
 

 
 
 
 
 

ABSTRACT 
 
 
 
 

Title of Thesis:   THE EFFECT OF SUMMER STORM  
     EVENTS AS A DISTURBANCE ON THE  
     MOVEMENT BEHAVIORS OF BLACK SEA 
     BASS IN THE SOUTHERN MID-ATLANTIC 
     BIGHT 
 
     Caroline Jane Wiernicki, Master of Science,  
     2019 
 
Thesis Directed By:   Professor David H. Secor 
     Marine Estuarine Environmental Sciences 
 
 
 Storm events are a key disturbance in the Middle Atlantic Bight (MAB), 

driving thermal, hydrodynamic, and acoustic perturbations on demersal fish 

communities. Black sea bass are a model MAB species as their sedentary behavior 

exposes them to storm disturbances. I coupled biotelemetry with an oceanographic 

model, monitoring black sea bass movement behaviors during the summer-fall of 

2016-2018. Storm-driven changes in bottom temperature (associated with rapid 

destratification) had the greatest effects on fish movement and evacuation rates, while 

the cumulative effects of consecutive storms had little to no observed effect. Storms 

also generate substantial noise, but the hearing frequencies of black sea bass are 

currently unknown. I conducted a quantitative literature analysis on fish hearing 

based on swim bladder elaboration, successfully classifying detected sound frequency 



 

ranges among fishes, including black sea bass. Climate change will likely alter the 

intensity of MAB storms, prioritizing research on their impacts to fish communities. 
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Chapter 1. Introduction 

Storm disturbance 
 
 Ecological disturbances are discrete temporal events that alter ecosystem 

function through changes to physical and biological features (White and Jentsch 

2001), and thus play key roles in defining ecosystem function and stability (Sousa 

1984; Petraitis 1989; White and Jentsch 2001). Fire disturbance shapes diversity and 

productivity in forest and grassland communities, while also shaping heterogeneity 

(Heinselman 1973; Collins and Barber 1986; Rood et al. 2007). In marine 

communities, hurricanes positively influence kelp propagation (Dayton 1984) and 

succession (Witman 1987; Kennelly 1987). Hurricanes also influence community 

membership of coral and fish assemblages in reef habitats (Walsh 1983; Bythell et al. 

2000; Gardner et al. 2005), and can also increase the vulnerability of coral reef habitat 

to human degradation (Gardner et al. 2005; Mumby 1999). Therefore, in order to 

fully describes the function and stability of an ecosystem, one must also integrate the 

effects of natural and anthropogenic perturbations (Holling 1973; Sousa 1984). 

 Storm events, such as tropical storms and hurricanes, are a powerful source of 

natural disturbance to marine communities. In addition to coral reef and kelp forest 

communities, systems impacted by storm disturbance include benthic invertebrate 

communities (Underwood 1999; Dernie et al. 2003), individual coastal fish and 

shellfish species (Onuf and Quammen 1983; Bailey and Secor 2016; Biggs et al. 

2018), and entire coastal fisheries (Petterson et al. 2006; Binn et al. 2007; Solís et al. 

2013). The impacts of storm disturbance on the movement behavior of marine fishes 

has been the focus of a few recent studies (Bailey and Secor 2016; Bacheler et al. 
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2019; Secor et al. 2019). However, the vast majority of these studies focus on storms 

as a stochastic event evoking an isolated behavioral response, rather than a recurring 

source of natural disturbance shaping the species’ baseline movement behavior. 

Subsequently, there is a gap in the literature on storm disturbance as a recurring 

effect. This study seeks to inform this gap, investigating the effect of storm events as 

a regular disturbance to black sea bass (Centropristis striata) in the Middle Atlantic 

Bight (MAB). 

Study system 
 
 The MAB is the region of the continental shelf extending from the southern 

flank of George Bank to Cape Hatteras. It regularly experiences high-energy storm 

activity during the summer and fall months, and it is characterized by a prominent 

oceanographic feature—the cold pool—that preconditions the water column to large 

threshold changes in response to storm disturbance. The cold pool is a denser layer of 

bottom water formed from the vernal heating of surface waters during the spring-

summer, and subsequent trapping of colder, saltier winter water below (Bigelow 

1933; Chen et al. 2018). This seasonal, differential heating forms a highly stratified 

temperature gradient in the MAB water column, which are rapidly destratified during 

severe storms through wind-driven mixing and cross-shelf advection (Beardsley et al. 

1985; Lentz et al. 2003). Summer storms in the MAB pose a potentially formidable 

source of physiological disturbance to its demersal fishes, as storm-driven 

destratification can increase bottom temperatures by as much as 10°C over 24 hrs 

(Secor et al. 2019). Physical wind-driven disturbances during storms also include 

increases in surface and seafloor turbulence (Ginis 2002; McPhaden et al. 2009; 
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Huang et al. 2009) and increases in current velocity gradients at the surface and 

mixed layers (Ginis 2002; Li and Xue 2002). These changes in flow regime might be 

expected to influence station-keeping and movements of exposed fishes.  

