) � msXk=1 csk � b(t � est(�i) + �k � dsk)�k c (6.4)Proof: This is proved in the appendix.The following theorem speci�es the su�cient and necessary schedulability condition of the taskset � and S. The extended schedule in [0; 2LCM] is assumed to be given.Theorem 6.2 � and S are schedulable according to EDF if and only if8i 2 [1; �] :: 8t 2 [est(�i); est(�i) + LCM]::
0(est(�i); t) � msXk=1 csk � b(t � est(�i) + �k � dsk)�k c (6.5)Proof: By proposition 6.2 and proposition B.5.From the above proposition and a theorem, we can know that EDF is optimal for scheduling� and S. Finally, we obtain an equivalent condition to (6.5) of the theorem 6.2, which enables usto reduce the complexity of the schedulability check. This corollary speci�es that only the timeinstant which is equal to a deadline of some task instance in S needs to be examined at or afterest(�i) in checking the condition (6.5) of the theorem 6.2.Corollary 6.1 The following two conditions are equivalent to each other:(1) 8i 2 [1; �] :: 8t 2 [est(�i); est(�i) + LCM]::
0(est(�i); t) � msXk=1 csk � b(t� est(�i) + �k � dsk)�k c76

(2) 8i 2 [1; �] :: 8dj 2 [est(�i); est(�i) + LCM]::
0(est(�i); dj) � msXk=1 csk � b(dj � est(�i) + �k � dsk)�k cwhere dj is the deadline of some task instance in S.Therefore, the total complexity of the schedulability check algorithm is reduced to O(M 0) whereM 0 = �(N 0 +Pmsi=1(LCM=�i)) +Pmsi=1(LCM=�i) log(Pmsi=1(LCM=�i)). The �rst step is to obtainthe deadlines(dj) of the task instances from S in the window [0; LCM] and sort them in increasingorder. Then, for each est(�i) (1 � i � �), the second condition of the above corollary is checkedin O(N 0 +Pmsi=1(LCM=�i)) for the deadlines obtained in the �rst step. This process is similar tothe one used in Section 6.3.1.6.4 SummaryIn this chapter, we addressed the issue of incremental scheduling on the basis of time-based schedul-ing scheme. The acceptance tests are developed for dynamically arriving aperiodic tasks, and fordynamically arriving sporadic tasks, respectively. A mixed scheduling policy was used such thatthe total ordering among static tasks is maintained. By making use of this property, we can extendthe approach when there exist complex timing constraints between static tasks such as standardrelative constraints.

77

Chapter 7ConclusionA new dynamic time-based scheduling scheme has been developed in this dissertation, and itis applied as a solution approach to several problems. In the new scheme, task attributes inthe schedule may be represented as functions parameterized with information available at taskdispatching time. By doing so, more freedom is available for a task dispatcher, and exible resourcemanagement becomes possible at system operation time.In Chapter 3 and 4, we addressed the problem of scheduling tasks in the presence of relativetiming constraints in addition to release time and deadline constraints. Applying dynamic time-based scheduling scheme as a solution approach to this problem enables us not only to check theschedulability of a given cyclically constrained job set, but also to exibly manage slack times atsystem operation time.In Chapter 5, we addressed the problem of designing a dynamic temporal controller for lineartime-invariant control systems. In dynamic temporal control technique, the �xed sampling periodassumption is relaxed and sampling periods are adaptively decided based on current physical systemstate. It is shown that this new technique allows us to greatly reduce the computational resourcerequirement while maintaining the quality of control. When multiplexing multiple concurrentcontrol tasks, especially when a transient overload has occurred, this new scheme provides a soundbasis for increasing the system performance by e�ciently distributing computational powers totasks. This technique may be implemented by applying the dynamic time-based scheduling scheme,for example, by parameterizing task execution mode.Finally, in Chapter 6, incremental scheduling problem is addressed on the basis of time-basedscheduling scheme. That is, the total ordering among static tasks is maintained during systemoperation time, while dynamic tasks are executed in slack times available from static tasks. Onlyrelease time and deadline constraints are assumed to exist, and EDF is assumed to be used inresolving resource contention between dynamic(static) and dynamic tasks.It is shown in this dissertation that dynamic time-based scheduling scheme may be e�ectivelyused as solution approaches to the problems in dynamic real-time systems.7.1 Future ResearchIn this dissertation, a new dynamic time-based scheduling scheme is presented and its applicabilityhas been shown through examples. In the presence of relative timing constraints, each entryin the dynamic calendar is parameterized with start or �nish times of previous task instances.However, this restriction may be removed and an entry in the dynamic calendar may be an arbitrary78

function parameterized with any information available to the system. With this generalization,other extensions may be possible, especially in the presence of inter-task dependencies, or fault-tolerance requirements. Clearly, such functions lead to a highly state dependent dynamic schedules.For example, the dynamic time-based scheduling scheme may be applied to cope with transientoverloads that occur in many real-time systems [4]. In �xed priority-based systems, some work hasbeen done on this issue [44]. However, as far as we know, no systematic work has been done onthis, especially on time-based scheduling scheme. Dynamic time-based scheduling scheme seems tobe an appropriate framework for this problem.In Chapter 3 and 4, it is assumed that task order remains �xed throughout the system operationtime. When a new task is to be added to a schedule, the original order may no longer be the bestor most appropriate. In the presence of relative timing constraints, a new task order generated atrun-time should be validated such that every timing constraints will be satis�ed. This may requireO(n2N3) time in the worst case if our algorithm is applied. But, if a few task instances in thenear future are allowed to change their orders, it may be possible to develop an algorithm with lesscomplexity by utilizing that fact.In Chapter 3 and 4, it is also assumed that a total ordering among tasks is found at pre-runtimeby an o�-line scheduler. Previous work by Cheng et al. [11] and Mok et al. [37] use a heuristicapproach called smallest latest start time �rst to schedule task instances with relative constraints.However, their heuristics don't fully reect the relative timing constraints. Improved heuristicfunctions may be developed if the constraint graph structure is utilized.We considered the scheduling of tasks in uni-processor systems where tasks may have relativetiming constraints. However, if we want to extend the dynamic dispatching approach to distributedsystems, where tasks located in di�erent nodes may have relative constraints, several issues haveto be addressed further such as what kind of information have to be sent out to other nodes, andhow parametric functions can be found.In Chapter 4, a new controller design method is presented while its implementation issues werenot addressed. As was mentioned in Chapter 4, dynamic time-based mechanism may be utilized toimplement the scheme by creating a variable for each task instance designating its execution mode,i.e., whether that speci�c instance will be invoked or not. More work needs to be done on how theparametric functions can be found in this case.In Chapter 6, the solution approach is found under the assumption that every task is preempt-able. An extension of the work needs to be made for non-preemptive tasks.
79

