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Magnetic confinement fusion is a technique in which a strong magnetic field is used to

contain a hot plasma, which enables nuclear fusion. In terms of overall energy efficiency, the two

most promising magnetic confinement concepts are tokamaks (axisymmetric devices) and stel-

larators (nonaxisymmetric devices). The power P produced by a magnetically confined nuclear

fusion device is proportional to V β2B4, where V is the volume of the device, β is the plasma

pressure - magnetic pressure ratio, and B is the magnetic field strength. Most tokamaks and

stellarators currently in operation are low-β devices. In general, there are three ways to increase

P , one may increase the operating β, the magnetic field or the volume of the device. The cost

of these devices is proportional to V , making large enough devices expensive. Similarly, a large

magnetic field (>10T) requires superconducting magnets that, even after the recent innovations

in HTS (High-Temperature Superconductors), are expensive to manufacture. High-β devices are

an attractive idea to efficiently produce fusion energy. However, a high-β generally also implies

a large gradient in plasma pressure that can be a source of numerous instabilities. If fusion de-



vices could be optimized against such instabilities, high-β operation would become an attractive

approach compared to high field or large-volume reactors. Therefore, this thesis explores the

optimization of high-β tokamak and stellarator equilibrium equilibria against linear instabilities.

We will start by investigating the stability of high-β tokamaks and stellarator equilibria

against the infinite-n ideal ballooning mode, an important pressure-driven MHD instability. We

stabilize these equilibria against the ideal ballooning mode. To achieve this, we formulate a

gradient-based adjoint technique and demonstrate its speed and effectiveness by stabilizing these

equilibria. We also explain how this technique can be easily extended to low-n ideal-MHD modes

in both tokamaks and stellarators.

After demonstrating the adjoint technique for stabilizing against ideal MHD modes, we

first analyze the kinetic stability of a sequence of axisymmetric equilibria. We study this by nu-

merically solving the δf gyrokinetic model, a simplified version of the Vlasov-Maxwell model.

Since these kinetic instabilities are driven by temperature and density gradients, we explore them

by scanning multiple values of the plasma β, temperature and density gradients, and plasma

boundary shapes, discovering interesting relationships between equilibrium-dependent quantities

and growth rates of these instabilities. We then repeat the same process for two recently pub-

lished stellarator equilibria with quasisymmetry — a favorable hidden symmetry in stellarators.

With this study, we verify that our observations from high-β tokamaks can be generalized to

quasisymmetric stellarators.

From our microstability study, we find that electromagnetic effects are important for high-β

devices. Hence, using the numerical tools and knowledge derived from the previous chapters we

build an optimization framework that searches for stable equilibria. Due to the similarity between

axisymmetry and quasisymmetry, we then use the microstability optimizer to search for ideally



and kinetically-stable, quasisymmetric, high-β stellarators.
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Chapter 1: Introduction

In this chapter, we provide a general overview of the ideas presented in this dissertation.

In §1.1, we will motivate the advantages of operating in the high-β regime. In the following

section, we will briefly explain a simple fluid model known as ideal magnetohydrodynamics

(MHD), its properties, and how it is used to generate equilibria and evaluate their stability. In

the third section, we will explain a more complex model known as gyrokinetics, a kinetic theory

used to calculate the linear microstability of MHD equilibria. We will also explain why linear

gyrokinetic stability is important and how it is directly related to heat and particle losses from a

fusion device. In the last section, we will provide an overview of some of the open problems in

high-β stability optimization and explain in detail the scope of this dissertation.

1.1 Motivation

Magnetic confinement is currently considered the most promising way [4] to achieve the

United States’ goal of building a pilot fusion power plant that generates net electricity before

2040 [5]. The biggest joint international project, ITER [6] also plans to demonstrate net fusion

power gain using a magnetic confinement scheme. Most advanced fusion reactor designs today

are based on two main designs that use magnetic confinement: tokamaks and stellarators. These

devices work by using strong magnetic fields to keep a hot, dense plasma at their center. At high
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plasma pressures and temperatures (∼ 108K) the ions overcome the repulsive Coulomb force

and fuse together to release energy. The fusion reaction for a Deuterium-Tritium plasma is

D+ T −→ He4(3.5MeV) + n(14MeV), (1.1)

which combines the (charged) nuclei of deuterium and tritium and yields an alpha particle and

a fast neutron. Fast neutrons are then captured by a physical barrier (known as a neutron blan-

ket), and the resulting heat can be used to produce electricity. Fusion plasma comprises a high-

temperature ionized gas of charged particles. To be able to confine these charged particles we

require a specific topology of the magnetic field. For example, simply closing the field lines in

a loop, as in a Z-pinch will not confine the particles, as they will drift perpendicular to the field

line due to the curvature of the field line as shown in figure 1.1. It was hypothesized by Andrei

Figure 1.1: This figure shows the trajectory of a positively charged particle in a divergence free

equilibrium field Bϕ ∝ 1/r, where r is the radial distance from the center. The blue line repre-

sents a magnetic field line. The particle drifts vertically upwards and is deconfined. A negatively

charged particle would drift downwards.

Sakharov [7] and Igor Tamm and independently by Lyman Spitzer Jr. [8] that to prevent particles

from drifting out of the machine, magnetic field lines must twist in the form of a torus as shown

in figure 1.2. Once twisted, the particles following these field lines, on average, have zero radial
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displacement1. The long way around the torus is called the toroidal direction, denoted by the

Figure 1.2: This figure shows the trajectory of a particle at two different times in a an equilibrium

where magnetic field lines lie on a toroidal surface. The particles is launched from the blue-

colored field line. Due to the twist of the magnetic field in the θ direction, the particle is confined

to the toroidal surface.

coordinate ϕ, while the short way round is called the poloidal direction, denoted by the coordi-

nate θ. The toroidal field can be created by electromagnets. To create the poloidal field, i.e., the

twist, one could induce a toroidal current throughout the plasma using a solenoid or break the

symmetry of the device in the toroidal direction, shaping the walls in such a way that they cause

the field lines to twist without the help of a solenoid. The former idea, conceptualized by Tamm

and Sakharov [9], is called a tokamak, and the latter idea, conceptualized by Spitzer [8], is called

a stellarator. The toroidal surface on which magnetic fields lie will be referred to as a flux surface.

Figure 1.3 shows the tokamak and stellarator equilibria that will be studied in chapter two of this

thesis.

1Note that this is only true for passing particles, i.e., particles that move fast enough along a field line to complete

a full toroidal turn. Particles that are trapped between two toroidal angles are eventually deconfined in an unoptimized

stellarator.
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Figure 1.3: This figure shows the strength of the magnetic field |B| on a flux surface and the

cross section at various toroidal and radial locations for an axisymmetric equilibrium and two

3D equilibria. The cross sections are plotted in cylindrical coordinates (R, ϕ, Z). The number of

repeatable toroidal segments or field periods nfp is 1 for DIII-D, 2 for Henneberg-QA, and 3 for

NCSX.
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The main difference between tokamaks and stellarators lies in their geometric shape. Toka-

maks are symmetric about a fixed axis, whereas stellarators are not. The tokamak equilibria are

2D-axisymmetric, as they have a continuous symmetry in the toroidal direction, whereas stel-

larator equilibria are 3D. Note that, in general, stellarator equilibria have discrete symmetry in

the toroidal direction since one can always divide a stellarator toroidally into multiple identi-

cal segments. The number of identical segments in a stellarator is known as the field period

nfp. Moreover, all the stellarator designs analyzed in this work have stellarator up-down sym-

metry —- at any point on the stellarator R(θ, ϕ) = R(−θ,−ϕ) and Z(θ, ϕ) = −Z(−θ,−ϕ),

where (R, ϕ, Z) is the cylindrical coordinate system. However, if optimized, stellarators can also

achieve a continuous hidden symmetry known as quasisymmetry [10, 11], where the strength of

the magnetic field |B| does not change along the field line with respect to one of the coordinates.

Quasisymmetry is a powerful favorable property because it ensures orbit confinement of both

trapped and passing particles, which helps improve energetic particle confinement, a major issue

in stellarators.

Since tokamaks require an internal current to twist the field lines, they are vulnerable to

instabilities caused by that current. However, stellarators do not need a large internal current and

are usually free of current-driven instabilities. Another important difference is the design. As

tokamaks are axisymmetric, they are easier to build, whereas stellarator engineering designs are

more complicated [12, 13]. In this thesis, we will use two simplified models to study physics

problems that are common to both tokamaks and stellarators.
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1.2 Two self-consistent models of fusion plasmas

The particle confinement model presented in the previous section to explain magnetic con-

finement is overly simplistic, as we assume that particles travel in a fixed magnetic field. How-

ever, in reality, there are enough charged particles in a fusion plasma (∼ 1020m−3) to create

their own electromagnetic fields that can significantly alter their dynamics. To self-consistently

consider the effect of the fields on the particle and vice versa, we solve mathematical models that

vary in their levels of complexity and accuracy. In the following sections, we describe two such

models: ideal MHD and gyrokinetics.

1.2.1 Ideal MHD

One of the simplest models used to study a plasma is ideal MHD. This model assumes

that the plasma behaves like a single, perfectly-conducting, fluid. The tokamak and stellarator

equilibria presented in figure 1.3 are obtained by numerically solving the steady state ideal MHD

equations numerically. To assume that the plasma acts like a fluid, ideal MHD assumes that the

plasma is strongly collisional. But even though ideal MHD is only valid in the limit of a highly

collisional plasma, we will use it to calculate steady-state tokamak and stellarator equilibria as

it will separate the non-ideal effects from our study. These non-ideal effects such as magnetic

islands, neutral beam injection, wave heating etc. are important but ignored in this work. The

most important property of the ideal MHD model is that plasma is perfectly confined perpendic-

ular to a magnetic field line. This is known as the “frozen-in” condition. Figure 1.4 illustrates the

“frozen-in” condition.
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(a) Initial state (b) Final state

Figure 1.4: This figure illustrates the “frozen-in” condition of ideal MHD. The tubes represent

magnetic field lines containing plasma (colored purple). The “frozen-in” condition prohibits the

tubes from passing through each other. This topological constraint allows 3D toroidal equilibria

to retain their nested flux surface topology in figure 1.3. A short and intuitive derivation of the

“frozen-in” condition is given in chapter 3 of Freidberg [1].

The existence of an MHD equilibrium does not guarantee its stability. Therefore, the next

step is to perform an ideal MHD stability analysis. There are multiple classes of ideal MHD

instabilities driven by pressure and current [14]. In this dissertation, we focus on an important

pressure-driven instability, called the infinite-n ideal ballooning mode [15, 16]. For tokamaks,

the ideal ballooning mode sets a hard threshold on the plasma β. For stellarators, the stability

conditions of the ideal ballooning mode are closely correlated with a type of kinetic instability

called the kinetic ballooning mode (KBM). The KBM is thought to limit performance of stellara-

tors. Therefore, stabilizing the equilibria against the ideal MHD instability is an important step

before studying additional effects with more sophisticated models.

Ideal MHD is the simplest model to describe a fusion plasma. But due to its simplicity,

we miss a lot of important effects, especially the effects dependent on smaller length scales. In

a more general model of a fusion plasma, we must also include dynamics that occur at different

length and time scales, as shown in figure 1.5.
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Figure 1.5: This figure shows the disparate range of length and time scales that exist in a typical

nuclear fusion plasma. The length scales (from small to large) are: electron Debye length, elec-

tron gyroradius, ion gyroradius, reactor size and ion mean free path. The time scales (from short

to long) are: inverse electron plasma frequency, inverse electron cyclotron frequency, inverse ion

cyclotron frequency, inverse ion-sound frequency and the energy confinement time. The dynam-

ics at each scale along with the interaction between different scales makes this a truly multiscale

physics problem.

To account for the smaller-scale effects, we study kinetic models of fusion plasmas. One

of the most successful kinetic models in fusion plasma physics [17] the gyrokinetic model. We

will present the details of this model in the next section.

1.2.2 The gyrokinetic model

One of the most general models used to study fusion plasmas is the gyrokinetic model. This

model, unlike ideal MHD, treats both ions and electrons as separate species represented by distri-

bution functions in velocity and configuration space. The gyrokinetic model is a simplification of

a fully kinetic model (6+1)D model (three configuration space dimensions, three velocity space

dimensions, and time), due to the fact that particles gyrate perpendicular to a field lines much

faster and on much smaller scales than the time and length scales along a field line. This allows

us to average over the gyration of the charged particles leaving us with a (5+1)D model (three

configuration space dimensions, two velocity space dimensions, and time). Figure 1.6 illustrates
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the reason for reducing the velocity space dimension in a gyrokinetic model.

≫

ρ

aN t,

Ω ,s

ρ≪aN

Ω s t 1

(a) A fully kinetic model (b) A gyrokinetic model

Figure 1.6: This figure illustrates the main idea of the gyrokinetic model. In (a), we have a fully

kinetic model showing a charged particle rapidly gyrating about a magnetic field line. The time

scale (Ω−1
s ) and length scale (ρ) on which the particle gyrates are much smaller that time and

length scale of its motion along the field line. Due to the separation of these scales, in (b), we

average over the fast gyromotion and replace the particle with a ring of charge moving along the

field line.

Kinetic instabilities are not as deleterious as MHD instabilities, since they do not lead to

disruptions, but are directly related to anomalous/turbulent diffusion which significantly increases

the heat flux (Q) and particle flux (Γ) out of the plasma. This reduces the plasma pressure

throughout the volume, reduces the output fusion energy, and reduces the device efficiency. Once

an equilibrium has been optimized against MHD instabilities, the next step is usually to reduce

turbulent diffusion so that a steep pressure profile can be maintained with practical heat sources.

Gyrokinetics has been remarkably successful in predicting the heat and particle transport for

realistic tokamaks and stellarators, especially in the core of a fusion plasma [18]. However, to

calculate these transport rates, we have to numerically solve the nonlinear gyrokinetic model,

which is computationally expensive and time consuming. The computational cost is even higher

for a general stellarator equilibrium because of its lack of continuous symmetry.
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In light of the cost of nonlinear analyses, one usually solves the linear gyrokinetic equation

and analyzes the growth rate spectrum; a measure of a linear instability for different modes of

perturbation of the equilibrium state. This is much faster and can be used as a proxy for nonlinear

heat and particle loss. For a growth rate γ, calculated as a function of the fluctuation wavenumber

ky, a simple random walk estimate of the diffusion coefficient [19] gives

D ∼ γ

k2y
, (1.2)

which means that, in general, low-wavenumber modes cause the most heat and particle transport2.

Figure 1.7 illustrates the typical growth rate spectrum and the heat flux time trace that one obtains

from a gyrokinetic simulation. Note that the linear growth rates can be calculated with remarkable

precision and accuracy, but the non-linear heat fluxes Q always have some statistical variation

that depends strongly on the domain size, initial conditions, velocity and configuration space

resolution and affects the precision of Q.

ky

γ

(a) Growth rate spectrum

t

Q

(b) Heat flux time trace

Figure 1.7: This figure illustrates (a) a typical growth rate spectrum one obtains from solving

the linear gyrokinetic equation and (b) the heat flux Q as a function of time for a particular

wavenumber ky. The red line marks the time averaged value of Q.

2Note that this is a qualitative estimate of the diffusion coefficient. One must always run the complete non-linear

solver to obtain the exact relationship diffusivity.
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1.3 Unsolved problems in stability optimization and scope of this work

Recent advances in stellarator optimization techniques and computational capabilities have

allowed physicists to find new designs that have many favorable properties such as quasisymme-

try, low neoclassical transport, simpler coil shapes, reduced magnetic island widths, etc. These

developments have led to an increased interest in optimizing stellarators. However, only a few

recent publications have considered optimization against kinetic instabilities [20, 21, 22]. More-

over, there have been no studies that include all the kinetic effects such as self-consistent elec-

tromagnetic fluctuations, particle collisions, finite velocity shear into account. Thus, as we move

towards the design of a realistic high-β stellarator, it is imperative to include a fully kinetic mi-

crostability analysis into the typical optimzation loop.

Moreover, these optimization tools can be easily extended to optimize tokamaks, and even

though the parameter space for tokamaks is much smaller due to axisymmetry, this could help

us learn more about stability of tokamaks and derive trends, which can then be extended to

stellarators. In the past, some optimization work has been performed against low-n ideal MHD

modes but a freely available, general, MHD and kinetic optimizer does not exist. To that end, we

will present a framework for developing a general ideal MHD and kinetic stability optimizer for

tokmaks and stellarators.

In chapter 2, we will explain in detail how to use the ideal MHD model to calculate a set

of 2D-axisymmetric and 3D equilibria. Next, we present a linear stability analysis, derive the

ideal MHD energy principle and describe how it gives instabilities with different toroidal mode

number n, i.e., low-n and high-n modes. We will solve the infinite-n ideal ballooning equation

for the equilibria described in the previous sections. Using the self-adjoint property of ideal

11



MHD, we then construct a technique to calculate the gradient of the growth rate and demonstrate

this technique by stabilizing equilibria against the infinite-n ideal ballooning mode.

In chapter 3, we will linearize the complete electromagnetic, gyrokinetic model and solve

it for a set of high-β tokamak and stellarator equilibria. For the tokamak equilibria, we will self-

consistently scan these equilibria in the temperature and density gradients to study the effect of

high-β on their stability. We will also obtain equilibrium-dependent quantities that can be used to

explain the enhanced stability of high-β equilibria against electrostatic instabilities. We present

the analysis of the high-β stellarator equilibria and explain how the stability trends are similar to

that of high-β tokamaks.

In chapter 4, we combine the tools used and our observations to study ideal MHD and

kinetic stability in the previous two chapters to create a general finite-β optimization framework

that optimizes a high-β equilibrium against various kinetic instabilities. We explain the details of

the optimzer and present some tests done with an axisymmetric high-β equilibrium obtained in

chapter 3.
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Chapter 2: Ideal MHD stability analysis and optimization of high-β equilibria

2.1 Overview

In this chapter, we will explain in detail the ideal MHD model. We will start by deriving

the steady-state ideal MHD force balance equation and show how it can be rewritten for a general

toroidal geometry. We will use a numerical solver VMEC to solve the force balance equation

for one 2D (axisymmetric) and two 3D equilibria. To infer the stability of these equilibria, we

will linearize the ideal MHD model and describe the stability problem as a variational principle

known as the energy principle. We will then explain useful properties of the energy principle and

categorize it based on the toroidal mode number n.

To obtain the pressure gradient-driven instability known as the ideal ballooning mode, we

will simplify the energy principle in the limit of infinite toroidal mode number, explain how the

energy principle can be reduced to a simple ODE called the ideal ballooning equation, and argue

for the importance of stabilizing this mode in tokamaks and stellarators. We proceed to solve this

equation for the three equilibria described in §2.2.1. Finally, using the self-adjoint property of

ideal MHD, we will explain the details of optimiziation of the three equilibria against the ideal

ballooning mode and explain how it can be extended to modes with lower mode numbers.
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2.2 Ideal MHD: Equilibrium

The simplest model that describes a hot plasma is ideal MHD. Ideal MHD assumes the

plasma to behave as a isentropic, perfectly conducting fluid with a mass density ρ, pressure p,

flowing with a flow velocity V immersed in a magnetic field B. The governing equations are

∂ρ

∂t
+∇ · (ρV ) = 0, (2.1)

ρ

(
∂V

∂t
+ V ·∇V

)
= −∇p+

(∇×B)×B

µ0

, (2.2)

∂

∂t

(
p

ργ

)
+ V ·∇

(
p

ργ

)
= 0, (2.3)

∂B

∂t
= ∇× (V ×B), (2.4)

∇ ·B = 0, (2.5)

where γ is the ratio of specific heat capacities. In a steady state, i.e., ∂/∂t = 0, with no equilib-

rium flow, we can rewrite the ideal MHD model as

∇p0 =
(∇×B0)×B0

µ0

=
B0 ·∇B0

µ0

−∇

(
B2

0

2µ0

)
, (2.6)

∇ ·B0 = 0, (2.7)

where p0 and B0 are the equilibrium pressure and magnetic field vector, respectively. The steady-

state force balance equation (2.6) represents a balance between plasma pressure, magnetic pres-

sure, and magnetic tension of the magnetic field lines. The divergence-free condition (2.7) is an

14



additional constraint that must be satisfied by the magnetic field vector throughout the plasma.

For a general 3D geometry, this can be achieved by writing the magnetic field in the Clebsch

form [23]

B0 = ∇αt ×∇ψp. (2.8)

The form in (2.8) is generally used for tokamak equilibria. For stellarators, we use the following

equivalent representation

B0 = ∇ψ ×∇αs. (2.9)

We will focus on solutions whose magnetic field lines lie on closed nested toroidal surfaces,

known as flux surfaces. By taking the component of (2.9) along B0, we get B0 ·∇p0 = 0 which

gives p0 = p0(ψ), i.e., each surface experiences constant plasma pressure. For tokamaks, we

label the flux surfaces with their enclosed poloidal flux ψp whereas for stellarators, we use the

enclosed toroidal flux ψ. On each flux surface, lines of constant αt and αs coincide with the

magnetic field lines in tokamaks and stellarators, respectively. Thus, the variables αt and αs are

known as field line labels.

To facilitate the calculation of various physical quantities from a general equilibrium solver,

we use multiple coordinate systems. The first system we will use is the right-handed cylindri-

cal coordinate system (R, ϕ, Z) where R and Z are the radial and vertical distances from the

origin and ϕ is the azimuthal angle around the symmetry axis. We also define a curvilinear co-

ordinate system called PEST [24] coordinates (ψp, ϕ, θ) where ψp is the flux surface label, ϕ

is the cylindrical azimuthal angle and θ is the “straight-field-line” poloidal angle [23] such that

αt = ϕ− q(ψp)(θ− θ0). Similarly, for 3D equilibria, we use the coordinate system (ψ, ϕ, θ) and

αs = θ − ι(ψ)(ϕ− ϕ0). We illustrate the cylindrical and PEST coordinate systems in figure 2.1.
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R

Z

X

Y

Z

(a) Cylindrical coordinates (b) PEST coordinates

Figure 2.1: This figure illustrates the two important coordinate systems used in this thesis — (a)

shows the cylindrical coordinate system (R, ϕ, Z) and the orientation of a tokamak inside it. The

center of the torus (marked with a red dot) is called the magnetic axis. In (b) we present the PEST

coordinate system (ψ, θ, ϕ) at a constant-ϕ cross-section of the tokamak. The cross section shows

the constant-ψ contours (in black) and open constant-θ contours (in blue).

The pitch of the magnetic field line on a flux surface is described by the safety factor

q(ψ) =
1

ι(ψ)
≡ dψ

dψp

=
1

(2π)2

∮
dϕ

∮
dθ

B0 ·∇ϕ

B0 ·∇θ
, (2.10)

where ι, the rotational transform, is the inverse of the safety factor. For axisymmetric equilibria,

q(ψ) =
1

(2π)

∮
dθ

B0 ·∇ϕ

B0 ·∇θ
. (2.11)

Using the Clebsch representation for (2.8) or (2.9) for the magnetic field, finding the equilibrium

involves solving a single vector equation (2.6).

For axisymmetric devices, (2.6) can be further simplified. We can use the following form
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of the magnetic field

B = ∇ϕ×∇ψp + F (ψ, θ)∇ϕ, (2.12)

substitute it in the ∇ϕ component of (2.6), and use the fact ∂/∂ϕ = 0 for all the equilibrium

quantities to obtain

∂F

∂θ
= 0. (2.13)

Hence, for an axisymmetric system, F = F (ψp). Next, we take a component of (2.6) along ∇ψp

and simplify it to obtain the Grad-Shafranov [25, 26] equation

∆
∗ψp ≡ R2

∇ ·
(
∇ψp

R2

)
= −µ0R

2 dp

dψp

− F
dF

dψp

. (2.14)

The Grad-Shafranov equation is a non-linear equation for the poloidal flux ψp(R,Z) that depends

on the profiles of pressure p(ψp) and current F (ψp). For simple profiles of p and F , (2.14) can

be solved analytically.

For a general 3D system, a reduction used to obtain (2.14) cannot be performed and the

two components (2.6) must be soved simultaneously. An analytical equation does not exist for

a general 3D system. For stability analyses, solving (2.6) is usually the most inexpensive step.

Therefore, throughout this work, we will use a general numerical equilibrium solver to solve (2.6)

for all the ideal MHD equilibria. In the following section, we explain how we use the numerical

solver VMEC1 to obtain both 2D-axisymmetric and 3D equilibria.

1The main ideas of this work are independent of the equilibrium solver. Our technique will work with any other

equilibrium solver.
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2.2.1 Numerical equilibria

We generate numerical equilibria using the 3-D equilibrium code VMEC [27]. The code

works by minimizing the integral

W =

∫ (
p

γ − 1
+

B2

2µ0

)
dV, (2.15)

Kulsrud and Kruskal [28] have shown that minimizing W , subject to various topological con-

straints such as existence of nested flux surfaces, constant pressure on each flux surface etc. is

equilivalent to solving the ideal MHD force balance equation

∇p = j ×B. (2.16)

For our study, we used the fixed-boundary mode of VMEC. The fixed-boundary mode takes the

shape of the boundary surface denoted by the cylindrical coordinates Rb and Zb in terms of the

Fourier-decomposed poloidal (Θ) and toroidal (ϕ) modes

Rb =
∑

n

∑

m

R̂b(m,n) exp(i(mΘ− nϕ)),

Zb =
∑

n

∑

m

Ẑb(m,n) exp(i(mΘ− nϕ)),

(2.17)

where m and n are integers. We also provide VMEC with the coefficients of the polynomials

representing the global radial pressure p(s) and the rotational transform ι(s) as a function of

the normalized toroidal flux s = ψ/ψb, and the total toroidal flux (ψb) or poloidal flux (ψp,b)

enclosed by the boundary. The poloidal angle Θ used by VMEC is related to the straight-field-line
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θ by the following equation

Θ = θ + Λ(Θ, ϕ), (2.18)

where Λ is a monotonic function calculated by VMEC.

For a given boundary shape, pressure, rotational transform, and enclosed toroidal flux,

fixed-boundary VMEC then solves for the shapes of the flux surfaces to minimize the integral

in (2.15) on each surface for fixed p and ι subject to various topological constraints imposed by

the ideal MHD. In a more compact form, VMEC solves

min
R,Z,Λ

W [R,Z,Λ; p, ι, ψ(s = 1)], s.t. R(s = 1) = Rb, Z(s = 1) = Zb. (2.19)

After running the code, we obtain the shape of the flux surfaces, the magnetic field, and a set of

important physical quantities. The characteristic physical quantities that we will use in this work

are defined below:

• The total enclosed toroidal flux by the boundary ψb =
∫
dV B ·∇ϕ,

• The normalizing magnetic field BN = ψb/(πa
2
N) where aN =

√
Ab/π is the effective

minor radius and Ab is the average area enclosed by the boundary, averaged over ϕ for 3D

equilibria,

• The ratio of the total plasma pressure to the magnetic pressure on the magnetic axis — the

flux corresponging to s = 0, βax = 2µ0p(s = 0)/B2
N,

• The aspect ratio A and the normalized minor radius aN of the device,

• The radius of curvature of the boundary Rc(θ) =
d2R

dZ2

/(
1 +

(
dR

dZ

)2)3/2

where R and
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Z are the cylindrical coordinates used to parametrize the boundary,

• The volume-averaged, normalized plasma pressure ⟨β⟩ =
∫
dV β/

∫
dV where dV is the

differential volume element and β = 2µ0p/B
2,

• The total enclosed toroidal current jϕ = |
∫
dV (j ·∇ϕ)|,

• The volume-averaged magnetic field ⟨B⟩ =
∫
dV B/V where dV is the differential volume

element, and

• The mean rotational transform ῑ =
∫
ds ι/

∫
ds.

Using VMEC, we generate three equilibria: an axisymmetric equilibrium with a DIII-D-like

boundary shape [29] and two 3D equilibria: modified NCSX [30] and modified Henneberg-

QA [31]. In the following sections, we provide important details for each of these equilibria.

In this study, the first equilibrium that we choose is a high-β, axisymmetric, DIII-D-like

equilibrium with a negative triangularity boundary — a boundary that looks like an inverted-D.

Negative triangularity equilibria have previously been found to have enhanced confinement [29]

while avoiding MHD-driven disruptions. Specifically, we choose a negative triangularity equi-

librium from [32] where has been shown to be unstable against the ideal ballooning mode. The

input pressure, the rotational transform, and the boundary shape profile for this equilibrium are

shown in figure 2.2. With this equilibrium as an initial state, we run our ideal ballooning stability

optimization to find a stable equilibrium.