 In addition to causing rapid thermal destratification storm events in the MAB 

and elsewhere may be considered a source of disturbance to the ambient sound field. 

Storms generate high-energy low frequency sound (approximately <1000 Hz), within 

the hearing range of most fishes (see Appendix B); sound pressure levels increase 

proportionally to the cube of the local wind speed during storms (Wenz 1962; Sutton 

and Barstow 1990; Wilson and Makris 2008) and can increase ambient noise levels 

by as much as 25 dB re: 1 µPa within the frequency range of fish hearing sensitivity 

(400 Hz) (Wilson and Makris 2006). Storms also increase high frequency sound 

(approximately 3000-10000 Hz) with increased wind speed, caused by the forced 

attenuation of sea surface bubbles (Wenz 1962; Wilson and Makris 2006). While the 

effects of storm-forced flow and water quality changes on fish movements have been 

explored (Bailey and Secor 2016; Bacheler et al. 2019; Secor et al. 2019), less is 

known about how storm sound might serve as a natural disturbance to marine fish 

communities. This knowledge gap is deepened by the slowly growing understanding 

of how fish perceive underwater sound (Popper and Hawkins 2019), with advances in 

the topic limited by expensive equipment and time-consuming research practices as 

well as inconsistencies in methodology (Sisneros et al. 2015; Popper and Hawkins 

2018). 

 As a model species for examining the impacts of storms on movement 

ecology, black sea bass (Centropristis striata) are a demersal, structure-oriented 
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species whose distribution ranges from Cape Cod, MA to Cape Canaveral, FL, and 

supports commercial and recreational fisheries in the MAB (Cape Cod, MA to Cape 

Hatteras, NC) (Musick and Mercer 1977; Mercer and Moran 1989). MAB 

populations undertake a cross-shelf seasonal migration, moving on-shelf into 

structured reef habitats during the spring and off-shelf into deeper, warmer water 

during the fall (Mercer et al. 1989; Colvorcoresses and Musick 1984; Shepherd and 

Terceiro 1994). Black sea bass demonstrate high fidelity to reef habitats during the 

spring-summer, with observed home ranges of approximately 0.137-7.364 km2 

(Fabrizio et al. 2014). This mostly sedentary behavior and affinity for structured 

demersal habitats renders black sea bass a model species for examining the recurring 

effects of storm disturbance on the movement behaviors of a marine fish species.  

Goals and objectives 
 
 The overall goal of this thesis is to monitor the recurring effects of storm 

events on the movement behavior of black sea bass, focusing on oceanographic 

drivers as well as local and broad-scale movement responses. Specific objectives are 

to explore how storms cause changes to the temperature structure of the water column 

and to ambient flow dynamics. Because published measurements of black sea bass 

hearing sensitives are not currently available, an additional objective of this thesis is 

to quantify hearing sensitives for black sea bass and other fish species based on 

morphological characteristics of the fish. Meeting this objective ultimately provides a 

reference point for understanding how vulnerable black sea bass might be to sound 

perturbations generated by storms. Thesis objectives were thus organized into two 

chapters focused on (1) characterizing and modeling black sea bass movements in 
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response to storms over a three-year period, and (2) undertaking a comprehensive 

review of the literature to frame initial expectations on hearing sensitivity of black sea 

bass and other fishes for which hearing sensitivity is unknown. Appendices support 

both of these chapters. 

  The opportunity to conduct this study, exploring storm effects over three field 

seasons of telemetry data, was provided by grants through the Maryland Department 

of Natural Resources (DNR) and Maryland Energy Administration. The original 

project goal of this grant was to evaluate the effect of pile driving on black sea bass 

owing to the construction of a 100 m high meteorological tower, sited in the Bureau 

of Ocean Energy (BOEM)-leased Wind Energy Area off Maryland. This tower would 

precede > 200 m high wind turbines slated for construction by the US Wind 

Company and provide an opportunity to evaluate wind energy impacts on demersal 

fishes (Secor et al. 2019). Despite plans during each of the summers, 2016-2018, the 

meteorological tower has not yet been erected. My study design of three replicate 

sites reflects the goal of the Maryland DNR study, but has been repurposed to 

examine the effects of storm disturbance to black sea bass movement behaviors. 

Thesis contents 
 
 Chapter 2 addresses individual and cumulative effects of multiple seasons of 

storm disturbance on black sea bass movement behaviors. Coupling observing system 

and a numerical ocean model (FVCOM) data, this chapter evaluates the differences 

between seasons with single and multiple storms, and the effects of storms on water 

column characteristics. An explanatory statistical model evaluated how these 

characteristics influenced local activity and evacuations of black sea bass across the 
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experimental reef sites. This research represents a collaboration with Drs. Ming Li 

and Fan Zhang (UMCES), who assisted with running FVCOM. Dr. Vyacheslav 

Lyubchich (UMCES) assisted with the explanatory model on movement activity. No 

manuscript has yet resulted from this chapter. 

