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This thesis is devoted to designing new techniques and algorithms for combi-

natorial optimization problems arising in various applications of resource alloca-

tion. Resource allocation refers to a class of problems where scarce resources must

be distributed among competing agents maintaining certainoptimization criteria.

Examples include scheduling jobs on one/multiple machinesmaintaining system

performance; assigning advertisements to bidders, or items to people maximizing

profit/social fairness; allocating servers or channels satisfying networking require-

ments etc. Altogether they comprise a wide variety of combinatorial optimization

problems. However, a majority of these problems are NP-hardin nature and there-

fore, the goal herein is to develop approximation algorithms that approximate the

optimal solution as best as possible in polynomial time.

The thesis addresses two main directions. First, we developseveral new tech-

niques, predominantly, a new linear programming rounding methodology and a

constructive aspect of a well-known probabilistic method,the Lovász Local Lemma



(LLL). Second, we employ these techniques to applications of resource allocation

obtaining substantial improvements over known results. Our research also spurs

new direction of study; we introduce new models for achieving energy efficiency

in scheduling and a novel framework for assigning advertisements in cellular net-

works. Both of these lead to a variety of interesting questions.

Our linear programming rounding methodology is a significant generalization

of two major rounding approaches in the theory of approximation algorithms, namely

the dependent rounding and the iterative relaxation procedure. Our constructive

version of LLL leads to first algorithmic results for many combinatorial prob-

lems. In addition, it settles a major open question of obtaining a constant factor

approximation algorithm for the Santa Claus problem. The Santa Claus problem

is aNP -hard resource allocation problem that received much attention in the last

several years. Through out this thesis, we study a number of applications related

to scheduling jobs on unrelated parallel machines, such as provisionally shutting

down machines to save energy, selectively dropping outliers to improve system

performance, handling machines with hard capacity bounds on the number of jobs

they can process etc. Hard capacity constraints arise naturally in many other appli-

cations and often render a hitherto simple combinatorial optimization problem dif-

ficult. In this thesis, we encounter many such instances of hard capacity constraints,

namely in budgeted allocation of advertisements for cellular networks, overlay net-

work design, and in classical problems like vertex cover, set cover and k-median.
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CHAPTER 1

Introduction

“The truth, the way we see it, is only an approximation.”

1.1 Introduction

Most combinatorial optimization problems, including those that arise naturally in

many applications areNP-Hard. Therefore, under the widely believed complexity

assumption ofP 6= NP, there are no algorithms that run in time polynomial in their

input size and solve these problems optimally. In order to obtain such efficient

algorithms, we thus resort toapproximations. Instead of returning an exact solution,

we return in polynomial time an approximate solution that isas close to the optimal

as possible.

The theory of approximation algorithms have developed in the last few decades

as a systematic method for designing algorithms forNP-hard problems. Each dis-

crete optimization problem has an associated objective function, which depending

on the problem needs to be maximized or minimized. Given suchan objective
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function, we define anα-factor (α > 0) approximation algorithm as follows.

Definition 1.1.1 (α-factor approximation algorithm). An α-factor approximation

algorithm is a polynomial time algorithm that for all instances of a problem returns

a solution with its objective value within a factor ofα of an optimal one.

Approximation algorithms provide a mathematical basis to study heuristics that

often return good solution in practice. Even when practicalproblems are too com-

plicated to formulate and analyze, approximation algorithms are useful. Solving

some simplified versions of the underlying problem may lead to designing effec-

tive heuristics and to understanding the basic hardness. Itis a formidable task to

enumerate all the different techniques that have been developed in this regard. But,

two approaches that can claim to have been extremely fruitful are the use of math-

ematical programming and randomization.

A vast class of combinatorial problems can be formulated as mathematical pro-

grams, especially, as integer linear programs (ILP). In an ILP, the variables take

integer values, and the constraints as well as the objectivefunction are linear in na-

ture. Since generalILP is NP-hard, we relax the requirement that the variables take

integral values to allow fractional solution. This is knownas the technique oflinear

programming relaxation. An optimal value of a linear programming relaxation can

be computed in polynomial time. Such a fractional optimal solution is thenrounded

to a nearby integer solution as close to the original integeroptimal as possible. Op-

timal objective value of a linear program (LP) serves as a lower (upper) bound for
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the true optimal objective value for a minimization (maximization) problem. Many

LP-rounding approaches have been developed in the last two decades. With the

seminal work of Raghavan and Thompson [116],randomized/probabilistic round-

ing methods have been successfully applied to obtain good approximation algo-

rithms for manyNP-hard problems. In fact. it is difficult to overemphasize therole

of randomization in algorithm design. In a lecture series called Randomization &

Religion, Donald E. Knuth rightly said, “If somebody would ask me, in the last 10

years, what was the most important change in the study of algorithms I would have

to say that people getting really familiar with randomized algorithms had to be the

winner”.

The first part of this thesis is devoted to designing new rounding techniques and

randomized methodologies that generalize or improve many previous works. In the

second half, they are applied to a large class of problems that fall under the general

umbrella ofresource allocation.

1.2 Resource Allocation Problems

Resource allocation refers to a class of problems where scarce resources must

be distributed among competing agents maintaining certainoptimization criteria.

Such problems are ubiquitous in computer science. For example, consider a job

scheduling scenario in parallel machines, where jobs need to be executed on a lim-

ited number of machines in a timely manner. Each job has some data requirements
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and thus can be scheduled only on a subset of machines. At any time, a machine

can process only one job. Under such a constrained environment, the question is

how to schedule the jobs so that certain system performance is optimized, for ex-

ample, the maximum processing load on any machine is minimized. In addition,

energy consumption by active machines is a critical issue, and one must attempt to

optimize energy usage. In this thesis, we discuss several such scheduling problems

and designing approximation algorithms for them.

Another variant of resource allocation problems deals withdistributing items to

people. Each person want a subset of items and the utility of aperson is a function

of the items received. The items may have different valuations for different persons

and cannot be shared. The goal is to allocate the items in a fair way such that

the minimum utility received by any person is as high as possible. Such problems

arise frequently in economics and market design and are known asmax-min fair

allocationproblems. A related question concerns assigningadwordsto advertisers.

Consider the internet advertisement scenario in Google Search. Each advertiser has

a limited budget and bids for different keywords. There are limited number of slots

per keyword to exhibit the advertisements. The question is how Google should

choose and show the advertisements in the few available slots while keywords are

being searched by users. Internet advertisement is a million dollar business, and

adword allocation plays an important role there. In this thesis, we will encounter a

variety of problems of similar flavor.
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In networking, bandwidth assignment or server allocation is done through care-

fully designed protocols to optimize the resource usage. For instance, in a content

distribution network, there are different types of serversand limited budgets allow

one to open only a fixed number of servers of each type. A clientis then connected

to the server that can process its request most cost-effectively. Many combinatorial

optimization problems are motivated from these applications. We will see a few of

them in this thesis. A common feature in many of these applications is thehard

capacityrequirements. For example, the number of servers that can beopened may

not exceed the allowed limit. The number of clients that can be handled by each

server may also be limited. In this thesis, we will encountermany instances of hard

capacity constraints.

We now give a brief description of some of the applications considered in this

thesis.

Scheduling on Parallel Machines. Job scheduling problems are one of the most

important classes of resource allocation problems. The scheduling literature is vast

and one can propose a variety of interesting questions in this area. In this thesis, we

focus our attention on perhaps one of the most widely studiedmachine scheduling

problems,the unrelated parallel machine scheduling to minimize makespan[96].

Unrelated parallel machines (UPM) rightly capture different aspects of machine

models in practice, especially of data centers. Data centers are massively parallel

computation repository, where machines can show a significant diversity in mem-
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ory, processing power, speed etc. Similarly, on UPM,machines are unrelated,

and processing time of jobs can be machine-dependent. Related to UPM isthe

generalized assignment problem(GAP) [122] that has spurred many advances in

approximation algorithm theory.

In this thesis, we consider two natural generalizations of UPM scheduling and

GAP,scheduling with capacity constraints and outliers[118]. Often servers have

limits on the number of jobs that can be scheduled on them – this leads to the capac-

itated scheduling problem. On the other hand, outliers consume substantial amount

of resources and dropping them selectively may improve system performance by a

large margin. Energy consumption is a vital issue in data centers. The data centers

are provisioned to handle high work loads during peak demandperiods. However,

the work load on modern cloud computing platform is very cyclical with infrequent

peaks and deep valleys. Thus, much energy can be saved, if machines can be shut

down selectively during the low work period. Along this observation, we propose

a novel model for energy savings in data centers; this introduces a new dimension

of energy minimization in UPM scheduling [88].

Fair Allocation Problems. Allocating items fairly among individuals is an active

area of research [30, 81, 106, 131, 141].Max-min fair allocationis one such prob-

lem that has received significant attention from the theoretical computer science

community in the last few years [15, 16, 20, 26, 34, 60]. In this problemn “indi-

visible” items need to be distributed amongm children such that to maximize the
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happiness of the least happy child. Each child has a valuation for each item and her

happiness is directly proportional to the total values of the goods received by her.

Interestingly, this problem can be viewed as amaximizationversion of makespan

minimization on UPM. However, while a2-approximation algorithm is known for

makespan minimization, much remains to be shown for the max-min fair allocation

problem. On one hand, the problem might have a constant, evena2-approximation

algorithm, on the other hand, the best known result for it is anε-approximation [34],

for any constantε > 0. A particular type of linear programming relaxation that can

be useful in this context is known as configurationLP relaxation [16, 20]. Our re-

sult in this thesis is to provide a stronger integrality gap1 for such configurationLP

relaxation of the max-min fair allocation problem.

A special case of max-min fair allocation problem is theSanta Claus problem,

where value of each item is fixed, however a child may or may notwant the item.

Even, for this special case no constant factor approximation algorithm was known.

Following, the work of Bansal and Sviridenko [20], Feige [60] and Feige, Asad-

pour, Saberi [15] show that the same configurationLP that has been used for the

max-min fair allocation problem has a constant integralitygap for the Santa Claus

problem. Surprisingly, both results were obtained using two differentnonconstruc-

tive approaches and left the question of a constant factor approximation algorithm

open. In this thesis, we propose a new constructive version of a powerful proba-

bilistic tool, the Lovász Local Lemma (LLL) and using our algorithmic version of

1For definition, see Section 1.4
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LLL, we are able to provide the first constant factor approximation algorithm for

the Santa Claus problem.

Network Server Allocation Problems. Resource allocation is particularly im-

portant in the area of networking. For example, in an overlaynetwork, multiple

commodities or streams must be routed from a source via reflectors to the sinks

that are designated to serve the stream to end-users. Each source, reflector, sink

have certain capacity, and we have to ensure the quality and reliability of the ser-

vice in presence of network link failures. There is a maintenance cost to use links

and reflectors, as well as a set-up cost. With limited budget,the goal is to build an

overlay network which is as cheap as possible without compromising on the ser-

vice. In this thesis, we study one such optimization problemrelated to creation of

overlay networks, which improves upon the previous result of Andreev et al. [10].

Thek-median problem is an optimization problem that is widely studied as a

means for locating servers in networks [14, 38, 39, 84, 85]. The budget limitation

allows to open onlyk servers, and for all requests to be served in a cost-effective

manner, clients must be connected to their nearest open server. We can often as-

sume that we have a metric space and thek-median problem is as follows: Given

ann-vertex (client) metric space(V, d) and a boundk, the goal is to locate/open

k centersC ⊆ V so as to minimize the sum of distances of each vertex to its

nearest open center. Thek-median problem can also be viewed as a clustering

problem. The currently best-known approximation guarantee for k-median is a
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(3 + ε)-approximation (for any constantε > 0) due to Arya et al. [14].

A related problem appears incontent distribution networks(CDN). In CDN,

there are servers oft different types and for thei-th server-type (i ∈ [1, t]), only ki

of them can be opened.k-median is a special case witht = 1. For t = 2, Haji-

aghayi et al. obtained a constant factor approximation algorithm [76]. In this thesis,

we consider the problem for any arbitrary value oft, in fact, a generalization of it,

which we call thematroid-medianproblem and give a constant factor approxima-

tion algorithm for it. In this problem, the open centers mustform an independent

set of a matroid2. In k-median, the underlying matroid is auniform matroid, while

for the problem of server location in CDN, it is an instance ofapartition matroid.

Ad-words Assignment in Mobile Advertising & Capacitated Covering Prob-

lems. Almost all of us are familiar with the concept of advertisements being

shown along side the search results on internet search websites. Bidders bid for

each key-word and given a key-word, the search engines must decide which adver-

tisements to show on the limited number of available slots tooptimize their revenue.

This leads to an array of interesting optimization problems[35, 125]. Nowadays,

with world-wide usage of cellular phones,mobile advertisementis being consid-

ered as a viable alternative. However, in this scenario, typically users do not search

for keywords and in absence of users’ application context, it becomes difficult to

provide targeted advertisements. The only information available to a wireless ser-

2For a general background on matroids, the reader is referredto the book [121].
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vice providers (WSP) is the current location and time of users. Also, to ensure a

non-intrusive delivery methods, WSP must send only a limited number of ads to

each user. This introduces a “capacity” constraints on the number of advertise-

ments that could be shown to each user, and makes the process different from usual

internet advertising. In this thesis, we propose a model formobile advertising, and

derive new algorithmic results for it.

Indeed, capacitated problems arise naturally in many applications where there

are resource constraints. In this thesis, we study some extremely well-known prob-

lems such as vertex cover and set cover in presence of hard-capacity limitations and

show their applications in the area of resource allocation.

In the following sections of this introductory chapter, we briefly describe sev-

eral concepts used throughout the dissertation. Towards the end of this chapter, a

road map is given to guide the reader through different partsof the thesis.

1.3 Probabilistic Methods

The termprobabilistic methodsloosely refers to the use of identities and inequali-

ties from probability theory to prove combinatorial statements. We construct an ap-

propriate probability space and show that a randomly chosenelement in this space

has the desired property with probability greater than zero. This proves the exis-

tence of at least one object in the collection that has the property. Often a stronger

claim can be made. It can be shown that an element with the desired property does
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not only exist, but can be found with high probability if we make a few (polyno-

mial in number) random choices. This then leads to a randomized Monte-Carlo

algorithm.

Let us illustrate few concepts of probabilistic methods viaan example that will

be useful later.

Example1. Considerk-satisfiability, in short, ak-SAT formula withm clauses

andn boolean variables in conjunctive normal form. The goal is todecide whether

there exists an assignment of the boolean variables that satisfy the formula.

Proposition 1.3.1. If m < 2k, then there exists an assignment of the boolean

variables for anyk-SAT formula withm clauses andn variables.

Proof. Set each boolean variable to1 with probability 1/2 and0 with probabil-

ity 1/2 independently. The probability that a particular clause isunsatisfiable is

therefore 1
2k

. Thus, the probability that there exists at least one clausewhich is un-

satisfied by the random assignment is at mostm
2k

by union bound. Sincem < 2k,

probability of a failure is strictly less than1, thus the probability that there exists a

good assignment is nonzero. Hence, a good assignment exists.

Given Proposition 1.3.1, a natural question arises.What happens whenm ≥ 2k

? The union bound is clearly not enough to provide any guarantee in this situa-

tion. Consider the case when all clauses are disjoint, that is, the random variables

designating whether a clause is satisfied or not are mutuallyindependent. In that

case, irrespective of the value ofm, there exists a good assignment. There is no
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way to encode suchindependence informationin the union bound. It is possible

that each clause shares variables with only a few other clauses. Under such limited

dependency scenario, a particular probabilistic method that becomes very useful is

theLovász Local Lemma(LLL).

Lemma 1.3.2 (The Local Lemma; Symmetric Case). Let A1, A2, . . . , An be

events in an arbitrary probability space. Suppose that eacheventAi is mutually

independent of a set of all the other eventsAj but at mostd, and thatPr [Ai] ≤ p

for all 1 ≤ i ≤ n. If

ep(d+ 1) ≤ 1 (1.1)

thenPr
[⋂n

i=1 Āi

]
> 0.

The above is the symmetric version of LLL. The more general version of local

lemma is described in Chapter§3. Let us now illustrate the power of LLL via the

same example ofk-SAT .

Proposition 1.3.3. In a k-SAT formula withm clauses andn boolean variables,

if each clause shares variables with at most2k

e − 1 other clauses, then there exists

an assignment of random variables that satisfies all the clauses, or in other words,

thek-SAT formula is satisfiable.

Proof. Consider a random variable for each boolean variable and setit to 1 with

probability 1/2 and0 with probability 1/2 randomly and independently. Define a

bad eventAi for each unsatisfied clausei, for i = 1, 2, . . . ,m. ThenPr [Ai] =
1
2k

.
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Now each clause shares variables with at most2k/e − 1 other clauses. Therefore,

each bad event depends only on at most2k/e−1 other bad events. Hence, we have

d = 2k/e − 1, andep(d + 1) = e. 1
2k
(2

k

e − 1 + 1) = 1. Thus from the Symmetric

version of LLL, we know that there exists an assignment of theboolean variables

which satisfies all the clauses.

The condition of LLL guarantees existence of a good assignment, but it does

not tell us how to find such an assignment. This led to a long series of research

in developing an algorithmic version of LLL. In Chapter§3, we will study some

interesting new developments in that direction.

Another way to use probabilistic method is by calculating the expected value of

some random variables. It can often be claimed that the valueof a random variable

is concentrated around its expectation. One may use a variety of concentration

inequalities to establish such claims. The Chernoff-Hoeffding bound is one such

widely used concentration inequality that will be applied frequently in this thesis.

Lemma 1.3.4(The Chernoff-Hoeffding Bound). LetX1,X2, . . . ,Xn ben bounded

independent random variables withXi ∈ [0, 1], for all i = 1, 2, . . . , n. Then if

X =
∑n

i=1Xi andµ = E [X], we have

1. for anyδ > 0, Pr [ |X − µ| ≥ δµ] ≤
(

eδ

(1+δ)(1+δ)

)µ
,

2. for 0 < δ ≤ 1, Pr [X > µ(1 + δ)] ≤ e−µ/3δ2 ,

3. for 0 < δ ≤ 1, Pr [X < µ(1− δ)] ≤ e−µ/2δ2 .
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1.4 Linear Programming Relaxation and Rounding

Linear programming is the problem of optimizing (i.e., minimizing or maximizing)

a linear objective function subject to linear inequality constraints. Any solution,

i.e., a setting for the variables in the linear program is said to be feasible if it satisfies

all the constraints. On the other hand, a solution is optimal, if it is feasible and

optimizes (i.e., maximize or minimize) the objective function. A large number

of combinatorial optimization problems can be modeled as linear programs, and

in most cases, the variables must satisfy integrality constraints. Such integrality

constraints (integer linear program) make itNP-hard to obtain an optimal solution.

However, if we relax the variables to take fractional values, then it is possible to

optimally solve the linear program. For example, if a variable must take values

either0 or 1, we can relax it to take any fractional value in[0, 1]. This is known

as linear programming relaxation(LP-relaxation). The optimal objective value

of a LP-relaxation serves as a upper (lower) bound for the true optimal objective

value in case of a maximization (minimization) problem. Thefractional optimal

solution is then rounded to an integer solution with an objective value as close to

the objective value of theLP-relaxation. An important concept in this regard is that

of integrality gap. Integrality gap of aLP-relaxation for any problem is the ratio

between the true optimal and theLP optimal objective value. The best possible

approximation factor achievable through aLP rounding method is bounded by its
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integrality gap.

Let us illustrate the concept ofLP rounding and integrality gap through an

extremely well-studied combinatorial problem, namely, the set coverproblem.

Example2 (Set Cover). Given a universeU of n elements, a collection of subsets

of U , S = {S1, S2, . . . , Sm}, and a cost functionc : S→ Q+, find a minimum cost

subcollection ofS that covers all elements ofU .

To formulate the set cover problem as anILP, we assign an indicator variable

xS for each setS, such that it will be1, if the setS is selected and0 otherwise.

For each element, we have a constraint denoting that we must pick at least one set

containing the element in our solution.

minimize
∑

S∈S

xS (SetCoverILP)

subject to
∑

a∈S

xS ≥ 1 ∀ a ∈ U (1.2)

xS ∈ {0, 1} ∀S ∈ S (1.3)

TheLP-relaxation of thisILP is obtained by letting the domain of variablexS

be1 ≥ xS ≥ 0. Since the upper bound onxS is redundant, we get the following

LP.
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minimize
∑

S∈S

xS (SetCoverLP)

subject to
∑

a∈S

xS ≥ 1 ∀ a ∈ U (1.4)

xS ≥ 0 ∀S ∈ S (1.5)

Proposition 1.4.1( [135]). The integrality gap ofSetCoverLP is at leastlogn2 .

Proof. Consider the following set cover instance. Letn = 2k − 1, wherek is a

positive integer and letU = {e1, e2, . . . , en}. We view elementse1 to en asn

k-dimensional vectors overGF [2], except the all zero vector. We constructn sets

S1, S2, . . . , Sn such thatSi = {ej |ej · ei = 1}. Now it is easy to check that each

element belongs to exactlyn/2 sets. Thus if we setxS = 2
n for all S ∈ S, the

constraints ofSetCoverLP are satisfied and we get a feasible LP solution of value

2. On the other hand, any integer optimal solution must pick atleastk sets. This

can be seen as follows. Consider anyp < k sets and leti1, i2, . . . , ip be the indices

of thep sets. Consider thep× k dimensional matrixA, where thej-th row is thek

dimensional binary vectorij. Now the null space ofA is non-empty and therefore

there is a vectorel 6= 0 such thatA.el = 0. Clearly, the elementel is not contained

in any of thep sets. Thus at leastk = log (n+ 1) sets are required to cover all the

elements. Hence the integrality gap is at leastlog (n+1)
2 > logn

2 .
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Now, we will show a rounding algorithm that achieves an approximation factor

of O(log n) [135].

Let x∗ be a fractional optimal solution ofSetCoverLP. We pick each setS with

probabilityx∗S. LetC be the collection of sets picked. The expected cost ofC is

E [c(C)] =
∑

S∈S
Pr [S is picked] c(S) =

∑

S∈S
x∗Sc(S) = OPTf .

HereOPTf denotes the value of the objective function for the optimal solution of

SetCoverLP .

Now the elementa is covered by the sets inC if at least one set containinga is

picked. Thus,

Pr [a is covered byC] ≥ 1−
∏

S:a∈S
(1− x∗S)

Suppose,a belongs tok sets, thenPr [a is covered byC] ≥ 1 −∏S:a∈S(1 −

x∗S) ≥ 1−
(
1− 1

k

)k ≥ 1− 1
e . Thus the probability thata is not covered is at most

1
e .

To get a complete set cover, we independently pick2 lnn such subcollections,

and compute their union. Now, the probability that an element a is not covered in

any of the2 lnn subcollections is at most
(
1
e

)2 lnn
= 1

n2 .

Thus, by union bound, after2 ln n rounds the probability that there exists at

least one element that is not covered is at most1
n . On the other hand, the expected

cost of the overall solution is at most2 ln n OPTf . By Markov’s inequality, prob-
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ability that the expected cost is more than4 lnn OPTf is at most12 .

Thus, with probability at least12 − 1
n , we obtain a valid set cover with cost at

most4 lnn = O(log n) times the optimal cost.

Observe that, in polynomial time, we can verify if the solution computed is a

feasible set cover solution or not. If not, then we simply repeat the entire procedure.

The expected number of times that we need to repeat is less than 3.

It is not possible to obtain an approximation algorithm for set cover with ap-

proximation factoro(log n) unlessP = NP [59, 99]. Thus, no polynomial time

algorithm can achieve an approximation factor better than the aforementioned LP

rounding algorithm by more than a constant factor. The best known approximation

factor for set cover is due to [128].

1.5 Structure of Linear programs

For set cover, the best approximation ratio achievable in polynomial time islog n.

However, in many situations, especially those arising in geometric settings, the set

systems have more structure in it [32, 36, 134]. Consequently, the log n-hardness

no longer applies to such set-systems. Consider for example, covering points by

line segments in one dimension. An element (point) in covered by a line segment,

if its x-coordinate is contained in the segment. This particular instance of the set

cover problem is solvable in polynomial time. If we write theconstraint matrix of

the linear program for this set cover instance, the matrix satisfies a property known
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astotal unimodularity[53]. This property of total unimodularity of the constrained

matrix enables to obtain an integer optimal solution of the LP in polynomial time.

Thus, structure of linear program can often be a crucial ingredient in obtaining

better approximation algorithms. Note that for covering points by line segments,

one can obtain an optimal solution using dynamic programming as well.

While we can solve linear programs to obtain optimal solution, we can also

obtain extreme point solution, that is, the optimal solution that appears in one of

the vertices of the linear polytope. An extreme point solution cannot be written

as a convex combination of other solutions. Consider a linear program withn

variables andm constraints. A feasible solution of such a LP will be an extreme

point solution if and only if the number of linearly independent constraints that

are satisfied tightly (i.e., with equality) is exactly equalto n. One can exploit the

structure of an extreme point solution while designing rounding algorithms. In

Chapter§2, our new rounding methodology relies on such structural properties of

LP solutions.

1.6 Organization

Apart from this introductory chapter, the dissertation is divided into two main parts.

The first part is devoted to developing techniques, which areused in different ap-

plications in the second half. In Chapter§2, we develop our newLP rounding

technique. Chapter§3 describes our contribution towards algorithmic aspects of

19



the Lovász Local Lemma. Starting from Chapter§4, in the second half of the the-

sis, a large variety of different applications are described. While in most of them,

the main techniques used are those developed in Chapter§2 and§3, several problem

specific innovations are required as well.

Chapter§4 and§5 are devoted towards applications of scheduling in parallel

machines. In Chapter§5, we consider two generalizations of UPM scheduling

to minimize makespan. The first generalization is to consider hard capacity con-

straints on machines, and the second generalization is to consider outliers. In Chap-

ter §5, we develop new model for energy minimization in scheduling, and describe

our algorithmic contribution.

Chapter§6 and§7 describe themax-minfair allocation problem and the Santa

Claus problem respectively. In Chapter§6, we show how using our rounding tech-

nique, one can obtain better integrality gap for a particular configurationLP for

the max-min fair allocation problem. In Chapter§7, we develop the first constant

factor approximation algorithm for the Santa Claus problem.

Chapter§8 and§9 are devoted towards two applications of networking, an over-

lay network design problem and a problem of locating serversin content distri-

bution networks. In Chapter§9, we will see how structural properties of linear

program can help us to obtain a good approximation algorithm.

In Chapter§10, we develop a model of advertisement allocation in cellular

networks, and show how to abstract the problem using a linearprogram and obtain
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an approximation algorithm for it. In Chapter§11, we consider the vertex cover

and set cover problem with hard capacity bounds on vertices and sets respectively.

The new linear programming rounding method of Chapter§2 and its related

applications in Chapter§4, §6 and§8 appeared in [118]. The constructive version

of the Lovász Local Lemma (Chapter§3) and the result on the Santa Claus prob-

lem appeared in [75]. The scheduling work to minimize energyon data centers was

published in [88]. The materials of Chapter§9 and Chapter§10 appeared respec-

tively in [91] and [1].
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Part I

Techniques
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CHAPTER 2

A New Linear Programming Rounding Method

A large class of optimization problems can be modeled as integer linear programs

(ILP). However solving an ILP optimally is NP-hard and in contrast its linear-

programming (LP) relaxation is solvable in polynomial time. This has resulted in

the much-used paradigm of “relax-and-round” wherein an ILPis relaxed to get an

LP and an efficiently-computed optimal solution of the LP is rounded to an integer

solution thatapproximatesthe true ILP-optimum. This second “rounding” step is

often a crucial ingredient, and many general techniques have been developed for it.

In Chapter 1, we have seen a simple example of LP rounding method for set

cover problem. In that problem, random variables are rounded independently.

The method, known asindependent randomized rounding, was first proposed by

Raghavan and Thompson [116]. In many applications, howeversuch indepen-

dent rounding procedure fails to guarantee any good approximation. As a result,

a new generic technique ofdependent roundinghas been developed in the last

decade [2, 65, 92, 127]. Our proposed rounding methodology makes progress in
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that direction. We start with a description of dependent rounding and then elabo-

rate on our contribution.

2.1 The Dependent Randomized Rounding

Dependent rounding is a generic rounding methodology whichhas been proven

quite effective in variety of applications of scheduling, packet-routing and in gen-

eral in combinatorial optimization [2,65,92,127]. Duringany rounding procedure,

we map an LP-optimal fractional solutionx to a nearby integer solutionX. When

the rounding is doneindependently, we typically choose a valueα that is problem-

specific, and, for eachi, defineXi to be1 with probabilityαxi, and to be0 with

the complementary probability of1−αxi. Independence can, however, lead to no-

ticeable deviations from the mean for random variables thatarerequiredto be very

close to (or even be equal to) their mean. A fruitful idea developed in [65,92,127] is

to carefully introducedependenciesinto the rounding process: in particular, some

sums of random variables are held fixed with probability one,while still retaining

randomness in the individual variables. This is the premiseof dependent random-

ized rounding. See [2] for a related deterministic approachthat precedes these

works.

In [65], dependent randomized rounding procedure was developed for a simple

setting of bipartite graphs, which we describe next.
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2.1.1 Dependent Rounding on Bipartite Graphs

Suppose we are given a bipartite graphG = (A,B,E) with the bipartition(A,B)

and the edgesE. There is a variablexi,j ∈ [0, 1] associated with each edge(i, j) ∈

E. Dependent rounding on the bipartite graph is a randomized polynomial-time

scheme that rounds eachxi,j ∈ [0, 1] to Xi,j ∈ {0, 1}, that satisfies the following

three properties:

(P1) Marginal distribution. For every edge(i, j), Pr [Xi,j = 1] = xi,j. This

property can be ensured through simple independent rounding of [116] as

well. As a corollary of it,

∀ (i, j) ∈ E, E [Xi,j] = xi,j. (2.1)

(P2) Degree-preservation. For every vertexi ∈ A ∪ B, if the fractional

degree
∑

j∈A∪B xi,j = d, then with probability1, the integral degree

∑

j∈A∪BXi,j ∈ {⌈d⌉, ⌊d⌋}.

This is a property, very specific to dependent rounding and often plays a vital

role when certain cardinality constraints need to be maintained.

(P3) Negative correlation. For any vertexi and any subset of edgesS,

∀ b ∈ {0, 1}, Pr
[
Π(i,j)∈S(Xi,j = b)

]
≤ Π(i,j)∈SPr [(Xi,j = b)] (2.2)
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This property enables us to use “Chernoff” type bounds on each vertex. The

Chernoff-Hoeffding bound can be applied for sum of random variables that

are negatively correlated.

The rounding starts by selecting all the edges that already have theirx values

in {0, 1} and setting the correspondingXi,j values equal toxi,j. All these integral-

valued edges are removed from the bipartite graph. Thus the edge(i, j) is in E if

and only ifxi,j ∈ (0, 1). Next the algorithm chooses an even cycleC (note that

in a bipartite graph every cycle has even length) or a maximalpathP in G, and

partitions the edges inC or P into two matchingsM1 andM2. Then, two positive

scalarsα andβ are defined as follows:

α = min{η > 0 : ((∃(i, j) ∈M1 : xi,j+η = 1)
⋃

(∃(i, j) ∈M2 : xi,j−η = 0))};

β = min{η > 0 : ((∃(i, j) ∈M1 : xi,j−η = 0)
⋃

(∃(i, j) ∈M2 : xi,j+η = 1))};

Now with probability β
α+β , set

Yi,j = xi,j + α for all (i, j) ∈M1

and Yi,j = xi,j − α for all (i, j) ∈M2;
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with complementary probability ofαα+β , set

Yi,j = xi,j − β for all (i, j) ∈M1

and Yi,j = xi,j + β for all (i, j) ∈M2;

Thus at least onexi,j is rounded to0 or1. Hence the rounding algorithm always

make progress and inO(|E|) iterations all the edges are rounded to integral value.

The above rounding scheme satisfies the three properties: marginal distribution,

degree-preservation and the negative correlation specified above.

2.1.2 A Negative Correlation Property

We now show a useful negative correlation property for dependent rounding on

bipartite graphs for the case ofmatching.

Definition 2.1.1(Negative Correlation for Indicator Random Variables). A col-

lection of indicator random variables{zi}, i ∈ [1, n] are said to be negatively

correlated, if for any subset oft variables, t ∈ [1, n], and anyb ∈ {0, 1},

Pr
[
∧t

j=1 zij = b
]

≤∏t
j=1 Pr

[
zij = b

]
.

Theorem 2.1.2. Define an indicator random variablezj for each vertexj ∈ B

(similarly for vertices inA), such thatzj = 1 if item j is matched. Then, the

indicator random variables{zj} are negatively correlated.

Proof. Consider any collection of verticesj1, j2, . . . , jt belonging toB. Let b = 1
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(the proof for the caseb = 0 is identical). LetYi,j,k denote the value ofYi,j at

the beginning of thek-th iteration of bipartite dependent rounding. Define,zj,k =

∑

i,(i,j)∈E Yi,j,k. Clearly,zj =
∑

i,(i,j)∈E Yi,j,|E|+1. We will show that

∀k,E
[

t∏

i=1

zji,k

]

≤ E

[
t∏

i=1

zji,k−1

]

(2.3)

Thus, we will have

Pr

[
t∧

i=1

zji = 1

]

= E

[
t∏

i=1

zji,|M |+1

]

≤ E

[
t∏

i=1

zji,1

]

=

t∏

i=1

∑

v

Yv,ji,1 =

t∏

i=1

Pr [zji = 1]

We now prove (2.3) for a fixedk. Note that any vertex that is not the end point

of the maximal path or the cycle on which dependent rounding is applied on the

(k − 1)-th round retains their previousz value. There are three cases to consider.

Case 1: Two vertices amongj1, j2, . . . , jt have their values modified. Let these

vertices be sayj1 andj2. Therefore, these two vertices must be the end points of

the maximal path on which dependent rounding is applied on the (k− 1)-th round.

The path length must be even. LetB(j1, j2, α, β) denote the event that the jobs
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{j1, j2} have their values modified in the following probabilistic way:

(zj1,k, zj2,k) =







(zj1,k−1 + α, zj2,k−1 − α) with probability β
α+β

(zj1,k−1 − β, zj2,k−1 + β) with probability α
α+β

Thus

E

[
t∏

i=1

zji,k | ∀i ∈ [1, t], zji,k−1 = aji ∧B(j1, j2, α, β)

]

= E [zj1,kzj2,k | ∀i ∈ [1, t], zji,k−1 = aji ∧B(j1, j2, α, β)]
t∏

i=3

aji

The above expectation can be written as(ψ + φ)Πt
i=3aji , where

ψ = (β/(α + β))(aj1 + α)(aj2 − α), and

φ = (α/(α + β))(aj1 − β)(aj2 + β).

Now, it can be easily seen thatψ + φ ≤ aj1aj2. Thus for any fixedj1, j2 and

for any fixed(α, β), and for fixed valuesaf the following holds:

E

[
t∏

i=1

zji,k | ∀i ∈ [1, t], zji,k−1 = aj ∧B(j1, j2, α, β)

]

≤
t∏

i=1

aj .

Hence,E
[∏t

i=1 zji,k | Case 1
]
≤ E

[∏t
i=1 zji,k−1 | Case 1

]
.
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Case 2: One vertex amongj1, j2, . . . , jt has its value modified. Let the vertex

be j1 say. Therefore, this vertex must be the end point of the maximal path on

which dependent rounding is applied on the(k−1)-th round. The path length must

be odd. LetB(j1, α, β) denote the event that the jobj1 has its value modified in

the following probabilistic way:

zj1,k =







zj1,k−1 + α with probability β
α+β

zj1,k−1 − β with probability α
α+β

Thus,

E [zj1,k | ∀i ∈ [1, t], zji,k−1 = aj ∧B(j1, α, β)] = aj1 .

Since the values ofzji , i ∈ [2, t] remains unchanged and the above equation holds

for anyj1, α, β, we haveE
[∏t

i=1 zji,k | Case 2
]
≤ E

[∏t
i=1 zji,k−1 | Case 2

]
.

Case 3: None amongj1, j2, . . . , jt has its value modified.

In this case, the value ofzji,k ’s, i ∈ [1, t], do not change. Hence,

E
[∏t

i=1 zji,k | Case 3
]
≤ E

[∏t
i=1 zji,k−1)

]
.

This establishes the claim.

We can extend the bipartite dependent rounding method to weighted depen-
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dent rounding such that the three properties of dependent rounding [(PI), (PII) and

(PIII)] hold. As a result, we can also obtain negative correlation bound like The-

orem 2.1.2 for weighted bipartite matching. We leave these as exercises to the

readers.

2.2 Generalization of Dependent Rounding for Arbitrary

Linear Systems

The above bipartite dependent rounding scheme can be extended to any arbitrary

system of linear constraints. Suppose we are given a system of linear equations,

Ax ≤ b, x ∈ [0, 1]n, whereA is anm×n matrix andb is anm-dimensional vector.

Also for notational simplicity, assumex is some given solution to this system of

linear equations and thus it satisfiesAx = b′, for someb′ ≤ b. Once again, our

goal is to obtain a feasible solutionX ∈ {0, 1}n satisfyingAX = b′.

First, as in the bipartite-dependent-rounding, if anyxj, j ∈ [n], already has a

value in{0, 1}, we setXj = xj permanently. Next we projectx to only those coor-

dinates that are in(0, 1) and thus consider a reduced system of equationsA′x′ = b′.

Suppose the linear system,A′x′ = b′, is underdetermined, i.e., the number of lin-

early independent constraints are less than the number of variables. Then since the

null-space ofA′ is non-trivial, we can efficiently find a non-zero vectorr, such that

A′r = 0. Sincex ∈ (0, 1)n, we can also find strictly-positive scalarsα andβ such

that: 1) all entries ofx + αr andx − βr lie in [0, 1] and, 2) at least one entry of
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x+αr andx−βr becomes either0 or 1. With probability β
α+β , we setY = x+αr

and with complementary probabilityβα+β , we setY = x − βr. Since at least one

new variable is set to an integer, the rounding terminates after at mostn rounds.

Let X ′ denote the final-rounded solution corresponding tox′, then the rounding

satisfies the following two properties:

(P’1) Marginal distribution. For j ∈ [n],Pr [Xj = 1] = xj . Thus, ∀ j ∈

[n], E [Xj ] = xj .

(P’2) Linear-constraint-preservation. Pr [A′X ′ = b′] = 1

It is important to ensure that the linear-system is underdetermined in order to

guarantee the existence of a non-trivial vector in the null-space ofA. When the

system becomes determined, depending on the application, we may select suitable

constraints to drop such that the system again becomes underdetermined.

Bipartite dependent rounding can be viewed as a special caseof this approach.

When we select a maximal path in bipartite dependent rounding, for each interme-

diate vertex we maintain the sum of the fractional values of the edges incident on

them. Thus if the maximal path hass vertices, then we have(s − 1) variables and

(s − 2) constraints. On a cycle, there ares variables ands constraints, but one of

the constraint is linearly dependent on the rest and thus canbe ignored.
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2.3 Randomized Iterative Relaxation

We further generalize the above approach. This leads to a rounding methodology

that not only falls under the umbrella of dependent rounding, but can be best catego-

rized asrandomized iterative relaxation. This establishes the connection between

two, probably the most effective, rounding methods: the dependent rounding and

the iterative relaxation procedure.

The general paradigm of iterative rounding was first developed by Jain for ap-

proximating survivable network design problems [83]. The basic idea in iterative

rounding method is to consider a basic solution of a linear programming relaxation

and utilizing the property of a basic solution to show that a variable exists with

fractional values at least say1/2. These almost integral variables are then rounded

up to the nearest integer, and fixing these variables the remaining linear program is

solved once again. The procedure continues iteratively unless all the variables are

rounded to integers. Since the basic iterative rounding technique loses a constant

factor in the approximation, the technique is extended by interleavingrelaxation

steps, dropping constraints without compromising too muchin the feasibility, and

rounding iteratively [67,94,123].

We generalize the methods of [94,123] as well as that of [2,65,87,92,127], via

a type of random walk toward a vertex of the underlying polytope that we outline

next.
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Suppose we are given a polytopeP in n dimensions, and anon-vertexpoint

x belonging toP. An appropriate basic-feasible solution will of course lead us

to a vertex ofP, but we approach (not necessarily reach) a vertex ofP by a ran-

dom walk as follows. LetC denote the set of constraints definingP which are

satisfiedtightly (i.e., with equality) byx. Then, note that there is a non-empty

linear subspaceS of ℜn such that for any nonzeror ∈ S, we can travel up to

some strictly-positive distancef(r) alongr starting fromx, while staying inP and

continuingto satisfy all constraints inC tightly. Our broad approach to conduct a

random moveY := x + R by choosing an appropriately randomR from S, such

that the property “E [[]Yj] = xj” of the previous paragraph still holds. In partic-

ular, let RandMove(x,P) – or simplyRandMove(x) if P is understood – be as

follows. Choose a nonzeror ∈ S arbitrarily, and setY := x + f(r)r with prob-

ability f(−r)/(f(r) + f(−r)), andY := x − f(−r)r with the complementary

probability off(r)/(f(r) + f(−r)). Note that if we repeatRandMove, we obtain

a random walk that finally leads us to a vertex ofP; the high-level idea is to inter-

sperse this walk with the idea of “judiciously dropping someconstraints” as well

as combining certain constraints together into one.

To contrast with the dependent rounding procedure for linear systems, note

that, heretightly satisfied constraints play a vital role. As long as a constraint is

not tightly satisfied, we can simply ignore it while determining whether the system

is underdetermined. We take aRandMove and make progress until one of the
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non-tight constraint becomes tight or some variable gets rounded.

Interspersing the random walk towards a vertex matches therelaxationstep of

the iterative relaxation method. However in iterative relaxation, a linear program

is solved repetitively in order to get a basic solution at every step–here instead we

make a random choice of vectorr and pick a direction to proceed alongr proba-

bilistically. This procedure thus satisfies the property “E [Yj] = xj” and depending

on the polytope may lead tonegative correlationtype results as in basic bipartite

dependent rounding technique.

As discussed later in the thesis, our recipe appears fruitful in a number of di-

rections in scheduling, fair allocation, budgeted adword allocation, and as a new

rounding technique in general.
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CHAPTER 3

Constructive Aspects of the Lovász Local

Lemma

The well-known Lovász Local Lemma (LLL) [55] is a powerful probabilistic ap-

proach to prove the existence of certain combinatorial structures. Its diverse range

of applications include breakthroughs in packet-routing [95], a variety of theorems

in graph-coloring including list coloring, frugal coloring, total coloring, and color-

ing graphs with lower-bounded girth [109], as well as a host of other applications

where probability appears at first sight to have no role [9]. Furthermore, almost all

known applications of the LLL have no alternative proofs known. While the orig-

inal LLL was non-constructive – it was unclear how the existence proofs could be

turned into polynomial-time algorithms – a series of works [5,27,50,108–112,129]

beginning with Beck [27] and culminating with the breakthrough of Moser & Tar-

dos (MT) [111] have led to efficient algorithmic versions formost such proofs.

However, there are several LLL applications to which these approaches inherently
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cannot apply. In this chapter, we make progress toward bridging this gap, by un-

covering and exploiting new properties of [111].

3.1 Preliminaries & Limitation of MT Algorithm

In Chapter 1, we have seen the symmetric version of LLL (Theorem 1.3.2). LetP

be a collection ofn mutually independent random variables{P1, P2, . . . , Pn}, and

let A = {A1, A2, . . . , Am} be a collection ofm (“bad”) events, each determined

by some subset ofP. For any eventB that is determined by a subset ofP we

denote the smallest such subset byvbl(B). For any eventB that is determined by

the variables inP, we furthermore writeΓ(B) = ΓA(B) for the set of all events

A 6= B in A with vbl(A) ∩ vbl(B) 6= ∅. This neighborhood relation induces

the following standarddependency graphor variable-sharing graphonA: For the

vertex setA let G = GA be the undirected graph with an edge between events

A,B ∈ A iff A ∈ Γ(B). We often refer to events inA asbad eventsand want to

find a point in the probability space, or equivalently an assignment to the variables

P, wherein none of the bad events happen. We call such an assignment agood

assignment.

With these definitions the general (“asymmetric”) version of the LLL simply

states:

Theorem 3.1.1(Asymmetric Lovász Local Lemma). WithA,P andΓ defined as
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above, if there exists an assignment of realsx : A→ (0, 1) such that

∀A ∈ A : Pr [A] ≤ x(A)
∏

B∈Γ(A)

(1− x(B)); (3.1)

then the probability of avoiding all bad events is at leastΠA∈A(1−x(A)) > 0 and

thus there exists a good assignment to the variables inP.

The LLL (Theorem 3.1.1) shows sufficient conditions under which, with pos-

itive probability, none of the eventsAi holds: i.e., that there is a choice of values

for the variables inP (corresponding to a discrete structure such a suitable coloring

of a given graph) that avoids all theAi. Under these same sufficient conditions,

MT shows the following very simple algorithm to make such a choice: (i) initially

choose thePi independently from their given distributions; (ii)while the current

assignment toP does not avoid all theAi, repeat: arbitrarily choose a currently-

trueAi, and resample, from their product distribution, the variables inP on which

Ai depends. The amazing aspect of MT is that the expected numberof resamplings

is small [111]: at mostpoly(n,m) in all known cases of interest. However, there

are two problems with implementing MT, that come up in some applications of the

LLL:

(a) the number of eventsm can be superpolynomial in the number of variablesn;

this can result in a superpolynomial running time in the “natural” parameter

n 1; and, even more seriously,

1n is the parameter of interest since the output we seek is one value for each ofP1, P2, . . . , Pn.
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(b) given an assignment toP, it can be computationally hard (e.g., NP-hard or yet-

unknown to be in polynomial time) to either certify that noAi holds, or to

output an indexi such thatAi holds.