The optimizer sometimes tends to find solutions that are ideal MHD stable in a trivial man-

ner. For example, the optimizer may give us a large aspect ratio causing the β to decrease such

that it stabilizes pressure-driven instabilities. Sometimes, it may reduce the enclosed toroidal

20



0.0 0.2 0.4 0.6 0.8 1.0
s

0.000
0.005
0.010
0.015
0.020
0.025

0
p
(N
/m

A)
2

(a) Pressure

0.0 0.2 0.4 0.6 0.8 1.0
s

0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62

(b) Rotational transform

1.0 1.6 2.2
R

1.0

0.5

0.0

0.5

1.0

Z

(c) Cross-section

Figure 2.2: This figure plots the inputs to the VMEC code for the DIII-D-like design: the pressure,

rotational transform as a function of the normalized toroidal flux s, and cross-section of the

boundary.

current to eliminate current-driven instabilities. To avoid these trivial solutions, we have to im-

pose additional constraints on important characteristic physical quantities to prevent them from

changing significantly. The values of the relevant physical quantities for this equilibrium are

provided in table 2.1. The second equilibrium we select is the 3D equilibrium for the NCSX

βax(%) ⟨β⟩(%) jϕ(MA) ⟨B⟩ (T) ῑ A aN(m) ψLCFS(Tm
2)

14 7.6 0.616 0.677 0.568 2.42 0.68 1.0

Table 2.1: This table shows the values of relevant physical quantities for the DIII-D like equilib-

rium.

design [30, 33]. The pressure, rotational transform, and boundary shape profile for this equilib-

rium are shown in figure 2.3. In tokamaks, magnetic field lines are twisted through an internal

toroidal plasma current jϕ. On the other hand, in stellarators, the fieldlines are twisted using a

non-axisymmetric boundary shape instead of inducing an internal plasma current. The 3D bound-

ary shape alleviates the need for an internal current and eliminates the typical current-driven

instabilities known to cause some disruptions in tokamaks. However, because of neoclassical
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effects [34, 35], stellarator equilibria can still generate toroidal current. To completely eliminate

the need for external current drive (to reduce the internal current, for example), one must ensure

that the neoclassically-induced “bootstrap” current [35] is self-consistent with the 3D equilib-

rium. Since we are not optimizing for a self-consistent bootstrap current, it is essential to ensure

that the toroidal current does not have a large value (∼ 10MA). Therefore, we include additional

constraints in our optimizer to prevent large changes in the toroidal current and other important

quantities. The values of these equilibrium-dependent quantities are presented in table 2.2.
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Figure 2.3: This figure plots the inputs to the VMEC code for the modifief NCSX design: the

pressure, rotational transform as a function of the normalized toroidal flux s, and cross-section of

the boundary. Notice the large negative shear until s ≈ 0.85.

βax(%) ⟨β⟩(%) jϕ(MA) ⟨B⟩ (T) ῑ A aN(m) ψLCFS(Tm
2)

9.38 5.14 0.174 1.59 0.55 4.36 0.32 0.514

Table 2.2: This table shows the values of important physical quantities for the modified NCSX

equilibrium.

The final equilibrium we study is the modified Henneberg-QA design [31]. This equilib-

rium is also designed to have quasisymmetry for a wide variety of pressure profiles. The pressure,

rotaional transform and boundary shape profile for this equilibrium are shown in figure 2.4.
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βax(%) ⟨β⟩(%) jϕ(MA) ⟨B⟩(T ) ῑ A aN(m) ψLCFS(Tm
2)

4.5 2.4 0.235 2.5 0.263 3.37 0.60 2.67

Table 2.3: This table presents values of relevant physical quantities for the modified Henneberg-

QA design.
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Figure 2.4: This figure plots the inputs to the VMEC code for the modified Henneberg-QA design:

the pressure, rotational transform as a function of the normalized toroidal flux s, and cross-section

of the boundary. Notice the large negative shear in the inner-core region.

For reasons explained in the previous section, we will impose additional constraints on

some of the physical quantities. The values of these equilibrium-dependent parameters that we

will use as constraints in §2.4 are presented in table 2.3.

The existence of an MHD equilibrium does not guarantee its stability. Therefore, the next

natural step is to perform stability analyses of the three ideal MHD equilibria calculated in this

section. We explain our approach and then present our stability analyses in the next section.

2.3 Ideal MHD: Stability

In this section, we will explain how to formulate and analyze the stability of an ideal MHD

equilibrium. We will linearize the ideal MHD model about an equilibrium state, subject to an in-
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finitesimal displacement of magnetic field lines. We will show that this linearized model gives us

a single equation governed by a linear (force) operator and how it can be reduced to a variational

principle known as the ideal MHD energy principle [14]. We will then explain how the energy

principle can be simplified in the limit of radially localized modes, which gives us a pressure-

driven instability, known as the ideal ballooning mode.

To derive the linearized stability equations, we will closely follow chapter 8 of Freid-

berg [1]. We start by using the ideal MHD equations (2.1)-(2.7), assuming no equilibrium flow

V0 = 0 and equilibrium plasma density and pressure that only depend on the enclosed flux ψ. In

steady-state equilibrium, ∂/∂t = 0 which reduces the model to the force balance equation (2.6).

We subject the steady state, no-flow ideal MHD system to an infinitesimal perturbation of

a magnetic field line ζ of the following form

ζ̃(r, t) =
∑

ζ(r)eiωt (2.20)

summed over different frequencies ω. Upon subjecting the system to this perturbation, we obtain

the perturbed physical quantities

ρ = ρ0(ψ) + ρ1, (2.21)

V = V1, (2.22)

p = p0(ψ) + p1, (2.23)

B = B0 +B1, (2.24)

where ρ1/ρ0 ∼ p1/p0 ∼ |B1|/|B0|. Due to the frozen-in condition of ideal MHD, the motion of

24



the fluid and the field line are identical. Hence, we can argue that Ṽ = ∂ζ̃/∂t = iωζ. Using this

fact, we can linearize and simplify the MHD equations so that we are left with a single eigenvalue

equation for ζ

−ω2ρ0ζ = ∇(ζ ·∇p0 + γp0(∇ · ζ)) +
[∇× (∇× (ζ ×B0))]×B0

µ0

+
(∇×B0)× (∇× (ζ ×B0))

µ0

.

(2.25)

The left-hand-side of (2.25) denotes the kinetic energy of the plasma due to the perturbation ζ

whereas the right-hand-side denotes the stored potential energy. The right side of (2.25) is also

known as the ideal MHD force operator F [ζ].

It is often convenient and useful to write the eigenvalue equation (2.25) in the form of a

variational principle. Multiplying (2.25) by ζ∗/2 on both sides and integrating over the whole

volume, we obtain

−1

2

∫
dV ρω2|ζ|2 = 1

2

∫
dV ζ∗ · F [ζ]. (2.26)

Assuming that the boundary is a perfectly conducting wall containing the plasma, the frozen-in

condition constrains ζ to be such that ζ · n̂|wall= 0, where n̂ is the normal unit vector of the wall.

Using the perfectly conducting-wall boundary condition, integration by parts, and the self-adjoint

property of F [ζ], we can show that

∫
dV ζ∗ · F [ζ] =

∫
dV ζ · F [ζ∗]. (2.27)

This implies that the eigenvalue −ω2 of an ideal MHD instability must be a real number. There-
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fore, the perturbation ζ, will either be purely oscillating, i.e. ω2 > 0 or purely decaying / growing,

i.e. ω2 < 0. We ignore the decaying mode, since the purely growing mode typically limits the

lifetime of the configuration. The right side of (2.26) can be defines a functional δW :

δW [ζ, ζ] ≡ −1

2

∫
dV ζ∗ · F [ζ]. (2.28)

Physically, the sign of δW , which is the same as the sign of the eigenvalue −ω2, determines

whether an ideal MHD equilibrium is stable or unstable. This is knowns as the ideal MHD

energy principle. Figure 2.5 presents an intuitive illustration of the energy principle.

δW<0 δW>0 δW=0

Figure 2.5: This figure illustrates the main idea of the ideal MHD energy principle. For a given

equilibrium, if a perturbation ζ makes δW < 0, the equilibrium unstable to that perturbation. If ζ

makes δW > 0, the equilibrium is stable to that perturbation. Finally, if δW = 0, the equilibrium

is marginally stable.

The self-adjoint property of the force operator and its variational form will be the basis

for an adjoint-based method in §2.3.3. To further analyze the stability of an MHD equilibrium

against a particular mode, it is useful to separate the components of the perturbation ζ in two

different directions

ζ(r) = ζ∥b0 + ζ⊥. (2.29)

In total, there are three components of ζ, i.e., three unknowns. Substituting this form of ζ
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into (2.28), using the divergence theorem,

∫
dV ∇ ·X =

∫
dS n̂ ·X (2.30)

and applying the perfectly conducting-wall boundary condition, we can expand the energy inte-

gral [1, 36] into a different form

δW =
1

2µ0

∫
dV

{
|[b0 ×∇× (ζ⊥ ×B0)]× b0|2 +B2

0 |∇ · ζ⊥ + 2ζ⊥ · (b0 ·∇b0)|2

µ0γp0|∇ · ζ|2 − 2µ0(ζ⊥ ·∇p0)(ζ
∗
⊥ · (b0 ·∇b0))

− µ0(b0 · (∇×B0)) ζ
∗
⊥ × b0 · (b0 ×∇× (ζ⊥ ×B0)]× b0)

}
.

(2.31)

Next, we argue that the most virulent ideal MHD modes are incompressible. The only term that

has ∇ · ζ in (2.31) is positive definite — positive definite terms can only increase δW and hence

stabilize an equilibrium. To enforce incompressibility, i.e., ∇·ζ = 0, we can replace all instances

of ∇∥ζ∥ with −∇ ·ζ⊥ which reduces the number of unknown components of ζ from three to two.

We also note that note is that δW < 0 only due to the last two terms in (2.31). The penultimate

term corresponds to pressure-induced instabilities, while the last term causes current-induced

instabilities.

Furthermore, we use the periodicity of the perturbations in θ and ϕ, to write

ζ⊥ =
∑

m,n

ζ⊥m,n(ψ) e
i(mθ−ιnϕ), (2.32)

where m is the poloidal mode number, n is the toroidal mode number and ι is the rotational

transform. The perturbations can be further categorized on the basis of the toroidal mode number
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n; large scale instabilities are characterized by low-n modes whereas small scale instabilities are

categorized by high-n modes. In the following section, we will briefly explain the details of a

low-n solver.

2.3.1 Low-n modes

In this section, we will briefly describe the process of solving (2.25) in the limit of a small

toroidal mode number n. These are large-scale modes that are predominantly destabilized by

the equilibrium parallel current. To obtain the governing equation, the Fourier-transformed ζ⊥ is

substituted into the energy integral δW [ζm,n, ζm,n] to simplify the variational equation

−ω2 =

∫
dV δW [ζm,n, ζm,n]∫

dV ρ|ζm,n|2
, (2.33)

to an Euler-Lagrange equation to find the minimum (the least stable) eigenvalue −ω2. To avoid

confusion related to the sign of the eigenvalue, we define λ̂ = −ω2 as the eigenvalue. For low-

n modes, we cannot simplify the energy integral any further and have to solve the non-linear

variational eigenvalue problem with quadratic nonlinearity in ζ subject to boundary conditions

at ψ = 0, ψb. One usually chooses a Dirichlet boundary condition on the magnetic axis, i.e.,

ζm,n(ψ = 0) = 0. For a conducting wall, we can also impose a Dirichlet condition at ψ = ψb.

To numerically solve (2.33), we pick a set of low-n modes2 and scan multiple values of

the poloidal mode number m and discretize the energy integral so that the problem takes the

following form

AX = λ̂BX, (2.34)

2For a general 3D problem, the toroidal modes will be coupled due to the discrete nature of toroidal symmetry.

The set of mode numbers will depend on the field period nfp and the rotational transform ι.
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where X comprises various Fourier modes of the perturbation. Note that due to the non-linear

nature of the energy integral and the discrete symmetry of 3D equilibria, one has to take into ac-

count the coupling between various toroidal modes of the perturbation ζm,n and include groups of

higher-order (m,n) modes before obtaining (2.34). This makes the matrix A sparse but banded.

However, both matrices A and B are real and symmetric, therefore, self-adjoint.

Currently, there are various codes such as TERPSICHORE [37] and CAS-3D [38] that

analyze low-n stability for 3D equilibria and GATO [39] and ELITE [40] for 2D axisymmetric

equilibria. However, performing an optimization with these codes can be computationally expen-

sive to run. We will not analyze our equilibria for low-n stability in this paper. However, we can

use the self-adjoint property of these equations to formulate a faster method to optimize against

all low-n instabilities, briefly described in appendix A.4.

2.3.2 The infinite-n, ideal ballooning mode

In this section, we will investigate the stability of the equilibria generated in the previous

sections to the infinite-n ideal ballooning mode. We will start by explaining the mathematical

and physical details of the ballooning mode. Next, we will explain how to solve this equation nu-

merically. Finally, we explain properties of the ballooning equation that we will use to formulate

an optimizer in the next section.

2.3.2.1 Physical and mathematical description

One of the most important MHD instabilities for us to investigate is the ideal ballooning

instability [41] — a field-aligned, pressure-driven Alfvén wave that grows when the destabilizing

29



pressure gradient in the region of “bad” curvature exceeds the stabilizing effect of field line

bending. The region of “bad” curvature is that region of a flux surface where (b ·∇b) ·∇p > 0,

such that the field line curvature is in the same direction as the plasma pressure gradient. For

most tokamak equilibria, this region lies on the outboard side.

The equation governing the ideal ballooning mode can be obtained by minimizing the ideal

MHD energy integral [14] for incompressible modes in the limit of a large toroidal mode number.

Doing so gives us a differential equation that determinesX , the radial displacement of the plasma.

To ensure that the displacementX satisfies the periodicity condition on the surface of interest and

the surrounding surfaces, one uses the ballooning transformation

X =
∞∑

N=−∞

X̂(θ − 2πN) ein(ϕ−q(θ−θ0−2πN))), N ∈ Z, (2.35)

subject to the condition

lim
θ→±∞

X̂(θ;ψ, θ0) = 0, (2.36)

and solves for X̂ . The variable n is the toroidal mode number, θ0 is the ballooning parameter3

and the rest of the terms are defined in §2.2. Upon minimizing the ideal-MHD energy integral

and using the ballooning transformation, one obtains the ideal ballooning equation [16, 41]

1

J
∂

∂θ

(
|∇α|2
J B2

∂X̂

∂θ

)
+ 2µ0

d(µ0p)

dψ

[
B ×∇

(
p+

B2

2

)
·∇α

]
X̂ = −ρω2 |∇α|2

B2
X̂, (2.37)

where ρ is the plasma mass density and X̂ = X̂(θ;ψ, θ0) is the eigenfunction in ballooning space

3In the context of infinite-n ideal ballooning mode analyses, there is a value of the ballooning parameter θ0 at

which the ballooning mode is the least stable. To find this value, one treats θ0 as a parameter and scans over its

values to find the θ0 for which ω2 is the smallest.
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and −ω2 is the eigenvalue. The ballooning equation balances the stabilizing field-line bending

term and destabilizing pressure gradient with the inertia of the resulting Alfvén wave, oscillating

with a frequency ω. Note that (2.37) depends on ψ(ψp) only as a parameter and we can compute

the coefficients from the on-surface equilibrium quantities and their first derivatives. Therefore,

it is possible to study the ballooning stability of the local equilibria that we chose in §2.2.1.

Due to the self-adjoint nature of ideal-MHD, all the eigenvalues (ω2) of equation (2.37) will

be real numbers. Hence, ω will be either purely real, an oscillating mode or purely imaginary,

a growing mode. We refer to the oscillating modes as stable, and growing modes as unstable.

Before solving (2.37) numerically, we normalize and write the ballooning equation on a fieldline

(fixed αt) as

d

dθ
g
dX̂

dθ
+ cX̂ = λ̂fX̂, (2.38)

where

g = (b ·∇Nθ)
|∇Nαt|2
B/BN

,

c =
2

(B ·∇Nθ)

d(µ0p/B
2
N)

dψN

[
B ×∇N

(
2µ0p+B2

2B2
N

)
·∇Nαt

]
,

f =
|∇Nαt|2
(B/BN)2

,

λ̂ = −
(
ωaN
vA

)2

, vA =
BN√
4πρ

,

(2.39)

where vA is the Alfvén speed. The normalizing magnetic fieldBN, and the normalizing length aN

are defined in §2.2.1. The ideal ballooning equation is numerically solved subject to the boundary

conditions

X̂(θ = ±θb;ψ, αt, θ0) = 0. (2.40)

where θb is a finite user-selected value that determines the extent of the eigenfunction in the
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ballooning space. In the next section, we present the numerical procedure used to solve the ideal

ballooning equation.

2.3.2.2 Numerical implementation and eigenvalues of the selected equilibria

In this section, we will briefly discuss the numerical technique used to solve the ballooning

equation (2.38). Our numerical technique is identical to that used by Sanchez et al. [42] in their

ballooning solver COBRAVMEC. After briefly explaining the details of our solver, we present the

maximum eigenvalue as a function of the normalized toroidal flux s for the three equilibria we

presented in §2.2.1.

The ideal ballooning equation is a second-order ordinary differential equation with real-

valued coefficients. This eigenvalue equation is discretized using a second-order accurate, central-

finite-difference scheme

gj+1/2
(X̂j+1 − X̂j)

∆θ2
− gj−1/2

(X̂j − X̂j−1)

∆θ2
+ (cj − λ̂fj)X̂j = 0, j = 0 . . . N − 1 (2.41)

where N is an odd number of uniformly spaced points in the ballooning space, θj ∈ [−θb, θb]

and ∆θ = θj+1 − θj . First-order derivatives are evaluated at half points j − 1/2, j − 3/2 instead

of grid points to ensure numerical stability. The boundary conditions satisfied by the discrete

equations are X̂0 = X̂N = 0. For a fixed poloidal and toroidal resolution, the time taken by our

solver is proportional to θb. Therefore, it is important to find the right balance between speed and

accuracy. Throughout this work, we chose the domain limit θb = 5π for all calculations, as we

found it to be a sufficient range to capture the ballooning eigenfunction. We observed that the

values θb > 5π made a relatively small difference from the value obtained of λ̂. The discrete set
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of equations (2.41) is written in the form of a matrix equation

AX̂ = λ̂X̂, (2.42)

where the exact matrix A is provided in appendix A.1. We then solve (2.42) to find the largest

eigenvalue using an Arnoldi iterative scheme using the scipy.linalg.eigs solver in Python

and refine the accuracy of the largest eigenvalue in the grid spacing ∆θ using variational refine-

ment where the derivative dX̂/dθ is calculated using a fourth-order accurate finite difference

scheme and the integral is performed using a fourth-order accurate Simpson’s rule (1/3 rule)

with scipy.integrate.simps4. Note that we only solve for and refine the largest eigen-

value of (2.38) and not the entire eigenvalue spectrum.

An alternate technique that can be used to speed up the eigenvalue calculation, the Homo-

topy Analysis method, is also described in Appendix A.5. It is a semi-analytical method that has

the advantage of being free from any noise unlike the finite-difference method that we shall use

in this chapter.

2.3.2.3 Properties of the ideal ballooning equation

The ideal ballooning equation (2.38) is a linear equation that can be written as

LX̂ = λ̂X̂, (2.43)

4Our Python code is freely available at github.com/rahulgaur104/ideal-ballooning-solver
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where the linear operator

L ≡ 1

f

d

dθ
g
d

dθ
+

c

f
, (2.44)

and the coefficients g, c, f are real-valued functions along a field line. Mathematically, the solu-

tions of (2.43) form the basis of a Hilbert space equipped with the following inner product

⟨X̂1, X̂2⟩ =
∫ ∞

−∞

dθX̂∗
1X̂2, (2.45)

and are square integrable, i.e., ⟨X̂, X̂⟩<∞. Due to the self-adjoint nature of ideal MHD [1], for

solutions X̂1 and X̂2 of equation (2.43) the operator L satisfies the following property

⟨LX̂1, X̂2⟩ = ⟨X̂1,LX̂2⟩, (2.46)

where we have used the boundary condition limθ→±∞ X̂1 = limθ→±∞ X̂2 = 0. Using (2.46), one

can show that all eigenvalues λ̂ (2.37) will be real numbers. Therefore, ω = ±i
√
λ̂ will be purely

real, an oscillating mode, or purely imaginary, a growing mode. We refer to oscillating modes

as stable and to growing modes as unstable. We will use this property in §2.3.3 to formulate an

adjoint method, a technique that can speed up the calculation of the gradient of λ̂max on each flux

surface.

2.3.3 Leveraging the self-adjoint property to formulate an optimizer

In this section, we derive and explain the process of calculating the gradients of the ideal

ballooning eigenvalue λ̂ on each surface that would help us find the maximum eigenvalue λ̂max

using an adjoint method. We then elucidate how it is faster than the conventional gradient-based
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method and illustrate this by plotting gradients from a typical optimization run and calculating

the speed-up.

To find λ̂max on each flux surface, we need the gradient of the eigenvalue of a general

function H such that H is maximized if and only if λ̂ = λ̂max. Mathematically, this problem can

be defined in general as

maxH(λ̂, p̃, p̂), s.t. G(λ̂, X̂, p̃, p̂) ≡ LX̂ − λ̂X̂ = 0, (2.47)

where λ̂ is the eigenvalue, X̂ is the eigenfunction, p̃ is the state vector that contains all the

equilibrium parameters such as the boundary shape and the ι profile and p̂ = (αt, θ0) is a vector

that contains the parameters of the ideal ballooning equation, H is an objective function, and G is

the ideal ballooning operator. To maximize H on a flux surface for a given equilibrium, i.e., for

a fixed p̃, we need the gradient

dH
dp̂

=
∂H
∂λ̂

∣∣∣∣
p̂

∂λ̂

∂p̂
+
∂H
∂p̂

∣∣∣∣
λ̂

. (2.48)

The most expensive term to calculate in (2.48) is the gradient of the eigenvalue λ. To obtain that,

we take the derivative of the operator G with respect to λ5 for a fixed p̃

−∂G
∂λ̂

∂λ̂

∂p̂
=
∂G
∂X̂

∂X̂

∂p̂
+
∂G
∂p̂

∣∣∣∣
X̂,λ̂

. (2.49)

5Note that the derivative of an eigenvalue is only well-defined when the eigenvlaue is isolated. Optimization

problems with stringent penalty terms can lead the optimizer to points with multiplicity [43].
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This equation can be explicitly written with the help of (2.44)

∂λ̂

∂p̂
X̂ = (L − λ̂)

∂X̂

∂p̂
+
∂L
∂p̂

X̂. (2.50)

To simplify (2.50) further, we multiply it by the eigenfunction X̂∗ and integrate it throughout the

domain θ ∈ [−θb, θb]. Upon doing that, we use the self-adjoint property (2.46) and work through

the algebra (given in appendix A.2) to obtain the adjoint relation

∂λ̂

∂p̂
=

∫
θb

−θb
dθ

(
∂c

∂p̂
|X̂|2 − ∂g

∂p̂

∣∣∣dX̂
dθ

∣∣∣
2

− λ̂
∂f

∂p̂
|X̂|2

)

∫ θb
−θb

dθ f|X̂|2
. (2.51)

To obtain ∂λ̂/∂p̂ using a central finite difference scheme, one has to solve the ideal balloon-

ing equation 2np̂ = 4 times at each optimization step, where np̂ is the length of the vector p̂.

However, using the adjoint relation (2.51), we only have to solve it once per optimization step,

as long as we can calculate the gradients of geometry-related quantities g, c, and f four times.

Since gradients of g, c, f can be calculated roughly two orders of magnitude faster than solving

the ideal ballooning equation, we speed up the gradient calculation by approximately a factor of

four. Therefore, we use the adjoint relation (2.51) to calculate the gradient of λ̂. In this study, we

choose

H(λ̂, p̃, p̂) = λ̂. (2.52)
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Applying this fact to (2.48) and using (2.51),

dH
dp̂

=
∂λ̂

∂p̂
=

∫
θb

−θb
dθ

(
∂c

∂p̂
|X̂|2 − ∂g

∂p̂

∣∣∣dX̂
dθ

∣∣∣
2

− λ̂
∂f

∂p̂
|X̂|2

)

∫ θb
−θb

dθ f|X̂|2
. (2.53)

This relation gives us the derivative of the ballooning objective function at any point p̂ = (αt, θ0).

Note that in this work we will use (2.53) to find λ̂max on a flux surface. However, this method

is valid and, under appropriate conditions, can be extended to the equilibrium parameters p̃. The

details of the extended adjoint method are given in appendix A.3.

In the next section, we present data and explain the advantages of adjoint methods over the

regular finite-difference-based method to calculate the gradients of λ̂max.

2.3.3.1 Comparing adjoint gradients with a finite difference method

In this section, we will first compare the values of the gradients of λ̂max from the adjoint

method with their values obtained using a central-finite difference method. We take a typical

optimization loop in the modified NCSX case and show a gradient comparison in figure 2.6.

As you can see, the gradients obtained using an adjoint method match well with the gradients

obtained with a finite-difference method.
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Figure 2.6: In this figure we present (a) comparison between the gradients of eigenvalue λ̂αt
=

∂λ̂/∂αt and λ̂θ0 = ∂λ̂/∂θ0 obtained using a finite difference scheme against ones obtained using

an adjoint method. The quantity iter is the number of iterations taken by the local optimizer on a

flux surface before finding λ̂max. The gradients match well for around four orders of magnitude.

The discrepancy between the adjoint and finite difference λ̂αt
is due to the finite resolution of the

VMEC run. In figure (b), we illustrate the the different grids used to calculate the gradient of the

eigenvalue λ̂ on a flux surface. A finite difference scheme requires four points whereas an adjoint

method only requires one point. This gives us a four times speed-up.

To show the computational speedup, we also compare the time taken by an adjoint method

with the regular finite-difference-based method. For the thirty iterations shown in figure 2.6(a),

the adjoint method was about 4 times faster than the finite difference method. Indeed, the most

expensive part of the gradient calculation is the ballooning solver. As shown in the illustration

in figure 2.6(b), for a second-order accurate central-difference scheme, an adjoint method only

needs a single call to the ballooning solver, whereas the finite difference solver needs four. In

principle, a speed-up factor of up to 4 should be possible.

2.3.4 Details of the optimization process

In this section, we will explain the optimization process to find equilibria that are sta-

ble against the ideal ballooning mode. In §2.3.4.1, we describe the process of using an adjoint
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method to find the maximum growth rate λ̂max on each flux surface. In §2.3.4.2, we then explain

how we use λ̂max and other penalty terms to construct the overall objective function F . Finally,

in §2.3.4.3, we explain how we search for ballooning stable equilibria while minimizing F using

the SIMSOPT framework.

2.3.4.1 Finding λ̂max on each flux surface

To calculate the ballooning objective function we find the maximum λ̂ on each flux surface.

To do that, we solve (2.38) on several flux surfaces, multiple field lines on each surface, and

numerous values of θ0 on each field line. We calculate λ̂max on ns = 16 flux surfaces for each

equilibrium. For the 3D equilibria, we scan nαt
= 42 field lines in the range αt = [−π, π). Since

all field lines are identical in a 2D axisymmetric equilibrium, we scan only one field line, i.e.,

nα = 1 for the 2D equilibrium. On each field line, we scan nθ0 = 21 values of θ0 in the range

θ0 = [−π/2, π/2). The maximum λ̂ from a coarse grid scan gives us a value close to the global

maximum. From the maximum λ̂ of the coarse grid, we launch a local gradient-based optimizer

to find the global maximum eigenvalue. This process is explained using the illustration 2.7.
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(a) λ̂ landscape and optimizer path at s = 0.77

Figure 2.7: This figure shows the typical process of finding the globally maximum eigenvalue

λ̂max on the flux surface s = 0.77. We start by first finding the maximum λ̂ on discrete grid of

αt and θ0. From the maximum discrete λ̂, we search for the global maximum eigenvalue using a

local optimizer. In the inset, we show the approximate path taken by the optimizer to reach the

λ̂max.

Using this process, we obtain λ̂max as a function of the normalized toroidal flux s. Fig-

ure 2.8 shows the plot of λ̂max against s for the three chosen equilibria.
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Figure 2.8: This figure shows the plots of λ̂max against the normalized toroidal flux s for the three

chosen equilibria. Note that the ideal ballooning growth rate γaN/vA =
√
λ̂ so λ̂max = 0.008

corresponds to the normalized growth rate γaN/vA = 0.09 which is not a small value.