 Chapter 3 comprises the first-ever literature review of the published data for 

hearing sensitivity across a number of marine and freshwater species and creates a 

statistical framework for predicting hearing sensitivity based on swim bladder 

morphology. This framework may then be used to estimate hearing sensitivities of 

fish species not yet rigorously tested, such as black sea bass, but for which 

information is needed to predict vulnerability to both natural and anthropogenic 

disturbance. This research has been prepared as a manuscript for publication and 

shared with fish hearing authority Dr. Arthur Popper (UMCP) and committee member 

Dr. Helen Bailey (UMCES), who provided helpful comments. Dr. Dong Liang 

(UMCES) assisted with the statistical analysis attached with the literature review.  

 Appendices A-C provide supplemental analyses I performed to support the 

Chapters 2 and 3. Appendix A assesses the detailed structure and relative intensities 

of changes in turbulent kinetic energy and current velocity during storm events, 

focusing on patterns of change throughout the vertical water column and across the 

continental shelf. Appendix B provides a detailed characterization of sound signals 

occurring during a 2018 storm event, analyzing signal strength over time as well as 

breakdowns of signal energy across frequency bands. Appendix C provides 

comparisons of various condition metrics for fish sampled across the study area over 
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the study period, as well as a breakdown of diet composition and the relative 

abundance of selected prey items. 

Implications and future work 
 
 Understanding the role of storms in shaping local movement and residence of 

black sea bass in the MAB will be critical for understanding both the ecology and 

management of the species in light of a future shaped by the increased presence of 

higher intensity storms (Knutson et al. 1998; Holland and Bruyère 2014) as well as 

increased ocean use and development. Multiple areas along the US East Coast are 

leased for future wind development (ESS 2016; BOEM 2018), and successful 

management of both black sea bass and other demersal fish species in the region is 

contingent upon understanding the impacts of both natural and anthropogenic 

disturbances. This study can inform management of potential disturbances on 

demersal fish species by supplying a baseline understanding how black sea bass as a 

model species respond to storms in the MAB. The study can also inform management 

by providing a coarse tool to predict hearing sensitivities of fish species based on 

physical morphology, which may be useful when considering acoustic disturbances 

related to offshore development. 

 Future telemetry studies should focus on increasing the spatial and temporal 

resolution and capture movement behaviors across a broader range of habitat types 

and locations using improved receiver array designs. Future work should also 

improve the scale of measured behavioral response to storms by coupling telemetry 

data with data on the physiology of individual fish, as well as by exploring changes in 

fishes’ depth behavior during and after storms. 
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Chapter 2. The recurring role of storm disturbance on black sea bass 
movement behaviors in the Mid-Atlantic Bight. 
 
Introduction 
 
 Disturbance is a key structuring force in coastal marine ecosystems, affecting 

population and community dynamics, as well as the habitats upon which they depend 

(Sousa 1984; White and Jentsch 2001). Such impacts are well-described for shallow, 

physical habitats such as reefs and marshes (Jackson and Hughes 1985; Dollar and 

Tribble 1993; Michener 1997). In shallow reef fish communities, storms have been 

associated with increased mortality (Robins 1957; Araga and Tanase 1966; Lassig 

1983; Harmelin-Vivien 1994) as well as causing net changes in species abundance 

and density (Kaufman 1983; Lassig 1983; Walsh 1983; Harmelin-Vivien 1994; 

Fenner 1991). Storms caused significant shifts in species composition and abundance 

for fish communities inhabiting shallow mangrove habitats (Bouchon 1994), and 

increased frequency of high-intensity storms has been linked to decreased fish 

abundance and changes in trophic structure in kelp forests (Ebeling et al. 1985; 

Byrnes et al. 2011). However, impacts of storm disturbance on fish communities in 

comparatively remote marine ecosystems with less physical structure—systems that 

may still be subject to hurricane-forcing—are less well known. 

 The Mid-Atlantic Bight (MAB)—the continental shelf extending from the 

southern flank of Georges Bank to Cape Hatteras—is a region regularly susceptible to 

significant storm disturbance during the summer and fall months. Storm-driven 

perturbations are catalyzed by a number of wind-driven hydrodynamic forces, such as 

changes in sea surface temperature due to vertical mixing (Ginis 2002; Li and Xue 

2002; Huang et al. 2009; McPhaden et al. 2009); increased turbulence at surface and 
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bottom-boundary layers, either due to wind-driven shear or stirring (Ginis 2002; 

McPhaden et al. 2009; Huang et al. 2009); and increased current velocity gradients in 

the oceanic surface and mixed layers (Ginis 2002; Li and Xue 2002). The MAB is 

also uniquely vulnerable to storm-driven disturbance due to the overlapping presence 

of an oceanographic feature known as the “cold pool”. The cold pool is an isolated 

layer of relatively colder, saltier—and subsequently denser—bottom water within the 

MAB, receiving winter waters formed at Nantucket Shoals (Houghton et al. 1982; 

Chen et al. 2018). It forms seasonally with the vernal heating of surface waters, 

related to increases in air temperature, and resulting in the stratification of the water 

column (Bigelow 1933; Houghton et al. 1982). This stratification and associated 

bottom-layer cold pool can be rapidly “destroyed” though cross-shelf advection, 

wind-driven overturn, and current-driven longitudinal transport (Rasmussen et al. 

