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Activity recognition from video data is a key computer vision problem with ap-

plications in surveillance, elderly care, etc. This problem is associated with modeling a

representative shape which contains significant information about the underlying activity.

In this dissertation, we represent several approaches for view-invariant activity recogni-

tion via modeling shapes on various shape spaces and Riemannian manifolds.

The first two parts of this dissertation deal with activity modeling and recognition

using tracks of landmark feature points. The motion trajectories of points extracted from

objects involved in the activity are used to build deformation shape models for each ac-

tivity, and these models are used for classification and detection of unusual activities. In

the first part of the dissertation, these models are represented by the recovered 3D defor-

mation basis shapes corresponding to the activity using a non-rigid structure from motion

formulation. We use a theory for estimating the amount of deformation for these models

from the visual data. We study the special case of ground plane activities in detail because

of its importance in video surveillance applications.

In the second part of the dissertation, we propose to model the activity by learning



an affine invariant deformation subspace representation that captures the space of pos-

sible body poses associated with the activity. These subspaces can be viewed as points

on a Grassmann manifold. We propose several statistical classification models on Grass-

mann manifold that capture the statistical variations of the shape data while following the

intrinsic Riemannian geometry of these manifolds.

The last part of this dissertation addresses the problem of recognizing human ges-

tures from silhouette images. We represent a human gesture as a temporal sequence of

human poses, each characterized by a contour of the associated human silhouette. The

shape of a contour is viewed as a point on the shape space of closed curves and, hence,

each gesture is characterized and modeled as a trajectory on this shape space. We utilize

the Riemannian geometry of this space to propose a template-based and a graphical-based

approaches for modeling these trajectories. The two models are designed in such a way to

account for the different invariance requirements in gesture recognition, and also capture

the statistical variations associated with the contour data.
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Chapter 1

Introduction

Video understanding has been one of the ultimate goals of the research efforts in

computer vision and pattern recognition domains for a long period of time. The ability

to describe what is happening in the video is an important problem for so many applica-

tions like surveillance systems, human computer interaction, and multimedia analysis and

indexing. Activity representation serves as a key component in the path to achieve this

goal. In this dissertation, we address the problem of modeling and recognition of human

activities in video. We propose several statistical models on various shape spaces and

Riemannian manifolds to achieve a robust representation of various individual activities.

Existing literature in human movement visual analysis (see reviews [4, 39, 51, 73])

uses the terms gesture, and action interchangeably to refer to sequences of human poses

corresponding to different activities. However, there are slight variations among these

terms. Gesture recognition from video refers to the problem of modeling and recognizing

full body gestures performed by an individual in the form of a sequence of body poses

and captured by a video camera. These gestures are typically used to communicate certain

control commands and requests to a machine equipped with vision capabilities. This sce-

nario usually arises in applications such as human computer interaction and robotics. On

the other hand, action recognition refer to the more general case of modeling and recogni-

tion of different human actions- such as walking, running, jumping, etc, performed under
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different scenarios and conditions. This problem is more prominent in applications such

as smart surveillance and media indexing. The main difference between the two problems

is that in the former the human subject can be more cooperating, which reduces the need

for building view-invariance into the models. The models proposed in this dissertation

can be used for either of the two problems. This is demonstrated by using different exper-

imental data sets for gesture and action recognition. We will use the term activity to refer

to both gesture and simple action throughout the dissertation.

In many situations, the problem of activity modeling is associated with modeling a

representative shape which contains significant information about the underlying activity.

This can range from the shape of the silhouette of a person performing an action to the

trajectory of the person or a part of his body while preforming the action. The human

visual system has a unique ability to recover the underlying activity form the sparse shape

data. This ability was first investigated by Johansson [54] and he denoted it the term

”biological motion perception”.

In this dissertation we hypothesize that modeling the dynamic shape variation as-

sociated with activities can play a crucial rule in classifying different activities. However,

several challenges arise while using shape models for activity recognition. One of these

challenges is the need to account for different variations in activity performance and ac-

quisition. Invariance to camera view-point, execution rate, and anthropometric variations

stands as a critical requirement in activity recognition models.

In all of these situations, several factors suggest the use of shape theory [60, 29]

to provides powerful methods for representing these shapes. One of these factors is the

geometric nature of the shape features, where ideas from differential geometry such as
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quotient spaces and equivalence classes can provide efficient tools to computationally

characterize the different variation factors among different shapes. These spaces are also

characterized by a rich mathematical and statistical theory in the area of differential ge-

ometry and shape spaces.

1.1 Motivation

In this dissertation we will present several approaches for modeling human activ-

ities by building models on the Riemannian shape manifolds. We will address different

shape spaces tailored to applications.

1.1.1 Activity representation Using 3D Shape Models

In applications with relatively high quality videos, landmark feature points can be

located and tracked with high accuracy. We propose a framework for recognizing activ-

ities by first extracting the trajectories of the various points taking part in the activity,

followed by a non-rigid 3D shape model fitted to the trajectories. It is based on the empir-

ical observation that many activities have an associated structure and a dynamical model.

Consider, as an example, the set of images of a walking person in Figure 1.1(a)

(obtained from the USF database for the Gait Challenge problem [81]). The binary repre-

sentation clearly shows the change in shape of the body for one complete walk cycle. The

person in this figure is free to move his/her hands and feet any way he/she likes. How-

ever, this random movement does not constitute the activity of walking. For humans to

perceive and appreciate the walk, the different parts of the body have to move in a certain
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synchronized manner. In mathematical terms, this is equivalent to modeling the walk by

the deformations in the shape of the body of the person. Similar observations can be made

for other activities performed by a single human, e.g. dancing, jogging, sitting, etc.

An analogous example can be provided for an activity involving a group of peo-

ple. Consider people getting off a plane and walking to the terminal, where there is no

jet-bridge to constrain the path of the passengers (Figure 1.1(b)). Every person after dis-

embarking, is free to move as he/she likes. However, this does not constitute the activity

of people getting off a plane and heading to the terminal. The activity here is comprised of

people walking along a path that leads to the terminal. Again, we see that the activity can

be modeled by the shape of the trajectories taken by the passengers. Using deformable

shape models is a higher level abstraction of the individual trajectories and provides a

method of analyzing all the points of interest together, thus modeling their interactions in

a very elegant way.

Not only is the activity represented by a deformable shape sequence, the amount

of deformation is different for different activities. For example, it is reasonable to say

that the shape of the human body while dancing is usually more deformable than during

walking, which is more deformable than when standing still. Since it is possible for the

human observer to roughly infer the degree of deformability based on the contents of the

video sequence, the information about how deformable a shape is must be contained in the

sequence itself. We will use this intuitive notion to quantify the deformability of a shape

sequence from a set of tracked points on the object. In our activity representation model,

a deformable shape is represented as a linear combination of rigid basis shapes [107]. The

deformability index provides a theoretical framework for estimating the required number
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(a) (b)

Figure 1.1: Two examples of activities: (a) the binary silhouette of a walking person,
and (b) people disembarking from an airplane. It is clear that both of these activities can
be represented by a deformable shape models by using the body contour in (a) and the
passenger/vehicle motion paths in (b).

of basis shapes.

1.1.2 Affine-invariant Activity Recognition on the Grassmann Manifold

of Deformation Subspaces

In the second part of this dissertation, we propose to use statistical models on the

Grassmann manifold for affine invariant action recognition. Given the 2D locations of

different landmark points on the body, captured from arbitrary camera viewpoints, we

compute an affine-invariant subspace representation of this action. This subspace rep-

resentation captures the underlying deformation modes associated with the action under

a linear basis deformation model similar to the model usually used in non-rigid struc-

ture from motion literature (NRSFM). We apply statistical classification methods on the

Grassmann manifold for action recognition.

This approach has the advantage that it does not need a complete recovery of the
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actual 3D shape of the subject while performing the action, which eliminates the need to

solve for the metric upgrade in the NRSFM formulation. It also builds affine-invariance

into the learnt representation, which makes the model invariant to both viewpoint and

body type variations. An invariance to the temporal rate of execution of the action is

also inherent in this model, since the classification is performed on the view-invariant

subspace of modes of deformation rather than the actual temporal trajectory within that

subspace.

1.1.3 Gesture and Action Recognition via Modeling Trajectories on Rie-

mannian manifolds

The major challenge of using landmark tracking data is that it requires highly ac-

curate low-level processing tasks such as tracking of interest points. This turns out to

be very hard to achieve in certain recognition scenarios because of fast articulation, self

occlusion, and different resolution levels that are encountered in different applications.

In order to overcome this limitation, silhouette-based approaches have been receiv-

ing increasing attention recently [13, 119, 123]. These approaches focus on the use of

the shape of the binary silhouette of the human body as a feature for gesture recognition.

They rely on the observation that most human gestures can be recognized using only the

shape of the outer contour of the body. The most important advantage of these features

is that they are easy to extract from the raw video frames using object localization and

background subtraction algorithms, which are low-level processing tasks and relatively

high accuracy can be achieved in these tasks under different conditions.
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In the third part of this dissertation, we explore the use of shape analysis on closed

curve manifolds for human actions and gesture recognition. Our approach falls into the

category of the silhouette-based approaches described earlier. Each silhouette is repre-

sented by a planar closed curve corresponding to the contour of this silhouette, and we

are interested in evolving shapes of these curves during actions and gestures. We use a

recent approach proposed for shape analysis [56, 57, 101], that uses differential geomet-

ric tools on the shape spaces of closed curves. While there are several ways to analyze

shapes of closed curves, an elastic analysis of the parameterized curves is particularly

appropriate in this application. This is because: (1) the elastic matching of curves al-

lows nonlinear registration and improved matching of features (e.g. body parts) across

silhouettes, (2) this method uses a square-root representation under which the elastic met-

ric reduces to the standard L2 metric and thus simplifies the analysis, and (3) under this

metric the re-parameterizations of curves do not change Riemannian distances between

them and thus help remove the parametrization variability from the analysis. Furthermore,

such geometric approaches are useful because they allow us to perform intrinsic statistical

analysis tasks, such as shape modeling and clustering, on such Riemannian spaces [100].

Using a square-root representation of contours, each human gesture is transferred

into a sequence of points on the shape space of closed curves. Thus, the problem of action

recognition becomes a problem of modeling and comparing dynamical trajectories on the

shape space. We propose two different approaches to model these trajectories.

In the first approach, we propose a template-based approach to learn a unique tem-

plate trajectory representing each gesture. One of the main challenges in template-based

methods is to account for variations in temporal execution rate. To deal with this problem,
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we use a modified version of the Dynamic Time Warping (DTW) algorithm to learn the

warping functions between the different realizations of each gesture. We use the geodesic

distances on the shape space to match different points on the trajectories in order to learn

the warping functions. An iterative approach is then used to learn a mean trajectory on

the shape space and to compute the temporal warping functions.

In the second approach, we utilize the geometry of the shape space more efficiently

in order to cope with the different variations within each gesture caused by changes in

execution style, body shape and noise. Each gesture is modeled as a Markov model to

represent the transition among different clusters on the shape space of closed curve. We

learn these models by decoupling the problem into two stages. In the first stage, we cluster

the individual silhouette shapes using the Affinity Propagation (AP) clustering technique

[38], and build statistical model of variation within each cluster. In the second stage, a

hidden Markov Model (HMM) is used to learn the transition between different clusters

for each gesture.

1.2 Contributions

This dissertation makes the following contributions:

1. Activity representation using 3D shape Models: We propose an approach for

activity representation and recognition based on extracting the 3D shapes gener-

ated by the activity. We use the 3D deformable shape model for characterizing the

objects corresponding to each activity. We study the special case of ground plane

activity trajectory in more detail as an important application because of its impor-
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tance in surveillance scenarios.

2. Affine Invariant Activity Recognition on Grassmann manifold of Deformation

Subspaces: We model the problem of affine-invariant activity recognition as a clas-

sification problem on the space of deformation subspaces of landmark data. We

study and propose several statistical models on the Grassmann manifold to solve

this activity classification problem. We propose a multi-scale Bayesian formulation

to deal with the variable degree of deformation for different actions.

3. Gesture and Action Recognition via Modeling Trajectories on Riemannian

manifolds: We pose the problem of gesture and action recognition as one of clas-

sifying the trajectories on a Riemannian shape space of closed curves. We study

the differential geometry of this space, and propose a template-based model and a

Markovian graphical model for modeling the time series data of points on this man-

ifold. These models were designed to fully adhere to the geometry of the manifold

and to model the statistical variation of the data. Finally, we provide a comprehen-

sive set of experimental analysis of the proposed models on two different datasets

for gesture and action recognition.

1.3 Organization

This rest of this dissertation is organized as follows. Chapter 2 reviews some of the

literature related work and introduces some of the needed basis mathematical background

in Riemannian geometry. Chapter 3 discusses the use of 3D shape models for activity

recognition. Chapter 4 represents activity recognition via modeling deformability spaces
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using statistical models on the Grassmann manifold. Chapter 5 deals with silhouette-

based activity recognition via modeling trajectories on the Riemannian manifold of closed

curves. Finally, we discuss future directions of research in chapter 6.

10



Chapter 2

Related Work

In this chapter we review some of the literature related to several aspects of this

dissertation. We will also review some basic mathematical results from Riemannian ge-

ometry that are used in the discussion in later chapters.

2.1 Literature Review

The problem of action and activity modeling from visual data has received a lot of

attention in the literature in the last few decades, resulting in many publications scattered

among different communities. Several survey papers [3, 4, 39, 72, 73] have tried to group

and analyze the existing body of work. We refer the reader to these review papers for a

complete overview of the related work in the field.

One of the earliest efforts was the survey paper by Aggarwal and Cai [3]. In this

paper, the authors present a survey of the work on three major areas related to human

action and activities. These areas are segmentation of human body parts, human tracking

across video sequence and finally activity recognition. In a recent review, Aggarwal and

Park [4] concentrate on the high-level processing tasks involved in action and activity

modeling. They discuss different aspects such as the level of detail required, the different

human models, recognition approaches and high-level recognition schemes. Gavrila [39]

presents a survey that focuses mainly on whole body and hand motion actions. He clas-
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sifies the approaches into 2D and 3D approaches, and gives a nice survey of the various

application domains for human motion analysis. Moeslund and others published two sur-

vey papers [72, 73] that cover the work on motion capture analysis before the year 2000

and from 2000-2006 respectively. They use a consistent functional taxonomy that divides

the work into the areas of initialization, tracking, pose estimation and finally recognition.

The reader is referred to these review papers for a complete overview of the related work

in the field. Below, we give a brief review for some approaches in three different areas

that are of most relevance to this dissertation.

2.1.1 Activity Representation and Recognition

Most of the early work on activity representation comes from the field of Artificial

Intelligence (AI) [110, 75]. More recent work comes from the fields of image understand-

ing and visual surveillance, employing formalisms like hidden Markov models (HMMs),

logic programming and stochastic grammars [74, 64, 28, 19, 25, 88, 122, 102, 128]. A

method for visual surveillance using a “forest of sensors” was proposed in [44]. Many

uncertainty-reasoning models have been actively pursued in the AI and image under-

standing literature, including belief networks [79, 53, 86], Dempster-Shafer theory [94],

dynamic Bayesian networks [6, 52] and Bayesian inference [48].

Video data in its raw format consists of a sequence of pixel intensity values orga-

nized in a spatial and temporal order. This results in a massive amount of data and a very

high dimensional data vectors. However, these data vectors are highly correlated as they

reflect a small degree of freedom that controls the generation of the underlying action and
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activity. For this reason, an important processing step in activity recognition is the feature

extraction stage, which aims at extracting a more concise representation for the video data

in order to use it in modeling and recognizing actions and activities in video.

Among the different features used for activity recognition, silhouette-based meth-

ods have received the most attention in the literature. Wang and Suter recently proposed

two approaches [124, 123] for modeling motion subspaces associated with human actions

represented by silhouettes. In the first approach [124], they represent the silhouettes us-

ing block based features, where each block is represented by the normalized value of the

intensity values within the block. They then use the kernel PCA (KPCA) technique to

learn a nonlinear subspace of the action data. The dynamics of the action is then modeled

using a discriminative factorial conditional random field model (FCRF). In the second

approach [123], they use features based on a distance transform (DT) and use local pre-

serving projections (LPP) to project the feature data onto a lower dimensional manifold.

They use a simpler model for recognition based on comparing the trajectories on the em-

bedding space. In both approaches, the main assumption was that the features will have

an inherently low-dimensional structure, and that data-driven nonlinear dimensionality

techniques will successfully capture this structure.

Another related class of approaches for silhouette-based action recognition is called

exemplar-based modeling [32, 127], where the different features corresponding to ges-

tures are clustered into a set of exemplars or key poses, and the dynamics of the action

are learnt as a set of transitions between these exemplars. A recent example of these

approaches is [68], where each gesture is represented using a sequence of shape-motion

prototypes. The training data is used to build a prototype tree in the joint shape and
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motion space via hierarchical k-means clustering. A k-NN classifier is used to classify

gestures based on the frame to prototype distance of the test sequence. Exemplar-based

hidden Markov models [37, 108] were used in [32] to model body gestures using Chamfer

distance as a matching measure between different poses. The same tool was used in [127]

for view-invariant modeling of actions using 3D exemplars. Our technique for learning

the graphical model for trajectories presented in Section 5.3, comes under this category,

if we consider the different clusters as exemplar points on the shape space. However,

we use the Riemannian structure of the manifold to build statistical models around these

exemplars. This enables us to perform the statistical inference task more efficiently than

using only the exemplars.

2.1.2 Riemannian Manifolds in Computer Vision

The geometric nature of many vision problems leads to features and exemplars that

lies on a certain curved space that has a Riemannian structure, leading to the applicability

of a wide variety of tools from differential geometry and Riemannian manifold analysis.

These tools have been used in several vision problems. For example, a covariance de-

scriptor was proposed in [113] for region-based shape description. This descriptor lies

on the space of symmetric positive definite matrices. The Riemannian geometry of this

space was later used to build models for object detection and tracking [114]. In [115], a

Riemannian classification approach was used for pedestrian detection on this manifold.

They used a modified version of the Logitboost approach, where the weak learners are

trained directly on that manifold.
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Another special manifold, the Grassmann manifold, was used in [9] for affine in-

variant shape clustering. Statistical models on this manifold were used in [112] to build

parametric and non-parametric distributions for several other vision applications like ac-

tivity recognition, video-based face recognition. Trajectories on this manifold were later

used in [111] to represent locally time-invariant dynamical models for action recognition.