Since detection and resampling of a currently-bad event is the seemingly un-

avoidable basic step in the MT algorithm, these applications seemed far out of

reach. We deal with a variety of applications wherein (a) and/or (b) hold, and de-

velop Monte Carlo (and in many cases,RNC) algorithms whose running time is

polynomial inn: some of these applications involve a small loss in the quality of

the solution. (We loosely let “RNC algorithms” denote randomized parallel algo-

rithms that usepoly(n) processors and run inpolylog(n) time, to output a correct

solution with high probability.) First we show that the MT algorithm needs only

O(n2 log n) many resampling steps in all applications that are known (and in most

casesO(n ·polylog(n))), even whenm is superpolynomial inn. This makes those

applications constructive that allow anefficient implicit representation of the bad

events (in very rough analogy with the usage of the ellipsoidalgorithm for convex

programs with exponentially many constraints but with goodseparation oracles).

Still, most of our applications have problem (b). For these cases, we introduce a

new proof-concept based on the(conditional) LLL-distribution– the distributionD

on P that one obtains when conditioning on noAi happening. Some very useful

properties are known forD [9]: informally, if B depends “not too heavily” on the

events inA, then the probability placed onB by D is “not much more than” the

39



unconditional probabilityPr [B]: at mostfA(B)·Pr [B] (see (3.2)). Such bounds in

combination with further probabilistic analysis can be used to give interesting (non-

constructive) results. Our next main contribution is that the MT algorithm has an

output distribution (sayD′) that “approximates” the LLL-distributionD: in that for

everyB, thesameupper boundfA(B) · Pr [B] as above, holds inD′ as well. This

can be used to make probabilistic proofs that use the LLL-condition constructive.

Problem (b), in all cases known to us, comes from problem (a):it is easy to

test if anygivenAi holds currently (e.g., if a given subset of vertices in a graph

is a clique), with the superpolynomiality ofm being the apparent bottleneck. To

circumvent this, we develop our third main contribution: the very general The-

orem 3.3.3 that is simple and directly applicable in all LLL instances that allow

a small slack in the LLL’s sufficient conditions. This theorem proves that a small

poly(n)-sized core-subset of the events inA can be selected and avoided efficiently

using the MT algorithm. Using the LLL-distribution and a simple union bound

over the non-core events, we get efficient (Monte Carlo and/or RNC) algorithms

for these problems.

Our method is applied to several applications including theSanta Claus prob-

lem (see Chapter 7), non-repetitive coloring of graphs (seeSection 3.4, general

Ramsey type graphs (see [75]), acyclic edge coloring (see [75]). All of these

have problem (a), and all but the acyclic-coloring application have problem (b).

The recent break-through result of Andrews on approximating edge-disjoint paths
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problem in undirected graphs is another example, where LLL is applied to avoid

super-polynomially many bad events [11].

The following subsection 3.1.1 reviews the MT algorithm andits analysis,

which will be helpful to understand some of our proofs and technical contributions;

the reader familiar with the MT algorithm may skip it.

3.1.1 Review of the MT Algorithm and its Analysis

Recall the resampling-based MT algorithm; let us now reviewsome of the techni-

cal elements in the analysis of this algorithm, that will help in understanding our

technical contributions better.

A witness treeτ = (T, σT ) is a finite rooted treeT together with a labelingσT :

V (T ) → A of its vertices to events, such that the children of a vertexu ∈ V (T )

receive labels fromΓ(σT (u))∪ σT (u). In a proper witness tree distinct children of

the same vertex always receive distinct labels. The “log”C of an execution of MT

lists the events as they have been selected for resampling ineach step. GivenC,

we can associate a witness treeτC(t) with each resampling stept that can serve as

a justification for the necessity of that correction step.τC(t) will be rooted atC(t).

A witness tree is said to occur inC, if there existst ∈ N , such thatτC(t) = τ . It

has been shown in [111] that ifτ appears inC, then it is proper and it appears inC

with probability at mostΠv∈V (τ)Pr [σT (v)].

To bound the running time of the MT algorithm, one needs to bound the number

of times an eventA ∈ A is resampled. IfNA denotes the random variable for the
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number of resampling steps ofA andC is the execution log; thenNA is the number

of occurrences ofA in this log and also the number of distinct proper witness

trees occurring inC that have their root labeledA. As a result one can bound

the expected value ofNA simply by summing the probabilities of appearances of

distinct witness trees rooted atA. These probabilities can be related to a Galton-

Watson branching process to obtain the desired bound on the running time.

A Galton-Watson branching process can be used to generate a proper witness

tree as follows. In the first round the root of the witness treeis produced, say it

corresponds to eventA. Then in each subsequent round, for each vertexv indepen-

dently and again independently, for each eventB ∈ ΓσT (v)∪σT (v),B is selected

as a child ofv with probabilityx(B) and is skipped with probability(1− xB). We

will use the concept of a proper witness trees and Galton-Watson process in several

of our proofs.

3.2 LLL-Distribution

When trying to turn the non-constructive Lovász Local Lemma into an algorithm

that finds a good assignment the following straightforward approach comes to

mind: draw a random sample for the variables inP until one is found that avoids

all bad events. If the LLL-conditions are met this rejection-sampling algorithm cer-

tainly always terminates but because the probability of obtaining a good assignment

is typically exponentially small it takes an expected exponential number of resam-
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plings and is therefore non-efficient. While the celebratedalgorithm of Moser (and

Tardos) is much more efficient, the above rejection-sampling method has a major

advantage: it does not just produce an arbitrary assignmentbut provides a randomly

chosen assignment from the distribution that is obtained when one conditions on

no bad event happening. In the following, we call this distributionLLL-distribution

or conditional LLL-distribution.

The following is a well-known bound on the probabilityPrD [B] that the LLL-

distributionD places onanyeventB that is determined by variables inP (its proof

is an easy extension of the standard non-constructive LLL-proof [9]):

Theorem 3.2.1. If the LLL-conditions from Theorem 3.1.1 are met, then the LLL-

distributionD is well-defined. For any eventB that is determined byP, the proba-

bility PrD[B] ofB underD satisfies:

PrD [B] := Pr

[

B
∣
∣
∧

A∈A
A

]

≤ Pr [B] ·
∏

C∈Γ(B)

(1− xC)−1; (3.2)

here, Pr [B] is the probability of B holding under a random choice of

P1, P2, . . . , Pn.

The fact that the probability of an eventB does not increase much in the con-

ditional LLL-distribution whenB does not depend on “too many”C ∈ A, is used

critically in the rest of the paper.

More importantly, the following theorem states that the output distributionD′
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of the MT-algorithm approximates the LLL-distributionD and has the very nice

property that it essentially also satisfies (3.2):

Theorem 3.2.2.Suppose there is an assignment of realsx : A → (0, 1) such that

(3.1) holds. LetB be any event that is determined byP. Then, the probability that

B was trueat least onceduring the execution of the MT algorithm on the events

in A, is at mostPr [B] · (∏C∈Γ(B)(1 − xC))−1. In particular the probability ofB

being true in the output distribution of MT obeys this upper-bound.

Proof. The bound on the probability ofB ever happening is a simple extension

of the MT proof [111]. Note that we want to prove the theorem irrespective of

whetherB is in A or not. In either case we are interested in the probability that

the event was true at least once during the execution, i.e., if B is in A whether it

could have been resampled at least once. The witness trees that certify thefirst

timeB becomes true are the ones that haveB as a root and all non-root nodes

from A \ {B}. Similarly as in [111], we calculate the expected number of these

witness trees via a union bound. Letτ be a fixed proper witness tree with its

root vertex labeledB. Following the proof of Lemma 3.1 and using the fact that

B cannot be a child of itself, it can be shown that the probability pτ with which

the Galton-Watson process that starts withB yields exactly the treeτ is pτ =

∏

A∈Γ(B)(1−x(A))·
∏

v∈V (τ) x
′(σv). HereV (τ) are the non-root vertices ofτ and

x′(σv) = x(σv)
∏

C∈Γ(σv)
(1−x(C)). Plugging this in the arguments following the

proof of Lemma 3.1 of [111] it is easy to see that the union bound over all these trees
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and therefore also the desired probability is at mostPr [B] · (∏C∈Γ(B)(1−xC))−1

where the term “Pr[B]” accounts for the fact that the root-eventB has to be true as

well.

Using this theorem we can view the MT algorithm as anefficientway to obtain

a sample that comes approximately from the conditional LLL-distribution. This

efficient sampling procedure makes it possible to make proofs using the conditional

LLL-distribution constructive and directly convert them into algorithms.

3.3 LLL Applications with Super-Polynomially Many

Bad Events

In several applications of the LLL, the number of bad events is super-polynomially

larger than the underlying variables. In these cases we aim for an algorithm that still

runs in time polynomial in the number of variables, and it is not efficient to have an

explicit representation of all bad events. Surprisingly, Theorem 3.3.1 shows that the

number of resamplings done by the MT algorithm remains quadratic and in most

cases even near-linear in the number of variablesn.

We introduce a key parameter:

δ := min
A∈A

x(A)
∏

B∈Γ(A)

(1− x(B)). (3.3)

Note that without loss of generalityδ ≤ 1
4 because otherwise allA ∈ A are inde-
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pendent, i.e., defined on disjoint sets of variables. Indeedif δ > 1
4 and there is an

edge inG betweenA ∈ A andB ∈ A then we have14 > x(A)(1 − x(B)) and

1
4 > x(B)(1 − x(A)), i.e., 14 · 14 > x(A)(1 − x(A)) · x(B)(1 − x(B)) which is a

contradiction becausex(1− x) ≤ 1
4 for all x (the maximum is attained atx = 1

2 ).

We allow our algorithms to have a running-time that is polynomial in log(1/δ);

in all applications known to us,δ ≥ exp(−O(n log n)), and hence,log(1/δ) =

O(n log n). In fact becauseδ is an upper bound forminA∈A P (A) in any typical

encodings of the domains and the probabilities of the variables,log(1/δ) will be at

most linear in the size of the input or the output.

Theorem 3.3.1.Suppose there is anε ∈ [0, 1) and an assignment of realsx : A→

(0, 1) such that:

∀A ∈ A : Pr [A] ≤ (1− ε)x(A)
∏

B∈Γ(A)

(1− x(B)).

With δ denotingminA∈A x(A)
∏

B∈Γ(A)(1− x(B)), we have

T :=
∑

A∈A
xA ≤ n log(1/δ). (3.4)

Furthermore:

1. if ε = 0, then the expected number of resamplings done by the MT algorithm

is at mostv1 = T maxA∈A
1

1−x(A) , and for any parameterλ ≥ 1, the MT

algorithm terminates withinλv1 resamplings with probability at least1 −
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1/λ.

2. if ε > 0, then the expected number of resamplings done by the MT algorithm

is at mostv2 = O(nε log
T
ε ), and for any parameterλ ≥ 1, the MT algorithm

terminates withinλv2 resamplings with probability1− exp(−λ).

Proof. The main idea of relating the quantityT ton andδ is to use: (i) the fact that

the variable-sharing graphG is very dense, and (ii) the nature of the LLL-conditions

which force highly connected events to have small probabilities andx-values. To

see thatG is dense, consider for any variableP ∈ P the set of events

AP = {A ∈ A|P ∈ vbl(A)},

and note that these events form a clique inG. Indeed, them vertices ofG can be

partitioned inton such cliques with potentially further edges between them, and

therefore has at leastn ·
(m/n

2

)
= m2/(2n)−m/2 edges, which is high density for

m≫ n.

Let us first prove the bound onT . To do so, we fix anyP ∈ P and show that

∑

B∈AP
xB ≤ log(1/δ), which will clearly suffice. Recall from the discussion

following (3.3) that we can assume w.l.o.g. thatδ ≤ 1
4 . If |AP | = 1, then of course

∑

B∈AP
xB ≤ 1 ≤ log(1/δ). If |AP | > 1, letA ∈ AP have the smallestxA value.
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Note that by definition

δ ≤ xA
∏

B∈AP \A
(1− xB) =

xA
1− xA

∏

B∈AP

(1− xB).

If xA ≤ 1/2, thenδ ≤∏B∈AP
(1−xB) ≤ e−

∑

B∈AP
xB , and we get

∑

B∈AP
xB ≤

ln (1/δ) < log(1/δ) as required. Otherwise, ifxA > 1/2, letB1 ∈ AP \A. Then,

δ ≤ xA ·
∏

B∈AP \A
(1− xB) = xA(1− xB1)

∏

B∈AP \(A∪B1)

(1− xB)

≤ xA(1− xB1)e
−

∑

B∈AP \(A∪B1)
xB . (3.5)

Let us now show that for1/2 ≤ xA ≤ xB1 ≤ 1,

xA(1− xB1) ≤ e−(xA+xB1
). (3.6)

Fix xA. We thus need to showexB1 (1−xB1) ≤ 1
xAexA . The derivative ofexB1 (1−

xB1) is negative forxB1 ≥ 0, showing that it is a decreasing function in the range

xB1 ∈ [xA, 1]. Therefore the maximum value ofexB1 (1 − xB1) is obtained at

xB1 = xA and for (3.6) to hold, it is enough to show that,xA(1 − xA) ≤ e−2xA

holds. The second derivative ofe−2xA − xA(1 − xA) is positive. Differentiating

e−2xA − xA(1 − xA) and equating the derivative to0, returns the minimum in

[1/2, 1] atxA = 0.7315. The minimum value is0.0351 > 0. Thus we have (3.6)
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and so we get

xA(1− xB1)e
−

∑

B∈AP \(A∪B1)
xB) ≤ e−

∑

B∈AP
xB ;

using this with (3.5), we obtain
∑

B∈AP
xB ≤ ln (1/δ) < log(1/δ) as desired.

Given the bound onT , part (1) follows directly from the main theorem of [111]

and by a simple application of Markov’s inequality.

Part (2) now also follows from [111]. In section 5 of [111] it is shown that

saving an1− ε factor in the probability of every resampling step implies that with

high probability, no witness tree of sizeΩ(1ε log
∑

A∈A
xA

1−xA
) occurs. This easily

implies that none of then variables can be resampled more often. It is furthermore

shown that without loss of generality allx-values can be assumed to be bounded

away from1 by at leastO(ε). This simplifies the upper bound on the expected

running time ton · O(1ε log
T
ε ).

As mentioned following the introduction ofδ in (3.3), log(1/δ) ≤ O(n log n)

in all applications known to us, and is often even smaller.

While Theorem 3.3.1 gives very good bounds on the running time of MT even

for applications withΩ(n) ≤ m ≤ poly(n) many events, it unfortunately often

fails to be directly applicable whenm becomes super-polynomial inn. The rea-

son is that maintaining bad events implicitly and running the resampling process

requires an efficient way to find violated events. In many examples with super-
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polynomially many events, finding violated events or even just verifying a good

assignment is not known to be in polynomial time (often even provably NP-hard).

To capture the sets of events for which we can run the MT algorithm efficiently we

use the following definition:

Definition 3.3.2. (Efficient verifiability) A setA of events that are determined by

variables inP is efficiently verifiableif, given an arbitrary assignment toP, we can

efficiently find an eventA ∈ A that holds or detect that there is no such event.

Because many largeA of interest are not efficiently verifiable, a direct applica-

tion of the MT-algorithm is not efficient. Nevertheless we show in the rest of this

section that using the randomness in the output distribution of the MT-algorithm

characterized by Theorem 3.2.2, it is still practically always possible to obtain effi-

cient Monte Carlo algorithms that produce a good assignmentwith high probability.

The main idea is to judiciously select an efficiently verifiable core subset

A′ ⊆ A of bad events and apply the MT-algorithm to it. Essentially instead of

looking for violated events inA we only resample events fromA′ and terminate

when we cannot find one such violated event. The non-core events will have small

probabilities and will be sparsely connected to core eventsand as such their prob-

abilities in the LLL-distribution and therefore also the output distribution of the

algorithm does not blow up by much. There is thus hope that thenon-core events

remain unlikely to happen even though they were not explicitly fixed by the algo-

rithm.
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While the concept of an efficiently verifiable core is easy to understand, it is

not clear how often and how such a core can be found. Furthermore having such a

core is only useful if the probability of the non-core eventsis small enough to make

the failure probability, which is based on the union bound over those probabilities,

meaningful. The following main theorem shows that in all applications that can

tolerate a small “exponential”ε-slack as introduced by [37], finding such a good

core is straightforward:

Theorem 3.3.3.Supposelog 1/δ ≤ poly(n). Suppose further that there is a fixed

constantε ∈ (0, 1) and an assignment of realsx : A→ (0, 1 − ε) such that:

∀A ∈ A : Pr [A]1−ε ≤ x(A)
∏

B∈Γ(A)

(1− x(B)).

Then for everyp ≥ 1
poly(n) the set{Ai ∈ A : Pr [Ai] ≥ p} has size at most

poly(n), and is thus essentially always an efficiently verifiable core subset ofA.

If this is the case, then there is a Monte Carlo algorithm thatterminates after

O( n
ε2 log

n
ε2 ) resamplings and returns a good assignment with probabilityat least

1− n−c, wherec > 0 is any desired constant.

Proof. Note that the setA′ on which the actual MT-algorithm is run fulfills the

LLL-conditions. This makes Theorem 3.3.1 applicable. To argue about the success

probability of the modified algorithm, note thatx(A) ≥ P (A)∏B∈Γ′(A)(1−x(B))

whereΓ′(A) are the neighbors ofA in the variable sharing graph defined onA′.
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Using Theorem 3.2.2 we get that the probability that a non-core bad eventA ∈ A \

A′ holds in the assignment produced by the modified algorithm isat mostxA. Since

core-events are avoided completely by the MT-algorithm a simple union bound over

all conditional non-core event probabilities results in a failure probability of at most

∑

A∈A\A′ xA.

For a probabilityp = 1/poly(n) to be fixed later we defineA′ as the set of

events with probability at leastp. Recall from Theorem 3.3.1 that
∑

A∈A xA ≤

O(n log(1/δ)). SincexA ≥ p for A ∈ A′, we get that|A′| ≤ O(n log(1/δ)/p) =

poly(n). By assumptionA′ is efficiently verifiable and we can run the modified

resampling algorithm with it.

For every event we havePr [A] ≤ xA < 1− ε and thus get an(1− ε)ε = (1−

Θ(ε2))-slack; therefore Theorem 3.3.1 applies and guarantees that the algorithm

terminates with high probability afterO( n
ε2 log

n
ε2 ) resamplings.

To prove the failure probability note that for every non-core eventA ∈ A \A′,

the LLL-conditions with the “exponentialε-slack” provide an extra multiplicative

p−ε factor over the LLL-conditions in Theorem 3.3.1. We havex(A)Pr [A]ε ≥

Pr [A]
∏

B∈Γ′(A)(1 − x(B)) whereΓ′(A) are the neighbors ofA in the variable

sharing graph defined onA′. Using Theorem 3.2.2 and settingp = n−Θ(1/ε), we

get that the probability that a non-core bad eventA ∈ A\A′ holds in the assignment

produced by the modified algorithm is at mostxAPr [A]
ε ≤ xAn

−Θ(1). Since

core-events are avoided completely by the MT-algorithm, a simple union bound
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over all conditional non-core event probabilities resultsin a failure probability of at

most 1
nΘ(1)

∑

A∈A\A′ xA. Now since,
∑

A∈A\A′ xA ≤
∑

A∈A′ xA = T = poly(n)

holds, we get that we fail with probability at mostn−c on non-core events while

safely avoiding the core. This completes the proof of the theorem.

The last theorem shows that in practically all applicationsof the general LLL

it is possible to obtain a fast Monte Carlo algorithm with arbitrarily high success

probability. The conditions of Theorem 3.3.3 are very easy to check and are usually

directly fulfilled. That is, in all LLL-based proofs (with a large number of events

Ai) known to us, the set of high-probability events forms a polynomial-sized core

that is trivially efficiently verifiable, e.g., by exhaustive enumeration. Theorem

3.3.3 makes these proofs constructive without further complicated analysis. Only

in cases where the LLL-condition is used are adjustments in the bounds needed, to

respect theε-slack.

Remarks

• Note that the failure probability can be made an arbitrarilysmall inverse

polynomial. This is important since for problems with non-efficiently ver-

ifiable solutions the success probability of Monte Carlo algorithms cannot be

boosted using standard probability amplification techniques.

• In all applications known to us, the core above has further nice structure:

usually the probability of an eventAi is exponentially small in the number
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of variables it depends on. Thus, each event in the core only depends on

O(log n) manyAi, and hence is usually trivial to enumerate. This makes the

core efficiently verifiable, even when finding a general violated event inA is

NP-hard.

• The fact that the core consists of polynomially many events with usually log-

arithmically many variables each, makes it often even possible to enumerate

the core in parallel and to evaluate each event in parallel. If this is the case

one can get an RNC algorithm by first building the dependency graph on the

core and then computing an MIS of violated events in each round (using MIS

algorithms such as [6,100]. Using the proof of Theorem 3.3.1which is based

on some ideas from the parallel LLL algorithm of MT, it is easyto see that

only logarithmically many rounds of resampling these events are needed.

3.4 An Example: Non-repetitive Coloring

In this section, we give an efficient Monte-Carlo construction for non-repetitive

coloring of graphs. Call a word (string)w “squarefree” or “non-repetitive” if there

does not exist any stringsu, v, x, v 6= ∅, such thatw can be written asw = uvvx.

Let us refer to graphs using the symbolH instead ofG, to not confuse with our

dependency graphsG. A k-coloring of the edges ofH (not necessarily a proper

coloring as in standard graph-coloring terminology) is called non-repetitiveif the

sequence of colors along any path inH is squarefree: i.e., we want a coloring in
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which no path has a color-sequence of the formxx. (All paths here refer to simple

paths.) The smallestk such thatH has a non-repetitive coloring usingk colors

is called theThue numberof H and is denoted byπ(H). The Thue number was

first defined by Alon, Grytczuk, Hauszczak and Riordan in [8]:it is named af-

ter Thue who proved in 1906 that ifH is a simple path, thenπ(H) = 3 [132].

While the method of Thue is constructive, no efficient construction is known for

general graphs. Alon et al. showed through application of the asymmetric LLL that

π(H) ≤ c∆(H)2 for some absolute constantc. Their proof was nonconstructive.

The number of bad events is exponential and even checking whether a given col-

oring is non-repetitive is coNP-Hard, [105]. Thus checkingif some “bad event”

holds in a given coloring is coNP-Hard. Since the work of Alonet al., the non-

repetitive coloring of graphs has received a good deal of attention in the last few

years [7,31,49,69,93,119]. Yet no efficient construction is known till date, except

for some special classes of graphs such as complete graphs, cycles and trees.

Randomized Algorithm for Obtaining a Non-repetitive Coloring Suppose we

are given a graphH with maximum degree∆. We first give the proof of Alon et al.

which shows thatπ(H) ≤ c∆2, and then show how to convert this proof directly

into a constructive algorithm (with the loss of a∆ε factor in the number of colors

used):

Theorem 3.4.1(Theorem 1 of [8]). There exists an absolute constantc such that

π(H) ≤ c∆2 for all graphsH with maximum degree at most∆.
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Proof. Let C = (2e16 + 1)∆2. Randomly color each edge ofH with colors from

C. Consider the following types of bad eventsBi, for i ≥ 1: “there exists a pathP

of length2i, such that the second half ofP is colored identically to its first half”.

We have for a pathP of length2i, i ≥ 1, Pr [P has coloring of the form xx] =

1
Ci . Also, a path of length2i intersects at most4ij∆2j paths of length2j. Thus,

for any bad eventA of typei, we havePr [A] = 1
Ci and that each bad event of type

i share variables with at most4ij∆2j bad events of typeBj. Setxi = 1
2i∆2i . We

have(1− xj) ≥ e−2xj ; this, along with the fact that
∑

j≥1 j/2
j = 2, shows that

xi
∏

j

(1− xj)4ij∆
2j ≥ xie−8i

∑

j xjj∆
2j ≥ 1

2i∆2i
e
−8i

∑

j
j

2j = (2e16∆2)−i.

SinceC = (2e16 + 1)∆2, the condition of the LLL is satisfied and we are guaran-

teed the existence of such a non-repetitive coloring.

Now we see that using just a slightly higher number of colors suffices to make

Theorem 3.3.3 apply.

Theorem 3.4.2. There exists an absolute constantc such that for every constant

ε > 0 there exists a Monte Carlo algorithm that given a graphH with maximum

degree∆, produces a non-repetitive coloring using at mostc∆2+ε colors. The

failure probability of the algorithm is an arbitrarily small inverse polynomial in the

size ofH.

Proof. We apply the LLL using the same random experiments and bad events as
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in Theorem 3.4.1 but withC ′ = C
1

1−ε′ colors such thatC ′ < c∆2+ε. Using the

same settings forxA gives an exponentialε′ slack in the LLL-conditions since the

probability of a bad event of typei is now at most 1
C′i =

(
1
C′i

) 1
1−ε′ . Recall Theorem

3.3.3. Clearly,log 1/δ = O(n2) and so the last thing to check to apply Theorem

3.3.3 is that for any inverse polynomialp, the bad events with probability at leastp

are efficiently verifiable. Here these events consist of paths smaller than a certain

length (of the formO((1/ε) log n/ log ∆), wheren is the number of vertices), and

Theorem 3.3.3 guarantees that there are only polynomially many of these. Using

breadth-first-search to go through these paths and checkingeach of them for non-

repetitiveness is efficient and thus Theorem 3.3.3 directlyapplies.
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Part II

Applications
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CHAPTER 4

Scheduling: Handling Hard Capacities and

Outliers

Scheduling jobs on unrelated parallel machines(UPM) is a fundamental schedul-

ing model which has spurred many advances and applications in combinatorial

optimization, including linear-, quadratic- & convex-programming relaxations and

new rounding approaches [17, 20, 26, 34, 54, 73, 92, 96, 122, 124]. Herein, we are

given a setJ of n jobs, a setM of m machines, and non-negative valuespi,j

(i ∈ M, j ∈ J): each jobj has to be assigned to some machine, and assigning it

to machinei will impose a processing time ofpi,j on machinei. (The word “unre-

lated” arises from the fact that there may be no pattern amongthe given numbers

pi,j.) Variants such as the type of objective function(s) to be optimized in such an

assignment, whether there is an additional “cost-function”, whether a few jobs can

be dropped, and situations where there are release dates for, and precedence con-

straints among, the jobs, lead to a rich spectrum of problemsand techniques. Two
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such highly-impactful results are [96, 122]. The primary UPM objective in these

works is to minimize themakespan– the maximum total load on any machine. It

is shown in [96] that this problem can be approximated to within a factor of2; fur-

thermore, even some natural special cases cannot be approximated better than1.5

unlessP = NP [96]. Despite much effort, these bounds have not been improved.

The work of [122] builds on the upper-bound of [96] to consider the generalized

assignment problem(GAP) where we incur a costci,j if we schedule jobj on ma-

chinei; a simultaneous(2, 1)–approximation for the (makespan, total cost)-pair is

developed in [122], leading to numerous applications (see,e.g., [10,40]).

In this chapter, we consider two significant generalizations of scheduling on

UPM and show the effectiveness of the rounding approach developed in Chapter

2. The first generalization involves introducing capacities on machines that dictate

how many jobs can be scheduled on each machine, and the secondone considers

outliers with the possibility of improving the system performance by dropping a

few of them. We also study these two problems in the setting ofGAP.

Capacity constraints on machines. Handling “hard capacities” – those that

cannot be violated – is generally tricky in various settings, including facility-

location and other covering problems [46,63,113]. Motivated by problems in crew-

scheduling [56, 117] and by the fact that servers have a limiton how many jobs

can be assigned to them, the natural question of scheduling with a hard capacity-

constraint of “at mostbi jobs to be scheduled on each machinei” has been studied
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in [41,133,137,139,144]. Most recently, the work of [41] has shown that this prob-

lem can be approximated to within a factor of3 in the special case where the ma-

chines areidentical (job j has processing timepj on any machine). We generalize

this to the setting of GAP and obtain the GAP bounds of [122] – i.e., approxima-

tion ratios of2 and1 for the makespan and cost respectively, while satisfying the

capacity constraints: the improvements are in the more-general scheduling model,

handling the cost constraint, and in the approximation ratio. We anticipate that such

a capacity-sensitive generalization of [122] would lead toimproved approximation

algorithms for several applications of GAP.

Scheduling with outliers: makespan and fairness. Another direction for gen-

eralization of GAP result [122] is to consider “outliers” inscheduling [73]. For

instance, suppose in the “processing timespi,j and costsci,j” setting of GAP, we

also have a profitπj for choosing to schedule each jobj. Given a “hard” target

profit Π, target makespanT and total costC, the LP-rounding method of [73] ei-

ther proves that these targets are not simultaneously achievable, or constructs a

schedule with values(Π, 3T,C(1 + ε)) for any constantε > 0. We improve this

to (Π, (2 + ε)T,C(1 + ε)). (The factors ofε in the cost are required due to the

hardness of knapsack [73].) Also, fairness is a fundamentalissue in dealing with

outliers: e.g., in repeated runs of such algorithms, we may not desire long starvation

of individual job(s) in sacrifice to a global objective function. We can accommo-

date fairness in the form of scheduling-probabilities for the jobs that can be part of
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the input.

4.1 Scheduling with Hard Capacities

Scheduling on UPM with hard capacities is a special case of random bipartiteb-

matchings with target degree bounds and sharp tail bounds for given linear func-

tions; see [57] for applications to models for complex networks. Recall that a

(b)-matching is a subgraph in which every vertexv has degree at mostb(v). Given

a fractional b-matchingx in a bipartite graphG = (J,M,E) of N vertices and a

collection ofk linear functions{fi} of x, many works have considered the problem

of constructing (b-)matchingsX such thatfi(X) is “close” tofi(x) simultaneously

for eachi [12, 65, 68, 115]. The works [68, 115] focus on the case of constant k;

those of [12, 65] consider generalk, and require the usual “discrepancy” term of

Ω(
√

fi(x) logN) in |fi(X) − fi(x)| for most/alli; in a few cases,o(N) vertices

will have to remain unmatched also.

Theorem 4.1.1 shows that if there is one structured objective functionfi with

bounded coefficients associated with eachi ∈M , then in fact all the|fi(X)−fi(x)|

can be bounded independent ofN .

Theorem 4.1.1.LetG = (J,M,E) be a bipartite graph with “jobs”J and “ma-

chines”M . LetF be the collection of edge-indexed vectorsy (with yi,j denoting

ye wheree = (i, j) ∈ E). Suppose we are given: (i) an integerrequirementrj

for eachj ∈ J and an integercapacitybi for eachi ∈ M ; (ii) for each i ∈ M ,
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a linear objective functionfi : F → ℜ given byfi(y) =
∑

j: (i,j)∈E pi,jyi,j such

that 0 ≤ pi,j ≤ ℓi for eachj, (iii) a global cost constraint
∑

i,j ci,jyi,j ≤ C, and

(iv) a vectorx ∈ F with xe ∈ [0, 1] for eache. Then, we can efficiently construct

a random subgraph ofG given by a binary vectorX ∈ F, such that: (a) with

probability one, eachj ∈ J has degree at leastrj , eachi ∈M has degree at most

bi, and|fi(X) − fi(x)| < ℓi ∀i; and (b) for all e ∈ E, E [Xe] = xe which implies

E
[
∑

i,j ceXe

]

=
∑

e cexe = C

We first prove the result of GAP with individual capacity constraints on each

machine (Theorem 4.1.2). The full proof of Theorem 4.1.1 follows after Theo-

rem 4.1.2.

The capacity constraint specifies the maximum number of jobsthat can be

scheduled on any machine, and is a hard constraint. Formallythe problem is as

follows, wherexi,j is the indicator variable for jobj being scheduled on machinei.

Givenmmachines andn jobs, where jobj requires a processing time ofpi,j in ma-

chinei and incurs a cost ofci,j if assigned toi, the goal is to minimize the makespan

T = maxi
∑

j xi,jpi,j, subject to the constraint that the total cost
∑

i,j xi,jci,j is at

mostC and for each machinei,
∑

j xi,j ≤ bi. C is the given upper bound on total

cost andbi is the capacity of machinei, that must be obeyed.

Our main contribution here is an efficient algorithmSched-Capthat has the

following guarantee, generalizing the GAP bounds of [122]:

Theorem 4.1.2. There is an efficient algorithmSched-Capthat returns a sched-
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ule maintaining all the capacity constraints, of cost at most C and makespan at

most2T , whereT is the optimal makespan with costC that satisfies the capacity

constraints.

Algorithm Sched-Cap Algorithm Sched-Capproceeds as follows. First we

guess the optimum makespanT by binary search as in [96]. Ifpi,j > T , xi,j is

set to0. The solution to the following integer program gives the optimum sched-

ule:

∑

i,j

ci,jxi,j ≤ C (Cost)

∑

i,j

xi,j = 1 ∀j (Assign)

∑

j

pi,jxi,j ≤ T ∀i (Load)

∑

j

xi,j ≤ bi ∀i (Capacity)

xi,j ∈ {0, 1} ∀i, j

xi,j = 0 if pi,j > T

We relax the constraint “xi,j ∈ {0, 1} ∀(i, j)” to “xi,j ∈ [0, 1] ∀(i, j)” to obtain

an LP relaxationLP-Cap. We solve the LP to obtain an optimal LP solutionx∗;

we next show howSched-Caproundsx∗ to obtain an integral solution within the

approximation guarantee.

Note thatx∗i,j ∈ [0, 1] denotes the “fraction” of jobj assigned to machinei.

Initialize X = x∗. The algorithm is composed of several iterations. The random

64



value of the assignment-vectorX at the end of iterationh of the overall algo-

rithm is denoted byXh. Each iterationh conducts a randomized update using the

RandMove on the polytope of a linear system constructed from asubsetof the

constraints ofLP-Cap. Therefore, by induction onh, we will have for all(i, j, h)

that E
[

Xh
i,j

]

= x∗i,j;we use this property and drop the cost constraint since on

expectation it is maintained.

Let J andM denote the set of jobs and machines, respectively. Suppose we are

at the beginning of some iteration(h+1) of the overall algorithm: we are currently

looking at the valuesXh
i,j . We will maintain four invariants.

Invariants across iterations:

(I1) Once a variablexi,j gets assigned to0 or 1, it is never changed;

(I2) The constraints (Assign) always hold; and

(I3) Once a constraint in (Capacity) becomes tight, it remains tight, and

(I4) Once a constraint is dropped in some iteration, it is never reinstated.

Iteration(h+ 1) of Sched-Capconsists of three main steps:

1. We first remove allXh
i,j ∈ {0, 1}; i.e., we projectXh to those co-ordinates

(i, j) for whichXh
i,j ∈ (0, 1), to obtain the current vectorY of “floating” (to-be-

rounded) variables; letS ≡ (AhY = uh) denote the current linear system that

representsLP-Cap. (Ah is some matrix anduh is a vector; we avoid using “Sh”

to simplify notation.) In particular, the “capacity” of machine i in S is its residual
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capacityb′i, i.e.,bi minus the number of jobs that have been permanently assigned

to i thus far. Note that the cost constraint is not included in theconstraint matrix

AhY = uh, which we continue to maintain exactly. Nevertheless sinceall the

variables maintains its initial assignment on expectation, the expected cost remains

unaltered. The entire process as we demonstrate at the end can be derandomized

and hence the cost upper bound ofC is obeyed.

2. Let Y ∈ ℜv for somev; note thatY ∈ (0, 1)v . Let Mk denote the set of all

machinesi for which exactlyk of the valuesYi,j are positive. We will now drop

some of the constraints inS:

(D1) for eachi ∈M1, we drop its load and capacity constraints fromS;

(D2) for eachi ∈M2, we drop its load constraint and rewrite its capacity constraint

asxi,j1 + xi,j2 ≤ ⌈Xh
i,j1

+Xh
i,j2
⌉, wherej1, j2 are the two jobs fractionally

assigned toi.

(D3) for eachi ∈ M3 for which both its load and capacity constraints are tight in

S, we drop its load constraint fromS.

3. LetP denote the polytope defined by this reduced system of constraints. A key

claim that is proven in Lemma 4.1.3 below is thatY is not a vertex ofP. We now

invokeRandMove(Y,P); this is allowable ifY is indeed not a vertex ofP.

The above three steps complete iteration(h+ 1).
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Analysis. It is not hard to verify that the invariants (I1)-(I4) hold true (though the fact

that we drop the all-important capacity constraint for machinesi ∈ M1 may look

bothersome, a moment’s reflection shows that such a machine cannot have a tight

capacity-constraint since its sole relevant jobj has valueYi,j ∈ (0, 1)). Since we

make at least one further constraint tight viaRandMove in each iteration, invariant

(I4) shows that we terminate, and that the number of iterations is at most the initial

number of constraints. Let us next present Lemma 4.1.3, a keylemma:

Lemma 4.1.3. In no iteration isY a vertex of the current polytopeP.

Proof. Suppose that in a particular iteration,Y is a vertex ofP. Fix the notationv,

Mk etc. w.r.t. this iteration; letmk = |Mk|, and letn′ denote the remaining number

of jobs that are yet to be assigned permanently to a machine. Let us lower- and

upper-bound the number of variablesv. On the one hand, we havev =
∑

k≥1 k ·

mk, by definition of the setsMk; since each remaining jobj contributes at least

two variables (co-ordinates forY ), we also havev ≥ 2n′. Thus we get

v ≥ n′ +
∑

k≥1

(k/2) ·mk. (4.1)

On the other hand, sinceY has been assumed to be a vertex ofP, the numbert of

constraints inP that are satisfiedtightly by Y , must be at leastv. How large cant

be? Each current job contributes one (Assign) constraint tot; by our “dropping con-

straints” steps (D1), (D2) and (D3) above, the number of tight constraints (“load”
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and/or “capacity”) contributed by the machines is at mostm2 +m3 +
∑

k≥4 2mk.

Thus we have

v ≤ t ≤ n′ +m2 +m3 +
∑

k≥4

2mk. (4.2)

Comparison of (4.1) and (4.2) and a moment’s reflection showsthat such a

situation is possible only if: (i)m1 = m3 = 0 andm5 = m6 = · · · = 0; (ii) the

capacity constraints are tight for all machines inM2 ∪M4 – i.e., for all machines;

and (iii) t = v. However, in such a situation, thet constraints inP constitute the

tight assignment constraints for the jobs and thetight capacity constraints for the

machines, and are hence linearly dependent (since the totalassignment “emanating

from” the jobs must equal the total assignment “arriving into” the machines). Thus

we reach a contradiction, and henceY is not a vertex ofP.

We next show that the final makespan is at most2T with probability one:

Lemma 4.1.4. Let X denote the final rounded vector. AlgorithmSched-Cap

returns a schedule, where with probability one: (i) all capacity-constraints on

the machines are satisfied, and (ii) for alli,
∑

j∈J Xi.jpi,j <
∑

j x
∗
i,jpi,j +

maxj∈J : x∗
i,j∈(0,1)pi,j.

Proof. Part (i) essentially follows from the fact that we never dropany capacity

constraint; the only care to be taken is for machinesi that end up inM1 and hence

have their capacity-constraint dropped. However, as argued soon after the descrip-

tion of the three steps of an iteration, note that such a machine cannot have a tight
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capacity-constraint when such a constraint was dropped; hence, even if the remain-

ing job j got assigned finally toi, its capacity constraint cannot be violated.

Let us now prove (ii). Fix a machinei. If at all its load-constraint was dropped,

it must be wheni ended up inM1,M2 or M3. The case ofM1 is argued as in

the previous paragraph. So supposei ∈ Mℓ for someℓ ∈ {2, 3} when its load

constraint got dropped. Let us first consider the caseℓ = 2. Let the two jobs

fractionally assigned oni at that point have processing times(p1, p2) and fractional

assignments(y1, y2) on i, where0 ≤ p1, p2 ≤ T , and0 < y1, y2 < 1. If y1 + y2 ≤

1, we know that at the end, the assignment vectorX will have at most one of

X1 andX2 being one. Simple algebra now shows thatp1X1 + p2X2 < p1y1 +

p2y2 + max{p1, p2} as required. If1 < y1 + y2 ≤ 2, then bothX1 andX2 can

be assigned and again,p1X1 + p2X2 < p1y1 + p2y2 +max{p1, p2}. For the case

ℓ = 3, we know from (I3) and (D3) that its capacity-constraint must betight at

some integral valueu at that point, and that this capacity-constraint was preserved

until the end. We must havec = 1 or 2 here. Let us just consider the casec = 2;

the case ofc = 1 is similar to the case ofℓ = 2 with y1 + y2 ≤ 1. Here again,

simple algebra yields that if0 ≤ p1, p2, p3 ≤ T and 0 < y1, y2, y3 < 1 with

y1+y2+y3 = c = 2, then for any binary vector(X1,X2,X3) of Hamming weight

c = 2, p1X1 + p2X2 + p3X3 < p1y1 + p2y2 + p3y3 +max{p1, p2, p3}.

Finally we have the following lemma.

Lemma 4.1.5. AlgorithmSched-Capcan be derandomized to create a schedule of
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cost at mostC.

Proof. Let Xh
i,j denote the value ofxi,j at iterationh. We know for all i, j, h,

E[Xh
i,j ] = x∗i,j, wherex∗i,j is solution ofLP-Cap. Therefore, at the end, we have

that the total expected cost incurred isC. The procedure can be derandomized

directly by the method of conditional expectation, giving an 1-approximation to

the cost.

Lemmas 4.1.4 and 4.1.5 yield Theorem 4.1.2.

Proof of Theorem 4.1.1. We now consider the full proof of Theorem 4.1.1. The

following integer program gives an optimal matching:

∑

i,j

ci,jxi,j ≤ C (Cost)

∑

i,j

xi,j ≥ rj ∀j (Assign)

∑

j

pi,jxi,j = fi ∀i (Load)

∑

j

xi,j ≤ bi ∀i (Capacity)

xi,j ∈ {0, 1} ∀i, j

xi,j = 0 if pi,j > li

The proof of Theorem 4.1.1 is quite similar to Theorem 4.1.2.We elaborate

upon the necessary modifications. First, while removingXh
i,j ∈ {0, 1}, we up-
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date the assignment requirements of the jobs as well as the capacity constraints

of the machines accordingly. The dropping rules (D1) and (D3) remain the same.

However, (D2) is modified as follows:

(Modified D2) For eachi ∈ M2, we drop its load constraint and rewrite its

capacity constraint. Letj1, j2 be the two jobs assigned to machinei with fractional

assignmentxi,j1 andxi,j2. Then ifxi,j1 + xi,j2 ≤ 1, set the capacity constraint

to xi,j1 + xi,j2 ≤ 1. Else if1 < xi,j1 + xi,j2 < 2, set the capacity constraint to

xi,j1 + xi,j2 ≥ 1.

Lemma 4.1.3, Lemma 4.1.5 remain unchanged. We have a new Lemma 4.1.6

corresponding to Lemma 4.1.4, which we prove next.

Lemma 4.1.6. LetX denote the final rounded vector. ThenX satisfies with prob-

ability one: (i) all capacity-constraints on the machines are satisfied, and (ii)

for all i,
∑

j x
∗
i,jpi,j − maxj∈J : x∗

i,j∈(0,1)pi,j <
∑

j∈J Xi,jpi,j <
∑

j x
∗
i,jpi,j +

maxj∈J : x∗
i,j∈(0,1)pi,j.

Proof. Part (i) is similar to Part (i) of Lemma 4.1.5 and follows fromthe facts that

the capacity constraints are never violated and machines inM1 cannot have tight

capacity constraints.

Let us now prove (ii). Note that in (Modified D2) the upper bound on ca-

pacity constraint is maintained as in (D2). Hence from Lemma 4.1.4, we get

∑

j∈J Xi,jpi,j <
∑

j x
∗
i,jpi,j + maxj∈J : x∗

i,j∈(0,1)pi,j. So we only need to show

the lower bound on the load. Fix a machinei. If at all its load-constraint was
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dropped, it must be wheni ended up inM1 ∪M2 ∪M3. In the case ofM1, at most

one job fractionally assigned to it may not be assigned in thefinal rounded vector.

So supposei ∈Ml for somel ∈ {2, 3} wheni has its load constraint dropped. Let

us first consider the case ofℓ = 2. Let the two jobs fractionally assigned toi at that

point have processing times(p1, p2) and fractional assignments(y1, y2) oni, where

0 ≤ p1, p2 ≤ T , and0 < y1, y2 < 1. If y1+y2 ≤ 1, then at the end, none of the jobs

may get assigned. Simple algebra now shows that0 > p1y1+ p2y2−max{p1, p2}

as required. If1 < y1 + y2 ≤ 2, then at least one of the two jobsX1 andX2 get

assigned toi and again,p1X1 + p2X2 > p1y1 + p2y2−max{p1, p2}. For the case

ℓ = 3, we know from (I3) and (D3) that i’s capacity-constraint must betight at

some integral valueu at that point, and that this capacity-constraint was preserved

until the end. We must havec = 1 or 2 in this case. Let us just consider the case

c = 2; the case ofc = 1 is similar to the case ofℓ = 2 with y1 + y2 ≤ 1. Here

again, simple algebra yields that if0 ≤ p1, p2, p3 ≤ T and0 < y1, y2, y3 < 1 with

y1+y2+y3 = c = 2, then for any binary vector(X1,X2,X3) of Hamming weight

c = 2, p1X1 + p2X2 + p3X3 > p1y1 + p2y2 + p3y3 −max{p1, p2, p3}.