2005; Lentz 2007); which are commonly caused by storms (Beardsley et al. 1985; 

Lentz et al. 2003). 

 Summer and fall storm events, such as hurricanes, tropical storms, and 

nor’easters, contribute to the seasonal deterioration of the cold pool through wind-

driven forcing and advection. In this capacity, summer storms in the MAB act as a 

significant source of natural disturbance, driving rapid partial destratification of the 

cold pool due to mixing and forcing bottom water temperatures to increase as much 

as 10°C over 24 hr (Secor et al. 2019). For many fish species, physiological tolerance 

to extreme temperature shifts depends on acclimation (Atwood et al. 2001; Pörtner 

2001; Pörtner 2002). Therefore, the rapid changes in bottom water temperature in the 

MAB are likely a significant source of disturbance and physiological stress to 
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demersal fish communities. The rapid increase in bottom water temperatures co-

occurs with rapid changes in current velocity, turbulent kinetic energy, and noise. 

Thus, storms in the MAB expose demersal fish communities to multiple physical and 

physiological stressors. Because several storm systems can affect destratification each 

year, cumulative impacts caused by these storm-driven stressors could represent a 

disturbance regime unique to the MAB and its demersal fish communities. 

 A small but growing pool of research has emerged emphasizing the role of 

storms as singular, extreme disturbances driving changed movement behaviors by 

marine fishes. Biotelemetry studies off the coasts of Florida and North Carolina 

observed storm-driven evacuation by tagged juvenile blacktip sharks, Carcharhinus 

limbatus, (Heupel et al. 2003) and gray triggerfish, Balistes capriscus (Bacheler et al. 

2019); movement behaviors were respectively associated with decreased barometric 

pressure and increased wave orbital velocity. Storm-driven decreases in temperature, 

dissolved oxygen, and salinity were observed to drive emigration of striped bass, 

Morone saxatilis, from the Hudson River Estuary to coastal habitats (Bailey and 

Secor 2016). In the Great Bay Estuary, New Hampshire, increased migration of 

American lobster, Homarus americanus, towards coastal waters was observed in the 

wake of a major hurricane (Jury et al. 1995). Summer flounder, Paralichthys 

dentatus, and black sea bass, Centropristis striatus, evacuations occurred following 

severe storm events in the MAB (Sackett et al. 2007; Secor et al. 2019). Thus, the 

literature supports that storms can be disruptive events to demersal communities. 

Still, the concept of storm events collectively representing a recurring source of 

natural disturbance each year has not been fully explored. 
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 Here, I investigate the effect of storm events as a recurring source of 

disturbance to a common member of the demersal MAB shelf assemblage: black sea 

bass. Black sea bass exhibit range behaviors centered on artificial and natural 

structure (Cullen and Stevens 2017), which makes them amenable to biotelemetry 

studies on their movement behaviors. They are a mostly sedentary, reef-associated 

species, particularly from the spring to fall (Musick and Mercer 1977; Mercer and 

Moran 1989; Moser and Shepherd 2009; Fabrizio et al. 2014). Black sea bass are 

often a dominant member of reef-associated demersal fish communities in the MAB 

(Musick and Mercer 1977; Colvorcoresses and Musick 1984; Sedberry and Van 

Dolah 1984). Demersal fish assemblages in the MAB characteristically occur 

throughout the summer and early fall months and then species undertake cross-shelf 

seasonal migrations to deeper waters during the fall, typically throughout mid-

September to late October (Mercer and Moran 1989; Colvorcoresses and Musick 

1984; Musick and Mercer 1977). These migrations are understood to coincide with 

seasonal shifts in water temperature, with demersal species transiting by late fall from 

cooling bottom waters to relatively warmer, deeper outer shelf waters, where they 

remain for the winter (Colvorcoresses and Musick 1984; Sedberry and Van Dolah 

1985; Fabrizio et al. 2005). This broad transit period of off-shelf movement overlaps 

spatially and temporally with the arrival of hurricanes and tropical storms in the 

western Atlantic. Secor et al. (2019) hypothesized that cumulative storm impacts 

during this period could cue offshore seasonal migration during fall-early winter.  

