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We consider timely data delivery in real-time communication networks that

have gained significant importance with recent promising applications including aug-

mented reality/virtual reality (AR/VR), autonomous vehicular networks, and smart

factories. Age of information is a network performance metric introduced to guar-

antee access to fresh data in such systems. Considering increasing connectivity in

communication networks and ever growing prominence of distributed computation

and learning systems, in this dissertation, we study age of information in large net-

works with a particular focus on its scalability with growing network size as well as

the design of distributed computation and learning systems that handle time-critical

data using potentially large number of worker nodes with as little age as possible.

First, we consider a multihop multicast network with a single source node

sending time-sensitive updates to nL end nodes where L denotes the number of hops.

Updates from the source go through relay nodes in each hop to reach the end nodes.

We show that by utilizing appropriate transmission stopping thresholds in each



hop, the age of information at the end nodes can be made a constant independent

of n. We then find the optimum stopping value for each hop for arbitrary shifted

exponential link delays.

Next, we focus on a single hop multicast network where two update streams

share the same network, called type I and type II updates. We show that utilizing an

earliest k1 and k2 transmission scheme for type I and type II updates, respectively,

prevents information staleness for both update streams. We find the optimum k1 and

k2 stopping thresholds for arbitrary shifted exponential link delays to individually

and jointly minimize the average age of both update streams.

Then, we consider the age scaling in a large peer-to-peer network consisting of

n randomly paired source-destination pairs. We first propose a three-phase trans-

mission scheme which utilizes local cooperation among the nodes along with mega

update packets and show that it achieves an average age scaling of O(n
1
4 log n) per-

user as n grows. Next, we show that, under a hierarchical implementation of the

proposed scheme, an average age scaling of O(nα(h) log n) per-user is achievable,

where h denotes the number of hierarchy levels and α(h) = 1
3·2h+1

. The proposed

hierarchical scheme asymptotically achieves a per-user average scaling of O(log n).

Next, we consider the version age of information scaling in gossip networks,

where a total of n nodes are clustered into distinct communities and they are al-

lowed to share their versions of the source information with their neighbors within

each cluster. By assuming different topologies for the clusters, we show that per

node average version age scalings of O(
√
n), O(n

1
3 ), and O(log n) are achievable in

disconnected, ring, and fully connected cluster models, respectively. We then in-



crease connectivity across clusters by implementing a hierarchical gossip mechanism

to further improve the version age scaling results, and find the version age-optimum

cluster sizes for various settings.

Then, we consider a status updating system in which the update packets are

data rich and need to be processed further to extract the embedded information.

This processing is handled in a distributed manner at a computation unit which

consists of a master node and n worker nodes. We investigate the age performance

of uncoded and coded (repetition coded, MDS coded, and multi-message MDS (MM-

MDS) coded) schemes in the presence of stragglers. We show that, asymptotically,

MM-MDS coded scheme outperforms the other schemes, and characterize the age-

optimal codes.

Next, we study age of information in federated learning and propose a novel

timely communication scheme specifically designed for learning applications that use

highly temporal rapidly changing client datasets such as recommendation systems

and next place forecasting tasks. The proposed timely communication scheme aims

to incorporate time-critical client data into the global model updates with as little

age as possible by also considering the limited client availability and communication

resources. We show that, in addition to ensuring timeliness, the proposed policy

significantly improves the average iteration time of training without hurting the

convergence performance of the algorithm.

Then, we consider utilizing the age of information metric to improve con-

vergence performance in distributed learning with coded computation and partial

recovery for straggler mitigation. We propose a novel age-based encoding framework



that regulates the recovery frequency of the partial computations received from the

workers. We show through several experiments on a linear regression problem that

the proposed age-based encoding strategy significantly improves the convergence

performance compared to conventional static encoding schemes.

Next, we propose a novel gradient coding (GC) scheme with dynamic clus-

tering, called GC-DC, to improve the average iteration time of the existing static

gradient coding techniques. The proposed GC-DC scheme clusters the workers and

applies the GC scheme in each cluster separately. Under a time correlated strag-

gling behavior for the workers, GC-DC dynamically forms the clusters based on the

past straggling behavior to distribute straggling workers to clusters as uniformly as

possible. We show through extensive simulations on both homogeneous and hetero-

geneous worker profiles that the GC-DC scheme significantly improves the average

iteration time compared to the existing static GC schemes without any increases in

the communication load.

Finally, we study a status updating system with a single sampler which takes

samples from an observed phenomenon and sends them to a monitor node through a

single server that implements a blocking policy. We consider two scenarios with par-

tial non-i.i.d. components: Gilbert-Elliot service times and i.i.d. interarrival times;

and i.i.d. service times and Gilbert-Elliot interarrival times. We characterize the

average age experienced by the monitor node and determine the age-optimal state

transition matrix for both of these scenarios.
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CHAPTER 1

Introduction

With the proliferation of data-driven time-critical applications that involve real-time

status information such as augmented reality/virtual reality (AR/VR), autonomous

vehicular networks, and smart factories, freshness of the received messages has be-

come a critical and desirable feature. In autonomous vehicular networks, for ex-

ample, vehicles continuously sense the surrounding environment and generate time-

stamped status information regarding traffic, road conditions, and so on, in the form

of status update packets. Timely delivery of these updates to nearby vehicles and

roadside units is essential for safe and reliable operation. For a realistic sense of

presence and heightened user experience in AR/VR applications, timely delivery of

images, video and sound data is critical. In a rapidly changing factory environment

where workers, surrounding sensors, and robots need to exchange real-time informa-

tion, timeliness in the communications is required to ensure reliable operation and

increase efficiency. In all these applications, information loses its value as it becomes

stale, which in turn brings up the need for timely delivery of status information to

the interested parties since more recent measurements better capture the source pro-
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cesses. Introduced in [1], the age of information metric has been proposed to assess

timeliness of information in such systems and is the main focus of this dissertation.

A typical model to study age of information includes a source node which

acquires time-stamped status updates from a physical phenomenon. These time-

sensitive update packets are transmitted over a network to the receiver(s) and the

age of information in this network or simply the age is the time elapsed since the

most recent update at the receiver was generated at the transmitter. In other words,

at time t, age ∆(t) of a packet which was generated at time u(t), is ∆(t) = t− u(t).

The age at the receiver increases linearly in time in the absence of any update

deliveries and is reset to a smaller value when an update is received. A small age

at the receiver indicates that the receiver has fresh information. Fig. 1.1(a) shows a

sample evolution of age ∆(t), as a function of time t, at the receiver. In this example,

an update generated at ti completes service, i.e., is received at the receiver, at t′i

and updates generated at t3, t5, and t6 do not start service, i.e., they are dropped,

as the previous update was in service when these updates are generated. When the

update generated at t1 arrives at the receiver at time t′1 with d1 = t′1 − t1 being the

service time, the age drops exactly to d1 as it is the age of the packet at that time.

The time average age of the status updates is the area under the sawtooth curve

in Fig. 1.1(a) normalized by the time interval of observation; Fig. 1.1(b) shows the

shaded area of one of many trapezoids (plus a triangle between t4 and t′4) that make

the overall area.

Studying delay or throughput alone is not sufficient to guarantee access to

fresh data in real-time communication networks as the age captures not only the
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Figure 1.1: Sample AoI evolution curves. Average age evaluation through calculat-
ing areas.

packet delay in a communication setting, but also the effects of inter-generation

time of update packets. That is, good age performance corresponds to neither high

throughput nor low delay. As shown in references [2] and [3], for the optimized age

performance, we need regular packet delivery with low delay. The way to achieve

the maximum throughput is to send as many updates as possible from the source.

However, this may cause congestion in the system resulting in stale packet deliveries

at the receiver. Likewise, packet delay in the network can be reduced by decreasing

the update frequency which in turn yields outdated information at the receiver

since the update delivery rate is low. Thus, age of information studies aim to

strike a balance between these two opposing trends to design systems in which the

information is received in a timely manner by the receiver nodes.

In the following, we briefly review the rapidly developing literature on age of

information; detailed surveys can be found in [4–6]. Age of information has been

extensively studied in the context of queueing theory under various interarrival and

service profiles and queueing model assumptions [1, 7–28]. References [29] and [30]

investigate packet management strategies including blocking and preemption for
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M/G/1/1 and G/G/1/1 queues, respectively. References [31–37] study multihop

networks in which update packets are relayed from one node to another. References

[38] and [39] study the stationary distribution and moments of age in queueing

systems. In [40] and [41], the benefits of waiting in status update systems are

investigated. Age of information has found further applications in the literature in

the context of social networks [42], remote estimation [43–51], scheduling in networks

[2,52–74], energy harvesting systems [75–86], caching and coding [87–102,102,103],

vehicular and UAV systems [104–107], reinforcement learning [108–112], and so on.

Common to all these works is the fact that they study the analysis and opti-

mization of age of information in systems with small number of source-destination

pairs. With increasing connectivity in communication networks and rapidly grow-

ing number of information sources supplying time-sensitive information, the issue of

scalability of age of information has emerged. This motivates to study how the age

performance of the network changes with growing network size.

In this dissertation, our goal is to analyze age of information in a large network

setting with many source-destination pairs with a focus on its scalability as a func-

tion of the network size and to design timely distributed computation and learning

systems that handle highly temporal time-critical data by utilizing potentially large

number of worker nodes. Motivated by the ever growing prominence of distributed

computation and learning systems, another goal of this dissertation is to utilize the

age metric as a tool to improve the performance of the distributed computation and

learning systems. In the remainder of this introduction, we summarize the chapters

of this dissertation briefly.
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In Chapter 2, we study the scalability of age of information in a multihop

multicast network with a single source node and a large number nodes at each hop.

We first analyze the single-hop problem with exogenous arrivals where the source

node directly communicates with n end users but cannot generate the updates itself.

We then characterize the average age of information for the two-hop case using

our single-hop with exogenous arrivals result as a building block. In the two-hop

multicast network, each of the n nodes in the first hop are connected to n further

nodes in the second hop such that there are n2 end users. We show that the average

age of the end users is limited by a constant under i.i.d. shifted exponential link

delays and stopping thresholds k1 and k2 in hops 1 and 2, respectively. That is,

the source node transmits each update packet until the earliest k1 of the n first hop

nodes receive that update packet. Each such first hop node relays that particular

update packet to the earliest k2 of the n second hop nodes that are connected to

it. We then extend the result of two-hop network to L-hop multicast networks for

general L. We determine the optimal stopping threshold for each hop ℓ, kℓ, that

minimizes the average age for arbitrary shifted exponential link delays.

In Chapter 3, building on Chapter 2, we consider an extended scenario in

which two update streams, type I and type II streams, share the same multicast

network. That is, we study age of information in a large multicast network where

there is a single source node that sends time-sensitive updates to n receiver nodes,

where each update packet is either type I or type II. This induces a trade-off among

the ages of different update streams. We characterize this trade-off and determine

the average age at the receiver nodes for both of the update streams. We analyze
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two cases: update streams are generated by the source node at-will and update

streams arrive exogenously to the source node. We show that, in both cases, the

average age of either of the update streams at an individual node can be made

a constant independent of n using stopping thresholds k1 and k2 for type I and

type II updates, respectively. In particular, the source node transmits each type I

update packet to the earliest k1 and each type II update packet to the earliest k2

of n receiver nodes. We determine the optimum k1 and k2 stopping thresholds for

arbitrary shifted exponential link delays to individually and jointly minimize the

average age of both update streams and characterize the pareto optimal curve for

the two ages.

In Chapter 4, we study age of information in a multiple source-multiple desti-

nation setting with a particular focus on its scaling in large wireless networks. Unlike

Chapters 2 and 3, where we study a multicast network structure, in Chapter 4, we

consider a fixed area network of n randomly located source-destination (S-D) pairs

that want to send time-sensitive update packets to each other. Each source node

wants to keep its destination node as up-to-date as possible. We divide the network

into cells of M users each and propose a three-phase transmission scheme to serve

all n S-D pairs such that the time average age of each node is small. The proposed

scheme utilizes local cooperation among the nodes along with mega update packets

each of which containing the updates of all nodes from a particular cell. We show

that under the proposed scheme average age of an S-D pair scales as O(n
1
4 log n) as

the number of users, n, in the network grows. Next, we introduce hierarchy to im-

prove the age scaling result. That is, we further divide cells into smaller subcells and
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apply the proposed three-phase transmission scheme again. Using this hierarchical

scheme, we show that an average age scaling of O
(
nα(h) log n

)
per-user is achievable

where α(h) = 1
3·2h+1

and h denotes the number of hierarchy levels. We note that

α(h) tends to 0 as h increases, and asymptotically, the average age scaling of the

proposed hierarchical scheme is O(log n).

In Chapter 5, we adopt the version age metric as our timeliness measure,

which is a discrete freshness metric that counts how many versions out-of-date a

particular receiver is compared to the information at the source node. We investi-

gate version age scaling in clustered gossip networks, where we have a single source

node and n receiver nodes that are grouped into equal-sized clusters. Each cluster

corresponds to a distinct community such that nodes that belong to different com-

munities cannot exchange information. Unlike our scaling analyses in Chapters 2-4,

in gossip networks, nodes in the system exchange their current stored version of the

source update with their neighboring nodes by local gossiping. We use dedicated

cluster heads in each cluster to facilitate communication between the source and

the nodes within that cluster akin to base stations in a cellular network. Inside

clusters, nodes are connected to each other according to a given network topology.

We consider disconnected, ring, and fully connected network topologies for each

cluster. For each of these network topologies, we characterize the average version

age at each node utilizing a stochastic hybrid systems (SHS) approach and find the

average version age scaling as a function of the network size n. Our results indi-

cate that per node average version age scalings of O(
√
n), O(n

1
3 ), and O(log n) are

achievable in disconnected, ring, and fully connected cluster models, respectively.
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Next, we increase connectivity in the network and allow gossiping among the clus-

ter heads to improve version age at the receiver nodes. With that, we show that

when the cluster heads form a ring network among themselves, we obtain per node

average version age scalings of O(n
1
3 ), O(n

1
4 ), and O(log n) in disconnected, ring,

and fully connected cluster models, respectively. Then, we introduce hierarchy to

the considered clustered gossip network model and show that when we employ h

levels of hierarchy, per user average version age scaling of O(n
1
2h ) is achievable in

the case of a ring network in each cluster across all hierarchy levels. Finally, we find

the version age-optimum cluster sizes as a function of the source, cluster head, and

node update rates through numerical evaluations.

In Chapter 6, we consider the problem of timely distributed computation in

a system with a single source node and a computation unit (CU) which consists of

a single master node and n worker nodes. The source node collects time-sensitive

computation-intensive data that need additional processing to extract the useful

information and sends them to the CU for processing over a channel with random

transmission delays. The master node distributes the received computation task

to the worker nodes. Upon computation, the master node aggregates the results

and sends them back to the source node to keep it updated. We investigate the

timeliness in these systems and design computation distribution algorithms that

can combat stragglers as well as achieve a minimum average age of information. We

derive the average age for uncoded and coded (repetition coded, MDS coded, and

multi-message MDS (MM-MDS) coded) schemes in the presence of stragglers, and

show that asymptotically, i.e., for large n, MDS coded scheme achieves a smaller
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average age than uncoded and repetition coded schemes. Next, we observe that when

worker nodes have multiple computations to perform (MM-MDS coded scheme),

age performance of the MDS coded scheme is further improved. Finally, we find the

optimal codes such that the average age is minimized.

In Chapter 7, we study timeliness in a federated learning framework. We have a

parameter server (PS) that trains a global model by using n clients without actually

storing the client data centrally at a cloud server. Focusing on a setting where the

client datasets are fast changing and highly temporal in nature, we investigate the

timeliness of model updates and propose a novel timely communication scheme to

make sure that locally generated user data are reflected in the learning model with

as little age as possible without slowing down the convergence of the global model.

Under the proposed scheme, at each iteration, the PS waits for m available clients

and sends them the current model. Then, the PS uses the local updates of the

earliest k out of m clients to update the global model at each iteration. We find the

average age of information experienced by each client and numerically characterize

the age-optimal m and k values for a given n. Our results indicate that, in addition

to ensuring timeliness, the proposed communication scheme results in significantly

smaller average iteration times compared to random client selection without hurting

the convergence of the global learning task.

In Chapter 8, we introduce an age-based coded computation framework in a

distributed learning system in the presence of stragglers. These straggling workers

constitute a significant performance bottleneck for the per-iteration completion time

in distributed synchronous gradient descent (GD). Coded distributed computation
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techniques have been introduced recently to mitigate stragglers and to speed up GD

iterations by assigning redundant computations to workers. Partial recovery of the

gradient vector can further reduce the computation time at each iteration; however,

this can result in biased estimators, which may slow down convergence, or even cause

divergence. Estimator bias is particularly prevalent when the straggling behavior

is correlated over time, which results in the gradient estimators being dominated

by a few fast servers. To mitigate biased estimators, in this chapter, we design a

timely dynamic encoding framework for partial recovery that includes an ordering

operator that changes the codewords and computation orders at workers over time.

To regulate the recovery frequencies, we adopt an age metric in the design of the

dynamic encoding scheme. The proposed age-based scheme prioritizes the recovery

of computations with relatively large age. We show through numerical results that

the proposed dynamic encoding strategy increases the timeliness of the recovered

computations, which, as a result, reduces the bias in model updates, and accelerates

the convergence compared to conventional static partial recovery schemes.

In Chapter 9, we focus on the straggler mitigation problem in distributed learn-

ing. In this chapter, we introduce a novel paradigm of dynamic coded computation,

which assigns more data to the workers than the actual computation load to give

the PS certain flexibility to dynamically choose from a set of possible codes for each

worker depending on the past straggling behavior. In particular, we propose gradi-

ent coding (GC) with dynamic clustering, called GC-DC, and regulate the number

of stragglers in each cluster by dynamically forming the clusters at each iteration

by utilizing the extra degree-of-freedom offered by the additional data at the work-
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ers. Under a time-correlated straggling behavior, GC-DC adapts to the straggling

behavior over time; in particular, at each iteration, GC-DC aims to distribute the

stragglers across clusters as uniformly as possible based on the past straggler be-

havior. For both homogeneous and heterogeneous worker models, we numerically

show that GC-DC provides significant improvements in the average per-iteration

completion time without an increase in the communication load compared to the

original GC scheme.

In Chapter 10, we study a system with non i.i.d. service and interarrival times.

In particular, we consider a system with a single sampler and a single server and

study Gilbert-Elliot servers and samplers. The sampler, i.e., source node, sends

time-sensitive status updates to a single monitor node through the server node.

First, we consider a Gilbert-Elliot service profile at the server node. In this model,

service times at the server node follow a finite state Markov chain with two states:

bad state b and good state g where the server is faster in state g. We determine

the time average age at the monitor node and characterize the age-optimal state

transition matrix P with and without an average cost constraint on the service

operation. Next, we consider a Gilbert-Elliot sampling profile at the source. In this

model, the interarrival times follow a finite state Markov chain with two states: bad

state b and good state g where samples are more frequent in state g. We find the

time average age experienced by the monitor node and characterize the age-optimal

state transition matrix P .

In Chapter 11, we present conclusions of this dissertation.
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CHAPTER 2

Age of Information in Multihop Multicast Networks

2.1 Introduction

In this chapter, we study age of information and its scalability in large multicast net-

works. Reference [42] studies a mobile social network with a single service provider

and n communicating users, and shows that under Poisson contact processes among

users and uniform rate allocation from the service provider, the average age of the

content at the users grows logarithmically in n. In contrast, [113] shows that appro-

priate stopping threshold k prevents information staleness at single-hop multicast

networks with n receiver nodes. Motivated by this observation, in this chapter, we

study the scalability of age of information in multihop multicast networks using

similar threshold ideas.

We consider a multihop system where in the first hop a single source node

broadcasts time-stamped updates to n first-hop receiver nodes using n links with

i.i.d. random delays, and in the second hop, each first-hop receiver node relays the

update packets it has received to n further nodes that are connected to it. This

network architecture continues in further hops such that each receiver node in hop

12
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Figure 2.1: Two-hop multicast network with a single source node sending updates
through n middle nodes each of which is tied to further n end nodes.

ℓ− 1 acts as a transmitter in hop ℓ and it is connected to n further receiver nodes

in hop ℓ. Fig. 2.1 shows the described model for two hops. We study the age of

information experienced by the end nodes, and in particular, its scaling as a function

of n.

We first consider the age of information in a two-hop (L = 2) multicast network

and then extend our results to general multihop multicast networks with L hops,

where L is arbitrary and show that, under an earliest kℓ scheme at each hop ℓ, a

constant average age at the end nodes that is independent of n is achievable. In

particular, the source node transmits each update packet to the earliest k1 of the

n first-hop nodes, and each first-hop node that receives the update relays it to the

earliest k2 out of n second-hop nodes that are connected to it and so on. We find

age-optimal kℓ stopping thresholds at each hop ℓ for arbitrary shifted exponential

link delays.
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n− kl
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arrivals here
during delivery
are dropped
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Figure 2.2: Multicast network model: (a) two-hop operation, (b) details of hops
ℓ− 1 and ℓ.

2.2 System Model and Age Metric

We start describing our system model within the simpler two-hop setting. In the

two-hop multicast network, an update takes X time to reach from the source node

to a particular mid-level node and X̃ time to reach from that mid-level node to a

particular end node where X and X̃ are shifted exponential random variables with

parameters (λ, c) and (λ̃, c̃), respectively, where c and c̃ are positive constants. Note
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that the constant shift parameters capture additional delay that may be experienced

along with the exponential link delay and when they are zero random variables

corresponding to service times become exponentially distributed. In each hop, the

service times of individual links are i.i.d. realizations of random variables X and X̃,

e.g., in the first hop service times of individual links are i.i.d. Xi and in the second

hop service times of individual links are i.i.d. X̃i.

In the two-hop scenario, age is measured for each of the n2 end nodes and

for node i at time t age is the random process ∆i(t) = t − ui(t) where ui(t) is

the time-stamp of the most recent update at that node. When the source node

sends out update j, it waits for the acknowledgment from the earliest k1 of n middle

nodes. After it receives all k1 acknowledgment signals, we say that update j has been

completed and the source node generates update j+1. At this time, transmissions of

the remaining n−k1 packets are terminated. Thus, if a node in the first hop is not in

the earliest k1 nodes to receive update j then service of this update is preempted. In

the second hop, these earliest k1 nodes that have received update j start transmitting

this update to their end nodes and they stop whenever k2 of their end nodes have

received the current update. Middle nodes implement a blocking scheme when they

are busy transmitting to the end nodes, i.e., they discard arriving packets when they

are not idle. When the middle nodes finish transmitting the current update to k2

of their children nodes, they wait for the arrival of the next update from the source

node.

For general L, principles that are explained above are repeated at every hop,

e.g., the transmitters in hop ℓ wait for kℓ of their children nodes to receive the
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current update before they declare that the current update has been completed;

they drop all other incoming updates from transmitters in hop ℓ − 1 as they are

transmitting the current update; and when their update is received by kℓ receivers

they preempt the remaining n− kℓ updates. When this is over, transmitters in hop

ℓ wait for the next update from their parent nodes in hop ℓ− 1; see Fig. 2.2(b).

The metric we use, time averaged age, is given by

∆ = lim
τ→∞

1

τ

∫ τ

0

∆(t)dt, (2.1)

where ∆(t) is the instantaneous age of the last successfully received update as defined

above. We will use a graphical argument similar to [113] to derive the average age

at an individual end node. Since all link delays are i.i.d. for all nodes and packets,

each end node i experiences statistically identical age processes and will have the

same average age. Therefore, it suffices to focus on a single end user for the age

analysis.

2.3 Building Block: Single-Hop Network with Exogenous Arrivals

We first note that at the second hop what we essentially have is n parent nodes each

tied to n children nodes. Therefore, each second hop transmitter and its children

nodes correspond to the single-hop network analyzed in [113] with one important

difference: second hop transmitters cannot generate update packets. They can only

relay packets sent from the source node. Thus, in this section, we first analyze a

single-hop network in which update packets arrive exogenously with a given expected
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Figure 2.3: The arrival and update structure of a building block.

interarrival time 1
µ
. Then, using this network as a building block we analyze the

L-hop network described in Section 2.2, first for L = 2, i.e., a two-hop network, then

for general L. We have i.i.d. shifted exponential service times between the source and

each of its n children nodes as in [113]. Similarly, transmission of the current update

stops when k out of n nodes receive the update. Thus, in this section, we extend

the results of [113] to the case of exogenous arrivals, and determine a k threshold

which depends on λ, c and µ. Fig. 2.3 shows the arrival and update structure of a

building block. Fig. 2.2(a) shows this building block as part of a two-hop network;

and Fig. 2.2(b) shows it as a part of an ℓth hop in an L-hop network.

Under this model with i.i.d. link delay X, an update takes Xk:n units of

time to reach k out of n nodes where we denote the kth order statistic of random

variables X1, . . . , Xn as Xk:n. Here Xk:n is the kth smallest of X1, . . . , Xn, e.g.,

X1:n = min{Xi} and Xn:n = max{Xi}. For shifted exponential random variable X,
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we have

E[Xk:n] =c+
1

λ
(Hn −Hn−k), (2.2)

Var[Xk:n] =
1

λ2
(Gn −Gn−k), (2.3)

where Hn =
∑n

j=1
1
j
and Gn =

∑n
j=1

1
j2
. Using these,

E[X2
k:n] =c2 +

2c

λ
(Hn −Hn−k) +

1

λ2

(
(Hn −Hn−k)

2 +Gn −Gn−k

)
. (2.4)

We say that the system is busy when a transmitted update has not been

received by k out of n nodes yet. Once k end nodes receive an update, transmitter

stops the service to the remaining n − k nodes. Then, the system is idle until the

next update arrives. Fig. 2.4 shows a realization of the update process between

the source node and a particular end node. Note that realizations of the update

process for different end nodes might be different depending on when and for which

updates these nodes have been one of the earliest k nodes. On the other hand,

although realizations are different, each end node experiences the same random

process. Updates arrive at the source node with an interarrival time, R, where

E[R] = 1
µ
. In the most general setting, R is an arbitrary i.i.d. random variable. In

Fig. 2.4, arrows that are above and below the source node line indicate the received

and transmitted updates at the source node, respectively.

An important aspect of our model is that updates at the source node are

divided into three groups, namely successful updates, dropped updates, and pre-
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Figure 2.4: Update process for an end node in the building block setting. Filled
circles indicate the arrivals successfully received by this particular end node. Crosses
indicate updates that arrive at the source node when it is busy transmitting another
update. Empty circles show the updates that are transmitted by the source node
but are not received by this particular end node, i.e., they are preempted from the
perspective of this particular end node.

empted updates. In Fig. 2.4, filled circles correspond to successfully received up-

dates. They indicate that the update received at the source node started transmis-

sion to n end nodes and this particular end node received the update. We denote

the time between the transmission and the reception of successful updates (filled

circles) as the service time, X̄. The order of this particular node might be smaller

than k, thus X̄ ≤ Xk:n. The source continues the service of the first filled circled

update until k nodes receive the update. During this time if new updates arrive

at the source, they are dropped; the dropped updates (crosses in Fig. 2.4) never go

into service, they are lost. Once k nodes receive this update, system becomes idle

and the source waits for the arrival of the next update.

We denote the waiting time until the next arrival with Z. The next arrival

which is shown with an empty circle in Fig. 2.4 starts the service. However, for this

particular realization of the update process, this particular end node is not one of

the earliest k end nodes during the transmission of empty circled update. Since the
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source stops service once k end nodes receive the update, this transmitted update

never arrives at this particular end node. We denote those updates that start a

service but do not arrive at this particular end node as preempted updates. Even

though preemption usually means stopping a current service in order to start a new

one immediately, here we use the word preemption to mean that the current service

is stopped, and a new service will start after an idle period when a new update

arrives at the source. However, similar to regular meaning of preemption, in our

model as well, current preempted update leaves service and a fresh update takes

over.

We denote the time between two consecutive departures from the source as

Y = Xk:n+Z. Note that there are a random number of dropped updates during each

realization of Y . In Fig. 2.4, between the first successful (filled circle) update and the

next update that starts the service (empty circle), there are three dropped updates

(crossed). In other words, the fourth received update is able to start a new service.

In addition, there are multiple realizations of Y before the next successful (filled

circle) update, since this particular end node is not able to receive empty circled

updates. We denote the time between two successful updates, i.e., two consecutive

updates that depart from the source and successfully arrive at the end node, with

S. Remember that Y is the time between two updates that depart from the source

and start the service but are not guaranteed to arrive at this particular end node.

We can relate the interarrival times of departing updates and arriving updates using

S =
∑M

i=1 Yi. In Fig. 2.4, this particular end node receives the first and the fourth

updates that depart the source and enter the service. Therefore, in this example

20



we have M = 3. In addition, remember that R is the interarrival time between the

updates that arrive at the source node. For a general R, there is no closed-form

expression with known variables that relates interarrival times at the end node, S,

to interarrival times at the source node, R. However, when R is exponential Z is

exponential as well due to the memoryless property of the exponential distribution.

Thus, for exponential R we have S =
∑M

i=1(Xk:n +R)i.

When the current update reaches k earliest nodes, the source node terminates

the remaining n− k transmissions and begins to wait for the next arrival and then

repeats the process upon arrival of the next update packet. Since the link delays

are i.i.d., the end users receive the packet in service with probability p = k
n
. If an

end user receives update j and the next one it receives is update j +M , then M is

geometrically distributed with p with moments

E[M ] =
1

p
=

n

k
, E[M2] =

2− p

p2
=

2n2

k2
− n

k
. (2.5)

Similar to [113], the average age for the earliest k stopping scheme with ex-

ogenous packet arrivals with rate µ is

∆(k,µ) =
E[A]
E[S]

, (2.6)

where A denotes the shaded area in Fig. 2.5 and S is its length. Remember from Fig.

2.4 that the random variable S is the interarrival time at the end nodes. Inspecting

Fig. 2.5 to calculate A, we find E[A] = E[S2]/2 + E[S]E[X̄]. Here, X̄ denotes the
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service time of a successful update such that E[X̄] = E[Xi|i ∈ K] where K is the set

of earliest k nodes that receive the update. Now, (2.6) becomes1

∆(k,µ) =E[X̄] +
E[S2]

2E[S]
. (2.7)

We can write the first two moments of S in terms of Y as

E[S] = E[M ]E[Y ], (2.8)

E[S2] = E[M ]E[Y 2] + E[Y ]2 E[M2 −M ]. (2.9)

Inserting these into (2.7) we obtain

∆(k,µ) = E[X̄] +
E[M2]

2E[M ]
E[Y ] +

Var[Y ]

2E[Y ]
. (2.10)

In the following theorem, we determine the age of an update at an end node

for a single-hop building block model using (2.10).

Theorem 2.1 For a single-hop building block model with exogenous arrivals that

have expected interarrival time 1
µ
, for the earliest k stopping scheme, the average

1Since the building block studied in this section will eventually be used in the upcoming sections
in the analysis of two-hop and L-hop networks, we should emphasize that the definitions of X̄ and
S do not assume any network structure. As far as (2.7) is considered, it is not important where
an update that is received by an end node is generated. X̄ is the time that the update spends in
the system from the time it is generated (possibly by a node other than the one that relays it to
the end node) until the time it is received at the end node. S is the time between two consecutive
successfully received updates, regardless of whether the updates are generated at the node that
transmits them or not. This reasoning is important for our derivations in multihop multicast
networks.
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age of an update at an individual end node is

∆(k,µ) =
1

k

k∑
i=1

E[Xi:n] +
2n− k

2k
(E[Xk:n] + E[Z]) +

Var[Xk:n + Z]

2(E[Xk:n] + E[Z])
. (2.11)

Proof: The first term comes from E[X̄] as

E[X̄] = E[Xj|j ∈ K] =
k∑

i=1

E[Xi:n]Pr[j = i|j ∈ K] = 1

k

k∑
i=1

E[Xi:n], (2.12)

where we used the fact that, since we have k out of n nodes selected independently

and identically in K, we have Pr[j = i|j ∈ K] = 1
k
. The second and third terms are

obtained upon substitution of Y = Xk:n+Z and E[M ] and E[M2] expressions given

in (2.5) into (2.10). ■

When we have general interarrival times as we have in this problem, Xk:n and

Z may be dependent. However, with exponential interarrivals we can show their

independence using the memoryless property, and simplify the age expression given

in (2.11) as follows.

Corollary 2.1 When the arrival process is Poisson with rate µ, the age of an end

node is

∆(k,µ) =
1

k

k∑
i=1

E[Xi:n] +
2n− k

2kµ
(µE[Xk:n] + 1)

+
µVar[Xk:n]

2(µE[Xk:n] + 1)
+

1

2(µ2 E[Xk:n] + µ)
. (2.13)

Proof: When the arrival process is Poisson with µ, in other words, R is exponential
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Figure 2.5: Sample age evolution ∆(k,µ)(t) of an end node. Updates that find the
system idle arrive at times Ti at the source. Here, update j arrives at time Tj−1 and
immediately goes into service. Successful update deliveries are marked with • and
in this figure, updates j − 1, j and j + 2 are delivered successfully whereas update
j + 1 is terminated.

with expected interarrival time 1
µ
, the random variable Z which corresponds to the

residual interarrival time is exponentially distributed with the same parameter, i.e.,

Z = R. In addition, Z is independent of X due to the memoryless property of the

exponential distribution. Then,

Var[Y ] = Var[Xk:n + Z] = Var[Xk:n] + Var[Z], (2.14)

and we plug in E[Z] = 1
µ
and Var[Z] = 1

µ2 . ■

When the service times X are i.i.d. shifted exponential random variables and

when n is large, we can further simplify the age expression in (2.13) as follows.

Corollary 2.2 For large n and n > k, set k = αn. For shifted exponential (λ, c)

service times X, the average age for the earliest k scheme with exogenous Poisson
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arrivals with rate µ can be approximated as

∆(k,µ) ≈
c

α
+

c

2
+

1

λ
− 1

2λ
log(1− α) +

1

αµ
− 1

2µ

+
1

2

(
µ2c− µ2 log(1− α)

λ
+ µ

)−1

. (2.15)

Proof: Using the order statistics above,

δ1 =
1

k

k∑
i=1

E[Xi:n] = c+
Hn

λ
− 1

kλ

k∑
i=1

Hn−i. (2.16)

As in [113], we have
∑k

i=1Hn−i =
∑n−1

i=1 Hi −
∑n−k−1

i=1 Hi and the series identity∑k
i=1Hi = (k + 1)(Hk+1 − 1). Using these we get

δ1 = c+
1

λ
− n− k

kλ
(Hn −Hn−k) ≈ c+

1

λ
+

1− α

αλ
log(1− α), (2.17)

since for large n, we have Hi ≈ log(i) + γ. Also,

δ2 =
2n− k

2µk
(µE[Xk:n] + 1) =

2n− k

2µk

(
µ

(
c+

Hn −Hn−k

λ

)
+ 1

)
(2.18)

≈(2− α)c

2α
+

α− 2

2αλ
log(1− α) +

2− α

2αµ
. (2.19)

Next, we note that we have

lim
n→∞

µVar[Xk:n]

2(µE[Xk:n] + 1)
= 0. (2.20)
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We see this from the expected values of order statistics,

µVar[Xk:n]

2(µE[Xk:n] + 1)
=

µ(Gn −Gn−k)

2(µλ2c+ µλ(Hn −Hn−k) + λ2)
. (2.21)

We know that the sequence Gn converges to π2

6
. As n increases Gn−k = G(1−α)n also

goes to the same value making the numerator 0. Thus, as n tends to ∞ (2.20) is

achieved. Similarly,

δ3 =
1

2(µ2 E[Xk:n] + µ)
≈ 1

2

(
µ2c− µ2 log(1− α)

λ
+ µ

)−1

. (2.22)

Summing δ1, δ2, and δ3 yields the expression in (2.15). ■

Note that the age expression in (2.15) when n is large is a function of the ratio

α = k
n
only implying that the age converges to a constant even when the packets

arrive exogenously, similar to [113] where the packets are generated at will at the

source.

Although there is no explicit closed form solution for the optimal α, denoted

as α∗, which minimizes (2.15), we can calculate it numerically. For instance, when

(λ, c) = (1, 1) and Poisson arrival rate is µ = 1, age minimizing α is α∗ = 0.837.

This optimal value is higher than that of the original case in which the source

itself generates the packets at will, which is α∗ = 0.732 found in [113]. This is

because with exogenous arrivals at the source node, update interarrival time at the

end nodes is larger. In this regard, we see that when the Poisson arrival rate is

increased α∗ decreases. This is expected because when the arrival rate is high (i.e.,
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update packets arrive frequently), the source node prefers to wait for the freshest

one instead of sending the current update to more and more end users. Similarly,

when the arrival rate is low (i.e., update packets arrive infrequently), α∗ is higher

because in this case source knows that interarrival time is higher so that before

it waits for the next packet it wants to update as many end nodes as it can (see

Fig. 2.6(a)). We also note that as we take µ→∞ in (2.15), we get

∆(k) ≈
c

α
+

c

2
+

1

λ
− 1

2λ
log(1− α), (2.23)

which is the age expression in [113]. Thus, age expression under exogenous Poisson

arrivals with rate µ converges to the case in which source generates the packets itself

as µ tends to ∞.

Finally, we note an interesting aspect of the problem with exogenous arrivals:

It is shown in [113] that when the service time random variable X is exponential

(i.e., shift variable is zero), the average age is minimized when k = 1. However, this

is not the case when updates arrive exogenously. We observe in Fig. 2.6(b) that the

age minimizing k value can be greater than 1, and it depends on the update arrival

rate, µ. As µ increases, the optimal k decreases and approaches 1. The reason for

this is that the random waiting time with exogenous arrivals introduces a random

shift to the exponential distribution of the service time.
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Figure 2.6: ∆(k,µ) as a function of stopping threshold k for several µ values with
λ = 1. ◦ marks the minimized ∆(k,µ): (a) when c = 1, (b) when c = 0.

2.4 Two-Hop Network

Using the building block problem solved in the previous section, we are now ready

to solve the two-hop problem (L = 2) described in Section 2.2 as a preliminary

step towards solving the most general case for arbitrary L. In the two-hop system,

middle nodes cannot generate updates rather they receive them from the source

node. Thus, each middle node and its n children nodes in the second hop can be

modeled as in Section 2.3. Since the source node sends updates to the first k1 of its

nodes, a middle node receives a certain update packet with probability p1 = k1
n
. If

a middle node receives update j and the next one it receives is update j+M1, as in

the building block problem, M1 is a geometrically distributed random variable with

parameter p1.

Since the source generates a new update at will once the current update is

delivered to k1 middle nodes, the interarrival time between updates that start service

in the first hop is Y1 = Xk1:n. Let random variable S1 denote the interarrival time at
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the receiver nodes in the first hop. In other words, let S1 denote the time between

updates that leave service in the first hop. Since each update cycle takes Xk1:n units

of time, successful interarrival time at the middle nodes can be written as

S1 =

M1∑
i=1

(Y1)i =

M1∑
i=1

(Xk1:n)i, (2.24)

where the mean interarrival time is E[S1] = E[M1]E[Xk1:n]. Note that we have

Z1 = 0 for the source node since it generates the updates as soon as the previous

one is completed (transmitted to k1 nodes). The receiver nodes in the first hop

immediately relay the update that they have received. Therefore, the interarrival

time between the successfully received updates at the receiver nodes in the first hop,

S1, is equal to update interarrival time at the transmitter nodes in the second hop,

R2.

After receiving the updates with interarrival time R2 = S1, middle nodes

transmit each update until it is delivered to k2 of their children nodes. Similar to

the first hop, when a middle node transmits an update, an end node receives the

update with probability p2 = k2
n
. Geometrically distributed M2 with parameter

p2 denotes the number of cycles between successive updates to an end node. The

interarrival time between updates that depart from a middle node and start service

in the second hop is Y2 = X̃k2:n+Z2. Let random variable S2 denote the interarrival

time between updates that successfully arrive at the receiver nodes in the second
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hop. Then,

S2 =

M2∑
i=1

(Y2)i =

M2∑
i=1

(X̃k2:n + Z2)i. (2.25)

Note that in this model a successful update reaches an end node without being

preempted in each of the hops. Thus, the service time of a successful update denoted

by X̄ is the sum of link delays in each hop and corresponds to the total time spent

in the system by that update. Then, the total service time of a successful update

delivered to some node i through middle node j is E[X̄] = E[Xj|j ∈ K]+E[X̃i |i ∈

Kj]. Here the set K is the set of first k1 middle nodes that receive the update and

the set Kj defined for each j in K is the set of first k2 end nodes that receive the

update. Thus, for an update to reach an end node that end node has to be among

the earliest k2 children nodes of its middle node and the corresponding middle node

has to be one of the earliest k1 middle nodes. Now, by using (2.10), the average age

of an end node for a two-hop system is given in the following theorem.

Theorem 2.2 For a two-hop system with the earliest k1, k2 stopping scheme, the

average age at an individual end node is

∆(k1,k2) =
1

k1

k1∑
i=1

E[Xi:n] +
1

k2

k2∑
i=1

E[X̃i:n] +
2n− k2
2k2

(E[X̃k2:n] + E[Z2])

+
Var[X̃k2:n + Z2]

2(E[X̃k2:n] + E[Z2])
. (2.26)

Proof: This theorem follows from Theorem 2.1 upon observing that the second
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hop is the same as the building block problem. However, successful updates in the

two-hop setting spend time in both hops to reach the end nodes. Noting also that

successful updates do not wait in the system till they reach the end nodes, we find

E[X̄] =
1

k1

k1∑
i=1

E[Xi:n] +
1

k2

k2∑
i=1

E[X̃i:n]. (2.27)

Using (2.27) in (2.10) yields the theorem. ■

This theorem is valid for any distribution for X and X̃. Random variable Z2

denotes the residual interarrival time before the next update arrives to the mid-

dle node. When we no longer have exponential interarrival times, it is not easy

to determine the first and second order statistics of Z2. However, we can upper

bound the average age of our model ∆(k1,k2) with the average age under exponential

interarrivals to the middle nodes ∆′
(k1,k2)

using the following lemma.

Lemma 2.1 For a two-hop system, let ∆′
(k1,k2)

denote the average age of an end

node under exponential interarrivals to middle nodes with mean E[R2]. Then, ∆(k1,k2) ≤

∆′
(k1,k2)

.

The proof of Lemma 2.1 follows from the DMRL (decreasing mean residual life)

[114] property of interarrival times and NBUE (new better than used in expectation)

[114] property of service times and is provided in Section 2.7. Note that as long as

the aforementioned conditions on the interarrival and service time distributions are

met, this lemma also applies to the case with L > 2 hops. This generalization is

made in Section 2.7. Since ∆(k1,k2) ≤ ∆′
(k1,k2)

, in order to prove that the average age
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in the two-hop system is bounded by a constant, all we need to show is that ∆′
(k1,k2)

is upper bounded by a constant as the network grows, i.e., n increases.

Corollary 2.3 For a two-hop system, assuming exponential interarrivals to the

middle nodes with E[R2], the average age at an end node under the earliest k1,

k2 stopping scheme is

∆′
(k1,k2)

=
1

k1

k1∑
i=1

E[Xi:n] +
1

k2

k2∑
i=1

E[X̃i:n] +
2n− k2
2k2

E[X̃k2:n] +
2n2 − nk2
2k1k2

E[Xk1:n]

+
k1V ar[X̃k2:n]

2(k1 E[X̃k2:n] + nE[Xk1:n])
+

n2 E[Xk1:n]
2

2k1(k1 E[X̃k2:n] + nE[Xk1:n])
. (2.28)

Proof: When the interarrival times to the middle nodes, R2 are exponential, then

Z2 = R2 due to the memoryless property of the exponential distribution. In ad-

dition, we know that R2 = S1. Therefore, Z2 is exponential with mean E[Z2] =

E[S1] = E[M1]E[Xk1:n]. Then, Var[Z2] = E[S1]
2 = E[M1]

2 E[Xk1:n]
2 where M1 is

geometrically distributed with p1 = k1
n
. Combining these and noting that Z2 and

X̃k2:n are independent yields the result. ■

Corollary 2.4 For a two-hop system, assuming n is large and n > k1 and n > k2

and letting k1 = α1n and k2 = α2n, under exponential interarrival assumption to the

middle nodes with mean E[R2], and shifted exponential service times X with (λ, c)

and X̃ with (λ̃, c̃), the average age for the earliest k1, k2 scheme can be approximated

as

∆′
(k1,k2)

≈1

λ
+

1

λ̃
+

c̃

α2

+
c̃

2
− 1

2λ̃
log(1− α2) +

2− α2 + 2α1α2

2α1α2

c
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+
λ̃K2

1

2α1λ[λα1K2 + λ̃K1]
+

3α2 − 2α1α2 − 2

2α1α2λ
log(1− α1), (2.29)

where K1 = (λc− log(1− α1)) and K2 = (λ̃c̃− log(1− α2)).

The proof of Corollary 2.4 is similar to that of Corollary 2.2. With Corol-

lary 2.4 we have showed that ∆′
(k1,k2)

derived in Corollary 2.3 is independent of n

for large n. Since it upper bounds our age expression ∆(k1,k2), we conclude that age

under the earliest k1, k2 stopping scheme for a two-hop multicast network is also

independent of n for large n and is bounded by a constant as the number of end

nodes increases.