For each new equilibrium, on all ns = 16 flux surfaces, the local optimizer takes an average

of 20 iterations to find λ̂max. Moreover, as described in figure 2.6(b), at each step, the use of a
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finite difference method requires 4 evaluations of the eigenvalue λ̂. This means that on average,

we have to call the ballooning solver 1280 (16×20×4) times. This is a computationally expensive

step that we speed up using our adjoint-based method.

2.3.4.2 Finding ballooning-stable equilibria

Once we have found λ̂max, we seek an equilibrium stable to the ideal ballooning mode by

minimizing λ̂max on each flux surface. To do so, we need to define an objective function that

depends on λ̂max such that minimizing the objective function should allow us to achieve a stable

equilibrium. Moreover, during optimization, once a flux surface is stabilized against the ideal

ballooning mode, our objective function should ignore that particular surface. This would be

useful as we do not want to penalize a stable equilibrium. To this end, we design the following

ideal ballooning objective function

fball =
ns∑

j=1

ReLU(λ̂max,j − λ̂th,j), (2.54)

where ns is the total number of surfaces and

ReLU(x) =





0, if x ≤ 0

x, x > 0

is the Rectified Linear Unit operator — an operator that sets all the non-positive values to zero

and λ̂th,j is the threshold below which we declare a surface ideal ballooning-stable. The value

λ̂j = 0 on the jth surface implies marginal stability but we choose λ̂th,j = 0.0001 to ensure that
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all the surfaces are slightly away from marginal ideal ballooning stability. An equilibrium is ideal

ballooning stable if fball = 0.

It is also important to prevent the optimizer from minimizing fball in a trivial manner. For

example, for 2D equilibria, going to a larger aspect ratio value stabilizes the ideal ballooning

mode. For 3D equilibria, the optimizer can sometimes reduce the minor radius, which, for a

fixed toroidal flux, causes the magnetic field to increase. This lowers the overall β and conse-

quently the unstable curvature drive term. Similarly, if we allow rotational transforms to increase

freely, the optimizer can sometimes create large gradients of ι, generating large currents which

is suboptimal. To avoid achieving such trivial solutions and uninteresting equilibria, we add a

combination of squares of the following penalty terms to the optimizer:

1. fasp = (A− A0) to penalize any deviation from the aspect ratio of the initial equilibrium,

2. fminr = (aN − aN0) to penalize any deviation from the minor radius of the initial equilib-

rium,

3. f⟨B⟩ = (⟨B⟩−⟨B⟩0) to penalize any deviation of the volume-averaged magnetic field from

its value in the initial equilibrium,

4. fRc
=
∫
dθReLU(−Rc) where Rc is the radius of curvature of the boundary. This term

penalizes any boundary shapes that are curved into the plasma,

5. fῑ = (ῑ− ῑ0) where ῑ and ῑ0 to penalize deviation of the mean rotational transform,

6. Gι = ReLU(ιth − ι) where ιth is some threshold value of ι, and

7. Gjζ = ReLU(jζ,th−jζ) where jζ,th is some threshold value of the enclosed toroidal current.
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Using the ballooning objective function (2.54) and one or more of the penalty terms described

above, we can get the overall objective function F . Given a vector of input parameters p, our

goal is to solve

min
p

F(p). (2.55)

and select equilibria for which fball = 0. We achieve this with the help of the SIMSOPT [44]

package. The implementation details of the optimization are described in the next subsection.

2.3.4.3 Optimization with the SIMSOPT package

In this subsection, we discuss the implementation-related details of an adjoint ballooning

solver with the SIMSOPT [44] package. First, we briefly explain how an optimization problem

can be solved using SIMSOPT. Next, we go into the details of how we solve the ideal ballooning

optimization and how the use of an adjoint method can speed up this process.

The SIMSOPT package is a optimization framework containing a suite of codes that, along

with the VMEC code, have been used to optimize 3D equilibria for various properties like en-

ergetic fast-particle confinement, quasisymmetry, simpler magnetic coil geometry, neoclassical

transport, etc. The user specifies the input parameters (also referred to as Degrees of Freedom

(Dofs)) and the objective function F and SIMSOPT can perform a gradient-based or gradient-free

nonlinear least squares optimization.

As an example, let us construct an optimization problem to stabilize an equilibrium while

penalizing the change in the aspect ratio and the minor radius of the boundary

F = f 2
asp + f 2

minr + f 2
ball. (2.56)
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To do so, we use gradient-based optimization in SIMSOPT, where one calculates ∂F/∂p to

update the parameter vector at the ith iteration, pi as

pi+1 = f

(
pi,

∂F
∂pi

)
. (2.57)

This is done until the optimizer reaches a local minima, i.e., a region in the parameter space where

∂F/∂p = 0 or the relative change in the gradient is small enough. Typically, one has to evaluate

the gradient of F hundreds of times during an optimization loop before finding a local minimum.

In this study, evaluating fball is the most expensive step. Because the speed of the optimization

is limited by the rate at which we can compute fball, we have used an adjoint method to calculate

λ̂max which gives us fball.

2.4 Results

In this section, we present the results of our study. In §2.4.1, we compare the initial and

optimized 2D axisymmetric equilibrium. In §§2.4.2 and 2.4.3, we do the same for the modified

NCSX and modified Henneberg-QA equilibria, respectively. In addition, we also compare the

values of relevant physical quantities in the initial and optimized equilibria.

2.4.1 Stabilizing the DIII-D-like equilibrium

For the 2D axisymmetric case, we start with a high-β equilibrium with a negative triangu-

larity boundary. Due to axisymmetry, the 2D boundary does not depend on the toroidal angle ζ ,

i.e., n = 0 in (2.17). Therefore, the number of modes needed to specify a 2D boundary is much

lower than that for a typical 3D boundary. In this problem, we pick the six largest Fourier modes
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as our Dofs: R̂b(0, 1), R̂b(0, 2), R̂b(0, 3), Ẑb(0, 1), Ẑb(0, 3), Ẑb(0, 5). The full objective function

is

F = f 2
asp + f 2

Rc
+ f 2

minr + f 2
⟨B⟩ + f 2

ball, (2.58)

where all terms except fball are penalty terms to prevent the optimizer from producing a trivial

solution. After this, we start with the negative triangularity equilibrium described in §2.2.1 and

run SIMSOPT to find multiple equilibria that are stable against the ideal ballooning mode, i.e.,

equilibria with fball = 0. We present one of the optimized equilibria in figure 2.9. We also

compare the values of equilibrium-dependent quantities in table 2.4.

State βax(%) ⟨β⟩(%) jϕ(MA) ⟨B⟩ (T) ῑ A aN(m) ψb(Tm
2)

Initial 14.0 7.6 0.616 0.677 0.568 2.42 0.68 1.0

Optim. 13.7 7.3 0.728 0.686 0.568 2.42 0.68 1.0

Table 2.4: This table shows a comparison between relevant physical quantities of the intial and

optimized DIII-D equilibrium
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Figure 2.9: This figure shows (a) the maximum eigenvalue λ̂max of the intial and optimized DIII-

D-like equilibrium. The optimized equilibrium is stable. In figure (b), we present the boundary

shape of the initial and final equilibria. Note the negative triangularity of the initial equilibrium

and the positive triangularity of the optimized equilibrium.

45



We observe that the optimizer is moving toward a positive triangularity equilibrium, indi-

cating that, for the similar values of the relevant parameters (given in table 2.4) positive triangu-

larity high-β equilibria are more stable than their negative triangularity counterparts. Our findings

are consistent with recent observations by [45] and [46] that negative triangularity equilibria are

more unstable against the ideal ballooning mode compared to positive triangularity ones. This

behavior prevents the formation of a steep pressure gradient, which may limit operational beta

value of negative triangularity equilibria.

2.4.2 Stabilizing the NCSX equilibrium

The first 3D equilibrium we optimize is an unstable NCSX equilibrium. Since the boundary

has a 3D shape, we have to use both toroidal and poloidal modes to change its shape. For this

demonstration, we choose the 72 boundary modes listed in table 2.5 as Dofs: where [i, j] denotes

R̂b(n,m) Ẑb(n,m)

([1, 4], 0) ([1, 4], 0)

([−3, 3], 1) ([−3, 3], 1)

([−3, 3], 2) ([−3, 3], 2)

([−2, 2], 3) ([−2, 2], 3)

([−2, 2], 4) ([−2, 2], 4)

([−2, 2], 5) ([−2, 2], 5)

([−1, 1], 6) ([−1, 1], 6)

Table 2.5: This table provides the boundary shape Dofs for the NCSX case.

all integers between i and j (including i and j). Additionally, we also provide the optimizer

with the coefficients of the rotational transform profile ι(s). For this study, we have 6 Dofs that

determine the rotational transform profile. Therefore, we have a total of 78 Dofs, much larger
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than the axisymmetric case. After choosing the Dofs, we choose the following general objective

function

F = 0.5f 2
asp + 0.5f 2

minr + f 2
⟨B⟩ + f 2

ῑ + (70fball)
2. (2.59)

Note that the weights of different penalty terms in the objective function are chosen based on the

relative size of different terms. There are no well-defined rules and finding the right objective

function occasionally requires trial-and-error by the user. We run SIMSOPT with this configura-

tion to obtain multiple equilibria with fball = 0. We have plotted a comparison of one of these

equilibria with the initial equilibrium in 2.10.
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Figure 2.10: This figure shows (a) the maximum eigenvalue λ̂max of the intial and optimized

modified NCSX equilibrium. Similarly, in (b) we compare the rotational transform profiles of

the initial and optimized equilibria. In (c), we present the boundary shape of the initial and final

equilibria at three different value of the toroidal angle ϕ. The dotted curves correspond to the

initial cross-sections whereas the solid curves are the final cross-sections.

The optimizer stabilizes the equilibrium mostly through negative global magnetic shear

ŝ = −2(s/ι)(dι/ds). There is minimal change in the shape of the boundary. We also present

a comparison of the important equilibrium-dependent quantities for the initial and optimized

equilibria in table 2.6.
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State βax(%) ⟨β⟩(%) jϕ(MA) ⟨B⟩ (T) ῑ A aN(m) ψb(Tm
2)

Initial 9.3 5.1 0.174 1.596 0.48 4.36 0.325 0.514

Optim. 8.2 4.5 0.215 1.694 0.59 4.48 0.316 0.514

Table 2.6: This table presents a comparison between relevant physical quantities of the intial and

optimized NCSX equilibrium

2.4.3 Stabilizing the modified Henneberg-QA equilibrium

As a final example, we present a modified modified Henneberg-QA equilibrium. In this

example, we allow the boundary coefficients given in table 2.7 to change freely.

R̂b(n,m) Ẑb(n,m)

([1, 5], 0) ([1, 5], 0)

([−3, 3], 1) ([−3, 3], 1)

([−3, 3], 2) ([−3, 3], 2)

([−2, 2], 3) ([−2, 2], 3)

([−2, 2], 4) ([−2, 2], 4)

([−2, 2], 5) ([−2, 2], 5)

([−1, 1], 6) ([−1, 1], 6)

Table 2.7: This table lists the boundary shape Dofs for the modified Henneberg-QA case.

We also have seven coefficients that determine the rotational transform profile, giving us a

total of 83 Dofs. For this problem, we choose the following objective function

F = 0.1f 2
asp + 0.1f 2

minr + f 2
⟨B⟩ + 10−8Gjζ + 5G2

ι + 10f 2
ball, (2.60)

After choosing the Dofs and the objective function, we run SIMSOPT and obtain multiple sta-
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ble equilibria. We compare one of the stable equilibria with the initial, unstable equilibrium in

figure 2.11 and the equilibrium-dependent quantities in table 2.8.
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Figure 2.11: This figure shows (a) the maximum eigenvalue λ̂max of the initial and optimized

modified Henneberg-QA equilibrium. Similarly, in (b) we compare the rotational transform pro-

files of the initial and optimized equilibria. In (c), we present the boundary shape of the initial

and final equilibria at three different positions of the toroidal angle ϕ. The dotted curves corre-

spond to the initial cross-sections whereas the solid curves are the final cross-sections.

State βax(%) ⟨β⟩(%) jϕ(MA) ⟨B⟩(T ) ῑ A aN(m) ψb(Tm
2)

Initial 4.9 2.65 0.235 2.501 0.263 3.374 0.601 2.677

Optim. 4.5 2.47 0.002 2.588 0.245 3.381 0.592 2.677

Table 2.8: This table shows a comparison between relevant physical quantities of the intial and

optimized modified Henneberg-QA equilibrium

We find that the equilibrium is stabilized by a combination of boundary shaping and ro-

tational transform. The rotation transform creates negative magnetic shear in the outer core,

whereas the boundary shape reduces the curvature in the “bad”-curvature region.

2.5 Summary and Conclusions

We began this chapter by briefly explaining the ideal MHD model and various coordinate

systems that we used to fully define a general 3D ideal MHD equilibrium. In §2.2.1, we gen-
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erated three different equilibria: one axisymmetric 2D and two 3D, and described the important

associated physical quantities that could be used to penalize large deviations or trivial solutions

generated by the optimizer. In the following section, we briefly explain the linear stability analy-

sis in ideal MHD and the two important limits classified according to the toroidal mode number

n: low-n and the infinite-n modes.

In §2.3.2, we provided a physical description and explained the numerical methods used

to calculate the eigenvalues. We also described the self-adjoint property of the ideal ballooning

mode and using this property developed an adjoint method in §2.3.3 and used it to speed up the

calculation of the maximum ballooning eigenvalue λmax on each surface for the three chosen

equilibria. To demonstrate the efficiency and accuracy of the adjoint method, we also presented

a comparison of gradients between an adjoint method and a finite difference scheme. We found

that the adjoint method is up to four times faster than the finite-difference scheme.

In §2.3.4, we describe the details of the overall optimization process and how we do it using

the SIMSOPT code. After implementing the optimization, we presented the results in §2.4. We

presented the specific details of the objective function and the degrees of freedom (Dofs) for each

equilibrium and stabilized the initial, ideal ballooning unstable equilibria. We briefly described

the physical mechanism of the optimized equilibria that stabilize the ideal ballooning mode.

This work presents many avenues for future research. A key step forward is to extend our

technique to include all equilibrium-dependent parameters p̃ as explained in the appendix A.3.

One could also use the exact same method to optimize stellarators and tokamaks against low-n,

unstable ideal MHD modes, as explained in the appendix A.4. Since solving for low-n ideal

MHD codes is much more computationally expensive, the advantage of using an adjoint method

would be even greater. Another possible direction would be to use an adjoint method to get
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derivatives of the ballooning growth rate with respect to the plasma shape. Finally, one could

use the ideal balloon optimizer as a tool that could help optimize an equilibrium against Kinetic

Ballooning Modes (KBMs).

In context of ideal MHD stability, there has been a significant progress by Glasser [47,

48] in developing the DCON3D code, which is based on Newcomb’s criterion (briefly explained

in appendix D) to determine the stability of ideal MHD equilibria. This method determines

the stability without calculating the maximum eigenvalue. Hence, DCON3D has the potential to

determine stability much faster than our solver. However, it is not clear how to do gradient-based

analysis or if we can apply our adjoint method to DCON3D. Therefore, in out quest to accelerate

ideal MHD stability optimization, it would be cruicial to compare our solver with DCON3D in the

future.
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Chapter 3: Kinetic microstability analysis of high-β equilibria

3.1 Overview

In this chapter, we will present a detailed kinetic microstability analysis of finite-β equi-

libria with a focus on high-β tokamaks and stellarators. We will start by introducing the δf

gyrokinetic model. We will then linerize, Fourier-transform, and simplify the model and explain

the origin and importance of drift waves. Next, we will use the numerical δf solver GS2 to solve

the gyrokinetic model, first for six tokamak and then for two stellarator equilibria. It is important

to point out that for all of this thesis, we will only investigate modes that have small wavelengths

perpendicular to the field line, i.e., modes that are localized to a flux surface, henceforth referring

to our study as a local stability analysis and the equilibria as local equilibria. The behavior of the

most unstable mode could be different on different flux surfaces. Hence, we will study multiple

flux surfaces for each equilibrium. For axisymmetric equilibria, we will vary the local equilibria

using a semi-analytical technique and observe interesting behavior for the high-β equilibria —

stabilization of the ITG and TEMs through two distinct mechanisms: large negative local shear

and reversal of electron precession drift. Finally, we will solve the ful linear electromagnetic gy-

rokinetic model for all the tokamak and stellarator equilibria at nominal values of the temperature

and density gradients.

Using the results from the gyrokinetic analyses, we explore an important link between
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the ideal and the Kinetic Balooning Mode (KBM) [49], an electromagnetic mode observed in

tokamaks and stellarators. To further understand this relationship, we analyze the equilibria

against the infinite-n ideal ballooning mode and explain the connection between the ideal and

kinetic ballooning modes.

3.2 Microstability analysis

This section contains the general theoretical and numerical details of our microstability

analysis. In §3.2.1, we will explain the physical basis and theoretical details of the gyrokinetic

model. In the next section, we will explain how the model is implemented numerically using the

GS2 code and provide the general details of our numerical study.

3.2.1 The gyrokinetic model

The electromagnetic gyrokinetic model is a simplification of the 6D Vlasov-Maxwell sys-

tem of equations that predict the self-consistent evolution of a distribution of charged particles

and the resulting electromagnetic fields

∂fs
∂t

+w ·∇fs +
dw

dt
· ∂fs
∂w

=
∑

s′

Cs,s′ [fs, fs′ ], (3.1)

−∇
2φ =

∑

s

Zse

∫
d3w fs, (3.2)

−∇A = µ0

∑

s

Zse

∫
d3wwfs, (3.3)
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where fs(r,w, t) is the plasma distribution function for species s, Cs,s′ is the Coulomb collision

operator, φ(r, t) is electrostatic potential such that the electric field is given by

E = −∇φ− 1

c

∂A

∂t
, (3.4)

and A(r, t) is the magnetic vector potential such that the magnetic field,

B = ∇×A. (3.5)

In this chapter, we work with Coulomb gauge, i.e., ∇ ·A = 0. The general 6D Vlasov-Maxwell

model has six independent variables (not including time t): three configuration space r dimen-

sions and three velocity-space dimensions w. To reduce this to a 5D model, we first divide the

distribution and the fields into an equilibrium component and a superimposed fluctuation

fs = F0s + δfs, F0s =
n0sm

3/2
s

(2πT0s)3/2
exp(−w2/w2

th,s)

E = E0 + δE,

B = B0 + δB,

(3.6)

where the equilibrium components have a subscript 0, n0s(ψ) is the equilibrium plasma density,

T0s(ψ) is the equilibrium plasma temperature, wth,s =
√
2Ts/ms is the thermal speed and the

perturbed fields

δE = −∇δφ− ∂δA

∂t
, (3.7)

δB = ∇×∇δA. (3.8)
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The fluctuations δfs, δE, and δB are defined such that they vanish when averaged over length

and time scales much larger than the length and times scales, ρs and 1/ω, respectively. This

assumption is motivated by the importance of low-frequency, small-scale fluctuations in context

of fusion plasmas [50].

Next, we choose a set of asymptotic orderings to further simplify the model. We define the

small parameter

ϵ̃ ≡ ω

Ωs

∼ ρs
aN

∼ k∥
k⊥

∼ δfs
F0s

∼ Zseφ

Ts
∼ |δB|

|B0|
≪ 1, (3.9)

where Ωs = (ZseB)/(msc) is the cyclotron frequency. The particle gyroradius ρs, given by

ρs ≡
wth,s

Ωs

, (3.10)

is the perpendicular length scale of the turbulent fluctuations. The length scale aN is the effective

minor radius, defined in §2.2.1. The wavenumbers of the mode perpendicular and parallel to the

equilibrium magnetic field are denoted by k⊥ and k∥, respectively. These orderings imply that the

charges particles gyrate much faster than the time scales of interest. Therefore, we can average the

Vlasov-Maxwell equations (3.1)-(3.3) over the fast gyromotion to obtain the gyrokinetic model.

In the small ϵ̃ limit, one can reduce the dimensionality of the problem from 6D (r, w⊥, w∥, ϑ)

to 5D (r, w⊥, w∥) by averaging the Vlasov-Maxwell system over the gyrophase ϑ. We mostly

use the velocity coordinate system (w⊥, w∥, ϑ) instead of the Cartesian components (wx, wy, wz)

due to the cylindrical symmetry of the motion of charged particles around the field lines. For the

new 5D coordinate system, we will transform back and forth between two different coordinates,

the particle position and velocity coordinates (r, w⊥, w∥, t) and the guiding center coordinates
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(Rs, Es, µs, t) where

Es =
1

2
msw

2, (3.11)

µs =
msw

2
⊥

2B
, (3.12)

are the total kinetic energy and the magnetic moment of the particle. The guiding center is given

in terms of the particle position by the Catto transformation [51]

Rs = r − b×w⊥

Ωs

, (3.13)

where w⊥ = w⊥(cos(ϑ)x̂+ sin(ϑ)ŷ). The gyroaveraging operators ⟨⟩Rs and ⟨⟩r

⟨X⟩Rs =
1

2π

∫ 2π

0

X(r) dϑ, (3.14)

⟨X⟩r =
1

2π

∫ 2π

0

X(Rs) dϑ, (3.15)

denote the average of X over a gyration period at fixed guiding center Rs and at fixed position

r, respectively. It is also convenient to define the gyrokinetic model in terms of the parallel

component δA∥ of the magnetic vector potential, the magnetic field strength fluctuation δB∥

δB∥ = b · (∇× δA⊥), (3.16)
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and the gyrokinetic distribution function in the guiding-center coordinate system (Rs, Es, µs, t)

hs(Rs, Es, µs, t) =
Zseφ(r, t)F0s

Ts
+ δfs(Rs, Es, µs, t). (3.17)

Using these new fields and applying the gyroaveraging operator to (3.1)-(3.3), we can now in-

troduce the δf gyrokinetic theory that was first derived for the linear electromagnetic case by

Antonsen and Lane [52] and the nonlinear case by Frieman and Chen [53]. For a linearized

model, following the notation of Abel et al. [54], we get the governing equations

∂hs
∂t

+ (w∥b+ vDs) ·
∂hs
∂Rs

=
ZseF0s

Ts

∂⟨φ−w · δA/c⟩Rs

∂t
− VE ·∇F0s + ⟨Cs[hs]⟩Rs , (3.18)

∑

s

(Zse)
2φ

Ts
=
∑

s

Zse

∫
d3w ⟨hs⟩r, τ =

Te
Ti
, (3.19)

−∇
2
⊥δA∥ =

4π

c

∑

s

Zse

∫
d3ww∥⟨hs⟩r, (3.20)

∇
2
⊥

δB∥B

4π
= −∇⊥∇⊥ :

∑

s

∫
d3w ⟨msw⊥w⊥hs⟩r, (3.21)

where the velocity integrals in (3.19) are taken at fixed r. The velocities VE and vDs are the

E ×B and the magnetic drift velocities, respectively:

VE =
c

B
b× ⟨∇φ⟩Rs −

1

B
b× ⟨∇(w · δA)⟩Rs , (3.22)

vDs =
w2

∥

Ωs

b× (b ·∇b) +
w2

⊥

2Ωs

b×∇B

B
. (3.23)

Throughout this study, we use the linearized Coulomb operator obtained by Abel et al. [55]

instead of the full nonlinear collision operator.
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We have now fully defined the linear gyrokinetic system. The gyrokinetic model is a

good approximation for the core region of a tokamak plasma in which our study is being carried

out [17, 18]. We solve the gyrokinetic model in a 3-D flux tube, a tube with a rhombus-shaped

cross section following the field line. The appropriate length of the flux tube and the boundary

conditions at the ends are determined using the ideas developed by Beer et al. [56]. All the fluc-

tuating quantities are assumed to be periodic perpendicular to the field line. This allows us to

further simplify (3.18) by writing the fluctuating quantities as Fourier series

hs =
∑

k

hk⊥,s(θ, E, µ, t) exp(ik⊥ ·Rs),

φ =
∑

k

φk⊥(θ, t) exp(ik⊥ · r),

δA∥ =
∑

k

δA∥,k⊥(θ, t) exp(ik⊥ · r),

δB∥ =
∑

k

δB∥,k⊥(θ, t) exp(ik⊥ · r).

(3.24)

Applying this ansatz to (3.18) and using the identities given below

w⊥ = w⊥

(
− cos(ϑ)

b× k⊥

k⊥
+ sin(ϑ)

k⊥

k⊥

)
, (3.25)

∫ 2π

0

dϑ exp

(
∓ ik⊥v⊥ cos(ϑ)

Ωs

)
= J0s

(
k⊥v⊥
Ωs

)
, (3.26)

∫ 2π

0

dϑ cos(ϑ) exp

(
− ik⊥w⊥ cos(ϑ)

Ωs

)
= −iJ1

(
k⊥w⊥

Ωs

)
, (3.27)

∫ 2π

0

dϑ cos2(ϑ) exp

(
− ik⊥w⊥ cos(ϑ)

Ωs

)
=

Ωs

k⊥w⊥

J1, (3.28)

∫ 2π

0

dϑ sin(2ϑ) exp

(
− ik⊥w⊥ cos(ϑ)

Ωs

)
= 0. (3.29)
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Using these identities, we obtain the linearized, Fourier-trasformed gyrokinetic model

(
∂

∂t
− iωDs

)
hk⊥,s + (b ·∇θ)w∥

∂hk⊥,s
∂θ

=

{
∂

∂t
− iω∗,s

[
1 + ηs

(
Es
Ts

− 3

2

)]}
×

[
J0

(
k⊥w⊥

Ωs

)(
φk⊥ − w∥δA∥

c

)
+ J1

(
k⊥w⊥

Ωs

)
w⊥

k⊥

δB∥

c

]
F0s

+

〈
e
−i

(
k·

b×w⊥
Ωs

)

C

[
e
i
(
k·

b×w⊥
Ωs

)

hk⊥,s

]〉

Rs

,

(3.30)

∑

s

q2sNsδφk⊥
Ts

=
∑

s

qs

∫
d3v J0shs,k⊥ , (3.31)

k2⊥A∥,k⊥ =
∑

s

4πqs
c

∫
d3v v∥J0shs,k⊥ , (3.32)

B

4π
δB∥,k⊥ = −

∑

s

∫
d3v v2⊥

MsJ1sΩs

k⊥v⊥
hs,k⊥ . (3.33)

Here,

ωDs = k⊥ · vDs, (3.34)

is the magnetic drift frequency, and J0(k⊥ρs) and J1(k⊥ρs) are the zeroth- and first-order cylin-

drical Bessel functions, respectively,

aN
LTs

= −d log(Ts)
dρ

,
aN
Lns

= −d log(ns)
dρ

, ηs =
Lns

LTs

, (3.35)

and ρ =
√
s =

√
ψ/ψb

ω∗,s =
Ts

ZseB
[(b× k⊥) ·∇ log ns] . (3.36)

For this study, we choose a Hydrogen plasma, i.e., Zi = 1, Ze = −1. The variables Lns and

LTs are the density and temperature gradient scale lengths. The quantity ω∗,s, the diamagnetic
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drift frequency, is the typical frequency of a drift wave — waves caused due to gradients in

temperature or density. For these modes

∂

∂t
∼ ω ∼ vth,s

aN
∼ ω∗,s. (3.37)

All the different instabilities we study using the gyrokinetic model are a result of destabilized drift

waves. Instabilities are characterized by the degree to which charged species and electromagnetic

fields contribute to a drift wave.

In this chapter, we will first investigate collisionless electrostatic instabilities such as the

Temperature Gradient (ITG) mode and the Trapped Electron Mode (TEM). For purely electro-

static modes, we solve equations (3.18)-(3.19) only and assume the magnetic fluctuations, δA∥

and δB∥ to be absent. After an electrostatic stability analysis, we investigate the effect of magnetic

fluctuations by solving the full set of equations (3.18)-(3.21). To ensure that our observations can

be generalized to stellarator equilibria, we will then solve the full linear, collisionless gyrokinetic

model for various high-β, quasisymmetric stellarator equilibria. The procedure for numerically

solving the gyrokinetic model is explained in the following section.

3.2.2 Kinetic stability analysis with GS2

GS21 [57, 58, 59, 60] is a parallel code that solves the gyrokinetic model as an initial-value

problem. It solves equations (3.18)-(3.21) numerically by calculating the evolution of an initial

perturbation inside a flux tube.