2.1.3 Shape Spaces and Activity Recognition

Among the different geometric manifolds that are of interest in computer vision

applications, shape spaces have received the most attention in the literature and have

been used for shape detection, tracking and analysis that are invariant to different shape-

preserving transformation groups. The work in this area can be classified into two main

categories. The first category is based on landmark-based analysis, where the shape of

the object is represented by a discrete set of landmarks extracted from the object contour

[60, 29]. This formulation was used to represent shape spaces that are invariant under

transformation groups such as similarity [59], affine [78], and projective transformation

[41]. The limitation with this class of approaches is its dependence on automatic de-

tection and tracking of landmark points. A simple landmark-based approach is Active

Shape Model (ASM) [22], that assumes that shape belongs to the Euclidean space and

uses principal component analysis (PCA) of the landmark location to model the shape

variations within that space. Although this approach has found many applications be-

cause of its simplicity, it ignores the nonlinear geometry of the shape space which limits

its representative power under different geometric transformations. The second category
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of shape spaces can be linked to Grenander’s formulation [42], where shapes are modeled

as points on infinite-dimensional manifolds, and the variations between the shapes are

modeled by the actions of Lie-groups (diffeomorphisms) on these manifolds. This class

of approaches avoid the problems associated with landmark tracking. However it suffers

from computational cost of such high-dimensional models.

Shape spaces have also been used for activity recognition in several computer vi-

sion publications. Kendall’s statistical shape theory was used to model the interactions

of a group of people and objects in [116], as well as the motion of individuals [118]. In

both approaches, assuming the stationarity of the shape sequence of an activity, the au-

thors project the sequence of shape points into the tangent plane at the mean shape. The

dynamic of the projected points is then modeled using regular vector space approaches

on this single tangent plane. In a more recent work [24], a non stationary model was

proposed. It builds an auto regressive (AR) process on the shape space represented by a

sequence of tangent planes. They use an alignment step to align the tangent planes at two

consecutive time steps. The proposed model was used for tracking of the shape using a

particle filter algorithm and for action synthesis. There was no experimental results for

using this approach for action classification and recognition.

A method for representation of human activities based on space curves of joint an-

gles and torso location and attitude was proposed in [20]. In [85], the authors proposed

an activity recognition algorithm using dynamic instants and intervals as view-invariant

features and the final matching of trajectories was conducted using a rank constraint on

the 2D shapes. In [77], each human action was represented by a set of 3D curves which

are quasi-invariant to the viewing direction. In [55] and [76] the motion trajectories of an
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object are described as a sequence of flow vectors, and neural networks are used to learn

the distribution of these sequences. In [21], a wavelet transform was used to decompose

the raw trajectory into components of different scales, and the different subtrajectories are

matched against a data base to recognize the activity. Although landmark-based shape

space methods have proven successful in several vision problems, the performance usu-

ally relies on accurate detection and tracking of key landmark points. This turns out to be

a very challenging task especially under rapid motion and self-occlusion, which are com-

mon in gesture recognition problems. For this reason, instead of using landmark-based

shape representation and space, our approach models the shape of the contour at each

frame using a closed curve representation.

Recently, there has been a growing interest in building mathematical representations

and metrics for modeling the shapes of closed curves. We will employ one of the recent

approaches [71], which uses differential geometry tools for analyzing the space of closed

curves using elastic string models. Similar ideas have also been presented in [132, 132].

Using Riemannian analysis of such space, statistical models and efficient methods were

built to perform tasks such as shape modeling and clustering [100]. Later, the same

methods were combined using a square-root representation [56, 101] to construct a shape

space of closed curves in R2 and to compute geodesics between 2D and 3D closed curves.

Invariance to different shape preserving geometric transformation and re-parametrization

were incorporated into the computation of geodesics between shapes and subsequently

used for shape analysis of curves in [57].
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2.2 Mathematical Background

2.2.1 Overview of Riemannian Geometry

We will briefly review the basics of Riemannian geometry [27]. A topological

manifold is a set that is, among other things, locally Euclidean. This means that for an

n-dimensional manifoldM, there exists a set of neighborhoods that coverM and that are

homeomorphic to corresponding open sets in Rn. If these local mappings are diffeomor-

phic, and the different neighborhoods are (maximally) smoothly compatible, thenM is a

differentiable manifold. Figure 2.1 shows an example of a two-dimensional manifold in

R3. The (infinite-dimensional) Hilbert manifold is a set that is locally diffeomorphic to

the (infinite-dimensional) Hilbert space. The tangent space TxM at each point x ∈ M is

the vector space that contains the velocity vectors of all the differentiable curves on M

passing through x, at x. A Riemannian metric on a manifoldM is an inner product ⟨., .⟩

on the tangent space TxM that varies smoothly with x. The norm of the vector v ∈ TxM is

given by ||v|| = ⟨v, v⟩(1/2). If α : [0, 1]→M is a differentiable path inM, then its length is

given by L[α] =
∫ 1

0
||α̇(t)|| dt. The Riemannian distance between two points x, y ∈ M, de-

noted as d(x, y), is defined as the minimum length over all paths on the manifold between

x and y. A geodesic path is a path that locally minimizes the length between points.

Given a tangent vector υ ∈ TxM, there exists a locally unique geodesic, γυ(t), start-

ing at x with υ as its initial velocity and traveling with constant speed. The Riemannian

exponential map, expx : TxM → M maps a tangent vector υ to a point on the manifold

that is reached in unit time by the geodesic γυ(t). The inverse of expx is known as the

logarithm map and is denoted by logx :M→ TxM. Thus, for a point y in the domain of
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Figure 2.1: A two-dimensional manifoldM in R3, TxM the tangent plane at x ∈ M, and
the exp and log maps relating x, y ∈ M.

logx, the geodesic distance between x and y is given by

d(x, y) = ||logx(y)|| . (2.1)

As explained in [80, 66], the exponential map realizes a chart called the the expo-

nential chart. In this chart, geodesics starting from x are straight lines, and the distance

from the development point are preserved. This chart is considered the ”most linear” chart

of the manifold with respect to the point x.

In order to build efficient and robust models of trajectories on Riemannian mani-

folds, we need to use some tools for statistical analysis of points on Riemannian mani-

folds. We start with calculating the intrinsic mean and principal components for a set of

points x1, · · · , xn ∈ M that lie on a sufficiently small neighborhood onM.

The intrinsic mean or Karcher mean µ is defined as a local minimizer inM of the

sum-of-squared Riemannian distances to each point. Thus, this intrinsic mean is given by

µ = argminx∈M

N∑
i=1

d(x, xi)2 (2.2)

where d(., .) is the Riemannian geodesic distance defined in (2.1). A gradient descent
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approach was proposed in [80, 66] to solve this minimization problem.

Building high order statistical models directly on Riemannian manifolds is rather

difficult to perform. This is mainly due to the non-linearity of these manifolds. So a

common approach is to build the statistical model on the tangent plane of the manifold

at some reference point, which is a vector space and hence more conventional statistics

can be applied. Usually, the reference point is chosen to be the mean point of the set

of samples of the distribution. Under the assumption that the data points lie in a small

neighborhood about the mean point µ, it was shown in [34] that solving for the principal

geodesic components, the equivalent of principal component vectors in Euclidean space,

boils down to performing PCA for the tangent vectors logµ(xi) ∈ TµM. This method is

called principal geodesic analysis (PGA).

20



Chapter 3

Activity representation Using 3D Shape Models

3.1 Introduction

In many situations, the problem of activity modeling is associated with modeling a

representative shape which contains significant information about the underlying activity.

This can range from the shape of the silhouette of a person performing an action to the

trajectory of the person or a part of his body. However, these shapes are often hard

to model because of their deformability and variations under different camera viewing

directions.

In all of these situations, shape theory provides powerful methods for representing

these shapes [60, 29]. The work in this area is divided between 2D and 3D deformable

shape representations. The 2D shape models focus on comparing the similarity of two or

more 2D shapes [29, 22, 70, 93, 97]. Two-dimensional representations are usually com-

putationally efficient and there exists a rich mathematical theory using which appropriate

algorithms could be designed. Three-dimensional models have received much attention

in the past few years. In addition to the higher accuracy provided by these methods, they

have the advantage that they can potentially handle variations in camera viewpoints.

3D approaches have been applied in several applications like face recognition [135].

For example in [87], the authors proposed a 3D morphable face model, where each face

can be represented as a linear combination of basis shapes and textures. However, the
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use of 3D shapes for activity recognition has been much less studied. In many of the

3D approaches, a 2D shape is represented by a finite-dimensional linear combination of

3D basis shapes and a camera projection model relating the 3D and 2D representations

[107, 14, 129, 15]. This method has been applied primarily to deformable object modeling

and tracking. In [96], actions under different variability factors were modeled as a linear

combination of spatio-temporal basis actions. The recognition in this case was performed

using the angles between the action subspaces and without explicitly recovering the 3D

shape. However, this approach needs sufficient video sequences of the actions under

different viewing directions and other forms of variability to learn the space of each action.

In this chapter, we propose an approach for activity representation and recognition

based on 3D shapes generated by the activity. We use the 3D deformable shape model

for characterizing the objects corresponding to each activity. The underlying hypothesis

is that an activity can be represented by deformable shape models that capture the 3D

configuration and dynamics of the set of points taking part in the activity. This approach

is suitable for representing different activities as shown by experiments in Section 3.4.

This idea has also been used for 2D shape-based representation in [119, 117]. We also

use a method for estimating the amount of deformation of a shape sequence by deriving

a “deformability index” (DI) [91]. Estimation of the DI is non-iterative, does not require

selecting an arbitrary threshold and can be done before estimating the 3D structure, which

means we can use it as an input to the 3D non-rigid model estimation process. We study

the special case of ground plane activity trajectories in more detail because of their impor-

tance in surveillance scenarios. The 3D shapes in this special scenario are constrained by

the ground-plane which reduces the problem to a 2D shape representation. Our method
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in this case has the ability to match the trajectories across different camera view points

(which would not be possible using 2D shape modeling methods), and the ability to es-

timate the number of activities using the DI formulation. Preliminary versions of this

work appeared in [90, 89] and a more detailed analysis of the concept of measuring the

deformability was presented in [91].

We have tested our approach on different experimental data sets. First we validate

the method of DI estimation using motion capture data as well as videos of different hu-

man activities. The results show that the DI is in accordance with our intuitive judgment

and corroborates certain hypotheses prevailing in human movement analysis studies. Sub-

sequently, we present the results of applying our algorithm to two different applications:

view-invariant human activity recognition using 3D models (high-resolution imaging),

and detecting anomalies in ground plane surveillance scenario (low-resolution imaging).

This Chapter is organized as follows. Section 3.2 describes the shape-based activ-

ity modeling approach along with the special case of ground plane motion trajectories.

Section 3.3 presents the method for estimating the DI for a shape sequence. Detailed

experimental results are presented in Section 3.4, before providing a chapter summary in

Section 3.5.

3.2 Shape Based Activity Models

We propose a framework for recognizing activities by first extracting the trajectories

of the various points taking part in the activity, followed by a non-rigid 3D shape model

fitted to the trajectories. It is based on the empirical observation that many activities have
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an associated structure and an underlying dynamical model.

3.2.1 Estimation of Deformable Shape Models

We hypothesize that each shape sequence can be represented by a linear combi-

nation of 3D basis shapes. Mathematically, if we consider the trajectories of P points

representing the shape (e.g. landmark points), then the overall configuration of the P

points is represented as a linear combination of the basis shapes S i as

S =
K∑

i=1

liS i, S , S i ∈ ℜ3×P, l ∈ ℜ. (3.1)

where li represent the weight associated with the basis shape S i.

The choice of K is determined by quantifying the deformability of the shape se-

quence and will be studied in detail in Section 3.3. We will assume a weak perspective

projection model for the camera.

A number of methods exist in the computer vision literature for estimating the basis

shapes. In the factorization paper for structure from motion [104], the authors considered

P points tracked across F frames in order to obtain two F×P matrices U and V. Each row

of U contains the x-displacements of all the P points for a specific time frame, and each

row of V contains the corresponding y-displacements. It was shown in [104], that for 3D

rigid motion and the orthographic camera model, the rank, r, of the concatenation of the

rows of the two matrices

UV has an upper bound of 3. The rank constraint is derived from

the fact that

UV can be factored into two matrices M2F×r and Sr×P, corresponding to the

pose and 3D structure of the scene, respectively. In [107], it was shown that for non-rigid

motion, the above method could be extended to obtain a similar rank constraint, but one
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that is higher than the bound for the rigid case. We will adopt the method suggested in

[107] for computing the basis shapes for each activity. We will outline the basic steps of

their approach in order to clarify the notation for the remainder of the paper.

Given F frames of a video sequence with P moving points, we first obtain the

trajectories of all these points over the entire video sequence. These P points can be

represented in a measurement matrix as

W2F×P =



u1,1 · · · u1,P

v1,1 · · · v1,P

...
...

...

uF,1 · · · uF,P

vF,1 · · · vF,P



, (3.2)

where u f ,p represents the x-position of the pth point in the f th frame and v f ,p represents

the y-position of the same point. Under weak perspective projection, the P points of a

configuration in a frame f , are projected onto 2D image points (u f ,i, v f ,i) as
u f ,1 · · · u f ,P

v f ,1 · · · v f ,P

 = R f

 K∑
i=1

l f ,iS i

 + T f , (3.3)

where,

R f =


r f 1 r f 2 r f 3

r f 4 r f 5 r f 6

 ∆=


R(1)
f

R(2)
f

 . (3.4)

R f represents the first two rows of the full 3D camera rotation matrix and T f is the camera

translation. The translation component can be eliminated by subtracting out the mean

of all the 2D points, as in [104]. We now form the measurement matrix W, which is
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represented in (3.2), with the means of each of the rows subtracted. The weak perspective

scaling factor is implicitly coded in the configuration weights, {l f ,i}.

Using (3.2) and (3.3), it is easy to show that

W =



l1,1R1 · · · l1,KR1

l2,1R2 · · · l2,KR2

...
...

...

lF,1RF · · · lF,KRF





S 1

S 2

...

S K


= Q2F×3K .B3K×P,

(3.5)

which is of rank 3K. The matrix Q contains the pose for each frame of the video sequence

and the weights l1, ..., lK . The matrix B contains the basis shapes corresponding to each

of the activities. In [107], it was shown that Q and B can be obtained using singular value

decomposition (SVD), and retaining the top 3K singular values, as W2F×P = UDVT and

Q = UD 1
2 and B = D 1

2 VT . 1

3.2.2 Special Case: Ground Plane Activities

A special case of activity modeling that often occurs is the case of ground plane

activities, which are often encountered in applications such as visual surveillance. In

these applications the objects are far away from the camera such that each object can be

considered as a point moving on a common plane such as the ground plane of the scene

1The solution is unique up to an invertible transformation. Methods have been proposed for obtaining

an invertible solution using the physical constraints of the problem. This has been dealt with in detail in

previous papers [105, 129]. Although this is important for implementing the method, we will not dwell on

it in detail in this dissertation and shall refer the reader to previous works.
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under consideration. Because of the importance of such configurations, we study it in

more detail and present an approach for using our shape based activity model to represent

these ground plane activities. The 3D shapes in this case are reduced to 2D shapes due

to the ground plane constraint. The main reason for using our 3D approach (as opposed

to a 2D shape matching one) is the ability to match the trajectories across changes of

viewpoint.

Our approach for this situation consists of two steps. The first step recovers the

ground plane geometry and uses it to remove the projection effects between the trajec-

tories that correspond to the same activity. The second step uses the deformable shape-

based activity modeling technique to learn a nominal trajectory that represents all the

ground plane trajectories generated by an activity. Since each activity can be represented

by one nominal trajectory, we will not need multiple basis shapes for each activity.

3.2.2.1 First Step: Ground-Plane Calibration

Most of the outdoor surveillance systems monitor a ground plane of an area of

interest. This area could be the floor of a parking lot, the ground plane of an airport, or

any other monitored area. Most of the objects being tracked and monitored are moving on

this dominant plane. We use this fact to remove the camera projection effect by recovering

the ground plane and projecting all the motion trajectories back onto this ground plane. In

other words, we map the motion trajectories measured at the image plane onto the ground

plane coordinates to remove these projective effects. Many automatic or semi-automatic

methods are available to perform this calibration [134, 109]. As the calibration process
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Figure 3.1: Perspective images of points in a plane[45]. The world coordinate system is
moved in order to be aligned with the plane π.

needs to be performed only one time because the camera is fixed, we are using the semi-

automatic method presented in [67], which is based on using some of the features which

are often seen in man-made environments. We will give a brief summary of this method

for completeness.

Consider the case of points lying on a world plane π, as shown in Figure 3.1. The

mapping between points Xπ = (X,Y, 1)T on the world plane π and their image x is a general

planar homography- a plane to plane projective transformation- of the form x = HXπ, with

H being a 3 × 3 matrix of rank 3. This projective transformation can be decomposed into

a chain of more specialized transformations of the form

H = HSHAHP (3.6)

where HS, HA, and HP represent similarity, affine and pure-projective transformations,

respectively. The recovery of the ground plane up to a similarity is performed in two

stages.

Stage 1: From projective to affine This is achieved by determining the pure projective

transformation matrix HP. We note that the inverse of this projective transformation is
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also a projective transformation ĤP, which can be written as

ĤP =


1 0 0

0 1 0

l1 l2 l3


(3.7)

where l∞ = (l1, l2, l3)T is the vanishing line of the plane, defined as the line connecting all

the vanishing points for lines lying on the plane.

From (3.7), it is evident that identifying the vanishing line is enough to remove

the pure-projective part of the projection. In order to identify the vanishing line, two

sets of parallel lines should be identified. Parallel lines are easy to find in man made

environments (e.g. parking space markers, curbs, and road lanes).

Stage 2: From affine to metric The second stage of the rectification is the removal of the

affine projection. As in the first stage, the inverse affine transformation matrix ĤA can be

written in the following form

ĤA =



1
β
−α
β

0

0 1 0

0 0 1


(3.8)

Also, this matrix has two degree of freedoms represented by α and β. These two param-

eters have a geometric interpretation as representing the circular points, which are a pair

of points-at-infinity that are invariant to Euclidean transformations. Once these points are

identified, metric properties of the plane are available.

Identifying two affine invariant properties on the ground plane can be sufficient to

obtain two constraints on the values of α and β. Each of these constraint is in the form of
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a circle. These properties include known angle between lines, equality of two unknown

angle, and a known length ratio.

3.2.2.2 Second Step: Learning Trajectories

After recovering the ground plane (i.e. finding the projective ĤP and affine ĤA

inverse transformations) the motion trajectories of the objects are reprojected to their

ground plane coordinates. Having m different trajectories of each activity, the goal is to

obtain a nominal trajectory that represents all of these trajectories. We assume that all

these trajectories have the same 2D shape up to a similarity transformation (translation,

rotation, and scale). This transformation will compensate for the way the activity was

performed in the scene. We use the factorization algorithm to obtain the shape of this

nominal trajectory from all the motion trajectories.

