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This thesis is devoted to designing new techniques andiddges for combi-
natorial optimization problems arising in various apgiieas of resource alloca-
tion. Resource allocation refers to a class of problems evhesirce resources must
be distributed among competing agents maintaining cedpiimization criteria.
Examples include scheduling jobs on one/multiple machmmagtaining system
performance; assigning advertisements to bidders, ositenpeople maximizing
profit/social fairness; allocating servers or channelsfyatg networking require-
ments etc. Altogether they comprise a wide variety of comtairial optimization
problems. However, a majority of these problems are NP-imandture and there-
fore, the goal herein is to develop approximation algorghimt approximate the
optimal solution as best as possible in polynomial time.

The thesis addresses two main directions. First, we dessogral new tech-
niques, predominantly, a new linear programming roundirgghmdology and a

constructive aspect of a well-known probabilistic methbd,Lovasz Local Lemma



(LLL). Second, we employ these techniques to applicatidmesource allocation
obtaining substantial improvements over known resultsr ©search also spurs
new direction of study; we introduce new models for achigwemergy efficiency
in scheduling and a novel framework for assigning advaeriesgs in cellular net-
works. Both of these lead to a variety of interesting quastio

Our linear programming rounding methodology is a significggneralization
of two major rounding approaches in the theory of approxiomegigorithms, namely
the dependent rounding and the iterative relaxation prreedOur constructive
version of LLL leads to first algorithmic results for many doimatorial prob-
lems. In addition, it settles a major open question of oligira constant factor
approximation algorithm for the Santa Claus problem. Thet&&laus problem
is a N P-hard resource allocation problem that received much taitein the last
several years. Through out this thesis, we study a numbeppications related
to scheduling jobs on unrelated parallel machines, such@dsmpnally shutting
down machines to save energy, selectively dropping ostlierimprove system
performance, handling machines with hard capacity boundts® number of jobs
they can process etc. Hard capacity constraints ariseatigtur many other appli-
cations and often render a hitherto simple combinatorighupation problem dif-
ficult. In this thesis, we encounter many such instancesrof ¢tepacity constraints,
namely in budgeted allocation of advertisements for catloketworks, overlay net-

work design, and in classical problems like vertex covdrceeer and k-median.
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CHAPTER 1

Introduction

“The truth, the way we see it, is only an approximation.”

1.1 Introduction

Most combinatorial optimization problems, including tedbat arise naturally in
many applications arBP-Hard. Therefore, under the widely believed complexity
assumption oP # NP, there are no algorithms that run in time polynomial in their
input size and solve these problems optimally. In order tmiobsuch efficient
algorithms, we thus resort approximations Instead of returning an exact solution,
we return in polynomial time an approximate solution thatdslose to the optimal
as possible.

The theory of approximation algorithms have developedéndist few decades
as a systematic method for designing algorithma\fBrhard problems. Each dis-
crete optimization problem has an associated objectivetium which depending

on the problem needs to be maximized or minimized. Given sutlobjective
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function, we define an-factor (@ > 0) approximation algorithm as follows.

Definition 1.1.1 (a-factor approximation algorithm)An «a-factor approximation
algorithm is a polynomial time algorithm that for all inste@s of a problem returns

a solution with its objective value within a factor @fof an optimal one.

Approximation algorithms provide a mathematical basiguidy heuristics that
often return good solution in practice. Even when practitablems are too com-
plicated to formulate and analyze, approximation algorghare useful. Solving
some simplified versions of the underlying problem may leadesigning effec-
tive heuristics and to understanding the basic hardness.alformidable task to
enumerate all the different techniques that have beenajseelin this regard. But,
two approaches that can claim to have been extremely fraiteuthe use of math-
ematical programming and randomization.

A vast class of combinatorial problems can be formulated athematical pro-
grams, especially, as integer linear prograth®). In anlLP, the variables take
integer values, and the constraints as well as the objefttiveion are linear in na-
ture. Since generdlLP is NP-hard, we relax the requirement that the variables take
integral values to allow fractional solution. This is knoasmthe technique dihear
programming relaxationAn optimal value of a linear programming relaxation can
be computed in polynomial time. Such a fractional optim&son is thenrounded
to a nearby integer solution as close to the original integéimal as possible. Op-

timal objective value of a linear prograrhK) serves as a lower (upper) bound for



the true optimal objective value for a minimization (maxation) problem. Many
LP-rounding approaches have been developed in the last twaddec With the
seminal work of Raghavan and Thompsbn [1¥8hdomized/probabilistic round-
ing methods have been successfully applied to obtain good xippetion algo-
rithms for manyNP-hard problems. In fact. it is difficult to overemphasize tbie
of randomization in algorithm design. In a lecture seridieddRandomization &
Religion Donald E. Knuth rightly said,|f somebody would ask me, in the last 10
years, what was the most important change in the study ofittiges | would have
to say that people getting really familiar with randomizddaithms had to be the
winner’.

The first part of this thesis is devoted to designing new rovgtechniques and
randomized methodologies that generalize or improve meswiqus works. In the
second half, they are applied to a large class of problemdathander the general

umbrella ofresource allocation

1.2 Resource Allocation Problems

Resource allocation refers to a class of problems whereasaasources must
be distributed among competing agents maintaining cedpiimization criteria.

Such problems are ubiquitous in computer science. For elearopnsider a job
scheduling scenario in parallel machines, where jobs rebd executed on a lim-

ited number of machines in a timely manner. Each job has s@atgerdquirements



and thus can be scheduled only on a subset of machines. Aina@yd machine
can process only one job. Under such a constrained envinanrtee question is
how to schedule the jobs so that certain system performangptimized, for ex-
ample, the maximum processing load on any machine is mieinitn addition,
energy consumption by active machines is a critical issue cae must attempt to
optimize energy usage. In this thesis, we discuss severhlstheduling problems
and designing approximation algorithms for them.

Another variant of resource allocation problems deals digkributing items to
people. Each person want a subset of items and the utilitypefson is a function
of the items received. The items may have different valuatior different persons
and cannot be shared. The goal is to allocate the items irr avégi such that
the minimum utility received by any person is as high as fssiSuch problems
arise frequently in economics and market design and are tkrasmnax-min fair
allocationproblems. A related question concerns assigaihgordsto advertisers.
Consider the internet advertisement scenario in GoogleeBeBach advertiser has
a limited budget and bids for different keywords. There anitéd number of slots
per keyword to exhibit the advertisements. The questionoig Google should
choose and show the advertisements in the few available white keywords are
being searched by users. Internet advertisement is a milladlar business, and
adword allocation plays an important role there. In thisigiewe will encounter a

variety of problems of similar flavor.



In networking, bandwidth assignment or server allocatsoeiane through care-
fully designed protocols to optimize the resource usage.iristance, in a content
distribution network, there are different types of senaand limited budgets allow
one to open only a fixed number of servers of each type. A diéethien connected
to the server that can process its request most cost-gf#gctMany combinatorial
optimization problems are motivated from these applicatidNVe will see a few of
them in this thesis. A common feature in many of these apjica is thehard
capacityrequirements. For example, the number of servers that capdieed may
not exceed the allowed limit. The number of clients that carhéandled by each
server may also be limited. In this thesis, we will encount@ny instances of hard
capacity constraints.

We now give a brief description of some of the applicationssigered in this

thesis.

Scheduling on Parallel Machines. Job scheduling problems are one of the most
important classes of resource allocation problems. Thedidimg literature is vast
and one can propose a variety of interesting questionssratiea. In this thesis, we
focus our attention on perhaps one of the most widely studliachine scheduling
problems,the unrelated parallel machine scheduling to minimize rapka[96].
Unrelated parallel machines (UPM) rightly capture difféaraspects of machine
models in practice, especially of data centers. Data celier massively parallel

computation repository, where machines can show a signifidigersity in mem-



ory, processing power, speed etc. Similarly, on URNachines are unrelated
and processing time of jobs can be machine-dependent. edelatUPM isthe
generalized assignment problgi@AP) [122] that has spurred many advances in
approximation algorithm theory.

In this thesis, we consider two natural generalizations BMUbcheduling and
GAP, scheduling with capacity constraints and outligfd8]. Often servers have
limits on the number of jobs that can be scheduled on thens-dhils to the capac-
itated scheduling problem. On the other hand, outliersumessubstantial amount
of resources and dropping them selectively may improveegygterformance by a
large margin. Energy consumption is a vital issue in datéectenThe data centers
are provisioned to handle high work loads during peak denpenigdds. However,
the work load on modern cloud computing platform is very matiwith infrequent
peaks and deep valleys. Thus, much energy can be saved,hfmaacan be shut
down selectively during the low work period. Along this obsgion, we propose
a novel model for energy savings in data centers; this inged a new dimension

of energy minimization in UPM scheduling [88].

Fair Allocation Problems. Allocating items fairly among individuals is an active
area of research [30,81, 106, 131,114¥ax-min fair allocationis one such prob-
lem that has received significant attention from the themaktomputer science
community in the last few years [15,116,/20]26,[34, 60]. Irs thioblemn “indi-

visible” items need to be distributed amongchildren such that to maximize the



happiness of the least happy child. Each child has a valuidiceach item and her
happiness is directly proportional to the total values ef gloods received by her.
Interestingly, this problem can be viewed asmaximizationversion of makespan
minimization on UPM. However, while 2-approximation algorithm is known for
makespan minimization, much remains to be shown for the miaxair allocation
problem. On one hand, the problem might have a constant,a@approximation
algorithm, on the other hand, the best known result for itis-approximation([34],
for any constant > 0. A particular type of linear programming relaxation that ca
be useful in this context is known as configuratidn relaxation [16, 20]. Our re-
sult in this thesis is to provide a stronger integralityu;ﬁp such configuratio.P
relaxation of the max-min fair allocation problem.

A special case of max-min fair allocation problem is Santa Claus problem
where value of each item is fixed, however a child may or maywaott the item.
Even, for this special case no constant factor approximatigorithm was known.
Following, the work of Bansal and Sviridenko [20], Feige|[@dd Feige, Asad-
pour, Saberi[[15] show that the same configuratiéhthat has been used for the
max-min fair allocation problem has a constant integrajiy for the Santa Claus
problem. Surprisingly, both results were obtained using differentnonconstruc-
tive approaches and left the question of a constant factor ajppation algorithm
open. In this thesis, we propose a new constructive verdienpowerful proba-

bilistic tool, the Lovasz Local Lemma (LLL) and using ougatithmic version of

1For definition, see Sectidn 1.4



LLL, we are able to provide the first constant factor appration algorithm for

the Santa Claus problem.

Network Server Allocation Problems. Resource allocation is particularly im-
portant in the area of networking. For example, in an overlegwork, multiple
commodities or streams must be routed from a source via t@ffeto the sinks
that are designated to serve the stream to end-users. Eaade sceflector, sink
have certain capacity, and we have to ensure the quality eliadbitity of the ser-
vice in presence of network link failures. There is a maiatae cost to use links
and reflectors, as well as a set-up cost. With limited budgetgoal is to build an
overlay network which is as cheap as possible without comiog on the ser-
vice. In this thesis, we study one such optimization probtelated to creation of
overlay networks, which improves upon the previous resdultraireev et al.[[10].
The k-median problem is an optimization problem that is widelydgtd as a
means for locating servers in networks[14,38/ 39, 84, 8%le bHudget limitation
allows to open onlyk servers, and for all requests to be served in a cost-eféectiv
manner, clients must be connected to their nearest opearsafle can often as-
sume that we have a metric space andihmedian problem is as follows: Given
ann-vertex (client) metric spacéV, d) and a bound:, the goal is to locate/open
k centersC C V so as to minimize the sum of distances of each vertex to its
nearest open center. Themedian problem can also be viewed as a clustering

problem. The currently best-known approximation guamrfte k-median is a



(3 + ¢)-approximation (for any constaat> 0) due to Arya et al.[14].

A related problem appears gontent distribution network€CDN). In CDN,
there are servers ofdifferent types and for theth server-typei( € [1,t]), only k;
of them can be opened:-median is a special case with= 1. Fort = 2, Haji-
aghayi et al. obtained a constant factor approximationréfgo [76]. In this thesis,
we consider the problem for any arbitrary valuet pih fact, a generalization of it,
which we call thematroid-mediamproblem and give a constant factor approxima-
tion algorithm for it. In this problem, the open centers nfasin an independent
set of a matroQ. In k-median, the underlying matroid isumiform matroid while

for the problem of server location in CDN, it is an instancepfrtition matroid

Ad-words Assignment in Mobile Advertising & Capacitated Covering Prob-
lems. Almost all of us are familiar with the concept of advertisartsebeing
shown along side the search results on internet search tegbdidders bid for
each key-word and given a key-word, the search engines reagtedwhich adver-
tisements to show on the limited number of available slotptonize their revenue.
This leads to an array of interesting optimization probld8%;/125]. Nowadays,
with world-wide usage of cellular phonesiobile advertisemeris being consid-
ered as a viable alternative. However, in this scenarioc@ly users do not search
for keywords and in absence of users’ application conté&Xiecomes difficult to

provide targeted advertisements. The only informationlavie to a wireless ser-

2For a general background on matroids, the reader is refesré book[[121].



vice providers (WSP) is the current location and time of sis&lso, to ensure a
non-intrusive delivery method8VSP must send only a limited number of ads to
each user. This introduces a “capacity” constraints on thaber of advertise-
ments that could be shown to each user, and makes the praffesend from usual
internet advertising. In this thesis, we propose a modefrfobile advertising, and
derive new algorithmic results for it.

Indeed, capacitated problems arise naturally in many egidins where there
are resource constraints. In this thesis, we study someragty well-known prob-
lems such as vertex cover and set cover in presence of hpagtitalimitations and
show their applications in the area of resource allocation.

In the following sections of this introductory chapter, weely describe sev-
eral concepts used throughout the dissertation. Towardent of this chapter, a

road map is given to guide the reader through different prtise thesis.

1.3 Probabilistic Methods

The termprobabilistic method$oosely refers to the use of identities and inequali-
ties from probability theory to prove combinatorial sta&s. We construct an ap-
propriate probability space and show that a randomly chessEment in this space
has the desired property with probability greater than .z&tuis proves the exis-
tence of at least one object in the collection that has thpgstg. Often a stronger

claim can be made. It can be shown that an element with theedgsioperty does
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not only exist, but can be found with high probability if we keaa few (polyno-
mial in number) random choices. This then leads to a randeiMonte-Carlo
algorithm.

Let us illustrate few concepts of probabilistic methodsaneexample that will

be useful later.

Examplel. Considerk-satisfiability, in short, &-SAT formula with m clauses
andn boolean variables in conjunctive normal form. The goal iddoide whether

there exists an assignment of the boolean variables thsfystte formula.

Proposition 1.3.1. If m < 2*, then there exists an assignment of the boolean

variables for anyk-S AT formula withm clauses and: variables.

Proof. Set each boolean variable towith probability 1/2 and 0 with probabil-
ity 1/2 independently. The probability that a particular clauserisatisfiable is
thereforezik. Thus, the probability that there exists at least one clatseh is un-
satisfied by the random assignment is at migsby union bound Sincemn < 2k,
probability of a failure is strictly less thah thus the probability that there exists a

good assignment is nonzero. Hence, a good assignment exists O

Given Propositioh 1.3]1, a natural question aris&bat happens when > 2%
? The union bound is clearly not enough to provide any gueeaitt this situa-
tion. Consider the case when all clauses are disjoint, shaihé random variables
designating whether a clause is satisfied or not are mutiralgpendent. In that
case, irrespective of the value of, there exists a good assignment. There is no

11



way to encode suchdependence informatioim the union bound. It is possible
that each clause shares variables with only a few otheretalgnder such limited
dependency scenario, a particular probabilistic methatllibcomes very useful is

theLovasz Local LemméLLL).

Lemma 1.3.2(The Local Lemma; Symmetric Case).Let Ay, As,..., A, be
events in an arbitrary probability space. Suppose that eagntA; is mutually
independent of a set of all the other evedtsbut at most/, and thatPr [4;] < p
forall 1 <i<n.lf

ep(d+1)<1 1.1)
thenPr [N, 4;] > 0.

The above is the symmetric version of LLL. The more generadiva of local
lemma is described in Chaptg8. Let us now illustrate the power of LLL via the

same example df-S AT.

Proposition 1.3.3.1n a k-S AT formula withm clauses and: boolean variables,
if each clause shares variables with at méfst— 1 other clauses, then there exists
an assignment of random variables that satisfies all thesgauor in other words,

thek-S AT formula is satisfiable.

Proof. Consider a random variable for each boolean variable anid ®efl with
probability 1/2 and0 with probability 1/2 randomly and independently. Define a

bad eventd4; for each unsatisfied clausefori = 1,2,...,m. ThenPr[4;] = 2%

12



Now each clause shares variables with at m6gt — 1 other clauses. Therefore,
each bad event depends only on at n2gk — 1 other bad events. Hence, we have
d=2F/e—1,andep(d + 1) = e.zik(% — 1+ 1) = 1. Thus from the Symmetric

version of LLL, we know that there exists an assignment oflthelean variables

which satisfies all the clauses. O

The condition of LLL guarantees existence of a good assigmnoeit it does
not tell us how to find such an assignment. This led to a longsef research
in developing an algorithmic version of LLL. In Chapt&3, we will study some
interesting new developments in that direction.

Another way to use probabilistic method is by calculating eltpected value of
some random variables. It can often be claimed that the \wlagandom variable
is concentrated around its expectation. One may use a yarietoncentration
inequalities to establish such claims. The Chernoff-Htieff bound is one such

widely used concentration inequality that will be applieglguently in this thesis.

Lemma 1.3.4(The Chernoff-Hoeffding Bound). Let X, X5, ..., X,, ben bounded
independent random variables wity;, € [0,1], forall i = 1,2,... . n. Then if
X =51, X;andyu = E[X], we have
66 ®
2. for0 < 6 <1,Pr[X > pu(1+68)] < e /30,

3. for0 < d < 1,Pr[X < p(1—4)] < e #/20°,

13



1.4 Linear Programming Relaxation and Rounding

Linear programming is the problem of optimizing (i.e., miizing or maximizing)

a linear objective function subject to linear inequalitynstraints. Any solution,
i.e., a setting for the variables in the linear program id tabe feasible if it satisfies
all the constraints. On the other hand, a solution is optinfdl is feasible and
optimizes (i.e., maximize or minimize) the objective fuonot A large number
of combinatorial optimization problems can be modeled asali programs, and
in most cases, the variables must satisfy integrality caimts. Such integrality
constraints (integer linear program) mak&lR-hard to obtain an optimal solution.
However, if we relax the variables to take fractional vajuben it is possible to
optimally solve the linear program. For example, if a vdealmust take values
either0 or 1, we can relax it to take any fractional value[in 1]. This is known
aslinear programming relaxatior{LP-relaxation). The optimal objective value
of a LP-relaxation serves as a upper (lower) bound for the truer@btobjective
value in case of a maximization (minimization) problem. Ttaectional optimal
solution is then rounded to an integer solution with an dbjecvalue as close to
the objective value of theP-relaxation. An important concept in this regard is that
of integrality gap Integrality gap of d_P-relaxation for any problem is the ratio
between the true optimal and thé® optimal objective value. The best possible

approximation factor achievable through.B rounding method is bounded by its
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integrality gap.
Let us illustrate the concept @fP rounding and integrality gap through an

extremely well-studied combinatorial problem, namelg sbt covemproblem.

Example2 (Set Cover) Given a universé/ of n elements, a collection of subsets
of U,8 = {81, Ss,...,Sn}, and a cost function : § — Q, find a minimum cost

subcollection of§ that covers all elements 6f.

To formulate the set cover problem aslaR, we assign an indicator variable
xg for each setS, such that it will bel, if the setS is selected an@ otherwise.
For each element, we have a constraint denoting that we riaksépleast one set

containing the element in our solution.

minimize » " xg (SetCover| p)
Ses

subject toz g > 1 VaecU (1.2)
a€S

xzs € {0,1} vSes (1.3)

The LP-relaxation of thidLP is obtained by letting the domain of variable
bel > xg > 0. Since the upper bound aty is redundant, we get the following

LP.
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minimize ) " (SetCoverp)

Ses
subject toz g > 1 VaecU (1.4)

a€S

xs >0 vSesd (1.5)

Proposition 1.4.1( [135]). The integrality gap ofetCover p is at Ieastk’g”.

Proof. Consider the following set cover instance. ket= 2¥ — 1, wherek is a
positive integer and le/ = {ej,es,...,e,}. We view elementg; to e, asn
k-dimensional vectors over F'[2], except the all zero vector. We construcsets
S1, 52, ..., S, such thatS; = {ejle; - e; = 1}. Now it is easy to check that each
element belongs to exactly/2 sets. Thus if we setg = % forall S € 8, the
constraints oSetCover p are satisfied and we get a feasible LP solution of value
2. On the other hand, any integer optimal solution must pideastk sets. This
can be seen as follows. Consider any k sets and let;, is, . . . , i, be the indices
of thep sets. Consider the x k& dimensional matrix4, where thej-th row is thek
dimensional binary vectar;. Now the null space ofl is non-empty and therefore
there is a vectog; # 0 such thatd.e; = 0. Clearly, the elemeny; is not contained

in any of thep sets. Thus at leagt= log (n + 1) sets are required to cover all the

elements. Hence the integrality gap is at Ié%w > 10%”. O
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Now, we will show a rounding algorithm that achieves an agipnation factor
of O(log n) [135].
Letx* be a fractional optimal solution &etCover p. We pick each sef with

probability 2. Let C be the collection of sets picked. The expected cost isf

Elc(C)] =) Pr[Sis picked] ¢(S) = Y zc(S) = OPTy.
Ses Ses

HereOPT} denotes the value of the objective function for the optinodlitson of
SetCovery,p.

Now the element is covered by the sets if at least one set containingis
picked. Thus,

Prlais covered bye] > 1— J] (1 - =%)
S:a€esS

Supposeq belongs tok sets, therPr [a is covered byC] > 1 — []g.,c5(1 —
i) >1—(1- %)k > 1— 1. Thus the probability that is not covered is at most
L

To get a complete set cover, we independently Ribkn such subcollections,
and compute their union. Now, the probability that an elenagis not covered in
any of the2In n subcollections is at mogt. )

Thus, by union bound, afteXInn rounds the probability that there exists at
least one element that is not covered is at ifosDn the other hand, the expected

cost of the overall solution is at magtn n O PT. By Markov’s inequality, prob-
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ability that the expected cost is more thalm n OPTY is at most%.

Thus, with probability at leas} — L, we obtain a valid set cover with cost at
most4 Inn = O(log n) times the optimal cost.

Observe that, in polynomial time, we can verify if the sataticomputed is a
feasible set cover solution or not. If not, then we simplyeathe entire procedure.
The expected number of times that we need to repeat is las$ tha

It is not possible to obtain an approximation algorithm fet sover with ap-
proximation factoro(logn) unlessP = NP [59,99]. Thus, no polynomial time
algorithm can achieve an approximation factor better thanaforementioned LP
rounding algorithm by more than a constant factor. The besivk approximation

factor for set cover is due to [128].

1.5 Structure of Linear programs

For set cover, the best approximation ratio achievable ipnoonial time islog n.
However, in many situations, especially those arising iongetric settings, the set
systems have more structure inlit [82}/36,/134]. Consequetht log n-hardness
no longer applies to such set-systems. Consider for exammering points by
line segments in one dimensiofin element (point) in covered by a line segment,
if its x-coordinate is contained in the segment. This particulstaimce of the set
cover problem is solvable in polynomial time. If we write tbenstraint matrix of

the linear program for this set cover instance, the mattisfies a property known
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astotal unimodularity[53]. This property of total unimodularity of the constradh

matrix enables to obtain an integer optimal solution of tieih polynomial time.

Thus, structure of linear program can often be a crucialedignt in obtaining
better approximation algorithms. Note that for coveringngoby line segments,
one can obtain an optimal solution using dynamic progrargragmwell.

While we can solve linear programs to obtain optimal sohytiwe can also
obtain extreme point solution, that is, the optimal solutibat appears in one of
the vertices of the linear polytope. An extreme point soluttannot be written
as a convex combination of other solutions. Consider a Hipeagram withn
variables andn constraints. A feasible solution of such a LP will be an axiee
point solution if and only if the number of linearly indepemd constraints that
are satisfied tightly (i.e., with equality) is exactly eqt@ab:.. One can exploit the
structure of an extreme point solution while designing ding algorithms. In
Chapter§2, our new rounding methodology relies on such structurapgities of

LP solutions.

1.6 Organization

Apart from this introductory chapter, the dissertationiisdkd into two main parts.
The first part is devoted to developing techniques, whichuaesl in different ap-
plications in the second half. In Chapté2, we develop our neWP rounding

technigue. Chaptef3d describes our contribution towards algorithmic aspetts o
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the Lovasz Local Lemma. Starting from Chapidk in the second half of the the-
sis, a large variety of different applications are desctibé&/hile in most of them,

the main techniques used are those developed in CHghted§3, several problem

specific innovations are required as well.

Chapterdd andd5 are devoted towards applications of scheduling in paralle
machines. In Chaptefs, we consider two generalizations of UPM scheduling
to minimize makespan. The first generalization is to comdided capacity con-
straints on machines, and the second generalization isygid=r outliers. In Chap-
ter §5, we develop new model for energy minimization in schedyland describe
our algorithmic contribution.

Chapter§@ and{7 describe thenax-minfair allocation problem and the Santa
Claus problem respectively. In Chapt#, we show how using our rounding tech-
nigue, one can obtain better integrality gap for a particatanfigurationLP for
the max-min fair allocation problem. In Chapi§f, we develop the first constant
factor approximation algorithm for the Santa Claus problem

Chapter§8 andd9 are devoted towards two applications of networking, am-ove
lay network design problem and a problem of locating seriremsontent distri-
bution networks. In Chaptefd, we will see how structural properties of linear
program can help us to obtain a good approximation algorithm

In Chapterd10, we develop a model of advertisement allocation in calul

networks, and show how to abstract the problem using a limexyram and obtain
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an approximation algorithm for it. In Chaptéf1l, we consider the vertex cover
and set cover problem with hard capacity bounds on verticdsats respectively.
The new linear programming rounding method of Chagiand its related
applications in Chaptefd], 46l and48 appeared i [118]. The constructive version
of the Lovasz Local Lemma (Chapté8) and the result on the Santa Claus prob-
lem appeared in [75]. The scheduling work to minimize enenggata centers was
published in[[88]. The materials of Chapt and Chaptef{1d appeared respec-

tively in [91] and [1].
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CHAPTER 2

A New Linear Programming Rounding Method

A large class of optimization problems can be modeled agéntenear programs
(ILP). However solving an ILP optimally is NP-hard and in t@st its linear-
programming (LP) relaxation is solvable in polynomial tinehis has resulted in
the much-used paradigm of “relax-and-round” wherein anifelaxed to get an
LP and an efficiently-computed optimal solution of the LPasnded to an integer
solution thatapproximateghe true ILP-optimum. This second “rounding” step is
often a crucial ingredient, and many general techniques haen developed for it.
In Chapter 1, we have seen a simple example of LP roundingaddtr set
cover problem. In that problem, random variables are rodnddependently.
The method, known amdependent randomized roundingas first proposed by
Raghavan and Thompson [116]. In many applications, howsueh indepen-
dent rounding procedure fails to guarantee any good appadion. As a result,
a new generic technique afependent roundindpas been developed in the last

decadel([Z, 65, 92, 127]. Our proposed rounding methodologkes progress in
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that direction. We start with a description of dependennding and then elabo-

rate on our contribution.

2.1 The Dependent Randomized Rounding

Dependent rounding is a generic rounding methodology whih been proven
quite effective in variety of applications of schedulingcget-routing and in gen-
eral in combinatorial optimization [2,65.92,127]. Duriagy rounding procedure,
we map an LP-optimal fractional solutianto a nearby integer solutioX. When
the rounding is donandependentlywe typically choose a value that is problem-
specific, and, for each defineX; to be1l with probability az;, and to bed with
the complementary probability af— ax;. Independence can, however, lead to no-
ticeable deviations from the mean for random variablesaherequiredto be very
close to (or even be equal to) their mean. A fruitful idea dtgyed in [65,92,127] is
to carefully introducedependenciesito the rounding process: in particular, some
sums of random variables are held fixed with probability awmieile still retaining
randomness in the individual variables. This is the prerafsgependent random-
ized rounding. See [2] for a related deterministic approtett precedes these
works.

In [65], dependent randomized rounding procedure was dpedlfor a simple

setting of bipartite graphs, which we describe next.
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2.1.1 Dependent Rounding on Bipartite Graphs

Suppose we are given a bipartite gragh= (A, B, E') with the bipartition(A, B)
and the edge#&’. There is a variable; ; € [0, 1] associated with each edge j) €
E. Dependent rounding on the bipartite graph is a randomizdéghpmial-time
scheme that rounds eaeh; < [0,1] to X; ; € {0, 1}, that satisfies the following

three properties:

(P1) Marginal distribution. For every edgdi, j), Pr[X;; = 1] = x;;. This
property can be ensured through simple independent rografifil16] as

well. As a corollary of it,

\V/(Z,j) S E, E [Xi,j] =T;. (21)

(P2) Degree-preservation. For every vertexi € A U B, if the fractional

degree’ pij = d, then with probabilityl, the integral degree

jEAU
ZjeAuB Xi,j € {{d-|7 Ldj}
This is a property, very specific to dependent rounding atehqiflays a vital

role when certain cardinality constraints need to be miiath

(P3) Negative correlation. For any vertex and any subset of edgés

Vb e {0,1}, Pr [l jes(Xij =b)] < pesPri(Xiy; =0)]  (2.2)
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This property enables us to use “Chernoff” type bounds oh gattex. The
Chernoff-Hoeffding bound can be applied for sum of randomatdes that

are negatively correlated.

The rounding starts by selecting all the edges that alreasdlg theirz values
in {0, 1} and setting the correspondidg ; values equal ta; ;. All these integral-
valued edges are removed from the bipartite graph. Thusdbe(¢, ;) is in E if
and only ifz; ; € (0,1). Next the algorithm chooses an even cy€l¢note that
in a bipartite graph every cycle has even length) or a maxpath? in G, and
partitions the edges il or P into two matchingsM; andMs. Then, two positive

scalarsy and S are defined as follows:

a=min{n > 0:((3(i,j) € My : z; j+n = 1) U(El(z',j) eMy:z; j—n=0))}

B =min{n > 0: ((3(i,5) € My : 2,1 = 0) | J3(,4) € My : @i j+n = 1))};

Now with probabilitya’%ﬁ, set

Y;,j =Zi; +« for all (’L,j) € My

and Y ; =ux;; —aforall (i,j) € My;

26



with complementary probability of%, set

Yi; = — Bforall (4,5) € My

and Yi; =5+ Bforall (4,5) € My;

Thus at least one; ; is rounded td or 1. Hence the rounding algorithm always
make progress and i@i(|E|) iterations all the edges are rounded to integral value.
The above rounding scheme satisfies the three propertiegimakdistribution,

degree-preservation and the negative correlation spacifieve.

2.1.2 A Negative Correlation Property

We now show a useful negative correlation property for ddpahrounding on

bipartite graphs for the case wfatching

Definition 2.1.1(Negative Correlation for Indicator Random Variables). A col-
lection of indicator random variable$z;},i € [1,n] are said to be negatively

correlated, if for any subset of variables,¢ € [1,n], and anyb € {0,1},
Pr |:/\§':1 Zij = b] é H;:l Pr [Zij = b] )

Theorem 2.1.2. Define an indicator random variable; for each vertexj € B
(similarly for vertices inA), such thatz; = 1 if item j is matched. Then, the

indicator random variableg z; } are negatively correlated.
Proof. Consider any collection of vertices, jo, . . ., j: belonging toB. Letb =1
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(the proof for the casé = 0 is identical). LetY; ;; denote the value of; ; at
the beginning of thé:-th iteration of bipartite dependent rounding. Defing, =

ZL(i,j)eE Y; j k- Clearly,z; = Ei’(m)eE Y j, 1 El+1- We will show that

t t
Vk, E [H zji,k] <E [H zji,k_li (2.3)
i=1 i=1

Thus, we will have

t t
Pr [/\ zj, = 1] = E [H Zji,M|+1]
i=1 i=1
t
< E [H Zji’:l]

t i=1 .
= HZYv,ji,l = H Prizj, =1]

i=1

=1 v

We now prove[(Z2.3) for a fixed. Note that any vertex that is not the end point
of the maximal path or the cycle on which dependent roundingpplied on the

(k — 1)-th round retains their previousvalue. There are three cases to consider.

Case 1 Two vertices among, jo, . . ., j: have their values modified.et these
vertices be say; andj,. Therefore, these two vertices must be the end points of
the maximal path on which dependent rounding is applied eih- 1)-th round.

The path length must be even. LB{(ji, jo, @, 3) denote the event that the jobs
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{Jj1, j2} have their values modified in the following probabilisticywa

( | (Zjy ko1 + 0, 2jy k1 — ) With probabilitya—fﬁ
zj17k7 zj27k =
(Zjy k=1 — B, Zjp k—1 + ) with probabilitya%ﬁ

Thus

t
E szi7k ‘ Vi € [17t]7 Zji,k—l = ajL A B(j17j27a75)

i=1
t

= E [zj1,kzj2,k | VZ € [17t]7 Zji,k:—l = aji A B(j17j27a7ﬁ)] Hajz
=3

The above expectation can be written(@s+ ¢)I1_a;,, where
Y= (5/(04 + /8))(@]'1 + a)(ajz - a)a and

¢ = (a/(a+ B))(aj, — B)(aj + ).

Now, it can be easily seen that+ ¢ < a;,a;,. Thus for any fixedj;, j» and

for any fixed(«, 3), and for fixed values the following holds:

t t
E szi,k | Vi€ [1,1], zj; k-1 = aj A B(j1, 2,0, B) | < Haj-
i=1 1=1

HenceE [T/_, zj,x | Case 1 < E[[]}_, 2, x—1 | Case 1.
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Case 2 One vertex among, jo, . . ., j: has its value modified_et the vertex
be j; say. Therefore, this vertex must be the end point of the malxpath on
which dependent rounding is applied on tie- 1)-th round. The path length must
be odd. LetB(ji,a, B) denote the event that the jgh has its value modified in

the following probabilistic way:

Zj k-1 +a  with probabilityaLjrB

Zj1,k =

zj,k—1 — B with probability ¢

Thus,

E [zjl,k | Vi € [1,t], Zj k—1 = Qj A\ B(jl,oz,ﬁ)] = aj,.

Since the values of;,, i € [2,t] remains unchanged and the above equation holds

for anyji, o, 3, we havek [[]_, zj, » | Case 2 < E[[]}_, 2j,x—1 | Case 2.

Case 3 None amongy, jo, . . ., j: has its value modified

In this case, the value of;,;'s, i« € [1,¢], do not change. Hence,

E [ITi=; 2.k | Case 3 <E [[]i_, Zj; k—1)) -

This establishes the claim. O

We can extend the bipartite dependent rounding method tghtesdl depen-
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dent rounding such that the three properties of dependantnog [(PI), (PIl) and
(P1M] hold. As a result, we can also obtain negative catieh bound like The-
orem[2.1.P for weighted bipartite matching. We leave thesexarcises to the

readers.

2.2 Generalization of Dependent Rounding for Arbitrary

Linear Systems

The above bipartite dependent rounding scheme can be extéachny arbitrary
system of linear constraints. Suppose we are given a systéimear equations,
Az < b,z € ]0,1]", whereA is anm x n matrix andb is anm-dimensional vector.
Also for notational simplicity, assume is some given solution to this system of
linear equations and thus it satisfids = ¥/, for someb’ < b. Once again, our
goal is to obtain a feasible solutidti € {0, 1}" satisfyingAX =¥'.

First, as in the bipartite-dependent-rounding, if any;j € [n], already has a
value in{0, 1}, we setX; = x; permanently. Next we projeetto only those coor-
dinates that are if0, 1) and thus consider a reduced system of equatibns = b'.
Suppose the linear system,z’ = ¥/, is underdetermined, i.e., the number of lin-
early independent constraints are less than the numberiables. Then since the
null-space ofd’ is non-trivial, we can efficiently find a non-zero vectgisuch that
A'r = 0. Sincex € (0,1)", we can also find strictly-positive scalarsand 8 such

that: 1) all entries ofc + ar andx — Sr lie in [0, 1] and, 2) at least one entry of
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x+ ar andzx — Sr becomes eithdy or 1. With probability%, wesety =x+ar
and with complementary probabilitgﬁ—ﬁ, we setY = z — 8r. Since at least one
new variable is set to an integer, the rounding terminates af most» rounds.
Let X’ denote the final-rounded solution corresponding:tothen the rounding

satisfies the following two properties:

(P'1) Marginal distribution. For j € [n],Pr(X; =1] = z;. Thus,Vj €

[n]a E [X]] = Zj.
(P'2) Linear-constraint-preservation. Pr[A’ X’ =V/] =1

It is important to ensure that the linear-system is underdgned in order to
guarantee the existence of a non-trivial vector in the spilee ofA. When the
system becomes determined, depending on the applicatommay select suitable
constraints to drop such that the system again becomesdetdenined.

Bipartite dependent rounding can be viewed as a specialofdbkis approach.
When we select a maximal path in bipartite dependent rogndan each interme-
diate vertex we maintain the sum of the fractional valuesefadges incident on
them. Thus if the maximal path hassertices, then we havg — 1) variables and
(s — 2) constraints. On a cycle, there ar@ariables and constraints, but one of

the constraint is linearly dependent on the rest and thubeagnored.
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2.3 Randomized lterative Relaxation

We further generalize the above approach. This leads toradnogi methodology
that not only falls under the umbrella of dependent roundiigcan be best catego-
rized asrandomized iterative relaxationThis establishes the connection between
two, probably the most effective, rounding methods: theedéent rounding and
the iterative relaxation procedure.

The general paradigm of iterative rounding was first devedopy Jain for ap-
proximating survivable network design problerns![83]. Tlasib idea in iterative
rounding method is to consider a basic solution of a lineag@mming relaxation
and utilizing the property of a basic solution to show thatasiable exists with
fractional values at least say2. These almost integral variables are then rounded
up to the nearest integer, and fixing these variables theingmgdinear program is
solved once again. The procedure continues iterativelgssrdll the variables are
rounded to integers. Since the basic iterative roundingnigcie loses a constant
factor in the approximation, the technique is extended bgrlieavingrelaxation
steps, dropping constraints without compromising too nindhe feasibility, and
rounding iteratively([6/7, 94, 123].

We generalize the methods bf [94,123] as well as that|of [BB®2, 1271, via
a type of random walk toward a vertex of the underlying pgdgtdhat we outline

next.
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Suppose we are given a polytoffein n dimensions, and aon-vertexpoint
x belonging toP. An appropriate basic-feasible solution will of coursedags
to a vertex ofP, but we approach (not necessarily reach) a verteX bl a ran-
dom walk as follows. Let> denote the set of constraints definifigwhich are
satisfiedtightly (i.e., with equality) byz. Then, note that there is a non-empty
linear subspace of R™ such that for any nonzere € S, we can travel up to
some strictly-positive distancg(r) alongr starting fromz, while staying in® and
continuingto satisfy all constraints i tightly. Our broad approach to conduct a
random mover” := x + R by choosing an appropriately randafhfrom .S, such
that the property E [[] Y;] = z;” of the previous paragraph still holds. In partic-
ular, letRandMove(z, P) — or simply RandMove(z) if P is understood — be as
follows. Choose a nonzero € S arbitrarily, and set” := x + f(r)r with prob-
ability f(—r)/(f(r) + f(—r)), andY := z — f(—r)r with the complementary
probability of f(r)/(f(r) + f(—r)). Note that if we repeaRandMove, we obtain
a random walk that finally leads us to a vertexf)fthe high-level idea is to inter-
sperse this walk with the idea of “judiciously dropping soommstraints” as well
as combining certain constraints together into one.

To contrast with the dependent rounding procedure for tirsgatems, note
that, heretightly satisfied constraints play a vital role. As long as a corntiiai
not tightly satisfied, we can simply ignore it while determopwhether the system

is underdetermined. We takeRandMove and make progress until one of the
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non-tight constraint becomes tight or some variable getsded.

Interspersing the random walk towards a vertex matcheeetagationstep of
the iterative relaxation method. However in iterative xal#on, a linear program
is solved repetitively in order to get a basic solution atrgwsep—here instead we
make a random choice of vectorand pick a direction to proceed alomgoroba-
bilistically. This procedure thus satisfies the propefyY;] = ;" and depending
on the polytope may lead toegative correlatiortype results as in basic bipartite
dependent rounding technique.

As discussed later in the thesis, our recipe appears fruntfa number of di-
rections in scheduling, fair allocation, budgeted adwdldcation, and as a new

rounding technique in general.
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CHAPTER 3

Constructive Aspects of the Lovasz Local

Lemma

The well-known Lovasz Local Lemma (LLL) [55] is a powerfutgbabilistic ap-
proach to prove the existence of certain combinatoriaksires. Its diverse range
of applications include breakthroughs in packet-routi®g][a variety of theorems
in graph-coloring including list coloring, frugal colodntotal coloring, and color-
ing graphs with lower-bounded girth [109], as well as a hdsitber applications
where probability appears at first sight to have no riole [8ftlermore, almost all
known applications of the LLL have no alternative proofswkno While the orig-
inal LLL was non-constructive — it was unclear how the exiseeproofs could be
turned into polynomial-time algorithms — a series of wo&2[7, 50, 108-112,129]
beginning with Beckl[27] and culminating with the breakihgh of Moser & Tar-
dos (MT) [111] have led to efficient algorithmic versions fmost such proofs.

However, there are several LLL applications to which thgg@@aches inherently
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cannot apply. In this chapter, we make progress toward imgdthis gap, by un-

covering and exploiting new properties bf [111].