Appendix AA.1 Proofs for Chapter 4Proof of Lemma 4.1: It is obvious that there exists an one-to-one correspondence between anedge pair set in G(fa) from which a new edge will be created after fa is eliminated, and a constraintin Sched(ea) to be changed after eliminating ea. Also, it is clear that a new constraint created inSched(sa) will correspond to a new edge created in G(sa). Therefore, Elim(G(fa); fa) is equal toG(sa).Proof of Lemma 4.2: The proof for this lemma is similar to that of Lemma 4.1, and is omitted.Proof of Proposition 4.2: Let � be a negative weight restricted cycle in G(fN) satisfying:� no restricted cycle appears as a proper sub-cycle of �.If there exists a negative weight restricted cycle in G(fN), then � also exists in G(fN). Also, let ybe a node in � that appears �rst in a sequence < v0; s1; f1; : : : ; sN ; fN >. Then, � can be denotedas < y w1�! v1 w2�! v2 : : :vi wi+1�! y >where Pi+1j=1 wj < 0. By eliminating nodes that lie after y in the node sequence <v0; s1; f1; : : : ; sN ; fN >, we will obtain a negative weight edge y w0�! y where w0 < 0. This isclear from the path preserving property of node elimination algorithms. Then, from the equiva-lence relationship between constraint graphs and predicates, a contradiction is obtained during theelimination of the variables from Sched. Therefore, Sched is equal to False.Proof of Lemma 4.3: Claim 1: If y w�! z 2 G(fa) holds where y 6= z, then there exists anacyclic1 restricted path y w0; z in G(fN) where w0 � w and all its intermediate nodes belong tofsa+1; fa+1; : : : ; sN ; fNg.If v = fN , then the claim holds. Suppose that there exists an edge y w�! z in G(fa) where1 � a � N � 1.1For a case when y = z, it can be similarly shown that a restricted path without any intermediate restrictedcycle(i.e., excluding y and z) is obtained, even though the resulting restricted path is not acyclic.80

Assume that there exists an acyclic restricted path in G(fb) with a weight sum w, a � b � N�1,< y wb;1�! v1 wb;2�! v2 : : : wb;i�! vi wb;i+1�! z > (A.1)where i � 0, and vj 2 fsa+1; fa+1; : : : ; sb; fbg for 1 � j � i. If all edges constituting this path existin G(fb+1) with same weights, then there exists an acyclic restricted path in G(fb+1) with a weightsum w where all its intermediate nodes belong to fsa+1; fa+1; : : : ; sb+1; fb+1g. So, assume that atleast one of these edges is created in G(fb) just after eliminating fb+1 and sb+1 from G(fb+1). LetJ = fj1; j2; : : : ; jkg, where 1 � k � i + 1 and 1 � jl � i + 1 for 1 � l � k, denote an index setof edges in the above path which are newly created in G(fb). The indices in J is assumed to beincreasing. Each edge vjl�1 wb;jl�! vjl , for 1 � l � k, is created2 just after fb+1 and sb+1 are eliminatedfrom G(fb+1).Fact 1: In G(fb+1) the weight of an edge sb+1 ! fb+1 is equal to lb+1, and the weight offb+1 ! sb+1 is equal to �ub+1.If the fact is not true, then a contradiction should have been derived, which is against theassumption.From the node elimination algorithm we know that the edge vjl�1 wb;jl�! vjl is created from oneof the following restricted paths in G(fb+1) whose weight sum is wb;jl :1. < vjl�1 w1b+1;jl�! sb+1 w2b+1;jl�! vjl >2. < vjl�1 w1b+1;jl�! fb+1 �ub+1�! sb+1 w2b+1;jl�! vjl >3. < vjl�1 w1b+1;jl�! sb+1 lb+1�! fb+1 w2b+1;jl�! vjl >4. < vjl�1 w1b+1;jl�! fb+1 �ub+1�! sb+1 lb+1�! fb+1 w2b+1;jl�! vjl >We can extend the path in (A.1) into a path in G(fb+1) by replacing each edge in (A.1) withan index jl by one of the above paths via sb+1 and fb+1.If k = 1, i.e., only one edge is created after eliminating fb+1 and sb+1 from G(fb+1), then it isobvious that the extended path is also a restricted path with a weight w in G(fb+1). So, assumethat k � 2. In this case, there exists a cycle in the extended path.First, consider two edges, vj1�1 wb;j1�! vj1 and vj2�1 wb;j2�! vj2 . For all 16 possible combinations ofthe above 4 paths from which these two edges will be created, a restricted cycle is obtained afterextending these two edges in (A.1). For example, if both of these two edges are created from thepaths of the form 4, then the extended path will be of the following form:< y ! v1 ! v2 : : :vj1�1 !< fb+1 ! sb+1 ! fb+1 ! vj1 : : :vj2�1 ! fb+1 >! sb+1 ! fb+1 ! vj2 : : :vi ! z >The inner path, < fb+1 ! sb+1 ! fb+1 ! vj1 : : :vj2�1 ! fb+1 >, is a restricted cycle, since thesub-path < vj1 : : : vj2�1 > is a restricted path and neither sb+1 nor fb+1 appears in this sub-path.2For the purpose of convenience v0 denotes a node y, and vi+1 denotes a node z.81

Then, from Proposition 4.2 the weight sum of this restricted cycle is non-negative. If it is negative,then a False should have been derived during eliminating the nodes in ffN ; sN ; : : : ; fa+1; sa+1g,which is a contradiction to the assumption. Therefore, if we reduce this restricted cycle into a singlenode fb+1, then we obtain the following restricted path whose weight sum is less than or equal tow: < y ! v1 ! v2 : : : vj1�1 ! fb+1 ! sb+1 ! fb+1 ! vj2 : : : vi ! z >As a result, two edges, vj1�1 wb;j1�! vj1 and vj2�1 wb;j2�! vj2 , are merged into one sub-pathvj1�1 ! fb+1 ! sb+1 ! fb+1 ! vj2Similarly, for other combinations for two edges, vj1�1 wb;j1�! vj1 and vj2�1 wb;j2�! vj2 , the similar resultscan be obtained.If we continue this merging process for an edge, vj3�1 wb;j3�! vj3 , and for the sub-path < vj1�1 !fb+1 ! sb+1 ! fb+1 ! vj2 > found above, we will obtain a merged acyclic sub-path from vj1�1 tovj3 through fb+1 or sb+1.Therefore, after k � 1 iterations of the above process, we will obtain an acyclic restricted pathin G(fb+1) whose intermediate nodes belong to fsa+1; fa+1; : : : ; sb+1; fb+1g and whose weight sumis less than or equal to w.Therefore, by inductively applying the above argument, we know that there exists an acyclicrestricted path in G(fN) whose intermediate nodes belong to fsa+1; fa+1; : : : ; sN ; fNg and whoseweight sum is less than or equal to w.Claim 2: If there exists an acyclic 3 restricted path y w; z in G(fN) whose intermediate nodesbelong to fsa+1; fa+1; : : : ; sN ; fNg, then y w0�! z 2 G(fa) holds where w0 � w.The proof for this claim is similar to that for Proposition 4.2, and is omitted.From claim 1 and 2 the lemma is proved.Proof of Corollary 4.1: Suppose that an edge y ! z exists in G(v). If v = fa for some a, thenfrom Lemma 4.3 it is obvious that there exists a path y ; z in G(fN) whose intermediate nodesbelong to fv0; : : : ; sN ; fNg. So, assume that v = sa for some a in [1; N].If there exists an edge from y to z in G(fa), then the condition 2 holds. Hence, further assumethat an edge y ! z is created just after eliminating fa from G(fa). From the node eliminationalgorithm, the edge is created from either of the following paths:1. y ! fa ! sa2. sa ! fa ! zFrom Lemma 4.3 we know that there exist two acyclic restricted paths whose intermediate nodesbelong to fsa+1; fa+1; : : : ; sN ; fNg. By merging these paths, we obtain a path from y to z whoseintermediate nodes belong to ffa; sa+1; fa+1; : : : ; sN ; fNg.3For a case when y = z, it can be similarly shown that the claim holds for a restricted path without any intermediaterestricted cycle(i.e., excluding y and z). 82