Before each run, one has to specify the value of the gradient scale lengths aN/Lns
, aN/LTs

,

1The GS2 version used for this study is freely available at https://zenodo.org/record/4461680.
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the range of normalized wavenumbers k⊥ρi and various geometric coefficients as a function of

θ. The values of these inputs are specific to the linear mode under consideration and will be

provided in the following sections. Since we are only studying stability against fluctuations that

vary on a small perpendicular scale k⊥ρi ∼ 1, we can get the geometric coefficients from the

equilibria in a manner similar to the ideal ballooning stability analysis performed in the previous

chapter.2

The perpendicular structure of different fluctuations is defined by defining the wavevector

k⊥ that can be written as

k⊥ = ky∇y + kx∇x. (3.38)

where x and y are normalized forms of the coordinates ψ and α, respectively. For microstability

analysis of axisymmetric equilibria, we assume kx = 0, i.e., modes with no variation in the radial

direction at θ0 = 0.3 We choose around 15 − 25 values of kyρi in the range kyρi = 0.05 − 6.

All of our simulations are well resolved in θ and well converged as can be seen in figure 3.1. For

this study, θ ∈ [−19π, 19π] and more than 450 points along the θ grid for tokamak equilibria and

θ ∈ [−5π, 5π] and more than 400 points for stellarators, unless otherwise noted.

For the velocity space structure GS2 uses an (E, λ) grid instead of the (w∥, w⊥) grid. The

pitch angle as

λ =
µ

E
, (3.39)

For trapped particles λ = λ(θb) where θb is the bounce angle — the value of θ at which a trapped

2Our VMEC to GS2 interface for calculating the geometric coefficients is freely available at

https://github.com/rahulgaur104/VMEC2GK.
3This is equivalent to choosing θ0 = 0 in the ideal ballooning study. The parameter θ0 ∼ kx/ky denotes the

tilt of a turbulent eddy with respect to the ∇ψ direction. In axisymmetric, up-down symmetric equilibria, the most

unstable modes almost always lie at θ0 = 0.
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Figure 3.1: This figure shows (a) the output from a typical electrostatic GS2 run showing the

normalized frequency and growth rate spectrum with both electron-gradient- (ωaN/vth,i < 0) and

ion-gradient-driven (ωaN/vth,i > 0) instabilities and (b) showing the variation along the field line

of the square of the normalized electrostatic potential |φ|2. We can see that the potential is well

resolved and decays sufficiently before reaching the boundaries.

particle with a pitch angle λ reflects back from a region of high magnetic field. For a given

trapped pitch angle λ, the bounce angle is defined such that B(θb) = 1/λ. In GS2, resolution of

the passing particle distribution function in the coordinate λ is set by the variable nlambda. We

set nlambda = 12. For the trapped particle distribution, we choose 11 bounce points. Similarly,

for energy-space resolution, we set the value of the GS2 variable negrid = 10.4 We choose 27

points along the flux tube for tokamaks and 40 for stellarators, for every 2π interval to ensure

sufficient resolution along the field line. This completely defines the resolution in GS2.

In figure 3.1, we show the results from a typical GS2 run. After each run, one obtains

the normalized growth rate γaN/vth,i, the wave frequency ωaN/vth,i, the electrostatic potential

eigenfunction φ(θ, t) for electrostatic runs and φ(θ, t), δA∥(θ, t), and δB∥(θ, t) for electromag-

4For the sake of brevity, we have avoided explaining the details of the velocity grid. These details and resolution

requirements can be found in Highcock [60].
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netic runs. We also obtain the quasilinear particle and heat fluxes for each mode

Γs,ky =

∫
dθ

B ·∇θ

∫
d3w (VE,ky ·∇ψ)hs,ky , (3.40)

Qs,ky =

∫
dθ

B ·∇θ

∫
d3w (VE,ky ·∇ψ)Es hs,ky , (3.41)

where the subscript ky denotes the mode ky in the Fourier space. These quantities can be used to

extract information about an unstable mode [61]. Since this is a linear study, the absolute values

of the fluxes do not contain useful information, but their ratio Γs,ky/Qs,ky can still be used to

characterize the type of instability. We will use this ratio for the TEM study in §3.3.2.

3.2.3 The Greene-Chance analysis

To better understand the stability of a local axisymmetric equilibrium, we use the ability to

vary that equilibrium. For axisymmetric equilibria, this can be done by changing the magnetic

shear and pressure gradient radially locally, independently about their nominal values — equiv-

alent to varying the gradients of both the local current and plasma pressure — quantities that

determine the solution to (2.14). This gives us the ability to generate multiple local equilibria sat-

isfying the Grad-Shafranov equation and do a stability analysis without recalculating the global

equilibrium. We define

ŝ =
ρ

q

dq

dρ
, (3.42)

αMHD = −2µ0ρ q
2

ϵB2
N

dp

dρ
(3.43)
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Figure 3.2: This figure summarizes the idea of Greene and Chance. The new pressure profile

(black) with localized variation over the flux surface ψ = ψ0 lies over the equilibrium profile

(dashed red). Although the variation in pressure at ψ = ψ0 is small, the change in pressure

gradient can be large.

as the magnetic shear and pressure gradient, respectively. This method of varying a local equi-

librium through ŝ and αMHD is known as an ŝ − αMHD analysis. This technique was developed

by Greene and Chance [62] and has been used extensively to study local stability of different

axisymmetric equilibria [15, 41, 63, 64]. Figure 3.2 illustrates the main point — we can change

the gradient of the pressure and the safety factor locally by a finite amount without significantly

changing their respective values. We will use this idea again in §3.3.1 and §3.3.2 to vary the

pressure gradient at the nominal magnetic shear when we examine the microstability of differ-

ent equilibria and later in §3.5 to analyze the ideal ballooning stabiliy of all the axisymmetric

equilibria. Details explaining the Greene-Chance analysis are given in appendix B.

3.3 High-β axisymmetric equilibria

As mentioned in the abstract, for a fixed magnetic field strength, the power density of a

tokamak P scales as β2. Present day tokamaks are low-β devices. The achievable β is typically

limited by plasma instabilities. These can lead to disruptions or large turbulent transport. The
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higher β is, the higher the pressure and current are and therefore the larger the free energy avail-

able to drive these instabilities is. If these problems could be overcome, high-β operation could

be an attractive choice for future high-power density [65] devices.

The high-beta, β ∼ 1, regime has previously been explored in the context of asymptotic

magnetohydrodynamic (MHD) equilibria by solving the Grad-Shafranov equation in the limit

ϵ/(βq2) ≪ 1 [3]. There have also been experimental explorations [66, 67] of high-β operation of

the MAST and START tokamaks. There have only been a few studies [68, 69] that investigated

the process of accessing these states while maintaining ideal-MHD stability; even fewer studies

that study the microstability properties of β ∼ 1 equilibria in detail [70]. Therefore, a detailed

numerical analysis of these types of equilibria is required.

To this end, in this section, we generate a set of high-β equilibria and study their susceptibil-

ity to local gyrokinetic and ideal MHD instabilities. First, we perform linear gyrokinetic analyses

against various electrostatic and electromagnetic modes of instability in these equilibria. These

modes are known to cause significant heat and particle transport in existing devices [17, 18]. To

understand the electromagnetic modes, specifically their susceptibility to the Kinetic Ballooning

Mode (KBM), we also study the stability of these equilibria against the infinite-n, ideal balloon-

ing mode.

To create high-β equilibria, one may start with analytical solutions of the Grad-Shafranov

equation. The most general analytical solution in the β ∼ 1 limit was obtained by Hsu, Artun,

and Cowley [3]. However, these analytical β ∼ 1 equilibria are unfit for our study, as the geomet-

ric quantities required for a local stability analysis can be discontinuous and deviate significantly

from the exact numerical solution. We briefly explain the analytical procedure used to calcu-

late such equilibria and their limitations in appendix C. To avoid these issues, we will use the
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n0(m
−3) νn T0(eV ) νT q0 νq ψLCFS(Tm

2)

5× 1020 0.4 10 1.1 1.6 1.2 1.0

Table 3.1: This table contains input parameters used for the VMEC equilibria. Throughout this

study, in this table, every parameter remains fixed.

equilibrium solver VMEC to generate high-β, axisymmetric equilibria.

We produce high-radial-resolution equilibria using the fixed-boundary solver in VMEC after

providing it with an L-mode-like pressure profile p = p(s) — a profile that does not have a

sudden drop in pressure over a short radial distance, a monotonic safety factor q = q(s) profile

as a function of the normalized toroidal flux s = ψ/ψLCFS, and the LCFS shape. We choose a

simple form for the profiles p = p(s) and q = q(s) given by

p = nT, p0 = p̃0 n0T0

n(s) = n0(1 + νn)(1− s2)νn , T (s) = T0(1 + νT )(1− s2)νT

q = q0(1 + s2νq)1/(2νq).

(3.44)

The different parameters are given in the table 3.1. The parameter p̃0 ∈ [1, 10, 70] for the low,

intermediate, and high-beta equilibria, respectively. For each triangularity value, we choose a

different LCFS shape described by a Miller parameterization [63]

R = R0 + a cos(t+ (sin−1 δ) sin t),

Z = aκ sin(t).

(3.45)

The parameter t varies from [−π, π). The values of the rest of the parameters in (3.45) are given

in table 3.2. The radial coordinate that we will use for all the stability analyses is ρ =
√
s =
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R0(m) a(m) δ κ

1.6 0.6 ±0.4 1.3

Table 3.2: This table contains the Miller parameters for the outer boundary

√
ψ/ψLCFS since it is a better measure of the radial distance from the magnetic axis than the

normalized poloidal flux ψ/ψLCFS. The safety factor and pressure profiles as a function of ρ are

given in figure 3.3.

0.0 0.2 0.4 0.6 0.8 1.0
= / b

0.0
0.2
0.4
0.6
0.8
1.0

p/
p 0

(a) Pressure

0.0 0.2 0.4 0.6 0.8 1.0
= / b

1.6
1.7
1.8
1.9
2.0
2.1

q

(b) Safety factor

Figure 3.3: This figure shows the safety factor and normalized pressure profiles used for creating

the equilibria. The two red lines correspond to the values of the normalized radius ρ at which the

local equilibria will be analyzed for their stability.

For all our studies, we use the same safety factor q and the normalized pressure profile p

with different values of p̃0. In this way, we are able to create three different pressure profiles

with on-axis β ∼ 0.01, 0.1, 1 corresponding to p̃0 = 1, 10, 70, respectively. Henceforth, we shall

refer to the equilibria with p̃0 = 1, 10, 70 as low, intermediate and high-β or β ∼ 0.01, β ∼ 0.1

and β ∼ 1, respectively. We need to pick flux surfaces for our local stability analyses. In this

study, we choose surfaces at normalized radii ρ = 0.5 and 0.8. In total, there are twelve local

equilibria in our study: 3 β values × 2 boundary shapes × 2 ρ values. Because β varies over a flux

surface, it will be convenient to introduce a reference magnetic field for each global equilibrium
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and redefine

β(ρ) = 2µ0p(ρ)/B
2
N, (3.46)

BN = ψLCFS/(πa
2
N), (3.47)

whereBN is a reference magnetic field and aN is the effective minor radius such that πa2N is equal

to the area enclosed by the boundary and ψLCFS is the toroidal flux enclosed by the LCFS. For

this study, aN = 0.684m,BN = 0.681T . The values of β obtained from VMEC are given in

table 3.3.

δ ρ Low-β Intermediate-β High-β

0.4 0.5 0.011 0.11 0.77

0.4 0.8 0.006 0.064 0.45

−0.4 0.5 0.011 0.11 0.77

−0.4 0.8 0.006 0.064 0.45

Table 3.3: This table contains the normalized β values on selected flux surfaces

Each equilibrium has 512 surfaces with each surface represented by 40 poloidal modes.

We found that the equilibria converged with this choice of resolution. All the equilibria that we

investigate in this study are up-down symmetric which is why we only show the upper half. The

flux surface contours for the twelve equilibria are shown in figure 3.4.

The numerical high-β equilibria show qualitative features like the vertical “core” on the

inboard side and thin boundary layer on the outboard side as shown by Hsu et al. It is interesting

to see that the negative triangularity equilibria high-β equilibria are more strongly shaped than

the positive triangularity ones — the vertical inboard solution causes the flux surface to develop
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Figure 3.4: This figure shows the flux surfaces for all equilibria generated using VMEC. The local

equilibria that will be studied in this paper are highlighted in red. The magnetic axis in each

figure is the black cross.

a “squareness”. We illustrate the “squareness” in figure 3.55.

Figure 3.5: This figure shows two high-β equilibria and their corresponding best-Miller-fit. We

can see that the fit for the negative triangularity is worse due to the “squareness” of the flux

surface on the inboard side. The agreement between gradients of various physical quantities will

be even worse.

5Note that we use Miller fit in figure 3.5 to demonstrate the strong shaping of high-β equilibria. We do not use

Miller parametrization to calculate geometric coefficients in this thesis.
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Most importantly, these numerical equilibria do not suffer from any of the issues ob-

served in analytical high-β equilibria (discussed in appendix C) such as the ones obtained by

Hsu et al [3]. Therefore, all the resulting geometric coefficients are smooth, which allows for the

local stability analyses in the following sections.

3.3.1 ITG study

This section contains the results and analysis of the ITG study of the equilibria that we

obtained in §3.3 In §3.3.1.1, we will present the specific details, including the values of different

parameters used for the simulation and the reasoning behind our choices. In §3.3.1.2, we will

introduce the local magnetic shear, a quantity that characterizes the stability of an equilibrium to

the ITG mode. In the final section, we will plot and compare the results of all the different local

equilibria and explain the stability of the high-β equilibria.

3.3.1.1 Details of the study

The most important form of electrostatic instability that arises at low wavenumbers, the

ITG [71], occurs when a drift wave becomes unstable due to a large ion temperature gradient,

i.e., large aN/LTi
. Therefore, our objective is to understand this mode by doing a scan in the

temperature gradient scale length, aN/LTi
. Using the definition of the pressure ps = nsTs, we

can write

aN
Lps

≡ −d log(p)
dρ

= −d log(Ts)
dρ

− d log(ns)

dρ
= aN

(
1

Lns

+
1

LTs

)
. (3.48)
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Using the equation above along with (3.43), we can write

αMHD =
β

2

∑

s

aN
Lps

ρq2

2µ0ϵ
. (3.49)

Furthermore, recall that we can vary the normalized pressure gradient αMHD for a local equilib-

rium using the idea of Greene and Chance without recalculating the global equilibrium. This

gives us the ability to self-consistently vary the temperature and density gradient scale lengths

for a fixed β as long as we recalculate the local equilibrium for the resulting value of αMHD.6

Table 3.3 contains the nominal density, temperature and pressure gradient scale lengths, denoted

aN/L
nom
ni

, aN/L
nom
Ti

and aN/L
nom
pi

, respectively.

ρ aN/L
nom
Ti

aN/L
nom
ni

aN/L
nom
pi

aN/L
nom
Te

aN/L
nom
ne aN/L

nom
pe

0.5 0.59 0.21 0.80 0.59 0.21 0.80

0.8 3.00 1.09 4.09 3.09 1.09 4.09

Table 3.4: This table contains the nominal gradient scale length values

These are the values obtained from the original local equilibrium generated by VMEC and

are exactly the same for all the different beta and triangularity values. For the ITG mode study,

we define

fac =
dP

dρ

/(dP
dρ

)

nom

, (3.50)

as the ratio of actual pressure to the nominal pressure. We choose fac = (0.5, 1, 2, 4, 8) times

the nominal pressure gradient for ρ = 0.5 and fac = (0.5, 1, 2, 4) times the nominal pressure

gradient for ρ = 0.8. For each pressure gradient, we choose two density gradient scale lengths —

6Maintaining self-consistency is crucial to all local analyses. Violating (3.48) can lead to specious, nonphysical

instabilities [72].
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the nominal and half of the nominal value from the local VMEC equilibrium while varying the

temperature gradient scale length consistently for each gradient scale length. Tables 3.5 and 3.6

contain the resulting values.

aN/Lni aN/LTi

0.21 0.19 0.59 1.39 2.98 6.19

0.10 0.29 0.69 1.49 3.08 6.29

Table 3.5: This table contains the values of a/LTi
at ρ = 0.5 for the ITG study

aN/Lni aN/LTi

1.09 0.95 3.00 7.10 15.27

0.54 1.50 3.55 7.64 15.82

Table 3.6: This table contains the values of a/LTi
at at ρ = 0.8 for the ITG study

These 18 values of various scale lengths are exactly the same for all triangularities as well

as for all the different beta values due to the way we have defined ρ. From previous observations

and studies, we know that the typical peak ITG growth rate lies around kyρi = 1. To capture

the maximum growth rate, we calculate the growth rates in the range kyρi ∈ [0.05, 2]. For ITG,

we have made the common assumption of adiabatic electrons to exclude the effect of kinetic

electrons on the ITG mode and avoid other modes such as the TEM. Mathematically, this means

that one assumes he,ky = 0 when solving equation (3.30) for the electrons.

With the values given in tables 3.5 and 3.6, we run GS2 in the electrostatic limit (δA∥ =

0, δB∥ = 0) and obtain the maximum normalized growth rate γaN/vth,i for each of the 108 cases,

18 for each beta and each triangularity value. The results showing the comparison between

different beta values, boundary shapes and normalized radii will be shown in §3.3.1.3. We expect

the equilibria to become more stable to the ITG mode as we increase β. This behavior is well
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known [73, 74] in the literature for low and intermediate-β equilibria. To try and explain this

trend, in the next section, we look at the local shear as a characteristic quantity that explains the

stabilization of the ITG mode with increasing β.

3.3.1.2 Characterizing stability to the ITG mode

In this section, we define and plot an important quantity, the local magnetic shear [62],

which will help us understand the response of a local equilibrium to the ITG mode. We use

the local shear since negative global shear ŝ is known to stabilize ITG [75]. In the following

section, we will plot the local shear as a function of θgeo at the nominal ŝ and αMHD for the high-

β equilibria and compare it with the low, intermediate and a low-β shifted-circle equilibrium

(abbreviated as SC in the plots). We will show that the behavior of ITG is directly related to

the local shear and argue that a large negative local shear over a wide range along the field lines

stabilizes the ITG mode. Mathematically, the local shear ν is given by [16, 62]

ν = −B ·∇N

(
∇Nα ·∇Nψ

|∇Nψ|2
)
, (3.51)

where ∇N = aN∇ is used to non-dimensionalize ν. We will plot the local shear as a function of

the geometric poloidal angle defined in the figure 3.6. The coordinate θgeo is advantageous as it,

unlike θ, is a physically intuitive poloidal angle. Mathematically, θgeo is a monotonic function of

θ — ν(θ) can always be transformed to ν(θgeo) and vice versa. To plot ν with respect to θgeo, we

further simplify (3.51)

ν = − F

qR2

[(
qF ′

F
+ F

′

F
q

(RsBps)2

)
+
q p

′

B2
ps

+
2q

RsBps

(
sin(u)

Rs

− 1

Rc

)]
. (3.52)
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Figure 3.6: This figure illustrates the definition of θgeo. The coordinates of the magnetic axis,

marked with a cross, are (Rax, Zax).

The symbols used and the formalism needed to derive (3.52) is given in appendix B. It is impor-

tant to note that

ŝ =
ρ|∇Nψ|
2πq a2N

∫ 2π

0

dθ

B ·∇Nθ
ν. (3.53)

Thus, the appropriately-weighted average of the local shear over a flux surface gives us the global

magnetic shear ŝ. The global shear is held fixed for all the local equilibria at a given ρ. This

relation implies that the local shear can be negative for a given range in θ for a positive global

shear ŝ. Finally, we plot local shear at nominal ŝ and αMHD in figure 3.7 for different beta values.

The local shear depends on the pressure gradient αMHD which further depends on β as well

as the gradient scale lengths Ln and LT. The beta value increases the local negative shear through

the Shafranov shift. The gradient scale length does so by increasing the poloidal current gradient

dF/dρ required to balance the pressure gradient which consequently increases the toroidal mag-

netic field. A plot showing the effect of pressure gradient on local shear is shown in figure 13(a).

Note that in our scans decreasing the pressure gradient scale length increases the driving term

η = Ln/LT. In fact, in this study, for a given β, η increases faster than aN/Lp. A plot of η versus
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Figure 3.7: This figure explains the physical meaning of the local magnetic shear with (a) show-

ing a typical local shear plot of negative triangularity equilibria at the nominal ŝ = 0.45 and

nominal αMHD values at ρ = 0.8 for different beta values and a low-β shifted-circle model

(abbreviated SC). On the right side (b) illustrates a modified interpretation from Antonsen and

Drake [2] explaining the concept of local magnetic shear. Negative local shear twists the turbu-

lent eddies more than positive or zero local shear in the region of bad curvature, stabilizing the

ITG mode.

the pressure gradient scaling factor is shown in figure 3.8.

(a) (b)

Figure 3.8: This figure shows (a) the change in the local shear for fac = 4 (increased pressure

gradient). The local shear is much more negative with an approximately linear dependence with

fac on outboard side. On the other hand, (b) shows the comparison between the ITG driving term

η and the pressure gradient scaling factor fac. The term η is calculated using the values given in

table 3.5. We can see that η grows linearly, but with a larger pre-factor. These figures illustrate

how the ITG driving term grows more rapidly than the stabilizing local shear as we increase the

pressure gradient.

The dominant mechanism for generating negative local shear is the β-induced Shafranov
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shift. The local shear may also depend on the shaping, especially for negative triangularities.

However, we find that shaping does not have a significant effect on the ITG stability of the high-

β equilibria.

3.3.1.3 ITG results

Since GS2 is an initial value code, resolving a growth rate γ ≤ γthresh would require us to

run the simulation for at least t ∼ 1/γthresh. For large wavenumbers and a semi-implicit-time-

stepping scheme, it leads to a relatively high runtime cost. Hence, we define a small positive

“threshold” growth rate γthresh which we will use to separate stable and unstable modes. If the

maximum ITG growth max(γaN/vth,i) < γthresh, we classify it as stable. For this study, we

choose γthresh = 0.005.

We find that all the nominal equilibria stabilize as we increase β as first noted by [76] —

the high-β equilibria are stable to the ITG mode, as shown in figure 3.9 below.

(a) ρ = 0.5 (b) ρ = 0.8

Figure 3.9: These plots show the ITG max(γaN/vth,i) (over kyρi ∈ [0.05, 2]) vs the typical β for

nominal equilibria at different radial locations.

To better understand what causes this effect, we scan the gradient scale length values given

in tables 3.5 and 3.6. Each group of plots contains maximum growth rate for a range of a/LTi
at a
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fixed a/Lni for the three beta values. The plots are grouped by the triangularity of the equilibria.

For each group, there are subgroups based on the normalized radius ρ. The results corresponding

to the positive triangularity boundary shape are shown in figure 3.10.

(a) a/Lnom

ni
, ρ = 0.5 (b) 0.5a/Lnom

ni
, ρ = 0.5 (c) ρ = 0.5

(d) a/Lnom

ni
, ρ = 0.8 (e) 0.5a/Lnom

ni
, ρ = 0.8 (f ) ρ = 0.8

Figure 3.10: This figure shows the ITG max(γaN/vth,i) plots for positive triangularity equilibria

against the temperature gradient length scale. For the high-β equilibria, ITG is stabilized at both

ρ = 0.5 and ρ = 0.8. The rightmost figures in each row are the local magnetic shear vs the

geometric theta θgeo at the nominal dp/dρ and ŝ. The grey line corresponds to the local shear for

a low-β shifted-circle equilibrium (abbreviated SC). The magnetic shear ŝ is the same for all the

equilibria at every ρ.

In figure 3.9, one observes that for the high-β cases, the ITG mode is stable (that is,

γ < γthresh). For the intermediate and low-β cases, figure 3.10 shows destabilization with in-

creasing temperature gradient. We believe that the stabilization of high-β equilibria is a result

of large local negative shear (rightmost panels) that spans a wide range in θ. The local shear

becomes positive only after θgeo > π/2 — the whole outboard side has a large local negative

shear. These large negative values are predominantly due to a large Shafranov shift but could
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have subdominant effects resulting from strong shaping, especially for the negative triangularity

high-β equilibria. For the shifted-circle equilibria, the local shear is small as compared with the

rest of the equilibria even though it is negative over the outboard side. This is because the low-

β shifted circle equilibria are neither strongly shaped nor have a large beta. The trend remains

the same even for the equilibria with half-nominal density gradients. Next, we plot results for

negative triangularity equilibria in figure 3.11.

(a) a/Lnom

ni
, ρ = 0.5 (b) 0.5a/Lnom

ni
, ρ = 0.5 (c) ρ = 0.5

(d) a/Lnom

ni
, ρ = 0.8 (e) 0.5a/Lnom

ni
, ρ = 0.8 ((f ) ρ = 0.8

Figure 3.11: shows the ITG max(γaN/vth,i) plots for negative triangularity equilibria. For the

high-β equilibria, ITG is stabilized at both ρ = 0.5 and ρ = 0.8. The local shear for the high-β
equilibria is negative over the whole outboard side. The grey line corresponds to the local shear

for a low-β shifted-circle equilibrium (abbreviated SC).

We see that the high-β equilibria with a negative triangularity boundary shape are stabilized

as well. The local magnetic shear shows the same trend with beta but is even more negative and

spans an even wider range in θgeo as compared to the positive triangularity equilibria. We believe

that this extended range in negative local shear is due to the “squareness” of the high-β profiles,
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which is a stronger shaping than the positive triangularity cases. Since all the high-β equilibria

are stabilized and the growth rates are small, it is hard to find a clear difference in growth rates

based on triangularity.

In the next section, we will study the stability of different equilibria to an electron-driven

electrostatic mode, the Trapped Electron Mode (TEM).

3.3.2 TEM study

In this section, we will present our analysis of the TEM instability. In §3.3.2.1, we explain

the TEM and tabulate the parameters for which we perform our study. After that, we define the

maximum TEM growth rate. In §3.3.2.2, we present the electron precession drift as a character-

istic of TEM stability of a local equilibrium. In the final section, we plot the results in a fashion

similar to the previous section.

3.3.2.1 Details of the study

The second type of electrostatic instability that we investigate, the collisionless TEM, be-

comes unstable when drift waves resonate with the precession of the electrons. This can cause

significant transport loss through the electron channel that degrades plasma confinement [77].

For the TEM, we choose five pressure gradient values, corresponding to fac = (0.5, 1, 2, 4, 8) for

ρ = 0.5 and five values corresponding to fac = (0.5, 0.75, 1, 2, 4) for ρ = 0.8. For each pressure

gradient, we choose two temperature gradient scale lengths — nominal and 30% of the nominal,

while scanning the growth rates in the density gradient scale lengths. We do this since TEM,

unlike ITG, is primarily a density gradient-driven instability. The tables 3.7 and 3.8 contain the
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values for which we solved the gyrokinetic model. Note that the temperature and density scale

lengths are the same for the ions and electrons.

aN/LTe
= aN/LTi

aN/Lne = aN/Lni

0.186 0.21 0.61 1.41 3.01 6.22

0.296 0.10 0.51 1.31 2.91 6.11

Table 3.7: This table contains the values of gradient scale lengths at ρ = 0.5 used for the TEM

study

aN/LTe
= aN/LTi

aN/Lne = aN/Lni

0.95 1.09 2.11 3.13 7.22 15.45

1.50 0.54 1.57 2.59 6.68 14.86

Table 3.8: This table contains the values of gradient scale lengths at at ρ = 0.8 used for the TEM

study

These 20 values of gradients are the same for ions and electrons as well as both positive

and negative triangularity equilibria at all the different beta values. Unlike the ITG study, we turn

on the kinetic effects of electrons since TEM is an electron driven instability. The TEM growth

rate peak occurs over a wide range kyρi ∈ [0.5, 6]. Since there is an overlap with the ITG and the

Electron-Temperature Gradient (ETG) mode, having two species makes it difficult to separate

modes with purely ITG and ETG-related effects from modes with purely TEM-related effects.

Therefore, to calculate the TEM growth rate, we choose the growth rate corresponding to the

wavenumber kyρi at which the ratio of the quasilinear electron flux to electron heat flux is the

maximum, i.e.,

γTEM(kyρi) = γ
∣∣∣
max(Γe,ky/Qe,ky)

, (3.54)

where the definition of quasilinear fluxes is given in equations (3.40) and (3.41).
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We run GS2 for the wavenumbers in the range kyρi ∈ [0.2, 6.5]. Just like the ITG study,

we run GS2 and obtain the maximum growth rate γaN/vth,i for each of the 120 cases: 10 values

of (aN/LT, aN/Ln) × 2 surfaces ×3 β values ×2 boundary shapes. The results showing the

comparison between different beta values, triangularities, and normalized radius will be shown

in §3.3.2.3.