For a certain activity that we wish to learn, let T j be the jth ground-plane trajectory

of this activity. This trajectory was obtained by tracking an object performing the activity

in the image plane over n frames, and projecting these points onto the ground plane as,

T j =


x j1 · · · x jn

y j1 · · · y jn

1 · · · 1



= ĤAĤP


u j1 · · · u jn

v j1 · · · v jn

1 · · · 1



(3.9)

where u, v are the 2D image plane coordinates, x, y are the ground plane coordinates,

and ĤP and ĤA are the pure-projective and affine transformations from image to ground
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planes respectively.

Assume that, except for a noise term η j, all the different trajectories correspond

to the same 2D nominal trajectory S but have undergone 2D similarity transformations

(scale, rotation and translation). Then

T j = HS jS + η j

=


s j cos θ j −s j sin θ j tx j

s j sin θ j s j cos θ j ty j

0 0 1




x̃1 · · · x̃n

ỹ1 · · · ỹn

1 · · · 1


+ η j

(3.10)

where HS j is the similarity transformation between the jth trajectory and S. This relation

can be rewritten in inhomogeneous coordinates as

T̂ j =


s j cos θ j −s j sin θ j

s j sin θ j s j cos θ j



x̃1 · · · x̃n

ỹ1 · · · ỹn

 +

tx j

ty j

 + η j

=s jR jS + tj + η j

(3.11)

where s j, R j and t j represent the scale, rotation matrix and translation vector, respectively,

between the jth trajectory and the nominal trajectory S.

In order to explore the temporal behavior of the activity trajectories, we divide each

trajectory into small segments at different time scales and explore these segments. By

applying this time scaling technique, which will be addressed in detail in Section 3.4,

we obtain m different trajectories, each with n points. Given these trajectories, we can
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construct a measurement matrix of the form

W =



T̂1

T̂2

...

T̂m


=



x11 · · · x1n

y11 · · · y1n

...
...

xm1 · · · xmn

ym1 · · · ymn


2m×n

(3.12)

As before, we subtract the mean of each row to remove the translation effect. Sub-

stituting from (3.11), the measurement matrix can be written as

W =



s1R1

s2R2

...

smRm


S +



η1

η2

...

ηm


=P2m×2S2×n + η

(3.13)

Thus in the noiseless case, the measurement matrix has a maximum rank of two. The

matrix P contains the pose or orientation for each trajectory. The matrix S contains the

shape of the nominal trajectory for this activity.

Using the rank theorem for noisy measurements, the measurement matrix can be factor-

ized into two matrices P̃ and S̃ by using SVD and retaining the top two singular values,

as shown before.

W = UDVT (3.14)

and taking P̃ = U′D′
1
2 and S̃ = D′

1
2 V′T , where U′,D′,V′ are the truncated versions of

U,D,V by retaining only the top two singular values. However, this factorization is not
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unique, as for any non-singular 2 × 2 matrix Q

W = P̃S̃ = (P̃Q)(Q−1S̃) (3.15)

So, we want to remove this ambiguity by finding the matrix Q that would transform P̃ and

S̃ into the pose and shape matrices P = P̃Q and S = Q−1S̃ as in (3.13). To find Q we use

the metric constraint on the rows of P, as suggested in [104].

By multiplying P by its transpose PT , we get

PPT =


s1R1

...

smRm


[
s1R1 · · · smRm

]
=


s2

1I2

. . .

s2
mI2


(3.16)

where I2 is a 2 × 2 identity matrix. This follows from the orthonormality of the rotation

matrices R j. Substituting for P = P̃Q, we get

PPT = P̃QQT P̃T =



a1

b1

...

am

bm



QQT

[
a1

T b1
T · · · am

T bm
T

]
(3.17)

where ai and bi, i = 1 : m, are the odd and even rows of P̃, respectively. From (3.16) and

(3.17), we obtain the following constraints on the matrix QQT , ∀i = 1, . . . ,m, such that

aiQQT aT
i = biQQT bT

i = s2
i

aiQQT bT
i = 0

(3.18)

Using these 2m constraints on the elements of QQT , we can find the solution for QQT .

Then Q can be estimated through SVD, and it is unique up to a 2 × 2 rotation matrix.
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This ambiguity comes from the selection of the reference coordinate system and can be

eliminated by selecting the first trajectory as a reference, i.e by selecting R1 = I2×2.

3.2.2.3 Testing Trajectories

In order to test whether an observed trajectory Tx belongs to a certain learnt activity

or not, two steps are needed:

1. Compute the optimal rotation and scaling matrix sxRx in the least square sense,

such that,

Tx ≃ sxRxS (3.19)
x1 · · · xn

y1 · · · yn

 ≃ sxRx


x̃1 · · · x̃n

ỹ1 · · · ỹn

 (3.20)

The matrix sxRx has only two degrees of freedom, which correspond to the scale sx

and rotation angle θx, we can write the matrix sxRx as

sxRx=


sx cos θx −sx sin θx

sx sin θx sx cos θx

 (3.21)

By rearranging (3.20), we get 2n equations in the two unknown elements of sxRx in

the form 

x1

y1

...

xm

ym



=



x̃1 −ỹ1

ỹ1 x̃1

...
...

x̃m −ỹm

ỹm x̃m




sx cos θx

sx sin θx

 (3.22)
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Again, this set of equations is solved in the least square sense to find the optimal

sxRx parameters that minimize the mean square error between the tested trajectory

and the rotated nominal shape for this activity.

2. After the optimal transformation matrix is calculated, the correlation between the

trajectory and the transformed nominal shape is calculated and used for making a

decision. The Frobenius norm of the error matrix is used as an indication of the

level of correlation, which represents the mean square error (MSE) between the

two matrices. The error matrix is calculated as the difference between the tested

trajectory matrix Tx and the rotated activity shape, as follows

∆x = Tx − sxRxS (3.23)

The Frobenius norm of a matrix A is defined as the square root of the sum of the

absolute squares of its elements,

||A||F =

√√ m∑
i=1

n∑
j=1

|a2
i j| (3.24)

The value of the error is normalized with the signal energy to give the final normal-

ized mean square error (NMSE) defined as

NMS E =
||∆x||F

||Tx||F + ||sxRxS||F
(3.25)

Comparing the value of this NMSE to NMSE values of learnt activities, a decision can be

made as to whether the observed trajectory belongs to this activity or not.
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3.3 Estimating the Deformability Index (DI)

In this section, we describe a method for estimating the amount of deformation in

a deformable 3D shape model [91]. This method is based on applying subspace analysis

on the trajectories of the object points tracked over a video sequence. The estimation of

DI is essential for our activity modeling approach that has been explained above. From

one point of view, DI represents the amount of deformation in the 3D shape representing

the activity. In other words, it represents the number of basis shapes (k in (3.1)) needed to

represent each activity. On the other hand, in the analysis of ground plane activities, the

DI estimated can be used to estimate the number of activities in the scene (i.e., to find the

number of nominal trajectories), as we assumed that each activity can be represented by

a single trajectory on the ground plane.

We will use the word trajectory to refer to either the tracks of a certain point of the

object across different frames, or to refer to the trajectories generated by different objects

moving in the scene in the ground plane scenario.

Consider each trajectory obtained from a particular video sequence to be the real-

ization of a random process. Represent the x and y coordinates of the sampled points on

these trajectories for one such realization as a vector y = [u1, ..., uP, v1, ..., vP]T . Then from

(3.5), it is easy to show that for a particular example with K distinct motion trajectories
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(K is unknown)

yT =
[
l1R(1), ..., lKR(1), l1R(2), ..., lKR(2)

]
∗ (3.26)

S 1

...

S k

0

0

S 1

...

S k



+ ηT ,

i.e., y= (q1×6Kb6K×2P)T + η = bT qT + η, (3.27)

where η is a zero-mean noise process. Let Ry = E[yyT ] be the correlation matrix of y

and Cη the covariance matrix of η. Hence

Ry = bT E[qT q]b + Cη. (3.28)

Cη represents the accuracy with which the feature points are tracked and can be estimated

from the video sequence using the inverse of the Hessian matrix at each of the points.

Since η need not be an IID noise process, Cη will not necessarily have a diagonal structure

(but it is symmetric). However, consider the singular value decomposition of Cη = PΛPT ,

where Λ = diag[Λs, 0] and Λs is an L × L matrix of non-zero singular values of Λ. Let

Ps denote the columns of P corresponding to the non-zero singular values. Therefore,

Cη = PsΛsPT
s . Premultiplying (3.27) by Λ−

1
2

s PT
s , we see that (3.27) becomes

ỹ = b̃T qT + η̃, (3.29)

where ỹ = Λ−
1
2

s PT
s y is a L × 1 vector, b̃ = Λ−

1
2

s PT
s bT is a L × 6K matrix and η̃ = Λ−

1
2

s PT
s η.

It can be easily verified that the covariance of η̃ is an identity matrix IL×L. This is known
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as the process of “whitening”, whereby the noise process is transformed to be IID. Rep-

resenting by Rỹ the correlation matrix of ỹ, it is easy to see that

Rỹ = b̃T E[qT q]b̃ + I = ∆ + I. (3.30)

Now, ∆ is of rank 6K, where K is the number of activities. Representing by µi(A) the ith

eigenvalue of the matrix A, we see that µi(ỹ) = µi(∆) + 1 for i = 1, ..., 6K and µi(ỹ) = 1,

for i = 6K + 1, ..., L. Hence, by comparing the eigenvalues of the observation and noise

processes, it is possible to estimate the Deformability Index. This is done by counting the

number of eigenvalues of Rỹ that are greater than 1, and dividing that number by 6 to get

the DI value. The number of basis shapes can then be obtained by rounding the DI to the

nearest integer.

3.3.1 Properties of the Deformability Index

• For the case of a 3D rigid body, the DI is 1. In this case, the only variation in the

values of the vector y from one image frame to the next is due to the global rigid

translation and rotation of the object. The rank of the matrix ∆ will be 6 and the

deformability index will be 1.

• Estimation of DI does not require explicit computation of the 3D structure and

motion in (3.5), as we need only to compute the eigenvalues of the covariance

matrix of the 2D feature positions. In fact, for estimating the shape and rotation

matrices in (3.5) it is essential to know the value of K. Thus the method outlined

in this Section should precede computation of the shape in Section 3.2. Using

our method, it is possible to obtain an algorithm for deformable shape estimation
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without having to guess the value of K.

• The computation of DI takes into account any rigid 3D translation and rotation of

the object (as recoverable under a scaled orthographic camera projection model),

even though it has the simplicity of working only with the covariance matrix of the

2D projections. Thus it is more general than a method that considers purely 2D

image plane motion.

• The “whitening” procedure described above enables us to choose a fixed threshold

of one for comparing the eigenvalues.

3.4 Experimental Results

We performed two sets of experiments to show the effectiveness of our approach

for characterizing activities. In the first, we use 3D shape models to model and recognize

the activities performed by an individual, e.g. walking, running, sitting, crawling, etc. We

show the effect of using a 3D model in recognizing these activities from different viewing

angles. In the second set of experiments, we provide results for the special case of ground

plane surveillance trajectories resulting from a motion detection and tracking system [2].

We explore the effectiveness of our formulation in modeling nominal trajectories and

detecting anomalies in the scene. In the first experiment, We assume a robust tracking of

the feature points across the sequence. This enable us to focus on whether the 3D models

can be used to disambiguate among different activities in various poses and the selection

of the criterion to make this decision. However, as pointed out in the original factorization

paper [104] and in its extensions to deformable shape model in [107], the rank constraint

39



algorithms can estimate the 3D structure even with noisy tracking results.

3.4.1 Application in Human Activity Recognition

We used our approach to classify the various activities performed by an individ-

ual. We used the motion-capture data [1] available from Credo Interactive Inc. and

Carnegie Mellon University in the BioVision Hierarchy and Acclaim formats. The com-

bined dataset included a number of subjects performing various activities, like walking,

jogging, sitting, crawling, brooming, etc. For each of these activities, we had multiple

video sequences consisting of 72 frames each, with different viewpoint sequences for

many of the activities.

3.4.1.1 Computing the DI for Different Human Acivity

For the different activities in the database, we used an articulated 3D model for the

body that contains 53 tracked feature points. We used the method described in Section 3.3

to the trajectories of these points to compute the DI for each of these sequences. These

values are shown in Table 3.1 for various activities. Please note that DI is used to estimate

the number of basis shapes needed for 3D deformable object modeling, not for activity

recognition.

From Table 3.1, a number of interesting observations can be made. For the walk

sequences, the DI is between 5 and 6. This matches the hypotheses in papers on gait

recognition where it is mentioned that about five exemplars are necessary to represent a

full cycle of gait [58]. The number of basis shapes increases for fast walk, as expected
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Table 3.1: Deformability Index (DI) for Human Activities Using Motion Capture Data

Activity DI Activity DI

1 Male Walk (Seq. 1) 5.8 10 Broom (Seq. 2) 8.8

2 Male Walk (Seq. 2) 4.7 11 Jog 5.0

3 Fast Walk 8.0 12 Blind Walk 8.8

4 Walk throwing hands around 6.8 13 Crawl 8.0

5 Walk with drooping head 8.8 14 Jog while taking U-turn (Seq. 1) 4.8

6 Sit (Seq. 1) 8.0 15 Jog while taking U-turn (Seq. 2) 5.0

7 Sit (Seq. 2) 8.2 16 Broom in a circle 9.0

8 Sit (Seq. 3) 8.2 17 Female Walk 7.0

9 Broom (Seq. 1) 7.5 18 Slow Dance 8.0
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from some of the results in [103]. When the stick figure person walks doing some other

things (like moving head or hands or a blind person’s walk), the number of basis shapes

needed to represent it (i.e. the deformability index) increases from that of normal walk.

The result that might seem surprising initially is the high DI for sitting sequences. On

closer examination though, it was found that the stick figure, while sitting, was making

all kinds of random gestures as if talking to someone else. That increased the DI for these

sequences. Also, the DI is insensitive to changes in viewpoint (azimuth angle variation

only), as can be seen by comparing the jog sequences (14 and 15 with 11) and broom

sequences (16 with 9 and 10). This is not surprising since we do not expect the defor-

mation of the human body to change due to rotation about the vertical axis. The DI, thus

calculated, is used to estimate the 3D shape, some of which are shown in Figure 3.2 and

are used in activity recognition experiments.

3.4.1.2 Activity Representation using 3D models

Using the video sequences and our knowledge of the DI for each activity, we applied

the method outlined in Section 3.2 to compute the basis shapes and their combination co-

efficients (see (3.1)). The orthonormality constraints in [107] are used to get a unique

solution for the basis shapes. We found that the first basis shape, S 1, contained most of

the information. The estimated first basis shapes are shown in Figure 3.2 for six differ-

ent activities. For this application, considering only the first basis shape was enough to

distinguish between the different activities, i.e., the recognition results did not improve

with adding more basis shapes, although the differences between the different models in-
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Plots of the first basis shape, S 1 for walk, sit and broom sequences, (a)-(c),
and for jog, blind walk and crawl sequences, (d) - (f).

creased. This is a peculiarity of this dataset and will not be true in general. In order to

compute the similarity measure, we considered the various joint angles between the differ-

ent parts of the estimated 3D models. The angles considered are shown in Figure 3.3(a).

The idea of considering joint angles for activity modeling has been suggested before in

[20]. We considered the seven dimensional vector obtained from the angles as shown

in Figure 3.3(a). The distance between the two angle vectors was used as a measure of

similarity. Thus small differences indicated higher similarity.

The similarity matrix is shown in Figure 3.3(b). The row and column numbers

correspond to the numbers in Table 3.1 for 1-16, while 17 and 18 correspond to sitting and

walking, where the training and test data are from two different viewing directions. For the

moment, consider the upper 13 x 13 block of this matrix. We find that the different walk

sequences are close to each other, this is also true for sitting and brooming sequences. The

jog sequence, besides being closest to itself, is also close to the walk sequences. Blind
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(a) (b)

Figure 3.3: (a): The various angles used for computing the similarity of two models is
shown in the Figure. The text below describes the seven dimensional vector computed
from each model and whose correlation determines the similarity scores. (b): The sim-
ilarity matrix for the various activities, including ones with different viewing directions.
The numbers correspond to the numbers in Table 3.1 for 1-16. 17 and 18 correspond
to sitting and walking, where the training and test data are from two different viewing
directions.

walk is close to jogging and walking. The crawl sequence does not match any of the rest

and this is clear from Row 13 of the matrix. Thus, the results obtained using our method

are reasonably close to what we would expect from a human observer, which support the

use of this representation in activity recognition.

In order to further show the effectiveness of this approach, we used the obtained

similarity matrix to analyze the recognition rates for different clusters of activities, We

applied different thresholds on the matrix and calculated the recall and precision values

for each cluster. The first cluster contains the walking sequences along with jogging and

blind walk (activities 1-5,11, and 12 in Table 3.1). Figure 3.4(a) shows the recall vs.

precision values for this activity cluster, we can see from the figure that we are able to

44



0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

recall

pr
ec

is
io

n

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall
pr

ec
is

io
n

(a) (b)

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

(c)

Figure 3.4: The recall vs. precision rates for the detection of three different clusters
of activities. (a) Walking activities (activities 1-5,11, and 12 in Table 3.1) (b) Sitting
activities (activities 6-9 in Table 3.1 ) (c) Brooming activities (activities 9 and 10 in Table
3.1)

45



identify 90% of these activities with a precision up to 90%. The second cluster consists

of three sitting sequences (activities 6-8 in Table 3.1), and the third cluster consists of

the brooming sequences (activities 9 and 10 in Table 3.1). For both of these clusters the

similarity values were quite separated to the extent that we were able to fully separate the

positive and negative examples. This resulted in the recall vs. precision curves as shown

in Figure 3.4(b) and Figure 3.4(c).

3.4.1.3 View-Invariant Activity Recognition

In this part of the experiment, we consider the situation where we try to recognize

activities when the training and testing video sequences are from different viewpoints.

This is the most interesting part of the method, as it demonstrates the strength of using 3D

models for activity recognition. In our dataset, we had three sequences where the motion

is not parallel to the image plane, two for jogging in a circle and one for brooming in a

circle. We considered a portion of these sequences where the stick figure is not parallel to

the camera. From each such video sequence, we computed the basis shapes. Each basis

shape is rotated, based on an estimate of its pose, and transformed to the canonical plane

(i.e. parallel to the image plane). The basis shapes before and after rotation are shown

in Figure 3.5. The rotated basis shape is used to compute the similarity of this sequence

with others, exactly as described above. Rows 14-18 of the similarity matrix shows the

recognition performance for this case. The jogging sequences are close to jogging in the

canonical plane (Column 11), followed by walking along the canonical plane (Columns

1-6). For the broom sequence, it is closest to a brooming activity in the canonical plane
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(a) (b) (c) (d)

Figure 3.5: (a) and (b) plot the basis shapes for jogging and brooming when the viewing
direction is different from the canonical one. (c) and (d) plot the rotated basis shapes.

(Column 9 and 10). The sitting and walking sequences (columns 17 and 18) of the test

data are close to the sitting and walking sequences in the training data, even though they

were captured from different viewing directions.