Proof of Proposition 4.3: If there exists an edge connecting sji and v in G1;k(fkN), then it isobvious that v belongs to a node set P . So, assume that there exists no such edge in G1;k(fkN).Two cases must be considered.Case 1: v w�! sji 2 G1;k(sji)From Corollary 4.1 there exists a path from v to sji in G1;k(fkN) whose intermediate nodes belongto ff ji ; : : : ; sN ; fNg. Note that this path has at least one intermediate node. From the de�nitionof a crossing edge set �1;k(sji), it is clear that v 2 PrecNode(�1;k(sji)).Case 2: sji w�! v 2 G1;k(sji)Similarly, the proposition can be proved in this case.Proof of Proposition 4.4: Suppose that v belong to Node(1;k(sji)). Then, there exist an edgev0 2 fv0; s11; f11 ; : : : ; sjig such that an edge v ! v0 exists in G(sji). Then from Corollary 4.1, weknow that there exists a path v ; v0 in G1;k(fkN) where all intermediate nodes in the path belongto ff ji ; : : : ; skN ; fkNg. From the de�nition of 	1;k(sji) there exist two edges v ! v1 and v2 ! v0in v ; v0 where v1 and v2 belong to ff ji ; : : : ; skN ; fkNg. Note that v1 may be equal to v2. Thismeans that v is an element of PrecNode(�1;k(sji)). Thus, Node(1;k(sji)) � PrecNode(�1;k(sji)) isproved. The second assertion, Node(1;k(f ji)) � PrecNode(�1;k(f ji)), can be proved in a similarway. Also, from these we know that a maximum number of edges in 	1;k(f jN), 1 � j � k � 1, isless than or equal to n(n� 1), since n is the number of nodes in PrecNode(�1;2(f1N)).Proof of Proposition 4.5: Claim 1: If there exists an edge from v1 to v2 in 	1;k(f j�1N), thenthere also exists an edge from g(1)(v1) to g(1)(v2) in 	1;k(f jN).First suppose that v1 ! v2 2 	1;k(f j�1N) where 1 � j � 1 � k � 3. Then, from the de�nitionof a created edge set, there exists a path from v1 to v2 that has at least one intermediate nodeand whose intermediate nodes belong to fsj1; f j1 ; : : : ; skN ; fkNg. By applying a technique similar tothe one used in the claim 1 of the proof for Lemma 4.3, we can reduce this path into an acyclicrestricted path from v1 to v2 that has at least one intermediate node. Let this reduced path bedenoted as < v1 ! x1 ! x2 : : :! xl ! v2 >, l � 1, where every intermediate node xh (1 � h � l)belongs to < sj1; f j1 ; : : : ; skN ; fkN >. If all nodes xh, 1 � h � l, belong to fsj1; f j1 ; : : : ; sk�1N ; fk�1N g, thenit is clear from the cyclic nature of constraint graphs that there exists an acyclic restricted pathfrom g(1)(v1) to g(1)(v2) in G1;k(fkN) whose intermediate nodes belong to fsj+11 ; f j+11 ; : : : ; skN ; fkNg.Hence, assume that there exists at least one xm, 1 � m � l, that belongs to fsk1; fk1 ; : : : ; skN ; fkNg.Note that x1; xl 2 fsj1; f j1 ; : : : ; sjN ; f jNg. There are two possible cases to be considered:1. x1 is located later than xl in the node sequence < sj1; f j1 ; : : : ; sjN ; f jN >.� In this case there exists an acyclic restricted path < v1 ! x1 ; xl ! v2 > whose inter-mediate nodes belong to fsj1; f j1 ; : : : ; sjN ; f jNg. This is because every node in constraintgraphs has an edge to its previous node in the node sequence < s11; f11 ; : : : ; skN ; fkN >. Inother words, g(1) < v1 ! x1 ; xl ! v2 > is an acyclic restricted path from g(1)(v1)to g(1)(v2) in G1;k(fkN) whose intermediate nodes belong to fsj+11 ; f j+11 ; : : : ; skNfkNg.44g(a) < y1 ! y2 : : :! yi > is de�ned to be < g(a)(y1)! g(a)(y2) : : :! g(a)(yi) >.83