Curvature-driven TEMs are associated with the precession of trapped electrons in a flux

surface. To that end, we elucidate the definition and role of the electron precession drift frequency

in the next section and how it characterizes the stability of an equilibrium to the TEM.

3.3.2.2 Characterizing stability against the TEM

The collisionless curvature-driven TEM is a drift wave that becomes unstable when it res-

onates with the bounce precession of trapped electrons. The precession of electrons is character-

ized by their precession frequency

⟨ωDe⟩ =
(∫ θb

−θb

dθ

w∥

B

(B ·∇θ)

)−1 ∫ θb

−θb

dθ

w∥

B

(B ·∇θ)
ωDe, (3.55)

where the integral operator is the bounce-average operator. The precession frequency is a function

of the bounce angle θb. Depending on the convention, one usually takes sign(ω) = sign(ω∗,e) for

trapped electron modes since the TEM is a drift wave. Therefore, if

sign(⟨ωDe⟩)sign(ω∗,e) < 0, (3.56)

81



(a) (b)

Figure 3.12: This figure shows the precession drift in (a) and the corresponding magnetic field

magnitude in (b) for negative triangularity equilibria at ŝ = 0.45 and nominal αMHD values at

ρ = 0.8 for different beta values. Note the atypical magnetic field for the high-β equilibria where

min(B) is located at a finite θ.

the drift wave will not be able to resonate with the precession of electrons. If the precession drift

satisfies (3.56) at all the different pitch angles, the curvature-driven TEM will be stabilized [78,

79]. The expression for ωD, given by (3.34) can be alternatively written as

ωDe =
kyρe
2

vth,e
aN

Ee [2(1− λB)cvdrift + λBgbdrift] (3.57)

where cvdrift and gbdrift are geometric factors independent of the electron energy Ee and the

pitch angle λ. A semi-analytical formula for calculating cvdrift and gbdrift is given in ap-

pendix B. As a characteristic of TEM stability, we define the quantity

⟨ω̄De⟩ = ⟨ωDe⟩sign(ω∗,e)/Ee, (3.58)

as the precession drift per energy in the electron-diamagnetic direction. A typical plot of the

⟨ω̄De⟩ is shown at nominal ŝ and αMHD for different β values in figure 3.12. We see that the
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(a) ρ = 0.5 (b) ρ = 0.8

Figure 3.13: This figure shows the TEM γTEM(aN/vth,i) vs the typical β plots for nominal equi-

libria at different radial locations.

precession drift is negative everywhere only for high-β case. This will form the basis for our

understanding of the growth rate trends in the following section.

3.3.2.3 TEM results

Just like the ITG study, we choose a value of a growth rate γthresh such that if γTEM(aN/vth,i) <

γthresh, we classify an equilibrium as stable. The reasoning behind setting a threshold is described

in the first paragraph of §3.3.1.3. For this study, we choose γthresh = 0.005. First, we plot the

maximum TEM growth rates for the nominal equilibria in figure 3.13. We find that increasing

beta stabilizes the TEM and the high-β equilibria are stable to the TEM.

To further understand this effect, we plot the result from scans in the density gradients in

two groups, each group containing the maximum TEM growth rate for a range of a/Ln at a fixed

a/LT, given in tables 3.7 and 3.8 for different equilibria. Just like the ITG study, we group the

plots by triangularity and arrange them in rows based on the normalized radius ρ. For positive

triangularity equilibria, the results are shown in figure 3.14

We observe that the TEM is completely suppressed for the high-β, positive triangularity
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(a) a/Lnom

Ti
, ρ = 0.5 (b) 0.5a/Lnom

Ti
, ρ = 0.5 (c) ρ = 0.5

(d) a/Lnom

Ti
, ρ = 0.8 (e) 0.5a/Lnom

Ti
, ρ = 0.8 (f ) ρ = 0.8

Figure 3.14: This figure presents γTEM(aN/vth,i) plots for positive triangularity equilibria and

the electron precession drifts at the nominal pressure gradient. For the high-β equilibria, TEM

is stabilized at both ρ = 0.5 and ρ = 0.8. As you can see in figures 3.14(c) and 3.14(f), the

precession drift for the high-β equilibria is negative for all values of the bounce angle θb.

equilibria. The frequency ⟨ω̄De⟩ is negative everywhere which means that all the trapped electrons

precess in a direction opposite to the electron diamagnetic direction. They cannot destabilize the

drift wave by exchanging energy with them.

The TEMs we seek are curvature-driven. A large pressure gradient causes the electron

precession drift to become negative for all pitch angles [79]. This suppresses the curvature-driven

mode and causes the slab-like branch of the TEM called the universal mode to appear. However,

for high-β equilibria, the universal mode is suppressed as well since the large local shear

Lν =
aN
ν
, (3.59)

combined with strong shaping reduces the shearing length scale [80] which makes it harder for
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(a) a/Lnom

Ti
, ρ = 0.5 (b) 0.5a/Lnom

Ti
, ρ = 0.5 (c) ρ = 0.5

(d) a/Lnom

Ti
, ρ = 0.8 (e) 0.5a/Lnom

Ti
, ρ = 0.8 (f ) ρ = 0.8

Figure 3.15: This figure presents γTEM(aN/vth,i) plots for negative triangularity equilibria. For

the high-β equilibria, TEM is stabilized at both ρ = 0.5 and ρ = 0.8. The rightmost plots on

each row is the electron precession drift frequency.

fluctuations to grow and persist along the field line.

Next, now look at the TEM growth rate trends for the negative triangularity equilibria,

shown in figure 3.15. The negative triangularity TEM growth rates follow the same trend as the

positive triangularity ones. The TEM is suppressed for the high-beta equilibria due to the negative

precession drift. The intermediate and low beta are more unstable for the negative triangularity

equilibria at ρ = 0.5 and as unstable as positive triangularity ones at ρ = 0.8.

The result of our local analyses are only strictly valid for perturbations localized to a field-

line on a flux surface. Alternatively, one can say for all fluctuations the toroidal mode number

n ≫ 1. Therefore, we must ensure that all modes in this study meet the local approximation in

order to ensure that they are self-consistent. In both §3.3.1 and §3.3.2, the lowest wavenumber in

our analyses is kyρi = 0.05. The largest ion gyroradius arises in the outer-core high-β equilibria
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where ρi ≈ 0.005m. This corresponds to a wavelength λ = 0.628m. Assuming an n = 1 mode

has a wavelength equal to the normalized minor radius aN = 0.68m, kyρi = 0.05 corresponds to

n ≈ 1 — the longest modes are not localized. Hence, to accurately capture these modes at low

wavenumbers, we must include nonlocal effects. However, for all the electrostatic studies, the

growth rates γaN/vth,i → 0 as kyρi → 0 and the most unstable modes always arise at ky,peakρi ≥

0.5 which corresponds to n ≥ 10 implying that the local approximation is a fair assumption since

we are only concerned with peak growth rates in §3.3.1 and §3.3.2.

We have demonstrated the stability of high-β equilibria against two main sources of elec-

trostatic instability. However, when β ∼ 1, magnetic fluctuations may play an important role

in deciding the stability of an equilibrium. Therefore, in the next section, we study the effect of

electromagnetic modes on the high-β equilibria.

3.3.3 Linear Electromagnetic study

To see if the stability trend seen in the electrostatic study holds when we include electro-

magnetic effects, we perform an electromagnetic microstability analysis for all the nominal local

equilibria. This analysis is similar to the work done by [81], albeit we are testing β ∼ 1 equilibria

using an initial-value solver. We solve the linear, collisionless, gyrokinetic model allowing for

non-zero magnetic field perturbations δA∥ and δB∥ using the GS2 code. We use the nominal

gradient scale lengths for this study (given in table 3.4). First, we plot the growth rate spectrum

with kyρi for the positive triangularity cases in figure 3.16.
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Figure 3.16: This figure shows comparison between the electrostatic (abbreviated ES) and elec-

tromagnetic (abbreviated EM) growth rates for all the nominal positive triangularity equilibria.

Some of the branches have been labeled by their corresponding mode names. Notice the KBM

in the intermediate and high-β equilibria in figures (3.16)(e) and (3.16)(f), respectively and the

emergence of the collisionless-micro-tearing and electromagnetic-ETG modes in figure (3.16)(c)

for all values of kyρi and figures (3.16)(e) and (3.16)(f ) for kyρi > 1

Since GS2 only calculates the maximum growth rate, in the inner core, we observe the

finite-β stabilization of ITG [82] until the emergence of collisionless-microtearing (MTM) [83,

84, 85] and electromagnetic-ETG (EM-ETG) modes [86, 87] in figure 3.16(c) 7. These modes

arise on small scales radially (O(ρe)) and are extended in the ballooning angle θ. To accurately

capture the extended eigenfunctions corresponding to these modes, we have to choose a wide

range in the field-line-following coordinate (θ ∈ [−119π, 119π]) with 21 points over a 2π interval.

The eigenfunctions for two values of kyρi in figure 3.17(c) are shown in appendix E.

In the outer core, we observe finite-β stabilization only for the low-β equilibrium. For the

7Note that the purpose of this work is to look for the most unstable modes destabilizing a local equilibrium. The

distinction and correct classification of the type of mode is orthogonal to our objectives.
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intermediate and high-β cases, the electrostatic modes are replaced by KBMs at low wavenum-

bers and collisionless-MTM and electromagnetic-ETG at high wavenumbers. Overall, positive

triangularity high-β equilibria are more unstable than the low or intermediate ones in the inner

core due to the collisionless-MTM and the EM-ETG mode. As we move towards the outer core,

high-β equilibria become much more stable — exactly the opposite trend compared to the inner

core. This means that the outer core is more stable for the high-β equilibria.

Next, we plot the growth rates for the negative triangularity equilibria in figure 3.17.

Figure 3.17: This figure shows comparison between the electrostatic (ES) electromagnetic (EM)

growth rates for all the nominal negative triangularity equilibria. The sudden jump in figure (f)

around kyρi = 4.5 is a different branch of the collisionless MTM. Note also that the growth rate

around kyρi = 0 in figure (e) goes to fixed value of γaN/vth,i = 0.152 since the equilibrium is

unstable to the ideal ballooning mode.

The negative triangularity, inner-core equilibria are also stabilized due to finite-β effects.

This effect is also visible for the intermediate-β case for kyρi > 0.5 but absent for the high-

β cases as the ITG and TEM are superseded by electromagnetic modes: collisionless MTM
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and the EM-ETG mode. For the outer-core cases, we see the exact same pattern as the inner

core — finite-β stabilization for the low-β, KBM and collisionless-MTMs for the intermediate-

β and collisionless-MTMs and EM-ETG modes for the high-β. Note that unlike the postive

triangularity case, we do not observe the KBM in the negative triangularity, high-β equilibria.

Moreover, the growth rates are also lower than positive triangularity cases for a wide range of

wavenumbers (kyρi ∈ [0.01, 4.5]). Since turbulence is most likely to peak at lower wavenumbers,

the growth rate characteristics of negative triangularity, high-β are the most favorable. 8

In summary, we find that turning on the electromagnetic effects destabilizes the high-β

equilibria. Figures 3.16(c), 3.17(c) and 3.17(f ) show the emergence of collisionless-MTMs

and EM-ETG modes whereas figure 3.17(c) also shows instability to the KBM in the range

kyρi ∈ [0.01, 0.5]. These equilibria are much more unstable than the low-β ones in the inner

core but they are much more stable as we move towards the outer core, with negative triangu-

larity high-β equilibria showing the best characteristics. We believe that the outer-core stability

is due to a large Shafranov shift and strong shaping. We also argue that negative triangularity

has better characteristics than positive triangularity due to stronger shaping, i.e., “squareness”

that we discussed in figure 3.5. Since outer-core or edge transport is usually a limiting factor in

experimental low-β equilibria, these equilibria may be a novel alternative to realize higher-power

devices.

In this section, the lowest wavenumber that we have scanned is kyρi = 0.01. Using the

same analyses as presented at the end of §3.3.2, the longest wavelength λ ≈ 3.1m. Assuming

8Some of the β ∼ 1 equilibria have small but finite TEM growth rates which are larger than the growth rates

from our electrostatic TEM study. This is consistent with the electrostatic study since we chose the TEM growth

rate at a value of kyρi for which the ratio of Γe/Q was maximized. This almost always happens at a low kyρi —

TEM growth rates are small at low kyρi values for β ∼ 1. Furthermore, the lengths of the gradient scale lengths

(tables 3.7 and 3.8) were different for the electrostatic study.
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n = 1 corresponds to λ = aN = 0.68m, the longest mode would require n < 1. Modes with

such long wavelengths violate the local assumption of flux tube codes. However, the growth rates

go to zero at low wavenumbers (with the exception of figure 19(e)) and peak at ky,peakρi ≫ 0.01.

Calculating the value of n at the wavenumber kpeakρi, we obtain the lowest n in figures 19(e) and

18(f ) as n = 0 and n = 5, respectively. Therefore, the reader must take the low-wavenumber

results shown in figures 19(e) and 18(f ) with a grain of salt.

Note that this is a collisionless electromagnetic analysis. It is possible that in the presence

of collisions, more modes like collisional-MTMs [88, 89], collisional EM-ETG etc. arise and

supersede their collisionless variants [85] as the most dominant mode. On the other hand, it

is also possible to achieve lower growth rates if we include the stabilizing effect of velocity

shear [89].

3.4 High-β stellarator equilibria

To test our observations about high-β equilibria from previous sections and verify that

they hold for stellarator equilibria, we scan two recent quasisymmetric 3D equilibria obtained by

Landreman et al. [90]. The Landreman-Buller-Drevlak (LBD) quasiaxisymmetric (QA) design

is a low-β equilibrium (βax ≈ 5%) whereas the LBD quasihelically symmetric (QH) design is an

intermediate-β equilibrium (βax ≈ 11%). In this section, we will perform gyrokinetic analysis of

the two equilibria.
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3.4.1 LBD QA low-β equilibrium

In this section, we will perform both electrostatic and fully electromagnetic gyrokinetic

analysis of the two field period LBD QA equilibrium at nominal values of density and tempera-

ture gradients on a single field line. To do that we provide VMEC with the presssure, rotational

transform, and cross section shown in figure 3.18.
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Figure 3.18: This figure plots the inputs to the VMEC code for the LBD QA design: the pressure,

rotational transform as a function of the normalized radius ρ, and cross-section of the boundary.

The red lines mark the radii ρ = 0.5 and ρ = 0.8, locations at which we perform the gyrokinetic

analysis.

For a gyrokinetic analysis, we need the β values on the two flux surfaces and the nominal

values of the density and temperature gradient scale lengths. These values are provided in the

table 3.9

ρ βN aN/Ln aN/LT kyρi θ0

0.5 4.2 0.98 0.45 [0.05, 6] [−1.5, 1.5]

0.8 1.8 3.96 1.98 [0.05, 6] [−1.5, 1.5]

Table 3.9: This table contains the values of quantities needed for a gyrokinetic run with the LBD

QA equilibrium. The gradient scale lengths are the same for both ions and electrons.

Using these values, we solve the linear electrostatic and the fully electromagnetic gy-
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rokinetinc model using GS2 on the field line αt = 0 and plot the normalized growth rate in

figure 3.19.

(a) Electrostatic γaN/cs at ρ = 0.5 (b) Electromagnetic γaN/cs at ρ = 0.5

(c) Electrostatic γaN/cs at ρ = 0.8 (d) Electromagnetic γaN/cs at ρ = 0.8

Figure 3.19: This figure compares the normalized electrostatic and electromagnetic growth rates

for the LBD QA equilibria. In figures 3.19(a) and (b) we plot the electorstatic and electromag-

netic growth rates, respectively at ρ = 0.5. In figures 3.19(c) and (d), we do the same for ρ = 0.8.

Note that due to strong shaping of stellarators, we also scan in the ballooning parameter θ0.

We see the same behavior as the axisymmetric cases; finite-β stabilization of the ITG mode

and emergence of KBM and EM-ETG modes. Note also that both equilibria have a finite growth

rate at kyρi = 0.05 value. This fact will be important in §3.5. Since EM-ETG is an electron-scale

mode, it does not peak in the kyρi range that we have chosen. To capture the peak EM-ETG

growth rate, we would have to go kyρi ∼ (mi/me)
1/2.

It is important to note that unlike tokamaks all field lines are not identical in stellarators

even with quasisymmetry. In other words, the geometric coefficients used in a gyrokinetic calcu-

lation will vary with the field line label αt. Hence, it is possible that the most unstable mode lies
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on a different fieldl line for a different equilibrium. However, we do not explore it further and

only scan αt = 0 in this thesis. To understand how the microstability behavior of a stellarator

changes with β, we analyze a stellarator equilibrium with a higher β in the next section.

3.4.2 LBD QH intermediate-β equilibrium

After studying a low-β stellarator equilibrium in the previous section, we look at an intermediate-

β (⟨β⟩ ≈ 5%), four field period, LBD QH equilibrium at nominal density and temperature

graidents on a single field line. The input pressure, rotational transform, and boundary cross-

section is shown in figure 3.20.
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Figure 3.20: This figure plots the inputs to the VMEC code for the LBD QH design: the pressure,

rotational transform as a function of the normalized radius ρ, and cross-section of the boundary.

The red lines mark the radii ρ = 0.5 and ρ = 0.8, locations at which we perform the gyrokinetic

analysis.

With the output equilibria, we use the information needed for a gyrokinetic run given in

table 3.10. Using these values, we solve the linear electrostatic and the fully electromagnetic

gyrokinetic model with GS2 on the field line αt = 0 and plot the normalized growth rate in

figure 3.21.
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ρ βN aN/Ln aN/LT kyρi θ0

0.5 10.8 0.90 0.45 [0.05, 6] [−1.5, 1.5]

0.8 4.6 3.96 1.98 [0.05, 6] [−1.5, 1.5]

Table 3.10: This table contains the values of quantities needed for a gyrokinetic run with the LBD

QH equilibrium. The gradient scale lengths are the same for both ions and electrons.

(a) Electrostatic γaN/cs at ρ = 0.5 (b) Electromagnetic γaN/cs at ρ = 0.5

(c) Electrostatic γaN/cs at ρ = 0.8 (d) Electromagnetic γaN/cs at ρ = 0.8

Figure 3.21: This figure compares the normalized electrostatic and electromagnetic growth rates

for the LBD QH equilibria. In figures 3.21(a) and (b) we plot the electrostatic and electromag-

netic growth rates, respectively at ρ = 0.5. In figures 3.21(c) and (d), we do the same for ρ = 0.8.

Note that due to strong shaping of stellarators, we also scan in the ballooning parameter θ0.

For the intermediate-β equilibrium, we see the same effects as the axisymmetric and the

3D equilibria we studied before. As expected, due to a larger-β, the finite-β stabilization of

ITG is even greater. The stabilization occurs due to the negative local shear even though the

global shear is small compared to tokmaks. Due to the larger β, we also see emergence of the

KBM in figures 3.21(b) and 3.21(d) in both the inner and outer core around kyρi ≈ 1. Similar

to the previous equilibrium, the electromagnetic growth rate goes to a finite non-zero value at
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kyρi = 0.05.

Unlike the tokamaks microstability study, we cannot do a Greene-Chance analysis for these

stellarator equilibria as they are not described by an explicit, scalar, force-balance equation like

the Grad-Shafranov equation. Self-consistently performing these gradient scans would either

require generating multiple new equilibria using VMEC or imposing additional constraints on the

type of equilibrium [91, 92]. Both of these methods are non-trivial to implement and will not be

explored further in this thesis.

Some of the tokamak cases and all the stellarator cases that we studied are unstable to

KBMs. Moreover, for some of these cases the growth rate approaches a finite value at kyρi = 0.05

instead of approaching zero. This behavior is linked to the ideal ballooning stability of these

equilibria. We will explore this effect in more detail in the next section.

3.5 Relationship between ideal and kinetic ballooning modes

In this section, we will demonstrate similarities and differences between the ideal and ki-

netic ballooning modes. First, we will briefly explain the limit in which the linear gyrokinetic

model reduces to the ideal ballooning equation. Next, we will perform an ŝ − αMHD analysis of

axisymmetric equilibria using the Greene-Chance method explained in §3.2.3 and calculate the

maximum ballooning eigenvalue λ̂ for the 3D equilibria. We will explain the correlation between

the distance from marginality of the ideal ballooning mode and the KBM.

To elucidate the similarities between the ideal and the kinetic ballooning mode, we take the

intermediate frequency, long wavelength, large aspect ratio limit of the gyrokinetic model (3.30)-
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(3.33). In this limit

vth,i
aN

≪ ω ≪ vth,e
aN

, k⊥ρi ≪ 1, β ≪ 1, ϵ≪ 1, (3.60)

where ϵ = 1/A is the inverse aspect ratio of the device. Tang et al. [49] and Aleynikova and

Zocco [93] have shown that the linear electromagnetic gyrokinetic model can be reduced to

1

J
∂

∂θ

(
|∇α|2
J B2

∂X̂

∂θ

)
+
d(µ0p)

dψ

[
B ×∇

(
2µ0p+B2

)
·∇α

]
X̂ = (ω∗,i−ω)ωρ

|∇α|2
B2

X̂, (3.61)

where X̂ = δφ is the electrostatic potential fluctuation. This equation is nearly identical to the

ideal ballooning equation, except for the diamagnetic corrections from the ω∗,i = kyρivth,i/Lni

term. In fact, in the long-wavelength limit kyρi → 0, (3.61) reduces to the ideal ballooning

equation (2.37).

To better understand this connection, we solve the ideal ballooning equation for all the

equilibria discussed in this chapter. For axisymmetric equilibria, we also leverage the Greene-

Chance technique to self-consistently change ŝ and αMHD for all the twelve local equilibria.

3.5.1 ŝ− αMHD analysis of axisymmetric equilibria

In this section, we will calculate the growth rate γaN/cs for all the axisymmetric cases

studied in §3.3. To obtain useful maximum growth rate scans, it is computationally advanta-

geous to know where the equilibrium transitions from being stable to unstable, i.e., the region of

marginal stability. This is because stable modes are extended and require many more points and

a wider range in θ than unstable modes, leading to a longer computation time. To that end, we
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first integrate the marginally stable ballooning equation

1

J
∂

∂θ

(
|∇α|2
J B2

∂X̂

∂θ

)
+ 2µ0

dp

dψ

[
B ×∇

(
µ0p+

B2

2

)
·∇α

]
X̂ = 0, (3.62)

along the field and count the zeros of the function X̂(θ) — if X̂ has at least one zero, the mode is

unstable; otherwise it is stable. This criterion was originally developed in [94] by Newcomb, for

a screw pinch. Newcomb used it as a method to assess the stability of a screw pinch without ex-

plicitly finding the growth rates or the eigenfunctions. It is briefly explained in appendix D. Using

this criterion, one can obtain the sign of λ̂ ∝ γ2 and infer the stability significantly more rapidly

than by exactly solving (2.37). Coupling Newcomb’s criterion with the Greene-Chance analysis

gives us the ability to scan the ŝ − αMHD space and plot the marginal stability contour (γ = 0)

cheaply. For axisymmetric equilibria, the marginal stability contour is a single continuous line.

Upon obtaining the contour, we choose a region around it where we solve (2.37).

To solve (2.37) we use the procedure described by Sanchez et al. [42]. Our two-part code

first finds the contour of marginal stability, then takes a region around the contour in the ŝ−αMHD

space and implements the algorithm given in [42]. It outputs the maximum eigenvalue and the

corresponding eigenfunction for each value of ŝ and αMHD. The plots of the maximum eigenvalue

along with the curve of marginal stability are shown in the next section.9

This section contains the results of the ŝ−αMHD analyses of the twelve local equilibria that

9All the calculations for axisymmetric equilibria in this chapter are done with θ0 = 0. A more complete picture

would require one to scan over multiple values of θ0 and take the union of the resulting marginal stability curves and

growth rate plots.
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we chose in §3.3. We plot a 2D contour plot of the magnitude of the growth rate defined as

γ = −i

√
2λ̂

βN
(3.63)

where the definition of λ̂ is taken from (2.39). We begin by discussing the positive triangularity

equilibria in figure 3.22.

(a) ρ = 0.5, β ∼ 0.01 (b) ρ = 0.5, β ∼ 0.1 (c) ρ = 0.5, β ∼ 1

(d) ρ = 0.8, β ∼ 0.01 (e) ρ = 0.8, β ∼ 0.1 (f ) ρ = 0.8, β ∼ 1

Figure 3.22: This figure shows the normalized growth rate γaN/vth,i contours along with the

curve of marginal stability (white line) for the positive triangularity equilibria. The columns

correspond to the low, intermediate and high-β regimes, respectively. The nominal equilibrium

value is given by the green cross. The difference between the growth rates from the low and

high-β equilibria is due to our choice of normalization in (3.63).

All the positive triangularity equilibria studied here are stable at their nominal values. The

low-β equilibria lie below the marginal stability contour whereas the high-β equilibria lie above

it. For low-β equilibria the ballooning threshold is well-known to be αMHD ∼ 1 but for the

high-β equilibria, using (3.43), αMHD ∼ 1/δ2Hsu ≫ 1 which pushes these equilibria into the
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region of “second” stability, first discovered by Coppi [95] and later explored by Greene and

Chance [62]. Note that the high-β equilibrium in figure 3.22(f) is close to marginally stable.

Also, since ballooning modes are Alfvén waves and we use ion thermal speed to normalize the

ballooning eigenvalue λ̂, we see that the maximum growth rate decreases as vth,i/vA =
√
β/2

— high-β equilibria having the smallest maximum growth rates. The non-conventional choice of

normalization used in this section helps us quantitatively compare ideal ballooning growth rates

with the ones obtained from various microstability studies in §3.3.1, §3.3.2, and §3.3.3. In the

next paragraph, we discuss the results from ideal ballooning scans of the negative triangularity

equilibria.

(a) ρ = 0.5, β ∼ 0.01 (b) ρ = 0.5, β ∼ 0.1 (c) ρ = 0.5, β ∼ 1

(d) ρ = 0.8, β ∼ 0.01 (e) ρ = 0.8, β ∼ 0.1 (f ) ρ = 0.8, β ∼ 1

Figure 3.23: This figure shows the normalized growth rate contours along with the marginal

stability curve for the negative triangularity equilibria. The nominal equilibrium value is denoted

by the green cross.

In figure 3.23, we can see that the nominal equilibria for negative triangularity are stable

for all cases except figure 3.23(e). The trends follow those of the positive triangularity equilib-
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ria with one important exception. Unlike positive triangularity equilibria, the high-β negative

triangularity equilibria move closer to the marginal stability boundary in the inner core region

as seen in figure 3.22(c). This is different from the usual result — ballooning-stable equilibria

with peaked pressure profiles approach marginal stability as we move towards the boundary and

pressure gradient gets steeper (as seen in figure 3.22, 3.22(a), 3.22(b), 3.22(d), and 3.22(e)) —

indicating that negative triangularity, high-β equilibria have enhanced ballooning stability in the

outer core. We observed a similar trend when we presented results from the electromagnetic

microstability analyses in §3.3.3.

Recently, Davies et al. [45] have published a study investigating access to high-β spher-

ical tokamak equilibria where they find that high-β, negative triangularity equilibria are more

unstable and less accessible than their positive triangularity counterparts. At first, this may seem

to contradict our results. However, looking at the plasma β values in Davies et al., we realize

that their high-β equilibria correspond to intermediate-β in our work. Indeed, the negative trian-

gularity intermediate-β equilibrium in figure 3.22(e) is ballooning unstable whereas the positive

triangularity equilibrium in figure 3.22(e) is ballooning stable. Furthermore, Davies et al. define

accessibility as the ability to reach the nominal αMHD from αMHD = 0 at the nominal ŝ — a

straight line in ŝ−αMHD space — the actual path of an equilibrium from startup to a steady-state

operation in the ŝ − αMHD space is a 2-D curve, similar to figures 2(a), 2(b) in [69]. Therefore,

our results corroborate, rather than contradict, the findings of Davies et al.

The first important takeaway from this study is that all low- and high-β equilibria are stable

to the ideal ballooning mode. This indicates that it might be possible to generate high-β axisym-
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metric equilibria that are ballooning stable.10 Even though one of the intermediate-β equilibria

is unstable, we will use it in our study as it will help us understand the behavior of microstability

with changing β.