3.1 Preliminaries & Limitation of MT Algorithm

In Chaptet 1, we have seen the symmetric version of LLL (T&e0f.3.2). LetP
be a collection of: mutually independent random variableg,, P, ..., P, }, and
let A = {A1, Ay, ..., A, } be a collection ofn (“bad”) events, each determined
by some subset dP. For any eventB that is determined by a subset &fwe
denote the smallest such subsetviy(B). For any eveni3 that is determined by
the variables i, we furthermore writd"(B) = I'4(B) for the set of all events
A # Bin A with vbl(A) N vbl(B) # (. This neighborhood relation induces
the following standardlependency grapbr variable-sharing graplon A: For the
vertex setA let G = G4 be the undirected graph with an edge between events
A,B € Aiff A € I'(B). We often refer to events id asbad eventand want to
find a point in the probability space, or equivalently an@ssient to the variables
P, wherein none of the bad events happen. We call such an assigragood
assignment

With these definitions the general (“asymmetric”) versidrihe LLL simply

states:

Theorem 3.1.1(Asymmetric Lovasz Local Lemma)Nith A, P andT" defined as
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above, if there exists an assignment of realsA — (0, 1) such that

VAe A:PrlA] <xz(A) [ (-=(B)); (3.1)
BeT'(A)

then the probability of avoiding all bad events is at leHsf 4 (1 — z(A)) > 0 and

thus there exists a good assignment to the variablé in

The LLL (Theoreni 3.1]1) shows sufficient conditions undeialthwith pos-
itive probability, none of the eventd; holds: i.e., that there is a choice of values
for the variables i (corresponding to a discrete structure such a suitableinglo
of a given graph) that avoids all th&;. Under these same sufficient conditions,
MT shows the following very simple algorithm to make such aich: (i) initially
choose theP; independently from their given distributions; (iShile the current
assignment t& does not avoid all thel;, repeat arbitrarily choose a currently-
true A4;, and resample, from their product distribution, the vddabn? on which
A; depends. The amazing aspect of MT is that the expected nuwhiEsamplings
is small [111]: at mospoly(n,m) in all known cases of interest. However, there
are two problems with implementing MT, that come up in son@iagtions of the

LLL:

(a) the number of events: can be superpolynomial in the number of variables
this can result in a superpolynomial running time in the tmak’ parameter

n; and, even more seriously,

n is the parameter of interest since the output we seek is doe far each ofP;, P, ..., P,.
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(b) given an assignment 1, it can be computationally hard (e.g., NP-hard or yet-
unknown to be in polynomial time) to either certify that Ag holds, or to

output an index such that4; holds.

Since detection and resampling of a currently-bad everitasseemingly un-
avoidable basic step in the MT algorithm, these applicatiseemed far out of
reach. We deal with a variety of applications wherein (a)yan¢b) hold, and de-
velop Monte Carlo (and in many casd3)N C) algorithms whose running time is
polynomial inn: some of these applications involve a small loss in the guafi
the solution. (We loosely letR N C algorithms” denote randomized parallel algo-
rithms that useoly(n) processors and run iolylog(n) time, to output a correct
solution with high probability.) First we show that the MTgatithm needs only
O(n?log n) many resampling steps in all applications that are knowd {@amost
cased)(n - polylog(n))), even whenn is superpolynomial im. This makes those
applications constructive that allow a&fficientimplicit representation of the bad
events (in very rough analogy with the usage of the ellipsdigrithm for convex
programs with exponentially many constraints but with geegaration oracles).
Still, most of our applications have problem (b). For theases, we introduce a
new proof-concept based on tf@nditional) LLL-distribution- the distributionD
on P that one obtains when conditioning on Ag happening. Some very useful
properties are known fab [9]: informally, if B depends “not too heavily” on the

events inA, then the probability placed oB by D is “not much more than” the
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unconditional probability’r [B]: at mostf4(B)-Pr [B] (seel(3.R2)). Such bounds in
combination with further probabilistic analysis can bedisegive interesting (non-
constructive) results. Our next main contribution is thegt MT algorithm has an
output distribution (say)’) that “approximates” the LLL-distributio®: in that for
every B, thesameupper boundf,(B) - Pr[B] as above, holds i’ as well. This
can be used to make probabilistic proofs that use the LLLditmm constructive.

Problem (b), in all cases known to us, comes from problem ifa$. easy to
test if anygiven A; holds currently (e.qg., if a given subset of vertices in a prap
is a clique), with the superpolynomiality @f being the apparent bottleneck. To
circumvent this, we develop our third main contributione thery general The-
orem[3.3.8 that is simple and directly applicable in all Lldstances that allow
a small slack in the LLL's sufficient conditions. This thear@roves that a small
poly(n)-sized core-subset of the eventsdrtan be selected and avoided efficiently
using the MT algorithm. Using the LLL-distribution and a gil@ union bound
over the non-core events, we get efficient (Monte Carlo anB& C) algorithms
for these problems.

Our method is applied to several applications includingShata Claus prob-
lem (see Chaptdr] 7), non-repetitive coloring of graphs &eetion[ 3.4, general
Ramsey type graphs (se€e [75]), acyclic edge coloring (sBB.[7All of these
have problem (a), and all but the acyclic-coloring appl@athave problem (b).

The recent break-through result of Andrews on approximgatidge-disjoint paths
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problem in undirected graphs is another example, where IsLapplied to avoid
super-polynomially many bad events [11].

The following subsection _3.1.1 reviews the MT algorithm ateanalysis,
which will be helpful to understand some of our proofs andhigcal contributions;

the reader familiar with the MT algorithm may skip it.

3.1.1 Review of the MT Algorithm and its Analysis

Recall the resampling-based MT algorithm; let us now revdeme of the techni-
cal elements in the analysis of this algorithm, that willghad understanding our
technical contributions better.

Awitness treer = (T, o) is afinite rooted tre@ together with a labeling :
V(T) — A of its vertices to events, such that the children of a vettex V' (T")
receive labels fron'(or(u)) Uor(u). In a proper witness tree distinct children of
the same vertex always receive distinct labels. The “l6g5f an execution of MT
lists the events as they have been selected for resampliegcim step. Givel,
we can associate a witness tregt) with each resampling stegthat can serve as
a justification for the necessity of that correction step(t) will be rooted atC ().

A witness tree is said to occur {, if there exists € N, such that¢(t) = 7. It
has been shown in[111] thatifappears irCC, then it is proper and it appears@n
with probability at mostl,cy () Pr [o7(v)].

To bound the running time of the MT algorithm, one needs talddbhe number

of times an eventd € A is resampled. I1fV4 denotes the random variable for the
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number of resampling steps dfandC is the execution log; thelV 4 is the number

of occurrences ofd in this log and also the number of distinct proper witness
trees occurring irC' that have their root labeled. As a result one can bound
the expected value aV4 simply by summing the probabilities of appearances of
distinct witness trees rooted dt These probabilities can be related to a Galton-
Watson branching process to obtain the desired bound omitiméng time.

A Galton-Watson branching process can be used to generatgarwitness
tree as follows. In the first round the root of the witness ieeproduced, say it
corresponds to evert. Then in each subsequent round, for each vertexepen-
dently and again independently, for each evBri I'o(v) Uor(v), B is selected
as a child ofv with probability z(B) and is skipped with probabilityl — z5). We
will use the concept of a proper witness trees and Galtorsdvigbrocess in several

of our proofs.

3.2 LLL-Distribution

When trying to turn the non-constructive Lovasz Local Lemimto an algorithm

that finds a good assignment the following straightforwapgpraach comes to
mind: draw a random sample for the variablesPinintil one is found that avoids
all bad events. If the LLL-conditions are met this rejecteampling algorithm cer-
tainly always terminates but because the probability cdioltg a good assignment

is typically exponentially small it takes an expected exguial number of resam-
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plings and is therefore non-efficient. While the celebratiggrithm of Moser (and
Tardos) is much more efficient, the above rejection-sargptrethod has a major
advantage: it does not just produce an arbitrary assignbugptrovides a randomly
chosen assignment from the distribution that is obtainednadme conditions on
no bad event happening. In the following, we call this digttion LLL-distribution
or conditional LLL-distribution

The following is a well-known bound on the probabiliy , [B] that the LLL-
distribution D places oranyeventB that is determined by variables In(its proof

is an easy extension of the standard non-constructive Liolofd9]):

Theorem 3.2.1.If the LLL-conditions from Theoreim 3.1.1 are met, then the-LL
distribution D is well-defined. For any eveit that is determined b, the proba-

bility Prp[B] of B under D satisfies:

Prp[B]:=Pr|B| N Al <Pr(B]. ] 1—zc) (3.2)

AcA Cer(B)

here, Pr[B] is the probability of B holding under a random choice of

P, Ps,..., P,

The fact that the probability of an eveBtdoes not increase much in the con-
ditional LLL-distribution whenB does not depend on “too mang’ € A, is used
critically in the rest of the paper.

More importantly, the following theorem states that thepotitdistribution D’
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of the MT-algorithm approximates the LLL-distributiof and has the very nice

property that it essentially also satisfies [3.2):

Theorem 3.2.2. Suppose there is an assignment of reatsA — (0, 1) such that
(3.2) holds. LetB be any event that is determined By Then, the probability that

B was trueat least oncealuring the execution of the MT algorithm on the events
in A, is at mosPr [B] - ([[cep(p)(1 - r¢))~L. In particular the probability ofB3

being true in the output distribution of MT obeys this uppeund.

Proof. The bound on the probability aB ever happening is a simple extension
of the MT proof [111]. Note that we want to prove the theoremedpective of
whetherB is in A or not. In either case we are interested in the probabili&f th
the event was true at least once during the execution, fi.&.,i$ in A whether it
could have been resampled at least once. The witness traesethify thefirst
time B becomes true are the ones that h@eas a root and all non-root nodes
from A \ {B}. Similarly as in [111], we calculate the expected numbethetée
witness trees via a union bound. Letbe a fixed proper witness tree with its
root vertex labeled3. Following the proof of Lemma 3.1 and using the fact that
B cannot be a child of itself, it can be shown that the probigbili with which
the Galton-Watson process that starts withyields exactly the tree is p, =
[Laer (1—2(A)) ey () 2'(0v). HereV(r) are the non-root vertices ofand
z'(0v) = z(0v) [[oer(o,) (L —2(C)). Plugging this in the arguments following the

proof of Lemma 3.1 of [111]itis easy to see that the union lboaver all these trees
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and therefore also the desired probability is at fR§B] - ([ [ccp(z) (1 — o))t
where the termPr[B]” accounts for the fact that the root-eveBthas to be true as

well. O

Using this theorem we can view the MT algorithm asefficientway to obtain
a sample that comes approximately from the conditional ldidtribution. This
efficient sampling procedure makes it possible to make prasihg the conditional

LLL-distribution constructive and directly convert thento algorithms.

3.3 LLL Applications with Super-Polynomially Many

Bad Events

In several applications of the LLL, the number of bad evesisuper-polynomially
larger than the underlying variables. In these cases weaianfalgorithm that still
runs in time polynomial in the number of variables, and ites efficient to have an
explicit representation of all bad events. Surprisinglyedreni 3.3]1 shows that the
number of resamplings done by the MT algorithm remains cataxdand in most
cases even near-linear in the number of variahles

We introduce a key parameter:

§:=minz(4) J[ (1 —-=(B)). (3.3)

Aed Bel(A)
Note that without loss of generality < % because otherwise all € A are inde-
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pendent, i.e., defined on disjoint sets of variables. Indeéd> % and there is an
edge inG betweend € A andB € A then we havel > z(A)(1 — z(B)) and
1> 2(B)(1—-2(A),ie, 1> 2(A)(1 —2(A) z(B)(1 - z(B)) whichis a

contradiction because(1 — z) < 1 for all 2 (the maximum is attained at= 1).

1

We allow our algorithms to have a running-time that is polymna in log(1/0);
in all applications known to usj > exp(—O(nlogn)), and hencelog(1/d) =
O(nlogn). In fact becausé is an upper bound fomin 44 P(A) in any typical

encodings of the domains and the probabilities of the vegalg(1/6) will be at

most linear in the size of the input or the output.

Theorem 3.3.1.Suppose there is anc [0, 1) and an assignment of reals: A —

(0, 1) such that:

VAe A:PrlA] < (1-e)z(4) [ (1—x(B)).
BeT'(A)

With § denotingminaea #(A) [1 ger(a)(1 — 2(B)), we have

T := Z za < nlog(1/0). (3.4)
AcA

Furthermore:

1. ife = 0, then the expected number of resamplings done by the MTitgor

is at mostv; = T maxaca , and for any parameteh > 1, the MT

1
1—z(A)

algorithm terminates withimv; resamplings with probability at leadt —
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1/,

2. ife > 0, then the expected number of resamplings done by the MTithligor
is at mosty = O(% log %), and for any parametek > 1, the MT algorithm

terminates withimuv, resamplings with probability — exp(—2X).

Proof. The main idea of relating the quantifyto n andd is to use: (i) the fact that
the variable-sharing graphi is very dense, and (ii) the nature of the LLL-conditions
which force highly connected events to have small prokasliandz-values. To

see that7 is dense, consider for any variabfee P the set of events

Ap ={A € A|P € vbl(A)},

and note that these events form a cliqué-inindeed, then vertices ofG can be
partitioned inton such cliques with potentially further edges between themd, a
therefore has at least (") = m?/(2n) —m/2 edges, which is high density for
m > n.

Let us first prove the bound dh. To do so, we fix any? € P and show that
> peap TB < log(1/6), which will clearly suffice. Recall from the discussion
following (3.3) that we can assume w.l.0.g. that %. If |[Ap| = 1, then of course

> peap T < 1 <log(1/6). If |[Ap| > 1, let A € Ap have the smallest4 value.
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Note that by definition

If 24 < 1/2,thend < [[peq, (1-ap5) < e =54 ™ andwe ge} ey, o5 <

In (1/0) < log(1/6) as required. Otherwise, if4 > 1/2,let B; € Ap \ A. Then,

5 <aza J[ Q-zp)=aal—25) [ A-zp)

BEAP\A BEAP\(AUBl)

< xa(l—xp,)e” ZEeAp\AUB) B, (3.5)
Let us now show that fot /2 < z4 < zp, <1,
zA(l —xp,) < e PatTE), (3.6)

Fix 4. We thus need to shoef51 (1 —zp,) < “ﬁ The derivative o&*51 (1 —
xp, ) Is negative forzp, > 0, showing that it is a decreasing function in the range
xp, € [za,l]. Therefore the maximum value ef?1(1 — zp,) is obtained at
rp, = x4 and for [3.6) to hold, it is enough to show thaty (1 — z4) < e~2%4
holds. The second derivative of 224 — z4(1 — x4) is positive. Differentiating

e 24 — x4(1 — x4) and equating the derivative @ returns the minimum in

[1/2,1] atz4 = 0.7315. The minimum value i9.0351 > 0. Thus we have (3]6)
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and so we get

xA(l _ $B1)€_ ZBEAP\(AuBl) zB) < e ZBEAP f”B;

using this with[(3.5), we obtaid 5, , 5 < In(1/9) < log(1/J) as desired.

Given the bound off", part (1) follows directly from the main theorem 6f[111]
and by a simple application of Markov’s inequality.

Part (2) now also follows from [111]. In section 5 of [111] & shown that
saving anl — ¢ factor in the probability of every resampling step implibattwith
high probability, no witness tree of siﬁa(% log > aca lf—f;A) occurs. This easily
implies that none of the variables can be resampled more often. It is furthermore
shown that without loss of generality allvalues can be assumed to be bounded
away from1 by at leastO(e). This simplifies the upper bound on the expected

running time ton - O(2 log L). O

As mentioned following the introduction @fin (3.3),log(1/6) < O(nlogn)
in all applications known to us, and is often even smaller.

While Theoreni_3.3]1 gives very good bounds on the running BiMT even
for applications withQ2(n) < m < poly(n) many events, it unfortunately often
fails to be directly applicable whem becomes super-polynomial in The rea-
son is that maintaining bad events implicitly and running thsampling process

requires an efficient way to find violated events. In many egxamwith super-
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polynomially many events, finding violated events or evest perifying a good
assignment is not known to be in polynomial time (often evevably NP-hard).
To capture the sets of events for which we can run the MT dlgorefficiently we

use the following definition:

Definition 3.3.2. (Efficient verifiability) A setA of events that are determined by
variables in? is efficiently verifiableif, given an arbitrary assignment t®, we can

efficiently find an event € A that holds or detect that there is no such event.

Because many largé of interest are not efficiently verifiable, a direct applica-
tion of the MT-algorithm is not efficient. Nevertheless wewhn the rest of this
section that using the randomness in the output distributiothe MT-algorithm
characterized by Theordm 3.R.2, it is still practically ajs possible to obtain effi-
cient Monte Carlo algorithms that produce a good assignmighthigh probability.

The main idea is to judiciously select an efficiently verifealosore subset
A’ C A of bad events and apply the MT-algorithm to it. Essentiatigtéad of
looking for violated events it we only resample events frori’ and terminate
when we cannot find one such violated event. The non-core®weihhave small
probabilities and will be sparsely connected to core evantsas such their prob-
abilities in the LLL-distribution and therefore also thetput distribution of the
algorithm does not blow up by much. There is thus hope thahtimecore events
remain unlikely to happen even though they were not explifited by the algo-

rithm.
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While the concept of an efficiently verifiable core is easy noerstand, it is
not clear how often and how such a core can be found. Furthrerhraving such a
core is only useful if the probability of the non-core evastsmall enough to make
the failure probability, which is based on the union boundrdliose probabilities,
meaningful. The following main theorem shows that in all laggtions that can
tolerate a small “exponentiak-slack as introduced by [37], finding such a good

core is straightforward:

Theorem 3.3.3.Supposéog 1/§ < poly(n). Suppose further that there is a fixed

constant € (0,1) and an assignment of reais: A — (0,1 — ¢) such that:

VAe A:PriA]'" <az(4) [[ (1—x(B)).
BeT(A)

Then for everyp > m the set{4; € A : Pr[A;] > p} has size at most
poly(n), and is thus essentially always an efficiently verifiableecsubset ofA.
If this is the case, then there is a Monte Carlo algorithm theximinates after

O(Z log ) resamplings and returns a good assignment with probatsitieast

1 —n~¢ wherec > 0 is any desired constant.

Proof. Note that the se#l’ on which the actual MT-algorithm is run fulfills the
LLL-conditions. This makes Theordm 3.B.1 applicable. Tpuarabout the success
probability of the modified algorithm, note thatA) > P(A) [ per(4)(1—2(B))

whereI”(A) are the neighbors afl in the variable sharing graph defined dn
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Using Theorer 3.2]12 we get that the probability that a nae-bad eventl € A \
A’ holds in the assignment produced by the modified algorithahnsostz 4. Since
core-events are avoided completely by the MT-algorithnmgote union bound over
all conditional non-core event probabilities results imitufre probability of at most
Do Aca\ar TA-

For a probabilityp = 1/poly(n) to be fixed later we defingl’ as the set of
events with probability at leagt. Recall from Theorerh 3.3.1 thaf ,_, 24 <
O(nlog(1/6)). Sincexy4 > pfor A € A', we get thatA’'| < O(nlog(1/d)/p) =
poly(n). By assumptionA’ is efficiently verifiable and we can run the modified
resampling algorithm with it.

For every event we haver [A] < z4 < 1—candthusgetafl —¢)° = (1 —
O(e?))-slack; therefore Theorem 3.3.1 applies and guaranteeshidalgorithm
terminates with high probability afte(; log Z5) resamplings.

To prove the failure probability note that for every noneerventd € A\ A,
the LLL-conditions with the “exponential-slack” provide an extra multiplicative
p~¢ factor over the LLL-conditions in Theorem 3.8.1. We haxel)Pr [A]° >
PriA][Iper a1 — 2(B)) whereI”(A) are the neighbors afl in the variable
sharing graph defined af’. Using Theoreni 3.212 and settipg= n—°(1/2), we
get that the probability that a non-core bad evért A\ A’ holds in the assignment
produced by the modified algorithm is at mastPr[A]° < z4n~9(1). Since

core-events are avoided completely by the MT-algorithmingpke union bound
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over all conditional non-core event probabilities resinita failure probability of at
MOSt—55 > acaar ©A- NOW SINCE,Y. g0 24 < D qcarwa = T = poly(n)
holds, we get that we fail with probability at mast ¢ on non-core events while

safely avoiding the core. This completes the proof of thetbe. O

The last theorem shows that in practically all applicatiohshe general LLL
it is possible to obtain a fast Monte Carlo algorithm withitgsily high success
probability. The conditions of Theorem 3.8.3 are very easshieck and are usually
directly fulfilled. That is, in all LLL-based proofs (with alge number of events
A;) known to us, the set of high-probability events forms a polyial-sized core
that is trivially efficiently verifiable, e.g., by exhaustivenumeration. Theorem
[3.3.3 makes these proofs constructive without further dimaed analysis. Only
in cases where the LLL-condition is used are adjustmentsaibunds needed, to

respect the-slack.

Remarks

e Note that the failure probability can be made an arbitrasiigall inverse
polynomial. This is important since for problems with ndfiegently ver-
ifiable solutions the success probability of Monte Carla&tyms cannot be

boosted using standard probability amplification techesgqu

¢ In all applications known to us, the core above has furthee sitructure:

usually the probability of an evert; is exponentially small in the number
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of variables it depends on. Thus, each event in the core apemtds on
O(logn) manyA;, and hence is usually trivial to enumerate. This makes the
core efficiently verifiable, even when finding a general \eibevent inA is

NP-hard.

e The fact that the core consists of polynomially many everitls usually log-
arithmically many variables each, makes it often even pts$d enumerate
the core in parallel and to evaluate each event in parafi¢hid is the case
one can get an RNC algorithm by first building the dependemagtgon the
core and then computing an MIS of violated events in eachd¢using MIS
algorithms such a5 [6,100]. Using the proof of Theokem Baghith is based
on some ideas from the parallel LLL algorithm of MT, it is edeysee that

only logarithmically many rounds of resampling these esemé needed.

3.4 An Example: Non-repetitive Coloring

In this section, we give an efficient Monte-Carlo constretior non-repetitive
coloring of graphs. Call a word (string) “squarefree” or “non-repetitive” if there
does not exist any strings v, z, v # (), such thatv can be written as = uvvz.
Let us refer to graphs using the symbélinstead ofGG, to not confuse with our
dependency graphs. A k-coloring of the edges off (not necessarily a proper
coloring as in standard graph-coloring terminology) idezhhon-repetitiveif the

sequence of colors along any pathAhis squarefree: i.e., we want a coloring in
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which no path has a color-sequence of the farm (All paths here refer to simple
paths.) The smallest such thatH has a non-repetitive coloring usirigcolors
is called theThue numbepof H and is denoted by (H). The Thue number was
first defined by Alon, Grytczuk, Hauszczak and RiordanLin [B]is named af-
ter Thue who proved in 1906 that i is a simple path, them(H) = 3 [132].
While the method of Thue is constructive, no efficient camction is known for
general graphs. Alon et al. showed through application @Bgymmetric LLL that
7(H) < cA(H)? for some absolute constant Their proof was nonconstructive.
The number of bad events is exponential and even checkingheta given col-
oring is non-repetitive is coNP-Hard, [105]. Thus checkihgome “bad event”
holds in a given coloring is coNP-Hard. Since the work of Aktral., the non-
repetitive coloring of graphs has received a good deal ehttin in the last few
years[[7, 31,49, 69,93, 119]. Yet no efficient constructmhkriown till date, except

for some special classes of graphs such as complete gryles and trees.

Randomized Algorithm for Obtaining a Non-repetitive Coloring Suppose we
are given a grapl/ with maximum degreé\. We first give the proof of Alon et al.
which shows thatr(H) < c¢A?, and then show how to convert this proof directly
into a constructive algorithm (with the loss of’¢t factor in the number of colors

used):

Theorem 3.4.1(Theorem 1 of[[8]) There exists an absolute constarguch that
7(H) < cA? for all graphs H with maximum degree at moAt
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Proof. Let C = (2¢'¢ + 1)A2. Randomly color each edge &f with colors from

C. Consider the following types of bad ever®g, for i > 1: “there exists a patl®’

of length24, such that the second half éfis colored identically to its first half”.
We have for a pattP of length2:,7 > 1, Pr [P has coloring of the form Xx=

Ci Also, a path of lengtl2i intersects at mostij A% paths of lengti2j. Thus,

for any bad eventl of typei, we havePr [A] = Ci and that each bad event of type

i share variables with at mosi;j A% bad events of typds;. Setz; = We

1
AT
have(1 — x;) > e~2%; this, along with the fact thazj21j/2j = 2, shows that

=0 - 2, DY 5 o8 gAY L —siy, & _ (2e16A2)~.

= 2A%C
i

SinceC = (2¢!% + 1)AZ, the condition of the LLL is satisfied and we are guaran-

teed the existence of such a non-repetitive coloring. O

Now we see that using just a slightly higher number of coloffices to make

Theoreni 3.3]13 apply.

Theorem 3.4.2. There exists an absolute constansuch that for every constant
e > 0 there exists a Monte Carlo algorithm that given a grafhwith maximum
degreeA, produces a non-repetitive coloring using at me&t?*¢ colors. The
failure probability of the algorithm is an arbitrarily smihverse polynomial in the

size ofH.
Proof. We apply the LLL using the same random experiments and baueeas
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1
in Theoren{ 3.4]1 but witlt” = C'=<" colors such that’ < cA?*¢. Using the
same settings far 4 gives an exponential’ slack in the LLL-conditions since the

probability of a bad event of typdas now at most% = (C1 ) 1% Recall Theorem

[3.33. Clearlylog1/5 = O(n?) and so the last thing to check to apply Theorem
[3.3.3 is that for any inverse polynomial the bad events with probability at least
are efficiently verifiable. Here these events consist ofpathaller than a certain
length (of the formO((1/¢) log n/log A), wheren is the number of vertices), and
Theoreni 3.3]3 guarantees that there are only polynomiadigynof these. Using
breadth-first-search to go through these paths and cheekicly of them for non-

repetitiveness is efficient and thus Theofem 3.3.3 direglylies. O
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Applications

58



CHAPTER 4

Scheduling: Handling Hard Capacities and

Outliers

Scheduling jobs on unrelated parallel machirfe®M) is a fundamental schedul-
ing model which has spurred many advances and applicatiomerbinatorial
optimization, including linear-, quadratic- & convex-gramming relaxations and
new rounding approaches |17)20]126,34 |54, 78, 92, 96, 221, Herein, we are
given a setJ of n jobs, a setM of m machines, and non-negative valugs;

(t € M, j € J): each jobj has to be assigned to some machine, and assigning it
to machine; will impose a processing time @f ; on machine. (The word “unre-
lated” arises from the fact that there may be no pattern antoagiven numbers
pi ;.) Variants such as the type of objective function(s) to bénmped in such an
assignment, whether there is an additional “cost-funttiatmether a few jobs can
be dropped, and situations where there are release datemftbprecedence con-

straints among, the jobs, lead to a rich spectrum of probkemistechniques. Two
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such highly-impactful results are [96,122]. The primaryNUBbjective in these
works is to minimize thenakespanr- the maximum total load on any machine. It
is shown in[[96] that this problem can be approximated to withfactor of2; fur-
thermore, even some natural special cases cannot be appitexi better tham.5
unlessP = NP [96]. Despite much effort, these bounds have not been ingghov
The work of [122] builds on the upper-bound 6f [96] to consitlee generalized
assignment problefGAP) where we incur a cost ; if we schedule joly on ma-
chinei; a simultaneou$2, 1)—approximation for the (makespan, total cost)-pair is
developed in[122], leading to numerous applications (e&g, [10, 40]).

In this chapter, we consider two significant generalization scheduling on
UPM and show the effectiveness of the rounding approachlalsse in Chapter
[2. The first generalization involves introducing capasiti® machines that dictate
how many jobs can be scheduled on each machine, and the sewermbnsiders
outliers with the possibility of improving the system perfance by dropping a

few of them. We also study these two problems in the settingA®.

Capacity constraints on machines. Handling “hard capacities” — those that
cannot be violated — is generally tricky in various settinggluding facility-
location and other covering problems [46/63,113]. Motddby problems in crew-
scheduling [[58, 117] and by the fact that servers have a lbmihow many jobs
can be assigned to them, the natural question of schedulithgavhard capacity-

constraint of “at mosb; jobs to be scheduled on each machithikas been studied
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in [41)133, 137,139, 144]. Most recently, the work[ofl[41sown that this prob-
lem can be approximated to within a factor3in the special case where the ma-
chines aredentical (job j has processing timg; on any machine). We generalize
this to the setting of GAP and obtain the GAP bounds_of [122¢+ approxima-
tion ratios of2 and1 for the makespan and cost respectively, while satisfyirg th
capacity constraints: the improvements are in the moremgéischeduling model,
handling the cost constraint, and in the approximatiomratie anticipate that such
a capacity-sensitive generalization [of [122] would leadproved approximation

algorithms for several applications of GAP.

Scheduling with outliers: makespan and fairness. Another direction for gen-
eralization of GAP result [122] is to consider “outliers” gcheduling([73]. For
instance, suppose in the “processing tirpgs and costs; ;” setting of GAP, we
also have a profitr; for choosing to schedule each jgb Given a “hard” target
profit IT, target makespa#' and total costC, the LP-rounding method of [73] ei-
ther proves that these targets are not simultaneouslyatii& or constructs a
schedule with valueslI, 37, C(1 + ¢)) for any constant > 0. We improve this
to (IL, (2 + ¢)T,C(1 + ¢)). (The factors of in the cost are required due to the
hardness of knapsack [73].) Also, fairness is a fundameésgak in dealing with
outliers: e.g., in repeated runs of such algorithms, we noagesire long starvation
of individual job(s) in sacrifice to a global objective furmt. We can accommo-

date fairness in the form of scheduling-probabilities far jobs that can be part of
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the input.

4.1 Scheduling with Hard Capacities

Scheduling on UPM with hard capacities is a special caserwfam bipartiteb-
matchings with target degree bounds and sharp tail boundsivien linear func-
tions; seel[57] for applications to models for complex nekgo Recall that a
(b)-matching is a subgraph in which every vertekas degree at mostv). Given
afractional b-matchingx in a bipartite graptG = (J, M, E') of N vertices and a
collection ofk linear functions{ f;} of =, many works have considered the problem
of constructing §-)matchingsX such thatf;(X) is “close” to f;(x) simultaneously
for eachi [12,65/68, 115]. The works [68, 115] focus on the case of o
those of [12, 65] consider genera] and require the usual “discrepancy” term of
Q(/fi(x)log N) in |f;(X) — fi(x)| for most/alli; in a few casesyg(N) vertices
will have to remain unmatched also.

Theoren{ 4.1]1 shows that if there is one structured obgdtiaction f; with
bounded coefficients associated with eaeh)V/, then in fact all the f;(X)— f; ()|

can be bounded independent/éf

Theorem 4.1.1.LetG = (J, M, E) be a bipartite graph with “jobs”J and “ma-
chines” M. Let3J be the collection of edge-indexed vectgréwith y; ; denoting
ye Wheree = (i,j) € E). Suppose we are given: (i) an integequirement-;

for eachj € J and an integercapacityb; for eachi € M; (ii) for eachi € M,
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a linear objective functiorf; : & — R given byf;(y) = >_;. (; jyer Pi,j¥i,; such
that0 < p; ; < ¢; for eachj, (iii) a global cost constrain® _, , ¢; jy;,; < C, and
(iv) a vectorz € F with z, € [0, 1] for eache. Then, we can efficiently construct
a random subgraph ofr given by a binary vecto’X € JF, such that: (a) with
probability one, eacly € J has degree at least;, eachi € A has degree at most
b, and|f;(X) — fi(z)| < ¢; Vi; and (b) for alle € E, E[X,] = x. which implies

E [Z” ceXe} =) Cte=C

We first prove the result of GAP with individual capacity ctramts on each
machine (Theorerh 4.1.2). The full proof of Theorem 4.1.1ofe$ after Theo-
rem4.1.2.

The capacity constraint specifies the maximum number of fbhs can be
scheduled on any machine, and is a hard constraint. Forriielproblem is as
follows, wherer; ; is the indicator variable for jop being scheduled on machine
Givenm machines and jobs, where joly requires a processing time pf; in ma-
chinei and incurs a cost af, ; if assigned ta, the goal is to minimize the makespan
T =max >, =; ;p;;, subject to the constraint that the total cdst ; z; ;c; ; is at
mostC' and for each maching Zj z;; < b;. C'is the given upper bound on total
cost and; is the capacity of maching that must be obeyed.

Our main contribution here is an efficient algorittBehed-Capthat has the

following guarantee, generalizing the GAP bounds of [122]:

Theorem 4.1.2. There is an efficient algorithrBched-Capthat returns a sched-
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ule maintaining all the capacity constraints, of cost at mGsand makespan at
most27’, whereT is the optimal makespan with caStthat satisfies the capacity

constraints.

Algorithm Sched-Cap Algorithm Sched-Capproceeds as follows. First we
guess the optimum makespdnby binary search as in [96]. i; ; > T, z; ; is
set to0. The solution to the following integer program gives theimpim sched-

ule:

Z cijri; < C (Cost
2,J

D wi=1Y) (Assign)
2¥)

Zp,-7jxi,j <TVi (Load)
J

D @i < b Vi (Capacity
J

Ti j c {O, 1} Vi,j

Tij = 0 if DPij > T

We relax the constraint; ; € {0,1} V(4,7)"to “x; ; € [0,1] ¥(4, )" to obtain
an LP relaxatiorLP-Cap. We solve the LP to obtain an optimal LP solutioty
we next show howsched-Caproundsx* to obtain an integral solution within the
approximation guarantee.

Note thatz; ; € [0, 1] denotes the “fraction” of joly assigned to machine
Initialize X = x*. The algorithm is composed of several iterations. The rando
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value of the assignment-vectof at the end of iteratiorh of the overall algo-
rithm is denoted byX". Each iteratior, conducts a randomized update using the
RandMove on the polytope of a linear system constructed frorsubsetof the
constraints oL P-Cap. Therefore, by induction oh, we will have for all(, j, h)
that E |:X2h]] = xj ;;we use this property and drop the cost constraint since on
expectation it is maintained

Let J and M denote the set of jobs and machines, respectively. Suppeseev
at the beginning of some iteratigh + 1) of the overall algorithm: we are currently

looking at the valueéffj. We will maintain four invariants.

Invariants across iterations

(11) Once avariable; ; gets assigned toor 1, it is never changed,
(I2) The constraints (Assign) always hold; and
(I3) Once a constraint in (Capacity) becomes tight, it remagts tiand

(I4) Once a constraint is dropped in some iteration, it is neviestated.

Iteration(h + 1) of Sched-Capconsists of three main steps:

1. We first remove aIIX[fj € {0,1}; i.e., we projectX” to those co-ordinates
(i,4) for which Xi’jj € (0,1), to obtain the current vectdr of “floating” (to-be-
rounded) variables; le&8 = (A,Y = wy;) denote the current linear system that
representd P-Cap. (A4, is some matrix andy, is a vector; we avoid usingS,”

to simplify notation.) In particular, the “capacity” of miaioe in 8 is its residual
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capacityb,, i.e.,b; minus the number of jobs that have been permanently assigned
to ¢ thus far. Note that the cost constraint is not included indtwestraint matrix
ApY = wuy, which we continue to maintain exactly. Nevertheless sitehe
variables maintains its initial assignment on expectatiba expected cost remains
unaltered. The entire process as we demonstrate at the arltbaerandomized

and hence the cost upper bounddfs obeyed.

2. LetY € R for somev; note thatY” € (0,1)". Let M} denote the set of all
machines; for which exactlyk of the valuesy; ; are positive. We will now drop

some of the constraints Bt
(D1) for eachi € M, we drop its load and capacity constraints frém

(D2) foreachi € M-, we drop its load constraint and rewrite its capacity c@mstr

+ X 7, wherejy, j» are the two jobs fractionally

h
aszij, + vij, < [X; injo

Z?jl

assigned ta.

(D3) for eachi € Mj for which bothits load and capacity constraints are tight in

8, we drop its load constraint froS

3. Let? denote the polytope defined by this reduced system of camistrad key
claim that is proven in Lemnia 4.1.3 below is thats not a vertex ofP. We now

invoke RandMove(Y, P); this is allowable ifY” is indeed not a vertex dF.

The above three steps complete iterationt- 1).
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Analysis. Itis not hard to verify that the invariantkl()-(14) hold true (though the fact
that we drop the all-important capacity constraint for maeki € M; may look
bothersome, a moment’s reflection shows that such a machimethave a tight
capacity-constraint since its sole relevant jobas valueY; ; € (0,1)). Since we
make at least one further constraint tight RandMovein each iteration, invariant
(14) shows that we terminate, and that the number of iterati®as most the initial

number of constraints. Let us next present Lerhmal4.1.3, éekeya:
Lemma 4.1.3. In no iteration isY a vertex of the current polytofd2.

Proof. Suppose that in a particular iteratian,is a vertex ofP. Fix the notatiorv,
M, etc. w.r.t. this iteration; letw;, = | M|, and letn’ denote the remaining number
of jobs that are yet to be assigned permanently to a machieeud lower- and
upper-bound the number of variablesOn the one hand, we have= 3, k -
my, by definition of the setd/;,; since each remaining jop contributes at least

two variables (co-ordinates faf), we also haver > 2n’. Thus we get

vn/ 4+ (k/2) - my. (4.1)

k>1

On the other hand, sinéé has been assumed to be a verte®pthe numbet of
constraints irf? that are satisfietightly by Y, must be at least. How large cart
be? Each current job contributes one (Assign) constraintdpour “dropping con-

straints” stepsl), (D2) and O3) above, the number of tight constraints (“load”
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and/or “capacity”) contributed by the machines is at mast+ ms + Zkz 4 2my,.
Thus we have

v<t<n +mytmat Y 2my. (4.2)
k>4

Comparison of[(4]1) and_(4.2) and a moment’s reflection shinas such a
situation is possible only if: (ijn; = mg = 0 andms = mg = --- = 0; (i) the
capacity constraints are tight for all machines\ih U M, —i.e., for all machines;
and (iii) ¢ = v. However, in such a situation, thteconstraints irf® constitute the
tight assignment constraints for the jobs and filglt capacity constraints for the
machines, and are hence linearly dependent (since theagsigihment “emanating
from” the jobs must equal the total assignment “arrivingirthe machines). Thus

we reach a contradiction, and heriéas not a vertex ofP. O
We next show that the final makespan is at n®¥Stwith probability one:

Lemma 4.1.4. Let X denote the final rounded vector. Algorith8ched-Cap
returns a schedule, where with probability one: (i) all cafig-constraints on
the machines are satisfied, and (i) for all >, ; X jpi; < >, 7 ,pij +
MaXie s: 27 €(0,1)Pij-

Proof. Part (i) essentially follows from the fact that we never denyy capacity
constraint; the only care to be taken is for machintsat end up in\/; and hence

have their capacity-constraint dropped. However, as @rgoen after the descrip-

tion of the three steps of an iteration, note that such a maatannot have a tight
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capacity-constraint when such a constraint was droppetteh@ven if the remain-
ing job 5 got assigned finally t@, its capacity constraint cannot be violated.

Let us now prove (ii). Fix a maching If at all its load-constraint was dropped,
it must be wheni ended up inMy, Ms or M3. The case of\f; is argued as in
the previous paragraph. So suppaése M, for some/ € {2,3} when its load
constraint got dropped. Let us first consider the case 2. Let the two jobs
fractionally assigned ohat that point have processing timgs, p) and fractional
assignmentsy;, y2) oni, where0 < p1,pe < T,and0 < y1,y2 < 1. If y1 +y2 <
1, we know that at the end, the assignment vectowill have at most one of
X, and X5 being one. Simple algebra now shows thak; + p2Xo < p1y1 +
poy2 + max{p1, p2} as required. Ifl < y; + yo < 2, then bothX; and X, can
be assigned and agam, X + p2 X2 < p1y1 + pay2 + max{pi,p2}. For the case
¢ = 3, we know from (3) and O3) that its capacity-constraint must light at
some integral value at that point, and that this capacity-constraint was puesker
until the end. We must hawe= 1 or 2 here. Let us just consider the case- 2;
the case ot = 1 is similar to the case of = 2 with y; + y» < 1. Here again,
simple algebra yields that T < pi,p2,p3 < T and0 < y1,y2,y3 < 1 with
y1+y2+ys3 = ¢ = 2, then for any binary vectarX;, X», X3) of Hamming weight

c=2,p1 X1 4+ p2Xo + p3X3 < p1y1 + p2y2 + p3ys + max{pi,p2,p3}. U

Finally we have the following lemma.

Lemma 4.1.5. Algorithm Sched-Cagpan be derandomized to create a schedule of
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cost at most’.

Proof. Let Xffj denote the value aof; ; at iterationh. We know for alls, j, h,
E[X[fj] = x7 ;, wherez? ; is solution ofLP-Cap. Therefore, at the end, we have
that the total expected cost incurred(s The procedure can be derandomized

directly by the method of conditional expectation, giving laapproximation to

the cost. O

Lemmag 4.1)4 arid 4.1.5 yield Theorem 4.1.2.

Proof of Theorem[4.1.1. We now consider the full proof of Theordm 4.11.1. The

following integer program gives an optimal matching:

Z Ci,j 45 <C (COSD
2¥)

Zazm >r;Vj (Assign)
»J

Zp@jxi,j = f; Vi (Load)
J

Z Tij < b; Vi (Capacit))
J

T4 S {0, 1} VZ,]

Tij; = 0 if Dij > l;

The proof of Theorerh 4.11.1 is quite similar to Theorem 4.\M% elaborate

upon the necessary modifications. First, while remomdg. € {0,1}, we up-
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date the assignment requirements of the jobs as well as tfaita constraints
of the machines accordingly. The dropping rulBd) and O3) remain the same.
However, D2) is modified as follows:

(Modified D2) For eachi € M,, we drop its load constraint and rewrite its
capacity constraint. Lef;, j» be the two jobs assigned to machingith fractional
assignment; ;, andz; j,. Then ifz; ;, + z;;, < 1, set the capacity constraint
toz; ;5 + x4 < 1. Elseifl < x;; + ;5 < 2, set the capacity constraint to
Ty + Tij, > 1.