2.5 Extension to L Hops

In this section, we extend our two-hop age results in (2.26), (2.28), and (2.29) to

L hops. Considering an L-hop network, we have a single source node, n first hop

receiver nodes, n2 second hop receiver nodes and extending in this manner, nL end

(L hop) nodes. The network model for L = 2 is shown in Fig. 2.1 and it is generalized

such that each of n nodes of the first hop is tied to n further nodes making n2 second

hop nodes and similarly, each of these n2 second hop nodes is further connected to

n nodes forming n3 end nodes, and so on, for L hops.

Remember that in the two-hop model, we denote the first hop link delays as

X, and the second hop link delays as X̃. In this section, in order to accommodate

general L hops, we change our notation so that the first hop link delay is now denoted

as X(1), the second hop link delay is now denoted as X(2), the ℓth hop is denoted
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as X(ℓ), and the last hop link delay is denoted as X(L). For each hop ℓ, we utilize

the earliest kℓ transmission policy such that once hop ℓ−1 receiver nodes receive an

update they begin to act as hop ℓ transmitter nodes and relay the update they have

received to kℓ of their n children nodes (see Fig. 2.2). After the packet transmission

to kℓ children nodes are completed, hop ℓ transmitter nodes start waiting for the next

update. Here, random variable Zℓ denotes this waiting time upon the completion

of an update until the next one arrives. Thus, the interarrival time between two

consecutive updates that depart from the transmitter and start service in hop ℓ is

Yℓ = X
(ℓ)
kℓ:n

+ Zℓ.

Overall this L-hop network implements the earliest {kℓ}Lℓ=1 transmission scheme.

At each hop, we have random variable Mℓ which is geometrically distributed with

parameter pℓ = kℓ
n

that represents the number of update cycles between two suc-

cessive updates that arrive at a receiver in hop ℓ. The interarrival time between

two consecutive updates that leave service in hop ℓ without being preempted can

be written as

Sℓ =

Mℓ∑
i=1

(Yℓ)i =

Mℓ∑
i=1

(X
(ℓ)
kℓ:n

+ Zℓ). (2.30)

A receiver node in hop ℓ immediately transmits an update it receives to its children

nodes in hop ℓ+1. Therefore, the interarrival time between two consecutive success-

ful updates that leave service in hop ℓ, Sℓ, is equal to the interarrival time between

two consecutive updates that arrive in hop ℓ+ 1, Rℓ+1. We have Rℓ+1 = Sℓ.

The last hop in this L-hop network can be seen as an application of our
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building block problem. In the building block problem, there is a source node and

an end node. When this is applied to the last hop of the L-hop network, the source

node is an arbitrary receiver node in hop L − 1, and the end node is an arbitrary

receiver node in hop L. Interarrival time of updates that arrive exogenously at the

source node in the building block problem, R, is now R = SL−1, and the interarrival

time between successful updates that arrive at the end node in the building block

problem, S, is now S = SL. In addition, we know that SL =
∑ML

i=1(YL)i. Finally,

the service time in the building block problem, X̄, is now X̄ =
∑L

ℓ=1 X̄ℓ, where X̄ℓ

is the service time at each hop. We know that for an update packet to reach the end

nodes, it has to be among the earliest k1, . . . , kL nodes in all hops. Thus,
∑L

ℓ=1 X̄ℓ

term captures the expected time spent in the system for a successful update without

being preempted until it reaches one of the end nodes. The average age of an end

node for an L-hop system is given in the following theorem.

Theorem 2.3 For the general L-hop network with the earliest {kℓ}Lℓ=1 stopping

scheme, the average age at an individual end node at hop L is

∆{kℓ}Lℓ=1
=

L∑
ℓ=1

1

kℓ

kℓ∑
i=1

E[X(ℓ)
i:n ] +

2n− kL
2kL

(E[X(L)
kL:n

] + E[ZL])

+
Var[X

(L)
kL:n

+ ZL]

2(E[X(L)
kL:n

] + E[ZL])
. (2.31)

Proof: Since the last hop of the general L-hop network can be seen as a building

block, we can apply (2.10) to the setting here by inserting Y = YL and X̄ =
∑L

ℓ=1 X̄ℓ.

Then, (2.31) follows after similar calculations as in Theorems 2.1 and 2.2. ■
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Similar to Corollary 2.3, the age of the last hop can be upper bounded by

assuming that the interarrival times at each hop are exponentially distributed.

Corollary 2.5 For the general L-hop network, assuming exponential interarrivals

to each hop with mean E[Rℓ], average age at an end node under {kℓ}Lℓ=1 stopping

scheme is given by

∆′
{kℓ}Lℓ=1

=
L∑

ℓ=1

1

kℓ

kℓ∑
i=1

E[X(ℓ)
i:n ] +

2n− kL
2kL

L∑
ℓ=1

E[X(ℓ)
kℓ:n

]
L−1∏
i=ℓ

E[Mi]

+
Var[X

(L)
kL:n

] +
(∑L−1

ℓ=1 E[X(ℓ)
kℓ:n

]
∏L−1

i=ℓ E[Mi]
)2

2(
∑L

ℓ=1 E[X
(ℓ)
kℓ:n

]
∏L−1

i=ℓ E[Mi])
. (2.32)

Proof: Using Lemma 2.1, (2.31) can be upper bounded with exponential interar-

rivals to the nodes at hop L− 1, where mean interarrival time is E[RL] = E[SL−1].

When the interarrivals are exponentially distributed, we have ZL = SL−1 and

therefore, E[ZL] = E[SL−1]. In addition, with exponential interarrivals, ZL is in-

dependent of XkL:n. Then, we have Var[X
(L)
kL:n

+ ZL] = Var[X
(L)
kL:n

] + Var[ZL], where

Var[ZL] = E[SL−1]
2. Now, the upper bound for (2.31) can be written as

∆′
{kℓ}Lℓ=1

=
L∑

ℓ=1

1

kℓ

kℓ∑
i=1

E[X(ℓ)
i:n ] +

2n− kL
2kL

(E[X(L)
kL:n

] + E[SL−1])

+
Var[X

(L)
kL:n

] + E[SL−1]
2

2(E[X(L)
kL:n

] + E[SL−1])
. (2.33)

Now, let us calculate E[SL−1]. We can write SL−1 as

SL−1 =

ML−1∑
i=1

(YL−1)i =

ML−1∑
i=1

(X
(L−1)
kL−1:n

+ ZL−1)i, (2.34)

36



where YL−1 is the interarrival time between updates that start service in hop L− 1.

Then,

E[ZL] = E[SL−1] = E[ML−1]E[X(L−1)
kL−1:n

] + E[ML−1]E[ZL−1]. (2.35)

Similarly, E[ZL−1] can be written in terms of the variables in hop L − 2. We con-

tinue with this recursive calculation until the second hop, where we have E[Z2] =

E[M1]E[X(1)
k1:n

]. As a result, we have

E[SL−1] =E[ML−1]E[X(L−1)
kL−1:n

] + · · ·+ E[ML−1]E[ML−2] · · ·E[M2]E[M1]E[X(1)
k1:n

]

=
L−1∑
ℓ=1

E[X(ℓ)
kℓ:n

]
L−1∏
i=ℓ

E[Mi]. (2.36)

Adding E[XL−1
kL−1:n

] to (2.36), we have

E[XL−1
kL−1:n

] + E[SL−1] =
L∑

ℓ=1

E[X(ℓ)
kℓ:n

]
L−1∏
i=ℓ

E[Mi]. (2.37)

Finally, by inserting (2.36) and (2.37) into (2.33), we obtain (2.32). ■

Corollary 2.5 introduces an upper bound for average age of an update that is

generated at the source node and delivered to any one of the end nodes in hop L.

Note that the total number of nodes in the L-hop network is
∑L

ℓ=0 n
l. The result

of Corollary 2.5 holds for any n. Next, we characterize the effect of increasing n on

the scaling of average age.

Corollary 2.6 Assume n is large and n > kℓ and let kℓ = αℓn for ℓ = 1, . . . , L.
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Under exponential interarrival assumption to each hop with mean E[Rℓ], and shifted

exponential service times X(ℓ) with (λℓ, cℓ), the average age for the earliest {kℓ}Lℓ=1

scheme can be approximated as

∆′
{kℓ}Lℓ=1

≈
L∑

ℓ=1

(
cℓ +

1

λℓ

+
1− αℓ

αℓλℓ

log(1− αℓ)

)

+
2− αL

2αL

L∑
ℓ=1

[(
cℓ −

1

λℓ

log(1− αℓ)

) L−1∏
i=ℓ

1

αi

]

+

(∑L−1
ℓ=1

[(
cℓ − 1

λℓ
log(1− αℓ)

)∏L−1
i=ℓ

1
αi

])2
2
∑L

ℓ=1

[(
cℓ − 1

λℓ
log(1− αℓ)

)∏L−1
i=ℓ

1
αi

] . (2.38)

The proof of this corollary is similar to that of Corollaries 2.2 and 2.4. We use the

first and second moments of order statistics of shifted exponential random variables

and make necessary approximations for large n.

In conclusion, under the assumption that middle nodes receive update packets

with exponential interarrivals with means equal to E[Rℓ], the average age attained at

the end nodes depends on n only through ratios αℓ. Thus, this result together with

Lemma 2.1 imply that the average age of an end node in an L-hop multicast network

implementing the earliest {kℓ} transmission scheme is bounded by a constant as n

increases.

2.6 Numerical Results

In this section, we provide simple numerical results. In order to optimize the age of

information at the end nodes, we need to select appropriate ki values, i.e., optimum

ratios α∗
i , at each hop. From [113], we know that in the single-hop multicast network
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number of hops L α∗
1 α∗

2 α∗
3 α∗

4

L = 1 0.732 - - -
L = 2 0.615 0.921 - -
L = 3 0.626 0.832 0.965 -
L = 4 0.635 0.837 0.901 0.935

Table 2.1: Optimal αi values for L-hop network when all link delays are shifted
exponentials with (1, 1).

α∗ is 0.732 when link delays are shifted exponential with parameters (λ, c) = (1, 1).

For the two-hop network with (λ, c) = (λ̃, c̃) = (1, 1), we obtain α∗
1 = 0.615 and

α∗
2 = 0.921. This shows that when all link delays are statistically identical, to

achieve a good age performance, we need to be more aggressive in the second hop

than the first hop (see [115]).

When we add a third hop, we see that the optimal threshold results follow

similar trends. Let us denote the link delay parameters of the third hop as (˜̃λ, ˜̃c) for

tractability. When all link delays are statistically identical, i.e., shifted exponentials

with parameters (1,1), we have α∗
1 = 0.626, α∗

2 = 0.832 and α∗
3 = 0.965. In a similar

fashion, when we add a fourth hop, we have α∗
1 = 0.635, α∗

2 = 0.837, α∗
3 = 0.901 and

α∗
4 = 0.935. Thus, the observation we have made for two-hop multicast networks,

i.e., that we need to be more aggressive in the further hops to achieve a lower average

age holds true for four-hop multicast networks as well. These results are summarized

in Table 2.1.

Returning to the two-hop network, we observe that α2 is responsive to the

changes in the parameters of the first hop. This is intuitive because as k1 varies, the

mean interarrival time for the second hop changes. In Figs. 2.7(a) and 2.7(b), we plot
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Figure 2.7: ∆′
(k1,k2)

as a function of k2 for n = 500. ◦ marks the minimized average

age ∆′
(k1,k2)

: (a) c = 1 and (λ̃, c̃) = (1, 1) for varying λ, (b) c̃ = 1 and (λ, c) = (1, 1)

for varying λ̃.

the age as a function of k2 (equivalently α2) for a fixed set of second hop parameters

and for a fixed set of first hop parameters, respectively. As shown in Fig. 2.7(a),

for the same (λ̃, c̃) pair, when the mean interarrival time gets lower by increasing λ,

α∗
2 gets lower as well. Knowing that the next update arrival is not far away, middle

nodes tend to wait for the next one instead of sending the current packet to more

and more end users when the arrivals are frequent. This is exactly what we have

observed in the building block problem with exogenous update arrivals.

In Fig. 2.7(b) we observe that as the service rate of the second hop, λ̃, increases

for a given λ, α∗
2 increases as well. This is intuitive because when λ is fixed, the

interarrival time to the middle nodes stays constant as opposed to their increasing

service rate. Thus, they relay their current packet to more end nodes.

In Figs. 2.8(a) and 2.8(b), we plot the age as a function of k1 (equivalently α1)

when the second hop parameters are fixed and when the first hop parameters are

fixed, respectively. In Fig. 2.8(a), α∗
1 shows a similar trend as in α∗

2 in Fig. 2.7(b)
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Figure 2.8: ∆′
(k1,k2)

as a function of k1 for n = 500. ◦ marks the minimized average

age ∆′
(k1,k2)

: (a) c = 1 and (λ̃, c̃) = (1, 1) for varying λ, (b) c̃ = 1 and (λ, c) = (1, 1)

for varying λ̃.

but α∗
1 experiences bigger changes as λ increases. Fig. 2.8(b) shows the response of

α∗
1 to changes in λ̃ when λ is fixed. Here, we observe rather minor reaction from α∗

1

when the service performance of the second stage varies.

In Fig. 2.9 we repeat the numerical analysis in Fig. 2.7 when the link delays

are exponential, i.e., shift parameters c = 0 and c̃ = 0. We observe similar trends for

k∗
2 as in Fig. 2.7. The only difference is now that the link delays are all exponential,

we get k∗
1 = 1 for all cases. This is also observed in [113] and in the building

block problem when µ tends to∞ and is because of the memoryless property of the

exponential distribution.

In Fig. 2.10 we analyze the effects of the link delay parameters λ and λ̃ on

∆′
(k1,k2)

. In both cases we see that larger service rates (large λ and λ̃), i.e., lower

link delays, lead to smaller average age at the end nodes.

In Fig. 2.11 we plot the three-hop version of Fig. 2.7. As shown in Fig. 2.11,

when the mean interarrival time decreases at the third hop through a service rate
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increase in either one of the first two hops α∗
3 gets smaller. One other observation

from Fig. 2.11 is the fact that although we change λ values in Fig. 2.11(a) and λ̃

values in Fig. 2.11(b), their effects on the third hop are quite similar. In either case

we observe a similar trend, i.e., k3 value decreases as λ or λ̃ increases.

2.7 Appendix: Proof of Lemma 2.1

In this section, we prove Lemma 2.1, first, for the two-hop scenario, then we extend

the proof to the L-hop case. We use [116, Thm. 2] which, for a G/G/1/1 system,

requires interarrival times to have DMRL property and service times to have NBUE

property. Note that the updates that depart the service at the first hop, S1 are

considered to be the arrivals at the second hop, R2. Then, between a transmitter

and a receiver at the second hop, we have interarrivals R2 =
∑M1

i=1(Xk1:n)i and

service times X̃k2:n. In order to employ [116, Thm. 2], we need to show that R2 has

DMRL property and X̃k2:n has NBUE property. It is sufficient to show that both

R2 and X̃k2:n have log-concave density, since log-concavity implies both DMRL and

NBUE properties [114].

It is given in [117, Thm. 1.C.54] that the order statistics of i.i.d. log-concave

random variables is log-concave as well. Since shifted exponential has a log-concave

density, we conclude that the second hop service time X̃k2:n has a log-concave density.

In order to show the log-concavity of R2, we use the fact that a function is log-

concave if and only if it is a Polya Frequency function of order 2 [114, Proposition

21.B.8], which is denoted by PF2. We know that the geometric random variable
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Figure 2.9: ∆′
(k1,k2)

as a function of k2 for n = 500 when link delays are exponential.

◦ marks the minimized average age ∆′
(k1,k2)

: (a) c = 0 and (λ̃, c̃) = (1, 0) for varying

λ, (b) c̃ = 0 and (λ, c) = (1, 0) for varying λ̃.

M1 and shifted exponential random variables Xk1:n are log-concave, and hence they

have PF2 densities. In addition, we know that M1 is independent of Xk1:n. Now,

we can apply [118, Thm. 6] that states that if Xk1:n and M1 have PFk densities,

and M1 is independent of Xk1:n, then R2 =
∑M1

i=1(Xk1:n)i has a PFk density as well.

Since [118, Thm. 6] is stated for any k, it holds for k = 2, and we conclude that R2

has a PF2 density, which, in turn, means that R2 is log-concave.

We have proved that interarrivals to the second hop are DMRL and service

time of the second hop is NBUE. Hence, using [116, Thm. 2] average age of the

second hop is upper bounded by a system where interarrivals are exponential with

E[R2]. In the third hop, service times are i.i.d. with the service times at the second

hop. Therefore, service time of the third hop is NBUE as well. The interarrivals

at the third hop are now R3 =
∑M2

i=1(X̃k2:n + Z2)i. In order to calculate the upper

bound in the second hop, we have already assumed that the interarrivals, R2, are

exponential which resulted in Z2 = R2 to be exponential as well. Then, R3 can
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Figure 2.10: ∆′
(k1,k2)

as a function of link delay parameters λ and λ̃ for n = 500: (a)

∆′
(k1,k2)

as a function of λ, (b) ∆′
(k1,k2)

as a function of λ̃.

be shown to be log-concave using similar ideas above and for exponential Z2. This

reasoning holds for each hop in an L-hop system, which proves the applicability of

Lemma 2.1 to an L-hop system as well.

2.8 Conclusion

We studied the age of information in a multihop multicast network with a single

source updating nL end nodes where L denotes the number of hops. We showed that

when the earliest kℓ transmission policy is implemented at each hop ℓ, the age of in-

formation at the end nodes can be upper bounded by a constant that is independent

of n. We explicitly characterized an upper bound for an L-hop multicast network,

and then determined the optimal stopping thresholds kℓ for arbitrary shifted ex-

ponential link delays. We note that even when the link delays are exponential we

find k∗
1 = 1 and k∗

ℓ > 1 in hops ℓ > 1. This is because even when there is no shift

in service, the random waiting time under exogenous arrivals introduces a random
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Figure 2.11: ∆′
(k1,k2,k3)

as a function of k3 for n = 100. ◦ marks the minimized

average age ∆′
(k1,k2,k3)

: (a) c = 1 and (λ̃, c̃) = (˜̃λ, ˜̃c) = (1, 1) for varying λ, (b) c̃ = 1

and (λ, c) = (˜̃λ, ˜̃c) = (1, 1) for varying λ̃.

shift to the exponential service distribution in hops ℓ > 1.
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CHAPTER 3

Age of Information in Multicast Networks with Multiple Up-

date Streams

3.1 Introduction

In Chapter 2 and references [115,119], we show that utilizing transmission schemes

with stopping thresholds can prevent information staleness as the network grows in

multihop multicast networks considering a single type of update that the users are

interested in. In an extended scenario there could be many streams sharing the same

network. For example, in an autonomous vehicle network, the network can carry

information about the velocity, position and acceleration of a car and broadcast it to

all nearby cars. Thus, often networks are used to transmit multiple update streams

which include multiple different types of update packets. References [12,23,120,121]

study age of information at a monitor node which receives multiple streams of update

packets with or without different priorities.

In this chapter, we study the age of information in a multicast network with

multiple update streams (see Fig. 3.1). Two types of updates are transmitted from

the source node to n receiver nodes, namely type I and type II updates. We are
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Figure 3.1: Multicast network with a single source node sending two types of updates
to n nodes.

interested in the average age experienced by the receiver nodes for both of the

update streams. Since the network resources are shared among two different types

of updates, there is a trade-off in the ages of these two update streams. In this

work, we characterize this trade-off, determine the average age of information of

both of the streams and analyze the age scalability when there are large number of

destination nodes. We first analyze the setting in which the updates are generated

by the source node at-will and show that the average age of either of the update

streams at an individual node can be made a constant independent of n using the

earliest k1, k2 transmission scheme such that each type I update is transmitted to

the earliest k1 of n nodes and each type II update is sent to the earliest k2 of n

nodes. We determine the optimal stopping thresholds to individually and jointly

optimize the average age of type I and type II updates at the receiver nodes for

arbitrary shifted exponential link delays. Then, we extend these results to the case

in which the updates arrive exogenously to the source node.
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3.2 System Model and Age Metric

We consider a system (see Fig. 3.1), where there is a single source node broadcasting

time-stamped updates to n nodes using n links with i.i.d. random delays. Each

status update is one of two kinds: type I or type II. Thus, in this system two

different update streams share the same network. Each of the n receiver nodes

is interested in both streams. A type I update takes X time to reach from the

source node to a particular receiver node whereas a type II update needs X̃ time to

reach to a receiver node where X and X̃ are shifted exponential random variables

with parameters (λ, c) and (λ̃, c̃), respectively, where c and c̃ are positive constants.

Different update types have different service rates considering their possibly different

lengths, compression rates etc.

We consider two variations on the operation of this network. In the first case,

updates are generated by the source node at-will. At each time the source node

generates a type I update with probability p1 or a type II update with probability

p2 where p1+p2 = 1. In the second case, however, both of the update streams arrive

exogenously to the source node. Here, we model the exogenous update arrival as

a Poisson process with rate µ where each arriving update is a type I update with

probability p1 or a type II update with probability p2 such that p1 + p2 = 1. Thus,

type I update stream arrives as a Poisson process with rate µ1 = µp1 and type II

stream arrives as a Poisson process with rate µ2 = µp2.

In either way of operation, the source node adapts the earliest ki transmission

scheme where i = 1, 2 depending on the type of the update. Assume the jth update
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that is sent from the source node is of type I. Then, the source node waits for the

acknowledgment from the earliest k1 of n receiver nodes. After it receives all k1

acknowledgment signals, we say that update j has been completed. At this time,

transmissions of the remaining n − k1 packets are terminated. If the source node

generates the updates itself, it generates the update j+1 as soon as the update j has

been completed, i.e., the source node implements a zero-wait policy. However, if the

updates arrive exogenously, the source node starts to wait for the next update arrival

as soon as update j has been completed. When a type II update is transmitted from

the source node, this process is repeated with stopping threshold k2 instead of k1.

Since we have two different update streams, each receiver node experiences

two different age processes. Thus, age is measured for each of the n receiver nodes

for each update type. Age of type I updates at node i at time t is the random

process ∆I,i(t) = t− uI,i(t) where uI,i(t) is the time-stamp of the most recent type

I update at that node. The metric we use, time averaged age, is given by

∆I = lim
τ→∞

1

τ

∫ τ

0

∆I(t)dt, (3.1)

where ∆I(t) is the instantaneous age of the last successfully received type I update

as defined above. Age of type II updates, ∆II , is defined accordingly. We will use a

graphical argument to derive the average age at an individual node for each update

type. Since all link delays are i.i.d. for all nodes and packets of the same kind,

each node i experiences statistically identical age processes and will have the same

average age for either update type. Therefore, it suffices to focus on a single receiver
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node for the age analysis.

3.3 Age Analysis

3.3.1 At-will Update Generation

The source node generates updates when the previous update is completed. Inde-

pendent from previous link delays and updates, each generated update belongs to

type I with probability p1 and type II with probability p2 such that p1 + p2 = 1. As

described in Section 3.2, the source node implements the earliest k1 and k2 transmis-

sion policy for type I and type II updates, respectively, where k1, k2 ∈ {1, 2, . . . , n}.

Thus, in this section we extend the result from [113] to multiple update streams

using the same multicast network.

We denote the time between any two update departures from the source node

as the update cycle and represent it with random variable Y . Since the source node

adapts a zero-wait policy and generates the next update right after the current

update has been completed, update cycle of an update is equal to the transmission

time of that update. If the jth update is of type I, its update cycle, Yj, is the time

needed to reach k1 out of n receiver nodes which is equal to Xk1:n. Correspondingly,

if the jth update is of type II, Yj is equal to X̃k2:n. Thus,

Yj =


Xk1:n w.p. p1

X̃k2:n w.p. p2.

(3.2)
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We denote the kth smallest of X1, . . . , Xn as Xk:n. For a shifted exponential random

variable X, we have

E[Xk:n] =c+
1

λ
(Hn −Hn−k), (3.3)

Var[Xk:n] =
1

λ2
(Gn −Gn−k), (3.4)

where Hn =
∑n

j=1
1
j
and Gn =

∑n
j=1

1
j2
. Using these,

E[X2
k:n] =c2 +

2c

λ
(Hn −Hn−k) +

1

λ2

(
(Hn −Hn−k)

2 +Gn −Gn−k

)
. (3.5)

A type I (type II) update that is sent from the source node is received by a

particular node with probability q1 = k1
n

(
q2 =

k2
n

)
since the Xi (X̃i) are i.i.d. for

all receiver nodes. Noting the independence between the update generation and

update transmission processes, at each cycle a particular node successfully receives

a type I (type II) update with probability p1q1 (p2q2). Suppose a particular node

has received a type I update packet during cycle j and the next successful type I

update packet delivery to that node is in cycle j+M1. Then, this M1 is a geometric

random variable with success probability p1q1 and has moments

E[M1] =
1

p1q1
=

n

p1k1
, (3.6)

E[M2
1 ] =

2− p1q1
p21q

2
1

=
2n2

p21k
2
1

− n

p1k1
. (3.7)

Note that in between update cycles j and j +M1 the source node may have
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t

∆I(t)

Tj−2 Tj−1 Tj

X̄I

Yj

Tj+1 Tj+2

Yj+1 Yj+2

A

SI

Figure 3.2: Sample age evolution ∆I(t) of a node. Update cycle j starts at time
Tj−1 and lasts until Tj. Successful type I update deliveries are marked with • and
in this figure, in cycles j − 1, j and j + 2 a type I update is delivered successfully
whereas in cycle j + 1 no type I delivery occurred.

sent type II updates. By using the success probability p1q1, we account for the time

spent during type II update transmissions in between two successful type I update

deliveries to this node. Fig. 3.2 shows a sample ∆I(t) evolution for a particular

node. Correspondingly, if a certain node has received two successive type II updates

in update cycles j′ and j′+M2 then this M2 is geometrically distributed with success

probability p2q2 and its moments can be derived by changing the parameter from

p1q1 to p2q2 in (3.6) and (3.7). We remark that M1 and M2 are independent from

Yj.

Noting the symmetry in the age of type I and type II streams at a particular

receiver node, ∆I and ∆II , respectively, here we derive ∆I and deduce ∆II from

it by making necessary changes. In Fig. 3.2, A denotes the shaded area and SI is

its length. In other words, SI is the interarrival time of type I updates at a node.

Inspecting Fig. 3.2, we find E[A] = 1
2
E[S2

I ] + E[SI ]E[X̄I ]. Here, X̄I denotes the
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transmission time of a successful type I update such that E[X̄I ] = E[Xi|i ∈ KI ],

where KI is the set of earliest k1 nodes that receive this type I update. Then, the

average age of update stream I is given by

∆I =
E[A]
E[SI ]

= E[X̄I ] +
E[S2

I ]

2E[SI ]
. (3.8)

Event M1 = m indicates two successive type I deliveries to a node in cycles j

and j + m with Yj = Xk1:n and Yj+m = Xk1:n as well as m − 1 consecutive type I

failures in between. For these m− 1 update cycles with no type I delivery we have

(Yj | no type I delivery) = Ȳj =


Xk1:n w.p. p̄1

X̃k2:n w.p. p̄2,

(3.9)

with p̄1 =
p1(1−q1)
1−p1q1

and p̄2 =
p2

1−p1q1
from Bayes’ rule. Thus, SI = Xk1:n+

∑j+M1−1
i=j+1 Ȳi.

For example, in Fig. 3.2, M1 = 2 and therefore, we have SI = Xk1:n + Ȳ . Thus, we

find

E[SI ] = E[Xk1:n] + E[M1 − 1]E[Ȳ ], (3.10)

E[S2
I ] = E[X2

k1:n
] + 2E[M1 − 1]E[Xk1:n]E[Ȳ ]

+ E[M1 − 1]Var[Ȳ ] + E[(M1 − 1)2]E[Ȳ ]2. (3.11)

In the following theorem, we determine the age of a type I update at an

individual node using (3.8).
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Theorem 3.1 Under the earliest k1 and k2 transmission scheme for type I and type

II updates, respectively, the average type I age at an individual node is

∆I =
1

k1

k1∑
i=1

E[Xi:n] +
p1 E[X2

k1:n
] + p2 E[X̃2

k2:n
]

2p1 E[Xk1:n] + 2p2 E[X̃k2:n]

+
p22nE[X̃k2:n]

2 + p1p2(2n− k1)E[Xk1:n]E[X̃k2:n]

p1k1(p1 E[Xk1:n] + p2 E[X̃k2:n])

+
p21(n− k1)E[Xk1:n]

2

p1k1(p1 E[Xk1:n] + p2 E[X̃k2:n])
. (3.12)

Proof: The first term comes from E[X̄I ] as

E[X̄I ] =E[Xj|j ∈ KI ] =

k1∑
i=1

E[Xi:n]Pr[j = i|j ∈ KI ], (3.13)

where Pr[j = i|j ∈ KI ] =
1
k1

since we have k1 out of n nodes selected independently

and identically in KI . The claim follows by substituting (3.10), (3.11) and (3.13)

back into (3.8), and replacing E[M1] and E[M2
1 ] by (3.6) and (3.7). Moments of Ȳ

follow from (3.9). ■

When p1 = 1, i.e., the source node generates only type I updates, ∆I given in

(3.12) reduces to the single stream result in [113, Theorem 2]. From the symmetry

of the network model, the average age expression of type II update stream at an

individual node, ∆II , can be found upon defining Ȳ accordingly and interchanging

k1, p1 and X with k2, p2 and X̃ in (3.12). When the service times of the packets of

the same kind are i.i.d. shifted exponential random variables and n is large, we can

further simplify (3.12) as follows.
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Corollary 3.1 For large n and n > ki we set ki = αin for i = 1, 2. For shifted

exponential transmission times X and X̃ with parameters (λ, c) and (λ̃, c̃) for type

I and type II updates, respectively, ∆I can be approximated as

∆I ≈ c+
1

λ
+

1− α1

λα1

log(1− α1)

+
(2− α1)p

2
1δ

2
1(α1) + 2p1p2(2− α1)δ1(α1)δ2(α2)

2p1α1(p1δ1(α1) + p2δ2(α2))

+
p2(p1α1 + 2p2)δ

2
2(α2)

2p1α1(p1δ1(α1) + p2δ2(α2))
, (3.14)

where we denote

δ1(α1) = c− log(1− α1)

λ
, δ2(α2) = c̃− log(1− α2)

λ̃
. (3.15)

Proof: For the first term in (3.12) we have

1

k1

k1∑
i=1

E[Xi:n] = c+
Hn

λ
− 1

k1λ

k1∑
i=1

Hn−i (3.16)

≈ c+
1

λ
+

1− α1

α1λ
log(1− α1), (3.17)

where (3.16) is obtained using (3.3)-(3.5). We have
∑k1

i=1 Hn−i =
∑n−1

i=1 Hi −∑n−k1−1
i=1 Hi and the series identity

∑k1
i=1Hi = (k1 + 1)(Hk1+1 − 1). Using these

and the fact that for large n Hi ≈ log(i) + γ yields (3.17). Note that

E[Xk1:n] = c+
Hn −Hn−k1

λ
≈ c− log(1− α1)

λ
= δ1(α1), (3.18)

E[X̃k2:n] = c̃+
Hn −Hn−k2

λ̃
≈ c̃− log(1− α2)

λ̃
= δ2(α2). (3.19)
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Lastly, we note that E[X2
k1:n

] ≈ (E[Xk1:n])
2 for large n. This is because the

sequence Gn converges to π2

6
as n goes to∞. Thus, as n increases Gn−k1 = G(1−α1)n

also goes to π2

6
. With this, Gn − Gn−k1 term in (3.5) approaches 0 yielding the

claim. Likewise, we have E[X̃2
k2:n

] ≈ (E[X̃k2:n])
2. Combining all these to calculate

the moments of Ȳ and taking ki = αin for i = 1, 2 gives (3.14). ■

We remark that when p1 = 1, i.e., the source node only generates type I

updates, Corollary 3.1 reduces to the single update stream result in [113, Corollary

2]. From the symmetry of the system, average age of type II updates at an individual

node, ∆II , can be also approximated as in Corollary 3.1.

We note that under the earliest k1 and k2 transmission scheme for updates of

type I and type II, respectively, the average age is a function of ratios α1 and α2

for large n. Thus, the average age still converges to a constant even though the

multicast network is shared across two update streams.

We can minimize ∆I and ∆II by selecting the stopping thresholds k1, k2. Since

we have two age processes to minimize, we can consider the following optimization

problem for a fixed β such that 0 ≤ β ≤ 1

min
{k1,k2}

β∆I + (1− β)∆II

s.t. ki ∈ {1, . . . , n}, i = 1, 2. (3.20)

Thus, by varying β we can assign weights to the update types I and II during

optimization. While extreme cases of β = 1 and β = 0 assign absolute priority

to update type I and type II, respectively, every other β value weighs the update
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streams in between accordingly. Equivalently, we can solve (3.20) over α1 and α2.

In that case, the constraint in (3.20) is replaced with 0 < αi < 1, i = 1, 2.

Lemma 3.1 When n is large, for any k1 < n, to achieve the best type I average

age performance, i.e., to minimize ∆I , it is optimal to select k∗
2 = 1.

Proof: This is the β = 1 case. We observe that for a given k1 < n the first three

terms in (3.14) and δ1 = E[Xk1:n] become constant. The only parameter we select

to optimize ∆I is k2 and for large n it only appears in (3.14) as δ2(k2) = E[X̃k2:n].

∆I given in (3.14) is in the following form

∆I = c1 +
c2δ

2
1 + c3δ1δ2(k2) + c4δ

2
2(k2)

c5δ1 + c6δ2(k2)
, (3.21)

where c1, . . . , c6 and δ1 are positive numbers. Noting that δ2(k2) is also positive,

(3.21) is an increasing function of δ2(k2) when c2c6 < c3c5 condition is satisfied.

From (3.14), we see that this condition is met. Thus, to minimize (3.21) we need

to select the smallest possible δ2(k2) which is given by the smallest possible k2 since

δ2(k2) is monotonically increasing in k2. Thus, k
∗
2 = 1 minimizes the type I average

age, ∆I , for any k1 < n. ■

Similarly, when we are only interested in minimizing the type II average age,

∆II , i.e., β = 0, it is optimal to select k∗
1 = 1. Fig. 3.3(a) shows the pareto

optimal curve obtained upon numerically solving (3.20) for p1 = p2 = 0.5 and

shifted exponential link delays with (1, 1) for both types of updates.

57



0 5 10 15 20 25

∆I

0

5

10

15

20

25

∆
I
I

(a)

0 5 10 15 20 25

∆I

0

5

10

15

20

25

∆
I
I

(b)

Figure 3.3: Pareto optimal curve for jointly minimizing ∆I and ∆II with 0 < β < 1,
p1 = p2 = 0.5 and (λ, c) = (λ̃, c̃) = (1, 1) when (a) updates are generated at-will (b)
updates arrive exogenously with a total rate of µ = 1.

3.3.2 Exogenous Update Arrivals

Updates arrive at the source node exogenously as a Poisson process with a total

rate of µ. Each arriving update is of type I with probability p1 and of type II with

probability p2 where p1 + p2 = 1. Thus, type I update stream arrives as a Poisson

process with rate µ1 = µp1 and analogously, type II update stream arrives as a

Poisson process with rate µ2 = µp2. The source node implements the earliest k1,

k2 transmission scheme for type I and type II update packets, respectively. When

there is a packet in service, the source node discards any other arriving update

packet. Thus, update types do not have priority over each other during transmission.

However, during joint optimization of the average age of both streams, ∆I and ∆II ,

by varying β we can prioritize them.
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When an update is completed, i.e., transmitted to the earliest ki nodes, i = 1, 2

depending on the type of the update packet, the system stays idle until the next

update packet of any kind arrives. We denote this idle period with random variable

Z which is an exponential random variable with rate µp1 + µp2 = µ. Time spent

during transmission of an update is the busy period YB which is equivalent to (3.2)

since after each idle period with probability p1 a type I update and with probability

p2 a type II update goes into service. Thus, an update cycle, Y , is equivalent

to YB + Z. Note that Z does not depend on YB since it is memoryless. We have

random variablesM1 andM2 which are geometrically distributed with p1q1 and p2q2,

respectively, as in Section 3.3.1. Also we note that M1 and M2 are independent from

update cycle Y .

Age of type I updates at an individual node is given by (3.8). However, type

I update interarrival to a node, SI , is now equal to SI = Xk1:n + Z +
∑j+M1−1

i=j+1 Ȳi =

Xk1:n +
∑M1−1

i=1 (ȲB)i +
∑M1

i=1 Zi where ȲB is equivalent to (3.9). Then,

E[SI ] = E[Xk1:n] + E[M1 − 1]E[ȲB] + E[M1]E[Z], (3.22)

E[S2
I ] = E[X2

k1:n
] + 2E[M1 − 1]E[Xk1:n]E[ȲB]

+ 2E[M1]E[Xk1:n]E[Z] + E[M1]Var[Z]

+ E[M1 − 1]Var[ȲB] + E[(M1 − 1)2]E[ȲB]
2

+ 2E[M2
1 −M1]E[ȲB]E[Z] + E[M2

1 ]E[Z]2. (3.23)

In the following theorem, we determine the age of a type I update at an
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individual node when the update streams arrive exogenously at the source node.

Theorem 3.2 Under the earliest k1 and k2 transmission scheme for type I and type

II updates that arrive at the source node as Poisson processes with rates µ1 and µ2,

respectively, the average type I age at an individual node is

∆I =
1

k1

k1∑
i=1

E[Xi:n] +
E[S2

I ]

2E[SI ]
, (3.24)

where first and second moments of SI are as in (3.22) and (3.23).

The proof of Theorem 3.2 follows accordingly from that of Theorem 3.1. Note

that when p1 = 1, (3.24) reduces to the building block result in [119, Theorem 1].

By making the corresponding replacements as in Section 3.3.1 we can obtain the

average age expression of type II update stream, ∆II . When the service times of

the packets of the same kind are i.i.d. shifted exponential random variables and n

is large, we can further simplify (3.24) as follows.

Corollary 3.2 For large n and n > ki we set ki = αin for i = 1, 2. For shifted

exponential transmission times X and X̃ with parameters (λ, c) and (λ̃, c̃) for type

I and type II updates, respectively, ∆I can be approximated as

∆I ≈ c+
1

λ
+

1− α1

λα1

log(1− α1)

+
µp21(2− α1)δ

2
1(α1) + 2µp1p2(2− α1)δ1(α1)δ2(α2)

2p1α1(µp1δ1(α1) + µp2δ2(α2) + 1)

+
µp2(2p2 + p1α1)δ

2
2(α2)

2p1α1(µp1δ1(α1) + µp2δ2(α2) + 1)
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+
2µp2δ2(α2) + µp1(2− α1)δ1(α1) + 1

µp1α1(µp1δ1(α1) + µp2δ2(α2) + 1)
, (3.25)

where δ1(α1) and δ2(α2) are as in (3.15).

The proof of Corollary 3.2 follows accordingly from that of Corollary 3.1. We

note that when p1 = 1, Corollary 3.2 reduces to the result in [119, Corollary 2].

The corresponding approximate expression for ∆II can also be derived in the same

manner. We also observe that when the earliest k1, k2 transmission scheme is utilized

for type I and type II updates, respectively, the average age of either update type

is also a function of ratios α1 and α2. Thus, although multiple update streams that

arrive exogenously use the same network, an average age that does not depend on

n can be achieved for either update stream.

When we minimize β∆I + (1 − β)∆II with β ∈ (0, 1) by selecting k1, k2 ∈

{1, . . . , n} as in (3.20), we obtain the pareto optimal curve as shown in Fig. 3.3(b).

For the cases of β = 1 and β = 0 which correspond to the individual optimization of

∆I and ∆II , respectively, we observe that when β = 1 it is optimal to select k∗
2 = 1

to obtain the minimum ∆I , and when β = 0 selecting k∗
1 = 1 gives the minimum

∆II . The proof of this claim is similar to that of Lemma 3.1 since random variable

Z is also positive and independent of k1 and k2.

3.4 Conclusion

In this chapter, we studied age of information in a multicast network with multi-

ple update streams. Each receiver node in the network is interested in two kinds
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time-sensitive update packets, namely type I and type II update packets. We charac-

terized the age of information of both update streams and showed that the average

age of both streams at the receiver nodes can be made a constant independent

of the network size n by utilizing an earliest k1 and k2 transmission scheme for

type I and type II updates, respectively. That is, even if the network resources

are shared among multiple update streams, careful selection of the corresponding

stopping thresholds can prevent information staleness at the receiver nodes for each

update stream. We determined the age-optimum k1 and k2 stopping thresholds for

arbitrary shifted exponential link delays to individually and jointly minimize the

average age of both update streams.
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CHAPTER 4

Scaling Laws for Age of Information in Wireless Networks

4.1 Introduction

Most of the existing works in the age of information literature study the analysis

and optimization of age of information in systems with small number of source-

destination pairs. In this chapter, going beyond prior works, our aim is to analyze

the age of information in a large network setting with many source-destination pairs

with a focus on its scalability as a function of the network size. In early 00’s, followed

by the pioneering work of Gupta and Kumar [122] a similar issue had come up for

scaling laws of throughput in large networks. Gupta and Kumar’s work in [122]

uses a multi-hop scheme that achieves a total throughput of O(
√
n) for the network,

and hence, O( 1√
n
) throughput per-user. References [123–126] studied throughput

scaling in dense and extended networks considering static and mobile nodes. This

line of research has culminated in the seminal papers of Ozgur et al. [127,128] which

achieved O(1) throughput per-user by utilizing hierarchical cooperation between

nodes. In this chapter, we study scaling of age of information in large wireless

networks.
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References that are most closely related to our work study the scaling of age

of information in the broadcast setting [42, 113, 115, 119, 129] including our works

on multicast networks in Chapters 2 and 3. These works study a single source node

which sends status updates to multiple receiver nodes. Reference [130], on the other

hand, studies age scaling in the multiaccess setting with massive number of source

nodes.

In our model, we have n source-destination (S-D) pairs on a network of fixed

area. Each node is both a source and a destination. Each source node wants to

transmit time-sensitive data to its destination node with as little age as possible.

We find an achievable transmission scheme that facilitates successful communication

among these n S-D pairs and achieves the smallest average age scaling per S-D user.

As studied in [130], a straightforward way to achieve successful communication

between all S-D pairs is to use a round-robin policy such that at each turn only one

source transmits to its destination and stays silent while all other sources transmit

successively during their respective turns. This direct method achieves an age scaling

of O(n) meaning that age increases linearly in n since under this policy average inter-

update times at a destination node increases linearly as n grows making the updates

less frequent and causing age to increase.

As in the setting of [122], a multihop scheme that involves successive trans-

missions between the source and destination nodes can be utilized. In that work,

the network is divided into cells and transmission hops take place in between these

cells such that O(
√
n) messages are carried by each cell. Each of these cells can

be considered a queue with multiple sources. As studied in [7], the age of a single
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update packet that is served by a queue with O(
√
n) different packet streams is also

O(
√
n) under LCFS with preemption policy. Therefore, in the multihop scheme,

after one hop, age of an update becomes O(
√
n) since the queue is shared by O(

√
n)

other packets. Considering the fact that the number of hops needed is O(
√
n), using

a multihop scheme, the average age scales as O(n) as in [130].

In this chapter, considering all these previous results, we first propose a three-

phase transmission scheme to serve all n S-D pairs such that the time average age

of each node is small. Our scheme utilizes local cooperation between the users as

in [127]. We divide the network into cells of M users each. In the first phase, nodes

from the same cell communicate to create a mega update packet, which contains the

updates of all nodes from that cell. The main idea behind the mega update packets

is to serve many nodes at once to decrease inter update time. In the second phase,

inter-cell communication takes place and each cell sends its mega update packet to

the corresponding destination cells. In the third and final phase, individual packets

are extracted from the received mega update packets and relayed to the intended

recipient nodes in the cells. During all these phases, we make use of the spatial

separation of the nodes to allow multiple simultaneous transmissions provided that

there is no destructive interference caused by others.1 Using this scheme, we achieve

an average age scaling of O(n
1
4 log n) per-user.

Next, we observe that the first and third phases of the proposed transmission

scheme essentially require successful communication between pairs but among M

1We show in Section 4.6 that the effect of the interference under the protocol model [122] is a
scaling constant; see Section 4.6 for details.
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nodes rather than n. With this observation and the fact that the system is scale-

invariant, we introduce hierarchy in Phases I and III to improve the age scaling

result. In other words, we can further divide cells into smaller subcells and apply

the proposed three-phase transmission scheme again in Phases I and III. Although

hierarchical cooperation was shown to result in poor delay performance in [128],

by utilizing mega update packets better age scaling can be achieved here. In fact,

using this scheme, we show that an average age scaling of O
(
nα(h) log n

)
per-user is

achievable where α(h) = 1
3·2h+1

and h denotes the number of hierarchy levels. We

note that when this hierarchical cooperation is not utilized, i.e., h = 0, we retrieve

the performance of the initial scheme which achieves an age scaling of O(n
1
4 log n)

per-user. In the asymptotic case when h → ∞, the proposed scheme with hierar-

chical cooperation achieves an average age scaling of O(log n).