3.4.2 Application in Characterization of Ground Plane Trajectories

Our second set of experiments was directed towards the special case of ground

plane motion trajectories. The proposed algorithm was tested on a set of real trajectories,

generated by applying a motion-detection and tracking system [2] on the force protection

surveillance system (FPSS) dataset provided by U. S. Army Research Laboratory (ARL).

These data sequences represent the monitoring of humans and vehicles moving around

in a large parking lot. The normal activity in these sequences corresponds to a person

moving into the parking lot and approaching his or her car, or stepping out of the car

and moving out of the parking lot. We manually picked the trajectories corresponding to

normal activities from the tracking results to assure stable tracking results in the training

set.

In this experiment we deal with a single normal activity. However, for more compli-

cated scenes, the algorithm can handle multiple activities by first estimating the number
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of activities using the DI estimation procedure in Section 3.3, and then performing the

following learning procedure for each activity.

3.4.2.1 Time Scaling

One of the major challenges in comparing activity is to remove the temporal vari-

ation in the way the activity is being executed. Several techniques were used to face this

challenge as in [121], where the authors used Dynamic Time Warping (DTW) [83] to

learn the nature of time warps between different instants of each activities. This tech-

nique could have been used in our problem as a pre-processing stage for the trajectories

to compensate for these variations before computing the nominal shape of each activity.

However, the nature of the ground plane activities in our experiment did not require such

sophisticated techniques, so we used a much simpler approach to be able to compare tra-

jectories of different lengths (different number of samples n), and to explore the temporal

effect. We adopt the multi-resolution, time scaling approach described below:

• Each trajectory is divided into segments of a common length n. We pick n = 50

frames in our experiment.

• A multi-scale technique is used for testing different combinations of segments,

ranging from the finest scale (the line segments) to the coarsest scale (the whole

trajectory). This technique gives the ability to evaluate each section of the trajectory

along with the overall trajectory. An example of the different training sequences that

can be obtained from a 3n trajectory is given in Table 3.2, where Downsamplem de-

notes the process of keeping every mth sample and discarding the rest. We provide a
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Table 3.2: The different trajectory sequences generated from a three-segments trajectory.

x1 · · · xn xn+1 · · · x2n x2n+1 · · · x3n

y1 · · · yn yn+1 · · · y2n y2n+1 · · · y3n

Scale Segment Representation Trajectory points Processing type

1 (1,1) x1 : xn No Processing
y1 : yn No Processing

(1,2) xn+1 : x2n No Processing
yn+1 : y2n No Processing

(1,3) x2n+1 : x3n No Processing
y2n+1 : y3n No Processing

2 (2,1) x1 : x2n Downsample2

y1 : y2n Downsample2

(2,2) xn+1 : x3n Downsample2

yn+1 : y3n Downsample2

3 (3,1) x1 : x3n Downsample3

y1 : y3n Downsample3

representation of the segments in the form of an ordered pair (i, j) where i represent

the scale of the segment and j represent the order of this segment within the scale

i.

An important property of this time scaling approach is that it captures the change in

motion pattern between segments because of grouping of all possible combinations of

adjacent segments. This can be helpful as the abrupt change in human motion pattern,

like sudden running, is a change that is worthy of being singled out in surveillance appli-

cations.
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3.4.2.2 Ground Plane Recovery

This is the first step in our method. This calibration process needs to be done once

for each camera, and the transformation matrix can then be used for all the subsequent

sequences because of the stationary setup. The advantage of this method is that it does

not need any ground truth information and can be performed using some features that are

common in man-made environments.

As described before, the first stage recovers the affine parameters by identifying

the vanishing line of the ground plane. This is done using two parallel lines as shown

in Figure 3.6(a), the parallel lines are picked as the horizontal and vertical borders of a

parking spot. Identifying the vanishing line is sufficient to recover the ground plane up to

an affine transformation as shown in Figure 3.6(b).

The second stage is to recover the ground plane up to a metric transformation, which

is achieved using two affine invariant properties. The recovery result is shown in Figure

3.6(c). In our experiment we used the right angle between the vertical and horizontal

borders of parking space, and the equal length of the tires span of a tracked truck across

frames as shown by the white points (S 1, S 2) and (S 3, S 4) in Figure 3.6(a).

3.4.2.3 Learning the Trajectories

For learning the normal activity trajectory, we used a training data set containing

the tracking results for 17 objects of different track length. The normal activity in this data

corresponds to a person entering the parking lot and moving towards a car, or a person

leaving the parking lot. The trajectories were first smoothed using a five-point moving
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(a)

(b) (c)

Figure 3.6: The recovery of the ground plane. (a) The original image frame with the fea-
tures used in the recovery process. (b) The affine rectified image.(c) The metric rectified
image.
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Figure 3.7: (a) The normal trajectories and (b) The associated normalized mean square
error (NMSE) values.

averaging to remove tracking errors and then they were used to generate track segments

of 50 points length as described earlier, resulting in 60 learning segments. Figure 3.7(a)

shows the image plane trajectories used in the learning process, and each of the red points

represents the center of the bounding box of an object in a certain frame.

This set of trajectories is used to determine the range of the NMSE in the case of a

normal activity trajectory. Figure 3.7(b) shows the NMSE values for the segments of the

training set sequence.

3.4.2.4 Testing Trajectories for Anomalies

First Abnormal Scenario This testing sequence represents a human moving in the park-

ing lot and then stopping in the same location for some time. The first part of the trajec-

tory, which lasts for 100 frames (two segments), is a normal activity trajectory, but the

third segment represents an abnormal act. This could be a situation of interest in surveil-

lance scenario. Figure 3.8 shows the different segments of the object trajectory, along
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NMSE(1,1)=0.0225 NMSE(1,2)=0.0296 NMSE(1,3)=0.3357
NMSE(2,1)=0.0146 NMSE(2,2)=0.1809

NMSE(3,1)=0.1123

Figure 3.8: The first abnormal test scenario. A person stops moving at a point on his
route. We see the increase in the normalized mean square error (NMSE) values when
he/she stopped, resulting in a deviation from the normal trajectory

with the NMSE associated with each new segment. We see that as the object stops mov-

ing in the third segment, the NMSE values raise to indicate a possible drift of the object

trajectory from the normal trajectory.

Second Abnormal Scenario In this abnormal scenario, a group of tracked humans drift

from their path into the grass area surrounding the parking lot, stop there to lift a large box

and then move the box. Figure 3.9(a) shows the object trajectory. Figure 3.9(b) shows a

plot of the NMSE of all the segments, in red, with relative to the normal trajectory NMSE,

in blue. It can be verified from the figure that the trajectory was changing from normal

to abnormal one in the last three or four segments, which caused the NMSE of the global

trajectory to raise.

3.5 Chapter Summary

In this chapter, we presented a framework for using 3D deformable shape mod-

els for activity modeling and representation. This has the potential to provide invariance

53



0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trajectory Segments

N
M

SE

(a) (b)

Figure 3.9: The second testing scenario. (a) A group of people on a path towards a box.
(b) The increase in the NMSE with time as the abnormal scenario is being performed

to viewpoint and more detailed modeling of illumination effects. The 3D shape is es-

timated from the motion trajectories of the points participating in the activity under a

weak perspective camera projection model. Each activity is represented using a linear

combination of a set of 3D basis shapes. We presented a theory for estimating the num-

ber of basis shapes, based on the DI of the 3D deformable shape. We also explored

the special case of ground plane motion trajectories, which often occurs in surveillance

applications, and provided a framework for using our proposed approach for detecting

anomalies in this case. We presented results showing the effectiveness of our 3D model

in representing human activity for recognition, and performing a ground plane activity

modeling and anomaly detection. The main challenge in this framework will be in de-

veloping representations that are robust to errors in 3D model estimation. Also, machine

learning approaches that take particular advantage of the availability of 3D models will

be an interesting area of future research.
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Chapter 4

Affine-Invariant Activity Recognition on the Grassmann Manifold of

Deformation Subspaces

4.1 Introduction

In the previous chapter, we proposed an approach for activity representation and

recognition based on recovering the 3D deformation shape basis generated by each ac-

tivity. The results shown for this approach presented some promising discrimination

properties for these 3D shapes, which were effective for performing activity recognition.

However, several challenges can be identified with that approach.

One of these challenges is due to the issue of non-uniqueness of the solution to the

factorization problem in the non-rigid case. This results in ambiguity in recovering the

3D basis shapes upto a metric transformation as shown by Xiao et al. [129], which can in

turn results in large distances between the recovered basis for different realization of the

same activity.

Another challenge with that approach lies in the way distances are computed be-

tween different activity basis shapes. As basis shapes are recovered up to a metric trans-

formation, a similarity invariant features is used to compute the distance between two

basis shapes. For example, we used the different angles between the limbs for performing

the classification in the previous chapter. However, this distance model is hard to extend
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to compute the distance between multiple basis shapes for each activity. Meanwhile, it

does not allow for building statistical models for performing robust statistical classifica-

tion when several training samples are available for each activity.

In this chapter, we propose to use statistical models on the Grassmann manifold

for affine invariant action recognition. Instead of recovering the exact 3D basis shapes,

we compute an affine invariant subspace representation of the action. This subspace rep-

resentation captures the underlying deformation modes associated with the action under

a linear basis deformation model similar to the model used in Non-rigid structure from

motion literature (NRSFM). We design statistical classification rules on the Grassmann

manifold and apply them to these subspaces for activity recognition.

Our approach has the advantage that it does not need a complete recovery of the

actual 3D shape of the subject performing the action, which eliminates the need to solve

for the metric upgrade in the NRSFM formulation. It also incorporates affine invariance

into the learnt representation, which can cope with viewpoint and body type variations.

An invariance to the temporal rate of execution of the action is inherent in our model as

well, since the classification is performed on the view-invariant subspace representing the

modes of deformation rather than the actual temporal trajectory within that subspace.

The idea of learning an invariant subspace representation for different human ac-

tions was previously proposed in [96]. In that work, the time was added as a forth dimen-

sion to the basis shapes to deal with execution rate invariance. A single subspace is learnt

for each action using all the training samples, and the distance between the test sequence

and that subspace determines the classification distance. In our approach, a deformation

subspace is learnt for each realization and Grassmann manifold statistical tools allow us
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to learn a mean subspace representation and different statistical modes of variations for

each action.

4.1.1 Contributions

Our contribution in this chapter can be summarized as

1. Modeling the problem of affine-invariant activity recognition as classification prob-

lem on the space of deformation subspaces of landmark data.

2. Studying and proposing several statistical models on the Grassmann manifold to

solve the activity classification problem.

3. Proposing a multi scale Bayesian formulation to deal with the variable degree of

deformation for different actions.

4.1.2 Organization

The reminder of this chapter is organized as follows: In Section 4.2, we introduce

the subspace representation for 3D deformation modes. Section 4.3 gives a brief overview

of the Grassmann manifold and how to compute geodesics between points on this man-

ifold. Section 4.4 describes the different Grassmann classification models proposed for

activity recognition. Experimental results validating the proposed method for human ac-

tion recognition are introduced in Section 4.5. The chapter is concluded with a summary

in Section 4.6.
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4.2 Activity Deformation Subspace Representation

We propose a framework for recognizing human actions by first extracting the tra-

jectories of the various points on the body under arbitrary camera viewpoints, followed

by a nonrigid 3D shape model fitted to the trajectories. The underlying intuition is that the

learnt model completely characterizes the space of body poses associated with the action.

Following the same formulation of the previous chapter, we hypothesize that the

deformable shape sequence corresponding to each action can be represented as a linear

combination of 3D basis shapes. Mathematically, if we consider the trajectories of P

points representing the shape (e.g. landmark points), then the overall configuration of the

P points is represented as a linear combination of the basis shapes S i as

S =
K∑

i=1

liS i, S , S i ∈ ℜ3×P, l ∈ ℜ. (4.1)

where li represent the weight associated with the basis shape S i.

Given F frames of a video sequence observing these P moving points from different

camera view points, we first obtain the trajectories of all these points over the entire video

sequence. These P points can be represented in a measurement matrix as

W2F×P =



u1,1 · · · u1,P

v1,1 · · · v1,P

...
...

...

uF,1 · · · uF,P

vF,1 · · · vF,P



, (4.2)

where u f ,p represents the x-position of the pth point in the f th frame and v f ,p rep-
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resents the y-position of the same point.

Instead of the weak perspective projection assumed in the previous chapter, we

assume a more general affine camera projection. The affine camera model covers the

composite effect of an affine transformation of the 3D space, orthographic projection

from 3D space to the image, and an affine transformation in the 2D image plane. Under

this projection, the P points of a configuration in a frame f , are projected onto 2D image

points (u f ,i, v f ,i) as 
u f ,1 · · · u f ,P

v f ,1 · · · v f ,P

 = Af

 K∑
i=1

l f ,iS i

 + T f , (4.3)

where,

A f =


a f 1 a f 2 a f 3

a f 4 a f 5 a f 6

 (4.4)

A f represents the affine camera projection matrix and T f is the camera translation.

The rank constraint on the measurement matrix can be derived by first eliminating

the translation component by subtracting out the mean of all the 2D points, as in [104].

We now form the measurement matrix W, which was represented in (4.2), with the means

of each of the rows subtracted. Using (4.2) and (4.3), it is easy to show that

W =



l1,1A1 · · · l1,KA1

l2,1A2 · · · l2,KA2

...
...

...

lF,1AF · · · lF,KAF





S 1

S 2

...

S K


=M2F×3K .S3K×P,

(4.5)
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Which is of rank 3K. The matrix M contains the pose for each frame of the video

sequence and the weights l1, ..., lK . The matrix S contains the basis shapes corresponding

to each activity. Similar to SFM applications, if we assume an isotropic and Gaussian

noise model [107], this factorization of the measurement matrix can be performed using

SVD and retaining the top 3K singular values, as W2F×P = UDVT and M = UD 1
2 and

S = D 1
2 VT.

Under the assumed linear basis shape model, the basis shapes in the matrix S can

be used to reconstruct any of the 3D deformable shapes in the shape sequences. For a

shape sequence that correspond to a certain activity, this enables the synthesis of differ-

ent body poses that constitute the activity. However, the basis recovered using the SVD

factorization are unique only up to an invertible transformation G ∈ GL(3K, 3K), since

W =MS =MGG−1S (4.6)

This non-uniqueness implies the need to use statistical tools that are invariant to the

linear transformation group GL(3K, 3K) while comparing basis shapes S. In other words,

two basis shape matrices S1 and S2 are considered equivalent if they are related by a linear

invertible transformation in the form S1 = GS2. This equivalence class can be constructed

by comparing the subspace spanned by the columns of S1 and S2 rather than comparing

the matrices themselves. For each activity, this subspace represents the deformation space

corresponding to the body poses of the activity, and we denote it by activity deformation

subspace. This maps the problem of activity modeling and recognition to a problem of

building statistical and classification tools on the space of 3k − dim subspaces in RP.
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We note here that this situation arises from our activity recognition problem formu-

lation. On the other hand, in NRSFM formulation, there is a need to recover exact 3D

basis shapes that corresponds to the true camera motion projection matrices. This neces-

siates a search for a specific basis for the subspace spanned by the columns of S. This

is usually done by searching for the linear transformation G, that enforce the orthonor-

mality constrains on the rows of M [107] assuming a weak-perspective camera model.

This is not an easy job due to the ambiguity of the problem as shown in [129], and fur-

ther constrains on the nature of the deformation [106] is needed to reach for near optimal

solution.

The space of m − dimensional subspaces in Rn is called the Grassmann manifold

and denoted by G(m, n). In order to build statistical and classification models for the

deformation subspaces, we need to study the intrinsic geometry of this manifold and the

ways to define distances and statistics on this manifold. In the next section, We will

review the geometry of the Grassmannian G(m, n) as a quotient space over the orthogonal

group SO(n).

Affine Invariance of the deformation subspaces

View-invariant activity recognition refers to the ability of the model to capture the

activity under arbitrary camera viewpoints or geometric transformation of the objects.

One of the interesting geometric transformation group is the affine group. Assuming

affine invariance, two sets of activity 3D shapes are considered equivalent if they are

related by a set of 3D affine transformations. For example, a sequence of 3D landmark

shapes (S 1, S 2, · · · , S F) is equivalent to (A1S 1,A2S 2, · · · ,AFS F for arbitrary set of affine
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transformations. These transformations can be different for every frame as in the case of

different camera viewpoints, or the same affine transformation can be shared among all

the frames, for example accounting for anthropometric variation between different people

performing the activity.

The deformation subspace representation proposed in this chapter achieve this affine

invariance. As it assumes an affine camera projection model. Hence, all the affine varia-

tion are captured in the camera motion matrix M while computing the deformation sub-

space.

4.3 Geometry of Grassmannian

The Grassmann manifold G(m, n) is defined as the space of m − dimensional sub-

spaces in Rn. Several textbooks [47, 63] describe the structure of G(m, n) with a focus on

its geometric and calculus. Edelman et. al. [30] use the differential geometry of Grass-

mann and other orthogonally constrained manifolds in order to provide gradient solutions

to optimization problems. Srivastava et al. [99] derived the geodesics and analyzed the

associated structure via Lie group theory. Statistical methods on Stiefel and Grassmann

manifolds were proposed in [112] for several computer vision applications.

Any element in the manifold G(m, n), i.e. any m-dimensional subspace of Rn can

either be represented by its projection operator (uniquely) or by an orthonormal basis

(non-uniquely). In the former representation, a convenient approach is to view G(m, n) as

a quotient space S O(n)/(S O(m)× S O(n−m)) where S O(n) is the Lie group of n× n real-

valued rotation matrices. A lie group is a differentiable manifold with a group structure.
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S O(n) forms a group with matrix multiplication as the group operation. The advantage of

this approach is to utilize well-known results form Lie group theory in deriving algorithms

on G(m, n).

It is well known that geodesic paths on S O(n) are given by a one-parameter expo-

nential flow, i.e. t 7→ exp(tB), where B ∈ Rn×n is a skew-symmetric matrix. Since G(m, n)

is a quotient space of S O(n), geodesics in S O(n) are also geodesics in G(m, n) as long

as they are perpendicular to the orbits generated by the subgroup S O(m) × S O(m − n).

This implies that geodesics in G(m, n) are given by a one-parameter exponential flow

t 7→ exp(tB), where skew-symmetric B is further restricted to be on the form

B =


0 AT

−A 0

 , A ∈ R(n−m)×m (4.7)

The superscript T denotes the matrix transpose. The sub-matrix A specifies the

tangent vector representing the direction and the speeds of the geodesic flow. Please refer

to [99] for details.

The canonical metric on the Grassmann manifold is the restriction of the orthogonal

group metric to the horizontal space. Let B1 and B2 be two tangent vectors on the form

described in (4.7). Then

g(B1, B2) = trace(A1
T A2) (4.8)

which is equivalent to the standard inner product in n(n−m)-dimensional Euclidean space.