Lemma4.1.B, Lemmia_4.1.5 remain unchanged. We have a new a&hin®

corresponding to Lemnia 4.1.4, which we prove next.

Lemma 4.1.6. Let X denote the final rounded vector. Th&nsatisfies with prob-
ability one: (i) all capacity-constraints on the machinese aatisfied, and (ii)
for all i, >_; 27 ;pij — M&ey: ar c0)Pig < Djes XigPig < D527 Pij +

ma)S’GJ: m;jE(O,l)piJ'

Proof. Part (i) is similar to Part (i) of Lemma 4.1.5 and follows frahe facts that
the capacity constraints are never violated and machinég;icannot have tight
capacity constraints.

Let us now prove (ii). Note that inModified D2) the upper bound on ca-
pacity constraint is maintained as iDZ%). Hence from Lemma 4.1.4, we get
Yjes XijPig < 225 pij + MaXe . ar e(0,1)Piyj- SO We only need to show

the lower bound on the load. Fix a machihelf at all its load-constraint was
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dropped, it must be wheinended up im\/; U M> U M3. In the case ofi/;, at most
one job fractionally assigned to it may not be assigned ifitta rounded vector.
So suppose € M, for somel € {2,3} wheni has its load constraint dropped. Let
us first consider the case 6 2. Let the two jobs fractionally assigneddat that
point have processing timég;, p2) and fractional assignmentg;, y2) oni, where

0 <p1,pe <T,andl < y1,y2 < 1. If y1+y2 < 1, then at the end, none of the jobs
may get assigned. Simple algebra now shows@hatp;y; + pay2 — max{p1, p2}

as required. Ifl. < y; + y2 < 2, then at least one of the two job§; and X, get
assigned te and againp; X + p2 X2 > p1y1 + pay2 — max{p1, p2}. For the case

¢ = 3, we know from (3) and O3) thati’s capacity-constraint must beght at
some integral value at that point, and that this capacity-constraint was pueser
until the end. We must hawe= 1 or 2 in this case. Let us just consider the case
¢ = 2; the case of: = 1 is similar to the case of = 2 with y; + y» < 1. Here
again, simple algebra yields thathif< py, p2, p3s < T and0 < y1, y2,y3 < 1 with

y1 +y2+ys3 = ¢ = 2, then for any binary vectarX;, X», X3) of Hamming weight

c=2,p1 X1 4+ p2Xao + p3 X3 > p1y1 + pay2 + p3ys — max{pi,p2,p3}. U

Lemmag 4.1)6 arid 4.1.5 yield Theorem 4.1.1.

This completes the description of this section. We have shiibvough our tech-
nique of rounding how a random subgraph of a bipartite grajth ard degree-
constraints can be obtained that near-optimally satisfidlaction of linear con-

straints and respects a given cost-budget. As a specialofdhis, we obtained
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a 2 approximation algorithm for the generalized assignmeobl@m with hard

capacity-constraints on the machines.

4.2 Scheduling with Outliers

In this section, we consider GAP with outliers and with a hardfit constraint
[73]. Formally, the problem is as follows. Let ; be the indicator variable for
job j to be scheduled on machire Givenm machines and jobs, where jobj
requires processing time @f ; in machine:, incurs a cost ot; ; if assigned to

¢ and provides a profit of; if scheduled, the goal is to minimize the makespan,
T = max >_; v ;pij, subject to the constraint that the total cdst ; z; jc; ; is

at mostC and total profity . 7; >, z; ; is at leastil. The problem is motivated
from improving the scheduling performance by dropping a teliers that may
be costly to schedule.

Our main contribution here is the following:

Theorem 4.2.1. For any constant > 0, there is an efficient algorithn$ched-
Outlier that returns a schedule of profit at leaHt, cost at mosC(1 + ¢) and
makespan at mo$ + ¢)7T', whereT is the optimal makespan among all schedules

that simultaneously have coStand profitII.

This is an improvement over the work of Gupta, Krishnaswakhymar and
Segev [[73], where they constructed a schedule with make3pamprofit IT and
costC(1 + ¢). In addition, our approach also accommoddtEsess a basic
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requirement in dealing with outliers, especially when feats have to be run re-
peatedly. We formulate fairness via stochastic programssipecify for each job,
a lower-bound-; on the probability that it gets scheduled. We adapt our autro

to honor such requirements:

Theorem 4.2.2. There is an efficient randomized algorithm that returns aesch
ule of profit at leastll, expected cost at mo3t' and makespan at mo8f" and
guarantees that for each jop it is scheduled with probability;, whereT" is the
optimal expected makespan with expected €oshd expected profiil. If the fair-
ness guarantee oany onejob can be relaxed, then for every fixed> 0, there is
an efficient algorithm to construct a schedule that has patfieastll, expected

cost at most’(1 + 1/¢) and makespan at mo& + ¢)7".

We start with Theorerh 4.2.1 and describe the algori®ched-Outlier first.

Next, we prove Theorefn 4.2.2.

Algorithm Sched-Outlier. The algorithm starts by guessing the optimal
makespari’ by binary search as in [96]. Hf; ; > T, thenx; ; is set to0. Next pick
any constant > 0. The running time of the algorithm dependssoand iSO(ns%),
wherec is some constant. We guess all assignméitg) wherec; ; > ¢'C,
with ¢/ = 2. Any valid schedule can have at mdst’ pairs with assignment
costs higher tham’C; sincee’ is a constant, this guessing can be done in time
O((mn)s_l') = O(n?lf). Forall (i, j) with ¢; ; > €'C, letG; ; € {0,1} be a correct
guessed assignment. By enumeration, we know the opgimjalFor any(4, j) with
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¢i; > Cande; ¢ 9 ;, we setr; ; = 0. Similarly, if ¢; ; > ¢'C and¢; ; € G j,
then we set; ; = 1.
The solution to the following integer linear program thewegi an optimal so-

lution:

ZCLJ'.%Z‘,]' S C (COSD
4,3

> wi =5,V (Assign)

Zpi,jxi,j <T ,V’i (Load)
J

Zﬂ'jyj > 11 (Proflt)
J

zi; €{0,1},y; € {0,1} ,Vi,j
ij =0 if pij >T

Tij = 91’,]’ if Cij > g'C

We relax the constraint2; ; € {0,1} andy; € {0,1}" to “x; ; € [0,1] and
y; € [0,1]" to obtain the LP relaxation.P-Out. We solve the LP to obtain an
optimal LP solutionz*, ¢*; we next show howsched-Outlierroundsz*, y* to ob-
tain the claimed approximation. The rounding proceedsadgest as in Sectidn 4.1,
and as before, each variable maintains its initial assigrrmezr* on expectation

over the course of rounding. Hence, there is no need to dékplonsider the cost
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constraint. The cost constraint is dropped, yet the costamtained on expecta-
tion. The entire process can be derandomized efficientlgrdfbre, as long as we
apply our general recipe of roundinBandMove, the cost is maintained exactly.
Also note that if we maintain all the assign-constraintgntthe profit-constraint
can be dropped and is not violated. Therefore, we consigepibfit constraint

if and only if there are one or more assign constraints tretdaopped. Also, we
only need to maintain the total profit obtained from the jotrsvihich the assign

constraints have been dropped. We now proceed to descelreuhding on each
stage formally.

Note thatz; ; € [0, 1] denotes the fraction of jopassigned to machingn z*.
Initially, >, z;; = y;. Initialize X = z*. The algorithm is composed of several
iterations; the random values at the end of iterafioof the overall algorithm are
denoted byX". (Sincey; is given by the equality ", z; ;, X" is effectively the
set of variables.) Each iteratidn(except perhaps the last one) conducts a random-
ized update usinjRandMove on a suitable polytope constructed fronswubsetof
the constraints oEP-Out. Therefore, for allh except perhaps the last, we have
E |x0;| = 27, A variable X" is said to befoatingif it lies in (0, 1), and a job
is floating if it is not yet finally assigned. The subgraph @f, M, E) composed
of the floating edgesi, j), naturally suggests the following notation at any point
of time: machines of “degreet in an iteration are those with exactkyfloating

jobs assigned fractionally, and jobs of “degréedre those assigned fractionally to

76



exactlyk machines in iteratiorh. Note that since we allow; < 1, there can exist
singleton (i.e., degree-1) jobs which are floating.

Suppose we are at the beginning of some iteratior- 1) of the overall al-
gorithm; so we are currently looking at the valuﬁ’éfj. We will maintain the

following invariants:

Invariants across iterations

(11') Once avariable:; ; gets assigned toor 1, it is never changed,
(12’) If jis not a singleton, thel, x; ; remains at its initial value;
(13") The constraint (Profit) always holds;

(14) Once a constraint is dropped, it is never reinstated.

Algorithm Sched-Outlier starts by initializing withLP-Out. Iteration(h + 1)
consists of four major steps.
1. We remove aIIXZ-’fj € {0,1} as in Section 4]1 , i.e., we projeat” to those co-
ordinates(i, j) for which X{fj € (0,1), to obtain the current vectdf of “floating”
variables; letS = (A,Z = wy,) denote the current linear system that represents

LP-Out. (A is some matrix andy, is a vector.)

2. LetZ € RV for somev; note thatZ < (0,1)”. Let M and Nj, denote the
set of degred= machines and degréejobs respectively, withn, = |M}| and

ng = |Ng|. We will now drop/replace some of the constraintsin
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(D1") for eachi € My, we drop its load constraint frosy

(D2') for eachi € Ny, we drop its assignment constraint fréywe add one profit

constraint (if already exists, we replace the old one) ,

Z ZZ‘J'T(']' = Z Xiffjﬂj-

JEN JEN
(Note that at this point, the valuééi’jj are some known values.)

Thus, the assignment constraints of the singleton jobseataged byoneprofit
constraint. As we noted earlier, it is not required to mamthe contribution to
profit by the non-singleton jobs for which the assignmenst@ints are maintained
explicitly.

3. If Z is a vertex of$ then define the fractional assignment of a mactiitgy
hi = 3 ;c;Zi;. Define a jobj to be tight if .., Z;; = 1. Drop all the
assignment constraints of the non-tight jobs (denotedxpyand maintain a single

profit constraint,

Z Z@jﬂ'j = Z Xi}fjﬂ-j'

JEN1UJ N JEN1IUJ N
While there exists a machinewhose degreé satisfiesh;; > (d—1—¢), drop the

load constraint on machiné

4. LetP denote the polytope defined by this reduced system of camistradf 7 is
not a vertex ofP, invokeRandMove(Z, P). Else we proceed differently depending
on the configuration of machines and jobs in the system. lerafrthe following
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configurations is achieved (which we will show never hapmdresvertex), then we

report error and exit. There are five possible configurations

e Config-1: Machine and job nodes form disjoint cycles

Orient the edges in the bipartite graph to assign the remgijobs in a way, so
that each machine gets at most one extra job. Note that sughemtation is easy

in disjoint cycles since they have even length.

e Config-2 Machine and job nodes form disjoint cycles and has exactéy on

path with both end-points being job nodes. Thus there arestagieton jobs

Discard one among the two singleton jobs that has less pAafitin orient the
edges in the remaining bipartite graph to assign the remgijuibs in a way, so
that each machine gets at most one extra job. Such an oreniatasy in disjoint

cycles (they have even length) and paths with equal numbeeohines and nodes.

e Config-3: There is exactly one job of degr8eand one singleton job. Rest of

the jobs have degrekand all the machines have degr2e-

Assign the singleton job to the degreemnachine it is fractionally attached to
and remove the other edge (but not the job) associated watmtachine. We are
left with disjoint cycles. Orient the edges in the cycles lod bipartite graph to

assign the remaining jobs in a way, so that each machine getsst one extra job.
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Config-1 Config-2 Config-3 |
/.\
JOB NODE
( > { T > @ MACHINE NODE
| Config-4 Config-5 ‘

Figure 4.1: Different configurations of machine-job bipartite graphstdp 4 of
Sched-Outlier

e Config-4: There is only one degreemachine with one singleton job. Rest of
the machines have exactly two non-singleton jobs attaahédractionally.

Each non-singleton job is attached fractionally to exattlp machines

Assign the singleton job and the cheaper (less processirg) tf the two non-
singleton jobs to the degrel=machines. Rest of the jobs and the machines form
disjoints cycles in the machine-job bipartite graph or fatisjoint paths each with
equal number of machines and jobs in it. Orient the edgesdmeémaining bipartite
graph in a way such that each machine gets one among the tedrgattionally

attached to it.

e Config-5: Machine and job nodes form disjoint cycles. There is oneaextr

edge with one singleton job and one singleton machine

Assign the singleton job to the singleton machine. Orieattiges in the cycles

of the bipartite graph to assign the remaining jobs in a wayhat each machine
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gets at most one extra job.

The different configurations are shown pictorially in Figur.1.

Analysis. Analysis follows the following structure. First, we provéey lemma,
Lemma4.2.B, which shows that i is a vertex and the algorithm reaches step
then one of the five configurations as described above hagehslso the number
of machines is less thab. Lemmal4.2.B is followed by Lemnia 4.2.4. Lemma
[4.2.4 establishes that the dropping and the modificatiométraints in step 2 and
3, along with the assignment of jobs in step 4 do not violagelttad constraint
by more than a factor of2 + ) and maintain the profit constraint. Lemma 412.5
bounds the cost.

Recall that in the bipartite grapl = (J, M, E), we have in iteratiorfh + 1)
that (i, j) € E iff X{fj € (0,1). Any job or machine having degréeis thus not

part of G. We prove Lemmpa4.2.3 next.

Lemma 4.2.3. Letm denote the number of machine-nodes&inlf m > % thenz

is not a vertex of the polytope at the beginning of step 4.

Proof. Let us consider the different possible configuration&pivhenZ becomes
a vertex of the polytopé& at the beginning of step. There are several cases to
consider depending on the number of singleton floating jolds in that iteration.

Case 1: There is no singleton job: We hawe = 0. Then, the number of
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constraints ir8 is

EQ:ka—Fan.

E>2 E>2
Remember, since there is no singleton job, we do not conslidgurofit constraint
explicitly. Also the number of floating variablesds= ), -, kn;. Alternatively,

v = Ek21 kmg.. Therefore,

7nl
mk —l—nk —_.

le

>

Z being a vertex of?, v < EQ. Thus, we must havey,, m, = 0, Vk > 3 and
my = 0. Hence, every floating machine has exactly two floating jassgaed to it
and every floating job is assigned exactly to two floating nraesh This is handled
by Config-1.

Case 2: There are at least 3 singleton jobs: We have 3. Then the number
of linear constraints i€£Q) = > ;o mk + > ;5o 2k + 1. The last 1” comes from
considering one profit constraint for the singleton jobs.e Tlumber of floating

variablesy again by the averaging argument as above is

le
l\Dl?v
r—-

n k
> +Z§(mk +ng) +

m
v = —
2 2
k>2

> mk —I—nk —.

B

Hence, the system is always underdetermined/acdnnot be a vertex df.

Case 3: There are exactly 2 singleton jobs: We have- 2. Then the number
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of linear constraints is

EQ:ka—Fan—Fl.

k>2 k>2

Again the last 1” comes from considering one profit constraint for the sitayle

jobs. The number of floating variabledyy the averaging argument is

_n1 k mi k
U—7+kz>2§(mk+nk)+721+kz>2§(mk+nk)+

my
5

Thus, we must havey, = 0,m; = 0,Vk > 3 andm; = 0. Hence every floating
machine has exactly two floating jobs assigned to it and ealzclexcept two is
assigned to exactly two machines fractionally This is haddiy Config-2.

Case 4: There is exactly 1 singleton job: We haye= 1. Then the number of

linear constraints is

EQ:ka+an+1-

k>2 k>2

The number of floating variables is,

>t gt T g4 +Zk( +ny,)
v = n =N —_— m —m —(m nk).
=9 2 23 9 2 9 3 k>42 k k

If Z is a vertex ofP, thenv < EQ. There are only three possible configurations
that might arise in this case.

(i) Only one job of degre@ and one job of degree 1. All the other jobs have
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degree2 and all the machines have degge€This is handled by Config-3.

(i) Only one machine of degre®and one job of degrek The rest of the jobs
and machines have degrgeThis is handled by Config-4.

(iif) Only one machine of degreeand one job of degrek The rest of the jobs
and machines have degrgeThis is handled by Config-5.

Each configuration can have an arbitrary number of vertgwidiscycles. In
all these configurations, it is easy to check thatfdo be a vertexy = EQ. Thus
if just one constraint can be dropped, then the system becanderdetermined.

Since we have reached a vertex at the beginning of step 3,ape dr

¢ All the assignment constraints for the non-tight jobs.

e Any machinei’ that has degreé (whered > 0 is a positive integer) and the
total fractional assignment from all the jobs fractionadlysigned to it is at

leastd — 1 — ¢ loses its load-constraint.

e If the profit constraint is not already considered and sormetight job loses

its assignment constraint; we add the profit constraint.

Now we havev = E(Q at the beginning of step and at the beginning of step
4 as well. Hence it implies eithere have not been able to drop any constraint
or we have dropped one assignment constraint for a non-tighajud have added
one profit constraint We will now show that whemn > % we always drop more

constraints than we add. This will give a contradiction.
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In any configuration, if there is a cycle with all tight jobfieh there always
exists a machine with total fractional assignmeand hence its load constraint can
always be dropped to make the system underdetermined. Ssswma there is no
such cycle in any configurations. Now suppose the algorithachies Config-1. If
there are two non-tight jobs, then we drop two assignmerstcaints and only add
one profit constraint. Thus the system becomes underdetedmi herefore, there
can be at most one non-tight job and only one cycle Sayith that non-tight
job. LetC havemn machines and thus: jobs. Thereforep_, ;.o z;; > m — 1.
Thus there exists a machine, such that the total fractissdjiament of jobs on that
machine is> mT‘l =1—-1/m.Ifm> % then there exists a machine with degree
2 and with total fractional assignmehnt (1 — ¢). Thus the load-constraint on that
machine gets dropped making the system underdetermined.

If the algorithm reaches Config-2, then all the non-singlgtls must be tight
for Z to be a vertex. If there are machines, then the number of non-singleton jobs
ism—1. Letthe two singleton jobs bg andjs. Let the two machines to which jobs
J1 andjq are fractionally attached with big andi, respectively. Ifx;, ;, +x;, j, >
1, then the total fractional assignment from all the jobs mgkstem isn. Thus the
machine with maximum fractional assignment must have aigrasent at least 1.
Since the same machine has dedteis load constraint gets dropped. Otherwise,
the total fractional assignment from all the jobs in the eysis at leasin — 1.

Thus there exists a machine, such that the total fractiossiament of jobs on
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that machine is> =1 =1 — 1/m. If m > 1, then there exists a machine with
degree2 and with total fractional assignment (1 — ). Thus the load- constraint
on that machine gets dropped making the system underdettmi

For Config-3 and 5, i¥7 is a vertex ofP, then all the jobs must be tight and using
essentially the same argument, there exists a machinenaitidnal assignment at
least(1 — ¢) if the algorithm reaches Config-3 and there exists a machitie w
fractional assignmertt, if the algorithm reaches Config-5.

If the algorithm reaches Config-4, then again all the jobstrbadight. If the
degree3 machine has fractional assignment at least ¢, then its load constraint
can be dropped to make the system underdetermined. Otkemwéstotal assign-
ment to the degre2-machines from all the jobs in the cycle is at least- 2 + ¢.

Therefore, there exists at least one deg@r@eachine with fractional assignment at

least=2te = ] — 1= > 1 _¢ if m > 1. The load-constraint on that machine

can be dropped making the system underdetermined. Thisletaafhe proof of

Lemmd4.2.B. O
We next show that the final profit is at led$tand the final makespan is at most
2+e)T:

Lemma 4.2.4. Let X denote the final rounded vector. AlgorithBthed-Outlier
returns a schedule, where with probability one, (i) the prisfat leastll, (ii) for all
0 2 jes Xigpig < 2255 jpij + (1 4+ €)M&e g ax e(0,13Pij-

Proof. (i) This essentially follows from the fact that wheneverigsment con-
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straint on any job is dropped, its profit constraint is inelddn the global profit
constraint of the system. At stepexcept for one configuration (Config-2), all
the jobs are always assigned. Thus the profit can not decre#isese configura-
tions. In Config-2, since we are at a vertex the total fracti@ssignment from the
two singleton jobs is less than Otherwise the system remains underdetermined
from Lemmal4.23. Thus a singleton job (say is dropped, only whert? has
two singleton jobsjy, jo fractionally assigned t@; andi, respectively, with total
assignmentr;, ;, + x;, 5, < 1. Since the job with the higher profit is retained,
TjTiy gy + TjoTin jo < max{mj,, Tj, }.

(i) From Lemmd4.2.8 an¢D1’), load constraints are dropped from machines
i € My and might be dropped from machines My U M. Fori € My, only
the remaining joly with X{fj > 0, can get fully assigned to it. Hence foe M;,
its total load is bounded bEj T ipij + MAXie Jar €{0,1}Pij- For any machine
1 € M, U Ms, if their degreed (2 or 3) is such that, its fractional assignment is
at leastd — 1 — ¢, then by simple algebra, it can be shown that for any such ma-
chine, its total load is at mos}_, «7 ;p;; + (1 + s)magejzx;je{m}pi,j at the
end of the algorithm. For the remaining machines consideatwhppens at step
4. Since this is the last iteration, if we can show that thel Idaes not increase by
too much in this last iteration, we are done. Except when Qehis reached, any
remaining maching gets at most one extra job, and thus its total load is bounded

by Zj T ipij + MaXe . 27, €{0,1}Pij- When Config-4 is reached at step 4, if the
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degree3 machine has a fractional assignment at mokbm the two jobs in the
cycle, then for any value ofz, there will exist a degre2-machine whose frac-
tional assignment i, giving a contradiction. Hence, lat, j-, j3 be the three
jobs assigned fractionally to the degr&enachine: and letj; be the singleton
job, andx; j, + x; 4, > 1. If p; 5, < p; 4,, then the degred-machine getgy, js.
Else the degre8-machine getgs, j3s. The degree& machine get® jobs, but its
fractional assignment frony andj, is already at least. Since the job with less
processing time among andjs is assigned tg, its increase in load can be at most

225 T Pig T M&%e; ox cfo,1}Piy- This completes the proof of Lemra 42.4]
Finally we have the following lemma.

Lemma 4.2.5. Algorithm Sched-Outliercan be derandomized to output a schedule

of cost at mos€C'(1 + ¢).

Proof. In all iterationsh, except the last one, for all , E[X[fj] =} ;, Wherex; ;

is solution ofLP-Out. Therefore, before the last iteration, we have that thd tota
expected cost incurred 8. The procedure can be derandomized directly by the
method of conditional expectation, giving arapproximation to cost, just before
the last iteration. Now at the last iteration, since at m;ojﬂbs are assigned and

each assignment requires at mggt = <2C in cost, the total increase in cost is at

mosteC, giving the required approximation. O

Lemmag 4.2}4 anild 4.2.5 yield Theorem 4.2.1.
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We now consider Theoreim 4.2.2 that maintains fairness ialtbeation of jobs
while handling outliers.

Proof of Theorem[4.2.2

Proof. In order to maintain the scheduling probabilities of thesjolse do not guess
the assignment of jobs with high cost (cost higher tHam as in Theorerh 4.21).
For Part (i), we consider the first two steps of Algorittched-Outlier. If P
denote the polytope defined by the reduced system of comstrand the current
vector Z is not a vertex ofP, then we invokeRandMove(Z, P) and proceed. Else
from Lemmd4.237 is a vertex ofP only if one of the configurations, Config-1 to
Config-5, as described in step 4 of Algoritt®ched-Outlieris achieved and: <

%. For any singleton job, we assign the singleton job to theesponding machine
with probability equal to its fractional assignment. Thuse®reni 4.2)2 remains
valid for these singleton jobs. For each non-singletonyabgconsider the machines
to which it is fractionally assigned and allocate it to thectmae which has cheaper
assignment cost for it. If the algorithm reached Config-13 2r 5, each machine
can get at most two extra jobs and the expected cost is madtaiHowever if
the algorithm reached Config-4 and the three jobs associsitbdthe degree-3
machine were all assigned to it, then we remove one noneomgliob from the
degree-3 machine. This job is assigned to the degree-2 neaahithe cycle on
which it had non-zero fractional assignment. This may iasecthe expected cost

by a factor of2 but ensures that each machine gets at ra@stditional jobs.

89



For Part (ii), note that the cost is maintained until the I&station. In the last
iteration, since at moigtjobs are assigned and each assignment requires atimost

cost, we get the desired result. O

This completes the description of this chapter. We have shtwo natural
generalization of GAP: (i) handling hard capacities anghandling outliers. In
both this applications, we have applied the rounding aligorideveloped in Chap-
ter[2. The choice of linear systems to apfgndMove, the constraints to drop
or combine are problem specific. In Chagdtet 10 @hd 8, we wdl aeother two
applications of this rounding method, and we believe thiigmégue will find many

more applications in future.
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CHAPTER 5

Scheduling: Handling Energy Efficiency

Scheduling it turns out, comes down to deciding how to speten

— SIGACT News article[[29].

In this chapter, we consider another generalization of G/l application is
motivated from saving energy while running machines to daleejobs. In a recent
SIGACT News article[[209], Birman et al. describe the impnda of scheduling
to save energy and thus to reduce cost in modern data cehitdh&® same article,
Hamilton, a researcher from Amazon, argues that a ten foldateon in the power
needs of the data centers may be possible if we can explore wwagimply do
less during surge load periods, and to migrate work in tinkéwtpadvantage of
the infrequent peaks and deep valleys of work load in mod&mdcplatforms.
Following his observation, in this chapter, we define a ctite of new problems

referred to as “machine activation” problems. The centaiework we introduce
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considers a collection af: machines (unrelated or related) with each machine
having anactivation costof a;. There is also a collection of jobs that need to
be performed, ang; ; is the processing time of jop on machine:. Standard
scheduling models assume that the set of machines is fixedlanthchines are
available. However, in our setting, we assume that thene &tivation cost budget
of A —we would like toselecta subsefS of the machines to activate with total cost
a(S) < A andfind a schedule for the jobs on the machines i minimizing the

makespan (or any other metric).

5.1 Machine Activation Problems in Data Centers

Large scale data centers have emerged as an extremely po@yldo store and
manage a large volume of data. Most large corporations, asi¢hoogle, HP and
Amazon have dozens of data centers. These data centerpiaedlyycomposed of
thousands of machines, and have extremely high energyresgeints. Data centers
are now being used by companies such as Amazon Web Servicas, large scale
computation tasks for other companies who do not have tloeiress to create their
own data centers. This is in addition to their own computieguirements.

These data centers are designed to be able to handle extrieigielwvork loads
in periods of peak demand. However, since the workload osetliata centers
fluctuates over time, we could selectively shut down parthef $ystem to save

energy when the demand on the system is low. Energy savieghg@ot just from
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putting machines in a sleep state, but also from savingsahrgpcosts.

Hamilton (see the recent SIGACT News article|[29]) argues #nten fold
reduction in the power needs of the data center may be pessilvke can simply
build systems that are optimized with power management &is phimary goal.

Suggested examples (summarizing from the original tegt) ar
1. Explore ways to simply do less during surge load periods.

2. Explore ways to migrate work in time. The work load on maodeloud
platforms is very cyclical, with infrequent peaks and deafleys. Even
valley time is made more expensive by the need to own a povpghsto be
able to handle the peaks, a number of nodes adequate to lzamgéeloads,

a network provisioned for worst case demand.

This leads to the issue @fhich machines can we shut doveince all machines
in a data center are not necessarily identical. Each mashines some data, and is
thus not capable of performing every single job efficientifegs some data is first
migrated to the machine. We will formalize this questionyvanortly.

To quote from the recent article by Birman et al. (SIGACT Ne&9])
“Scheduling mechanisms that assign tasks to machines, brg broadly, play
the role of provisioning the data center as a whole. As we#d below, this aspect
of cloud computing is of growing importance because of itgaaic connection to
power consumption: both to spin disks, and run machinesalsotbecause active
machines produce heat and demand cooling. Schedulingn& twt, comes down
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to deciding how to spend money.”

Data is replicated on storage systems for both load balgraiming peak de-
mand periods, as well as for fault tolerance. Typically miig have to be sched-
uled on the machines in the data center. In many cases prifileriation for a set
of jobs is available in advance, as well as estimates ofeglolvorkloads. Jobs may
be I/0O intensive or CPU intensive, in either case, an estirobits processing time
on each type of machine is available. Jobs that need to aspes#ic data can be
assigned to any one of tleibsebf machines that store the needed data. Our goal
is to firstselecta subset of machines to activate, and then schedule the fothe o
active machines. From this aspect our problems differ fréendard scheduling
problems with multiple machines, where the set of activelmmas is the set of all
machines. Here we have to decidich machines to activat@nd then schedule
all jobs on the active machines.

The scheduling literature is vast, and one can formulateiatyeof interesting
guestions in this model. We initiate this work by focusing attention on per-
haps one of the most widely studied machine scheduling enabkince it matches
the requirements of the application. We have a collectiojpb$ and unrelated
machines, and need to decide which subset of machines tatactiThe jobs can
only be scheduled on active machines. This provides aniadditdimension for
scheduling problems that was not previously considereis Situation also makes

sense when we have a certain set of computational tasks¢eg®0a cost budget,
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and can purchase access to a set of machines.

Given a set/ of n jobs and a sed/ of m machines, our goal is to activate a
subsetS of machines and then map each job to an active machifenmnimizing
the overall makespan. Each machine has an activation cast dfhe activation
cost of the subses is a(S) = > ;.5 a;. We show that if there is a schedule with
activation cost4d and makespatff', then we can find a schedule with activation cost
2(1 + 1)(In 5%+ + 1)A and makespai@2 + )7 for anye > 0 (we call this is
a((2+¢e),2(1 + 1)(In 5% + 1))-approximation). Actually, thénn term in the
activation cost with this general formulation is unavoil@alsince this problem is
at least as hard to approximate as the set cover problem,Hohva (1 — ¢)Inn
approximation algorithm will imply thalv P € DT1M E(n©(loglogn)) [59].

We further consider the case where allocating a job to a meaaeiquires some
cost. For example, a jopwith processing time; ; on machine might require a
assignment cost of; ; = ap; j, wherea is some constant. The total processing
cost is a simple sum of the assignment cost of the indivichla.j The assignment
cost nicely captures the energy consumed to process a jaltivie amachines. We
show that if there exists a schedule with total activatiod assignment cost and
makespar’, then we can find a schedule with total activation and assggrmost

O(Llogn 4+ m)A) and makespafe + )T for anye > 0.

Related work on Speed Scaling A well studied problem is that of processor

speed scaling. In this model, a processor can be run at spdeat can be adjusted
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based on workload. Jobs are arriving in an online manner eatdlinesd; and
processing requirement;. The goal is to complete all jobs between their arrival
time and their deadline in a way that minimizes total energgscmed. Much
work was devoted to the single processor casd [19, 140], amd recently to the
multiprocessor castl[4]. This work is somewhat orthogomalur problem — in the
single processor model, the main issue is at what speed titheuorocessor when
there is a set of waiting jobs in the queue —in the absence of jobs, its better to
run the processor as slowly as possible, while still conmmiedll the jobs by their
deadlines. If suddenly a lot of new jobs arrive, then in tgyio complete partially
processed jobs and the new jobs, we may have to run at a sagnifidigher speed
(using a lot of power) than necessary had we finished thealirsiéit of jobs earlier.
The paper by Albers et al.[[4] deals with multiple processord unit length
jobs (each job has a release time and deadline). The mais faofctihe paper is
to show how to exploit techniques for the single processse ¢a attack the multi
processor case, and these are shown to be effective inrcsittztions. In contrast,
our problem is an offline problem where we have a large cadleaif jobs, and we
have to decide which machines can go into a sleep state aruth widchines will

remain active.
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5.2 LP Rounding for Machine Activation on Unrelated

Machines

In this section, we first provide a simple rounding schemd it approximation
ratio of (O(log n), O(log n)). Then we improve itto &+, 2(141)(In 5%++1))-
approximation by utilizing the rounding scheme develope@haptef 2.

We can formulate the scheduling activation problem as agertprogram. We
define a variablgy; for each machine, which is 1 if the machine is open andl
if it is closed. For every machine-job pair, we have a vasahl;, which is 1,
if job j is assigned to machineand is0O, otherwise. In the corresponding linear
programming relaxation, we relax thgandz; ; variables to be ino0, 1]. The first
set of constraints require that each job is assigned to samehime. The second set
of constraints restrict the jobs to be assigned to only actiachines, and the third
set of constraints limit the workload on a machine. We remthatl > x; ;,y; > 0

and ifp; ; > T thenz; ; = 0. The formulation is as shown below:

m
min Z a;y; (5.2)
i=1

s.t. me =1Vjeld
€M
wmgyi Yie M,jelJ

sz',jl"z’,j < Ty; Vi
J
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Suppose an integral solution with activation cdsatnd makespait’ exist. The
LP relaxation will have cost at most with the correct choice df'. All the bounds
we show are with respect to these terms. In Section 2.2 we #mawnless we

relax the makespan constraint, there is a large integmgdip/for this formulation.

Simple Rounding We first start with a simple rounding scheme. Let us denote

the optimum LP solution by, x. The rounding consists of the following four steps:

1. Round eacly; to 1, with probability 7; and0 with probability 1 — ;. If y; is

rounded tol, open machine.

2. For each open machine consider the set of jobg, that have fractional

assignment> 0 on machine:. For each such job, seX;; = :”gf If

K3

Zj pi;jXi; < T, (itis always< T) then uniformly increaseX; ;. Stop
increasing anyX; ; that reached. Stop the process, when either the total
fractional makespan i¥ or all X; ;'s arel. If X;; = 1, assign jobj to
machinei. If machine: has no job fractionally assigned to it, drop machine
¢ from further consideration. For each jglthat has fractional assignment

X, ;, assign it to machinéwith probability X ;.

3. Discard all assigned jobs. If there are some unassigies] jepeat the pro-

cedure.

4. If some job is assigned to multiple machines, choose aryobthem arbi-
trarily.
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In the above rounding scheme, we ugis as probabilities for opening ma-
chines and for each opened machine, we assign jobs follathimgrobability dis-
tribution given byX; ;’s. Itis obvious that the expected activation cost of maein
in each iteration is exactly the cost of the fractional doluigiven by the LP. The
following lemmas bound the number of iterations and the fioatl on each ma-

chine.

Lemma 5.2.1. The number of iterations required by the rounding algoritisn

O(logn).

Proof. Consider a job  j. In a single iteration,
Pr[job j is not assigned to maching < (1 — @) + 7i(1 — Z4) = 1 — 7, ;.
Hence,

Pr[job j is not assigned in an iteratign

<[Jo-m)<a-)rs

|

m

The second inequality holds sing€; z;; = 1 and the quantity is maximized when
all z;;'s are equal. Then, it is easy to see the probability thatjjebnot assigned
after2Inn iterations is at mosrt}z. Therefore, by union bound, with probability at

least]l — % all jobs can be assigned n n iterations. O
Lemma 5.2.2. The load on any machine 3(7" log n) with high probability.

Proof. Consider any iteratioh. Denote the value ok; ; at iterationh, by Xi’fj.

99



For each open machinieand each joly, define a random variable

”;}f , If job 7 is assigned to machirnie

Zijh = (5.2)

0, otherwise

Clearly,0 < Z; j, < 1. Define,z; = >, , Z; ;- Clearly,

Son > Pig XD
B[z = S

o< Z 1 < ©(logn)

h
Denote byM; the load on machiné. Therefore,M; = TZ;, thusE[M;] <
©(T'logn). Now by the standard Chernoff-Hoeffding bound[80,/120], get

the result. O

Integrality Gap of the Natural LP for Strict Makespan Let there bem jobs
andm machines. Call these machinds, A, .., A,,_1, and B. Processing time
for all jobs on machinesgl;, A, ..., A,,—1 isT and onB it is % Activation costs
of opening machinegl, A,, .., A,,,—1 is 1, and forB it is very high compared to
m, sayR(R >> m). An integral optimum solution has to open machiBevith
total cost at leask.

Now consider a fractional solution, where all machings As, .., A,,_1 are
fully open, but maching3 is open only to the extent df/m. All jobs are assigned
to the extent ofl /m on each machinel;, As, .., A,,—1. So the total processing

time on any maching; is m% =T.The remaining,% part of each job is assigned
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to B. So total processing time al is —=— - m = L. Itis easy to see the optimal

fractional cost is at most + % (by settingyp = %). Therefore, the integrality

gap is at leaste m.

Main Rounding Algorithm  The algorithm begins by solving LP 5.1. As be-
fore x, y denote the optimal fractional solution of the LP. Lidtdenote the set of
machines and/ denote the set of jobs. Léd/| = m and|J| = n. We define
a bipartite graptG = (M U J, E) as follows: M U J are the vertices ofs and

e = (i,j) € E, if ;; > 0. The weight on edgéi, j) is z; ; and the weight on
machine nodé is ;. Rounding consists of several iterations. Initiali¥e= x and

Y = y. The algorithm iteratively modifieX andY’, such that at the end and
Y become integral. Random variables at the end of iterdtiare denoted by({fj
andYy}.

The two main steps of rounding are as follow:

1. Transforming the Solution: It consists of creating two graphs; and G,
from GG, whereG, has an almost forest structure andin the weight of an
edge and the weight of the incident machine node is very ¢keefigure in
the next page). In this step, only; ;'s are modified, whil&’;’s remain fixed

aty;'s.

2. Exploiting the properties aff; and G, androunding onGG; and G, sepa-

rately.
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Decomposition of machine-job bipartite graph into G; and G,
We now describe each of these steps in detail.

1. Transforming the Solution

We decomposé; into two graphsz; andG4 through several rounds. Initially,
V(Gy) = V(G) = MUJ, E(Gy) = E(G), V(G2) = M andE(G2) = 0. In
each round, we either move one job node and/or one edgedota G- or delete
an edge fronG;. Thus we always make progress. An edge move@toetains its
weight through the rest of the iterations, while the weigiftthe edges irt7; keep
on changing.

We maintain the following invariants,
(1) V(i,j) € E(G1), andvh, X; € (0,4:/7), pij > 0.

(12) Vi e M andvh, ) ; X["pi;j < Ty;.
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(13) V(i,j) € E(G2) andvh, 1> X[ > yi /7.
(14) Once a variable is rounded foor 1, it is never changed.

Consider round one. Remove any machine node thatlas- 0 from both
G1 andG,. Activate any machine that hag' = 1. Similarly, discard any edge
(i,5) with X!, = 0, and if X} ; = 1, assign jobj to machinei and removej. If
X}d > y;/v, then remove the edgde, j) from G, and add the joly (if not added
yet) and the edgéi, j) with weightz; ;(> ¥;/7) to G>. Note that, if for some
(i,4) € G, pij = 0, then we can simply take; ; = y; and move the edge 1G>.
Thus we can always assume for every efige) € G, p; ; > 0. Itis easy to see
that, after iteration one, all the invariant {|4) are maintained.

Let us consider iteratiorih + 1) and letJ’, M’ denote the set of jobs and
machine nodes i/, with degree at least at the beginning of the iteration. Note
thatY® = Y;! = ¢, for all h. Let|M’| = m’/ and|J'| = n'. Asin iteration one, any
edge withX["; = 0in G, is discarded and any edge wilty’; > 7;/~ is moved
to G, (if node j does not belong t6», add it toG, also). We denote by, ; the
weight of an edgéi, j) € G>. Any edge and its weight moved @&, will not be
changed further. Since;; is fixed when(i, j) is inserted toG,, we can treated it
as a constant thereafter. Consider the linear syster= b) as in Figureé 5.J1.

We call the fractional solutiox canonical if z; ; € (0,y;/~), for all (4, j).
Clearly {X{fj}, for (i,5) € E(G,) is a canonical feasible solution for the linear

system in Figuré 5]11. We now appRandMove to the linear system defined by
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vied, > wy o= 1— ) wiy (5.3)

ieM’, ieM’,
(4.5)EE(G1) (4.5)EE(G2)
Vie M', Z PijTij = Z pij X[ — Z pijwij (5.4)
jet’, jedJ’ jes’,
(4.5)EE(G1) (4.5)EE(G2)

Figure 5.1: Linear System at the beginning of iteration+ 1)

A. To recall, if a linear system is under-determined, we céinieftly find a non-
zero vectorr, with Ar = 0. Sincex is canonical, we can also efficiently identify
strictly positive realsqe and 8, such that for all(4, j), z; ; + ar; j andx; j — Bry ;

lie in [0,y;/~] and there exists at least ofi ), such that one of the two entries,
xi; + ar;j andx; j — B, is in {0,y;/v}. Therefore, we can apply the basic
randomized rounding steRandMove(A, x, b) : with probabilitya‘%ﬁ, return the

vectorx+ ar and with complementary probability %’ﬁ_ﬁ return the vectok — (r.
If X =RandMove(A, x, b), then the returned solution has the following prop-
erties:

PrlAX =b] =1 (5.5)
E [Xi,j] = wi,j (56)

If the linear system in Figuré_3.1 is under-determined, the® apply
RandMove to obtain the updated vectdt"*!. If for some (i, j), X' = 0,
then we remove that edge (variable) fram. If Xz.h;?l = y;/~, then we remove

the edge frontz; and add it with weighy; /v to G. Thus the invariantdZ, I3 and
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14) are maintained. Since the weight of any edgé&-inis never changed and load

constraints on all machine nodes belong to the linear systenget from|[[92],

Lemma 5.2.3. For all 4,5, h,u, E Xi’f;.rl VXffj =uwu| = wu. In particular,
E [XZ"]“} = Z;;. Also for each machiné and iterationh, >, X{fjpi,j =

>_j Ti,jpi,j With probability 1.

Thus the invariantl®) is maintained as well.