Hence, from Lemma 4.3 there exists an edge g(1)(v1) ! g(1)(v2) in G1;k(f jN). Becausethere exists a path from g(1)(v1) to g(1)(v2) satisfying the condition given in de�nitionof a created edge set, this edge belongs to 	1;k(f jN)2. x1 is located before xl.� Let the reduced path be denoted as < v1 ! x1 ; xi ; xm ! xl ! v2 > wherexi is a �rst node appearing in this path that lies after x1 in the node sequence <sj1; f j1 ; : : : ; skN ; fkN >. Note that xi 2 fsj1; f j1 ; : : : ; sj+1N ; f j+1N g. Again, since j + 1 � k � 1and every node has a path to its predecessor in the node sequence, there exists anacyclic restricted path < v1 ! x1 ; xi ; xl ! v2 > that doesn't have a node fora job in �k . Hence, there exists an acyclic restricted path g(1) < v1 ! x1 ; xi ;xl ! v2 > whose intermediate nodes belong to fsj+11 ; f j+11 ; : : : ; skN ; fkNg. This meansthat g(1)(v1)! g(1)(v2) 2 G1;k(f jN). Also, because the above path satis�es the de�nitionfor a created edge set, this edge belongs to 	1;k(f jN)Claim 2: If there exists an edge from v3 to v4 in 	1;k(f jN), then there also exists an edge fromg(�1)(v3) to g(�1)(v4) in 	1;k(f j�1N).Suppose that there exists an edge from v3 to v4 in 	1;k(f jN). Then, from the de�nition of acreated edge set, there exists a path from v3 to v4 that has at least one intermediate node andwhose intermediate nodes belong to fsj+11 ; f j+11 ; : : : ; skN ; fkNg. By applying the technique in theclaim 1 of the proof for Lemma 4.3, we can reduce this path into an acyclic restricted path fromv3 to v4 that has at least one intermediate node. Let this path be denoted as < v3 ; v0 ; v4 >where v0 belongs to fsj+11 ; f j+1N ; : : : ; skN ; fkNg. In this case, the path g(�1) < v3 ; v0 ; v4 > is alsoan acyclic restricted path in G(fkN) whose intermediate nodes belong to fsj1; f jN ; : : : ; sk�1N ; fk�1N g.Then, from Lemma 4.3 there exists an edge g(�1)(v3)! g(�1)(v4) in G1;k(f j�1N). Also, because thepath g(�1) < v3 ; v0 ; v4 > satis�es the condition in the de�nition of a created edge set, thisedge belongs to 	1;k(f j�1N), too.From Claim 1 and 2, we conclude that 	1;k(f j1N) is semi-homogeneous to 	1;k(f j2N) for 1 � j1 �j2 � k � 2.Proof of Proposition 4.6: From Lemma 4.3 there exists a minimum weight acyclic restrictedpath �1 =< v1 w; v2 > whose intermediate nodes belong to fsj+11 ; f j+11 ; : : : ; skN ; fkNg, and a min-imum weight acyclic restricted path �2 =< g(�1)(v1) w0; g(�1)(v2) > whose intermediate nodesbelong to fsj1; f j1 ; : : : ; skN ; fkNg. Three cases must be examined:Case 1: v1 6= v0 and v2 6= v0In this case it is clear that w0 is less than or equal to w, since the set of acyclic restricted pathsfrom v1 to v2 in G1;k(fkN) whose intermediate nodes belong to fsj+11 ; f j+11 ; : : : ; skN ; fkNg is a subsetof a set of acyclic restricted paths from v1 to v2 in G1;k(fkN) whose intermediate nodes belong tofsj1; f j1 ; : : : ; skN ; fkNg.Case 2: v1 = v0The path g(�1)�1 is also an acyclic restricted path. The weight of a path g(�1)�1 is equal tow � L, since every edge weight in this new path is the same as that of corresponding edge in �184

except for the �rst edge v0 ! g(�1)(x1) of g(�1)�1 where x1 denotes the �rst node appearing afterv0 in �1. The weight of this edge is L less than that of v0 ! x1 which is the �rst edge of �1. Thisimplies w0 � w � L from Lemma 4.3.Case 3: v2 = v0The path g(�1)�1 is also an acyclic restricted path. The weight of a path g(�1)�1 is equal tow + L, since every edge weight in this new path is the same as that of corresponding edge in �1except for the last edge g(�1)(xl) ! v0 of g(�1)�1. The weight of this edge is L more than theweight of xl ! v0 which is the last edge of �1. This implies w0 � w + L from Lemma 4.3.Proof of Proposition 4.7: Note that two created edge sets, 	1;k(f j�1i) and 	1;k(f ji), can beshown to be semi-homogeneous by employing similar proof to that for Proposition 4.5 where 2 �j � k � 2The following claim is proved where i is any integer satisfying 1 � i � N .Claim 1: 	1;k(f j�1i) � 	1;k(f ji)First, suppose that v1 w1�! v2 2 	1;k(f j�1i), where v1 6= v0,v2 6= v0. Consider a graphG1;k(f j�1N). From Lemma 4.3, we can �nd a minimum weight acyclic restricted path within thisgraph, �1 =< v1 w1; v2 > whose intermediate nodes belong to fsj�1i+1 ; f j�1i+1 ; : : : ; sj�1N ; f j�1N g. From theassumption of homogeneity between 	1;k(f jN) and 	1;k(f j�1N), every edge x1 ! x2 in G1;k(f j�1N),where x1; x2 2 fsj�1i+1 ; : : : ; sj�1N ; f j�1N g, has the same weight as an edge g(1)(x1) ! g(1)(x2) inG1;k(f jN). This one-to-one correspondence between created edge sets implies that an acyclic re-stricted path g(1)�1 has the same weight w1 as that of �1, and g(1)�1 is a minimum weight acyclicrestricted path among the acyclic restricted paths in G1;k(f jN) whose intermediate nodes belongto fsji+1; : : : ; sjN ; f jNg. Hence, g(1)(v1) w1�! g(1)(v2) 2 G1;k(f ji) holds from Lemma 4.3. Because	1;k(f j�1i) and 	1;k(f ji) are semi-homogeneous, this edge also belongs to 	1;k(f ji).Second, suppose that v3 w2�! v4 2 	1;k(f ji), where v3 6= v0,v4 6= v0. Consider a graphG1;k(f jN). From Lemma 4.3, we can �nd a minimum weight acyclic restricted path within thisgraph, �2 =< v3 w2; v4 > whose intermediate nodes belong to fsji+1; f ji+1; : : : ; sjN ; f jNg. Again, fromthe one-to-one correspondence between created edge sets, a path g(�1)�2 has the same weight w2as that of �2, and the path is also a minimum weight acyclic restricted path among the acyclicrestricted paths in G1;k(f j�1N) whose intermediate nodes belong to fsj�1i+1 ; : : : ; sj�1N ; f j�1N g. Hence,g(�1)(v3) w2�! g(�1)(v4) 2 G1;k(f j�1i) holds from Lemma 4.3. Because 	1;k(f j�1i) and 	1;k(f ji) aresemi-homogeneous, this edge also belongs to 	1;k(f j�1i).Therefore, the following is proved where v1 6= v0 and v2 6= v0:(v1 w�! v2 2 	1;k(f j�1i)) () (g(1)(v1) w�! g(1)(v2) 2 	1;k(f ji))For cases where one of v1 or v2 is equal to v0, the condition 3 or 4 in the de�nition of homogeneousedge sets may be proved in a similar way to the above one by using the de�nition of homogeneitybetween created edge sets and Lemma 4.3.Therefore, the Claim 1 is proved. Then, from the transitivity of homogeneous relations, it isclear that the following holds:8l : 2 � l � j � 1 :: 8i : 1 � i � N :: 	1;k(f li) � 	1;k(f ji)85