Lemmas 4.1.6 and 4.1.5 yield Theorem 4.1.1.

This completes the description of this section. We have shown through our tech-

nique of rounding how a random subgraph of a bipartite graph with hard degree-

constraints can be obtained that near-optimally satisfies acollection of linear con-

straints and respects a given cost-budget. As a special caseof this, we obtained
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a 2 approximation algorithm for the generalized assignment problem with hard

capacity-constraints on the machines.

4.2 Scheduling with Outliers

In this section, we consider GAP with outliers and with a hardprofit constraint

[73]. Formally, the problem is as follows. Letxi,j be the indicator variable for

job j to be scheduled on machinei. Givenm machines andn jobs, where jobj

requires processing time ofpi,j in machinei, incurs a cost ofci,j if assigned to

i and provides a profit ofπj if scheduled, the goal is to minimize the makespan,

T = maxi
∑

j xi,jpi,j, subject to the constraint that the total cost
∑

i,j xi,jci,j is

at mostC and total profit
∑

j πj
∑

i xi,j is at leastΠ. The problem is motivated

from improving the scheduling performance by dropping a fewoutliers that may

be costly to schedule.

Our main contribution here is the following:

Theorem 4.2.1. For any constantε > 0, there is an efficient algorithmSched-

Outlier that returns a schedule of profit at leastΠ, cost at mostC(1 + ε) and

makespan at most(2+ ε)T , whereT is the optimal makespan among all schedules

that simultaneously have costC and profitΠ.

This is an improvement over the work of Gupta, Krishnaswamy,Kumar and

Segev [73], where they constructed a schedule with makespan3T , profit Π and

costC(1 + ε). In addition, our approach also accommodatesfairness, a basic
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requirement in dealing with outliers, especially when problems have to be run re-

peatedly. We formulate fairness via stochastic programs that specify for each jobj,

a lower-boundrj on the probability that it gets scheduled. We adapt our approach

to honor such requirements:

Theorem 4.2.2. There is an efficient randomized algorithm that returns a sched-

ule of profit at leastΠ, expected cost at most2C and makespan at most3T and

guarantees that for each jobj, it is scheduled with probabilityrj , whereT is the

optimal expected makespan with expected costC and expected profitΠ. If the fair-

ness guarantee onany onejob can be relaxed, then for every fixedε > 0, there is

an efficient algorithm to construct a schedule that has profitat leastΠ, expected

cost at mostC(1 + 1/ε) and makespan at most(2 + ε)T .

We start with Theorem 4.2.1 and describe the algorithmSched-Outlier first.

Next, we prove Theorem 4.2.2.

Algorithm Sched-Outlier. The algorithm starts by guessing the optimal

makespanT by binary search as in [96]. Ifpi,j > T , thenxi,j is set to0. Next pick

any constantε > 0. The running time of the algorithm depends onε and isO(n
1
εc ),

where c is some constant. We guess all assignments(i, j) where ci,j > ε′C,

with ε′ = ε2. Any valid schedule can have at most1/ε′ pairs with assignment

costs higher thanε′C; sinceε′ is a constant, this guessing can be done in time

O((mn)
1
ε′ ) = O(n

1
ε2 ). For all (i, j) with ci,j > ε′C, letGi,j ∈ {0, 1} be a correct

guessed assignment. By enumeration, we know the optimalGi,j. For any(i, j) with
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ci,j > ε′C andci,j /∈ Gi,j, we setxi,j = 0. Similarly, if ci,j > ε′C andci,j ∈ Gi,j,

then we setxi,j = 1.

The solution to the following integer linear program then gives an optimal so-

lution:

∑

i,j

ci,jxi,j ≤ C (Cost)

∑

i

xi,j = yj ,∀j (Assign)

∑

j

pi,jxi,j ≤ T ,∀i (Load)

∑

j

πjyj ≥ Π (Profit)

xi,j ∈ {0, 1}, yj ∈ {0, 1} ,∀i, j

xi,j = 0 if pi,j > T

xi,j = Gi,j if ci,j > ε′C

We relax the constraint “xi,j ∈ {0, 1} andyj ∈ {0, 1}” to “xi,j ∈ [0, 1] and

yj ∈ [0, 1]” to obtain the LP relaxationLP-Out . We solve the LP to obtain an

optimal LP solutionx∗, y∗; we next show howSched-Outlier roundsx∗, y∗ to ob-

tain the claimed approximation. The rounding proceeds in stages as in Section 4.1,

and as before, each variable maintains its initial assignment in x∗ on expectation

over the course of rounding. Hence, there is no need to explicitly consider the cost
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constraint. The cost constraint is dropped, yet the cost is maintained on expecta-

tion. The entire process can be derandomized efficiently. Therefore, as long as we

apply our general recipe of rounding,RandMove, the cost is maintained exactly.

Also note that if we maintain all the assign-constraints, then the profit-constraint

can be dropped and is not violated. Therefore, we consider the profit constraint

if and only if there are one or more assign constraints that are dropped. Also, we

only need to maintain the total profit obtained from the jobs for which the assign

constraints have been dropped. We now proceed to describe the rounding on each

stage formally.

Note thatx∗i,j ∈ [0, 1] denotes the fraction of jobj assigned to machinei in x∗.

Initially,
∑

i x
∗
i,j = y∗j . Initialize X = x∗. The algorithm is composed of several

iterations; the random values at the end of iterationh of the overall algorithm are

denoted byXh. (Sinceyj is given by the equality
∑

i xi,j, X
h is effectively the

set of variables.) Each iterationh (except perhaps the last one) conducts a random-

ized update usingRandMove on a suitable polytope constructed from asubsetof

the constraints ofLP-Out . Therefore, for allh except perhaps the last, we have

E
[

Xh
i,j

]

= x∗i,j. A variableXh
i,j is said to befloating if it lies in (0, 1), and a job

is floating if it is not yet finally assigned. The subgraph of(J,M,E) composed

of the floating edges(i, j), naturally suggests the following notation at any point

of time: machines of “degree”k in an iteration are those with exactlyk floating

jobs assigned fractionally, and jobs of “degree”k are those assigned fractionally to

76



exactlyk machines in iterationh. Note that since we allowyj < 1, there can exist

singleton (i.e., degree-1) jobs which are floating.

Suppose we are at the beginning of some iteration(h + 1) of the overall al-

gorithm; so we are currently looking at the valuesXh
i,j . We will maintain the

following invariants:

Invariants across iterations:

(I1’) Once a variablexi,j gets assigned to0 or 1, it is never changed;

(I2’) If j is not a singleton, then
∑

i xi,j remains at its initial value;

(I3’) The constraint (Profit) always holds;

(I4’) Once a constraint is dropped, it is never reinstated.

Algorithm Sched-Outlierstarts by initializing withLP-Out . Iteration(h+ 1)

consists of four major steps.

1. We remove allXh
i,j ∈ {0, 1} as in Section 4.1 , i.e., we projectXh to those co-

ordinates(i, j) for whichXh
i,j ∈ (0, 1), to obtain the current vectorZ of “floating”

variables; letS ≡ (AhZ = uh) denote the current linear system that represents

LP-Out . (Ah is some matrix anduh is a vector.)

2. Let Z ∈ ℜv for somev; note thatZ ∈ (0, 1)v . Let Mk andNk denote the

set of degree-k machines and degree-k jobs respectively, withmk = |Mk| and

nk = |Nk|. We will now drop/replace some of the constraints inS:
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(D1’) for eachi ∈M1, we drop its load constraint fromS;

(D2’) for eachi ∈ N1, we drop its assignment constraint fromS; we add one profit

constraint (if already exists, we replace the old one) ,

∑

j∈N1

Zi,jπj =
∑

j∈N1

Xh
i,jπj.

(Note that at this point, the valuesXh
i,j are some known values.)

Thus, the assignment constraints of the singleton jobs are replaced byoneprofit

constraint. As we noted earlier, it is not required to maintain the contribution to

profit by the non-singleton jobs for which the assignment constraints are maintained

explicitly.

3. If Z is a vertex ofS then define the fractional assignment of a machinei by

hi =
∑

j∈J Zi,j. Define a jobj to be tight if
∑

i∈M Zi,j = 1. Drop all the

assignment constraints of the non-tight jobs (denoted byJN ) and maintain a single

profit constraint,

∑

j∈N1∪JN
Zi,jπj =

∑

j∈N1∪JN
Xh

i,jπj .

While there exists a machinei′ whose degreed satisfieshi′ ≥ (d− 1− ε), drop the

load constraint on machinei′.

4. LetP denote the polytope defined by this reduced system of constraints. If Z is

not a vertex ofP, invokeRandMove(Z,P). Else we proceed differently depending

on the configuration of machines and jobs in the system. If none of the following
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configurations is achieved (which we will show never happensat a vertex), then we

report error and exit. There are five possible configurations.

• Config-1: Machine and job nodes form disjoint cycles.

Orient the edges in the bipartite graph to assign the remaining jobs in a way, so

that each machine gets at most one extra job. Note that such anorientation is easy

in disjoint cycles since they have even length.

• Config-2: Machine and job nodes form disjoint cycles and has exactly one

path with both end-points being job nodes. Thus there are twosingleton jobs.

Discard one among the two singleton jobs that has less profit.Again orient the

edges in the remaining bipartite graph to assign the remaining jobs in a way, so

that each machine gets at most one extra job. Such an orientation is easy in disjoint

cycles (they have even length) and paths with equal number ofmachines and nodes.

• Config-3: There is exactly one job of degree-3 and one singleton job. Rest of

the jobs have degree2 and all the machines have degree-2.

Assign the singleton job to the degree-2 machine it is fractionally attached to

and remove the other edge (but not the job) associated with that machine. We are

left with disjoint cycles. Orient the edges in the cycles of the bipartite graph to

assign the remaining jobs in a way, so that each machine gets at most one extra job.
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Config-1 Config-2 Config-3

Config-4 Config-5

JOB NODE

MACHINE NODE

Figure 4.1: Different configurations of machine-job bipartite graph atstep 4 of
Sched-Outlier

• Config-4: There is only one degree-3 machine with one singleton job. Rest of

the machines have exactly two non-singleton jobs attached to it fractionally.

Each non-singleton job is attached fractionally to exactlytwo machines.

Assign the singleton job and the cheaper (less processing time) of the two non-

singleton jobs to the degree-3 machines. Rest of the jobs and the machines form

disjoints cycles in the machine-job bipartite graph or formdisjoint paths each with

equal number of machines and jobs in it. Orient the edges in this remaining bipartite

graph in a way such that each machine gets one among the two jobs fractionally

attached to it.

• Config-5: Machine and job nodes form disjoint cycles. There is one extra

edge with one singleton job and one singleton machine.

Assign the singleton job to the singleton machine. Orient the edges in the cycles

of the bipartite graph to assign the remaining jobs in a way, so that each machine
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gets at most one extra job.

The different configurations are shown pictorially in Figure 4.1.

Analysis. Analysis follows the following structure. First, we prove akey lemma,

Lemma 4.2.3, which shows that ifZ is a vertex and the algorithm reaches step4,

then one of the five configurations as described above happensand also the number

of machines is less than1ε . Lemma 4.2.3 is followed by Lemma 4.2.4. Lemma

4.2.4 establishes that the dropping and the modification of constraints in step 2 and

3, along with the assignment of jobs in step 4 do not violate the load constraint

by more than a factor of(2 + ε) and maintain the profit constraint. Lemma 4.2.5

bounds the cost.

Recall that in the bipartite graphG = (J,M,E), we have in iteration(h + 1)

that (i, j) ∈ E iff Xh
i,j ∈ (0, 1). Any job or machine having degree0 is thus not

part ofG. We prove Lemma 4.2.3 next.

Lemma 4.2.3. Letm denote the number of machine-nodes inG. If m ≥ 1
ε , thenZ

is not a vertex of the polytope at the beginning of step 4.

Proof. Let us consider the different possible configurations ofG, whenZ becomes

a vertex of the polytopeP at the beginning of step3. There are several cases to

consider depending on the number of singleton floating jobs inG in that iteration.

Case 1: There is no singleton job: We haven1 = 0. Then, the number of
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constraints inS is

EQ =
∑

k≥2

mk +
∑

k≥2

nk.

Remember, since there is no singleton job, we do not considerthe profit constraint

explicitly. Also the number of floating variables isv =
∑

k≥2 knk. Alternatively,

v =
∑

k≥1 kmk. Therefore,

v =
∑

k≥2

k

2
(mk + nk) +

m1

2
.

Z being a vertex ofP, v ≤ EQ. Thus, we must have,nk,mk = 0, ∀k ≥ 3 and

m1 = 0. Hence, every floating machine has exactly two floating jobs assigned to it

and every floating job is assigned exactly to two floating machines. This is handled

by Config-1.

Case 2: There are at least 3 singleton jobs: We haven1 ≥ 3. Then the number

of linear constraints isEQ =
∑

k≥2mk +
∑

k≥2 nk +1. The last “1” comes from

considering one profit constraint for the singleton jobs. The number of floating

variablesv again by the averaging argument as above is

v =
n1
2

+
∑

k≥2

k

2
(mk + nk) +

m1

2
≥ 3

2
+
∑

k≥2

k

2
(mk + nk) +

m1

2
.

Hence, the system is always underdetermined andZ cannot be a vertex ofP.

Case 3: There are exactly 2 singleton jobs: We haven1 = 2. Then the number
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of linear constraints is

EQ =
∑

k≥2

mk +
∑

k≥2

nk + 1.

Again the last “1” comes from considering one profit constraint for the singleton

jobs. The number of floating variablesv by the averaging argument is

v =
n1
2

+
∑

k≥2

k

2
(mk + nk) +

m1

2
≥ 1 +

∑

k≥2

k

2
(mk + nk) +

m1

2
.

Thus, we must have,nk = 0,mk = 0,∀k ≥ 3 andm1 = 0. Hence every floating

machine has exactly two floating jobs assigned to it and each job except two is

assigned to exactly two machines fractionally This is handled by Config-2.

Case 4: There is exactly 1 singleton job: We haven1 = 1. Then the number of

linear constraints is

EQ =
∑

k≥2

mk +
∑

k≥2

nk + 1.

The number of floating variables is,

v ≥ 1

2
+ n2 +

3

2
n3 +

m1

2
+m2 +

3

2
m3 +

∑

k≥4

k

2
(mk + nk).

If Z is a vertex ofP, thenv ≤ EQ. There are only three possible configurations

that might arise in this case.

(i) Only one job of degree3 and one job of degree 1. All the other jobs have
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degree2 and all the machines have degree2. This is handled by Config-3.

(ii) Only one machine of degree3 and one job of degree1. The rest of the jobs

and machines have degree2. This is handled by Config-4.

(iii) Only one machine of degree1 and one job of degree1. The rest of the jobs

and machines have degree2. This is handled by Config-5.

Each configuration can have an arbitrary number of vertex disjoint cycles. In

all these configurations, it is easy to check that forZ to be a vertex,v = EQ. Thus

if just one constraint can be dropped, then the system becomes underdetermined.

Since we have reached a vertex at the beginning of step 3, we drop,

• All the assignment constraints for the non-tight jobs.

• Any machinei′ that has degreed (whered > 0 is a positive integer) and the

total fractional assignment from all the jobs fractionallyassigned to it is at

leastd− 1− ε loses its load-constraint.

• If the profit constraint is not already considered and some non-tight job loses

its assignment constraint; we add the profit constraint.

Now we havev = EQ at the beginning of step3 and at the beginning of step

4 as well. Hence it implies eitherwe have not been able to drop any constraint,

or we have dropped one assignment constraint for a non-tight job and have added

one profit constraint. We will now show that whenm ≥ 1
ε , we always drop more

constraints than we add. This will give a contradiction.
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In any configuration, if there is a cycle with all tight jobs, then there always

exists a machine with total fractional assignment1 and hence its load constraint can

always be dropped to make the system underdetermined. So we assume there is no

such cycle in any configurations. Now suppose the algorithm reaches Config-1. If

there are two non-tight jobs, then we drop two assignment constraints and only add

one profit constraint. Thus the system becomes underdetermined. Therefore, there

can be at most one non-tight job and only one cycle (sayC) with that non-tight

job. LetC havem machines and thusm jobs. Therefore,
∑

i,j∈C xi,j ≥ m − 1.

Thus there exists a machine, such that the total fractional assignment of jobs on that

machine is≥ m−1
m = 1− 1/m. If m ≥ 1

ε , then there exists a machine with degree

2 and with total fractional assignment≥ (1 − ε). Thus the load-constraint on that

machine gets dropped making the system underdetermined.

If the algorithm reaches Config-2, then all the non-singleton jobs must be tight

for Z to be a vertex. If there aremmachines, then the number of non-singleton jobs

ism−1. Let the two singleton jobs bej1 andj2. Let the two machines to which jobs

j1 andj2 are fractionally attached with bei1 andi2 respectively. Ifxi1,j1+xi2,j2 ≥

1, then the total fractional assignment from all the jobs in the system ism. Thus the

machine with maximum fractional assignment must have an assignment at least 1.

Since the same machine has degree2, its load constraint gets dropped. Otherwise,

the total fractional assignment from all the jobs in the system is at leastm − 1.

Thus there exists a machine, such that the total fractional assignment of jobs on
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that machine is≥ m−1
m = 1 − 1/m. If m ≥ 1

ε , then there exists a machine with

degree2 and with total fractional assignment≥ (1 − ε). Thus the load- constraint

on that machine gets dropped making the system underdetermined.

For Config-3 and 5, ifZ is a vertex ofP, then all the jobs must be tight and using

essentially the same argument, there exists a machine with fractional assignment at

least(1 − ε) if the algorithm reaches Config-3 and there exists a machine with

fractional assignment1, if the algorithm reaches Config-5.

If the algorithm reaches Config-4, then again all the jobs must be tight. If the

degree-3 machine has fractional assignment at least2 − ε, then its load constraint

can be dropped to make the system underdetermined. Otherwise, the total assign-

ment to the degree-2 machines from all the jobs in the cycle is at leastm− 2 + ε.

Therefore, there exists at least one degree-2 machine with fractional assignment at

leastm−2+ε
m−1 = 1− 1−ε

m−1 ≥ 1− ε, if m ≥ 1
ε . The load-constraint on that machine

can be dropped making the system underdetermined. This completes the proof of

Lemma 4.2.3.

We next show that the final profit is at leastΠ and the final makespan is at most

(2 + ε)T :

Lemma 4.2.4. LetX denote the final rounded vector. AlgorithmSched-Outlier

returns a schedule, where with probability one, (i) the profit is at leastΠ, (ii) for all

i,
∑

j∈J Xi,jpi,j <
∑

j x
∗
i,jpi,j + (1 + ε)maxj∈J : x∗

i,j∈{0,1}pi,j.

Proof. (i) This essentially follows from the fact that whenever assignment con-
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straint on any job is dropped, its profit constraint is included in the global profit

constraint of the system. At step4 except for one configuration (Config-2), all

the jobs are always assigned. Thus the profit can not decreasein those configura-

tions. In Config-2, since we are at a vertex the total fractional assignment from the

two singleton jobs is less than1. Otherwise the system remains underdetermined

from Lemma 4.2.3. Thus a singleton job (sayj1) is dropped, only whenG has

two singleton jobsj1, j2 fractionally assigned toi1 andi2 respectively, with total

assignmentxi1,j1 + xi2,j2 < 1. Since the job with the higher profit is retained,

πj1xi1,j1 + πj2xi2,j2 ≤ max{πj1 , πj2}.

(ii) From Lemma 4.2.3 and(D1’), load constraints are dropped from machines

i ∈ M1 and might be dropped from machinei ∈ M2 ∪M3. For i ∈ M1, only

the remaining jobj with Xh
i,j > 0, can get fully assigned to it. Hence fori ∈ M1,

its total load is bounded by
∑

j x
∗
i,jpi,j + maxj∈J :x∗

i,j∈{0,1}pi,j. For any machine

i ∈ M2 ∪M3, if their degreed (2 or 3) is such that, its fractional assignment is

at leastd − 1 − ε, then by simple algebra, it can be shown that for any such ma-

chine i, its total load is at most
∑

j x
∗
i,jpi,j + (1 + ε)maxj∈J :x∗

i,j∈{0,1}pi,j at the

end of the algorithm. For the remaining machines consider what happens at step

4. Since this is the last iteration, if we can show that the load does not increase by

too much in this last iteration, we are done. Except when Config-4 is reached, any

remaining machinei gets at most one extra job, and thus its total load is bounded

by
∑

j x
∗
i,jpi,j + maxj∈J : x∗

i,j∈{0,1}pi,j. When Config-4 is reached at step 4, if the
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degree-3 machine has a fractional assignment at most1 from the two jobs in the

cycle, then for any value ofm, there will exist a degree-2 machine whose frac-

tional assignment is1, giving a contradiction. Hence, letj1, j2, j3 be the three

jobs assigned fractionally to the degree-3 machinei and letj3 be the singleton

job, andxi,j1 + xi,j2 > 1. If pi,j1 ≤ pi,j2, then the degree-3 machine getsj1, j3.

Else the degree-3 machine getsj2, j3. The degree-3 machine gets2 jobs, but its

fractional assignment fromj1 andj2 is already at least1. Since the job with less

processing time amongj1 andj2 is assigned toi, its increase in load can be at most

∑

j x
∗
i,jpi,j +maxj∈J : x∗

i,j∈{0,1}pi,j. This completes the proof of Lemma 4.2.4

Finally we have the following lemma.

Lemma 4.2.5.AlgorithmSched-Outliercan be derandomized to output a schedule

of cost at mostC(1 + ε).

Proof. In all iterationsh, except the last one, for alli, j, E[Xh
i,j ] = x∗i,j, wherex∗i,j

is solution ofLP-Out . Therefore, before the last iteration, we have that the total

expected cost incurred isC. The procedure can be derandomized directly by the

method of conditional expectation, giving an1-approximation to cost, just before

the last iteration. Now at the last iteration, since at most1
ε jobs are assigned and

each assignment requires at mostε′C = ε2C in cost, the total increase in cost is at

mostεC, giving the required approximation.

Lemmas 4.2.4 and 4.2.5 yield Theorem 4.2.1.

88



We now consider Theorem 4.2.2 that maintains fairness in theallocation of jobs

while handling outliers.

Proof of Theorem 4.2.2

Proof. In order to maintain the scheduling probabilities of the jobs, we do not guess

the assignment of jobs with high cost (cost higher thanε′C as in Theorem 4.2.1).

For Part (i), we consider the first two steps of AlgorithmSched-Outlier. If P

denote the polytope defined by the reduced system of constraints and the current

vectorZ is not a vertex ofP, then we invokeRandMove(Z,P ) and proceed. Else

from Lemma 4.2.3,Z is a vertex ofP only if one of the configurations, Config-1 to

Config-5, as described in step 4 of AlgorithmSched-Outlier is achieved andm <

1
ε . For any singleton job, we assign the singleton job to the corresponding machine

with probability equal to its fractional assignment. Thus Theorem 4.2.2 remains

valid for these singleton jobs. For each non-singleton job,we consider the machines

to which it is fractionally assigned and allocate it to the machine which has cheaper

assignment cost for it. If the algorithm reached Config-1, 2,3 or 5, each machine

can get at most two extra jobs and the expected cost is maintained. However if

the algorithm reached Config-4 and the three jobs associatedwith the degree-3

machine were all assigned to it, then we remove one non-singleton job from the

degree-3 machine. This job is assigned to the degree-2 machine in the cycle on

which it had non-zero fractional assignment. This may increase the expected cost

by a factor of2 but ensures that each machine gets at most2 additional jobs.
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For Part (ii), note that the cost is maintained until the lastiteration. In the last

iteration, since at most1ε jobs are assigned and each assignment requires at mostC

cost, we get the desired result.

This completes the description of this chapter. We have shown two natural

generalization of GAP: (i) handling hard capacities and (ii) handling outliers. In

both this applications, we have applied the rounding algorithm developed in Chap-

ter 2. The choice of linear systems to applyRandMove, the constraints to drop

or combine are problem specific. In Chapter 10 and 8, we will see another two

applications of this rounding method, and we believe this technique will find many

more applications in future.
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CHAPTER 5

Scheduling: Handling Energy Efficiency

Scheduling it turns out, comes down to deciding how to spend money.

— SIGACT News article [29].

In this chapter, we consider another generalization of GAP.The application is

motivated from saving energy while running machines to schedule jobs. In a recent

SIGACT News article [29], Birman et al. describe the importance of scheduling

to save energy and thus to reduce cost in modern data centers.In the same article,

Hamilton, a researcher from Amazon, argues that a ten fold reduction in the power

needs of the data centers may be possible if we can explore ways to simply do

less during surge load periods, and to migrate work in time taking advantage of

the infrequent peaks and deep valleys of work load in modern cloud platforms.

Following his observation, in this chapter, we define a collection of new problems

referred to as “machine activation” problems. The central framework we introduce
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considers a collection ofm machines (unrelated or related) with each machinei

having anactivation costof ai. There is also a collection ofn jobs that need to

be performed, andpi,j is the processing time of jobj on machinei. Standard

scheduling models assume that the set of machines is fixed andall machines are

available. However, in our setting, we assume that there is an activation cost budget

of A – we would like toselecta subsetS of the machines to activate with total cost

a(S) ≤ A andfind a schedule for then jobs on the machines inS minimizing the

makespan (or any other metric).

5.1 Machine Activation Problems in Data Centers

Large scale data centers have emerged as an extremely popular way to store and

manage a large volume of data. Most large corporations, suchas Google, HP and

Amazon have dozens of data centers. These data centers are typically composed of

thousands of machines, and have extremely high energy requirements. Data centers

are now being used by companies such as Amazon Web Services, to run large scale

computation tasks for other companies who do not have the resources to create their

own data centers. This is in addition to their own computing requirements.

These data centers are designed to be able to handle extremely high work loads

in periods of peak demand. However, since the workload on these data centers

fluctuates over time, we could selectively shut down part of the system to save

energy when the demand on the system is low. Energy savings results not just from
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putting machines in a sleep state, but also from savings in cooling costs.

Hamilton (see the recent SIGACT News article [29]) argues that a ten fold

reduction in the power needs of the data center may be possible if we can simply

build systems that are optimized with power management as their primary goal.

Suggested examples (summarizing from the original text) are:

1. Explore ways to simply do less during surge load periods.

2. Explore ways to migrate work in time. The work load on modern cloud

platforms is very cyclical, with infrequent peaks and deep valleys. Even

valley time is made more expensive by the need to own a power supply to be

able to handle the peaks, a number of nodes adequate to handlesurge loads,

a network provisioned for worst case demand.

This leads to the issue ofwhich machines can we shut down, since all machines

in a data center are not necessarily identical. Each machinestores some data, and is

thus not capable of performing every single job efficiently unless some data is first

migrated to the machine. We will formalize this question very shortly.

To quote from the recent article by Birman et al. (SIGACT News[29])

“Scheduling mechanisms that assign tasks to machines, but more broadly, play

the role of provisioning the data center as a whole. As we’ll see below, this aspect

of cloud computing is of growing importance because of its organic connection to

power consumption: both to spin disks, and run machines, butalso because active

machines produce heat and demand cooling. Scheduling, it turns out, comes down
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to deciding how to spend money.”

Data is replicated on storage systems for both load balancing during peak de-

mand periods, as well as for fault tolerance. Typically manyjobs have to be sched-

uled on the machines in the data center. In many cases profile information for a set

of jobs is available in advance, as well as estimates of cyclical workloads. Jobs may

be I/O intensive or CPU intensive, in either case, an estimate of its processing time

on each type of machine is available. Jobs that need to accessspecific data can be

assigned to any one of thesubsetof machines that store the needed data. Our goal

is to firstselecta subset of machines to activate, and then schedule the jobs on the

active machines. From this aspect our problems differ from standard scheduling

problems with multiple machines, where the set of active machines is the set of all

machines. Here we have to decidewhich machines to activateand then schedule

all jobs on the active machines.

The scheduling literature is vast, and one can formulate a variety of interesting

questions in this model. We initiate this work by focusing our attention on per-

haps one of the most widely studied machine scheduling problems since it matches

the requirements of the application. We have a collection ofjobs and unrelated

machines, and need to decide which subset of machines to activate. The jobs can

only be scheduled on active machines. This provides an additional dimension for

scheduling problems that was not previously considered. This situation also makes

sense when we have a certain set of computational tasks to process, a cost budget,
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and can purchase access to a set of machines.

Given a setJ of n jobs and a setM of m machines, our goal is to activate a

subsetS of machines and then map each job to an active machine inS, minimizing

the overall makespan. Each machine has an activation cost ofai. The activation

cost of the subsetS is a(S) =
∑

i∈S ai. We show that if there is a schedule with

activation costA and makespanT , then we can find a schedule with activation cost

2(1 + 1
ε )(ln

n
OPT + 1)A and makespan(2 + ε)T for any ε > 0 (we call this is

a ((2 + ε), 2(1 + 1
ε )(ln

n
OPT + 1))-approximation). Actually, thelnn term in the

activation cost with this general formulation is unavoidable, since this problem is

at least as hard to approximate as the set cover problem, for which a(1 − ε) lnn

approximation algorithm will imply thatNP ⊆ DTIME(nO(log logn)) [59].

We further consider the case where allocating a job to a machine requires some

cost. For example, a jobj with processing timepi,j on machinei might require a

assignment cost ofci,j = αpi,j, whereα is some constant. The total processing

cost is a simple sum of the assignment cost of the individual jobs. The assignment

cost nicely captures the energy consumed to process a job in active machines. We

show that if there exists a schedule with total activation and assignment costA and

makespanT , then we can find a schedule with total activation and assignment cost

O(1ε log n+m)A) and makespan(2 + ε)T for anyε > 0.

Related work on Speed Scaling A well studied problem is that of processor

speed scaling. In this model, a processor can be run at speeds, that can be adjusted
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based on workload. Jobs are arriving in an online manner withdeadlinesdj and

processing requirementpj. The goal is to complete all jobs between their arrival

time and their deadline in a way that minimizes total energy consumed. Much

work was devoted to the single processor case [19, 140], and more recently to the

multiprocessor case [4]. This work is somewhat orthogonal to our problem – in the

single processor model, the main issue is at what speed to runthe processor when

there is a set of waiting jobs in the queue – in the absence of more jobs, its better to

run the processor as slowly as possible, while still completing all the jobs by their

deadlines. If suddenly a lot of new jobs arrive, then in trying to complete partially

processed jobs and the new jobs, we may have to run at a significantly higher speed

(using a lot of power) than necessary had we finished the initial set of jobs earlier.

The paper by Albers et al. [4] deals with multiple processorsand unit length

jobs (each job has a release time and deadline). The main focus of the paper is

to show how to exploit techniques for the single processor case to attack the multi

processor case, and these are shown to be effective in certain situations. In contrast,

our problem is an offline problem where we have a large collection of jobs, and we

have to decide which machines can go into a sleep state and which machines will

remain active.
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5.2 LP Rounding for Machine Activation on Unrelated

Machines

In this section, we first provide a simple rounding scheme with an approximation

ratio of (O(log n), O(log n)). Then we improve it to a (2+ε, 2(1+ 1
ε )(ln

n
OPT +1))-

approximation by utilizing the rounding scheme developed in Chapter 2.

We can formulate the scheduling activation problem as an integer program. We

define a variableyi for each machinei, which is1 if the machine is open and0,

if it is closed. For every machine-job pair, we have a variable xi,j, which is 1,

if job j is assigned to machinei and is0, otherwise. In the corresponding linear

programming relaxation, we relax theyi andxi,j variables to be in[0, 1]. The first

set of constraints require that each job is assigned to some machine. The second set

of constraints restrict the jobs to be assigned to only active machines, and the third

set of constraints limit the workload on a machine. We require that1 ≥ xi,j, yj ≥ 0

and ifpi,j > T thenxi,j = 0. The formulation is as shown below:

min

m∑

i=1

aiyi (5.1)

s.t.
∑

i∈M
xi,j = 1 ∀j ∈ J

xi,j ≤ yi ∀i ∈M, j ∈ J
∑

j

pi,jxi,j ≤ Tyi ∀i
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Suppose an integral solution with activation costA and makespanT exist. The

LP relaxation will have cost at mostA with the correct choice ofT . All the bounds

we show are with respect to these terms. In Section 2.2 we showthat unless we

relax the makespan constraint, there is a large integralitygap for this formulation.

Simple Rounding We first start with a simple rounding scheme. Let us denote

the optimum LP solution bȳy, x̄. The rounding consists of the following four steps:

1. Round eachyi to 1, with probability ȳi and0 with probability1− ȳi. If yi is

rounded to1, open machinei.

2. For each open machinei, consider the set of jobsj, that have fractional

assignment> 0 on machinei. For each such job, setXi,j =
x̄i,j

ȳi
. If

∑

j pi,jXi,j < T , (it is always≤ T ) then uniformly increaseXi,j . Stop

increasing anyXi,j that reaches1. Stop the process, when either the total

fractional makespan isT or all Xi,j ’s are1. If Xi,j = 1, assign jobj to

machinei. If machinei has no job fractionally assigned to it, drop machine

i from further consideration. For each jobj that has fractional assignment

Xi,j , assign it to machinei with probabilityXi,j.

3. Discard all assigned jobs. If there are some unassigned jobs, repeat the pro-

cedure.

4. If some job is assigned to multiple machines, choose any one of them arbi-

trarily.
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In the above rounding scheme, we useȳi’s as probabilities for opening ma-

chines and for each opened machine, we assign jobs followingthe probability dis-

tribution given byXi,j ’s. It is obvious that the expected activation cost of machines

in each iteration is exactly the cost of the fractional solution given by the LP. The

following lemmas bound the number of iterations and the finalload on each ma-

chine.

Lemma 5.2.1. The number of iterations required by the rounding algorithmis

O(log n).

Proof. Consider a job j. In a single iteration,

Pr [ job j is not assigned to machinei ] ≤ (1 − ȳi) + ȳi(1 − x̄i,j

ȳi
) = 1 − x̄i,j.

Hence,

Pr [ job j is not assigned in an iteration]

≤
∏

i

(1− x̄i,j) ≤ (1− 1

m
)m ≤ 1

e

The second inequality holds since
∑

i x̄ij = 1 and the quantity is maximized when

all x̄ij ’s are equal. Then, it is easy to see the probability that jobj is not assigned

after2 lnn iterations is at most1
n2 . Therefore, by union bound, with probability at

least1− 1
n , all jobs can be assigned in2 lnn iterations.

Lemma 5.2.2. The load on any machine isO(T log n) with high probability.

Proof. Consider any iterationh. Denote the value ofXi,j at iterationh, byXh
i,j.
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For each open machinei and each jobj, define a random variable

Zi,j,h =







pi,j
T , if job j is assigned to machinei

0 , otherwise

(5.2)

Clearly,0 ≤ Zi,j,h ≤ 1. Define,Zi =
∑

j,hZi,j,h. Clearly,

E[Zi] =

∑

h

∑

j pi,jX
h
i,j

T
≤
∑

h

1 ≤ Θ(log n)

Denote byMi the load on machinei. Therefore,Mi = TZi, thusE[Mi] ≤

Θ(T log n). Now by the standard Chernoff-Hoeffding bound [80, 120], weget

the result.

Integrality Gap of the Natural LP for Strict Makespan Let there bem jobs

andm machines. Call these machinesA1, A2, .., Am−1, andB. Processing time

for all jobs on machinesA1, A2, ..., Am−1 is T and onB it is T
m . Activation costs

of opening machinesA1, A2, .., Am−1 is 1, and forB it is very high compared to

m, sayR(R >> m). An integral optimum solution has to open machineB with

total cost at leastR.

Now consider a fractional solution, where all machinesA1, A2, .., Am−1 are

fully open, but machineB is open only to the extent of1/m. All jobs are assigned

to the extent of1/m on each machineA1, A2, .., Am−1. So the total processing

time on any machineAi ism T
m = T . The remaining1m part of each job is assigned
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toB. So total processing time onB is T
m·m ·m = T

m . It is easy to see the optimal

fractional cost is at mostm + R
m (by settingyB = 1

m ). Therefore, the integrality

gap is at least≈ m.

Main Rounding Algorithm The algorithm begins by solving LP 5.1. As be-

fore x̄, ȳ denote the optimal fractional solution of the LP. LetM denote the set of

machines andJ denote the set of jobs. Let|M | = m and |J | = n. We define

a bipartite graphG = (M ∪ J,E) as follows:M ∪ J are the vertices ofG and

e = (i, j) ∈ E, if x̄i,j > 0. The weight on edge(i, j) is x̄i,j and the weight on

machine nodei is ȳi. Rounding consists of several iterations. InitializeX = x̄ and

Y = ȳ. The algorithm iteratively modifiesX andY , such that at the endX and

Y become integral. Random variables at the end of iterationh are denoted byXh
i,j

andY h
i .

The two main steps of rounding are as follow:

1. Transforming the Solution: It consists of creating two graphsG1 andG2

fromG, whereG1 has an almost forest structure and inG2 the weight of an

edge and the weight of the incident machine node is very close(see figure in

the next page). In this step, onlyXi,j ’s are modified, whileYi’s remain fixed

at ȳi’s.

2. Exploiting the properties ofG1 andG2, androunding onG1 andG2 sepa-

rately.
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Decomposition of machine-job bipartite graph into �� and ��

�� ��

We now describe each of these steps in detail.

1. Transforming the Solution

We decomposeG into two graphsG1 andG2 through several rounds. Initially,

V (G1) = V (G) = M ∪ J , E(G1) = E(G), V (G2) = M andE(G2) = ∅. In

each round, we either move one job node and/or one edge fromG1 toG2 or delete

an edge fromG1. Thus we always make progress. An edge moved toG2 retains its

weight through the rest of the iterations, while the weightsof the edges inG1 keep

on changing.

We maintain the following invariants,

(I1) ∀(i, j) ∈ E(G1), and∀h,Xh
i,j ∈ (0, yi/γ), pi,j > 0.

(I2) ∀i ∈M and∀h,∑jX
h
i,jpi,j ≤ Tyi.
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(I3) ∀(i, j) ∈ E(G2) and∀h, 1 ≥ Xh
i,j ≥ yi/γ.

(I4) Once a variable is rounded to0 or 1, it is never changed.

Consider round one. Remove any machine node that hasY 1
i = 0 from both

G1 andG2. Activate any machine that hasY 1
i = 1. Similarly, discard any edge

(i, j) with X1
i,j = 0, and ifX1

i,j = 1, assign jobj to machinei and removej. If

X1
i,j ≥ ȳi/γ, then remove the edge(i, j) from G1 and add the jobj (if not added

yet) and the edge(i, j) with weight xi,j(≥ ȳi/γ) to G2. Note that, if for some

(i, j) ∈ G, pi,j = 0, then we can simply takēxi,j = ȳi and move the edge toG2.

Thus we can always assume for every edge(i, j) ∈ G1, pi,j > 0. It is easy to see

that, after iteration one, all the invariants (I1-I4) are maintained.

Let us consider iteration(h + 1) and letJ ′,M ′ denote the set of jobs and

machine nodes inG1 with degree at least1 at the beginning of the iteration. Note

thatY h
i = Y 1

i = ȳi for all h. Let |M ′| = m′ and|J ′| = n′. As in iteration one, any

edge withXh
i,j = 0 in G1 is discarded and any edge withXh

i,j ≥ ȳi/γ is moved

to G2 (if node j does not belong toG2, add it toG2 also). We denote bywi,j the

weight of an edge(i, j) ∈ G2. Any edge and its weight moved toG2 will not be

changed further. Sincewij is fixed when(i, j) is inserted toG2, we can treated it

as a constant thereafter. Consider the linear system (Ax = b) as in Figure 5.1.

We call the fractional solutionx canonical, if xi,j ∈ (0, yi/γ), for all (i, j).

Clearly {Xh
i,j}, for (i, j) ∈ E(G1) is a canonical feasible solution for the linear

system in Figure 5.1. We now applyRandMove to the linear system defined by
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∀j ∈ J ′,
∑

i∈M ′,
(i,j)∈E(G1)

xi,j = 1−
∑

i∈M ′,
(i,j)∈E(G2)

wi,j (5.3)

∀i ∈M ′,
∑

j∈J ′,
(i,j)∈E(G1)

pi,jxi,j =
∑

j∈J ′

pi,jX
h
i,j −

∑

j∈J ′,
(i,j)∈E(G2)

pi,jwi,j (5.4)

Figure 5.1: Linear System at the beginning of iteration(h+ 1)

A. To recall, if a linear system is under-determined, we can efficiently find a non-

zero vectorr, with Ar = 0. Sincex is canonical, we can also efficiently identify

strictly positive reals,α andβ, such that for all(i, j), xi,j + αri,j andxi,j − βri,j

lie in [0, yi/γ] and there exists at least one(i, j), such that one of the two entries,

xi,j + αri,j andxi,j − βri,j, is in {0, yi/γ}. Therefore, we can apply the basic

randomized rounding step,RandMove(A,x,b) : with probability β
α+β , return the

vectorx+αr and with complementary probability ofαα+β , return the vectorx−βr.

If X =RandMove(A,x,b), then the returned solution has the following prop-

erties:

Pr [AX = b] = 1 (5.5)

E [Xi,j ] = xi,j (5.6)

If the linear system in Figure 5.1 is under-determined, thenwe apply

RandMove to obtain the updated vectorXh+1. If for some(i, j), Xh+1
i,j = 0,

then we remove that edge (variable) fromG1. If Xh+1
i,j = ȳi/γ, then we remove

the edge fromG1 and add it with weight̄yi/γ toG2. Thus the invariants (I1, I3 and
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I4) are maintained. Since the weight of any edge inG2 is never changed and load

constraints on all machine nodes belong to the linear system, we get from [92],

Lemma 5.2.3. For all i, j, h, u, E
[

Xh+1
i,j | Xh

i,j = u
]

= u. In particular,

E
[

Xh+1
i,j

]

= x̄i,j. Also for each machinei and iteration h,
∑

j X
h
i,jpi,j =

∑

j xi,jpi,j with probability1.

Thus the invariant (I2) is maintained as well.

If the linear system (Figure 5.1) becomes determined, then this step ends. Let

M ′ andN ′ be the machine and job nodes respectively inG1 at that point. If|M ′| =

m′ and|N ′| = n′, then the number of edges inG1 is |E(G1)| ≤ m′+n′. Otherwise,

the linear system (Figure 5.1) remains underdetermined. Infact, in each connected

component ofG1, the number of edges is at most the number of vertices. Therefore,

each component ofG1 can contain at most one cycle.

2. Rounding onG1 andG2

The previous step ensures, thatG1 is almost a forest with each component

containing at most one cycle and inG2, Xi,j ≥ ȳi/γ, for all (i, j) ∈ E(G2). We

remove any isolated nodes fromG1 andG2, and round them separately.

Further Relaxing the Solution Let us denote the job and the machine nodes

in G1 (G2) by J(G1) (or J(G2)) andM(G1) (or M(G2)) respectively. Con-

sider a job nodej ∈ J(G2). If
∑

i:(i,j)∈E(G2)
Xi,j < 1/δ (we chooseδ later),

we simply remove all the edges(i, j) from G2 and the following must hold:
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∑

i:(i,j)∈E(G1)
Xi,j ≥ 1 − 1/δ. Otherwise, if

∑

i:(i,j)∈E(G2)
Xi,j ≥ 1/δ, we re-

move all edges(i, j) ∈ E(G1) fromG1. Therefore at the end of this modification,

a job node can belong to eitherJ(G1) or J(G2), but not both. Ifj ∈ J(G1), we

have
∑

i∈M Xi,j ≥ 1− 1/δ. Else, ifj ∈ J(G2),
∑

i∈M Xi,j ≥ 1/δ.

For the makespan analysis it will be easier to partition the edges incident on a

machine nodei into two parts – the job nodes incident to it inG1 and inG2. The

fractional processing time due to jobs inJ(G1) (or J(G2)) will be denoted byT ′ȳi

(or T ′′ȳi), i.e.,T ′ȳi =
∑

j∈J(G1)
pi,jXi,j (or T ′′ȳi =

∑

j∈J(G2)
pi,jXi,j).

Rounding on G2: In G2, for any machine nodei, recall
∑

j∈J(G2)
Xi,jpi,j =

T ′′yi. Since we have for alli ∈ M(G2), j ∈ J(G2), Xi,j ≥ yi/γ, we have

∑

j∈J(G2)
pi,j ≤ T ′′γ. Therefore, if we decide to open a machine nodei ∈M(G2),

then we can assign all the nodesj ∈ J(G2), that have an edge(i, j) ∈ E(G2), by

paying at mostT ′′γ in the makespan.

Hence, we only concentrate on opening a machine inG2, and then if the ma-

chine is opened, we assign it all the jobs incident to it inG2. For each machine

i ∈ M(G2), we defineYi = min{1, ȳiδ}. Since, for all job nodesj ∈ J(G2),

we know
∑

i∈M(G2)
Xi,j ≥ 1/δ, after scaling we have for allj ∈ J(G2),

∑

(i,j)∈E(G2)
Yi ≥ 1. Therefore, this exactly forms a fractional set-cover instance,

which can be rounded using the randomized rounding method developed in [128]

to get activation cost within a factor ofδ(log n
OPT + 1). The instance inG2 thus

nicely captures the hard part of the problem, which comes from the hardness of
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approximating set cover. Thus we have the following lemma.