If the linear system (Figurie 3.1) becomes determined, thisnstep ends. Let
M’ and N’ be the machine and job nodes respectivelgirat that point. IfiM’| =
m’ and|N’| = n’, then the number of edges@ is |E(G1)| < m’+n'. Otherwise,
the linear system (Figufe %.1) remains underdeterminethclnin each connected
component ofr, the number of edges is at most the number of vertices. Tdrexef

each component a@f, can contain at most one cycle.

2. Rounding onG and Go
The previous step ensures, th@lt is almost a forest with each component
containing at most one cycle and @y, X; ; > v;/v, for all (i,j) € E(G2). We

remove any isolated nodes fra®y andG-, and round them separately.

Further Relaxing the Solution Let us denote the job and the machine nodes
in Gy (G2) by J(Gy) (or J(G2)) and M (G4) (or M(G>)) respectively. Con-
sider a job nodej € J(G2). If 32, iyep(ay) Xij < 1/6 (we choose’ later),

we simply remove all the edges, j) from G2 and the following must hold:
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D iGeBG) Xijy = 1 —1/6. Otherwise, ity ; e p(q,) Xiyj = 1/0, we re-
move all edgesi, j) € E(G1) from G;. Therefore at the end of this modification,
a job node can belong to eithdfG) or J(G2), but not both. Ifj € J(G;), we
have) .., Xij > 1—1/6. Else, ifj € J(G2), > ieps Xij > 1/9.

For the makespan analysis it will be easier to partition thges incident on a
machine node into two parts — the job nodes incident to it@y and inG,. The

fractional processing time due to jobs.jiiG1) (or J(G2)) will be denoted byl ;

©r T75:), e, T'Yi = 3 je y(ay) Pii Xig OV T"Hi = 3 e y(ay) Pij Xi):

Rounding on Ga:  In Gs, for any machine node, recall }_, 5,y Xijpi; =
T"y;. Since we have for all € M(Gs2),j € J(G2), Xi; > vi/~, we have
ZjEJ(G2) pi.j < T"~. Therefore, if we decide to open a machine nodeM (G»),
then we can assign all the nodgg J(G2), that have an edgg, j) € E(G2), by
paying at mosf™’~ in the makespan.

Hence, we only concentrate on opening a machin@4nand then if the ma-
chine is opened, we assign it all the jobs incident to iGin For each machine
i € M(Gs), we defineY; = min{1,y;0}. Since, for all job nodeg € J(G2),
we Know e, Xi; = 1/0, after scaling we have for alj € J(G»),
>_(i.j)eE(Gy) Yi = 1. Therefore, this exactly forms a fractional set-coveranse,
which can be rounded using the randomized rounding metheelafeed in [128]
to get activation cost within a factor é{log 537 + 1). The instance i, thus

nicely captures the hard part of the problem, which comes fitee hardness of
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approximating set cover. Thus we have the following lemma.

Lemma 5.2.4.Considering only the job nodes @, the final load on any machine
i € M(G2) is at mostT”~ and the total activation cost is at mostlog 557 +
1)OPT, whereT” is the fractional load on machinee M (G2) beforerounding

on G9 andOPT is the optimum activation cost.

RoundingonGy:  For rounding inG1, we root each component 6f; at the only
cycle it has (in the case that the component is a tree, we gostitrarbitrarily at
any node) and traverse bottom up. We consider all the jobsexeept for those
in the cycle. If there is a job nodg that is a child of a machine nodethen if
Xi,; < 1/n (nto be fixed later), we remove the ed@e;) from G;. Since initially
J € J(G1), > ienr Xij > 11/, even after these edges are removed, we have for
J € J(G1), X iem(ay) Xij = 1-1/6—1/n. However ifX; ; > 1/n, simply open
machinei, if it is not already open and add jgbto machinei. Initially g; > 1/7,
sincey; > X; ;. The initial contribution to cost by machinevas > %ai. Now it
becomesi;. If 3°; %pm =T’, with X; ; > 1/, now it can become at mosf”.

After the above modification, we have one cycle and the yettadsigned jobs
in J(G,) outside the cycle form disjoint stars, with the job nodesalrtcenters.

In the cycle, we assign a job to a machine, if its fraction#l@as at Ieastl_T%.
Consider any jolj in the cycle attached to two machines andms with fractional
value X ; + Xo; > 1 — % Therefore, the job is assigned at least to an extent of

1 _ _ .
! 5> to one of the two machines.; andma. If a machinei gets at most one job
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from the cycle, then its makespan is at Mm%} + max; ; p; ;. Otherwise, if it gets

two jobs, then its make span is at most

1-1
n (T/ - % (pin +Pi,2)> + pig + Dpi2,

wherep; 1, p; 2 is the processing time of the two jobs in the cycle that gaassi
to machinei. Since(1 — 5) > 1, the above expression is at ma$t” — . (pi1 +
pi2)) +pia1+pi2 < nT'+max; ; p; ;. The increase in cost is at mo(sf—%) factor
of the total optimal cost of the machines in that cycle.

Consider each staf; with job nodej at its center. Let,, iz, .,i,, be all the
machine nodes ii%;, then we haveZij:1 Xi,j > 1—-1/6 —1/n. Therefore
Zijzl Ui, > 1—1/6 —1/n. If there is already some opened machieassign
j to 4; by increasing the makespan at most by an addiliveOtherwise, open
machinei; with the cheapest;,. Since the total contribution of these machines to
the cost iszf;"zl Ui, iy, > Zijzl gi,ai, > (1 —1/6 —1/n)a;,, we are within a
factor m of the total cost contributed from; .

Hence, we have the following lemma,

Lemma 5.2.5. Considering only the job nodes #,, the final load on any machine

i € M(Gh) is at mostI'n + max; ; p; ; and the total activation cost is at most

max <(121), %, (1—1/%—1/77)) OPT, whereT" is the fractional load on machine
-3

i € M(G1) beforerounding onG; and O PT is the optimum activation cost.
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Now combining, Lemm&5.2/.4 afhd 5.P.5, and by optimizing thleies ofs, n

and-~, we get the following theorem.

Theorem 5.2.6. A schedule can be constructed efficiently with machine atabiv
cost2(1 + %)(ln opr + 1)OPT and makespal(R + )T, whereT is the optimum

makespan possible for any schedule with activation €dJst".

Proof. From Lemm&5.2]4 arld 5.2.5, we have,

e Machine opening cost s at moStnax | 2, 1, —— +0(Ingp7 +1) | OPT
(1-%)>n’> (1-1/6-1/n)
e Makespan is at mogt (max(vy,n)) + max; ; p; ;

Nown > ~, since otherwise any edge wilfy ; > 1/n will be moved toG, and
1-1/6 > 1/n. Now set;y = n, 6 = 14¢, forsome( > 0. So1—1/§ = (/(1+().

Setl/n = (/(14+¢)—1/ ((1 + {)(In 5% + 1)). Thus, we have an activation cost

at most2(1 + ¢)(In g7 + 1)OPT and makespart T'(1 + F%5E) 4 max; j p; ;-
Therefore, if we sef = 1+2/Inn, we get an activation cost bound4ffin 5%+ +

1)OPT and makespart 27"+ max; ; p; j. In general, by setting = =, we get an

1
C!
activation cost at mot(1 + 1)(In 5% + 1)OPT and makespag: (2+¢)7. O
5.3 Minimizing Machine Activation Cost and Assignment

Cost

We now consider the scheduling problem with assignmensasti machine ac-
tivation costs. As before, each job can be scheduled onlynennosachine, and
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processing jolj on machine: requiresp; ; time and incurs a cost af;, ;. Each
machine is available fdf' time units and the objective is to minimize the total in-
curred cost. In this version of the machine activation model wish to minimize

the sum of the machine activation and job assignment costsolgective now is

min E aiyz-—k E Ci jZij

ieM (i:7)

subject to the same constraints as the LP defined in_ Bq(fud al@orithm for si-
multaneous minimization of machine activation and assmgmntost follows the
same paradigm as in the previous section with a few differené/e specify those

here.

1. Transforming the Solution

After solving the LP, we obtain = 3, . ¢; jz; ;. Though, we have an addi-
tional constrainC = }_, , ¢; jz; ; to care about, welo notinclude it in the linear
system and proceed exactly as in Subsedtioh 5.2. At the emdhameG; where
each component contains at most one cycle ar@qinfor all (7, j) € E(Gz), we
haveX;; > y;/v. By Property 5.6y, j, h, E [thj] = z;; and hence, we have
that the expected costs,; ; ¢; ;2;,;. The procedure can be directly derandomized
by the method of conditional expectation giving aapproximation to assignment

cost.
2. Rounding onG1, Go
The first part involves further relaxing the solution, thetdentical to the one
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described in previous section. Therefore, we now concentia rounding; and

G- separately.

Rounding on G> In Go, since we have for alli, j) € E(G2), Xij; = 4i/7, if

we decide to open machirigall the jobsj € J(G2) can be assigned o by losing

only a factor ofy in the makespan. Therefore, we just need to concentrate on
minimizing the cost of opening machines and the total assegrt cost, subject to
the constraint that all the jobs ih(G2) must have an open machine to get assigned.
This is exactly the case @fon-metric uncapacitated facility locatioand we can

employ the rounding approach developed in |126] to obtaiapomoximation factor

of O(log %5%) + O(1) on the machine activation and assignment costs.

RoundingonG; Rounding on(z; is similar to the case when there is no assign-
ment costs with a few modifications. We proceed in the samenarawe assign
jobs (not in the cycle) to their parent if the fractional ailmition is at Ieast}?, we
then assign the jobs in the cycle if the fractional contidouis at Ieas@ and
finally, obtain the stars with job nodes at the centers. Naveézh staiS;, with j

at its center, we consider all the machine nodeS;inlf some maching € §; is
already open, we make its opening cosNow we open the machiné,c S, for
which¢; + ay j is minimum. Again using the same reasoning as in Subsecin 5
the total cost does not exceed by more than a factqr:@f;_—w. We thus again

have the following two bounds.

111



e Machine opening and activation cost is at most

<max ((13(15)’%’ (l—l/é—l/n)> +0 (ln% + 1)) OPT

e Makespan is at most (max(y,n)) + max; ; p; ;
Now optimizinga, 3, v, we get the following theorem,

Theorem 5.3.1.If there is a schedule with total machine activation and gissient
cost asOPT and makespar’, then a schedule can be constructed efficiently in

polynomial time, with total cosP (2 (log L2 + 1))OPT and makespars (2 +

e)T.

5.4 Extensions: Handling Release Times

Suppose each jop has a machine related release timg i.e, job j can only be
processed on machineafter timer;;. We can modify the algorithm in Section 2 to
handle release times as follows.

For any “guess” of the makespan we letz; ; = 0 if 7;; + p; ; > T in the

LP formulation. Then, we run th@2 +¢),2(1 + 2)(In 5% + 1))-approximation
regardless of the release times and obtain a subset of awéehines and an as-
signment of jobs to these machines. Suppose the subsétjobs is assigned to
machine;. We can now schedule the jobs i on machinei in order by release
time. It is not hard to see the makespan of machireat mostl’ + >, ; pi ;

since every job can be scheduled on machiaéer timeT. Therefore, we get a
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(34¢,2(1+ 1)(log 55 + O(1))) approximation. Similar extensions can be done
for the case with activation and assignment costs.

This concludes the description of this chapter. In sumntasein, we develop
a new model for saving energy on data centers via scheduleghamism. Data
centers are modeled by unrelated parallel machines, arrdyenensumption is
modeled by the cost of machine activation, in addition tqabser usage to process
jobs on these machines. We describe an approximation tidgothat optimizes
makespan given a bound on the energy cost. The algorithimestithe rounding

technique developed in Chapter 2.
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CHAPTER 6

Fair Allocation: Maxmin Fair Allocation Problem

In the next two chapters, we study fair allocation problerhgcvform an important
class of resource allocation problems. The fair allocapi@blems deal with distri-
bution ofindivisible items, i.e., items that cannot be broken and assigneddracti
ally among persons. Each person has individual utilitiestfe items and the items
must be allocated to them satisfying certain criteria. Miasyes of fair allocations
have spanned the literature of economists [[30}[106, 141\edisas the literature
of the operations research community|[81,1131]. Questioch ss the structural
properties of markets for the existence/non-existencaipfflocation with certain
properties, role of money, cases with a single item, or wethegal utility func-
tions have resulted in several research challenges in sheléeade [90, 130]. In
computer science, one such fair allocation problem thatdw@sved a good deal of
attention is thenax-min fair allocation probleniil5,16/20], 26, 34,60, 118].

In this chapter, we study the properties of a configuratiorfdrfnax-min fair

allocation and provide tighter results for its integralifgp. In the next chapter, we
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will see a special case of max-min fair allocation which gbgghe name of the

Santa Claus problem.

6.1 Max-Min Fair Allocation: A Configuration LP Ap-

proach

In this problem there are: goods that need to be distributed indivisibly amdng
persons. Each persarhas a non-negative integer valuatioy); for goodj. The
valuation functions are linear, i.ei,c = ;. wi,; for any set ofC' goods. The
goal is to allocate each good to a person such that the “leggiyhperson is as
happy as possible”™: i.emin; u; ¢ is maximized. Our main contribution in this
regard is to near-optimally pin-point the integrality gdaonfiguration LPpre-
viously proposed and analyzed in [16] 20]. Our algorithmsusipartite dependent
rounding [64] and its generalization to weighted graphgaBite dependent round-
ing can be viewed as a specific typeRdindMove on bipartite graphs. A crucial
ingredient of our analysis is to show certain random vaeglslatisfy the property
of negative correlatiorand hence the Chernoff type concentration bounds can be

applied to guarantee small deviation from the expectedevafuheir sum.

Configuration LP for Max-Min Fair Allocation  The configuration LP formu-
lation for the max-min fair allocation problem was first cifesed in [20]. Acon-

figurationis a subset of items and in the LP there is a variable for edaha@nfig-
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uration. Using binary search, first the optimal solutioruedl’ is guessed and then
we define valid configurations based on the approximatiotofacsought for. We
call a configurationC' valid for person if either of the following two conditions

hold:

e u; c > T and all the items i€’ have value at mos§. These are callesimall

items.

e C contains only one itemi andw; ; > § We call such an itemj to be abig

item for person.

We define a variable; ¢ for assigning a valid configuratiofi to person. Let
C(i,T) denote the set of all valid configurations correspondingeis@n: with

respect tdl'. The configuration LP relaxation of the problem is as follows

Vit ) Y wme <l (6.1)

Caj i
Vii Y wme=1
ceC(i,T)
Vi, C: €5.C > 0

The above LP formulation may have exponential number obibdes, yet if the
LP is feasible, then a fractional allocation where eachgrersceives either a big
item or at least a utility of (1 — &) can be computed in polynomial tine [20]. Here
¢ Is any constant greater than zero. In the subsequent disolasd analysis, we
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ignore the multiplicativel + ¢ factor; it is hidden in thé notation of the ultimate
approximation ratio.

The integrality gap of the above configuration LF&]%) and again follows
from [20]. In [16], Asadpour and Saberi gave a rounding pdoce for the configu-

ration LP that achieved an approximation factoCb( ) Here we further

1
VEk(n k)3

lower the gap and prove the following theorem.

Theorem 6.1.1. Given any feasible solution to the configuration LP, it can

be rounded to a feasible integer solution such that evers@emets at least

o ( m) fraction of the optimal utility with probability at least — ©(1) in

polynomial time.

Our proof is also significantly simpler than the onelin[16].

Note that the recent work of Chakrabarty, Chuzhoy and Khdddghas an
improved approximation factor efi° (also note thatn > k) but that does not use
the configuration LP.

In the context of fair allocation, an additional importamiterion can be an
equitable partitioningof goods: we may impose an upper bound on the number of
items a person might receive. For example, we may want easbipé&o receive at

most[ 7] goods. Theorein 4.1.1 from Chapiiér 4 leads to the following:

Theorem 6.1.2. Suppose, in max-min allocation, we are given upper boupds
the number of items that each persioran receive, in addition to the utility values
u; ;. LetT be the optimal max-min allocation value that satisfigfor all . Then,
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we can efficiently construct an allocation in which for ea@rgon: the boundc;

holds and he receives a total utility of at leaSt- max; u; ;.

This generalizes the result 6f [28], which yields thié“max; u; ;” value when
no bounds such as thgare given. To our knowledge, the results[of|[15] 16, 20, 34]

do not carry over to the setting of such “fairness boungs”

6.1.1 Algorithm for Max-Min Fair Allocation

We now describe the algorithm and the proof of Thedrem 6.1.1.

Algorithm  We define a weighted bipartite gragh with the vertex setd | J B
corresponding to the persons and the items respectiveteTib an edge between
a vertex corresponding to persenc A and itemj € B, if a configurationC'

containingj is fractionally assigned ta Define

Wy 5 = E Zi,C,

C3j

i.e., w; ; is the fraction of itemj that is allocated to personby the fractional
solution of the LP. An edgéi, j) is called a matching edge, if the itejnis big for
personi. Otherwise it is called a flow edge.

Let M and F represent the set of matching and flow edges respectively. Fo
each vertew € AlJ B, letm, be the total fraction of the matching edges incident

to it. Also definef, = 1 — m,. The main steps of the algorithm are as follows,
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1. Guess the value of the optimal solutidhby doing a binary search. Solve

LP (7.1). Obtain the set/ andm,, f, for each vertex in G constructed

from the LP [[7.1) solution.

2 Allocating Big Items : Select a random matching from edgesiih using
bipartite dependent roundin¢Chapte 2, Section ) such that for every

AL B, the probability thav is saturated by the matchingrs, = 1 — f,.

3 Allocating Small Items :

(a) Discard any itemj, with m; > (1 —e1), &1 = /2%, and also discard
all the persons and the items saturated by the matching.

(b) (Scaling) In the remaining graph containing only flow esi§or unsat-

urated persons and items, set for each pedrsm;l,j = %, V.

(c) Further discard any itegawith >, wj ; > %

(d) (weighted bipartite dependent rounding) Scale dowmiights on all
the remaining edges by a factor@% and do awveighted bipar-

tite dependent roundintp assign items to persons.

We now analyze each step. The main proof idea is in showingthieae re-
mains enough left-over utility in the flow graph for each persot saturated by
the matching. This is obtained through proving a new negatrelation prop-
erty among the random variables defined on a collection dfces. Previously,
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the negative correlation property due to bipartite depeh®minding has only been
proven for variables defined on edges incident on any péatimertex. Such “lo-

cal” negative correlation property is not sufficient for aase.

Allocating Big Items

Consider the edges il in the person-item bipartite graph. Remove all the edges
(i, 7) that have already been roundedtor 1. Additionally, if an edge is rounded to
1, remove both its endpoinisand;. We initialize for each(i, j) € M, y; ; = w; j,
and modify they; ; values probabilistically in rounds using bipartite depemtd
rounding.

Recall from Chaptelr]2, the bipartite dependent roundingdei special case
of our new rounding scheme also satisfies the following twaperties. LefY; ;

denote the rounded variables then

31,7, Y;,j € {07 1} (6.3)

Thus, Property (612) guarantees for every edgg), E [Y; ;] = w; ;. This gives

the following corollary.

Corollary 6.1.3. The probability that a vertex € A J B is saturated in the match-

ing generated by the algorithm is,,.
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Proof. Let there bd > 0 edgesy, es, ..¢; € M that are incident om. Then,

Pr[vis saturatel = Pr[Je;, i€ [1,]] s.t vis matched withe;]

! !
= Z Pr [v is matched withe;] = Zwi = My
i=1 i=1

Here the second equality follows by replacing the union loolomp sum since

the events are mutually exclusive. O

Now we prove two additional properties of this rounding, ethwill be used

crucially for the analysis of the next step.

Definition 6.1.4 (Negative Correlation for Indicator Random Variables) col-
lection of indicator random variable$z;},i € [1,n] are said to be negatively

correlated, if for any subset of variables, ¢ € [1,n|, and anyb € {0,1},
Pr [/\221 zi; = b] < H;:l Pr [z, = b].

Theorem 6.1.5. Define an indicator random variable; for each itemj € B with
m; < 1, such that; = 1ifitem j is saturated by the matching. Then, the indicator

random variables z; } are negatively correlated.
Proof. We have already shown this proof in Chapter 2, Thedreml|2.1.2. [
As a corollary of the above theorem, we get the followingruolai

Corollary 6.1.6. Define an indicator random variable; for each person € A,

such thatz; = 1 if personi is saturated by the matching. Then, the indicator
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random variableq z; } are negatively correlated.

Proof. Do the same analysis as in Theorem 2.1.2 with items replaggeitsons.

O

Allocating small items

We now prove in Lemmia 11.3.1 that after the matching phasb, wasaturated per-
son has available items with utility at Iee\#@% in the flow graph. Additionally
we prove in Lemma&a6.118 that each item is not claimed more 3iart/In1n k).
Both the results are probabilistic and hold with high praligb We use the fol-
lowing form of the well-known Chernoff-Hoeffding Bound.

The Chernoff-Hoeffding Bound [114]: SupposeX = ), X; where X; are
independent/negatively correlated random variablesrgkvalues in[0, 1] with

E[X] = u, then
1. for1 > § > 0, we havePr [X > u(1 + 8)] < e 10*/3,
2. for1 >4 > 0, we havePr [X < u(1 — §)] < e 10°/2,

3. ford > 1, we havePr [X > u(1 +8)] < ¢ #OTD MO0t

Lemma 6.1.7. After Allocation of Big Items by bipartite dependent rounding,
each unsatisfied person has a total utility of at Ie@@ % from the unsaturated

items with probability at least — +.
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Proof. Consider a person who is not saturated by the matching. In step (a) of
Allocation of Small Items, all items; with m; at least(1 — ¢;) are discarded. We
will sete; = /2% later. Since the total sum af; can be at most (the number of
persons), there can be at mqég items withm; at leastl —&,. Therefore, for the
remaining items, we havg; > ;. Each person is connected only to small items
in the flow graph. After removing the items with; at leastl — ¢, the remaining

utility in the flow graph for persom is at least

eik T
T — > upsfj | > (T— 1—151X>' (6.4)

j:f;<e1 andj is unsaturated

Wy, 5

fo

Definew, ; = and select &; < A. Now consider random variablés, ; for

each of these unsaturated items:

’ )
Wy, jU%v,j

o if item j is not saturated
Yo = (6.5)

0 : otherwise

Since eachy, ; < T/X < T/X\ andw, ; < f,, Y, ; are random variables
bounded inj0, 1]. Persorw is not saturated by the matching with probability-
m, = f,. Each such person gets a fractional utility ofzu;muv,j from the small
(with respect to the person) itegnin the flow graph, if itemy is not saturated by
the matching. The later happens with probabilfty

DefineG, = Zj Y, ;- Then%GU is the total fractional utility after step (b). It
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follows from Equatior 9.1]1

Sete; = /125 )\ = 25v/kInk and we have\ > ).
k

Thus for sufficiently large,

m
D)
S
V

Elk
eiM(1l— —m+
' 1( (1—51)&)

241In k

v

ThatY,, ;'s are negatively correlated follows from Theorém 2.1.2 efHfore,
applying the standard Chernoff-Hoeffding bound for theatigly-correlated ran-

dom variables, we get for anye (0, 1)

PriG, < (1—-0)E[G,])] < e FlG#/3

< e mE/i2ggr s> L
- -2
1
Thus we get
T 17T 1
Pr|1—G, < =—E[G,]| £ =
(NG S Elld| =



Hence,

T 17T
R < —— <
Jv, Pr N G, 5N E [Gv]}

| =

Therefore the net fractional utility that remains for eaehgon in the flow graph

after scaling is at leasf{-E [G,] = %25\/% 12Ink > L, /% with probability

atleastl — . ]

Lemma 6.1.8. After the matching and the scaling (step (b)), each unsétdriem
has a total fractional incident edge-weight to be at m8¢: from the unsaturated

persons with probability at least— .

Proof. Note that for any person and for any joby that is small forv, w, ; < f,

Wy, j

hencew;, ; = =

< 1. Fix an itemj, and define a random variab, ; for each

person such that

w, 5+ if personi is not saturated

Zy; = (6.6)

0 : otherwise

Let X; = > Z,;. ThenX; is the total weight of all the edges incident on
item j in the flow graph after scaling and removal of all saturatedqres. We have
E[X;] = >, wy ;fo = >, wy; < 1. Now that the variableg, ; are negatively

correlated follows from Corollarly 6.1.6, and thus applythg Chernoff-Hoeffding
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bound for the negatively correlated variables we get

B3+0(1))Ink 1
S S S (P g
P = =k =53

This completes the proof. O

Recall the third step, step (c), élocating Small Bundles. Any job in the
remaining flow graph with total weight of incident edges mﬁm% is
discarded in this step. We now calculate the utility thataire for each person in

the flow graph after step (c).

Lemma 6.1.9. After removing all the items that have total degree more than

(3+0(1)) Ink

e In the flow graph, that is after step (c) @fllocating Small Items,

the remaining utility of each unsaturated person in the flowph is at least

”%wfw with probability at leastl — 2.

Proof. Fix a personv and consider the utility that obtains from the fractional
assignments in the flow graph before step (c). Itis at | Jksﬁl—k% from Lemma
[11.3.1. Define a random variable for each item thalaims with nonzero value in

the flow graph at step (b):

u,; - ifitem j has total weighted degree at le&t2L)nk

U?]
0 : otherwise
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We havePr [Z{},j = uw} < klg from Lemmd6.1.8. Therefore, the expected
utility from all the items in the flow graph that have total ithent weight more
than% is at most%. Hence by Markov’s inequality, the utility from the
discarded items is more th%nls at mos . Now, by union bound, the utility from
the discarded items is more th%nfor at least one unsaturated person is at nc}%ost
The initial utility before step (c) was at leagt’2 L with probability 1 — +. Thus
after step (c), the remaining utility is at Ieza;a/tﬂ3 - L with probability at least

1 — 2. Hence, the result follows. O

The next and the final step (d) of allocations is to do a weitjlitependent
rounding on ascaled dowrflow graph. The weight on the remaining edges is
scaled down by a factor W and hence for every item node that survives
step (c), the total edge-weight incident on it is at most. Let us denote byV; ;

the fractional weight on the eddé, j) in this graph. Hence after scaling down the

utility of any persorw in the flow graph i$ " u, ;W ; > lnk, /1 kQ*(SIo( oy =

Inlnk T
VEkInk 2%(3+o(1)) "

Weighted Dependent Rounding We remove all(i, j) that have already been
rounded to0 or 1. Let F” be the current graph consisting of thd$g ; that lie in
(0,1). Choose any maximal path = (vg, vy, .., vs) OracycleC = (vg, vy, .., vs =
vg). The currentiW value of an edge; = (v;—1,v;) is denoted byy;, that is

Yy = Wi_1,.
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We next choose the values, 2o, .., zs such that any unsaturated person retains
the utility it started with after scaling down, as long asréhare at least two edges
incident to it. We update th#” value of each edge, = (vi—1, v¢) tO y; + 2.

Suppose we have initialized some value fgrand that we have chosen the
increments:y, 2o, . .., z; for somet > 1. Then the value,, ; corresponding to the

edgee; 1 = (vg,v441) is chosen as follows:

(PI) v is an item, then,, 1 = —uv;. (Each item is not assigned more than once.)

(PII) v is a person. Then choosg; ; so that the utility ofw; remains unchanged.

_ o, Yupup g
Setzt+1 = 2 Torprs "

The vectorz = (z1, 22, ..25) is completely determined by,. We denote this
by f(2).

Now let i+ be the smallest positive value such that if wezset p, then all the
W values (after incrementing by the vectoas specified above) stay i 1], and
at least one of them become®r 1. Similarly, lety be the smallest value such that
if we setz; = —~, then this rounding progress property holds.

When considering a cycle, assumgis a person. The assignmentgfvalues
ensure all the objects in the cycle are assigned exactly andeutility of all the

persons except, remains unaffected. Now the change in the value;a$

uv2ﬂ)1 uv4,”3 ---uv571 yUs—2

uU2 »yU3 uU4 yU5 " * .uv57 1,Us
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Uvg, vy Uvg,vg - Uv,_1,0,_2

> 1,

uv%%umms ...’u,v5717US
we setz; = —~, else we set; = u. Therefore the utility of the persar can only
increase.
When we are considering a maximal path we choose the vee®eitherf (1)

or f(—-) arbitrarily.

Lemma 6.1.10. Each person unsaturated by the matching receives a utifigt o

Ieast@(\l/%T) after step (d).

Proof. While the weighted dependent rounding scheme is applied oytla, all

persons in the remaining graph maintains their utility. yYOmhen the rounding is

applied on a maximal path, the two persons at two ends migbtdoe item.
Hence, the net utility received by any person after step djt imost% less

than what it was just before starting the weighted depenammtding step. Thus

each person receives a utility f?}%%@fw — L. From LemmaIL31\ >
25V k In k. Substituting\ = 25vk In k, we get the desired result. O

We have thus established Theofem 8.1.1. The approximattmnis©(——:).

:

This provides an upper bound ofk In & on the integrality gap of the configuration
LP for the max-min fair allocation problem. In contrast, theer bound is2(v/k)
[20]. Theoreni 6.1]2 that incorporates fairness in allacaby providing a limit on

the cardinality of items each person can receive is a direaillary of Theorem
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[4.1.1. Such fairness results in the context of the max-mimafbcation problem

was not know earlier.
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CHAPTER 7

Fair Allocation: The Santa Claus Problem

The Santa Claugproblem is the restricted assignment version of the maxatin
location problem of indivisible goods. In this chapter wegent the first efficient
randomized constant-factor approximation algorithm g problem.

In the max-min allocation problem, as we saw in the previdwapter, there is a
setC of n items, andn children. The value (utility) of iteny to childi is p; ; > 0.
An item can be assigned to only one child. If a chiléceives a subset of the items
S; C G, then the total valuation of the items receiveditig Zjesip(i,j). The
goal is to maximize the minimum total valuation of the iterasaived by any child,
that is, to maximizenin; > ;.. p(é, j). (The “minmax” version of this “maxmin”
problem is the classical problem of makespan minimizationnrelated parallel
machine scheduling [96].) This problem has received muiemtbn recently([15,
16,20, 26,34,60,118].

A restricted version of max-min allocation is where eaclmiteas an intrin-

sic value, and where for every childp; ; is eitherp; or 0. This is known as the
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Santa Claus problem. The Santa Claus problem is NP-hardeaeifficient approx-
imation algorithm better thaih/2 can be obtained unled?® = NP [28]. Bansal
and Sviridenko[[20] considered a linear-programming (Létaxation of the prob-
lem known as the configuration LP, and showed how to roundfRito obtain an
O(loglog log m/ log log m)-approximation algorithm for the Santa Claus problem.
They also showed a reduction to a crisp combinatorial propkefeasible solution
to which implies a constant-factor integrality gap for tlemfiguration LP.
Subsequently, Feigé [60] showed that the configuration LdPaheonstant in-
tegrality gap. Normally such a proof immediately gives astant-factor approx-
imation algorithm that rounds an LP solution along the lin¢he integrality-gap
proof. In this case Feige’s proof could not be made consteidiecause it was
heavily based on repeated reductions that apply the asymemetsion of the LLL
to exponentially many events. Due to this unsatisfactdryasion, the Santa Claus
problem was the first on a list of problems reported in the esutfEstimation Al-
gorithms versus Approximation Algorithms” [61] for whichcanstructive proof
would be desirable. Using a completely different approa@dadpour, Feige and
Saberi[[15] could show that the configuration LP has an imafégrgap of at most
%. Their proof uses local-search and hypergraph matchirarenes of Haxell[77].
Haxell's theorems are again highly non-constructive arel dtated local-search
problem is not known to be efficiently solvable. Thus thisssetnon-constructive

proof still left the question of a constant-factor approatian algorithm open.

132



In this chapter we show how our Theorém 33.3 can be used iy ead di-
rectly constructivize the LLL-based proof of Feige [60}vigg the first constant-
factor approximation algorithm for the Santa Claus problem

It is to be noted that the more general max-min fair allocapiooblem appears
significantly harder. It is known that for general max-miim &location, the config-
uration LP has a gap @¥(y/m). Asadpour and Sabefi[16] gave @f/n log*(n))

approximation factor for this problem using the configumatiP. In Chaptel]6, we

showed an improved approximation factor@f,/n logn/loglogn). So far the
best approximation ratio known for this problem due to Chhakrty, Chuzhoy and
Khanna isO(n?) [34], for any constant > 0; their algorithm runs inO(n'/¢)

time.

7.1 Algorithm for the Santa Claus Problem

We focus on the Santa Claus problem here. We start by desgtié configuration
LP and the reduction of it to a combinatorial problem overtasgstem, albeit with
a constant factor loss in approximation. Next we give a gansve solution for
the set system problem, thus providing a constant-factpreimation algorithm
for the Santa Claus problem.

We guess the optimal solution valifieusing binary search. An iteris said to
be small, ifp; < o', otherwise itis said to be big. Here< 1 is the approximation

ratio, which will get fixed later. A configuration is a subséitems. The value of

133



a configurationC' to child i is denoted by; ¢ = >, pi,;- A configurationC'is

called valid for child; if:
e p; ¢ > T and all the items are small; or
e (' contains only one itemi andp; ; = p; > o, that is, j is a big item for
child 1.

Let C'(i, T') denote the set of all valid configurations correspondinghitila with
respect tdI. We define an indicator variablg - for each child: and all valid
configuration”' € C(i,T) such that it isl if child ¢ receives configuratiof’ and
0 otherwise. These variables are relaxed to take any fratieadue in0, 1] to

obtain the configuration LP relaxation.

Vi) Y wic <1 (7.1)

Caj i

Vii > gie=1
CeC(i,T)

Vi,C:y;.c >0

Bansal and Sviridenko showed that if the above LP is feadid it is possible
to find a fractional allocation that assigns a configuratidth walue at leastl —¢)T’
to each child in polynomial time.

The algorithm of Bansal and Sviridenko starts by solvingdbefiguration LP
(ZJ). Then by various steps of simplification, they reduw roblem to the fol-
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lowing instance:

There arep groups, each group containingchildren. Each child is associated
with a collection ofk items with a total valuation of for some constant > 0.
Each item appears in at mogt sets for som¢ < 3. Such an instance is referred

to as(k, [, 5)-system.

The goal is to efficiently select one child from each group assign at least
|vk| items to each of the chosen children, such that each itemsigreessl only
once. If such an assignment exists, then the corresporidirigs)-system is said
to bey-good(k, [, 5)-system.

Feige showed that indeed ttie [, 5)-system that results from the configuration
LP is v-good, wherey = O (W) [60]. This established aonstantfactor
integrality gap for the configuration LP. However, the prbeing non-constructive,
no algorithm was known to efficiently find such an assignmbmthe remaining of
this section, we make Feige's argument constructive, thuisgga constant-factor
approximation algorithm for the Santa Claus problem. Bfibteethat, for the sake

of completeness, we briefly describe the procedure thatrsb#g k, [, 3)-system

from an optimal solution of the configuration LIP [20].
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7.1.1 From a configuration LP solution to a(k, [, 3)-system

The algorithm starts by simplifying the assignmenbijfitems in an optimal solu-
tion (say)y* of the configuration LP. Lef'z denote the set of big items. Consider
a bipartite graplG with children M on the right side and big item#s on the left
side. An edgdi, j),i € M, j € Jp of weightw; ; = >_.cc(; 1) ¥i ¢ Is inserted in

G if w; ; > 0. Thesew; ; values are then modified such that after the modification
the edges ofs with weight in (0, 1) form a forest.

Lemma 5 [20]. The solutiony* can be transformed into another feasible solu-
tion of the configuration LP where the graghis a forest.

The transformation is performed using the simple cyclexkirgy trick. Each
cycle is broken into two matchings; weights on the edges @& watching are
increased gradually while the weights on the other are dserkuntil some weights
hit 0 or 1. If a w; ; becomed) in this procedure, the edde, j) is removed from
G. Else if it becomeg, then itemj is permanently assigned to chilénd the edge
(i,7) is removed.

Suppose&>’ is the forest obtained after this transformation. The fiosgsicture
is then further exploited to form groups of children and Ivégris.

Lemma 6 [20]. The solutiony* can be transformed into another solu-
tion ' such that childrenM/ and big itemsJp can be clustered intp groups
My, Ms,...,M, and Jg 1, Jp,, ..., g, respectively with the following proper-

ties.
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1. For eachi = 1,2,...,p, the number of jobs/p; in group M; is exactly

|M;| — 1. The group/p ; could possibly be empty.

2. Within each group the assignment of big job is entirelyiblexin the sense
that they can be placed feasibly on any of thé| — 1 children out of the

| M;| children.

3. For each group\/;, the solutiony’ assigns exactly one unit of small configu-
rations to children inM; and all the|M;| — 1 units of configurations corre-

spond to big jobs i/g ;. Also, for each small job, ZCBj > yac < 2.

Lemma 6 implies that the assignment of big items to childrem igroup is
completely flexible and can be ignored. We only need to choosechild from
each group who will be satisfied by a configuration of smathie Lety’ assigns a
small configuratiorC' to an extent of/;mc to some child: € M;,i € [1, p], then we
say thatM; contains the small configuratiadi for child ¢ € M;. Without loss of
generality, it can be assumed that each child in the groufpadtonally assigned
to exactly one small configuration. Bansal and Sviridenkthfer showed thay’
can again be simplified such that each small configuratioesgaed to at least to
an extent of; = —— to each child and for each small jgb".. >, v/ - < 3.
This implies, if we consider all the small configurationsassp groups, then each
small job appears in at most configurations, wherg = 3.

Finally, the following lemma shows that by losing a constaator in the ap-
proximation, one can assume that all the small jobs have saae
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Lemma 8 [20]. Given the algorithmic framework above, by losing a constant
factor in the approximation, each small job can be assumdthi@ size%T.

As a consequence of the above lemma, we now have the folloseigigario.

There arep groupsM, Mo, . .., M,, each containing at mosgtchildren. Each
child is associated with a set that contaiks= ©(%) items. Each item belongs to
at mostgi sets. The goal is to pick one child from each group and assi¢gaat a
constant fraction of the items in its set such that each iassigned exactly once.

Therefore, we arrive at what is referred ag:al, 3)-system.

7.1.2 Construction of ay-good solution for a(k, I, 3)-system

We now point out the main steps in Feige’s algorithm, and iaijedescribe the

modifications required to make Feige’s algorithm consivact

Feige’s Nonconstructive Proof forv-good (k, 1, 5)-system: Feige’s approach
is based on a systematic reductionkofind ! in iterations, finally arriving to a
system wheré: or [ are constants. For constanor [ the following lemma asserts

a constanty.

Lemma 7.1.1(Lemma 2.1 and 2.2 of [60])For every(k, [, 3)-system ay-good

solution withy satisfying,y = + or vk = Lﬁj can be found efficiently.

The reduction ofk, [, 3)-system to constaritand! involves two main lemmas,

which we refer to aRReduce-lemma andReduce-kemma respectively.
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Lemma 7.1.2(Lemma 2.3 of[[60], Reduce:l)For [ > ¢ (c is a sulfficiently large
constant), every-good (k, [, 5)-system withk < [ can be transformed into &-

good(k, ', §')-system with’ < log®l andj’ < B(1 + @).

Lemma 7.1.3(Lemma 2.4 of [60], Reduce-kEvery(k, [, 3)-system wittk > [ >
¢ can be transformed into &', 1, 3)-system witht’ < % and with the following
additional property: if the original system is ngtgood, then the new system is not

v'-good fory' = ~v(1 + 3\1/0%’“). Conversely, if the new systemmisgood, then the

original system was-good.

If 3 is not a constant to start with, then by applying the follogvlemma re-

peatedly,5 can be reduced beloiv

Lemma 7.1.4(Lemma 2.5 of [[60]) For I > ¢, every~y-good (k,l, 3)-system
can be transformed into g-good (%', 1, 3')-system withk’ = L%j and g/ <
(),

However in our context; < 3, thus we ignore Lemma 2.5 of [60] from further
discussions.

Starting from the original system, as longlas ¢, Lemma Reduce-| is applied
whenl > k and Lemma Reduce-k is applied whei» [. In this process grows at
most by a factor of. Thus at the end,is a constant and so i& Thus by applying

Lemmd7.1.11, the constant integrality gap for the configomalt P is established.
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Randomized Algorithm for v-good (k, [, 3)-system: There are two main steps

in the algorithm.

1. Show a constructive procedure to obtain the reducedmytst®ugh Lemma

Reduce-l and Lemma Reduce-k.
2. Map the solution of the final reduced system back to tharaigystem.

We now elaborate upon each of these.

Making Lemma Reduce-| Constructive

This follows quite directly from[111]. The algorithm pickég® 1| sets uniformly

at random and independently from each group. Thus while ahe\ofk remains
fixed, [ is reduced td’ = |log®l|. Now in expectation the value gf does not
change and the probability that > 3(1 + @), and henceg’l’ > pl(1+ @), is

at moste—#'/3log*l < o—log”l — —log”l \\e define a bad event corresponding to

each element:
e A;: Elementj has more tha’l’ copies.

Now noting that the dependency graph has degree at kigst< 63, the
uniform (symmetric) version of the LLL applies. Now it is ga® check if there

exists a violated event: we simply count the number of tinreglament appears

_1_
ellog2 l?

in all the sets. Thus we directly follovi [111]; settingy, = we get the
expected running time to avoid all the bad events taOlﬁﬁlk:/l‘ngl) =O0(p) =
O(m).
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Making Lemma Reduce-k Constructive

This is the main challenging part. The random experimeniliss selecting each
item independently at random with probabili%y To characterize the bad events,
we need a structural lemma from [60]. Construct a graph o where there
is an edge between two sets if they share an element. A doheat sets is said to
be connected if and only if the subgraph induced by this ctila is connected.

