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Error Analysis of QR Updatingwith Exponential WindowingG. W. Stewart�1. IntroductionIn many application (e.g., signal processing, time series) one needs the QR fac-torization of an n� p matrix Xn = 0BBBB@ xH1xH2...xHn 1CCCCA :The rows of Xn represent data that arrives at regular intervals, with xH1 the oldestdata and xHn the most recent.If the series xHn is not stationary, it is necessary to suppress the older data sothat they do not contaminate more recent information. One widely used methodfor accomplishing this is called exponential windowing. Let � 2 (0; 1) be a \for-getting factor," and let Dn = diag(�n�1; �n�2; : : : ; 1):Instead of computing the QR factorization of Xn, one computes the QR factor-ization of DnXn; i.e., one computesDnXn = QnRn; (1:1)where Qn has orthonormal columns and Rn is upper triangular. The e�ect ofexponential windowing is to weight xHi by �n�i, so that it has less and less in
uenceas n increases.�Department of Computer Science and Institute for Advanced Computer Studies, Univer-sity of Maryland, College Park, MD 20742. This report is available by anonymous ftp fromthales.cs.umd.edu in the directory pub/reports. This work was supported in part by the AirForce O�ce of Scienti�c Research under Contract AFOSR-87-0188.1



2 QR with Exponential WindowingAs a rule, only the R-factor Rn in (1.1) is needed in applications. It can becomputed e�ciently by the following updating procedure. Let R0 = 0. Given Rn,compute the QR decomposition: Un vnwHn �n ! �RnxHn+1 ! =  Rn+10 ! : (1:2)Here  Un vnwHn �n ! (1:3)is unitary and Rn+1 is upper triangular. Is is easily seen that the sequence oftriangular matrices Rn so generated are the R-factors of the matrices Xn. Thedetails of this updating algorithmmay be found in [1]. It requiresO(p2) arithmeticoperations.Exponential windowing and updating allows us to look at the local behaviorof an arbitrarily long sequence of data. However, the fact that n is e�ectivelyunbounded raises the possibility that rounding error will accumulate to the pointwhere it overwhelms the data. The purpose of this paper is to show that thisdoes not happen: exponential windowing damps old rounding errors along withold data.In the next section we will present the rounding error analysis. Although theresults of this analysis are su�cient for practical purposes, it is clear that thebounds are an overestimate, at least asymptotically. Consequently, x3 is devotedto producing re�ned bounds.Throughout this paper kXk will denote the Frobenius norm de�ned bykAk2 =Xi;j jaijj2:All computations will be assumed to be in 
oating point arithmetic with roundingunit �M; i.e., � log �M is approximately the number of decimal digits carried in thecomputation.2. The Error AnalysisOur error analysis will be a classical backward error analysis; that is, we will showthat the computed Rn, whatever its accuracy, comes from very slightly perturbeddata. The analysis begins with an a backward error analysis of the single updatestep (1.2).



QR with Exponential Windowing 3Theorem 2.1. Let Rn+1 denote the result of performing the update (1.2) in
oating-point arithmetic with rounding unit �M. Then there is a unitary matrixof the form (1.3), a constant K depending on p, a matrix G and a vector hHsatisfying 




 GnhHn !




 � K�M 




 �RnxHn+1 !




 (2:1)such that  Un vnwHn �n ! �Rn +Gnxn+1 + hHn+1 ! =  Rn+10 ! : (2:2)A proof of this theorem may be found in [4, Ch.3, xx20{24].The analysis of the updating algorithm with exponential windowing amountsto the recursive application of the bound (2.2). As is typical in backward rounding-error analyses, we let let quantities stand for their computed values. The resultswill be cast in terms of the augmented factorization 0DnXn ! =  0Qn !Rn:This factorization re
ects the actual updating process in which we start with azero matrix, imagined to lie above Xn, and form Rn in it.Theorem 2.2. Let kRnk � �; n = 1; 2; : : : ;so that � is an upper bound for the norms of the computed Rn. Then there is amatrix  PnQn ! (2:3)with orthonormal columns and matrices En and Fn satisfying




 EnFn !




 � K�M�(1� �)(1�K�M) (2:4)such that  EnDnXn + Fn ! =  PnQn !Rn:



4 QR with Exponential WindowingProof. The proof is by induction. The theorem is clearly true for n = 0 (takeP0 = I and Rk = 0).Now suppose that the theorem is true for some n � 0, and suppose that Rnhas been updated so that (2.2) holds. Then from (2.1) and (2.2) we have that




 �RnxHn !




 � kRn+1k+ 




 GnhHn !




 � �+K�M 




 �RnxHn !




 :Hence 




 �RnxHn !




 � �1�K�M : (2:5)Now consider the equations0B@ �En + PnGn�(DnXn + Fn) +QnGnxn+1 + hHn 1CA= 0B@ Pn 0Qn 00 1 1CA �Rn +Gnxn+1 + hn != 0B@ Pn 0Qn 00 1 1CA UHn wnvHn ��n ! Un vnwHn �n ! �Rn +Gnxn+1 + hn != 0B@ PnUHn PnwnQnUHn QnwnvHn ��n 1CA Rn+10 !They suggest that we should takePn+1 = PnUHn ;Qn+1 =  QnUHnvHn ! ;En+1 = �En + PnGn;Fn+1 =  �Fn +QnGnhHn ! : (2:6)In fact all we need do is verify that En+1 and Fn+1 so de�ned satisfy the bound(2.4). From (2.6) and the fact that (2.3) has orthonormal columns, we have




 En+1Fn+1 !