Lemma 5.2.4.Considering only the job nodes inG2, the final load on any machine

i ∈ M(G2) is at mostT ′′γ and the total activation cost is at mostδ(log n
OPT +

1)OPT , whereT ′′ is the fractional load on machinei ∈ M(G2) beforerounding

onG2 andOPT is the optimum activation cost.

Rounding onG1: For rounding inG1, we root each component ofG1 at the only

cycle it has (in the case that the component is a tree, we just root it arbitrarily at

any node) and traverse bottom up. We consider all the job nodes except for those

in the cycle. If there is a job nodej, that is a child of a machine nodei, then if

Xi,j < 1/η (η to be fixed later), we remove the edge(i, j) fromG1. Since initially

j ∈ J(G1),
∑

i∈M Xi,j ≥ 1−1/δ, even after these edges are removed, we have for

j ∈ J(G1),
∑

i∈M(G1)
Xi,j ≥ 1−1/δ−1/η. However ifXi,j ≥ 1/η, simply open

machinei, if it is not already open and add jobj to machinei. Initially ȳi ≥ 1/η,

sinceȳi ≥ Xi,j. The initial contribution to cost by machinei was≥ 1
ηai. Now it

becomesai. If
∑

j
Xi,j

yi
pi,j = T ′, withXi,j ≥ 1/η, now it can become at mostηT ′.

After the above modification, we have one cycle and the yet to be assigned jobs

in J(G1) outside the cycle form disjoint stars, with the job nodes at their centers.

In the cycle, we assign a job to a machine, if its fractional value is at least
1− 1

δ
2 .

Consider any jobj in the cycle attached to two machinesm1 andm2 with fractional

valueX1,j +X2,j ≥ 1− 1
δ . Therefore, the jobj is assigned at least to an extent of

1− 1
δ

2 to one of the two machinesm1 andm2. If a machinei gets at most one job
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from the cycle, then its makespan is at mostT ′η+maxi,j pi,j. Otherwise, if it gets

two jobs, then its make span is at most

η

(

T ′ − 1− 1
δ

2
(pi,1 + pi,2)

)

+ pi,1 + pi,2,

wherepi,1, pi,2 is the processing time of the two jobs in the cycle that got assigned

to machinei. Since
(
1− 1

δ

)
> 1

η , the above expression is at mostη(T ′ − 1
η (pi,1 +

pi,2))+pi,1+pi,2 < ηT ′+maxi,j pi,j. The increase in cost is at most2
(1− 1

δ )
factor

of the total optimal cost of the machines in that cycle.

Consider each star,Sj with job nodej at its center. Leti1, i2, ., iℓj be all the

machine nodes inSj, then we have,
∑ℓj

k=1Xik,j ≥ 1 − 1/δ − 1/η. Therefore

∑ℓj
k=1 ȳik ≥ 1 − 1/δ − 1/η. If there is already some opened machine,il, assign

j to il by increasing the makespan at most by an additiveT . Otherwise, open

machineil with the cheapestail . Since the total contribution of these machines to

the cost is
∑ℓj

k=1 ȳikaik ≥
∑ℓj

k=1 ȳikail ≥ (1 − 1/δ − 1/η)ail , we are within a

factor 1
1−1/δ−1/η of the total cost contributed fromG1.

Hence, we have the following lemma,

Lemma 5.2.5.Considering only the job nodes inG1, the final load on any machine

i ∈ M(G1) is at mostT ′η + maxi,j pi,j and the total activation cost is at most

max

(

2

(1− 1
δ )
, 1η ,

1
(1−1/δ−1/η)

)

OPT , whereT ′ is the fractional load on machine

i ∈M(G1) beforerounding onG1 andOPT is the optimum activation cost.
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Now combining, Lemma 5.2.4 and 5.2.5, and by optimizing the values ofδ, η

andγ, we get the following theorem.

Theorem 5.2.6.A schedule can be constructed efficiently with machine activation

cost2(1 + 1
ε )(ln

n
OPT + 1)OPT and makespan(2 + ε)T , whereT is the optimum

makespan possible for any schedule with activation costOPT .

Proof. From Lemma 5.2.4 and 5.2.5, we have,

• Machine opening cost is at most

(

max

(

2

(1− 1
δ )
, 1η ,

1
(1−1/δ−1/η)

)

+ δ
(
ln n

OPT + 1
)
)

OPT

• Makespan is at mostT (max(γ, η)) + maxi,j pi,j

Nowη ≥ γ, since otherwise any edge withXi,j ≥ 1/η will be moved toG2 and

1−1/δ ≥ 1/η. Now set,γ = η, δ = 1+ζ, for someζ > 0. So1−1/δ = ζ/(1+ζ).

Set1/η = ζ/(1+ζ)−1/
(
(1 + ζ)(ln n

OPT + 1)
)
. Thus, we have an activation cost

at most2(1+ ζ)(ln n
OPT +1)OPT and makespan≤ T (1+ lnn+1

ζ lnn−1)+maxi,j pi,j.

Therefore, if we setζ = 1+2/ ln n, we get an activation cost bound of4(ln n
OPT +

1)OPT and makespan≤ 2T +maxi,j pi,j. In general, by settingε = 1
ζ , we get an

activation cost at most2(1+ 1
ε )(ln

n
OPT +1)OPT and makespan≤ (2+ ε)T .

5.3 Minimizing Machine Activation Cost and Assignment

Cost

We now consider the scheduling problem with assignment costs and machine ac-

tivation costs. As before, each job can be scheduled only on one machine, and
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processing jobj on machinei requirespi,j time and incurs a cost ofci,j . Each

machine is available forT time units and the objective is to minimize the total in-

curred cost. In this version of the machine activation model, we wish to minimize

the sum of the machine activation and job assignment costs. Our objective now is

min
∑

i∈M
aiyi +

∑

(i,j)

ci,jxi,j

subject to the same constraints as the LP defined in Eq(5.1).Our algorithm for si-

multaneous minimization of machine activation and assignment cost follows the

same paradigm as in the previous section with a few differences. We specify those

here.

1. Transforming the Solution

After solving the LP, we obtain,C =
∑

i,j ci,jxi,j. Though, we have an addi-

tional constraintC =
∑

i,j ci,jxi,j to care about, wedo not include it in the linear

system and proceed exactly as in Subsection 5.2. At the end, we haveG1 where

each component contains at most one cycle and inG2, for all (i, j) ∈ E(G2), we

haveXi,j ≥ ȳi/γ. By Property 5.6,∀i, j, h,E
[

Xh
i,j

]

= x̄i,j and hence, we have

that the expected cost is
∑

i,j ci,jx̄i,j. The procedure can be directly derandomized

by the method of conditional expectation giving an1-approximation to assignment

cost.

2. Rounding onG1, G2

The first part involves further relaxing the solution, that is identical to the one

110



described in previous section. Therefore, we now concentrate on roundingG1 and

G2 separately.

Rounding onG2 In G2, since we have for all(i, j) ∈ E(G2), Xi,j = ȳi/γ, if

we decide to open machinei, all the jobsj ∈ J(G2) can be assigned toi, by losing

only a factor ofγ in the makespan. Therefore, we just need to concentrate on

minimizing the cost of opening machines and the total assignment cost, subject to

the constraint that all the jobs inJ(G2) must have an open machine to get assigned.

This is exactly the case ofnon-metric uncapacitated facility locationand we can

employ the rounding approach developed in [126] to obtain anapproximation factor

of O(log n+m
OPT ) +O(1) on the machine activation and assignment costs.

Rounding onG1 Rounding onG1 is similar to the case when there is no assign-

ment costs with a few modifications. We proceed in the same manner, we assign

jobs (not in the cycle) to their parent if the fractional contribution is at least1η , we

then assign the jobs in the cycle if the fractional contribution is at least
(1− 1

δ )
2 and

finally, obtain the stars with job nodes at the centers. Now for each starSj , with j

at its center, we consider all the machine nodes inSj. If some machinei ∈ Sj is

already open, we make its opening cost0. Now we open the machine,ℓ ∈ Sj, for

which cj + aℓ,j is minimum. Again using the same reasoning as in Subsection 5.2,

the total cost does not exceed by more than a factor of11−1/δ−1/η . We thus again

have the following two bounds.
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• Machine opening and activation cost is at most
(

max

(

2

(1− 1
δ )
, 1η ,

1
(1−1/δ−1/η)

)

+ δ
(
ln n+m

OPT + 1
)
)

OPT

• Makespan is at mostT (max(γ, η)) + maxi,j pi,j

Now optimizingα, β, γ, we get the following theorem,

Theorem 5.3.1.If there is a schedule with total machine activation and assignment

cost asOPT and makespanT , then a schedule can be constructed efficiently in

polynomial time, with total costO(1ε
(
log n+m

OPT + 1
)
)OPT and makespan≤ (2 +

ε)T .

5.4 Extensions: Handling Release Times

Suppose each jobj has a machine related release timerij, i.e, job j can only be

processed on machinei after timerij . We can modify the algorithm in Section 2 to

handle release times as follows.

For any “guess” of the makespanT , we letxi,j = 0 if rij + pi,j > T in the

LP formulation. Then, we run the((2 + ε), 2(1 + 1
ε )(ln

n
OPT +1))-approximation

regardless of the release times and obtain a subset of activemachines and an as-

signment of jobs to these machines. Suppose the subsetJi of jobs is assigned to

machinei. We can now schedule the jobs inJi on machinei in order by release

time. It is not hard to see the makespan of machinei is at mostT +
∑

j∈Ji pi,j

since every job can be scheduled on machinei after timeT . Therefore, we get a
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(3+ ε, 2(1+ 1
ε )(log

n
OPT +O(1))) approximation. Similar extensions can be done

for the case with activation and assignment costs.

This concludes the description of this chapter. In summary,herein, we develop

a new model for saving energy on data centers via scheduling mechanism. Data

centers are modeled by unrelated parallel machines, and energy consumption is

modeled by the cost of machine activation, in addition to thepower usage to process

jobs on these machines. We describe an approximation algorithm that optimizes

makespan given a bound on the energy cost. The algorithm utilizes the rounding

technique developed in Chapter 2.

113



CHAPTER 6

Fair Allocation: Maxmin Fair Allocation Problem

In the next two chapters, we study fair allocation problems which form an important

class of resource allocation problems. The fair allocationproblems deal with distri-

bution of indivisible items, i.e., items that cannot be broken and assigned fraction-

ally among persons. Each person has individual utilities for the items and the items

must be allocated to them satisfying certain criteria. Manyissues of fair allocations

have spanned the literature of economists [30, 106, 141], aswell as the literature

of the operations research community [81, 131]. Questions such as the structural

properties of markets for the existence/non-existence of fair allocation with certain

properties, role of money, cases with a single item, or with general utility func-

tions have resulted in several research challenges in the last decade [90, 130]. In

computer science, one such fair allocation problem that hasreceived a good deal of

attention is themax-min fair allocation problem[15,16,20,26,34,60,118].

In this chapter, we study the properties of a configuration LPfor max-min fair

allocation and provide tighter results for its integralitygap. In the next chapter, we
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will see a special case of max-min fair allocation which goesby the name of the

Santa Claus problem.

6.1 Max-Min Fair Allocation: A Configuration LP Ap-

proach

In this problem there arem goods that need to be distributed indivisibly amongk

persons. Each personi has a non-negative integer valuationui,j for goodj. The

valuation functions are linear, i.e.,ui,C =
∑

j∈C ui,j for any set ofC goods. The

goal is to allocate each good to a person such that the “least happy person is as

happy as possible”: i.e.,mini ui,C is maximized. Our main contribution in this

regard is to near-optimally pin-point the integrality gap of a configuration LPpre-

viously proposed and analyzed in [16, 20]. Our algorithm uses bipartite dependent

rounding [64] and its generalization to weighted graphs. Bipartite dependent round-

ing can be viewed as a specific type ofRandMove on bipartite graphs. A crucial

ingredient of our analysis is to show certain random variables satisfy the property

of negative correlationand hence the Chernoff type concentration bounds can be

applied to guarantee small deviation from the expected value of their sum.

Configuration LP for Max-Min Fair Allocation The configuration LP formu-

lation for the max-min fair allocation problem was first considered in [20]. Acon-

figuration is a subset of items and in the LP there is a variable for each valid config-
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uration. Using binary search, first the optimal solution valueT is guessed and then

we define valid configurations based on the approximation factor λ sought for. We

call a configurationC valid for personi if either of the following two conditions

hold:

• ui,C ≥ T and all the items inC have value at mostTλ . These are calledsmall

items.

• C contains only one itemj andui,j ≥ T
λ . We call such an itemj to be abig

item for personi.

We define a variablexi,C for assigning a valid configurationC to personi. Let

C(i, T ) denote the set of all valid configurations corresponding to personi with

respect toT . The configuration LP relaxation of the problem is as follows:

∀j :
∑

C∋j

∑

i

xi,C ≤ 1 (6.1)

∀i :
∑

C∈C(i,T )

xi,C = 1

∀i, C : xi,C ≥ 0

The above LP formulation may have exponential number of variables, yet if the

LP is feasible, then a fractional allocation where each person receives either a big

item or at least a utility ofT (1−ε) can be computed in polynomial time [20]. Here

ε is any constant greater than zero. In the subsequent discussion and analysis, we
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ignore the multiplicative1 + ε factor; it is hidden in theΘ notation of the ultimate

approximation ratio.

The integrality gap of the above configuration LP isΩ( 1√
k
) and again follows

from [20]. In [16], Asadpour and Saberi gave a rounding procedure for the configu-

ration LP that achieved an approximation factor ofO
(

1√
k(ln k)3

)

. Here we further

lower the gap and prove the following theorem.

Theorem 6.1.1. Given any feasible solution to the configuration LP, it can

be rounded to a feasible integer solution such that every person gets at least

Θ
(

1√
k ln k

)

fraction of the optimal utility with probability at least1 − Θ( 1k ) in

polynomial time.

Our proof is also significantly simpler than the one in [16].

Note that the recent work of Chakrabarty, Chuzhoy and Khanna[44] has an

improved approximation factor ofmε (also note thatm ≥ k) but that does not use

the configuration LP.

In the context of fair allocation, an additional important criterion can be an

equitable partitioningof goods: we may impose an upper bound on the number of

items a person might receive. For example, we may want each person to receive at

most⌈mk ⌉ goods. Theorem 4.1.1 from Chapter 4 leads to the following:

Theorem 6.1.2.Suppose, in max-min allocation, we are given upper boundsci on

the number of items that each personi can receive, in addition to the utility values

ui,j. LetT be the optimal max-min allocation value that satisfiesci for all i. Then,
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we can efficiently construct an allocation in which for each personi the boundci

holds and he receives a total utility of at leastT −maxj ui,j.

This generalizes the result of [28], which yields the “T−maxj ui,j” value when

no bounds such as theci are given. To our knowledge, the results of [15,16,20,34]

do not carry over to the setting of such “fairness bounds”ci.

6.1.1 Algorithm for Max-Min Fair Allocation

We now describe the algorithm and the proof of Theorem 6.1.1.

Algorithm We define a weighted bipartite graphG with the vertex setA
⋃
B

corresponding to the persons and the items respectively. There is an edge between

a vertex corresponding to personi ∈ A and itemj ∈ B, if a configurationC

containingj is fractionally assigned toi. Define

wi,j =
∑

C∋j
xi,C ,

i.e., wi,j is the fraction of itemj that is allocated to personi by the fractional

solution of the LP. An edge(i, j) is called a matching edge, if the itemj is big for

personi. Otherwise it is called a flow edge.

Let M andF represent the set of matching and flow edges respectively. For

each vertexv ∈ A⋃B, letmv be the total fraction of the matching edges incident

to it. Also definefv = 1−mv. The main steps of the algorithm are as follows,
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1. Guess the value of the optimal solutionT by doing a binary search. Solve

LP (7.1). Obtain the setM andmv, fv for each vertexv in G constructed

from the LP (7.1) solution.

2 Allocating Big Items : Select a random matching from edges inM using

bipartite dependent rounding(Chapter 2, Section ) such that for everyv ∈

A
⋃
B, the probability thatv is saturated by the matching ismv = 1− fv.

3 Allocating Small Items :

(a) Discard any itemj, withmj ≥ (1 − ε1), ε1 =
√

lnk
k , and also discard

all the persons and the items saturated by the matching.

(b) (Scaling) In the remaining graph containing only flow edges for unsat-

urated persons and items, set for each personi, w′
i,j =

wi,j

fi
, ∀j.

(c) Further discard any itemj with
∑

iw
′
i,j ≥ (3+o(1)) ln k

ln ln k .

(d) (weighted bipartite dependent rounding) Scale down theweights on all

the remaining edges by a factor of(3+o(1)) ln k
ln lnk and do aweighted bipar-

tite dependent roundingto assign items to persons.

We now analyze each step. The main proof idea is in showing that there re-

mains enough left-over utility in the flow graph for each person not saturated by

the matching. This is obtained through proving a new negative correlation prop-

erty among the random variables defined on a collection of vertices. Previously,
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the negative correlation property due to bipartite dependent rounding has only been

proven for variables defined on edges incident on any particular vertex. Such “lo-

cal” negative correlation property is not sufficient for ourcase.

Allocating Big Items

Consider the edges inM in the person-item bipartite graph. Remove all the edges

(i, j) that have already been rounded to0 or1. Additionally, if an edge is rounded to

1, remove both its endpointsi andj. We initialize for each(i, j) ∈M , yi,j = wi,j,

and modify theyi,j values probabilistically in rounds using bipartite dependent

rounding.

Recall from Chapter 2, the bipartite dependent rounding being a special case

of our new rounding scheme also satisfies the following two properties. LetYi,j

denote the rounded variables then

∀ i, j, E [Yi,j] = yi,j (6.2)

∃ i, j, Yi,j ∈ {0, 1} (6.3)

Thus, Property (6.2) guarantees for every edge(i, j), E [Yi,j] = wi,j. This gives

the following corollary.

Corollary 6.1.3. The probability that a vertexv ∈ A⋃B is saturated in the match-

ing generated by the algorithm ismv.
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Proof. Let there bel ≥ 0 edgese1, e2, ..el ∈M that are incident onv. Then,

Pr [v is saturated] = Pr [∃ ei, i ∈ [1, l] s.t v is matched withei]

=

l∑

i=1

Pr [v is matched withei] =
l∑

i=1

wi = mv

Here the second equality follows by replacing the union bound by sum since

the events are mutually exclusive.

Now we prove two additional properties of this rounding, which will be used

crucially for the analysis of the next step.

Definition 6.1.4 (Negative Correlation for Indicator Random Variables). A col-

lection of indicator random variables{zi}, i ∈ [1, n] are said to be negatively

correlated, if for any subset oft variables, t ∈ [1, n], and anyb ∈ {0, 1},

Pr
[
∧t

j=1 zij = b
]

≤∏t
j=1 Pr

[
zij = b

]
.

Theorem 6.1.5.Define an indicator random variablezj for each itemj ∈ B with

mj < 1, such thatzj = 1 if itemj is saturated by the matching. Then, the indicator

random variables{zj} are negatively correlated.

Proof. We have already shown this proof in Chapter 2, Theorem 2.1.2.

As a corollary of the above theorem, we get the following claim.

Corollary 6.1.6. Define an indicator random variablezi for each personi ∈ A,

such thatzi = 1 if person i is saturated by the matching. Then, the indicator
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random variables{zi} are negatively correlated.

Proof. Do the same analysis as in Theorem 2.1.2 with items replaced by persons.

Allocating small items

We now prove in Lemma 11.3.1 that after the matching phase, each unsaturated per-

son has available items with utility at least
√

ln k
k

T
5 in the flow graph. Additionally

we prove in Lemma 6.1.8 that each item is not claimed more than3 ln k/ ln ln k).

Both the results are probabilistic and hold with high probability. We use the fol-

lowing form of the well-known Chernoff-Hoeffding Bound.

The Chernoff-Hoeffding Bound [114]: SupposeX =
∑

iXi whereXi are

independent/negatively correlated random variables taking values in[0, 1] with

E [X] = µ, then

1. for 1 > δ > 0, we havePr [X ≥ µ(1 + δ)] ≤ e−µδ2/3,

2. for 1 > δ > 0, we havePr [X ≤ µ(1− δ)] ≤ e−µδ2/2,

3. for δ ≥ 1, we havePr [X ≥ µ(1 + δ)] ≤ e−µ(δ+1) ln (δ+1)[1− δ
(1+δ) ln (1+δ)

].

Lemma 6.1.7. After Allocation of Big Items by bipartite dependent rounding,

each unsatisfied person has a total utility of at least
√

lnk
k

T
5 from the unsaturated

items with probability at least1− 1
k .
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Proof. Consider a personv who is not saturated by the matching. In step (a) of

Allocation of Small Items, all itemsj with mj at least(1− ε1) are discarded. We

will set ε1 =
√

ln k
k later. Since the total sum ofmj can be at mostk (the number of

persons), there can be at mostk1−ε1
items withmj at least1−ε1. Therefore, for the

remaining items, we havefj ≥ ε1. Each person is connected only to small items

in the flow graph. After removing the items withmj at least1− ε1, the remaining

utility in the flow graph for personv is at least



T −
∑

j:fj≤ε1 andj is unsaturated

uv,jfj



 ≥
(

T − ε1k

1− ε1
T

λ

)

. (6.4)

Definew′
v,j =

wv,j

fv
and select aλ1 ≤ λ. Now consider random variablesYv,j for

each of these unsaturated items:

Yv,j =







w′
v,juv,j

T/λ1
: if item j is not saturated

0 : otherwise

(6.5)

Since eachuv,j ≤ T/λ ≤ T/λ1 andwv,j ≤ fv, Yv,j are random variables

bounded in[0, 1]. Personv is not saturated by the matching with probability1 −

mv = fv. Each such personv gets a fractional utility ofw′
v,juv,j from the small

(with respect to the person) itemj in the flow graph, if itemj is not saturated by

the matching. The later happens with probabilityfj.

DefineGv =
∑

j Yv,j. Then T
λ1
Gv is the total fractional utility after step (b). It
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follows from Equation 9.1.1

E [Gv ] =
∑

j

w′
v,juv,jfj

T/λ1
≥ ε1λ1

(

1− ε1k

(1− ε1)λ

)

Setε1 =
√

ln k
k , λ1 = 25

√
k ln k and we haveλ ≥ λ1.

Thus for sufficiently largek,

E [Gv] ≥ ε1λ1

(

1− ε1k

(1− ε1)λ1

)

≥ 24 ln k

ThatYv,j ’s are negatively correlated follows from Theorem 2.1.2. Therefore,

applying the standard Chernoff-Hoeffding bound for the negatively-correlated ran-

dom variables, we get for anyδ ∈ (0, 1)

Pr [Gv ≤ (1− δ)E [Gv]] ≤ e−E[Gv]δ2/3

≤ e−24 ln k/12 for δ ≥ 1

2

=
1

k2
.

Thus we get

Pr

[
T

λ1
Gv ≤

1

2

T

λ1
E [Gv]

]

≤ 1

k2
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Hence,

∃v, Pr

[
T

λ1
Gv ≤

1

2

T

λ1
E [Gv ]

]

≤ 1

k

Therefore the net fractional utility that remains for each person in the flow graph

after scaling is at least12
T
λ1
E [Gv] =

1
2

T
25

√
k lnk

12 ln k ≥ T
5

√
ln k
k , with probability

at least1− 1
k .

Lemma 6.1.8.After the matching and the scaling (step (b)), each unsaturated item

has a total fractional incident edge-weight to be at most3 ln k
ln lnk from the unsaturated

persons with probability at least1− 1
k3

.

Proof. Note that for any personv and for any jobj that is small forv, wv,j ≤ fv,

hencew′
v,j =

wv,j

fv
≤ 1. Fix an itemj, and define a random variableZv,j for each

person such that

Zv,j =







w′
v,j : if personi is not saturated

0 : otherwise

(6.6)

Let Xj =
∑

v Zv,j . ThenXj is the total weight of all the edges incident on

itemj in the flow graph after scaling and removal of all saturated persons. We have

E [Xj ] =
∑

v w
′
v,jfv =

∑

v wv,j ≤ 1. Now that the variablesZv,j are negatively

correlated follows from Corollary 6.1.6, and thus applyingthe Chernoff-Hoeffding
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bound for the negatively correlated variables we get

Pr

[

Xj ≥
(3 + o(1)) ln k

ln ln k

]

≤ 1

k3

This completes the proof.

Recall the third step, step (c), ofAllocating Small Bundles. Any job in the

remaining flow graph with total weight of incident edges morethan (3+o(1)) ln k
ln lnk is

discarded in this step. We now calculate the utility that remains for each person in

the flow graph after step (c).

Lemma 6.1.9. After removing all the items that have total degree more than

(3+o(1)) ln k
ln lnk in the flow graph, that is after step (c) ofAllocating Small Items,

the remaining utility of each unsaturated person in the flow graph is at least
√

lnk
k

T
2∗(3+o(1)) with probability at least1− 2

k .

Proof. Fix a personv and consider the utility thatv obtains from the fractional

assignments in the flow graph before step (c). It is at least
√

1
k lnk

T
4 from Lemma

11.3.1. Define a random variable for each item thatv claims with nonzero value in

the flow graph at step (b):

Z ′
v,j =







uv,j : if item j has total weighted degree at least(3+o(1)) ln k
ln lnk

0 : otherwise

(6.7)
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We havePr
[

Z ′
v,j = uv,j

]

≤ 1
k3

from Lemma 6.1.8. Therefore, the expected

utility from all the items in the flow graph that have total incident weight more

than (3+o(1)) ln k
ln ln k is at most T

k3
. Hence by Markov’s inequality, the utility from the

discarded items is more thanTk is at most 1
k2

. Now, by union bound, the utility from

the discarded items is more thanTk for at least one unsaturated person is at most1
k .

The initial utility before step (c) was at least
√

ln k
k

T
5 with probability1− 1

k . Thus

after step (c), the remaining utility is at least
√

lnk
k

T
5 − T

k with probability at least

1− 2
k . Hence, the result follows.

The next and the final step (d) of allocations is to do a weighted dependent

rounding on ascaled downflow graph. The weight on the remaining edges is

scaled down by a factor of(3+o(1)) lnk
ln ln k and hence for every item node that survives

step (c), the total edge-weight incident on it is at mostone. Let us denote byWi,j

the fractional weight on the edge(i, j) in this graph. Hence after scaling down the

utility of any personv in the flow graph is
∑

j uv,jWv,j ≥ ln ln k
ln k

√
ln k
k

T
2∗(3+o(1)) =

ln lnk√
k ln k

T
2∗(3+o(1)) .

Weighted Dependent Rounding We remove all(i, j) that have already been

rounded to0 or 1. Let F ′ be the current graph consisting of thoseWi,j that lie in

(0, 1). Choose any maximal pathP = (v0, v1, .., vs) or a cycleC = (v0, v1, .., vs =

v0). The currentW value of an edgeet = (vt−1, vt) is denoted byyt, that is

yt =Wt−1,t.
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We next choose the valuesz1, z2, .., zs such that any unsaturated person retains

the utility it started with after scaling down, as long as there are at least two edges

incident to it. We update theW value of each edgeet = (vt−1, vt) to yt + zt.

Suppose we have initialized some value forz1 and that we have chosen the

incrementsz1, z2, . . . , zt for somet ≥ 1. Then the valuezt+1 corresponding to the

edgeet+1 = (vt, vt+1) is chosen as follows:

(PI) vt is an item, thenvt+1 = −vt. (Each item is not assigned more than once.)

(PII ) vt is a person. Then choosezt+1 so that the utility ofwt remains unchanged.

Setzt+1 = zt
−uvt,vt−1

uvt,vt+1
.

The vectorz = (z1, z2, ..zs) is completely determined byz1. We denote this

by f(z).

Now letµ be the smallest positive value such that if we setz1 = µ, then all the

W values (after incrementing by the vectorz as specified above) stay in[0, 1], and

at least one of them becomes0 or 1. Similarly, letγ be the smallest value such that

if we setz1 = −γ, then this rounding progress property holds.

When considering a cycle, assumev0 is a person. The assignment ofzi values

ensure all the objects in the cycle are assigned exactly onceand utility of all the

persons exceptv0 remains unaffected. Now the change in the value ofzs is

−z1
uv2,v1uv4,v3 ...uvs−1,vs−2

uv2,v3uv4,v5 ...uvs−1,vs

.
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If

uv2,v1uv4,v3 ...uvs−1,vs−2

uv2,v3uv4,v5 ...uvs−1,vs

> 1,

we setz1 = −γ, else we setz1 = µ. Therefore the utility of the personv0 can only

increase.

When we are considering a maximal path we choose the vectorz as eitherf(µ)

or f(−γ) arbitrarily.

Lemma 6.1.10. Each person unsaturated by the matching receives a utility of at

leastΘ( ln ln k√
k lnk

T ) after step (d).

Proof. While the weighted dependent rounding scheme is applied on acycle, all

persons in the remaining graph maintains their utility. Only when the rounding is

applied on a maximal path, the two persons at two ends might lose one item.

Hence, the net utility received by any person after step (d) is at mostTλ less

than what it was just before starting the weighted dependentrounding step. Thus

each person receives a utility ofln lnk√
k lnk

T
2∗(3+o(1)) − T

λ . From Lemma 11.3.1,λ ≥

25
√
k ln k. Substitutingλ = 25

√
k ln k, we get the desired result.

We have thus established Theorem 6.1.1. The approximation ratio isΘ( 1√
k lnk

).

This provides an upper bound of
√
k ln k on the integrality gap of the configuration

LP for the max-min fair allocation problem. In contrast, thelower bound isΩ(
√
k)

[20]. Theorem 6.1.2 that incorporates fairness in allocation by providing a limit on

the cardinality of items each person can receive is a direct corollary of Theorem
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4.1.1. Such fairness results in the context of the max-min fair allocation problem

was not know earlier.
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CHAPTER 7

Fair Allocation: The Santa Claus Problem

The Santa Clausproblem is the restricted assignment version of the max-minal-

location problem of indivisible goods. In this chapter we present the first efficient

randomized constant-factor approximation algorithm for this problem.

In the max-min allocation problem, as we saw in the previous chapter, there is a

setC of n items, andm children. The value (utility) of itemj to child i is pi,j ≥ 0.

An item can be assigned to only one child. If a childi receives a subset of the items

Si ⊆ C, then the total valuation of the items received byi is
∑

j∈Si
p(i, j). The

goal is to maximize the minimum total valuation of the items received by any child,

that is, to maximizemini
∑

j∈Si
p(i, j). (The “minmax” version of this “maxmin”

problem is the classical problem of makespan minimization in unrelated parallel

machine scheduling [96].) This problem has received much attention recently [15,

16,20,26,34,60,118].

A restricted version of max-min allocation is where each item has an intrin-

sic value, and where for every childi, pi,j is eitherpj or 0. This is known as the
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Santa Claus problem. The Santa Claus problem is NP-hard and no efficient approx-

imation algorithm better than1/2 can be obtained unlessP = NP [28]. Bansal

and Sviridenko [20] considered a linear-programming (LP) relaxation of the prob-

lem known as the configuration LP, and showed how to round thisLP to obtain an

O(log log logm/ log logm)-approximation algorithm for the Santa Claus problem.

They also showed a reduction to a crisp combinatorial problem, a feasible solution

to which implies a constant-factor integrality gap for the configuration LP.

Subsequently, Feige [60] showed that the configuration LP has a constant in-

tegrality gap. Normally such a proof immediately gives a constant-factor approx-

imation algorithm that rounds an LP solution along the line of the integrality-gap

proof. In this case Feige’s proof could not be made constructive because it was

heavily based on repeated reductions that apply the asymmetric version of the LLL

to exponentially many events. Due to this unsatisfactory situation, the Santa Claus

problem was the first on a list of problems reported in the survey “Estimation Al-

gorithms versus Approximation Algorithms” [61] for which aconstructive proof

would be desirable. Using a completely different approach,Asadpour, Feige and

Saberi [15] could show that the configuration LP has an integrality gap of at most

1
5 . Their proof uses local-search and hypergraph matching theorems of Haxell [77].

Haxell’s theorems are again highly non-constructive and the stated local-search

problem is not known to be efficiently solvable. Thus this second non-constructive

proof still left the question of a constant-factor approximation algorithm open.
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In this chapter we show how our Theorem 3.3.3 can be used to easily and di-

rectly constructivize the LLL-based proof of Feige [60], giving the first constant-

factor approximation algorithm for the Santa Claus problem.

It is to be noted that the more general max-min fair allocation problem appears

significantly harder. It is known that for general max-min fair allocation, the config-

uration LP has a gap ofO(
√
m). Asadpour and Saberi [16] gave anO(

√
n log3(n))

approximation factor for this problem using the configuration LP. In Chapter 6, we

showed an improved approximation factor ofO(
√

n log n/ log log n). So far the

best approximation ratio known for this problem due to Chakraborty, Chuzhoy and

Khanna isO(nε) [34], for any constantε > 0; their algorithm runs inO(n1/ε)

time.

7.1 Algorithm for the Santa Claus Problem

We focus on the Santa Claus problem here. We start by describing the configuration

LP and the reduction of it to a combinatorial problem over a set system, albeit with

a constant factor loss in approximation. Next we give a constructive solution for

the set system problem, thus providing a constant-factor approximation algorithm

for the Santa Claus problem.

We guess the optimal solution valueT using binary search. An itemj is said to

be small, ifpj < αT , otherwise it is said to be big. Hereα < 1 is the approximation

ratio, which will get fixed later. A configuration is a subset of items. The value of
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a configurationC to child i is denoted bypi,C =
∑

j∈C pi,j. A configurationC is

called valid for childi if:

• pi,C ≥ T and all the items are small; or

• C contains only one itemj andpi,j = pj ≥ αT , that is,j is a big item for

child i.

LetC(i, T ) denote the set of all valid configurations corresponding to child i with

respect toT . We define an indicator variableyi,C for each childi and all valid

configurationsC ∈ C(i, T ) such that it is1 if child i receives configurationC and

0 otherwise. These variables are relaxed to take any fractional value in[0, 1] to

obtain the configuration LP relaxation.

∀j :
∑

C∋j

∑

i

yi,C ≤ 1 (7.1)

∀i :
∑

C∈C(i,T )

yi,C = 1

∀i, C : yi,C ≥ 0

Bansal and Sviridenko showed that if the above LP is feasible, then it is possible

to find a fractional allocation that assigns a configuration with value at least(1−ε)T

to each child in polynomial time.

The algorithm of Bansal and Sviridenko starts by solving theconfiguration LP

(7.1). Then by various steps of simplification, they reduce the problem to the fol-
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lowing instance:

There arep groups, each group containingl children. Each child is associated

with a collection ofk items with a total valuation ofTc , for some constantc > 0.

Each item appears in at mostβl sets for someβ ≤ 3. Such an instance is referred

to as(k, l, β)-system.

The goal is to efficiently select one child from each group andassign at least

⌊γk⌋ items to each of the chosen children, such that each item is assigned only

once. If such an assignment exists, then the corresponding(k, l, β)-system is said

to beγ-good(k, l, β)-system.

Feige showed that indeed the(k, l, β)-system that results from the configuration

LP is γ-good, whereγ = O
(

1
max(1,β)

)

[60]. This established aconstantfactor

integrality gap for the configuration LP. However, the proofbeing non-constructive,

no algorithm was known to efficiently find such an assignment.In the remaining of

this section, we make Feige’s argument constructive, thus giving a constant-factor

approximation algorithm for the Santa Claus problem. But before that, for the sake

of completeness, we briefly describe the procedure that obtains a(k, l, β)-system

from an optimal solution of the configuration LP [20].
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7.1.1 From a configuration LP solution to a(k, l, β)-system

The algorithm starts by simplifying the assignment ofbig items in an optimal solu-

tion (say)y∗ of the configuration LP. LetJB denote the set of big items. Consider

a bipartite graphG with childrenM on the right side and big itemsJB on the left

side. An edge(i, j), i ∈M, j ∈ JB of weightwi,j =
∑

j∈C(i,T ) y
∗
i,C is inserted in

G if wi,j > 0. Thesewi,j values are then modified such that after the modification

the edges ofG with weight in(0, 1) form a forest.

Lemma 5 [20]. The solutiony∗ can be transformed into another feasible solu-

tion of the configuration LP where the graphG is a forest.

The transformation is performed using the simple cycle-breaking trick. Each

cycle is broken into two matchings; weights on the edges of one matching are

increased gradually while the weights on the other are decreased until some weights

hit 0 or 1. If a wi,j becomes0 in this procedure, the edge(i, j) is removed from

G. Else if it becomes1, then itemj is permanently assigned to childi and the edge

(i, j) is removed.

SupposeG′ is the forest obtained after this transformation. The forest structure

is then further exploited to form groups of children and big items.

Lemma 6 [20]. The solutiony∗ can be transformed into another solu-

tion y′ such that childrenM and big itemsJB can be clustered intop groups

M1,M2, . . . ,Mp and JB,1, JB2 , . . . , JBp respectively with the following proper-

ties.
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1. For eachi = 1, 2, . . . , p, the number of jobsJB,i in groupMi is exactly

|Mi| − 1. The groupJB,i could possibly be empty.

2. Within each group the assignment of big job is entirely flexible in the sense

that they can be placed feasibly on any of the|Mi| − 1 children out of the

|Mi| children.

3. For each groupMi, the solutiony′ assigns exactly one unit of small configu-

rations to children inMi and all the|Mi| − 1 units of configurations corre-

spond to big jobs inJB,i. Also, for each small jobj,
∑

C∋j
∑

i y
′
i,C ≤ 2.

Lemma 6 implies that the assignment of big items to children in a group is

completely flexible and can be ignored. We only need to chooseone child from

each group who will be satisfied by a configuration of small items. Lety′ assigns a

small configurationC to an extent ofy′m,C to some childc ∈Mi, i ∈ [1, p], then we

say thatMi contains the small configurationC for child c ∈ Mi. Without loss of

generality, it can be assumed that each child in the groups isfractionally assigned

to exactly one small configuration. Bansal and Sviridenko further showed thaty′

can again be simplified such that each small configuration is assigned to at least to

an extent of1l = 1
n+m to each child and for each small jobj,

∑

C∋j
∑

i y
′
i,C ≤ 3.

This implies, if we consider all the small configurations acrossp groups, then each

small job appears in at mostβl configurations, whereβ = 3.

Finally, the following lemma shows that by losing a constantfactor in the ap-

proximation, one can assume that all the small jobs have samesize.
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Lemma 8 [20]. Given the algorithmic framework above, by losing a constant

factor in the approximation, each small job can be assumed tohave sizeεTn .

As a consequence of the above lemma, we now have the followingscenario.

There arep groupsM1,M2, . . . ,Mp, each containing at mostl children. Each

child is associated with a set that containsk = Θ(nε ) items. Each item belongs to

at mostβl sets. The goal is to pick one child from each group and assign at least a

constant fraction of the items in its set such that each item is assigned exactly once.

Therefore, we arrive at what is referred as a(k, l, β)-system.

7.1.2 Construction of aγ-good solution for a(k, l, β)-system

We now point out the main steps in Feige’s algorithm, and in detail, describe the

modifications required to make Feige’s algorithm constructive.

Feige’s Nonconstructive Proof forγ-good (k, l, β)-system: Feige’s approach

is based on a systematic reduction ofk and l in iterations, finally arriving to a

system wherek or l are constants. For constantk or l the following lemma asserts

a constantγ.

Lemma 7.1.1(Lemma 2.1 and 2.2 of [60]). For every(k, l, β)-system aγ-good

solution withγ satisfying,γ = 1
k or γk = ⌊ k

⌈βl⌉⌋ can be found efficiently.

The reduction of(k, l, β)-system to constantk andl involves two main lemmas,

which we refer to asReduce-llemma andReduce-klemma respectively.
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Lemma 7.1.2(Lemma 2.3 of [60], Reduce-l). For l > c (c is a sufficiently large

constant), everyγ-good(k, l, β)-system withk ≤ l can be transformed into aγ-

good(k, l′, β′)-system withl′ ≤ log5 l andβ′ ≤ β(1 + 1
log l).

Lemma 7.1.3(Lemma 2.4 of [60], Reduce-k). Every(k, l, β)-system withk ≥ l ≥

c can be transformed into a(k′, l, β)-system withk′ ≤ k
2 and with the following

additional property: if the original system is notγ-good, then the new system is not

γ′-good forγ′ = γ(1 + 3 log k√
γk

). Conversely, if the new system isγ′-good, then the

original system wasγ-good.

If β is not a constant to start with, then by applying the following lemma re-

peatedly,β can be reduced below1.

Lemma 7.1.4 (Lemma 2.5 of [60]). For l > c, everyγ-good (k, l, β)-system

can be transformed into aγ-good (k′, l, β′)-system withk′ = ⌊k2⌋ and β′ ≤

β
2

(

1 + log βl√
βl

)

.

However in our context,β ≤ 3, thus we ignore Lemma 2.5 of [60] from further

discussions.

Starting from the original system, as long asl > c, Lemma Reduce-l is applied

whenl > k and Lemma Reduce-k is applied whenk ≥ l. In this processβ grows at

most by a factor of2. Thus at the end,l is a constant and so isβ. Thus by applying

Lemma 7.1.1, the constant integrality gap for the configuration LP is established.
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Randomized Algorithm for γ-good (k, l, β)-system: There are two main steps

in the algorithm.

1. Show a constructive procedure to obtain the reduced system through Lemma

Reduce-l and Lemma Reduce-k.

2. Map the solution of the final reduced system back to the original system.

We now elaborate upon each of these.

Making Lemma Reduce-l Constructive

This follows quite directly from [111]. The algorithm picks⌊log5 l⌋ sets uniformly

at random and independently from each group. Thus while the value ofk remains

fixed, l is reduced tol′ = ⌊log5 l⌋. Now in expectation the value ofβ does not

change and the probability thatβ′ > β(1+ 1
log l ), and henceβ′l′ > βl(1+ 1

log l ), is

at moste−β′l′/3 log2 l ≤ e− log3 l = l− log2 l. We define a bad event corresponding to

each element:

• Aj : Elementj has more thanβ′l′ copies.

Now noting that the dependency graph has degree at mostklβl ≤ 6l3, the

uniform (symmetric) version of the LLL applies. Now it is easy to check if there

exists a violated event: we simply count the number of times an element appears

in all the sets. Thus we directly follow [111]; settingxAj = 1

ellog2 l
, we get the

expected running time to avoid all the bad events to beO(plk/llog
2 l) = O(p) =

O(m).
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Making Lemma Reduce-k Constructive

This is the main challenging part. The random experiment involves selecting each

item independently at random with probability12 . To characterize the bad events,

we need a structural lemma from [60]. Construct a graph on thesets, where there

is an edge between two sets if they share an element. A collection of sets is said to

be connected if and only if the subgraph induced by this collection is connected.

We consider two types of bad events:

1. B1: some set has less thank′ =
(

1− log k√
k

)
k
2 items surviving, and

2. Bi for i ≥ 2: there is a connected collection ofi sets from distinct groups

whose union originally contained at mostiγk items, of which more thaniδ′ k2

items survive, whereδ′ = γ
(

1 + log k√
γk

)

.

If none of the above bad events happen, then we can consider the firstk′ items

from each set and yet the second type of bad events do not happen. These events

are chosen such thatγ′-goodness (γ′ = δ′ k2
1
k′ ≤ γ

(

1 + 3 log k√
γk

)

) of the new system

certifies that the original system wasγ-good. That this is indeed the case follows

directly from Hall’s theorem as proven by Feige:

Lemma 7.1.5(Lemma 2.7 of [60]). Consider a collection ofn sets and a positive

integerq.

1. If for some1 ≤ i ≤ n, there is a connected subcollection ofi sets whose

union contains less thaniq items, then there is no choice ofq items per set
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such that all items are distinct.

2. If for everyi, 1 ≤ i ≤ n, the union of every connected subcollection ofi sets

contains at leastiq (distinct) items, then there is a choice ofq items per set

such that all items are distinct.

Feige showed in [60] that for bad events of typeBi, i ≥ 1, taking xi =

2−10i log k is sufficient to satisfy the condition (3.1) of the asymmetric LLL. More

precisely, suppose we define, for any bad eventB ∈ ⋃i≥1Bi, Γ(B) to be as in

Chapter 3: i.e.,Γ(B) is the set of all bad eventsA 6= B such thatA andB both

depend on at least one common random variable in our “randomly and indepen-

dently selecting items” experiment. Then, it is shown in [60] that with the choice

xi = 2−10i log k for all events inBi, we have

∀(i ≥ 1) ∀(B ∈ Bi), Pr [B] ≤ 2−20i log k ≤ xi
∏

j≥1

∏

A∈(Bj∩Γ(B))

(1− xj). (7.2)

Thus by the LLL, there exists an assignment that avoids all the bad events. How-

ever, no efficient construction was known here, and as Feige points out, “the main

source of difficulty in this respect is Lemma 2.4, because there the number of bad

events is exponential in the problem size, and moreover, there are bad events that

involve a constant fraction of the random variables.” Our Theorem 3.3.3 again di-

rectly makes this proof constructive and gives an efficient Monte Carlo algorithm

for producing a reduce-k system with high probability.
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Lemma 7.1.6. There is a Monte Carlo algorithm that produces a valid reduce-k

system with probability at least1− 1/m2.

Proof. Note from (7.2) that we can takeδ = 2−20m log k. So, we get thatlog 1/δ =

O(m log k) = O(n log n) wheren is the number of items andm ≤ n is the number

of children. We furthermore get that all events with probability larger than a fixed

inverse-polynomial involve only connected subsets of sizeO( logmlog k ) and Theorem

3.3.3 implies that there are only polynomially many such “high” probability events.