Claim 2: 8l : 2 � l � j � 1 :: 8i : 1 � i � N :: 	1;k(sli) � 	1;k(sji)For �xed l and i, we know that 	1;k(f li) � 	1;k(f ji) holds from claim 1. From this homogeneity,it is clear that 	1;k(sli) � 	1;k(sji) holds from node elimination algorithms. That is, 	1;k(f li) isobtained after eliminating f li from G(f li), and 	1;k(f ji) is obtained after eliminating f ji from G(f ji).Proof of Theorem 4.1: Let Gb(Vb; Eb) denote a basis graph obtained from an initial constraintgraph for a cyclically constrained job set.Claim: If the Algorithm 4.3 applied to Gb(Vb; Eb) doesn't terminate within n2 � n + 2 loopiterations, then there exists a negative weight cycle in G1;k(fkN) for k � n2.Suppose that the algorithm doesn't terminate within n2 � n + 2 loop iterations. From Propo-sition 4.5, we know that 	1;k(fk�2N), 	1;k(fk�3N), : : :, 	1;k(f1N) are semi-homogeneous. Thus,Giout(Vb;1 [fv0g; Eiout), 2 � i � n2 �n+ 2, are semi-homogeneous, too. This means that after eachloop iteration for i � 3 in the algorithm, there exists at least one edge in Giout(Vb;1[fv0g; Eiout), 3 �i � n2�n+2, whose weight has been reduced from the corresponding one in Gi�1out (Vb;1[fv0g; Ei�1out).If not, then the algorithm should have been completed within n2 � n + 2 loop iterations at step3� (d), because homogeneous created edge sets are already found, which is against the assumption.For the purpose of clarity, each node vi(2 Vb) used in this proof will be denoted as vji to representthat vi belongs to a node set Vb in a graph Gjin(Vb; Ejin), or to a node set Vb;1 [fv0g of a graphGjout(Vb;1 [fv0g; Ejout).Let vn2�n+21 �! vn2�n+22 , v1; v2 2 Vb;1 [fv0g(v1 6= v2), denote one such edge in Gn2�n+2out (Vb;1 [fv0g; En2�n+2out) whose weight is less than that of the corresponding edge in Gn2�n+1out (Vb;1 [fv0g; En2�n+1out). Equivalently, from the cyclic operation performed at step 3� (f) in Algorithm 4.3we can say that vn2�n+21 �! vn2�n+22 is an edge in Gn2�n+2out (Vb;1 [fv0g; En2�n+2in) whose weight isless than or equal to� w � 1, if the edge doesn't connect v0.� w � L� 1, if the edge is from v0.� w + L� 1, if the edge is to v0.where w is a weight of an edge (g(1)(v1))n2�n+2 �! (g(1)(v2))n2�n+2 of Gn2�n+2in (Vb; En2�n+2in).Let p1 denote a minimum weight acyclic restricted path from vn2�n+21 to vn2�n+22 with a weightw12 in Gn2�n+2in (Vb; En2�n+2in) whose intermediate nodes belong to Vb;2. Note that no intermediatenode, if there exists any, is equal to v0. p1 exists from Lemma 4.3. Then, after (n2�n+2)-th loopiteration, the weight of vn2�n+21 ! vn2�n+22 will be changed to w12 in Gn2�n+2out (Vb;1[fv0g; En2�n+2out).sub-claim 1: In Gn2�n+2in (Vb; En2�n+2in), p1 has at least one edge connecting two di�erent nodesthat belong to g(1)(Vb;1) [fv0g.Suppose the claim is not true. Then, p1 is also a minimum weight acyclic restricted path fromvn2�n+11 to vn2�n+12 with a weight w12 in Gn2�n+1in (Vb; En2�n+1in), since only the weights of edgesconnecting two di�erent nodes of g(1)(Vb;1) [fv0g may be reduced after each loop iteration of thealgorithm. This contradicts to the de�nition of the path p1.Then, the following is proved. Here, it is assumed that v3; v4 (v3 6= v4) belong to g(1)(Vb;1)[fv0g,and thus g(�1)(v3), g(�1)(v4) belong to Vb;1 [fv0g.86

sub-claim 2: There exists at least one edge in p1, vn2�n+23 w34�! vn2�n+24 , v3; v4 2 g(1)(Vb;1)[fv0g,satisfying w34 < w034where w034 is a weight of an edge vn2�n+13 �! vn2�n+14 in Gn2�n+1in (Vb; En2�n+1in).Suppose that the claim is not true. Then, all edges lying in p1 that connect two nodes ofg(1)(Vb;1) [fv0g don't satisfy the above condition. In other words, all edge weights of p1 inGn2�n+2in (Vb; En2�n+2in) are not reduced compared to the edge weights of p1 in Gn2�n+1in (Vb; En2�n+1in).This means that p1 is also a minimum weight acyclic restricted path with a weight w12 inGn2�n+1in (Vb; En2�n+1in), which is clear from Proposition 4.6. From Lemma 4.3 this implies thatthe weight of vn2�n+11 ! vn2�n+12 in Gn2�n+1in (Vb; En2�n+1in) is equal to w12. This contradicts to thede�nition of the path p1. Therefore, sub-claim 2 is proved.Hence, we know that in path p1 there exists an edge v3 w34�! v4 whose weight is less than thatof the corresponding edge vn2�n+13 w034�! vn2�n+14 in Gn2�n+1in (Vb; En2�n+1in).From the cyclic operation performed at step 3 � (f) in Algorithm 4.3 and from Lemma 4.3,we know that there exists a minimum weight acyclic restricted path from g(�1)(v3) to g(�1)(v4) inGn2�n+1in (Vb; En2�n+1in) whose intermediate nodes belong to Vb;2 and which is equal to one of thefollowing forms:1. If v3 6= v0 and v4 6= v0, (g(�1)(v3))n2�n+1 w34; (g(�1)(v4))n2�n+12. If v3 = v0 and v4 6= v0, vn2�n+10 w34�L; (g(�1)(v4))n2�n+13. If v3 6= v0 and v4 = v0, (g(�1)(v3))n2�n+1 w34+L; vn2�n+10Note that, if any edge weight in the above minimum weight acyclic restricted path is reduced,the weight of an edge v3 ! v4 in Gn2�n+2in (Vb; En2�n+2in) will also be reduced by at least the sameamount after (n2 � n+ 1)-th loop iteration of Algorithm 4.3.Hence, p1 can be denoted as:< vn2�n+21 ; vn2�n+23 w34�! vn2�n+24 ; vn2�n+22 >where the edge vn2�n+23 w34�! vn2�n+24 can be replaced by one of the above minimum weight paths.Then p1 can be denoted as:< vn2�n+21 ;< (g(�1)(v3))n2�n+1 ; (g(�1)(v4))n2�n+1 >; vn2�n+22 >where the inner path, < (g(�1)(v3))n2�n+1 ; (g(�1)(v4))n2�n+1 >, will be reduced to an edgevn2�n+23 w34�! vn2�n+24 after (n2 � n + 1)-th loop iteration if Algorithm 4.3 is applied to the aboveextended path.Note that applying Algorithm 4.3 to this new path will produce an edge vn2�n+21 w12�! vn2�n+22 ,and if some edge weight is reduced, w12 will be reduced, too.From the above result and from w34 < w034, we know that the edge weight of g(�1)(v3) !g(�1)(v4) in a graph Gn2�n+1out (Vb;1 [fv0g; En2�n+1out) is:87