4.2 System Model and Age Metric

We consider n nodes that are uniformly and independently distributed on a square

of fixed area S. Every node is both a source and a destination. These sources

and destinations are paired randomly irrespective of their locations to form n S-

D pairs. Sources create time-sensitive status update packets and transmit them

to their respective destinations using the common wireless channel. Each source

wants to keep its destination as up-to-date as possible. Thus, destination nodes

need to be updated regularly with low transmission delays. We use the age of

information metric to measure the freshness of the status update packets. Age is
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measured for each destination node and for node i at time t age is the random

process ∆i(t) = t− ui(t) where ui(t) is the timestamp of the most recent update at

that node. The metric we use, time averaged age, is

∆i = lim
τ→∞

1

τ

∫ τ

0

∆i(t)dt, (4.1)

for node i. We use a graphical average age analysis to derive the average age for a

single S-D pair assuming ergodicity similar to [11] and [29].

Inspired by [127], we first propose a scheme based on clustering nodes and

making use of what we call mega update packets to increase the spatial reuse of the

common wireless channel. This entails dividing n users into n
M

cells with M users in

each cell with high probability.2 The users communicate locally within cells to form

the mega update packets. We model the delay in these intra-cell communications as

i.i.d. exponential with parameter λ. Then, mega packets are transmitted between

the cells. We model the delay in these inter-cell communications as i.i.d. exponen-

tial with parameter λ̃. Finally, the individual updates are extracted from mega

updates and distributed to the intended destinations within cells again via intra-cell

communications. While intra-cell communications occur simultaneously in parallel

across the cells (see Section 4.6 for details), inter-cell updates occur sequentially

one-at-a-time.

Second, we observe that the bottleneck in average age scaling in this three-

2As shown in [127, Lemma 4.1], the probability of having ((1− δ)M, (1 + δ)M) nodes in a cell
is larger than 1 − n

SM e−Λ(δ)M where Λ(δ) is independent of n and satisfies Λ(δ) > 0 when δ > 0.
Note that when M = nb with 0 < b ≤ 1 this probability tends to 1 as n grows.
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phase scheme isM since during intra-cell transmissionsM transmissions are needed,

one for each node in a cell. Noting that each cell is a scaled-down version of the

whole system, we then propose introducing hierarchy by forming subcells from the

cells and applying the three-phase transmission scheme on a cell level to overcome

this bottleneck. Thus, when h = 1 hierarchy level is utilized, this hierarchical scheme

includes inter-cell, inter-subcell (within cells) and intra-subcell transmissions. We

first analyze the case with h = 1 level of hierarchy and then generalize the result to

h hierarchy levels. We again model the delay in communications as i.i.d. exponential

random variables with varying parameters depending on the type, e.g., intra-subcell,

inter-subcell within cells or inter-cell, of the communication (see Section 4.5 for

details).

Due to i.i.d. nature of delivery times in all types of communications with or

without hierarchy, all destination nodes experience statistically identical age pro-

cesses and will have the same average age. Thus, we will drop user index i in the

average age expression and use ∆ instead of ∆i in the following analysis.

Finally, we denote the kth order statistic of random variables X1, . . . , Xn as

Xk:n. Here, Xk:n is the kth smallest random variable, e.g., X1:n = min{Xi} and

Xn:n = max{Xi}. For i.i.d. exponential random variables Xi with parameter λ, we

have [131]

E[Xk:n] =
1

λ
(Hn −Hn−k), (4.2)

Var[Xk:n] =
1

λ2
(Gn −Gn−k), (4.3)
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t

∆(t)

Tj−2 Tj−1 Tj

Dj+1

L = Yj

A

Figure 4.1: Sample age ∆(t) evolution for a single S-D pair. Update deliveries are
shown with symbol •. Session j starts at time Tj−1 and lasts until Tj = Yj + Tj−1.

where Hn =
∑n

j=1
1
j
and Gn =

∑n
j=1

1
j2
. Using these,

E[X2
k:n] =

1

λ2

(
(Hn −Hn−k)

2 +Gn −Gn−k

)
. (4.4)

Note that, for large n, we have Hn ≈ log n + γ and Gn → π2

6
where γ ≈ 0.577

is the Euler-Mascheroni constant. Since the constant γ does not affect the scaling

results presented in this chapter, we take Hn ≈ log n for large n in the rest of the

chapter for ease of exposition. Throughout the chapter, the equality of two random

variables stands for the equality of these random variables in distribution. Further,

the inequalities involving random variables correspond to the usual stochastic order

of random variables. That is, given random variables X and Y , X is stochastically

smaller than Y if P (X > x) ≤ P (Y > x),∀x ∈ R [117].
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4.3 Age Analysis of a Single S-D Pair

The network operates in sessions such that during each session all n sources success-

fully send their update packets to their corresponding destinations. Each session

lasts for Y units of time. Here, we derive the average age of a single S-D pair (s, d)

since each pair experiences statistically identical age as explained in Section 4.2.

Session j starts at time Tj−1 and all sources including s generate their respec-

tive jth update packets. This session lasts until time Tj = Tj−1+Yj, at which point,

all n packets are received by their designated recipient nodes including node d. In

other words, a session ends when the last S-D pair finishes the packet transmission

at which point, all the other n − 1 destination nodes have already received their

packets. Thus, in the proposed scheme every destination node but one receives its

packet before the session ends. Fig. 4.1 shows the evolution of the age at a desti-

nation node over time. It is in the usual sawtooth shape with the age increasing

linearly over time and dropping to a smaller value as the updates are received at

the destination. The process repeats itself at time Tj when all sources including s

generate the next update packet, namely update j + 1.

Using Fig. 4.1, the average age for an S-D pair is given by

∆ =
E[A]
E[L]

, (4.5)

where A denotes the shaded area and L is its length. From the figure, we find
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Aj =
1
2
Y 2
j + YjDj+1 such that

E[A] =
E[Y 2]

2
+ E[D]E[Y ], (4.6)

E[L] =E[Y ], (4.7)

since the system is ergodic and Yj and Dj+1 are independent. Here, D denotes the

time interval between the generation of an update and its arrival at the destination

node. Using these in (4.5), the average age for an S-D pair is given by

∆ =E[D] +
E[Y 2]

2E[Y ]
. (4.8)

Note that in some systems D may be directly equal to the link delay. However, as

in our model here, D may capture some additional delays that may occur during

the delivery time of an update. This will be further clarified in the next section.

4.4 Three-Phase Transmission Scheme

The proposed scheme involves clustering nodes and making use of mega update

packets to serve many S-D pairs at once to reduce the session time. In this section,

we describe the proposed three-phase transmission scheme and define mega update

packets. As in [127], we divide the square network area into n
M

cells of equal area

such that each cell includes M nodes with high probability which tends to 1 as

n increases.3 The transmission delays between the nodes belonging to the same

3We note that it is sufficient to have O(M) nodes in each cell for the proposed scheme to work.
However, from hereafter, we assume that each cell has exactly M nodes for ease of exposition.
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cell are denoted by Xi whereas the transmission delays between the nodes from

different cells are denoted by X̃i. Note that Xi and X̃i are independent; Xi are

i.i.d. exponential with parameter λ and X̃i are i.i.d. exponential with parameter λ̃.4

Phase I. Creating mega update packets: In a cell, each one of the M

nodes gets a turn to distribute its current update packet to remaining M − 1 nodes

through M − 1 links with independent random delays. This operation resembles

the wait-for-all scheme studied in [113] since each node keeps transmitting until all

M−1 nodes receive its packet. Thus, the time needed for each node to distribute its

update packet to other nodes in the cell is U = XM−1:M−1. ConsideringM successive

transmissions for each node in the cell, this phase is completed in V =
∑M

i=1 Ui units

of time. By the end of this phase in a cell, each one of the M nodes has M different

update packets one from each other node in that cell. Each node combines all these

M packets to create what we call a mega update packet (see Fig. 4.2). In order

to reduce the session time, cells work in parallel during Phase I (see Section 4.6

for a detailed description of this operation). This phase ends when the slowest

cell among simultaneously operating cells finishes creating its mega update packet.

Phase I takes YI = V n
M

: n
M

units of time, where YI denotes the duration of Phase I.

Phase II. MIMO-like transmissions: In this phase, each cell succes-

sively performs MIMO-like transmissions using the mega update packets created

in Phase I. In each cell, all M source nodes send the mega update packet through

the channel simultaneously to the respective destination cells in which the destina-

4We note that we have λ̃ ≤ λ to reflect the increased distance and packet size, due to the
utilization of mega update packets in the inter-cell transmissions of Phase II. In Section 4.8, we
take λ̃ as a function of M to further account for the mega update packet size in the inter-cell
transmission delays of Phase II.
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Figure 4.2: Cell formation for M = 4 and n = 100. Simultaneous intra-cell trans-
missions are depicted for three S-D pairs from cells P , Q, R and S.

tion nodes are located. Since every node sends the same mega packet which includes

all M packets to be transmitted from that cell, this does not create interference.

Thus, this is equivalent to sending update packets of all M sources with M copies

each all at once (see Fig. 4.3). Hence, this significantly reduces the time needed to

transmit updates of all M sources from that cell to their respective destinations.

Note that this stage does not require the destination nodes to be in the same cell.

In fact, considering that we have M nodes in a cell, each cell can at most have M

different destination cells. Since we send M copies of each update to a destination

cell in which there are M receiver nodes, only the earliest successful transmission

is important. In other words, among the M2 active links only the one with the

73



smallest delay is critical in delivering the mega update packet to a destination cell.

Thus, it takes Ũ = X̃1:M2 units of time for a source node s from cell j to send its

update to the destination cell where the destination node d lies in.5 This MIMO-

like transmissions of cell j continues until all M destination cells receive the mega

packet. Hence, for each cell, this phase lasts for Ṽ = ŨM :M . We repeat this for each

cell, making the session time of this phase YII =
∑ n

M
i=1 Ṽi.

Phase III. In-cell relaying to the destination nodes: By the end of

Phase II, each cell receives a mega packet for each one of its nodes. These packets

may be received directly by their intended destination nodes. However, considering

the worst case where they are received by any other node, we need to relay them to

their actual designated recipient nodes. Thus, in this phase, M actual messages are

extracted from the corresponding M mega update packets received during Phase II

and sent to their recipients one at a time. Since this phase has intra-cell transmis-

sions, it is performed in parallel across cells. For a single node this takes X units

of time, consequently we need V̂ =
∑M

i=1Xi to finish this process in a cell. As in

Phase I, we need to wait for the slowest cell to finish this operation. Then, this

phase lasts for YIII = V̂ n
M

: n
M

units of time.

The total session time of the proposed scheme is,

Y = YI + YII + YIII = V n
M

: n
M
+

n
M∑
i=1

Ṽi + V̂ n
M

: n
M
, (4.9)

5We note that in the MIMO-like transmissions of Phase II, since we consider the earliest trans-
mission among M2 active links, the speed up factor is M2 unlike the regular MIMO transmission
scheme in which the speed up factor is M . We thank one of the anonymous reviewers for raising
this point. In Section 4.8, we discuss the performance of the proposed scheme when the speed up
factor is only M .
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Figure 4.3: In Phase II cells take turns to perform inter-cell transmissions. These
inter-cell transmissions are shown for the same three S-D pairs depicted in Fig. 4.2.

where V , Ṽ , and V̂ are defined above. In our proposed scheme, assuming no S-D

pair is in the same cell, arrivals to destination nodes occur in Phase III. Note that

when an S-D pair is in the same cell, corresponding D is smaller which consequently

leads to a smaller age, where as noted earlier, D denotes the time between generation

of an update at certain source node till its arrival at the corresponding destination

node. Therefore, by assuming no S-D pair is in the same cell, we essentially consider

the worst case. Thus, any successful packet delivery will happen no earlier than the

duration of the first two phases YI+YII . In addition, Phase III involvesM successive

in-cell transmissions for each node of a particular cell. Hence, depending on the cell

that the source node lies in, as well as the realization of the transmission delay X,

the corresponding destination node may receive the packet some time after Phase III

starts. Let random variable Z capture when after Phase III starts that particular

S-D pair is served. Then, we have,

D = YI + YII + Z. (4.10)

For example, if a packet is the (j+1)th to be transmitted in Phase III, then delivery

will be at YI + YII +
∑j

i=1Xi + X. Then, the random variable Z is of the form
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Z =
∑j

i=1Xi +X.

Substituting (4.9)-(4.10) in (4.8) we obtain,

∆ =E[YI ] + E[YII ] + E[Z] +
E[Y 2]

2E[Y ]
, (4.11)

which is the average age of an S-D pair under the proposed transmission scheme.

Before we perform the explicit age calculation using (4.11), we make some

observations to simplify our analysis. First, we note that, when the transmission

delays X̃ are i.i.d. exponential with rate λ̃, then Ũ = X̃1:M2 is also exponential with

rate M2λ̃ [132]. Second, we have the following upper bound for the duration of

Phase I.

Lemma 4.1 YI satisfies the following inequality,

YI ≤ V̄ , (4.12)

where V̄ =
∑M

i=1 Ūi and Ū = Xn:n.

Proof: Recall that YI = V n
M

: n
M
, where V =

∑M
i=1 Ui and U = XM−1:M−1. To

show the inequality we make the following observation: In Phase I, n
M

cells operate

simultaneously. First nodes of each of these cells start transmitting their packets

to all other M − 1 nodes of their cell at the same time. Here, the term first nodes

denotes the set of arbitrarily selected nodes, one from each cell, that distribute

their packet in their respective cells in the first place. Since intra-cell transmission

delays are all i.i.d. across cells and packets, what we essentially have in this case is
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simultaneous transmission to n
M
(M −1) ≈ n nodes, and therefore all first nodes will

be done in Xn:n units of time.

We repeat this for the second nodes of each cell, i.e., nodes that distribute

their packet within their respective cells in the second place, and so on to get

V̄ =
∑M

i=1(Xn:n)i =
∑M

i=1 Ūi. In this way of operation, a cell waits for all other

cells to finish distributing the update packet of the first node and then continues

with the second node and so on. In a way, for each of its nodes it waits for the

slowest cell to finish. However, in our constructed scheme during Phase I, inside a

cell, nodes distribute their packets to other nodes of that cell without considering

other cells and phase ends when all cells finish this process for all their M nodes.

Thus, V̄ is an upper bound on YI . ■

Although our proposed Phase I lasts shorter than the scheme described in

Lemma 4.1, for tractability and ease of calculation we worsen our scheme in terms

of session time, and take the upper bound in Lemma 4.1 as our Phase I duration

such that from now on YI = V̄ . Third, we have the following upper bound for the

duration of Phase III.

Lemma 4.2 YIII satisfies the following inequality,

YIII ≤ ¯̄V, (4.13)

where ¯̄V =
∑M

i=1
¯̄Ui and

¯̄U = X n
M

: n
M
.

We omit the proof of Lemma 4.2 since it follows similar to the proof of
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Lemma 4.1. Due to the same tractability issues, we worsen Phase III as well in

terms of duration and take YIII =
¯̄V from now on.

As a result of Lemmas 4.1 and 4.2, (4.9) becomes

Y = V̄ +

n
M∑
i=1

Ṽi +
¯̄V. (4.14)

Now, we are ready to derive an age expression using Lemmas 4.1 and 4.2 in

(4.11). This is stated in the following theorem.

Theorem 4.1 Under the constructed transmission scheme, the average age of an

S-D pair is given by,

∆ =
M

λ
Hn +

n

M3λ̃
HM +

M − 1

2λ
H n

M
+

1

λ

+
M2

λ2 H
2
n +

M
λ2Gn

2
(

M
λ
Hn +

n
M3λ̃

HM + M
λ
H n

M

)
+

n2

M6λ̃2H
2
M + n

M5λ̃2GM

2
(

M
λ
Hn +

n
M3λ̃

HM + M
λ
H n

M

)
+

M2

λ2 H
2
n
M
+ M

λ2G n
M

2
(

M
λ
Hn +

n
M3λ̃

HM + M
λ
H n

M

)
+

n
M2λλ̃

HnHM + M2

λ2 HnH n
M
+ n

M2λλ̃
HMH n

M

M
λ
Hn +

n
M3λ̃

HM + M
λ
H n

M

. (4.15)

Proof: The proof follows upon substituting (4.14) back in (4.11) and taking expec-

tations of order statistics of exponential random variables as in Section 4.2. Doing
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these, we obtain

E[YI ] =
M

λ
Hn, E[Y 2

I ] =
M2

λ2
H2

n +
M

λ2
Gn, (4.16)

E[YII ] =
n

M3λ̃
HM , E[Y 2

II ] =
n2

M6λ̃2
H2

M +
n

M5λ̃2
GM , (4.17)

E[YIII ] =
M

λ
H n

M
, E[Y 2

III ] =
M2

λ2
H2

n
M
+

M

λ2
G n

M
. (4.18)

Lastly, we need to calculate E[Z] where the random variable Z is the additional

amount of time after Phase II ends until the destination node receives the update.

Let us take an S-D pair (s, d) where source node s is from cell j + 1. In Phase III,

d has to wait for all other j mega packets from the first j cells to be distributed

among the nodes. When its turn comes, d just needs X amount of time to get its

packet. Then, d has Z =
∑j

i=1
¯̄Ui +X. Here, we have ¯̄U inside the summation as

opposed to X as in the discussion preceding (4.11) because of Lemma 4.2. Taking

expectation on ¯̄U , j and X by noting their mutual independence we get

E[Z] =

(
1

M

M−1∑
j=0

j

)
E[ ¯̄U ] + E[X] =

M − 1

2λ
H n

M
+

1

λ
. (4.19)

Using (4.16)-(4.19) in (4.11) yields the expression. ■

Having derived the expression for the average age ∆ of an S-D pair, we are

now ready to work with large n.

Theorem 4.2 For large n and with M = nb, where 0 < b ≤ 1, the average age ∆
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in Theorem 4.1 approximately becomes,

∆ ≈nb

λ
log n+

n

n3bλ̃
b log n+

nb − 1

2λ
(1− b) log n+

1

λ

+
(1 + (1− b)2) n2b

λ2 (log n)
2

2
(
(2− b)n

b

λ
log n+ n

n3bλ̃
b log n

)
+

n2

n6bλ̃2 b
2(log n)2 +

(
2nb

λ2 + n
n5bλ̃2

)
π2

6

2
(
(2− b)n

b

λ
log n+ n

n3bλ̃
b log n

)
+

b(2− b) n
n2bλλ̃

(log n)2 + n2b

λ2 (1− b)(log n)2

(2− b)n
b

λ
log n+ n

n3bλ̃
b log n

. (4.20)

Proof: The expression follows upon substituting M = nb in (4.15) and noting that

for large n, we have Hn ≈ log n. Further, Gn is monotonically increasing and

converges to π2

6
. Since we have M = nb, as n grows large M does too, resulting

in HM ≈ b log n and GM converging to π2

6
. We note that the notation ≈ in this

theorem is mainly due to ≈ in Hn. ■

Theorem 4.3 For large n, and for 1
4
≤ b ≤ 1, the average age of an S-D pair ∆

given in (4.20) reduces to,

∆ ≈ cnb log n, (4.21)

with a constant c. That is, age is O(nb log n), for 1
4
≤ b ≤ 1.

Proof: By analyzing the result of Theorem 4.2 we note that the first and third

terms are O(nb log n), and the second term is O(n1−3b log n), and fourth term is a
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constant independent of n. The fifth term can be written as

n2b(log n)2
(

1+(1−b)2

λ2 + b2

n2(4b−1)λ̃2 )
)

nb log n
(

2(2−b)
λ

+ 2b
λ̃n4b−1

)
+

n2b(log n)2 π
2

6

(
2

nb(logn)2λ2 +
1

n7b−1(logn)2λ̃2

)
nb log n

(
2(2−b)

λ
+ 2b

λ̃n4b−1

) , (4.22)

which is O(nb log n) when b ≥ 1 − 3b. Continuing similarly for the remaining term

shows that it is also O(nb log n) which gives the overall scaling result for 1
4
≤ b ≤ 1.

■

Thus, the proposed transmission scheme, which involves intra-cell cooperation

and inter-cell MIMO-like transmissions of mega update packets, allows the successful

communication of n S-D pairs, and achieves an average age scaling of O(n
1
4 log n)

per-user.

In the next section, we propose introducing hierarchy to the proposed three-

phase transmission scheme to improve the average age scaling.

4.5 Three-Phase Transmission Scheme with Hierarchy

4.5.1 Motivation and Outline of the Scheme

The three-phase transmission scheme proposed in Section 4.4 allows successful com-

munication of n S-D pairs. Following the analysis to obtain the average age ex-

pression by substituting the first and second order moments of the phase durations

given in (4.16)-(4.19) into the average age expression given in (4.8), we observe that
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Figure 4.4: Proposed three-phase hierarchical transmission scheme.

the resulting per-user average age scaling, when n is large, with M = nb where

0 < b ≤ 1 and exponential link delays, is characterized by the expected scaling

of the phases. As derived in (4.16)-(4.18) expected durations of the phases are

O(nb log n), O(n1−3b log n) and O(nb log n) which in turn result in an average age

scaling of O(n
1
4 log n) upon selecting b = 1 − 3b. Thus, to obtain a better average

age scaling we need to improve the expected length of each phase. This motivates

the hierarchical cooperation in the proposed scheme.

In the Phase I of Section 4.4, the communication takes place in between M =

nb nodes rather than n nodes and a simple TDMA operation is performed among

these nodes which results in an average scaling of O(nb log n). Instead, we introduce

the first level of hierarchy by dividing each of these cells into nb−a further subcells

with na users each where 0 < a < b. Then, we apply the same three-phase scheme

with one difference to this cell to accommodate Phase I transmissions of Section 4.4.

In particular, to create the mega packet of the cell, first local communication among

the nodes is performed within subcells and MIMO-like transmissions are carried out

in between subcells within a cell. Then, instead of relaying the received packet to a
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h = 0 h = 1
Phase I O(nb log n) O(na log n) + O(nb−3a log n) + O(nb−a log n)
Phase II O(n1−3b log n) O(n1−3b log n)
Phase III O(nb log n) O(na log n) + O(nb−3a log n) + O(na log n)

Table 4.1: Comparison of the expected durations of the phases with h = 0 as in
Section 4.4 and h = 1 hierarchy level with 0 < a < b ≤ 1.

single node as in Phase III of Section 4.4, received packets are relayed to every other

node in the subcell to create the mega update packet. With this operation, Phase I of

Section 4.4 is completed in three phases, Phase I, Phase II, Phase III′, each of which

are scaled down versions of the overall scheme with the corresponding difference

in the third phase which is denoted as Phase III′ to highlight this difference. The

expected length of the first phase with h = 1 level of hierarchy is then O(na log n)+

O(nb−3a log n)+O(nb−a log n) (see Section 4.5.2 for a detailed derivation) all of which

are smaller than O(nb log n) achieved in Section 4.4.

Similarly, Phase III of Section 4.4 can also be completed in three phases under

h = 1 level of hierarchy. However, this time in the third step we need Phase III

rather than Phase III′ since we need to relay the received update packet within

subcell to its intended recipient node to conclude the delivery.

Fig. 4.4 shows the proposed hierarchy structure in which Phases I and III of

level h can be performed by applying the three-phase scheme on a smaller scale at

level h+1 accordingly. The advantage of the hierarchical transmission is summarized

in Table 4.1.
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4.5.2 Detailed Description of the Scheme for h = 1

In this section, we describe the proposed hierarchical transmission scheme with h = 1

level of hierarchy in detail. Later, we generalize the average age scaling result for

h > 1 levels of hierarchy using the fact that the system is scale-invariant. We note

that the scheme in Section 4.4 does not utilize hierarchical cooperation, i.e., h = 0.

As in Section 4.4, we start with a square network that is divided into n
M

cells of

equal area with M nodes in each cell with high probability that tends to 1 as n

increases. Selecting M = nb where 0 < b ≤ 1 results in n1−b equal area cells with

nb users each cell. Introducing the first level of hierarchy, we further divide each

cell into nb−a equal area subcells to get a total of n1−a subcells with na nodes each

where 0 < a < b.

Remember that when there is no hierarchical cooperation we denote the trans-

mission delays within cells as Xi and in between cells as X̃i. In this section, in order

to accommodate hierarchical structure for h = 1 level, we change our notation so

that transmission delays between the nodes from different cells are now denoted by

X
(0)
i , between the nodes from different subcells within the same cell are denoted by

X
(1)
i , and between the nodes belonging to the same subcell are denoted by X

(2)
i .

Note that X
(j)
i are independent; and X

(j)
i are i.i.d. exponential with parameter λj

for j = 0, 1, 2. Note that we have λ2 ≥ λ1 ≥ λ0 so that link delays are proportional

to the distances between nodes on average. Also note that in what follows we use

YI , YII and YIII to denote the phase durations under the three-phase scheme with

hierarchy.
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Phase I. Creating mega update packets: In this phase, each cell generates

its mega update packet which includes allM = nb messages to be sent from that cell.

Unlike the scheme in Section 4.4, we create mega update packets in three successive

phases by applying the three-phase transmission scheme to each cell.

First, each node in a subcell distributes its update packet to remaining na− 1

nodes in its subcell which takes U I = X
(2)
na−1:na−1 units of time. Considering na

successive transmissions for each node of the subcell, this step is completed in a

subcell in V I =
∑na

i=1 U
I
i units of time. This operation is analogous to the Phase

I in Section 4.4 but performed among na nodes in a subcell rather than among nb

nodes within a cell. Upon completion of this step in a subcell, each node of that

subcell has na different update packets one from each node. Each node combines all

these update packets to form a preliminary mega update packet which includes all

na messages to be sent out from this subcell. This operation is performed in parallel

among all subcells in the network (see Section 4.6 for a detailed description of

this operation) and ends when the slowest simultaneously operating subcell finishes

creating its preliminary mega update packet. Hence, it takes Y I
I = V I

n1−a:n1−a units

of time, where Y I
I denotes the duration of the first phase at h = 1.

When all preliminary mega update packets are formed, all nb−a subcells of a

cell perform MIMO-like transmissions among each other to distribute their prelimi-

nary mega update packets to remaining subcells within the cell. Since this requires

cell-level transmissions in between subcells, this step is performed in parallel among

cells and thus, subcells take turns. As in the Phase II of Section 4.4, all na nodes

of a subcell start transmitting the preliminary mega update packet to remaining
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nb−a−1 subcells. Since every node sends the same preliminary mega update packet

this does not create interference. This transmission continues until the earliest node

in each remaining subcell receives the preliminary mega update packet. In other

words, among the n2a active links between the source and destination subcells,

only the one with the smallest delay is critical. Thus, for a single subcell it takes

U II = (X
(1)

1:n2a)nb−a−1:nb−a−1 units of time. Since subcells take turns, in a cell this step

is completed in V II =
∑nb−a

i=1 U II
i units of time. Finally, on the network-level these

MIMO-like transmissions continue until the slowest of the simultaneously operating

cells finishes which corresponds to Y II
I = V II

n1−b:n1−b .

By the end of the MIMO-like transmissions among subcells, each subcell re-

ceives preliminary mega update packets of remaining nb−a − 1 subcells that lie in

its cell. In this step, these packets are distributed within the subcell in parallel

among the subcells of the network. This is identical to the operation of Phase III

of Section 4.4 on subcell-level except that each preliminary mega update packet

received is transmitted to all nodes of that subcell to successfully form the mega

update packet of the corresponding cell. To highlight this difference we denote this

step as Phase III′ in Fig. 4.4 at h = 1 level. Distributing one preliminary mega

update packet takes U III′ = X
(2)
na−1:na−1 units of time. By repeating this for all

preliminary mega update packets received this step is completed in a subcell in

V III′ =
∑nb−a−1

i=1 U III′
i units of time. We wait for the slowest subcell and thus on

the network-level this step is completed in Y III′
I = V III′

n1−a:n1−a units of time.

With this, each node in a subcell receives remaining nb−a−1 preliminary mega

update packets of na message each. Combining these with their own preliminary
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mega update packet, every node in a subcell forms the mega update packet which

includes all nb messages to be sent out from that cell. Thus, the first phase lasts for

YI = Y I
I + Y II

I + Y III′
I units of time.

Phase II. MIMO-like transmissions: Identical to Phase II of Section 4.4,

in this phase each cell successively performs MIMO-like transmissions using the mega

update packets created in Phase I. This phase requires network-level transmissions

between cells. Thus, only one cell operates at a time. As in Section 4.4, a source

node s from cell j needs Ũ = X
(0)

1:n2b units of time to send its update to the destination

cell where the destination node d lies in. Transmissions of cell j continue until all

nb destination cells receive the mega update packet. Hence, for each cell, this phase

lasts for Ṽ = Ũnb:nb . This operation is repeated for each cell and hence the session

time of this phase YII =
∑n1−b

i=1 Ṽi. At the end of this phase, each cell delivers its

mega update packet to one node in each of the corresponding destination cells.

Phase III. In-cell relaying to the destination nodes: By the end of

Phase II, each cell receives a total of nb mega update packets, one for each node.

In Section 4.4, relevant packets which have a destination node in that cell are ex-

tracted from these mega update packets and relayed to their respective designated

recipient nodes by a simple TDMA operation which scales as O(nb log n). However,

as in Phase I we can introduce hierarchy to this phase and apply the three-phase

scheme again. Thus, extracted relevant packets are first distributed within subcells

of the nodes which received them in Phase II. Then, these packets are delivered to

their corresponding destination subcells in which the destination nodes are located

through MIMO-like transmissions and finally, they are relayed to the corresponding
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recipient nodes within subcells.

Noting that each subcell receives on average na mega update packets, with

one relevant packet each, distribution of these na packets within subcell takes V̂ I =∑na

i=1 Û
I
i with Û I = X

(2)
na−1:na−1 and on the network-level is completed in Y I

III =

V̂ I
n1−a:n1−a units of time. With this operation, the secondary mega update packet

of that subcell is formed which includes all na update packets with destinations

in that cell. Then, these secondary mega update packets are transmitted to the

respective destination subcells in parallel among cells (subcells take turns) through

MIMO-like transmissions until all na destination subcells receive them. In a cell,

this is completed in V̂ II =
∑nb−a

i=1 Û II
i units of time where Û II = (X

(1)

1:n2a)na:na and

therefore, on the network-level is completed in Y II
III = V̂ II

n1−b:n1−b when all cells finish.

Thus, each subcell receives a total of na secondary mega update packets each of

which includes one update destined to a node in that subcell. Finally, these packets

are relayed to their actual recipient nodes within subcell. For a subcell it takes

V̂ III =
∑na

i=1 Û
III
i units of time where Û III = X(2) and hence on the network-level

it is completed in Y III
III = V̂ III

n1−a:n1−a . Note that since in the last step we relay the

packets to their destination node rather than all nodes in the subcell, this step is

the subcell-level equivalent of Phase III of Section 4.4. As a result, the third phase

lasts for YIII = Y I
III + Y II

III + Y III
III and finishes when every S-D pair of the network

is served.

Total session time of the proposed scheme is, therefore, Y = YI + YII + YIII .

Before we perform the explicit age calculation, we again make some observations to

simplify our analysis.
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Lemma 4.3 YI satisfies the following inequality,

YI ≤ V̄ I + V̄ II + V̄ III′ , (4.23)

where

V̄ I =
na∑
i=1

Ū I
i , Ū I = X(2)

n:n, (4.24)

V̄ II =
nb−a∑
i=1

Ū II
i , Ū II = (X

(1)

1:n2a)n1−a:n1−a , (4.25)

V̄ III′ =
nb−a∑
i=1

Ū III′

i , Ū III′ = X(2)
n:n. (4.26)

The proof of this lemma follows similarly from that of Lemma 4.1. We show

that Y I
I ≤ V̄ I , Y II

I ≤ V̄ II and Y III′
I ≤ V̄ III′ which yields (4.23).

We worsen our scheme in terms of session time and hereafter take the upper

bound in Lemma 4.3 as our Phase I duration for tractability and ease of calculation.

Thus, from now on YI = V̄ I + V̄ II + V̄ III′ . Next, we have the following upper bound

for the duration of Phase III.

Lemma 4.4 YIII satisfies the following inequality,

YIII ≤ ¯̄V I + ¯̄V II + ¯̄V III , (4.27)
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where

¯̄V I =
na∑
i=1

¯̄U I
i ,

¯̄U I = X(2)
n:n, (4.28)

¯̄V II =
nb−a∑
i=1

¯̄U II
i , ¯̄U II = (X

(1)

1:n2a)n1−b+a:n1−b+a , (4.29)

¯̄V III =
na∑
i=1

¯̄U III
i , ¯̄U III = X

(2)

n1−a:n1−a . (4.30)

We omit the proof of Lemma 4.4 since it follows similar to the proof of

Lemma 4.1. We worsen Phase III as well in terms of duration and take YIII =

¯̄V I + ¯̄V II + ¯̄V III from now on because of similar tractability issues.

As a result of Lemmas 4.3 and 4.4, total session time becomes

Y = V̄ I + V̄ II + V̄ III′ + YII +
¯̄V I + ¯̄V II + ¯̄V III . (4.31)

Taking expectations of order statistics of exponential random variables as in

(4.2)-(4.4) and using the fact that for large n, we have Hn ≈ log n and Gn is

monotonically increasing and converges to π2

6
, first two moments of the subphase

and phase durations approximately become

E

[∑
i∈I′

V̄ (i)

]
=

(
na + nb−a

λ2

+
(1− a)nb−3a

λ1

)
log n, (4.32)

E

[∑
i∈I

¯̄V (i)

]
=

(
(2− a)na

λ2

+
(1− b+ a)nb−3a

λ1

)
log n, (4.33)

E[YII ] =
bn1−3b

λ0

log n, (4.34)
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E
[
Y 2
II

]
=
n1−5b

λ2
0

π2

6
+

b2n2(1−3b)

λ2
0

log2 n, (4.35)

E
[(
V̄ I
)2]

=
na

λ2
2

π2

6
+

n2a

λ2
2

log2 n, (4.36)

E
[(
V̄ II
)2]

=
nb−5a

λ2
1

π2

6
+

(1− a)2n2(b−3a)

λ2
1

log2 n, (4.37)

E
[(

V̄ III′
)2]

=
nb−a

λ2
2

π2

6
+

n2(b−a)

λ2
2

log2 n, (4.38)

E
[(

¯̄V I
)2]

=
na

λ2
2

π2

6
+

n2a

λ2
2

log2 n, (4.39)

E
[(

¯̄V II
)2]

=
nb−5a

λ2
1

π2

6
+

(1− b+ a)2n2(b−3a)

λ2
1

log2 n, (4.40)

E
[(

¯̄V III
)2]

=
na

λ2
2

π2

6
+

(1− a)2n2a

λ2
2

log2 n, (4.41)

where in (4.32), i ∈ I ′ = {I, II, III ′} and in (4.33), i ∈ I = {I, II, III}.

Now, we are ready to derive an average age expression using (4.8). For ease

of exposition, we assume that every node updates its age at the end of each session

when the hierarchy is implemented and take Dj+1 = Yj+1. Then, (4.8) becomes

∆ =E[Y ] +
E[Y 2]

2E[Y ]
. (4.42)

Note that this assumption can only result in a higher average age as all nodes but

one receive their update packets before the session ends, i.e., P (D ≤ Y ) = 1 for all

updates and nodes.

Theorem 4.4 Under the constructed transmission scheme with h = 1 level of hier-
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archy, for large n, the average age of an S-D pair is given by,

∆ =E

[∑
i∈I′

V̄ (i)

]
+ E[YII ] + E

[∑
i∈I

¯̄V (i)

]

+

E
[(∑

i∈I′ V̄ (i) + YII +
∑

i∈I
¯̄V (i)
)2]

2
(
E
[∑

i∈I′ V̄ (i)
]
+ E[YII ] + E

[∑
i∈I

¯̄V (i)
]) . (4.43)

The proof of Theorem 4.4 follows upon substituting (4.31) back in (4.42).

Moments follow from (4.32)-(4.41).

Theorem 4.5 For large n, with a = b
2
and 1

7
≤ a ≤ 1

2
, the average age of an S-D

pair when h = 1 hierarchy level is implemented, ∆, given in (4.43) reduces to,

∆ ≈ c̃na log n, (4.44)

with a constant c̃. That is, age is O(na log n), for 1
7
≤ a ≤ 1

2
.

Proof: Using (4.32)-(4.41) in (4.43), we observe that in the average age expression

we have terms with O(na log n), O(nb−a log n), O(nb−3a log n), and O(n1−3b log n).

Among first three types, noting that b − 3a < b − a, dominating terms are O(na)

and O(nb−a). Thus, by choosing a = b − a we can minimize the resulting scaling.

With this selection, the first and third terms in (4.43) are O(na log n) whereas the

second one is O(n1−6a log n). Looking at the fourth term we observe that it has the

following form when b = 2a,

c1n
2a log2 n+ c2n

2(1−6a) log2 n+ c3n
1−5a log2 n

c4na log n+ c5n1−6a log n
, (4.45)
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where c1, . . . , c5 are constants. We observe that for 1
7
≤ a ≤ 1

2
, first three terms and

the fourth term given in (4.45) are O(na log n) which yields the result. ■

Thus, the proposed hierarchical scheme with h = 1 hierarchy levels achieves

an average age scaling of O(n
1
7 log n) per-user when a = 1

7
and b = 2

7
. This implies

that if the cells have M nodes each, each subcell has
√
M nodes when h = 1. Note

that in Section 4.4 it is shown that 1
4
≤ b ≤ 1. Here, resulting b not only satisfies

this but also gives a better scaling in the end because of the hierarchy we utilized.

In Theorem 4.6 below, we generalize this scaling result to h levels of hierarchy.

Theorem 4.6 For large n, when the proposed scheme is implemented with h hier-

archy levels, the average age scaling of O
(
nα(h) log n

)
per-user is achievable where

α(h) = 1
3·2h+1

.

Proof: We observe that when h = 1 hierarchy level is utilized, the scaling result

comes from a = 1 − 6a. Since b = 2a, another way to express this is b
2h

= 1 − 3b.

As h increases with b = 2a structure in each hierarchy level, we see that subcells

at level h have n
b

2h nodes. Thus, when h levels of hierarchy is utilized, subcell

transmissions take place among n
b

2h nodes and inter-subcell transmissions have n
b

2h

turns. However, the second phase is still O(n1−3b) as each cell at the top of the

hierarchy has nb nodes. Thus, b
2h

= 1− 3b yields α(h) = 1
3·2h+1

. ■

Thus, when hierarchy is utilized, the proposed transmission scheme, which in-

volves local cooperation and MIMO-like inter-cell transmissions, allows the success-

ful communication of n S-D pairs, and achieves an average age scaling ofO
(
nα(h) log n

)
per-user where h = 0, 1, . . . is the number of hierarchy levels. Note that in the
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asymptotic case when h tends to ∞, this scheme gives an average age scaling of

O(log n) per-user. This is the case because as h increases, number of turns in each

phase, n
b

2h , decreases such that eventually log n term which comes from the fact that

packets are distributed locally to all other nodes in the same subcell in Phases I and

III′ dominates. We also observe that when the hierarchy is not utilized, i.e. h = 0,

Theorem 4.6 yields the result in Theorem 4.3 in Section 4.4.

4.6 Note on Phases I and III

We use the protocol model introduced in [122] to model the interference such that

two nodes can be active if they are sufficiently spatially separated from each other.

In other words, we allow simultaneous transmissions provided there is no destructive

interference caused by other active nodes. Suppose that node i transmits its update

to node j. Then, node j can successfully receive this update if the following is

satisfied for any other node k that is simultaneously transmitting,

d(j, k) ≥ (1 + γ)d(j, i), (4.46)

where function d(x, y) denotes the distance between nodes x and y and γ is a positive

constant determining the guard zone.

The proposed three-phase scheme with h levels of hierarchy utilizes parallelized

transmissions in Phases I and III where h ≥ 0. When the hierarchy is not utilized,

i.e., h = 0, parallel intra-cell transmissions take place during these phases. In order

to implement these parallel communications in Phases I and III, we follow a 9-TDMA
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scheme as in [127]. Specifically, O( n
9M

) of the total n
M

cells work simultaneously so

that Phases I and III are completed in 9 successive subphases. Using the protocol

model, cells that are at least (1+γ)r
√
2 away from a cell can operate simultaneously

during these phases, where r =
√
SM/n is the length of each square cell and S is the

network area. Noting that there are at least two inactive cells in between two active

cells under a 9-TDMA operation and the maximum in-cell transmission distance is

r
√
2, this scheme satisfies (4.46) if the guard zone parameter γ ≤

√
2− 1. We note

that as the number of cells in the network increases, the number of simultaneously

active nodes in Phases I and III also increases. Since the distance between the active

cells, 2r, and the in-cell transmission distance, r
√
2, both decrease proportionally

when the number of cell increases the condition in (4.46) is still satisfied under the

9-TDMA operation given that we have γ ≤
√
2− 1.

On the other hand, when h = 1 level of hierarchy is utilized, the proposed

scheme includes within subcell transmissions that are parallelized across subcells

and within cell transmissions that are parallelized among cells (subcells take turns)

in Phases I and III (or III′). Similar 9-TDMA scheme again is used to accommodate

these simultaneous transmissions. When γ ≤
√
2 − 1, parallel 9-TDMA operation

among subcells is still allowed since from cell-level to subcell-level both distance

terms in (4.46) decrease proportionally. Extending this, we see that for h level of

hierarchy, by selecting an appropriate guard zone parameter γ, parallelized Phase I

and III (or III′) operation under 9-TDMA scheme is allowed. Noting that 9 here is

a constant and valid for any n, it does not change the scaling results.
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4.7 Numerical Results

In this section, we provide simple numerical results to validate our results for the

h = 0 case, i.e., hierarchical cooperation is not utilized.6 Simulations are performed

using MATLAB over 1000 sessions where each session is comprised of three phases.

Plotted results are averaged over 10 independent simulations. In the simulations,

we set λ = 5 and λ̃ = 2. We recall that to make the proposed three-phase scheme

analytically tractable, we worsen Phases I and III through Lemmas 4.1 and 4.2.

In this section, we provide simulations for the actual proposed three-phase scheme,

referred to as TPS and shown in blue solid curves throughout, and its upper-bounded

version, referred to as TPS-ub and shown in purple dash-dotted curves throughout,

along with our theoretical results to make comparisons and verify our results.

We first consider the case in which the nodes are placed on a grid in the network

and set b = 1
2
. In other words, nodes are equally spaced and each of the n

M
cells has

exactly M nodes. We note that since we do not consider the physical distance in

between nodes in our analysis, our results still hold when the nodes are on a grid.

In Fig. 4.5(a), in line with Theorem 4.3, we see that TPS-ub achieves an average

age scaling of O(n
1
2 log n) per-user since we set b = 1

2
. Here, the red dashed curve

shows the theoretical result obtained from (4.16)-(4.18) whereas the yellow dotted

line is obtained from (4.21) with corresponding c. We observe that these two curves

coincide, even for smaller values of n. Thus, the result in (4.21) is in line with our

average age analysis. Further, we observe that the actual proposed policy without

6Simulation complexity increases substantially when hierarchical cooperation is utilized.
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(a) (b)

Figure 4.5: Average age scaling under the proposed three-phase hierarchical trans-
mission scheme for h = 0, b = 1

2
, λ = 5 and λ̃ = 2 for varying n when (a) nodes are

on a grid, (b) nodes are randomly uniformly and independently distributed.

the upper bounds on Phases I and III, TPS, lies below the O(n
1
2 log n) scaling. Thus,

the proposed three-phase scheme, without the upper bounds on Phases I and III,

has a better average age scaling than the upper bounded scheme, TPS-ub, which is

shown to achieve O(n
1
2 log n) scaling for b = 1

2
in Theorem 4.3.

Next, we consider the case in which the nodes are uniformly and independently

placed in the network in Fig. 4.5(b). In this case, each cell has O(M) nodes rather

than exactly M nodes which leads to a gap in between the TPS-ub curve and the

theoretical results, which assume exactly M nodes in each cell, even though we

observe that TPS-ub curve continues to have O(n
1
2 log n) scaling trend. Thus, for

scaling results to hold, it is enough to have O(M) nodes in each cell. We also observe

that age under the actual proposed scheme, TPS, slightly increases compared to

Fig. 4.5(a) but still has a better scaling than O(n
1
2 log n).

Throughout the analysis, we have i.i.d. transmission times for intra-cell and

inter-cell transmissions of each node. Next, we analyze the performance of the
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(a) (b)

Figure 4.6: (a) Average age scaling under the proposed three-phase hierarchical
transmission scheme for h = 0, b = 1

2
when nodes have non i.i.d. transmission rates

for varying n. (b) Comparison of round robin scheme and the proposed three-phase
hierarchical transmission scheme for h = 0, b = 1

4
, λ = 5 and λ̃ = 2 for varying n.

proposed scheme when nodes have different transmission rates. Thus, in this case,

transmission times of nodes are independently yet exponentially distributed with

different mean values. In the simulation we consider that λ is uniformly distributed

in [3, 7] and λ̃ is uniformly distributed in [0.5, 3.5] for each node such that average

intra-cell and inter-cell transmission rates are 5 and 2, respectively as in Fig. 4.5(b).