 Should storms have a recurring, if increasing, impact on demersal fish 

behaviors, such baseline behaviors will be important to evaluate against 
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anthropogenic impacts such as increased vessel traffic and emplacement of wind 

towers. Higher intensity storm disturbances in the MAB, forecasted owing to climate 

change (Knutson et al. 1998; Lin et al. 2012; Vermaire et al. 2013; Holland and 

Bruyère 2014), could alter the phenology (aka seasonal timing) of regional 

migrations. Offshore wind energy development throughout the MAB is anticipated in 

the near future, yet its influence on demersal fishes remains poorly known (BOEM 

2012). Both recreational and commercial fishermen have expressed concerns 

regarding the potential impacts of windfarm construction on fished species within the 

MAB (ESS Group 2016). Concerns have been raised particularly over construction 

noise related to both pile-driving and increased vessel activity (Hildebrand 2009); 

both of which can cause significant disturbance to demersal marine fish communities 

(Vabø et al. 2002; Popper and Hastings et al. 2009; Slabbekoorn et al. 2010). 

Windfarm impact studies will be confounded if they do not take into account the 

effects of potentially co-occurring natural disturbance features, such as storms. 

 The goal of this study is to better characterize the recurrence of summer storm 

events in the MAB, their impact on the local oceanography, and their impact on 

movement and evacuations by black sea bass. More specifically, I hypothesized that: 

(1) storm events are a recurring feature that impact black sea bass habitat variables: 

temperature, bottom current velocity, and turbulent kinetic energy; (2) changes in 

movement behavior are caused by both individual and cumulative storm-driven 

environmental changes; and (3) storm-related movement behaviors are driven chiefly 

by rapid (<1 d) mixing and increased bottom temperature. I addressed these 

hypotheses for three summer-fall seasons (2016-2018), measuring evacuation and 
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movement behaviors through biotelemetry and coupling these behaviors with 

predicted storm-driven changes in water column conditions provided by a coastal 

ocean model. Cumulative storm impact was modeled separately for 2017, when a 

series of storm events occurred with sequential impacts on the water column, using a 

Generalized Additive Model to evaluate the influence of cumulative storm days and 

other habitat variables.  

Materials and methods 
 
Study site 
 
 Study sites for this project included three reef sites located 16-46 km east and 

southeast of Ocean City, Maryland: The Twin Wrecks Reef, the Great Eastern Reef, 

and the African Queen Wreck (Figure 2.1; Tables 2.1, 2.2). Study sites were 

identified in cooperation with a recreational charter boat captain and based on the 

presence of both black sea bass and structured habitat.  

 The Twin Wrecks reef is comprised of the 1914 and 1918 wrecks of the 

sunken tanker (the Oklahoma) and sunken steam freighter (the Saetia) (A. Carroll, 

University of Maryland Center for environmental Science pers. comm.; Loftus and 

Stone, 2007); the Saetia is approximately 98 m in length and 15 m at its widest, with 

the Oklahoma comparable in size. Both rest on an area of sandy substrate, at a 

distance of 585 m apart. (A.Carroll, pers. comm.; Loftus and Stone, 2007; 

Aquaventuresonline.com) The Great Eastern Reef, is an artificial reef comprise 

primarily of opportunistic materials (such as concrete units and cable mounds), 

resting on sandy substrate (coastalfisherman.net; Loftus and Stone, 2007). The reef is 

approximately 1.62 km2 in area, and is located 29.1 km from the Ocean City Inlet 
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(https://dnr.maryland.gov/fisheries/Documents/MARIOC04209postersize_with_coor

dinates_web.pdf). Lastly, the African Queen reef is the site of a 1958 wreck, and 

covers a surface area of ~3.21 km2 over sandy substrate 19.5 km miles from the 

Ocean City Inlet (Loftus and Stone, 2007; dnr.maryland.gov). The wreck consists of 

the remains of a freighter, which sank in the 1950s, and rests on the seafloor in two 

nearby sections (coastalfisherman.net); additional structures were added to the reef 

site until 2005, and include concrete units, cable mounds, and several additional 

smaller sunken vessels (coastalfisherman.net; Loftus and Stone, 2007). 

 These reefs—the Twin Wrecks, Great Eastern, and African Queen Reefs—

corresponded to the three study sites utilized for the duration of the experiment—the 

Northern, Middle, and Southern sites, respectively. All study sites were exposed to 

the persistent presence of the cold pool for approximately 7-8 months of the year 

(spring-late summer), and spanned a gradient of depths (Table 2.2), although the 

shallower Southern site exhibiting a less stable pattern of summer-fall stratification 

than the other two deeper sites (see Results). 

Acoustic telemetry data collection 
 
 A total of nine VEMCO VR2AR acoustic-release receivers were deployed 

across study sites during June-October, 2016-2018 (Table 2.1). For each year of 

deployment, three receivers were positioned to capture movement behaviors 

associated with each reef. Receivers were deployed 800 m away and at 0°, 120°, and 

240° degree angles from tagging locations at each reef; the 800 m distance was set 

based on detection ranges observed in a range test study using the same model of 

acoustic receivers under similar conditions off the coast of New Jersey (Fabrizio et al. 
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2014). Receivers were moored to the seabed with two 20.4 kg weight plates and 

positioned in the water column with one 10.8 kg positive buoyancy buoy each, with a 

vertical profile of approximately 2 m above the seafloor. Receivers continuously 

recorded data on unique transmitter detections, recorded bottom water temperature 

(°C), and ambient noise (mV) every 600 seconds. 