(This can also be seen directly since the degree of a subset isbounded bykβl ≤ 6k2

and the number of connected subcollections is therefore at most (6k2)O( logm
log k

) =

mO(1) = nO(1).) The connected collections of subsets are easy to enumerate using,

e.g., breadth-first search and are therefore efficiently verifiable (in fact, even in

parallel). Theorem 3.3.3 thus applies and directly proves the lemma.

Mapping the solution of the final reduced system back to the original system

By repeatedly applying algorithms to produce Reduce-l or Reduce-k system, we

can completely reduce down the original system to a system with a constant num-

ber of children per group, whereβ can increase from3 to at most6 due to Lemma

Reduce-l. This involves at mostlogm Reduce-l reductions and at mostlog n

Reduce-k reductions. We can furthermore assume thatn < 2m since otherwise

simply all combinations of one child per group could be triedin time polyno-

mial in n. Since, each Reduce-l or Reduce-k operation produces a desired solu-
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tion with probability at least1 − 1
m2 , by union bound, with probability at least

1 − O(log n logm/m2) = 1 − O(logm/m) a final (k, l, β)-system is produced

that isγ-good for some constantγ by Lemma 7.1.1. Using Lemma 7.1.1, we can

also find aγ-good selection of children. Now, once one child from each group is

selected, we can construct a standard network flow instance to assign items to these

chosen children (Lemma 7.1.8). This finishes the process of mapping back a solu-

tion of the reduced system to the original(k, l, β)-system. While checking whether

an individual reduction failed seems to be a NP-hard task, itis easy to see in the

end whether a good enough assignment is produced. This enables us to rerun the

algorithm in the unlikely event of a failure. Thus, the MonteCarlo algorithm can

be strengthened to an algorithm that always produces a good solution and has an

expected polynomial running-time.

The details of the above are given in two lemmas, Lemma 7.1.7 and Lemma

7.1.8. Theorem 7.1.9 follows from the two lemmas.

Suppose we start with a(k1, l1, β1)-system and after repeated application of

either Lemma Reduce-l or Lemma Reduce-k reach at a(ks, ls, βs)-system, where

ls < c, a constant. We then employ Lemma 7.1.1 to obtain aγs-good(ks, ls, βs)-

system, whereγs satisfiesγsks = ⌊ ks
⌈βsls⌉⌋. Sincels is a constant andβs ≤ 6, γs

is also a constant. Lemma 7.1.1 also gives a choice of a child from each group,

denoted by a functionf : {1, . . . , p} → {1, . . . , ls} that serves as a witness forγs-

goodness of(ks, ls, βs)-system. We use this same mapping for the original system.
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The following lemma establishes the goodness of the(k1, l1, β1)-system.

Lemma 7.1.7. Given a sequence of reductions ofk, (k1, l1, β1) → . . . →

(ks, ls, βs), interleaved with reductions ofl, let for all s ≥ 2, γs = γs−1(1 +

3 log ks−1√
γs−1ks−1

). Then if the final reduced system isγs-good and the functionf :

{1, . . . , p} → {1, . . . , ls} serves as a witness for itsγs-goodness, thenf also

serves as a witness ofγ-goodness of(k1, l1, β1) system with high probability. In

other words, we can simply use the assignment given byf to select one child from

each group and that assignment serves as a witness ofγ-goodness of the original

system with high probability.

Proof. Suppose there exists a functionf that serves as a witness forγs-goodness

of the (ks, ls, βs)-system, but does not serve as a witness that(ks−1, ls−1, βs−1)-

system isγs−1-good. Then there must exist a connected collection ofi, i > 0

sets chosen fromp groups according tof , such that their union contains less than

γs−1ks−1i items. However in the reduced system, their union hasγsks−1i ele-

ments. Call such a functionf bad. Thus every bad function is characterized by a vi-

olation of event of typeBi, i ≥ 1, described in Section 7.1.2. However, by Lemma

7.1.6 we havePr [∃ a bad functionf ] ≤ Pr [an event of typeBi, i ≥ 1 happens] ≤

1
m2 .

Now the maximum number of times the Reduce-k step is applied is at most

log k1 ≤ log n. Thus if the Reduce-l step is not applied at all, then by a union

bound, functionf is γ-good for the(k1, l1, β1)-system with probability at least
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1− logm logn
m2 . We can assume without loss of generality thatn ≤ 2m. (Otherwise

in polynomial time we can guess the children who receive small items and thus

know f . Oncef is known, an assignment of small items to the children chosenby

f can be done in polynomial time through Lemma 7.1.8.) Sincen ≤ 2m, function

f is γ-good for the(k1, l1, β1)-system with probability at least1− logm/m. Now

since the Reduce-l step only reducesl and keepsk intact, it does not affect the

goodness of the set system.

Once we know the functionf , using Lemma 7.1.8, we can get a valid assign-

ment of⌊kγ⌋ items to each chosen child:

Lemma 7.1.8. Given a functionf : {1, . . . , p} → {1, . . . , l}, and parameterγ,

there is a polynomial time algorithm to determine, whetherf is γ-good and we can

determine the subset of⌊kγ⌋ items received by each childf(i), i ∈ [1, p].

Proof. We construct a bipartite graph with a set of verticesU = {1, . . . , p} corre-

sponding to each chosen child from thep groups, a set of verticesV corresponding

to the small items in the sets of the chosen children, a sources and a sinkt. Next

we add a directed edge of capacity⌊γk⌋ from sources to each vertex inU . We

also add directed edges(u, v), u ∈ U, v ∈ V , if the itemu belongs to the set ofv.

These edges have capacity1. Finally we add a directed edge from each vertex inV

to the sinkt with capacity1. We claim that this flow network has a maximum flow

of ⌊kγ⌋p iff f is γ-good:

For the one direction letf beγ-good. Thus there exists a set of⌊γk⌋ elements
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that can be assigned to each childu ∈ U . Send one unit of flow from each child to

these items that it receives. The outgoing flow from eachu ∈ U is exactly⌊γk⌋.

Since each item is assigned to at most one child, flow on each edge (v, t), v ∈ V

is at most1. Thus all the capacity constraints are maintained and the flow value is

⌊γk⌋p.

For the other direction consider an integral maximum flow of⌊kγ⌋p. Since

the total capacity of all the edges emanating from the sourceis ⌊kγ⌋p, they must

all be saturated by the maxflow. Since the flow is integral, foreach childu there

are exactly⌊γk⌋ edges with flow1 corresponding to the items that it receives.

Also since no edge capacity is violated, each item is assigned to exactly one child.

Thereforef is γ-good.

To check a functionf for γ-goodness and obtain the good assignment we con-

struct the flow graph and run a max flow algorithm that outputs in an integral flow.

As proven above a max flow value of⌊kγ⌋p indicatesγ-goodness and for aγ-good

functionf , the assignment can be directly constructed from the flow by considering

only the flow carrying edges.

Theorem 7.1.9. There exists a constantα > 0 and a randomized algorithm for

the Santa Claus problem that runs in expected polynomial time and always assigns

items of total valuation at leastα ·OPT to each child.
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CHAPTER 8

Overlay Network Design

In this chapter, we consider an application of resource allocation in networking.

The goal here is to design multicast overlay networks that deliver streams to end-

users in an effective and timely manner. The main technical tool is the LP rounding

scheme developed in Chapter 2. This work improves the results of [10]. In this

chapter, we refer to lemmas from [10] without proofs. The interested readers may

find it helpful to look at the original paper [10] for full details.

8.1 Designing Overlay Multicast Networks For Streaming

An overlay network can be represented as a tripartite digraph N = (V,E). The

nodesV are partitioned into sets of entry points called sources (S), reflectors (R),

and edge-servers or sinks (D). There are multiple commodities or streams, that

must be routed from sources, via reflectors, to the sinks thatare designated to serve

that stream to end-users. Without loss of generality, we canassume that each source

holds a single stream. Now given a set of streams and their respective edge-server
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min
∑

i∈R
rizi +

∑

i∈R

∑

k∈S
ck,i,kyi,k +

∑

i∈R

∑

k∈S

∑

j∈D
ci,j,kxi,j,k

s.t. (8.1)

yk,i ≤ zi ∀i ∈ R, ∀k ∈ S (8.2)

xi,j,k ≤ yi,k ∀i ∈ R, ∀j ∈ D, ∀k ∈ S (8.3)
∑

k∈S

∑

j∈D
xi,j,k ≤ Fizi ∀i ∈ R (8.4)

∑

i∈R
xi,j,kwi,j,k ≥Wj,k ∀j ∈ D,∀k ∈ S (8.5)

xi,j,k ∈ {0, 1}, yi,k ∈ {0, 1}, zi ∈ {0, 1} (8.6)

Table 8.1: Integer Program for Overlay Multicast Network Design

destinations, a cheapest possible overlay network must be constructed subject to

certaincapacity, quality, andreliability requirements. There is a cost associated

with usage of every link and reflector. There are capacity constraints, especially

on the reflectors, that dictate the maximum total bandwidth (in bits/sec) that the

reflector is allowed to send. The quality of a stream is directely related to whether

or not an edge-server is able to reconstruct the stream without significant loss of

accuracy. Therefore even though there is some loss threshold associated with each

stream, at each edge-server only a maximum possible reconstruction-loss is al-

lowed. To ensure reliability, multiple copies of each stream may be sent to the

designated edge-servers.

All these requirements can be captured by an integer program. Let us use indi-

cator variablezi for building reflectori, yi,k for delivery ofk-th stream to thei-th

reflector andxi,j,k for deliveringk-th stream to thej-th sink through thei-th reflec-
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tor. Fi denotes the fanout constraint for each reflectori ∈ R. Let px,y denote the

failure probability on any edge (source-reflector or reflector-sink). We transform

the probabilities into weights:wi,j,k = − log (pk,i + pi,j − pk,ipi,j). Therefore,

wi,j,k is the negative log of the probability of a commodityk failing to reach sinkj

via reflectori. On the other hand, ifφj,k is the minimum required success probabil-

ity for commodityk to reach sinkj, we instead useWj,k = − log (1− φj,k). Thus

Wj,k denotes the negative log of maximum allowed failure.ri is the cost for open-

ing the reflectori andcx,y,k is the cost for using the link(x, y) to send commodity

k. Thus we have the IP (see Table 8.1).

Constraints (8.2) and (8.3) are natural consistency requirements; constraint

(8.4) encodes the fanout restriction. Constraint (8.5), the weight constraint, en-

sures quality and reliability. Constraint (8.6) is the standard integrality-constraint

that will be relaxed to construct the LP relaxation.

There is an important stability requirement that is referred ascolor constraint

in [10]. Reflectors are grouped intom color classes,R = R1 ∪R2 ∪ . . .∪Rm. We

want each group of reflectors to deliver not more than one copyof a stream into a

sink. This constraint translates to

∑

i∈Rl

xi,j,k ≤ 1 ∀j ∈ D, ∀k ∈ S, ∀l ∈ [m] (8.7)

Each group of reflectors can be thought to belong to the same ISP. Thus we

want to make sure that a client is served only with one – the best – stream possible
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from a certain ISP. This diversifies the stream distributionover different ISPs and

provides stability. If an ISP goes down, still most of the sinks will be served. We

refer the LP-relaxation of integer program (Table 8.1) withthe color constraint (8.7)

asLP-Color .

All of the above is from [10].

The work of [10] uses a two-step rounding procedure and obtains the following

guarantee.

First stage rounding: Roundszi andyi,k for all i andk to decide which reflector

should be open and which streams should be sent to a reflector.The results from

rounding stage 1 can be summarized in the following lemma:

Lemma 8.1.1. ( [10]) The first-stage rounding algorithm incurs a cost at most a

factor of64 log |D| higher than the optimum cost, and with high probability violates

the weight constraints by at most a factor of1
4 and the fanout constraints by at most

a factor of2. Color constraints are all satisfied.

By incurring a factor ofΘ(log n) in the cost, the constant factors loss in the

weights and fanouts can be improved as shown in [10].

Second stage rounding: Roundsxi,j,k’s using the open reflectors and streams

that are sent to different reflectors in the first stage. The results in this stage can be

summarized as follows:

Lemma 8.1.2. ( [10]) The second-stage rounding incurs a cost at most a factor

of 14 higher than the optimum cost and violates each of fanout, color and weight
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constraint by at most a factor of7.

Our main contribution is an improvement of the second-stagerounding through

the use of repeatedRandMoveand by judicious choices of constraints to drop. Let

us call the linear program that remains just at the end of firststageLP-Color2:

min
∑

i∈R

∑

k∈S

∑

j∈D
ci,j,kxi,j,k

s.t.

∑

k∈S

∑

j∈D
xi,j,k ≤ Fi ∀i ∈ R (Fanout)

∑

i∈R
xi,j,kwi,j,k ≥Wj,k ∀j ∈ D,∀k ∈ S (Weight)

∑

i∈Rl

xi,j,k ≤ 1 ∀j ∈ D, ∀k ∈ S, ∀l ∈ [m] (Color)

xi,j,k ∈ {0, 1} ∀i ∈ R,∀j ∈ D,∀k ∈ S

We show:

Lemma 8.1.3. LP-Color2 can be efficiently rounded such that cost and weight

constraints are satisfied exactly, fanout constraints are violated at most by additive

1 and color constraints are violated at most by additive3.

Proof. Letx∗i,j,k ∈ [0, 1] denote the fraction of stream generated from sourcek ∈ S

reaching destinationj ∈ D routed through reflectori ∈ R after the first stage of
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rounding. InitializeX = x∗. The algorithm consists of several iterations. the ran-

dom value at the end of iterationh is denoted byXh. Each iterationh conducts

a randomized update usingRandMove on the polytope of a linear system con-

structed from a subset of constraints ofLP-Color2. Therefore by induction onh,

we will have for all(i, j, h) thatE
[

Xh
i,j

]

= x∗i,j. Thus the cost constraint is main-

tained exactly on expectation. The entire procedure can be derandomized giving

the required bounds on the cost.

LetR andSD denote the set of reflectors and source, destination pairs respec-

tively. Suppose we are at the beginning of some iteration(h + 1) of the overall

algorithm and currently looking at the valuesXh
i,j,k. We will maintain two invari-

ants:

(I1”) Once a variablexi,j,k gets assigned to0 or 1, it is never changed;

(I2”) Once a constraint is dropped in some iteration, it is never reinstated.

Iteration(h+ 1) of rounding consists of three main steps:

1. Since we aim to maintain (I1), let us remove allXh
i,j,k ∈ {0, 1}; i.e.,

we projectXh to those coordinates(i, j, k) for which Xh
i,j,k ∈ (0, 1), to

obtain the current vectorY of floating (yet to be rounded) variables; let

S ≡ (AhY = uh) denote the current linear system that representsLP-

Color2. In particular, the fanout constraint for a reflector inS is its residual

fanoutF ′
i ; i.e.,Fi minus the number of streams that are routed through it.
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2. Letv denote the number of floating variables, i.e.,Y ∈ (0, 1)v . We now drop

the following constraint:

(D1”) Drop fanout constraint for degree1 reflector denotedR1, i.e, reflec-

tors with only one floating variable associated with it. For any degree

2 reflectors denotedR2, if it has a tight fanout of1 drop its fanout con-

straint.

(D2”) Drop color constraint for a group of reflectorsRl, if they have atmost

4 floating variable associated with them.

Let P denote the polytope defined by this reduced system of constraints. A key

claim is thatY is not a vertex ofP and thus we can applyRand-Move and make

progress either by rounding a new variable or by dropping a new constraint. We

count the number of variablesv and the number of tight constraintst separately.

We have,

t =
∑

i∈R\R1

1 +
∑

k∈S

∑

j∈D
(lk,j + 1),

wherelj,k is the number of color constraints for the stream generated at sourcek

and to be delivered to the destinationj. We have,v ≥ ∑i∈R Fi + 1. Also the

number of variablesv ≥ ∑k∈S,∈D,lk,j>0 4lk,j +
∑

k∈S,∈D,lk,j=0 2. Thus by an

averaging argument, the number of variables

v ≥
∑

i∈R Fi + 1

2
+

∑

k∈S,∈D,lk,j>0

2lk,j +
∑

k∈S,∈D,lk,j=0

1.
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A moment’s reflection shows that the system can become underdetermined only if

there is no color constraint associated with a stream(j, k), each reflectori has two

floating variables associated with it with total contribution 1 towards fanout and

each stream(j, k) is routed fractionally through two reflectors. But in this situa-

tion all the fanout constraints are dropped violating fanout at most by an additive

one and making the system underdetermined once again. Coloring constraints are

dropped only when there are less than4 floating variable associated with that group

of reflectors. Hence the coloring constraint can be violatedat most by an additive

factor of3. The fanout constraint is dropped only for singleton reflectors or degree-

2 reflectors with fanout equalling1. Hence fanout is violated only by an additive1.

Weight constraint is never dropped and maintained exactly.
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CHAPTER 9

Matroid Median

In this chapter, we consider another application of resource allocation in the do-

main of networking. In content distribution networks, there are servers of different

types, and resource limitation restricts the number of servers of each type that can

possibly be opened to serve requests from clients. The cost to connect a client to a

server depends on the server location; the strategic question here is to decide which

servers to open such that this connection cost is minimized.This problem can be

modeled by a generalization of classicalk-median problem, which we refer asMa-

troid Median. In this chapter, we study an approximation algorithm for the Matroid

Median problem. The algorithm is based on LP rounding and crucially uses the

structure of the constraint matrix. We simplify the structure of the fractional so-

lution by doing a partial rounding and then argue that the constraint matrix of the

simplified LP is totally unimodular. While, we have extensively used the property

of extreme point solution in developing our rounding technique in Chapter 2, this

is the first time, we exploit more structural information about the considered LP
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relaxation.

9.1 The Matroid Median Problem

The k-median problem is an extensively studied location problem. Given ann-

vertex metric space(V, d) and a boundk, the goal is to locate/openk centers

C ⊆ V so as to minimize the sum of distances of each vertex to its nearest open

center. (The distance of a vertex to its closest open center is called its connection

cost.) The first constant-factor approximation algorithm for k-median on general

metrics was by Charikar et al. [39]. The approximation ratiowas later improved

in a sequence of papers [38,84,85] to the currently best-known guarantee of3 + ε

(for any constantε > 0) due to Arya et al. [14]. A number of techniques have been

successfully applied to this problem, such as LP rounding, primal-dual and local

search algorithms.

Motivated by applications in Content Distribution Networks, Hajiaghayi et

al. [76] introduced a generalization ofk-median where there aretwo typesof ver-

tices (red and blue), and the goal is to locate at mostkr red centers andkb blue

centers so as to minimize the sum of connection costs. For this red-blue median

problem, [76] gave a constant factor approximation algorithm. Here, we consider a

substantially more general setting where there are an arbitrary numberT of vertex-

types with bounds{ki}Ti=1, and the goal is to locate at mostki centers of each

type-i so as to minimize the sum of connection costs. These vertex-types denote
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different types of servers in the Content Distribution Networks applications; the

result in [76] only holds forT = 2.

In fact, we study an even more general problem where the set ofopen centers

have to form an independent set in a given matroid, with the objective of mini-

mizing sum of connection costs. This formulation captures several intricate con-

straints on the open centers, and contains as special cases:the classick-median

(uniform matroid of rankk), and the CDN applications above (partition matroid

with T parts). Our main result is a constant-factor approximationalgorithm for this

Matroid Medianproblem.

Our Results and Techniques In this chapter we introduce the Matroid Me-

dian problem, which is a natural generalization ofk-median, and obtain a 16-

approximation algorithm for it. Thus it also gives the first constant approximation

for thek-median problem with multiple (more than two) vertex-types, which was

introduced in [76].

For the standardk-median problem (and also red-blue median), it is

easy to obtain anO(log n)-approximation algorithm using probabilistic tree-

embeddings [58], and exactly solving the problem on a tree (via a dynamic pro-

gram). However, even this type of guarantee is not obvious for the Matroid Median

problem, since the problem on a tree-metric does not look particularly easier.

Our algorithm is based on the natural LP-relaxation and is surprisingly simple.

Essentially, the main insight is in establishing a connection to matroid intersection.

158



The algorithm computes an optimal LP solution and rounds it in two phases, the

key points of which are described below:

• The first phase sparsifies the LP solution while increasing the objective value

by a constant factor. This is somewhat similar to the LP-rounding algorithm

for k-median in Charikar et al. [39]. However we cannot consolidate frac-

tionally open centers as in [39]; this is because the open centers must addi-

tionally satisfy the matroid rank constraints. In spite of this, we show that the

vertices and the centers can be clustered into disjoint ‘star-like’ structures.

• This structure ensured by the first phase of rounding allows us to write (in the

second phase) another linear program for which the sparsified LP solution is

feasible, and has objective value at mostO(1) times the original LP optimum.

Then we show that the second phase LP is in fact integral, via arelation to

the matroid-intersection polytope. Finally we re-solve the second phase LP

to obtain an extreme point solution, which is guaranteed to be integral. This

corresponds to a feasible solution to Matroid Median of objective valueO(1)

times the LP optimum.

We next consider thePenalty Matroid Median(a.k.a. prize-collecting matroid

median problem), where a vertex could either connect to a center incurring the

connection cost, or choose to pay a penalty in the objective function. The prize-

collecting version of several well-known optimization problems like TSP, Steiner

Tree etc., including k-median and red-blue median have beenstudied in prior work
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(See [76] and the references therein). Extending the idea ofthe Matroid Median

algorithm, we also obtain anO(1) approximation algorithm for the Penalty version

of the problem.

Finally, we look at theKnapsack Medianproblem (a.k.a. weightedW -

median [76]), where the centers have weights and the open centers must satisfy a

knapsack constraint; the objective is, like before, to minimize the total connection

cost of all the vertices. For this problem we obtain a16-approximation algorithm

that violates the knapsack constraint by anadditivefmax term (wherefmax is the

maximum opening cost of any center). This algorithm is againbased on the natural

LP relaxation, and follows the same approach as for Matroid Median. However, the

second phase LP here is not integral (it contains the knapsack problem as a special

case). Instead we obtain the claimed bicriteria approximation by using the iterative

rounding framework [62, 83, 94, 123]. It is easy to see that our LP-relaxation for

the Knapsack Median problem has unbounded integrality gap,if we do not allow

any violation in the knapsack constraint (see eg. [38]). Moreover, we show that

the integrality gap remains unbounded even after the addition of knapsack-cover

inequalities[33] to the basic LP relaxation. We leave open the question ofobtain-

ing anO(1)-approximation for Knapsack Median without violating the knapsack

constraint.
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Related Work

The first approximation algorithm for the metrick-median problem was due to Lin

and Vitter [98] who gave an algorithm that for anyε > 0, produced a solution

of objective at most2(1 + 1
ε ) while opening at most(1 + ε)k centers; this was

based on the filtering technique for rounding the natural LP relaxation. The first

approximation algorithm that opened onlyk centers was due to Bartal [24], via ran-

domized tree embedding (mentioned earlier). Charikar et al. [39] obtained the first

O(1)-approximation algorithm fork-median, by rounding the LP relaxation; they

obtained an approximation ratio of62
3 . The approximation ratio was improved to 6

by Jain and Vazirani [85], using the primal dual technique. Charikar and Guha [38]

further improved the primal-dual approach to obtain a 4-approximation. Later Arya

et al. [14] analyzed a natural local search algorithm that exchanges up top centers

in each local move, and proved a3+ 2
p approximation ratio (for any constantp ≥ 1).

Recently, Gupta and Tangwongsan [74] gave a considerably simplified proof of the

Arya et al. [14] result. It is known that thek-median problem on general metrics

is hard to approximate to a factor better than1 + 2
e . On Euclidean metrics, the

k-median problem has been shown to admit a PTAS by Arora et al. [13].

Very recently, Hajiaghayi et al. [76] introduced the red-blue median problem —

where the vertices are divided into two categories and thereare different bounds on

the number of open centers of each type — and obtained a constant factor approx-

imation algorithm. Their algorithm uses a local search using single-swaps for each
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vertex type. The motivation in [76] came from locating servers in Content Distri-

bution Networks, where there areT server-types and strict bounds on the number

of servers of each type. The red-blue median problem captured the caseT = 2. It

is unclear whether their approach can be extended to multiple server types, since

the local search with single swap for each server-type has neighborhood sizenΩ(T ).

Furthermore, even a(T −1)-exchange local search has large locality-gap– see Sec-

tion 9.5. Hence it is not clear how to apply local search toMatroidMedian, even

in the case of a partition matroid. [76] also discusses the difficulty in applying the

Lagrangian relaxation approach (see [85]) to the red-blue median problem; this is

further compounded in theMatroidMedian problem since there are exponentially

many constraints on the centers.

The most relevant paper to ours with regard to the rounding technique is

Charikar et al. [39]: our algorithm builds on many ideas usedin their work to

obtain our approximation algorithm.

For the penaltyk-median problem, the best known bound is a3-approximation

due to Hajiaghayi et al. [76] that improves upon a previous4-approximation due to

Charikar and Guha [38]. Hajiaghayi et al. also consider the penalty version of the

red-blue median problem and give a constant factor approximation algorithm.

The knapsack median problem admits a bicriteria approximation ratio via the

filtering technique [98]. The currently best known tradeoff[38] implies for anyε >

0, a
(
1 + 2

ε

)
-approximation in the connection costs while violating theknapsack
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constraint by amultiplicative (1 + ε) factor. Charikar and Guha [38] also shows

that for eachε > 0, it is not possible to obtain a trade-off better than
(
1 + 1

ε , 1 + ε
)

relative to the natural LP. On the other hand, our result implies a(16, 1+ε)-tradeoff

in nO(1/ε) time for eachε > 0; this algorithm uses enumeration combined with

the natural LP-relaxation. As mentioned in [76], anO(log n)-approximation is

achievable for knapsack median (without violation of the knapsack constraint) via

a reduction to tree-metrics, since the problem on trees admits a PTAS.

Preliminaries

The input to theMatroidMedian problem consists of a finite set of verticesV and

a distance functiond : V ×V → R≥0 which is symmetric and satisfies the triangle

inequality, i.e.d(u, v)+ d(v,w) ≥ d(u,w) for all u, v, w ∈ V . Such a tuple(V, d)

is called a finite metric space. We are also given a matroidM, with ground setV

and set of independent setsI(M) ⊆ 2V . The goal is to open an independent set

S ∈ I(M) of centers such that the sum
∑

u∈V d(u, S) is minimized; hered(u, S) =

minv∈S d(u, v) is the connection cost of vertexu. We assume some familiarity with

matroids, for more details see eg. [121].

In the penalty version, additionally a penalty functionp : V → R≥0 is provided

and the objective is now modified to minimize
∑

u∈V d(u, S)(1−h(u))+p(u)h(u).

Hereh : V → {0, 1} is an indicator function that is1 if the corresponding vertex

is not assigned to a center and therefore pays a penalty and0 otherwise.

TheKnapsackMedian problem (aka weightedW -median [76]) is similarly de-
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fined. We are given a finite metric space(V, d), non-negative weights{fi}i∈V

(representing facility costs) and a boundF . The goal is to open centersS ⊆ V

such that
∑

j∈S fj ≤ F and the objective
∑

u∈V d(u, S) is minimized (Section

9.4).

9.1.1 An LP Relaxation forMatroidMedian

In the following linear program,yv is the indicator variable for whether vertex

v ∈ V is opened as a center, andxuv is the indicator variable for whether ver-

tex u is served by centerv. Then, the following LP is a valid relaxation for the

MatroidMedian problem.

minimize
∑

u∈V

∑

v∈V
d(u, v)xuv (LP1)

subject to
∑

v∈V
xuv = 1 ∀u ∈ V (9.1.1)

xuv ≤ yv ∀u ∈ V, v ∈ V (9.1.2)

∑

v∈S
yv ≤ rM(S) ∀S ⊆ V (9.1.3)

xuv, yv ≥ 0 ∀u, v ∈ V (9.1.4)

If xuv andyv are restricted to only take values0 or 1, then this is easily seen

to be an exact formulation forMatroidMedian. The first constraint models the

requirement that each vertexu must be connected to some centerv, and the second

one requires that it can do so only if the centerv is opened, i.e.xuv = 1 only if yv is
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also set to1. The constraints (9.1.3) are the matroid rank-constraint on the centers:

they model the fact that the open centers form an independentset with respect to

the matroidM. HererM : 2V → Z≥0 is therank-functionof the matroid, which

is monotone and submodular. The objective function exactlymeasures the sum of

the connection costs of each vertex. (It is clear that given integrally open centers

y ∈ {0, 1}V , each vertexu ∈ V setsxuv = 1 for its closest centerv with yv = 1.)

Let Opt denote an optimal solution of the givenMatroidMedian instance, and let

LPOpt denote the LP optimum value. From the above discussion, we have that,

Lemma 9.1.1. The LP costLPOpt is at most the cost of an optimal solutionOpt.

9.1.2 Solving the LP: The Separation Oracle

Even though the LP relaxation has an exponential number of constraints, it can

be solved in polynomial time (using the Ellipsoid method) assuming we can, in

polynomial time, verify if a candidate solution(x, y) satisfies all the constraints.

Indeed, consider any fractional solution(x, y). Constraints (9.1.1), and (9.1.2) can

easily be verified inO(n2) time, one by one.

Constraint (9.1.3) corresponds to checking if the fractional solution{yv : v ∈

V } lies in the matroid polytope forM. Checking (9.1.3) is equivalent to seeing

whether:

min
S⊆V

(

rM(S)−
∑

v∈S
yv

)

≥ 0.

Since the rank-functionrM is submodular, so is the functionf(S) := rM(S) −
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∑

v∈S yv. So the above condition (and hence (9.1.3)) can be checked using sub-

modular function minimization, eg. [82,121]. There are also more efficient methods

for separating over the matroid polytope – refer to [121] formore details on effi-

ciently testing membership in matroid polyhedra. Thus we can obtain an optimal

LP solution in polynomial time.

9.2 The Rounding Algorithm for MatroidMedian

Let (x∗, y∗) denote the optimal LP solution. Our rounding algorithm consists of

two stages. In the first stage, we only alter thex∗uv variables such that the modified

solution, while still being feasible to the LP, is also very sparse in its structure.

In the second stage, we write another LP which exploits the sparse structure, for

which the modified fractional solution is feasible, and the objective function has not

increased by more than a constant factor. We then proceed to show that the new LP

in fact corresponds to an integral polytope. Thus we can obtain an integral solution

where the open centers form an independent set ofM, and the cost isO(1)LPOpt.

Stage I: Sparsifying the LP Solution

In the first stage, we follow the outline of the algorithm of Charikar et al. [39], but

we can not directly employ their procedure because we can’t alter/consolidate the

y∗v variables in an arbitrary fashion (since they need to satisfy the matroid polytope

constraints). Specifically, step (i) below is identical to the first step (consolidating
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locations) in [39]. The subsequent steps in [39] do not applysince they consolidate

centers; however using some ideas from [39] and with some additional work, we

obtain the desired sparsification in steps (ii)-(iii)without altering they∗-variables.

Step (i): Consolidating Clients. We begin with some notation, which will be

useful throughout the paper. For each vertexu, letLPu =
∑

v∈V d(u, v)x
∗
uv denote

the contribution to the objective functionLPOpt of vertexu. Also, letB(u, r) =

{v ∈ V | d(u, v) ≤ r} denote the ball of radiusr centered at vertexu. For any

vertexu, we say thatB(u, 2LPu) is thelocal ball centered atu.

Initialize wu ← 1 for all vertices. Order the vertices according to non-

decreasingLPu values, and let the ordering beu1, u2, . . . , un. Now consider the

vertices in the orderu1, u2, . . . , un. For vertexui, if there exists another vertexuj

with j < i such thatd(ui, uj) ≤ 4LPui , then setwuj ← wuj + 1, andwui ← 0.

Essentially we can think of movingui to uj for the rest of the algorithm (which is

why we are increasing the weight ofuj and setting the weight ofui to be zero).

After the above process, letV ′ denote the set of locations with positive weight,

i.e. V ′ = {v |wv > 0}. For the rest of the paper, we will refer to vertices in

V ′ asclients. By the way we defined this set, it is clear that the following two

observations holds.

Observation9.2.1. Foru, v ∈ V ′, we haved(u, v) > 4max(LPu, LPv).

This is true because, otherwise, if (without loss of generality) LPv ≥ LPu and

d(u, v) ≤ 4LPv, then we would have movedv to u when we were consideringv.
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Observation9.2.2.

∑

u∈V ′

wu

∑

v∈V
d(u, v)x∗uv ≤

∑

u∈V

∑

v∈V
d(u, v)x∗uv

This is because, when we move vertexui to uj , we replace the term corre-

sponding toLPui (in the LHS above) with an additional copy of that corresponding

to LPuj , and we know by the vertex ordering thatLPui ≥ LPuj .

Also, the following lemma is a direct consequence of Markov’s inequality.

Lemma 9.2.3. For any clientu ∈ V ′,
∑

v∈B(u,2LPu)
xuv ≥ 1/2. In words, each

client is fractionally connected to centers in its local ball to at least an extent of

1/2.

Finally, we observe that if we obtain a solution to the new (weighted) instance

and incur a cost ofC, the cost of the same set of centers with respect to the original

instance is then at mostC + 4LPOpt (the additional distance being incurred in

moving back each vertex to its original location).

We now assume that we have the weighted instance (with clients V ′), and are

interested in finding a setS ⊆ V of centers to minimize
∑

u∈V ′ wud(u, S). Note

that centers may be chosen from the entire vertex-setV , and are not restricted to

V ′. Consider an LP-solution
(
x1, y∗

)
to this weighted instance, wherex1uv = x∗uv

for all u ∈ V ′, v ∈ V . Note that
(
x1, y∗

)
satisfies constraints (9.1.1)-(9.1.2) with

u ranging overV ′, and also constraint (9.1.3); so it is indeed a feasible fractional
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solution to the weighted instance. Also, by Observation 9.2.2, the objective value

of
(
x1, y∗

)
is
∑

u∈V ′ wu
∑

v∈V d(u, v)x
1
uv ≤ LPOpt, i.e. at most the original LP

optimum.

After this step, even though we have made sure that the clients are well-

separated, a clientu ∈ V ′ may be fractionally dependent on several partially open

centers, as governed by thexuv variables. More specifically, it may be served by

centers which are contained in the ballB(u, 2LPu), or by centers which are con-

tained in another ballB(u′, 2LPu′), or some centers which do not lie in any of the

balls around the clients. The subsequent steps further simplify the structure of these

connections.

Remark: To illustrate the high-level intuition behind our algorithm, suppose

it is the case that for allu ∈ V ′, client u is completely served by centers inside

B(u, 2LPu). Then, we can infer that it is sufficient to open a center inside each of

these balls, while respecting the matroid polytope constraints. Since we are guaran-

teed that foru, v ∈ V ′,B(u, 2LPu)∩B(v, 2LPv) = ∅ (from Observation 9.2.1), this

problem reduces to that of finding an independent set in the intersection ofmatroid

M and thepartition matroiddefined by the balls{B(u, 2LPu) |u ∈ V ′} ! Further-

more, the fractional solution(x∗, y∗) is feasible for the natural LP-relaxation of the

matroid intersection problem. Now, because the matroid intersection polytope is

integral, we can obtain an integer solution of low cost (relative toLPOpt).

However, the vertices may not in general be fully served by centers inside their
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corresponding local balls, as mentioned earlier. Nevertheless, we establish some

additional structure (in the next three steps) which enables us to reduce to a problem

(in Stage II) of intersecting matroidM with somelaminar constraints(instead of

just partition constraints as in the above example).

Step (ii): Making the objective function uniform & centers private. We now

simplify connections that any vertex participates outsides its local ball. We start

with the LP-solution
(
x1, y∗

)
and modify it to another solution

(
x2, y∗

)
. Initially

setx2 ← x1.

(A). For any clientu that depends on a centerv which is contained in another

client u′’s local ball, we change the coefficient ofxuv in the objective function

from d(u, v) to d(u, u′). Because the clients are well-separated, this changes the

total cost only by a small factor. Formally,

d(u, v) ≥ d(u, u′)− 2LPu′ Sincev ∈ B(u′, 2LPu′)

≥ d(u, u′)− d(u, u′)/2 From Obs 9.2.1

≥ (1/2)d(u, u′)

Thus we can write:

∑

u∈V ′

wu




∑

u′∈V ′\u
d(u, u′)

∑

v∈B(u′,2LPu′)

x2uv



 (9.2.5)

≤ 2
∑

u∈V ′

wu

∑

u′∈V ′\u

∑

v∈B(u′,2LPu′)

d(u, v)x1uv
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(B). We now simplify centers that are not contained in any local ball, and ensure

that each such center has only one client dependent on it. Consider any vertex

v ∈ V which does not lie in any local ball, and has at least two clients dependent

on it. Let these clients beu0, u1, . . . , uk ordered such thatd(u0, v) ≤ d(u1, v) ≤

. . . ≤ d(uk, v). The following claim will be useful for re-assignment.

Claim 9.2.4. For all i ∈ {1, . . . , k}, d(ui, u0) ≤ 2d(ui, v). Furthermore, for any

vertexv′ ∈ B(u0, 2LPu0), d(ui, v
′) ≤ 3d(ui, v).

Proof. From the way we have ordered the clients, we know thatd(ui, v) ≥

d(u0, v); so d(ui, u0) ≤ d(ui, v) + d(u0, v) ≤ 2d(ui, v) for all i ∈ {1, · · · , k}.

Also, if v′ is some center inB(u0, 2LPu0), then we haved(ui, v′) ≤ d(ui, u0) +

2LPu0 ≤ (3/2)d(ui, u0), where in the final inequality we have used Observa-

tion 9.2.1. Therefore, we haved(ui, v′) ≤ 3d(ui, v) for anyv′ ∈ B(u0, 2LPu0),

which proves the claim.

Now, for each1 ≤ i ≤ k, we remove the connection(ui, v) (ie. x2uiv ← 0)

and arbitrarily increase connections (for a total extentx1uiv) to edges(ui, v′) for

v′ ∈ B(u0, 2LPu0) while maintaining feasibility (i.ex2uiv′
≤ y∗v′). But we are

ensured that a feasible re-assignment exists because for every clientui, the extent

to which it is connected outside its ball is at most1/2, and we are guaranteed

that the total extent to which centers are opened inB(u0, 2LPu0) is at least1/2

(Lemma 9.2.3). Therefore, we can completely remove any connectionui might

have tov and re-assign it to centers inB(u0, 2LPu0) and for each of these reassign-
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ments, we used(ui, u0) as the distance coefficient. From Claim 9.2.4 and observing

that the approximation on cost is performed ondisjoint set of edges in(A) and(B),

we obtain that:

∑

u∈V ′

wu

∑

v∈V
d(u, v)x2uv ≤ 2 ·

∑

u∈V ′

wu

∑

v∈V
d(u, v)x1uv . (9.2.6)

After this step, we have that for each centerv not contained in any ball around

the clients, there is only one client, sayu, which depends on it. In this case, we

say thatv is a private centerto client u. Let P(u) denote the set of all vertices

that are either contained inB(u, 2LPu), or are private to clientu. Notice that

P(u) ∩ P(u′) = ∅ for any two clientsu, u′ ∈ V ′. Also denotePc(u) := V \ P(u)

for anyu ∈ V ′.

We further change the LP-solution from
(
x2, y∗

)
to
(
x3, y∗

)
as follows. Inx3

we ensure that any client which depends on centers in other clients’ local balls, will

in fact dependonly on centers in the local ball of its nearest other client. For any

client u, we reassign all connections (inx2) to Pc(u) to centers ofB(u′, 2LPu′)

(in x3) whereu′ is the closest other client tou. This is possible because the total

reassignment for each client is at most half and every local-ball has at least half unit

of centers. Clearly the value of
(
x3, y∗

)
under the new objective is at most that of

(
x2, y∗

)
, by the way we have altered the objective function.

Now, for eachu ∈ V ′, if we let η(u) ∈ V ′ \ {u} denote the closest other client

tou, thenu depends only on centers inP(u) andB
(
η(u), 2LPη(u)

)
. Thus, the new
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objective value of
(
x3, y∗

)
is exactly:

∑

u∈V ′

wu




∑

v∈P(u)
d(u, v)x3uv + d(u, η(u))(1 −

∑

v∈P(u)
x3uv)





≤ 2 · LPOpt (9.2.7)

Observe that we retained for eachu ∈ V ′ only thexuv-variables withv ∈ P(u);

this suffices because all otherxuw-variables (withw ∈ Pc(u)) pay the same coef-

ficient d(u, η(u)) in the objective (due to the changes made in(A) and(B)). Since

the cost of the altered solution is at most that of
(
x2, y∗

)
, we get the same bound of

2LPOpt.

Furthermore, for any clientu which depends on a private centerv ∈ P(u) \

B(u, 2LPu), it must be thatd(u, v) ≤ d(u, η(u)); otherwise, we can re-assign

this (uv) connection to a centerv′ ∈ B(η(u), 2LPη(u)) and improve in the (altered)

objective function; again we use the fact thatumight depend onP(u)\B(u, 2LPu)

to total extent at most half andB(η(u), 2LPη(u)) has at least half unit of open

centers.

To summarize, the above modifications ensure that fractional solution
(
x3, y∗

)

satisfies the following:

(i) For any two clientsu, u′ ∈ V ′, we haved(u, u′) > 4max(LPu, LPu′). In

words, this means that all clients are well-separated.

(ii) For each centerv that does not belong to any ballB(u, 2LPu), we have only
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one client that depends on it.

(iii) Each client u depends only on centers in its ball, its private centers, and

centers in the ball of its nearest client. The extent to whichit depends on

centers of the latter two kinds is at most1/2.

(iv) If client u depends on a private centerv, d(u, v) ≤ d(u, u′) for any other

clientu′ ∈ V ′.

(v) The total cost under the modified objective is at most2 · LPOpt.

Step (iii): Building Small Stars. Let us modify mappingη slightly: for each

u ∈ V ′, if it only depends (under LP solutionx3) on centers inP(u) (ie. centers

in its local ball or its private centers) then resetη(u) ← u. Consider a directed

dependency graph on just the clientsV ′, having arc-set{(u, η(u))|u ∈ V ′, η(u) 6=

u}. Each component will almost be a tree, except for the possible existence of

one2-cycle1 (see Figure 9.2.1). We will call such2-cyclespseudo-roots. If there

is a vertex with no out-arc, that is also called a pseudo-root. Observe that every

pseudo-root contains at least a unit of open centers.

The procedure we describe here is similar to the reduction to“3-level trees”

in [39]. We break the trees up into a collection of stars, by traversing the trees in

a bottom-up fashion, going from the leaves to the root. For any arc(u, u′), we say

thatu′ is theparentof u, andu is achild of u′. Any clientu ∈ V ′ with no in-arc

1In general, each component might have one cycle of any length; but since all edges in a cycle
will have the same length, we may assume without loss of generality that there are only 2-cycles.
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is called aleaf. Consider any non-leaf vertexu which is not part of a pseudo-root,

such that all its children are leaves. Letuout denote the parent ofu.

1. Suppose there exists a childu0 of u such thatd(u0, u) ≤ 2d(u, uout), then

we make the following modification: letu1 denote the child ofu that is

closest tou; we replace the directed arc(u, uout) with (u, u1), and make

the collection{u, u1} (which is now a2-cycle), a pseudo-root. Observe that

d(u0, u) ≥ d(u, uout) becauseu chose to direct its arc towardsuout instead

of u0.

2. If there is no such childu0 of u, then for every childuin of u, replace arc

(uin, u) with a new arc(uin, uout). In this process,u has its in-degree changed

to zero thereby becoming a leaf.

pseudo-root

Figure 9.2.1: The Dependency Tree: Dashed edges represent private centers,
circles represent the local balls

Notice that we have maintained the invariant that there are no out-arcs from any

pseudo-root, and every node has at most one out-arc. Define mappingσ : V ′ → V ′

as follows: for eachu ∈ V ′, setσ(u) tou’s parent in the final dependency graph (if
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it exists); otherwise (ifu is itself a pseudo-root) setσ(u) = u. Note that the final

dependency graph is a collection of stars with centers as pseudo-roots.

Claim 9.2.5. For eachw ∈ V ′, we haved(w, σ(w)) ≤ 2 · d(w, η(w)).

Proof. Suppose that whenw is considered as vertexu in the above procedure,

step 1 applies. Then it follows that the out-arc ofw is never changed after this, and

by definition of step 1,d(w, σ(w)) ≤ 2 · d(w, η(w)). The remaining case is that

whenw is considered as vertexu, step 2 applies.

Then from the definition of steps 1 and 2, we obtain that there is a directed path

〈w = w0, w1, · · · , wt〉 in the initial dependency graph such thatη(w) = w1 and

σ(w) = wt. Let d(w, η(w)) = d(w0, w1) = a.

We claim by induction oni ∈ {1, · · · , t} thatd(wi, wi−1) ≤ a/2i−1. The base

case ofi = 1 is obvious. For anyi < t, assumingd(wi, wi−1) ≤ a/2i−1, we will

show thatd(wi+1, wi) ≤ a/2i. Consider the point whenw’s out-arc is changed

from (w,wi) to (w,wi+1); this must be so, sincew’s out-arc changes from(w,w1)

to (w,wt) through the procedure. At this point, step 2 must have occurred at node

wi, andwi−1 must have been a child ofwi; henced(wi+1, wi) ≤ 1
2 ·d(wi, wi−1) ≤

a/2i.