� w034 � 1 or less, if v3 6= v0 and v4 6= v0.� w034 � L� 1 or less, if v3 = v0.� w034 + L� 1 or less, if v4 = v0.where w034 is an edge weight of v3 ! v4 in Gn2�n+1in (Vb; En2�n+1in).This enables us to repeatedly apply the same procedure to a new minimum weight acyclicrestricted path g(�1)(v3); g(�1)(v4) in Gn2�n+1in (Vb; En2�n+1in). Therefore, we obtain the followingextension of path p1:< vn2�n+21 ;< (g(�1)(v3))n2�n+1 ; < (g(�1)(v5))n2�n ; (g(�1)(v6))n2�n >; (g(�1)(v4))n2�n+1 >; vn2�n+22 >where the intermediate nodes of < (g(�1)(v5))n2�n ; (g(�1)(v6))n2�n > in the above path belongto Vb;2 of Gn2�nin (Vb; En2�nin).And, this extension may be continued until the following is obtained:< vn2�n+21 ; < (g(�1)(v3))n2�n+1 ;< (g(�1)(v5))n2�n ; : : :; < (g(�1)(v2(n2�n+1)�1))2 ; (g(�1)(v2(n2�n+1)))2 >;: : : ; (g(�1)(v6))n2�n >; (g(�1)(v4))n2�n+1 >; vn2�n+22 >Consider the following set of node pairs in Vb;1 [fv0g of Gjin(Vb; Ejin), 2 � j � n2 � n+ 2, thathave been included in the extension of path p1 at each iteration of the process.f(vn2�n+21 ; vn2�n+22); ((g(�1)(v3))n2�n+1; (g(�1)(v4))n2�n+1); : : : ;((g(�1)(v2(n2�n+1)�1))2; (g(�1)(v2(n2�n+1)))2)gNote that this set has n2 � n + 1 node pairs. Because there exist n nodes in Vb;1 [fv0g, theremay exist only n2 � n distinct node pairs. Hence, there should exist at least one node pair thatappears twice in the above node pair set. Let (vji1 ; vji2); (vli3; vli4), l < j, denote two such node pairswhere i1 = i3 ^ i2 = i4. Therefore, in the extension process of p1 performed above, we should haveencountered the following path: < vji1 ;< vli1!vli2 >; vji2 > (A.2)Because the extension process choose an edge vji1 ! vji2 in Gjin(Vb; Ejin) whose weight is less thanvj�1i1 ! vj�1i2 at the (n2 � n + 2� j + 1)-th iteration of Algorithm 4.3, we know that the weight ofan edge vli1 ! vli2 is greater than the weight of the edge vji1 ! vji2 since j > l.This implies that there exists a path that reduces the the edge weight of vji1 ! vji2 from thatof vli1 ! vli2 after j-th loop iteration in Algorithm 4.3. Then, from Proposition 4.6 we know that,after l + k(j � l) loop iteration in Algorithm 4.3 where k � 1, the edge weight of vi1 ! vi2 inthe resulting graph will be reduced from the corresponding edge weight in the graph found afterl + (k � 1)(j � l) loop iteration. This means that the edge weight of vi1 ! vi2 will be in�nitelydecreased. But, since every job has a release time and a deadline constraints, this repeated processwill eventually create a negative weight cycle during the variable elimination process applied to aconstraint graph for sched1;1.This contradicts to the assumption, and proves Claim 1 and the theorem.88

Appendix BB.1 Proofs for Chapter 6The proof of theorem 6.2 is presented here.Proposition B.1 If � and S are schedulable then the following condition is satis�ed:8i 2 [1; �] :: 8t 2 [est(�i); est(�i) + LCM]::
0(est(�i); t) � msXk=1 csk � b(t � est(�i) + �k � dsk)�k cProof: Suppose that S and � are schedulable and the above condition doesn't hold. Let tv bethe �rst time instant at which the condition is not satis�ed. That is, the following is satis�ed forsome iv 2 [1; �]:
0(est(�iv); tv) < msXk=1 csk � b(tv � est(�iv) + �k � dsk)�k cHowever, from this we can conclude that the task set is not schedulable when all the sporadic tasksstart to be invoked at time est(�iv) with their minimum inter-arrival times. This is because theprocessor demand by S in [est(�iv); tv] exceeds the processor time in [est(�iv); tv] available fortasks in S. Therefore, if � and S are schedulable, the condition is satis�ed.We de�ne a busy period for the given task, �, which belongs to � or S and denote it asBP� = [a; f�] where f� is the actual �nish time of the task � at run-time. Let D� denote adeadline of �. Then, let � be the last task satisfying the following conditions:(1) � 2 � or � 2 S(2) � starts its execution before f�.(3) � starts its execution at its release time r�.(4) no idle period exists between r� and f�.(5) no task whose deadline is greater than D� is executed between r� and f�.Then, the following proposition claims that the task � exists for any given task �.Proposition B.2 If EDF is used at run-time to schedule � and S, for any given task � (2 � or2 S), the task �(2 � or 2 S) exists. 89

Proof: It is clear that at the end of the last idle period before f�, the conditions (1), (2), (3),and (4), hold for some task �0 whose release time is equal to the end of that idle period. If thereis no idle period before �, then let �0 denote the �rst task which starts its execution at time 0.Let �1 denote the last task which starts its execution between the end of the idle period and f�,and which satis�es all of the conditions from (1) to (4). In this case, �1 is the last task in [r�0; f�]which starts its execution at its release time. In other words, every task executed between r�1 andf�] has started its execution some time after its release time except �1.Suppose that the condition (5) is not satis�ed in [r�1; f�] and let denote a task whose starttime is between r�1 and f�, and which has a deadline D greater than D�. But, because D� is lessthan D and EDF is used to schedule the tasks, a contradiction has occurred. should never havebeen executed between r and f� since the task � has a higher priority than . Therefore, taskinstance �1 satis�es the condition from (1) to (5).Then, the start time a of the busy period for � is de�ned to be r�1 which is found in the aboveproof procedure. Example busy period is depicted in Fig B.1.
1

S2,1

DS2,2

D S1,2

τ
Γ

1

2

1,1

S

S

S

τ 3

1,3

2,2

1,4S S

S

S1,2

2,3S

Busy Period for S 1,2 Busy Period for S 2,2

τ 2

Figure B.1: Busy periodHere, the earliest �nish time of �i is de�ned as est(i) + Ci.Proposition B.3 The following is satis�ed for every i 2 [2; �+ 1]:8t1 2 [eft(�i�1); est(�i)] :: 8l > 0 ::
0(t1; t1 + l) �
0(est(�i); est(�i) + l) (B.1)Proof: If the time interval [est(�i); est(�i) + l] is shifted to the left by the amount of est(�i)� t1which results in a new time interval [t1; t1 + l], the slack time is increased by the amount ofest(�i)� t1 and decreased with the amount less than or equal to est(�i)� t1. This is depicted inFigure B.2. 90