 During June 2016-2018 and at each site, 8-17 black sea bass were surgically 

implanted with VEMCO V9-2H acoustic transmitters (Table 2.3). Animal collection, 

surgical, and release procedures were approved by the UMCES Institutional Animal 

Care and Use Committee (IACUC-Secor-F-CBL-160-10). Transmitters were 26 mm 

long, 9 mm in diameter, and weighed 3.7 g; transmitters also emitted a 69 kHz signal 

at randomized 90-second intervals, with an estimated battery life of 346 days. Fish 

were captured at reef sites using rod-and-reel on a chartered recreational fishing boat, 

and immediately placed in a 57-liter tank containing ambient seawater until surgery. 

Sublegal (£32 cm) individuals were selected for tagging in an effort to reduce 

transmitter loss from fishing mortality, as the reef sites selected are heavily fished by 

recreational anglers throughout the summer months. Fish selected for surgery were 

transferred from the holding tank to a surgery tank containing a mixture of sea water 

and Aqui-S anesthetic (20 mg L-1; active ingredient clove oil). Fish were deemed 

sufficiently anesthetized when pectoral fin and operculum movement slowed and 

individuals could no longer maintain equilibrium. Once sufficiently anesthetized, 

individuals were transferred to a sling, lined with synthetic foam to minimize damage 

to fins and epithelium, and while the head and gills remained immersed, a 1-cm 

incision was made cranial to the vent, and just lateral to the midline. One V-9 2H 
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acoustic transmitter was inserted through the incision and was closed with 1-2 single 

surgical-knot sutures. Post-surgery fish were transferred back to the holding tank to 

monitor for recovery, which was identified when regular operculum movement and 

equilibrium resumed. At the Middle and Northern sites, barotrauma was observed 

owing to greater depths. To promote recovery and reduce the risk of surface 

depredation by birds and large fishes, recovered fish were descended to half depth 

(~15 m) using a pressure-release device (Seaqualizer Ó) at the site of their capture. 

Oceanographic model outputs 
 
 Oceanographic variables associated with storms were predicted from the 

Finite Volume Community Ocean Model (FVCOM). The FVCOM is a three-

dimensional unstructured grid hydrographic model, that consists of momentum, 

continuity, temperature, salinity, and density equations (Chen et al. 2003; Lee et al. 

2016). The model is physically and mathematically closed and utilizes sigma-

coordinate transformations and unstructured triangular cells to maximize the quality 

of estimates over irregular coastlines, such as those prevalent in coastal shelf or 

estuarine systems like the Mid-Atlantic Bight (Chen and Liu. 2003; Lee et al. 2016; 

Zhang et al. 2017). The model was configured for the MAB region, with the eastern 

boundary located approximately at 70 W, and the northern and southern boundaries 

located at approximately 42 N and 34 N, respectively. Initial conditions of salinity 

and temperature for the FVCOM were based on predictions from the Regional Ocean 

Modeling System (ROMS) Experimental System for Predicting Shelf and Slope 

Optics (ESPreSSO) model. The FVCOM was run from August 25 to December 31, 

2016, and from January 1 to December 31 for 2017 and 2018. The model was 



 22 

configured, optimized, and executed by the Li lab (M. Li and F. Zhang; Horn Point 

Laboratory, Cambridge, MD; Zhang et al. 2017). During summer 2019, I worked 

with this laboratory to develop simulations and evaluate model output.  

 Time series data on modeled bottom water temperature, current velocity, and 

turbulent kinetic energy (TKE) were extracted at hourly time-steps, for the duration 

of receiver deployment during each year of study for each site. Bottom water 

temperature was selected as an indication of cold pool destruction/recovery and 

potential physiological stress; current velocity was selected as an indication of 

physical hydrodynamic forcing and potential physical stress owing to the need for 

increased energy devoted to station-keeping; and TKE was selected as an indication 

of both destratification and physical shear between water parcels, as well as an 

additional potential physical stress. Time series of all three variables were predicted 

at each receiver location (Table 2.1) at hourly intervals, then averaged to yield mean 

hourly predictions per site. Time series data on modeled wind speed and direction 

were extracted at three-hour time-steps. Cross sectional and bottom (1 m from sea 

bed) measurements of triangulated grid-point estimates of bottom water temperature, 

current velocity, and TKE were also obtained. Estimated lateral measurement 

dimensions extended across the shelf in the DelMarVa region of the MAB; estimated 

cross-sectional measurements were taken along a 39 km transect that bisected the 

Middle study site (Figure 2.1). The model’s precision was evaluated through 

comparisons to observed bottom water temperatures obtained through this study’s 

acoustic receiver array (Appendix A).  

Storm identification 
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 Storms were initially identified through observations of rapid increases in 

observed bottom water temperature from acoustic receiver measurements, as well as 

from rapid, sustained increases in wind speed identified from observed wind fields. 