Given two points on the Grassmann manifold specified by the projection matrices

P1 and P2, we can define the motion parameters such as displacement and the velocity for

going from P1 to P2 in unit time. This is done by calculating the matrix X which defines
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a geodesic α from P1 to P2, where X is in the form defined in (4.7). Thus, the geodesic

distance between P1 and P2 can be calculated using (4.8) in the form

dg(P1, P2) = g(X, X) = trace(XT X) (4.9)

4.3.1 Computation of Grassmann intrinsic Mean

Computation of the mean of several points on the Grassmann manifold can be the

first step in computing the conditional statistics of a certain action. The intrinsic mean

or Karcher mean µ is defined as a local minimizer in G(p, 3k) of the sum-of-squared

Riemannian distances to each point. Thus, this intrinsic mean is given by

µ = argmin
x∈G(p,3k)

N∑
i=1

dg(x, xi)2 (4.10)

where dg(., .) is the Riemannian geodesic distance defined in (4.9). A gradient descent

approach was proposed in [80, 66] to solve this minimization problem for Riemannian

manifolds.

4.3.1.1 Principal Geodesic Analysis

Analogous to the principal components of a vector space, there exist a 1-parameter

subgroup called the principal geodesic curves which explain the variability of the data

points lying on a manifold around their intrinsic mean.

Under the assumption that the data points lie in a small neighborhood about the

mean point µ, it was shown in [34] that solving for the principal geodesic components
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boils down to performing PCA for the tangent vectors logµ(xi) ∈ TµM. This method is

called principal geodesic analysis (PGA).

4.4 Activity Classification on Grassmannian

Given several realization for each activity, in the form of the tracks of p feature

points, we learn a set of deformation subspaces {S1,S2, · · · ,Sk} of different deformation

order K for each realization as discussed in Section 4.2. For a given deformation order

K, the problem of action recognition can be modeled as a multi-category classification

problem on the Grassmann manifold G(p, 3k). Traditional vector space classifiers can not

be applied directly due to the curved nature of this manifold, several modification to these

classification approaches is needed in order to obey the manifold geometry.

In this section, we present several approaches to solve this classification problem. In

the first approach, we use the nearest-neighbor rule for classification. This method has the

advantage that it is easily adapted to Riemannian manifolds and does not need to compute

any statistical properties of the data for each class. Then we present several approaches

for building statistical models on the manifold in order to use Bayesian classification.

Finally, We discuss a Bayesian formulation to marginalize the learnt distributions over

the variable deformation order K.

4.4.1 Nearest-Neighbor Grassmann Classification

Nearest-Neighbor (NN) rule seems a simple and natural candidate for manifold

classification. As it relies only on the choice of a metric function between the different

65



training points and the test point. Hence, the rule can be simply applied to the Grassmann

manifold by choosing the geodesic distance in (4.9) as a distance metric.

Let Dn = S 1, S 2, · · · , S n denotes a set of n labeled training deformation subspaces

for different actions. For a test sequence with a deformation subspace S , the NN classifi-

cation rule would assign S to the same action as its nearest training point in Dn in terms

of the geodesic distance

label(S ) = label(argmin
S i∈Dn

dg(S , S i)) (4.11)

where label(S ) refers to the action label corresponding to the training deformation sub-

space S , and dg(., .) is the geodesic distance on Grassmann manifold defined in (4.9).

The NN rule is a suboptimal procedure. In Euclidean vector spaces, it results in

classification error that is greater than the minimum Bayes error rate. However, it was

proved that with an unlimited number of samples the error rate is never worse than twice

the Bayes error rate [23]. This bound is not guaranteed for data points on Riemannian

manifolds. However, the nearest-neighbor rule still seems appealing due to its computa-

tional simplicity, as we only need to compute the geodesic distance between the deforma-

tion subspace of the test sample and each of the training samples.

4.4.2 Bayesian Grassmann Classification on Tangent Plane

The Bayesian classification rule represents the optimal classifier in terms of mini-

mizing the classification error. However this optimality is under the assumption of known

prior probabilities of the classes, and known class conditional densities. This assumption

seems reasonable in Euclidean vector spaces where we can estimate these densities ef-
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ficiently using maximum-likelihood or Bayesian parameter estimation methods. On the

other hand, applying these rules into Riemannian manifolds require efficient methods to

learn statistical models and class conditional distributions on these spaces. This is not

an easy task due to the nonlinearity and high dimensionality of these manifolds. We

now present several approaches for learning these conditional densities on the Grassmann

manifold. Given these density estimates, a simple likelihood test is used for classification

of test sequences.

Building high order statistical models directly on Riemannian manifolds is rather

difficult to perform. This is mainly due to the non-linearity of these manifolds. So a

common approach is to build the statistical model on the tangent plane of the manifold at

some reference point. The tangent plane is a vector space and hence more conventional

statistics can be applied. Usually, the reference point is chosen to be the mean point of

the set of samples used to learn the distribution.

Given n realizations of an activity represented by n points on the Grassmann man-

ifold S 1, S 2, · · · , S n, we first compute the Karcher mean of these points µ using (4.10).

Then we compute the tangent vectors A1, A2, · · · , An representing the directions and the

speeds of the geodesic flow from the mean µ to each of the sample points as outlined in

(4.7).

As shown in section 4.2, the tangent plane for the deformation subspace Grassmann

manifold G(p, 3k) is a p(p − 3k)-dim vector space, equipped with the metric g(., .) pre-

sented in (4.8), which is equivalent to the standard inner product in p(p−3k)-dimensional

Euclidean space. Hence, the problem of estimating the conditional density function is

reduced to estimating a density function for the tangent vectors A1, A2, · · · , An in Rp(p−3k).
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Due to the high dimensionality of the tangent plane, specially for a large number

of landmarks p, a large number of samples is needed to estimate the density functions. A

common approach is to assume that the variation of the velocity vectors {Ai, i = 1 : n}

are mostly restricted to m-dimensional subspace of Rp(p−3k), called the principal subspace,

where m << p(p− 3k). Principal component analysis (PCA) is used to learn the orthogo-

nal basis for that subspaces in the tangent plane. As noted in section 4.2, this is equivalent

to calculating the principal geodesic curves of the data points on the Grassmann man-

ifold. We denote the linear projection of Ai to the principal subspace by Ãi. We still

have to decide on the form the probability distribution takes. Following are two different

alternatives.

4.4.2.1 Gaussian model for principal coefficients

A common approach is to assume a multivariate normal model on the tangent plane

vectors projected into the principal subspace, i.e. we model Ãi ∼ N(O,Σ), for a covari-

ance matrix Σ ∈ Rm×m.

Estimation of the model parameters µ and K from the observed deformation sub-

spaces is straightforward. We first compute the Karcher mean µ of the samples on the

Grassmann manifold as shown in (4.10). Using µ and an observed subspace S i. find the

tangent vector Ai ∈ R(p−3k)×p that specify the direction and speed of the geodesic flow

from µ to S i in unit time. From the observed values of Ai, we estimate the principal

subspace and covariance matrix. Extracting the dominant eigenvectors of the covariance

matrix, one can capture the dominant m modes of variations. A projection of the tangent
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vectors into the principal subspace is denoted by Ã. The density function associated with

a samples S is given by:

h(S ; µ,Σ) ∝ exp(−ÃTΣ−1Ã/2)/(det(Σ)) (4.12)

Assuming uniform prior for all action classes. The Bayesian classification assigns

a test deformation subspace S to the class with the highest likelihood h(S ; µ,Σ).

An special case of interest occurs when m = (p − 3k) and Σ = Im, then the density

function would be on the form:

h(S ; µ,Σ) ∝ exp(−∥ A ∥2/2) (4.13)

In this case, the likelihood-based decision rule is reduced to minimizing the geodesic

distance between the test sample and the Grassmann mean corresponding to each action.

The maximum likelihood test assigns the test sample to the action with the nearest mean

in terms of the geodesic distance.

4.4.2.2 Non-parametric model for principal coefficients

Instead of assuming a parametric model for Ã, we can estimate the probability den-

sity function using kernel density estimation. We use a Gaussian kernel, and assume

independence among the different dimensions of the principal subspace. This approach

can be very efficient in cases where the Gaussian assumption of principal coefficients is

not justified. However, as most non-parametric approaches it requires sufficiently large

number of training samples for each class.
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4.4.3 Deformation Order and Computing the Marginal Likelihood

The deformation order K represents the amount of deformability in the shape se-

quence for the activity, as it quantizes the number of 3D basis shapes needed to fully

reconstruct the deformable shapes corresponding to the different body poses constituting

the activity. It also determines the actual Grassmann manifold where the deformation

subspaces lie. In all of the above classification approaches, we assume a known and fixed

deformation order K for all of the action classes.

In section 3.3, we presented an approach to estimate that factor using the singular

values of the data covariance matrix, after performing a whitening process on the noisy

observation. This approach was proves successful is estimating the deformation factor,

termed as Deformability Index (DI) for different activities. However, it assumes that the

noise covariance matrix is either known apriori or can be estimated from the data.

We use an alternative procedure in this section instead of estimating a single value

for the deformation order. We first compute the conditional distribution of the test se-

quence h(S/K = k) for different deformation orders K using any of the approaches pro-

posed earlier. We then compute the marginal distribution h(S ) using these conditional

densities and the prior probabilities P(K = k).

h(S ) =
kmax∑
k=1

h(S/K = k)P(K = k) (4.14)

The values of the prior likelihood P(k) is computed for each test sequence as a

function of the ratio of the singular values of the original observation matrix used to

compute the deformation subspace.

70



4.5 Experimental Results

We carried out a set of experiments to evaluate and verify the effectiveness of our

proposed approach for activity modeling and classification. We use the motion capture

dataset [1] available from Carnegie Mellon University in all of the experiments. The

combined dataset includes a number of subjects performing eight different activities such

as walking, running, jumping, dribbling, kicking, boxing, and salsa dancing. These ac-

tivities were picked form the datasets because they have enough number of realizations

under different conditions and performers. The total number of sequences used in our

experiment was 136 sequences.

The dataset provides 3D landmark tracks for 41 marked landmark points on the

human body while performing the action. We used these 3D location to generate 2D

projected tracks using arbitrary affine camera projection models. The 2D tracks for each

realization were used to generate the deformation subspace corresponding to each activity

for different values of the deformation order K.

Figure 4.1 shows the pairwise similarity matrix between the deformation subspaces

of all the dataset realizations at different values of the deformation order, with the Grass-

mann geodesic distance between the subspaces is used as a measure of dissimilarity. The

overall block structure of the similarity matrix for various deformation order suggests the

effectiveness of using the distances between deformation subspaces for separating differ-

ent activities.

We also note from Figure 4.1 how the effect of the deformation order varies for

different actions. For example, the walking and running sequences are hard to separate at
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K=1 K=2 K=3 K=4 K=5 K=6

Overall 96.32 97.06 95.56 95.56 94.12 89.7

Walking Sequences 97.5 100 100 100 90 95
Running Sequences 100 100 100 100 95.24 85.71
Jumping Sequences 100 100 100 96.15 100 88.46
Dribbling Sequences 83.33 91.67 91.67 83.33 91.67 75
Kicking Sequences 88.89 100 88.89 100 88.89 77.78
Boxing Sequences 100 71.43 100 85.71 85.71 85.71

Dancing Male Sequences 85.71 100 42.86 85.71 100 100
Dancing Female Sequences 100 92.86 100 92.86 100 100

Table 4.1: A summary of the percentage recognition rate results using the Nearest-
neighbor classification for different deformation orders K. The first row shows the overall
recognition results, and the subsequent rows show the classification results for each ac-
tion.

K = 1, while they are better separable for larger values of K such as K = 2 or K = 3.

This seems intuitive since the two action share a very similar rigid body pose represented

by the first order subspace, while higher degrees of deformation will help distinguish

between the two activities. On the other hand, as the deformation order K increases over

the value needed to capture the actual shape deformation, the effect of noise increases.

Specially for actions with low degree of deformability like walking.

4.5.1 Classification Results for Nearest Neighbor Classification

Nearest-Neighbor Classification is performed on the data sequences using the pair-

wise geodesic distances shown in Figure 4.1 as a metric. The overall success classifica-

tion rate results for different deformation order K are shown in Table 4.1. The table also

shows the breakdown of the classification rates for different actions at different value of

the deformation orders K.

The results show good recognition capabilities based on the NN classification rule,
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with a maximum correct recognition rate of 97% at K = 2 . The number of sequences

per action plays a crucial rule in the success of NN classification. For that reason, actions

with limited number of samples like boxing and dribbling can have fluctuating recogni-

tion results as compared to walking and running. An interesting observation is that at low

order of deformation, many misclassification occur between the dancing male and danc-

ing female sequences which share a very close set of body pose deformations. However,

we note that this misclassification is resolved as we move to higher deformation orders

K = 5 and K = 6.

4.5.2 Classification Results for Bayesian Classification

Although the performance results achieved using the nearest-neighbor rule was

promising, it can vary significantly with increasing the number of classes. NN rule also

suffers from sensitivity to outliers, and does not provide a theoretical framework to com-

bine results from different Grassmann manifolds corresponding to different deformation

orders. For these reason, we performed another set of experiments using the Bayesian

framework formulation presented in section 4.4.2.

Due to the limited number of samples for each class in our dataset, we conducted

the experiments in two different methodology. In the first set of experiments, we com-

pute baseline performance measure using all the sequences in the dataset for training.

Although this results in an overlap between the training and testing data samples, it pro-

vides a baseline performance measure to identify any possible problems. In the second

set of experiments we use a leave-one-out cross evaluation method, where we test each
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sequence using a model learnt using all the other sequences.

In all of these experiments, we compute the Grassmann mean of the different train-

ing deformation subspaces of each action and the tangent vectors corresponding to the

geodesic flow from this mean to each training sample. We fit the different distribution

models presented in Section 4.4.2 to these tangent vectors and estimate the parameters

for the likelihood function. A likelihood test is then performed to assign test samples to

the maximum likelihood action model.

4.5.2.1 Gaussian model for tangent vectors

In this experiment we model the tangent vectors with a multivariate density distri-

bution with identity covariance matrix in the p(p − 3k)-dim tangent plane. In this special

case, the density function takes the form shown in (4.13), and the maximum likelihood

test is reduced to simply computing the geodesic distance between the test sample and

each of the learnt action mean subspaces. The only data statistics that are needed for that

model are the mean shape of the training subspaces.

Figure 4.2 shows the log-likelihood value for every sequences-model pair using the

leave one out cross validation method. The recognition rates using these likelihood values

are shown in Table 4.2. We can note that the recognition results varies significantly with

the deformation order for different actions, with maximum recognition rate of 89.71%.

The different distribution models are combined as shown in Section 4.4.3 to compute

the marginal distribution over K. The log-likelihood values and the action confusion

matrix using this marginal distribution are shown in Figure 4.3. The figure clearly shows
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Validation Method K=1 K=2 K=3 K=4 K=5 K=6 Marginal

All Sequence 83.82 95.59 95.59 95.59 83.09 93.38 97.79

Leave One Out 83.82 89.71 89.71 87.5 73.53 82.35 97.05

Table 4.2: A summary of the percentage recognition rate results using the Gaussian model
for tangent vector for Bayesian classification for different deformation orders K and for
the model learnt by marginalizing over K

that combining the different deformation order distributions results in more separable

likelihood for different actions. This is reflected in an increase in the recognition rate to

97.05%.

4.5.2.2 Multivariate Gaussian model for principal coefficients

In this experiment, we wanted to test whether estimating more statistical variation

of the signal can result in a better classification rates. In order to do this, we first reduce

the dimensionality of the tangent plane by computing the PCA subspace of the training

tangent vectors, and project the tangent vectors into that subspace. We fit a multivariate

Gaussian model to these PCA coefficients. Tables 4.3 and 4.4 show the recognition rates

using a Gaussian model and a mixture of two Gaussian respectively. The action confusion

matrix for the two models are shown in Figure 4.4 for the marginal over deformation order

K models.

One of the problems with this parametric model is the need for a sufficient number

of samples to obtain a reliable estimate of the parameters and the principal subspace. For

our dataset, some actions like boxing had only five training samples, which results in a

very unreliable estimates of the model parameters. In spite of this, we were able to obtain

reasonable recognition rates of 86.76% and 88.97%. We would assume that using more
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data sequences can improve these models significantly.

Validation Method K=1 K=2 K=3 K=4 K=5 K=6 Marginal

All Sequences 94.12 88.24 77.21 72.79 38.24 41.18 94.85
Leave One Out 86.76 72.79 68.38 61.76 34.56 41.91 86.76

Table 4.3: A summary of the percentage recognition rate results of Bayesian classification
using a multivariate Gaussian model for the principal coefficients of tangent vector at
different deformation orders K, and for the marginal distribution over K.

Validation Method K=1 K=2 K=3 K=4 K=5 K=6 Marginal

All Sequences 96.32 94.12 91.18 86.03 47.06 49.26 98.53
Leave One Out 88.24 73.53 71.32 60.29 31.62 41.18 88.97

Table 4.4: A summary of the percentage recognition rate results of Bayesian classification
using a mixture of Gaussian model with two components for the principal coefficients of
tangent vector at different deformation orders K, and for the marginal distribution over K.

4.5.2.3 Non-parametric model for principal coefficients

In this last set of experiments, instead of assuming a specific parametric form, we

use a non-parametric kernel model with Gaussian kernel to learn the distribution of the

principal coefficients. The recognition results for this model is shown in Table 4.5, while

the likelihood and confusion matrix for the marginal distribution are shown in Figure 4.5.