We consider two types of bad events:

1. B;: some set has less th&h= (1 — 1‘\’%‘3) % items surviving, and

2. B; for i > 2: there is a connected collection D&ets from distinct groups

whose union originally contained at mast items, of which more thar‘ﬁ/g

items survive, wheré’ = ~ (1 + 1\‘}%—2)

If none of the above bad events happen, then we can consilérdtk’ items
from each set and yet the second type of bad events do notmappese events
are chosen such that-goodnessy’ = 5’%% <~ (1 + ngkk)) of the new system

certifies that the original system wasgood. That this is indeed the case follows

directly from Hall's theorem as proven by Feige:

Lemma 7.1.5(Lemma 2.7 of([60]) Consider a collection of, sets and a positive

integerg.

1. If for somel < ¢ < n, there is a connected subcollection iofets whose
union contains less thaiy items, then there is no choice @ftems per set
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such that all items are distinct.

2. Iffor everyi, 1 < i < n, the union of every connected subcollection séts
contains at leasiq (distinct) items, then there is a choice pitems per set

such that all items are distinct.

Feige showed in[[60] that for bad events of typg,¢ > 1, taking z; =
2~ 10ilogk i sufficient to satisfy the condition (3.1) of the asymnetriL. More
precisely, suppose we define, for any bad evént (J;., B;, I'(B) to be as in
Chapter 3: i.e.]I'(B) is the set of all bad eventd # B such thatAd and B both
depend on at least one common random variable in our “randamd indepen-
dently selecting items” experiment. Then, it is shown_ in][B@t with the choice

x; = 27 10tlogk for || events inB;, we have

V(i>1)¥(Be€B;), PriB] <2705k <o TT [ (-2 (72
j>1 Ae(B;NT(B))

Thus by the LLL, there exists an assignment that avoids albtd events. How-
ever, no efficient construction was known here, and as Fegésout, “the main
source of difficulty in this respect is Lemma 2.4, becausesetliege number of bad
events is exponential in the problem size, and moreovere thee bad events that
involve a constant fraction of the random variables.” Ouedten{ 3.3.3 again di-
rectly makes this proof constructive and gives an efficieond Carlo algorithm

for producing a reduce-k system with high probability.
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Lemma 7.1.6. There is a Monte Carlo algorithm that produces a valid redice

system with probability at leagt— 1/m?.

Proof. Note from [7.2) that we can take= 2720mlek S0, we get thalbbg 1/6 =
O(mlog k) = O(nlogn) wheren is the number of items and < n is the number
of children. We furthermore get that all events with prokigblarger than a fixed
inverse-polynomial involve only connected subsets of Qté’(;gg—f) and Theorem
[3.3.3 implies that there are only polynomially many suclytiiprobability events.
(This can also be seen directly since the degree of a suisaisied by: 3l < 6k
and the number of connected subcollections is thereforeoat (rﬁk2)o(lloogT?) =
mPM = n©1) ) The connected collections of subsets are easy to enwenesiaig,
e.g., breadth-first search and are therefore efficientlifiable (in fact, even in

parallel). Theorerh 3.3.3 thus applies and directly proliledemma. O

Mapping the solution of the final reduced system back to the aginal system

By repeatedly applying algorithms to produce Reduce-l aluRe-k system, we
can completely reduce down the original system to a systdimavtonstant num-
ber of children per group, whergcan increase fror to at mosi due to Lemma
Reduce-l. This involves at mostg m Reduce-l reductions and at mdsign
Reduce-k reductions. We can furthermore assumerthat 2™ since otherwise
simply all combinations of one child per group could be triactime polyno-

mial in n. Since, each Reduce-l or Reduce-k operation produces eedesilu-
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tion with probability at leasti — # by union bound, with probability at least
1 — O(lognlogm/m?) = 1 — O(logm/m) a final (k,l, 3)-system is produced
that isy-good for some constantby Lemmd7.11. Using Lemna 7.1.1, we can
also find ay-good selection of children. Now, once one child from eadabugris
selected, we can construct a standard network flow instanassign items to these
chosen children (Lemma7.1.8). This finishes the processapiing back a solu-
tion of the reduced system to the origirial , 5)-system. While checking whether
an individual reduction failed seems to be a NP-hard tagk, éasy to see in the
end whether a good enough assignment is produced. Thisesnablto rerun the
algorithm in the unlikely event of a failure. Thus, the Mo@arlo algorithm can
be strengthened to an algorithm that always produces a gootios and has an
expected polynomial running-time.

The details of the above are given in two lemmas, Lerhmal7 Ad7L.@mma
[7.1.8. Theorern 7.11.9 follows from the two lemmas.

Suppose we start with g, 1, 81)-system and after repeated application of
either Lemma Reduce-| or Lemma Reduce-k reach (&t &, 5;)-system, where
ls < ¢, aconstant. We then employ Lemima 7/1.1 to obtain-good (ks, Is, SBs)-
system, where,, satisfiesy k, = L%J. Sincel, is a constant an@, < 6, s
is also a constant. Lemnia 7.11.1 also gives a choice of a ataitd £ach group,

denoted by a functiorf : {1,...,p} — {1,...,1s} that serves as a witness foy-

goodness ofks, I, 55 )-system. We use this same mapping for the original system.
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The following lemma establishes the goodness offhel;, 51 )-system.

Lemma 7.1.7. Given a sequence of reductions kf (ki,01,51) — ... —

(ks,ls, Bs), interleaved with reductions df let for all s > 2,v, = ~s-1(1 +

7\%%#). Then if the final reduced system-s-good and the functiory :
s—1Rs—1
{1,...,p} — {1,...,1ls} serves as a witness for itg-goodness, therf also

serves as a witness gfgoodness ofk;, (1, 51) system with high probability. In
other words, we can simply use the assignment givefitoyselect one child from
each group and that assignment serves as a witnessgabdness of the original

system with high probability.

Proof. Suppose there exists a functigrnthat serves as a witness fpy-goodness
of the (ks, s, Bs)-system, but does not serve as a witness thaty, /51, 3s—1)-
system isy,_1-good. Then there must exist a connected collection, 6f> 0
sets chosen from groups according tg, such that their union contains less than
vs—1ks_17 items. However in the reduced system, their union fids 17 ele-
ments. Call such a functiofibad. Thus every bad function is characterized by a vi-
olation of event of type3;,7 > 1, described in Sectidn 7.1.2. However, by Lemma
[7.1.8 we havePr [3 a bad functionf] < Pr[an event of typeB;,i > 1 happens <
1.

Now the maximum number of times the Reduce-k step is app$ieat most
log k1 < logn. Thus if the Reduce-| step is not applied at all, then by amnio

bound, functionf is v-good for the(ky, 11, 81)-system with probability at least
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1- %. We can assume without loss of generality that 2™. (Otherwise
in polynomial time we can guess the children who receive kitaahs and thus
know f. Oncef is known, an assignment of small items to the children chasen
f can be done in polynomial time through Lemima 7.1.8.) Singe 2™, function
f is~y-good for the(ky, [1, 51)-system with probability at leagt— log m /m. Now
since the Reduce-I step only redudeand keepsk intact, it does not affect the

goodness of the set system. O

Once we know the functiorf, using Lemma 7.118, we can get a valid assign-

ment of | k~y | items to each chosen child:

Lemma 7.1.8. Given a functionf : {1,...,p} — {1,...,l}, and parametery,
there is a polynomial time algorithm to determine, whetfiés v-good and we can

determine the subset pf~ | items received by each chiltli),: € [1, p].

Proof. We construct a bipartite graph with a set of verti€és- {1,...,p} corre-
sponding to each chosen child from thgroups, a set of verticds corresponding
to the small items in the sets of the chosen children, a souatel a sinkt. Next
we add a directed edge of capacityk| from sources to each vertex irt/. We
also add directed edgés, v),u € U,v € V, if the itemu belongs to the set af.
These edges have capacityrinally we add a directed edge from each vertek'in
to the sinkt with capacityl. We claim that this flow network has a maximum flow
of |k~ |piff fis~y-good:

For the one direction lef be~y-good. Thus there exists a set|ofk | elements
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that can be assigned to each child U. Send one unit of flow from each child to
these items that it receives. The outgoing flow from each U is exactly | vk ].
Since each item is assigned to at most one child, flow on eagh(edt), v € V

is at mostl. Thus all the capacity constraints are maintained and theviidue is
[k ]p.

For the other direction consider an integral maximum flow of |p. Since
the total capacity of all the edges emanating from the soisr¢gy |p, they must
all be saturated by the maxflow. Since the flow is integral,efmch childu there
are exactly|vk| edges with flowl corresponding to the items that it receives.
Also since no edge capacity is violated, each item is asdigmexactly one child.
Thereforef is ~-good.

To check a functiory for v-goodness and obtain the good assignment we con-
struct the flow graph and run a max flow algorithm that outpuitani integral flow.
As proven above a max flow value pf~ |p indicatesy-goodness and forggood
function f, the assignment can be directly constructed from the flonobgiclering

only the flow carrying edges. O

Theorem 7.1.9. There exists a constamt > 0 and a randomized algorithm for
the Santa Claus problem that runs in expected polynomia &ind always assigns

items of total valuation at least - OPT to each child.
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CHAPTER 8

Overlay Network Design

In this chapter, we consider an application of resourcecation in networking.
The goal here is to design multicast overlay networks thietestreams to end-
users in an effective and timely manner. The main technoeali$ the LP rounding
scheme developed in Chapiér 2. This work improves the sestlf10]. In this
chapter, we refer to lemmas froim [10] without proofs. Theilested readers may

find it helpful to look at the original paper [10] for full déka

8.1 Designing Overlay Multicast Networks For Streaming

An overlay network can be represented as a tripartite digrdp= (V, E). The
nodesV are partitioned into sets of entry points called souré8s reflectors R),
and edge-servers or sink®). There are multiple commodities or streams, that
must be routed from sources, via reflectors, to the sinksatteadlesignated to serve
that stream to end-users. Without loss of generality, weasaome that each source

holds a single stream. Now given a set of streams and thgiectge edge-server
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min Ezrﬂr+§:§zchmﬂmrFE:EZEDCM$@Jﬁ

1ER i€ER kES 1ER keS jeD

s.t. (8.1)
Yk,i <z Vie R, VkeS§ (8.2)
Tijk<vyir YieR, VjeD, Vke§ (8.3)
YN mije<Faz VieR (8.4)
keS jeD
S wigwwigr > Wiy ¥j € D ¥k € S (8.5)
i€ER
zijr € {0, 1}, yix € {0,1}, 2 € {0,1} (8.6)

Table 8.1: Integer Program for Overlay Multicast Network Design

destinations, a cheapest possible overlay network musbh&racted subject to
certaincapacity quality, andreliability requirements. There is a cost associated
with usage of every link and reflector. There are capacitystraints, especially
on the reflectors, that dictate the maximum total bandwidttbits/sec) that the
reflector is allowed to send. The quality of a stream is dalgatelated to whether
or not an edge-server is able to reconstruct the stream wtitfignificant loss of
accuracy. Therefore even though there is some loss thoeaksbciated with each
stream, at each edge-server only a maximum possible regotish-loss is al-
lowed. To ensure reliability, multiple copies of each stnemay be sent to the
designated edge-servers.

All these requirements can be captured by an integer pradtetrus use indi-
cator variablez; for building reflectori, y; ;. for delivery of k-th stream to the-th

reflector andz; ; . for deliveringk-th stream to thg-th sink through the-th reflec-
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tor. I; denotes the fanout constraint for each refle¢ter k. Letp, , denote the
failure probability on any edge (source-reflector or refiesink). We transform
the probabilities into weightsw; j, = —log (pk,; + pi,; — Pripi,j)- Therefore,
w; ;1 1S the negative log of the probability of a commodityailing to reach sinkj
via reflectori. On the other hand, i; ;. is the minimum required success probabil-
ity for commodity % to reach sinkj, we instead us&/’; ,, = —log (1 — ¢, ). Thus
W; i, denotes the negative log of maximum allowed failurgis the cost for open-
ing the reflector andc, , , is the cost for using the linkz, y) to send commodity
k. Thus we have the IP (see Table]8.1).

Constraints [(8]2) and (8.3) are natural consistency rements; constraint
(8.4) encodes the fanout restriction. Constrdint](8.5,vileight constraint, en-
sures quality and reliability. Constrairt (8.6) is the staml integrality-constraint
that will be relaxed to construct the LP relaxation.

There is an important stability requirement that is ref@émecolor constraint
in [10]. Reflectors are grouped inta color classesk = R U R, U...UR,,. We
want each group of reflectors to deliver not more than one cbystream into a

sink. This constraint translates to

Z rijr <1Vje D, VkeS, Ve m] (8.7)
1ER;

Each group of reflectors can be thought to belong to the sameTI®us we

want to make sure that a client is served only with one — the-bsgeam possible
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from a certain ISP. This diversifies the stream distributeer different ISPs and
provides stability. If an ISP goes down, still most of theksinvill be served. We
refer the LP-relaxation of integer program (T&bl€ 8.1) whi color constrainf (81 7)
asLP-Color.

All of the above is from[[10].

The work of [10] uses a two-step rounding procedure and ebtaie following
guarantee.

First stage rounding: Roundsandy; ;, for all i andk to decide which reflector
should be open and which streams should be sent to a reflddierresults from

rounding stage 1 can be summarized in the following lemma:

Lemma 8.1.1. ( [10]) The first-stage rounding algorithm incurs a cost at most a
factor of64 log | D| higher than the optimum cost, and with high probability atels
the weight constraints by at most a factor%pdind the fanout constraints by at most

a factor of2. Color constraints are all satisfied.

By incurring a factor of©(logn) in the cost, the constant factors loss in the
weights and fanouts can be improved as showhn inh [10].

Second stage rounding: Roungg; ;’s using the open reflectors and streams
that are sent to different reflectors in the first stage. Thaltgin this stage can be

summarized as follows:

Lemma 8.1.2. ( [1Q]) The second-stage rounding incurs a cost at most a factor
of 14 higher than the optimum cost and violates each of fanougrcahd weight
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constraint by at most a factor Gt

Our main contribution is an improvement of the second-stagading through
the use of repeatddandMove and by judicious choices of constraints to drop. Let

us call the linear program that remains just at the end ofdiesjel P-Color2:

minE E : E Ci j, ki, k

i€R keS jeD
S.t.
Z Z zi ik < F; Vi € R (Fanouy
keSjeD
3" jawige > Wik Vi € D,Vk € S (Weight
i€ER
N @i, <1Vj €D, Vk € S, Vi € [m] (Color)
1ER)

zijr€{0,1}Vie R,Vje D,Vke S

We show:

Lemma 8.1.3. LP-Color2 can be efficiently rounded such that cost and weight
constraints are satisfied exactly, fanout constraints améted at most by additive

1 and color constraints are violated at most by additze

Proof. Letx; ; ;. € [0, 1] denote the fraction of stream generated from sokireeS

reaching destinatiopi € D routed through reflectar € R after the first stage of

152



rounding. InitializeX = z*. The algorithm consists of several iterations. the ran-
dom value at the end of iterationis denoted byX". Each iteration’, conducts
a randomized update usirigandMove on the polytope of a linear system con-
structed from a subset of constraintsLét-Color2. Therefore by induction on,
we will have for all(i, j, h) thatE [thj} = z; ;. Thus the cost constraint is main-
tained exactly on expectation. The entire procedure carebendomized giving
the required bounds on the cost.

Let R and.SD denote the set of reflectors and source, destination paitece
tively. Suppose we are at the beginning of some iteratior- 1) of the overall
algorithm and currently looking at the valué’s,’jj,k. We will maintain two invari-

ants:
(11") Once a variable; ; ;. gets assigned toor 1, it is never changed;
(I2") Once a constraint is dropped in some iteration, it is neviestated.

Iteration(h + 1) of rounding consists of three main steps:

1. Since we aim to maintainll), let us remove aIlX{fj’k e {0,1}; i.e.,
we project X" to those coordinategi, j, k) for which X{fj,k € (0,1), to
obtain the current vectoy” of floating (yet to be rounded) variables; let
§ = (ALY = wy) denote the current linear system that represémts
Color2. In particular, the fanout constraint for a reflectoiis its residual

fanoutF}; i.e., F; minus the number of streams that are routed through it.
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2. Letwv denote the number of floating variables, i¥.€ (0,1)". We now drop

the following constraint:

(D1") Drop fanout constraint for degrdereflector denoted?y, i.e, reflec-
tors with only one floating variable associated with it. Foy @egree
2 reflectors denote®;, if it has a tight fanout ol drop its fanout con-

straint.

(D2") Drop color constraint for a group of reflectaR, if they have atmost

4 floating variable associated with them.

Let P denote the polytope defined by this reduced system of comistraA key
claim is thatY is not a vertex ofP and thus we can appRand-Move and make
progress either by rounding a new variable or by droppingva censtraint. We
count the number of variablasand the number of tight constraintseparately.

We have,

t= > 14> Y (e +1),

i€R\R,  keSjeD

wherel; ;. is the number of color constraints for the stream generatsducek
and to be delivered to the destinatign We have,y > ZieRFi + 1. Also the
number of variables > > i cpy, 04k + Xkesyen,, o 2- Thus by an

averaging argument, the number of variables

> Zierfit 1, > 2+ Y. L

- 2
kES7J€D,lk7j>O kES7J€D,lk7j:0
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A moment’s reflection shows that the system can become uetendined only if
there is no color constraint associated with a stréarh), each reflectoi has two
floating variables associated with it with total contriloutil towards fanout and
each streantj, k) is routed fractionally through two reflectors. But in thisus-
tion all the fanout constraints are dropped violating faretumost by an additive
one and making the system underdetermined once again. il@plonstraints are
dropped only when there are less thidtoating variable associated with that group
of reflectors. Hence the coloring constraint can be violateishost by an additive
factor of3. The fanout constraint is dropped only for singleton refiecbr degree-

2 reflectors with fanout equalling Hence fanout is violated only by an additive

Weight constraint is never dropped and maintained exactly. O
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CHAPTER 9

Matroid Median

In this chapter, we consider another application of resattocation in the do-
main of networking. In content distribution networks, thare servers of different
types, and resource limitation restricts the number ofessrof each type that can
possibly be opened to serve requests from clients. The@asinnect a client to a
server depends on the server location; the strategic qudstire is to decide which
servers to open such that this connection cost is minimiZdws problem can be
modeled by a generalization of classiéainedian problem, which we refer d4a-
troid Median In this chapter, we study an approximation algorithm ferKhatroid
Median problem. The algorithm is based on LP rounding andially uses the
structure of the constraint matrix. We simplify the struetwf the fractional so-
lution by doing a partial rounding and then argue that thestamt matrix of the
simplified LP is totally unimodular. While, we have exterdivused the property
of extreme point solution in developing our rounding tecimei in Chaptel12, this

is the first time, we exploit more structural information abthe considered LP
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relaxation.

9.1 The Matroid Median Problem

The k-median problem is an extensively studied location problggiven ann-
vertex metric spac¢V,d) and a boundk, the goal is to locate/opeh centers

C C V so as to minimize the sum of distances of each vertex to iteeektapen
center. (The distance of a vertex to its closest open cesialied its connection
cost.) The first constant-factor approximation algoritton #-median on general
metrics was by Charikar et al. [39]. The approximation rat&s later improved

in a sequence of papefs [38|84, 85] to the currently bestkrguarantee of + ¢

(for any constant > 0) due to Arya et al.[[14]. A number of techniques have been
successfully applied to this problem, such as LP roundimignagl-dual and local
search algorithms.

Motivated by applications in Content Distribution NetwsrkHajiaghayi et
al. [76] introduced a generalization Afmedian where there ate/o typesof ver-
tices (red and blue), and the goal is to locate at nkpgted centers and, blue
centers so as to minimize the sum of connection costs. Ferdtiblue median
problem, [76] gave a constant factor approximation albaritHere, we consider a
substantially more general setting where there are arranpihumberl” of vertex-
types with bounds{k;}Z_;, and the goal is to locate at makst centers of each

type4 so as to minimize the sum of connection costs. These veypmstdenote
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different types of servers in the Content Distribution Netks applications; the
result in [76] only holds fofl" = 2.

In fact, we study an even more general problem where the sgief centers
have to form an independent set in a given matroid, with theatibe of mini-
mizing sum of connection costs. This formulation captumgerl intricate con-
straints on the open centers, and contains as special dhgeslassick-median
(uniform matroid of rankk), and the CDN applications above (partition matroid
with T parts). Our main result is a constant-factor approximadigorithm for this

Matroid Medianproblem.

Our Results and Techniques In this chapter we introduce the Matroid Me-
dian problem, which is a natural generalization kefnedian, and obtain a 16-
approximation algorithm for it. Thus it also gives the firehstant approximation
for the k-median problem with multiple (more than two) vertex-typedich was
introduced in[[76].

For the standardk-median problem (and also red-blue median), it is
easy to obtain arO(logn)-approximation algorithm using probabilistic tree-
embeddings[[58], and exactly solving the problem on a trée §wdynamic pro-
gram). However, even this type of guarantee is not obviouthtoMatroid Median
problem, since the problem on a tree-metric does not loclkcpéarly easier.

Our algorithm is based on the natural LP-relaxation andrigrgingly simple.

Essentially, the main insight is in establishing a conmecto matroid intersection.
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The algorithm computes an optimal LP solution and rounds tivio phases, the

key points of which are described below:

e The first phase sparsifies the LP solution while increasiegtjective value
by a constant factor. This is somewhat similar to the LP-digp algorithm
for k-median in Charikar et all_[39]. However we cannot constdideac-
tionally open centers as in [39]; this is because the opeteremust addi-
tionally satisfy the matroid rank constraints. In spitelo$t we show that the

vertices and the centers can be clustered into disjointlig& structures.

e This structure ensured by the first phase of rounding all@s write (in the
second phase) another linear program for which the spattiffesolution is
feasible, and has objective value at mO$t ) times the original LP optimum.
Then we show that the second phase LP is in fact integral, wéda#ion to
the matroid-intersection polytope. Finally we re-solve gecond phase LP
to obtain an extreme point solution, which is guaranteedcettegral. This
corresponds to a feasible solution to Matroid Median of cipje valueO(1)

times the LP optimum.

We next consider thBenalty Matroid Mediar(a.k.a. prize-collecting matroid
median problem), where a vertex could either connect to ¢ecéncurring the
connection cost, or choose to pay a penalty in the objectinetion. The prize-
collecting version of several well-known optimization blems like TSP, Steiner
Tree etc., including k-median and red-blue median have begtied in prior work
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(See [76] and the references therein). Extending the idéheoMatroid Median
algorithm, we also obtain af(1) approximation algorithm for the Penalty version
of the problem.

Finally, we look at theKnapsack Mediarproblem (a.k.a. weightedV-
median [76]), where the centers have weights and the opdarsamust satisfy a
knapsack constraint; the objective is, like before, to miae the total connection
cost of all the vertices. For this problem we obtaihGaapproximation algorithm
that violates the knapsack constraint byaatditive f,,... term (wheref,, .. is the
maximum opening cost of any center). This algorithm is agased on the natural
LP relaxation, and follows the same approach as for Matradlisih. However, the
second phase LP here is not integral (it contains the knkgsablem as a special
case). Instead we obtain the claimed bicriteria approxondty using the iterative
rounding framework[[62, 83, 94, 123]. It is easy to see thatldetrelaxation for
the Knapsack Median problem has unbounded integrality ilag® do not allow
any violation in the knapsack constraint (see eg! [38]). &dwer, we show that
the integrality gap remains unbounded even after the auddf knapsack-cover
inequalities[33] to the basic LP relaxation. We leave open the questiarbidin-
ing anO(1)-approximation for Knapsack Median without violating theaksack

constraint.
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Related Work

The first approximation algorithm for the metéemedian problem was due to Lin
and Vitter [98] who gave an algorithm that for aay> 0, produced a solution
of objective at mosg(1 + %) while opening at mostl + )k centers; this was
based on the filtering technique for rounding the natural élBxation. The first
approximation algorithm that opened omlgenters was due to Bartal [24], via ran-
domized tree embedding (mentioned earlier). Charikar.¢88] obtained the first
O(1)-approximation algorithm fok-median, by rounding the LP relaxation; they
obtained an approximation ratio @%. The approximation ratio was improved to 6
by Jain and Vaziran[ [85], using the primal dual technigubafikar and Guha [38]
further improved the primal-dual approach to obtain a 4raximation. Later Arya
et al. [14] analyzed a natural local search algorithm thaharges up tp centers
in each local move, and provediac% approximation ratio (for any constamt> 1).
Recently, Gupta and Tangwongsan|[74] gave a considerablylified proof of the
Arya et al. [14] result. It is known that the-median problem on general metrics
is hard to approximate to a factor better than- % On Euclidean metrics, the
k-median problem has been shown to admit a PTAS by Arora ét3]. [

Very recently, Hajiaghayi et al. [76] introduced the redémedian problem —
where the vertices are divided into two categories and thexelifferent bounds on
the number of open centers of each type — and obtained a oorfestior approx-

imation algorithm. Their algorithm uses a local search gisingle-swaps for each
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vertex type. The motivation in_[76] came from locating sesvie Content Distri-
bution Networks, where there aiéserver-types and strict bounds on the number
of servers of each type. The red-blue median problem captheecasd™ = 2. It

is unclear whether their approach can be extended to neikigiver types, since
the local search with single swap for each server-type highberhood size:("),
Furthermore, even @ — 1)-exchange local search has large locality-gap— see Sec-
tion[9.5. Hence it is not clear how to apply local searciMtatroidMedian, even

in the case of a partition matroid. [[76] also discusses tfiedlty in applying the
Lagrangian relaxation approach (seel[85]) to the red-bladiam problem; this is
further compounded in thBlatroidMedian problem since there are exponentially
many constraints on the centers.

The most relevant paper to ours with regard to the roundichnigue is
Charikar et al.[[39]: our algorithm builds on many ideas usedheir work to
obtain our approximation algorithm.

For the penalty:-median problem, the best known bound &-approximation
due to Hajiaghayi et al. [76] that improves upon a previdkapproximation due to
Charikar and Guha [38]. Hajiaghayi et al. also consider #veafty version of the
red-blue median problem and give a constant factor appiatidm algorithm.

The knapsack median problem admits a bicriteria approximagtio via the
filtering techniquel[98]. The currently best known tradd88] implies for any= >

0, a (1 + %)—approximation in the connection costs while violating Kmapsack
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constraint by amultiplicative (1 + ¢) factor. Charikar and Guha [B8] also shows
that for eacte > 0, itis not possible to obtain a trade-off better tfan+ 1, 1 + )
relative to the natural LP. On the other hand, our resultiesm(16, 1+-¢)-tradeoff

in n®(/) time for eache > 0; this algorithm uses enumeration combined with
the natural LP-relaxation. As mentioned in [76], &flog n)-approximation is
achievable for knapsack median (without violation of thegsack constraint) via

a reduction to tree-metrics, since the problem on treestadni®TAS.

Preliminaries

The input to theMatroidMedian problem consists of a finite set of verticésand

a distance functiod : V' x V' — Rx>( which is symmetric and satisfies the triangle
inequality, i.e.d(u,v) + d(v,w) > d(u,w) for all u,v,w € V. Such a tupléV, d)

is called a finite metric space. We are also given a matdjadvith ground set/
and set of independent setéM) C 2V. The goal is to open an independent set
S € J(M) of centers such that the sum,, ., d(u, S) is minimized; herel(u, S) =
min,ecg d(u,v) is the connection cost of vertex We assume some familiarity with
matroids, for more details see eg. [121].

In the penalty version, additionally a penalty functpnl” — R is provided
and the objective is now modified to minimize, . d(u, S)(1—h(u))+p(u)h(u).
Hereh : V — {0, 1} is an indicator function that i$ if the corresponding vertex
is not assigned to a center and therefore pays a penalty atie:rwise.

The KnapsackMedian problem (aka weightetd’-median[76]) is similarly de-
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fined. We are given a finite metric spa€¥, d), non-negative weight$f;}icv
(representing facility costs) and a bouhd The goal is to open centets C V
such thaty ;¢ f; < F and the objective)_, .- d(u, S) is minimized (Section

©.4).

9.1.1 An LP Relaxation for MatroidMedian

In the following linear programy, is the indicator variable for whether vertex
v € V is opened as a center, ang, is the indicator variable for whether ver-
tex u is served by center. Then, the following LP is a valid relaxation for the

MatroidMedian problem.

minimize > "~ " d(u, v)2u, (LPy)
ueV veV
subjectto» ~ zy, = 1 YueV (9.1.1)
veV
Tup < Yo VueVveV (9.1.2)
o <rn(S)  VSCV (9.1.3)
veS
Ty Yo > 0 Vu,veV (9.1.4)

If =, andy, are restricted to only take valu@sor 1, then this is easily seen
to be an exact formulation favatroidMedian. The first constraint models the
requirement that each vertaxmust be connected to some cenigand the second

one requires that it can do so only if the centés opened, i.ex,, = 1 only if y, is
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also set tal. The constraintd (9.1.3) are the matroid rank-constrairthe centers:
they model the fact that the open centers form an indepersdtnwith respect to
the matroidM. Herery : 2V — Z>¢ is therank-functionof the matroid, which
is monotone and submodular. The objective function examtasures the sum of
the connection costs of each vertex. (It is clear that givéegirrally open centers
y € {0,1}V, each vertex. € V setsz,,, = 1 for its closest center with 3, = 1.)
Let Opt denote an optimal solution of the givéhatroidMedian instance, and let

LPOpt denote the LP optimum value. From the above discussion, wethat,

Lemma 9.1.1. The LP cost POpt is at most the cost of an optimal soluti@pt.

9.1.2 Solving the LP: The Separation Oracle

Even though the LP relaxation has an exponential number mftraints, it can
be solved in polynomial time (using the Ellipsoid method$uaming we can, in
polynomial time, verify if a candidate solutiofx, y) satisfies all the constraints.
Indeed, consider any fractional solutign, y). Constraints[(9.1]11), and (9.1.2) can
easily be verified irO(n?) time, one by one.

Constraint[(9.113) corresponds to checking if the fracti@olution{y, : v €
V'} lies in the matroid polytope foM. Checking [(9.1.13) is equivalent to seeing

whether:

min (rM(S) - Z%) > 0.

- vES

Since the rank-functiom) is submodular, so is the functiof(.S) := ry(S) —
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Y ves Yv- So the above condition (and hente (9.1.3)) can be checked ssb-

modular function minimization, ed.[82,121]. There ar@aitore efficient methods
for separating over the matroid polytope — refer(to [121]rfwre details on effi-
ciently testing membership in matroid polyhedra. Thus we aatain an optimal

LP solution in polynomial time.

9.2 The Rounding Algorithm for MatroidMedian

Let (z*,y*) denote the optimal LP solution. Our rounding algorithm dstssof
two stages. In the first stage, we only alter ifje variables such that the modified
solution, while still being feasible to the LP, is also vepasse in its structure.
In the second stage, we write another LP which exploits tlaesspstructure, for
which the modified fractional solution is feasible, and thgotive function has not
increased by more than a constant factor. We then procedatothat the new LP
in fact corresponds to an integral polytope. Thus we canimltaintegral solution

where the open centers form an independent saf,adind the cost i©)(1)LPOpt.

Stage I: Sparsifying the LP Solution

In the first stage, we follow the outline of the algorithm ofaCikar et al.[[39], but
we can not directly employ their procedure because we c#elfeonsolidate the
y,, variables in an arbitrary fashion (since they need to satisf matroid polytope

constraints). Specifically, step (i) below is identical he first step (consolidating
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locations) in[[39]. The subsequent stepg.in [39] do not apjpige they consolidate
centers; however using some ideas from [39] and with somgiawial work, we

obtain the desired sparsification in steps (ii)-(iithout altering they*-variables

Step (i): Consolidating Clients. We begin with some notation, which will be
useful throughout the paper. For each veutelet LP,, = > i, d(u,v)z}, denote
the contribution to the objective functidrtPOpt of vertexu. Also, letB(u,r) =
{v € V|d(u,v) < r} denote the ball of radius centered at vertex. For any
vertexu, we say thatB (u, 2LP,,) is thelocal ball centered at:.

Initialize w, <« 1 for all vertices. Order the vertices according to non-
decreasingd.P,, values, and let the ordering heg, us, ..., u,. Now consider the
vertices in the ordeti;, us, . . . , u,. For vertexy;, if there exists another vertex
with j < i such thaid(u;, u;) < 4LP,,, then setw,; < wy; + 1, andwy, < 0.
Essentially we can think of moving; to u; for the rest of the algorithm (which is
why we are increasing the weight of and setting the weight af; to be zero).

After the above process, I8 denote the set of locations with positive weight,
ie. V! = {v|w, > 0}. For the rest of the paper, we will refer to vertices in
V' asclients By the way we defined this set, it is clear that the followimgt

observations holds.
Observatior9.2.1 Foru,v € V', we haved(u,v) > 4 max(LP,, LP,).
This is true because, otherwise, if (without loss of geritgdal P, > LP,, and

d(u,v) < 4LP,, then we would have movedto « when we were considering
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Observatior.2.2

Z Wy Z d(u,v)z;, < Z Z d(u,v)x,

ueV’ veV ueV veV

This is because, when we move vertexto u;, we replace the term corre-
sponding td_P,,, (in the LHS above) with an additional copy of that correspogd
toLP,;, and we know by the vertex ordering tHek,,, > LP,;.

Also, the following lemma is a direct consequence of Markomequality.

Lemma 9.2.3. For any clientu € V', 37 g, 21p,) Zuv = 1/2. In words, each
client is fractionally connected to centers in its local Io@l at least an extent of

1/2.

Finally, we observe that if we obtain a solution to the newi@lreed) instance
and incur a cost of’, the cost of the same set of centers with respect to the afigin
instance is then at most + 4LPOpt (the additional distance being incurred in
moving back each vertex to its original location).

We now assume that we have the weighted instance (with sliéht and are
interested in finding a set C V' of centers to minimiz&_ ., wyd(u, S). Note
that centers may be chosen from the entire verteX/seind are not restricted to
V’. Consider an LP-solutiof!, y*) to this weighted instance, wherg,, = z7;,
forallu € V', v € V. Note that(z!, y*) satisfies constraint§ (9.1.1)-(9.1.2) with

u ranging overl/’, and also constraint (9.1.3); so it is indeed a feasibleitraal
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solution to the weighted instance. Also, by Observation?).the objective value
of (x1,y*) is Y, cpr Wu D yey d(u,v)zy, < LPOpt, i.e. at most the original LP
optimum.

After this step, even though we have made sure that the sliarg well-
separated, a client € V' may be fractionally dependent on several partially open
centers, as governed by the, variables. More specifically, it may be served by
centers which are contained in the b8Mu, 2LP,,), or by centers which are con-
tained in another baiB(«’, 2LP,,/), or some centers which do not lie in any of the
balls around the clients. The subsequent steps furthetigrtipe structure of these

connections.

Remark: To illustrate the high-level intuition behind our algorith suppose
it is the case that for all. € V’, clientu is completely served by centers inside
B(u,2LP,). Then, we can infer that it is sufficient to open a center imsdch of
these balls, while respecting the matroid polytope comtaSince we are guaran-
teed that fow, v € V’, B(u, 2LP,)NB(v, 2LP,) = 0 (from Observatiof 9.211), this
problem reduces to that of finding an independent set in tleesection omatroid
M and thepartition matroiddefined by the ball§B(u, 2LP,,) |u € V'} ! Further-
more, the fractional solutiofx*, y*) is feasible for the natural LP-relaxation of the
matroid intersection problem. Now, because the matroigrgaiction polytope is
integral, we can obtain an integer solution of low cost (ietato LPOpt).

However, the vertices may not in general be fully served lyears inside their
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corresponding local balls, as mentioned earlier. Nevlrtise we establish some
additional structure (in the next three steps) which ersalreo reduce to a problem
(in Stage 1) of intersecting matroii with somelaminar constraintyinstead of

just partition constraints as in the above example).

Step (ii): Making the objective function uniform & centers private. We now
simplify connections that any vertex participates outside local ball. We start
with the LP-solution(z', y*) and modify it to another solutiof?, y*). Initially
setz? « zl.

(A). For any clientu that depends on a centewhich is contained in another
client «”’s local ball, we change the coefficient of,, in the objective function
from d(u, v) to d(u,u’). Because the clients are well-separated, this changes the

total cost only by a small factor. Formally,

d(u,v) > d(u,u’) —2LP, Sincev € B(u,2LP,,/)
> d(u,u') — d(u,u)/2 From Obg9.2]1

> (1/2)d(u,u’)

Thus we can write:

Z Wy, Z d(u,u’) Z z2, (9.2.5)

ueV’ u' eV \u veB(u!,2LP /)

<2 Z Wy, Z Z d(u,v)x}w

ueV’ uw' eV \uveB(u 2LP,/)
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(B). We now simplify centers that are not contained in any locH]) bad ensure
that each such center has only one client dependent on itsid@nany vertex
v € V which does not lie in any local ball, and has at least two tdielependent
on it. Let these clients bey, u1, ..., u; ordered such that(ug,v) < d(uq,v) <

. < d(ug,v). The following claim will be useful for re-assignment.

Claim9.2.4 Forall: € {1,...,k}, d(u;,ug) < 2d(u;,v). Furthermore, for any

vertexv’ € B(ug,2LP,,), d(u;,v") < 3d(u;,v).

Proof. From the way we have ordered the clients, we know #at,v) >
d(ug,v); sod(ui,up) < d(u;,v) + d(ug,v) < 2d(u;,v) foralli € {1,--- ,k}.
Also, if v is some center ifB(ug, 2LP,,), then we havel(u;,v") < d(u;,ug) +
2LP,, < (3/2)d(u;,up), where in the final inequality we have used Observa-

tion[@9.2.1. Therefore, we hav&u;,v') < 3d(u;,v) for anyv’ € B(ug, 2LP,,),

which proves the claim. [

Now, for eachl < i < k, we remove the connectiofu;, v) (ie. 22, < 0)
and arbitrarily increase connections (for a total extem) to edges(u;,v') for
v € B(ug,2LP,,) while maintaining feasibility (i.erfw, < y,). But we are
ensured that a feasible re-assignment exists becausediyr @dientu;, the extent
to which it is connected outside its ball is at mdgR, and we are guaranteed
that the total extent to which centers are opene®(no, 2LP,,,) is at leastl /2
(Lemma[9.2.B). Therefore, we can completely remove any ection u; might

have tov and re-assign it to centers B(uo, 2LP,,,) and for each of these reassign-
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ments, we usé(u;, up) as the distance coefficient. From Cldim 912.4 and observing
that the approximation on cost is performeddisjoint set of edges ifA) and(B),

we obtain that:

Z Wy, Z d(u,v)z?, <2 Z Wy, Z d(u,v)x},. (9.2.6)

ueV’ veV ueV’ veV

After this step, we have that for each centarot contained in any ball around
the clients, there is only one client, saywhich depends on it. In this case, we
say thatv is a private centerto clientu. Let P(u) denote the set of all vertices
that are either contained iB(u,2LP,,), or are private to client.. Notice that
P(u) NP(u') = 0 for any two clientsu, v’ € V'. Also denoteP*(u) := V \ P(u)
for anyu € V.

We further change the LP-solution fro?, y*) to (2, y*) as follows. Inz?

we ensure that any client which depends on centers in otieet€llocal balls, will
in fact dependnly on centers in the local ball of its nearest other client. For a
client u, we reassign all connections (i) to P¢(u) to centers ofB(u’, 2LP,/)
(in 2®) where/ is the closest other client to. This is possible because the total
reassignment for each client is at most half and every Ibalilhas at least half unit
of centers. Clearly the value ¢f*,y*) under the new objective is at most that of
(z%,y*), by the way we have altered the objective function.

Now, for eachu € V7, if we letn(u) € V' \ {u} denote the closest other client

to u, thenu depends only on centersi{u) andB (n(u),2LP,,)). Thus, the new
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objective value of z?, y*) is exactly:

S w, ( S dwv)ad, + dlu, ()1 - Y 3))

ueV’ veEDP(u) veP(u)

< 2.LPOpt (9.2.7)

Observe that we retained for eache V' only thez,,-variables withv € P(u);
this suffices because all othey,,-variables (withw € P¢(u)) pay the same coef-
ficientd(u,n(u)) in the objective (due to the changes madéAh and(B)). Since
the cost of the altered solution is at most thaf.of, y*), we get the same bound of
2LPOpt.

Furthermore, for any client which depends on a private centerc P(u) \
B(u,2LP,), it must be thatd(u,v) < d(u,n(u)); otherwise, we can re-assign
this (uv) connection to a center € B(n(u), 2LP,,)) and improve in the (altered)
objective function; again we use the fact thanight depend of?(u) \ B(u, 2LP,,)
to total extent at most half an®(n(u), 2LP, ) has at least half unit of open
centers.

To summarize, the above modifications ensure that fradtemiation (23, y*)

satisfies the following:

(i) For any two clientsu, v’ € V', we haved(u,u') > 4max(LP,,LP,/). In

words, this means that all clients are well-separated.

(i) For each center that does not belong to any b&u, 2LP,,), we have only
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one client that depends on it.

(i) Each clientw depends only on centers in its ball, its private centers, and
centers in the ball of its nearest client. The extent to whickepends on

centers of the latter two kinds is at mast.

(iv) If client u depends on a private center d(u,v) < d(u,u’) for any other

clientu’ € V.

(v) The total cost under the modified objective is at nbst POpt.

Step (iii): Building Small Stars. Let us modify mapping; slightly: for each
u € V', if it only depends (under LP solutiar®) on centers irP(u) (ie. centers
in its local ball or its private centers) then resgu) < u. Consider a directed
dependency graph on just the cliedt§ having arc-sef (u, n(u))|u € V', n(u) #
u}. Each component will almost be a tree, except for the passkistence of
one2—cyclg (see Figur¢ 9.211). We will call sucticyclespseudo-roots If there
is a vertex with no out-arc, that is also called a pseudo-r@serve that every
pseudo-root contains at least a unit of open centers.

The procedure we describe here is similar to the reductioi3devel trees”
in [39]. We break the trees up into a collection of stars, laydrsing the trees in
a bottom-up fashion, going from the leaves to the root. Fgraan(u,u’), we say

thatv' is theparentof u, andw is achild of v/. Any clientu € V' with no in-arc

In general, each component might have one cycle of any lebgthsince all edges in a cycle
will have the same length, we may assume without loss of gdihethat there are only 2-cycles.
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is called aleaf. Consider any non-leaf vertexwhich is not part of a pseudo-root,

such that all its children are leaves. Lét* denote the parent of.