Peak winds, which are often used in storm warnings, varied substantially and do not 

convey information on storm duration. Therefore, storm presence and duration was 

subsequently defined as hours during which observed wind speeds occurred at 

sustained, consecutive magnitudes > 5 m s-1. Both named and unnamed evens were 

considered, as well as those storms formally tracked by weather services (such as 

NOAA National Hurricane Center, or Ocean City WeatherUndergound) and those 

storms that were not formally tracked but still demonstrating threshold wind speeds. 

Following identification of storm presence and duration, modeled cross-sectional and 

lateral estimates of bottom water temperature, current velocity, and TKE were plotted 

and compared across the days before, during, and after each storm event. 

Data analysis: Movement behavior 
 
 Telemetry data were analyzed for changes in local and broad-scale movement 

behaviors relative to dates of storm presence and maximum modeled wind speeds 

observed during each storm event. Analysis of local movement behaviors included 

the calculation of movement indices from logged detection data per individual fish, 

where the hourly movement index is equal to the average number of movements 

detected by consecutive unique receivers per hour. These movement indices were 

then aggregated across tagged fish within each site to provide a site activity index. 

Activity indices across sites were evaluated for each year, using an analysis of 

variance (ANOVA) test comparing activity indices across storm periods and nested 
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by site. Each year an initial baseline period (no storm) was compared to subsequent 

storm periods, defined as the period between onset of a particular storm and 

terminating prior to the onset of any ensuing storm. Post hoc multiple comparisons of 

activity indices across storm periods were conducted using Tukey contrasts. 

Individual movement and site-wide activity indices were calculated using the 

TelemetryR (O’Brien 2018) package in R; ANOVA tests and multiple comparisons 

were accomplished using the car (Fox and Weisberg 2019), lme4 (Bates et al. 2015), 

and multcomp (Hothorn et al. 2008) packages in R.  

 Broad-scale movements and subsequent departures from study sites (aka 

evacuations) were evaluated by calculating instantaneous tag loss rates, and by using 

an autoregressive integrated moving average (ARIMA) time series intervention 

analysis (Secor et al. 2019). The percent absolute loss rate was calculated as the back-

transformed percentage of the instantaneous tag loss rate. The ARIMA intervention 

analysis was selected as it facilitates the identification of an intervention, or of a 

single point within a time series that significantly alters the behavior of the rest of the 

time series, using a statistical t-test. This approach allows discrimination of “false” 

evacuations caused by acoustic interference caused by storms. Strong coastal storm 

events are capable of generating substantial noise owing to wind, wave action, or 

cavitation (Wenz 1962; Appendix B), which can diminish reception of transmitter 

signals. For this study, the intervention analysis was applied to a time series of 

transmitter presence, or the last day a unique transmitter was detected at its respective 

study site. The analysis tested for the presence of two types of interventions: (1) 

temporary shift interventions: points in the time series after which pre-intervention 
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time series behavior resumed; and (2) permanent level shifts: points in the time series 

after which the time series behavior was permanently altered. Intervention analyses 

were applied to transmitter loss time series for each site, across all years, and 

compared. Where the ARIMA model was able to converge, the modeled time series 

achieve stationarity. Here, permanent level shifts (stepped declines) are indicative of 

fish evacuation—interventions that fundamentally and permanently changed the 

remaining time series. Temporary shift are those interventions that altered the time 

series temporarily and appear as nonlinear returns to the previous detection level (see 

Figure 2.12). When the ARIMA model did not converge on stationarity, departures 

owing to permanent or temporary shifts could not be accurately discriminated. This 

occurred for three out of the nine time series. This analysis was carried out in R, using 

the tsoutliers package (López de Lacalle 2019). 

 The explanatory relationship between local activity levels and individual 

storm variables (Table 2.4) was explored using a Generalized Additive Model for 

Location, Scale, and Shape (GAMLSS). Telemetry data and predicted FVCOM 

output for 2017 supported analysis of the effects of multiple storm events and their 

cumulative impact as consecutive events (only a single storm event was identified in 

2016 and 2018). Daily average movement index was the response variable, with 

predictors: daily average TKE, observed daily average bottom water temperature, and 

differenced modeled daily average current velocity, accumulated number of storm 

days (ANSD: the time series of total unique storm days throughout the study period), 

the sex of the tagged individual, and the length of the tagged individual. Due to a 

paucity of data points over time, site was excluded from the GAMLSS model, and 
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tested separately in a nested ANOVA. Unique transmitter code (individual fish) was 

incorporated as a random effect, and lagged response variables were incorporated to 

account for temporal autocorrelation of the response. The model was fit with a log mu 

link function—or an inherent transformation built into the model that exponentiates 

linear predictors—and with a generalized gamma distribution, then run for 400 

iteration cycles. Prior to fitting the final model, numerical variables were iteratively 

incorporated and compared in various model structures containing raw, lagged, or 

differenced forms (i.e., TKE, bottom temperature, and current velocity) to assist with 

the detection and minimization of collinearity.  Although these parameters are 

necessarily related—particularly the FVCOM-derived current velocity and TKE 

variables—substituting and comparing lagged, differences, and raw forms allowed 

greater differentiation of independence across these processes. Lagged, differenced, 

and raw variables were subsequently tested for collinearity by calculation and 

comparison of variable inflation factors and comparison of additional correlation 

matrices. All final, non-collinear numerical response variables were centered and 

scaled prior to incorporation in the final model. Model selection was based on lowest 

Akaike information criterion (AIC). All analysis for model development was 

completed in R, using the car (Fox and Weisberg 2019), lme4 (Bates et al. 2015), 

gamlss (Rigby and Stasinopoulos 2005) and forecast (Hyndman and Khandakar 2008; 

Hyndman et al. 2019) packages.  