We observe in Fig. 4.6(a) that under the non-i.i.d. transmission times, average ages

for both TPS and TPS-ub increase even though the TPS curve still has a lower

average age scaling than O(n
1
2 log n). On the other hand, in this case, the gap

between the cn
1
2 log n curve and TPS-ub curve increases and these two curves are

no longer parallel. That is, TPS-ub has a higher average age scaling than O(n
1
2 log n)

unlike the i.i.d. transmission rates setting.

Lastly, we compare the performance of the three-phase scheme with b = 1
4
and

the baseline round robin policy in which nodes take turns to transmit their update
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packets which has per-user scaling of O(n). In Fig. 4.6(b), we observe the proposed

three-phase transmission scheme outperforms the round-robin policy when the total

number of nodes exceeds n = 300.

4.8 Discussion

We note that the focus of this chapter is the scaling of age of information in large

wireless networks. Thus, presented scaling results hold with high probability when

the number of nodes in the network grows beyond a certain threshold. The random

network model used in this chapter is rather idealized. Although it is of theoretical

interest on its own right, a more realistic model may adopt a physical interference

model that is based on signal-to-interference ratio requirements and possibly mobile

nodes rather than static nodes. Moreover, we make use of the mega update packets

in the proposed transmission scheme to serve multiple S-D pairs at once without con-

sidering the growing mega update packet size as the network population increases.

Likewise, link delays are modeled as i.i.d. exponentials with constant parameters

that are not affected by the transmission distance or packet size. It would be an

interesting direction to analyze the effects of packet size and the distance between

S-D pairs on the average age scaling. Further, the schemes discussed in this chapter

are not private since a packet intended for a certain destination node is observed by

other nodes in the network. To ensure privacy, updates can be encrypted in a way

that the routing of a packet to the correct destination node is still maintained but

only the intended destination node can fully decrypt the message.
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In this sense, here, we take a careful look at the proposed three-phase trans-

mission scheme, particularly the MIMO-like inter-cell transmissions of mega update

packets in Phase II, and discuss the performance of the proposed three-phase trans-

mission scheme under possibly more realistic and practically applicable network

models.

First, we analyze the performance of the proposed three-phase scheme without

the utilization of mega update packets in the next corollary.

Corollary 4.1 When mega update packets are not utilized, the proposed three-phase

transmission policy achieves an average age scaling of O(n
1
3 log n) per-user.

Proof: In the proposed scheme, mega update packets are formed during Phase I

and are transmitted to destination cells in Phase II. By transmitting a mega update

packet, all M nodes of a particular cell send their messages to the corresponding

destination cells at once. When the mega update packets are not utilized, however,

each node of a cell still stores all other messages received in Phase I in its buffer but

instead of combining these messages to create the mega update packet, these nodes

can send the individual packets to corresponding M destination cells sequentially.

In other words, rather than sending all M packets as a mega packet simultaneously,

nodes in a cell collectively can send the packets one by one.7 In this operation, a

cell sends out all M of its update packets to the destination cells in M successive

transmissions in
∑M

i=1(X̃1:M2)i units of time where X̃ denotes the transmission delay

7We note that in this operation, each destination cell only receives the update packets that are
destined to that particular cell as opposed to receiving a full mega update packet.
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of a single packet and is exponentially distributed with rate λ̃.8 Since we need a

total of n transmissions for n
M

cells we have YII =
∑n

i=1(X̃1:M2)i. Note that when

M = nb where 0 < b ≤ 1 we have

E[YII ] =
n

M2λ̃
, E[Y 2

II ] =
n2

M4λ̃2
+

n

M4λ̃2
. (4.47)

Repeating a similar analysis as above with (4.47) instead of (4.17) for large n yields

the result. Particularly, we obtain b = 1 − 2b from which the proposed scheme

achieves the O(n
1
3 log n) scaling result. Note that even if the mega update packets

are not utilized, nodes in a cell still need enough buffer space to store all M messages

received in Phase I so that these messages can be sent out one by one in Phase II.

■

Second, in the next corollary, we consider the case when the speed up factor

is M in the MIMO-like transmissions of Phase II as opposed to a speed up factor of

M2 which arises since we consider the fastest of the simultaneously active M2 links

in Phase II.

Corollary 4.2 When the speed up factor is M as in the ordinary MIMO with M

transmit and M receive antennas, in the inter-cell transmissions of Phase II, the pro-

posed three-phase transmission policy achieves an average age scaling of O(n
1
3 log n)

per-user.

8We note that when mega update packets are not utilized, the transmission of all M update
packets from a particular cell to corresponding M destination cells essentially has an Erlang dis-
tribution with rate (M,M2λ̃) since we have sum of M i.i.d. random variables X̃1:M2 which is
exponentially distributed with rate M2λ̃.
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Proof: In this case, we have Ũ = X̃1:M such that the first two moments of the

duration of the second phase become

E[YII ] =
n

M2λ̃
HM , E[Y 2

II ] =
n2

M4λ̃2
H2

M +
n

M3λ̃2
GM , (4.48)

with M = nb where 0 < b ≤ 1. Repeating a similar analysis as above with (4.48)

instead of (4.17) for large n yields the result. ■

We note that a gain of M in the MIMO-like transmissions can be the result of

highly correlated transmission times from a node in the source cell to M nodes in

the destination cell in the physical layer. That is, all M links in between a node in

the source cell and nodes in the destination cell have highly correlated transmission

times such that we consider the fastest of the simultaneously active M links, one

for each node in the source cell, in Phase II as opposed to the fastest of M2 links.

Further, we note that the proposed transmission scheme achieves a better age scaling

than the delay scaling of [128] which also uses MIMO transmissions for inter-cell

transmissions and achieves a delay scaling of O(n
1
2 log n) per-user while sacrificing

the throughput performance.

Third, we consider the case in which the mega update packet transmission

rate depends explicitly on the number of packets in the mega updates, M . So far,

the inter-cell transmissions of mega update packets are modeled by i.i.d. exponential

random variables with rate λ̃. Since these mega update packets are comprised of

M update packets, one for each node of a particular cell, here, we scale down the

exponential random variable with the mega update packet size, M . That is, we let
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X̃ denote the transmission delay of a mega update packet such that the transmis-

sion delay is exponentially distributed with rate λ̃
M

instead of λ̃ and analyze the

performance of the proposed three-phase transmission policy in the next corollary.

Corollary 4.3 When the mega update packet transmission delays, X̃ of Phase II

are modeled by exponential random variables with rate λ̃
M
, the proposed three-phase

transmission policy achieves an average age scaling of O(n
1
3 log n) per-user.

We note that, in this case, the first two moments of the duration of the second

phase are again given by (4.48) which again yields the same result for large n.

Next, we consider the cases discussed in Corollaries 4.2 and 4.3 together. That

is, we analyze the performance of the proposed three-phase scheme when the speedup

factor is M , as in the ordinary MIMO scheme, with the inter-cell transmission of

mega update packets modeled by scaled-down exponential random variables with

the mega update packet size, M . In this case, the proposed scheme achieves a

per-user scaling of O(n
1
2 log n).

Lastly, we consider the case in which a single mega update packet transmis-

sion is modeled by an Erlang distribution with rate (M,M2λ̃). That is, inter-cell

transmission of a single packet has i.i.d. exponential delays with rate λ̃ such that

MIMO-like inter-cell transmission of a single packet has an i.i.d. exponentially dis-

tributed delay with rate M2λ̃. We note that this case is essentially equivalent to the

case when mega update packets are not utilized, as discussed in Corollary 4.1, since

when we have M successive transmissions for a mega packet transmission, then each

packet is only sent to its destination cell. In other words, a destination cell receives
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only the packets that are destined to that particular cell as opposed to receiving

the whole mega update packet. Thus, when the mega update packets have Erlang

service times, the proposed three-phase policy achieves an average age scaling of

O(n
1
3 log n) per-user.

We note that in Corollaries 4.1 to 4.3, we consider the performance of the

proposed scheme without invoking the hierarchical utilization and the corresponding

hierarchical extensions of these settings differ from Section 4.5 and are not discussed

within the scope of this chapter.

4.9 Conclusion

Given a large wireless network of fixed area consisting of n randomly located source-

destination pairs that want to send time-sensitive status update packets to each

other, we have studied the scalability of age of information. To accommodate the

communication between the S-D pairs, we have proposed a three-phase transmission

scheme which uses local cooperation between nodes and mega update packets to

achieve an average age scaling of O(n
1
4 log n). Our scheme divides the network into

n
M

cells of M nodes each. The first and third phases include intra-cell transmissions

and take place simultaneously across all cells. The second phase includes inter-cell

transmissions and therefore during this phase cells operate one at a time.

We observe that the bottleneck in the resulting age scaling result is caused by

O(M) transmissions in Phases I and III. Furthermore, we note that each cell is a

scaled-down version of the whole network. With these, we introduce hierarchy to the
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system and apply the three-phase scheme on a cell-level in these phases. In other

words, Phases I and III of the hth level of the hierarchy are completed in three

successive steps in the next level of hierarchy. We have shown that this scheme

with hierarchical cooperation improves the scaling result and achieves an average

age scaling of O
(
nα(h) log n

)
where α(h) = 1

3·2h+1
and h is the number of hierarchy

levels. In the asymptotic case when h tends to ∞ resulting average age per-user

scales as O(log n).
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CHAPTER 5

Scaling Laws for Version Age of Information in Gossip Net-

works

5.1 Introduction

The original age metric measures the time passed since the most recent information

at the monitor was generated at the source node. This age metric increases linearly

in time in the absence of update deliveries at the monitor. When an update is

received, the age value drops to the age of the received update. This evolution

in time demonstrates the fundamental limitation of the original age metric, which

is the assumption that the age at the monitor continues to increase as time passes

irrespective of any changes at the source side in the underlying source process. That

is, even if the source information does not change and the monitor has the most

up-to-date information, as time passes, the original age metric deems monitor’s

knowledge about the source process stale. This may not necessarily be the case

in many applications, including content delivery services and surveillance systems.

To overcome this inherent challenge, in the age of information literature, several

variants of the original age metric have been proposed. A common feature of these
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recently proposed age variants is the fact that the age of the monitor stays the

same until the information at the source changes even if no updates are received

at the monitor. Among these are binary freshness metric [90, 91, 133–136], age of

synchronization [137], and age of incorrect information [138–140].

Similar in spirit, recently, a new age metric called version age has appeared

in the literature [141, 142]. In the version age context, each update at the source is

considered a version change so that the version age counts how many versions out-

of-date the information at the monitor is, compared to the version at the source.

Unlike the original age metric, the version age has discrete steps such that the

version age of a monitor increases by one when the source generates a newer version,

i.e., fresher information. In between version changes at the source, version age of

the monitor stays the same indicating that the monitor still has the most recent

information. A predecessor of version age has appeared in [51], which considers

timely tracking of Poisson counting processes by minimizing the count difference,

i.e., version difference, between the process and its estimate.

Recently, reference [141] has used the version age metric to characterize time-

liness in memoryless gossip networks composed of n arbitrarily connected nodes.

In [141], the source sends information to the receiver nodes by implementing a Pois-

son updating mechanism, i.e., with exponential inter-update times at each receiver

node. Similar Poisson updating schemes have been investigated in the age liter-

ature in the context of social networks [42], timely tracking [51, 143], and timely

cache updating [90,91,135]. In addition to source delivering updates to the receiver

nodes, each node in [141] relays their stored version of the source information to
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their neighboring nodes. Also referred to as gossiping, this additional information

exchange among the nodes improves the age scaling at the nodes since each node

can receive updates from its neighbors as well as from the source node. As a result

of this gossiping, [141] shows that the average version age scales as O(
√
n) in a

bi-directional ring network and as O(log n) in a fully connected network, where n is

the number of nodes; note that the average version age would scale as O(n) without

gossiping, i.e., if the network is disconnected.

There have been significant efforts in the age literature to characterize and

improve the average age scaling in large networks considering the classical age metric

with possibly many source-destination pairs. Recent works have achieved O(1)

scaling in multicast networks in Chapters 2 and 3 and references [113, 144] using a

centralized transmission scheme administered by the source, and O(log n) scaling in

distributed peer-to-peer communication networks in Chapter 4 and references [145–

147] using a hierarchical local cooperation scheme.

Inspired by these, in this chapter, our aim is to study version age scaling

in more general gossip network models which exhibit a community structure; see

Fig. 5.1. In our model, there is a single source node that generates updates following

a Poisson process. Each such update constitutes a newer version of the underlying

information process. The source updates multiple distinct communities regarding

the underlying process. In our work, a community represents a set of receiver nodes

clustered together which can only interact with each other. Each cluster has a

dedicated cluster head, which serves that particular cluster. Akin to base stations in

a cellular network, cluster heads act as gateways between the source and the receiver
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Figure 5.1: Tiered network model where blue node at the center represents the
source, yellow nodes represent the cluster heads, and green nodes represent the end
users. Here, nodes in each cluster form a bi-directional ring network. Other possible
network topologies within a cluster are shown in Fig. 5.2.

nodes in each cluster. Unlike the model in [141], the source cannot directly deliver

updates to receiver nodes in our model. Instead, source updates need to go through

the corresponding cluster head to reach the receiver nodes in each cluster. There

can be various degrees of gossip in each cluster, which we model by disconnected,

uni-directional ring, bi-directional ring, and fully connected network topologies; see

Fig. 5.2. Based on the underlying connectivity within clusters, we characterize the

version age experienced by each node. In doing that, we employ the stochastic

hybrid systems (SHS) approach [13, 38, 148–151] to develop recursive formulas that

enable us to characterize the version age in arbitrarily connected clustered gossip

networks.

Additional hop constituted by the cluster heads between the source and the

end-nodes presents us with opportunities to optimize the average version age scaling

by carefully tuning the number of clusters and the cluster size. Specifically, our
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Figure 5.2: Different network topologies that can be used within each cluster: (a) dis-
connected, (b) uni-directional ring, (c) bi-directional ring, and (d) fully connected.
Fig. 5.1 uses the one in (c). In this figure, cluster size is k = 6.

results indicate that even if the nodes within each community forego gossiping,

i.e., disconnected networks within each cluster, we can achieve O(
√
n) scaling as

opposed to O(n). In addition, we obtain the same O(log n) scaling in the case of

fully connected communities using fewer connections within clusters than [141], and

further reduce the scaling result in ring networks to O(n
1
3 ) from O(

√
n) in [141].

So far, the cluster heads do not participate in gossiping, i.e., cluster heads

among themselves form a disconnected topology. To further improve the version

age at the receiver nodes, next, we characterize the average version age and its

scaling when the cluster heads form a ring network among themselves and exchange

information. In that case, each cluster head uses some of its update rate to relay

updates to its neighboring cluster heads while its remaining update rate is used
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to relay updates to the receiver nodes within its cluster. Thanks to the increased

communication among the cluster heads, we can further improve the version age

scaling to O(n
1
3 ) for disconnected networks within each cluster; to O(n

1
4 ) in the

case of ring networks within each cluster. For the setup with a ring network in each

cluster, we find the version age optimal update rate allocation at each cluster head.

Interestingly, in the case of fully connected networks within each cluster, we find

that the additional information exchange due to the gossip among the cluster heads

does not improve the version age scaling. That is, the version age of an end user

still scales as O(log n) even though cluster heads participate in gossip.

Motivated by the tiered structure in the clustered network model, next, we

introduce hierarchy to our clustered network model. In this case, we forego cluster

heads, and carefully place clusters of nodes in a hierarchical manner. That is, each

node in a particular hierarchy level acts as a cluster head to a distinct cluster of

nodes in the next hierarchy level. At the first level of hierarchy, we have a single

cluster of k1 nodes, each of which have a single cluster of k2 nodes at the second level,

and so on. Within the context of hierarchical clustered gossip networks, we consider

a ring network in each cluster and show that the O(
√
n) scaling result of [141] and

our cluster head-aided scaling result of O(n
1
3 ) for ring networks can be improved to

O(n
1
2h ) without the use of dedicated cluster heads, where h denotes the number of

hierarchy levels. For convenience, we provide the summary of all scaling results for

version age in Table 5.1. Finally, through numerical evaluations, we determine the

version-age optimum cluster sizes for varying update rates employed by the source,

cluster heads, and the nodes within each cluster.
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disconnected ring fully connected

no clustering as in [141] O(n) O(
√
n) O(log n)

clustered networks O(
√
n) O(n

1
3 ) O(log n)

clustered networks with connected cluster heads O(n
1
3 ) O(n

1
4 ) O(log n)

h-level hierarchical clustered networks − O(n
1
2h ) −

Table 5.1: The summary of the scaling of version age in gossip networks.

5.2 System Model and the Age Metric

We consider a system where a network of n nodes is divided into m clusters, each

consisting of k nodes such that n = mk with k,m ∈ Z; see Fig. 5.1. Each clus-

ter is served by a distinct cluster head, which takes updates from the source and

distributes them across that cluster. The source process is updated as a rate λe

Poisson process. The source has a total update injection rate of λs, which is uni-

formly distributed across cluster heads such that each cluster head is updated as a

rate λs

m
Poisson process. From each cluster head to its corresponding cluster, the

total update injection rate is λc and this rate is uniformly allocated across the nodes

in that cluster. That is, each node i receives an update from its cluster head as a

rate λc

k
Poisson process with i ∈ N ≜ {1, . . . , n}.

Nodes in each cluster are connected to each other based on a connection graph.

We consider varying levels of connectivity among nodes within each cluster. These

are disconnected, uni-directional ring, bi-directional ring, and fully connected net-

works, which are shown in Fig. 5.2 for a cluster of k = 6 nodes. Updates received

from the cluster head associated with each cluster are distributed across that cluster

by utilizing the connections between the nodes. A node i updates another node j

112



as a rate λij Poisson process. Each node in this system has a total update rate of λ,

which is uniformly allocated to its neighboring nodes. That is, in the uni-directional

ring, each node updates its neighbor node as a rate λ Poisson process, whereas in

bi-directional ring, each node has two neighboring nodes, each of which is updated

as a rate λ
2
Poisson process. In the fully connected cluster, each node has k − 1

neighbors each of which is updated as a rate λ
k−1

Poisson process. As a result of

these local connections within a cluster, a node can receive different versions of the

source update from its neighboring nodes in addition to the source updates received

via its cluster head.

To model the age at each node, we use the version age metric [141, 142]. We

denote the version of the update at the source as Ns(t), at cluster head c as Nc(t),

with c ∈ C ≜ {1, . . . ,m}, and at node i as Ni(t), with i ∈ N , at time t. The

version age at node i is given by ∆i(t) = Ns(t) − Ni(t). Similarly, the version age

at cluster head c is ∆c(t) = Ns(t) − Nc(t). When node i has the same version as

the source, its version age becomes zero, i.e., ∆i(t) = 0. When the information at

the source is updated, version ages at the cluster heads and the nodes increase by

1, e.g., ∆′
c(t) = ∆c(t) + 1. Each node i can get updates either from its cluster head

or the other nodes that it is connected to within its cluster. When node i gets an

update from its cluster head, its version age becomes

∆′
i(t) = min{∆c(t),∆i(t)} = ∆c(t). (5.1)

Last equality in (5.1) follows since nodes in a cluster receive source updates through
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their cluster head so that they have either the same version or older versions of the

information compared to their cluster head. When node i receives an update from

node j, its version age becomes

∆′
i(t) = min{∆i(t),∆j(t)}. (5.2)

That is, node i’s version age is updated only if node j has a newer version of the

source information. Otherwise, the version age at node i is not updated.

5.3 Version Age with Community Structure

In this section, we characterize the limiting version age of each node i, denoted by

∆i = lim
t→∞

E[∆i(t)], i ∈ {1, . . . , n}, (5.3)

considering various network topologies for the clusters. Since the network model in

each cluster is identical and within each cluster the network is symmetric for each

of the network topologies, age processes ∆i(t) of all users are statistically identical.

Thus, in the ensuing analysis, we focus on a single cluster c ∈ C and find the average

version age of a node from that cluster. For this, we follow the construction in [141]

and express ∆i in terms of ∆S, which denotes the average version age of an arbitrary

subset S of the nodes in cluster c, where

∆S(t) ≜ min
j∈S

∆j(t). (5.4)
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We recall the following definitions from [141]: λi(S) denotes the total update

rate at which a node i from cluster c updates the nodes in set S. We have

λi(S) =


∑

j∈S λij, i /∈ S

0, i ∈ S.

(5.5)

Similarly, λc(S) denotes the total update rate of the cluster head of a particular

cluster into the set S. Finally, set of updating neighbors of a set S in cluster c is

Nc(S) = {i ∈ N = {1, . . . , n} : λi(S) > 0}. (5.6)

That is, the set Nc(S) includes all updating neighbors of set S in cluster c excluding

the cluster head. The total set of updating neighbors of set S is given by N(S) =

c ∪Nc(S).

With these definitions, next, in Theorem 5.1 below we give the resulting version

age in our clustered system model as a specialization of [141, Theorem 1].

Theorem 5.1 When the total network of n nodes is divided into m clusters, each

of which consisting of a single cluster head and k nodes with n = mk, the average

version age of subset S that is composed of nodes within a cluster c is given by

∆S =
λe + λc(S)∆c +

∑
i∈Nc(S)

λi(S)∆S∪{i}

λc(S) +
∑

i∈Nc(S)
λi(S)

, (5.7)

with ∆c = mλe

λs
.
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Proof: Proof of Theorem 5.1 follows by applying [141, Theorem 1] to our clustered

network model and noting that updates arrive at the nodes through designated

cluster heads. For completeness, we show the key steps in the proof below.

In our system, whenever there is an update being forwarded, a state transition

occurs. We first present possible state transitions. We use L to denote the set of

possible state transitions. Then, we have

L = {(s, s)} ∪ {(s, c) : c ∈ C} ∪ {(c, i) : c ∈ C, i ∈ N} ∪ {(i, j) : i, j ∈ N}, (5.8)

where the first transition occurs when the source generates a new update, the second

set of transitions occur when the source node updates a cluster head c ∈ C. The

third set of transitions occur when a cluster head c updates a node in its cluster

and finally the last set of transitions occur when an end user updates another end

user from its cluster. In clustered gossip networks, different than [141], as a result

of transition (i, j), the version age of an end user evolves as

∆′
k =



∆k + 1, i = j = s, k ∈ N ,

∆c, i = c, j = k ∈ N ,

min(∆i,∆j), i ∈ N , j = k ∈ N ,

∆k, otherwise,

(5.9)

where ∆′
k is the version age of node k after the transition. In (5.9), the version age

of node k increases by one when the source generates a new update and becomes
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equal to the version age of its cluster head when node k receives an update from its

cluster head as explained in (5.1). When node k receives an update from another

node in its cluster, its version age is updated only if the updating node has a newer

version of the source information as shown in (5.2).

Considering an arbitrary subset S of nodes within a cluster with the version

age evolution described in (5.9), we deduce that after the (s, s) transition, the version

age of set S is increased by one. For all other transitions (i, j) with j ∈ S, we have

∆′
S = min

k∈S
∆′

k = min
k∈S∪{i}

∆k = ∆S∪{i}. (5.10)

When i = c, from (5.10), we have ∆′
S = mink∈S∪{i}∆k = ∆c. If j /∈ S, the version

age of set S is affected by transition (i, j), i.e., ∆′
S = ∆S. Using (5.9) and (5.10)

and following similar steps as in [141] yields the result. ■

5.3.1 Version Age in Clustered Disconnected Networks

Nodes in a cluster are not connected to each other. Thus, the network is a two-hop

multicast network, where the first hop is from the source to m cluster heads, and the

second hop is from each cluster head to k nodes; combine Fig. 5.1 with Fig. 5.2(a).

Multihop networks have been studied in Chapters 2 and 3 and references [113,144]

considering the classical age metric, where the source keeps sending update packets

until they are received by a certain number of nodes at each hop. We do not consider

such centralized management of updates, but let the source update the cluster heads

as Poisson processes, and let cluster heads forward these packets to the nodes within
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their clusters as further Poisson processes.

Let S1 denote an arbitrary 1-node subset of a cluster. Subset S1 is only

connected to the cluster head, i.e., Nc(S1) = ∅. Using the recursion given in (5.7),

we find

∆S1 = ∆c + k
λe

λc

= m
λe

λs

+ k
λe

λc

, (5.11)

where ∆S1 denotes the version age of a single node from the cluster. When the

network consists of two-hops, version age is additive, in that the first term in (5.11)

corresponds to the first hop and is equal to the version age at the cluster head,

whereas the second term in (5.11) corresponds to the version age at the second hop

between the cluster head and a node.

Theorem 5.2 In a clustered network of disconnected users, the version age of a

single user scales as O(
√
n).

Theorem 5.2 follows by selecting k =
√
n with m = n

k
=
√
n in (5.11) for fixed

λe, λs, λc, which do not depend on n. Theorem 5.2 indicates that when nodes are

grouped into
√
n clusters, an age scaling of O(

√
n) is achievable even though users

forego gossiping. With the absence of cluster heads, i.e., when the source is uniformly

connected to each of the n users, the version age scaling of each disconnected user

would be O(n). By utilizing clusters, we incur an additional hop, but significantly

improve the scaling result from O(n) to O(
√
n).
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5.3.2 Version Age in Clustered Ring Networks

Nodes in each cluster form a ring network. We consider two types of ring clusters:

uni-directional ring as shown in Fig. 5.2(b) and bi-directional ring as shown in

Fig. 5.2(c).

First, we consider the uni-directional ring and observe that an arbitrary subset

of j adjacent nodes Sj has a single neighbor node that sends updates with rate λ

for j ≤ k − 1. Each such subset Sj receives updates from the cluster head with a

total rate of j λc

k
. Next, we use the recursion in (5.7) to write

∆Sj
=

λe + j λc

k
∆c + λ∆Sj+1

j λc

k
+ λ

, (5.12)

for j ≤ k − 1 where ∆c is the version age at the cluster head. We note that when

j = k the network becomes a simple two-hop network similar to that of Section 5.3.1

and we find ∆Sk
= mλe

λs
+ λe

λc
.

Next, we consider the bi-directional ring and observe that an arbitrary subset

Sj that consists of any adjacent j nodes has two neighbor nodes, each with an

incoming update rate of λ
2
for j < k−1. When j = k−1, Sj has a single neighboring

node that sends updates with a total rate 2λ
2
= λ. For j ≤ k − 1, the cluster head

sends updates to subset Sj with a total rate of j λc

k
. With all these, when we apply

the recursion in (5.7), we obtain exactly the same formula given in (5.12).

Lemma 5.1 Both uni-directional and bi-directional ring cluster models yield the

same version age for a single node when each node in a cluster has a total update
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rate of λ.

Lemma 5.1 follows from the fact that either type of ring cluster induces the

same recursion for an arbitrary subset of any adjacent j nodes within a cluster as

long as the total update rate per node λ is the same. Thus, in the remainder of this

chapter, we only consider the bi-directional ring cluster model.

Before focusing on age scaling in a clustered network with a ring topology

in each cluster, we revisit the ring network in [141], and provide a proof of the

1.25
√
n age scaling result observed therein as a numerical result. We show that the

approximate theoretical coefficient is
√

π
2
= 1.2533.

Lemma 5.2 For the ring network model considered in [141], the version age of a

user scales as ∆S1 ≈
√

π
2
λe

λ

√
n.

Proof: From recursive application of [141, Eqn. (17)], we obtain

∆S1 =
λe

λ

(
n−1∑
i=1

a
(n)
i + a

(n)
n−1

)
, (5.13)

where a
(n)
i is given for i = 1, . . . , n− 1 as

a
(n)
i =

i∏
j=1

1

1 + j
n

. (5.14)

We note that a
(n)
i decays fast in i, and consider i = o(n),

− log(a
(n)
i ) =

i∑
j=1

log

(
1 +

j

n

)
≈

i∑
j=1

j

n
=

i(i+ 1)

2n
≈ i2

n
(5.15)
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where we used log(1 + x) ≈ x for small x, and ignored the i term relative to i2.

Thus, for small i, we have a
(n)
i ≈ e−

i2

2n . For large i, a
(n)
i converges quickly to zero

due to multiplicative terms in
∏i

j=1
1

1+j/n
, and this approximation still holds. Thus,

we have
∑n−1

i=1 a
(n)
i ≈

∑n−1
i=1 e−

i2

2n . For large n, by using Riemann sum approximation

with steps 1√
n
, we obtain

1√
n

n−1∑
i=1

a
(n)
i ≈

1√
n

n−1∑
i=1

e−
i2

2n =

∫ ∞

0

e−
t2

2 dt =

√
π

2
. (5.16)

Thus, we get
∑n−1

i=1 a
(n)
i ≈

√
π
2

√
n. By inserting this in (5.13), we obtain the age

scaling of a user as ∆S1 ≈
√

π
2
λe

λ

√
n. ■

Next, we focus on age scaling in a clustered network with a ring topology in

each cluster. From recursive application of (5.12) along with ∆Sk
, we obtain

∆S1 =
λe

λ

(
k−1∑
i=1

b
(k)
i

)
+∆c

(
1− b

(k)
k−1

)
+∆Sk

b
(k)
k−1, (5.17)

where similar to (5.14), b
(k)
i is given for i = 1, . . . , k − 1 as

b
(k)
i =

i∏
j=1

1

1 + j
k
λc

λ

. (5.18)

When k is large, b
(k)
k−1 goes to zero, and ∆S1 in (5.17) becomes

∆S1 ≈
λe

λ

(
k−1∑
i=1

b
(k)
i

)
+∆c ≈

√
π

2

λe√
λλc

√
k +m

λe

λs

, (5.19)

where the second approximation follows as in the proof of Lemma 5.2. Terms in
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(5.19) are O(
√
k) and O(m), respectively. In [141], there is a single cluster, i.e.,

m = 1 and k = n, and thus, the version age scaling is O(
√
n). In our model, by

carefully adjusting the number of clusters and the cluster sizes, we can improve this

O(
√
n) scaling result to O(n

1
3 ).

Theorem 5.3 In a clustered network with a ring topology in each cluster, the ver-

sion age of a single user scales as O(n
1
3 ).

Theorem 5.3 follows by selecting m = n
1
3 with k = n

m
= n

2
3 in (5.19) for fixed

λe, λs, λc, λ, which do not depend on n.

5.3.3 Version Age in Clustered Fully Connected Networks

Nodes in each cluster form a fully connected network where each node is connected

to all the other nodes within its cluster with rate λ
k−1

. We find the version age for

a subset of j nodes Sj in a cluster. Each such subset j has k − j neighbor nodes in

addition to the cluster head associated with their cluster. Using the recursion given

in (5.7), we find

∆Sj
=

λe +
jλc

k
∆c +

j(k−j)λ
k−1

∆Sj+1

jλc

k
+ j(k−j)λ

k−1

, (5.20)

for j ≤ k − 1, where ∆c is equal to mλe

λs
. The average version age of the whole

cluster is ∆Sk
= ∆c +

λe

λc
= mλe

λs
+ λe

λc
.

Next, we present bounds for ∆S1 .

Lemma 5.3 When λc = λ, in a clustered network with fully connected topology in
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each cluster, the version age of a single node satisfies

(k − 1)2 + k

k2
∆c +

λe

λ

(
k − 1

k

k−1∑
ℓ=1

1

ℓ
+

1

k

)
≤ ∆S1 ≤ ∆c +

λe

λ

(
k∑

ℓ=1

1

ℓ

)
. (5.21)

Proof: We use steps similar to those in the proof of [141, Theorem 2] and also

consider the additional hop from the source to the cluster heads. For λc = λ, we

take j = k − ℓ and (5.20) becomes

∆Sk−ℓ
=

1
k−ℓ

λe

λ
+ 1

k
∆c +

ℓ
k−1

∆Sk−ℓ+1

1
k
+ ℓ

k−1

, (5.22)

for ℓ ≤ k − 1 and ∆Sk
= ∆c +

λe

λ
, where ∆c is the age at the cluster head. Defining

∆̂Sℓ
≜ ∆Sk−ℓ+1

, we get

∆̂Sℓ+1
=

1
k−ℓ

λe

λ
+ 1

k
∆c +

ℓ
k−1

∆̂Sℓ

1
k
+ ℓ

k−1

. (5.23)

Next, one can show that ∆̂Sℓ+1
satisfies the following

∆̂Sℓ+1
≤

1
k−ℓ

λe

λ
+ 1

k
∆c +

ℓ
k
∆̂Sℓ

1
k
+ ℓ

k

. (5.24)

Defining ∆̃Sℓ
≜ ℓ

k
∆̂Sℓ

and plugging it in (5.24), we get

∆̃Sℓ+1
=

ℓ+ 1

k
∆̂Sℓ
≤ 1

k − ℓ

λe

λ
+

1

k
∆c + ∆̃Sℓ

. (5.25)
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Noting that ∆̃S1 =
∆̂S1

k
=

∆Sk

k
= 1

k

(
∆c +

λe

λ

)
, we write

∆̃Sk
≤ ∆c +

λe

λ

(
k∑

ℓ=1

1

ℓ

)
. (5.26)

Since ∆̃Sk
= ∆̂Sk

= ∆S1 , (5.26) presents an upper bound to the version age of a

single node. For the lower bound, we start with (5.23) and observe that we have

∆̂Sℓ+1
≥ k − 1

ℓ+ 1

(
1

k − ℓ

λe

λ
+

1

k
∆c +

ℓ

k − 1
∆̂Sℓ

)
. (5.27)

Defining ∆̄Sℓ
≜ ℓ

k−1
∆̂Sℓ

and using it in (5.27) gives

∆̄Sℓ+1
=

ℓ+ 1

k − 1
∆̂Sℓ+1

≥ 1

k − ℓ

λe

λ
+

1

k
∆c + ∆̄Sℓ

. (5.28)

Starting with the fact that ∆̄S1 =
1

k−1
∆̂S1 =

m+1
k−1

λe

λ
, the recursion in (5.28) yields

∆S1 ≥
(k − 1)2 + k

k2
∆c +

λe

λ

(
k − 1

k

k−1∑
ℓ=1

1

ℓ
+

1

k

)
, (5.29)

upon noting that ∆S1 =
k−1
k
∆̄Sk

, which concludes the proof of the lemma. ■

From (5.21), we see that for large n with λc = λ, the version age of a single

node ∆S1 satisfies

∆S1 ≈ m
λe

λs

+
λe

λ
log k. (5.30)

Theorem 5.4 In a clustered network with a fully connected topology in each cluster,
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the version age of a single user scales as O(log n).

Theorem 5.4 follows in multiple different ways. For instance, it follows by

selecting m = 1 and k = n
m

= n. That is, we have a single fully connected network

of n users as in [141]. Theorem 5.4 also follows by selecting m = log n and k = n
m

=

n
logn

. That is, we have log(n) fully connected clusters with n
logn

users in each cluster.

Thus, version age obtained under a smaller cluster size with less connections is the

same as that obtained when all nodes are connected to each other. In particular,

in our model with m = log n, each node has O( n
logn

) connections in comparison to

O(n) in [141].

Finally, we note that, a recurring theme in the analysis of clustered networks

is the fact that the version age at an end-node ∆S1 is almost additive in the version

age at the cluster head ∆c as seen in (5.11), (5.17), and (5.21). It is exactly additive

in the case of disconnected clusters in (5.11).

5.4 Version Age with Community Structure Under Connected Clus-

ter Heads

So far, we have studied the cases in which the cluster heads are disconnected among

themselves, and consequently, they do not exchange information with each other. In

this section, we model the connectivity among the cluster heads with a bi-directional

ring (see Fig. 5.3).1 2 Thus, in this section, at the first tier, we have a ring network

1The model studied in Section 5.3 corresponds to the case in which the cluster heads form a
disconnected topology.

2In addition to the bi-directional ring topology, one can study the version age considering fully
connected cluster heads, which is omitted here to keep the discussion focused.
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of m cluster heads, each of which is serving its own cluster. Nodes in each cluster

form a disconnected, ring, or fully connected network. Our aim in this section, is

to analyze the effect of additional information exchange among the cluster heads on

the average version age experienced by the end nodes.

When there is no information exchange among the cluster heads, i.e., discon-

nected cluster heads, each cluster head updates its cluster with a total rate of λc. In

the case of information exchange among the cluster heads, a cluster head updates

its neighboring cluster heads as a rate λca Poisson process and updates its cluster

with a total rate of λcb, where λca + λcb = λ. Thus, when the cluster heads are con-

nected, each cluster head receives source information with a larger rate but updates

its cluster with a smaller rate.

The average version age of a subset S that is composed of nodes within a cluster

c is still given by (5.1) when the cluster heads exchange information in our clustered

network topology. This is because when the cluster heads exchange information

among themselves, the network topology within a cluster does not change, i.e., the

Nc(S) stays the same, and the nodes in a cluster still cannot have a lower version

age than their cluster head.

The only change in (5.1) compared to Section 5.3 is the average version age

of a particular cluster head c, ∆c. As shown in Fig. 5.3, even though cluster heads

are connected to the nodes in their respective clusters, each cluster head can be

updated by the source node or its neighboring cluster heads. That is, to find ∆c,

we only need to look at the first tier of the network, which is the ring gossiping

network presented in [141]. Thus, using Lemma 5.2 we find the average version age

126



c2
c3

c1

c6
c5

c4

λe

λs

source

2
3

1

6
5

4

λcb

λ

λca

Figure 5.3: Tiered network model where blue node represents the source, yellow
nodes represent the cluster heads c1, . . . , c6, and green nodes represent the end users.
Here, cluster heads form a bi-directional ring network with m = 6. Each cluster
is associated with a cluster of k = 6 nodes. Here, only one such cluster is shown.
Nodes in each cluster form a bi-directional ring network. Other possible network
topologies within a cluster are shown in Fig. 5.2.

of a single cluster head when the cluster heads form a ring network as

∆c ≈
√

π

2

λe√
λsλca

√
m. (5.31)

We note that in (5.31), we have
√
λsλca in the denominator unlike [141] as λs and

λca are not necessarily equal in our model. We observe in (5.31) that a single cluster

head’s average version age approximately scales as O(
√
m) as opposed to O(m)

in Theorem 5.1 since cluster heads now form a ring network. With that, in what

follows, we analyze the average version age scaling for different cluster topologies

when the cluster heads form a ring network.
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5.4.1 Version Age in Clustered Disconnected Networks with Con-

nected Cluster Heads

The network model in this case is as in Section 5.3.1 except that the cluster heads

form a ring network in the first hop. Nodes within a cluster are disconnected, i.e.,

Nc(S1) = ∅. By invoking Theorem 5.1, we use the recursion in (5.7) and find the

average version age of a single node as

∆S1 = ∆c + k
λe

λcb

≈
√

π

2

λe√
λsλca

√
m+ k

λe

λcb

, (5.32)

where the approximation follows from (5.31).

Theorem 5.5 In a clustered network of disconnected users when the cluster heads

form a ring network, the average version age of a single user scales as O(n
1
3 ).

Theorem 5.5 follows by selecting, k = n
1
3 with m = n

k
= n

2
3 in (5.32) for fixed

λe, λs, λca and λcb that do not depend on n. Theorem 5.5 implies that even though

nodes in clusters do not gossip, by utilizing the information exchange at the cluster

head level, the average version age scaling of an end user can be improved to O(n
1
3 )

from O(
√
n) in Theorem 5.2.

Another interesting observation is the parallelism between (5.32) and (5.19)

due to the almost additive structure of the average version age in clustered gossip

networks. In the case of (5.19), cluster heads are disconnected and nodes in each

cluster form a ring network whereas in the case of (5.32) the network is reversed,
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i.e., ring network in cluster heads, disconnected network within clusters. Since,

we have n = mk, both (5.32) and (5.19) yield the same O(n
1
3 ) average version

age scaling at the end users indicating that gossiping equally helps improving the

average version age scaling at the end users whether it occurs at the cluster head

level or within clusters at the end user level even though possibly newer versions of

the source information is exchanged at the cluster head level as cluster heads are

directly connected to the source node.

5.4.2 Version Age in Clustered Ring Networks with Connected Clus-

ter Heads

Ring networks are formed both at the cluster head level and within clusters at the

end user level. By invoking Theorem 5.1, we use the recursion in (5.7) and after

following similar steps as in Section 5.3.2, we find

∆S1 ≈
√

π

2

λe√
λsλca

√
m+

√
π

2

λe√
λλcb

√
k. (5.33)

We note that (5.33) is the counterpart of (5.19) where the additional ring network

topology at the cluster head level is considered.

Theorem 5.6 In a clustered network with a ring topology in each cluster when the

cluster heads form a ring network, the average version age of a single user scales as

O(n
1
4 ).

Theorem 5.6 follows by selecting m =
√
n with k = n

m
=
√
n in (5.33) for
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fixed λe, λs, λca, and λcb. Here, we note that, when gossiping is employed both

at the cluster head level and at the end user level within clusters through a ring

topology, the average version age scaling at the end users is improved from O(n
1
3 )

in Theorem 5.1 to O(n
1
4 ) in Theorem 5.6.

Another interesting observation is the fact that since the network topology is

symmetric at both levels in this case, and the average version age at the end users is

almost additive in the average version age at the cluster heads, the average version

age scaling optimal m and k values are identical.

We can also note that the selection of the update rates at the cluster heads,

i.e., λca and λcb in (5.33) is critical. After the optimal selection of m = k =
√
n,

next, we optimize update rates at the cluster heads, i.e., λca and λcb, to further

minimize the version age in (5.33). After selecting m = k =
√
n, ∆S1 in (5.33)

becomes

∆S1 ≈
√

π

2
λen

1
4

(
1√
λsλca

+
1√
λλcb

)
. (5.34)

The minimization of ∆S1 in (5.34) is equivalent to solving the following opti-

mization problem

min
{λca,λcb}

1√
λsλca

+
1√
λλcb

s.t. λca + λcb = λc

λca ≥ 0, λcb ≥ 0. (5.35)
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We write the Lagrangian for the optimization problem in (5.35) as,

L =
1√
λsλca

+
1√
λλcb

+ β(λca + λcb − λc)− θ1λca − θ2λcb, (5.36)

where θ1 ≥ 0, θ2 ≥ 0, and β can be anything. We note that the problem in (5.35) is

jointly convex with respect to λca and λcb. Thus, by analyzing the KKT conditions

we can find the optimal solution. We write the KKT conditions as,

∂L
∂λca

=− 1

2λs

λ
− 3

2
ca + β − θ1 = 0, (5.37)

∂L
∂λcb

=− 1

2λ
λ
− 3

2
cb + β − θ2 = 0. (5.38)

Then, by using the KKT conditions in (5.37) and (5.38), we find the optimal λca

and λcb as

λca =
λcλ

1
3

λ
1
3 + λ

1
3
s

, (5.39)

λcb =
λcλ

1
3
s

λ
1
3 + λ

1
3
s

. (5.40)

We observe from (5.39) and (5.40) that when the cluster heads also form a ring

network, it is optimal to choose the update rates among the cluster heads, i.e., λca,

proportional to the 1
3
-power of the update rate of the end users, i.e., λ

1
3 . Similarly,

the total update rate allocated by cluster heads to their own clusters should be

proportional to the 1
3
-power of the update rate of the source, i.e., λ

1
3
s .3

3Similar optimization problems can be formulated for the clustered disconnected networks in
Section 5.4.1, and for the clustered fully connected networks in Section 5.4.3. In order to avoid
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5.4.3 Version Age in Clustered Fully Connected Networks with Con-

nected Cluster Heads

In this case, nodes within a cluster form a fully connected network whereas each

cluster head is only connected to its adjacent neighbors in a ring topology. By

invoking Theorem 5.1, we use the recursion in (5.7) and after following similar steps

as in Section 5.3.3, we find

∆S1 ≈
√

π

2

λe√
λsλca

√
m+

λe

λ
log k, (5.41)

for large n, with λcb = λ. We note that (5.41) is analogous to (5.30) when the cluster

heads form a ring network.

Theorem 5.7 In a clustered network with a fully connected topology in each cluster

when the cluster heads form a ring network, the average version age of a single user

scales as O(log n).

Theorem 5.7 follows by noting that since k = n
m

we cannot get rid of the log n

term in (5.41). Thus, there are multiple (m, k) pairs that result in the same O(log n)

scaling. For example, when m = 1 and k = n
m

= n, we obtain O(log n) scaling. This

implies that having a single cluster of n users as in [141]. In addition, selecting

m = log2 n and k = n
m

= n
log2 n

yields Theorem 5.7 as well, parallel to the discussion

after Theorem 5.4.

repetitive arguments, we skip the update rate optimizations of the cluster heads for these parts
and provide the analysis only for the clustered ring networks.
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An interesting observation from Theorem 5.7 is the fact that additional com-

munication at the cluster head level does not improve the average version age scaling

at the end users. In a similar fashion, one can show that, even if the cluster heads

form a fully connected network among themselves while the nodes in each cluster

also form a fully connected network, the average version age at the end users scales

as O(log n). This is due to the fact that the number of clusters m (hence the number

of cluster heads) and the number of nodes in each cluster k are such that n = mk.