1. Suppose there exists a chilg of u such thatd(ug, u) < 2d(u,u®), then
we make the following modification: let; denote the child ofu that is
closest tou; we replace the directed afe,u°"t) with (u,u;), and make
the collection{u, u; } (which is now a&2-cycle), a pseudo-root. Observe that
d(ug,u) > d(u,u’") because: chose to direct its arc towards$"* instead

of ug.

2. If there is no such child,, of u, then for every childu'™ of u, replace arc
(u™, u) with a new ardu’, u°t). In this processy has its in-degree changed

to zero thereby becoming a leaf.

pseudo-root

Figure 9.2.1: The Dependency Tree: Dashed edges represent private centers,
circles represent the local balls

Notice that we have maintained the invariant that there areut-arcs from any
pseudo-root, and every node has at most one out-arc. Defipgimgar : V' — V'

as follows: for eachu € V’, seto(u) to u’s parent in the final dependency graph (if
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it exists); otherwise (if: is itself a pseudo-root) set(u) = w. Note that the final

dependency graph is a collection of stars with centers aglpseots.

Claim9.2.5 For eachw € V', we haved(w, o(w)) < 2 - d(w, n(w)).

Proof. Suppose that whew is considered as vertex in the above procedure,
step 1 applies. Then it follows that the out-arcuofs never changed after this, and
by definition of step 1d(w,o(w)) < 2 - d(w,n(w)). The remaining case is that
whenw is considered as vertex step 2 applies.

Then from the definition of steps 1 and 2, we obtain that theeedirected path
(w = wp, w1, ,wy) in the initial dependency graph such thgiv) = w; and
o(w) = wy. Letd(w,n(w)) = d(wg, w1) = a.

We claim by induction ori € {1,--- , ¢} thatd(w;, w;_1) < a/2°~1. The base
case ofi = 1 is obvious. For any < t, assumingl(w;, w;_1) < a/2'~!, we will
show thatd(w;1,w;) < a/2'. Consider the point whem'’s out-arc is changed
from (w, w;) to (w, w;4+1); this must be so, since’s out-arc changes frorfw, w; )
to (w, w;) through the procedure. At this point, step 2 must have oeduat node
wj, andw;_; must have been a child af;; henced(w;11,w;) < % cd(wi,wi—1) <
a/2t.

Thus we havel(w,o(w)) < Yi_; d(wi,wi—1) < a>i ) 547 < 2a =2

d(w, n(w)). u

At this point, we have a fractional solutiofw?,y*) that satisfies con-
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straints [(9.1.11)E(9.114) and:

Swa | Y dluwv)ad, +dw o)1~ Y ad,)

ueV’ vEP(u) veEP(u)
< 4.LPOpt (9.2.8)

The inequality follows from[(9.2]7) and Claim 9.2.5.

Stage Il: Reformulating the LP

Based on the star-like structure derived in the previousettipn, we propose
another linear program for which the fractional soluti@r¥, y*) is shown to be
feasible with objective value as in (9.2.8). Crucially, wil show that this new LP
is integral. Hence we can obtain an integral solution to ¢adt at most - LPOpt.
Finally we show that any integral solution to our reformatht.P also corresponds
to an integral solution to the originMatroidMedian instance, at the loss of another
constant factor.

Consider the LP described in Figlre 9]2.2.

The reason we have added the constfaint 9/2.10 is the folipvin the objec-
tive function, each client incurs only a cost @fu, o(u)) to the extent to which
a private facility from®(u) is not assigned to it. This means that in our integral
solution, we definitely want a facility to be chosen from tlsepdo-root to which
u is connected if we do not open a private facility frabgu); this fact becomes

clearer later. Also, this constraint does not increase fhienal value of the LP, as
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minimize Zwu Z du,v)z, + d(u,o(u))|1- Z Zy

ueV’ veP(u) veDP(u)

(LP2)

subjectto ) z, <1 VueV’ (9.2.9)
veP(u)

Z Zy + Z Zy > 1 V pseudo-roots{uy , us } (9.2.10)
veP(u1) veP(u2)

>z <ma(S) VSCV (9.2.11)
veS

2 > 0 VoevV (9.2.12)

Figure 9.2.2: Stage Il LP Relaxation

shown below.

Claim9.2.6 The linear progranh.P, has optimal value at mogt- LPOpt.

Proof. Consider the solution defined as:z, = min{y}, 23,} = 22, for all
v € P(u) andu € V’; all other vertices have-value zero. It is easy to see that
constraints[(9.2]9) an@(9.2]11) are satisfied.

Constraint[(9.2.70) is also trivially true for pseudo-mabnsisting of only one
client. Else, le{u;,us} be any pseudo-root consisting of two clients. Recall that
eachu € {uy,us2} is connected to centers in bél(u, 2LP,) C P(u) to extent at

least half; hence the totatvalue insideP(u;) U P(ug) is at least one. Thusis

feasible forLP,, and by [(9.2.B) its objective value is at mdstLPOpt. [ ]

We show next thaltP, is in fact, an integral polytope.

Lemma 9.2.7. Any basic feasible solution 1P, is integral.
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Proof. Consider any basic feasible solutienFirstly, notice that the characteristic
vectors defined by constrainis (9]2.9) and (9.2.10) defiaenanlar family, since all
the setsP(u) are disjoint.

Therefore, the subset of these constraints that are tighatigfied by define
a laminar family (of mostly disjoint sets). Also, by standlarncrossing argu-
ments (see egl [121]), we can choose the linearly-indepersis of tight rank-
constraints[(9.2.11) to form a laminar family (in fact evechain).

But then the vector is defined by a constraint matrix which consiststwb
laminar familieson the ground set of vertices. Such matrices are well-knawn t
be totally unimodular[[121], and this fact is used in proving the integrality of the
matroid-intersection polytope. For completeness, weiraith proof of this fact

next. This finishes the integrality proof. [

Proof of TU-ness of Double Laminar Family We now show that such a matrix
is totally unimodular For this we use the following classical characterizatién:
matrix A is totally unimodular if, for each submatri&’, its rows can be labeleg1
or —1 such that every column sum (when restricted to the row# i either+1, 0,
or —1. Consider such a submatri¥. Clearly, we have chosen some constraints out
of two laminar families, so the chosen rows also corresporgbime two laminar
families.

Consider one of these laminar famili€s We can define a forest by the fol-

lowing rules: We have a node for each set/tight-constraint.i NodesS andT'
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are connected by a directed edge fréito 7', iff 7" C S, and there exists no tight
constraint?” € £\ {S,T} such thatl’ C 7" C S. Then, we can label each set
of £ in the following manner: each node of an odd level gets a laldiehnd labels
of an even levels are 1 (say roots has level df, and its children have levél and
so on). By the laminarity, we know that a variakigeappears in all the tight con-
straints which correspond to nodes on a path from some rasairnte other node.
By the way we have labeled these constraints, we know thasaety sum is either

+1, or0 (see Figur€ 9.213).

Figure 9.2.3: Labeling the laminar family

Similarly, we can label each set of the second laminar failyn the opposite
fashion: each node of an odd level gets lab&land nodes of even levels getl.
Again, z, appears in all the tight constraints corresponding to nodespath from
some root to some node, and the sum of these labels is either 0. Therefore,
the total sum corresponding to the column fgris either+1, 0, or —1, which
completes the proof.

It is clear that any integral solution feasible fbP, is also feasible for
MatroidMedian, due to[(9.2.111). We now relate the objectiveL Py to the original

MatroidMedian objective:
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Lemma 9.2.8. For any integral solutionC' C V to LP,, the MatroidMedian ob-

jective value unde€’' is at most3 times that it was paying in thieP, solution.

Proof. We show that each client € V' pays inMatroidMedian at most 3 times
that inLP,. Suppose thaf' N P(u) # 0. Thenu’s connection cost is identical to its
contribution to the_P, solution’s objective. Therefore, we assutie) P(u) = (.

Suppose that is not part of a pseudo-center; lgt,, us} denote the pseudo-
center thatu is connected to. By constraint_(9.2110), there is somec
C(N(P(u1) UP(uz)). The contribution ofu is d(u,o(u)) in LP2 andd(u,v)
in the actual objective function foMatroidMedian. We will now show that
d(u,v) < 3-d(u,o(u)).

Without loss of generality let-(u) = wu; and suppose that € P(ug); the
other case o € P(u;) is easier. From the property of private centers, we know
d(ug,v) < d(ug,n(u2)) < d(ug,u1). Now if (uq,us) is created as a new pseudo-
root in step (iii).1, then we have the property thigt,,, us) < d(uq,u), since we
choose the closest leaf to pair up with its parent to form agseoot. Elséu, us)
is the original pseudo-root even before the modificationstep (iii). Thus in that
case, by definitiond(uy,u2) = d(u1,n(u1)) < d(uy,u). Therefore,d(u,v) <
d(u,ur) + d(ug, uz) + d(uz,v) < d(u,ur) + 2 - d(ug,uz) < 3-d(u,u) =
3-d(u,o(u)).

If  is itself (a singleton) pseudo-center then it must be @at P(u) # (

by (9.2.10), contrary to the above assumption.«Ifs part of a pseudo-center
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{u,v'}. Then it must be that there is somee C N P(u'), by (9.210). The
contribution of u in LPy is d(u,o(u)), and in MatroidMedian is d(u,v) <
d(u,u")+d(u',v) < 2-d(u,u') = d(u,o(u)) (the second inequality uses property

of private centers). [

To make this result algorithmic, we need to obtain in polyr@ftime an extreme
point solution toLP,. Using the Ellipsoid method (as mentioned in Secfion 9.1.2)
we can indeed obtaisomefractional optimal solution t&.P,, which may not be
an extreme point. However, such a solution can be convested £xtreme point
of LP,, using the method in Jain [83]. (Due to the presence of bgthdnd “>"
type constraints i (9.2.9)-(9.2]10) it is not clear wheth, can be cast directly
as an instance of matroid intersection.)

Altogether, we obtain an integral solution to the weightestance fronstep

(i) of cost< 12 - LPOpt. Combined with the property atep (i), we obtain:

Theorem 9.2.9. There is a 16-approximation algorithm for thdatroidMedian

problem.

We have not tried to optimize the constant via this approatdwever, getting
the approximation ratio to match that for uséamedian would require additional

ideas.
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9.3 MatroidMedian with Penalties

In the MatroidMedian problem with penalties, each client either connects to an
open center thereby incurring the connection cost, or pgysnalty. Again, we
are given a finite metric spadé’, d), a matroidM with ground sef’ and a set
of independent set§yM) C 2"; in addition we are also given a penalty function
p: V — R>(. The goal is to open centes € J(M) and identify a set of clients
Cisuch thaty’ ., d(u,S) + 3-,c1n\ ¢, P(u) is minimized. Such objectives are
also called “prize-collecting” problems. In this sectior give a constant factor ap-
proximation algorithm foMatroidMedian with penalties, building on the rounding
algorithm from the previous section.

Our LP relaxation is an extension of the oné’() for MatroidMedian. In
addition to the variable$y,; v € V} and{x,,; u,v € V}, we define for each
client an indicator variablé, whose value equalsif client u pays a penalty and

is not connected to any open facility. Then, it is straightfard to see that the
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following LP is indeed a valid relaxation for the problem.

min > Y " d(u,v)zwt Y pu)hy  (LP3)

ueV veV ueV
S D Tupt+hy=1 YueV (9.3.13)
veV
T < Yy YVueViveV (9.3.14)
>y < () VSCV (9.3.15)
veS
Ty Yus By =0 Yu,veV (9.3.16)

Let Opt denote an optimal solution of the given pendif\atroidMedian in-
stance, and ldtPOpt denote thd P5; optimum value. Sinc&P; is a relaxation of

our problem, we have that,

Lemma 9.3.1. TheLP3 costLPOpt is at most the cost of an optimal solutiQpt.

Let (z*, y*, h*) denote the optimal LP solution. We round the fractional-vari
ables to integers in two stages. In the first stage, arilyh* variables are al-
tered such that the modified solution is still feasible buarsp and has a cost
that isO(1)LPOpt. This stage is similar in nature to the first stage rounding fo
MatroidMedian but we need to be careful when comparing ig’s and they,’s
— the primary difficulty is that for any client, the sum})_, x,, is not1. Typ-
ically, this is the case in most LP-based prize-collectingbfems, but often, one

could argue that ify >, x,, > 2/3, then by scaling we could ensure that it is at
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least1; thereforethe (scaled) LP would be feasible to the original problenth{wi
out penalties). However, in our case (and dlsmedian with penalties) since we
also have packing constraints (the matroid rank consgrisimply scaling the
fractional solution is not a viable route.

Once we handle these issues, we show that a new LP can benvioitterhich
the modified fractional solution is feasible. The constaf this LP are identical
to that forMatroidMedian; but the objective function is different. Since that poly-
tope is integral (Lemm@a9.2.7) we infer that the new LPNtrtroidMedian with
penalties is integral. This immediately gives us the camndigctor approximation

for MatroidMedian with penalties. We now get into the details.

Stage |: Sparsifying the LP Solution

Like in the matroid median setting, the goal in this stageoisugue that there
exists asparsefractional solution of near optimal cost. This will enabketo write

another LP, which will be characterized by an integral pmbhg

Step (i): Thresholding Penalties.

Let € denote the set of clients paying a penalty at most to an egfeht4 in
the fractional solution, i.e¢ = {u € V |}, < 1}. For each client € V' \ €, we
round itsh? to one and set’, to zero for allv € V. Let (z!, h!,y*) denote this

modified solution. We make the following observations:

Observatior.3.2 After the above thresholding operation, the following ineli
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ties are satisfied.
LVueC Y pal, >3
2.Vuee hl <1

3. Yuev (Xuey whyd(u, v) + hip(u)) < 4LPOpt
4. Yu,v € V,if 2L > 0thenp(u) > d(u,v).

5. Yu,v € V,if L, > 0thenzl, = y* orhl = 0.

w

Here, the second-to-last property is true because of ttefiolg: For any client
u € V and centew € V, if xL, > 0 andd(u,v) > p(u), then we can increase,
to hl + !, and setr), = 0. Such a modification maintains feasibility and only
decreases the objective function value.

The final property can be seen from the following argumentabsep(u) >
d(u,v), wheneverzl, > 0, we can increase the connection variablg and de-
creaseh) equally without increasing the objective function urtj] becomes) or

xl, hitsyr.

Step (ii): Clustering Clients.

Let |€| = n'. For each client. € C, letD,, = 3" _, duyz, denote the frac-

veV
tional connection cost of client and X, = 3", ., z,, denote the total fractional
assignment towards connection. Also Bfu, R) = {v € V |d(u,v) < R} de-

note the ball of radiug centered at.. For any vertex:, we say tha®(u,4D,,) is
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the ‘local ball' centered at. The following is a direct consequence of Markov’s

inequality and Observatidn 9.8.2-(1).

Lemma 9.3.3. For any clientu € €, 3 c3(,.4p,) zl, > 1. Inwords, each client

is fractionally connected to centers in its local ball to attent of at least /2.

Now order the clients according to non-decreasingvalues, and let the or-
dering beuy, us, . .., u, . Consider the vertices in the ordey, us, ..., u, . Fora
vertexu;, if there exists a vertex; with j < i such thatd(u;, u;) < 8D,,, then
we denote this event by; — u; and modify the instance by shifting the location
of clientu; to u;.

For each client;, definer(u;) = w; iff w; - w;, andn(u;) = u; if u; was
not shifted. Letl”’ = 7(C) denote the set of clients that maintain their own local
balls (i.e were not shifted in the above process). For eachl”’, letC,, := {u’ €
Clw(u") = u}. The new instance consists (@, | clients located at each vertex

u € V' having respective penalty valugs(u/)|u’ € C,}.
Observatior9.3.4 Foru,v € V', we haved(u,v) > 8 max(D,, D,).

We obtain a feasible solutiofx:?, h2,y*) to this modified instance as follows.

For each event; — u;, do:

Case (i): If X, < X, : Start withz7 , = 0 for all v. Then, for each vertex
with 27, > 0, connectu; to an extent ofr,, , to v, i.e. setr; , = z, . Finally,

sethl = h,,

u

1
S <hlL.
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Case (ii): If X, > X, : Startwithz7 , = 0 for all v. For eachv with z, , > 0,
connectu; to an extent ofr, , to v, i.e. setz;, = z,,. SinceX; < X,,
we need to further conneat; to other centers to extent of at leasf, — X&J_ in
order to avoid increasing,,,. To this end, set? , = ., for all w € V with
. = 0. Observe that client; is now connected to extent at leak, ; so
h2 <1-X. =h}.

Also if a client is not shifted in the above routine, it$, h* variables are the

same as inc!, h!. The following lemma certifies that the objective of the niiedi

instance is not much more than the original.

Lemma 9.3.5.

SIS a2, - din(u),v) + 12 -p<u>] <y [10 S aly - d(u,v) + bl - plu)

ueC LveV uel veV

Proof. We prove the inequality term-wise. Any client that is notft&d in the
above process maintains its contribution to the objectivetion. Hence consider
a clientu; that is shifted tou; (ie. u; — u;). Itis clear thathZ < h; , so the
penalty contributiorh? - p(u) < hl - p(u). There are two cases for the connection

costs:

Case (): X,, < X, .
In this case we have)" . 22  d(m(u;),v) = > o 22 ,d(uj,v) =

ZUGV wijvd(uj7v) - Duj S Duz
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Case (ii): X, > X, -

Here, note that3 , < z,,, + ., forallv € V. So,

veV
<D e g v) + Y wy, - dlug
veV veV
1
< Dy; + Z Toyw - A(uis v) (Z x,, v) d(uj,u;)
veV veV

< Dy; + Dy, + d(uj, u;) <10 - Dy,

Hence in either case, we can bound the new connection cdst bg,,, . [ ]

Thus it follows that(z2, k2, y*) is a feasible LP solution to the modified in-
stance of objective value at mosi LPOpt. We additionally ensure (by locally

changingz?, h?) that condition 4 of Observatidn 9.8.2 holds, namely:

Vu e V' u' € Cy,v €V, if 22, > 0thend(u,v) < p(u'). (9.3.17)

Note that any feasible integral solution to the modifieddnse corresponds to
one for the original instance, wherein the objective insesaby at most an additive
term of8 - 3 e Dy < 8- LPOpt. Hence in the rest of the algorithm we work
with this modified instance.

Next we modify the connection-variables (leaving penalgyiablesh? un-
changed) of clients exactly as step (ii) of the previous section, and also alter
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the coefficients of some variables just like in the algorithm fdvlatroidMedian.
This results in a disjoint set of private centét&.) for eachu € V' (whereP(u)
can be thought of as the collection of all private centersufoe C,,; notice that
these are disjoint for different verticesiiff), and new connection variablés$ such

that:

(a) Each client’ depends only on centef¥w(u’)) and centers in the local ball

nearest tor(u’). The connection to the latter type of centers is at most half.

(b) For any clientu € V' and centew € P(u), we haved(u,v) < d(u,w) for

any other clientv € V',

(c) The total cost under the modified objective is at nddstLPOpt (the factor
2 loss is incurred due to changing the objective coefficients r@arrange-

ments).

(d) For anyu’ € €, v € V with 3, > 0 we haved(r(v'),v) < 3 p(u).
Additionally, forv’ € €, v € P(r(v)) with 23, > 0 we haved(r(u'),v) <

p(u').

The first three properties above are immediate from the spording properties
after step (ii) of Section 912. The last property uses (9)Bahd Claini 9.214.

We now modify the penalty variables as follows (startinghwi = A% and
x® = #3). For each client/, if it is connected to centers in the local-ball of any

w € V'\ {r(u)} then reset®(v’) = 0; and increase the connection-variables
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Yool D dr(w) ), +d(n(u),o(n(w) - (1— Y al)|,
ueC\M |veP(m(u)) veP(m(u))
(9.3.18)

Figure 9.3.4: Modified Objective Function ofz>, h3, y*)

23(v/,-) to centers in the local-ball af until client«’ is connected to extent one.
(Such a modification is possible sincgis already connected to extent at least half
in the local ball ofr(u’), and there is at least half open centers in any local ball.)
Furthermore, using property (d) above, the new objectiveevaf (3, k3, y*) is at

mostthrice that of (3, 3, y*), ie. at mos60 - LPOpt.

Observation9.3.6 Any client«’ that hash?(u’) > 0 is connectednly to centers
in P(w(u)).

We also applystep (iii) from Sectio 9.2 to obtain a mapping: V' — V'
satisfying Claini 9.2J5 (recall that: V' — V' maps each client i’ to its closest
other client). This increases the objective value by at rfaasor 2.

Let M = {«/ € C|h3(v') > 0} denote the clients that have non-zero penalty
variable. For each/ € M let T'(u/) C P(n(u')) denote the centers that client
u’ is connected to (We may assume tfigt’) consists of centers iff(u) closest
to u). The objective of(x3, h3,y*) can then be expressed as in the equation in

Figure[9.3.4. From the arguments above, the cost of thigisplis at mostl 20 -
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5|5 ( > )]

ueM | veT (u) veT (u)
+ > { d(m(u),v) -y, + d(x(w), o (n(u ( > @%
ueC\M | veP(m(u)) veP(m(u))
Figure 9.3.5: Objective Function for Sparse LP
LPOpt.

Stage II: Reformulaing the LP

Reducing center variablesy*. For anyu € V/, if Evefp(u) vy > 1 then we re-
duce they*-values in?(u) one center at a time (starting from the farthest center to
u) until y*(P(u)) = 1. Clearly this does not cause the objective to increase.-Addi
tionally, y* still satisfies the matroid independence constraints. Weisan ensure
thaty~,cp(,) y» < 1forallu € V'. Additionally, the following two modifications

do not increase the objective.

1. Clientw’ € M. For allv € T'(u") we haved(w(u'),v) < p(u’) (property (d)

above); setr®(v/,v) = yz.

2.Clientu € ¢\ M. For alv € P(n(u)) we haved(w(u),v) <

d(m(u),o(m(u))) (property (b) above); again set(u,v) = .

Thus we can re-write the objective from (9.3.18) as shownigure[9.3.5 (which

is just that in Figuré 9.314 with the variables replaced by thevariables). Notice
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that there are na-variables in the above expression. Furthermgtesatisfies all
the constraintd (9.2.9)-(9.2]12). We now consider lineag@mLP, with the lin-
ear objective[(9.3.19) and constrainis (9.2[9)-(9)2.T)is can be optimized in
polynomial time to obtain an optimal integral solutiéh(as described in Subsec-
tion[9.2). From the reductions in the previous subsectiba,abjective value of
F under [9.3.19) is at modt20 - LPOpt. Finally, using Lemma& 9.2.8 we obtain
that I is a feasible solution tMatroidMedian with penalties, of objective at most

360 - LPOpt.

Theorem 9.3.7.There is a constant approximation algorithm fdiatroidMedian

with penalties.

9.4 TheKnapsackMedian Problem

In this section we consider thenapsackMedian problem. We are given a finite
metric spac€V, d), non-negative weight§f; };cy and a bound'. The goal is to
open centerss C V such thaty ;¢ f; < F and the objective_, ., d(u, S) is
minimized. We can write a LP relaxatiohKs) of the above problem similar to
(LP) in Sectio 9.1]1, where we replace the constraint ) Wwith the knapsack
constrainty, _, foyy < F. In addition, we guess the maximum weight facility
fmae USed in an optimum solution, and ff, > f... we sety, = 0 (and hence
Tup = 0 as well). This is clearly possible since there are amlgnany different

choices forf,,..... UnfortunatelyL Ps has an unbounded integrality gap if we do not
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allow any violation in the knapsack constraint. In Subsed8.4, we show that a
similar integrality gap persists even if we add #mapsack-cover (KC) inequalities
to strengther.P5, which have often been useful to overcome the gap of thealatur
LP [33].

However, in the following section, we show that with aaditiveslack of f,,,.
in the budget, we can get a constant factor approximatiothoknapsack median

problem.

The Rounding Algorithm for KnapsackMedian. Let (z*,y*) denote the op-
timal LP solution ofLPs. The rounding algorithm follows similar steps as in
MatroidMedian problem. The first stage is identical to Stage | of Seclion 9.2
modifying x,, variables until we have a collection of disjoint stars wigepdo-
roots. The total connection cost of the modified LP solut®atimost a constant
factor of the optimum LP cost fatPs. The sparse instance satisfies the budget
constraint sincey, variables are never increased. In Stage Il, we start withaa ne
LP (LPg) by replacing the constraifif 9.2J11 bP, with the knapsack constraint
Y vey foze < F. HoweverLPg is not integral as opposed td;: it contains the
knapsack problem as a special case. We now give an iteralaeation proce-
dure that rounds the abolé’g into an integral solution by violating the budget
by at most an additive,,.,, and maintaining the optimum connection cost. The

following algorithm iteratively creates the set of openteesC.

1. Initialize € < (). While V' # () do
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(a) Find an extreme point optimum solutiéno LPs.
(b) If there is a variable,, = 0, then remove variablg,, setV = V' \ {v}.
(c) If there is a variableZ, = 1, thenC < CU {v}, V = V \ {v} and
F=F—f,
(d) If none of (b), (c) holds, anf/| = 2 (sayV = {x1,x2}) then:
o If x1,29 € P(u) for someu € V'. If d(x1,u) < d(xe,u) then
C <+ CU{z1}, elseC + CU {z2}. Break.
o If 21,29 € P(u1) UP(uy) for some pseudo-rodtuy, us}. Then

C + CU{z1,z2}, Break.

2. ReturnC

The following lemma guarantees that the connection cost mast theOpt

cost of LP,4 and the budget is not exceeded by more than an additive.

Lemma 9.4.1. The above algorithm finds a solution for knapsack medianlprob
that has cost at mo€pt cost ofLPg and that violates the knapsack budget at most

by an additivef,,,q:.

Proof. First we show that if the algorithm reaches Step (2), therstietion re-

turned by the algorithm satisfies the guarantee claimedtdp &), we always re-
duce the remaining budget by if we include the center i@. Thus the budget con-
straint can only be violated at Step (d). In Step (d), in cdsiglot V'-constraint, we
open only one center among the two remaining centers. Tleusuttiget constraint
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can be violated by at mostax{ f.,, foy} < fmaz- In case of tight pseudo-root,
we havez(z,) + z(x2) = 1 and thusf,, - 2(z1) + fu, - 2(22) + max {fo,, fu, } <

fz, + fz,. Hence again the budget constraint can be violated by atamostditive
fmaz term. The total cost df Pg never goes up in Step (a)-(c). In Step (d), either
the nearer center frofi1, z2} is chosen (in case of tight’-constraint), or both
the centerdxy, z2} (in case of tight pseudo-root) are opened. Thus the cormecti
cost is always upper bounded Byt of LPg.

To complete the proof we show that the algorithm indeed rea@tep (2).
The Steps (1b),(1c) all make progress in the sense that dueyce the number of
variables and hence some constraints become vacuous amtreneed. Therefore,
we want to show whenever we are at an extreme point soluti@m ¢ither Step
(1b),1(c) apply or we have reached (1d) and hence Step (PpdSe that neither
(1b) nor (1c) apply: then there is ng € {0, 1}. Let the linearly independent tight
constraints defining be: T C V' from (9.2.9), andr (pseudo-roots) froni (9.2.110).
From the laminar structure of the constraints and all rlggmid-sides being 1, it
follows that the sets iff’ | R are all disjoint. Further, each setIhJ R contains at
least two fractional variables. Hence the number of vaeisiis at leas?| 7| + 2| R).
Now count the number of tight linearly independent constsiThere are at most
|T'|+|R)| tight constraints froni (9.219)-(9.2.110), and one globapsack constraint.
Since at an extreme point, the number of variables must eljealumber of tight

linearly independent constraints, we obtgiii+ |R| < 1 and that each set IiU R
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contains exactly two vertices. This is possible only wheis some{x;, z2}.
1. |T| = 1. Then there must be somec V' with 21, 2o € P(u).

2. |R| = 1. Then there must be some pseudo-r¢ot, us} with z1,29 €

ﬁP(ul) @] ﬁP(’uQ)

So in either case, Step (1d) applies. [

Combining Lemm&9.411 with Claiin 9.2.6, Lemina 912.8 and ttoperty of

step (i} Stage-I rounding of Sectidn 9.2, we get the following tiesor

Theorem 9.4.2. There is a 16-approximation algorithm for théapsackMedian
problem that violates the knapsack constraint at most byduditiae f,,,.., where

fmaz 1S the maximum weight of any center opened in the optimunticolu

Using enumeration for centers with cost more thdn, we can guarantee
that we do not exceed the budget by more thdn while maintaining al6-

approximation for the connection costi? () time.

LP Integrality Gap for KnapsackMedian with Knapsack Cover Inequal-
ities
There is a large integrality gap fafPs with a hard constraint for the Knapsack

bound, from Charikar and Guha [38].

Example3 ( [38]). Consider|V| = 2 with f; = N, f, = 1, d(1,2) = D and
I = N for any large positive reald’” and D. An optimum solution that does not
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violate the knapsack constraint can open either cande® but not both and hence
must pay a connection cost of. LPs can assign, = 1 — % andys = 1 and thus

pay only D/N in the connection cost.

The above example can be overcome by addingpsack covering (KC)
inequalities [33]. We now illustrate the use of KC inequalities in the
KnapsackMedian problem. KC-inequalities are used fooveringknapsack prob-
lems. AlthoughKnapsackMedian has a packing constraint (at mastweight of
open centers), it can be rephrased as a covering-knapsamtgbying “at least
> vey fo — F weight of closed centers”. Viewed this way, we can strengtie
basic LP as follows.

Define for any subset of centefsC V, f(S) := > .4 f(v). Then to satisfy
the knapsack constraint we need to close centers worth gt f(V)— F. For any
subsetS C V of centers withf(S) < F’ we can write a KC inequalitassuming

that all the centers if¥ are closed. Then, the residual covering requirement is:

Y min{f(v), F' = f(S)}(1 —y,) = F' = f(5).

vgS

There are exponential number of such inequalities; howaserg methods
in [33] an FPTAS for the strengthened LP can be obtained. Tditian of KC

inequalities avoids examples liké 3; thdré= 1 and settingS = () yields:

min{1, 1} - (1 — 1) + min{l, N} - (1 —y2) > 1,
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ie. y1 + y2 < 1. Thus the LP optimum also has valire

However the following example shows that the integrality gamains high

even with KC inequalities.

Exampled. V = {a;}E, U{b: 2, U{p, ¢, u, v} with metric distances as fol-
lows: vertices{a;}2, (resp. {b;}2,) are at zero distance from each other,
d(ay,b1) = d(p,q) = d(u,v) = D andd(ai,p) = d(p,u) = d(u,a;) = oo.
The facility-costs arg (a;) = 1 andf(b;) = N forall i € [R], andf(p) = f(q) =

f(u) = f(v) = N. The knapsack bound 8 = 3N. MoreoverN > R > 1.

An optimum integral solution must open exactly one centemfreach of
{a;}2 U{bi 2, {p, ¢} and{u, v} and hence has connection cost{ &+ 2)D.

On the other hand, we show that tieapsackMedian LP with KC inequalities
has a feasible solutionwith much smaller cost. Defing(a;) = 1/R andz(b;) =
L= for all i € [N], andz, = z, = z, = z, = 3. Observe that the connection
costis(£ +2) D < 3D. Below we show that is feasible; hence the integrality
gap isQ(R).

z clearly satisfies the constraidt .\ fu - 2, < F. We now show that:
satisfies all KC-inequalities. Recall that = f(V) — F = (R+ 1)N + R for this
instance. Note that KC-inequalities are written only fdosetsS with /' — f(.S) >
0. Also, KC-inequalities corresponding to subsétwith F/ — f(S) > N =
maxy,cy fu reduce ton€S fw - yw < F, which is clearly satisfied by. Thus

the only remaining KC-inequalities are from subsgtwith 0 < F’ — f(S) < N,
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ie. f(S)e[FF—N+1,FF—1=[RN+ R+ 1,(R+1)N + R —1]. Since all
facility-costs are in{1, N} andR < N, subsetS must haveexactlyR + 1 costN
facilities. Thus there are exactly three coétfacilities H in S¢. Sincez,, < % for

allw e V,we havey", (1 —z,) > 3. The KC-inequality fromS is hence:

weH

Z min{f(w)7F/ - f(S)}(l _xw)

wES®

> Y min{f(w),F' = f(S)}(1 - wy)
weH

= (F'=f(8)- Y (1—my) > F' = f(S).

weH

The equality use$” — f(S) < N and that each facility-cost i# is IV, and the

last inequality is by) ", < (1 — z,,) > 2 which was shown above.

9.5 Bad Example for Local Search with Multiple Swaps

Here we give an example showing that any local search dtgorfior theT-server
type problem (ie.MatroidMedian under partition matroid of" parts) that uses at
mostT" — 1 swaps cannot give an approximation factor better thah); heren is
the number of vertices.

The metric is uniform orff” + 1 locations. There are two servers of each type:
Each location{2, 3, ..., T} contains two servers; locationsand?7 + 1 contain a
single server each. For ea¢he [1,T7], the two copies of serverare located at

locations: (first copy) andi + 1 (second copy). There are > 1 clients at each
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locationi € [1, 7] and just one client at locatidfi + 1; hencen = 2T + mT + 1.

The bounds on server-types dre= 1 for all ¢ € [1,7]. The optimum solution is

to pick thefirst copyof each server type and thus pay a connection cost(tie
client at locationT' + 1). However, it can be seen that the solution consisting of
thesecond copypf each server type is locally optimal, and its connectiost om

(clients at locatiorl). Thus the locality gap is» = Q(n/T).
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CHAPTER 10

AdCell: Ad Allocation in Cellular Networks

In this chapter, we develop a novel application of advertiset allocation in cel-
lular networks. With worldwide usage of cellular phones bif@advertisement is
rapidly becoming an attractive alternative to online atisements. In our model,
a wireless service provider (WSP) charges the advertiggrshiowing their ads.
Each advertiser has a valuation for specific types of customerarious times and
locations and has a limit on the maximum available budgethEpmiery is in the
form of time and location and is associated with one indigldzustomer. In or-
der to achieve a non-intrusive delivery, only a limited nembf ads can be sent
to each customer. In this chapter, we show an offline algoriibr this problem,
where the bid values, budgets and customer locations aserkapriori, and WSP
has to decide for each bidder when to show its ads. Here,idesiare based on
historical data, however such offline algorithms often hrldecision making and
also in designing online algorithms. For more details ofdhkne algorithms, the

interested readers are referred to our paper [1].
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10.1 AdCell: An Introduction

More than4 billion cellular phones are now being used world-wide, anthw-
creasing popularity of smart phones, mobile advertisingsthe prospect of sig-
nificant growth in recent future. Some research firnis [3]nesté mobile adver-
tisements to reach a business worth over 10 billion US doligr 2012. Given
the built-in advertisement solutions from popular smarbrh operating systems,
such as iAds for Apple’s iOS, mobile advertising market isspd with even faster
growth.

In the mobile advertising ecosystem, wireless serviceigers (WSPs) render
the physical delivery infrastructure, but so far WSPs haentmore or less left out
from profiting via mobile advertising because of severallehges. First, unlike
web, search, application, and game providers, WSPs typidalnot have users’
application context, which makes it difficult to providegated advertisements.
Deep Packet Inspection (DPI) techniques that examine padaes in order to
understand application context, is often not an option bse®f privacy and legis-
lation issues (i.e., Federal Wiretap Act). Therefore, gatad advertising solution
for WSPs need to utilizenly the information it is allowed to collect by government
and by customer via opt-in mechanisr@&cond, without the luxury of application
context, targeted ads from WSPs requian-intrusive delivery methodsWhile

users are familiar with other ad forms such as banner, searapplication, and
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in-game, push ads with no application context (e.g., via $648 be intrusive and
annoying if not done carefully. The number and frequencydsflaoth need to be
well-controlled. Third, targeted ads from WSPs should b# personalized such
that the users have incentive to read the advertisementsaiadpurchasing ac-
tions, especially given the requirement that the numbedsfthat can be shown to
a customer is limited.

Our proposed advertising solution, Adcell, deals with thewe challenges. It
takes advantage of the detailed real-time location inféionaof users. Location
can be tracked upon users’ consent. This is already being mhosome services
offered by WSPs, such as Sprint's Family Location and AT&8Hasnily Map, thus
there is no associated privacy or legal complications. Tatl® a cellular phone, it
must emit a roaming signal to contact some nearby antenrer tbwt the process
does not require an active call. GSM localization is thenedion muIti—IateratioH
based on the signal strength to nearby antenna masts [18@Jatibn-based ad-
vertisement is not completely new. Foursquare mobile agfitin allows users
to explicitly "check in” at places such as bars and restasrand the shops can
advertise accordingly. Similarly there are also automptaximity-based adver-
tisements using GPS or bluetooth. For example, some GPSlsnioden Garmin
display ads for the nearby business based on the GPS log{liéf)]. ShopAlerts

by AT&T Q is another application along the same line. On the advedide, pop-

1The process of locating an object by accurately computiegtithe difference of arrival of a
signal emitted from that object to three or more receivers.
2http://shopalerts.att.com/sho/att/index.html?reftglo
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ular stores such as Starbucks are reported to have attisigtéficant footfalls via
mobile coupons.

To deal with the non-intrusive delivery challenge, we pisgpaser subscription
to advertising services that deliver onlyfized numberf ads per month to its
subscribers. The constraint of delivering limited numbleads to each customer
adds the main algorithmic challenge in the AdCell modeldietn Sectiol 10.1]1).
In order to overcome the incentive challenge, the WSP cay”“psers to read
ads and purchase based on them through a reward program fiortmnef credit
for monthly wireless bill. To begin with, both customers amdlertisers should
sign-up for the AdCell-service provided by the WSP. Custaenrolled for the
service should sign an agreement that tha&wation information will be tracked;
but solely for the advertisement purpose. Advertisers.(stgres) provide their
advertisements and a maximum chargeable budget to the WSP.

The WSP selects proper ads (these, for example, may depaimdeoand dis-
tance of a customer from a store) and sends them (via SMSg toudtomers. The
WSP charges the advertisers for showing their ad and alsm $accessful ad. An
ad is deemed successful if a customer visits the adverttseel Depending on the
service plan, customers are entitled to receive differemiver of advertisements
per month. Several logistics need to be employed to impra€ell experience
and enthuse customers into participation. More detailedri®ion of such logis-

tics can be found in an extended version of our pager [1].
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10.1.1 AdCell Model & Problem Formulation

In the AdCell model, advertisers bid for individual custasi@ased on their lo-
cation and time. The triplék, ¢,t) wherek is a customer/ is a neighborhood
(location) andt is a time form a query and there is a bid amount (possibly zero)
associated with each query for each advertiser. This definif query allows ad-
vertisers to customize their bids based on customers, Ineighods and time. We
assume a customer can only be in one neighborhood at angypartiime and thus

at any timet and for each customdr, the queriegk, ¢1,t) and(k, ¢2,t) are mu-
tually exclusive, for all distincty, . Neighborhoods are places of interest such
as shopping malls, airports, etc. We assume that queriegearated at certain
times (e.g., every half hour) and only if a customer stay$iwia neighborhood
for a specified minimum amount of time. The formal problemm&éin of Adcell

Allocationis as follows:

Adcell Allocation There arem advertisers,n queries ands customers. Adver-
tiser i has a total budgeB; and bidsb;; for each query;. Furthermore, for each
customerh € [1, s, let S, denote the queries corresponding to custormend cy,
denote the maximum number of queries fi§gfor which advertisements can be
shown.c;, is the capacity associated with custonieaind is dictated by the AdCell
plan chosen by customér Advertiseri paysb; ; if his advertisement is shown for

queryj and if his budget is not exceeded. That isy;if is an indicator variable
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set tol, when advertisement for advertiseis shown on query, then advertiser
1 pays a total amount thin(zj ¥ijbij, Bi). The goal of AdCell Allocation is to
specify an advertisement allocation plan givem,n, s, S, cn|h € [1,s]} such
that the total payment _, min(zj Yi;biz, B;) is maximized.

The AdCell problem is a generalization of the budgeted adwbfiocation prob-
lem [35]125] with capacity constraint on each customer &nd ts NP-hard. On-
line AdCell problem also generalizes the so-calledline secretary problenfor
which no deterministic or randomized online algorithm cah gpproximation ra-
tio better than}—z. The reduction of theecretary problento Adcell problem is as
follows: consider a single advertiser with large enoughgaiichnd a single cus-
tomer with a capacity of. The queries correspond to secretaries and the bids
correspond to the values of the secretaries. So we can dotatd one query to
the advertiser.

We can write the AdCell problem as the following integer peog in whichy;;

is the indicator variable which isif query j is assigned to bidderand0 otherwise:

maximize. > min() yiibij, Bi) (IPgc)
{ J
Vi e [n]: >y <1 (Assign)
Vh e [s] : D i <en (Capacity)
jesh i
Vi € [m],Vj € [m] : yi; € {0,1}
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We refer to the variant of the problem explained abovéfds:. The above integer
program can be relaxed to obtain a linear programming rétaxa Ppc, where we
maximize) _, Zj yijui; With the above constraintg), (C') and additional budget
constraintzj yijui; < b;(B). We relax the variableg;; € {0,1} toy;; > 0to
form the LP relaxation. Pg.