1
t 1+l

5

τ τ1 2 τ τ3 4 τ 5

t

1

Υ

2 3 4D D D D D

1 2 3est eft

τ 3 τ 4 τ 5

lst(3) lst(4) lst(5)

τ 3 τ 4 τ 5

lst(3) lst(4) lst(5)

+l
l

l

Increased Slack Time

Υ Υ Υ

est (2) est (2)ΥFigure B.2:
0 is increased or remains the same in the shifted intervalProposition B.4 The following is satis�ed for every i 2 [1; �]:8t1 2 (est(�i); eft(�i)) :: 8l > 0 ::
0(t1; t1 + l) �
0(est(�i); est(�i) + l) (B.2)Proof: If the time interval [est(�i); est(�i)+ l] is shifted to the right by the amount of t1� est(�i)which results in a new time interval [t1; t1+ l], the maximum slack time,
0 is increased or at leastremains the same as can be seen from Figure B.3. This proves the proposition.
τ2

τ2

τ2τ1

τ1τ1

t 1
t 1+l

5

τ
Υ

τ3 4 τ 5

1 2 3 4D D D D D

1 2 3est eft

τ1

τ 3 τ 4 τ 5

lst(3) lst(4) lst(5)

τ 3 τ 4 τ 5

lst(3) lst(4) lst(5)lst(1)

+l
l

est () est ()11

l

Υ Υ

Υ Υ

Figure B.3:
0 is increased or remains the same in the shifted intervalProposition B.5 If � and S satisfy the condition of proposition 6.2, then they are schedulable byEDF scheduling algorithm.Proof: 91

Suppose that the condition is satis�ed for S and � and some task can't be �nished within itsdeadline. Let's call that task � (� 2 � or � 2 S) and the deadline of that task D�. And, letBP� = [ti; f�] denote a busy period for �. In this case, the actual �nish time of �, f�, is greaterthan D�.Then there are two cases to be considered.Case 1: D� � ti > LCM .Note that the maximum processor demand in [ti; ti + LCM] by task instances from S is lessthan or equal to
0(ti; ti + LCM) from the condition 6.4. In this case, at ti + LCM a new taskinstance starts its execution whose release time is equal to ti + LCM . Then, it is obvious thatthe start time of the busy period, ti, should be greater than or equal to ti + LCM , which is acontradiction.Case 2: D� � ti � LCM .Let �� be the �rst task in [ti; D�] which belongs to �. First, suppose that this exists. Then, let�j denote the task group containing �iota. From the de�nition of a busy period we know that therelease time of ��, r�, is greater than or equal to ti. Then from proposition B.3 and B.4,8l > 0 ::
0(ti; ti + l) �
0(est(�j); est(�j) + l)This means that if the tasks in S starts to invoke their task instances from ti with their minimuminter-arrival times, then they are schedulable with �. This implies that the task instances invokedat or after ti are schedulable since the worst case scenario is that every Si 2 S starts to be invoked atti with �i inter-arrival time, which is proven to be schedulable. This contradicts to the assumptionthat � misses its deadline at D�.Second, suppose that �� doesn't exist. In this case all the task instances executed in the interval[ti; D�] � [ti; f�] are from S. It is clear in this case from the condition 6.4 that8l > 0 ::
0(ti; l) � msXk=1 csk � b(l � ti + �k � dsk)=�kcFrom this, we can conclude that every task instance in [ti; D�] is schedulable, which contradicts tothe assumption that � misses its deadline at D�.
92

Bibliography[1] Ashok K. Agrawala, Seonho Choi, and Leyuan Shi. Designing temporal controls. Techni-cal Report CS-TR-3504, UMIACS-TR-95-81, Department of Computer Science, University ofMaryland, July 1995.[2] N. C. Audlsey, A. Burns, R. I. Davis, and A. J. Wellings. Integrating best e�ort and �xedpriority scheduling. In Proceedings of the 1994 Workshop on Real-Time Programming, LakeConstance, Germany, June 1994.[3] N. C. Audsley. Deadline monotonic scheduling. YCS 146, University of York, Department ofComputer Science, October 1990.[4] T. Baker and A. Shaw. The Cyclic Executive Model and Ada. Real-Time Systems, 1(1):7{25,September 1989.[5] T. P. Baker. A Stack-Based Resource Allocation Policy for RealTime Processes. In Proceedings,IEEE Real-Time Systems Symposium, 1990.[6] A. Belleisle. \Stability of systems with nonlinear feedback through randomly time-varyingdelays". IEEE Transactions on Automatic Control, AC-20:67{75, February 1975.[7] R. Bellman. Adaptive Control Process: A Guided Tour. Princeton,NJ: Princeton UniversityPress, 1961.[8] R. Bellman. Bellman special issue. IEEE Transactions on Automatic Control, AC-26, October1981.[9] T. Carpenter, K. Driscoll, K. Hoyme, and J. Carcio�ni. Arinc 659 scheduling: Problemde�nition. In Proceedings, IEEE Real-time Systems Symposium, San Juan, PR, December1994.[10] M. Chen and K. Lin. Dynamic Priority Ceilings: A Concurrency Control Protocol for Real-Time Systems. Real-Time Systems, 2(4):325{346, 1990.[11] S. Cheng and Ashok K. Agrawala. Scheduling of periodic tasks with relative timing constraints.Technical Report CS-TR-3392, UMIACS-TR-94-135, Department of Computer Science, Uni-versity of Maryland, December 1994.[12] S. T. Cheng and Ashok K. Agrawala. Allocation and scheduling of real-time periodic tasks withrelative timing constraints. Technical Report CS-TR-3402, UMIACS-TR-95-6, Department ofComputer Science, University of Maryland, January 1995.93