Since the level of gossip, i.e., the connectivity among the cluster heads and the

nodes in each cluster, cannot be increased beyond fully connected networks, one

can conclude that the average version age scaling cannot be improved further than

O(log n) in the considered clustered gossip networks.

We note that once the cluster heads exchange information among themselves,

essentially, what we end up with is a hierarchical gossip networks, where in the first

level of hierarchy we have m cluster heads, and in the second level of hierarchy

we have mk end nodes clustered into m clusters of k nodes each. Inspired by this

structure, in the next section, we forego cluster heads and study the version age in

hierarchical clustered gossip networks.

5.5 Version Age in Hierarchical Clustered Gossip Networks

In this section, we consider a hierarchical clustered gossip network, where at the first

level of hierarchy there is a single cluster of k1 nodes. Each node in the first level

is directly updated by the source node as a rate λs

k1
Poisson process. Total update
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Figure 5.4: Two-level hierarchical network model where blue node represents the
source and green nodes represent the end users. Here, nodes in each cluster form a
bi-directional ring network of k1 = k2 = 6 nodes. We have a single cluster in the
first level and k1 = 6 clusters in the second level. Here, only one such second level
cluster is shown. Other possible network topologies within a cluster are shown in
Fig. 5.2.

rate of each node is λ. Each node spends λa portion of this total rate to update

its neighbors within the same cluster at the same hierarchical level and spends λb

portion of the total λ rate to update its neighbors in the next hierarchical level such

that λa+λb = λ. Each node in the first level is associated with a cluster of k2 nodes

in the second level. That is, in the second level, we have k2 clusters and a total

of k1k2 nodes. In Fig. 5.4, we show the network model for a two hierarchy levels.

We note that at the last level of the network, e.g., the second level in the case of

Fig. 5.4, nodes use all of their update rate λ to update their neighbors within the

same cluster.

Within the scope of this section, we assume that nodes in each cluster at every
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hierarchical level form a bi-directional ring network.4 Let h denote the number of

hierarchy levels in the network. Then, at level i, with i ≤ h− 1, each node updates

each of its two neighbors at level i as a Poisson process with rate λa

2
, whereas it

updates each of its ki+1 child nodes at level i+1 as a rate λb

ki+1
Poisson process. We

have a total of
∏i

j=1 kj nodes at level i that are grouped into equal-sized clusters of

ki for i ≥ 2.

Due to the symmetry in the network model, nodes in each hierarchy level i

have statistically identical version age processes ∆i
S1
. In what follows, we find the

average version age expressions of a single node at each hierarchical level.

Theorem 5.8 When the total network of n nodes is grouped into h levels of hier-

archical clusters with ki nodes in each cluster at the ith hierarchy level such that∑h
i=1

∏i
j=1 kj = n, the average version age of subset S that is composed of nodes

within a cluster c at the ith hierarchical level is given by

∆i
S =

λe + λi−1(S)∆
i−1
S1

+
∑

j∈Nc(S)
λj(S)∆

i
S∪{j}

λi−1(S) +
∑

j∈Nc(S)
λj(S)

, (5.42)

where λi−1(S) denotes the total update rate at which cluster c’s parent node in level

i− 1 updates the nodes in set S.

The proof of Theorem 5.8 follows from that of Theorem 5.1 by noting that the

version age of a node in level i cannot be smaller than that of its parent node in

4One can consider disconnected or fully connected networks within each cluster at each level
as well. In our model, since the average version age under fully connected networks cannot be
improved beyond O(log n) as discussed in Section 5.4 and we want to keep our discussion focused,
we limit ourselves with a ring network in each cluster at every level.
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level i− 1. That is, from the perspective of a node in level i, its cluster head in the

case of Theorem 5.1 corresponds to its parent node in level i− 1.

We first present the results for h = 3 levels of hierarchy to showcase the version

age behavior in the hierarchical gossip networks and then generalize our results to

h level of hierarchy.5

5.5.1 Version Age for h = 3 Hierarchy Levels

In this case, we have a single cluster of k1 nodes in the first level, k1 clusters of k2

nodes each in the second level, and k2 clusters of k3 nodes in each in the third level of

hierarchy so that n = k1+k1k2+k1k2k3. By using the recursion in Theorem 5.8 and

noting that at the first level of hierarchy we have the ring network model in [141],

we find

∆1
S1
≈
√

π

2

λe√
λsλa

√
k1, (5.43)

∆2
S1
≈
√

π

2

λe√
λsλa

√
k1 +

√
π

2

λe√
λaλb

√
k2, (5.44)

∆3
S1
≈
√

π

2

λe√
λsλa

√
k1 +

√
π

2

λe√
λaλb

√
k2 +

√
π

2

λe√
λλb

√
k3. (5.45)

Theorem 5.9 In a hierarchical clustered network with h = 3 hierarchy levels and

a ring network in each cluster, the average version age of a single user scales as

O(n
1
6 ) at every hierarchy level.

5For h = 2 hierarchy levels, the resulting average version age expressions are in the same format
as those in Section 5.4.2 and correspondingly yield an O(n

1
4 ) scaling at an end user. This is because

the cluster heads forming a ring network at the first tier in Section 5.4.2 can essentially be thought
of as the first level of hierarchy in the context of hierarchical clustered gossip networks analyzed
in this section.
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Theorem 5.9 follows by observing that n = k1 + k1k2 + k1k2k3 = k1(1+ k2(1+

k3)) ≈ k1k2k3 for large n. That is, when the number of nodes in the network

gets large, order-wise majority of the nodes are located at the final hierarchy level.

From the symmetry of the cluster topologies at each hierarchy level and the additive

structure observed in (5.43)-(5.45), we select k1 = k2 = k3 = O(n
1
3 ), which yields

an average version age scaling of O(n
1
6 ) for all three hierarchical levels.

We note that taking n ≈ k1k2k3 is as if we assume all the nodes are located

at the last hierarchical level of the network so that the O(n
1
6 ) scaling we find in

Theorem 5.9 represents a worst case scenario since nodes located at the first two

hierarchy levels surely have smaller average version age than the nodes located at

the last level of the hierarchy.

Theorem 5.9 shows that by implementing a three-level hierarchical clustered

gossip network structure, we can improve the average version age of a single end-

user in our model compared to O(n
1
2 ) in [141], O(n

1
3 ) in Section 5.3.2, and O(n

1
4 )

in Section 5.4.2. The improvement in Section 5.3.2 compared to the model in [141]

originates from the use of m cluster heads with smaller ring networks under each

cluster head compared to the single ring network of n nodes in [141]. When the

cluster heads participate in gossip in Section 5.4.2, end users have better average

version age scaling due to the additional information exchange at the cluster heads.

Finally, in this section, through hierarchical placement of clusters, we obtain the

same scaling as in Section 5.4.2 with h = 2 levels without getting help from any

dedicated cluster heads and further improve the scaling result when we employ h = 3

hierarchy levels. That is, by carefully placing all n nodes into hierarchical clusters of
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ring networks, we get the best average version age scaling at an end user compared

all these network models discussed so far.6

5.5.2 Version Age for h > 3 Hierarchy Levels

In a hierarchical clustered gossip network with h hierarchy levels and a ring network

topology in each cluster at every hierarchy level, the average version age of a single

node located in hierarchy level i is

∆i
S1

=



√
π
2

λe√
λsλa

√
ki, i = 1,

∆1
S1

+
√

π
2

λe√
λaλb

∑i
j=2

√
kj, 1 < i < h,

∆i−1
S1

+
√

π
2

λe√
λλb

√
ki, i = h.

(5.46)

Theorem 5.10 In a hierarchical clustered network with h hierarchy levels and a

ring network in each cluster, the average version age of a single user scales as

O(n
1
2h ) at every hierarchy level.

Theorem 5.10 follows by approximating n ≈
∏h

i=1 ki for large n and taking

ki = n
1
h for i ∈ 1, . . . , h.

5.6 Numerical Results

We have seen in Sections 5.3-5.5 that the version age depends on update rates λe,

λs, λc, and λ. In this section, we explore the effects of these rates on the version age

6We note that average version age scaling of an end node is improved through hierarchical
clustering at the expense of increased number of connections in the network, which may incur
additional operational cost to the service provider. This aspect will be discussed in Section 5.7.

138



0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

(a)

0 20 40 60 80 100 120
0

5

10

15

20

(b)

0 20 40 60 80 100 120
1

2

3

4

5

6

7

(c)

0 20 40 60 80 100 120
2

4

6

8

10

12

14

16

(d)

Figure 5.5: Version age of a node with fully connected, ring, and disconnected cluster
models with n = 120, (a) λe = 1, λs = 1, λc = 1, and λ = 1, (b) λe = 1, λs = 10,
λc = 1, and λ = 1, (c) λe = 1, λs = 10, λc = 10, and λ = 1, (d) λe = 1, λs = 10,
λc = 1, and λ = 2.

via numerical results. In the first four simulations, we consider the model described

in Section 5.3.

First, we take λe = 1, λs = 1, λc = 1, λ = 1, and n = 120. We plot the

version age of a node for the considered cluster models with respect to k. We see

in Fig. 5.5(a) that for the fully connected cluster model, the version age decreases

with k and thus, the version age-optimal cluster size is k∗ = 120, i.e., all n nodes are
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grouped in a single cluster. In the ring cluster model, the version age is minimized

when k∗ = 30. In the disconnected cluster model, the version age is minimized

when we have k∗ = 10 (or equivalently k∗ = 12). From these, we deduce that when

the topology has less connectivity in a cluster, the optimal cluster size is smaller.

Further, a topology with larger connectivity within a cluster achieves a lower version

age.

Second, we consider the same setting as in Fig. 5.5(a) but take λs = 10 in

Fig. 5.5(b). Here, the version age decreases with increasing k at first due to in-

creasing number of connections within a cluster and the increase in the update rate

between the source and each cluster head (as the number of clusters decreases with

increasing k). However, as k continues to increase, the decrease in the update rate

from the cluster head to the nodes starts to dominate and the version age increases

for all cluster models. In Fig. 5.5(b), we see that the optimal cluster size is k∗ = 12

in fully connected clusters, k∗ = 8 in ring clusters, k∗ = 3 and k∗ = 4 in disconnected

clusters.

Third, we increase the update rate of the cluster heads and take λc = 10. We

see in Fig. 5.5(c) that the optimum value of k increases compared to the second

case when cluster heads have a larger update rate in all the cluster models. We find

k∗ = 20 in fully connected clusters, k∗ = 15 in ring clusters, and k∗ = 10 or k∗ = 12

in disconnected clusters.

Fourth, we study the effect of update rates among the nodes. For this, we take

λc = 10, λe = 1, λs = 1, λ = 2. We see in Fig. 5.5(d) that as the communication

rate between the nodes increases, the optimal cluster size increases, and it is equal
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Figure 5.6: Version age of a node with fully connected, ring, and disconnected cluster
models with n = 120, λe = 1, λs = 10, λca = 4, λcb = 6, and λ = 1 when cluster
heads form a ring network among themselves.

to k∗ = 24 in fully connected clusters, and k∗ = 10 in ring clusters. As there is no

connection between nodes in the case of disconnected clusters, the optimum cluster

size remains the same, i.e., k∗ = 3 or k∗ = 4, compared to Fig. 5.5(b).

Next, we look at the version age when the cluster heads form a ring network

as in Section 5.4. For this simulation, we use the setup of Fig. 5.5(c) and take

λca = 4 and λcb = 6. We see in Fig. 5.6 for all network types within clusters,

i.e., disconnected, ring, and fully connected networks, that version age of a single

end node improves when the cluster heads exchange information among themselves.

In addition, we observe that with the additional gossip at the cluster heads, the

version age optimal cluster size for each case is now smaller. Comparison of the

optimal cluster size and the corresponding minimum version age achieved for each

type of network is given in Table 5.2 with and without gossip at the cluster heads.

In Table 5.2, we observe that the biggest version age improvement is obtained in the

case of disconnected clusters, as the additional communication at the cluster heads
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no gossip at cluster heads gossiping cluster heads

disconnected (2.2000, 10) (1.5936, 4)

ring (1.7729, 15) (1.4365, 5)

fully connected (1.7111, 20) (1.4291, 5)

Table 5.2: Comparison of the (∆∗
S1
, k∗) pairs with (as in Section 5.4) and without

(as in Section 5.3) gossip at the cluster heads.

is more valuable when nodes within clusters are not connected at all.

In our last numerical result, we look at the version age in hierarchical clustered

gossip networks as in Section 5.5 with h = 3 hierarchy levels. Here, we consider the

number of nodes n = 120, and take λe = 1, λs = 1, and total update rate of a node

as λ = 5. In this simulation, we consider different (λa, λb) pairs, and find the optimal

cluster sizes at each hierarchical level k1, k2, and k3 that minimize the version age

of a node at the last hierarchical level as these nodes experience the highest version

age in the network. We note that the selection of the (λa, λb) is important. While

choosing a large λa increases the connectivity between the nodes within clusters,

and thus can lower the version age of the nodes at the same hierarchical level, it

may also increase the version age of the nodes at the higher hierarchical levels. For

this reason, among the (λa, λb) pairs given in Table 5.3, we see that choosing λa = 2,

and λb = 3 achieves the lowest version age with the optimum cluster sizes equal to

k1 = 3, k2 = 13, and k3 = 2. We also note that when λa is relatively small, i.e.,

λa = 1, most of the nodes are placed at the third hierarchical level, i.e., out of

n = 120 nodes, k1k2k3 = 78 nodes are placed at the third hierarchical level whereas

k1 = 3 nodes and k1k2 = 39 nodes are placed in the first and the second hierarchical

levels, respectively. As we increase the connectivity among the nodes within the
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λa λb k1 k2 k3 ∆3
S1

1 4 3 3 12 3.7992

2 3 3 13 2 3.7239

3 2 3 13 2 3.9143

4 1 8 7 1 4.3354

Table 5.3: Average version age of a single node at the third hierarchy level, ∆3
S1
,

with h = 3, n = 120, λe = 1, λs = 1, and λa + λb = 5. For given (λa, λb) pairs, we
find the optimum k1, k2, and k3 values that minimize ∆3

S1
.

same level (λa), we see that the number of nodes at the upper hierarchical levels

increases.

5.7 Conclusion

We considered a system where there is a single source and n receiver nodes that

are grouped into distinct equal-sized clusters. Nodes in each cluster participate in

gossiping to relay their stored versions of the source information to their neighbors.

We considered four different types of connectivity among the nodes within the same

cluster: disconnected, uni-directional ring, bi-directional ring, and fully connected.

First, we considered the use of dedicated cluster heads in each cluster that facilitate

communication between the source and the receiver nodes. For each of these network

models, we found the average version age and its scaling as a function of the net-

work size n. In particular, we showed that an average version age scaling of O(
√
n),

O(n
1
3 ), and O(log n) is achievable per user in disconnected, ring, and fully connected

cluster topologies. We then allowed information exchange among the cluster heads

and showed that the version age scaling in the case of disconnected and ring net-

works in each cluster can be improved to O(n
1
3 ) and O(n

1
4 ), respectively, when the
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cluster heads also participate in gossiping through a ring formation. Interestingly,

we observed that the increased gossip among the cluster heads does not improve the

version age scaling when the nodes in each cluster form a fully connected network.

Finally, we implemented a hierarchical clustered gossip structure and showed that

per user average version scaling of O(n
1
2h ) is achievable in the case of ring networks

in each cluster, where h denotes the number of hierarchy levels, even without the

aid of the dedicated cluster heads. We numerically determined the optimum cluster

sizes that minimize the version age for varying update rates at the source, cluster

heads, and the nodes.

Here, the version age scaling improvement from the model in [141] to our hier-

archical clustered gossip network design comes at the expense of increased number

of connections at the network. For example, considering a ring network in each

cluster, the O(
√
n) scaling result of [141] is obtained by 3n connections whereas our

cluster head-aided O(n
1
3 ) scaling result is achieved as a result of a total 3n + n

1
3

connections in the network. When the cluster heads also form a ring network this

number increases to 3n+3
√
n to achieve an O(n

1
4 ) scaling result. Finally, in the case

of hierarchical clustered gossip networks with h levels, we have a total of 3
∑h

i=1 n
i
h

connections in the network which yield a per node average version age scaling of

O(n
1
2h ). Considering the operational cost of each such connection, service providers

can design the network structure, i.e., the use of cluster heads, number of hierarchy

levels along with the level of connectivity in each cluster, based on the operational

budget to obtain the desired level of information freshness at the receiver nodes.
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CHAPTER 6

Timely Distributed Computation with Stragglers

6.1 Introduction

In many real-time monitoring applications including autonomous driving, surveil-

lance systems and predictive maintenance, time-sensitive data that are collected

by sensors or mobile devices require processing to extract the embedded informa-

tion. However, these devices cannot perform heavy computations due to battery

related issues or their limited computational capabilities. These type of status up-

date packets that require computation are called computation-intensive messages.

References that are most closely related to our work are [152–158] which study

queueing, packet management and scheduling in such status update systems. Com-

mon to all these works is the fact that they consider a single computation server.

That is, although references [152–158] consider systems with computation-intensive

status update packets, our work is the first work on age of information that considers

multiple servers working in a distributed manner to process the update packets.

In this chapter, we consider a system in which there is a source node which

uploads computation-intensive time-critical status updates to a computation unit
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Figure 6.1: System model with a single source node and a computation unit (CU)
that consists of a master node and n identical worker nodes.

(CU) which consists of a single master node and n worker nodes that perform

the computations (see Fig. 6.1). We assume that the required computation on

the update is a linear operation such as large matrix multiplication. This brings

up the concept of computation distribution among the worker nodes. Computation

distribution and scheduling problem has been extensively studied particularly in the

context of machine learning with a focus on completion time and straggler threshold

analysis [159–170].

Inspired by the recent distributed computation literature, we investigate the

timeliness of uncoded and coded computation distribution algorithms that are used

to combat the stragglers, i.e., nodes that are slower than the average. Unlike the

existing distributed computation literature which uses metrics such as expected

overall runtime to evaluate the performance of distributed computation systems

[159], our goal is to characterize the age of information in these systems and design

computation distribution algorithms that can combat stragglers as well as achieve a
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minimum average age of information. The source node collects time-sensitive data

and sends them to the CU for processing over a channel with random transmission

delays. Arriving packets at the CU go into service (computation) if the CU is

idle by the time of their arrival. Otherwise, they are dropped. Here, the master

node distributes the overall computation to n worker nodes using uncoded or coded

schemes. Computation time at each worker is random. Once the master node

collects sufficiently many results from the worker nodes to decode the computation

result, it updates the source node. We note that in our model destination node

is also the source node. One such application is autonomous driving cars which

capture images/videos of the surroundings and send them to a CU for computation.

The source node in the mean time adopts a zero-wait policy such that it sends the

next update packet once the current one reaches the CU.

We derive the average age for uncoded and coded schemes, and show that

asymptotically MDS coded scheme outperforms the uncoded and repetition coded

schemes, i.e., MDS coded scheme achieves a smaller average age. In addition, we

observe that when worker nodes have multiple computations to perform (MM-MDS

coded scheme), age performance of MDS coded scheme further improves. Our results

also indicate that given that the source node and the CU implement zero-wait and

dropping policies, respectively, when the transmission delays are i.i.d. exponentials

and computation times are i.i.d. shifted exponentials, for large n, minimizing age of

information is equivalent to minimizing the computation time which is not the case

in general. Finally, we find the optimal repetition, MDS and MM-MDS codes that

minimize the average age of information.
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6.2 System Model and Age Metric

We consider a system (see Fig. 6.1), where there is a single source node which

sends time-sensitive computation-intensive status updates, i.e., packets that require

additional processing to extract the embedded information, to a CU which consists

of a single master node and n worker nodes. Worker nodes have statistically identical

computing capabilities. From the source node to the CU, update packets experience

i.i.d. exponential transmission delays. Upon successful arrival of a packet to the

CU, the master node distributes this computation task to n worker nodes. Here, we

use status update packet and computation task interchangeably. Each worker node

performs the computation, which is assumed to be a linear operation, and sends the

result back to the master node. We note that one such computation task example

is large matrix multiplication prevalent in machine learning applications.

When the master node receives sufficiently many responses from the worker

nodes, it aggregates the results and updates the source node. We neglect the trans-

mission delay from the CU back to the source node after computation as the size

of the initial packet is in general much larger than the resulting update packet after

computation.

Thus, in our model, packets that are able to enter the CU experience two

stages: transmission and computation. Random variable Dj denotes the transmis-

sion delay of the jth update packet and is exponentially distributed with parameter

λ. To model the computation times at the worker nodes, we adopt the model in [159]

and assume the existence of a mother runtime distribution. This distribution cor-

148



responds to the computation time when the whole computation on the update is

performed by a single worker, X, and has a shifted exponential distribution with

(c, µ) where c > 0 is the shift and µ is the rate which is also the straggling param-

eter. When the update packet is divided into m subpackets, the computation time

of each subpacket has the scaled-down (i.e., sped-up) version of the overall distri-

bution, i.e., shifted exponential with
(

c
m
,mµ

)
. We note that computation times at

the worker nodes also account for the time spent to communicate the inputs and

outputs with the master node within the CU. Here, the constant shift makes sure

that computation times cannot go below a certain value whereas the exponential

part constitutes the tail of the computation time distribution. This is inline with

the computation times observed in systems like Google Trace [168].

The source node receives an instantaneous ACK upon delivery to the CU and

sends the next update as soon as the current one reaches the CU, i.e., the source

node adopts a zero-wait policy. We note that, in a possibly more intuitive setting,

the source node may send the next update upon receiving the computation result

back from the CU in which case there is no need for a separate ACK signal which

is discussed in Footnote 1 in Section 6.3. On the other hand, the CU implements a

dropping policy in which when busy it neglects any update packets arriving from the

source node. Thus, packets sent by the source node can only enter the computation

stage if the CU is idle at the time of their arrival. Upon finishing a computation task,

the CU immediately sends back the result and waits for the next packet arrival. This

idle waiting time is denoted by random variable Z and is exponentially distributed

with λ because of the memoryless property of the transmission delays D. We note
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that, under this model, the source node always receives the most recent computation

result available from the CU.

To distribute the computation task among the worker nodes upon receiving

status update packets, the master node may adopt uncoded or coded distribution

algorithms. In the uncoded scheme, the status update packet is divided into n equal

subpackets, one for each worker node. However, in this method, the overall compu-

tation time is limited by the slowest worker node and thus, it may not be desirable

especially when the computations are time-sensitive. To combat these slower strag-

gling worker nodes, the master node can implement coding techniques to introduce

redundancy to the computation task so that some straggling nodes can be tolerated.

In our model, we analyze repetition and MDS (maximum distance separable) codes.

Moreover, to further utilize the fastest worker nodes, we investigate the assignment

of multiple MDS coded subpackets to each worker node, i.e., multi-message MDS

(MM-MDS). We analyze the effects of these uncoded and coded schemes on the

timeliness of the computations.

To quantify the timeliness we use the age of information metric. At time t

age at the destination node, which is the source node in our model, is a random

process ∆(t) = t − u(t) where u(t) is the time-stamp of the most recent update at

the destination node. The metric we use, long term average age, is

∆ = lim
τ→∞

1

τ

∫ τ

0

∆(t)dt, (6.1)

where ∆(t) is the instantaneous age as defined above.
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6.3 Age of Uncoded and Coded Task Distribution Algorithms

From the perspective of the CU, we have i.i.d. exponential interarrivals with λ.

Since a dropping policy is implemented, not every arriving packet actually goes

into service at the CU. We denote the packets that find the CU idle and thus go

into service as the successful packets. Let Tj−1 and T ′
j−1 denote the time at which

the jth successful packet is generated at the source node and is received by the

CU, respectively. Random variable Y denotes the update cycle at the CU, time

in between two consecutive successful arrivals, and Yj = T ′
j − T ′

j−1. As described

in Section 6.2, update cycle Yj consists of computation (service) time Sj and idle

waiting time Zj. We note that Zj, Sj and Dj are mutually independent where Dj

denotes the transmission delay experienced by the jth successful packet, i.e., Dj =

T ′
j−1−Tj−1. In our model, the interarrival process at the CU, D, and service times S

are independent, and sequences {D1, D2, . . . } and {S1, S2, . . .} form i.i.d. processes.

We observe that Z is stochastically equal to the transmission delay D, i.e.,

interarrival time at the CU, due to the memoryless property of the transmission

delay D. On the other hand, computation time S changes depending on the task

distribution algorithm adopted by the master node. We use order statistics to

express the distribution of S. We denote the kth smallest of X1, . . . , Xn as Xk:n.

For a shifted exponential random variable X with (c, µ), we have [131]

E[Xk:n] =c+
1

λ
(Hn −Hn−k), (6.2)

Var[Xk:n] =
1

λ2
(Gn −Gn−k), (6.3)
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∆(t)

t

Yj

Tj−1

Qj

Figure 6.2: Sample age evolution ∆(t) at the destination (source) node. Successful
updates are indexed by j. The jth successful update leaves the source node at Tj−1

and arrives at the CU at T ′
j−1. Update cycle at the CU is the time in between two

successive arrivals and is equal to Yj = Sj + Zj = T ′
j − T ′

j−1.

where Hn =
∑n

j=1
1
j
and Gn =

∑n
j=1

1
j2
. Using (6.2) and (6.3),

E[X2
k:n] =

(
c+

1

λ
(Hn −Hn−k)

)2

+
1

λ2
(Gn −Gn−k) . (6.4)

We note for future reference that when n is large and k is linear in n, i.e.,

k = αn, for 0 < α < 1, the variance of the kth order statistic of the shifted

exponential random variable, Xk:n, shown in (6.3), becomes negligibly small and

tends to 0 as n increases because both Gn and Gn−k sequences converge to π2

6
.

Thus, for large n, an ordered sequence of n shifted exponential random variables

essentially becomes a deterministic sequence such that the kth realization takes the

mean value given by (6.2). This observation will be useful in designing age optimal

codes.

Our model here resembles the M/G/1/1 queue with blocking model analyzed
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in [29] with one difference: here arriving packets at the CU have experienced a

transmission delay. Therefore, they have aged by D by the time of their arrival at

the CU. Noting this difference, we perform a similar graphical analysis using Fig. 6.2

to find the long term average age which is the average area under the age curve and

is given by [29]

∆ = lim sup
n→∞

1
n

∑n
j=1Qj

1
n

∑n
j=1 Yj

=
E[Q]

E[Y ]
, (6.5)

where Q denotes the shaded area and Y is its length in Fig. 6.2, and the second

equality follows from the ergodicity of the system. By using Fig. 6.2, we find Yj =

Sj +Zj and observe that the area Qj can be decomposed into a right trapezoid with

bases Dj and Dj + Yj and height Yj; and a parallelogram with base Dj−1 + Sj−1 +

Zj−1 −Dj and height Sj. Thus, we find

E[Qj] =E[Dj(Sj + Zj)] +
1

2
E[(Sj + Zj)

2] + E[Sj(Dj−1 + Sj−1 + Zj−1 −Dj)] (6.6)

=E[Dj]E[(Sj + Zj)] +
1

2
E[(Sj + Zj)

2]

+ E[Sj]E[Dj−1 + Sj−1 + Zj−1 −Dj] (6.7)

=E[Dj]E[(Sj + Zj)] +
1

2
E[(Sj + Zj)

2] + E[Sj]E[Sj−1 + Zj−1], (6.8)

where (6.7) follows by noting that the service process is i.i.d. and independent of the

arrival process along with the fact that Dj, Sj and Zj are mutually independent.

Further, (6.8) follows by noting that E[Dj−1] = E[Dj] since the system is stationary

and ergodic. Since we focus on the long term behavior, we drop the subscript index
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and find

E[Q] =E[D](E[S] + E[Z]) +
1

2
E[(S + Z)2] + E[S](E[S] + E[Z]). (6.9)

Similarly, we have

E[Y ] =E[S] + E[Z]. (6.10)

Then, using (6.9) and (6.10) in (6.5), we find the long term average age as

∆ =
E[Q]

E[Y ]
= E[D] + E[S] +

E[Y 2]

2E[Y ]
, (6.11)

where Y = S + Z as noted above. The first term in (6.11) reflects that arriving

packets at the CU have aged on average by E[D].1 Our goal is to minimize the

average age given in (6.11) by adjusting computation (service) time S at the CU

through different task distribution algorithms.

6.3.1 Uncoded Scheme

In the uncoded scheme, the master node divides the received status update packet

into n subpackets, one for each worker node. Using the mother runtime distribution

detailed in Section 6.2, we see that in the uncoded scheme local computation time at

each worker X̃ follows a shifted exponential distribution with parameters
(
c
n
, nµ

)
.

1We note that, in a possibly more intuitive setting, if the source node sends the next update
upon receiving the previous computed update back from the CU, unlike the current model in which
the source node sends the next update as soon as the current one reaches the CU, the average age
expression in (6.11) would stay the same as D and Z are stochastically identical.
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This sped-up distribution highlights the fact that each worker node performs a part

of the overall computation. Thus, in order to reveal the information in the received

update packet, the master node needs to collect the results from all n worker nodes.

Hence, the computation time is S = X̃n:n. Calculating the moments of S using (6.2)-

(6.4) and substituting them into (6.11) we find the average age when the uncoded

scheme is utilized, ∆unc, as

∆unc =
1

λ
+

c

n
+

Hn

nµ
+

(
c
n
+ Hn

nµ

)2
+ Gn

n2µ2 +
2
λ

(
c
n
+ Hn

nµ

)
+ 2

λ2

2
(

c
n
+ Hn

nµ
+ 1

λ

) . (6.12)

The following theorem states the asymptotic average age performance of the

uncoded scheme as the number of worker nodes n increases.

Theorem 6.1 With i.i.d. exponential transmission delays and i.i.d. shifted expo-

nential computation times at each worker, the average age of the uncoded distribution

scheme for large n is 2
λ
+O

(
logn
n

)
.

The proof of Theorem 6.1 follows from the fact that for large n, we have

Hn ≈ log n and Gn ≈ π2

6
. The constant 2

λ
in the result reflects the sum of E[D] = 1

λ
,

which is the expected delay packets experience on the way from the source to the CU,

and E[Z] = 1
λ
, which is the expected waiting time for a new packet at the CU when

it is idle. The O
(
logn
n

)
term in the result shows that the average age decreases with

n, the number of worker nodes at the CU. Here, the 1
n
term in O

(
logn
n

)
reflects the

fact that computation tasks get smaller and consequently workers become faster as

n increases, whereas the log n term in O
(
logn
n

)
indicates that the uncoded scheme
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is limited by the performance of the slowest worker. Since the increase in the

computation rates, i.e., decrease in the average straggling behavior, overcomes the

increase in the computation time of the slowest worker, average age of the uncoded

scheme decreases as n increases.

The main downside of the uncoded scheme is the fact that it is prone to large

delays due to straggling nodes as the master node needs all of the computation

results to extract the useful information from the status update packet. Therefore,

if some servers are much slower than the rest, service time of the update packet

increases significantly. To cope with these straggling worker nodes, redundant com-

putation tasks may be created via coding. In what follows we analyze the effects of

repetition coded, MDS coded and MM-MDS coded schemes on the average age.

6.3.2 Repetition Coded Scheme

We consider an n
k
-repetition code where the packet is divided into k equal sized

subpackets where k ≤ n and each subpacket is repeated n
k
times. In other words,

each subpacket has n
k
replicas and the master node needs to collect k distinct results

from n worker nodes. Thus, each worker node has a shifted exponential computation

time distribution, X̃, with parameters
(
c
k
, kµ
)
. Since there are n

k
workers for each

of the k subpackets the computation time of each subpacket is the minimum among

these n
k
i.i.d. random variables which is denoted by X̄ = X̃1:n

k
. Since the minimum

of shifted exponentials is also a shifted exponential with the same shift but scaled

straggling parameter, X̄ follows a shifted exponential distribution with
(
c
k
, nµ

)
.
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Since we need k distinct results, the overall computation time in this case is S = X̄k:k.

Using (6.11) along with the moments of order statistics given in (6.2)-(6.4), we find

the average age of the repetition coded scheme, ∆rep, as

∆rep =
1

λ
+

c

k
+

Hk

nµ
+

(
c
k
+ Hk

nµ

)2
+ Gk

n2µ2 +
2
λ

(
c
k
+ Hk

nµ

)
+ 2

λ2

2
(

c
k
+ Hk

nµ
+ 1

λ

) . (6.13)

The following theorem states the asymptotic average age performance of the

repetition coded scheme as n increases.

Theorem 6.2 With i.i.d. exponential transmission delays and i.i.d. shifted expo-

nential computation times at each worker, the average age of the n
k
-repetition coded

scheme for large n with k = αn where 0 < α ≤ 1 is 2
λ
+O

(
logn
n

)
.

The proof of Theorem 6.2 follows similarly from that of Theorem 6.1. Here, we

observe that although a coding scheme is implemented, asymptotically, we achieve

the same average age performance as the uncoded scheme. Thus, repetition coded

scheme is asymptotically no better than the uncoded scheme. This is because of the

fact that the repetition coded scheme still suffers from the log n term in O
(
logn
n

)
as the runtime of this scheme is limited by the slowest of the k distinct subtask

computations needed, where k is linear in n. Thus, the resulting average age scales

the same as the uncoded scheme even though replication brings the 1
n
term.

Next, we analyze the performance of the MDS coded schemes.
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6.3.3 MDS Coded Scheme

To implement an (n, k)-MDS code where k < n, the update packet is first divided

into k equal sized subpackets. From these k subpackets a total of n subpackets are

created with coding by using n−k redundant subpackets so that the master node can

decode the result of the computation as soon as it receives k computation results.

Since the overall computation task is divided into k subtasks as in repetition coding,

each worker node completes its local task in X̃ which is a shifted exponential with

( c
k
, kµ). The computation time for the overall task is, however, S = X̃k:n. Using

this along with (6.2)-(6.4) in (6.11), we find the average age when an (n, k)-MDS

code is implemented, ∆mds, as

∆mds =
1

λ
+

c

k
+

Hn −Hn−k

kµ
+

(
c
k
+ Hn−Hn−k

kµ

)2
+ Gn−Gn−k

k2µ2

2
(

c
k
+ Hn−Hn−k

kµ
+ 1

λ

)
+

2
λ

(
c
k
+ Hn−Hn−k

kµ

)
+ 2

λ2

2
(

c
k
+ Hn−Hn−k

kµ
+ 1

λ

) . (6.14)

The following theorem gives the asymptotic average age performance of the

MDS coded scheme for large n.

Theorem 6.3 With i.i.d. exponential transmission delays and i.i.d. shifted expo-

nential computation times at each worker, the average age of the (n, k)-MDS coded

scheme for large n with k = αn where 0 < α < 1 is 2
λ
+O

(
1
n

)
.

The proof of Theorem 6.3 follows similarly to that of Theorem 6.1 by noting

that Hn−k ≈ log(n − k). Thus, when k = αn, we get Hn − Hn−k = − log(1 − α)
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which is independent of n. Further, Gn − Gn−k = Gn − G(1−α)n tends to 0 as n

increases. With these, the result follows.

We observe that the average age in Theorem 6.3 has a O
(
1
n

)
term as opposed

to O
(
logn
n

)
terms in Theorems 6.1 and 6.2. Thus, for large n, MDS coded scheme

outperforms repetition coded and uncoded schemes in terms of average age per-

formance. Up to now, we have investigated uncoded and coded schemes in which

each worker node is assigned one subtask to compute. Although we achieve better

performance in combating the straggling nodes through coding, there is still room

for improvement. In all these schemes, the fastest worker nodes which finish their

computations earlier stay idle. To utilize them even more, we can assign multiple

subtasks to each worker node. With multiple assignments to each worker node we

can utilize partial straggling worker nodes, which are the ones that cannot finish all

tasks that are assigned to them but still return some partial results. In the next

subsection, we consider the performance of MDS coded scheme when each worker is

given multiple subtasks to compute.

6.3.4 Multi-message MDS (MM-MDS) Coded Scheme

In multi-message MDS coded scheme, each worker node is assigned ℓ subpackets

to compute, where ℓ denotes the load of each worker node. That is, each worker

node has a job queue of size ℓ in each update cycle. Thus, we implement an (nℓ, k)-

MDS code. For this, the overall update packet is divided into k subtasks where

k < nℓ and from these subtasks nℓ − k redundant subtasks are generated such
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ℓ = 2

ℓ = 3 3X̃2 3X̃3 3X̃4 3X̃5 3X̃6 3X̃7 3X̃8 3X̃9 3X̃103X̃1

X̃4

2X̃3 2X̃4 2X̃5 2X̃6 2X̃7 2X̃8 2X̃9 2X̃102X̃1 2X̃2

Figure 6.3: The earliest k computed tasks for n = 10, ℓ = 3, and k = 7.

that the master node only needs to receive k computation results to extract the

embedded information in the status update received from the source node. Unlike

regular MDS coded scheme in which each worker has one subtask to compute, in

this scheme faster workers can perform multiple computations to aid the overall

computation time. Hence, we utilize partial stragglers, also called non-persistent

stragglers [165], i.e., worker nodes that finish some portion of the subtasks that are

assigned to them.

In line with the mother computation distribution model presented in Sec-

tion 6.2, computation time of a subtask at each worker, X̃, has a shifted exponential

distribution with
(
c
k
, kµ
)
. Following the model in [165], we assume that the duration

of each computation performed by a worker during an update cycle is identical. In

other words, if a worker finishes m of the ℓ subtasks during an update cycle, dura-

tion of each computation is identical which is sampled from a shifted exponential

with parameters
(
c
k
, kµ
)
. Therefore, the time it takes for a worker node to per-

form m computations, mX̃, is also a shifted exponential with (mc
k
, kµ
m
). It remains

to determine E[S] and E[S2] to calculate the average age in this setting by using

(6.11).
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In what follows, the mth level refers to the set of subtasks that are located in

the mth position in each worker’s job queue. In other words, the mth level includes

a total of n subtasks which are performed in the mth position by the corresponding

worker nodes upon completion of their first m − 1 subtasks. We note that in the

uncoded, repetition coded, and MDS coded schemes there is only one level as ℓ = 1

in those schemes. Let km denote the number of subtasks computed in the mth level

upon completion of the overall task at the CU during an update cycle. We have∑ℓ
m=1 km = k since exactly k subtasks need to be performed to finish the overall

computation. Fig. 6.3 shows an example for n = 10, k = 7, and ℓ = 3. Here, each

column represents the computation times of ℓ subtasks that a worker node is assigned

and row m represents the computation times of the mth level subtasks. Without

loss of generality, we order level one, i.e., X̃1 in Fig. 6.3 is the smallest computation

time of a level 1 subtask and X̃10 is the largest one. Correspondingly, all other levels

are ordered as well. Hence, column i in Fig. 6.3 in fact shows the computation times

of the ith fastest worker node, where i = 1, . . . , n. In this example, we observe

that by the time the earliest k = 7 computations are finished, the fastest worker

completed three subtasks, the second fastest worker completed two subtasks, the

third and fourth fastest workers completed one subtask each, and the remaining six

workers completed zero subtasks. That is, 4 first level, 2 second level and 1 third

level subtasks are computed. Thus, we have k1 = 4, k2 = 2 and k3 = 1.

For simplicity and ease of exposition, consider the case where ℓ = 2. Assume

that by the time a total of k computations are performed k1 < k computations

from the first level are finished. Then, we have k2 = k − k1. When n is large,
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the time it takes to compute k1 first level subtasks, X̃k1:n is equal to E[X̃k1:n] due

to the vanishing variance property of order statistics of shifted exponentials for

large n, discussed after (6.4). Similarly, k2 second level subtasks are performed in

E[2X̃k2:n] units of time. At this point, there can be two possible scenarios: In the

first scenario, k2 second level computations are finished before the k1th first level

subtask is finished, i.e.,

E[2X̃k2:n] ≤ E[X̃k1:n] < E[2X̃k2+1:n]. (6.15)

We note that second inequality in (6.15) holds since the k1th first level task needs

to be performed before the k2 + 1th second level task to be included in the earliest

k subtasks. In this case, the computation duration, i.e., service time, is S = X̃k1:n.

On the other hand, in the second scenario, the k2th second level subtask is finished

after the k1st first level subtask but before the subtask k1 + 1 of the first level, i.e.,

E[X̃k1:n] ≤ E[2X̃k2:n] < E[X̃k1+1:n]. (6.16)

In this case, we have S = 2X̃k2:n. When k1 and k2 are linear in n, i.e., k1 = α1n and

k2 = α2n, with 0 < α1 < 1 and 0 < α2 < 1, for large n, we have

α1 =
k1
n
≈ k1 + 1

n
, (6.17)

α2 =
k2
n
≈ k2 + 1

n
, (6.18)
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which imply that the bounds in (6.15) and (6.16) meet as n gets large. Thus, by

the sandwich theorem E[X̃k1:n] = E[2X̃k2:n] is satisfied for large n in either scenario.

By using (6.2), for large n when both k1 and k2 are linear in n as defined above we

have

E[X̃k1:n] =
c

k
+

Hn −Hn−k1

kµ
=

c

2αn
+

1

2αnµ
log

(
1

1− α1

)
, (6.19)

and

E[2X̃k2:n] = 2

(
c

k
+

Hn −Hn−k2

kµ

)
=

2c

2αn
+

1

2αnµ
log

(
1

1− α2

)2

. (6.20)

Here, k = α2n with 0 < α < 1 when both k1 and k2 are linear in n as defined above.

We note that k1 + k2 = k is equivalent to α1 +α2 = 2α. Equating (6.19) and (6.20)

yields

1

1− α1

= eµc
1

(1− α2)2
, (6.21)

where α1 + α2 = 2α. We note that (6.21) holds when MM-MDS coded scheme is

implemented for ℓ = 2 if α2 > 0, i.e., k2 > 0. When α2 = 0, we have α1 = 2α

directly. That is, in that case we have k1 = k.

A similar relationship between αms, equivalently between kms, holds for the

general case with ℓ > 2 as well. When we have ℓ levels, we have at most
(
ℓ
2

)
inequalities like (6.15) and (6.16) to represent the ordering between the last subtasks

of each level that are included in the earliest k. For example, when ℓ = 2 we have one
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inequality, either (6.15) or (6.16), to represent the relationship between the k1th first

level and the k2th second level subtasks provided that k2 is nonzero. When ℓ > 2,

if km > 0 subtasks are finished in level m by the time it takes to receive a total of k

computations, completion time of the kmth subtask of the mth level satisfies either

one of the following inequalities for any other level m̄ for which km̄ > 0:

E[mX̃km:n] ≤ E[m̄X̃km̄:n] < E[mX̃km+1:n] (6.22)

which implies that the kmth subtask of the mth level is finished earlier than the

km̄th subtask of level m̄ or

E[m̄X̃km̄:n] ≤ E[mX̃km:n] < E[m̄X̃km̄+1:n], (6.23)

which implies that the kmth subtask of the mth level is finished after the km̄th

subtask of level m̄ is finished. Upon writing this relationship between every (m, m̄)

pair, we take km = αmn with 0 < αm < 1 and proceed similarly to get

1

(1− αm−1)m−1
= eµc

1

(1− αm)m
, (6.24)

with
∑ℓ

m=1 αm = ℓα similar to (6.21). We note that if after some levelm > m0, none

of the levelm subtasks are finished, then, αm = 0 for allm > m0 and (6.24) holds for

all nonzero αms. With these, by using (6.24) and the fact that
∑ℓ

m=1 αm = ℓα, each

remaining nonzero αm and correspondingly each remaining km can be determined.

As a direct consequence of (6.24), we see that the time it takes to receive the earliest
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k computation results is equivalent to the time it takes to receive km from level m

such that km = αmn and αms satisfy (6.24) and
∑ℓ

m=1 αm = ℓα. With such kms,

we then have S = X̃k1:n. Hence, the average age when the MM-MDS coded scheme

is implemented with ℓ subpackets at each node, ∆mm−mds, can now be computed

using (6.11) as follows

∆mm−mds =
1

λ
+

c

k
+

Hn −Hn−k1

kµ
+

(
c
k
+

Hn−Hn−k1

kµ

)2
+

Gn−Gn−k1

k2µ2

2
(

c
k
+

Hn−Hn−k1

kµ
+ 1

λ

)
+

2
λ

(
c
k
+

Hn−Hn−k1

kµ

)
+ 2

λ2

2
(

c
k
+

Hn−Hn−k1

kµ
+ 1

λ

) . (6.25)

where km = αmn and αms satisfy (6.24) and
∑ℓ

m=1 αm = ℓα.

The following theorem gives the asymptotic average age performance of the

MM-MDS coded scheme for large n.

Theorem 6.4 With i.i.d exponential transmission delays and i.i.d. shifted expo-

nential computation times at each worker, the average age of the MM-MDS coded

scheme with load ℓ, for large n with km = αmn where 0 < αm < 1, m = 1, . . . , ℓ, is

2
λ
+O

(
1
ℓn

)
.

To prove Theorem 6.4 we first note that when km = αmn for each level m, we

have k = αnℓ where 0 < α < 1 such that
∑ℓ

m=1 αm = αℓ. With this, the proof

follows similarly from that of Theorem 6.3. We note that compared to the MDS

coded scheme where we have O
(
1
n

)
, here in the MM-MDS coded scheme, we have

O
(

1
ℓn

)
which reflects ℓ, the number of subtasks assigned to each worker node. Thus,
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for large n, the best asymptotic performance is achieved when MM-MDS coded

scheme is implemented.