Validation Method K=1 K=2 K=3 K=4 K=5 K=6 Marginal

All Sequences 94.12 93.38 86.03 85.3 45.59 50.73 96.32
Leave One Out 87.5 75.73 66.17 63.24 33.09 38.97 86.76

Table 4.5: A summary of the percentage recognition rate results of Bayesian classification
using a non-parametric model for the principal coefficients of tangent vector at different
deformation orders K, and for the combined k.
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4.6 Chapter Summary

In this chapter, we presented an approach for activity recognition and classification

via modeling activity deformation subspaces on Grassmann manifold. The proposed ap-

proach captures the underlying deformation of the body corresponding to the different

body poses that constitute the activity. Meanwhile it maintains affine view invariance

representation. The deformation subspaces for each activity is estimated from the motion

trajectories of the points participating in the activity under an affine camera projection

model. We formulated the problem of modeling and classifying the deformation sub-

spaces as a classification problem on the Grassmann manifold. We proposed several

classification models that captures the variability of the activity samples while following

the manifold intrinsic geometry. We presented results showing the effectiveness of our

3D model in representing human activity for recognition and classification.
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Figure 4.1: The 136 X 136 Grassmann pairwise similarity matrix between all of the
different sequences used in the experiments for orders of deformation 1 to 6 shown in a-f
respectively. Warmer color represent larger geodesic distances. Black separation lines
are added between sequences corresponding to different action for easier analysis. (This
figure is best viewed in color)
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The log−likelihood with deformation Order equal1
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Figure 4.2: The log-likelihood values at different deformation orders using the Gaussian
model for tangent vectors and for leave-one-out cross validation. (This figure is best
viewed in color)
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The marginalized log−likelihood for defromation orders 1 to 6
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Figure 4.3: The performance measures for using the Gaussian model for tangent vectors
after computing the marginal distribution over K. Using leave-one-out cross validation.
a) The log-likelihood values. (b)The action confusion matrix.
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Figure 4.4: The action confusion matrix for using the Gaussian model for the principal
coefficients after computing the marginal distribution over K. Using leave-one-out cross
validation. (a) Using a single Gaussian Model. (b)Using a Mixture of two Gaussians.
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The marginalized log−likelihood for defromation orders 1 to 6
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Figure 4.5: The confusion matrix for action classification using the non-parametric model

for the principal coefficients of the tangent vectors. (a) Using all the sequences for train-

ing. (b) Using Leave-one-out cross validation.
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Chapter 5

Silhouette-based Gesture and Action Recognition via Modeling

Trajectories on Riemannian Shape Manifolds

5.1 Introduction

The problems of modeling and recognition of human gestures and actions from a se-

quence of images have received considerable interest in the computer vision community,

as one of the many problems that aim at achieving a high level automated understand-

ing of video data. This interest is motivated by many applications in different areas in

human-computer interaction [46], robotics [11], security, and multimedia analysis.

Many of the existing approaches for gesture recognition model gestures as a tem-

poral sequence of feature points representing the human pose at each time instant. The

choice of these features usually depends on the application domain, image quality or

resolution, and computational constraints. Features such as exemplar key frames [126],

optical flow [31] and feature points trajectories [96, 17] have been frequently used to rep-

resent the raw, high-dimensional video data in several approaches. The major challenge

of most of these features is that they require highly accurate low-level processing tasks

such as tracking of interest points. This accuracy turns out to be very hard to achieve

in gesture recognition scenarios because of fast articulation, self occlusion, and different

resolution levels that are encountered in different applications.
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(a) Original images

(b) Background subtracted images

(c) Contour curve representation

Figure 5.1: An example of different frames of a humans performing a ”Turn Right” con-
trol gesture. (a) The original video frames (b) The background subtracted images and
(c) The sequence of contours. Most of the information about the gesture can be modeled
using only the contour curves

In order to overcome this limitation, silhouette-based approaches have been receiv-

ing increasing attention recently [13, 119, 123]. These approaches focus on the use of

the shape of the binary silhouette of the human body as a feature for gesture recognition.

They rely on the observation that most human gestures can be recognized using only the

shape of the outer contour of the body as shown in Figure 5.1 for a ”Turn Right” control

gesture. The most important advantage of these features is being easy to extract from the

raw video frames using object localization and background subtraction algorithms, which

are low-level processing tasks and relatively higher accuracy can be achieved in these

tasks under different conditions.

An important question in silhouette-based approaches is: how can we represent the

shape of these silhouettes in an efficient and robust way? Several shape representation

features have been used in the literature for this purpose, including chain codes [36],
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Fourier descriptors [133], shape moments [50], and shape context [10]. For most of these

features, the feature vector is treated as a vector in a Euclidean space in order to use stan-

dard vector space methods for modeling and recognition. This assumption is not usually

valid as these feature lie in a low-dimensional, non-Euclidean space. Working directly on

these spaces can provide models and discriminative measures that may result in an im-

proved performance. One way to explore this lower-dimensional space, is to try to learn

its structure from the training data using dimensionality reduction techniques combined

with a suitable notion of local discriminative measure between visual data features. This

technique was recently used [33, 12, 123] for human action recognition and pose recov-

ery. The problems with this technique come from the limitations of data driven manifolds

such as a lack of robust statistical models, and the difficulty in extrapolation and matching

of new data.

The limitations of data driven manifolds methods noted above have shifted the at-

tention of many computer vision researchers towards the use of analytic manifold theory.

This shift was also supported by the fact that many features in computer vision lie on

curved space because of the geometric nature of the problems. Several of these manifolds

were used in problems like object detection and tracking [114], affine invariant shape

clustering [9], and activity modeling [112]. The use of such manifolds offers a wide va-

riety of statistical and modeling tools that arise from the field of differentiable geometry.

These tools have found applications in problems such as target recognition [43], parame-

ter estimation [98], clustering and dimensionality reduction [40], classification [115], and

statistical analysis [35, 112].

The choice of the right feature and space to model the shape of the silhouettes is
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not the only issue in silhouette-based methods. An equally important problem is the ef-

ficient modeling of the dynamics of temporal variations of these feature as the gesture

progresses. The importance of both shape and dynamic cues for modeling human move-

ment was noted and demonstrated experimentally in [118]. Various models were used for

modeling these dynamics, ranging between statistical generative models [84, 130, 16, 49],

and the more recent discriminative models [125, 124]. The invariance to temporal rate of

execution of action in such models is crucial for achieving accurate recognition [120].

5.1.1 Motivation and Overview of Approach

In this chapter, we explore the use of shape analysis on manifolds for human actions

and gesture recognition. Our approach falls into the category of the silhouette-based

approaches described earlier. Each silhouette is represented by a planar closed curve

corresponding to the contour of this silhouette, and we are interested in evolving shapes

of these curves during actions and gestures. We will use a recent approach for shape

analysis [56, 57, 101], that uses differential geometric tools on the shape spaces of closed

curves. Similar ideas have also been presented in [62, 131, 132]. While there are several

ways to analyze shapes of closed curves, an elastic analysis of the parameterized curves

is particularly appropriate in this application. This is because: (1) the elastic matching

of curves allows nonlinear registration and improved matching of features (e.g. body

parts) across silhouettes, (2) this method uses a square-root representation under which

the elastic metric reduces to the standard L2 metric and thus simplifies the analysis, and

(3) under this metric the re-parameterizations of curves do not change the Riemannian
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distances between them and thus help remove the parametrization variability from the

analysis. Furthermore, such geometric approaches are useful because they allow us to

perform intrinsic statistical analysis tasks, such as shape modeling and clustering, on

such Riemannian spaces [100].

Using a square-root representation of contours, each human gesture is transferred

into a sequence of points on the shape space of closed curves. Thus, the problem of action

recognition becomes a problem of modeling and comparing dynamical trajectories on the

shape space. We propose two different approaches to model these trajectories.

In the first approach, we propose a template-based approach to learn a unique tem-

plate trajectory representing each gesture. One of the main challenges in template-based

method is to account for variation in temporal execution rate. To deal with this problem,

we use a modified version of the DTW algorithm to learn the warping functions between

the different realizations of each gesture. We use the geodesic distances on the shape

space to match different points on the trajectories in order to learn the warping functions.

An iterative approach is then used to learn a mean trajectory on the shape space and to

compute the temporal warping functions.

In the second approach, we utilize the geometry of the shape space more efficiently

in order to cope with the different variations within each gesture caused by changes in

execution style, body shape and noise. Each gesture is modeled as a Markov model to

represent the transition among different clusters on the shape space of closed curve. We

learn these models by decoupling the problem into two stages. In the first stage, we cluster

the individual silhouette shapes using the Affinity Propagation (AP) clustering technique

[38], and build statistical model of variation within each cluster. In the second stage, a
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hidden Markov Model (HMM) is used to learn the transition between different clusters

for each gesture.

Extensive experiments were conducted to test the performance of our algorithms.

We used two different data sets of video sequences representing different control gestures

and regular actions, with a total of 226 video sequences. The data sets contained many

variations in terms of the number of subjects, execution styles, and temporal execution

rates.

5.1.2 Contributions

Our contribution in this work can be summarized as

1. Posing the problem of gesture and action recognition as one of classifying the tra-

jectories on a Riemannian shape space of closed curves.

2. Proposing a template-based model and a Markovian graphical model for modeling

the time series data of points on the shape manifold. These models were designed to

fully adhere to the geometry of the manifold and to model the statistical variations

of the data on this manifold.

3. Provide a comprehensive set of experimental analysis of the proposed models on

two different datasets for gesture and action recognition.

5.1.3 Organization

The reminder of this chapter is organized as follows: in Section 5.2, we describe the

square-root representation of closed curves and the resulting shape space. We also give a
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brief overview of the computation of distances and statistics on this manifold. Section 5.3

describes the two dynamical model approaches used for gesture modeling. Experimental

results validating the proposed method for human gesture recognition are introduced in

Section 5.4. The chapter is concluded with a summary in Section 5.5.

5.2 Manifold Representation of Silhouettes

As mentioned earlier, we will use the square-root elastic representation [56, 57] to

construct a shape space of closed curves in R2. Under this framework, the contour of the

human silhouette in each frame represents a point in the shape space and each gesture

represents a temporal trajectory on that space. We then use principles from Riemannian

geometry combined with the structure of the shape space to build statistical models for

these trajectories for representation and recognition.

We represent the shape of a contour curve β, parameterized arbitrary, by its square-

root velocity function: q : S1 → R2, where

q(t) =
β̇(t)√∣∣∣∣∣∣β̇(t)∣∣∣∣∣∣ . (5.1)

where ||.|| is the Euclidean norm in R2, and t is an arbitrary coordinate on S1. The quantity

||q(t)|| is the square-root of the instantaneous speed, and the ratio q(t)/||q(t)|| represents the

instantaneous direction along the curve. The curve β can be recovered within a translation,

using β(t) =
∫ t

0
||q(s)|| ds. Let C be the set of all unit-length, closed planar curves that

are represented by their square-root velocity functions. If we do not impose the closure

condition then this set is a Hilbert sphere; with the closure constraint C is a submanifold

of the unit sphere. C is called a pre-shape space.
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The geodesics between points in C are computed using a path-straightening ap-

proach. In this approach, first introduced in [61], the geodesic path between the two

points is first initialized with an arbitrary path. Then, this path is iteratively straightened

using a gradient approach and the limit point of this algorithm is a geodesic path. To

be effective for shape analysis, the representation and the geodesics between the points

must be invariant to shape-preserving transformations. These transformations include

pose (rotation, scale, and location) and the parameterizations of the curves. Note that

the square-root velocity representation is already invariant to scale and translation. The

remaining two are studied as groups acting on C: rotation by the action of SO(2) and

re-parametrization by the action of D, where D = {γ : S1 → S1} is the space of all

orientation-preserving diffeomorphisms. The resulting (transformation invariant) shape

space S is defined as a quotient space as follows

S = C/(SO(2) ×D). (5.2)

Elements of this quotient space are equivalence classes of the type:

[q] = {O(q ◦ γ)
√
γ̇|O ∈ SO(2), γ ∈ D} .

These are the orbits of S O(2) × D in C and each such orbit represents a shape uniquely.

The problem of finding the geodesics between two shapes, or two orbits, relies on first

solving the optimization problem:

d([q0], [q1]) = min
O∈SO(2),γ∈D

d(q0,O(q ◦ γ)
√
γ̇). (5.3)

This is iteratively solved using a gradient descent approach that finds these optimal trans-

formation parameters. Once the optimal rotation and re-parameterization are obtained,
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one can draw a geodesic path between q0 and O∗(q ◦ γ∗)
√
γ̇∗ in C using path straighten-

ing. This results in a geodesic path between the orbits [q0] and [q1] in the shape space

S. The reader is referred to [57, 62] for more details on algorithms for finding shape

geodesics. In the remainder of the paper, we will use q to denote the equivalence class [q]

to reduce notation.

In order to build models for gesture and action recognition on the described shape

space, one needs to build statistical tools to characterize the different distribution of the

data samples and to cope with random noise and errors in low-level processing. The

simplest statistical measure, represented by the mean of a group of points in S was pre-

sented in [62]. It uses the Karcher mean formulation as presented in (2.2), to compute the

intrinsic mean of a set of points in S.

Higher order statistical models for shapes in S were presented in [100]. In that

approach, all the sample points are projected to the tangent plane Tµ(S) ∈ L2, where µ is

the mean shape of these sample points. In order to overcome the infinite-dimensionality

of S, they propose to approximate the tangent function g ∈ Tµ(S) by a finite basis; in this

case this finite basis comes from Fourier analysis. They further reduce the dimensionality

on this vector space by assuming that the data lies on a lower dimensional subspace, and

use PCA on the tangent plane to learn this subspace and project all the points into it.

The projected points on the low-dimensional subspace can then be modeled either in a

parametric form as a multi-variate normal distribution, or in a non-parametric form using

kernel density function. We refer the reader to [100] for more details and experimental

analysis.
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5.3 Modeling Gesture Dynamics

Using the described shape model for closed curves, the dynamic sequence of shapes

corresponding to a particular gesture or action will correspond to a sequence of m points

on the form

Q = q1, q2, · · · , qm, (5.4)

where qi ∈ S for i = 1, 2, . . . ,m, andS is the quotient shape space described in section 5.2.

We propose to use the trajectories on the shape space corresponding to these sequence as

a feature for modeling and recognition of different gestures. Because of the special nature

of the curved shape space, vector space methods can not be directly applied. Hence, a

modified versions of these methods that obey the space geometry is proposed.

In this section, we present two approaches for modeling and recognition of these tra-

jectories. The first is a template based non-parametric approach, where a template model

is learned from different instances of the same gesture. In order to account for varia-

tions in the execution rates within different realizations, we apply an iterative approach

utilizing the DTW approach [83] to align the different trajectories temporarily and then

learn an average template representation on the manifold for recognition. In the second

approach, we build a parametric model by clustering the different points on the manifold

into several clusters using the Affinity Propagation (AP) clustering technique [38]. Each

gesture trajectory is modeled as a sequence of Markovian jumps between some of these

clusters. The transition probabilities of the Markov model are learnt using the standard

forward-backward approach [84], while non-parametric statistical observation models are

directly built on the Riemannian manifold.
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In each of these approaches we address two different stages of the problem:

1. The learning problem: Given N labeled realization Q1,Q2, · · ·QN of a gesture,

where each realization is a time series of shape points in the form shown in (5.4),

we would like to learn a nominal ( or average) trajectory model of this gesture.

2. The classification problem: Given a test sequence Q, and M different gesture tem-

plate models. How can we classify the test sequence into one of these models?

5.3.1 Template based Model

In this model, we learn a template trajectory Q∗ for each gesture given the training

realizations of this gesture. A usual choice is to compute Q∗ as the average of all the

training trajectories at each time instants. This choice is optimal in terms of minimizing

the sum of distances between the template and all of the training examples at each time

instant.

This approach has two limitations. The first is the fact that trajectories are not of

the same length due to variations in execution rates of the same gesture. This also results

in a lack of temporal synchronization between different segments of these trajectories.

Therefore, a temporal alignment of these trajectories is crucial before computing the tem-

plate. The second issue is that all of the points on the different learning trajectories reside

on the shape space S. Thus we need to make sure that both the temporal matching of

shape points and computation of the template Q∗ follow the underlying geometry of that

manifold.

In order to solve the temporal variation problem, we propose using the DTW algo-
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rithm [83], which is used to find the optimal non-linear warping function to match a given

time-series to a template while adhering to certain restrictions such as the monotonicity

of the mapping in the time domain. This approach is very popular in speech recognition

and has been used in several vision applications such as shape averaging [69], and rate-

invariant activity recognition [120]. The optimization process is usually performed using

dynamic programming approaches given a measure of similarity between the features of

the two sequences at different time instants.

Adapting the DTW algorithm to features that reside on Riemannian manifolds is a

straightforward task, since DTW can operate with any measure of similarity between the

different temporal features. Hence, we use the geodesic distance between the different

shape points d(qi, q j) given in (5.3) as a distance function between the shape features at

different time instants.

5.3.1.1 Iteratively learning the template trajectory on the manifold

Given the N labeled realization Q1,Q2, · · ·QN of a certain gesture, we solve for the

nominal shape sequence Q∗ ∈ S that has the minimum distance to all the N realizations,

while accounting for the different non-linear temporal warpings between these realization

and Q∗. This can be formulated as computing the average trajectory on the shape space S

of all the warped versions of the N realizations as described next.

Q∗ = AVGS( f1(Q1), f2(Q2), · · · fN(QN)). (5.5)
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where, AVGS stands for the average of the realization computed with respect to the shape

manifold S, and fi(Qi) represent the non-linear warped function that was calculated using

DTW to match Qi to the template Q∗.

According to (5.5), given a set of warping functions fi, i = 1 : N, we can solve for

Q∗. This is achieved by computing the intrinsic mean on S of all the warped sequences

at each time instants. We use the Karcher mean on the manifold as described in Section

2.2.1 for this computation. However, a template Q∗ is needed in order to compute these

warping functions.

We solve this dual problem in an iterative manner as shown in Algorithm 1 by

iterating between computing the non-linear warping functions to a given template and

updating the template as the average of the warped realizations.

The initialization of this algorithm is performed by choosing one of the N labeled

realizations as the initial Q∗. This choice can be done randomly. However, we found

that better performance can be achieved if we choose the sequence that best represents

all of the N labeled realization. This is the sequence that achieves the minimum average

distance with all the labeled realizations when picked as a template and all the sequences

are warped to it.

5.3.1.2 Classification of a test sequence

In the testing stage, we are given test shape sequence Qt and M different gesture

templates. We want to classify Qt as one of these gestures. This classification problem is

solved using the nearest neighbor rule, by warping all the models to Qt using the geodesic

94



Algorithm 1 Learning gesture template Q∗ from N labeled realization Q1,Q2, · · ·QN

1: Initialize Q∗ to one of the N realizations

2: repeat

3: for n=1 to N do

4: Find DTW to warp Qn to Q∗

5: end for

6: Update Q∗ as the Karcher mean of all the N warped realizations

7: until Convergence or t times

distance in S as a distance measure and computing the total warping distance to each of

these models. Qt is then assigned to the model with the smallest warping distance.

5.3.2 Graphical-based Statistical Model

The simplicity of template-based approaches encouraged researchers to use it in

many practical applications, where they have shown great success under conditions of

small variations and low noise within the training data. Under these conditions, the mean

can be sufficient to characterize the time-series. Unfortunately, in many other scenarios,

these conditions do not hold. Hence, we need higher order statistical models to capture

the variation within the time-series data.

Graphical models such as the Hidden Markov Models (HMM) have proven more

effective than template-based methods in modeling time-series data, specially in areas

such as speech processing [84]. This is so because these models can learn more informa-

tion about the special statistical variation of both the observation data and the dynamical
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transition between different states.