Thus we haved(w, σ(w)) ≤ ∑t
i=1 d(wi, wi−1) ≤ a

∑t
i=1

1
2i−1 < 2a = 2 ·

d(w, η(w)).

At this point, we have a fractional solution(x3, y∗) that satisfies con-
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straints (9.1.1)-(9.1.4) and:

∑

u∈V ′

wu




∑

v∈P(u)
d(u, v)x3uv + d(u, σ(u))(1 −

∑

v∈P(u)
x3uv)





≤ 4 · LPOpt (9.2.8)

The inequality follows from (9.2.7) and Claim 9.2.5.

Stage II: Reformulating the LP

Based on the star-like structure derived in the previous subsection, we propose

another linear program for which the fractional solution(x3, y∗) is shown to be

feasible with objective value as in (9.2.8). Crucially, we will show that this new LP

is integral. Hence we can obtain an integral solution to it ofcost at most4 · LPOpt.

Finally we show that any integral solution to our reformulated LP also corresponds

to an integral solution to the originalMatroidMedian instance, at the loss of another

constant factor.

Consider the LP described in Figure 9.2.2.

The reason we have added the constraint 9.2.10 is the following: In the objec-

tive function, each client incurs only a cost ofd(u, σ(u)) to the extent to which

a private facility fromP(u) is not assigned to it. This means that in our integral

solution, we definitely want a facility to be chosen from the pseudo-root to which

u is connected if we do not open a private facility fromP(u); this fact becomes

clearer later. Also, this constraint does not increase the optimal value of the LP, as
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minimize
∑

u∈V ′

wu




∑

v∈P(u)
d(u, v)zv + d(u, σ(u))



1−
∑

v∈P(u)
zv









(LP2)

subject to
∑

v∈P(u)
zv ≤ 1 ∀u ∈ V ′ (9.2.9)

∑

v∈P(u1)

zv +
∑

v∈P(u2)

zv ≥ 1 ∀ pseudo-roots{u1, u2} (9.2.10)

∑

v∈S
zv ≤ rM(S) ∀S ⊆ V (9.2.11)

zv ≥ 0 ∀ v ∈ V (9.2.12)

Figure 9.2.2: Stage II LP Relaxation

shown below.

Claim 9.2.6. The linear programLP2 has optimal value at most4 · LPOpt.

Proof. Consider the solutionz defined as:zv = min{y∗v , x3uv} = x3uv for all

v ∈ P(u) andu ∈ V ′; all other vertices havez-value zero. It is easy to see that

constraints (9.2.9) and (9.2.11) are satisfied.

Constraint (9.2.10) is also trivially true for pseudo-roots consisting of only one

client. Else, let{u1, u2} be any pseudo-root consisting of two clients. Recall that

eachu ∈ {u1, u2} is connected to centers in ballB(u, 2LPu) ⊆ P(u) to extent at

least half; hence the totalz-value insideP(u1) ∪ P(u2) is at least one. Thusz is

feasible forLP2, and by (9.2.8) its objective value is at most4 · LPOpt.

We show next thatLP2 is in fact, an integral polytope.

Lemma 9.2.7. Any basic feasible solution toLP2 is integral.
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Proof. Consider any basic feasible solutionz. Firstly, notice that the characteristic

vectors defined by constraints (9.2.9) and (9.2.10) define a laminar family, since all

the setsP(u) are disjoint.

Therefore, the subset of these constraints that are tightlysatisfied byz define

a laminar family (of mostly disjoint sets). Also, by standard uncrossing argu-

ments (see eg. [121]), we can choose the linearly-independent set of tight rank-

constraints (9.2.11) to form a laminar family (in fact even achain).

But then the vectorz is defined by a constraint matrix which consists oftwo

laminar familieson the ground set of vertices. Such matrices are well-known to

be totally unimodular[121], and this fact is used in proving the integrality of the

matroid-intersection polytope. For completeness, we outline a proof of this fact

next. This finishes the integrality proof.

Proof of TU-ness of Double Laminar Family We now show that such a matrix

is totally unimodular. For this we use the following classical characterization:A

matrixA is totally unimodular if, for each submatrixA′, its rows can be labeled+1

or−1 such that every column sum (when restricted to the rows ofA′ is either+1, 0,

or−1. Consider such a submatrixA′. Clearly, we have chosen some constraints out

of two laminar families, so the chosen rows also correspond to some two laminar

families.

Consider one of these laminar familiesL. We can define a forest by the fol-

lowing rules: We have a node for each set/tight-constraint in L. NodesS andT
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are connected by a directed edge fromS to T , iff T ⊆ S, and there exists no tight

constraintT ′ ∈ L \ {S, T} such thatT ⊆ T ′ ⊆ S. Then, we can label each set

of L in the following manner: each node of an odd level gets a label+1 and labels

of an even levels are−1 (say roots has level of1, and its children have level2, and

so on). By the laminarity, we know that a variablezv appears in all the tight con-

straints which correspond to nodes on a path from some root tosome other node.

By the way we have labeled these constraints, we know that anysuch sum is either

+1, or 0 (see Figure 9.2.3).

+1

−1

+1

Figure 9.2.3: Labeling the laminar family

Similarly, we can label each set of the second laminar familyL′ in the opposite

fashion: each node of an odd level gets label−1 and nodes of even levels get+1.

Again,zv appears in all the tight constraints corresponding to nodeson a path from

some root to some node, and the sum of these labels is either−1 or 0. Therefore,

the total sum corresponding to the column forzv is either+1, 0, or −1, which

completes the proof.

It is clear that any integral solution feasible forLP2 is also feasible for

MatroidMedian, due to (9.2.11). We now relate the objective inLP2 to the original

MatroidMedian objective:
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Lemma 9.2.8. For any integral solutionC ⊆ V to LP2, theMatroidMedian ob-

jective value underC is at most3 times that it was paying in theLP2 solution.

Proof. We show that each clientu ∈ V ′ pays inMatroidMedian at most 3 times

that inLP2. Suppose thatC∩P(u) 6= ∅. Thenu’s connection cost is identical to its

contribution to theLP2 solution’s objective. Therefore, we assumeC ∩ P(u) = ∅.

Suppose thatu is not part of a pseudo-center; let{u1, u2} denote the pseudo-

center thatu is connected to. By constraint (9.2.10), there is somev ∈

C
⋂

(P(u1) ∪ P(u2)). The contribution ofu is d(u, σ(u)) in LP2 and d(u, v)

in the actual objective function forMatroidMedian. We will now show that

d(u, v) ≤ 3 · d(u, σ(u)).

Without loss of generality letσ(u) = u1 and suppose thatv ∈ P(u2); the

other case ofv ∈ P(u1) is easier. From the property of private centers, we know

d(u2, v) ≤ d(u2, η(u2)) ≤ d(u2, u1). Now if (u1, u2) is created as a new pseudo-

root in step (iii).1, then we have the property thatd(u1, u2) ≤ d(u1, u), since we

choose the closest leaf to pair up with its parent to form a pseudo-root. Else(u1, u2)

is the original pseudo-root even before the modifications ofstep (iii). Thus in that

case, by definitiond(u1, u2) = d(u1, η(u1)) ≤ d(u1, u). Therefore,d(u, v) ≤

d(u, u1) + d(u1, u2) + d(u2, v) ≤ d(u, u1) + 2 · d(u1, u2) ≤ 3 · d(u, u1) =

3 · d(u, σ(u)).

If u is itself (a singleton) pseudo-center then it must be thatC ∩ P(u) 6= ∅

by (9.2.10), contrary to the above assumption. Ifu is part of a pseudo-center
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{u, u′}. Then it must be that there is somev ∈ C ∩ P(u′), by (9.2.10). The

contribution of u in LP2 is d(u, σ(u)), and in MatroidMedian is d(u, v) ≤

d(u, u′)+d(u′, v) ≤ 2 ·d(u, u′) = d(u, σ(u)) (the second inequality uses property

of private centers).

To make this result algorithmic, we need to obtain in polynomial-time an extreme

point solution toLP2. Using the Ellipsoid method (as mentioned in Section 9.1.2)

we can indeed obtainsomefractional optimal solution toLP2, which may not be

an extreme point. However, such a solution can be converted to an extreme point

of LP2, using the method in Jain [83]. (Due to the presence of both “≤” and “≥”

type constraints in (9.2.9)-(9.2.10) it is not clear whether LP2 can be cast directly

as an instance of matroid intersection.)

Altogether, we obtain an integral solution to the weighted instance fromstep

(i) of cost≤ 12 · LPOpt. Combined with the property ofstep (i), we obtain:

Theorem 9.2.9. There is a 16-approximation algorithm for theMatroidMedian

problem.

We have not tried to optimize the constant via this approach.However, getting

the approximation ratio to match that for usualk-median would require additional

ideas.
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9.3 MatroidMedian with Penalties

In the MatroidMedian problem with penalties, each client either connects to an

open center thereby incurring the connection cost, or pays apenalty. Again, we

are given a finite metric space(V, d), a matroidM with ground setV and a set

of independent setsI(M) ⊆ 2V ; in addition we are also given a penalty function

p : V → R≥0. The goal is to open centersS ∈ I(M) and identify a set of clients

C1 such that
∑

u∈C1
d(u, S) +

∑

u∈V \C1
p(u) is minimized. Such objectives are

also called “prize-collecting” problems. In this section we give a constant factor ap-

proximation algorithm forMatroidMedian with penalties, building on the rounding

algorithm from the previous section.

Our LP relaxation is an extension of the one (LP1) for MatroidMedian. In

addition to the variables{yv; v ∈ V } and{xuv; u, v ∈ V }, we define for each

client an indicator variablehu whose value equals1 if client u pays a penalty and

is not connected to any open facility. Then, it is straightforward to see that the
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following LP is indeed a valid relaxation for the problem.

min
∑

u∈V

∑

v∈V
d(u, v)xuv+

∑

u∈V
p(u)hu (LP3)

s. t
∑

v∈V
xuv + hu = 1 ∀u ∈ V (9.3.13)

xuv ≤ yv ∀u ∈ V, v ∈ V (9.3.14)

∑

v∈S
yv ≤ rM(S) ∀S ⊆ V (9.3.15)

xuv, yv, hu ≥ 0 ∀u, v ∈ V (9.3.16)

Let Opt denote an optimal solution of the given penaltyMatroidMedian in-

stance, and letLPOpt denote theLP3 optimum value. SinceLP3 is a relaxation of

our problem, we have that,

Lemma 9.3.1. TheLP3 costLPOpt is at most the cost of an optimal solutionOpt.

Let (x∗, y∗, h∗) denote the optimal LP solution. We round the fractional vari-

ables to integers in two stages. In the first stage, onlyx∗, h∗ variables are al-

tered such that the modified solution is still feasible but sparse and has a cost

that isO(1)LPOpt. This stage is similar in nature to the first stage rounding for

MatroidMedian but we need to be careful when comparing thexuv ’s and theyv’s

— the primary difficulty is that for any clientu, the sum
∑

v xuv is not 1. Typ-

ically, this is the case in most LP-based prize-collecting problems, but often, one

could argue that if
∑

v xuv ≥ 2/3, then by scaling we could ensure that it is at
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least1; thereforethe (scaled) LP would be feasible to the original problem (with-

out penalties). However, in our case (and alsok-median with penalties) since we

also have packing constraints (the matroid rank constraints), simply scaling the

fractional solution is not a viable route.

Once we handle these issues, we show that a new LP can be written for which

the modified fractional solution is feasible. The constraints of this LP are identical

to that forMatroidMedian; but the objective function is different. Since that poly-

tope is integral (Lemma 9.2.7) we infer that the new LP forMatroidMedian with

penalties is integral. This immediately gives us the constant factor approximation

for MatroidMedian with penalties. We now get into the details.

Stage I: Sparsifying the LP Solution

Like in the matroid median setting, the goal in this stage is to argue that there

exists asparsefractional solution of near optimal cost. This will enable us to write

another LP, which will be characterized by an integral polytope.

Step (i): Thresholding Penalties.

Let C denote the set of clients paying a penalty at most to an extentof 1/4 in

the fractional solution, i.e,C = {u ∈ V |h∗u < 1
4}. For each clientu ∈ V \ C, we

round itsh∗u to one and setx∗uv to zero for allv ∈ V . Let (x1, h1, y∗) denote this

modified solution. We make the following observations:

Observation9.3.2. After the above thresholding operation, the following inequali-

185



ties are satisfied.

1. ∀u ∈ C,
∑

v∈V x
1
uv >

3
4

2. ∀u ∈ C, h1u <
1
4

3.
∑

u∈V
(∑

v∈V x
1
uvd(u, v) + h1up(u)

)
≤ 4LPOpt

4. ∀u, v ∈ V , if x1uv > 0 thenp(u) ≥ d(u, v).

5. ∀u, v ∈ V , if x1uv > 0 thenx1uv = y∗v or h1u = 0.

Here, the second-to-last property is true because of the following: For any client

u ∈ V and centerv ∈ V , if x1uv > 0 andd(u, v) > p(u), then we can increaseh1u

to h1u + x1uv and setx1uv = 0. Such a modification maintains feasibility and only

decreases the objective function value.

The final property can be seen from the following argument: becausep(u) ≥

d(u, v), wheneverx1uv > 0, we can increase the connection variablex1uv and de-

creaseh1u equally without increasing the objective function untilh1u becomes0 or

x1uv hits y∗v .

Step (ii): Clustering Clients.

Let |C| = n′. For each clientu ∈ C, letDu =
∑

v∈V duvx
1
uv denote the frac-

tional connection cost of clientu andX1
u =

∑

v∈V x
1
uv denote the total fractional

assignment towards connection. Also letB(u,R) = {v ∈ V |d(u, v) ≤ R} de-

note the ball of radiusR centered atu. For any vertexu, we say thatB(u, 4Du) is
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the ‘local ball’ centered atu. The following is a direct consequence of Markov’s

inequality and Observation 9.3.2-(1).

Lemma 9.3.3. For any clientu ∈ C,
∑

v∈B(u,4Du)
x1uv ≥ 1

2 . In words, each client

is fractionally connected to centers in its local ball to an extent of at least1/2.

Now order the clients according to non-decreasingDu values, and let the or-

dering beu1, u2, . . . , un′ . Consider the vertices in the orderu1, u2, . . . , un′ . For a

vertexui, if there exists a vertexuj with j < i such thatd(ui, uj) ≤ 8Dui , then

we denote this event byui ։ uj and modify the instance by shifting the location

of clientui to uj.

For each clientui, defineπ(ui) = uj iff ui ։ uj , andπ(ui) = ui if ui was

not shifted. LetV ′ = π(C) denote the set of clients that maintain their own local

balls (i.e were not shifted in the above process). For eachu ∈ V ′, letCu := {u′ ∈

C|π(u′) = u}. The new instance consists of|Cu| clients located at each vertex

u ∈ V ′ having respective penalty values{p(u′)|u′ ∈ Cu}.

Observation9.3.4. Foru, v ∈ V ′, we haved(u, v) > 8max(Du,Dv).

We obtain a feasible solution(x2, h2, y∗) to this modified instance as follows.

For each eventui ։ uj, do:

Case (i): If X1
ui
≤ X1

uj
: Start withx2uiv = 0 for all v. Then, for each vertexv

with x1ujv > 0, connectui to an extent ofx1ujv to v, i.e. setx2uiv = x1ujv. Finally,

seth2ui
= h1uj

≤ h1ui
.
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Case (ii): If X1
ui
> X1

uj
: Start withx2uiv = 0 for all v. For eachv with x1ujv > 0,

connectui to an extent ofx1ujv to v, i.e. setx2uiv = x1ujv. SinceX1
uj

< X1
ui

,

we need to further connectui to other centers to extent of at leastX1
ui
− X1

uj
in

order to avoid increasinghui . To this end, setx2ui,w = x1ui,w for all w ∈ V with

x1uj ,w = 0. Observe that clientui is now connected to extent at leastX1
ui

; so

h2ui
≤ 1−X1

ui
= h1ui

.

Also if a client is not shifted in the above routine, itsx2, h2 variables are the

same as inx1, h1. The following lemma certifies that the objective of the modified

instance is not much more than the original.

Lemma 9.3.5.

∑

u∈C

[
∑

v∈V
x2uv · d(π(u), v) + h2u · p(u)

]

≤
∑

u∈C

[

10
∑

v∈V
x1uv · d(u, v) + h1u · p(u)

]

.

Proof. We prove the inequality term-wise. Any client that is not shifted in the

above process maintains its contribution to the objective function. Hence consider

a clientui that is shifted touj (ie. ui ։ uj). It is clear thath2ui
≤ h1ui

, so the

penalty contributionh2u · p(u) ≤ h1u · p(u). There are two cases for the connection

costs:

Case (i):X1
ui
≤ X1

uj
.

In this case we have,
∑

v∈V x
2
uivd(π(ui), v) =

∑

v∈V x
2
uivd(uj , v) =

∑

v∈V x
1
ujvd(uj , v) = Duj ≤ Dui .
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Case (ii):X1
ui
> X1

uj
.

Here, note thatx2uiv ≤ x1uiv + x1ujv for all v ∈ V . So,

∑

v∈V
x2uiv · d(uj , v)

≤
∑

v∈V
x1ujv · d(uj , v) +

∑

v∈V
x1uiv · d(uj , v)

≤ Duj +
∑

v∈V
x1uiv · d(ui, v) +

(
∑

v∈V
x1uiv

)

· d(uj , ui)

≤ Duj +Dui + d(uj , ui) ≤ 10 ·Dui

Hence in either case, we can bound the new connection cost by10 ·Dui .

Thus it follows that(x2, h2, y∗) is a feasible LP solution to the modified in-

stance of objective value at most10LPOpt. We additionally ensure (by locally

changingx2, h2) that condition 4 of Observation 9.3.2 holds, namely:

∀u ∈ V ′, u′ ∈ Cu, v ∈ V, if x2u′v > 0 thend(u, v) ≤ p(u′). (9.3.17)

Note that any feasible integral solution to the modified instance corresponds to

one for the original instance, wherein the objective increases by at most an additive

term of 8 ·∑w∈CDw ≤ 8 · LPOpt. Hence in the rest of the algorithm we work

with this modified instance.

Next we modify the connection-variables (leaving penalty variablesh2 un-

changed) of clients exactly as instep (ii) of the previous section, and also alter
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the coefficients of somex variables just like in the algorithm forMatroidMedian.

This results in a disjoint set of private centersP(u) for eachu ∈ V ′ (whereP(u)

can be thought of as the collection of all private centers foru′ ∈ Cu; notice that

these are disjoint for different vertices inV ′), and new connection variablesx̃3 such

that:

(a) Each clientu′ depends only on centersP(π(u′)) and centers in the local ball

nearest toπ(u′). The connection to the latter type of centers is at most half.

(b) For any clientu ∈ V ′ and centerv ∈ P(u), we haved(u, v) ≤ d(u,w) for

any other clientw ∈ V ′.

(c) The total cost under the modified objective is at most20 · LPOpt (the factor

2 loss is incurred due to changing the objective coefficients and rearrange-

ments).

(d) For anyu′ ∈ C, v ∈ V with x̃3u′v > 0 we haved(π(u′), v) ≤ 3 · p(u′).

Additionally, foru′ ∈ C, v ∈ P(π(u′)) with x̃3u′v > 0 we haved(π(u′), v) ≤

p(u′).

The first three properties above are immediate from the corresponding properties

after step (ii) of Section 9.2. The last property uses (9.3.17) and Claim 9.2.4.

We now modify the penalty variables as follows (starting with h3 = h2 and

x3 = x̃3). For each clientu′, if it is connected to centers in the local-ball of any

w ∈ V ′ \ {π(u′)} then reseth3(u′) = 0; and increase the connection-variables
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∑

u∈M




∑

v∈T (u)

d(π(u), v) · x3uv + pu ·



1−
∑

v∈T (u)

x3uv







+

∑

u∈C\M




∑

v∈P(π(u))
d(π(u), v)x3uv + d(π(u), σ(π(u))) · (1−

∑

v∈P(π(u))
x3uv)



 ,

(9.3.18)

Figure 9.3.4: Modified Objective Function of(x3, h3, y∗)

x3(u′, ·) to centers in the local-ball ofw until client u′ is connected to extent one.

(Such a modification is possible sinceu′ is already connected to extent at least half

in the local ball ofπ(u′), and there is at least half open centers in any local ball.)

Furthermore, using property (d) above, the new objective value of (x3, h3, y∗) is at

mostthrice that of(x̃3, h3, y∗), ie. at most60 · LPOpt.

Observation9.3.6. Any client u′ that hash3(u′) > 0 is connectedonly to centers

in P(π(u′)).

We also applystep (iii) from Section 9.2 to obtain a mappingσ : V ′ → V ′

satisfying Claim 9.2.5 (recall thatη : V ′ → V ′ maps each client inV ′ to its closest

other client). This increases the objective value by at mostfactor 2.

Let M = {u′ ∈ C|h3(u′) > 0} denote the clients that have non-zero penalty

variable. For eachu′ ∈ M let T (u′) ⊆ P(π(u′)) denote the centers that client

u′ is connected to (We may assume thatT (u′) consists of centers inP(u) closest

to u). The objective of(x3, h3, y∗) can then be expressed as in the equation in

Figure 9.3.4. From the arguments above, the cost of this solution is at most120 ·
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∑

u∈M




∑

v∈T (u)

d(π(u), v) · y∗v + pu ·



1−
∑

v∈T (u)

y∗v









+
∑

u∈C\M




∑

v∈P(π(u))
d(π(u), v) · y∗v + d(π(u), σ(π(u))) ·



1−
∑

v∈P(π(u))
y∗v







 .(9.3.19)

Figure 9.3.5: Objective Function for Sparse LP

LPOpt.

Stage II: Reformulaing the LP

Reducing center variablesy∗. For anyu ∈ V ′, if
∑

v∈P(u) y
∗
v > 1 then we re-

duce they∗-values inP(u) one center at a time (starting from the farthest center to

u) until y∗(P(u)) = 1. Clearly this does not cause the objective to increase. Addi-

tionally, y∗ still satisfies the matroid independence constraints. Thuswe can ensure

that
∑

v∈P(u) y
∗
v ≤ 1 for all u ∈ V ′. Additionally, the following two modifications

do not increase the objective.

1. Clientu′ ∈M . For all v ∈ T (u′) we haved(π(u′), v) ≤ p(u′) (property (d)

above); setx3(u′, v) = y∗v .

2. Client u ∈ C \ M . For all v ∈ P(π(u)) we haved(π(u), v) ≤

d(π(u), σ(π(u))) (property (b) above); again setx3(u, v) = y∗v .

Thus we can re-write the objective from (9.3.18) as shown in Figure 9.3.5 (which

is just that in Figure 9.3.4 with thex variables replaced by they variables). Notice
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that there are nox-variables in the above expression. Furthermore,y∗ satisfies all

the constraints (9.2.9)-(9.2.12). We now consider linear programLP4 with the lin-

ear objective (9.3.19) and constraints (9.2.9)-(9.2.12).This can be optimized in

polynomial time to obtain an optimal integral solutionF (as described in Subsec-

tion 9.2). From the reductions in the previous subsection, the objective value of

F under (9.3.19) is at most120 · LPOpt. Finally, using Lemma 9.2.8 we obtain

thatF is a feasible solution toMatroidMedian with penalties, of objective at most

360 · LPOpt.

Theorem 9.3.7.There is a constant approximation algorithm forMatroidMedian

with penalties.

9.4 TheKnapsackMedian Problem

In this section we consider theKnapsackMedian problem. We are given a finite

metric space(V, d), non-negative weights{fi}i∈V and a boundF . The goal is to

open centersS ⊆ V such that
∑

j∈S fj ≤ F and the objective
∑

u∈V d(u, S) is

minimized. We can write a LP relaxation (LP5) of the above problem similar to

(LP) in Section 9.1.1, where we replace the constraint (9.1.3) with the knapsack

constraint
∑

v∈V fvyv ≤ F . In addition, we guess the maximum weight facility

fmax used in an optimum solution, and iffv > fmax we setyv = 0 (and hence

xuv = 0 as well). This is clearly possible since there are onlyn many different

choices forfmax. UnfortunatelyLP5 has an unbounded integrality gap if we do not
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allow any violation in the knapsack constraint. In Subsection 9.4, we show that a

similar integrality gap persists even if we add theknapsack-cover (KC) inequalities

to strengthenLP5, which have often been useful to overcome the gap of the natural

LP [33].

However, in the following section, we show that with anadditiveslack offmax

in the budget, we can get a constant factor approximation forthe knapsack median

problem.

The Rounding Algorithm for KnapsackMedian. Let (x∗, y∗) denote the op-

timal LP solution ofLP5. The rounding algorithm follows similar steps as in

MatroidMedian problem. The first stage is identical to Stage I of Section 9.2

modifying xuv variables until we have a collection of disjoint stars with pseudo-

roots. The total connection cost of the modified LP solution is at most a constant

factor of the optimum LP cost forLP5. The sparse instance satisfies the budget

constraint sinceyu variables are never increased. In Stage II, we start with a new

LP (LP6) by replacing the constraint 9.2.11 ofLP2 with the knapsack constraint

∑

v∈V fvzv ≤ F . HoweverLP6 is not integral as opposed toLP2: it contains the

knapsack problem as a special case. We now give an iterative-relaxation proce-

dure that rounds the aboveLP6 into an integral solution by violating the budget

by at most an additivefmax and maintaining the optimum connection cost. The

following algorithm iteratively creates the set of open centersC.

1. InitializeC← ∅. While V 6= ∅ do
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(a) Find an extreme point optimum solutionẑ to LP6.

(b) If there is a variablêzv = 0, then remove variablêzv , setV = V \ {v}.

(c) If there is a variablêzv = 1, thenC ← C ∪ {v}, V = V \ {v} and

F = F − fv.

(d) If none of (b), (c) holds, and|V | = 2 (sayV = {x1, x2}) then:

• If x1, x2 ∈ P(u) for someu ∈ V ′. If d(x1, u) ≤ d(x2, u) then

C← C ∪ {x1}, elseC← C ∪ {x2}. Break.

• If x1, x2 ∈ P(u1) ∪ P(u2) for some pseudo-root{u1, u2}. Then

C← C ∪ {x1, x2}, Break.

2. ReturnC

The following lemma guarantees that the connection cost is at most theOpt

cost of LP4 and the budget is not exceeded by more than an additivefmax.

Lemma 9.4.1. The above algorithm finds a solution for knapsack median problem

that has cost at mostOpt cost ofLP6 and that violates the knapsack budget at most

by an additivefmax.

Proof. First we show that if the algorithm reaches Step (2), then thesolution re-

turned by the algorithm satisfies the guarantee claimed. In Step (c), we always re-

duce the remaining budget byfv if we include the center inC. Thus the budget con-

straint can only be violated at Step (d). In Step (d), in case of tight V ′-constraint, we

open only one center among the two remaining centers. Thus the budget constraint
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can be violated by at mostmax{fx1 , fx2} ≤ fmax. In case of tight pseudo-root,

we havez(x1) + z(x2) = 1 and thusfx1 · z(x1) + fx2 · z(x2) +max {fx1 , fx2} ≤

fx1 + fx2. Hence again the budget constraint can be violated by at mostan additive

fmax term. The total cost ofLP6 never goes up in Step (a)-(c). In Step (d), either

the nearer center from{x1, x2} is chosen (in case of tightV ′-constraint), or both

the centers{x1, x2} (in case of tight pseudo-root) are opened. Thus the connection

cost is always upper bounded byOpt of LP6.

To complete the proof we show that the algorithm indeed reaches Step (2).

The Steps (1b),(1c) all make progress in the sense that they reduce the number of

variables and hence some constraints become vacuous and areremoved. Therefore,

we want to show whenever we are at an extreme point solution, then either Step

(1b),1(c) apply or we have reached (1d) and hence Step (2). Suppose that neither

(1b) nor (1c) apply: then there is nozv ∈ {0, 1}. Let the linearly independent tight

constraints definingz be:T ⊆ V ′ from (9.2.9), andR (pseudo-roots) from (9.2.10).

From the laminar structure of the constraints and all right-hand-sides being 1, it

follows that the sets inT
⋃
R are all disjoint. Further, each set inT

⋃
R contains at

least two fractional variables. Hence the number of variables is at least2|T |+2|R|.

Now count the number of tight linearly independent constraints: There are at most

|T |+|R| tight constraints from (9.2.9)-(9.2.10), and one global knapsack constraint.

Since at an extreme point, the number of variables must equalthe number of tight

linearly independent constraints, we obtain|T |+ |R| ≤ 1 and that each set inT ∪R
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contains exactly two vertices. This is possible only whenV is some{x1, x2}.

1. |T | = 1. Then there must be someu ∈ V ′ with x1, x2 ∈ P(u).

2. |R| = 1. Then there must be some pseudo-root{u1, u2} with x1, x2 ∈

P(u1) ∪ P(u2).

So in either case, Step (1d) applies.

Combining Lemma 9.4.1 with Claim 9.2.6, Lemma 9.2.8 and the property of

step (i)-Stage-I rounding of Section 9.2, we get the following theorem.

Theorem 9.4.2.There is a 16-approximation algorithm for theKnapsackMedian

problem that violates the knapsack constraint at most by an additive fmax, where

fmax is the maximum weight of any center opened in the optimum solution.

Using enumeration for centers with cost more thanεF , we can guarantee

that we do not exceed the budget by more thanεF while maintaining a16-

approximation for the connection cost innO( 1
ε
) time.

LP Integrality Gap for KnapsackMedian with Knapsack Cover Inequal-

ities

There is a large integrality gap forLP5 with a hard constraint for the Knapsack

bound, from Charikar and Guha [38].

Example3 ( [38]). Consider|V | = 2 with f1 = N , f2 = 1, d(1, 2) = D and

F = N for any large positive realsN andD. An optimum solution that does not
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violate the knapsack constraint can open either center1 or 2 but not both and hence

must pay a connection cost ofD. LP5 can assigny1 = 1− 1
N andy2 = 1 and thus

pay onlyD/N in the connection cost.

The above example can be overcome by addingknapsack covering (KC)

inequalities [33]. We now illustrate the use of KC inequalities in the

KnapsackMedian problem. KC-inequalities are used forcoveringknapsack prob-

lems. AlthoughKnapsackMedian has a packing constraint (at mostF weight of

open centers), it can be rephrased as a covering-knapsack byrequiring “at least

∑

v∈V fv − F weight of closed centers”. Viewed this way, we can strengthen the

basic LP as follows.

Define for any subset of centersS ⊆ V , f(S) :=
∑

v∈S f(v). Then to satisfy

the knapsack constraint we need to close centers worth ofF ′ := f(V )−F . For any

subsetS ⊆ V of centers withf(S) < F ′ we can write a KC inequalityassuming

that all the centers inS are closed. Then, the residual covering requirement is:

∑

v/∈S
min {f(v), F ′ − f(S)}(1− yv) ≥ F ′ − f(S).

There are exponential number of such inequalities; howeverusing methods

in [33] an FPTAS for the strengthened LP can be obtained. The addition of KC

inequalities avoids examples like 3; thereF ′ = 1 and settingS = ∅ yields:

min{1, 1} · (1− y1) + min{1, N} · (1− y2) ≥ 1,
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ie. y1 + y2 ≤ 1. Thus the LP optimum also has valueD.

However the following example shows that the integrality gap remains high

even with KC inequalities.

Example4. V = {ai}Ri=1

⋃{bi}Ri=1

⋃{p, q, u, v} with metric distancesd as fol-

lows: vertices{ai}Ri=1 (resp. {bi}Ri=1) are at zero distance from each other,

d(a1, b1) = d(p, q) = d(u, v) = D andd(a1, p) = d(p, u) = d(u, a1) = ∞.

The facility-costs aref(ai) = 1 andf(bi) = N for all i ∈ [R], andf(p) = f(q) =

f(u) = f(v) = N . The knapsack bound isF = 3N . MoreoverN > R≫ 1.

An optimum integral solution must open exactly one center from each of

{ai}Ri=1

⋃{bi}Ri=1, {p, q} and{u, v} and hence has connection cost of(R + 2)D.

On the other hand, we show that theKnapsackMedian LP with KC inequalities

has a feasible solutionx with much smaller cost. Definex(ai) = 1/R andx(bi) =

N−1
RN for all i ∈ [N ], andxp = xq = xu = xv = 1

2 . Observe that the connection

cost is
(
R
N + 2

)
D < 3D. Below we show thatx is feasible; hence the integrality

gap isΩ(R).

x clearly satisfies the constraint
∑

w∈V fw · xw ≤ F . We now show thatx

satisfies all KC-inequalities. Recall thatF ′ = f(V )−F = (R+1)N +R for this

instance. Note that KC-inequalities are written only for subsetsS with F ′−f(S) >

0. Also, KC-inequalities corresponding to subsetsS with F ′ − f(S) ≥ N =

maxw∈V fw reduce to
∑

w 6∈S fw · yw ≤ F , which is clearly satisfied byx. Thus

the only remaining KC-inequalities are from subsetsS with 0 < F ′ − f(S) < N ,
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ie. f(S) ∈ [F ′ −N + 1, F ′ − 1] = [RN +R+ 1, (R + 1)N +R− 1]. Since all

facility-costs are in{1, N} andR < N , subsetS must haveexactlyR + 1 costN

facilities. Thus there are exactly three cost-N facilitiesH in Sc. Sincexw ≤ 1
2 for

all w ∈ V , we have
∑

w∈H(1− xw) ≥ 3
2 . The KC-inequality fromS is hence:

∑

w∈Sc

min {f(w), F ′ − f(S)}(1− xw)

≥
∑

w∈H
min {f(w), F ′ − f(S)}(1− xw)

= (F ′ − f(S)) ·
∑

w∈H
(1− xw) > F ′ − f(S).

The equality usesF ′ − f(S) < N and that each facility-cost inH is N , and the

last inequality is by
∑

w∈H(1− xw) ≥ 3
2 which was shown above.

9.5 Bad Example for Local Search with Multiple Swaps

Here we give an example showing that any local search algorithm for theT -server

type problem (ie.MatroidMedian under partition matroid ofT parts) that uses at

mostT − 1 swaps cannot give an approximation factor better thanΩ( nT ); heren is

the number of vertices.

The metric is uniform onT + 1 locations. There are two servers of each type:

Each location{2, 3, . . . , T} contains two servers; locations1 andT + 1 contain a

single server each. For eachi ∈ [1, T ], the two copies of serveri are located at

locationsi (first copy) andi + 1 (second copy). There arem ≫ 1 clients at each
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locationi ∈ [1, T ] and just one client at locationT + 1; hencen = 2T +mT + 1.

The bounds on server-types areki = 1 for all i ∈ [1, T ]. The optimum solution is

to pick thefirst copyof each server type and thus pay a connection cost of1 (the

client at locationT + 1). However, it can be seen that the solution consisting of

thesecond copyof each server type is locally optimal, and its connection cost ism

(clients at location1). Thus the locality gap ism = Ω(n/T ).
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CHAPTER 10

AdCell: Ad Allocation in Cellular Networks

In this chapter, we develop a novel application of advertisement allocation in cel-

lular networks. With worldwide usage of cellular phones, mobile advertisement is

rapidly becoming an attractive alternative to online advertisements. In our model,

a wireless service provider (WSP) charges the advertisers for showing their ads.

Each advertiser has a valuation for specific types of customers in various times and

locations and has a limit on the maximum available budget. Each query is in the

form of time and location and is associated with one individual customer. In or-

der to achieve a non-intrusive delivery, only a limited number of ads can be sent

to each customer. In this chapter, we show an offline algorithm for this problem,

where the bid values, budgets and customer locations are known apriori, and WSP

has to decide for each bidder when to show its ads. Here, decisions are based on

historical data, however such offline algorithms often helpin decision making and

also in designing online algorithms. For more details of theonline algorithms, the

interested readers are referred to our paper [1].
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10.1 AdCell: An Introduction

More than4 billion cellular phones are now being used world-wide, and with in-

creasing popularity of smart phones, mobile advertising holds the prospect of sig-

nificant growth in recent future. Some research firms [3] estimate mobile adver-

tisements to reach a business worth over 10 billion US dollars by 2012. Given

the built-in advertisement solutions from popular smart phone operating systems,

such as iAds for Apple’s iOS, mobile advertising market is poised with even faster

growth.

In the mobile advertising ecosystem, wireless service providers (WSPs) render

the physical delivery infrastructure, but so far WSPs have been more or less left out

from profiting via mobile advertising because of several challenges. First, unlike

web, search, application, and game providers, WSPs typically do not have users’

application context, which makes it difficult to provide targeted advertisements.

Deep Packet Inspection (DPI) techniques that examine packet traces in order to

understand application context, is often not an option because of privacy and legis-

lation issues (i.e., Federal Wiretap Act). Therefore, a targeted advertising solution

for WSPs need to utilizeonly the information it is allowed to collect by government

and by customer via opt-in mechanisms. Second, without the luxury of application

context, targeted ads from WSPs requirenon-intrusive delivery methods. While

users are familiar with other ad forms such as banner, search, in-application, and
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in-game, push ads with no application context (e.g., via SMS) can be intrusive and

annoying if not done carefully. The number and frequency of ads both need to be

well-controlled. Third, targeted ads from WSPs should be well personalized such

that the users have incentive to read the advertisements andtake purchasing ac-

tions, especially given the requirement that the number of ads that can be shown to

a customer is limited.

Our proposed advertising solution, Adcell, deals with the above challenges. It

takes advantage of the detailed real-time location information of users. Location

can be tracked upon users’ consent. This is already being done in some services

offered by WSPs, such as Sprint’s Family Location and AT&T’sFamily Map, thus

there is no associated privacy or legal complications. To locate a cellular phone, it

must emit a roaming signal to contact some nearby antenna tower, but the process

does not require an active call. GSM localization is then done by multi-lateration1

based on the signal strength to nearby antenna masts [136]. Location-based ad-

vertisement is not completely new. Foursquare mobile application allows users

to explicitly ”check in” at places such as bars and restaurants, and the shops can

advertise accordingly. Similarly there are also automaticproximity-based adver-

tisements using GPS or bluetooth. For example, some GPS models from Garmin

display ads for the nearby business based on the GPS locations [142]. ShopAlerts

by AT&T 2 is another application along the same line. On the advertiser side, pop-

1The process of locating an object by accurately computing the time difference of arrival of a
signal emitted from that object to three or more receivers.

2http://shopalerts.att.com/sho/att/index.html?ref=portal
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ular stores such as Starbucks are reported to have attractedsignificant footfalls via

mobile coupons.

To deal with the non-intrusive delivery challenge, we propose user subscription

to advertising services that deliver only afixed numberof ads per month to its

subscribers. The constraint of delivering limited number of ads to each customer

adds the main algorithmic challenge in the AdCell model (details in Section 10.1.1).

In order to overcome the incentive challenge, the WSP can “pay” users to read

ads and purchase based on them through a reward program in theform of credit

for monthly wireless bill. To begin with, both customers andadvertisers should

sign-up for the AdCell-service provided by the WSP. Customers enrolled for the

service should sign an agreement that theirlocation information will be tracked;

but solely for the advertisement purpose. Advertisers (e.g., stores) provide their

advertisements and a maximum chargeable budget to the WSP.

The WSP selects proper ads (these, for example, may depend ontime and dis-

tance of a customer from a store) and sends them (via SMS) to the customers. The

WSP charges the advertisers for showing their ad and also fora successful ad. An

ad is deemed successful if a customer visits the advertised store. Depending on the

service plan, customers are entitled to receive different number of advertisements

per month. Several logistics need to be employed to improve AdCell experience

and enthuse customers into participation. More detailed description of such logis-

tics can be found in an extended version of our paper [1].
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10.1.1 AdCell Model & Problem Formulation

In the AdCell model, advertisers bid for individual customers based on their lo-

cation and time. The triple(k, ℓ, t) wherek is a customer,ℓ is a neighborhood

(location) andt is a time form a query and there is a bid amount (possibly zero)

associated with each query for each advertiser. This definition of query allows ad-

vertisers to customize their bids based on customers, neighborhoods and time. We

assume a customer can only be in one neighborhood at any particular time and thus

at any timet and for each customerk, the queries(k, ℓ1, t) and(k, ℓ2, t) are mu-

tually exclusive, for all distinctl1, l2. Neighborhoods are places of interest such

as shopping malls, airports, etc. We assume that queries aregenerated at certain

times (e.g., every half hour) and only if a customer stays within a neighborhood

for a specified minimum amount of time. The formal problem definition of Adcell

Allocation is as follows:

Adcell Allocation There arem advertisers,n queries ands customers. Adver-

tiser i has a total budgetBi and bidsbij for each queryj. Furthermore, for each

customerh ∈ [1, s], letSh denote the queries corresponding to customerh andch

denote the maximum number of queries fromSh for which advertisements can be

shown.ch is the capacity associated with customerh and is dictated by the AdCell

plan chosen by customerh. Advertiseri paysbi,j if his advertisement is shown for

queryj and if his budget is not exceeded. That is, ifyi,j is an indicator variable
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set to1, when advertisement for advertiseri is shown on queryj, then advertiser

i pays a total amount ofmin(
∑

j yijbij , Bi). The goal of AdCell Allocation is to

specify an advertisement allocation plan given{m,n, s, Sh, ch|h ∈ [1, s]} such

that the total payment
∑

imin(
∑

j yijbij , Bi) is maximized.

The AdCell problem is a generalization of the budgeted adword allocation prob-

lem [35, 125] with capacity constraint on each customer and thus is NP-hard. On-

line AdCell problem also generalizes the so-calledonline secretary problemfor

which no deterministic or randomized online algorithm can get approximation ra-

tio better than1n . The reduction of thesecretary problemto Adcell problem is as

follows: consider a single advertiser with large enough budget and a single cus-

tomer with a capacity of1. The queries correspond to secretaries and the bids

correspond to the values of the secretaries. So we can only allocate one query to

the advertiser.

We can write the AdCell problem as the following integer program in whichyij

is the indicator variable which is1 if queryj is assigned to bidderi and0 otherwise:

maximize.
∑

i

min(
∑

j

yijbij , Bi) (IPBC )

∀j ∈ [n] :
∑

i

yij ≤ 1 (Assign)

∀h ∈ [s] :
∑

j∈Sh

∑

i

yij ≤ ch (Capacity)

∀i ∈ [m],∀j ∈ [m] : yij ∈ {0, 1}
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We refer to the variant of the problem explained above asIPBC . The above integer

program can be relaxed to obtain a linear programming relaxationLPBC , where we

maximize
∑

i

∑

j yijuij with the above constraints (F ), (C) and additional budget

constraint
∑

j yijuij ≤ bi(B). We relax the variablesyij ∈ {0, 1} to yij ≥ 0 to

form the LP relaxationLPBC .

Our algorithm is based on LP rounding. The approximation ratio matches the

previously known bounds for adword allocation in offline setting, where there was

no capacity constraint [35, 125]. Handling “hard capacities”, those that cannot be

violated, is generally tricky in various settings including facility location and many

covering problems [46, 63, 113]. The AdCell problem is a generalization of the

budgeted adword allocation problem, where we additionallyhave hard capacity

constraints on the number of queries that can be received by any customer. The op-

timal LP fractional solution for this problem can be seen as abipartite graph with

bidders and persons forming the two partitions. Edges represent the fractional al-

locations of queries. The essential idea is to first decompose the fractional optimal

solution into a forest and apply the rounding technique of [118] over a carefully

chosen subset of constraints from the original linear program. The problem is sig-

nificantly harder than its uncapacitated counterpart. The selected constraints can

span customers and bidders from different forests; depending on the current state

of the forest, different constraints may need to be chosen and new constraints may

need to be added.
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10.2 Offline Setting

In this section, we give an offline algorithm for the budgetedadword allocation

problem with capacity constraint, that is Adcell with budget and capacity. The ca-

pacity constraint restricts how many queries can be assigned to each customer. The

instances of a single customer represents a set, and thus sets are disjoint and have an

integer capacity associated with them3. We obtain the same approximation factor

of 3
4 for this case as has been shown in [35, 125] without any capacity constraint.

Specifically, we prove the following theorem,

Theorem 10.2.1.Given a fractional optimal solution forLPBC , we can obtain an

integral solution for AdCell with budget and capacity constraints that obtains at

least a profit of
4−maxi

maxj bi,j
Bi

4 of the profit obtained by optimal fractional alloca-

tion and maintains all the capacity constraints exactly.

Our approximation algorithm is based on carefully roundinga linear program-

ming relaxation for the problem. The essential idea of the proposed rounding is to

apply RandMove to the variables of a suitably chosen subset of constraints from

the original linear program.

Our starting point is the LP relaxationLPBC . The constraints “
∑m

i=1 yi,j ≤ 1”

are denoted as Assign constraint, the constraints “
∑n

j=1 bi,jyi,j ≤ Bi” are denoted

as Advertiser constraints and finally “
∑

j∈Sh

∑m
i=1 yi,j ≤ ch” are the Capacity

3When the sets may overlap and have integer hard capacities, no non-trivial approximation can be
obtained; this can be shown via a reduction from maximum independent set.
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constraints. LetOpt denote an optimal solution of the given AdCell problem and

let LPOpt denote the LP optimal value. It follows that the LP costLPOpt is at least

the cost of an optimal solutionOpt.