The performance of repetition coded, MDS coded and MM-MDS coded schemes

can be optimized through the selection of k, which will be the focus of Section 6.4.

6.4 Optimizing Age by Parameter Selection

In Section 6.3, we showed that the age in uncoded, repetition coded, MDS coded,

and MM-MDS coded schemes depend on n as O
(
logn
n

)
, O
(
logn
n

)
, O
(
1
n

)
, and O

(
1
ℓn

)
,

respectively, excluding the common constant term 2
λ
. In repetition, MDS and MM-

MDS coded schemes, we have a parameter k that depends on n linearly as k = αnℓ,

where ℓ = 1 for repetition and MDS coded schemes, and ℓ > 1 for MM-MDS coded

scheme. In this section, we consider the optimization of this parameter k, which

is equivalent to the optimization of the parameter α. This is similar in spirit to

the optimization of k, correspondingly the optimization of α, in Chapters 2 and 3

and references [113, 159]. Towards that goal, in order to unify our approach for all

three coded schemes (repetition, MDS, and MM-MDS), we first provide the follow-

ing theorem. This theorem shows that, in our model, age minimization translates

into computation (service) time minimization which is not always the case in age

optimization problems.

Theorem 6.5 When the transmission delays are i.i.d. exponentials and computa-

tion times at each worker are i.i.d. shifted exponentials under the dropping policy

at the CU, for large n, minimization of the average age of repetition coded, MDS
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coded and MM-MDS coded schemes, is equivalent to minimization of the average

computation time.

Proof: In the repetition, MDS and MM-MDS coded schemes, the computation time

S is characterized through the selection of k. Using the average age expression in

(6.11), the minimization problem is

min
k

E[D] + E[S] +
E[(S + Z)2]

2E[S + Z]

= min
k

E[D] + E[S] +
E[S2] + 2E[S]E[Z] + E[Z2]

2E[S + Z]
(6.26)

≈ min
k

E[D] + E[S] +
E2[S] + 2E[S]E[Z] + E[Z2]

2(E[S] + E[Z])
(6.27)

= min
k

1

λ
+ E[S] +

E2[S] + 2E[S] 1
λ
+ 2

λ2

2(E[S] + 1
λ
)

(6.28)

= min
k

1

λ
+ E[S] +

(E[S] + 1
λ
)2 + 1

λ2

2(E[S] + 1
λ
)

(6.29)

= min
k

3

2λ
+

3

2
E[S] +

1
λ2

2E[S] + 2
λ

, (6.30)

where (6.26) follows from the independence of S and Z, and (6.27) follows from the

fact that E[S2] ≈ E2[S] in all of these coding schemes due to the vanishing variance

property of order statistics of shifted exponentials for large n, discussed after (6.4).

The term ignored in (6.27) is 1
2ν2

(Gn − Gn−k)/(E[S] + E[Z]), where ν denotes the

computation rate and varies depending on the task distribution algorithm. The

numerator of the vanishing term can be lower and upper bounded by 0 and 1
ν2

π2

6
,

respectively, as Gn is upper bounded by π2

6
. We note that as n → ∞, 1

ν2
→ 0

as detailed in Section 6.3 for repetition coded, MDS coded and MM-MDS coded

167



schemes. Thus, bounds meet for large n which yields the approximation E[S2] ≈

E2[S].

In order to optimize the average age, we need to select the optimal k in the

repetition coded, MDS coded and MM-MDS coded schemes in (6.30). We note that

in (6.30) only E[S] depends on k. Although the second term in (6.30) increases in

E[S] and the third term decreases in E[S], overall (6.30) is monotonically increasing

in E[S], as the derivative of (6.30) with respect to E[S] is non-negative. Thus,

the average age is minimized when E[S] is minimized. That is, the average age

minimization is equivalent to the average computation time minimization. ■

For large n, average computation time is given, for the repetition coded scheme,

by

E[Srep] =
c

k
+

Hk

nµ
=

c

k
+

1

µn
log k =

c

αn
+

1

µn
log(αn), (6.31)

for the MDS coded scheme by

E[Smds] =
c

k
+

Hn −Hn−k

kµ
=

c

k
+

1

µk
log

(
n

n− k

)
=

c

αn
+

1

µαn
log

(
1

1− α

)
, (6.32)

and for the MM-MDS coded scheme by

E[Smm−mds] =
c

k
+

Hn −Hn−k1

kµ
=

c

k
+

1

µk
log

(
n

n− k1

)
=

c

αnℓ
+

1

µαnℓ
log

(
1

1− α1

)
, (6.33)
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where in (6.33) kms satisfy (6.24) and
∑ℓ

m=1 αm = ℓα.

Reference [159] finds the optimal k for repetition coded and MDS coded

schemes when k is linear in n by noting that both (6.31) and (6.32) have unique ex-

treme points as functions of k. In [159, Lemma 1] the following optimization problem

is solved to find the optimal computation time in the repetition coded scheme:

min
k

E[Srep] = min
1≤k≤n

c

k
+

1

µn
log k = min

0<α≤1

c

α
+

1

µ
logα. (6.34)

Objective in (6.34) has a term that increases in α and another term that decreases

in α. Depending on µ and c values, there is a unique α∗ which is the extremum

point

α∗ =


1, cµ ≥ 1

cµ, cµ < 1,

(6.35)

and correspondingly,

k∗ =


n, cµ ≥ 1

cµn, cµ < 1,

(6.36)

for large n. Solutions in (6.35) and (6.36) are computation time optimum, and also

average age optimum from Theorem 6.5 for n
k
-repetition coded scheme. Note that,

for cµ ≥ 1, the optimal repetition coded scheme is in fact the uncoded scheme.

However, when cµ < 1, repetition coded scheme outperforms the uncoded scheme.

Similarly, to find the optimal computation time in the (n, k)-MDS coded
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scheme, the following optimization problem is solved in [159, Lemma 2]:

min
k

E[Smds] = min
1≤k<n

c

k
+

1

µk
log

(
n

n− k

)
= min

0<α<1

c

α
+

1

µα
log

(
1

1− α

)
, (6.37)

and it is shown that the optimum α is

α∗ = 1 +
1

W−1(−e−µc−1)
, (6.38)

and correspondingly,

k∗ =

[
1 +

1

W−1(−e−µc−1)

]
n, (6.39)

for large n, which is also average age optimal from Theorem 6.5. Here, W−1(·) is

the lower branch of Lambert W function.

In the MM-MDS coded scheme, as in the repetition coded and MDS coded

schemes, by selecting the optimal k, correspondingly the optimal α, the computation

time and by Theorem 6.5, the age can be minimized. To do that, we need to solve

the following optimization problem:

min
0<α,α1,··· ,αℓ<1

c

α
+

1

µα
log

(
1

1− α1

)
s.t.

1

(1− αm−1)m−1
=

eµc

(1− αm)m
, m = 2, . . . , ℓ

ℓ∑
m=1

αm = ℓα. (6.40)
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Figure 6.4: ∆unc, ∆rep and ∆mds for varying k with n = 100, and (λ, c) = 1: (a)
When µ = 1, (b) when µ = 0.5. Symbol ◦ marks the optimal k values.

To give an explicit example, for instance, for ℓ = 3, the master node solves the

following optimization problem:

min
0<α,α1,α2,α3<1

c

α
+

1

µα
log

(
1

1− α1

)
s.t.

1

1− α1

= eµc
1

(1− α2)2

1

(1− α2)2
= eµc

1

(1− α3)3

α1 + α2 + α3 = 3α. (6.41)

We note that unlike the repetition coded and MDS coded schemes, in the

MM-MDS coded scheme, the optimization problem (6.40) is more complicated. The

optimization in (6.40) is over α and all αms. Here, a closed-form expression for k∗, or

equivalently α∗, is not available unlike the former two cases. We solve the problem

in (6.40) in the next section using numerical methods.
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Figure 6.5: (a) k∗, k∗
1, and k∗

2 values as a function of n for ℓ = 2 with µ = 1,
and (λ, c) = 1. Note that k∗ = k∗

1 + k∗
2. (b) ∆mm−mds, as a function of load ℓ for

(nℓ, k∗)-MDS code with n = 100, µ = 0.01, and (λ, c) = 1.

6.5 Numerical Results

In this section, we provide simple numerical results.

First, we consider the uncoded, repetition coded and MDS coded schemes. In

Figs. 6.4(a) and 6.4(b) age performance of the uncoded, repetition coded and MDS

coded schemes are presented when n = 100, λ = 1, and c = 1 for µ = 1 and µ = 0.5,

respectively, for varying k. We observe that in both Figs. 6.4(a) and 6.4(b), MDS

coded scheme performs the best as expected. Optimal k values for the MDS coded

scheme in these cases are k∗ = 69 and k∗ = 58, respectively. Moreover, we observe

that when µ = 1 optimal k for repetition coded scheme is in fact k∗ = n = 100.

However, when µ = 0.5, we get k∗ = 0.5 ∗ 100 = 50. These results are in line

with (6.36). We also observe in Fig. 6.4(b) that repetition coded scheme beats

the uncoded scheme when cµ < 1. However, as seen in Fig. 6.4(a) when cµ ≥ 1,
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repetition coded scheme does not present any advantage over the uncoded scheme.

Next, we consider the MM-MDS coded scheme. Fig. 6.5(a) shows the optimal

k values as a function of n for ℓ = 2. We observe that as the number of worker nodes,

n, increases optimal k increases as well. Fig. 6.5(b) shows the improvement in the

average age performance of MDS coded scheme when worker nodes are assigned ℓ

subpackets to compute with n = 100, µ = 0.01, c = 1 and λ = 1. We note that

when ℓ = 1 we recover the performance of the single message MDS coded scheme

analyzed in Section 6.3.3 and we observe that when multiple subpackets are assigned

to each worker, we achieve a lower age than all the other schemes discussed.

6.6 Conclusion

In contrast to the initial works on age of information which assumed small sized

status update packets, we have considered a status update system encountered in

emerging data-intensive applications such as UAV and V2V systems, in which the

updates are more complex and require processing to extract the useful information.

This task is handled by a computation unit consisting of a master node and n worker

nodes. We have investigated the age performance of uncoded and coded computation

distribution algorithms and showed that the MDS coded task distribution scheme

asymptotically outperforms the uncoded and repetition coded schemes. In addition,

we observed that assigning multiple computations to each worker node (MM-MDS

coded scheme) further improves the age performance of MDS coded scheme. By

showing that under certain arrival and service (computation) time profiles minimiz-
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ing age is equivalent to minimizing the computation time, we have characterized the

age-optimal repetition, MDS and MM-MDS code parameter k (equivalently, αs).
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CHAPTER 7

Timely Communication in Federated Learning

7.1 Introduction

Introduced in [171], federated learning (FL) is a distributed learning framework,

where a parameter server (PS) iteratively trains a global model using rich client

(user) datasets that are privacy-sensitive and large in quantity without actually

storing them centrally at the data center. At each iteration, the PS distributes the

current model to the clients. Each client performs the learning task locally using its

own dataset and sends its model update to the PS, which then aggregates the results

and updates the model (see Fig. 7.1). Some promising applications of FL are image

classification and next-word prediction [171], human mobility prediction [172], news

recommenders and interactive social networks [173], healthcare applications [174],

and so on. Recent works in [175–181] study communication-efficient FL frameworks

suitable for the limited communication between the PS and the clients considering

varying channel conditions, quantization and sparsification, non-i.i.d. client datasets,

and coding.

The performance of different FL frameworks are usually determined by their
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convergence performance, average iteration time, and number of iterations. In cer-

tain FL applications such as social media networks and human mobility prediction

where large quantities of highly temporal data are produced which diminish in value

in a matter of hours, timeliness is also critical to incorporate rapidly changing data

into the model in a timely manner. To illustrate this, we consider two clients, Alice

and Bob, who participate in a next place forecasting task that aims to jointly train

clients to predict their next location based on their current location and past habits.

Such information is used to offer an enhanced experience and better recommenda-

tions in location-based social networks such as Twitter and Yelp as well as improved

navigation that uses less congested routes. Assuming Bob gets moving earlier than

Alice, to predict Alice’s movements more accurately and consequently deliver the

most relevant suggestions to her, Bob’s (and all other similar clients’) earlier activity

should be incorporated into the model by the time Alice gets moving.

Motivated by this, in this work, we use the age of information metric to char-

acterize information freshness in an FL framework. Recently, age of information has

found new applications in reinforcement learning and distributed computation and

learning [104,105,108–110,182–184] including Chapters 6 and 8 of this dissertation.

Particularly, [184] studies an age metric, called age of update, in the FL context to

measure the staleness of each update and schedule clients at each iteration accord-

ingly. Based on this age-based metric, authors in [184] propose a scheduling policy,

which takes the staleness and communication quality of devices into account to ac-

celerate the convergence of FL. In [184], age is used as a client scheduling metric

rather than an end-to-end performance metric.
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θt+1 =
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Figure 7.1: Federated learning model where a parameter server (PS) trains a learning
model using n clients without actually storing clients’ data centrally.

In this chapter, we propose a timely communication framework for FL that

considers limited client availability and communication resources to make sure that

locally generated client data are incorporated in the learning model with as little age

as possible. In the proposed scheme, the PS waits for m available clients out of the

total n clients at each iteration and uses local updates of the earliest k clients among

these m available ones to update the global model. When k is larger, more clients

update the PS at the expense of larger iteration durations. To obtain a larger k value,

we can increase m which induces larger waiting times for client availability. In such

a system, we characterize the average age experienced by each client and determine

the age-optimal k andm values. We show that, in addition to ensuring freshness, the

proposed timely communication scheme significantly improves the average iteration

time compared to random client selection employed by [171] without harming the

convergence of the global model.
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7.2 System Model

In a typical FL setup with a single PS and n clients, each client j has the local

data set Bj, with Nj = |Bj| (see Fig. 7.1). The aim of the PS is to train a model

parameter vector θ ∈ Rd using the data stored locally across the clients to minimize

a particular loss function given by L(θ) = 1
n

∑n
j=1 Lj(θ), where Lj(θ) denotes the

application specific loss function at client j and is computed over the Nj samples in

Bj, j ∈ [n].

At each iteration t, each client receives the current model θt from the PS

and performs τ -step stochastic gradient descent (SGD) for τ ∈ N to minimize an

empirical loss function with respect to its local dataset by using θt. At iteration t,

the ℓth step of the local SGD is given by

θj
ℓ+1 = θj

ℓ − ηjℓ∇Lj(θ
j
ℓ), ℓ ∈ [τ ] (7.1)

where ηjℓ is the learning rate. Each selected device sends its model estimate after τ

local steps, denoted by θj
t+1, with θj

t+1 = θj
τ+1, to the PS which updates the global

model using

θt+1 =
n∑

j=1

Nj

N
θj
t+1. (7.2)

Then, the updated global model θt+1 is shared with the clients and the whole process

is repeated until convergence.
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In our model, clients are not always available for the learning task.1 Rather,

clients experience exponentially separated availability windows to participate in the

learning task. We assume that once available each client completes an iteration after

which the next availability window of that client starts in an exponential duration

of time. At each iteration, the PS schedules m clients such that upon completion of

an iteration, the PS waits for Zm:n duration of time2 to have m available clients for

the next iteration, where Z is an exponential random variable with rate λ from the

memoryless property.3

The set Am
t denotes the first m available clients in iteration t to which the PS

broadcasts the current model, θt.
4 Link delays in downlink transmissions from the

PS to the clients are modeled with an exponential random variable with rate µ. We

assume that the actual computation duration at clients is a deterministic duration

c so that the time in between the beginning of an iteration until a participating

client generates its local update is a shifted exponential random variable X with

rate (c, µ).5 The link delay back to the PS in uplink transmissions is an exponential

random variable X̃ with rate µ̃. Once the PS collects the earliest k of the m local

updates, k ≤ m, it updates the global model as in (7.2). We denote the set of

the earliest k clients out of the available m clients at iteration t with Ak
t such that

1This is because, to participate in a learning task that potentially includes heavy computations,
devices need to be plugged-in and running on an unmetered WiFi connection.

2We denote the mth smallest of random variables Z1, . . . , Zn as Zm:n.
3To model the case in which the clients are all available, we can take λ→∞ in which case the

PS selects m clients randomly at each iteration.
4Clients in Am

t commit to participate in iteration t such that a client in Am
t does not become

unavailable within the Zm:n duration while waiting for others to become available.
5We note that each selected available client performs a local SGD using the same number of

samples at each local step. When clients have identical computation capabilities we have the same
computation time c for each client.
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|Ak
t | = k and Ak

t ⊆ Am
t .

Our aim is to design a learning framework, where the locally generated data

are incorporated at the PS as timely as possible. In this work, we consider the age

of information metric to measure the timeliness of the received information. The PS

keeps the age of information of each client. A client’s age is updated whenever its

local update is received by the PS. Otherwise, its age continues to increase linearly

in time. We define the long term average age of a client j as

∆j = lim
T→∞

1

T

∫ T

0

∆j(t̄)dt̄, (7.3)

where ∆j(t̄) represents the instantaneous age of client j at time t̄ at the PS. We have

∆j(t̄) = t̄− uj(t̄), where uj(t̄) denotes the generation time of the most recent local

update of client j that is available at the PS. We note that from the i.i.d. nature

of this system, each client experiences identical age of information. Thus, in what

follows, we focus on a single client and calculate its average age of information.

7.3 Average Age Analysis

The total time of an iteration, denoted by Y , is given by

Y = S + Zm:n, (7.4)

where S denotes the service time and is given by S = (X + X̃)k:m. A client partici-

pates in an iteration with probability p1 = m
n
since the PS only selects the earliest
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available m clients. Out of these m clients only the earliest k of them actually

send back their updates to the PS for aggregation at each iteration. That is, given

selected for the iteration, the probability of updating the PS is p2 = k
m
. Thus, at

each iteration a client updates the PS with probability p ≜ p1p2 =
k
n
. The number

of iterations in between two consecutive updates from a particular client is given by

a geometric random variable M with rate p.

A sample age evolution of client j, j ∈ [n] is shown in Fig. 7.2. Here, iteration

t starts at time Tt−1 when the PS starts broadcasting the tth model update to

the selected available clients. Filled circles and crosses in Fig. 7.2 show the time

instances at which client j generates its local updates and the PS receives those

corresponding local updates, respectively. We note that upon delivery, the age of

client j drops to the age of the most recent local update from client j.

In the ensuing analysis, moments of S are not easy to calculate as S is equal

to an order statistic of a sum of exponential and shifted exponential random vari-

ables. To simplify, we assume that downlink transmissions are instantaneous since,

in general, connection speeds are significantly asymmetric such that downlink trans-

missions are much faster than uplink transmissions [185]. In this case, the time it

takes for each client in Ak
t to generate its update is c and we have S = c+ X̃k:m.

Let Ȳ denote the time in between the generation time of two consecutive

updates from client j. In Fig. 7.2, since client j updates the PS in iterations t and

t + 2, we have M = 2. From Fig. 7.2, we see that Ȳt = Yt − X̄t + Yt+1 + X̄t+2,

where X̄t denotes the downlink delay of a client that is one of the earliest k clients

to deliver its update at iteration t, i.e., X̄ = Xj|j ∈ Ak
t . Since X̄t = X̄t+2 = c, we
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have Ȳ = Y1 + Y2 for M = 2. Then, in general, we have

Ȳ =
M∑
i=1

Yi, (7.5)

which is equal to the length of the shaded trapezoid in Fig. 7.2.

The metric we use, long term average age, is the average area under the age

curve which is given by [29]

∆ = lim sup
T→∞

1
T

∑T
t=1Qt

1
T

∑T
t=1 Ȳt

=
E[Q]

E[Ȳ ]
. (7.6)

By using Fig. 7.2, we find Qt =
1
2
Ȳ 2
t + Ȳt

¯̄Xt+2. Thus, (7.6) is equivalent to

∆j = E[ ¯̄X] +
E[Ȳ 2]

2E[Ȳ ]
, (7.7)

where ¯̄X denotes the uplink delay of a client that is one of the earliest k clients to

deliver its update at iteration t, i.e., ¯̄X = X̃j|j ∈ Ak
t . From (7.5), we find the first

and second moments of Ȳ in terms of Y as

E[Ȳ ] = E[M ]E[Y ] (7.8)

E[Ȳ 2] = E[M ]E[Y 2] + E[Y ]2E[M2 −M ]. (7.9)

Inserting (7.8) and (7.9) in (7.7), we find

∆j = E[ ¯̄X] +
E[M2]

2E[M ]
E[Y ] +

Var[Y ]

2E[Y ]
. (7.10)
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Figure 7.2: Sample age evolution at client j. Iteration t starts at time Tt−1. Filled
circles and crosses show the time instances at which client j generates its local
update and the PS receives that local update, respectively. Here, client j successfully
delivers its local update to the PS in iterations t and t+ 2.

Theorem 7.1 characterizes the average age of a client under the proposed timely

communication scheme using (7.10).

Theorem 7.1 Under the proposed timely communication scheme, the average age

of a client is

∆j =
1

k

k∑
i=1

E[X̃i:m] +
2n− k

2k
(c+ E[X̃k:m] + E[Zm:n])

+
Var[X̃k:m] + Var[Zm:n]

2(c+ E[X̃k:m] + E[Zm:n])
. (7.11)

Proof: We substitute the first two moments of M into (7.10) and note that random

variables S and Zm:n are mutually independent to obtain

∆j =E[ ¯̄X] +
2n− k

2k
(E[S] + E[Zm:n]) +

Var[S] + Var[Zm:n]

2(E[S] + E[Zm:n])
. (7.12)
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The first term in (7.12) is equal to

E[ ¯̄X] = E[X̃j|j ∈ Ak
t ] =

k∑
i=1

E[X̃i:m]Pr[j = i|j ∈ Ak
t ] =

1

k

k∑
i=1

E[X̃i:m]. (7.13)

Here, noting that downlink transmissions are instantaneous, (7.13) follows from the

fact that the earliest k out of m available clients is determined in an i.i.d. fashion

at a certain iteration t. Together with (7.13), inserting S = c + X̃k:m in (7.12) and

noting that V ar(S) = V ar(X̃k:m) yield the result. ■

Next, we determine the average age of a client when the number of clients n

is large. Here, we note that [131]

E[Zm:n] =
1

λ
(Hn −Hn−m), (7.14)

Var[Zm:n] =
1

λ2
(Gn −Gn−m), (7.15)

where Hn =
∑n

j=1
1
j
and Gn =

∑n
j=1

1
j2
. First moment and variance of X̃k:m in

(7.11) follow from (7.14) and (7.15) using µ̃.

Corollary 7.1 For large n, we set m = αn with m < n and k = βm with k < m.

Then, the average age of a client given in (7.11) can be approximated as

∆j ≈
1

µ̃
+

(2− αβ)c

2αβ
− 2− αβ

2αβλ
log(1− α) +

α(2− β)− 2

2αβµ̃
log(1− β). (7.16)
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Proof: Let δ1, δ2, and δ3 denote the terms in (7.11). Then,

δ1 =
1

k

k∑
i=1

E[X̃i:m] =
1

µ̃
Hm −

1

kµ̃

k∑
i=1

Hm−i (7.17)

=
1

µ̃
− m− k

kµ̃
(Hm −Hm−k) (7.18)

≈ 1

µ̃
+

1− β

βµ̃
log(1− β), (7.19)

where (7.17) follows from the order statistics in (7.14). To obtain (7.18), we use the

series identity
∑k

i=1Hi = (k + 1)(Hk+1 − 1) [113, 119], and (7.19) follows from the

fact that for large n, Hi ≈ log(i)+ γ, where γ is the Euler-Mascheroni constant and

is ignored here for brevity. Also,

δ2 =
2n− k

2k
(c+ E[X̃k:m] + E[Zm:n]) (7.20)

≈ 2− αβ

2αβ

(
c− 1

µ̃
log(1− β)− 1

λ
log(1− α)

)
. (7.21)

Next, we have

δ3 =
Var[X̃k:m] + Var[Zm:n]

2(c+ E[X̃k:m] + E[Zm:n])
≈ 0, (7.22)

where (7.22) follows by using the fact that for large n, Gn ≈ π2

6
and hence, we have

E[X̃2
k:m] ≈ (E[X̃k:m])

2 and E[Z̃2
m:n] ≈ (E[Z̃m:n])

2 when m is linear in n and k is linear

in m. Summing δ1, δ2, and δ3 yields the result. ■

Even if the PS updates the age of k = αβn clients at each iteration, the

average age expression in (7.16) has terms that depend on the multiplication αβ as
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well as terms that only depend on either α or β. Thus, to minimize the average

age, we need to optimize both α and β values. When α increases, more clients can

update the PS at each iteration at the expense of longer waits for client availability.

Similarly, for a given α, when β increases, more clients update the PS at the expense

of longer iterations. Thus, parameters of α and β need to be carefully selected to

obtain good age performance.

7.4 Numerical Results

In this section, we provide numerical results to determine the age-optimal α and

β values that minimize the average age of the clients. In our simulations, we have

n = 100 clients. In the first three simulations, we plot the average age of a client as

a function of k for the age-optimal m value. That is, we first find the age-optimal

(m, k) pair (equivalently, the age-optimal (α, β) pair) and then plot the average age

of a client as a function of k when using the age-optimal m value.

In the first simulation, we take λ = 1, c = 1, and vary µ̃. We observe that the

average age decreases with increasing uplink transmission rates µ̃. We find that the

age-optimal m values are 95, 94, 92, 90, 86 for µ̃ = 0.1, 0.2, 0.5, 1, 5, respectively. This

shows that with increasing µ̃, i.e, shorter average uplink transmission delays, the PS

can afford to wait for less clients to become available at the beginning of iterations

such that the age-optimal α decreases. This is because, as the transmissions become

faster, the PS obtains the client updates quickly and the initial wait for client

availability becomes the performance bottleneck. The corresponding age-optimal k

186



Figure 7.3: Average age experienced by a client as a function of k with n = 100,
λ = 1, and c = 1 for varying µ̃. In each curve we use the age-optimal m. The
age-optimal k values are shown with a circle.

values are 55, 64, 74, 79, 83 such that as the uplink transmissions become faster the

PS opts for waiting more results from the clients, i.e., increasing β, instead of waiting

for clients to become available in the next iteration. Further, more specifically for

the low transmission rates, i.e., µ̃ = 0.1, 0.2, 0.5 cases, we have a familiar age curve

as in the earlier works on multicast networks [113, 144] and Chapters 2 and 3 that

employ an earliest k out of m idea to facilitate timely updates. In particular, we see

that the average age first decreases when k increases. This is because with increasing

k, clients update the PS more frequently. When k increases beyond a certain value,

however, the average age starts to increase indicating that the PS waits for clients

with slower links to perform the iteration.

In the second simulation, we consider the same setup as in Fig. 7.3 but take

µ̃ = 1 and vary λ. We observe that the average age decreases for larger values of λ

as the time it takes for clients to become available is less for larger λ values. Here,
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Figure 7.4: Average age experienced by a client as a function of k with n = 100,
µ̃ = 1, and c = 1 for varying λ. In each curve we use the age-optimal m. The
age-optimal k values are shown with a circle.

the age-optimal m values are 72, 79, 86, 90, 97 for λ = 0.1, 0.2, 0.5, 1, 5, respectively,

which indicate that, to facilitate timeliness, the PS selects a smaller α when the

availability of the clients is more scarce. Corresponding age-optimal k values are

69, 75, 78, 79, 78 such that we observe that, as the clients become more frequently

available, the PS uses a smaller fraction of the available m clients at each iteration,

i.e., β decreases with increasing λ. In this case, instead of waiting for clients with

slower links to return their update, the PS chooses to start a new iteration.

In the third simulation, we consider the same setup as in Fig. 7.3 but take

µ̃ = 1 and vary c. In this case, the age-optimal m values are 85, 90, 96, 97 for

c = 0.1, 1, 5, 10, respectively. Corresponding age-optimal k values are 70, 79, 91, 94.

We observe from Fig. 7.5 that as c increases both the average age and the age-

optimal (k,m) values, correspondingly (α, β) values, increase. This suggests that

when the fixed computation duration at the clients is larger, at each iteration, the
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Figure 7.5: Average age experienced by a client as a function of k with n = 100,
λ = 1, and µ̃ = 1 for varying c. In each curve we use the age-optimal m. The
age-optimal k values are shown with a circle.

PS is more incentivized to wait for more clients to return their updates.

So far, we have found the age-optimal m and k values to minimize the average

age of the clients. In practical systems, as in [184], the PS can only schedule a

fixed number of clients at each iteration due to limited communication resources

such as number of subchannels etc. To investigate such settings, in the fourth

simulation, we fix m and analyze the average age performance by varying k. In

Fig. 7.6 we observe that the age-optimal k value increases with increasing m. That

is, when the PS waits for a larger number of available clients at each iteration, it

is more beneficial for decreasing the age to wait for more of those available clients

to return their updates. Here, the age-optimal k values are 15, 31, 48, 68, 93 for

m = 20, 40, 60, 80, 100, respectively. Among these m values, m = 80 gives the best

average age result whereas m = 60 and m = 100 yield similar performance. Thus,

having more communication resources is advantageous but as m increases the time
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Figure 7.6: Average age experienced by a client as a function of k with n = 100,
λ = 1, c = 1, and µ̃ = 1 for varying m. The age-optimal k values are shown with a
circle.

spent in waiting for client availability starts to hurt the age performance.

Until now, we have investigated the age-optimal m and k values. Our results

indicate that it is not necessarily age-optimal to get updates from each client at

each iteration. In particular, we show that to get more timely updates it is better

to wait for the first m available clients and then use the updates of the earliest k

clients among these m available ones.

Next, we analyze the average iteration time E[Y ] under the proposed timely

communication framework. We compare its performance with two baseline schemes:

random k, which selects any k clients uniformly at random at each iteration and

first k, which selects the first k clients that become available at each iteration. We

take k = 10 and m = 20 and use the same setup as in Fig. 7.3. In Fig. 7.7 we see

that the proposed timely communication framework outperforms the random k and

first k schemes. In this case, the performance improvement compared to the random
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Figure 7.7: Average iteration time under different schemes when k = 10, m = 20,
n = 100 for c = 1, µ̃ = 1, λ = 1 averaged over 50000 iterations.

k scheme is 72%. This is because random k does not consider the availability of

the clients to make the client selection whereas the proposed scheme uses the client

availability as well as the link delays to make the client selection. We also note that

even if the clients are all available, i.e., λ tends to ∞, the proposed scheme still

yields more than 50% improvement over the random k scheme. This shows that the

proposed timely communication framework not only gives better age performance

but also decreases the average iteration time compared to random client selection

implemented in [171].

Finally, we consider the convergence performance of the proposed scheme in

a learning task. The proposed timely communication operation is operationally no

different than selecting a random k subset of clients at each iteration uniformly

at random. In other words, under the proposed operation, at each iteration, each

client updates the PS with equal probability. Thus, earlier convergence results on

FL that employ a random client selection at each iteration as in [171] readily apply
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Figure 7.8: Convergence performance of the proposed scheme for varying k with
m = 40, n = 100 c = 1, λ = 1, and µ̃ = 1 for a linear regression task.

in the case of the proposed timely communication scheme. To demonstrate this, we

consider a simple linear regression problem over synthetically created training and

test datasets as in [183]. The loss function at the clients Lj is the mean squared

error and the size of the model is d = 1000. The dataset is randomly distributed

to each client such that client j has Nj = 20 samples for j ∈ [n]. We have the

batch size equal to 20, τ = 1, and η = 0.1 for all workers and iterations. A single

simulation includes T = 200 iterations. Results are averaged over 5 independent

simulations.

Fig. 7.8 shows the convergence performance of the proposed scheme for varying

k and m = 40. As shown in [171] for random client selection, selecting 10% of the

clients, i.e., setting k = 10, is sufficient for achieving good convergence performance.

We see from Fig. 7.6 that the age-optimal k value is 31 when m = 40. Here, the

age-optimal k value is larger than 10 which indicates that the proposed timely com-

munication scheme minimizes the average age of information at the clients without

192



slowing down the convergence.

7.5 Conclusion

In this work, we proposed a timely communication scheme for FL that is suitable for

applications that include highly temporal rapidly changing client data such as so-

cial media networks, human mobility prediction systems, and news recommenders.

Considering limited client availability and communication resources, in the proposed

communication scheme, the PS waits until there are m available clients at the be-

ginning of each iteration. To update the global model, the PS uses the local update

of the earliest k clients from these available m clients. Under such operation, we

characterized the average age of information at the clients and numerically deter-

mined the age-optimal m and k values. Our results indicate that there exists an

age-optimal (m, k) pair that strikes a balance between waiting times for client avail-

ability, local update transmission times, and fresh model updates. We also showed

that for the same k value, the proposed timely communication framework signifi-

cantly improves the average iteration time without hurting the convergence of the

learning task.
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CHAPTER 8

Age-Aware Distributed Computation for Bias Reduction

8.1 Introduction

Machine learning algorithms partially owe their success to the availability of large

datasets for training. However, when the size of the training datasets and the com-

plexity of the trained models are formidable, it is not feasible to train the model

on a single machine within a reasonable time frame. To overcome this computa-

tional bottleneck, distributed learning techniques are implemented across multiple

machines, called workers.

Gradient descent (GD) methods are widely used in machine learning problems

to optimize the model parameters in an iterative fashion. To speed up GD iterations,

gradient computations can be distributed across multiple workers. In particular, by

employing a parameter server (PS) type framework [186], the dataset can be divided

among workers, and at each iteration, workers compute gradients based on their

local data, which are aggregated by the PS. However, slow, so-called straggling,

workers are the Achilles heel of distributed GD (DGD) since the PS has to wait

for all the workers to complete an iteration. A wide range of straggler-mitigation
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strategies have been proposed in recent years. In these works, the main theme is to

assign redundant computations to workers to overcome the potential delays caused

by straggling workers, either together with coded dataset assignment to workers,

i.e., coded computation [159,161–163,165,167,169,183,187–199], or combined with

coded local computations, i.e., coded transmission [160, 166, 200–208], or by simply

using backup computations, i.e., uncoded computation [209–214]. Owing to the

redundancy in these schemes, stragglers can be tolerated as the fast workers can

compensate for the straggling ones.

The focus of this chapter is the coded computation for straggler mitigation.

Most of the coded computation solutions designed to mitigate stragglers have two

shortcomings: First, they are designed such that each worker performs a single

computation per iteration, which in turn results in the under-utilization of com-

putational resources [215]. Multi-message communication (MMC) strategy is im-

plemented to allow workers to perform multiple computations in each iteration to

seek a balance between computation and communication latency [163,165,167,193,

194, 199, 205, 214]. The second shortcoming arises from the fact that most coded

computation techniques aim to recover the full gradient at each iteration, which

may unnecessarily increase the average completion time of an iteration. To avoid

this, reference [216] combines coded computation with partial recovery (CCPR) to

provide a trade-off between the average completion time of an iteration and the

accuracy of the recovered gradient estimate.

If the straggling behavior is not independent and identically distributed over

time and workers, which is often the case in practice, the gradient estimates recov-
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ered by the CCPR scheme become biased. For example, this may happen when

a worker straggles over multiple iterations. Regulating the recovery frequency of

the partial computations to make sure that each partial computation contributes

to the model updates as equally as possible is critical to avoid biased updates. We

use the age of information (AoI) metric to track the recovery frequency of partial

computations. In our work, we associate an age to each partial computation and

use this age to track the time passed since the last time each partial computation

has been recovered.

In this chapter, we design a dynamic encoding framework for the CCPR scheme

that includes a timely dynamic order operator to prevent biased updates, and im-

prove the performance. The proposed scheme increases the timeliness of the recov-

ered partial computations by changing the codewords and their computation order

over time. To regulate the recovery frequencies, we use the age of partial computa-

tions (AoPC) in the design of the dynamic order operator. We show by numerical

experiments on a linear regression problem that the proposed dynamic encoding

scheme increases the timeliness of the recovered computations, yields less biased

model updates, and as a result, achieves better convergence performance compared

to the conventional static encoding framework.

8.2 System Model and Problem Formulation

For completeness, we first present the coded computation framework and the CCPR

scheme.
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8.2.1 DGD with Coded Computation

We focus on the least-squares linear regression problem, where the loss function is

the empirical mean squared error

L(θ) ≜
1

2N

N∑
i=1

(yi − xT
i θ)

2, (8.1)

where x1, . . . ,xN ∈ Rd are the data points with corresponding labels y1, . . . , yN ∈ R,

and θ ∈ Rd is the parameter vector. The optimal parameter vector can be obtained

iteratively by using the gradient descent (GD) method

θt+1 = θt − ηt∇θL(θt), (8.2)

where ηt is the learning rate and θt is the parameter vector at the tth iteration.

Gradient of the loss function in (8.1) is

∇θL(θt) = XTXθt −XTy, (8.3)

where X = [x1, . . . ,xN ]
T and y = [y1, . . . , yN ]

T . In (8.3), only θt changes over

iterations. Thus, the key computational task at each iteration is the matrix-vector

multiplication ofWθt, whereW ≜ XTX ∈ Rd×d. To speed up GD, execution of this

multiplication can be distributed across K workers, by simply dividing W into K

equal-size disjoint submatrices. However, under this naive approach, computation

time is limited by the straggling workers [159].
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Coded computation is used to tolerate stragglers by encoding the data before

it is distributed among workers to achieve certain redundancy. That is, with coded

computation, redundant partial computations are created such that the result of

the overall computation can be obtained from a subset of the partial computations.

Thus, up to a certain number of stragglers can be tolerated since the PS can recover

the computation result without getting partial results from all workers. Many coded

computation schemes, including MDS [159,163,192], LDPC [187], and rateless codes

[194], and their various variants have been studied in the literature.

8.2.2 Coded Computation with Partial Recovery (CCPR)

In naive uncoded distributed gradient computation, straggling workers result in era-

sures in the gradient vector as illustrated in Fig. 8.1. The main motivation behind

coded computation schemes is to find the minimum number of responsive workers to

guarantee the recovery of the gradient vector without any erasures. Alternatively,

the CCPR scheme [216] allows erasures on the gradient vector to reduce the compu-

tation time while controlling the number of erasures to guarantee certain accuracy

for the gradient estimate. To implement the CCPR scheme, we employ a linear code

structure similar to LT codes. In the case of centralized encoding, W is initially

divided into K disjoint submatrices W1, . . . ,WK ∈ Rd/K×d using which r coded

submatrices, W̃i,1, . . . ,W̃i,r, are created and assigned to each worker i, i ∈ [K], by
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the PS, where W̃i,j is a linear combination of the K submatrices, i.e.,

W̃i,j =
∑
k∈[K]

α
(i)
j,kWk. (8.4)

Here, by using an analogy with LT codes, one can considerK submatricesW1, . . . ,WK

as symbols and their linear combinations in (8.4) as codewords, where the number of

non-zero coefficients defines their degree. Following the encoding phase, at each it-

eration t, the ith worker performs the computations W̃i,1θt, . . . ,W̃i,rθt in the given

order, and sends the results one by one as soon as they are completed. In the mean-

time, the PS collects coded computations from all the workers until it successfully

recovers (1− q)× 100 percent of the gradient entries. Parameter q denotes the tol-

erance, a design parameter, which can be chosen according to the learning problem.

We want to remark that due to the centralized encoding mechanism, coded subma-

trices are fixed throughout all the iterations. However, by considering a distributed

encoding framework, as we explain next, it is possible to update coded submatrices

through the iterations to have a more flexible design.

8.2.3 Distributed Dynamic Coded Submatrix Generation

Unlike the static centralized encoding scheme, inspired by the random circularly

shifted (RCS) code design in [216], we consider a distributed dynamic coded sub-

matrix generation framework. Initially all the submatrices are distributed among

the workers. Then, at each iteration, workers dynamically generate their coded sub-

matrices following a prescribed procedure. In particular, this dynamic framework
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Figure 8.1: Illustration of partial recovery in a naive distributed computation sce-
nario with 6 workers, 2 of which are stragglers.

utilizes three operators: data partition D(·), ordering O(·), and encoding E(·). The

data partition operator distributes the submatricesW = {W1, . . . ,WK} among the

workers such that

Di(W ,M) :W 7→ Wi, |Wi| ≤M, (8.5)

where M is the given memory constraint, and Wi is the set of submatrices assigned

to the ith worker. We assume that operator D(·) is executed, for each worker, only

once at the beginning of the process, and Wi, i ∈ [K], remains the same over the

iterations. The order operator O(·) is used to form an ordered set from the initial

set Wi for encoding, i.e.,

Oi,t(Wi) :Wi 7→ W̃i,t, (8.6)

where W̃i,t is an ordered set representing the order of computation at each iteration

t for the ith worker. We remark that unlike the data partition operator, order
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operator may change over time. These two operators together can be represented

by an assignment matrix At, whose ith column is given by W̃i,t.

Once the assignment matrix At is fixed, the encoding process is executed

according to a degree vector m, which identifies the degree of each codeword based

on its computation order. Encoding is executed for each worker independently. The

encoder operator E(·) maps the ordered set of data (submatrices) to ordered set of

codewords of size L, where L is the length of m, i.e.,

Ei,t(W̃i,t,m) : W̃i,t 7→ C̃i,t =
{
Ct

i,1, . . . ,C
t
i,L

}
. (8.7)

The encoding operator first divides set W̃i,t into L disjoint subsets,W t
i,1, . . . ,W t

i,L,

such that |W t
i,l| = m(l). We note that the degree vector is chosen according to the

RCS code design, such that m(L) > m(L−1) > . . . > m(1) = 1. Then, at iteration

t, the coded submatrix of the ith worker with computation order ℓ, denoted by Ct
i,ℓ,

is constructed as

Ct
i,ℓ =

∑
Wk∈Wt

i,ℓ

Wk. (8.8)

An example assignment matrix At is given below for K = 20 and M = 6:

At =



W1 W2 W3 . . . W20

W4 W5 W6 . . . W3

W11 W12 W13 . . . W10

W15 W16 W17 . . . W14

W6 W7 W8 . . . W5

W18 W19 W20 . . . W17


. (8.9)
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ak,t

iterationt t+ 1 t+ 2 t+ 3 t+ 4 t+ 5

Figure 8.2: Sample age evolution of Wkθt̄. Time t marks the beginning of iteration
t+ 1. Wkθt̄ is recovered at iterations t̄ = t and t̄ = t+ 4.

The elements of the assignment matrix At are colored to illustrate the first

step of the encoding operator, for m = [1, 2, 3], where colors blue, red and brown

represent the submatrices used to generate the first, second, and third codewords,

respectively. The encoding phase for the first worker at iteration t is illustrated

below:

W̃1,t =



W1

W4

W11

W15

W6

W18


→ C̃1,t =


W1

W4 +W11

W15 +W6 +W18

 . (8.10)

With this code, the worker first computes W1θt and sends the result directly to

the PS. Then, it computes (W4 + W11)θt sends the result to the PS. Finally, it

computes (W15 +W6 +W18)θt and sends the result to the PS.

Next, we formally state the problem using the data partition, ordering and

encoding operators.
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8.2.4 Problem Definition

The recovery of a partial computation Wkθt at iteration t depends on the data par-

tition {Di}i∈[K], ordering decisions {Oi,t}i∈[K], encoding decisions {Ei,t}i∈[K], com-

putation delay statistics of the workers, dt, and the tolerance q, i.e.,

rt = R(D,Ot, Et, dt, q), (8.11)

where R is the recovery operation that returns a vector rt which demonstrates the

recovered partial computations such that rt(k) = 1 if Wkθt is recovered at the PS

for k ∈ [K].

In the partial recovery approach, without any further control on the assigned

computations, operators are fixed throughout the training process. Thus, recovered

submatrix indices may be correlated over time and some partial computations may

not be recovered at all. We note that this kind of recovery behavior may lead to

divergence especially when q is large, since the updates become biased. Our goal

is to introduce a dynamic approach for the coded computation/partial recovery

procedure to regulate the recovery frequency of each partial computation. For this,

we first introduce an age-based performance metric.

We define the age of partial computation Wkθt at iteration t, denoted by

ak,t, as the number of iterations since the last time the PS recovered that partial

computation. The age for each partial computation is updated at the end of each
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iteration in the following way

ak,t+1 =


ak,t + 1, if rt(k) = 0

1, if rt(k) = 1

. (8.12)

A sample age evolution of a partial computation is shown in Fig. 8.2 where

partial computation Wkθt̄ is recovered at iterations t̄ = t and t̄ = t+4. The average

age of a partial computation over the training interval of T iterations is

ak =
1

T

T∑
t=1

ak,t. (8.13)

In order to make sure that each submatrix contributes to the model update

as equally as possible during the training period, our goal is to keep the age of each

partial computation under a certain threshold ath. Thus, our objective is

min
Π(D,O,E)

1

T

T∑
t=1

1

K

K∑
k=1

1{ak,t>ath}, (8.14)

where 1x is the indicator function that returns 1 if x holds, 0 otherwise. Here,

ath is a design parameter that determines the desired freshness level for the partial

computations and can be adjusted according to the learning problem. We note that

the problem in (8.14) is over all data partitions, ordering and encoding policies,

thereby is hard to optimally solve. Instead of solving (8.14) exactly, we introduce

a timely dynamic ordering technique that can be used to regulate the recovery

frequency of the partial computations.
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8.3 Solution Approach: Timely Dynamic Ordering

In this section, we introduce timely dynamic ordering to better regulate the ages

of partial computations and to avoid biased updates. We keep the data partition

and encoding operators fixed and change only the ordering operator dynamically.