A standard HMM with continuous observation is shown in Figure 5.2. This is a

statistical generative model that represent the time series of observations in the form of

a set of transitions between several abstract hidden states, where the state at time t is

denoted by S t. The transition between these states is governed by a Markovian model

parameterized by the state transition probability P(S t|S t−1). The observation at each time

instant qt is statistically dependent on the state S t according to an observation probability

density function f (qt|S t). A common choice for this density function is a mixture of

Gaussians. The model parameters are learnt using the standard Baum-Welch algorithm

[8]. This ensures that the state transition and observation density functions are optimized

in the maximum likelihood sense.
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Figure 5.2: A graphical model of unfolding a standard continuous state HMM

To the best of our knowledge, most of the published work on graphical models

such as HMM studies modeling time-series data on Euclidean spaces. However, several

challenges appear if we want to generalize these methods to time-series data on special

manifolds. One of the challenges is that in order to solve for the optimal parameters in

the maximum likelihood sense, we need to provide an analytical form for the observation

density functions and compute the gradient of the likelihood of a sequence in terms of the
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parameters of these functions.

In order to avoid the mathematical difficulty of directly learning a graphical model

on the Riemannian manifold, we propose to decouple the two problems of learning the ab-

stract state transitions and learning the observation distributions. This is accomplished by

introducing a new layer of intermediate observations Xt in the form illustrated in Figure

5.3. The resulting model in this case is similar to the decoupled exemplar-based HMM

presented in [32]. The difference is that we will learn these exemplars to represent dif-

ferent clusters of data on the shape manifold. We will also learn the observation density

functions as a non-parametric density function for each cluster on that manifold.
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Figure 5.3: A graphical model of unfolding the exemplar-based HMM used in modeling

the gesture dynamics

In our approach we model the dynamics of each gesture as a Markov model of L

hidden abstract states H(1),H(2), · · · ,H(L). Let S t denotes the state of the system at time t.

The state of the system is emitting an intermediate discrete observation representing the

cluster (exemplar) of the system and denoted by xt. This observation can take any value

in the set X = {xk|k = 1, · · ·K}, where K is the number of the learnt clusters on the shape

manifold. Hence, the system dynamics is determined by the state transition P(st|st−1), and
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the exemplar observation probabilities P(xt|st).

The final observation qt corresponds to the contour curve velocity function for a

certain frame, and represents a point on the shape space S. These observations are mod-

eled using a mixture distribution such that the observation probability for an observation

qt at time t given the state of the system st can ba calculated as

f (qt|st) =
K∑

k=1

f (qt|xt = xk)P(xt = xk|st) (5.6)

where, f (qt|xt = xk) represents the non-parametric probability density function for cluster

k on the shape space S.

Learning the model for each gesture includes learning the state transition proba-

bilities P(S t|S t−1), the exemplar clusters observation probabilities P(xt|S t), and the shape

observation density functions given each cluster f (qt|xt = xk). We follow a decoupling ap-

proach for learning these parameters. We first cluster the gesture shape points into several

clusters and build a non-parametric statistical model for the data points in each cluster

to represent the observation density function. The state transition and cluster observa-

tion probabilities are then learnt from the training samples using the standard forward-

backward technique commonly used in applications that use discrete observation HMMs.

5.3.2.1 Clustering of gesture shapes

The clustering of the shape points to learn the exemplar clusters can be done directly

on the quotient shape space S by using a stochastic simulated annealing approach to

search for the optimal cluster assignment in the configuration space [100]. However,
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this method requires a high computation burden and is not guaranteed to converge to a

globally optimal solution. We use a simpler and computationally efficient AP clustering

approach on the matrix of the pairwise geodesic distances to find the cluster assignment.

Affinity Propagation is an unsupervised clustering technique presented by Frey and

Dueck in [38]. It finds a set or exemplar points to represent the data and assigns every

data point to one of these exemplars. The search for these exemplars is performed in an

iterative manner using a message passing algorithm on a graph, where each data point is

represented by a node on this graph. This method was proven superior to other clustering

approaches in many applications such as clustering images of faces, detection of genes in

micro-array data, and identification of cities that are efficiently accessed by airline travel.

It was also shown to be more computationally efficient in terms of processing time and

handling sparse data.

There are two main advantages of using AP for our problem. The first is that this

method only requires a notion of similarity between every pair of data points and does not

assume a Euclidean space. Therefore, we can use the negative of the geodesic distance

between the shape points as a geometrically accurate similarity measure, resulting in ac-

curate clustering on the shape manifold. The second advantage is that this method does

not require any prior knowledge of the number of clusters and the final clustering is not

dependent on the initialization as in K-means clustering.

Given all of the training data shape points, we run the AP algorithm on the ma-

trix of the pairwise similarity between shapes, calculated as the negative of the geodesic

distance between theses shapes on the shape space S. The output of the algorithm is a

set of K exemplar shapes q1, q2, · · · , qK , and an assignment of each data point to one of

99



these exemplar. An example of these exemplar shapes for different clusters of the control

gesture data set is shown in Figure 5.4. We observe that some similar shapes may be

split between two close clusters. This may be a problem with clustering. However, our

HMM dynamic model is robust to these errors as each state can be associated with many

exemplar states.

Figure 5.4: Some exemplar shapes representing clusters computed on the shape manifold
using AP.

An important question in this step is the amount of data to use for learning these

exemplar clusters. We have two choices. The first is to make these clusters gesture de-

pendent by using the shape data corresponding to each gesture to learn a different set of

clusters. The second choice is to perform the clustering on all the training data for all the

gestures which result in a shared set of exemplars for all the different HMM’s. Although

the first choice may reduce the computational complexity as we need to calculate signifi-

cantly fewer geodesic distances, we adopt the second approach for the following reasons.

First, the physical nature of the problem suggests that usually many gestures share a set of

poses which are similar or very close in shape. The second reason is that global clustering
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results in more data points per cluster which helps in providing a better estimate for the

non-parametric observation density functions. Finally, the global clustering approach has

also the intuitive idea of representing the whole manifold as a mixture of distributions rep-

resenting our observation model. Our experimental analysis also proves the superiority

of global clustering approach as will be shown in the result section.

5.3.2.2 Building the observation model

Given the clustering result of the AP algorithm, we learn a non-parametric density

function f (qt|xt = xk) for each cluster xk. This density function captures the variability

between the different samples of the cluster and determines the main mode of variation

within each cluster. However, the learning of these density functions on the shape space is

difficult, mainly because of the two problems of nonlinearity and infinite dimensionality

of the shape space S.

We deal with these challenges using the method described in [100] and summarized

in Algorithm 2. The problem of nonlinearity is avoided by building these distributions on

the tangent space TµkS to S at the mean shape of the cluster µk rather than on S itself. This

approximation is valid because the data within the cluster are very close to each other and

will be in a small neighborhood around µk. Therefore, for every shape q ∈ S in the kth

cluster we compute a tangent vector g ∈ TµkS, where g represents the initial velocity of

the geodesic path between the mean shape µk and the shape q.

The problem of dimensionality is solved by assuming that the variations in the

tangent vectors g are mostly restricted to an m dimensional subspace. We use PCA to learn
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these low-dimensional subspaces for each cluster. Each of the m coefficients representing

the low-dimensional projections g̃ is then modeled with a non-parametric density function

using kernel density estimation (with a Gaussian kernel) technique.

Algorithm 2 Learning the observation non-parametric density function for the k-th cluster

f (qt|xt = xk) from the clustered shape points q1, q2, · · · qz

1: Compute the intrinsic mean µk for the z data points using (2.2)

2: for i=1 to z do

3: Compute the tangent element gi ∈ T k
µ(S), such that geodesics from µk reaches qi in

unit time

4: end for

5: Perform a local PCA on the data points g1, g2, · · · , gz to learn an m-dimensional sub-

space

6: for i=1 to z do

7: Project the data point gi into g̃i on the m-dimensional subspace learnt

8: end for

9: Learn a non-parametric density function for each of the m coefficients of g̃i, i = 1 : z

5.3.2.3 Learning the dynamical model

For each gesture, we want to train a HMM that captures the underlying dynamics

of transition between the states (state transition probabilities P(S t|S t−1)), and the inter-

mediate (cluster) discrete observation probability P(xt|S t). This is a standard problem in

HMM and we solve it this using the Baum-Welch method for discrete output HMM [84].
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Given N realization of each gesture, where each m-point realization is in the form

Q = q1, q2, · · · , qm, qi ∈ S, we assign each of these points to one of the learnt clusters

to obtain a sequence of cluster assignments x̂1, x̂2, · · · , x̂m, x̂ ∈ X. These sequence of

clusters are used as discrete observation vectors in the Baum-Welch algorithm to learn the

model for each gesture.

The way we assign each shape observation to a cluster can largely affect the per-

formance and accuracy of the model. A simple choice for this assignment is to use a

nearest-neighbor rule where the shape point is assigned to its nearest cluster, which is cal-

culated by computing the geodesic distance between this point and all the cluster means,

and picking the cluster with the minimum geodesic distance. This can be formulated in

the following way

x̂i =
K

min
j=1

d(qi, µ
j), f or i = 1 : m (5.7)

where µ j is the intrinsic mean for the jth cluster computed on the shape manifold, and

d(., .) is the geodesic distance on S.

Although nearest neighbor assignment performs relatively well, it sometimes pro-

duces wrong assignments as it only uses the mean point as a representative of each cluster

and ignores the statistical variations within the cluster. These wrong assignments result

in inaccurate HMM model parameters.

Therefore, in order to fully utilize the information we learnt about the statistical

properties of the data within each cluster we use a ML assignment. In this method we use

the cluster observation models learnt in the previous steps f (qt|xt = xk) and assign qt to
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the most likely cluster as follows

x̂i =
K

max
j=1

f (qi|xt = x j), f or i = 1 : m (5.8)

5.3.2.4 Classification of a test sequence

Given a sequence of observation shapes Q = q1, q2, · · · , qm, qi ∈ S and a set of

M HMM models corresponding to M different gestures, we first compute the conditional

observation likelihood f (qt|st) using the learnt cluster density functions f (qt|xt = xk)

and the exemplar clusters observation probabilities p(xt = xk|st). This is calculated by

summing over all possible clusters as shown in (5.6).

Given these observations likelihood and the state transition probabilities p(S t|S t−i),

computing the likelihood of the test sequence is a simple HMM evaluation problem. We

solve it using the standard forward technique and dynamic programming [84]. The test

sequence is then classified using the maximum likelihood rule.

5.4 Experimental Results

We carried out an extensive set of experiments to evaluate and verify the effective-

ness of using the contour curve shape manifold and the two proposed methods in modeling

and recognition of human actions and gestures. The experiments also investigate the ef-

fect on performance with changing some of the system choices like the cluster assignment

method and whether the clusters are shared among different gesture models or not. These

experiments were performed using two different datasets representing the human action

and control gesture scenarios respectively. For both datasets, background subtracted im-
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ages with relatively good resolution and quality were available. We used these images

to extract the contour of the human as the boundary of the main binary silhouette in the

images.

5.4.1 UMD Common Actions Dataset

In the first set of experiments we use the UMD common activity dataset [121] to

perform action modeling and recognition. This dataset consists of 10 common activities

with 10 different instants of each activity performed by the same actor, which brings the

total number of sequence to 100 sequences. Each of these sequences is 80 frames long,

which means a total of 8000 frames are in the whole dataset.

5.4.1.1 Template-Based approach

We first use the dataset to evaluate the template based approach presented in Section

5.3.1. We split the dataset into two disjoint sets, of five sequence each. We used the even

sequence for learning the template trajectory on the shape manifold while we tested using

the remaining five odd sequences per gesture. Figure 5.5-a shows the 10 x 50 similarity

matrix between each of the test sequences and each of the learnt action models. Each

of these distances corresponds to the warping distance computed on the shape manifold

between the test sequence and the model templates. Each row corresponds to a single

action model, while each column corresponds to a different test sequence. The strong

block diagonal nature of the similarity matrix indicates that the modeling is accurate and

is effective for recognition.
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Figure 5.5: Results of using the template based method for classification on the UMD
action dataset (a) The 10 x 50 similarity matrix between the 50 test sequences and the 10
action models learnt (better viewed in color) (b) The confusion matrix for action classifi-
cation

We use this similarity matrix to perform an action recognition experiment, where

we assign each test sequence to the model with the smallest warping distance. The re-

sulting confusion matrix for this experiment is shown in Figure 5.5-b, showing an correct

recognition rate of 98%.

5.4.1.2 Graphical-Model Based Approach

We used the same dataset to test the graphical model approach presented in Section

5.3.2. In the first stage we use AP to cluster the data points on the manifold using the

pairwise geodesic distances between every pair of shapes. We use the preference param-

eter value, as mentioned in [38], to change the number of clusters to check the effect of

this change on our performance. As in the template-based method experiment, we use

the data corresponding to the odd sequences for learning the clusters and their statistical
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observation density functions.

The clustering results along with statistical models of each cluster are used to learn

the dynamics of each action as presented in Section 5.3.2. We first assign the gesture

data from the training set into different clusters and use the cluster assignment streams to

learn the HMM dynamics of the action. We used two different assignment approaches as

described in Section 5.3.2. In the NN assignment method we assign the shape points into

the nearest cluster in terms of the geodesic distances with the mean of the cluster, while

in the ML assignment we use the learnt statistical model to assign the shape observation

into the most likely cluster in terms of the likelihood function.

Figure 5.6 shows the correct classification rates for two validation experiments un-

der different number of clusters and different assignment methods. The first experiment,

shown in figure 5.6-a, is similar to the template-based experiment, where we split the data

sequences into two disjoint set and use the first set for training and use the second for

testing. The second experiment, shown in figure 5.6-b), is using the leave-one-out cross

validation method, where we test each sequence using a model learnt using all the other

sequences.

The performance results are very close, however we can note a couple of observa-

tions:

1. The NN assignment method performs slightly poorly with increasing number of

clusters. On the other hand, the ML performance slightly increases with the same

number of clusters change. This can be due to the fact that with more clusters the

NN assignment can easily assign similar shapes to different clusters, while the ML
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Figure 5.6: UMD common activity dataset action classification results. (a) Classification
rates for splitting the data into training and testing sets. (b) Classification rates for leaving-
one-out experiment.

method does not make the same mistake.

2. Although both assignment methods are performing well, the ML method is per-

forming slightly better with average recognition rate of 99.67% in both experi-

ments, while NN assignment methods achieved an average recognition rate 96.67%

and 95.67% in the first and second experiments respectively. This is expected be-

cause the statistical model allows for learning the modes of variation within each

cluster, which result in a more accurate modeling of the within cluster variation.

We grouped the recognition rates for all of our experiments in Table 5.1. We also

include the results reported in [120] on the same data set. We can note that our HMM

approach has a comparable result to the perfect recognition rate reported in [120].

5.4.2 Control Gesture Dataset

The UMD action dataset has been used in several publication on action modeling

and recognition. However, the level of variability within the dataset is very limited by
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approach evaluation method recog. rate %

Template-based approach split 98
Graphical-based approach with NN assignment split 96.67
Graphical-based approach with NN assignment leave one out 95.67
Graphical-based approach with ML assignment split 99.67
Graphical-based approach with ML assignment leave one out 99.67

Veeraraghavan et al [120] leave one out 100

Table 5.1: A summary of the recognition results of our various approaches and evaluation
methods on the UMD common actions dataset as compared to the results reported in [120]
on the same dataset.

the single actor performing the actions. For this reason, we carried out another set of

experiments using a different dataset of human control gestures recently introduced in

[68]. The dataset consists of 14 arm control gestures performed by three different actors

with different clothes and body frames. Each person repeats a gesture for 3-5 cycles. The

length of each cycle varies a lot between 80 and 250 frames for the shortest and longest

sequences respectively. Figure 5.7 shows the different gestures in the dataset performed

by the first person with an overlay of the extracted contour curves captured every 10

frames.

For this dataset, the authors provided us with a set of background subtracted frames

with good resolution. However, the quality of background subtraction was not consistent

within all the frames, with the result of added background pixels and poor contour extrac-

tion as shown in Figure 5.8. Our method, as in most silhouette-based methods, assumes

a relatively clean background subtraction. However, we did not manually fix these errors

and use it to test the robustness of our approaches. Another issue was that the different

cycles for each person performing a gesture is provided in terms of a long continuous

sequence of frames. We had to manually perform a temporal segmentation of the data in
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Figure 5.7: The different control gestures in the data set used in our gesture recognition
experiment [68]. (1) Turn Right, (2) Turn Left, (3) Attention Right, (4) Attention Left, (5)
Flap, (6) Stop Right, (7) Stop Left, (8) Stop Both, (9) Attention Both, (10) Start Engine,
(11) Go back, (12) Close Distance, (13) Speed up, and (14) Come Near.

order to obtain a separate sequences for each cycle. The quality of such segmentation was

crucial for the DTW template-based approach, where we will show the results before and

after fixing the segmentation errors in the next section.

(a) (b) (c) (d)

Figure 5.8: Some of the errors in the background subtraction errors in the control gesture
dataset resulting in inaccurate silhouette extraction.

5.4.2.1 Template-Based approach

We ran our template-based approach for learning a template for each gesture and

used that template for recognition. Figure 5.9 shows the correct classification rates for

the different experiments we performed. In the first experiment, we achieved a very poor
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recognition rate of 42%, although we have been using all the sequences for training. After

carefully inspecting the resulting templates, we found out that poor segmentation of the

sequences results in poor performance. This shows the importance of using cleanly seg-

mented sequences for learning templates when the DTW method is used. In experiment

2, we fixed the segmentation issue, which improved the classification rate to around 60%.
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Figure 5.9: The correct classification results for using the template-based approach on the

gesture dataset. Experiment 1: Bad segmentation of sequences and random initialization.

Experiment 2: Correct segmentation of sequences and random initialization. Experiment

3: Initialization using the best sequence, all sequence used for training. Experiment 4:

Initialization using the best Sequence, leave-one-out cross validation

In the last two experiments, we changed the way we initialize the computation

of the mean trajectory. Instead of initializing using a random trajectory of the training

sequences, we compute the DTW between each training sequence as a model and the

rest of the sequences. We initialize the mean trajectory computation using the sequence

with the smallest average DTW error to all the other sequences. This change resulted
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in increasing the correct classification rate to around 69% while using all the sequences

for training and testing as a baseline experiment. In the last Experiment (experiment 4),

we perform a leave-one sequence-out cross validation, where we build a model for each

test sequence with a training set that exclude that sequence and use all the remaining

sequences. Surprisingly, this performed better than the baseline results of using all the

data for training, with a correct classification rate of 72%. The similarity matrix and

confusion matrix corresponding to the different experiments are shown in figures 5.10

and 5.11 respectively.

We further analyzed the classification results by examining the correct recognition

rate for each gesture and each person individually, these results are shown in Figure 5.12-

a and 5.12-b respectively. From these figures, we can note the recognition rate varies

dramatically across different gestures. For example the Go Back gesture was recognized

correctly in only 10% of the cases, while the Flap, Stop Left, and Stop Right gestures

achieved perfect recognition rates in most of the experiments. This is due to the fact that

some gestures are more distinguishable using only the silhouette information than other

gestures. On the other hand, the recognition rates were very close for different persons

performing the gestures.