 � � 




 EnFn !
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 GnhHn !




 :



QR with Exponential Windowing 5Hence from the induction hypothesis (2.4) and from (2.1) and (2.5)




 En+1Fn+1 !




 � �K�M�(1 � �)(1�K�M) + K�M�1 �K� � K�M�(1� �)(1�K�M) ;which establishes the theorem.One unsatisfactory aspect of this theorem is that it is phrased in terms ofan upper-bound on the computed R-factor. This leaves open the possibility thatRn could grow unboundedly, even though the true factors remain bounded. Thefollowing corollary shows that this cannot happen.Corollary 2.3. Let � = K�M(1� �)(1�K�M)and let �̂ be an upper bound on the norms of the true R-factors. Then� � �̂1 � � :Proof. Since Rn is obtained from DnXn by a unitary transformation, kDnXnk ��̂. From Theorem 2.2, it follows that� � �̂+ ��;from which the corollary follows immediately.There are three comments to make about this theorem. First, the bound saysthat the combined e�ect of all the operations is the same as if we had introduceda relative perturbation in DXn of approximately norm � �= �K�M=(1 � �). Forexample, if � = 0:5, the e�ect of all the updates is only twice the e�ect of asingle update whatever the value of n. Thus, there is never a need to restart thecomputation to get rid of accumulated rounding errors.Second, we have focused on the QR factorization for the sake of simplicity.However, the analysis applies mutatis mutandis to more complicated decomposi-tion such as the URV and ULV decomposition [2, 3], in which unitary transforma-tions are applied to both sides of DnXn. The key is to observe that the updatingalgorithms have backward error analyses in the spirit of Theorem 2.1.Finally, as we mentioned in the introduction, the bounds are likely to overes-timate the error in the long run. The errors do not spread evenly over DnXn, asthe bound seems to imply, but tend to decrease exponentially along with the rowsof DnXn. We will now proceed to analyze this phenomenon.



6 QR with Exponential Windowing3. Exponential Decay of the ErrorThe reason for the weakness of the bounds derived in the last section is that wehave ignored the structure of Qn in passing from the recurrenceFn+1 =  �Fn +QnGnhHn !to a bound on the backward error. It turns out that the rows of Qn can decreaseexponentially at approximately the same rate as the rows of DnXn. When thisfact is taken into account, we obtain a more realistic bound for the old data.Theorem 3.1. Let � � kxHi kbe an upper bound on the norms of the xHi and let�(�1) � kR�1i k; i = p; p + 1; : : : ;be an upper bound on the norms of the inverses of the computed Ri. Let� = ��(�1);� = K�M1 �K�M ;~� = � + ��:Then if fHin denotes the backward error in the ith row of DXn,kfHink � ~�n�i���+ (n � i)���; i = p; p + 1 : : : ; n = i; i+ 1; : : : :Proof. Let qHin denote the ith row of Qn. Then�n�ixHi + fHin = qHinRn:Hence kqHink � �(�1)(�n�i� + kfHink): (3:1)Now from (2.6), fii = hHi ;fHi;n+1 = �fHin + qHinGn; n = i; i+ 1; : : : : (3:2)



QR with Exponential Windowing 7Hence from the bound on kGnk developed in the proof of Theorem 2.2 and (3.1)we have kfHii k � ��;kfHi;n+1k � ~�kfHink+ ~�n�i���; n = i; i+ 1; : : : :Hence if we set 'ii = ��;'i;n+1 = ~�'in + ~�n�i���; n = i; i+ 1; : : : ; (3:3)then kfHink � 'in. But it is easily veri�ed that'in = ~�n�i���+ (n� i)���:The proof of the theoremmust be modi�ed for the case i < n, since in this caseRi is singular. The key is to use the bound from Theorem 2.2 as an initial conditionfor the recursion (3.3). The resulting bound exhibits the same exponential decay.The number � is an upper bound on the condition of the Rn, and if some ofthe Rn are very ill-conditioned, the bounds will be large. However, note that evenin applications in which rank-degenerate Rn are expected (e.g., direction of arrivalestimation), the presence of noise in the data is likely to make the ill-conditioningvery mild compared with the rounding unit.Finally, note that because of the presence of the term (n � 1)��, the boundsof this section are initially weaker that the bounds of the preceding section. How-ever, as n increases these bounds ultimately become sharper, since they track thedecreasing error while the bounds of the preceding section remain constant.References[1] G. H. Golub and C. F. Van Loan (1989). Matrix Computations. Johns HopkinsUniversity Press, Baltimore, Maryland, 2nd edition.[2] G. W. Stewart (1990). \An Updating Algorithm for Subspace Tracking."Technical Report CS-TR 2494, Department of Computer Science, Universityof Maryland. To appear in IEEE Transactions on Signal Processing.[3] G. W. Stewart (1991). \Updating a Rank-Revealing ULV Decomposition."Technical Report CS-TR 2627, Department of Computer Science, Universityof Maryland.
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