This timely dynamic ordering is implemented by employing a vertical circular shift

in the assignment matrix. With this, we essentially change the codewords and their

computation order, which in turn, changes the recovered indices.

We first employ fixed vertical shifts for dynamic ordering. Then, we will

dynamically adjust the shift amount based on the ages of the partial computations.

8.3.1 Fixed Vertical Shifts

In this code, which we call RCS-1, we employ one vertical shift for each worker at

each iteration. That is, the order operator becomes

Oi,t(Wi) :Wi 7→ circshift(Wi,mod(t, L)), (8.15)

where circshift is the circular shift operator and mod(x, y) is a modulo operator

returning the remainder of x/y. By using vertical shifts, coded computations trans-

mitted to the PS from a particular worker change over time to prioritize certain

partial computations. For example, if worker 1 employs the ordered set W̃1,t and

codewords C̃i,t specified in (8.10) at iteration t, after applying one vertical shift, its
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computation order and codewords at iteration t+ 1, are given by

W̃1,t+1 =



W4

W11

W15

W6

W18

W1


→ C̃i,t+1 =


W4

W11 +W15

W6 +W18 +W1

 . (8.16)

Here, we see that, at iteration t, the worker prioritizes the computation of W1θt,

while in the next iteration computation of W4θt+1 is prioritized. We note that,

in this method, the shift amount is fixed to one shift at each iteration, and is

independent of the ages of the partial computations.

Next, we introduce an age-based vertical shift scheme to control the order of

computations.

8.3.2 Age-Based Vertical Shifts

In this code, which we call RCS-adaptive, we choose the vertical shift amount based

on the current ages of the partial computations. That is, instead of shifting by 1 at

each iteration, the shift amount changes across iterations based on the ages of the

partial computations. To effectively avoid biased updates, we focus on recovering

the partial computations with the highest age at the current iteration, that is, the

computations that have not been recovered in a while. In line with the problem

in (8.14), we term the partial computations with age higher than the threshold
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ath as aged partial computations, which need to be recovered as soon as possible.

To this end, a vertical shift amount is selected that places the maximum number

of aged partial computations in the first position in the non-straggling workers’

computation order so that they have a higher chance of recovery in the next iteration.

In particular, to determine the shift amount in iteration t+ 1, the PS considers the

computation order at the workers that have returned at least one computation in

the previous iteration and determines a shift which places maximum number of aged

partial computations in the first order in these workers. Upon determining the shift

amount, every worker’s assignment matrix is shifted by that amount in the next

iteration. For example, if the age-based shift amount is 3 in iteration t+1, then the

first user has

W̃1,t+1 =



W15

W6

W18

W1

W4

W11


→ C̃i,t+1 =


W15

W6 +W18

W1 +W4 +W11

 . (8.17)

Here, in iteration t+1, the first worker prioritizes the computation ofW15θt+1.

8.4 Numerical Results

In this section, we provide numerical results for comparing the proposed age-based

partial computation scheme to alternative static schemes using a model-based sce-

nario for computation latencies. For the simulations, we consider a linear regression

problem over synthetically created training and test datasets, as in [188], of size of
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2000 and 400, respectively. We also assume that the size of the model d = 1000

and the number of workers K = 40 while each worker can return L = 3 computa-

tions with m = [1, 2, 3]. A single simulation includes T = 400 iterations. For all

simulations, we use learning rate η = 0.1. To model the computation delays at the

workers, we adopt the model in [215], and assume that the probability of completing

s computations at any worker, performing s identical matrix-vector multiplications,

by time t is given by

Fs(t) ≜


1− e−µ( t

s
−α), if t ≥ sα

0, otherwise.

(8.18)

First, we consider an extreme scenario in the straggling behavior, where we

assume there are 15 persistent stragglers that are fixed for all the T = 400 iterations

which do not complete any partial computations. For the non-persistent stragglers,

we set µ = 10 and α = 0.01.1 In Fig. 8.3, we set the tolerance level q = 0.3, such that

at each iteration the PS aims at recovering 28 of the total 40 partial computations.

We see that the proposed timely dynamic encoding strategy with one vertical shift

at each iteration, RCS−1, achieves a significantly better convergence performance

than the conventional static encoding with RCS. When the ages of partial computa-

tions are taken into consideration in determining the order of computation at each

iteration with the proposed RCS-adaptive scheme with an age threshold of ath = 2,

we observe a further improvement in the convergence performance.

1To simulate the straggling behavior in our simulations, we take α = 10 for the persistent
stragglers so that effectively they do not complete any partial computations.
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Figure 8.3: Test accuracy (log-scale) vs. number of iterations with q = 0.3 and 15
persistent stragglers.

An interesting observation comes from Fig. 8.4, where we plot the average

ages of the partial computations. While the proposed timely dynamic encoding

strategy does not result in a better average age performance for every single partial

computation, it targets the partial computations with the highest average age (see

computation tasks 2, 10, and 26 in Fig. 8.4). By utilizing the dynamic order opera-

tor, we essentially lower the average age of the partial computations with the worst

age performance at the expense of slight increase in the age of some of the remaining

partial computations. As expected, age-based vertical shift strategy further lowers

the average ages of the partial computations. Here, we can draw parallels with this

result and [217], which shows that as long as each component is received every p it-

erations, the distributed SGD can maintain its asymptotic convergence rate. From

Fig. 8.4, we can see that the proposed vertical shift operator guarantees that on

average each task is received every 3 iterations, since the yellow bar in Fig. 8.4 is

less than 3 for each partial computation.
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Figure 8.4: Average ages of the partial computations with q = 0.3 and 15 persistent
stragglers.

We note that in Figs. 8.3 and 8.4 the performance gap between RCS-1 and

RCS-adaptive schemes is narrow. This shows that the randomness introduced by

a fixed vertical shift is already quite helpful in mitigating the biased updates with

less stale partial computations.

In Table 8.1, we look at the value of the objective function in (8.14) when

ath = 2 with µ = 10 and α = 0.01 for varying tolerance levels in the case of

fixed 15 persistent stragglers throughout all the iterations. We observe that, for

each tolerance level q, when RCS-1 is employed, we achieve a better performance

than the static RCS scheme, whereas the age-based vertical shift method RCS-

adaptive results in the best performance. This is because the RCS-adaptive scheme

specifically targets the computational tasks that have average age higher than the

threshold ath to effectively create less biased model updates where each partial

computation contributes to the learning task more uniformly.

Second, we consider a more realistic scenario and model the straggling behavior
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Tolerance level RCS RCS-1 RCS-adaptive
q = 0.1 0.0261 0.0180 0.0156
q = 0.2 0.0681 0.0476 0.0451
q = 0.3 0.1316 0.0970 0.0919

Table 8.1: The value of the objective function in (8.14) when ath = 2 for varying
tolerance levels q.

of workers based on a two-state Markov chain: a slow state s and a fast state f ,

such that computations are completed faster when a worker is in state f . This is

similar to the Gilbert-Elliot service times considered in [169, 218] and Chapter 10.

Specifically, in (8.18) we have rate µf in state f and rate µs in state s where µf > µs.

We assume that the state changes only occur at the beginning of each iteration with

probability p; that is, with probability 1−p the state stays the same. A low switching

probability p indicates that the straggling behavior tends to stay the same in the

next iteration. In Fig. 8.5, we set p = 0.05, q = 0.3, α = 0.01, µs = 2, and µf = 10

and let 15 workers start at the slow state, i.e., initially we have 15 straggling workers.

We note that with 15 initial stragglers and p = 0 we recover the setting considered in

Fig. 8.3. We observe in Fig. 8.5 that the proposed timely dynamic encoding strategy

improves the convergence performance even though the performance improvement

is less compared to the setting in Fig. 8.3. This is because, in this scenario, the

straggling behavior is less correlated over iterations, which results in less biased

model updates even for the static RCS scheme. Further, we see in Fig. 8.5 that the

RCS-adaptive scheme with ath = 3 performs the best, whereas the RCS-1 scheme

outperforms the RCS-adaptive scheme when ath = 2. This shows that the age

threshold ath needs to be tuned to get the best performance from the RCS-adaptive

211



Figure 8.5: Test accuracy (log-scale) vs. number of iterations with q = 0.3 and
straggling behavior based on a 2-state Markov chain with a state transition proba-
bility of p = 0.05.

scheme.

Even though we focus on the distributed coded computation scenario in this

work, the proposed dynamic order operator can be applied when the computations

are assigned to workers in an uncoded fashion as well. To see the performance in

the case of uncoded computations with MMC, we set m = [1, 1, 1] and q = 0.2

and consider the same setup as in Fig. 8.3. In Fig. 8.6, we observe that the static

partial recovery scheme fails to converge since if coding is not implemented along

with partial recovery, model updates are highly biased in the presence of persistent

stragglers. However, when the dynamic order operator is employed, particularly the

age-aware vertical shifts with ath = 1, convergence is achieved.
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Figure 8.6: Test accuracy (log-scale) vs. number of iterations for the uncoded
scheme with q = 0.2 and 15 persistent stragglers.

8.5 Conclusion

MMC and partial recovery are two strategies designed to enhance the performance

of coded computation employed for straggler-aware distributed learning. The main

drawback of the partial recovery strategy is biased model updates that are caused

when the straggling behaviors of the workers are correlated over time. To prevent

biased updates, we introduce a timely dynamic encoding strategy which changes the

codewords and their computation order over time. We use an age metric to regulate

the recovery frequencies of the partial computations. By conducting several experi-

ments on a linear regression problem, we show that dynamic encoding, particularly

an age-based encoding strategy, can significantly improve the convergence perfor-

mance compared to conventional static encoding schemes. Although our main focus

is on coded computation, the advantages of the proposed strategy are not limited

to the coded computation scenario. The proposed timely dynamic encoding strat-
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egy can be utilized for coded communication and uncoded computation scenarios as

well.
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CHAPTER 9

Gradient Coding with Dynamic Clustering for Straggler-Tolerant

Distributed Learning

9.1 Introduction

In a typical parameter server (PS) framework with synchronous GD iterations, the

dataset is distributed across the workers, and each worker computes a gradient

estimate, also called a partial gradient, based on its own local dataset. The PS

aggregates these partial gradients to obtain the full gradient and update the model.

In this distributed setting, the main performance bottleneck is the slowest strag-

gling workers. Many recent works have focused on developing straggler-tolerant

distributed GD schemes; see Chapter 8.

In this chapter, we consider the gradient coding (GC) framework introduced

in [160], where the dataset is distributed across the workers in an uncoded but

redundant manner, and workers return coded computations to the PS. We note that

this can also model a scenario, in which data is collected directly by the workers,

instead of being distributed by the server. Redundancy can either be created by data

sharing among the workers, or may be inherent due to the data collection/generation
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mechanism. Thanks to the redundancy in the local datasets, partial gradients from

only a subset of the workers will be sufficient to recover the full gradient. Coded

combinations retrieved by the workers are designed such that any subset of responses

from sufficiently many workers will allow the computation of the full gradient by

the PS. Further details of GC are presented in the next section.

To improve the performance of the GC scheme, reference [166] proposes a

static clustering technique, which entails dividing the workers into smaller clusters

and applying the original GC scheme at the cluster level. This technique is shown to

improve the average computation time compared to the original GC scheme. With

clustering, unlike in the original GC scheme, the number of tolerated stragglers

scales with the number of clusters when the stragglers are uniformly distributed

among the clusters. However, this may not be the case in practical scenarios as

evident in the measurements taken over Amazon EC2 clusters that indicate a time-

correlated straggling behavior for the workers [160,169]. In this case, the advantage

of clustering diminishes since the stragglers are not uniform across clusters.

In this chapter, to mitigate this problem and to further improve the perfor-

mance, we introduce a novel paradigm of dynamic coded computation, which assigns

more data samples to workers than the actual computation load (per-iteration) to

give them the flexibility in choosing the computations they need to carry out at each

iteration. This allows the PS to choose which subset of computations each worker

should try to complete at each iteration, and which coded combination it should

transmit back to the PS. In particular, to reduce the potential solution space, we

propose a novel GC scheme with dynamic clustering, called GC-DC, where the PS
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decides on the clusters to be formed at each iteration. At each iteration in GC-DC,

the PS forms the clusters such that the stragglers are distributed across the clusters

as uniformly as possible based on the workers’ past straggling behavior. We nu-

merically show that the proposed GC-DC scheme significantly improves the average

per-iteration completion time without an increase in the communication load under

both homogeneous and heterogeneous worker environments.

9.2 Preliminaries: Gradient Coding (GC) and Clustering

In many machine learning problems, given a labeled datasetD = {(x1, y1), . . . (xs, ys)},

where x1, . . . ,xs ∈ Rd are the data points with corresponding labels y1, . . . , ys ∈ R,

the goal is to solve the following optimization problem

θ∗ = argmin
θ∈Rd

s∑
i=1

l(xi, yi,θ), (9.1)

where l is the application-specific loss function and θ ∈ Rd is the parameter vector

to be optimized. The optimal parameter vector can be obtained iteratively using

GD. The full gradient computed over the whole dataset at iteration t is given by

g(t) =
∑s

i=1∇l(xi, yi,θt). When the size of the dataset, s, is large, the computation

of the full gradient becomes a performance bottleneck. To speed up GD iterations,

gradient computations can be distributed across multiple workers. However, in many

implementations, particularly in the context of ‘serverless’ computing, e.g., Microsoft

Azure, Amazon Web Services (AWS), the workers’ completion time of assigned tasks

can be highly heterogeneous and stochastic over time. In those cases, the overall

217



computation speed of each iteration becomes limited by the slowed straggling server.

Coded computing techniques tackle the bottleneck due to stragglers by introducing

redundant computations in a structured manner such that additional computations

carried out by faster servers can compensate for the stragglers.

9.2.1 Gradient Coding (GC)

GC is a distributed coded computation technique introduced in [160] to perform

distributed GD across K workers. The complete dataset D is divided into K non-

overlapping equal-size mini-batches, D1, . . . ,DK , and each worker is assigned mul-

tiple mini-batches. We denote the set of indices of mini-batches assigned to the kth

worker with Ik, k ∈ [K] ≜ {1, . . . , K}. Let g
(t)
k denote the partial gradient for the

parameter vector θt evaluated over mini-batch Dk at the tth GD iteration, i.e.,

g
(t)
k =

1

|Dk|
∑

(x,y)∈Dk

∇l(x, y,θt). (9.2)

We note that the full gradient is given by g(t) = 1
K

∑K
k=1 g

(t)
k . To tolerate straggling

workers, GC assigns redundant mini-batches, and hence, redundant computations,

to the workers.

If a mini-batch Di is assigned to worker k, i.e., i ∈ Ik, then the corresponding

partial gradient g
(t)
i is computed by the kth worker. Computation load, r, denotes

the number of mini-batches assigned to each worker, i.e., |Ik| = r, ∀k ∈ [K]. At

each iteration, each worker first computes the r partial gradients, one for each mini-

batch available locally, and sends a linear combination of the results, c
(t)
k ≜ Lk(g

(t)
i :
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i ∈ Ik), called a coded partial gradient. Thus, in GC, each worker is responsible

for computing a single predefined coded partial gradient. The underlying code

structure in GC, which dictates the linear combinations formed by each worker,

exploits the available redundancy so that the PS can recover the full gradient from

only a subset of the combinations. Accordingly, from now on, we refer to the coded

partial gradients formed by the workers simply as codewords. As shown in [160], the

GC scheme can tolerate up to r−1 persistent stragglers1 at each iteration. Formally,

for any set of non-straggling workers W ⊆ [K] with |W| = K − r + 1, there exists

a set of coefficients AW =
{
a
(t)
k : k ∈ W

}
such that

∑
k∈W

a
(t)
k c

(t)
k =

1

K

K∑
k=1

g
(t)
k . (9.3)

Thus, at each iteration t, the full gradient g(t) can be recovered from any K − r+1

codewords.

Next, we present the idea of clustering that was introduced in [166] to reduce

the average per-iteration completion time of the GC scheme.

9.2.2 Gradient Coding with Static Clustering (GC-SC)

In GC with clustering, we divide the workers into P disjoint equal-size clusters. Let

Kp ⊂ [K] denote the set of workers in cluster p, p ∈ [P ], where Kq ∩ Kp = ∅ for

q ̸= p, and
⋃

p∈[P ]Kp = [K]. We denote the cluster size by ℓ ≜ K
P
, where we assume

that K is divisible by P for simplicity. The assignment of the workers to the clusters

1These are the straggler workers that either cannot complete any computation or whose com-
putations are not used while recovering the full gradient [166].
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is dictated by an ℓ × p worker assignment matrix, denoted by Acluster, where each

column corresponds to a different cluster and the entries in each column correspond

to indices of the workers assigned to that cluster. This worker assignment matrix is

fixed throughout the training process, hence the name static clustering. From now

on, we refer to the GC with static clustering scheme as GC-SC.

In GC-SC, each worker is assigned r mini-batches based on its cluster. This

is represented by an r × k data assignment matrix Adata, where each column cor-

responds to a different worker, and the entries in column i, i ∈ [K], represent the

mini-batches (correspondingly the partial gradient computations) assigned to the

ith worker. Equivalently, data assignment can be represented by a 1× k codeword

assignment matrix Acode, which represents the codewords assigned to the workers,

where the codeword assigned to the ith worker in the pth cluster is denoted by cp,i,

for p ∈ [P ], i ∈ [ℓ]. Let IKp denote the set of mini-batches assigned to the workers

in the pth cluster, i.e., IKp =
⋃

k∈Kp
Ik. In GC-SC, the GC scheme is applied to

each cluster separately and the workers in cluster p aim at computing

1

|IKp |
∑

k∈IKp

g
(t)
k . (9.4)

To illustrate the advantage of the clustering technique, consider K = 12,

r = 2, and P = 4. Here, the workers are divided into 4 clusters, each consisting

of ℓ = 3 workers, and each cluster is responsible for computing 3 of the total 12

partial gradients. Since r = 2, each worker aims at computing the assigned 2 partial

gradients.
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In our example, the worker assignment can be specified by the following matrix:

Acluster =


1 2 3 4

6 7 8 5

9 10 11 12

 . (9.5)

In this assignment, workers 1, 6 and 9 are in the first cluster, workers 2, 7 and 10

are in the second cluster, and so on. The corresponding Adata is given in (9.6) for

the cluster assignment in (9.5). In (9.6), workers in each cluster are represented by

a different color. We use blue, red, magenta, and green for clusters 1, 2, 3, and 4,

respectively. The corresponding Acode for the cluster assignment in (9.5) is given

in (9.7), where, codewords corresponding to different clusters are shown in different

colors. Each codeword in Acode is a linear combination of r = 2 partial gradients.

For example, c1,1 is a linear combination of partial gradients g1 and g2; c1,2 is a

linear combination of partial gradients g2 and g3, and c1,3 is a linear combination of

partial gradients g3 and g1. Thus, given Acluster, either Adata or Acode is sufficient

to completely characterize the partial computations that will be carried out by each

worker.

In the original GC scheme, the PS waits until it receives K−r+1 = 11 results

at each iteration; hence only r − 1 = 1 straggler can be tolerated. With clustering,

the PS needs to receive at least ℓ − r + 1 = 2 results from each cluster to recover

the full gradient. Thus, the non-straggling threshold is still K − r + 1, since more

than one straggler cannot be tolerated if they are in the same cluster. However, the
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Adata =

[
g1 g4 g7 g10 g11 g2 g5 g8 g3 g6 g9 g12
g2 g5 g8 g11 g12 g3 g6 g9 g1 g4 g7 g10

]
(9.6)

Acode =
[
c1,1 c2,1 c3,1 c4,1 c4,2 c1,2 c2,2 c3,2 c1,3 c2,3 c3,3 c4,3

]
(9.7)

non-straggling threshold represents a worst case scenario. With clustering, up to 4

stragglers can be tolerated if they are uniformly distributed across clusters, i.e., one

straggler per cluster, as shown in “Realization 1” in Fig. 9.1. This shows that, with

clustering, the full gradient can be recovered in a much larger set of realizations

compared to the original GC scheme. Thus, even if the non-straggling threshold

(which corresponds to the worst case scenario) remains the same, clustering will

reduce the average per-iteration completion time.

Formally, with clustering, it is possible to tolerate r−1 stragglers in each cluster

in the best case scenario, which is when the stragglers are uniformly distributed

among the clusters. In this case, it is possible to tolerate P (r − 1) stragglers in

total. However, this advantage of clustering diminishes in the case of non-uniform

distributed stragglers among the clusters, which may be the case in practice. As

shown in “Realization 2” in Fig. 9.1, even though there are still 8 non-straggling

workers, the PS cannot compute the full gradient (in the case of persistent stragglers)

when the stragglers are not uniformly distributed across the clusters. To this end, in

the next section, we introduce the concept of dynamic codeword assignment, which

dynamically changes codewords computed by the workers at each iteration based

on the past straggler behavior to further improve the performance of the clustering
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cluster 1 cluster 2 cluster 3 cluster 4

Realization 1

cluster 1 cluster 2 cluster 3 cluster 4

Realization 2

Figure 9.1: Two possible straggler realizations where red and green circles represent
the straggling and non-straggling workers, respectively.

technique.

9.3 GC with Dynamic Codeword Assignment

In the conventional coded computation approaches, including GC, the assignment

of the dataset to the workers and the code to be used are static and set at the

beginning of the training. That is, at every iteration, a worker tries to compute the

gradient estimates for all the mini-batches assigned to it, and returns their exact

same linear combination. Thus, in order to recover the desired computation result

at each iteration, the codes are designed for the worst case scenario. The core idea

behind dynamic codeword assignment is to change the codewords assigned to the

workers dynamically based on the observed straggling behavior. Dynamic codeword

assignment is driven by two policies; namely, data assignment and codeword assign-

ment. The data assignment policy, denoted by Πd, is executed only once at the

beginning of training and assigns up to m mini-batches to each worker, where m
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denotes the memory constraint, i.e.,

Πd : D 7→ {I1, . . . , IK : |Ik| ≤ m} . (9.8)

Even though each worker can be allocated up to m mini-batches, each will compute

only r of them at each iteration; hence, the computation load at each iteration

remains the same. We can have
(
m
r

)
codewords that can be assigned to each worker

depending on which subset of r computations it carries out among m possibilities.

Here, we introduce C = {C1, . . . , CK}, where Ck denotes the set of feasible codewords

corresponding to dataset Ik. That is, Ck denotes the set of codewords that may

be assigned to the kth worker at each iteration, where each codeword is a linear

combination of r gradient estimates that can be computed by this worker.

We would like to highlight that with dynamic codeword assignment, the PS will

specify at each iteration which codeword must be computed by each worker. This

introduces additional communication requirement compared to the static schemes,

such as GC and GC-SC. On the other hand, this information can be piggybacked on

other control information that must be communicated from the PS to the workers

at each iteration, such as signalling the end of an iteration and the transmission of

the updated model parameters. However, it is still important to keep this additional

information minimal by designing a codebook with minimal |Ck|.

At the beginning of each iteration t, codeword assignment policy Πa is executed

by the PS based on the past straggler behavior of the workers up to iteration t, S[t−1],
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i.e.,

Π(t)
a (S[t−1],Πd) : C 7→ ct =

{
ct1, . . . , c

t
K

}
, (9.9)

where ctk ∈ Ck is the codeword assigned to the kth worker at iteration t and

S[t−1] ≜ (S1, . . . ,St−1), while St = (St
1, . . . , S

t
K) denotes the straggler behavior at

each iteration t, where St
k = 0 if the kth worker is a straggler at iteration t, and

St
k = 1 otherwise.2

The completion time of iteration t for a given data assignment policy Πd

depends on the codeword assignment ct and the straggler realization St. Here, our

objective is to minimize the expected completion time of each iteration based on

the past straggler behavior for a given Πd:

min
Π

(t)
a

ESt|S[t−1],Πd
Q(ct,St), (9.10)

where Q(ct,St) is the completion time of iteration t under codeword assignment ct

and the straggler realization St.

We remark that the codeword assignment policy Π
(t)
a highly depends on the

data assignment policy Πd since in most of the coded computation scenarios the

data assignment policy is driven by the employed coding strategy. Thus, designing

a data assignment policy Πd without any prior knowledge on the coding strategy

is a challenging task. To this end, in the next section, we reformulate the dynamic

2In this work, we assume an on/off straggling behavior for each worker such that a worker’s
straggling status can change over iterations. Workers can still deliver computation results in the
straggling state but their computations are much slower. This type of two-state straggling behavior
is observed in empirical studies over Amazon EC2 clusters [160,169].
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codeword assignment problem where the coding strategy, consequently the set of

codewords, are fixed at the beginning and data assignment is performed based on

the underlying coding strategy.

9.4 GC with Dynamic Clustering (GC-DC)

In this section, we reformulate the dynamic codeword assignment problem, and

introduce the GC-DC scheme. For the construction of the GC-DC scheme, we

perform three steps; namely, codeword construction, codeword distribution, and

dynamic clustering, where the first two steps are executed once at the beginning of

training and the last one is executed at each iteration. Our code construction will

be based on GC-SC presented in Section 9.2.2, and we will transform the dynamic

codeword assignment problem into a dynamic clustering problem. We note that the

number of clusters P is fixed and decided at the beginning of the training.

9.4.1 Codeword Construction

In the GC-DC scheme, we will request each worker to compute and return a code-

word at each iteration. Remember that each codeword is a specified linear combi-

nation of the gradient estimates for a subset of r mini-batches, and the PS and the

workers need to agree on how to form these linear combinations in advance. Here, the

set of codewords C is a union of smaller disjoint codeword sets, i.e., C =
⋃P

p=1 Cp, such

that the codewords in each set Cp, p ∈ [P ], are encoded and decoded independently

and correspond to a particular cluster. For example, in (9.7), C1 = {c1,1, c1,2, c1,3},
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where C1 is disjoint from the rest of the codeword set.

9.4.2 Codeword Distribution

The codewords in C are distributed among the workers according to a policy Πc,

i.e.,

Πc(C) : C 7→ {C1, . . . , CK} , (9.11)

where we remark that Ck denotes the set of codewords that can be assigned to the

kth worker at each iteration. Now, let I(c) ⊆ D be the minimal subset of mini-

batches that is sufficient to construct codeword c, where we have |I(c)| ≤ r. Given

the codeword distribution policy Πc, any feasible data assignment policy Πd should

satisfy the following constraint

Ik ⊇
⋃
c∈Ck

I(c), ∀k ∈ [K]. (9.12)

Based on this constraint, we observe that, given Πc(C), the minimum memory is

used when Ik =
⋃

c∈Ck I(c), ∀k ∈ [K]. Thus, we note that the data assignment

policy Πd is determined according to the codeword distribution policy Πc. In other

words, we first perform codeword distribution and then assign the corresponding

mini-batches to the workers.

Next, we describe the codeword distribution policy Πc in (9.11) for the pro-

posed GC-DC scheme. We first assign each worker to n clusters. Each cluster p

corresponds to a set of codewords Cp with |Cp| = ℓ. We say that a worker is in
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cluster p, if that worker is assigned all ℓ codewords in Cp. Hence, in the proposed

scheme, each worker is assigned codewords from an n-subset of {C1, . . . , CP}.3 With

this, we form a worker cluster assignment matrix Acluster of size ℓn × P . The pth

column of Acluster shows the workers assigned to the pth cluster, where wk denotes

the kth worker, k ∈ [K]. An example Acluster for our continuing example is given in

(9.13) for n = 2,

Acluster =



w1 w2 w3 w4

w6 w7 w8 w5

w9 w10 w11 w12

w4 w1 w2 w3

w7 w8 w5 w6

w10 w11 w12 w9



. (9.13)

When assigning workers to clusters, we start by dividing workers into groups

of P according to their indices. For example, in our continuing example for P = 4

and K = 12, these groups are {w1, . . . , w4}, {w5, . . . , w8}, and {w9, . . . , w12}. Then,

we utilize a circular shift operator and sample n shift amounts in {0, . . . , P − 1}

uniformly at random without replacement for each of these groups. We circularly

shift each of these groups according to the corresponding sampled shift amounts

and form the worker cluster assignment matrix Acluster. For example, in the first

and fourth rows of (9.13), the shift amounts for workers {w1, . . . , w4} are 0 and 1,

3That is, under the proposed GC-DC scheme, we have |Ck| = nℓ such that each worker may be
assigned all ℓ codewords for each of the clusters that it belongs to.
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respectively. As a result of these random shifts, worker w1 is assigned to the first

and second clusters, worker w2 is assigned to the second and third clusters, and so

on. Similarly, from the second and fifth rows of (9.13), we observe that the shift

amounts for workers {w5, . . . , w8} are 3 and 2, respectively. We note that, since the

random shifts for the same set of workers, e.g., workers {w1, . . . , w4}, are sampled

without replacement, each worker is assigned to exactly n = 2 distinct clusters.

We remark that, given n, the memory requirement m of the proposed GC-DC

scheme is given by m = nℓ. Thus, for n = 2 and ℓ = 3, each worker stores 6

mini-batches in this example.

By constructing Acluster, we essentially perform the codeword distribution as

each worker is assigned all ℓ codewords for each of the n clusters that it is associated

with. For example, from (9.13) we deduce that worker 1 has all the codewords in

sets C1 and C2, i.e., C1 = C1 ∪ C2 = {c1,1, c1,2, c1,3, c2,1, c2,2, c2,3}. With this, we

perform the data assignment and assign corresponding mini-batches to each worker

to form the data assignment matrix such that the constraint in (9.12) is satisfied

with equality. Correspondingly, I1 = {D1, . . . ,D6} so that worker 1 can compute

partial gradients g1, . . . , g6 to form any one of these 6 codewords.

9.4.3 Dynamic Clustering

The key idea behind dynamic clustering is to associate each worker to more than

one cluster by assigning more than r mini-batches to each worker. Assuming that a

worker is associated with n clusters, each worker is assigned a total of nℓ codewords
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so that a worker can replace any worker in the n clusters it is associated with by

computing a codeword that would be computed by the worker to be replaced in the

original GC scheme with clustering. Then, at each iteration the PS selects one of the

nℓ codewords for each worker based on the previous straggler realization through

a codeword assignment policy Πa given in (9.9). We note that, even though more

than one codeword is assigned to each worker, computation load is still r as in the

original GC scheme, and each worker still computes only one codeword consisting

of r partial gradient computations at each iteration.

To see the benefit of the proposed GC-DC scheme, we consider Acluster and

corresponding codewords for a particular straggler realization S = [1, 1, 0, 1, 1, 1, 1, 0,

0, 1, 0, 1], where, colors follow the cluster assignment in the static clustering case, i.e.,

Acluster given in (9.5). Under the GC-SC scheme, it is not possible to recover partial

gradients corresponding to the third cluster as we do not have ℓ − r + 1 = 2 non-

straggling workers in that cluster.4 Moreover, if this straggling behavior persists for

a substantial duration of time, the overall computation time will suffer drastically.

To mitigate this, in the case of dynamic clustering, we observe in (9.13) that worker

w5 can replace worker w3 since it can compute codeword c3,1 which is the codeword

that was originally assigned to worker w3 in (9.7) in the GC-SC scheme. This does

not affect the recoverability of the partial gradients assigned to the fourth cluster,

to which worker w5 initially belongs, since that cluster has 2 more non-straggling

workers, workers w4 and w12. Further, worker w2 can replace worker w8 so that all

4We note that this is the case assuming straggling workers do not return any computation
results. Even if they do, whenever there are less than ℓ− r+1 non-straggling workers in a cluster,
the PS has to wait for at least one of the straggling workers to return its computation which may
incur a significant delay in the completion time of that iteration.
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partial gradients can be recovered successfully. Equivalently, we have assigned the

clusters such that non-straggling workers w2 and w5 now belong to the 3rd cluster

by ensuring that all other clusters still have at least ℓ − r + 1 = 2 non-straggling

workers. Thus, dynamic clustering increases the set of straggler realizations for

which the full gradient recovery is possible compared to static clustering.

Since each worker can replace any worker in all the n clusters that it is as-

signed to, we essentially form the clusters, dynamically at each iteration through

codeword assignments, hence the name dynamic clustering. That is, based on the

codeword distribution presented in Section 9.4.2, we can assign ℓ workers to each

cluster according to the given worker cluster assignment matrix Acluster without ex-

plicitly stating which worker will compute which codeword. With this, our aim is to

dynamically form clusters at each iteration to minimize the average completion time

of an iteration given the past straggler behavior and the worker-cluster assignment

matrix Acluster.

Next, we characterize the average completion time of an iteration for a given

cluster assignment. We denote the kth smallest of random variables Y1, . . . , Yn as

Yk:n. The completion time of iteration t for cluster p is given by the time the PS

receives the earliest ℓ− r + 1 results from that cluster such that

Qp(ct,St) = {Xp
1,r, . . . , X

p
ℓ,r}ℓ−r+1:ℓ, p ∈ [P ], (9.14)

where ct is the set of codewords assigned to the workers as in (9.9) and Xp
k,r, k ∈ [ℓ],

is the computation duration of the kth worker of cluster p, i.e., the time it takes for
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that worker to compute r partial gradients. Noting that iteration t ends when each

cluster recovers its corresponding partial gradients, completion time of iteration t is

given by

Q(ct,St) = max
p∈[P ]

Qp(ct,St). (9.15)

Since some of the workers are stragglers, computation capabilities of the work-

ers are not identical. In this case, minimizing the iteration completion time given in

(9.15) through cluster assignments is not an analytically tractable problem. Instead,

in the next section, we propose a greedy dynamic clustering strategy that aims to

uniformly place stragglers across clusters at each iteration to speed up GC.

9.5 Greedy Dynamic Clustering Strategy

In line with the observations on Amazon EC2 instances in [160, 169], in this sec-

tion, we consider a stochastic straggling behavior for the workers. In particular, we

assume that workers’ computation statistics are independent from each other, and

follow a two-state Markov process. That is, at each iteration a worker can be either

in a straggling or a non-straggling state. Once a worker starts straggling, it operates

significantly slower than the non-straggling performance and remains straggling for

a while. This may model an increased load at a worker for a period of time, which

reduces the computational resources that can be allocated for the specific compu-

tation task. Our proposed greedy algorithm utilizes this time-correlated straggling

behavior to assign straggling workers to different clusters. At each iteration, the
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PS identifies the stragglers based on the past observations and implements a greedy

dynamic clustering strategy to uniformly distribute the stragglers across clusters

to improve the completion time of each iteration. We note that the performance

gain of the proposed GC-DC scheme is prominent when the computation speeds of

the workers are not identically distributed over iterations, e.g., they exhibit time-

correlated straggling behavior, as the GC-DC scheme gains from adapting to the

straggling behavior by carefully placing the workers to clusters at each iteration.

Inspired by the bin packing problem [219], we consider clusters as bins and

workers as balls as in Fig. 9.1. Unlike the bin packing problem, which aims to

place balls of different volumes into a minimum number of bins of finite volume,

in our setting, the number of bins (clusters) is fixed and our aim is to distribute

the straggling workers as uniformly as possible to clusters using the worker cluster

assignment matrixAcluster. Our dynamic clustering algorithm has two phases: in the

first phase, based on the previous straggler realization, we place straggler and non-

straggler workers into clusters separately following a specific order, and in the second

phase, any placement conflict that may happen in the first phase (i.e., if a worker

cannot be placed into any of the remaining clusters) is resolved through worker swap

between the corresponding clusters. During worker placement, clusters take turns

based on a specified order and we implement a greedy policy such that, once its

turn comes, each cluster selects the first available worker that can be assigned to

that cluster based on the given worker cluster assignment matrix Acluster.

In what follows we describe in detail the proposed dynamic clustering strategy,

which is also presented in Algorithm 1 shown at the end of this chapter. Given the

233



worker cluster assignment matrix Acluster, without loss of generality, we first reorder

workers in each cluster according to their indices such that

Acluster(i, p) < Acluster(j, p), i < j, p ∈ [P ], (9.16)

where Acluster(i, p) denotes the index of the worker in the ith position in cluster

p. For example, in Acluster given in (9.13), Acluster(1, 2) is 2 since it corresponds to

worker w2. Once its turn comes, each cluster starts selecting workers with the lowest

indices first. We note that, if the workers have heterogeneous computing capabilities,

then in this step we order workers according to their speed of computation, such that

the fastest workers are selected first, which we will consider in Section 9.6.2. For ease

of exposition, here, we provide the algorithm when all the straggling workers have

identical computation statistics, and similarly all the non-straggling workers have

the same computation statistics with each other. Therefore, there is no preference

among workers within each group, and ordering them according to their indices is

appropriate.

We assume that at the end of each iteration, each worker accurately detects

its straggling status and informs the PS using an instantaneous feedback. The

straggling state information is in general not available to the worker before that

iteration ends due to the unpredictable and highly varying nature of computing

resources in distributed computing systems. Since the current straggling behavior is

random following the underlying Markov process, at iteration t, the algorithm starts

by deducing the sets of non-straggling and straggling workers Kf and Ks from St−1.
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We note that, at each iteration, Kf ∪ Ks = [K]. The proposed algorithm uses the

straggler statistics from iteration t− 1 to perform dynamic clustering at iteration t,

which makes this algorithm suitable for Markovian straggling models.

9.5.1 Phase I - Worker Placement

We place straggling and non-straggling workers separately to the clusters following a

specific order. If the number of non-straggling workers is higher than the stragglers,

i.e., |Kf | ≥ |Ks|, we start by placing the non-stragglers and vice-versa.

For the sake of demonstration, we assume |Kf | ≥ |Ks| and place the non-

straggling workers first. Let Of denote the order in which the clusters select workers

such thatOf (p) gives the order in which the pth cluster selects workers. To determine

the exact order, we define Kp
f and Kp

s , which denote the set of non-straggling and

straggling nodes that can be assigned to cluster p, respectively. We remark that

worker k can be assigned to cluster p if it is in column p of Acluster, i.e., wk ∈

Acluster(:, p). With this, we determine the order vector such that

Of (p) < Of (p̄) if |Kp
f | < |K

p̄
f | p, p̄ ∈ [P ]. (9.17)

That is, clusters with less availability select workers first. In the case of equal

availability, i.e., |Kp
f | = |K

p̄
f |, cluster with the smaller index selects first, i.e., Of (p) <

Of (p̄) for p < p̄. The order for straggler placement Os is determined accordingly

using Kp
s , for p ∈ [P ].

Once the order Of is determined, non-straggling workers are placed into clus-
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ters following Of . As stated in lines 16-23 of Algorithm 1, once its turn comes, each

cluster p with an open spot, i.e., each cluster p that currently has less than ℓ workers,

selects the first available non-straggling worker from Acluster(:, p), p ∈ [P ]. Once a

non-straggling worker is assigned to a cluster, we remove it from Kf and Acluster.

We note that this assignment continues until there is no unassigned non-straggling

worker left in Kf or a placement conflict is observed. Then, the straggler workers

are placed following a similar procedure with the order vector Os.

During Phase I, the algorithm makes at most M such placement attempts,

where M > 0 is a sufficiently large number. If after M turns, a worker cannot be

assigned to any of the remaining clusters, this indicates a placement conflict and we

move on to the second phase of the algorithm.

9.5.2 Phase II - Conflict Resolution

Assume that there is a placement conflict at the end of Phase I such that worker k

cannot be placed to the remaining cluster p. That is, all of the n clusters that worker

k can be assigned to are full, i.e., already have ℓ workers, and cluster p needs one

more worker. In such a case, the second conflict resolution phase of the algorithm

starts.

Let Pk denote the set of possible clusters for worker k such that |Pk| = n.

In the conflict resolution step, as stated in lines 26-35 of Algorithm 1, we look for

a worker k̄, which has been assigned to one of the clusters in Pk in Phase I such

that wk̄ ∈ Acluster(:, p). That is, even though worker k̄ has been assigned to cluster
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p̄ ∈ Pk during Phase I, it can be assigned to cluster p as well. Once we detect first

such worker, we swap its position with worker k. That is, we assign worker k, the

conflicted worker, to cluster p̄ and worker k̄ to cluster p, the conflicted cluster.

We note that there might be multiple placement conflicts at the end of Phase

I, in which case the conflict resolution step is repeated until all cases are resolved.

To illustrate the proposed worker replacement policy in detail, we consider the

cluster assignment matrix in (9.13), and without loss of generality, order workers in

an increasing index order in each column to obtain

Acluster =



w1 w1 w2 w3

w4 w2 w3 w4

w6 w7 w5 w5

w7 w8 w8 w6

w9 w10 w11 w9

w10 w11 w12 w12



, (9.18)

where the straggling workers are shown in red. The straggler realization for this

example is S = [1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1]. Here, we have 5 straggling and 7 non-

straggling workers, i.e., |Ks| = 5 and |Kf | = 7.

Since there are more non-straggling workers than stragglers, we place the non-

straggling workers first. To determine a non-straggling worker placement order, we

find the number of available non-straggling workers in each cluster. One can observe

in (9.18) that, cluster 1 and cluster 2 have 4 available non-straggling workers that
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can be assigned to these clusters whereas cluster 3 and cluster 4 have 3 available

non-straggling workers. That is, we have |K1
f | = |K2

f | = 4 and |K3
f | = |K4

f | = 3.

Based on these, we deduce a placement order Of = [3, 4, 1, 2] such that clusters

take turns based on this placement order.5 At each turn of a particular cluster,

a single worker is assigned to that cluster according to the aforementioned greedy

policy. In our example, we start with the third cluster and w2 is assigned to this

cluster. Then, the fourth cluster gets w4 and so on. This process continues until all

the non-straggling workers are placed into clusters (or until a placement conflict is

observed). If a cluster is assigned ℓ = 3 workers, we say that cluster is full and do not

assign any more workers to that cluster. Next, we determine the placement order of

straggling workers in a similar fashion. One can deduce from (9.18) that the order

of placement for the stragglers is Os = [1, 2, 3, 4] as clusters 1 and 2 have the least

availability. Based on this order, stragglers are also placed using the greedy policy

described above and the first phase terminates with the worker placement shown in

Fig. 9.2. Here, we observe a placement conflict as w12 has not been assigned to any

cluster whereas cluster 1 needs one more worker, but w12 cannot be assigned there.

We start the second phase of the proposed worker placement algorithm to place

w12 into a cluster that has a worker which can be assigned to the first cluster. We see

from (9.18) that w12 can be assigned to clusters 3 or 4. None of the workers which

has been assigned to cluster 3 in Phase I can be assigned to the first cluster. Then,

the algorithm looks as cluster 4 and identifies that w4, which has been assigned to

5In a more refined implementation, this order can dynamically change after each round of
worker placement, i.e., after all clusters select one worker, to better reflect the clusters with less
availability as worker placement continues.

238



cluster 1 cluster 2 cluster 3 cluster 4

phase 1

phase 2

w1 w6 w10 w7 w2 w11

w3

w4 w9

w12

w8 w5
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w3

w12 w9

w8 w5
w4

Figure 9.2: The proposed worker placement strategy.

the fourth cluster in the first phase, can go to the first cluster. With this, we swap

workers w4 and w12, which yields the final placement in Fig. 9.2.

At the end of the algorithm we see that the stragglers are placed into the

clusters as uniformly as possible: cluster 2 has two stragglers while the remaining

clusters have only 1 straggler each. We note that since we have only 7 non-straggling

workers, less than the worst case scenario of P (ℓ − r + 1) = 8 non-stragglers, the

full recovery is not possible for the static clustering scheme. Thus, the proposed

dynamic clustering scheme does not improve the worst case scenario. Rather, it

speeds up the GC scheme by uniformly placing the stragglers across clusters. This

process is repeated at each iteration to dynamically change the clusters based on

the straggler observations.

We note that at the end of the first phase, there are 4 other workers, namely

workers w4, w7, w9, and w10, that can be placed into the first cluster, which had

placement conflict at the end of Phase I of the algorithm. Even if ℓ = 3 of them

would have been assigned to cluster 2, which worker w12 cannot be assigned, the

remaining one of them still would have been assigned to either cluster 3 or 4. Thus,
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it is guaranteed that cluster 3 and cluster 4 have at least one worker that can be

assigned to cluster 1 so that the placement conflict can be resolved. The next lemma

formally states this guarantee.

Lemma 9.1 Assume that we have a conflicted worker k which cannot be assigned

to the remaining cluster p in Phase I. Then, if

n >
P (K − 1)

2K
, (9.19)

it is guaranteed that at least one worker in one of the clusters in Pk can be assigned

to cluster p so that the placement conflict can be resolved.

Proof: In the proof we consider the worst case scenario such that ℓ−1 workers have

already been assigned to cluster p in Phase I. Thus, in the remaining P − 1 clusters

other than cluster p, there are nℓ− ℓ+ 1 workers that can be assigned to cluster p.