Our algorithm is based on LP rounding. The approximatioio naatches the
previously known bounds for adword allocation in offlineteef, where there was
no capacity constraint [35, 125]. Handling “hard capasfti¢hose that cannot be
violated, is generally tricky in various settings incluglifacility location and many
covering problems [46, 63, 113]. The AdCell problem is a gelmation of the
budgeted adword allocation problem, where we additiona#lye hard capacity
constraints on the number of queries that can be receivedybgustomer. The op-
timal LP fractional solution for this problem can be seen &gpartite graph with
bidders and persons forming the two partitions. Edges septethe fractional al-
locations of queries. The essential idea is to first decompus fractional optimal
solution into a forest and apply the rounding technique_aBJlover a carefully
chosen subset of constraints from the original linear EwgrThe problem is sig-
nificantly harder than its uncapacitated counterpart. Ehected constraints can
span customers and bidders from different forests; depgnuti the current state
of the forest, different constraints may need to be chosdmaw constraints may

need to be added.
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10.2 Offline Setting

In this section, we give an offline algorithm for the budgetetivord allocation
problem with capacity constraint, that is Adcell with butigad capacity. The ca-
pacity constraint restricts how many queries can be assigimeach customer. The
instances of a single customer represents a set, and tluaelisjoint and have an
integer capacity associated with t)&rfWe obtain the same approximation factor
of % for this case as has been shownlinl [35,125] without any cpecnstraint.

Specifically, we prove the following theorem,

Theorem 10.2.1.Given a fractional optimal solution fok Pg<, we can obtain an

integral solution for AdCell with budget and capacity caasits that obtains at

max bi,j

4—max; —g—1 , . . .
least a profit of# of the profit obtained by optimal fractional alloca-

tion and maintains all the capacity constraints exactly.

Our approximation algorithm is based on carefully roundirinear program-
ming relaxation for the problem. The essential idea of tlmppsed rounding is to
apply RandMove to the variables of a suitably chosen subset of constraiata f
the original linear program.

Our starting point is the LP relaxatidhPpc. The constraints¥ " | y; ; < 17
are denoted as Assign constraint, the constrat$*, b; ;v; ; < B;” are denoted

as Advertiser constraints and finallp ;.5 >, vi; < c,” are the Capacity

3When the sets may overlap and have integer hard capaciiesmtrivial approximation can be
obtained; this can be shown via a reduction from maximumpeddent set.
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constraints. LeOpt denote an optimal solution of the given AdCell problem and
let LPOpt denote the LP optimal value. It follows that the LP cbBOpt is at least

the cost of an optimal solutio@pt.

10.2.1 Rounding Algorithm

Let y* denote an LP optimal solution. We begin by simplifying thesigsment
given by y*. Consider a bipartite grap&'(B,J, E*) with advertisersB on one
side, querie§ on the other side and add an edggj) between an advertisérand
queryj, if y; € (0,1). Thatis, define&™ = {(i,j)| 1 > y;; > 0}. Our first
claim is thaty* can be modified without affecting the value I0POpt such that
G(B,J, E*) is a forest. The proof follows from Claim 2.1 of [35]; we additally

show that such assumption of forest structure maintainsdpacity constraints.

Lemma 10.2.2.Bipartite graphG = (B,J, E*) induced by the edges* can be

converted to a forest maintaining the optimal objectivection value.

Proof. Consider the grapty = (B, J, E*) and consider one connected component
of it. We will argue for each component separately and sityila

Cycle Breaking: Suppose there is a cycle in the chosen component.
Since G is bipartite, the cycle has even length. Let the cycle Be =
(i1, J1, 12, 2, - - - y 41, J1, 1), that is consider the cycle to start from an advertiser
node. Consider a strictly positive valaeand consider the following update of the

y* values over the edges in the cycle We addz,  to edge(a, b), where
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R1. Zihjl = —B

R2. If we are at an query nodg, ¢ € [1,1], then
Zjtit+1 = T iy

R3. If we are at an advertiser nodet € [1,1], then

biy.gy_1%3p— 1.0t

gt T T T b,

B is chosen such that after the update, all the variables i@ i} and at least
one variable gets rounded @oor 1, thus the cycle is broken. Note that the entire
update is a function of;, ;. For any query node, its total contribution in (Assign)
constraint of LP1 remains unchanged. For any advertisee,rextept, its con-
tribution in (Advertiser) constraint and thus in the objeetfunction remains the
same. In addition, since the assign constraints remairfagtafl, all the capacity
constraints are satisfied. For advertisgrits contribution decreases by, ;, b;,

b

; Y h L 2
and increases b‘yjl,h bir gy = %1 bin i big. g bizg.gs i 1011

bia 272 "'b’il71 Jl—2

Big.iy bis.in by 1) : ,
If biy g1 < biyji oo —==2, then instead of adding, ;, on the last edge,

- in,d2 Yigdg0ip 10

we add some < zj, ;, suchthat;, ; b;, ;, = cb;, j,- Thus, we are able to maintain
the objective function exactly. The assign constraint @nléist query;; can only
decrease by this change and hence all the capacity consteam maintained as
well.

b

Otherwise,b;, j, > by, j g2l 2221922 | |n that case, we traverse the
9,92 V13,33 Vi 1,511

b b

i3.02

cycle in the reverse order, that is, we start by decreasing,gnfirst and proceed
similarly. [
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We now have a collection of trees. There can arise severab@gshis stage.
For each of these cases, we identify a set of linear con&gramd apply ouRand-
Move step on the variables in the chosen system of linear conttraMe now
specify each of these cases and the system of linear corstagisociated with that
case. FomRand-Move to be applicable, we show that our chosen linear system
is underdetermined. For the correctness proof, we showath#ihe assign and
capacity constraints are maintained. Some advertisetredms may get violated,
but in the objective an advertisércan pay at mosB;. We show indeed the loss
in the objective is at mosi of the optimal objective value. Thus, we obtain a
3_approximation.

Let y denote the LP solution at this stage. There are three maas cason-

sider:

Case (i). There is a tree with two leaf advertiser nodes.
Case (ii). No tree contains two leaf advertisers, but there is a treectirains
one leaf advertiser.

Case (iii). No tree contains any leaf advertiser nodes.

Case (). There is a tree with two leaf advertiser nodes. Consider the
unique pathP connecting the two leaf advertisers sgyandi;. SupposeP =

(10, j1,11, J2, 12, - - -, j1,41). Define ax variable for each edge in the paththat
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takes values iff0, 1]. Consider the following system of linear constraints,

Tiy_q1,5e T Tiggje = Yig_1,5e T Yieyje vt € [17 l] (10'2'1)
xit,jtbit,jt + xit,jt+lb7;t,jt+l =
yit,jtbitJt + yit7jt+1bit7jt+1 YVt € [1,l — 1] (1022)

z e 0,1 (10.2.3)

We applyRand-Move on the above linear system.

Lemma 10.2.3. The linear system defined by Equatiéns 10.2.1[and 10.2.2-is un
derdetermined, Assign constraints for all queries, Cafyacbnstraints for all sets
and Bidder constraints for all advertisers except the tvad Edvertisers are main-

tained.

Proof. The number of constraints of type 10J2.1 &nd the number of constraints
of type[10.2.2 id — 1. However the number of variables3s. Constrainf 10.2]1

ensures all the assign constraints and hence all the cagacistraints are main-
tained. Constrairit 10.2.2 ensures all the advertisersteinitheir budget except

probably the two leaf advertisers. [

Case (ii). No tree contains two leaf advertisers, but theresia tree that contains
one leaf advertiser. There are several subcases under it. We first consider four

simple subcases.
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Subcase (1):There is a maximal path between two queries, where the twaegue
belong to the same set and the set-capacity constraint idigbt

Since the path is maximal, the queries at the start and theft path are
leaf queries and therefore have non-tight assign congraiNon-tight naturally

implies the fact that a constraint is not satisfied by equauppose the maximal

path isP = (j1,i1,...,%-1,7) and let the value of the edge-variables associated
with this path be(yil,jl s Yivjos Yig,jos - - - 7yil—17jl—17yil—1,jl>' Thesey values are
treated as constants. Define variabl@s j,, Zi, jo, Tisjos - - - s Tiy_ 1,51 1> Tig_1.51)

associated with these edgesrflLet S be the set containing the querigsandj;.
Let the capacity of bec. In the current solution, considering the rounded varsble
as well, let the total allocation of queries from the Sdte bes + y;, ;, + v, .-
That is,s is the sum of values of the queriesSrother thanj; andj;. Consider the

following system of linear constraints:

Tip gy < 1wy, 5 <1 (10.2.4)
Tiy 1,50 T Tigge = Yiro1.5e T Yieje vVt € [2,l — 1] (10.2.5)

Tiy i Die e T Tig,jeg Vi o =

yit,jtbihjt + yit7jt+1b’it7jt+1 Vit € [1,l — 1] (1026)
Tiy gy + Tip_y 5y S8 —¢C (10.2.7)
z e [0,1)*! (10.2.8)
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We applyRand-Move on the above linear system.

Lemma 10.2.4. The linear system defined for Subcase 1 under Case (ii) isunde
determined andRand-Move on it maintains all the constraints, Assign, Bidder,

Capacity, of LP-1.

Proof. Note that, Constrainf (10.2.7) is non-tight. In additiomnGtraint [(10.24)
implies that the leaf queries have non-tight assignmerstcaimt. Now, the number
of variables associated with the above linear-syste{lis- 1) = 2 — 2 and the
number of tightly satisfied linearly independent constsaare2/ — 3. Hence, we
can employRand-Move.

Constraint[(10.2]5) implies the assignment constrairti@fion-leaf queries are
maintained. Constraint (10.2.6) implies the budget canstof the non-leaf adver-
tisers, and therefore all the advertisers considered Isysystem, are maintained.
The capacities of all the sets in which non-leaf queriesippdies are automati-
cally maintained. In addition, Constraibt (10J2.7) implibe capacity constraint of

the set involving the leaf queries are maintained as well. [

Subcase (2):There is a maximal path between two queries, where the twaegue
belong to two different sets and both set-capacity consisarenon-tight.

This is almost similar to Subcase (1). Since the path is malxirthe
queries at the start and the end of the path are leaf querids tlzare-

fore have non-tight assign constraints. Suppose the maxuath is P =
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(J1,%1,72,%2, .- -, Ji—1,11-1, 1) and let the value of the edge-variables associated
with this path b&y;, j,, Vi1 jos Yizjos - - - »

Yii_1i-1>Yi_1.51)- We treat these values as constants here. Define variables
(Tiy j1s Tiy jos Tig,jor - - - Tip_y 511+ Tip_,,5,) @SSociated with these edges/of The

set constraint involving the query is non-tight and suppose the total sum of the
values of the queries (rounded and not rounded) belongitigatcset iss + 5, j,,

while its capacity is. Similarly, the set constraint involving the quejyis non-

tight and suppose the total sum of the values of the quermsmded and not
rounded) belonging to that set $§+ y;, , ;,, while its capacity is?. Consider

the following linear system.

Tip gy < Ly <1 (10.2.9)
Tiyvge t Tigje = Yir1,5e T Yiejie vt € [2,1 - 1] (10.2.10)

wit,jtbit,jt + wit7jt+1bit7jt+1 =

Yivjibivge + YirjesrOie jeia vt e [1,1 —1] (10.2.11)
Tiyj; SC—8 (10.2.12)
Ty 5 <d—¢ (10.2.13)
z e 0,11 (10.2.14)

Note that changes in the linear system from Subcase 1. Wg Rapld-Move
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on the above linear system.

Lemma 10.2.5. The linear system defined for Subcase 2 under Case (ii) isunde
determined andRand-Move on it maintains all the constraints, Assign, Bidder,

Capacity, of LP-1.

Proof. The constraintd (10.2.12) arid (10.2.13) are non-tight arate10.2.9. The
number of variables associated with the above linearsyse(l—1) = 2/—2 and
the number of tightly satisfied linearly independent caists are2l — 3. Hence,
we employRand-Move.

Constraint[(10.2.70) implies the assignment constrairthefnon-leaf queries
are maintained. Constrairit (10.21.11) implies the budgestaint of the non-leaf
advertisers, and therefore all the advertisers consideyetlis system, are main-
tained. The constraints (10.2]12), (10.2.13) ensure teav@n't violate the capac-

ity constraint of the sets involving the leaf querigsandj; respectively. [

Subcase (3):There is a path (not necessarily maximal path) between tvesieg,
where the two queries belong to the same set, the set-cgpamistraint is tight
but both the queries have non-tight assignment constraints
Suppose the path isP = (ji,i1,52,%2,.--,J1-1,%-1,5;) and let
the value of the edge-variables associated with this path (bg ;,,
Yir jor Yiorjor - - - Yir_ 1,511 Yir_1.51)- Ve treat these values as constants here. De-

fine variables(x;, j,, i, jo» Tig jos - - - 5
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Ti, .51+ Ti,_,,j,) associated with these edgesfafLet the total fractional assign-
ment of queryj; bea; + y;, ;, < 1 and the total fractional assignment of query
beas +y;, ,; < 1. Here we will apply theCycle Breaking trick. We consider

updateqzih]‘l ) Zi1,425 Zig,g20 + 000 Ri_1,01-19 Zizf1,jz> such that
R1. zjl,il = —5

R2. If we are at an query nodg, ¢ € [1,1], then
Zjtit+1 = T iy

R3. If we are at an advertiser nodet € [1,1], then

biy.dy—1 %310t

Zi i, = —
tsJt blt»jt

The value ofg > 0 is so chosen that ensures all the edge-variables remain in
0,1], x5, 5, < 1— a2,z j <1—ap. The entire update is a function of, ;, .
If 25,4 > 2,4_,, then we apply the above update. Else, we consider the ipdate

in the reverse direction, starting from the edgei;_1).

Lemma 10.2.6. The update vectat is nontrivial and the update maintains all the

constraints, Assign, Bidder, Capacity, of LP-1.

Proof. Clearly, all the advertiser nodes maintain their budget tduslle R3. All
the query nodes, except andj; maintain their assign constraint. All the sets that
do not containj; or j; thus maintain their capacity constraints. We start the tgpda
by subtracting from the edg@,41) if 2, > 2j,: ,. Therefore, the set that
contains bothy; andy; satisfy its capacity reduced. Otherwise, we start subitrgct
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from the edgéd j;, 7,1, and again the set containifigandyj; maintains the capacity
constraint, since now;, ;, < 2j, i, ,-

Sincey;, j; < 1—a1,¥;,_,j <1—aandall the other variables are(o, 1),
we can always find & > 0 such that eithex;, ;, =1—aj 0rz; , ;, =1 —ay,oOr
one of them is rounded down to 0, or some other variable in dltle is rounded to

0orl. [ |

Subcase (4):There is a maximal path with an advertiser on one side, anygirer
another with the set containing it being non-tight

Since we are considering a maximal path, the two end-pointst rbe
leaf nodes. Suppose the maximal pathHs = (ji,%1,J2,%2, - .., ji—1,%-1)
and let the value of the edge-variables associated with {ash be
(Yir j1s Yir,jo> Yinrjor - > Yip_1.51_1)- L€t the set in which the query belongs beS
and let it have a total assignment from the rounded and yet tolnded variables
equallings + y;, , 4, ,- In addition, let its capacity be. Consider the following

linear system:
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Liq,j1 <1 (10215)
Tiy 1,5 T Tigge = Yir_1,50 T Yie,je vt € [2>l - 1] (10-2-16)

wit,jtbit,jt + wit7jt+1bit7jt+1 =

yimjtbit,jt + yit,jt+1bit,jt+1 vt € [Ll - 2] (10-2-17)
Tiyj; SC— 8 (10.2.18)
z e [0,1)+? (10.2.19)

We applyRand-Move on the above linear system.

Lemma 10.2.7.The linear system defined for Subcase 4 under Case (ii) igrunde
determined andRand-Move on it maintains the constraints, Assign, Capacity, of

LP-1 as well as the Bidder constraint except possibly fordhe leaf advertiser.

Proof. The constraintg 10.2.15 ahd 10.2.18 are non-tight. The eumbtightly
satisfied linear independent constraints is therefore at(he2)+(1—2) = 2/—4,
whereas the number of variable2is— 3. HenceRand-Move can be applied.
Constraint_10.2.16 arld 10.2]15 ensure that all the assigstreints for the
queries are maintained. Constrdint 10.2.17 ensures thertagr constraints are
maintained for all the advertisers except possiblyifai. Constrainf 10.2.16 and

[10.2.18 ensure that all the capacity constraints are nmagtta [ ]

As long as Case (i) or (1-4) subcases of Case (ii) apply, wérag applying
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them. Also at any time, if we find the linear-system composkdliahe tightly
satisfied linearly independent constraints of LP-1 for aeg tbecomes underde-
termined, we applfRand-Move. When neither subcase (1)-(4) or Case (i) apply,
or Rand-Move can not be applied to the whole system, we have the following

properties of the resulting forest structure:

1. (Case 1 does not apply): No two leaves are advertisershe®e tan be at

most one leaf that is an advertiser in any tree.

2. (Subcase 3 does not apply): No two queries that are nbhdigd belong to
the same set with tight capacity are in the same tree. Theredach tree can

contain only one non-tight query from a tight set.

3. (Rand-Move does not apply to thé. P constraints for any single tree):
The number of tightly satisfied linearly independent caists from each

tree is at least as many as the number of variables.

4. (Subcase 1 and 2 do not apply): No two leaves that are guagieng to the
same set. Also among the leaves that are queries, at mosaoriziong to
a set that has non-tight capacity constraint. In essetttiate can be only
one leaf that is an query and that belongs to a set that hatgtareapacity

constraint.

5. (Subcase 4 does not apply): If there is a leaf node that edaartiser in a

tree, all other leaf nodes must be queries and must be pagtotlsat have
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tight capacity constraint.

Subcase (5):None of subcases (1)-(4) apply

This is the most nontrivial subcase. Denote the tree thatagma leaf ad-
vertiser node byl and leti; be the advertiser that is a leaf. Consider a maximal
path starting fromi. Since Case (i) or Subcases (1-4) do not apply, the other leaf
end-point is an query, sayyl, that belongs to set; and setS; has tight capacity
constraint. Of course, the quej& has non-tight assign constraint since it is a leaf

node. Let the path be as follows:

5 S S N | -1 -1 R |
Pl = <217317Z27327 s 7Zl1—17]11—172117]11>'

Since subcase 3 does not apply, tlgedoes not contain any other non-tight
query from.S;. Now capacities are always integer and Sethas tight capacity
constraint. This implies that sé&4 must contain another non-tight query and that
non-tight query must belong to a different tree. Denote $khisond tree by, and
call this another non-tight query &, by j2. If T, contains a leaf node that is an

advertiser, consider the path frgifito that advertiser node. Say the path is,

2 .2 .9 ) ) ) 9 .2
P, = <]17’Ll>]27 ‘e 7212—27312—17212—1731271l2>-
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Consider a combined patl®;, P).
(Pr, Py) = (i1, 41 s Jly =10 Gy Iy I3 102 33 -2 Gl )
N——

Essentially this combined path is thought of a single pattirenat two leaf
advertisers. We apply the rounding of Case (i) in this sdenaith a slight change

in handling the job nodes. We rewrite the linear system foweaience.

T gt T =y gty avte [1Lh— 1] (10.2.20)
Tip g2t Tz =y gty 2Vt E [2,0] (10.2.21)
T gp Shagp <l (10.2.22)
Tip gl T2 Sy gL T2 g (10.2.23)

Tig jabio jo + Tig ja_ bie ja | = Yie jebie jo + yie jo bie jo |
V(t,a) € ([27 l1]> 1) U ([1712 - 1]7 2) (10224)

x e [0,1)2t+H2-2 (10.2.25)

We applyRand-Move as usual. Note that, essentially we are assury‘ll}lngnd

4% as a single node while writing the constrdint 10.2.23.

Lemma 10.2.8. The linear system defined above in underdetermined andrAssig

constraints for all queries, advertiser constraints for ativertisers except and

2

i, and Capacity constraints for all sets are maintained.

1
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Proof. Again the number of linearly independent tightly satisfieshstraints are
(li—=)+)(l2 = 1)+ 14+ (I3 — 1)+ (Ia — 1) = 213 + 2l — 3 from[10.2.20[10.2.21,
[10.2.23 and10.2.24. The number of variableglis+ 2l, — 2. ThusRand-Move
can be applied. From constraifts 10.2[20, 10]2.21, 10\2eAget that all the assign
constraints and all the capacity constraints except fof see satisfied. Constraint
[10.2.23 ensures that the capacity constraint of theSsstmaintained. Constraint

[10.2.24 maintains all the advertiser constraints excemdvertisers} andi; . m

When, the above does not apply, thenlmthere is no leaf node that is an
advertiser. If there is a leaf node that is an query but theygisein a set that
has non-tight capacity constraint, then we consider tht Pa (say) (we use the
same symbols as i, for P}, but it is not to be confused wit#-, since we are
consideringP; when no such path liké&, exists): Py = (57,1, j3, - .-, i}, Ji,)-

Consider a combined pattP;, ;) as before, that is we tregf and;j; as a
single node while maintaining their total contribution e tsetS. Note because of
considering the combined patt®;, P;), this becomes identical to the subcase 4.
So we apply the rounding on this combined path as in subcasbelcorrectness
of this rounding step also follows from Lemiina 10]2.7.

Otherwise, all the leaf nodes I} are queries and the sets containing them have
tight capacity constraint. Follow a maximal path frginto one such leaf node, say
j#, and let it belong to sef,. Denote the maximal path by,'.

Since subcase 3 does not applyZtg T, does not contain another non-tight
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qguery fromS,. But, the capacity of5; is integer and thus it must have another
non-tight query. Call that query to bg and denote the tree containing it to be

If T3 happens to be same @3, then consider the patR’ in T} between;; and
jlll. Now consider the combined patk’, P)'). In this combined path the two end-
points belong to two non-tight queries from $btthat has tight capacity constraint.
Thus, this is identical to subcase 3 and we apply the roundireyibcase 3. The
correctness follows again from Lemina 1012.6.

Otherwise T is a tree different from botfi;, and7; and we continue similarly
from j3. Thus, if at any point of time, we reach a leaf node that is aredtser
or an query in a non-tight set, or an query in a tight-set buimbich the another
non-tight query belongs to a tree already visited, we catimaa our rounding.

However, it may happen that a tight set contains more thannwmotight
gueries. In that case, it is possible to visit a tight set ntban twice in our
process. So suppose we are at tigeand while considering maximal path,
P, = (39,4, 59, ... ,ilgg_l,jlgg% we get tojlgg that belongs to a set? that is al-
ready visited. That is, we have already seen two non-tigetigs as end-points
(one at the end of a maximal path and the other as the start abxamal path
in two consecutive trees) of two maximal paths sayjinand7,.1, h + 1 < g.
Let the maximal paths that have been considered in tfges, 7} o,...,7, be
Phny1, Pyya, ..., Py. Consider the combined pati#, 1, Pn+o, ..., P;) and note

that in this combined path the two end-points belong to two-tight queries from
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setS, that has tight capacity constraint. Thus we apply the roumdf subcase 4.
Indeed it is not required to visit a non-tight query for thedrlime as an end-point
of a maximal path. If at any time in this process, we visit adimon-tight query
from a set with tight capacity constraint, we can write a comadl path with two
end-points containing non-tight queries from that set aaplyerounding of subcase
3.

Otherwise, all the trees visited are different and we keegantinuing this
process. Since the number of trees are at mast{n, m}, this process must ter-
minate in some tre&* and at some leaf query nogg within a tight setS;. Since
S; has at least two non-tight queries, the other non-tightygusay j, must belong
to some tredl”’ | ¢’ < t. Considering a path fronj to jft', and then following the
maximal paths i +1, 7 +2 T we again get a combined path on which we

can apply rounding of subcase 3.

Case (iii). No tree contains any leaf advertiser nodes. This case is similar to
Case (ii). We start with a leaf query, possibly with a leaf yudnat is in a non-
tight set if one exists, and obtain a combined path on whiclcareapply one of
Subcases (1)-(4).

This completes the description of the rounding method. Asrg\step, the
entire rounding procedure takgesly(n,m) time and at each step we either make a
constraint tight or round a variable. Thus we are guaranteedmplete rounding

all the variables to integers in polynomial number of steps.
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From the above discussion and Lemima 10[2.3-10.2.8, we gébvlitbwing,

Lemma 10.2.9. The rounding procedure maintains all the assign and the ciypa
constraints. An advertiser node maintains the advertigarstraint as long as in
the current fractional solution, it is connected to two ormaqueries with nonzero
fractional values.

bi,max
4—max; —B;,
4 ]

Now, we need to prove that our expected approximation ratio+———+—
whereb; ;e = max;b; ;. We can always assumg .., < B; without loss
of generality for alli, we get a3/4 approximation. If bids are small, that is
max; bB—‘“ < ¢, then we get 84 — ) /4 approximation.

Theorem [10.2.1].Given a fractional optimal solution for LP1, we can obtain

an integral solution for AdCell with capacity constrainta disjoint sets that ob-
b

i,max

4—max;

tains at least a profit of# of the profit obtained by optimal fractional

allocation and maintains all the capacity constraints ekac

Proof. Let P? denote the payment made by advertis@s assigned by LP1. In
our rounding process, when an edge-variable gets roundedrta, it is removed
permanently or assigned permanently. The forest strutiateve consider always
contains only the fractional edge-variables. If the adsert; never has degree
1 in the forest, then by our rounding procedure its final payneisame as>?.
Therefore, suppose at some stagadvertiseti becomes a leaf node and tebbe the
so far rounded payment arand letb be the unique query assigned to advertiser
with fractional assignmentand bidd. Note that, alk, b, p, d are random variables.
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If P? denote the total payment (fractional and integral) donedwesiser: at the

end of thesth iteration, then we have
Pis —a-+ dp — Pz'o

Once an advertiser becomes a leaf node, it only takes pRarml-Move. Let
Pf“, Pf”, ..., P! denote the payment rounded on advertisat the end of the
iterationss + 1,s + 2,...,t. Assumet is the last iteration. Then we have from

property[P1] of Rand-Move that
E [PﬂPf_l =a-+ dpg_l} =a+ dpg—1

for g > s. Thus
E[P/]= [ E [PﬂPf_l =a+ dac] Pr [Pig_l = a—l—dw} =
[, a+ dzPr [Pig_l =a —I—dx} =E [Pig_l} .

Hence we have
E[P{]=E[PI']=--=E[P}]=a+dp="P

Then it directly follows from the above,

With probability 1 — p the rounded payment on advertiser is a
and with probability p the rounded payment i + d, since E[P!] =
aPr [edge(i, b) is rounded td)] + (a + d)Pr [edge(i, b) is rounded tal].
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Thus the final expected profit from advertiselis (1 — p) min{B;,a} +
pmin{B;,a +d}. The profit obtained fromi in the optimal LP solution is
min {B;, a + dp}. Therefore, by the linearity of expectation, the expeciguorax-
imation ratio is the maximum possible value of

(1 —p)min{B;,a} +pmin{B;,a+d}
min {B;,a + dp} )

This part of the proof is similar to the analysis of TheoremfJ1@5]. Let
bi maz = max; b; ;. We can assume without loss of generality that,, < B; for
all . Itis easy to see that if > B; ora + d < B;, then the above approximation

ratio is1. Hence assume, < B; < a + d. We thus have the approximation ratio

to be

a(l —p) +pB;
min {B;,a + dp}

r =

Now considering the two caseB; < / > a + dp, we get the following result:

bi,maz

(1 —p)min {B;,a} + pmin{Bi,a+d} _ 4 - max;
min {B;, a + dp} = 4

Since we can assume without loss of generdljty,,, < B; for all i, we get

a 3/4 approximation. If bids are small, that isax; bB—‘“ < g, then we get a

(4 — €)/4 approximation. |
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CHAPTER 11

Covering with Hard Capacities

In this chapter, we consider classical covering problemesh ®s vertex cover and
set cover with hard capacities. In hard-capacitated véstety cover problem each
vertex (set) has a capacity and the number of edges (elenieontssers cannot
exceed that given capacity. In addition, the available enmif each vertex (set)
is bounded. The problem was first studied by Chuzhoy and N&&jr \vhere they
gave a3-approximation algorithm for the vertex cover problem witdrd capacities
onunweighted simplgraphs. This result was later improved t@-approximation
by Gandhi et al.[[63]. In contrast, for weighted graphs, thebfem is as hard as
the set cover problem. These capacitated covering proldbefoesg to the general
paradigm of submodular covering. Using a result by Wols&8][Llogarithmic
approximation algorithms can be derived for them.

The set cover hardness precludes the possibility of a aatrfsietor approxima-
tion for the hard-capacitated vertex cover problem on weiglyraphs. However,

it was not known whether a better than logarithmic approtiomais possible on
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unweighted bumultigraphs i.e., graphs that may contain parallel edges. Neither
the approach of Chuzhoy and Naor, nor the follow-up work oh@a et al. can
handle the case of multigraphs. In fact, achieving a coh&ator approximation

for hard-capacitated vertex cover problem on unweightettignaphs was posed
as an open question in Chuzhoy and Naor’s work.

In this chapter, we describe the first constant factor appraton algorithm
for the vertex cover problem with hard capacities on unweidmultigraphs. We
also show ar®( f)-approximation algorithm for the unweighted set cover pgob
with hard capacities, where an element belongs to at fhesN sets. Vertex cover
is a special case of the above set cover problem wfiete2. A crucial ingredient
of our method is a reduction to the multi-set multi-coverlgem for which we

obtain a new approximation algorithm.

11.1 Capacitated Vertex Cover and Set Cover Problem

We are given a ground set of elemefts= {a;,as,...,a,} and a collection of
subsets oll, 8 = {51, S3,...,Sn}. Each setS € § has a weighto(S) € RT
and a positive integral capaci#y(S) € N. In addition, for each sef € 8, at
mostm(S) € N copies of it are available. A solution for the capacitatedeting
problem contains:(S) copies of setS € §, wherez(S) € {0,1,2,...,m(S)}
such that there is an assignment of at mdst)k(S) elements to sef and all ele-

ments are covered by the assignment. The goal is to pick d@obthat minimizes
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2 ses W(S)z(9).

A special case of the capacitated set cover problems igftiex cover problem
with hard capacities In this version of the problem, we are given a grdph=
(V, E) with n vertices andn edges, a weight functiow : V — R, a capacity of
k(v) € N and the number of available copiesv) € N for each vertex € V.
The goal again is to pick(v) € [0, m(v)] copies ofv and orient every edge to
one of its end-points such that at més$v)x(v) edges are oriented towardsand
> vey W(v)z(v) is minimized.

Capacitated problems come in two flavors: soft-capacitatedhich each set
has an unbounded number of copies and hard-capacitated whemnumber of
available copies of each set is restricted. Soft-capacdtptoblems appear easier
than their hard-capacitated counterparts and have bediedtunder the context of
vertex coverl[64, 70], facility location [43, 103, 104], keaian [25] etc.

Hard-capacitated vertex cover and set cover problems westesfudied by
Chuzhoy and Naor in_[46]. They show when the weight functisraibitrary,
the vertex cover problem with hard capacities is as hard ess¢t cover prob-
lem. Therefore, assuming # NP, nothing better than &g n-approximation
can be obtained [59, 101], whereas for the uncapacitatadxveover problem, the
best known approximation ratio &s— 1‘;%(1)% [23,[78&]. A2-approximation is also
known for the case of soft capacitieés [70]. On the other h#relhard-capacitated

set cover problem belongs to the general paradigm of subleodavering for
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which Wolsey gave &l + log S, )-approximation, wheré,,, .. is the maximum
number of elements covered by any set [138]. When each etdmedongs to at
most f sets, there exists a simpfeapproximation algorithm for uncapacitated set
cover problem. However, in presence of hard capacitiedjimptbetter than the
generalog n bound is known.

Interestingly, whilelog n hardness seems to apply to the vertex cover problem
in presence of hard capacities, if we consider simple uriwtedygraphs, much
better results can be achieved. Chuzhoy and Nadar in [46] gavapproximation
algorithm for hard-capacitated vertex cover problem oneighted simple graphs,
which was later improved to Zzapproximation by Gandhi et al. [63]. Vertex cover
is a special case of set cover problem whgre= 2. This naturally raises the
question whether it is possible to obtain &f) approximation for unweighted
set cover problem with hard capacities, where each elemaands to at mosf
sets. The approaches of [46] 63] do not extend to case when2. In fact, the
results of[[46, 63] only hold fosimplegraphs.Obtaining a constant factor approx-
imation algorithm for the hard-capacitated vertex coveolgem for unweighted
multigraphs was posed as an open questiofd8]. In this paper, we resolve that
question, and extending our approach, we also obtaif @gh-approximation for
the unweighted set cover problem with hard capacities faitrary values off.

Capacitated problems arise naturally in applications witeere are resource

constraints. Guha et al._[[70] describes a research projabtrtaken by a bio-
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technology company Glycodata for drug design and improveroieknown drugs,
where the underlying problem was exactly a capacitate@xedver instance. Mo-
tivated by crew-scheduling [56, 117] and by the fact thaveser often have lim-
its on how many jobs can be assigned to them)|[[41, 88 1371439,study the
classical unrelated parallel machine schedulind [96] amaecplized assignment
problem [122] with hard capacity bounds on machines. Ré&cddi considers
a capacitated version of the budgeted allocation problesti135] that arises in
mobile advertising scenario. Capacitated facility lomatand k-median problems
have been an active area of research([22, 25, 483, 43,47, %6109, 113, 143] and
frequently appear in applications involving placement af@houses [48], caches
on the web[[18, 97, 107] and as a subroutine in several netdeskgn proto-
cols [71[72,85]. Non-metric capacitated facility locatiproblem is a generaliza-
tion of the hard-capacitated set cover problem for which-IBar et al. [22] gave
anO(logn + log m)-approximation. In this problem, there arefacilities andn
clients; there is a cost associated for opening each faaitid each client connects
to one of the open facility paying a connection cost while iaenber of clients
that can be assigned to an open facility remains boundedskpajtacity. When,
the connection costs are eith@ror co, we get the set cover problem with hard
capacities.

In several set cover instances that occur in practice, anegieonly belongs

to few sets. In such settings, faapproximation for set cover is much desirable.
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In [88], Khuller et al. study a scheduling problem motivatgdissues of energy
savings in data centers. In data centers, each data isatgli@asmall number
of times (generally3 to 4 times). Each job has a data requirement and thus can be
executed only o8 to 4 machines. These data centers are provisioned to handle high
work loads during peak demand periods. However, since thik lvad on modern
cloud computing platform is very cyclical with infrequergégks and deep valleys,
much energy can be saved, if the machines can be shut dovetiwsieduring the
low work period. This observation led to the following quest Suppose, there
are m machinesM andn jobs g, where each job can be processed on a subset
of machines and its processing time may be machine-depen@&ch machine
consumes a fixed amount of energy to be activated and thegtmminimize the
total cost of activation while maintaining a bound on the imaxm load (sum of
the processing times of the jobs assigned to a machine). \pifteessing times
are arbitrary, no approximation is possible without vimlgtthe maximum load
[96,/122]. In [88], Khuller et al. provide dnn + 1) approximation algorithm that
violates the maximum load by a factor ®f On the other hand, if each job has
some fixed processing time then, as we know, each job can be scheduled only
on f(= 3 or4) machines; we obtain the hard-capacitated set cover probi¢m
elements belonging to at mogtsets.

Our algorithms for the hard-capacitated versions of bottexecover (Section

[11.2) and set cover (Sectibn 111.4) are based on roundinar [pregramming(P)
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relaxations. We utilize theP-structure to decompose the problem into two simpler
instances. Rounding on each of these instances exploitssghexific nature. The
approach of{[46, 63] cannot handle the vertex cover probletim kard capacities
on multigraphs. Their algorithms are randomized in natue @resence of paral-
lel edges makes some of the random variaplasitively correlated This hinders
the application of required concentration inequalitiest tire needed to obtain the
desired result with their procedure. For the same reaseir, dlgorithm does not
extend to set cover problem fgr> 2. In this paper, we are able to overcome that
barrier. In the process, we also develop a new algorithm fdtifeet multi-cover

problem (Sectioh 1113),

Related Works

Set cover and vertex cover are probably two most well-stuie-hard problems
and the reader is referred to the surveyslinl [42| 79| 135]. h Bdttheir hard-
capacitated versions are examples of more general subaraziuering problem
for which Wolsey gave a logarithmic approximation algaritfil38]. Hencel[[138]
gave the first non-trivial approximation algorithm restitisboth the set cover and
vertex cover problem with hard capacities. Seeé [22] for agalization of Wolsey’s
approach.

A problem closely related to hard-capacitated set covednlpro is the capac-

itated facility location problem. When the connection cfisms a metric, the
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problem is known as metric capacitated facility locatiookpem. For this prob-
lem, Ral et al. [113] gave &9 + ¢)-approximation using local search which was
later improved ta8 + ¢) by [102] and then td6 + ) by [66,143]. In contrast,
no constant factor approximation algorithm is known for meek-median prob-
lem in presence of capacities, even when the capacitieéireBartal et al. [[25]
gave a bicriteria approximation algorithm for soft-capiasi where the number of
facilities opened is slightly more than Chuzhoy and Rabarii [45] provided a dif-
ferent bi-criteria approximation for the hard-capacitatase where capacities are
allowed to be violated by a constant factor.

A variation of set cover problem is the multi-set multi-coyeoblem. In this
problem, each set is in fact a multi-set and each element [iEsnand. Multi-
set multi-cover problem is also an instance of submoduleeriog problem, and
therefore alog n-approximation result is known for it [80, 188]. Our resuilts
this paper for hard-capacitated vertex cover and set cawdslgm are based on

providing a new algorithm for the multi-set multi-cover ptem.

11.2 Vertex Cover on Multigraphs with Hard Capacities

In this section, we describe a constant factor approximagigorithm for the vertex
cover problem with hard capacities on unweighted multigsap/Me assume each
vertex has unit multiplicity /2(v) = 1, Yv € V(G)), that is, for each vertex,

exactly one copy is available. The more general case, wheteertex may have
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arbitrary number of copies is handled in Section 11.4. Qartisg point is the

following linear programming relaxation.

minimize » _ z(v) (LPyc)
veV

subject to
yle,u) +yle,v) =1 Ve = (u,v) € E, (11.2.1)
yle,v) < z(v), yle,u) < z(u) Ve = (u,v) € E, (11.2.2)

Z y(e,v) < k(v)z(v) Yv eV, (11.2.3)

e=(u,v)
0 <x(v),yle,v),yle,u) <1 VoveV,Ve=(u,v) € E. (11.2.4)

Herez(v) is an indicator variable, which isif vertex v is chosen an@ other-
wise. Variableg/(e, u) andy(e, v) are associated with edge= (u,v). y(e,u) =1
(y(e,v) = 1) indicates edge is assigned to vertex (v ). Constraints[(11.2]1)
ensure each edge is covered by at least one of its end-ger@omstraintd (11.2.2)
imply an edge cannot be covered by a verteXf v is not chosen in the solution.
The total number of edges covered by a vertéxat most:(v) if v is chosen and
otherwise (constraint§ (11.2.3)). We relax the variablgs), y(e, v) to take value
in [0, 1] in order to obtain the desirdd®-relaxation. The optimal solution &fPyc

denoted by Py (OPT) clearly is a lower bound on the actual optimal cO$tT.
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Lemma 11.2.1. LPyc(OPT) < OPT, whereOPT denotes the optimal cost for
the hard-capacitated vertex cover problem on unweightettigraphs with unit

multiplicities.

11.2.1 Rounding Algorithm

Let (z*,y*) denote an optimal fractional solution bPyc. We create a bipartite
graphH = (A,B,E(H)), whereA represents the vertices Gf B represents the
edgeof (ﬂand the linksE(H) correspond to thée, v) variablese € B, v € A with
non-zeroy* valueg. Eachv € A(H) is assigned a weight af*(v). Each link(e, v)

is assigned a weight af*(e,v). We now modify the link weights in a suitable
manner to decompose the link setstbfnto two graphsH; andH,. The special

properties oH; andH, make the rounding process relatively simpler.
o H; is aforest
e InHy, if (e,v) € E(H2), then weight of linKe, v) is equal to the weight af.

A moment’s reflection shows the usefulness of such a prgopesgentially,

in Hy, we can ignore the hard capacity constraints altogether.

We now describe the decomposition procedure and the rogrsté@ps in each

of H; andHs.

We often refer a vertex iB(H) by edge-vertex to indicate it belongsE6G).
%In order to avoid confusion between edgesokith edges oH, we refer toE(H) by links.
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Step 1. ConstructingH; and H,. H; andHs contain the same set of verticeskas
We start by setting(H;) = E(H) andE(Hz) = (. We remove all links and vertices
from H; with weight0. Further, for any link(e, v), if y*(e,v) = x*(v), we move
(e,v) from H; to Hy. Therefore, after this initial stage, for all links, v) € E(H;),
y*(e,v) < z*(v) and for all links(e’,v") € E(Hy), y*(e’,v") = z*(v').

While there isa cycl€ = (vy,e1,v9,€9,...,v, €, v401 = v1) in Hy, we select
ane > 0, and sety* (v, e;) = y*(vi,e;) + € andy* (viy1,€;) = y*(vip1,€;) — €
fori =1,2,...,1. The choice ot is such that after modification, all link weights
satisfy constraintd (11.2.2) arld (11]2.4), and at leastobrieem is tight. That is,
for at least one; € C, eithery*(vj;, e;) = z*(v;) or y*(vj11,€j) = 2*(vj41) OF
y*(vj,ej) = 00ory*(vjt1,e;) = 0. We can always find such an> 0. New y*
is a feasible solution fokPyc. We move all links(e’, v) that satisfyy* (e, v') =
x*(v') to Hy, and drop any link whose weight becontes Any isolated node is
dropped as well. Choice af guarantees that at least one link fra#n is either
dropped or moved; so the cycle is broken.

Proceeding in this fashion, after at m¢istH, )| steps, we geltl; andH, such

that

e H; is a forest and for each node € A(H;) and link (e,v) € E(Hy),

y*(e,v) < z*(v).

e In Hy, for each node € A(Hz) and link (e, v) € E(H2), y*(e,v) = z*(v).
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Since,x* does not change, objective function valud.8f,c remains unchanged in

the process.