5.4.2.2 Graphical-Model Based Approach

We repeated the same experiments performed on the UMD action dataset for the

control gestures dataset but with a slight variation in the setup. Experiment 1 represents

a baseline experiment where we use all of the training sequence for learning the model.
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This should perform really well and it can point out to any problems within the modeling

itself regardless of the generalization of the model to unseen sequences. Experiment

2 represents the same leave-one-sequence-out experiment performed previously for the

UMD action dataset. Due to the fact that we have three different persons performing

each gesture, we performed a third experiment representing a leave-one-person-out cross

validation, where we exclude all the sequences corresponding to one person from training

the model used for the test sequences corresponding to that person. This will test the

generalization capabilities of our model for new body frames that have not been used in

the training phase. This can be a very challenging problem because of the limited number

of training sequences remaining after excluding all the sequences for one person.

Figures 5.13 and 5.14 shows the correct classification rates using HMM with five

and seven states respectively. The figures shows the performance variations while using

different number of clusters and switching between ML and NN cluster assignment meth-

ods. Figure 5.15 shows the overall confusion matrix for these experiments combining the

results for each experiment and assignment method under different number of clusters

and HMM states.

Form these graphs we notice the following:

1. The ML assignment method is performing slightly better than the NN rule with

maximum recognition rates of 100%, 94%, and 82% for experiments 1,2, and 3 re-

spectively. compared to maximum correct recognition rates of 99%, 94%, and 76%

for the NN assignment methods. Also, the average correct classification rate of ML

assignment was 97%, 90%, and 73% for the experiments 1,2, and 3 respectively,
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compared to an average rate of 91%, 85%,and 70% for the NN assignment method.

2. A careful study of the confusion matrices in Figure 5.15 shows that certain gestures

are very confusing even in the baseline experiment. which lower the average clas-

sification rate. For instance, the two gestures of Go back and come Near (gestures

11 and 14 in the tables) are usually confused alot. These two gestures are similar

except for the orientation of the palm of the hand and the direction of the motion.

This makes them highly indistinguishable using only the silhouette images, even

for an human observer.

3. The recognition rates are very similar when we change the number of states, which

suggests that the performance does not vary much with the HMM design parame-

ters.

4. The performance is relatively bad in the leave one person out experiment. We

believe that this may be mainly due to the low number of training sequences in this

case.

Due to the recent introduction of the dataset, we could only compare our recognition

rates to the results reported in [68]. Table 5.2 group our results for different approaches

and evaluation methods as compared to [68]. We can note that our method managed

to achieve comparable performance with 94% maximum recognition rate as compared

95.24% recognition rate reported in [68]. However, we were able to achieve this results

using only the silhouette of the background subtracted sequences, while [68] was com-

bining both the shape and motion information obtained using the color images and optical
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approach evaluation method max recog. rate %

Template-based approach leave one out 72
Graphical-based approach with NN assignment leave one sequence out 94
Graphical-based approach with NN assignment leave one person out 76
Graphical-based approach with ML assignment leave one sequence out 94
Graphical-based approach with ML assignment leave one person out 82

Lin et al [68], shape only leave one out 92.86
Lin et al [68], shape and motion leave one out 95.24

Table 5.2: A summary of the recognition results of our various approaches and evaluation
methods on the control gesture dataset as compared to the results reported in [68] on the
same dataset.

flow computations. In fact, our results exceed the performance reported in the same paper

using only the shape cues for recognition.

5.5 Chapter Summary

In this paper, we presented a novel gesture recognition technique using shape mani-

folds. Contours of the silhouette are extracted and represented as 2D closed elastic curves

parameterized using the square-root parametrization. This representation is intrinsically

invariant to both translation,scale, and re-parametrization of the curve. Each gesture is

modeled as a temporal trajectory on the resulting Riemannian manifold of 2D elastic

curves. We proposed template and graphical-based HMM approaches for modeling these

trajectories. The two approaches capture the statistical variability of the data, while ad-

hering to the underlying geometry of the manifold. The two approaches were proven

successful experimentally using two data sets of human control gesture and actions. In

future, we plan to extend the proposed approach to other vision problems that can be

modeled using dynamical trajectory on differentiable manifolds.
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Figure 5.10: The 126 X 14 similarity matrix between all of the test sequences and the 14
gesture models using the template-based approach for experiments 1-4 are shown in a-d
respectively (better viewed in color)
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Figure 5.11: The confusion matrix for gesture classification using the template-based
method for experiments 1-4 are shown in a-d respectively
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Figure 5.12: Gesture dataset classification results using the template-based approach (a)
The correct classification rates for each gestures in different experiments (b) The correct
classification rates for each person in different experiments
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Figure 5.13: The gesture classification results using the graphical model approach, with 5
states HMM. It show the correct classification rates using each of ML and NN assignment
and with varying number of clusters (a) Using all the sequences for training (b) Leaving
one sequence out cross validation and (c) Leaving one person out cross validation
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Figure 5.14: The gesture classification results using the graphical model approach, with 7
states HMM. It show the correct classification rates using each of ML and NN assignment
and with varying number of clusters (a) Using all the sequences for training (b) Leaving
one sequence out cross validation and (c) Leaving one person out cross validation

119



Turn Right

Turn Right

0.86

0.00

0.00

0.00

0.08

0.00

0.00

0.00

0.00

0.00

0.00

0.07

0.00

0.00

Turn Left

Turn Left

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Attention Right

Attention Right

0.06

0.00

0.97

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.14

0.06

Attention Left

Attention Left

0.00

0.00

0.00

0.93

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

Flap

Flap

0.00

0.00

0.00

0.00

0.79

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

Stop Right

Stop Right

0.00

0.00

0.03

0.00

0.00

0.99

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Stop Left

Stop Left

0.00

0.00

0.00

0.07

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Stop Both

Stop Both

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.97

0.00

0.00

0.03

0.00

0.00

0.00

Attention Both

Attention Both

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

1.00

0.00

0.00

0.00

0.00

0.00

Start Engine

Start Engine

0.08

0.00

0.00

0.00

0.08

0.00

0.00

0.00

0.00

1.00

0.00

0.03

0.01

0.00

Go Back

Go Back

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.78

0.00

0.00

0.10

Close Distance

Close Distance

0.00

0.00

0.00

0.00

0.04

0.00

0.00

0.00

0.00

0.00

0.00

0.85

0.00

0.00

Speed Up

Speed Up

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.85

0.06Come Near

Com
e Near

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.19

0.00

0.00

0.79

The log−likelihood with deformation Order equal2

walking

walking

running

running

jumping

jum
ping

dribbling

dribbling

kicking

kicking

boxing

boxing

dancingM

dancingM

dancingF
dancingF

(a) (b)
Turn Right

Turn Right

0.79

0.00

0.00

0.00

0.04

0.00

0.00

0.00

0.00

0.01

0.00

0.06

0.00

0.03

Turn Left

Turn Left

0.00

0.85

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Attention Right

Attention Right

0.06

0.00

0.96

0.00

0.00

0.04

0.00

0.00

0.00

0.03

0.00

0.00

0.24

0.01

Attention Left

Attention Left

0.00

0.14

0.00

0.85

0.00

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Flap

Flap

0.00

0.00

0.00

0.00

0.82

0.00

0.00

0.00

0.00

0.00

0.00

0.06

0.00

0.00

Stop Right

Stop Right

0.00

0.00

0.01

0.00

0.00

0.93

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.03

Stop Left

Stop Left

0.00

0.01

0.00

0.14

0.00

0.00

0.97

0.00

0.00

0.00

0.00

0.01

0.00

0.00

Stop Both

Stop Both

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.96

0.00

0.00

0.10

0.00

0.00

0.10

Attention Both

Attention Both

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

Start Engine

Start Engine

0.15

0.00

0.01

0.00

0.12

0.03

0.00

0.00

0.00

0.96

0.00

0.04

0.03

0.00

Go Back

Go Back

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.67

0.01

0.00

0.21

Close Distance

Close Distance

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.79

0.00

0.00

Speed Up

Speed Up

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.72

0.04Come Near

Com
e Near

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.24

0.00

0.00

0.58

Turn Right

Turn Right

0.85

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

Turn Left

Turn Left

0.00

0.93

0.00

0.04

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Attention Right

Attention Right

0.06

0.00

0.94

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.15

0.00

Attention Left

Attention Left

0.00

0.06

0.00

0.96

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Flap

Flap

0.00

0.00

0.00

0.00

0.93

0.01

0.00

0.00

0.00

0.00

0.00

0.10

0.00

0.00

Stop Right

Stop Right

0.00

0.00

0.00

0.00

0.00

0.94

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Stop Left

Stop Left

0.00

0.01

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Stop Both

Stop Both

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.96

0.00

0.00

0.08

0.01

0.00

0.11

Attention Both

Attention Both

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.00

0.00

0.00

0.00

0.00

0.03

Start Engine

Start Engine

0.10

0.00

0.06

0.00

0.00

0.03

0.00

0.00

0.00

1.00

0.00

0.00

0.01

0.00

Go Back

Go Back

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.61

0.00

0.00

0.12

Close Distance

Close Distance

0.00

0.00

0.00

0.00

0.07

0.00

0.00

0.00

0.00

0.00

0.00

0.88

0.00

0.01

Speed Up

Speed Up

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.83

0.00Come Near

Com
e Near

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.00

0.00

0.31

0.00

0.00

0.72

(c) (d)
Turn Right

Turn Right

0.67

0.00

0.00

0.00

0.08

0.00

0.00

0.00

0.00

0.04

0.03

0.08

0.00

0.06

Turn Left

Turn Left

0.00

0.72

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

Attention Right

Attention Right

0.21

0.00

0.88

0.00

0.01

0.14

0.00

0.00

0.00

0.00

0.03

0.00

0.54

0.04

Attention Left

Attention Left

0.00

0.17

0.00

0.78

0.00

0.00

0.01

0.00

0.00

0.00

0.03

0.01

0.00

0.00

Flap

Flap

0.00

0.00

0.00

0.00

0.67

0.00

0.00

0.00

0.00

0.00

0.00

0.19

0.00

0.00

Stop Right

Stop Right

0.00

0.00

0.11

0.00

0.00

0.61

0.00

0.00

0.00

0.00

0.00

0.01

0.06

0.00

Stop Left

Stop Left

0.00

0.04

0.00

0.22

0.00

0.00

0.97

0.00

0.00

0.00

0.03

0.00

0.00

0.03

Stop Both

Stop Both

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.82

0.00

0.00

0.10

0.03

0.00

0.11

Attention Both

Attention Both

0.00

0.06

0.00

0.00

0.15

0.00

0.00

0.04

1.00

0.00

0.00

0.03

0.00

0.01

Start Engine

Start Engine

0.12

0.00

0.01

0.00

0.06

0.19

0.01

0.00

0.00

0.94

0.03

0.03

0.01

0.00

Go Back

Go Back

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.12

0.00

0.00

0.50

0.00

0.00

0.51

Close Distance

Close Distance

0.00

0.01

0.00

0.00

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.58

0.00

0.00

Speed Up

Speed Up

0.00

0.00

0.00

0.00

0.01

0.03

0.00

0.00

0.00

0.01

0.00

0.00

0.39

0.01Come Near

Com
e Near

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.26

0.01

0.00

0.22

Turn Right

Turn Right

0.75

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.07

0.00

0.03

0.00

0.01

Turn Left

Turn Left

0.00

0.75

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Attention Right

Attention Right

0.08

0.00

0.88

0.00

0.00

0.17

0.00

0.00

0.00

0.03

0.00

0.00

0.46

0.00

Attention Left

Attention Left

0.00

0.14

0.00

0.76

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Flap

Flap

0.00

0.00

0.00

0.00

0.76

0.00

0.00

0.00

0.00

0.00

0.00

0.29

0.00

0.00

Stop Right

Stop Right

0.00

0.00

0.06

0.00

0.00

0.67

0.00

0.00

0.00

0.01

0.00

0.01

0.14

0.00

Stop Left

Stop Left

0.00

0.06

0.00

0.24

0.00

0.03

0.99

0.00

0.00

0.00

0.00

0.00

0.00

0.01

Stop Both

Stop Both

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.92

0.00

0.00

0.11

0.03

0.00

0.12

Attention Both

Attention Both

0.00

0.00

0.00

0.00

0.07

0.00

0.00

0.01

0.97

0.00

0.03

0.00

0.00

0.07

Start Engine

Start Engine

0.14

0.00

0.07

0.00

0.00

0.10

0.00

0.00

0.00

0.89

0.00

0.03

0.03

0.00

Go Back

Go Back

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.04

0.00

0.00

0.49

0.00

0.00

0.33

Close Distance

Close Distance

0.03

0.06

0.00

0.00

0.14

0.01

0.00

0.00

0.00

0.00

0.03

0.61

0.00

0.03

Speed Up

Speed Up

0.00

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.38

0.00Come Near

Com
e Near

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.03

0.00

0.35

0.00

0.00

0.42

(e) (f)

Figure 5.15: The combined confusion matrix for the classification experiment using
the graphical based approach with NN assignment (left column) and ML assignment
(right column). (a)Experiment 1, NN assignment, (b)Experiment 1, ML assignment,
(c)Experiment 2, NN assignment, (d)Experiment 2, ML assignment, (e)Experiment 3,
NN assignment, and (f)Experiment 3, ML assignment
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Chapter 6

Future Work

There are multiple avenues in theory as well as in application domains for extending

the findings of this dissertation. We discuss a few below.

6.1 Learning Temporal Pattern Templates On Riemannian Manifolds

As shown in this dissertation, many computer vision problems can be modeled as a

pattern recognition problem of a temporal sequence of points on a Riemannian manifold.

Several models have been proposed for solving the analogous problem for data lying on

Euclidean spaces. However, very limited attention have been given to this problem using

concepts from differential geometry.

One of the approaches we plan to investigate is to learn a temporal template of the

training sequences on the Riemannian manifolds. In chapter 5, we proposed an approach

to learn temporal templates using DTW and Karcher mean computations. However, this

approach does not enforce any regulatory or smoothing constraints on the resulting tem-

plate. We are interested in developing a more theoretical analysis of this problem using

tools from differential geometry. We will use an analysis similar to the work represented

in [92] for fitting curves to a finite set of points on a manifold. The problem is formulated

as follows.

Given M realization of a temporal pattern, each realization consists of a sequence
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of N points p0 j, p1 j · · · , pN j that lie on a Riemannian manifoldM. We would like to learn

a template sequence γ in M that best represent this pattern. This template trajectory is

fitted to the training data by taking two goals of conflicting nature into consideration:

1. The curve should fit all of the realizations as well as possible, this can be formulated

with an energy function

Ed(γ) =
N∑

i=0

M∑
j=1

d2(γ(ti), pi j) (6.1)

Where d denotes the geodesic distance function on the Riemannian manifoldM

2. The second goal is to have the resulting curve to be as regular as possible, this can

be formulated similar to [92] by either minimizing the length of the curve or min-

imizing the change in velocity along the curve. This goal is measured by another

regularity function Es,i(γ), i = 1 or 2 defined in the following way

Es,1(γ) =
1
2

∫ 1

0
||γ̇(t)||2 dt (6.2)

Es,2(γ) =
1
2

∫ 1

0
||γ̈(t)||2 dt (6.3)

The problem is then formulated as minimizing a function of the form

E : Γ → R

γ 7→ E(γ) := Ed(γ) + λEs(γ)

where Γ is the set H1([0, 1],M) of all continuous paths γ : [0, 1] → M whose weak

first derivative is locally square integrable in every chart ofM, and λ is a positive, real

regularization parameter.
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The parameter λ is used to mitigate between the two goals mentioned above. when

λ is large, the regularity condition is more emphasized on the expense of the fitting con-

dition. While small λ gives more importance to the fitting constraint.

This minimization is performed using the steepest-descent iteration in the search

space Γ. The chosen descent direction is steepest in terms of the Palais metric [65].

⟨⟨υ, ω⟩⟩ = ⟨υ(0), ω(0)⟩γ(0) +

∫ 1

0

⟨
Dυ(t)

dt
,

Dω(t)
dt

⟩
γ(t)

dt (6.4)

6.2 Shape-Constrained Non-Rigid Structure form Motion

The factorization algorithm [104] has proven effective in solving the SFM problem

for rigid objects. However, extending this algorithm to the non-rigid objects has turned

out to be quite tricky. It was shown in [18] that the factorization algorithm can be extended

to the non-rigid case if the underlying deformation is modeled as a linear combination of

basis shapes. The solution is based on exploiting the orthonormality constraint on the

camera rotation matrices. However, in most cases the recovered shape and motion are

inaccurate. This inaccuracy is a result of the degeneracy of the problem when solely

using the orthonormality constraints as shown by Xiao et. al. [129].

In order to remove this ambiguity several approaches have been proposed. In [129],

a closed form solution was reached by enforcing a set of heuristic constraints on the basis

shapes. Torresani et al. [106] proposed a Gaussian prior for the shape coefficients. Del

Bue et al. [26] assumed that the nonrigid shape contains a significant number of points

which behave in a rigid fashion. Recently, Bartoli et al, [7] proposed that we can itera-
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tively find the shape basis based on the assumption that each basis shape should decrease

the reprojection error left due to the earlier basis. A novel approach was presented in [82]

by replacing the linear subspace approach with a data-driven manifold learnt through a

manifold learning approach.

We propose to study the problem of nonrigid structure from motion in a novel way

by imposing constraints of the nature of the deformation of the shape. In our formulation,

the 3D landmark configuration, corresponding to the shape of the deformable object at

each time instant, can be modeled as a point on a Riemannian shape space. We plan to

investigate how to improve the accuracy of the NRSFM results by imposing priors on the

object shape deformation in this shape space, and imposing regulation constraints on the

deformation of the shape between successive frames.

Another interesting direction of research would be to combine the above constraints

from the shape spaces with the constraints on the camera rotation matrices under ortho-

graphic projection. As these matrices can be modeled as points on the special Euclidean

group S E(3) as shown in [95].

6.3 Activity Recognition via Modeling Feature Point Trajectories on the

Riemannian manifold of parameterized curves

In this dissertation, we presented several approaches that aim at modeling human

actions based on the structure of the shape represented by landmark points. These ap-

proaches worked similarly to the NRSFM in what is known as the shape space, where

the configuration of the landmarks at each time instant is considered as a shape point. A
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dual approach at the problem is to consider the same approach from the trajectory space.

Analyzing the different trajectories generated by the different body parts during the span

of the action. Recently, the trajectory space was used in solving the NRSFM, where each

trajectory is modeled as a linear combination of a set of generic bases [5]. Analysis of the

trajectories of hands has also been attempted in [85] for action recognition.

3D trajectories corresponding to different body parts can be represented using the

square-root elastic representation of curves as shown in chapter 5. Under this repre-

sentation, these open curves will form a Riemannian manifold. This will allow us to

compute geodesic distances between the different trajectories and build view and re-

parametrization invariance into these distance measures.
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