[13] H. Chetto and M. Chetto. Scheduling Periodic and Sporadic Task in a Real-Time System.Information Processing Letters, 30(4):177{184, 1989.[14] H. Chetto and M. Chetto. Some Results of the Earliest Deadline First Algorithm. IEEETransactions on Software Engineering, SE-15(10):1261{1269, October 1989.[15] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic Scheduling of Real-Time Tasks underPrecedence Constraints. Real-Time Systems, 2:181{194, 1990.[16] G. Dantzig and B. Eaves. Fourier-Motzkin Elimination and its Dual. Journal of CombinatorialTheory(A), 14:288{297, 1973.[17] R. I. Davis. Approximate slack stealing algorithms for �xed priority pre-emptive systems.Technical Report YCS 217 (1993), Department of Computer Science, University of York,England, November 1993.[18] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack time in �xed priority pre-emptivesystems. In Proceedings, IEEE Real-Time Systems Symposium, pages 222{231. IEEE Com-puter Society Press, December 1993.[19] M. Dertouzos. Control Robotics: the Procedural Control of Physical Processes. Proceedingsof the IFIP Congress, pages 807{813, 1974.[20] P. Dorato and A. Levis. \Optimal linear regulators: The discrete time case". IEEE Transac-tions on Automatic Control, AC-16:613{620, December 1971.[21] G. Fohler and C. Koza. Heuristic Scheduling for Distributed Real-Time Systems. MARS 6/89,Technische Universitat Wien, Vienna, Austria, April 1989.[22] Gerhard Fohler. Joint scheduling of distributed complex periodic and hard aperiodic tasksin statically scheduled systems. In Proceedings, IEEE Real-Time Systems Symposium. IEEEComputer Society Press, December 1995.[23] R. Gerber, W. Pugh, and M. Saksena. Parametric Dispatching of Hard Real-Time Tasks.IEEE Transactions on Computers, 44(3), Mar. 1995.[24] T.M. Ghazalie and T.P. Baker. Aperiodic servers in a deadline scheduling environment. Real-Time Systems, 9:31{67, 1995.[25] A. Gosiewski and A. Olbrot. \The e�ect of feedback delays on the performance of multivariablelinear control systems". IEEE Transactions on Automatic Control, AC-25(4):729{734, August1980.[26] C. Han, C. Hou, and K. Lin. Distance-Constrained Scheduling and Its Applications to Real-Time Systems. IEEE Transactions on Computers. To appear.[27] K. Hirai and Y. Satoh. \Stability of a system with variable time delay". IEEE Transactionson Automatic Control, AC-25(3):552{554, June 1980.[28] X. Homayoun and P. Ramanathan. Dynamic priority scheduling of periodic and aperiodictasks in hard real-time systems. Real-Time Systems, 6(2), March 1994.94

[29] Seung H. Hong. Scheduling Algorithm of Data Sampling Times in the Integrated Communica-tion and Control Systems. IEEE Transactions on Control Systems Technology, 3(2):225{230,June 1995.[30] J. P. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm: Exact Char-acterization and Average Case Behavior. In Proceedings, IEEE Real-Time Systems Symposium,pages 166{171, Dec. 1989.[31] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic responsiveness in hard real-time environments. In Proceedings, IEEE Real-Time Systems Symposium, pages 261{270, Dec.1987.[32] John P. Lehoczky and Sandra Ramos-Thuel. An optimal algorithm for scheduling soft-aperiodic tasks in �xed-priority preemptive systems. In Proceedings, IEEE Real-Time SystemsSymposium, pages 110{123. IEEE Computer Society Press, December 1992.[33] J.Y. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of Periodic,Real-Time Tasks. Performance Evaluation, 2(4):237{250, 1982.[34] S. T. Levi, Satish K. Tripathi, Scott Carson, and Ashok K. Agrawala. \The MARUTI hardreal-time operating system". ACM Symp. on Op. Syst. Principles, Op. Syst. Review, 23(3),July 1989.[35] Shem-Tov Levi and Ashok K. Agrawala. Real Time System Design. McGraw Hill, 1990.[36] C. L. Liu and J. Layland. Scheduling Algorithm for Multiprogramming in a Hard Real-TimeEnvironment. Journal of the ACM., 20(1):46{61, Jan. 1973.[37] A. Mok, D. Tsou, and R. Rooij. The msp.rtl real-time scheduler synthesis tool. In Proceedings,IEEE Real-Time Systems Symposium, Dec. 1996.[38] A. K. Mok. Fundamental Design Problems for the Hard Real-time Environments. PhD thesis,MIT, May 1983.[39] C. L. Phillips and H. Troy Nagle. Digital Control System: Analysis and Design, chapter 10.Linear Quadratic Optimal Control, pages 356{399. Prentice Hall, 1990.[40] K. Ramamritham and J. A. Stankovic. Scheduling algorithms and operating systems supportfor real-time systems. Proceedings of the IEEE, 82(1):55{67, January 1994.[41] Z. Rekasius. \Stability of digital control with computer interruptions". IEEE Transactions onAutomatic Control, AC-31:356{359, April 1986.[42] M. Saksena. Parametric Scheduling for Hard Real-Time Systems. PhD thesis, University ofMaryland, College Park, MD 20742, 1994.[43] Manas Saksena, James da Silva, and Ashok K. Agrawala. \Design and implementation ofMaruti-II", chapter 4. Prentice Hall, 1995. In Advances in Real-Time Systems, edited by SangH. Son. 95

[44] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some practical problems in prioritizedpreemptive scheduling. In Proc. IEEE Real-Time Syst. Symp., pages 181{191, Dec. 1986.[45] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach toReal-Time Synchronization. IEEE Transactions on Computers, 39(9):1175{1185, September1990.[46] K. G. Shin and H. Kim. \Derivation and application of hard deadlines for real-time controlsystems". IEEE Transactions on Systems, Man and Cybernetics, 22(6):1403{1413, November1992.[47] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time systems.Real-Time Systems, 1(1):27{60, June 1989.[48] Marco Spuri and Giorgio C. Buttazzo. E�cient aperiodic service under earliest deadlinescheduling. In Proceedings, IEEE Real-Time Systems Symposium, pages 2{11. IEEE ComputerSociety Press, December 1994.[49] Sandra R. Thuel and John P. Lehoczky. Algorithm for scheduling hard aperiodic tasks in �xed-priority systems using slack stealing. In Proceedings, IEEE Real-Time Systems Symposium,pages 22{33. IEEE Computer Society Press, December 1994.[50] K. Tindell, A. Burns, and A. Wellings. An Extendible Approach for Analyzing Fixed PriorityHard Real-Time Tasks. Real-Time Systems, 6(2), March 1994.[51] G.S. Virk. Digital Computer Control Systems, chapter 4. McGraw Hill, 1991.[52] J. Xu and D. L. Parnas. Scheduling processes with release times, deadlines, precedence, andexclusion relations. IEEE Transactions on Software Engineering, SE-16(3):360{369, March1990.[53] J. Xu and D. L. Parnas. On Satisfying Timing Constraints in Hard-Real-Time Systems. InProceedings of the ACM SIGSOFT'91 Conference on Software for Critical Systems, pages132{146, December 1991.[54] X. Yuan, M. Saksena, and A. Agrawala. A Decomposition Approach to Real-Time Scheduling.Real-Time Systems, 6(1), 1994.[55] K. Zahr and C. Slivinsky. \Delay in multivariable computer controlled linear systems". IEEETransactions on Automatic Control, pages 442{443, August 1974.[56] W. Zhao and K. Ramamritham. Simple and Integrated Heuristic Algorithms for SchedulingTasks with Time and Resource Constraints. Journal of Systems and Software, pages 195{205,1987. 96