10.2.1 Rounding Algorithm

Let y∗ denote an LP optimal solution. We begin by simplifying the assignment

given by y∗. Consider a bipartite graphG(B, I, E∗) with advertisersB on one

side, queriesI on the other side and add an edge(i, j) between an advertiseri and

queryj, if y∗i,j ∈ (0, 1). That is, defineE∗ = {(i, j)| 1 > y∗i,j > 0}. Our first

claim is thaty∗ can be modified without affecting the value ofLPOpt such that

G(B, I, E∗) is a forest. The proof follows from Claim 2.1 of [35]; we additionally

show that such assumption of forest structure maintains thecapacity constraints.

Lemma 10.2.2.Bipartite graphG = (B, I, E∗) induced by the edgesE∗ can be

converted to a forest maintaining the optimal objective function value.

Proof. Consider the graphG = (B, I, E∗) and consider one connected component

of it. We will argue for each component separately and similarly.

Cycle Breaking: Suppose there is a cycle in the chosen component.

Since G is bipartite, the cycle has even length. Let the cycle beC =

〈i1, j1, i2, j2, . . . , il, jl, i1〉, that is consider the cycle to start from an advertiser

node. Consider a strictly positive valueα and consider the following update of the

y∗ values over the edges in the cycleC. We addza,b to edge(a, b), where
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R1. zi1,j1 = −β

R2. If we are at an query nodejt, t ∈ [1, l], then

zjt,it+1 = −zit,jt

R3. If we are at an advertiser nodeit, t ∈ [1, l], then

zit,jt = −
bit,jt−1

zjt−1,it

bit,jt

β is chosen such that after the update, all the variables lie in[0, 1] and at least

one variable gets rounded to0 or 1, thus the cycle is broken. Note that the entire

update is a function ofzi1,j1. For any query node, its total contribution in (Assign)

constraint of LP1 remains unchanged. For any advertiser node, excepti1, its con-

tribution in (Advertiser) constraint and thus in the objective function remains the

same. In addition, since the assign constraints remain unaffected, all the capacity

constraints are satisfied. For advertiseri1, its contribution decreases byzi1,j1bi1,j1

and increases byzjl,i1bi1,jl = zi1,j1bi1,jl
bi2,j1bi3,j2 ...bil−1,jl−2

bi2,j2bi3,j3 ...bil−1,jl−1
.

If bi1,j1 ≤ bi1,jl
bi2,j1bi3,j2 ...bil−1,jl−2

bi2,j2bi3,j3 ...bil−1,jl−1
, then instead of addingzjl,i1 on the last edge,

we add somec < zjl,i1 such thatzi1,j1bi1,j1 = cbi1,jl . Thus, we are able to maintain

the objective function exactly. The assign constraint on the last queryjl can only

decrease by this change and hence all the capacity constraints are maintained as

well.

Otherwise,bi1,j1 > bi1,jl
bi2,j1bi3,j2 ...bil−1,jl−2

bi2,j2bi3,j3 ...bil−1,jl−1
. In that case, we traverse the

cycle in the reverse order, that is, we start by decreasing onzi1,jl first and proceed

similarly.
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We now have a collection of trees. There can arise several cases at this stage.

For each of these cases, we identify a set of linear constraints and apply ourRand-

Move step on the variables in the chosen system of linear constraints. We now

specify each of these cases and the system of linear constraints associated with that

case. ForRand-Move to be applicable, we show that our chosen linear system

is underdetermined. For the correctness proof, we show thatall the assign and

capacity constraints are maintained. Some advertiser constraints may get violated,

but in the objective an advertiseri can pay at mostBi. We show indeed the loss

in the objective is at most14 of the optimal objective value. Thus, we obtain a

3
4 -approximation.

Let y denote the LP solution at this stage. There are three main cases to con-

sider:

Case (i).There is a tree with two leaf advertiser nodes.

Case (ii).No tree contains two leaf advertisers, but there is a tree that contains

one leaf advertiser.

Case (iii). No tree contains any leaf advertiser nodes.

Case (i). There is a tree with two leaf advertiser nodes. Consider the

unique pathP connecting the two leaf advertisers sayi0 and il. SupposeP =

〈i0, j1, i1, j2, i2, . . . , jl, il〉. Define ax variable for each edge in the pathP that
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takes values in[0, 1]. Consider the following system of linear constraints,

xit−1,jt + xit,jt = yit−1,jt + yit,jt ∀t ∈ [1, l] (10.2.1)

xit,jtbit,jt + xit,jt+1bit,jt+1 =

yit,jtbit,jt + yit,jt+1bit,jt+1 ∀t ∈ [1, l − 1] (10.2.2)

x ∈ [0, 1]2l (10.2.3)

We applyRand-Move on the above linear system.

Lemma 10.2.3. The linear system defined by Equations 10.2.1 and 10.2.2 is un-

derdetermined, Assign constraints for all queries, Capacity constraints for all sets

and Bidder constraints for all advertisers except the two leaf advertisers are main-

tained.

Proof. The number of constraints of type 10.2.1 isl and the number of constraints

of type 10.2.2 isl − 1. However the number of variables is2l. Constraint 10.2.1

ensures all the assign constraints and hence all the capacity constraints are main-

tained. Constraint 10.2.2 ensures all the advertisers maintain their budget except

probably the two leaf advertisers.

Case (ii). No tree contains two leaf advertisers, but there is a tree that contains

one leaf advertiser. There are several subcases under it. We first consider four

simple subcases.
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Subcase (1):There is a maximal path between two queries, where the two queries

belong to the same set and the set-capacity constraint is non-tight.

Since the path is maximal, the queries at the start and the endof the path are

leaf queries and therefore have non-tight assign constraints. Non-tight naturally

implies the fact that a constraint is not satisfied by equality. Suppose the maximal

path isP = 〈j1, i1, . . . , il−1, jl〉 and let the value of the edge-variables associated

with this path be〈yi1,j1 , yi1,j2 , yi2,j2 , . . . , yil−1,jl−1
, yil−1,jl〉. Thesey values are

treated as constants. Define variables〈xi1,j1 , xi1,j2 , xi2,j2, . . . , xil−1,jl−1
, xil−1,jl〉

associated with these edges ofP . LetS be the set containing the queriesj1 andjl.

Let the capacity ofS bec. In the current solution, considering the rounded variables

as well, let the total allocation of queries from the setS be bes + yi1,j1 + yil−1,jl.

That is,s is the sum of values of the queries inS other thanj1 andjl. Consider the

following system of linear constraints:

xi1,j1 ≤ 1, xil−1,jl ≤ 1 (10.2.4)

xit−1,jt + xit,jt = yit−1,jt + yit,jt ∀t ∈ [2, l − 1] (10.2.5)

xit,jtbit,jt + xit,jt+1bit,jt+1 =

yit,jtbit,jt + yit,jt+1bit,jt+1 ∀t ∈ [1, l − 1] (10.2.6)

xi1,j1 + xil−1,jl ≤ s− c (10.2.7)

x ∈ [0, 1]l+1 (10.2.8)
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We applyRand-Move on the above linear system.

Lemma 10.2.4.The linear system defined for Subcase 1 under Case (ii) is under-

determined andRand-Move on it maintains all the constraints, Assign, Bidder,

Capacity, of LP-1.

Proof. Note that, Constraint (10.2.7) is non-tight. In addition, Constraint (10.2.4)

implies that the leaf queries have non-tight assignment constraint. Now, the number

of variables associated with the above linear-system is2(l − 1) = 2l − 2 and the

number of tightly satisfied linearly independent constraints are2l − 3. Hence, we

can employRand-Move.

Constraint (10.2.5) implies the assignment constraint of the non-leaf queries are

maintained. Constraint (10.2.6) implies the budget constraint of the non-leaf adver-

tisers, and therefore all the advertisers considered by this system, are maintained.

The capacities of all the sets in which non-leaf queries participates are automati-

cally maintained. In addition, Constraint (10.2.7) implies the capacity constraint of

the set involving the leaf queries are maintained as well.

Subcase (2):There is a maximal path between two queries, where the two queries

belong to two different sets and both set-capacity constraints arenon-tight.

This is almost similar to Subcase (1). Since the path is maximal, the

queries at the start and the end of the path are leaf queries and there-

fore have non-tight assign constraints. Suppose the maximal path is P =
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〈j1, i1, j2, i2, . . . , jl−1, il−1, jl〉 and let the value of the edge-variables associated

with this path be〈yi1,j1 , yi1,j2 , yi2,j2 , . . . ,

yil−1,jl−1
, yil−1,jl〉. We treat these values as constants here. Define variables

〈xi1,j1 , xi1,j2 , xi2,j2 , . . . , xil−1,jl−1
, xil−1,jl〉 associated with these edges ofP . The

set constraint involving the queryj1 is non-tight and suppose the total sum of the

values of the queries (rounded and not rounded) belonging tothat set iss + yi1,j1,

while its capacity isc. Similarly, the set constraint involving the queryjl is non-

tight and suppose the total sum of the values of the queries (rounded and not

rounded) belonging to that set iss′ + yil−1,jl, while its capacity isc′. Consider

the following linear system.

xi1,j1 ≤ 1, xil−1,jl ≤ 1 (10.2.9)

xit−1,jt + xit,jt = yit−1,jt + yit,jt ∀t ∈ [2, l − 1] (10.2.10)

xit,jtbit,jt + xit,jt+1bit,jt+1 =

yit,jtbit,jt + yit,jt+1bit,jt+1 ∀t ∈ [1, l − 1] (10.2.11)

xi1,j1 ≤ c− s (10.2.12)

xil−1,jl ≤ c′ − s′ (10.2.13)

x ∈ [0, 1]l+1 (10.2.14)

Note that changes in the linear system from Subcase 1. We apply Rand-Move
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on the above linear system.

Lemma 10.2.5.The linear system defined for Subcase 2 under Case (ii) is under-

determined andRand-Move on it maintains all the constraints, Assign, Bidder,

Capacity, of LP-1.

Proof. The constraints (10.2.12) and (10.2.13) are non-tight and so are 10.2.9. The

number of variables associated with the above linear-system is2(l−1) = 2l−2 and

the number of tightly satisfied linearly independent constraints are2l − 3. Hence,

we employRand-Move.

Constraint (10.2.10) implies the assignment constraint ofthe non-leaf queries

are maintained. Constraint (10.2.11) implies the budget constraint of the non-leaf

advertisers, and therefore all the advertisers consideredby this system, are main-

tained. The constraints (10.2.12), (10.2.13) ensure that we won’t violate the capac-

ity constraint of the sets involving the leaf queriesj1 andjl respectively.

Subcase (3):There is a path (not necessarily maximal path) between two queries,

where the two queries belong to the same set, the set-capacity constraint is tight

but both the queries have non-tight assignment constraints.

Suppose the path isP = 〈j1, i1, j2, i2, . . . , jl−1, il−1, jl〉 and let

the value of the edge-variables associated with this path be〈yi1,j1 ,

yi1,j2 , yi2,j2 , . . . , yil−1,jl−1
, yil−1,jl〉. We treat these values as constants here. De-

fine variables〈xi1,j1 , xi1,j2, xi2,j2 , . . . ,

217



xil−1,jl−1
, xil−1,jl〉 associated with these edges ofP . Let the total fractional assign-

ment of queryj1 bea1 + yi1,j1 < 1 and the total fractional assignment of queryjl

bea2 + yil−1,jl < 1. Here we will apply theCycle Breaking trick. We consider

updates〈zi1,j1 , zi1,j2 , zi2,j2 , . . . , zil−1,jl−1
, zil−1,jl〉 such that

R1. zj1,i1 = −β

R2. If we are at an query nodejt, t ∈ [1, l], then

zjt,it+1 = −zit,jt

R3. If we are at an advertiser nodeit, t ∈ [1, l], then

zit,jt = −
bit,jt−1

zjt−1,it

bit,jt

The value ofβ > 0 is so chosen that ensures all the edge-variables remain in

[0, 1], xil−1,jl ≤ 1 − a2, xi1,j1 ≤ 1 − a1. The entire update is a function ofzj1,i1.

If zj1,i1 ≥ zjl,il−1
, then we apply the above update. Else, we consider the updates

in the reverse direction, starting from the edge(jl, il−1).

Lemma 10.2.6.The update vectorz is nontrivial and the update maintains all the

constraints, Assign, Bidder, Capacity, of LP-1.

Proof. Clearly, all the advertiser nodes maintain their budget dueto rule R3. All

the query nodes, exceptj1 andjl maintain their assign constraint. All the sets that

do not containj1 or jl thus maintain their capacity constraints. We start the update,

by subtracting from the edge(j1, i1) if zj1,i1 ≥ zjl,il−1
. Therefore, the set that

contains bothj1 andjl satisfy its capacity reduced. Otherwise, we start subtracting
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from the edge(jl, il−1, and again the set containingj1 andjl maintains the capacity

constraint, since nowzj1,i1 < zjl,il−1
.

Since,yi1,j1 < 1− a1, yil−1,jl < 1− a2 and all the other variables are in(0, 1),

we can always find aβ > 0 such that eitherxi1,j1 = 1− a1 or xil−1,jl = 1− a2, or

one of them is rounded down to 0, or some other variable in the path is rounded to

0 or 1.

Subcase (4):There is a maximal path with an advertiser on one side, an query in

another with the set containing it being non-tight.

Since we are considering a maximal path, the two end-points must be

leaf nodes. Suppose the maximal path isP = 〈j1, i1, j2, i2, . . . , jl−1, il−1〉

and let the value of the edge-variables associated with thispath be

〈yi1,j1, yi1,j2 , yi2,j2 , . . . , yil−1,jl−1
〉. Let the set in which the queryj1 belongs beS

and let it have a total assignment from the rounded and yet to be rounded variables

equallings + yil−1,jl−1
. In addition, let its capacity bec. Consider the following

linear system:
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xi1,j1 ≤ 1 (10.2.15)

xit−1,jt + xit,jt = yit−1,jt + yit,jt ∀t ∈ [2, l − 1] (10.2.16)

xit,jtbit,jt + xit,jt+1bit,jt+1 =

yit,jtbit,jt + yit,jt+1bit,jt+1 ∀t ∈ [1, l − 2] (10.2.17)

xi1,j1 ≤ c− s (10.2.18)

x ∈ [0, 1]l+1 (10.2.19)

We applyRand-Move on the above linear system.

Lemma 10.2.7.The linear system defined for Subcase 4 under Case (ii) is under-

determined andRand-Move on it maintains the constraints, Assign, Capacity, of

LP-1 as well as the Bidder constraint except possibly for theone leaf advertiser.

Proof. The constraints 10.2.15 and 10.2.18 are non-tight. The number of tightly

satisfied linear independent constraints is therefore at most(l−2)+(l−2) = 2l−4,

whereas the number of variables is2l − 3. HenceRand-Movecan be applied.

Constraint 10.2.16 and 10.2.15 ensure that all the assign constraints for the

queries are maintained. Constraint 10.2.17 ensures the advertiser constraints are

maintained for all the advertisers except possibly foril−1. Constraint 10.2.16 and

10.2.18 ensure that all the capacity constraints are maintained.

As long as Case (i) or (1-4) subcases of Case (ii) apply, we continue applying
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them. Also at any time, if we find the linear-system composed of all the tightly

satisfied linearly independent constraints of LP-1 for any tree becomes underde-

termined, we applyRand-Move. When neither subcase (1)-(4) or Case (i) apply,

or Rand-Move can not be applied to the whole system, we have the following

properties of the resulting forest structure:

1. (Case 1 does not apply): No two leaves are advertisers. So there can be at

most one leaf that is an advertiser in any tree.

2. (Subcase 3 does not apply): No two queries that are non-tight and belong to

the same set with tight capacity are in the same tree. Therefore, each tree can

contain only one non-tight query from a tight set.

3. (Rand-Move does not apply to theLPBC constraints for any single tree):

The number of tightly satisfied linearly independent constraints from each

tree is at least as many as the number of variables.

4. (Subcase 1 and 2 do not apply): No two leaves that are queries belong to the

same set. Also among the leaves that are queries, at most one can belong to

a set that has non-tight capacity constraint. In essential,there can be only

one leaf that is an query and that belongs to a set that has non-tight capacity

constraint.

5. (Subcase 4 does not apply): If there is a leaf node that is anadvertiser in a

tree, all other leaf nodes must be queries and must be part of sets that have
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tight capacity constraint.

Subcase (5):None of subcases (1)-(4) apply.

This is the most nontrivial subcase. Denote the tree that contains a leaf ad-

vertiser node byT1 and leti1 be the advertiser that is a leaf. Consider a maximal

path starting fromi11. Since Case (i) or Subcases (1-4) do not apply, the other leaf

end-point is an query, sayj1l1 , that belongs to setS1 and setS1 has tight capacity

constraint. Of course, the queryj1l1 has non-tight assign constraint since it is a leaf

node. Let the path be as follows:

P1 = 〈i11, j11 , i12, j12 , . . . , i1l1−1, j
1
l1−1, i

1
l1 , j

1
l1〉.

Since subcase 3 does not apply, treeT1 does not contain any other non-tight

query fromS1. Now capacities are always integer and setS1 has tight capacity

constraint. This implies that setS1 must contain another non-tight query and that

non-tight query must belong to a different tree. Denote thissecond tree byT2 and

call this another non-tight query ofS1 by j21 . If T2 contains a leaf node that is an

advertiser, consider the path fromj21 to that advertiser node. Say the path is,

P2 = 〈j21 , i21, j22 , . . . , i2l2−2, j
2
l2−1, i

2
l2−1, j

2
l2 , i

2
l2〉.

222



Consider a combined path〈P1, P2〉.

〈P1, P2〉 = 〈i11, j11 , . . . , j1l1−1, i
1
l1 , j

1
l1 , j

2
1

︸ ︷︷ ︸
, i21, j

2
2 , . . . , j

2
l2 , i

2
l2〉.

Essentially this combined path is thought of a single path ending at two leaf

advertisers. We apply the rounding of Case (i) in this scenario with a slight change

in handling the job nodes. We rewrite the linear system for convenience.

xi1t−1,j
1
t
+ xi1t ,j1t = yi1t−1,j

1
t
+ y1it,j1t

∀t ∈ [1, l1 − 1] (10.2.20)

xi2t−1,j
2
t
+ xi2t ,j2t = yi2t−1,j

2
t
+ y2it,j2t

∀t ∈ [2, l2] (10.2.21)

xi1l1 ,j
1
l1

≤ 1, xi21,j21 ≤ 1 (10.2.22)

xi1l1 ,j
1
l1
+ xi21,j21 ≤ yi1l1 ,j1l1 + yi21,j21 (10.2.23)

xiat ,jat biat ,jat + xiat ,jat+1
biat ,jat+1

= yiat ,jat biat ,jat + yiat ,jat+1
biat ,jat+1

∀(t, a) ∈ ([2, l1], 1) ∪ ([1, l2 − 1], 2) (10.2.24)

x ∈ [0, 1]2l1+2l2−2 (10.2.25)

We applyRand-Move as usual. Note that, essentially we are assumingj1l1 and

j21 as a single node while writing the constraint 10.2.23.

Lemma 10.2.8. The linear system defined above in underdetermined and Assign

constraints for all queries, advertiser constraints for all advertisers excepti11 and

i2l2 and Capacity constraints for all sets are maintained.
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Proof. Again the number of linearly independent tightly satisfied constraints are

(l1− 1)+)(l2− 1)+1+(l1− 1)+ (l2− 1) = 2l1 +2l2− 3 from 10.2.20, 10.2.21,

10.2.23 and 10.2.24. The number of variables is2l1 + 2l2 − 2. ThusRand-Move

can be applied. From constraints 10.2.20, 10.2.21, 10.2.22we get that all the assign

constraints and all the capacity constraints except for setS are satisfied. Constraint

10.2.23 ensures that the capacity constraint of the setS is maintained. Constraint

10.2.24 maintains all the advertiser constraints except for advertisersi11 andi2l2 .

When, the above does not apply, then inT2 there is no leaf node that is an

advertiser. If there is a leaf node that is an query but the query is in a set that

has non-tight capacity constraint, then we consider that path P ′
2 (say) (we use the

same symbols as inP2 for P ′
2, but it is not to be confused withP2, since we are

consideringP ′
2 when no such path likeP2 exists):P ′

2 = 〈j21 , i21, j22 , . . . , i2l2 , j2l2〉.

Consider a combined path〈P1, P
′
2〉 as before, that is we treatj1l1 andj21 as a

single node while maintaining their total contribution to the setS. Note because of

considering the combined path〈P1, P
′
2〉, this becomes identical to the subcase 4.

So we apply the rounding on this combined path as in subcase 4.The correctness

of this rounding step also follows from Lemma 10.2.7.

Otherwise, all the leaf nodes inT2 are queries and the sets containing them have

tight capacity constraint. Follow a maximal path fromj21 to one such leaf node, say

j2l , and let it belong to setS2. Denote the maximal path byP ′′
2 .

Since subcase 3 does not apply toT2, T2 does not contain another non-tight
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query fromS2. But, the capacity ofS2 is integer and thus it must have another

non-tight query. Call that query to bej31 and denote the tree containing it to beT3.

If T3 happens to be same asT1, then consider the pathP ′ in T1 betweenj31 and

j1l1 . Now consider the combined path〈P ′, P ′′
2 〉. In this combined path the two end-

points belong to two non-tight queries from setS2 that has tight capacity constraint.

Thus, this is identical to subcase 3 and we apply the roundingof subcase 3. The

correctness follows again from Lemma 10.2.6.

Otherwise,T3 is a tree different from bothT1 andT2 and we continue similarly

from j31 . Thus, if at any point of time, we reach a leaf node that is an advertiser

or an query in a non-tight set, or an query in a tight-set but for which the another

non-tight query belongs to a tree already visited, we can continue our rounding.

However, it may happen that a tight set contains more than twonon-tight

queries. In that case, it is possible to visit a tight set morethan twice in our

process. So suppose we are at treeTg and while considering maximal path,

Pi = 〈jg1 , ig1, jg2 , . . . , iglg−1, j
g
lg
〉, we get tojglg that belongs to a setSg that is al-

ready visited. That is, we have already seen two non-tight queries as end-points

(one at the end of a maximal path and the other as the start of a maximal path

in two consecutive trees) of two maximal paths say inTh andTh+1, h + 1 < g.

Let the maximal paths that have been considered in treesTh+1, Th+2, . . . , Tg be

Ph+1, Ph+2, . . . , Pg. Consider the combined path〈Ph+1, Ph+2, . . . , Pg〉 and note

that in this combined path the two end-points belong to two non-tight queries from
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setSg that has tight capacity constraint. Thus we apply the rounding of subcase 4.

Indeed it is not required to visit a non-tight query for the third time as an end-point

of a maximal path. If at any time in this process, we visit a third non-tight query

from a set with tight capacity constraint, we can write a combined path with two

end-points containing non-tight queries from that set and apply rounding of subcase

3.

Otherwise, all the trees visited are different and we keep oncontinuing this

process. Since the number of trees are at mostmin {n,m}, this process must ter-

minate in some treeT t and at some leaf query nodejtlt within a tight setSt. Since

St has at least two non-tight queries, the other non-tight query, sayj, must belong

to some treeT t′ , t′ < t. Considering a path fromj to jt
′

lt′
and then following the

maximal paths inT t′+1, T t′+2, . . . , T t, we again get a combined path on which we

can apply rounding of subcase 3.

Case (iii). No tree contains any leaf advertiser nodes.This case is similar to

Case (ii). We start with a leaf query, possibly with a leaf query that is in a non-

tight set if one exists, and obtain a combined path on which wecan apply one of

Subcases (1)-(4).

This completes the description of the rounding method. At every step, the

entire rounding procedure takespoly(n,m) time and at each step we either make a

constraint tight or round a variable. Thus we are guaranteedto complete rounding

all the variables to integers in polynomial number of steps.

226



From the above discussion and Lemma 10.2.3-10.2.8, we get the following,

Lemma 10.2.9.The rounding procedure maintains all the assign and the capacity

constraints. An advertiser node maintains the advertiser constraint as long as in

the current fractional solution, it is connected to two or more queries with nonzero

fractional values.

Now, we need to prove that our expected approximation ratio is
4−maxi

bi,max
Bi

4 ,

where bi,max = maxj bi,j. We can always assumebi,max ≤ Bi without loss

of generality for alli, we get a3/4 approximation. If bids are small, that is

maxi
bi,max

Bi
≤ ε, then we get a(4− ε)/4 approximation.

Theorem [10.2.1].Given a fractional optimal solution for LP1, we can obtain

an integral solution for AdCell with capacity constraints on disjoint sets that ob-

tains at least a profit of
4−maxi

bi,max
Bi

4 of the profit obtained by optimal fractional

allocation and maintains all the capacity constraints exactly.

Proof. Let P 0
i denote the payment made by advertiseri as assigned by LP1. In

our rounding process, when an edge-variable gets rounded to0 or 1, it is removed

permanently or assigned permanently. The forest structurethat we consider always

contains only the fractional edge-variables. If the advertiser i never has degree

1 in the forest, then by our rounding procedure its final payment is same asP 0
i .

Therefore, suppose at some stages, advertiseri becomes a leaf node and leta be the

so far rounded payment oni and letb be the unique query assigned to advertiseri

with fractional assignmentp and bidd. Note that, alla, b, p, d are random variables.
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If P s
i denote the total payment (fractional and integral) done by advertiseri at the

end of thesth iteration, then we have

P s
i = a+ dp = P 0

i

Once an advertiser becomes a leaf node, it only takes part inRand-Move. Let

P s+1
i , P s+2

i , . . . , P t
i denote the payment rounded on advertiseri at the end of the

iterationss + 1, s + 2, . . . , t. Assumet is the last iteration. Then we have from

property[P1] of Rand-Move that

E
[

P g
i |P

g−1
i = a+ dpg−1

]

= a+ dpg−1

for g > s. Thus

E [P g
i ] =

∫

x E
[

P g
i |P

g−1
i = a+ dx

]

Pr
[

P g−1
i = a+ dx

]

=

∫

x a+ dxPr
[

P g−1
i = a+ dx

]

= E
[

P g−1
i

]

.

Hence we have

E
[
P t
i

]
= E

[
P t−1
i

]
= · · · = E [P s

i ] = a+ dp = P 0
i

Then it directly follows from the above,

With probability 1 − p the rounded payment on advertiseri is a

and with probability p the rounded payment isa + d, since E
[
P t
i

]
=

aPr [edge(i, b) is rounded to0] + (a+ d)Pr [edge(i, b) is rounded to1].
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Thus the final expected profit from advertiseri is (1 − p)min {Bi, a} +

pmin {Bi, a+ d}. The profit obtained fromi in the optimal LP solution is

min {Bi, a+ dp}. Therefore, by the linearity of expectation, the expected approx-

imation ratio is the maximum possible value of

(1− p)min {Bi, a}+ pmin {Bi, a+ d}
min {Bi, a+ dp} .

This part of the proof is similar to the analysis of Theorem 1 of [125]. Let

bi,max = maxj bi,j . We can assume without loss of generality thatbi,max ≤ Bi for

all i. It is easy to see that ifa > Bi or a + d < Bi, then the above approximation

ratio is1. Hence assume,a < Bi < a + d. We thus have the approximation ratio

to be

r =
a(1− p) + pBi

min {Bi, a+ dp}

Now considering the two cases,Bi ≤ / > a+ dp, we get the following result:

(1− p)min {Bi, a}+ pmin {Bi, a+ d}
min {Bi, a+ dp} ≤

4−maxi
bi,max

Bi

4

Since we can assume without loss of generalitybi,max ≤ Bi for all i, we get

a 3/4 approximation. If bids are small, that ismaxi
bi,max

Bi
≤ ε, then we get a

(4− ε)/4 approximation.
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CHAPTER 11

Covering with Hard Capacities

In this chapter, we consider classical covering problems, such as vertex cover and

set cover with hard capacities. In hard-capacitated vertex(set) cover problem each

vertex (set) has a capacity and the number of edges (elements) it covers cannot

exceed that given capacity. In addition, the available copies of each vertex (set)

is bounded. The problem was first studied by Chuzhoy and Naor [46], where they

gave a3-approximation algorithm for the vertex cover problem withhard capacities

on unweighted simplegraphs. This result was later improved to a2-approximation

by Gandhi et al. [63]. In contrast, for weighted graphs, the problem is as hard as

the set cover problem. These capacitated covering problemsbelong to the general

paradigm of submodular covering. Using a result by Wolsey [138], logarithmic

approximation algorithms can be derived for them.

The set cover hardness precludes the possibility of a constant factor approxima-

tion for the hard-capacitated vertex cover problem on weighted graphs. However,

it was not known whether a better than logarithmic approximation is possible on
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unweighted butmultigraphs, i.e., graphs that may contain parallel edges. Neither

the approach of Chuzhoy and Naor, nor the follow-up work of Gandhi et al. can

handle the case of multigraphs. In fact, achieving a constant factor approximation

for hard-capacitated vertex cover problem on unweighted multigraphs was posed

as an open question in Chuzhoy and Naor’s work.

In this chapter, we describe the first constant factor approximation algorithm

for the vertex cover problem with hard capacities on unweighted multigraphs. We

also show anO(f)-approximation algorithm for the unweighted set cover problem

with hard capacities, where an element belongs to at mostf ∈ N sets. Vertex cover

is a special case of the above set cover problem wheref = 2. A crucial ingredient

of our method is a reduction to the multi-set multi-cover problem for which we

obtain a new approximation algorithm.

11.1 Capacitated Vertex Cover and Set Cover Problem

We are given a ground set of elementsU = {a1, a2, . . . , an} and a collection of

subsets ofU, S = {S1, S2, . . . , Sm}. Each setS ∈ S has a weightw̃(S) ∈ R+

and a positive integral capacityk(S) ∈ N. In addition, for each setS ∈ S, at

mostm(S) ∈ N copies of it are available. A solution for the capacitated covering

problem containsx(S) copies of setS ∈ S, wherex(S) ∈ {0, 1, 2, . . . ,m(S)}

such that there is an assignment of at mostx(S)k(S) elements to setS and all ele-

ments are covered by the assignment. The goal is to pick a solution that minimizes
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∑

S∈S w̃(S)x(S).

A special case of the capacitated set cover problems is thevertex cover problem

with hard capacities. In this version of the problem, we are given a graphG =

(V,E) with n vertices andm edges, a weight functioñw : V → R+, a capacity of

k(v) ∈ N and the number of available copiesm(v) ∈ N for each vertexv ∈ V.

The goal again is to pickx(v) ∈ [0,m(v)] copies ofv and orient every edge to

one of its end-points such that at mostk(v)x(v) edges are oriented towardsv and

∑

v∈V w̃(v)x(v) is minimized.

Capacitated problems come in two flavors: soft-capacitatedin which each set

has an unbounded number of copies and hard-capacitated where the number of

available copies of each set is restricted. Soft-capacitated problems appear easier

than their hard-capacitated counterparts and have been studied under the context of

vertex cover [64,70], facility location [43,103,104], k-median [25] etc.

Hard-capacitated vertex cover and set cover problems were first studied by

Chuzhoy and Naor in [46]. They show when the weight function is arbitrary,

the vertex cover problem with hard capacities is as hard as the set cover prob-

lem. Therefore, assumingP 6= NP, nothing better than alog n-approximation

can be obtained [59,101], whereas for the uncapacitated vertex cover problem, the

best known approximation ratio is2− log logn
2 logn [23, 78]. A2-approximation is also

known for the case of soft capacities [70]. On the other hand,the hard-capacitated

set cover problem belongs to the general paradigm of submodular covering for
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which Wolsey gave a(1 + log Smax)-approximation, whereSmax is the maximum

number of elements covered by any set [138]. When each element belongs to at

mostf sets, there exists a simplef -approximation algorithm for uncapacitated set

cover problem. However, in presence of hard capacities, nothing better than the

generallog n bound is known.

Interestingly, whilelog n hardness seems to apply to the vertex cover problem

in presence of hard capacities, if we consider simple unweighted graphs, much

better results can be achieved. Chuzhoy and Naor in [46] gavea 3-approximation

algorithm for hard-capacitated vertex cover problem on unweighted simple graphs,

which was later improved to a2-approximation by Gandhi et al. [63]. Vertex cover

is a special case of set cover problem wheref = 2. This naturally raises the

question whether it is possible to obtain anO(f) approximation for unweighted

set cover problem with hard capacities, where each element belongs to at mostf

sets. The approaches of [46, 63] do not extend to case whenf > 2. In fact, the

results of [46,63] only hold forsimplegraphs.Obtaining a constant factor approx-

imation algorithm for the hard-capacitated vertex cover problem for unweighted

multigraphs was posed as an open question in[46]. In this paper, we resolve that

question, and extending our approach, we also obtain anO(f)-approximation for

the unweighted set cover problem with hard capacities for arbitrary values off .

Capacitated problems arise naturally in applications where there are resource

constraints. Guha et al. [70] describes a research project undertaken by a bio-
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technology company Glycodata for drug design and improvement of known drugs,

where the underlying problem was exactly a capacitated vertex cover instance. Mo-

tivated by crew-scheduling [56, 117] and by the fact that servers often have lim-

its on how many jobs can be assigned to them, [41, 88, 137, 139,144] study the

classical unrelated parallel machine scheduling [96] and generalized assignment

problem [122] with hard capacity bounds on machines. Recently, [1] considers

a capacitated version of the budgeted allocation problem [35, 125] that arises in

mobile advertising scenario. Capacitated facility location and k-median problems

have been an active area of research [22, 25, 43, 43, 47, 66, 102–104, 113, 143] and

frequently appear in applications involving placement of warehouses [48], caches

on the web [18, 97, 107] and as a subroutine in several networkdesign proto-

cols [71, 72, 86]. Non-metric capacitated facility location problem is a generaliza-

tion of the hard-capacitated set cover problem for which Bar-Ilan et al. [22] gave

anO(log n + logm)-approximation. In this problem, there arem facilities andn

clients; there is a cost associated for opening each facility and each client connects

to one of the open facility paying a connection cost while thenumber of clients

that can be assigned to an open facility remains bounded by its capacity. When,

the connection costs are either0 or ∞, we get the set cover problem with hard

capacities.

In several set cover instances that occur in practice, an element only belongs

to few sets. In such settings, af -approximation for set cover is much desirable.
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In [88], Khuller et al. study a scheduling problem motivatedby issues of energy

savings in data centers. In data centers, each data is replicated asmall number

of times (generally3 to 4 times). Each job has a data requirement and thus can be

executed only on3 to4machines. These data centers are provisioned to handle high

work loads during peak demand periods. However, since the work load on modern

cloud computing platform is very cyclical with infrequent peaks and deep valleys,

much energy can be saved, if the machines can be shut down selectively during the

low work period. This observation led to the following question. Suppose, there

arem machinesM andn jobs J, where each job can be processed on a subset

of machines and its processing time may be machine-dependent. Each machine

consumes a fixed amount of energy to be activated and the goal is to minimize the

total cost of activation while maintaining a bound on the maximum load (sum of

the processing times of the jobs assigned to a machine). Whenprocessing times

are arbitrary, no approximation is possible without violating the maximum load

[96,122]. In [88], Khuller et al. provide a(lnn+ 1) approximation algorithm that

violates the maximum load by a factor of2. On the other hand, if each job has

some fixed processing timep, then, as we know, each job can be scheduled only

on f(= 3 or 4) machines; we obtain the hard-capacitated set cover problemwith

elements belonging to at mostf sets.

Our algorithms for the hard-capacitated versions of both vertex cover (Section

11.2) and set cover (Section 11.4) are based on rounding linear programming (LP)
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relaxations. We utilize theLP-structure to decompose the problem into two simpler

instances. Rounding on each of these instances exploits their specific nature. The

approach of [46, 63] cannot handle the vertex cover problem with hard capacities

on multigraphs. Their algorithms are randomized in nature and presence of paral-

lel edges makes some of the random variablespositively correlated. This hinders

the application of required concentration inequalities that are needed to obtain the

desired result with their procedure. For the same reason, their algorithm does not

extend to set cover problem forf > 2. In this paper, we are able to overcome that

barrier. In the process, we also develop a new algorithm for multi-set multi-cover

problem (Section 11.3),

Related Works

Set cover and vertex cover are probably two most well-studied NP-hard problems

and the reader is referred to the surveys in [42, 79, 135]. Both of their hard-

capacitated versions are examples of more general submodular covering problem

for which Wolsey gave a logarithmic approximation algorithm [138]. Hence [138]

gave the first non-trivial approximation algorithm resultsfor both the set cover and

vertex cover problem with hard capacities. See [22] for a generalization of Wolsey’s

approach.

A problem closely related to hard-capacitated set cover problem is the capac-

itated facility location problem. When the connection costforms a metric, the
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problem is known as metric capacitated facility location problem. For this prob-

lem, Ṕal et al. [113] gave a(9 + ε)-approximation using local search which was

later improved to(8 + ε) by [102] and then to(6 + ε) by [66, 143]. In contrast,

no constant factor approximation algorithm is known for metric k-median prob-

lem in presence of capacities, even when the capacities are soft. Bartal et al. [25]

gave a bicriteria approximation algorithm for soft-capacities where the number of

facilities opened is slightly more thank. Chuzhoy and Rabani [45] provided a dif-

ferent bi-criteria approximation for the hard-capacitated case where capacities are

allowed to be violated by a constant factor.

A variation of set cover problem is the multi-set multi-cover problem. In this

problem, each set is in fact a multi-set and each element has ademand. Multi-

set multi-cover problem is also an instance of submodular covering problem, and

therefore alog n-approximation result is known for it [89, 138]. Our resultsin

this paper for hard-capacitated vertex cover and set cover problem are based on

providing a new algorithm for the multi-set multi-cover problem.

11.2 Vertex Cover on Multigraphs with Hard Capacities

In this section, we describe a constant factor approximation algorithm for the vertex

cover problem with hard capacities on unweighted multigraphs. We assume each

vertex has unit multiplicity (m(v) = 1, ∀v ∈ V(G)), that is, for each vertex,

exactly one copy is available. The more general case, where each vertex may have
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arbitrary number of copies is handled in Section 11.4. Our starting point is the

following linear programming relaxation.

minimize
∑

v∈V

x(v) (LPVC)

subject to

y(e, u) + y(e, v) = 1 ∀ e = (u, v) ∈ E, (11.2.1)

y(e, v) ≤ x(v), y(e, u) ≤ x(u) ∀e = (u, v) ∈ E, (11.2.2)

∑

e=(u,v)

y(e, v) ≤ k(v)x(v) ∀v ∈ V, (11.2.3)

0 ≤ x(v), y(e, v), y(e, u) ≤ 1 ∀ v ∈ V, ∀e = (u, v) ∈ E. (11.2.4)

Herex(v) is an indicator variable, which is1 if vertex v is chosen and0 other-

wise. Variablesy(e, u) andy(e, v) are associated with edgee = (u, v). y(e, u) = 1

( y(e, v) = 1 ) indicates edgee is assigned to vertexu ( v ). Constraints (11.2.1)

ensure each edge is covered by at least one of its end-vertices. Constraints (11.2.2)

imply an edge cannot be covered by a vertexv, if v is not chosen in the solution.

The total number of edges covered by a vertexv is at mostk(v) if v is chosen and0

otherwise (constraints (11.2.3)). We relax the variablesx(v), y(e, v) to take value

in [0, 1] in order to obtain the desiredLP-relaxation. The optimal solution ofLPVC

denoted byLPVC(OPT) clearly is a lower bound on the actual optimal costOPT.
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Lemma 11.2.1. LPVC(OPT) ≤ OPT, whereOPT denotes the optimal cost for

the hard-capacitated vertex cover problem on unweighted multigraphs with unit

multiplicities.

11.2.1 Rounding Algorithm

Let (x∗, y∗) denote an optimal fractional solution ofLPVC. We create a bipartite

graphH = (A,B,E(H)), whereA represents the vertices ofG, B represents the

edgesof G1and the linksE(H) correspond to the(e, v) variablese ∈ B, v ∈ A with

non-zeroy∗ value2. Eachv ∈ A(H) is assigned a weight ofx∗(v). Each link(e, v)

is assigned a weight ofy∗(e, v). We now modify the link weights in a suitable

manner to decompose the link sets ofH into two graphsH1 andH2. The special

properties ofH1 andH2 make the rounding process relatively simpler.

• H1 is a forest.

• In H2, if (e, v) ∈ E(H2), then weight of link(e, v) is equal to the weight ofv.

A moment’s reflection shows the usefulness of such a property, essentially,

in H2, we can ignore the hard capacity constraints altogether.

We now describe the decomposition procedure and the rounding steps in each

of H1 andH2.

1We often refer a vertex inB(H) by edge-vertex to indicate it belongs toE(G).
2In order to avoid confusion between edges ofG with edges ofH, we refer toE(H) by links.
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Step 1. ConstructingH1 andH2. H1 andH2 contain the same set of vertices asH.

We start by settingE(H1) = E(H) andE(H2) = ∅. We remove all links and vertices

from H1 with weight0. Further, for any link(e, v), if y∗(e, v) = x∗(v), we move

(e, v) fromH1 toH2. Therefore, after this initial stage, for all links(e, v) ∈ E(H1),

y∗(e, v) < x∗(v) and for all links(e′, v′) ∈ E(H2), y∗(e′, v′) = x∗(v′).

While there is a cycleC = (v1, e1, v2, e2, . . . , vl, el, vl+1 = v1) in H1, we select

anε > 0, and sety∗(vi, ei) = y∗(vi, ei) + ε andy∗(vi+1, ei) = y∗(vi+1, ei) − ε

for i = 1, 2, . . . , l. The choice ofε is such that after modification, all link weights

satisfy constraints (11.2.2) and (11.2.4), and at least oneof them is tight. That is,

for at least oneej ∈ C, eithery∗(vj , ej) = x∗(vj) or y∗(vj+1, ej) = x∗(vj+1) or

y∗(vj , ej) = 0 or y∗(vj+1, ej) = 0. We can always find such anε > 0. New y∗

is a feasible solution forLPVC. We move all links(e′, v′) that satisfyy∗(e′, v′) =

x∗(v′) to H2, and drop any link whose weight becomes0. Any isolated node is

dropped as well. Choice ofε guarantees that at least one link fromH1 is either

dropped or moved; so the cycle is broken.

Proceeding in this fashion, after at most|E(H1)| steps, we getH1 andH2 such

that

• H1 is a forest and for each nodev ∈ A(H1) and link (e, v) ∈ E(H1),

y∗(e, v) < x∗(v).

• In H2, for each nodev ∈ A(H2) and link(e, v) ∈ E(H2), y∗(e, v) = x∗(v).
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Since,x∗ does not change, objective function value ofLPVC remains unchanged in

the process.

Step 2. Rounding onH2.

We discard all isolated vertices fromH2. Let η ≥ 2 be the desired approxi-

mation factor. We select all vertices inA(H2) with value ofx∗ at least1η . Let us

denote the chosen vertices byD. Then,

D = {v | v ∈ A(H2), x
∗(v) ≥ 1

η
}.

For every edge-vertexe = (u, v) ∈ B(H2), if v (or u) is in D, and(e, v) ∈

E(H2) (or (e, u) ∈ E(H2)), then we sety∗(e, v) = 1 (or y∗(e, u) = 1). That is,

we assigne to v, if the link (e, v) is in E(H2) andv is in D, else ifu ∈ D and

(e, u) ∈ E(H2), the edgee is assigned tou.

Observation11.2.2. From constraints (11.2.3),
∑

e=(u,v) y(e, v) ≤ x(v)k(v).

Therefore,
∑

e=(u,v)
y(e,v)
x(v) ≤ k(v), and hence inH2, after the assignment of edges

to vertices inD, all vertices maintain their capacity.

In fact, inH2, capacity constraints become irrelevant.Whenever, we decide to

pick a vertex inA(H2), we can immediately cover all the links inE(H2) incident on

it.

All edges with both links inE(H2) get covered at this stage. In addition, if

e ∈ B(H2) has only one link(e, v) ∈ E(H2), butx∗(v) = y∗(e, v) ≥ 1
η , then since
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Edges with both end-points in ��

Edges with one end point in ��

Original vertices

Dangling Edges

Fig 1a. Structure of  ��, dangling edges are colored black and 

connected by dashed lines, edges with both end-points in ��		

are  colored white and connected by solid lines.

………………………………………………………

…

Nodes in ��	 that have not been selected in �

Fig 1b. Structure of  �1		after the edges with two  

end points in �1		have been assigned.

v ∈ D, e gets covered. Therefore, the uncovered edges after this step either have

no link in E(H2) or are fractionally covered to an extent less than1
η in H2.

Step 3. Rounding onH1.

H1 is a forest; edge-vertices inH1 either have both or one link inE(H1). Re-

member that, while the vertices ofH1 andH2 may overlap, the link sets are disjoint.

Edge-vertices inB(H1) with only one link inH1 are calleddanglingedges. We root

H1 arbitrarily at some node ofA(H1). This naturally defines a parent-child relation-

ship. Figure (1a) depicts the structure ofH1. Dangling edges are shown by dashed

lines.

Step 3a.Rounding edges with both links inH1.

Algorithm (1) describes the procedure to assign edge-vertices that have both

links in E(H1).

We first select a collection ofD′ vertices fromA(H1) \ D with x∗ value at

least 1η . Edge-vertices inB(H1) that have their children inD′ get assigned to their

children. In Algorithm (1), for each vertexv ∈ A(H1), we useT(v) to denote the

set of children edge-vertices that are not assigned in step (4). We selectt(v) =
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Algorithm 1 Assigning edges with two links in H1

1: let D′ = {v ∈ A(H1) | x∗(v) ≥ 1
η}, select all the vertices inD′.