We want to make sure that, at the end of Phase I of the algorithm, at least one of

those workers is assigned to a cluster in set Pk, which, as previously stated, denotes

the set of clusters that worker k, the conflicted worker, can be assigned to. Except

cluster p, there are P − n − 1 clusters that worker k cannot be assigned to. These

P − n − 1 clusters can at most have (P − n − 1)ℓ workers after Phase I. Thus, as

long as nℓ− ℓ+ 1 > (P − n− 1)ℓ, there is at least one worker that can be assigned

to cluster p in one of the clusters in Pk, which yields (9.19) since ℓ = K
P
. ■

In the previous example, (9.19) is satisfied since K = 12, P = 4, and n = 2

such that n > 11
6
.
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In the next section, we analyze the performance of this dynamic clustering

strategy through numerical simulations.

9.6 Numerical Results

In this section, we provide numerical results comparing the proposed GC-DC scheme

with GC-SC as well as the original GC scheme using a model-based scenario for

computation latencies.6 For the simulations, we consider a linear regression problem

over synthetically created training and test datasets, as in [188], of sizes 2000 and

400, respectively. We set the size of the model to d = 1000. A single simulation

consists of T = 400 iterations. For all the simulations, we use learning rate η = 0.1.

To model the computation delays at the workers, we adopt the commonly used

shifted exponential model [215], and assume that the probability of completing r

partial gradient computations at worker k by time t is given by

P[Xk,r ≤ t] ≜


1− e−µk(

t
r
−αk), if t ≥ rαk,

0, otherwise,

(9.20)

where αk > 0 is a constant shift indicating that a single computation duration

cannot be smaller than αk and µk > 0 denotes the straggling effect. We consider

two different models for the time-correlated straggling behavior: the homogeneous

and heterogeneous worker models, which we discuss next.

6The fractional repetition scheme can also be used for GC in our work in addition to the cyclic
GC we use as a baseline. However, the proposed cyclic GC scheme is preferred as it does not
impose any constraint on the (K, r) pairs.
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9.6.1 Gilbert-Elliot Model with Homogeneous Workers

We model the straggling behavior of the workers based on a two-state Markov chain:

a slow state s and a fast state f , such that computations are completed faster when

a worker is in state f . Specifically, in (9.20) we have rate µf in state f and rate

µs in state s, where µf > µs as in Chapters 8 and 10. That is, each worker has

two possible rates based on its straggling statistics. We assume that the state

transitions only occur at the beginning of each iteration with probability p; that

is, with probability 1 − p the state remains the same. A low switching probability

p indicates that the straggling behavior tends to remain the same in consecutive

iterations with occasional transitions. We set p = 0.05 or p = 0.2, α = 0.01,

µs = 0.1, and µf = 10. We assume that the transition probability p along with the

computation rates µs and µf are known to the PS. At the end of each iteration,

workers inform the PS regarding their straggling status before the next iteration

starts. With this information along with the knowledge of transition probability p,

the PS performs the dynamic clustering accordingly. For example, when p ≤ 0.5,

the PS assumes that each worker will continue with the same straggling behavior

from the past iteration.7

In the first simulation, we set K = 20, P = 5, r = 3, and n = 3. We start with

10 stragglers initially. In Fig. 9.3, we plot the average per-iteration completion time

of the original GC scheme, GC scheme with static clustering (GC-SC), GC scheme

with the proposed dynamic clustering (GC-DC), and a lower bound, denoted by LB.

7After a sufficiently long observation period, the PS can accurately estimate the transition
probability p as it is the same for all the workers and iterations.
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Here, the lower bound is obtained by assuming that the full gradient is recovered as

soon as the earliest P×(ℓ−r+1) workers finish their computations at each iteration,

independently of the codeword assignment matrix. We remark that this lower bound

is rather an idealistic scenario as it requires the perfect knowledge of computation

times at each iteration as well as n = P , i.e., all workers can be assigned to all

the clusters. We observe in Fig. 9.3(a) that clustering schemes significantly improve

the performance compared to the original GC scheme. The best performance is

achieved when the dynamic clustering, the GC-DC scheme, is implemented and the

performance improvement compared to the GC-SC scheme is approximately 34%.

In Fig. 9.3(a), we have considered the case in which the PS does not know

the exact straggler realization at the beginning of an iteration, and uses previous

observation to implement the dynamic clustering strategy. In the second simulation

in Fig. 9.3(b), we consider the same scenario as in the first simulation, but assume

that the PS knows the exact straggler realization at the beginning of each iteration,

which we call perfect straggler state information (SSI). That is, in the case of perfect

SSI, the PS knows exactly which workers will straggle in the current iteration, and

therefore, the proposed dynamic clustering algorithm does not suffer from transitions

in the straggling behavior from one iteration to the next. In this case we see similar

trends as in Fig. 9.3(a), but observe that the GC-DC scheme results in a larger

improvement in the average per-iteration completion time (around 45%) than that

of the imperfect SSI case.

Finally, in Fig. 9.4 we consider a case in which the straggler state transitions

occur more frequently and set p = 0.2. We see in Fig. 9.4(a) that under imperfect
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Figure 9.3: Average per-iteration completion time under the Gilbert-Elliot model
with homogeneous workers for K = 20, P = 5, r = 3, n = 3, and p = 0.05 (a) under
imperfect SSI, (b) under perfect SSI.

SSI, with a larger p value, GC-DC still performs the best, but the improvement over

GC-SC is less compared to Fig. 9.3(a) when p = 0.05. On the other hand, under

perfect SSI, i.e., the PS knows the exact straggler realization at the beginning of

each iteration, the effect of increased p is not observed and we have approximately

45% improvement over GC-SC as in Fig. 9.3(b).

9.6.2 Heterogeneous Worker Model

In this model, we assume that workers have different computation rates µk, k ∈ [K].

In this case, we specify a straggling threshold τ > 0, and a worker k is treated as a

straggler if µk < τ .
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Figure 9.4: Average per-iteration completion time under the Gilbert-Elliot model
with homogeneous workers for K = 20, P = 5, r = 3, n = 3, and p = 0.2 (a) under
imperfect SSI, (b) under perfect SSI.

9.6.2.1 Gilbert-Elliot Model with Heterogeneous Workers

We study the case in which each worker’s straggling behavior is modeled by a two-

state Markov chain such that µk = µk,f if worker k is not straggling and µk = µk,s

if worker k is a straggler. At the beginning of each iteration, a worker’s straggling

mode switches with probability p. Here, first we sample the non-straggling compu-

tation rates of each worker µk,f uniformly at random from the interval [0, 5] and set

αk = 0.01, p = 0.05 or p = 0.2, for k ∈ [K]. We model the straggling computation

rates of workers µk,s such that for worker k we have µk,s =
µk,f

10
, k ∈ [K]. That is, in

the straggling mode, each worker is 10× slower than its typical non-straggling per-

formance, which is motivated by the measurements taken over Amazon EC2 clusters

that indicate a similar performance drop in the straggling mode [169]. With this,

computation rates of the workers in the straggling mode are uniformly distributed
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in [0, 0.5]. We assume that the non-straggling computation rates µk,f are known to

the PS for k ∈ [K] after a certain number of iterations and from these, the PS can

deduce the straggling computation rates µk,s.

Equipped with these, after each iteration, the PS is informed about the strag-

gling status of each worker and performs the proposed greedy dynamic clustering

scheme with a modification as follows: Instead of ordering the workers according to

(9.16), we order them according to their rates µk, k ∈ [K]. In this case, once its turn

comes, each cluster selects the fastest available worker first rather than selecting the

one with the smallest index first.

We note that since the computation rates are sampled randomly, a worker’s

straggling computation rate can still be higher than another worker’s non-straggling

rate. To account for these scenarios, we set the straggling threshold τ = 0.5. That

is, as long as a worker’s rate is below 0.5 we treat that worker as a straggler. We

did not utilize such a threshold in the homogeneous worker model since in that

case workers have identical computation rates µf and µs in the non-straggling and

straggling states, respectively, such that µs < µf .

Simulation results for this setup are provided in Fig. 9.5. We average the re-

sults over 30 independent simulations for a fixed Acluster that is generated according

to the procedure described in Section 9.4.2. We observe in Figs 9.5(a) and 9.5(b)

for p = 0.05, and in Figs 9.6(a) and 9.6(b) for p = 0.2 that the GC-DC scheme out-

performs the static clustering schemes, namely GC and GC-SC. The performance

improvement is larger in the case of perfect SSI and when p = 0.05.
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Figure 9.5: Average per-iteration completion time under the Gilbert-Elliot model
with heterogeneous workers for K = 20, P = 5, r = 3, n = 3, p = 0.05, and τ = 0.5
(a) under imperfect SSI, (b) under perfect SSI.

9.6.2.2 Heterogeneous Workers with Time-Varying Rates

So far, we have modeled the straggling behavior based on a Gilbert-Elliot mode. In

this subsection, instead of a two-state Markov chain model, we consider that the

straggling parameters of the workers are time-varying. We assume that each worker

samples its rate uniformly at random from the interval [0, 5] and set αk = 0.01 for all

k ∈ [K]. We assume that at the beginning of each iteration, each worker re-samples

its rate with probability p such that with probability 1− p its rate stays the same.

That is, we have

µk,t+1 = (1− at+1)µk,t + at+1 · U [0, 5], (9.21)

where, µk,t denotes the rate of worker k at iteration t, at is an i.i.d. Bernoulli(p)

random variable, i.e., P(at = 1) = p,∀t, and U [a, b] denotes a uniform random
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Figure 9.6: Average per-iteration completion time under the Gilbert-Elliot model
with heterogeneous workers for K = 20, P = 5, r = 3, n = 3, p = 0.2, and τ = 0.5
(a) under imperfect SSI, (b) under perfect SSI.

variable over interval [a, b]. In simulations, we use the scenario in the Fig. 9.3 and

start with 10 stragglers. We initialize the rates of stragglers with µk,0 = U [0, τ) and

rates of non-straggling workers with µk,0 = U [τ, 5]. In this setup, we set p = 0.05 or

p = 0.2.

Since the computation capabilities of the workers are not identical, we apply

the proposed greedy dynamic clustering scheme with the same modification as above.

We note that this model requires the workers to accurately detect their computation

rates at the end of each iteration and send them to the PS before the next iteration

starts.

First, we consider the case in which τ = 1. In this case, we observe in

Figs. 9.7(a) and (b) that the GC-DC scheme outperforms the GC and GC-SC

schemes but the improvement compared to the GC-SC scheme is not significant.

In fact, we see that in the case of perfect SSI the improvement is around 20% com-
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pared to the GC-SC scheme whereas when the straggler realizations are not known

to the PS in advance this improvement drops to approximately 16%.

Next, we set τ = 0.1 such that the proposed greedy dynamic clustering scheme

specifically targets the slowest workers and carefully places them across clusters. In

Figs. 9.8(a) and (b), we observe for p = 0.05 that the GC-DC scheme performs the

best and the improvement compared to the GC-SC scheme is more significant. We

also note that in Fig. 9.8, the performance improvement is larger but the average

iteration times are also larger for all three schemes compared to the case in Fig. 9.7.

This is because when τ = 0.1, we initialize the rates of the workers considering

10× slower stragglers compared to when τ = 1. We set p = 0.2 in Fig. 9.9, and

observe that the GC-DC scheme still performs the best compared to the static GC

schemes even though the improvement in performance decreases as the transitions

occur more frequently compared to the case in which p = 0.05. We finally note

that all the simulation results given in Figs. 9.7, 9.8, and 9.9 are averaged over

30 independent simulations for a fixed Acluster that is generated according to the

procedure described in Section 9.4.2.

9.6.3 Simulations for Shared Access Scenario

In general, the concept of a straggler refers to a state in which a worker either

does not respond at all or responds with a certain delay. The delay mentioned

here might be due to several factors, such as the internal delay of the processing

units, communication delay due to possible link failures, or due to overloading of

249



GC GC-SC GC-DC LB
0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 i
te

ra
ti
o
n
 t
im

e
16% improvement 

compared to GC-SC

(a)

GC GC-SC GC-DC LB
0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 i
te

ra
ti
o
n
 t
im

e

20% improvement 

compared to GC-SC

(b)

Figure 9.7: Average per-iteration completion time under the heterogeneous worker
model with time-varying rates for K = 20, P = 5, r = 3, n = 3, p = 0.05, and τ = 1
(a) under imperfect SSI, (b) under perfect SSI.

the workers. The latter is often observed when the computational resources are

open to access from multiple users without any central entity to regulate the user

requests or to perform resource allocation. In such cases, workers with excessive

user requests might be identified as stragglers due to their long response time. To

this end, we perform experiments to analyze the response time of the workers with

respect to the number of ongoing computational requests. The experiments are

conducted in our clusters where GeForce RTX 2080 Ti Graphics Cards with CUDA

toolkit 11.0 are employed as workers. In the experiments, we consider training

of ResNet-20 architecture for classification on CIFAR-10 dataset with a batch size

of 64 as the computational task. To measure the impact of the workload on the

workers, we generate multiple users with the same computational task and measure

the latency for a single iteration with SGD framework implemented with PyTorch.

Consequently, we observe that, when there is a single request, the completion time
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Figure 9.8: Average per-iteration completion time under the heterogeneous worker
model with time-varying rates for K = 20, P = 5, r = 3, n = 3, p = 0.05, and
τ = 0.1 (a) under imperfect SSI, (b) under perfect SSI.

of a single iteration is 20 milliseconds (ms), however, this latency increases linearly

with the number of ongoing tasks. Based on this observation, we simulate a scenario

in which the users arrive at the system according to a certain probabilistic model

and stay in the system for a random period of time depending on the complexity of

the task.

Here, we assume that requests arrive at the workers according to a Poisson

distribution with rate λ = 0.1. Each arriving task stays in the system for a number

of iterations that is sampled uniformly at random from the interval [2, 5]. We assume

that each worker can serve at most C = 10 users at a time. This means that, for

a single worker, a single iteration may take between 20 ms and 200 ms based on

our measurements. We denote the straggling threshold in this case by γ and set

γ = 7. That is, a worker is considered straggling if it has 7 or more ongoing task

computations. Simulations results for this setup are provided in Fig. 9.10. These
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Figure 9.9: Average per-iteration completion time under the heterogeneous worker
model with time-varying rates for K = 20, P = 5, r = 3, n = 3, p = 0.2, and
τ = 0.1 (a) under imperfect SSI, (b) under perfect SSI.

results are averaged over 30 independent simulations for a fixedAcluster. In Fig. 9.10,

we observe that the proposed GC-DC scheme outperforms the static GC schemes

under this more practical setup. The improvement is more visible in the case of

perfect SSI, i.e., when the PS knows the number of ongoing computations at each

worker. In this setup, the performance of the GC-DC scheme is much closer to LB

compared to the results in Section 9.6. Especially in the perfect SSI case, the gap

is less than 10%, which indicates that the proposed GC-DC algorithm promises to

improve the performance in more practical shared access scenarios over computing

clusters.

9.7 Conclusion

In this chapter, we considered coded computing for large-scale distributed learn-

ing problems in the presence of straggling workers, and introduced a novel scheme,
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Figure 9.10: Average per-iteration completion time under the shared access model
for K = 20, P = 5, r = 3, n = 3, λ = 0.1, γ = 7, C = 10 (a) under imperfect SSI,
(b) under perfect SSI.

called GC-DC, to reduce the average per-iteration completion time of the static GC

schemes. GC-DC employs the GC scheme with clustering introduced in [166], and

assigns additional data to the workers without increasing the per-iteration compu-

tation load at each worker compared to the original GC scheme. By utilizing the

extra degree-of-freedom offered by additional data, but without increasing the com-

putation load at each iteration, the proposed GC-DC scheme dynamically assigns

workers to different clusters at each iteration, in order to distribute the stragglers to

clusters as uniformly as possible. Under a time-correlated straggler model, GC-DC

can improve the overall computation speed by dynamically adapting to the strag-

gling behavior. We showed through numerical simulations, for both homogeneous

and heterogeneous worker models, that the proposed GC-DC scheme can drasti-

cally improve the average per-iteration completion time without an increase in the

communication load.
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Algorithm 1 Proposed dynamic clustering strategy

1: Given Acluster, K, P , n, S0 such that w.l.o.g. Acluster(i, p) < Acluster(j, p) for
i < j, p ∈ [P ]

2: for t = 1, . . . , T do
3: Observe St−1 and deduceKf andKs, i.e., sets of non-straggling and straggling

workers in iteration t− 1
4: Phase I:
5: Place workers to clusters following an order
6: if |Kf | ≥ |Ks| then
7: Place non-stragglers first
8: else
9: Place stragglers first

10: Phase II:
11: Conflict resolution in the case of an assignment problem in Phase I

12: Order determination:
13: Of (p) < Of (p̄) if |Kp

f | < |K
p̄
f | or (|K

p
f | = |K

p̄
f | and p < p̄) for p, p̄ ∈ [P ]

14: Use Os in the case of straggler placement with Kp
s for p ∈ [P ]

15: Non-straggler placement:
16: i = 1
17: while |Kf | > 0 and i < M do
18: j = mod (i, P ) with j ← P when mod (i, P ) = 0
19: Cluster to assign is p̄ such that Of (p̄) = j
20: if size(cluster p̄) < ℓ then
21: Assign the first non-straggling worker from Acluster(:, p̄) to cluster p̄
22: Remove the assigned worker from Kf and Acluster

23: i = i+ 1

24: Straggler placement:
25: Follow steps 16-23 using Ks and Os

26: Conflict resolution:
27: Given a conflicted worker k and corresponding conflicted cluster p
28: Identify the clusters Pk that worker k can be assigned to such that |Pk| = n
29: i = 1
30: while Worker k is not assigned to any cluster do
31: Select cluster p̄ such that p̄ = Pk(i)
32: if There is a worker k̄ in cluster p̄ such that wk̄ ∈ Acluster(:, p) then
33: Assign worker k̄ to cluster p
34: Assign worker k to cluster p̄

35: i = i+ 1
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CHAPTER 10

Age of Information with Gilbert-Elliot Servers and Samplers

10.1 Introduction

In most of the existing works in the age of information literature, there is an under-

lying i.i.d. structure in the system. The service times and packet interarrivals are

i.i.d. processes and the focus is on analyzing and optimizing the resulting age of in-

formation. There may be scenarios in which these processes are correlated over time

or over different status update packets. Reference [40] models transmission times as

a stationary and ergodic Markov chain to analyze the effect of the temporal corre-

lation between transmission times on age-optimal scheduling. References [220, 221]

study information freshness over Markovian channels. Specifically, reference [220]

models the channel using a Gilbert-Elliot model and introduces the concept of chan-

nel information age. This metric is used to express the utility and analyze the effect

of aging on the probability of error in estimating the channel state. Reference [47]

studies the freshness over a network with a Markov source and proposes an effective

age metric which captures estimation error as well as timeliness. Reference [24]

studies age of information with a two-state Markov modulated service process and

255



blocking
sampler monitorserver

if Gilbert-Elliot
server

if Gilbert-Elliot
sampler

p

b g

q

1−p 1−q

Figure 10.1: A single sampler sends time-sensitive status updates to a single monitor
node through a server node. We consider Gilbert-Elliot server and Gilbert-Elliot
sampler settings.

characterizes the average age for an FCFS operation under infinite and zero buffer

size settings.

In this chapter, we consider a status updating system in which there is a

single sampler which takes samples from an observed phenomenon and sends them

to an interested monitor node in the form of status update packets through a single

server node (see Fig. 10.1). We study age of information with Gilbert-Elliot servers

and samplers under blocking packet management policy at the server node. We

first analyze the case in which the service times follow a finite state Markov chain

with two states: bad state b and good state g such that in state g, the service

performance is faster than that in state b. The motivation for studying this kind

of a service profile comes from the measurements over Amazon EC2 clusters which

show high variability in computing speeds of the servers over time [169]. These

measurements indicate that when a server is in a certain state it tends to stay in that
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state in the next rounds of the computation which implies a dependence in service

times over time. In addition, [222] shows that the channel quality and reliability

in cooperative driving follows a Markov-modulated process which depends on the

number of interfering vehicles thereby affecting the service performance. Further,

in sensor networking applications, energy constraints on servers may prevent them

from operating in faster states all the time, and may force them to switch between

faster and slower states.

We derive the time average age under this Markovian service profile and char-

acterize the age-optimal state transition matrix of the underlying Markov chain first

without considering any constraints on the operation of the system. Next, we con-

sider a more realistic scenario in which each state has an operational cost and the

system is subject to an overall budget.

Next, we consider the case in which the sampler, i.e., the source node, follows

a Gilbert-Elliot model based operation. The sampler takes samples based on a

two-state Markov chain, as in Fig. 10.1. When in state g, it samples the observed

phenomenon more frequently whereas in state b, samples are taken more sparsely.

Thus, under this operation, interarrivals to the server node are no longer i.i.d. but

follow a two-state Markov chain. This non i.i.d. sampling operation is particularly

relevant when the sampler’s operation cost is considered as the sampler may not be

able to afford taking frequent samples all the time and may switch to a low-cost

operation to save energy. Further, the sampler may choose to sample the process

more often when the observed process varies above a certain threshold or varies too

fast. We characterize the average age under such Gilbert-Elliot sampling and find
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the age-optimal state transition matrix P .

10.2 System Model and Age Metric

We consider a communication system (see Fig. 10.1), where there is a single sam-

pler that takes samples from an observed phenomenon at random and immediately

transmits these samples to a monitor node through a single server node in the form

of status update packets. The server node implements a blocking policy in which an

arriving update packet goes directly into service only if the server is idle. Update

packets arriving when the server node is busy are discarded.

Unlike most of the literature, we consider non i.i.d. service and interarrival

profiles. Here, we use a simple Gilbert-Elliot model to introduce a non i.i.d. struc-

ture to the system. We consider two scenarios: Gilbert-Elliot service times and

i.i.d. interarrival times; and i.i.d. service times and Gilbert-Elliot interarrival times.

When the server follows a Gilbert-Elliot model, service times S follow a two

state Markov chain with states bad (b) and good (g) such that in state b, the server

node is slower and the service takes longer than the service in state g. We model the

service times with exponential random variables Sb with rate µb in state b and Sg

with rate µg in state g where µg > µb as in [24]. In this case, we model the update

arrivals at the server node as a Poisson process with rate λ. We adopt an event-

triggered Markov chain in which the state change only occurs when a new packet

enters service. Thus, during the service of an update packet, service performance

remains the same. The transition probability from state b to state g is p and the
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transition probability from state g to state b is q where p ∈ (0, 1) and q ∈ (0, 1) (see

Fig. 10.1). State transition matrix P of this Markov chain is

P =

1− p p

q 1− q

 . (10.1)

We note that this Markov chain is irreducible, aperiodic, and positive recur-

rent. Thus, service times constitute an ergodic Markov chain with a stationary

distribution,

P (S = Sb) =
q

p+ q
, P (S = Sg) =

p

p+ q
, (10.2)

where S is the service time of a packet that enters service.

When the sampler follows a Gilbert-Elliot model, this time, update interar-

rivals at the server node constitute a Markov chain with the state transition matrix

in (10.1) where in state g interarrival times are exponential random variables with

rate λg and in state b interarrival times are exponential random variables with rate λb

where λg > λb to reflect the increased sampling frequency in state g. The Markov

chain is again event-triggered such that the sampler’s state changes whenever an

update packet enters service at the server node.

To quantify the timeliness in the system, we use the age of information metric.

At time t age at the monitor node is the random process ∆(t) = t− u(t) where u(t)

is the time-stamp of the most recent update at the destination node. The metric
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we use, time averaged age, is given by

∆ = lim
τ→∞

1

τ

∫ τ

0

∆(t)dt, (10.3)

where ∆(t) is the instantaneous age at the monitor node.

In the next section, we derive an average age expression for the cases of Gilbert-

Elliot servers and samplers.

10.3 Average Age Analysis

The sampler generates status update packets and immediately sends them through

a delay-free link to the server node. Since a blocking policy is implemented, only

the packets that find the server idle go into service. We denote such packets that

enter service at the server node as successful packets. Let Tj−1 denote the time at

which the jth successful update packet is generated at the sampler. Since newly

generated packets are assumed to be instantaneously available to the server node,

Tj−1 also marks the time at which the jth successful update packet arrives at the

server node. Random variable Y denotes the update cycle at the server node, the

time in between two successful arrivals, where Yj = Tj − Tj−1.

Update cycle Yj consists of service time Sj and idle waiting time Zj as the

server needs to wait for the next arrival upon an update delivery to the monitor

node such that

Yj = Sj + Zj. (10.4)
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Figure 10.2: Sample age evolution ∆(t) at the monitor node. Successful updates are
indexed by j. The jth successful update arrives at the server node at Tj−1. Update
cycle at the server node is the time in between two successive arrivals and is equal
to Yj = Sj + Zj = Tj − Tj−1.

We note that Sj and Zj are mutually independent as the arrival and service processes

are independent. Sample age evolution at the destination node is given in Fig. 10.2.

Here, Qj denotes the area under the instantaneous age curve in update cycle j and

Yj denotes the length of the jth update cycle as defined earlier. The metric we use,

long term average age, is the average area under the age curve which is given [1, 7]

by

∆ = lim sup
n→∞

1
n

∑n
j=1Qj

1
n

∑n
j=1 Yj

. (10.5)

In the next two subsections, we find the average age for Gilbert-Elliot service

times and interarrival times, respectively.
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10.3.1 Gilbert-Elliot Service Times and I.i.d. Interarrival Times

Status update packets arrive at the server node as a Poisson process with rate λ.

Thus, update packet interarrivals at the server node are i.i.d. exponential random

variables with rate λ. Due to the memoryless property of the update arrivals at

the server node, Z is also exponentially distributed with rate λ. Service times S

follow a two-state Markov chain. Thus, two consecutive service times are dependent

through the state transition matrix P given in (10.1).

Conditioned on Sj and Sj+1, the jth update cycle and the area under the age

curve in this cycle are characterized by

(Yj, Qj) =



(Yb, Qbb), if Sj = Sb, Sj+1 = Sb

(Yb, Qbg), if Sj = Sb, Sj+1 = Sg

(Yg, Qgb), if Sj = Sg, Sj+1 = Sb

(Yg, Qgg), if Sj = Sg, Sj+1 = Sg.

(10.6)

We note that when the service times and interarrival times are i.i.d., we have

a renewal process with inter-renewal time equal to the update cycle Y . However, in

our model, update cycles Yj do not form an i.i.d. sequence unlike the prior models

considered in the literature. Rather, each (Yj, Qj) is characterized as in (10.6)

depending on the state of the service time in update cycles j and j + 1. Since the

underlying Markov chain is stationary and ergodic, we have (Yj, Qj) ∼ (Y,Q) over
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all update cycles and (10.5) reduces to

∆ =
E[Q]

E[Y ]
=

q E[Qb] + pE[Qg]

q E[Yb] + pE[Yg]
, (10.7)

where the first equality follows from [40, Appendix A] and the second equality follows

from the law of total probability where we define E[Qb] = (1 − p)E[Qbb] + pE[Qbg]

and E[Qg] = q E[Qgb] + (1− q)E[Qgg]. From this, along with Fig. 10.2, we get

E[Qb] =
1

2
E[(Sb + Z)2] + (E[Sb] + E[Z])E[S̄], (10.8)

E[Qg] =
1

2
E[(Sg + Z)2] + (E[Sg] + E[Z])E[ ¯̄S], (10.9)

where

E[S̄] = pE[Sg] + (1− p)E[Sb], (10.10)

E[ ¯̄S] = q E[Sb] + (1− q)E[Sg]. (10.11)

In addition, from (10.6) we have,

E[Yb] = E[Sb] + E[Z], (10.12)

E[Yg] = E[Sg] + E[Z], (10.13)

since Y = S + Z as defined earlier.

Substituting (10.8)-(10.13) in (10.7) yields the average age expression under

Gilbert-Elliot service times and i.i.d. interarrival times. We note that the numerator
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of (10.7) has pq terms whereas the denominator of (10.7) is linear in p and q.

We note that if the server operates only in state g without switching to state

b, the average age given in (10.7) becomes

∆g =
E[Qg]

E[Yg]
=

1

λ
+

2

µg

− 1

λ+ µg

, (10.14)

which is the result derived in [15] for an M/M/1 queue with blocking. A similar

average age, ∆b, is achieved if the server node only operates in state b.

10.3.2 Gilbert-Elliot Interarrival Times and I.i.d. Service Times

Service times at the server node are i.i.d. exponential random variables with rate

µ whereas the interarrival times follow a two-state Markov chain characterized by

the state transition matrix in (10.1). State changes occur upon successful entry to

the server node. Let Zg denote the waiting time until the next arrival when the

interarrival state is g, and let Zb denote the waiting time when the interarrival state

is b. Thus,

(Yj, Qj) =


(Yb, Qb), if Zj = Zb

(Yg, Qg), if Zj = Zg.

(10.15)
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Here, similar stationarity and ergodicity arguments apply and the average age is

again given by

∆ =
E[Q]

E[Y ]
=

q E[Qb] + pE[Qg]

q E[Yb] + pE[Yg]
. (10.16)

By inspecting Fig. 10.2, we find

E[Qb] =
1

2
E[(S + Zb)

2] + E[S]2 + E[S]E[Zb], (10.17)

E[Qg] =
1

2
E[(S + Zg)

2] + E[S]2 + E[S]E[Zg]. (10.18)

In addition, we have,

E[Yb] = E[S] + E[Zb], (10.19)

E[Yg] = E[S] + E[Zg]. (10.20)

by using (10.15) and the fact that Y = S + Z.

Substituting (10.17)-(10.20) in (10.16) yields the average age expression under

Gilbert-Elliot interarrival times and i.i.d. service times. We note that both the

numerator and denominator of (10.16) are linear in p and q.

So far, we derived average age expressions for Gilbert-Elliot servers and sam-

plers for a given state transition matrix P . We optimize this matrix P in the next

section to achieve minimum average age at the monitor node in both scenarios.
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10.4 Age-Optimal Transition Matrix P

In what follows we characterize the age-optimal state transition matrix P for Gilbert-

Elliot service times and Gilbert-Elliot interarrival times.

10.4.1 Gilbert-Elliot Service Times and I.i.d. Interarrival Times

In Section 10.3.1 the average age expression (10.7) for given state transition matrix

P under Gilbert-Elliot service times is derived. Next two lemmas characterize the

behavior of (10.7) with respect to the state transition probabilities p and q.

Lemma 10.1 Under Gilbert-Elliot service times, the average age in (10.7) mono-

tonically decreases in p.

Proof: To prove the lemma, we take the derivative of (10.7) with respect to p and

show that it is negative. The numerator of the derivative of (10.7) is

1

2
E[Yb]E[Y 2

g ]−
1

2
E[Yg]E[Y 2

b ] + E[Yb](E[Sg]− E[Sb])[(1− q)E[Yg] + q E[Yb]].

(10.21)

In (10.21), the last term is already negative as E[Sg] < E[Sb] as stated in Section 10.2.

Thus, we need to show that E[Yb]E[Y 2
g ] − E[Yg]E[Y 2

b ] < 0. This is indeed true for

exponential interarrival times with rate λ and exponential service times Sg with rate

µg in state g and Sb with rate µb in state b where µg > µb. With this, the result

follows. ■

Thus, as p increases, a better age performance is achieved at the monitor node.
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This is an intuitive result as larger p indicates that the service state spends more

time in the good state g as implied by (10.2). We note that this result does not

depend on q and is valid for any q ∈ (0, 1).

Lemma 10.2 Under Gilbert-Elliot service times, the average age in (10.7) mono-

tonically increases in q.

The proof of Lemma 10.2 follows similarly to that of Lemma 10.1. Thus, as

q decreases, a better age performance is achieved at the monitor node. Similar to

Lemma 10.1, Lemma 10.2 holds true for any p value in (0, 1).

From Lemmas 10.1 and 10.2, we observe that, to achieve the minimum average

age under Gilbert-Elliot service times, we need to maximize the time spent in state

g.

10.4.2 Gilbert-Elliot Interarrival Times and I.i.d. Service Times

In Section 10.3.2 the average age expression (10.16) for given state transition matrix

P under Gilbert-Elliot interarrival times is derived. Next two lemmas, which follow

similar to Lemmas 10.1 and 10.2, characterize the behavior of (10.16) with respect

to the state transition probabilities p and q.

Lemma 10.3 Under Gilbert-Elliot interarrival times, the average age in (10.16)

monotonically decreases in p.

Thus, as p increases, a better age performance is achieved at the monitor node

as in Gilbert-Elliot service times scenario.
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Lemma 10.4 Under Gilbert-Elliot interarrival times, the average age in (10.16)

monotonically increases in q.

Thus, as q decreases, a better age performance is achieved at the monitor node

as in Gilbert-Elliot service times scenario.

From Lemmas 10.3 and 10.4, we observe that, to achieve the minimum average

age under Gilbert-Elliot interarrival times, we need to maximize the time spent in

state g. Although more frequent sampling may overwhelm the network and incur

higher age in FCFS queueing systems as shown in [1], in our model, since a dropping

policy is implemented, more frequent sampling is desirable to obtain lower average

age.

In the next section, we find the age-optimal state transition matrix P when

there is an average cost constraint.

10.5 Age-Optimal Transition Matrix P under Average Cost Con-

straint

In Section 10.4, the age optimization is over all possible p and q pairs, i.e., (p, q) ∈

(0, 1)× (0, 1) and we showed that as p→ 1 and q → 0, the minimum age is achieved

in both scenarios. However, when there is a constraint on the operation of the

system, all of (0, 1)× (0, 1) region may not be feasible. To explore the age-optimal

state transition probabilities in such a scenario, here, we consider a constraint on

the average cost which may correspond possibly to limited energy budget for the

system. Let cb and cg denote the cost of operating in state b and state g, respectively,
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where cg ≥ cb as faster operation requires higher cost (e.g., more energy). When the

overall budget is c units, we need to satisfy

q

p+ q
cb +

p

p+ q
cg ≤ c. (10.22)

Then, the problem to solve becomes,

min
{p,q}

q E[Qb] + pE[Qg]

q E[Yb] + pE[Yg]

s.t. q(cb − c) + p(cg − c) ≤ 0, (10.23)

where expectations are as in (10.8)-(10.13) for Gilbert-Elliot service times and as

in (10.17)-(10.20) for Gilbert-Elliot interarrival times and the constraint follows

from (10.22). The trivial case is when c ≥ cg ≥ cb for which the feasible region

is (0, 1) × (0, 1) and the results from Section 10.4 apply. Thus, in this section, we

consider cg ≥ c ≥ cb for which the feasible set is shown in Fig. 10.3. Next, we show

that the constraint in (10.23) needs to be satisfied with equality.

Lemma 10.5 Age-optimal (p, q) pair satisfies the constraint in (10.23) with equal-

ity, i.e., q(cb − c) + p(cg − c) = 0.

Proof: Given a point β in the feasible set as shown in Fig. 10.3, a lower average

age can be obtained as we move along direction I to increase p or along direction II

to decrease q as shown in Lemmas 10.1 and 10.2 under Gilbert-Elliot service times

and in Lemmas 10.3 and 10.4 under Gilbert-Elliot interarrival times. Thus, no point
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Figure 10.3: Feasible (p, q) pairs for the problem in (10.23) when (a) c−cb
cg−c

> 1 and

(b) c−cb
cg−c

< 1 where the line is q(cb − c) + p(cg − c) = 0 in both cases.

that is not along the q(cb− c) + p(cg − c) = 0 line can be optimal as we can achieve

a lower average age by moving towards this line. ■

Thus, the age-optimal (p, q) pair is such that q = αp where α = cg−c

c−cb
. With

this, the problem in (10.23) reduces to a minimization over probability p only. That

is, the objective function in (10.23) becomes

∆(p) =
αE[Qb] + E[Qg]

αE[Yb] + E[Yg]
, (10.24)

where α is fixed. Next, we solve this problem for Gilbert-Elliot service times and

Gilbert-Elliot interarrival times and find the age-optimal (p, q) pair that minimizes

the average age.
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10.5.1 Gilbert-Elliot Service Times and I.i.d. Interarrival Times

We note that, under Gilbert-Elliot service times, the denominator of (10.24) does

not depend on p whereas the numerator depends on p linearly. One can show that

(10.24) is a decreasing function of p with an argument similar to that of Lemma 10.1.

Thus, provided that α < 1, the age-optimal transition matrix P under average cost

constraint is such that p → 1 and q → α which is the β∗ point in Fig. 10.3(a).

This result is intuitive as it maximizes the transition probability from state b to

state g and spends fraction of time in state b to satisfy the budget requirement. For

example, when cg = 2, c = 1.8 and cb = 1 we find α = 1
4
and the optimal selection

is p→ 1 and q → 1
4
.

Otherwise, when α > 1, the age-optimal selection is p→ 1
α
and q → 1 which is

the β∗ point in Fig. 10.3(b). This result tells us that in the age minimizing operation

the transition probability from state g to state b approaches 1 since the transition

probability from state b to state g is already limited by 1
α
. For example, when cg = 2,

c = 1.2 and cb = 1 we find α = 4 and the age-optimal selection is p→ 1
4
and q → 1.

10.5.2 Gilbert-Elliot Interarrival Times and I.i.d. Service Times

We note that, under Gilbert-Elliot interarrival times, both the numerator and the

denominator of (10.24) do not depend on p. Thus, any p and corresponding q = αp

for the given α yields the same average age. In other words, as long as we operate in

(0, β∗) in Fig. 10.3, i.e., satisfy (10.22) with equality, we obtain the optimal average

age since (10.16) depends on p and q only through the stationary probabilities of
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Figure 10.4: Age of information as a function of probability p for Gilbert-Elliot
service times. Symbol ◦ marks the simulation results and curves indicate the values
obtained from (10.7).

the states given in (10.2) as expectations in (10.17)-(10.20) do not depend on p and

q.

10.6 Numerical Results

In this section, we provide simple numerical results to validate our theoretical results

for a system with arbitrary exponential interarrival and service times.

We consider Gilbert-Elliot service times and take λ = 1 which is the rate of

Poisson arrivals to the server node. We model the service times with an exponential

random variable with rate µb = 0.1 in state b and with rate µg = 1 in state g.

In Figs. 10.4 and 10.5, we plot the average age of information under Gilbert-Elliot

service times as a function of the state transition probabilities p and q, respectively.

In both of the figures, we plot simulation results, marked with ◦ symbol, along with

results obtained from (10.7) and observe that the results match. Fig. 10.4 shows
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Figure 10.5: Age of information as a function of probability q for Gilbert-Elliot
service times. Symbol ◦ marks the simulation results and curves indicate the values
obtained from (10.7).

that the average age decreases monotonically as probability p gets larger as shown

in Lemma 10.1. Here, we also note that as q gets lower for a fixed p value, we

achieve a lower average age as discussed earlier in Section 10.4. Fig. 10.5 shows that

the age of information increases monotonically as probability q increases. We also

observe that for a fixed q value, the best age is obtained when the p probability

is the largest. When the server node only operates in the good state g, we find

that ∆ = 2.5. We observe that this value is lower than the age values in Figs. 10.4

and 10.5 as the server does not slow down by switching to the bad state b. Similarly,

if the server node only operates in the bad state b, we find that ∆ = 20.09 which is

strictly larger than the age values shown in Figs. 10.4 and 10.5. Thus, in this case,

the server node benefits from switching to the good state g.
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10.7 Conclusion

In this chapter, we considered an information update system in which status update

packets are generated by a sampler and sent to a monitor node through a server node.

We considered two scenarios: Gilbert-Elliot service times and i.i.d. interarrival times;

and Gilbert-Elliot interarrival times and i.i.d. service times. In these scenarios, either

the server or the sampler follows a two-state Markov chain with the good state g and

the bad state b where the operation is faster in state g. We determined the average

age at the monitor node for both scenarios and characterized the age-optimal state

transition matrix for the underlying Markov chain with and without an average cost

constraint on the operation of the system.
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CHAPTER 11

Conclusions

In this dissertation, we studied information timeliness in large communication net-

works, distributed computation and learning systems.

In Chapter 2, we studied a multihop multicast network, in which a single

source node sends time-sensitive status updates to nL end nodes where L denotes

the number of hops. Each update from the source node goes through relay nodes

in each hop to reach the end nodes in the Lth hop. We showed that by carefully

selecting stopping thresholds in each hop, the average age at the end nodes can be

made a constant independent of n. We then found the optimum stopping thresholds

kℓ for each hop ℓ for arbitrary shifted exponential link delays in each hop.

In Chapter 3, we considered age of information in a multicast network with two

types of updates that share the same network, namely type I and type II updates.

We showed that by utilizing an earliest k1 and k2 transmission scheme for type I

and type II updates, respectively, the age of both update streams can be made a

constant independent of the network size. We then characterized the k1 and k2

stopping thresholds to individually and jointly minimize the average age of both
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update streams for arbitrary shifted exponential link delays.

In Chapter 4, we studied the scaling of average age of information in a large

peer-to-peer network with n source-destination (S-D) pairs. We first proposed a

three-phase transmission scheme that uses local cooperation between nodes as well

mega update packets to achieve an average age scaling of O(n
1
4 log n) per user. Then,

we introduced hierarchy to the proposed scheme that entails applying the proposed

three-phase scheme in smaller scales and achieved a per-user average age scaling of

O
(
nα(h) log n

)
where α(h) = 1

3·2h+1
and h is the number of hierarchy levels. In the

asymptotic case when h tends to ∞, the resulting average age per-user scales as

O(log n).

In Chapter 5, we studied version age scaling in a network consisting of n

nodes that are grouped into equal-sized clusters, each equipped with a cluster-head

that facilitates communication with the source. Unlike Chapters 2-4, nodes are

allowed to share their stored versions of the source information with their neighbors

within clusters, i.e., gossiping. We showed that average version age scalings of

O(
√
n), O(n

1
3 ), and O(log n) are achievable per user in disconnected, ring, and

fully connected cluster topologies. We then showed that, once the cluster heads

exchange information among themselves following a ring network, per-node average

age scalings of O(n
1
3 ), O(n

1
4 ), and O(log n) in disconnected, ring, and fully connected

cluster models, respectively, are achievable. We then implemented a hierarchical

gossip structure and showed that, for h levels of hierarchy, per user average age

scaling of O(n
1
2h ) is achievable in the case of ring networks in each cluster across

all hierarchy levels. We finally found the version age-optimum cluster sizes as a
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function of the update rates at the source, cluster heads, and among the nodes.

In Chapter 6, we studied age of information considering computationally-

intensive status update packets that need additional processing to reveal the em-

bedded useful information. This processing is handled by a computation unit (CU)

using n worker nodes in a distributed manner. We analyzed the age performance

of the uncoded and coded computation distribution algorithms. We first showed

that the MDS coded task distribution scheme outperforms the uncoded and repeti-

tion coded schemes for large n. Next, we showed that, when workers are assigned

multiple computation tasks (MM-MDS scheme), the age performance of the system

further improves. We then found the age-optimal repetition, MDS, and MM-MDS

coded schemes that minimize the age of information at the receiver node.

In Chapter 7, we studied age of information in federated learning and proposed

a novel timely communication scheme for applications that involve highly temporal

rapidly changing client datasets. Our scheme aims to reflect the fast changing client

data in global model updates with as little age as possible without harming con-

vergence by considering the limited client availability and communication resources.

We showed that the proposed timely communication scheme not only increases the

timeliness of the system but also significantly improves the average iteration time

without sacrificing convergence of the learning task.

In Chapter 8, we proposed an age-based coded computation strategy for dis-

tributed learning systems that utilize partial recovery for straggler mitigation. In

order to prevent biased model updates that are caused by partial recovery in the

case of correlated straggler behavior among the workers, we designed an age-based
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timely encoding strategy that changes the codewords at the workers to regulate

the recovery frequency of the partial computations. We showed, through extensive

simulations on a linear regression problem, that the proposed age-based encoding

strategy significantly improves the convergence performance compared to conven-

tional static encoding schemes.

In Chapter 9, we studied a gradient coding (GC) framework and proposed a

novel scheme called the GC-DC to improve the average iteration time of the exist-

ing static GC schemes. Our proposed GC-DC scheme dynamically forms clusters

from the workers and applies the GC scheme in each cluster separately. In do-

ing that, it aims to distribute the stragglers to clusters as uniformly as possible in

each iteration under a time-correlated straggling behavior for the workers. Through

extensive simulations, we showed that the GC-DC scheme significantly improves av-

erage per-iteration completion time without an increase in the communication load

by dynamically adapting to the straggling behavior of the workers.

In Chapter 10, we considered a system where a single sampler updates a re-

ceiver node through a single server. We studied Gilbert-Elliot service times and

i.i.d. interarrival times; and Gilbert-Elliot interarrival times and i.i.d. service times.

We characterized the average age of information at the receiver node for both cases

and determined the age-optimal state transition matrix of the underlying Markov

chain with and without cost constraints on the operation of the system.

The contents of Chapter 2 are published in [115, 119], Chapter 3 in [129],

Chapter 4 in [145–147], Chapter 5 in [223, 224], Chapter 6 in [182, 225], Chapter 7

in [226], Chapter 8 in [183], Chapter 9 in [227,228], Chapter 10 in [218].
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