The second important takeaway is that equilibria that are ideal ballooning unstable are also

unstable to the KBM. Moreover, there is a correlation between the distance from marginality and

ideal ballooning stability, especially for intermediate-β equilibria — equilibria that are closer to

the marginal stability boundary are unstable to the KBM. This will be explored further in the

next chapter. In the next section, we will calculate the maxium ballooning eigenvalue λ̂ for the

stellarator equilibria.

3.5.2 Ideal ballooning analysis of LBD equilibria

To check if our observations for tokamaks can be extended to stellarators, we calculate the

maximum eigenvalue λ̂max for both the LBD equilibria.

0.2 0.4 0.6 0.8 1.0
= / b

0.000
0.002
0.004
0.006
0.008
0.010

m
ax

(a) LBD-QA

0.2 0.4 0.6 0.8 1.0
= / b

0.000
0.002
0.004
0.006
0.008

m
ax

(b) LBD-QH

Figure 3.24: This figure shows the maximum ideal ballooning eigenvalue λ̂max as a function

of the radial location ρ. In figure 3.24(a) we plot λ̂max for the LBD QA equilibrium and in

figure 3.24(b) we plot λ̂max for the LBD QH equilibrium.

10Note that we do not prove the experimental accessibility of these high-β equilibria. We show that if these

equilibria were to exist, they will be stable to the ideal ballooning mode. The problem of accessibility in the context

of ideal ballooning stability was studied by [69].
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We observe that both the LBD QA and QH equilibria are unstable to the ideal ballooning

mode. Similarly, both the ideal ballooning and gyrokinetic growth rates are also larger at ρ = 0.8

than at ρ = 0.5 for both equilibria We also see from figures 3.19(b), (d) and figures 3.21(b),

(d) that the KBM growth rate is a finite positive value as kyρi → 0. This serves as additional

evidence to our hypothesis that ideal ballooning unstable equilibria are also unstable to KBMs.

Even though ideal ballooning modes may not necessarily lead to disruptions in stellarators,

they can still deteriorate the heat and particle transport via the KBM channel. For high-β toka-

maks and stellarators, the lowest wavenumber modes are KBMs. Since low-wavenumber modes

are usually the most dangerous, ensuring the KBM stability of high-β devices is of paramount

importance for improved plasma confinement.

3.6 Summary and Conclusions

We began this chapter by explaining the linear, collisionless, gyrokinetic model and how to

solve it numerically using the GS2 code in §3.2. We also explained Greene-Chance analysis, a

technique used to locally change the pressure gradient and shear of axisymmetric equilibria.

In §3.3, we studied the stability of all the axisymmetric local equilibria to the two most

virulent electrostatic modes of turbulence: ITG and TEM. We found a clear inverse relationship

between the beta value and the growth rates — increasing the beta value stabilized both the

ITG mode and the TEM. Using a Greene-Chance analysis, we also scanned the maximum ITG,

TEM growth rates vs the temperature and density gradient scale lengths, respectively. This was

important to ensure that these equilibria are not “stiff”, i.e., the growth rates do not increase

sharply as the gradients exceed some threshold. In §3.3.1.2, we explained how a large negative
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local shear resulting from a large Shafranov shift stabilizes the ITG mode and in §3.3.2.2 we

showed how the reversal of the precession of the trapped electrons stabilizes the TEM throughout

the whole range of gradient scale lengths.

The effect of electromagnetic fluctuations can be important for all equilibria, especially the

intermediate and high-β ones. To that end, in §3.3.3 we performed an electromagnetic study of all

the nominal axisymmetric equilibria. We found that the stability trend seen for the electrostatic

case did not hold after turning on electromagnetic effects. However, even though the high-β

equilibria were more unstable than the low-β ones due to collisionless-MTMs and EM-ETGs

in the inner core, they were much more stable than low-β in the outer core. We found that

negative triangularity, high-β equilibria were stable to the KBM. We believe that this is due to

the strong shaping (“squareness”) of the negative triangularity high-β equilibria. This indicates

that turbulent transport may flatten the pressure gradient in the core but may not significantly

affect the pressure gradient toward the edge for high-β equilibria.

To ensure that the trends obtained from the high-β tokamak study are applicable to stel-

larators with a high-β, in §3.4 we examined both the electrostatic and electromagnetic the mi-

crostability of two recent quasisymmetric stellarator equilibria obtained by Landreman et al. [90].

Similar to tokamaks, we also observed effects like finite-β stabilitization of the ITG and emer-

gence of KBMs and EM-ETG in both the LBD equilibria. Moreover, all the LBD equilibria that

we analyzed were unstable to the KBMs.

To further explore the relationship between the ideal and kinetic ballooning modes, in §3.5,

we then analyzed the ideal ballooning stability for both the tokamak and stellarator equilibria.

We also performed an ŝ − αMHD for the axisymmetric equilibria to visualize the distance of the

nominal equilibria form the curve of ideal ballooning marginal stability. We find that all the ideal
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ballooning unstable equilibria are also KBM unstable. Furthermore, equilibria that are close to

marginality are also unstable to KBMs.

To explore the relationship between distance from ideal ballooning marginality and KBMs,

in the next chapter, we integrate microstability analysis with the adjoint ballooning stability

framework from chapter 2 and search for axisymmetric and 3D quasisymmetric equilibria that

are stable against the KBM.
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Chapter 4: Towards a combined MHD and kinetic stability optimization of high-

β equilibria

4.1 Overview

In the previous two chapters, we have analyzed the ideal MHD and kinetic stability of

high-β tokamak and stellarator equilibria. Since the overall stability of a fusion device is cru-

cial, it would be advantageous to have a single optimizer that optimizes against both types of

instabilities.

In this chapter, we combine all the ideas and tools from the previous chapters to develop

a stability optimization framework called MicroStOpt. With this framework, we calculate, test,

and present some results. Finally, we use this to search for axisymmetric and quasisymmet-

ric equilibria that are stable against the ideal and Kinetic Ballooning Modes (KBMs). Kinetic

stability calculations are typically much more expensive than ideal MHD stability calculations.

Consequently, there is a great interest in finding proxies that reliably correlate with kinetic sta-

bility. Using our optimizer, we can also test different equilibrium-dependent proxies. Using the

knowledge derived from the previous chapter, we also test whether the ideal ballooning distance-

from-marginality is a useful proxy for KBM stability.
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4.2 The MicroStOpt framework

MicroStopt is an optimization framework written in Python that can generate and optimize

tokamak and stellarator equilibria against ideal and kinetic instabilities. We use the SIMSOPT

framework to generate equilibria, our solver from chapter 2 to calculate the infinite-n ideal bal-

looning stability, GS2 to evaluate linear microstability, and the recent nonlinear gyrokinetic

code, GX [96, 97] to calculate nonlinear heat and particle fluxes. A detailed explanation and

reasoning for using GX is provided in appendix F. A flowchart that broadly explans the working

of MicroStOpt is shown in figure 4.1.

MicroStOpt is a program manager that couples the three different codes. The equilib-

rium parameters such as the boundary Fourier coefficients, rotational transform, etc., are con-

tained in the state vector x0. The general idea is to reduce the transport by stabilizing the linear

mode(modes) causing the largest transport. The algorithm follows the following steps.

1. From a non-linear GX run, we find the mode causing the most heat and particle transport

and the range of wavenumbers (kx, ky) corresponding to that mode

2. Using GS2, our objective becomes to find a new state vector x0 such that the linear growth

rate of the mode corresponding to the largest Q and Γ is lower than its previous value.

3. If the optimization requires a gradient, we spawn multiple instances of the optimizer. We

change one element of x0 per instance by a small value and recalculate the objective func-

tion F concurrently to find the derivative ∂F/∂x|x0
.

4. After every ten iterations, we take the relatively more stable equilibria and run GX again to

check how much the fluxes Q and Γ have decreased.
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Run nonlinear GX
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with SIMSOPT 
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Gradient 
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 objective with GS2 

Vary x  and calculate geometry 
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Calculate ballooning  

Gradient of the overall objective
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0

Figure 4.1: This figure shows the flow chart explaining how the MicroStOpt framework operates.

The dashed gray box denotes the flow of logic inside an optimizer. The red box indicates work

in progress as we are still testing nonlinear, electromagnetic GX.
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Like SIMSOPT, the gradient of the objective function is calculated concurrently. We can use

gradient-based or gradient-free, local or global optimizers; all of which available in Python.

Apart from wrapping these codes in an optimizer, we also implement load balancing over

multiple CPUs by storing the status of each job. In this way, we can keep track of the total

number of processors and reassign the processors used for a subprocess to another subprocess

without using MPI from within an MPI program. Since finding the globally maximum growth

rate on a (kx, ky) for different state vectors x0 is a highly parallel job and each GS2 run takes a

different amount of time to converge, load-balancing helps us speed up the maximum growth rate

calculation.

Using this framework, we first perform a few simple tests with the ideal ballooning stable,

intermediate-β axisymmetric equilibrium from §2.4.1. Note that the weights of different penalty

terms in the objective function F are chosen based on the relative size of different objectives.

There are no well-defined rules, and finding the right objective function occasionally requires

trial-and-error by the user. The first two tests scan the objective function

F = F2
minor + F2

⟨B⟩ + F2
aspect + 4F2

Rc
+ 2.5F2

micro, (4.1)

with respect to the boundary Fourier coefficients in VMEC R̂b(0, 1) and R̂b(0, 2). All the terms

except the last one are defined in §2.3.4.2. The last term,

Fmicro =
ns∑

j=1

ReLU(γ − γthresh), (4.2)

sums over the maximum growth rate γ greater than γthresh in the chosen range of (kx, ky) on each
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of ns flux surfaces indexed by j. For our study, we choose γthresh = 0.02, kx ∈ [0, 1.5], ky ∈

[0.05, 6.0], ns = 12 with s ∈ [0.05, 0.875]. The plot of F with respect to R̂b(0, 1) and R̂b(0, 2) is

given in figure 4.2.

(a) No mode switching (b) Mode switching

Figure 4.2: This figure shows the scan of the objective function F with respect two boundary

Fourier modes R̂b(0, 1) and R̂b(0, 2). In figure (a), we observe a case where the most unstable

mode does not change leading to a smooth F . However, noisy behaviour in figure (b) is because

the mode corresponding to the maximum gamma changes as we change RBC(0, 2).

The objective function is smooth in figure 4.2 (a) but non-smooth in figure 4.2 (b) because

maximally growing modes switch from a KBM to an EM-ETG. The jumps occur because the

maximum EM-ETG growth rate does not lie inside the chosen (kx, ky) domain. To capture both

electromagnetic ion- and electron-driven modes, such as EM-ETGs and MTMs, we would require

ky ∼
√
mi/me which would make a straightforward linear calculation more expensive. A more

efficient method is to isolate a single mode and reduce its growth rate. If we do that, we can use

gradient-based optimization, which is much faster than gradient-free algorithms.

For the sake of simplicity, as a part of the preliminary tests, and to test our hypothesis about

the connection between the ideal and kinetic ballooning modes, we will only perform stability

optimization of equilibria against the KBM. We start by testing the hypothesis from chapter 3 in
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State βax(%) ⟨β⟩(%) jϕ(MA) ⟨B⟩ (T) ῑ A aN(m) ψb(Tm
2)

Initial 14.0 7.8 0.616 0.677 0.568 2.42 0.68 1.0

Optim. 12.8 7.1 0.475 0.749 0.301 2.59 0.647 1.0

Table 4.1: This table shows a comparison between relevant physical quantities of the intial and

optimized DIII-D equilibrium.

the next section.

4.3 Finding a high-β, KBM-stable tokamak

In this section, we use the MicroStOpt framework to find a high-β tokamak design that is

stable against both the ideal and kinetic ballooning modes. We start with the axisymmetric equi-

librium used in §2.2.1. The degrees of freedom for this study are: R̂b(0, 1), R̂b(0, 2), R̂b(0, 3),

R̂b(0, 4), Ẑb(0, 1), Ẑb(0, 3), Ẑb(0, 4), Ẑb(0, 5). We also vary the zeroth, third, and fifth coeffi-

cients of the rotational transform profile. Overall, we have eleven degrees of freedom. The iota

and cross-section profiles of the initial and final equilibria are given in figure 4.3 A comparison

between the values of important physical quantities for the initial and final equilibria is presented

in table 4.2 We were able to stabilize the equilibrium against the ideal ballooning mode and re-

duce the KBM growth rate using MicroStOpt. Note also that after an equilibrium becomes stable

against the ideal ballooning mode, there is no definitive correlation between the distance from

ideal ballooning marginality and the KBM growth rate. In the next section, we test MicroStOpt

for stellarator equilibria by searching for a quasisymmetric, high-β stellarator.
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Figure 4.3: This figure plots the initial and optimized rotational transform and cross sections

in the top row. In the bottom row, it shows the the ideal ballooning eigenvalue in figure 4.3(c)

and the KBM growth rate in figure 4.3(d). Using MicroStOpt, we are able to stabilize the ideal

ballooning mode and reduce the KBM growth rate by a factor of three.

4.4 Finding a high-β, KBM-stable quasisymmetric stellarator

In this section, we use the MicroStOpt framework to find a high-β, quasihelically symmet-

ric stellarator equilibrium. We start with a Landreman-Buller-Drevlak (LBD) QH-like equilib-

rium. To obtain this equilibrium, we take the original LBD QH equilibrium and remove all the

higher-order Fourier modes that define the boundary shape. Next, we vary the boundary shape

coefficients of the LBD QH-like equilibrium to stabilize the ideal and kinetic ballooning modes
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Figure 4.4: This figure shows the initial profiles and boundary shape of a high-β stellara-

tor equilibrium. Note that the pressure and rotational transform profiles are the same as the

LBD QH equilibrium. However, the boundary is different which makes this equilibrium non-

quasisymmetric.

while recovering quasisymmetry. Mathematically, an equilibrium is quasisymmetric when the

residual

fQS =
∑

sj

〈( 1

B3
[(N − ιM)B ×∇B ·∇ψ − (MG+NI)B ·∇B]

)〉
, (4.3)

vanishes. In (4.3) N and M are the desired toroidal and poloidal mode numbers of the magnetic

field, 2πψ is the total enclosed toroidal flux, 2π/µ0G(ψ) is the total poloidal current outside a

flux surface and inside the boundary, and 2π/µ0I(ψ) the total enclosed toroidal current. For

this case, we search for quasihelically symmetric (QH) equilibria that correspond to N = 1 and

M = −1.

Figure 4.4 shows the initial pressure, and rotational transform profiles, and the boundary

shape profile of the initial stellarator equilibrium. We choose only the boundary coefficients as

degrees of freedom. The list of coefficients is provided in table 4.2.

112



R̂b(n,m) Ẑb(n,m)

([1, 3], 0) ([1, 3], 0)

([−3, 3], 1) ([−3, 3], 1)

([−2, 2], 2) ([−2, 2], 2)

([−2, 2], 3) ([−2, 2], 3)

([−1, 1], 4) ([−1, 1], 4)

Table 4.2: This table provides the boundary shape degrees of freedom for the QH, high-β stel-

larator equilibrium. The number of degrees of freedom is 46.

Using these degrees of freedom, we use MicroStOpt to find an ideal ballooning stable

equilibrium that also has a lower KBM growth rate. The comparison of various growth rates is

shown in figure 4.5.
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Figure 4.5: This figure shows the initial and final cross-section of the high-β stellarator equilib-

rium in figure 4.5(a). In figures 4.5(b) and (c), we present the ideal ballooning eigenvalue and

KBM growth rates of the initial and optimized equilibrium. MicroStOpt is able to stabilize the

initial equilibrium.

We observe that MicroStOpt is able to find an equilibrium that is relatively more stable

to both the ideal and kinetic ballooning modes than the initial equilibrium. The maximum ideal

ballooning growth rate is reduced approximately by half, and the maximum KBM growth rate is

reduced by 20%. We also see a significant improvement in quasisymmetry, evident by the reduc-
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State βax(%) ⟨β⟩(%) jϕ(MA) ⟨B⟩ (T) ῑ A aN(m) fQS ψb(Tm
2)

Initial 12.6 5.7 2.15 5.54 1.12 6.50 1.74 9.0 45.6

Optim. 10.9 4.9 2.15 5.92 1.10 6.54 1.68 0.076 45.6

Table 4.3: This table shows a comparison between relevant physical quantities of the intial and

optimized LBD-QH-like equilibrium.

tion of the quasisymmetry residual. This exercise serves as a proof-of-concept for MicroStOpt

as a tool for finding high-β stellarator equilibria with favorable stability properties. Note that the

original LBD QH equilibrium was also optimized for a self-consistent bootstrap current. Since

we did not include the self-consistent bootstrap current in the penalty, the bootstrap current in

this equilibrium is not self-consistent.

4.5 Summary and Conclusions

In this chapter, we described the details of a new ideal ballooning and kinetic stability op-

timization framework MicroStOpt. We presented some tests by scanning the kinetic instability

objective function with respect to various boundary shape parameters. We followed that by sta-

bilizing a high-β axisymmetric equilibrium against the ideal ballooning and kinetic ballooning

mode (KBM). MicroStOpt was able to stabilize the equilibrium against the ideal ballooning mode

and reduced the growth rate of the KBM by a factor of three. Finally, we used MicroStOpt take

a general high-β stellarator equilibrium and find a quasihelical (QH) 3D equilibrium with a re-

duced ideal ballooning and KBM growth rate throughout the volume. These studies demonstrate

the ability of our optimization framework to reduce the linear instability growth rates of high-β

tokamak and stellarator equilibria.

There are many more useful features that can be added to MicroStOpt. Currently, we can
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only stabilize one mode at a time. To alleviate this, we plant to add the ability to perform a multi-

mode analysis. Since these linear and nonlinear analyses are time-consuming, an interesting area

of research is to find equilibrium-dependent proxies for the critical gradient [20] of nonlinear

fluxes or the overall free energy [98] available to turbulence. Calculating equilibrium-dependent

proxies is typically orders of magnitude faster than running gyrokinetic codes. Therefore, we can

use MicrStOpt to find and test new proxies.

A complete optimization cycle with MicroStOpt requires hundreds of thousands of GS2

runs. The equilibrium data generated during the optimization combined with the linear growth

rates and nonlinear fluxes can be used to train a machine learning model to map the space of

favorable tokamak or stellarator operation or to discover new equilibrium-dependent proxies.

It would also be interesting to couple this framework with a transport solver such as Trin-

ity [99, 100]. In this way, we could calculate the evolution of the temperature and density profiles

on transport time scales and ensure that the kinetic turbulence is reduced and the device β is

increased, thereby increasing the power output.
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Chapter 4: Conclusions

In this thesis, we have studied optimization of high-β tokamaks and stellarators in the

context of linear instabilities. To study the stability of these high-β equilibria, we used two

models with different levels of complexity: ideal MHD and δf gyrokinetics.

In chapter 2, we analyzed three high-β fusion configurations against a pressure-driven in-

stability, the infinite-n ideal ballooning. All the chosen equilibria were initially unstable against

the ballooning mode. To stabilize said equilibria, we formulated an adjoint-based method to

speed up the calculation of the gradient of the maxium growth rate of these equilibria. We im-

plemented this method with the help of the SIMSOPT framework, finding stable equilibria for

each of the initially unstable ones. A typical 3D optimization can have hundreds of Dofs. Since

we only used the adjoint method with respect to two variables, our technique has the potential

to speed up the gradient calculation even more. We plan to use this approach with low-n ideal

MHD stability solvers which would speed up optimization against all types of fixed boundary,

ideal MHD unstable modes.

In chapter 3, we performed an in-depth numerical study of twelve high-β tokamak and

two stellarator equilibria against various types of kinetic instabilities. We used the fast parallel

code GS2 to understand the stability mechanisms of two electrostatic modes of turbulence in

high-β tokamaks, ITG and TEMs. To understand the effect of β, we compared these results with
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low-β and intermediate-β tokamaks. Next, we observed the effect of electromagnetic fluctuations

on these equilibria. In the high-β regime, the electromagnetic fluctuations caused the dominant

modes to change from ITG and TEMs, to KBMs, EM-ETGs, and MTMs. To ensure that our

observations for tokamaks could be generalized to stellarators, we then analyzed high-β stel-

larator equilibria and observed the same effects: finite-β stabilization of the ITG and the TEM,

and emergence of KBMs, EM-ETGs, and MTMs. We also highlighed the similarity between the

long-wavelength limit of the KBM and the ideal ballooning mode.

In chapter 4, we combined our ideal ballooning solver and the gyrokinetic solver GS2 along

with the SIMSOPT framework to develop the MicroStOpt framework that can stabilize equilibria

against ideal ballooning and kinetic instabilities. Long-wavelength modes usually dominate the

heat and particle loss from a fusion device, and KBMs were the unstable electromagnetic modes

with the longest wavelength. Moreover, both the stellarators and four tokamak equilibria that we

analyzed in chapter 3 were unstable to KBMs. Therefore, we used MicroStOpt to stabilize these

equilibria against ideal ballooning modes and KBMs. We were able to reduce the linear KBM

growth rate by more than a factor of three for the tokamak and equilibria and around 20% for the

stellarator equilibria, thereby demonstrating the utility of our optimization framework.

The ideas explored in this thesis can be extended in many directions, especially with the Mi-

croStOpt framework. Since the heat and particle fluxes calculated with the nonlinear gyrokinetic

solver GX generally depend on both ion- and electron-driven modes, extending our optimizer to

include multiple modes would be beneficial. Once we have the results from the optimization, it

would be useful to verify the long time evolution of the temperature and density profiles using a

transport solver like Trinity.
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Appendix A: Details of the adjoint method and ideal ballooning equation

A.1 The discretized ideal ballooning equation

After applying the boundary conditions X̂0 = X̂N = 0 to (2.41), we can rewrite the

ballooning equation as

(A− λI)X̂ = 0, (A.1)

with I being the identity matrix and the asymmetric tridiagonal matrix A with the following form




g1/2+g3/2−(∆θ)2c1
(∆θ)2f1

− g3/2
(∆θ)2f1

0 0 . . . 0 0

− g3/2
(∆θ)2f2

g3/2+g5/2−(∆θ)2c2
(∆θ)2f2

− g5/2
(∆θ)2f2

0 . . . 0 0

. . .

. . .

0 0 0 0 . . .
gN−5/2+gN−3/2−(∆θ)2cN−2

h2fN−2
− gN−3/2

(∆θ)2fN−2

0 0 0 0 . . . − gN−3/2

(∆θ)2fN−1

gN−3/2+gN−1/2−(∆θ)2cN−1

(∆θ)2fN−1




where the definitions of the terms g, c, and f are provided in (2.39) and ∆θ is the (constant)

spacing between the grid points. The maxtrix is solved for the maximum eigenvalue using an

Arnoldi iterative scheme.
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A.2 Details of the adjoint ideal ballooning calculation

In this appendix, we will derive (2.51) starting with (2.38). To do that, we will use the

self-adjoint property of ideal MHD given in (2.46) as well as the Dirichlet boundary conditions

satisfied by the eigenfunction,

X̂(θ = ±θb) = X̂∗(θ = ±θb) = 0. (A.2)

Defining p = (p̃, p̂) as the union of all the parameters of the problem, we start by taking the

derivative ∂/∂p of (2.38),

d

dθ

∂g

∂p

dX̂

dθ
+

d

dθ
g
d

dθ

∂X̂

∂p
+
∂c

∂p
X̂ + c

∂X̂

∂p
=
∂λ̂

∂p
fX̂ + λ̂f

∂X̂

∂p
+ λ̂X̂

∂f

∂p
. (A.3)

Multiplying with X̂∗ on both sides, integrating throughout the domain,

∫ θb

−θb

dθ X̂∗ d

dθ

∂g

∂p

dX̂

dθ
+

∫ θb

−θb

X̂∗ d

dθ
g
d

dθ

∂X̂

∂p
+

∫ θb

−θb

dθ
∂c

∂p
|X̂|2 +

∫ θb

−θb

dθ cX̂∗∂X̂

∂p

=
∂λ̂

∂p

∫ θb

−θb

dθ f|X̂|2 + λ̂

∫ θb

−θb

dθ
∂f

∂p
|X̂|2 + λ̂

∫ θb

−θb

dθ fX̂∗∂X̂

∂p
.

(A.4)

Using integration by parts, (A.2) and rearranging (A.4), we can write

∫ θb

−θb

dθ

(
∂c

∂p
|X̂|2 − ∂g

∂p

∣∣∣dX̂
dθ

∣∣∣
2

−λ̂ ∂f
∂p

|X̂|2
)
− ∂λ̂

∂p

∫ θb

−θb

dθ f|X̂|2

=

∫ θb

−θb

dθ

(
− d

dθ
g
dX̂∗

dθ
− cX̂∗ + λ̂fX̂∗

)
∂X̂

∂p
.

(A.5)
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Due to the self-adjoint property of ideal MHD, the right side of (A.5) is zero. The rest of the

equation can be arranged so that

∂λ̂

∂p
=

∫
θb

−θb
dθ

(
∂c

∂p
|X̂|2 − ∂g

∂p

∣∣∣dX̂
dθ

∣∣∣
2

− λ̂
∂f

∂p
|X̂|2

)

∫ θb
−θb

dθ f|X̂|2
. (A.6)

Therefore, to calculate ∂λ̂/∂p, we only need the gradients of the geometric coefficients g, c, f,

the eigenfunction X̂ , and the eigenvalue λ̂ of the ballooning equation; we have to solve the ideal

ballooning equation only once. This speeds up the optimization loop, as it is much faster to obtain

the gradient of the geometric coefficients than to solve the ballooning equation multiple times.

A.3 Extending our adjoint-based technique to equilibrium degrees of freedom

In this paper, we have used an adjoint method to find the maximum eigenvalue λ̂max with

respect to the parameters p̂ of the ballooning equation. It is possible to extend our method to

minimize fball to the equilibrium parameters p̃ under the appropriate conditions. We define the

problem and find the pertinent conditions in this appendix. We want to find

min fball(λ̂max, p̃, p̂), s.t. G(λ̂, X̂, p̃, p̂) ≡ LX̂ − λ̂X̂ = 0. (A.7)

where all symbols are defined in §2.3.3 and the ballooning objective function fball is defined

in (2.54). To minimize fball with respect to the equilibrium parameters, we need

dfball
dp̃

=
∂fball

∂λ̂max

∣∣∣∣
p̃,p̂

∂λ̂max

∂p̃

∣∣∣∣
p̂

+
∂fball
∂p̂

∣∣∣∣
λ̂max,p̃

∂p̂

∂p̃

∣∣∣∣
λ̂max

+
∂fball
∂p̃

∣∣∣∣
λ̂max,p̂

. (A.8)
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The most expensive term to calculate in (A.8) is the gradient of the eigenvalue λ. To obtain that,

we take the derivative of the operator G with respect to λ,

−∂G
∂λ̂

∂λ̂

∂p̃
=
∂G
∂λ̂

∂λ̂

∂p̂
+
∂G
∂X̂

∂X̂

∂p̂
+
∂G
∂X̂

∂X̂

∂p̃
+
∂G
∂p̂

+
∂G
∂p̃

. (A.9)

We also express λ̂ around a point p0 = (p̃0, p̂0) in the state space as a Taylor series,

λ̂ = λ̂(p0) +
∂λ̂

∂p̃
· δp̃+

∂λ̂

∂p̂
· δp̂+

∂

∂p̃

∂λ̂

∂p̃
: δp̃δp̃+

∂

∂p̂

∂λ̂

∂p̂
: δp̂δp̂+ O(|δp|3), (A.10)

and assume that the optimizer takes a step size |δp| that is smaller than the radius of convergence

of Taylor series (A.10),

∣∣∣∣
∂

∂p̃

∂λ̂

∂p̃
: δp̃δp̃

∣∣∣∣≪
∣∣∣∣
∂λ̂

∂p̃
· δp̃
∣∣∣∣,

∣∣∣∣
∂

∂p̂

∂λ̂

∂p̂
: δp̂δp̂

∣∣∣∣≪
∣∣∣∣
∂λ̂

∂p̂
· δp̂
∣∣∣∣. (A.11)

Using (A.10) and (A.11)

∂λ̂

∂p̃
=
∂λ̂

∂p̂
+
∂λ̂

∂p̃
· ∂p̃
∂p̂

. (A.12)

Next, we use the fact that ∂λ̂/∂p̂ = 0 at λ̂ = λ̂max, and that our choice of fball only explic-

itly depends on λ̂max. Using the explicit form of the linear operator from (2.37), we multiply

equation (A.9) by X∗ and integrate throughout the domain, to rewrite (A.8) as

dfball
dp

=
ns∑

j=1

ReLU
′

(λ̂max,j)

∫
θb

−θb
dθ

(
∂c

∂p
|X̂|2 − ∂g

∂p

∣∣∣dX̂
dθ

∣∣∣
2

− λ̂
∂f

∂p
|X̂|2

)

∫ θb
−θb

dθ f|X̂|2
, (A.13)
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where p = (p̃, p̂) is the union of all the parameters of the problem and ReLU
′1 is the derivative

of the ReLU operator such that

ReLU
′

(x) =





0, if x < 0

1, x > 0

Calculating the derivative of the geometric coefficients g, c, and f, with respect to the equilibrium

parameter vector p̃ is not straightforward in VMEC and may lack the requisite accuracy for an

adjoint method to work. However, an equilibrium solver like DESC [101, 102, 103] that is de-

signed to calculate these gradients along with the geometric coefficients accurately may enable

us to utilize the full potential of this adjoint-based method. Since the speed up obtained with

an adjoint method is linearly proportional to the length of the vector p̃, using (A.13) we can, in

principle, speed up the calculation of dfball/dp̃ by an order of magnitude for 2D axisymmetric

equilibria and by two orders or magnitude for 3D equilibria.