2: for each edge-vertexe with two links inH1 do
3: if the child vertex ofe is selected inD′ then
4: assign e to the selected child vertex.
5: end if
6: end for
7: let T(v) denote the set of unassigned edge-vertices incident onv ∈ A(H1) with

both links inH1.
8: select any t(v) = ⌈∑e=(u,v)∈T(v) y

∗(e, u)⌉ vertices from the children of the
edge-vertices inT(v), andassign the correspondingt(v) edge-vertices inT(v)
to these selected children vertices. Ifv′ is a newly selected vertex in this step
and there are edges that have links incident onv′ in E(H2), then assign those
edges tov′ as well.

9: assign the remaining edge-vertices fromT(v) to v.

⌈∑e=(u,v)∈T(v) y
∗(e, u)⌉ vertices from the children of the edge-vertices inT(v).

We assign the correspondingt(v) edge-vertices inT(v) to these newly selected

children vertices. Rest of the edges inT(v) are assigned tov.

Step 3b.Rounding dangling edges, i.e., with one link inH1.

After Algorithm 1 finishes, letL(v) denote the set of unassigned dangling edge-

vertices connected tov, and letl(v) =
∑

e=(u,v),e∈L(v) y
∗(e, u). L(v) are the leaf

edge-vertices ofH1. We first have a lemma that shows after the edge-assignment

in Step 2 and 3a, we still can safely assign at least|L(v)| − ⌈l(v)⌉ edges fromL(v)

to v without violating its capacity.

Lemma 11.2.3.Each vertexv ∈ A(H1) can be assigned|L(v)|−⌈l(v)⌉ leaf edges-

vertices without violating its capacity.
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Proof. Suppose,v belongs toH2 as well and is selected inH2. Then,

∑

(e,v)∈E(H2)

x∗v +
∑

(e,v)∈H1

y∗(e, v) ≤ k(v)x∗(v).

Thus,

∑

(e,v)∈E(H1)

y∗(e, v) = (k(v) − |{(e, v) ∈ E(H2),∀e}|)x∗(v).

Now, (k(v) − |{(e, v) ∈ E(H2),∀e}|) is an integer, and we denote it byk′(v).

Let us assumev ∈ D′ first. Let the fractional value of the link connectingv to

its parent edge-vertex inH1 beb. The capacity ofv is k′(v) ≥ ⌈b+ |T(v)|− t(v)+

|L(v)|− l(v)⌉. The number of edges assigned tov is 1+ |T(v)|−⌈t(v)⌉+ |L(v)|−

⌈l(v)⌉.

If t(v) andl(v) are both integers, then clearly1 + |T(v)| − ⌈t(v)⌉ + |L(v)| −

⌈l(v)⌉ < k′(v).

If t(v) is an integer, butl(v) is not an integer, thenk′(v) ≥ |T(v)| − t(v) +

|L(v)|−⌊l(v)⌋ which is again at least the number of edges assigned tov. Similarly,

the capacity constraint holds whenl(v) is an integer, butt(v) is not.

If l(v) andt(v) are both non-integers, then⌈t(v)⌉+⌈l(v)⌉ > ⌊l(v) + t(v)⌋+1.

Capacityk′(v) ≥ |T(v)|+|L(v)|−⌊t(v) + l(v)⌋, and the number of edges assigned

to v is at most1+|T(v)|−⌈t(v)⌉+|L(v)|−⌈l(v)⌉ ≤ |T(v)|+|L(v)|−⌊t(v) + l(v)⌋.

Thus, in all cases, the capacity constraint ofv is maintained.

If v /∈ D′, then|L(v)| = 0, because otherwise leaf edge-vertices are assigned
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to v at least to an extent of1 − 1
η > 1

η . Therefore,x∗(v) > 1
η , leading to a

contradiction. Hence,|L(v)|must be0. In this case, at most one parent edge-vertex

can be assigned to v, hence its capacity constraint is maintained.

The edge-vertices inL(v) are leaves ofH1, they are connected tov and have

their other link inE(H2). We first pickone vertexfrom A(H2) such that it covers

at least one edge fromL(v). Let us denote this vertex byh2(v) and let it cover

p2(v) ≥ 1 parallel edges(v, h2(v)). If l(v) ≤ p2(v), then following Lemma

11.2.3, rest of the edge-vertices ofL(v) can be assigned tov, and we exactly do

that.

Else, l(v) > p2(v). Let R(v) denote the vertices ofA(H2) \ h2(v) that are

end-points of edges inL(v). If we pick enough vertices fromR(v) such that they

cover at leastl′(v) = l(v)− p2(v) + 1 leaf-edges, then again from Lemma 11.2.3,

rest of the edges fromL(v) can be assigned tov. We letl′(v) = 0, if l(v) ≤ p2(v).

We scale up all thex∗ variables of
⋃

v∈A(H1)
R(v) by a factor of 1

1− 1
η

. We also

scale up the correspondingy∗ link variables by a factor of 1
1− 1

η

. Let (x̄, ȳ) denote

this scaled up variables. Then,

∑

e=(u,v)∈
L(v)\(v,h2(v))

ȳ(e, u) =
(l(v)− p2(v)x∗(h2(v)))

(

1− 1
η

)

≥

(

l(v)− p2(v)
η

)

(

1− 1
η

)

> l(v)− p2(v) + 1 = l′(v), (11.2.5)
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where the last inequality follows from the fact thatl(v) > p2(v) ≥ 1. We now

have the following multi-set multi-cover problem (MM).

For eachv ∈ A(H1) with l′(v) > 0, we create an elementa(v). For each

vertexu ∈ ⋃v∈A(H1)
R(v), we create a multi-setS(u). If there ared(v, u) leaf

edge-vertices inL(v) \ (v, h2(v)) incident uponu, then we includea(v) in S(u),

d(v, u) times . Each elementa(v) has a requirement ofr(a(v)) = ⌊l′(v)⌋. The goal

is to pick minimum number of sets such that each elementa(v) is covered⌊l′(v)⌋

times counting multiplicities.

Note that, since the original graph is multigraph,d(v, u) can be greater than1.

Lemma 11.2.4.If we setz(S(u)) = x̄u, ∀u ∈ ⋃v∈A(H1)
R(v)}, thenz is a feasible

fractional solution for the above stated multi-set multi-cover problem

Proof. Consider any elementa(v). The total fractional coverage of elementa(v)

from z is

∑

S(u)∋a(v)
d(v, u)z(S(u)) =

∑

u∈
⋃

v∈A(H1)
R(v)

x̄u

=
∑

e=(u,v)∈
L(v)\(v,h2(v))

ȳ(e, u)

> l(v)− p2(v) + 1 ( from Equation 11.2.5)

= l′(v) > r(a(v)),
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If, s is the number of verticesv ∈ A(H1) with l′(v) > 0, then we can obtain

an integral solution with a cost ofO(log s)
∑

u∈
⋃

v∈A(H1)
R(v) x̄u. This log s factor

“in a sense” is unavoidable because of the hardness of approximating set cover.

We instead, obtain an algorithm where the total number of sets picked is close to

s+
∑

u∈
⋃

v∈A(H1)
R(v) x̄u. In Section 11.3, we prove the following theorem.

Theorem 11.3.5.Given any feasible fractional solution̄xwith costF for multi-

set multi-cover problem withN elements, there is a polynomial time rounding al-

gorithm that rounds the fractional solution to a feasible integral solution with cost

at most21N + 32F .

The algorithm for assigning the leaf edge-vertices inL(v) is given in Algorithm

(2).

Since, each vertexv ∈ A(H1) covers at most|L(v)|− ⌈l(v)⌉ leaf edge-vertices,

by Lemma 11.2.3 the capacity of all the vertices inH1 are maintained. We now

proceed to analyze the cost.

Theorem 11.2.5.There exists a polynomial time algorithm achieving an approxi-

mation factor of34 for the hard-capacitated vertex cover problem with unit multi-

plicity on unweighted multigraphs.

Proof. The capacities of all the vertices inH1 andH2 are maintained. The cost

paid while rounding the vertices inH2 is

η
∑

u∈D
x∗(u). (11.2.6)
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Algorithm 2 Assigning edges with only one link in H1

1: for each vertexv ∈ A(H1) with |L(v)| ≥ 1 do
2: select the vertexh2(v) that covers at least an edge-vertex fromL(v) and

assign the corresponding edge-vertices toh2(v).
3: end for
4: for each vertexv ∈ A(H1) with l(v) ≤ p2(v) do
5: assign all the remaining edge-vertices (at most|L(v)| − ⌈l(v)⌉) to v
6: end for
7: for each vertexv ∈ A(H1) with l′(v) > 1 do
8: scale up thex∗ variables in

⋃

v∈A(H1)
R(v) by a factor of 1

1− 1
η

and denote

it by x̄.
9: end for

10: create the MM instance({(a(v), d(v))}, {S(u)}), and round the fractional
solutionx̄ to obtain an integral solution.

11: for eachu such thatS(u) is chosen byMM algorithmdo
12: selectu andassign all the leaf-edges incident onu to it.
13: end for
14: for each v ∈ A(H1) with l′(v) > 1 do
15: assign all the remaining leaf edge-vertices ofL(v) (at most|L(v)|− ⌈l(v)⌉)

to it.
16: end for

FromH1, vertices are chosen in two phases. First, for selecting vertices inD′,

we pay at most

η
∑

v∈D′/Ds.t.L(v)=0 andT(v)=0

x∗(v) +
1

(

1− 1
η

)

∑

v∈D′/Ds.t.L(v)≥1 or T(v)≥1

x∗(v).

(11.2.7)

Vertices with|L(v)| ≥ 1 must have fractional value at least
(

1− 1
η

)

. Vertices with

|T(v)| ≥ 1, also must have fractional value at least1− 1
η , since none of its children

edge-vertices were assigned in step (4) of Algorithm (1). The number of vertices
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picked in step (8) of Algorithm 1 is at most

|{v ∈ D′s.t.|T(v)| ≥ 1}|+
∑

v∈A(H1)\D′∪D
x∗(v)

≤ 1
(

1− 1
η

)

∑

v∈D′s.t.T(v)≥1

x∗(v) +
∑

v∈A(H1)∪A(H2)\D′∪D
x∗(v). (11.2.8)

In Algorithm 2, we further select some vertices fromA(H2). Let R =

⋃

v∈A(H1)
s.t.|L(v)|≥1

{R(v) ∪ h2(v)}. The cost paid for selecting vertices fromR while

rounding onH1 is at mosts for selecting the verticesh2(v) for all v and

21s + 32
∑

u∈
⋃

v∈A(H1)
s.t.l′(v)>1

R(v) x̄(u) from Theorem 11.3.5. Therefore, the cost paid

for selecting vertices fromH2 while rounding onH1 is at most

22s +
32

1− 1
η

∑

u∈
⋃

v∈A(H1)
s.t.l′(v)>1

R(v)

x∗(u)

≤ 22
(

1− 1
η

)

∑

v∈D′s.t.|L(v)|≥1

x∗(v)

+
32

1− 1
η

∑

v∈A(H1)∪A(H2)\D∪D′

x∗(v). (11.2.9)

Therefore, the total cost from Equation (11.2.6), (11.2.7), (11.2.8) and (11.2.9)

is at most

η
∑

v∈D∪D′

s.t.x∗(v)<1− 1
η

x∗(v)+
23

(

1− 1
η

)

∑

v∈D′∪D
s.t.x∗(v)≥1− 1

η

x∗(v)+




32

(

1− 1
η

) + 1




∑

v∈A(H1)∪A(H2)
\D∪D′

x∗(v)

Settingη = 34, we thus obtain a34-approximation.
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11.3 Multi-Set Multi-cover

In the multi-set multi-cover problem (MM), we are given a ground set ofN el-

ementsU and a collection of multi-setsS of U , S = {S1, S2, . . . , SM}. Each

multi-setS ∈ S containsM(S, e) copies of elementa ∈ U . Each elementa has a

demand ofr(a) and needs to be coveredr(a) times. The objective is to minimize

the number of chosen sets that satisfy the demands of all the elements.

ForMM, Kolliopoulos and Young gave alog n-approximation [89]. The same

bound also follows from [138], and in general, thislog n factor cannot be improved.

However, if we plug in one of these algorithms in previous section, we cannot get

better thanlog n-approximation for the hard-capacitated vertex cover problem. In

this section we provide a new algorithm forMM that selects at most21N + 32F

sets, when an optimal solution selectsF sets. As we saw in the last section, this

result played a crucial role in obtaining a constant approximation.

The following is a linear program relaxation forMM.

minimize
∑

S∈S

x(S) + |U | (LP1)

subject to
∑

a∈S

M(a, S)x(S) ≥ r(a) ∀ a ∈ U (11.3.10)

0 ≤ x(S) ≤ 1 ∀S ∈ S (11.3.11)
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11.3.1 Rounding Algorithm

Let x∗ denote the LP optimal solution. Rounding algorithm has several steps.

Step 1. Selecting sets with high fractional value.First, we pick all setsS ∈ S

such thatx∗(S) ≥ α > 0, where 1
α is the desired approximation factor. Denote

the chosen sets byH. Each elementa now has a residual requirement ofr(a) −
∑

a∈S,S∈HM(S, a). Clearly the fractional solutionx∗ projected on the setsS \H

is a feasible solution for the residual problem. For each elementa ∈ U, let r̄(a) =

r(a)−∑a∈S,S∈HM(S, a) be the residual requirement. For someβ > 0 (to be set

later), lety(S) = βx∗(S), for eachS ∈ S \H. We have for all elementsa ∈ U ,

∑

a∈S,S∈S\HM(S, a)y(S) ≥ βr̄(a).

Note that after this step, we have a fractional solution withcost

|H|+
∑

S∈S\H
y(S) + |U | ≤ 1

α

∑

S∈H
x∗(S) + β

∑

S∈S\H
x∗(S) + |U |.

For notational simplicity, we denoteC = S \H. Next, we proceed to round the

variablesy(S) for S ∈ C.

Step 2. Rounding into powers of 2.For each multiplicityM(S, a), ∀S ∈ C, a ∈

U, we round it to the highest power of2 lesser than or equal toM(S, a) and

denote it byM1(S, a). For each requirement̄r(a), ∀a ∈ U , consider the low-

est power of2 greater than or equal tōr(a) and denote it bȳr1(a). Clearly, if

∑

a∈S,S∈CM(S, a)y(S) ≥ βr̄(a), then
∑

a∈S,S∈CM
1(S, a)4y(S) ≥ βr̄1(a). We
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denotey1 = 4y.

Step 3. Division into small and big elements.First, for each element if there is

a set that completely satisfies its requirement, we pick the set. We continue the

process as long as no element can be covered entirely by a single set. Thus after

this procedure, for all elementsa, and for all setsS, M1(S, a) < r̄1(a) and hence

M1(S, a) ≤ r̄1(a)
2 . Now for each elementa, we divide the sets inC containinga

into big sets (Big(a)) andsmallsets (Small(a)). A setS ∈ C is said to be a big

set fora, if M1(S, a) ≥ 1
18 lnn r̄

1(a), otherwise it is called a small set, i.e.,

Big(a) = {S ∈ C |M1(S, a) ≥ 1

18 ln n
r̄1(a)}

Small(a) = {S ∈ C |M1(S, a) <
1

18 ln n
r̄1(a)}

Now, we decompose elements intobig andsmall. An element issmall if it is

covered to an extent of̄r1(a) by the sets inSmall(a). Else, the element is covered

at least to an extent of(β − 1)r̄1(a) by the sets inBig(a) and we call it abig

element. This follows from the inequality

∑

a∈S,S∈C∩Big(a)

M1(S, a)y1(S) +
∑

a∈S,S∈C∩Small(a)

M1(S, a)y1(S) ≥ βr̄1(a).

Therefore, either the sets inSmall(a) covera to an extent of̄r1(a), or the sets

in Big(a) covera to an extent of(β − 1)r̄1(a). Let β1 = β − 1. In the first case,
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we refera as a small element, otherwise it is a big element.

Step 4. Covering small elements.We employ simple independent randomized

rounding for covering small elements.We pick each setS ∈ C with probability

γy1S, for someγ ≥ 2.

Lemma 11.3.1.All small elements are covered in Step 4 with probability at least
(

1− 1
n1/3

)

.

Proof. Consider a small elementa and define random variableXa
S for each small

setS ∈ Small(a) as follows:

Xa
S =M1(a, S), if S is picked

= 0, otherwise

ThenXa =
∑

S∈Small(a)X
a
S denotes the number of timesa is covered by the sets

in Small(a). We haveE [Xa] = γr̄1(a). Xa is a sum of independent random

variables, where each random variableXa
S takes values between[0, 1

18 lnn r̄
1(a)].

We apply the following version of the Chernoff-Hoeffding inequality.

Theorem 11.3.2(The Chernoff-Hoeffding Bound). Givenn independent random

variablesX1,X2, . . . ,Xn each taking values between0 and1, if X =
∑n

i=1Xi

andE [X] = µ then for anyδ > 0

Pr [X < (1− δ)µ] ≤ e−µδ2/2,
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wheree is the base of the natural logarithm.

We defineZa
S =

Xa
S

r̄1(a)
18 lnn

. ThenZa
S ∈ [0, 1]. We apply the Chernoff-Hoeffding

bound to
∑

S∈Small(a) Z
a
S . We haveE

[
∑

S∈Small(a) Z
a
S

]

= γ18 log n.

Pr




∑

S∈Small(a)

Za
S < 18 log n



 = Pr
[
Xa

S < r̄1(a)
]

≤ e−γ18 logn
(1− 1

γ )2

2 <
1

n4/3

Thus by union bound, all small elements are covered the required number of

times with probability at least
(

1− 1
n1/3

)

.

Step 5. Covering big elements.For each big element, we consider only the big

sets containing it. For each such big element and big set we have 1
18 lnnr

1
a <

M1(S, a) ≤ r1a
2 . Since, multiplicities are powers of2, there are at mostl = ln lnn+

3 different values of multiplicities of the sets for each elementa. LetT a
1 , T

a
2 , . . . T

a
l

denote the collection of these sets with multiplicitiesr̄1(a)
2 , r̄

1(a)
22

, . . . , r̄
1(a)
2l

respec-

tively. That is,T a
i = {S ∈ Big(a) | M(S, a) = r̄1(a)

2i
}. Setβ1 ≥ 3. For each

i = 1, 2, . . . , l, if
∑

S∈Ta
i
y1(S) > i and the number of sets that have been picked

from T a
i is less than

∑

S∈Ta
i
y1(S)

(β1−2) , pick new sets fromT a
i such that the total number

of chosen sets fromT a
i is

⌈
∑

S∈Ta
i
y1(S)

(β1−2)

⌉

.

We now show that each big element gets covered the required number of times

and the total cost is bounded by a constant factor of the optimal cost.
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Lemma 11.3.3.Each big elementa is coveredr(a) times by the chosen sets.

Proof. Consider a big elementa that is not covered after Step 4. Clearly, there is

no set inS such thatM(S, a) > r̄1(a)
2 . Now,amust satisfy the following inequality

∑

S∈Big(a)

M(a, S)y1(S) ≥ β1r̄1(a),

and thus it also satisfies the inequality below

l∑

i=1

r̄1(a)

2i

∑

S∈Ta
i

y1(S) ≥ β1r̄1(a).

CallRa
i =

∑

S∈Ta
i
y1(S), for i = 1, 2, . . . , l. We pick at least⌈Ra

i /(β1 − 2)⌉ sets

from T a
i unlessRa

i ≤ i. If for all i, Ra
i > i, then takingβ1 ≥ 3, elementa is

covered at least to an extent of
∑l

i=1
r̄1(a)
2i

Ra
i /(β1 − 2) = β1

β1−2 r̄
1(a) > 3r̄1(a).

Otherwise, there are somei, for whichRa
i ≤ i, and it is possible that we do not

pick any set fromT a
i . The total fractional coverage coming from the sets inT a

i

with Ra
i ≤ i is at most

r̄1(a)

l∑

i=1

i

2i
< 2r̄1(a).

Therefore,
l∑

i=1

r̄1(a)

2i

∑

S∈Ta
i ,Ra

i >i

y1(S) ≥ (β1 − 2)r̄1(a).

We setβ = 3. Thus, elementa is covered to an extent of at leastr̄1a. The

remaining coverage requirement of elementa is fulfilled by the sets chosen inH.
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Thus all the big elements are covered.

Lemma 11.3.4. The expected number of sets selected in Step 4 is at most 21n’,

wheren′ are the number of big elements that are not covered after Step5.

Proof. Consider an elementa. For eachT a
i , i = 1, 2, . . . , l, compute the probabil-

ity that the number of sets chosen in Step 4 is less thanRa
i /(β1 − 2), whereRa

i

as defined in the previous lemma is
∑

S∈Ta
i
y1(S). We define an indicator random

variableXa
i (S) for each setS ∈ T a

i .

Xa
i (S) = 1, if S is selected,

= 0, otherwise.

ThenXa
i =

∑

S∈Ta
i
Xa

i (S) denote the number of sets chosen fromT a
i in Step 4.

Now,Pr [Xa
i (S) = 1] = γy1(S), whereγ ≥ 3. Therefore,E [Xa

i ] = γRa
i .

Hence, by the Chernoff-Hoeffding bound,

Pr

[

Xa
i <

Ra
i

(β1 − 2)

]

≤ e−
γRa

i
2

(

1− 1
γ(β1−2)

)2

.

With β1 = 3, γ = 2, we getPr [Xa
i < Ra

i ] ≤ e−
1
4
Ra

i = 1.284−Ra
i . If Ra

i > i

andXa
i < Ra

i , we pick at mostRa
i + 1 sets. The expected number of sets picked
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in Step 5 to covera is at most

l∑

i=1,Ra
i ≥i)

(Ra
i+1)1.284−Ra

i ≤
l∑

i=1

i+ 1

1.284i
≤ 1

(1− 1
1.284 )

+
1

1.284
(
1− 1

1.284

)2 ≤ 21.

Thus, the expected number of sets selected in Step 5 is at most21n′, wheren′ is

the number of big elements that get covered in Step 5.

Theorem 11.3.5. The algorithm returns a solution with expected cost at most

21N + 32F , whereF =
∑

S x
∗(S), and covers all the elements with probabil-

ity at least1− 1
n1/3 .

Proof. From Lemma 11.3.1 and 11.3.3, we know all the big elements arecovered

and all the small elements are covered with probability at least1− 1
n1/3 .

Step 1. The total number of sets picked is at most|H| whereH are the sets each with

fractional value at leastα. Thus,|H| < 1
α

∑

S∈H x
∗
S .

Step 4. The total expected cost incurred in the randomized rounding step is at most

∑

S∈S\H γy
1
S =

∑

S∈S\H 2y1S =
∑

S∈S\H 8yS =
∑

S∈S\H 8βx∗S . Now

β1 = 3 and β = β1 + 1 = 4. Hence, the expected cost is at most

32
∑

S∈S\H x
∗
S .

Step 5. From Lemma 11.3.4, the expected number of sets pickedis at most21n′,

wheren′ are the big elements that are not covered by Step 4.

Settingα = 1
32 , we get the desired result.
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We have not tried to optimize the constants of our approach, but reducing the

approximation ratio substantially to2 or 3 may require significant new ideas.

11.4 Set Cover with Hard Capacity Constraints

In this section, we consider the unweighted set cover problem, where each set has a

hard capacity. We first consider the case, where each set has asingle copy (m(S) =

1, ∀S). Next, this is extended to handle arbitrary multiplicities for each set. The

main result in this section is anO(f) approximation for the set cover problem

with hard capacity constraints where each element belongs to at mostf sets. As a

corollary, we obtain a constant factor approximation algorithm for the vertex cover

problem with hard capacity where arbitrary number of copiesof each vertex may

be available.

The algorithm in this section follows the same basic steps asin Section 11.2.

We start with the naturalLP-relaxation similar toLPVC.
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minimize
∑

S∈S

x(S) (LPSC)

subject to

∑

S∋a

y(a, S) = 1 ∀ a ∈ U, (11.4.12)

y(a, S) ≤ x(S), ∀a ∈ U, a ∈ S, (11.4.13)

∑

a∈S

y(a, S) ≤ k(S)x(S) ∀S ∈ S, (11.4.14)

0 ≤ x(S) ≤ 1 ∀S ∈ S, (11.4.15)

0 ≤ y(a, S) ≤ 1 ∀a ∈ U. (11.4.16)

The rounding algorithm is similar to the one described in Section 11.2. Here

we highlight the main changes. From theLP optimal solution(x∗,y∗), we create

a bipartite graphH = (A,B,E(H)), whereA represents the sets,B represents the

elements and links inH represent whether a particular element is fractionally cov-

ered by a set in theLP solution, that is,A = {S ∈ S},B = {a ∈ U},E(H) =

{(a, S) | y∗(a, S) > 0}. Each vertexS ∈ A has an associated weight ofx∗(S),

and each link(a, S) has an associated weight ofy∗(a, S). We now modify the link

weights and in the process decomposeH into two graphsH1 andH2, whereH1 is a

forest and inH2 all the link weights are equal to the weights of the corresponding

incident vertex inA. This step is exactly same as Step 1 in Section 11.2.
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Step 2. Rounding onH2.

We discard all the isolated vertices inH2 and we select all the vertices inA(H2)

with x∗ value equal or greater thanmin ( 1η ,
1
2f ). Recall thatη will be the desired

approximation ratio. Let us denote these chosen vertices byD. Then,

D = {S | S ∈ A(H2), x
∗(S) ≥ min (

1

η
,
1

2f
)}.

For every elementa ∈ B(H2) with a contained in the sets{S1
a, S

2
a, . . . , S

f
a} ∈

B(H2), if either one of these sets, saySi
a is in D and also(a, Si

a) ∈ E(H2), then

we set the correspondingy(a, Si
a) variable to1. Here sets play the role of vertices

in the vertex cover problem and elements correspond to edges. Thus, following

Observation 11.2.2, all the capacities of the sets inD are maintained.

If all f links of an elementa belong toE(H2), then after this step,a is covered.

Otherwise, if the total fractional contribution of the links connectinga in H2 is at

leastmin (f−1
η , f−1

2f ), then againa is covered . We now proceed toH1.

Step 3. Rounding onH1. H1 is a forest, it contains the vertices inA(H1) and

elements that have at least one link inE(H1). We call an elementdanglingif it has

at least one link inE(H2) and at least one link inE(H1). We root each tree inH1 to

some arbitrary set. Trees naturally define a parent-child relationship.

Step 3a.Rounding elements with allf connections inH1.
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In H1, we defineD′ as

D′ = {S | S ∈ A(H1) \D, x∗(S) ≥ min (
1

η
,
1

2f
)}.

For each element inB(H1), if at least one of itschildren set is selected inD′,

we assigna to it. DefineT(S) to be the collection of elements contained inS that

are not yet assigned and have all the links inE(H1). Consider, any such element

a′ ∈ T(S). Sincea′ has not been covered, none of its children sets are picked.

Denoting these children sets byC(a′), all S ∈ C(a′) have fractional value strictly

less thanmin ( 1
2f ,

1
η ). CanS ∈ C(a′) have any child elementa′′ in H1 that is

not yet unassigned ?a′′ must have at least one link either inE(H1) or E(H2) with

fractional value at leastmin ( 1η ,
1
2f ), and thus gets assigned. Sincea′ is not covered

by any of at most(f −1) children sets inH1, we havex∗(S) ≥ 1−min (f−1
η

f−1
2f ).

We now pickt(S) = ⌈∑a′∈T(S)
∑

a′∈S′\S y
∗(a, S)⌉ sets one from each of the

children sets oft(S) elements inT(S). Rest of the elements inT(S) are assigned

to S. Whenever, we pick a set in this stage, if there is any elementin this set that is

connected to it by a link inH2, we assign that element to the set.

Step 3b.Rounding dangling elements, i.e, withnot all f connections inH1.

DefineL(S) as the collection of dangling elements connected toS that are not

covered in the previous steps andl(S) =
∑

a∈S
∑

a∈S′,(a,S′)∈E(H2)
y∗(a, S′). Note

that anyS, with |L(S)| > 0 must havex∗(S) ≥ 1 − min (f−1
η

f−1
2f ). We have a

Lemma analogous to Lemma 11.2.3.
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Lemma 11.4.1. Each setS ∈ A(H1) can be assigned|L(S)| − ⌈l(S)⌉ dangling

elements without violating its capacity.

Proof. Suppose,S belongs toH2 as well and is selected inH2. Then,

∑

as.t.(a,S)∈E(H2)

x∗(S) +
∑

as.t.(a,S)∈E(H1)

y∗(a, S) ≤ k(S)x∗(S).

Thus,

∑

a|(a,S)∈E(H1)

y∗(a, S) = (k(S)− |{a | (a, S) ∈ H2}|)x∗(S).

Now, (kS − |{a | (a, S) ∈ E(H2)}|) is an integer, and we denote it byk′(S).

Let us assumeS ∈ D′ first. Let the fractional value of the link con-

necting S to its parent edge-vertex beb. The capacity ofS is k′(S) ≥

⌈b+ |T(S)| − t(S) + |L(S)| − l(S)⌉. The number of elements assigned toS is

at most1 + |T(S)| − ⌈t(S)⌉+ |L(S)| − ⌈l(S)⌉.

Now, following a similar argument as in Lemma 11.2.3, we get the desired

result.

The elements inL(S) have at least one link inE(H2) and other thanS (which

is the parent node for the elements ofL(S) in H1), may be connected to some sets

(that appear as their children) inA(H1). We first pick one set other thanS from

A(H2) such that it covers at least one element fromL(S). Let us denote this set by

h2(S) and the elements ofL(S) that it covers byP2(S). Let |P2(S)| = p2(S). If

l(S) ≤ p2(S), then rest of the elements ofL(S) can be assigned toS (by Lemma
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11.4.1), and we exactly do that. Else,l(S) > p2(S).

Consider all sets inA(H1) ∪ A(H2) that contain the elements ofL(S) except

S andh2(S). Denote these sets byR(S). Therefore, any set inR(S) is connected

by at most one link fromE(H1) (because of the tree structure); rest of the links

are fromE(H2). Hence, if we pick a set inR(S), we can assign all the elements it

connects to both inE(H1) andE(H2) without violating its capacity3.

We scale up all thex∗ variables of
⋃

S∈A(H1)
R(S) by a factor of 1

1−min ( f−1
η

, 1
2f

)
.

We also scale up the correspondingy∗ link variables by a factor of 1

1−min ( f−1
η

, f−1
2f

)
.

Let (x̄, ȳ) denote this scaled up variables.

Lemma 11.4.2. After scaling upȳ satisfies
∑

(a,S′)
s.t.a∈L(S)\P2(S),S′∈R(S)

ȳ(a, S′) ≥

l(s)− p2(S) + 1.

Proof.

∑

(a,S′)
s.t.a∈L(S)\P2(S),S′∈R(S)

ȳ(a, S′) =

(

l(S)−∑a∈P2(S)

∑

S′∋a,S′ 6=S y
∗(a, S′)

)

(

1−min (f−1
η , f−1

2f )
)

≥

(

l(S)− p2(S)min (f−1
η , f−1

2f )
)

(

1−min (f−1
η , f−1

2f )
)

> l(S)− p2(S) + 1,

where the last inequality follows from the fact thatl(S) > p2(S) > 1.

We setl′(S) = 0 if l(S) ≤ p2(S), else we setl′(S) = l(s) − p2(S) + 1. If

3 this holds because any setS′ that has at least one link fractionally connected to it inE(H1) has
capacityk′(S′) ≥ 1.
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we can pick enough sets fromR(S) such that at least⌊l′(S)⌋ elements fromL(S)

are covered by the sets picked fromR(S), then from Lemma 11.4.1, the remaining

elements can be assigned toS.

We thus arrive to theMM problem (Section 11.3).

For eachS ∈ A(H1) with l′(S) > 1, we create an elementa(S). For each set

S′ ∈ ⋃S∈A(H1)
R(S), we create a multi-setT (S′). If there ared(S, S′) elements in

L(S) \ P2(S) incident uponS′, then we created(S, S′) copies ofa(S) in T (S′).

Each elementa(S) has a requirement ofr(S) = ⌊l′(S)⌋. The goal is to pick

minimum number of sets such that each elementa(S) is covered⌊l′(S)⌋ times

counting multiplicities.

We solve theMM problem and for each selected setT (S′), we includeS′ in

the solution. If there ared(S, S′) copies ofa(S) in T (S′), then there ared(S, S′)

elements fromL(S) \ P2(S) that are contained inS′. We letS′ cover all these

elements. The number of elements that are not covered fromL(S) is at most

|L(S)|−⌊l′(S)⌋−p2(S), which is at mostL(S)−⌈l(S)⌉. By, Lemma 11.4.1, these

elements can be covered byS and therefore we assign them toS. Each elementS′

covers all the elements linked to it inE(H2) and possibly one extra element that is

linked inE(H1). Since capacities are always integers,S′ maintains its capacity.

Theorem 11.4.3.There exists a polynomial time algorithm achieving an approxi-

mation factor ofmax (65, 2f) for the set cover problem with hard capacities with

unit multiplicities, where each element is contained in at mostf sets.
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Proof. The capacities of all the sets inH1 andH2 are maintained.

The cost paid while rounding the sets inH2 is

max(2f, η)
∑

S∈D
x∗(S). (11.4.17)

FromH1, sets are chosen in two phases. First, for selecting vertices inD′, we

pay at most

max(2f, η)
∑

S∈D′/D
s.t,|L(S)|=0 and|T(S)|=0

x∗(S)+
1

1−min (f−1
η , f−1

2f )

∑

S∈D′/D
s.t,|L(S)|≥1 or |T(S)|≥1

x∗(S).

(11.4.18)

The sets with|L(S)| ≥ 1 or |T(S)| ≥ 1 must have fractional value at least

(1 − min (f−1
η , f−1

2f )). The number of sets picked to satisfy the requirement of

t(S) for all S is at most

|{S s.t. |T(S)| ≥ 1}| +
∑

S∈A(H1)\D′∪D
x∗(S)

≤ 1

1−min (f−1
η , f−1

2f )

∑

S∈D′/D
s.t. T(S)≥1

x∗(S)

+
∑

S∈A(H1)∪A(H2)\D′∪D
x∗(S). (11.4.19)

We further select sets fromA(H1) andA(H2) to satisfy the requirements from

L(S). Let R =
⋃

S∈A(H1)
s.t.|L(S)|≥1

{R(S) ∪ h2(S)}. The cost paid for selecting sets

from R while rounding onH1 is at mosts for selecting the setsh2(S) for all S
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and21s + 32
∑

S′∈
⋃

S∈A(H1)
s.t.l(S)>1

R(S) x̄(S) from Theorem 11.3.5. Heres = |{S ∈

A(H1)s.t.|L(S)| ≥ 1}|. Therefore, the cost paid in this step is at most

22s +
32

1−min ( 1η ,
1
2f )

∑

S′∈
⋃

S∈A(H1)
s.t.l(S)>1

R(S)

x∗(S)

≤ 22

1−min (f−1
η , f−1

2f )

∑

S∈D′s.t.|L(S)|≥1

x∗(S)

+
32

1−min (f−1
η , f−1

2f )

∑

S∈A(H1)∪A(H2)\D∪D′

x∗(S). (11.4.20)

Therefore, the total cost from Equation (11.4.17), (11.4.18), (11.4.19) and

(11.4.20) is at most

max (η, 2f)
∑

S∈D∪D′s.t.
x∗(S)<1−min ( f−1

η
, f−1

2f
)

x∗(S)

+
23

1−min (f−1
η , f−1

2f )

∑

S∈D′∪Ds.t.
x∗(S)≥1−min ( f−1

η
, f−1

2f
)

x∗(v)

+

(

32

1−min (f−1
η , f−1

2f )
+ 1

)
∑

v∈A(H1)∪A(H2)
\D∪D′

x∗(v)

We can adjust the value ofη according to the value off , in general, by setting

η = 65, we obtain amax (65, 2f)-approximation.
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11.4.1 Hard-Capacitated Set Cover with Arbitrary Multipli cities

Given an instance of hard-capacitated set cover with arbitrary multiplicities where

each element belongs to at mostf sets, we reduce it to an instance of unit multi-

plicity by slightly increasing the value off . First, we solve the following natural

LP-relaxation, where setS has multiplicitym(S).

minimize
∑

S∈S

x(S) (LPSC−Mult)

subject to (11.4.21)

∑

S∋a

y(a, S) = 1 ∀ a ∈ U, (11.4.22)

y(a, S) ≤ x(S), ∀a ∈ U, a ∈ S, (11.4.23)

∑

a∈S

y(a, S) ≤ k(S)x(S) ∀S ∈ S, (11.4.24)

0 ≤ x(S) ≤ m(S) ∀S ∈ S, (11.4.25)

0 ≤ y(a, S) ≤ 1 ∀a ∈ U. (11.4.26)

Let (x∗,y∗) be an optimal solution of the aboveLP. We construct a bipartite

graphH(A,B,E(H)), whereA contains sets, possibly multiple copies of them,B

contains the elements and links are created based on non-zero components ofy∗.

For each setS ∈ S with x∗(S) > 0, we create⌈x∗(S)⌉ copies ofS in A. Each

one of them except the first one gets a weight of1, while the first one gets a weight
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of x∗(S) − ⌊x∗(S)⌋. We denote the weights of the sets byw. Therefore the total

weight of all the sets inA equals
∑

S x
∗(S). Next, for each elementa, we create

a vertexa in B. Let a be contained in setsS1
a, S

2
a, . . . , S

f
a with fractional values

y∗(a, S1
a), y

∗(e, S2
a), . . . , y

∗(e, Sf
a ) respectively. Consider, one of these sets, say

Si
a. Let there bel copies ofSi

a in A. Denote them bySi
a,1, S

i
a,2, . . . , S

i
a,l and their

weights byw(Si
a,1) = h,w(Si

a,2) = w(Si
a,3) = . . . = w(Si

a,l) = 1. The fractional

capacity ofSi
a,j, j ∈ [1, l], isw(Si

a,j)k(S
i
a).

We start withSi
a,1 and create a link(a, Si

a,1). Let the current weight of the

links connected toSi
a,1 beW1. We set the weight of(a, Si

a,1) as z(a, Si
a,1) =

min y∗(a, Si
a), w(S

i
a,1),W1 − w(Si

a,l)k(S
i
a). We sety∗(a, Si

a) = y∗(a, Si
a) −

z(a, Si
a,1) and if y∗(a, Si

a) > 0, we proceed toSi
a,2.

We again create a link(a, Si
a,2). Let the current weight of the

links connected toSi
a,2 be W2, then we set the weight of(a, Si

a,2)

as z(a, Si
a,2) = min (y∗(a, Si

a), w(S
i
a,2),W1 − w(Si

a,2)k(S
i
a)) =

min (y∗(a, Si
a),W1 − w(Si

a,2)k(S
i
a)).

A link is never made to a copySi
a,j, j ≥ 3, unless the(j − 1)-th copy is

completely filled up to its fractional capacity which is at least1. Therefore, element

a may have links to at most3 copies ofSi
a. We repeat the same procedure for all

the other sets.

Hence, in the created bipartite graph an element may be linked to at most3f

sets. Also, the vectors(w, z) satisfy the constraints ofLPSC. Each set in the
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modified instance now has multiplicity1, therefore from Theorem 11.4.3, we get a

max (65, 6f) approximation algorithm for it.

Theorem 11.4.4.There exists a polynomial time algorithm achieving an approxi-

mation factor ofmax (65, 6f) for the set cover problem with hard capacities and

arbitrary multiplicities, where each element is containedin at mostf sets.

Corollary 11.4.5. There exists a polynomial time algorithm achieving an approxi-

mation factor of38 for the vertex cover problem with hard capacities and arbitrary

multiplicities in multigraph.

Proof. We reduce the vertex cover with arbitrary multiplicities toa unit multiplicity

instance. Thus, after the reduction, we havef ≤ 6. Therefore, if we setη = 38 in

Theorem 11.4.3, we get a38-approximation.

There are several interesting questions to pursue. The scheduling model of

[52], which is a generalization of [21, 51] nicely captures the aspects of energy

usage in data centers. Demaine et al. gave a logarithmic approximation in [52],

however their problem can be reduced to a hard-capacitated set covering instance

with multiplecapacity constraints. This raises the question, can we design anO(f)-

approximation algorithm for set cover problem in presence of multiple capacity

constraints. Given the fact that each job can be executed only on a few machines in

data centers, such anO(f)-approximation algorithm could be quite useful. Also,

designing anO(f)-approximation algorithm for submodular covering problemwill

be an interesting future direction.
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CHAPTER 12

Conclusion

In this thesis, we make significant contributions towards designing new techniques

in approximation algorithms. While our techniques are verygeneral and can have

numerous applications, in this thesis we illustrate the power of these methods

through a variety of resource allocation problems. Resource allocation problems

are ubiquitous in computer science and come in a rich variety. We showcase four

such different applications: scheduling jobs on parallel machines, fair allocation

problems, server location problems in networking and advertisement allocations.

In several cases, we develop new models and algorithms and inother cases our

techniques lead to significant better results. All of our algorithms are based on

rounding fractional optimal solutions of linear programming relaxations and most

of them rely on probabilistic analysis.

In Chapter 2, we introduce a new rounding methodology which is a general-

ization of two previously extremely well-studied roundingmethods, namely, de-

pendent rounding and iterative relaxations. Using this rounding, we get improved
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results for several job-scheduling problems in Chapter 4 and 5, max-min fair al-

location problem in Chapter 6, overlay network design problem in Chapter 8 and

adcell allocation problem in Chapter 10.

In Chapter 3, we describe our contribution towards the algorithmic aspects of

a powerful probabilistic tool, the Lovász Local Lemma. This result leads to the

first algorithms for several combinatorial optimization problems. Using it, we also

obtain the first constant-factor approximation algorithm for the Santa Claus prob-

lem (Chapter 7), which was a major open question in the area ofapproximation

algorithms.

In Chapter 9, we develop an approximation algorithm for a server allocation

problem in content distribution networks. TheMatroidMedian is a significant gen-

eralization of the well-studiedk-median problem. The algorithm is based on linear

programming rounding that exploits the structure of the underlying constraint ma-

trix. The applications in Chapter 9, as well as in Chapter 10 and Chapter 4 can be

viewed as generalizations of well-known optimization problems to handle capacity

constraints. In Chapter 11, we study general capacitated covering problems and

settle an open question in this area.

12.1 Future Directions

The thesis leads to several interesting questions and directions. Probabilistic meth-

ods are in the heart of techniques that we develop in this thesis. The role that
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probability and randomness play in modern computer sciencecannot be overem-

phasized. From the highly theoretical notion of probabilistic theorem proving, to

the very practical applications of cryptography and web search ranking, sophis-

ticated probabilistic techniques have been developed in the last two decades for

a broad range of challenging computing applications. One such powerful proba-

bilistic tool is the Lovász’s Local Lemma (LLL). While developing a constructive

version for LLL, we introduce a proof-concept, namely,LLL distribution. This is

the distribution that one obtains conditioned on avoiding certain bad events. We

believe the concept of LLL distribution will find many applications in randomized

algorithms and exploring further properties of it will be extremely interesting.

Probably, one of the most well-known probabilistic concentration inequality

that applies to sum of independent and bounded random variables is The Chernoff-

Hoeffding bound. The random variables, instead of being independent, can satisfy

negative correlation and yet, the bound holds. We show when our new rounding

method is applied to variables of a LP, that can equivalentlybe seen as fractional

values on edges of a bipartite graph, then such negative correlation property holds.

Exploiting this property, we characterize the integralitygap of a configuration LP

for the max-min fair allocation problem near optimally. This triggers the question,

for what kind of LP and for which set of variables our roundingmethod can guar-

antee such negative correlation property ? An answer to thisquestion may have

several implications in approximation algorithms design.
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In the area of resource allocation, our applications lead tomany new directions.

First, in the area of scheduling, earlier to our works, research on energy minimiza-

tion mainly concentrated on identical or related machine models. Whereas, for

modern data centers, such machine models are not appropriate. Machines in data

centers may have varying computation power and CPU speed, and a data may not

be replicated on all machines. As a consequence, a job or a query can be executed

only on a subset of machines. The fundamental model of parallel machines that

captures these aspects is theunrelated parallel machines(UPM). A salient feature

of our scheduling works in this thesis is that we consider UPM. It will be extremely

interesting to study different aspects of energy savings such as scaling processor

speed, introducing sleep states with different energy requirements in this machine

model. Of course, with multicores, a machine can handle several jobs at a time,

and a more realistic model is to consider online jobs. Altogether, these lead to a

broad spectrum of problems.

The concept of capacitated covering that we study in this thesis can be very

useful in the domain of energy-efficient scheduling as well.As we point out in

Chapter 11, a class of such scheduling problems can be modeled using multiple

capacity constraints on sets. It will be an interesting future direction to extend our

methods to handle multiple capacity constraints and understand the hardness of

such problems.

In the area of fair allocation, an obvious question is to better understand the
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limitation of approximability of the max-min fair allocation problem and getting

a better constant bound for the Santa Claus problem. In the area of networking,

resource constraints lead to several interesting questions. Each open server may

have an upper bound on the number of clients that it can handleor a client may need

to be connected to several servers in order to ensure a fault-resilient networking. In

adcell allocation, it will be interesting to develop onlinestochastic models and new

approximation algorithms in that framework.

To conclude, the theory of approximation algorithms is a vibrant area of re-

search and our contributions aim towards providing new generic tools that can

have wide-applicability. These methods have already been successfully applied

to several problems on resource allocations in this thesis.While, we have provided

improved solutions for a collection of them, our research has opened up many new

possibilities for future works and has created a premise fora large variety of op-

timization problems; they are both of theoretical interestand of practical signifi-

cance.
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