Step 2. Rounding onHs.
We discard all isolated vertices frohl,. Letn > 2 be the desired approxi-
mation factor. We select all vertices A(Hz) with value ofz* at Ieast%. Let us

denote the chosen vertices By Then,

D={v|veA(Hy),z"(v) > -}.

| =

For every edge-vertex = (u,v) € B(H2), if v (oru) isin D, and(e,v) €
E(H2) (or (e,u) € E(H2)), then we sey*(e,v) = 1 (or y*(e,u) = 1). Thatis,
we assigre to v, if the link (e, v) is in E(Hy) andv is in D, else ifu € D and

(e,u) € E(H2), the edge: is assigned ta.

Observation11.2.2 From constraints[(I1.2.3); ._, , y(e,v) < z(v)k(v).

Therefore,}",_, . y:fcai)’) < k(v), and hence i, after the assignment of edges

to vertices inD, all vertices maintain their capacity.

In fact, inHy, capacity constraints become irrelevavithenever, we decide to
pick a vertex iMA(H,), we can immediately cover all the linkskiH,) incident on
it.

All edges with both links inE(H2) get covered at this stage. In addition, if

e € B(Hz) has only one linKe, v) € E(Hs), butz*(v) = y*(e,v) > =, then since

1
n
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l:‘Edges with both end-points in H;

.Edges with one end point in H;
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Fig 1a. Structure of H,, dangling edges are colored black and
connected by dashed lines, edges with both end-points in H;
are colored white and connected by solid lines.

Nodes in H, that have not been selected in D

Fig 1b. Structure of H, after the edges with two
end pointsin H; have been assigned.

v € D, e gets covered. Therefore, the uncovered edges after tiusegter have

no link in E(Hy) or are fractionally covered to an extent less tI%ain Ha.

Step 3. Rounding onH.

H; is a forest; edge-vertices I, either have both or one link iB(H;). Re-
member that, while the vertices Hf andH, may overlap, the link sets are disjoint.
Edge-vertices if3(H; ) with only one link inH; are calleddanglingedges. We root
H; arbitrarily at some node @&(H, ). This naturally defines a parent-child relation-
ship. Figure (1a) depicts the structuretbf. Dangling edges are shown by dashed

lines.

Step 3a.Rounding edges with both links iy .

Algorithm (1) describes the procedure to assign edgeeesrtthat have both
links in E(Hy).

We first select a collection dD’ vertices fromA(H;) \ D with z* value at
Ieast%. Edge-vertices iB(H;) that have their children i®’ get assigned to their
children. In Algorithm 1), for each vertex € A(H;), we useT (v) to denote the
set of children edge-vertices that are not assigned in BepWe select(v) =
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Algorithm 1 Assigning edges with two links in Hy

: let D' = {v € A(H1) | 2*(v) > 1}, select all the vertices irD’,

. for eachedge-vertex with two links inH; do
if the child vertex ot is selected irD’ then

assign e to the selected child vertex.
end if

end for

let T(v) denote the set of unassigned edge-vertices incident®i (H; ) with

both links inH;.

8: selectanyt(v) = [} ._(, v)eT(w) ¥" (e, u)] vertices from the children of the
edge-vertices iff (v), andassign the corresponding(v) edge-vertices iff (v)
to these selected children verticeswlfis a newly selected vertex in this step
and there are edges that have links incident'om E(H), then assign those
edges ta’ as well.

9: assign the remaining edge-vertices frof{v) to v.

[EEY

No aA~wDN

[>e—(uv)eTw) ¥ (e, u)] vertices from the children of the edge-verticesTi().
We assign the correspondirtgu) edge-vertices inT (v) to these newly selected

children vertices. Rest of the edgeslTitw) are assigned to.

Step 3b.Rounding dangling edges, i.e., with one linkHp.

After Algorithm([dl finishes, let (v) denote the set of unassigned dangling edge-
vertices connected to, and letl(v) = 3., . ceL () ¥ (€, u). L(v) are the leaf
edge-vertices of{;. We first have a lemma that shows after the edge-assignment
in Step 2 and 3a, we still can safely assign at I€ast)| — [I(v)] edges fromL(v)

to v without violating its capacity.

Lemma 11.2.3.Each vertexw € A(H;) can be assignefl.(v)|— [I(v)] leaf edges-

vertices without violating its capacity.
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Proof. Supposeyp belongs tdH; as well and is selected id,. Then,

Z x, + Z y*(e,v) < k(v)x*(v).

(67U)GE(H2) (67U)GH1

Thus,

Y yew) = (k) — [{(e,v) € E(Ha), Ve}|) 2" (v).

(e,v)€E(H1)
Now, (k(v) — |{(e,v) € E(H2), Ve}|) is an integer, and we denote it BY(v).

Let us assume € D’ first. Let the fractional value of the link connectimgo
its parent edge-vertex id; beb. The capacity ob isk’(v) > [b+|T(v)| —t(v) +
IL(v)|—1(v)]. The number of edges assigned/tis 1+ |T(v)| — [t(v)] +|L(v)| —
[1(v)].

If t(v) andl(v) are both integers, then clearly+ |T(v)| — [t(v)] + |L(v)| —
[1(v)] < K (v).

If ¢(v) is an integer, but(v) is not an integer, thek’(v) > |T(v)| — t(v) +
IL(v)| — |{(v)] which is again at least the number of edges assigned$imilarly,
the capacity constraint holds whé) is an integer, but(v) is not.

If I(v) andt(v) are both non-integers, thét(v) |+ [1(v)] > |I(v) + t(v)|+1.
Capacityk’(v) > |T(v)|+|L(v)|—|t(v) + (v)], and the number of edges assigned
tovisatmostl+|T(v)|—[t(v)]+|L(v)|—[l(v)] < |T(v)|+|L(v)|—[t(v) + I(v)].
Thus, in all cases, the capacity constraint @ maintained.

If v ¢ D', then|L(v)| = 0, because otherwise leaf edge-vertices are assigned
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1

to v at least to an extent of — % > Therefore,z*(v) > ., leading to a

1
-
contradiction. Hencgl(v)| must beD. In this case, at most one parent edge-vertex

can be assigned to v, hence its capacity constraint is niraéta [

The edge-vertices ih(v) are leaves of{;, they are connected toand have
their other link inE(Hs). We first pickone verteXrom A(Hs) such that it covers
at least one edge from(v). Let us denote this vertex by2(v) and let it cover
p2(v) > 1 parallel edgegv, h2(v)). If I(v) < p2(v), then following Lemma
[11.2.3, rest of the edge-vertices lofv) can be assigned to, and we exactly do
that.

Else,l(v) > p2(v). LetR(v) denote the vertices ok(Hz) \ h2(v) that are
end-points of edges ih(v). If we pick enough vertices frorR(v) such that they
cover at least'(v) = I(v) — p2(v) + 1 leaf-edges, then again from Lemma11.2.3,

rest of the edges fror(v) can be assigned ta We letl’(v) = 0, if I(v) < p2(v).

1

-1
n

We also

We scale up all the™ variables of J,can,) R(v) by a factor of
scale up the corresponding link variables by a factor o%. Let (z,y) denote
n

this scaled up variables. Then,

S e = U020 (2)

L(SKEZ’Z%Z» (1 B %)



where the last inequality follows from the fact tHav) > p2(v) > 1. We now
have the following multi-set multi-cover problernviM).

For eachv € A(H;) with I’(v) > 0, we create an element(v). For each
vertexu € J,eam,) R(v), we create a multi-seb(u). If there ared(v, u) leaf
edge-vertices i.(v) \ (v, h2(v)) incident uponu, then we includex(v) in S(u),
d(v,u) times . Each elemen{v) has a requirement of(a(v)) = [I’(v)]. The goal
is to pick minimum number of sets such that each elementis covered|!’(v) |
times counting multiplicities.

Note that, since the original graph is multigrapky, «) can be greater thah

Lemma 11.2.4.1f we setz(S(u)) = @u, Vu € Uyean,) R(v)}, thenz is a feasible

fractional solution for the above stated multi-set mutiiver problem

Proof. Consider any element(v). The total fractional coverage of elemeriw)

fromzis

Y dwwaSw) = Y @

S(u)3a(v) u€UyeacHy) R(@)
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If, s is the number of vertices € A(H;) with ’(v) > 0, then we can obtain

an integral solution with a cost @(log s) > Z,. Thislog s factor

“EUveA(Hl) R(v)
“in a sense” is unavoidable because of the hardness of apmtrg set cover.
We instead, obtain an algorithm where the total number of gieked is close to

S+ 2 uel R(v) Zu- IN Sectior 11.B, we prove the following theorem.

veA(H])

Theorem[11.3.5.Given any feasible fractional solutiahwith costF’ for multi-
set multi-cover problem wittv elements, there is a polynomial time rounding al-
gorithm that rounds the fractional solution to a feasibléegral solution with cost
at most21N + 32F.

The algorithm for assigning the leaf edge-verticek(in) is given in Algorithm
@).

Since, each vertex € A(H;) covers at mostL(v)| — [I(v)] leaf edge-vertices,

by Lemmd_11.2.3 the capacity of all the verticesHp are maintained. We now

proceed to analyze the cost.

Theorem 11.2.5.There exists a polynomial time algorithm achieving an agpro
mation factor of34 for the hard-capacitated vertex cover problem with unit tinul

plicity on unweighted multigraphs.

Proof. The capacities of all the vertices iy andH, are maintained. The cost

paid while rounding the vertices iy is

n Z x*(u). (11.2.6)

u€D
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Algorithm 2 Assigning edges with only one link in Hy

1: for eachvertexv € A(H;) with |L(v)| > 1 do
2. select the vertexh2(v) that covers at least an edge-vertex frafw) and
assign the corresponding edge-verticed2(w).

3: end for

4: for eachvertexv € A(Hy) with [(v) < p2(v) do

5. assign all the remaining edge-vertices (at mdistv)| — [I(v)]) tov

6: end for

7: for eachvertexv € A(H;y) with /(v) > 1 do

8: scale up thex" variables in{J,can,) R(v) by a factor ofl_ll and denote
it by . !

9: end for

10: create the MM instance({(a(v),d(v))},{S(u)}), and round the fractional
solutionx to obtain an integral solution.

11: for eachu such thatS(u) is chosen byMM algorithmdo

12:  selectu andassign all the leaf-edges incident anto it.

13: end for

14: for eachv € A(H;) with I/(v) > 1 do

15:  assign all the remaining leaf edge-verticeslafv) (at most/L(v)| — [I(v)])
to it.

16: end for

FromHy, vertices are chosen in two phases. First, for selectinticesrinD’,

we pay at most

. 3 () + 3 2*(v).

vED! /Ds.t.L(v)=0 and T (v)=0 (1 - %) veD /Ds.tL(v)>1 or T(v)>1

(11.2.7)
Vertices with|L(v)| > 1 must have fractional value at Iea(sl - %) Vertices with
|T(v)| > 1, also must have fractional value at least % since none of its children

edge-vertices were assigned in stelp (4) of Algorithin (1)e Mhmber of vertices
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picked in step[(8) of Algorithm 1 is at most

{oeDst|T) =1+ > ()

vEA(H)\D'UD

: (11) Yoo atw)+ > 2*(v). (11.2.8)
n

veD's.t.T(v)>1 veEA(H1)UA(H2)\D'UD

In Algorithm [2, we further select some vertices frof{H2). Let R =

U veary) {R(v) U h2(v)}. The cost paid for selecting vertices frof while
s.t.|L(v)[=1

rounding onH; is at mosts for selecting the verticed2(v) for all v and

21s + 323, R(v) Z(u) from Theoreni 11.3]5. Therefore, the cost paid

veA(Hy)
st (v)>1

for selecting vertices frorkly while rounding orH; is at most

2
22s + ; 5 T Z x*(u)
n uEU ’UEA(H1) R(’U)
s.t.l/(v)>1

-2 Y e
(1-3)

veD’s.t.|L(v)|>1

(SO

+

2 Z x*(v). (11.2.9)

_1
N veA(H1)UA(H2)\DuD’

—_

Therefore, the total cost from Equatidn (1112.6), (11.211.2.8) and[(11.2]9)

is at most

*(v 23 (v _32 (v
ooy w()+< ) > <)+<( 1)+1)U€A( (v)

vEDUD’ H1)UA(H2)
s.t.x*(v)<1—% s.t.x*(v)Zl—% \DuUD’

Settingn = 34, we thus obtain 84-approximation. [
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11.3 Multi-Set Multi-cover

In the multi-set multi-cover problemMM), we are given a ground set of el-
ementsU and a collection of multi-set§ of U, 8§ = {S1,5,...,Sw}. Each
multi-setS € § containsM (S, e) copies of element € U. Each element has a
demand ofr(a) and needs to be covereda) times. The objective is to minimize
the number of chosen sets that satisfy the demands of alléheeats.

For MM, Kolliopoulos and Young gave lag n-approximation[[89]. The same
bound also follows from [138], and in general, thig n factor cannot be improved.
However, if we plug in one of these algorithms in previougiseg we cannot get
better thariog n-approximation for the hard-capacitated vertex cover jgmb In
this section we provide a new algorithm fiotM that selects at mogtl NV + 32F
sets, when an optimal solution seleétssets. As we saw in the last section, this
result played a crucial role in obtaining a constant appnation.

The following is a linear program relaxation fbtM.

minimize > " z(S) +|U| (LPy)
Ses
subjectto ~ M(a, S)x(S) > r(a) VaeU (11.3.10)
acsS
0<z(S) <1 vSes (11.3.11)
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11.3.1 Rounding Algorithm
Let x* denote the LP optimal solution. Rounding algorithm has rsd\&eps.

Step 1. Selecting sets with high fractional valueFirst, we pick all setsS € §
such thatr*(S) > o > 0, Whereé is the desired approximation factor. Denote
the chosen sets (. Each element now has a residual requirementin) —
>acs.ses M (S, a). Clearly the fractional solutior™ projected on the sets\ 3

is a feasible solution for the residual problem. For eachhelga € U, let7(a) =
r(a) =X qes.sesc M(S; a) be the residual requirement. For some- 0 (to be set
later), lety(S) = Bx*(S), for eachS € 8§ \ H. We have for all elements € U,

> aes,ses\se M(S,a)y(S) = Br(a).

Note that after this step, we have a fractional solution ikt

[HI+ > y(S) +|U|§ézw*(5)+6 Yo s +UlL

SeS\H SeH SeS\H

For notational simplicity, we denote = 8\ 3. Next, we proceed to round the

variablesy(S) for S € C.

Step 2. Rounding into powers of 2For each multiplicityM (S, a), VS € C,a €
U, we round it to the highest power @f lesser than or equal td/(S,a) and
denote it byM(S,a). For each requirement(a), Ya € U, consider the low-

est power of2 greater than or equal to(a) and denote it by*!(a). Clearly, if
>aes,sce M(S,a)y(S) > Br(a), theny g see M (S, a)dy(S) > pr'(a). We
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denotey! = 4y.

Step 3. Division into small and big elementsFirst, for each element if there is
a set that completely satisfies its requirement, we pick &ie ¥e continue the
process as long as no element can be covered entirely byla siety Thus after
this procedure, for all elements and for all setsS, M'(S,a) < 7'(a) and hence

MY(S,a) < ’ﬂéa). Now for each element, we divide the sets i containinga

into big sets Big(a)) andsmallsets Gmall(a)). A setS € € is said to be a big

set fora, if M'(S,a) > z—7"(a), otherwise it is called a small set, i.e.,

Big(a) = {S € € |MY(S,a) > #(a)}

— 18Inn

1
18Inn

Small(a) = {S € C|M'(S,a) < 7 (a)}

Now, we decompose elements irilg andsmall An element issmallif it is
covered to an extent of (a) by the sets irffmall(a). Else, the element is covered
at least to an extent af3 — 1)7'(a) by the sets inBig(a) and we call it abig

element. This follows from the inequality

Y. M(Sayis) o+ Y MYSapl(s) 26 (a).

a€S,SeCnBig(a) a€S,SeCnSmall(a)

Therefore, either the sets Fmall(a) covera to an extent of!(a), or the sets
in Big(a) covera to an extent of 3 — 1)7'(a). Let 3; = 3 — 1. In the first case,
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we refera as a small element, otherwise it is a big element.

Step 4. Covering small elementsWe employ simple independent randomized
rounding for covering small element§Ve pick each sef < C with probability

vy, for somey > 2.

Lemma 11.3.1. All small elements are covered in Step 4 with probabilityestsk
(1 — #)

Proof. Consider a small elementand define random variablgg for each small

setS € Small(a) as follows:

X% = MY(a,S), if Sis picked

=0, otherwise

ThenX® = 3 g gman(a) X§ denotes the number of timess covered by the sets
in Small(a). We haveE [X?] = ~7'(a). X*is a sum of independent random
variables, where each random variabi{¢ takes values betwedf), wz=—7!(a)].

’ 18Inn

We apply the following version of the Chernoff-Hoeffdingeouality.

Theorem 11.3.AThe Chernoff-Hoeffding Bound). Givenn independent random
variables X1, X, ..., X,, each taking values betweérand1, if X = > " | X

andE [X] = p then for anyd > 0

PriX <(1-9)pu] < e H%/2
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wheree is the base of the natural logarithm.

We defineZ§ = ThenZ¢ € [0,1]. We apply the Chernoff-Hoeffding

’1( )’
18Inn

bound t0)_ gc g1nau(a) £5- We haveE | 3 oc 6rnana) 25| = 718log n.

Pr Z Z§ <18logn| = Pr[X§< Fl(a)]
SeSmall(a)
-3 1
< e—ﬁ/lSlogn 5 <

= nA/3

Thus by union bound, all small elements are covered the nedjuiumber of

times with probability at Ieasél 1/3> [

Step 5. Covering big elementsFor each big element, we consider only the big
sets containing it. For each such big element and big set we ﬂ#ﬁr; <
MY(S,a) < 75 Since, multiplicities are powers 2f there are at mo$t= In In n+

3 different values of multiplicities of the sets for each etartu. Let T, T3, ... T}

denote the collection of these sets with multlpllcnieéa—, 7"2(2“ s Flz(l“) respec-

tively. Thatis, 7% = {S € Big(a) | M(S,a) = =2}, SetB, > 3. For each

21
i=1,2,...,0if ESeTa y*(S) > i and the number of sets that have been picked

from T is less thanZSL)() pick new sets fronT’* such that the total number

@
Ssers yl(ﬂ

of chosen sets frofi® is [ B1—2)

We now show that each big element gets covered the requiratderof times
and the total cost is bounded by a constant factor of the aptiost.
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Lemma 11.3.3. Each big element is covered-(a) times by the chosen sets.

Proof. Consider a big element that is not covered after Step 4. Clearly, there is

no set inS such thatV/ (.S, a) > Lé“) Now, a must satisfy the following inequality

Call R¢ = Y geqa y'(S), fori = 1,2,...,1. We pick at leasf R¢/ (B, — 2)] sets

from T unlessk{ < 4. If for all 4, R{ > 1, then taking3; > 3, elementa is

covered at least to an extent Bf._, @R?/(ﬁl -2) = 615i2f1(a) > 37l (a).

Otherwise, there are somgfor which R{ < 4, and it is possible that we do not
pick any set fromZ’*. The total fractional coverage coming from the setgth

with R < iis at most

Therefore,

' (a
) 2(2' : > (S = (B -2 (a).
i=1 SeT RE>i

We set3 = 3. Thus, element: is covered to an extent of at Iea*slt. The

remaining coverage requirement of elemens fulfilled by the sets chosen [H.
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Thus all the big elements are covered. [

Lemma 11.3.4. The expected number of sets selected in Step 4 is at most 21n’,

wheren’ are the number of big elements that are not covered after Step

Proof. Consider an element For eachl*,i =1,2,...,l, compute the probabil-
ity that the number of sets chosen in Step 4 is less (51 — 2), whereR¢
as defined in the previous lemmaM3¢ ;. y'(S). We define an indicator random

variable X' (.S) for each sef5 € T7.

X%(S)

1, if S'is selected,

= 0, otherwise.

ThenX? = > ¢ 0 X{(S) denote the number of sets chosen frdfhin Step 4.
Now, Pr [X2(S) = 1] = yy'(S), wherey > 3. Therefore E [X¢] = vR2.
Hence, by the Chernoff-Hoeffding bound,
a _’yR;-l

R _(1_4)2
Pr qu < L <e 2 v(B1-2)) |
{ (81— 2)}

With 8, = 3,7 = 2, we getPr [X® < R%] < ¢~ a8 = 1.284~ R If R? > i

and X' < R, we pick at most} + 1 sets. The expected number of sets picked
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in Step 5 to covet is at most

l l

a 1+1 1 1
> (RE41)12847R <Y - < —+ S < 2L
i=1,R%>4) i=1 12845 7 (1 — 15g7) 1.284 (1 - 1.2184)

i =

Thus, the expected number of sets selected in Step 5 is at2hdstwheren’ is

the number of big elements that get covered in Step 5. [

Theorem 11.3.5. The algorithm returns a solution with expected cost at most
21N + 32F, whereF' = 3 o 2*(S5), and covers all the elements with probabil-

ity at least] — —L.

Proof. From Lemma 11.3]1 arid 11.8.3, we know all the big elementsarered

and all the small elements are covered with probability adtle — #

Step 1. The total number of sets picked is at m®&twhereJ{ are the sets each with

- 1
fractional value at least. Thus,|H| < = 3" g 6.

Step 4. The total expected cost incurred in the randomizeddiag step is at most
Yses\H WS = Lses\c 205 = Lses\ndUs = Lsesio 8675 Now
fp = 3andp = B +1 = 4. Hence, the expected cost is at most
32 ges\3 TS

Step 5. From Lemm@a 11.3.4, the expected number of sets piskadmost21r/,
wheren’ are the big elements that are not covered by Step 4.

Settinga = % we get the desired result. [
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We have not tried to optimize the constants of our approagchrdalucing the

approximation ratio substantially ®or 3 may require significant new ideas.

11.4 Set Cover with Hard Capacity Constraints

In this section, we consider the unweighted set cover pnoplehere each set has a
hard capacity. We first consider the case, where each setsivegi@copy (.(S) =
1, VS). Next, this is extended to handle arbitrary multiplicititor each set. The
main result in this section is af?(f) approximation for the set cover problem
with hard capacity constraints where each element belangsmostf sets. As a
corollary, we obtain a constant factor approximation atpar for the vertex cover
problem with hard capacity where arbitrary number of copiesach vertex may
be available.

The algorithm in this section follows the same basic steps &ection 11.P.

We start with the naturdlP-relaxation similar td_Pyc.
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minimize  ~ z(S) (LPsc)

Ses
subject to
> yla,8) =1 Vael, (11.4.12)
S2a
y(a, S) < z(9), Va € U,a € S, (11.4.13)
> yla,S) < k(S)z(S) VS €8, (11.4.14)
acsS
0<z(8)<1 VS es, (11.4.15)
0<y(a,>S) <1 Va € W. (11.4.16)

The rounding algorithm is similar to the one described intida¢ll.2. Here
we highlight the main changes. From the optimal solution(x*,y*), we create
a bipartite graptH = (A, B, E(H)), whereA represents the setB,represents the
elements and links il represent whether a particular element is fractionally- cov
ered by a set in th&P solution, that iSA = {S € 8},B = {a € U},E(H) =
{(a,S) | y*(a,S) > 0}. Each vertexS € A has an associated weight ©f(.5),
and each linka, S) has an associated weightwf(a, S). We now modify the link
weights and in the process decompébkiaito two graphsH; andH,, whereH; is a
forest and inH,, all the link weights are equal to the weights of the corresixmn

incident vertex inA. This step is exactly same as Step 1 in Sedtion|11.2.
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Step 2. Rounding onHs.

We discard all the isolated verticeshis and we select all the vertices A{H>)
with «* value equal or greater thanin (%, %). Recall thaty will be the desired
approximation ratio. Let us denote these chosen verticés.byhen,

D =S| S € AHy), 2*(S) > min(%, %)}.

For every element € B(H,) with a contained in the set§S!, S2,..., 5/} €
B(H,), if either one of these sets, s&y is in D and also(a, S%) € E(Hs), then
we set the correspondinga, S?) variable tol. Here sets play the role of vertices
in the vertex cover problem and elements correspond to edfjess, following
Observation 11.2]2, all the capacities of the setd iare maintained.

If all f links of an element belong toE(H- ), then after this step, is covered.
Otherwise, if the total fractional contribution of the Imkonnecting: in Hs is at

leastmin (%, ), then agairu is covered . We now proceed k.

Step 3. Rounding onH;. H; is a forest, it contains the vertices A(H;) and
elements that have at least one linkkifH; ). We call an elemerdanglingif it has
at least one link irE(H2) and at least one link i&(H; ). We root each tree iH; to

some arbitrary set. Trees naturally define a parent-chiédioaship.

Step 3a.Rounding elements with afl connections irH; .
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In Hy, we defineD’ as

D' = (S| S € A(H) \ D, z*(S) > min(%, %)}.

For each element iB(H,), if at least one of itchildren set is selected i)',
we assigru to it. DefineT(S) to be the collection of elements containedSithat
are not yet assigned and have all the link€{i; ). Consider, any such element
a’ € T(S). Sinced’ has not been covered, none of its children sets are picked.
Denoting these children sets 8Y(a), all S € C(a’) have fractional value strictly
less thanmin (57, 7). CanS € C(a’) have any child element” in H; that is
not yet unassigned @’ must have at least one link eitherfitH; ) or E(Hy) with
fractional value at leastin (%, %), and thus gets assigned. Sindés not covered
by any of at most f — 1) children sets itH;, we haver*(S) > 1 —min (L2,

We now pick(S) = 3, e1(s) 2aresns ¥ (a; S)] sets one from each of the
children sets of(S) elements inT (S). Rest of the elements ifi(.S) are assigned
to S. Whenever, we pick a set in this stage, if there is any eleiinghis set that is

connected to it by a link iy, we assign that element to the set.

Step 3b.Rounding dangling elements, i.e, withtall f connections irH;.

DefineL(.S) as the collection of dangling elements connectefl tbat are not
covered in the previous steps aitd) = > ,cs > s (a,5)cE(Hy) ¥ (@, S"). Note
that anys, with |L(S)| > 0 must haver*(S) > 1 — min ({4 451). We have a
Lemma analogous to Lemrha 11)2.3.
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Lemma 11.4.1. Each setS € A(H;) can be assignefL(S)| — [I(S)] dangling

elements without violating its capacity.

Proof. Supposes belongs tdH, as well and is selected iy. Then,

oS+ ). y(a8) S k(S)2(S).

Thus,

Y. y(@S)=(kS) ~I{a] (a,5) € Ha}) " (5).

al(a,S)€E(H1)
Now, (ks — [{a | (a,S) € E(H2)}|) is an integer, and we denote it BY(S).

Let us assumeS € D’ first. Let the fractional value of the link con-
necting S to its parent edge-vertex be The capacity ofS is k'(S) >
[b+|T(S)| —t(S)+|L(S)| —I(S)]. The number of elements assignedsads
at mostl + |T(S)| — [t(S)] + [L(S)| — [1(S)].

Now, following a similar argument as in Lemrha 1112.3, we dnt desired

result. [ ]

The elements ii.(S) have at least one link iB(Hz) and other thary' (which
is the parent node for the elementsLdf) in H;), may be connected to some sets
(that appear as their children) A&(H;). We first pick one set other tha$ from
A(Hz) such that it covers at least one element friof). Let us denote this set by
h2(.S) and the elements af(.S) that it covers byP2(S). Let|P2(S)| = p2(S5). If
1(S) < p2(9), then rest of the elements bfS) can be assigned t§ (by Lemma
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[I1.4.1), and we exactly do that. EI$€S) > p2(9).
Consider all sets if\(H;) U A(Hz) that contain the elements &fS) except

S andh2(S). Denote these sets I®(S). Therefore, any set iR(S) is connected

by at most one link fronE(H;) (because of the tree structure); rest of the links

are fromE(H2). Hence, if we pick a set iR(.S), we can assign all the elements it

connects to both ik(H; ) andE(H2) without violating its capacity.
We scale up all the™ variables of g,y R(S) by a factor of—

We also scale up the correspondigiglink variables by a factor O{W
B TR T

Let (z, ) denote this scaled up variables.

Lemma 11.4.2. After scaling upy satisfies) (@) y(a,S") >
s.t.a€L(S)\P2(S5),5'eR(S)
I(s) —p2(S) + 1.

Proof.

> y(a, S") (Z(S) = 2aepPa(s) 2-5'3a,545 Y (@, 5/))
y a, =

(a,S") <1 — min (%7 f2—f1)>
s.t.a€L(S)\P2(S),S"€R(S)

(1(5) — p2(S) min (£
(1 — min (%, fz—_fl))

> 1(S) — p2(S) + 1,

where the last inequality follows from the fact thaf) > p2(S) > 1. |

We setl’(S) = 0if 1(S) < p2(S5), else we set'(S) = I(s) — p2(S) + 1. If

3 this holds because any sgtthat has at least one link fractionally connected to (i) has
capacityk’(S’) > 1.
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we can pick enough sets froR(.S) such that at leagt/’(.S) | elements fronL(S)
are covered by the sets picked frdtS), then from Lemm&11.4.1, the remaining
elements can be assigned4o

We thus arrive to th&1M problem (Section 1113).

For eachS € A(Hy) with I’(S) > 1, we create an elemeni.S). For each set
5" € Ugeam,) R(5), we create a multi-set'(S”). If there ared(S, S”) elements in
L(S) \ P2(S) incident uponS’, then we createl(S, S”) copies ofa(S) in T'(S").
Each element(S) has a requirement of(S) = [I'(S)]. The goal is to pick
minimum number of sets such that each elemgsY is covered|!’(S)] times
counting multiplicities.

We solve theMM problem and for each selected 9&tS’), we includeS’ in
the solution. If there aré(S, S’) copies ofa(S) in T'(S"), then there aré(S, S")
elements fromL(S) \ P2(S) that are contained it5’. We let.S” cover all these
elements. The number of elements that are not covered k@ is at most
IL(S)|— [I'(S)] —p2(S), which is at most(S) — [1(S)]. By, Lemmd11.4]1, these
elements can be covered Byand therefore we assign them$o Each elemens’
covers all the elements linked to it E(H;) and possibly one extra element that is

linked in E(H;). Since capacities are always integefsmaintains its capacity.

Theorem 11.4.3.There exists a polynomial time algorithm achieving an agpro
mation factor ofmax (65,2 f) for the set cover problem with hard capacities with

unit multiplicities, where each element is contained in astif sets.
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Proof. The capacities of all the sets iy, andH, are maintained.

The cost paid while rounding the setsHn is

max(2f,1) Y _ z*(S). (11.4.17)
SeD

FromH;, sets are chosen in two phases. First, for selecting veritic®’, we

pay at most
* 1 *
max(2f,n) Z x (S)—I—l — T 7T Z x*(9).
seD7 /D —min (57, 57) senD
5.4,|L(S)|=0 and|T(S)|=0 s.t,|L(S)[>1 or [T(S)[>1
(11.4.18)

The sets withL(S)| > 1 or |T(S)| > 1 must have fractional value at least
(1-— min(%, fz—‘fl)). The number of sets picked to satisfy the requirement of

t(S) for all S is at most

{Sst TS =1+ > 2*(9)

SEA(H1)\D'UD

1
< > ar(s)
-1 1
L=min (57, 57)  glom
st T(S)>1
n 7 (5). (11.4.19)

SEA(H1)UA(H2)\D'UD

We further select sets fromi(H;) andA(Hs) to satisfy the requirements from
L(S). LetR = U sean,) {R(S) U h2(S)}. The cost paid for selecting sets

s.t.|L(S)|>1
from R while rounding onH; is at mosts for selecting the sets2(S) for all S
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and2ls + 32 ¢ S) from Theoreni 11.3]5. Here = |{S €

€U seA(Hy) R(9) o
s.tl(S)>1
A(Hyp)s.t.|L(S)| > 1}|. Therefore, the cost paid in this step is at most

2
225 + 1% 2 o
—min (5, 57) €U sea() RES)
s.t.0(S)>1

22 .
f—1 -1 Z z*(S)

1 —-nahl(—77-,igr),seiys¢¢L(SN21

2
+ ) 3f—1 I-1 > =(5).  (114.20)
1 —-nann(-77—,-§7*),seA(Hl)uA(H2)VDUTV

Therefore, the total cost from Equation (11.4.17), (18%1.1{11.4.19) and
(11.4.20) is at most

max (1, 2f) > z*(9)
SeDUD’s.t.
*(8)<1—min (L4, 421)
23
+ >, 7" (v)
1 f-1
1 —min (==, 57) SeDUDst,

* ($)>1—min (L4, L)

32
- a) > e
. f-1 f-1
1 — min (Ta 7) vEA(H1)UA(H2)
\DUD’

We can adjust the value gfaccording to the value of, in general, by setting

1 = 65, we obtain anax (65, 2 f)-approximation. [
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11.4.1 Hard-Capacitated Set Cover with Arbitrary Multipli cities

Given an instance of hard-capacitated set cover with argitmultiplicities where
each element belongs to at mgssets, we reduce it to an instance of unit multi-
plicity by slightly increasing the value of. First, we solve the following natural

LP-relaxation, where sef has multiplicitym(.S).

minimize Z z(S) (LPsc—mult)
Ses

subject to (11.4.21)
> yla,8) =1 Vael, (11.4.22)
S3a
y(a, S) < x(9), Va € U,a € 5, (11.4.23)
> yla, 8) < k(S)z(S) VS €8, (11.4.24)
a€S
0 < 2(S) < m(S) vSes, (11.4.25)
0<y(aS) <1 Va € U. (11.4.26)

Let (x*,y*) be an optimal solution of the aboué. We construct a bipartite
graphH(A, B, E(H)), whereA contains sets, possibly multiple copies of thesn,
contains the elements and links are created based on norcaemponents of ™.
For each sef € § with 2*(S) > 0, we create[z*(S)| copies ofS in A. Each

one of them except the first one gets a weight,ofhile the first one gets a weight
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of z*(S) — [z*(S)]. We denote the weights of the setsdy Therefore the total
weight of all the sets ik equals) ¢ 2*(S). Next, for each element, we create

a vertexa in B. Leta be contained in setS!, S2, ... ,SCJ: with fractional values
y*(a, SL), y* (e, S2),...,y* (e, S{f) respectively. Consider, one of these sets, say
S;,. Let there be copies ofS}, in A. Denote them by}, |, 5% »,.. ., S, and their
weights byw(S], ;) = h,w(S} 5) = w(S,3) = ... = w(S},;) = 1. The fractional
capacity ofS}, ;, j € [1,1], isw(S}, ;)k(S}).

We start withS’, ; and create a linKa, S, ;). Let the current weight of the
links connected td5), ; be W;. We set the weight ofa, S! ;) asz(a, S, ;) =
miny*(a, 55), w(S% ), W1 — w(SE )k(S). We sety*(a,5%) = y*(a,Si) —
z(a, S} 1) and ify*(a, S,) > 0, we proceed t&, ,.

We again create a link(a, S}, ,). Let the current weight of the
links connected toS., be W,, then we set the weight of(a,S} ,)
as z(a,8,,) = min(y*(e,85), w(Si,), W1 —w(S;0)k(S:) =
min (y*(a, S5), W1 — w(S; 2)k(S))-

A link is never made to a copﬁgj, j > 3, unless the(j — 1)-th copy is
completely filled up to its fractional capacity which is ae$tl. Therefore, element
a may have links to at most copies ofS?. We repeat the same procedure for all
the other sets.

Hence, in the created bipartite graph an element may beditkkat most3 f

sets. Also, the vectoréw,z) satisfy the constraints dfPsc. Each set in the
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modified instance now has multiplicitl therefore from Theorein 11.4.3, we get a

max (65, 6f) approximation algorithm for it.

Theorem 11.4.4.There exists a polynomial time algorithm achieving an agpro
mation factor ofmax (65,6 f) for the set cover problem with hard capacities and

arbitrary multiplicities, where each element is containedt mostf sets.

Corollary 11.4.5. There exists a polynomial time algorithm achieving an agpro
mation factor of38 for the vertex cover problem with hard capacities and adoijr

multiplicities in multigraph.

Proof. We reduce the vertex cover with arbitrary multiplicitiesatanit multiplicity
instance. Thus, after the reduction, we hgve 6. Therefore, if we sey = 38 in

Theoreni 11.4]13, we get38-approximation. [ ]

There are several interesting questions to pursue. Thelglihg model of
[52], which is a generalization of [21, 51] nicely capturée taspects of energy
usage in data centers. Demaine et al. gave a logarithmi@sppation in [52],
however their problem can be reduced to a hard-capacitatetbgering instance
with multiplecapacity constraints. This raises the question, can wgrlesiO( f)-
approximation algorithm for set cover problem in presentenoltiple capacity
constraints. Given the fact that each job can be executgtborh few machines in
data centers, such &n( f)-approximation algorithm could be quite useful. Also,
designing arO( f)-approximation algorithm for submodular covering probhefth

be an interesting future direction.
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CHAPTER 12

Conclusion

In this thesis, we make significant contributions towardsigieng new techniques
in approximation algorithms. While our techniques are \ggperal and can have
numerous applications, in this thesis we illustrate the groaf these methods
through a variety of resource allocation problems. Resoatlocation problems
are ubiquitous in computer science and come in a rich vari&y showcase four
such different applications: scheduling jobs on parallekchines, fair allocation
problems, server location problems in networking and gihement allocations.
In several cases, we develop new models and algorithms aathém cases our
techniques lead to significant better results. All of ouroalfyms are based on
rounding fractional optimal solutions of linear programignirelaxations and most
of them rely on probabilistic analysis.
In Chapter 2, we introduce a new rounding methodology whica general-

ization of two previously extremely well-studied roundingethods, namely, de-

pendent rounding and iterative relaxations. Using thisiding, we get improved
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results for several job-scheduling problems in Chalpter di@nmax-min fair al-
location problem in Chaptér 6, overlay network design peobin Chaptefr8 and
adcell allocation problem in Chapfer]10.

In Chaptef B, we describe our contribution towards the élgoic aspects of
a powerful probabilistic tool, the Lovasz Local Lemma. §hésult leads to the
first algorithms for several combinatorial optimizatioroblems. Using it, we also
obtain the first constant-factor approximation algorittamthe Santa Claus prob-
lem (Chaptet]7), which was a major open question in the arempfoximation
algorithms.

In Chaptei ®, we develop an approximation algorithm for aeseallocation
problem in content distribution networks. TheatroidMedian is a significant gen-
eralization of the well-studied-median problem. The algorithm is based on linear
programming rounding that exploits the structure of theautyihg constraint ma-
trix. The applications in Chaptéf 9, as well as in Chaptérid @haptel 4 can be
viewed as generalizations of well-known optimization peohs to handle capacity
constraints. In Chaptér 111, we study general capacitatedriog problems and

settle an open question in this area.

12.1 Future Directions

The thesis leads to several interesting questions andidinsc Probabilistic meth-

ods are in the heart of techniques that we develop in thisstheBhe role that
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probability and randomness play in modern computer scieao@ot be overem-
phasized. From the highly theoretical notion of probatiitheorem proving, to
the very practical applications of cryptography and welr@deaanking, sophis-
ticated probabilistic techniques have been developeddrabt two decades for
a broad range of challenging computing applications. Omh @wwerful proba-
bilistic tool is the Lovasz’s Local Lemma (LLL). While deleping a constructive
version for LLL, we introduce a proof-concept, namdli,L distribution This is
the distribution that one obtains conditioned on avoidiegain bad events. We
believe the concept of LLL distribution will find many ap@itons in randomized
algorithms and exploring further properties of it will bei@mely interesting.
Probably, one of the most well-known probabilistic concatidn inequality
that applies to sum of independent and bounded random \esiabThe Chernoff-
Hoeffding bound. The random variables, instead of beingpetident, can satisfy
negative correlation and yet, the bound holds. We show whemew rounding
method is applied to variables of a LP, that can equivaldogl\seen as fractional
values on edges of a bipartite graph, then such negativelatian property holds.
Exploiting this property, we characterize the integratigp of a configuration LP
for the max-min fair allocation problem near optimally. $hiiggers the question,
for what kind of LP and for which set of variables our roundmgthod can guar-
antee such negative correlation property ? An answer togistion may have

several implications in approximation algorithms design.
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In the area of resource allocation, our applications leadday new directions.
First, in the area of scheduling, earlier to our works, regean energy minimiza-
tion mainly concentrated on identical or related machinee® Whereas, for
modern data centers, such machine models are not appeopkilachines in data
centers may have varying computation power and CPU spedd data may not
be replicated on all machines. As a consequence, a job orrg gae be executed
only on a subset of machines. The fundamental model of phralhchines that
captures these aspects is theelated parallel machine@JPM). A salient feature
of our scheduling works in this thesis is that we consider URM:ill be extremely
interesting to study different aspects of energy saving$ |1 scaling processor
speed, introducing sleep states with different energyireguents in this machine
model. Of course, with multicores, a machine can handlerakjabs at a time,
and a more realistic model is to consider online jobs. Altbge these lead to a
broad spectrum of problems.

The concept of capacitated covering that we study in thisishean be very
useful in the domain of energy-efficient scheduling as wals we point out in
Chapter 11, a class of such scheduling problems can be ndodsieg multiple
capacity constraints on sets. It will be an interesting reitirection to extend our
methods to handle multiple capacity constraints and uteteisthe hardness of
such problems.

In the area of fair allocation, an obvious question is todyetinderstand the
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limitation of approximability of the max-min fair allocath problem and getting
a better constant bound for the Santa Claus problem. In e @rnetworking,
resource constraints lead to several interesting questi&@ach open server may
have an upper bound on the number of clients that it can handielient may need
to be connected to several servers in order to ensure aréailient networking. In
adcell allocation, it will be interesting to develop onlisiechastic models and new
approximation algorithms in that framework.

To conclude, the theory of approximation algorithms is erailb area of re-
search and our contributions aim towards providing new geneols that can
have wide-applicability. These methods have already beenessfully applied
to several problems on resource allocations in this th&¥¢ksle, we have provided
improved solutions for a collection of them, our research ¢ygened up many new
possibilities for future works and has created a premiseaflarge variety of op-
timization problems; they are both of theoretical interstl of practical signifi-

cance.
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