A.4 Extending our adjoint technique to low-n, ideal MHD solvers

Note that this process can be applied to any ideal MHD eigenvalue solver. For fluctuations

that are not confined to a flux surface, one can simplify the energy integral subject to periodic

perturbation in θ and ϕ as explained in 2.3.1 to an equation of the form

AX = λBX, (A.14)

1The derivative of the ReLU operator is not well-defined at x = 0. We may have to replace it with an activation

function that is continuous with a well-defined derivative. For example, we could use the logistic function 1/(1 +
e−cx) with a large positive real number c.
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where A and B are real symmetric matrices. Currently, solving such an equation using various

low-n stability codes can be computationally expensive. For such a problem, we can repeat the

process explained at the beginning of this appendix to obtain the gradient,

∂λ

∂p
= XT

(
∂A
∂p

− λ
∂B
∂p

)
X
/
XTBX, (A.15)

for all modes. Equation (A.15) is similar to the Hellman-Feynman theorem [104, 105]. For

axisymmetric equilibria, combining gradient information with fast equilibrium solvers such as

EFIT [106] can help mitigate real-time disruption. One could also couple this adjoint approach

with an optimizer to find low-n, ideal MHD stable equilibria.

A.5 Homotopy analysis method for solving the ideal ballooning equation

The Homotopy Analysis Method [107] is a powerful technique that can be used to rapidly

solve complex, multi-dimension, nonlinear ODEs. In this appendix, we will use a particular flavor

of the Homotopy analysis method called the Spectral Homotopy Analysis Method (SHAM) [108]

to solve the infinite-n, ideal-ballooning equation (2.38).

In toplogy, homotopy is defined as a continuous deformation from one function to another.

By extending this ability of continuous deformation to ordinary differential equations, one can

solve complicated ODEs by continuously “deforming” the solution of a simpler ODE [107]. We

define the homotopy function

H (X̂; q) = qL1[X̂(θ; q), λ̂(q)] + c0(1− q)L0[X̂(θ; q)− X̂0(θ)], (A.16)
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where L0 is a simple linear operator, L1 is the linear operator we seek to solve, q ∈ [0, 1]

is the homotopy parameter, c0 is called the convergence control parameter, X̂ and λ̂ are the

eigenfunction and eigenvalue, respectively of homotopy function.

The equation L1X̂ = 0 can be solved by solving H (X; q = 1) = 0. The homotopy

method accomplishes this by writing the Taylor series expansion of H (X̂, λ̂; q), X̂ , and λ̂ around

q = 0

H (X̂; q) = H (X̂; q = 0) +
∂H (X̂; q)

∂q

∣∣∣∣
q=0

q

1!
+
∂2H (X; q)

∂q2

∣∣∣∣
q=0

q2

2!
+ . . . , (A.17)

X(θ; q) = X̂0(θ) +
q

1!

∂X̂(θ)

∂q

∣∣∣∣
q=0

+
q2

2!

∂2X̂(θ)

∂q2

∣∣∣∣
q=0

+ . . . , (A.18)

λ̂(q) = λ̂0 +
q

1!

∂λ̂

∂q

∣∣∣∣
q=0

+
q2

2!

∂2λ̂

∂q2

∣∣∣∣
q=0

+ . . . , (A.19)

assuming q as a small parameter and solving H order-by-order in q. To lowest order

H (X̂; 0) = L [X̂(θ; 0)− X̂0(θ)] = 0, (A.20)

which can be satisfied by choosing X̂(θ, 0) = X̂0, i.e., the lowest order function X̂ is equal to

the starting guess X̂0.

A.5.1 Using SHAM to solve the ideal ballooning equation

The ideal ballooning equation

1

f

d

dθ
g
dX̂

dθ
− c

f
X̂ − λX̂ = 0, (A.21)
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is a second-order eigenvalue value ODE with coefficients that are functions of the independent

variable θ. This equation must be solved subject to the boundary conditions

X̂(θ = ±θb) = 0. (A.22)

To apply SHAM, we use the following simple linear operator

L0X̂ ≡ d2X̂

dθ2
− 1 = 0, X̂(θ = ±θb) = 0. (A.23)

and rewrite the ideal ballooning operator by rescaling the eigenfunction X̂ by the positive definite

coefficient
√
g

L1X̂ ≡ d2
√
gX̂

dθ2
+

[
1

4

(
g

′

g

)2

− 1

2

g
′′

g2
− λ

f

g

]
√
gX̂ = 0, X̂(θ = ±θb) = 0. (A.24)

Using L0 and L1, we define the homotopy function

H (X̂; q) = qL1X̂ + c0(1− q)L0[X̂ − X̂0], (A.25)

and write

X =
n∑

j=1

anTn(θ/θb), (A.26)
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where Tn is the nth Chebyshev polynomial of the first kind. We also choose X0 = 1. Using the

solution from this order, we solve the homotopy equation for the next order

H (X; q) = qL1X0 + c0qL0

[
∂X

∂q

]
= q

{
λ̂0 + c0

[
d2

dθ2

(
∂X

∂q

)
− 1

]}
= 0 (A.27)

which gives us

∂X

∂q
=

(c0 − λ̂0)

2
T2(θ) + a1T1(θ) +

(2a0 + c0 − λ̂)

2
. (A.28)

To obtain the value of the unknown coefficients a1 and a0, we impose the Dirichlet boundary

conditions (A.22). To obtain λ̂0, we have to impose an additional condition [107]. Since the

amplitude of the eigenfunction of a linear ODE can be arbitrarily scaled, we utilize this freedom

to set X̂(θ = 0) = 1 which gives us λ̂0. This iterative process can be automated using a computer

program for each order of q until λ̂ satisfies a user-imposed convergence criterion. We then

repeat the same process of calculating λ̂ for multiple values of c0 and look for a region where λ̂

is independent of c0, i.e., a plateau in the λ̂-c0 plot. The value of λ̂ in this region is an eigenvalue

of the ballooning equation2.

As an example, we solve the ideal ballooning equation for the low-β, negative triangularity

equilibrium introduced in chapter 3.3 with a modified pressure gradient that is four times the

nominal pressure gradient. We solve the equation using SHAM for 20 orders and calculate λ̂ for

a range of values of c0. The “plateau” plot is shown in figure A.1.

2The ideal ballooning equation can have infinite eigenvalues but we are only considered with the largest eigen-

value. Fortunately, the SHAM converges the fastest for the largest eigenvalue, which is what we end up with.

126



−140−120−100 −80 −60 −40 −20 0
c0

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

λ

Figure A.1: This figure shows the “plateau” plot created using a homotopy analysis method. Over

the plateau region, the eigenvalue λ̂ changes minimally with respect to the homotopy parameter

c0. This indicates convergence of the homotopy solution.

We choose the eigenfunction X̂ and eigenvalue λ̂ for one of the values of c0 in the plateau

region which gives us the solution. The initial guess X̂0 along with the final eigenfunction X̂ is

shown in figure A.2.
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X

initial guess
final soln.

Figure A.2: This figure shows a comparison between the initial guess of the eigenfunction X̂0

and the final converged solution to the ideal ballooning equation. For this case, we solved the

homotopy equation up to the 20th order.
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The eigenvalue λ̂ = 0.227 matches the λ̂ = −γ2 (after appropriate normalization) shown

in figure 3.23(e) which was obtained by solving the discretized ideal ballooning solver.
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Appendix B: Local expansion of an axisymmetric equilibrium

In this appendix, we will describe in detail how to solve the Grad-Shafranov equation

locally on a flux surface. Using this method, we will write explicit analytical formulae for all

the geometric coefficients needed for a local MHD or gyrokinetic simulation. In §B.1, we will

explain the Greeen-Chance method, introduce the local coordinate systems used for our analysis.

Using the local coordinate system, we will then expand the Grad-Shafranov equation near a

flux surface and explain how one can generate an arbitrary number of local equilibria using this

technique.

In §B.2 we will demonstrate analytically that by appropriately choosing the signs of equilibrium-

dependent quantities, the coefficients can be made invariant to the transformation ψp → −ψp. We

will also introduce some tests that a user of a local stability code can use to check the correctness

of a set of geometric coefficients for both tokamaks and stellarators.

B.1 The analysis of Greene and Chance

This appendix explains the Greene-Chance method, a powerful technique that allows one to

vary the pressure and current gradients locally and self-consistently within a global equilibrium.

We will start by defining the local coordinate system first developed by Mercier and Luc [109].

After that, we will expand the Grad-Shafranov equation in those coordinates and use it to obtain

129



other important relations, namely the gradients of q, B, and α around a surface. Finally, we

explain how the derived relations can be used to vary a local equilibrium. All lengths in the

following calculations are normalized to aN and the magnetic fields to BN. In §B.1.1 and §B.1.2,

we define ρ̃ to be the normalized radial distance from a flux surface whereas in appendix §B.1.3

ρ̃ is a normalized flux surface label — exactly the same quantity as used in the main body of this

thesis.

B.1.1 Mercier-Luc local coordinate system

The Mercier-Luc coordinate system is a local orthogonal coordinate system (ρ̃, ϕ, lp) where

ρ̃ is the normalized perpendicular distance from a point on the flux surface, ϕ is the cylindrical

azimuthal angle, and lp is the normalized poloidal arc length. In these local coordinates, we can

write the cylindrical (R, ϕ, Z) coordinates as

R = R0 + ρ̃ sin(u(lp)) +

∫ lp

0

cos(u) dl
′

p,

Z = Z0 + ρ̃ cos(u(lp)) +

∫ lp

0

sin(u) dl
′

p,

(B.1)

where R0, Z0 are the normalized values of R,Z on the outboard mid-plane of the flux surface of

interest and the angle u is defined as shown in figure B.1. We also define

Rs ≡ R(ρ̃ = 0, lp) = R0 +

∫ lp

0

cos(u)dl
′

p,

Zs ≡ Z(ρ̃ = 0, lp) = Z0 +

∫ lp

0

sin(u)dl
′

p,

(B.2)

as the on-surface cylindrical coordinates. The azimuthal angle ϕ is the same for the cylindrical

and Mercier-Luc coordinates. Using equation (B.1) and after choosing a sign for the curvature,
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Figure B.1: This figure illustrates the local orthogonal coordinate system (ρ̃, ϕ, lp). The radial

distance ρ̃ is measured in the direction normal to a flux surface and poloidal arc length lp is

measured in a counter-clockwise sense from the outboard side. We choose ∇ψp to point in the

direction opposite to ∇ρ̃.

we can define the curvature

1

Rc

=
du

dlp
. (B.3)

where Rc is the radius of curvature. Using the coordinate transformation relation (B.1), we can

write 


dR

dϕ

dZ




=




sin(u) 0
(
1 + ρ̃

Rc

)
cos(u)

0 1 0

− cos(u) 0
(
1 + ρ̃

Rc

)
sin(u)







dρ̃

dϕ

dlp




(B.4)

This matrix can be inverted to obtain the transformation from Mercier-Luc to cylindrical coordi-

nates. Using this transformation, we can write the transformation Jacobian

J̃ = ((∇ρ̃×∇ϕ) ·∇lp)
−1 = R

(
1 +

ρ̃

Rc

)
. (B.5)

131



B.1.2 Expanding the Grad-Shafranov equation locally

The Grad-Shafranov equation

R2
∇ ·

(
∇ψp

R2

)
= −R2 dp

dψp

− F
dF

dψp

, F > 0, (B.6)

can be written in the Mercier-Luc coordinate system as

R

(1 + ρ̃/Rc)

[
∂

∂lp

(
(1 + ρ̃/Rc)

R

∂ψp

∂lp

)
+

∂

∂ρ̃

(
(1 + ρ̃/Rc)

R

∂ψp

∂ρ̃

)]
= −R2 dp

dψp

− F
dF

dψp

. (B.7)

To obtain the local dependence of ψp on various gradients such as dF/dψp and dp/dψp, we write

ψp as an asymptotic series in terms of the normalized radial distance ρ̃

ψp = ψp0 + ρ̃ψp1(lp) + ρ̃2ψp2(lp) + O(ρ̃3), (B.8)

define

ψp1 = lim
ρ̃→0

(
ψp − ψp0

ρ̃

)
= −RsBps, ψp1 < 0, Bps > 0. (B.9)

where Bps is the poloidal magnetic field on the surface. Another way to write the above relation

is to say ∇ψp|ρ̃=0= ψp1∇ρ̃. Using this asymptotic expansion, we can also write the following
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Taylor series expansions

F (ψp) = F (ψp0) +
ψp − ψp0

1!

dF

dψp

∣∣∣∣
ψp0

+ . . . = F (ψp0)− ρ̃RsBps
dF

dψp

∣∣∣∣
ψp0

+ . . . ,

F
′

(ψp) = F
′

(ψp0) +
ψp − ψp0

1!

dF
′

dψp

∣∣∣∣
ψp0

+ . . . = F
′

(ψp0)− ρ̃RsBps
dF

′

dψp

∣∣∣∣
ψp0

+ . . . ,

p(ψp) = p(ψp0) +
ψp − ψp0

1!

dp

dψp

∣∣∣∣
ψp0

+ . . . = p(ψp0)− ρ̃RsBps
dp

dψp

∣∣∣∣
ψp0

+ . . . ,

q(ψp) = q(ψp0) +
ψp − ψp0

1!

dq

dψp

∣∣∣∣
ψp0

+ . . . = q(ψp0)− ρ̃RsBps
dq

dψp

∣∣∣∣
ψp0

+ . . . ,

(B.10)

where the prime denotes a derivative with respect to ψp. After substituting the Taylor series

expansions into the local Grad-Shafranov equation (B.7), we get

ψp2 = −1

2

[
RsBps

(
sin(u)

Rs

− 1

Rc

)
+R2

s p
′

(ψp0) + F (ψp0)F
′

(ψp0)

]
. (B.11)

Next, we write (2.11) in the Mercier-Luc coordinate system

q = − 1

2π

∮
dlp

F

R2
sBps

, (B.12)

and expand it about a flux surface to obtain

dq

dψp

= −F ′

(∮
dlp

R2
sBps

+
F 2

2π

∮
1

Rs
4B3

ps

dlp

)
+
p
′
F

2π

∮
dlp

Rs
2B3

ps

+
F

2π

∮
2 dθ

Rs
3B2

ps

(
sin(u)

Rs

− 1

Rc

)
.

(B.13)
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Using the fact dlp/Bps = dθ/B · ∇θ we can write an algebraic equation in straight-field-line

angle θ that defines q
′

in terms of F
′

and p
′

1

q

dq

dψp

= F
′

(
1

F
+
F

2π

∮
dθ

1

(RsBps)2

)
+
p
′

2π

∮
dθ

B2
ps

+
1

2π

∮
2 dθ

RsBps

(
sin(u)

Rs

− 1

Rc

)
,

(B.14)

written more compactly as

1

q

dq

dψp

= F
′

as,full + p
′

bs,full + cs,full, (B.15)

where as,full, bs,full, and cs,full are three constants obtained by performing the respective integrals

in (B.14). Next, using the Mercier-Luc coordinates, we expand the magnetic field strength around

a flux surface

B2 =
F 2

R2
+

(
1

R

dψp

dρ̃

)2

= B2
s

[
1 +

2ρ̃

B2
s

(
−
B2

ps

Rc

+RsBpsp
′ − F 2

R3
s

sin(u)

)]
,

(B.16)

which gives us the local, radial gradient of the magnetic field

∂B

∂ρ̃
=

1

Bs

(
−
B2

ps

Rc

+RsBpsp
′ − F 2

R3
s

sin(u)

)
. (B.17)

To obtain all the geometric coefficients, we also need various gradients of the field line label α.

To that end, we can write the field line label in Mercier-Luc coordinates as

αt = ϕ+ S(ρ̃, lp) = ϕ− q θ, (B.18)
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and find S = S(ρ̃, lp) by solving the equation

B ·∇αt = 0. (B.19)

To solve equation (B.19), we write S(ρ̃, lp) as an asymptotic series in ρ̃

S = S0(lp) + ρ̃S1(lp) + O(ρ̃2), (B.20)

and equation (B.19) becomes

F

R2
+

1

R(1 + ρ̃/Rc)

∂ψp

∂ρ̃

∂αt

∂lp
− 1

R(1 + ρ̃/Rc)

∂ψp

∂lp

∂αt

∂ρ̃
= 0. (B.21)

The lowest-order solution yields

S0 =

∫
dlp

F (ψp0)

R2
sBps

+ f(ρ̃), (B.22)

For axisymmetric equilibria, all the field lines are identical, which means we can choose f(ρ̃) = 0

without loss of generality. The next-order solution gives us

S1 = −RsBps

[
F

′

(
qθ

F
+ F

∫ θ

0

dθ
q

(RsBps)2

)

+ p
′

∫ θ

0

dθ
q

B2
ps

+

∫ θ

0

dθ
2q

RsBps

(
sin(u)

Rs

− 1

Rc

)]
,

(B.23)

∂αt

∂ρ̃
= S1 = −RsBps

(
F

′

as + p
′

bs + cs

)
. (B.24)
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This completely defines the quantity ∇αt. Using (B.15), (B.17), (B.24) we can calculate all the

geometric coefficients1 needed for a local stability analysis.

B.1.3 Variation of a local axisymmetric equilibrium

Using the normalized flux surface label ρ =
√
ψ/ψLCFS, equation (B.15) can be written as

ŝ

ρ
≡ 1

q

dq

dρ
=
dF

dρ
as,full +

dp

dρ
bs,full + cs,full, (B.25)

where as,full, bs,full, and cs,full are constants. This equation implies that on a given surface, we can

vary the pressure gradient dp/dρ and the shear ŝ of a local equilibrium independently by a finite

amount as long as we adjust dF/dρ such that the equation (B.25) is satisfied. Using the the new

values of dp/dρ, dq/dρ, dF/dρ, we can calculate the radial gradient of αt and B using (B.24)

and (B.17), respectively. Moreover, the gradients along the field line do not change. Therefore,

using this method, we can generate an arbitrary number of self-consistent local equilibria. Greene

and Chance first used this idea to perform an ŝ− αMHD analysis. We are going to use this for the

ballooning and gyrokinetic stability analyses.

B.1.4 Geometric coefficients for a local analysis

In this section, we will present the complete set of geometric coefficients needed for a lo-

cal stability analysis. Using the local expansion formulae derived in the previous sections, we

simplify the complete set of coefficients to the Mercier-Luc coordinate system. The complete

set of coefficients and their simplified definitions in Mercier-Luc coordinates are given table B.1.

1For up-down asymmetric equilibria the lower limit in all the integrals should be some non-zero value θlow. To

include the effect of θ0, change the lower limit of integration in (B.24) from θlow to θlow + θ0.
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Geometric coefficient Definition Mercier-Luc expansion

gradpar aN|(b ·∇θ)| aN
RsB

∣∣ψp1
∂θ
∂lp

∣∣

bmag B
BN

B
BN

gds2 1
(aNBN)2

(dψp

dρ

)2|∇αt|2 1
(aNBN)2

(dψp

dρ

)2 ( 1
R2

s
+ S2

1

)

gds21 1
(aNBN)2

dψb

dρ
dq
dρ
∇ψp ·∇αt

1
(aNBN)2

dψp

dρ
dq
dρ
ψp1S1

gds22
|∇ψp|2

(aNBN)2

(
dq
dρ

)2 ψ2
p1

(aNBN)2

(
dq
dρ

)2

gbdrift 2
B2

dψp

dρ
dq
dρ
(b×∇B) ·∇αt − 1

B2
∂B2

∂ρ
+ 1

B3

dψp

dρ
F
R
S1

∂B
∂lp

cvdrift gbdrift − 1
B2

d(2µ0p)
dρ

− 1
B2

(
d(2µ0p)
dρ

+ ∂B2

∂ρ

)
+ 1

B3

dψp

dρ
F
R
S1

∂B
∂lp

gbdrift0 2
B2

dq
dρ
(b×∇B) ·∇ψp

2
B3

dq
dρ

F
R
∂B
∂lp
ψp1

cvdrift0 2
B2

dq
dρ
(b×∇B) ·∇ψp

2
B3

dq
dρ

F
R
∂B
∂lp
ψp1

Table B.1: This table lists the complete set of geometric coefficients needed to perform an ideal

ballooning or gyrokinetic analysis.

where ψp1 is defined in (B.9) and the radial derivatives ∂B/∂ρ̃ and S1 are calculated using (B.17)

and (B.24), respectively. Derivatives along the field line such as ∂B/∂lp are calculated numeri-

cally using a finite difference scheme. Note that the quantity gbdrift0 = cvdrift0.

B.2 Some tests for the geometry

Presently, there is a discrepancy in the geometric coefficients used by different gyrokinetic

codes in the fusion community. To resolve this issue, in this section, we provide analytical and

numerical tests that can be performed to ensure the correctness of the geometric coefficients.

In §B.2.1, we prove the sign invariance of geometric coefficients for a simple axisymmetric case.

In the next section, we present a simple numerical test based on the fact that the growth rate

should be bounded in the ballooning parameter θ0.
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B.2.1 ψp → −ψp invariance of the geometric coefficients

For this test, we change the sign of the poloidal flux ψb and observe how the rest of the

quantities as well as the goemetric coefficients change in table B.1. The table below lists the sign

change of the relenvant quantities when (ψp, ϕ, θ) → (−ψp, ϕ, θ).

Variable Initial sign Final sign

ψp1 + −

αt1 + +

q + +

F + −

Note that αt is not a constant on a flux surface, unlike the rest of the quantities. By the initial and

final sign of αt, we fix the sign at fixed θ. The sign-dependent coefficients are cvdrift, cvdrift0 =

gbdrift0, gbdrift, and gds21. Applying the sign changes listed in table B.2.1 to these geometric

coefficients, we can verify that the signs of all geometric coefficients remain unchanged. In

summary, the geometric coefficients used for tokamaks are invariant to the transformation ψp1 →

−ψp1. Since the definition of the geometric coefficients is exactly the same for 3D equilibria, we

expect ψp → −ψp invariance to hold for stellarator equilibria as well.

B.2.2 Periodicity and boundedness of physical quantities in θ0

Another test that we can use to confirm the signs of the geometric coefficients is to scan the

ideal-ballooning growth rate λ̂ in the ballooning parameter θ0 and ensure that it is periodic and

bounded. When choosing a wrong set of coefficients, we observe that the growth rate increases

138



without limits in the θ0 − αt plots 2.

(a) original coeffs. (b) gds21 → -gds21 (c) cvdrift0 → -cvdrift0

Figure B.2: This figure shows contours of the ballooning eigenvalue λ̂ in figure (a) for the original

set of coefficients, figure (b) after flipping the sign of gds21 without changing other coefficients,

and in figure (c) after flipping the sign of cvdrift0 while keeping other coefficients fixed. For

incorrect signs of cvdrift0 or gds21, the λ̂ increases with θ0 for every αt, which is incorrect. This

can be used as a test for the geometric coefficients in a local simulation. Note the symmetry of λ̂
in figures (b) and (c) which is a consequence of the stellarator symmetry of NCSX.

This test helps us decide the relative signs of the quantities cvdrift0 and gds21. Note

that for equilibria with stellarator symmetry, flipping the signs of both cvdrift0 and gds21 the λ̂

contour plot would be a mirror image of figure B.2(a) about the vertical axis.

These tests resolve the sign issues for both up-down symmetric tokamaks and up-down

stellarator symmetric stellarators. This is sufficient for all the equilibria studied in this thesis.

However, as optimization becomes more sophisticated and we explore up-down asymmetry, we

2Note that this is necessary but not sufficient condition — the coefficients may be wrong with a bounded growth

rate. However, if the growth rate is unbounded, the coefficients are incorrect
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may need more tests to resolve this issue fully.
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Appendix C: Hsu, Artun and Cowley’s analytical (β ∼ 1) tokamak equilibrium

In this appendix, we provide a brief overview of the analytical, high-β equilibrium derived

by Hsu, Artun and Cowley. In §C.1, we describe the asymptotic ordering and the procedure used

to analytically solve the Grad-Shafranov equation for β ∼ 1. In §C.2, we discuss two major

limitations of these analytical solutions in the context of local stability analyses.

C.1 Generating analytical β ∼ 1 equilibria

The most general analytical theory for generating β ∼ 1 equilibria was first developed by

Hsu, Artun, and Cowley [3]. In that work, the Grad-Shafranov equation is solved analytically in

the limit

δHsu ≡
√
ϵ/(βq2) ≪ 1, (C.1)

where ϵ = a/R0 is the aspect ratio of the flux surface — a being the minor radius of a flux

surface and R0 being the major radius. For these equilibria, it is assumed Bt/Bp ∼ q/ϵ where

Bt = B ·∇ϕ/|∇ϕ|, Bp = B ·∇θ/|∇θ| are the toroidal and poloidal components of the magnetic

field, respectively, and ϵ ∼ β ∼ 1 on all surfaces of interest.

Given these assumptions, Hsu et al. solve the Grad-Shafranov equation to calculate the
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perpendicular distance from the boundary to a point on the flux surface labeled ψ

ξ =

∫ R̂
′

Rmin

(dψ/dR̂
′
)dR̂

′

√∫ R̂′

R
µ0(R̂

′′2 −R2) dp

dR̂′′ dR̂
′′

, (C.2)

where R̂(ψ) is the value of R on the line Z = 0 and p is the plasma pressure. Using ξ, they

formulate the “core” solution, i.e., the solution on the inboard side of where the surface are

nearly vertical

Z(R̂, R) = l(R)− ξ(R̂, R)

cos(θs)
, θs = arctan

(
dl

dZ

)
, (C.3)

and the “boundary layer” solution, i.e., the solution in the region of closely-spaced surfaces on

the outboard side

Rboundary(Z) = R(R̂, Z) +
ξ(R̂, Rboundary)

sin(θs)
, (C.4)

where l = l(R) in (C.3) is the value of Z on a point on the boundary. To construct a β ∼

1 equilibrium, one needs an analytical pressure, boundary shape profiles, and the value of the

poloidal field at Z = 0. Hsu et al. used the following profiles:

p(R̂(ψ)) = p1

(
1− p2(Rmax − R̂)2 + p3(Rmax − R̂)3 + p4(Rmax − R̂)4

p2(Rmax −Rmin)2 + p3(Rmax −Rmin)3 + p4(Rmax −Rmin)4

)
,

lδ<0(R̂) = (R̂−Rmin)
0.5(Rmax − R̂)0.5

(
al

[Rmax −R + bl(Rmax −Rmin)]cl

)0.5

,

1

R̂

dψ

dR̂
=
l(R̂)

R̂
[aψ + bψ(R̂−Rmin) + cψ(R̂−Rmin)

2],

(C.5)

where lδ<0 is a function used to generate boundary shapes corresponding to negative triangularity

equilibria. After fixing the various input profiles, one solves (C.2) to obtain the perpendicular

distance ξ as a function of R̂ and R. Substituting ξ in (C.3) and (C.4), one gets the core and
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Figure C.1: This figure illustrates the process of creating the two regions of the β ∼ 1 solution in

Hsu et al. The bold black line is the LCFS and the red line is the flux surface contour — (a) shows

the core solution (C.3) which is only a good approximation on the inboard side of the device and

(b) shows the boundary layer solution (C.4) which is only valid in the boundary layer region.

The inset in the right figure highlights the approximation ξ(R̂, R) = ξ(R̂, Rboundary) which is

necessary to construction the boundary layer solution (C.4).

boundary layer segments, respectively. Taking union of the two segments yields the flux surface

contour ψ(R, R̂). Figure C.1 illustrates this process.

C.2 Limitations of the Hsu et al. equilibria

We find that the equilibria of Hsu et al. has two major limitations that can significantly

affect the accuracy of our analyses. First, as we move closer to the magnetic axis, the accuracy

of both the core and boundary layer solution degrades as the ordering ϵ ∼ 1 fails and dp/dψ

approaches zero. We demonstrate this by plotting figure C.2 which is figure 6 in Hsu et al. To

generate the analytical solution in figure C.2, we start with (C.5) using the following values of

coefficients

(p1, p2, p3, p4) = (0.5, 1.5, 0, 0),

(al, bl, cl) = (0.8, 0.05, 0.85),

(aψ, bψ, cψ) = (0.152, 0.022, 0).

(C.6)
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Figure C.2: This figure shows (a) the numerical equilibrium solution and (b) a comparison be-

tween the analytical equilibrium from figure 6 in the paper by Hsu et al. [3] and the same equi-

librium generated using VMEC. The significant deviation of the analytical solution is evident, as

well as how it develops a kink near the outboard side as we approach the magnetic axis.

Second, the inaccuracy and non-smoothness of flux surfaces leads to discontinuous and

incorrect trends in the geometric quantities needed for a local stability analysis. To demonstrate

this, we plot a physical quantity that arises in both the ballooning and gyrokinetic equation that

can be seen in (2.37) and (3.23), respectively— as a curvature drive in the former and as a com-

ponent of the curvature drift in the latter. We chose to plot the scalar

κ̂ =
1

B3
(b× κ) ·∇α, κ = (b ·∇b), (C.7)

where κ is the field-line curvature. To better understand the discontinuity problem, we plot κ̂ as

a function of θgeo in figure C.3. To emphasize the importance of smoothness, we also plot the

tangents on the flux surface on either side of the point at which κ̂ is discontinuous.
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Figure C.3: In this figure (a) compares κ̂ vs. θgeo obtained using the analytical equilibrium(in

figure 6) in Hsu et al. with the corresponding VMEC equilibrium for a common flux surface(shown

in (b)). The inset plot in (a) shows a zoomed-in version of the same plot near the discontinuity at

θgeo = 1.46. Figure (b) shows the difference in slopes of the tangents at the point of discontinuity,

with a zoomed-in version in the inset. Notice also the deviation of κ̂ in (a) for θgeo > 1.5. There

are other issues like the small sharp feature near θgeo = 1.3 that we will not delve into.

The kink in ψ seen in figure 4(b) manifests itself as a discontinuity in quantities such as b,

∇ψ and ∇α. This causes the geometric factors and hence the physical quantities needed for a

local stability analysis to become discontinuous. Furthermore, in the regions where the gradients

are continuous, for reasons mentioned at the beginning of this section, the distances between the

surfaces deviate from the exact equilibrium, especially as θgeo > 1.5. To alleviate these problems,

we use the numerical solver VMEC to create the equilibria used in this study.
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Appendix D: Newcomb’s criterion

Newcomb[94], in his analysis of a diffuse screw pinch, described a method to infer the

stability of a system to incompressible ideal-MHD modes. He reduced the ideal-MHD energy

principle to

W =
π

2

∫ r2

r1

dr

[
f

(
dξ

dr

)2

+ gξ2

]
, (D.1)

where r is the distance from the center, ξ(r) is the radial perturbation, and f(r), g(r) are functions

dependent on the equilibrium. One can write the kinetic energy associated with the perturbation

as

T =
π ω2

2

∫ r2

r1

dr ξ2. (D.2)

Combining the potential and the kinetic energy, we can write the Lagrangian L = T −U and get

the Euler-Lagrange equation corresponding to δL = 0

(fξ
′

)
′ − gξ = ω2ξ. (D.3)

This equation a self-adjoint, second-order, eigenvalue ordinary differential equation(ODE). In his

paper, Newcomb explored the marginally stable ODE,

(fξ
′

)
′ − gξ = 0. (D.4)
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For the marginally stable equation of this form, Newcomb’s theorem and the associated corollary

is given below:

Theorem 1 If r1 and r2 are nonsingular points of the same independent sub-interval, and if the

nontrivial Euler-Lagrange solutions that vanish at r1 also vanish at some point r0 between r1 and

r2 , then for any Euler-Lagrange solution ξ0(r) there exist functions ξ(r) with the same boundary

values and with W (r1, r2; ξ) < W (r1, r2; ξ0)

Corollary 1.1 There exists a ξ(r) that makes W (r1, r2; ξ) negative and satisfies the boundary

conditions ξ(r1) = ξ(r2) = 0

This means that upon integrating equation (D.4) with a test function ξ, such that ξ(r1) = 0, if

ξ crosses the zero line at any other point, then there must exist an eigenfunction ξ̃ satisfying

equation (D.3) such that W < 0, implying that ω2 < 0. In other words, the system will have a

growing eigenvalue and will become unstable.

Even though Newcomb derived this theorem for an ODE that is integrated in the radial di-

rection, the principle can be extended to any second-order, self-adjoint, eigenvalue ODE. Hence,

we can use it here for the ideal-ballooning equation (3.62).
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Appendix E: Extended eigenfunctions of the EM-ETG mode

In this appendix, we present two sets of eigenfunctions from the electromagnetic, negative-

triangularity, inner-core, high-β growth rate spectrum shown in figure 3.17(c)).

(a) kyρi = 1.51 (b) kyρi = 1.51 (c) kyρi = 1.51

(d) kyρi = 1.85 (e) kyρi = 1.85 (f ) kyρi = 1.85

Figure E.1: This figure shows the eigenfunctions at two different kyρi values from figure 3.17(c).

The values in each row have been normalized with max(φ). Notice the opposite parities of the

eigenfunctions in the two rows and the extended and highly-oscillatory structure along θ. The

eigenfunctions in the upper row correspond to a non-tearing-parity EM-ETG mode whereas the

lower row corresponds to a tearing-parity EM-ETG mode. Classifying modes becomes harder

for up-down asymmetric equilibria and virtually impossible for non-linear analyses.

These extended eigenfunctions make it computationally expensive to calculate the accurate

growth rate of an EM-ETG instability. This would directly affect the speed of an optimization

where EM-ETGs or MTMs are the dominant modes.
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Appendix F: GX: A robust gyrokinetic solver

F.1 Overview

For most of this work, we have used the linear gyrokinetic solver GS2 as it is the fastest

linear, electromagnetic gyrokinetic solver for a general toroidal geometry. This is due to a novel

implicit time-stepping algorithm [57]. This overcomes the Courant-Frederich-Levy (CFL) con-

straint imposed by waves and by the fast-moving electrons with explicit time stepping which

makes GS2 faster than other codes by a factor of (mi/me)
1/2. We can also solve the non-linear

electrostatic gyrokinetic equation with GS2 for tokamak geometry. But due to the design of GS2,

solving a fully electromagnetic nonlinear gyrokinetic equation has not been generally successful

for tokamaks or stellarator equilibria.

The reason lies in the discretization of the velocity space of the GS2 code which uses

an (E, λ) grid which makes calculating the trapped electron distribution complex. With other

codes like stella [110] or GX, that use (w∥, µ) discretization, the treatment of trapped particles

becomes relatively easier (though less accurate at fixed resolution). Moreover, even if these

problems are resolved in GS2 in the future, the ability to finely tune the velocity-scale resolution

could be advantageous in terms of computational efficiency as nonlinearly solving the gyrokinetic

model is computationally expensive.

To this end, Mandell and Dorland [96, 97] created the GX code. It solves the moments of
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the gyrokinetic model by decomposing the gyrokinetic distribution function hs in the Hermite-

Laguerre space. In this appendix, we will derive the fully electromagnetic, linear gyrokinetic

equations in the Hermite-Laguerre space and present some linear tests with fully electromagnetic

effects.

F.2 Deriving the GX model equations

Before obtaining the transformed gyrokinetic equations in Fourier-Hermite-Laguerre space,

we write down a set of fundamental identities related to the Hermite and Laguerre polynomi-

als. These identities have been obtained from Mandell et al. [96, 97] and Abramowitz and Ste-

gun [111].

F.2.1 Fundamental identities

ψℓ(µB) = (−1)ℓ Lℓ(µB)

ψℓ(µB) = e−µBψℓ

(F.1)

ϕm(w∥) =
Hem(w∥)√

m!

ϕm(w∥) =
e−w

2
∥
/2

√
(2π)3

ϕm(w∥)

(F.2)

ϕ0 = 1, ϕ1 = w∥, ϕ2 =
v2∥ − 1
√
2

ψ0 = 1, ψ1 = 1− µB,

(F.3)

∫ ∞

0

d(µB)ψℓ(µB)ψℓ′ (µB) = δℓℓ′ (F.4)
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2π

∫ ∞

−∞

dw∥ϕ
m(w∥)ϕm′ (w∥) = δmm′ (F.5)

h =
∑

ℓ,m

ψℓϕmHℓ,m (F.6)

LℓHmh = 2π

∫ ∞

∞

dw∥ ϕm

∫ ∞

0

d(µB)ψℓh = Hℓ,m (F.7)

µB ψℓ(µB) = (ℓ+ 1)ψℓ+1(µB) + (2ℓ+ 1)ψℓ(µB) + ℓ ψℓ−1(µB) (F.8)

∂ψℓ(µB)

∂µB
= −ℓ+ 1

µB

[
ψℓ+1 + ψℓ

]
(F.9)

∂ψℓ(µB)

∂µB
=

ℓ

µB
[ψℓ + ψℓ−1] (F.10)

w∥ϕ
m(w∥) =

√
m+ 1ϕm+1(w∥) +

√
mϕm−1(w∥) (F.11)

∂ϕm(w∥)

∂w∥

= −
√
m+ 1ϕm+1(w∥) (F.12)

Jℓ(b) =
1

ℓ!

(
−bs

2

)ℓ
e−bs/2 (F.13)

J0(
√

2µBb) =
∑

l

ψℓJℓ(b) (F.14)

∫ 2π

0

dϑ exp

(
∓ ik⊥w⊥ cos(ϑ)

Ωs

)
= J0s

(
k⊥w⊥

Ωs

)
(F.15)

∫ 2π

0

dϑ cos(ϑ) exp

(
− ik⊥w⊥ cos(ϑ)

Ωs

)
= −iJ1

(
k⊥w⊥

Ωs

)
(F.16)

∫ 2π

0

dϑ cos2(ϑ) exp

(
− ik⊥w⊥ cos(ϑ)

Ωs

)
=

1

2

[
J0

(
k⊥w⊥

Ωs

)
+ J2

(
k⊥w⊥

Ωs

)]
=

Ωs

k⊥w⊥

J1

(F.17)
∫ 2π

0

dϑ sin(2ϑ) exp

(
− ik⊥w⊥ cos(ϑ)

Ωs

)
= 0 (F.18)
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F.2.2 Intermediate derived identities

In this section, we use the identities of the previous section to obtain more complex identi-

ties that are directly applicable to the terms of the gyrokinetic model in F.3.3.

Using (F.3),

w2
∥ + w2

⊥

2
− 3

2
=

1√
2
ϕ2(w∥) + (µB − 1) (F.19)

Using (F.3) and (F.11)

w∥

(
w2

∥ + w2
⊥

2
− 3

2

)
=

√
3

2
ϕ3(w∥)+ϕ1(w∥)+w∥(µB−1) =

√
3

2
ϕ3(w∥)+µBϕ1(w∥) (F.20)

Using (F.6) and (F.8)

∂h

∂Rs

∣∣∣∣∣
Rs,w∥,µ,t

=
∑

ℓ
′
,m

′

∂ψℓ
′

(µB)

∂(µB)
ϕm

′

µB∇(log(B))Hℓ
′
,m

′ +
∑

ℓ
′
,m

′

ψℓ
′

ϕm
′ ∂Hℓ′,m′

∂Rs

= −∇(log(B))
∑

ℓ
′
,m

′

(ℓ
′

+ 1)(ψℓ
′
+1 + ψℓ

′

)ϕm
′

Hℓ
′
,m

′ +
∑

ℓ
′
,m

′

ψℓ
′

ϕm
′ ∂Hℓ′,m′

∂Rs

(F.21)

Using (F.14) and (F.10)

w⊥

k⊥
J1(
√

2µBb) = −w
2
⊥

k2⊥

dJ0
dµB

=
∑

ℓ′=0

(ψℓ′ + ψℓ′−1)Jℓ′−1(b) (F.22)

Using (F.14), (F.10), and (F.8)

w3
⊥

2k⊥
J1(
√

2µBb) =
∑

ℓ′=0

((ℓ
′

+1)ψℓ′+1+(3ℓ
′

+1)ψℓ′ +(3ℓ
′− 1)ψℓ′−1+(ℓ

′− 1)ψℓ′−2)Jℓ′−1 (F.23)
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Using (F.6), (F.8) and (F.12)

−µ∇∥B
∂h

∂w∥

=
√
m′+ 1

∇∥B

B

∑

ℓ
′
,m

′

µB ψℓ
′

ϕm
′
+1Hℓ′ ,m′

=
√
m′+ 1

∇∥B

B

∑

ℓ′,m′

[
(ℓ

′

+ 1)ψℓ
′
+1 + (2ℓ

′

+ 1)ψℓ
′

+ ℓ
′

ψℓ
′
−1
]
ϕm

′
+1Hℓ′,m′

(F.24)

Using (F.3), (F.4), (F.5), (F.14) and (F.22)

LℓHm

[
J0s
(
φk − vtsw∥A∥,k

)
+
τs
Zs

2µB

αs
J1sδB∥

]
e−(w2

∥
/2+µB)

(2π)3/2

= J s
ℓ (φkδm0 − vtsδm1A∥,k) +

τs
Zs

(J s
ℓ−1 + J s

ℓ )δm0

δB∥

B

(F.25)

where all the quantities are normalized, αs =
√

(2µB)bs and bs = (k⊥vth,s/Ωs)
2

F.2.3 Individual terms in the gyrokinetic model

In this section, we apply a Hermite-Laguerre transform to the gyrokinetic model and trans-

form the model term by term. To do this, we use the identities and derived relationships from the

previous sections.

The Hermite-Laguerre (HL) transform commutes with a time derivative. Therefore, apply-

ing (F.7) to a time derivative, we can write

LℓHm
∂gs,k
∂t

=
∂LℓHmgs,k

∂t
=
∂Gℓ,m

∂t
. (F.26)

The HL transform also commutes with a spatial derivative. Using (F.3), (F.4), (F.5), (F.11) and
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the component of (F.21) along the magnetic field

LℓHmvtsw∥b ·∇hs,k = −vts∇∥(log(B))
(
ℓ
√
mHℓ−1,m−1 + ℓ

√
m+ 1Hℓ−1,m+1+

(ℓ+ 1)
√
mHℓ,m−1 + (ℓ+ 1)

√
m+ 1Hℓ,m+1

)
+

vts∇∥(
√
mHℓ,m−1 +

√
m+ 1Hℓ,m+1)

(F.27)

Taking the HL transform of the drift frequency term and using (F.4), (F.2), (F.11) and (F.8)

LℓHmik̃y(µB ω∇Bd + v2∥ω
κ
d)hs,k = ik̃y ω

∇B
d [ℓHℓ−1,m + (2ℓ+ 1)Hℓ,m + (ℓ+ 1)Hℓ+1,m]

+ ik̃y ω
κ
d

[√
(m+ 1)(m+ 2)Hℓ,m+2 + (2m+ 1)Hℓ,m +

√
m(m− 1)Hℓ,m−2

] (F.28)

Taking the HL transform of (F.23) and using (F.4), (F.5) and (F.24)

−LℓHmvtsµ∇∥B
∂h

∂w∥

= vts∇∥(log(B))
√
m
[
ℓHℓ−1,m−1 + (2ℓ+ 1)Hℓ,m−1

+ (ℓ+ 1)Hℓ+1,m−1

]
(F.29)

The relations (F.26)-(F.29) completely define all the terms on the left side of the gyrokinetic

equation. Next, we simplify the driving terms on the right side of the gyrokinetic equation. We

start with the HL transform of the following term and use (F.4), (F.5), (F.8), (F.14) and (F.19)

LℓHm

[
aN
Lns

+
aN
LTs

(
w2

∥ + w2
⊥

2
− 3

2

)]
J0s

e−(w2
∥
/2+µB)

(2π)3/2

=

{
aN
Lns

J s
ℓ δm0 +

aN
LTs

[
1√
2
J s
ℓ δm2 + (ℓJ s

ℓ−1 + 2ℓJ s
ℓ + (ℓ+ 1)J s

ℓ+1)δm0

]} (F.30)

Next, we obtain the HL transform for the term that lies in front of the A∥,k in the GK equation
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using (F.4), (F.5), (F.8), (F.14) and (F.20)

LℓHm

{
w∥

[
aN
Lns

+
aN
LTs

(
w2

∥ + w2
⊥

2
− 3

2

)]}
J0s

e−(w2
∥
/2+µB)

(2π)3/2

=

{
aN
Lns

J s
ℓ δm1 +

aN
LTs

[√
3

2
J s
ℓ δm3 +(ℓJ s

ℓ−1 +(2ℓ+ 1)J s
ℓ +(ℓ+ 1)J s

ℓ+1)δm1

]} (F.31)

Finally, we calculate the term in front of the compressive magnetic fluctuation δB∥

LℓHm

[
aN
Lns

+
aN
LTs

(
w2

∥ + w2
⊥

2
− 3

2

)]
2µB

αs
J1s

δB∥,k

B

e−(w2
∥
/2+µB)

(2π)3/2

=
aN
Lns

(J s
ℓ + J s

ℓ−1)δm0 +
aN
LTs

[
1√
2
(J s

ℓ + J s
ℓ−1)δm2

+
(
ℓJ s

ℓ−2 + 3ℓJ s
ℓ−1 + (3ℓ+ 1)J s

ℓ + (ℓ+ 1)J s
ℓ+1

)
δm0

]

(F.32)

Now we have transformed each term of the gyrokinetic equation. These results will be directly

used in §F.3.3.

F.3 Linear, collisionless gyrokinetic model in Fourier-Hermite-Laguerre space

In this section, we will obtain the gyrokinetic equations to a Fourier-Hermite-Laguerre

space. In §F.3.1, we will rewrite the gyrokinetic model in Fourier space by imposing periodicity

of the distribution and fields perpendicular to the field line. In the following section, we define and

normalize the gyrokinetic model. Finally, in §F.3.3 we will use the identities obtained in §F.2.1

to finally transform all equations into their Hermite-Laguerre versions.
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F.3.1 Gyrokinetic equation

We start with the gyrokinetic model described in chapter 3 in equations (3.18)-(3.21) and

redefine the gyrokinetic distribution function

gs = hs −
qsF0s

Ts

〈
φ− w · δA

c

〉

Rs

, (F.33)

simplify and rewrite (3.18)

∂gs
∂t

+ (w∥b+ vDs) ·
∂hs
∂Rs

= −⟨VE⟩Rs ·∇F0s. (F.34)

Next, we transform the gyrokinetic equation from (E, µ) space to (w∥, µ) space using the relation

∂h

∂Rs

∣∣∣∣∣
E,µ,t

=
∂h

∂Rs

∣∣∣∣∣
w∥,µ,t

− µ

mw∥

∂h

∂w∥

∣∣∣∣∣
Rs,µ,t

∂B

∂Rs

∣∣∣∣∣
E,µ,t

(F.35)

and rewrite the convective derivative in the guiding-centre coordinate (Rs, w∥, µ, t)

∂gs
∂t

+ (w∥b+ vDs) ·
∂hs
∂Rs

− (b ·∇B)
µ

m

∂hs
∂w∥

= −⟨VE⟩Rs ·∇F0s. (F.36)
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We have now obtained the gyrokinetic equation in the new guiding-centre coordinates (Rs, w∥, µ, t).

Note that the field equations (3.19)-(3.21) remain unchanged. Next, we use the following ansatz

hs =
∑

k

hk⊥,s(θ, w∥, µ, t) exp(ik⊥ ·Rs),

φ =
∑

k

φk⊥(θ, t) exp(ik⊥ · r),

δA∥ =
∑

k

δA∥,k⊥(θ, t) exp(ik⊥ · r),

δB∥ =
∑

k

δB∥,k⊥(θ, t) exp(ik⊥ · r),

(F.37)

and (F.15)-(F.18), to obtain the Fourier-transformed version of (F.36)

∂gk⊥,s
∂t

+ w∥b ·∇hk⊥,s + ik⊥ · vDshk⊥,s − (b ·∇B)
µ

m

∂hk⊥,s
∂w∥

=

− iω∗,s

[
1 + ηs

(
Es
Ts

− 3

2

)][
J0

(
k⊥w⊥

Ωs

)(
φk⊥ − w∥δA∥

c

)
+ J1

(
k⊥w⊥

Ωs

)
w⊥

k⊥

δB∥

c

]
F0s,

(F.38)

where

gk⊥,s = hk⊥,s −
qsF0s

Ts

[
J0

(
k⊥w⊥

Ωs

)(
φk⊥ − w∥δA∥

c

)
+ J1

(
k⊥w⊥

Ωs

)
w⊥

k⊥

δB∥

c

]
(F.39)

and

ω∗,s =
c

B
[(b× k⊥) ·∇ log ns] =

c

Ln,sBN

(F.40)
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is the diamagnetic frequency. Similarly, applying the Fourier ansatz to the the field equations

gives

∑

s

q2sNsφk⊥
Ts

=
∑

s

qs

∫
d3v J0shs,k⊥ , (F.41)

k2⊥δA∥,k⊥ =
∑

s

4πqs
c

∫
d3vw∥J0shs,k⊥ , (F.42)

B

4π
δB∥,k⊥ = −

∑

s

∫
d3vw2

⊥

MsJ1sΩs

k⊥w⊥

hs,k⊥ . (F.43)

This gives us the field equations. In the next section, we will take all the equations of the Fourier

transformed gyrokinetic model and normalize them.

F.3.2 Normalized gyrokinetic model

Using these normalizing length aN, magnetic field BN and defining the thermal veloc-

ity1vts =
√
Ts/ms and replacing the subscript k⊥ with k for simplicity, the normalized gyroki-

netic model becomes

∂gs,k
∂t

+vtsw∥b ·∇hs,k +
τs
Zs
iωDshs,k − vts(b ·∇B)µ

∂hs,k
∂w∥

=

iω∗,s

[
aN
Lns

+
aN
LTs

(
w2

∥ + w2
⊥

2
− 3

2

)][
J0s
(
φk − vtsw∥δA∥

)
+

2µB

αs
J1sδB∥

] (F.44)

∑

s

Z2
snsφk
τs

=
∑

s

Zsns

∫
d3v J0shs (F.45)

k̃2⊥δA∥,k =
βref
2

∑

s

Zsnsvts

∫
d3vw∥J0shs,k (F.46)

1The definition of vts =
√
Ts/ms in GX whereas vth,i =

√
2Ts/ms in GS2. One must be aware of this factor

when comparing the results accross different codes.
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δB∥,k = −βref
2

1

B

∑

s

nsτs

∫
d3v

w2
⊥

k⊥w⊥

J1shs,k. (F.47)

In (F.44)

gs,k = hs,k −
ZsJ0s
τs

(
φ− vtsw∥δA∥

)
+ 2µB

J1s
αs
δB∥, (F.48)

iωDs = µB ω∇Bd + w2
∥ ω

κ
d (F.49)

where ω∗,s = k̃y, αs =
√

(2µB)bs is the argument of the Bessel functions, bs = (k⊥vth,s/Ωs)
2,

ω∇Bd = ik̃y(b×∇B) ·∇y and ωκd = ik̃y(b× (b ·∇b)) ·∇y. The quantity

βref =
8πnrefTref

B2
N

(F.50)

is the normalized reference plasma pressure. The four boxed equations (F.44)-(F.47) form a

closed set of equations that completely define the δf gyrokinetic model. Note that the terms

containing the wavenumber with a superscript˜— k̃⊥ in (F.46), k̃y in (F.49) differ from the other

instances of k⊥ in that they do not have a factor of B in the denominator.

F.3.3 Transforming to Hermite-Laguerre space

In this section, we will apply the Hermite-Laguerre (HL) transform to (F.44)-(F.47). The

definition of a HL transform is given in (F.7). Each term of the gyrokinetic equation after a

Hermite-Laguerre transform is given in §F.2.3. We use relations (F.26)-(F.32) to transform the
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gyrokinetic equation (F.44)

∂Gs
ℓ,m

∂t
+ vts∇∥

(√
m+ 1Hs

ℓ,m+1 +
√
mHs

ℓ,m−1

)

+ vts

[
− (ℓ+ 1)

√
m+ 1Hs

ℓ,m+1 − ℓ
√
m+ 1Hs

ℓ−1,m+1

+ ℓ
√
mHs

ℓ,m−1 + (ℓ+ 1)
√
mHs

ℓ+1,m−1

]
∇∥ log(B)

+ i
τs
Zs
ωκd

[√
(m+ 1)(m+ 2)Hs

ℓ,m+2 + (2m+ 1)Hs
ℓ,m +

√
m(m− 1)Hs

ℓ,m−2

]

+ i
τs
Zs
ω∇Bd

[
(ℓ+ 1)Hs

ℓ+1,m + (2ℓ+ 1)Hs
ℓ,m + ℓHs

ℓ−1,m

]

= Ds
ℓ,m.

(F.51)

where

Gs
ℓ,m = Hs

ℓ,m − Zs
τs
Jsℓ (φkδm0 − vtsδm1δA∥,k) + (Jsℓ−1 + Jsℓ )δm0

δB∥,k

B
, (F.52)

and

Ds
ℓ,m=0 = iω∗

[
aN
Lns

ℓs +
aN
LTs

[
ℓJ s

ℓ−1 + 2ℓJ s
ℓ + (ℓ+ 1)J s

ℓ+1

]]
φ,

+
τs
Zs
iω∗

[
aN
Lns

[J s
ℓ + J s

ℓ−1] +
aN
LTs

[
ℓJ s

ℓ−2 + 3ℓJ s
ℓ−1 + (3ℓ+ 1)J s

ℓ + (ℓ+ 1)J s
ℓ+1

]]δB∥

B
,

Ds
ℓ,m=1 = −vtsiω∗

[
aN
Lns

J s
ℓ +

aN
LTs

[ℓJ s
ℓ−1 + (2ℓ+ 1)J s

ℓ + (ℓ+ 1)J s
ℓ+1]

]
δA∥,

Ds
ℓ,m=2 =

1√
2
iω∗

aN
LTs

J s
ℓ φ+

τs
Zs

1√
2
iω∗

aN
LTs

[J s
ℓ + J s

ℓ−1]
δB∥

B
,

Ds
ℓ,m=3 = −vts

√
3

2
iω∗

aN
LTs

J s
ℓ δA∥,

Ds
ℓ,m>3 = 0.

(F.53)
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To convert the quasineutrality equation (F.45), we use (F.4), (F.5), (F.14)

∑

s

Z2
sns
τs

φ =
∑

s

Zsns
∑

ℓ=0

J s
ℓ H

s
ℓ,0. (F.54)

Similarly, to convert the parallel Ampere’s law (F.46), we use (F.3), (F.4), (F.5), (F.14)

k̃2⊥δA∥ =
βref
2

∑

s

Zsnsvts
∑

ℓ=0

J s
ℓ H

s
ℓ,1, (F.55)

Finally, for perpendicular Ampere’s law, we use (F.4), (F.5), (F.22).

δB∥

B
= −βref

2

1

B2

∑

s

nsτs
∑

ℓ=0

(J s
ℓ + J s

ℓ−1)H
s
ℓ,0. (F.56)

This completes the transformation of the δf gyrokinetic model from real space to Fourier-Hermite-

Laguerre space. Note that we have ignored collisions and non-linear effects for simplicity. Before

running GX non-linearly, we perform some linear electromagnetic tests with realistic equilibria.

Some of the results are presented in the next section.

F.4 Linear tests

In this section, we will compare growth rates by solving the linear gyrokinetic equation

using both GS2 and GX. We choose the case analyzed in figure 3.16(e).
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(a) Growth rate (b) Real frequency

Figure F.1: This figure shows a comparison between the growth rates and real freuencies obtained

from GS2 and GX for a realistic tokamak equilibrium. We have used the GS2 normalization for

vth,i. Note that with the given resolution, GX can capture the KBM but cannot capture the electron-

driven mode around kyρi = 1.5. This should not affect our optimization results as we are only

optimizing against the KBM.

Note that we have used a small electron-elecron collisionality in GS2 for these linear tests

to compensate for the hypercollisionality used in GX. This reduces the stabilizing effect of the

trapped electrons, causing the growth rates to increase slightly. Hence, the growth rate values in

figure F.1 are slightly larger than the ones in figure 3.16(e).
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