Results 
 
Storm events and destratification 
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 Six storm events varying in timing, duration (33-87 hr), and intensity 

(maximum windspeed 13.4-16.6 m s-1) occurred between June-October of 2016-2018 

(Table 2.5). The six storms were identified as (1) Tropical Storm Hermine, with peak 

windspeeds on September 3, 2016; (2) a Nor’easter, with peak windspeeds on July 

29, 2017; (3) Potential Tropical Cyclone 10 (PTC10), with peak windspeeds on 

August 30, 2017; (4) Tropical Storm Jose, with peak windspeeds on September 19, 

2017; (5) Tropical Storm Maria, with peak windspeeds on September 27, 2017; and 

(6) an unnamed wind event, with peak windspeeds on September 9, 2018. Observed 

bottom water temperature showed rapid increases over the course of the first several 

hours following storm arrivals, indicative of wind-driven mixing and destratification 

of the water column (Figure 2.2). 

 Patterns in observed bottom water temperatures showed a differential impact 

of storm-driven destratification across years and sites. In both 2016 and 2018, one 

significant storm disturbance was identified (Figure 2.2). During both years, prior to 

storm-induced increases in windspeed, cold pool temperatures remained relatively 

stable at 12.5-16.9 °C, particularly evident at the Northern and Middle sites. 

Moderate excursions occurred prior to large destratification events observed in 

September of both years. Associated storm events, TS Hermine in 2016 and the 

unnamed wind event in 2018, precipitated permanent destratification and increases in 

temperatures that ranged from 5.7 to 10.9°C (8.9 ± 1.6°C) between sites and years. 

During 2017, multiple storm events occurred, with a destratification event during 

August, recovery of stratification at two sites, then subsequent cycles of 

destratification and restratification during September. Note that this pattern of 
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decreasing bottom water temperature and restratification of the water column did not 

occur at the Southern site, which was also the shallowest (approximately 21.06 m 

across years) and warmest site. Here, following August destratification, water 

temperatures remained elevated and the cold pool did not recover.  

Storm characterization: Modeled variables  
 
 Based on average wind vectors, the observed storms were categorized in terms 

of intensity and duration, yielding two classes of comparatively stronger storms vs. 

more moderate storms. The more intense storms occurred in 2016 and 2017, while 

2018 experienced a comparatively milder storm event. In 2016 and 2017, TS Jose, 

PTC10, and TS Hermine brought in the highest gusting windspeeds (16.6, 16.3, and 

15.3 m s-1, respectively), while TS Maria, PTC10, and TS Hermine exhibited the 

longest duration (87, 81, and 81 hr, respectively) (Figure 2.3; Table 2.5). Conversely, 

the July nor’easter that occurred in 2017 reached a maximum windspeed of 14.8 m s-

1, lasting for only 33 hr; similarly, in 2018, the unnamed wind event reached peak 

windspeeds of 14.3 m s-1 and continued 45 hr (Figure 2.3; Table 2.5). Across all 

years, however, modeled storm directional wind vectors indicated a predominance of 

northwesterly winds directed along shore.  

 Modeled time series estimates of bottom water temperature, current velocity, 

and TKE peaked rapidly around periods of storm arrival and maximum storm-

induced wind speed (Figure 2.4a-c). The model successfully captured permanent 

destratification owing to storm events in 2016 (Figure 2.4a) and 2018 (Figure 2.4c), 

as well as the recovery and gradual increase in temperatures following repeated storm 

events in 2017 (Figure 2.4b). Storm-driven excursions for current velocity and TKE, 
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on the other hand, were relatively high (velocity: 0.1-0.2 m s-1; TKE: 0.0005-0.003 

m2 s-2); and short-lived (10-25 hr), across all years, with little difference in baseline 

levels before and after storm events. Observed noise indices also showed short-term 

increases in power (dB re: µPa2/Hz) and sound pressure level (dB re: 1 µPa) 

associated with storm events, within the expected optimal hearing range of black sea 

bass (50-800 Hz; Chapter 3; Appendix B).  

  Storm destratification events encompassed major portions of the shelf 

environment (Figures 2.5-2.8). Spatial depictions of FVCOM outputs captured a 

range of destratification responses to storms across the shelf’s spatial extent and depth 

range. In years when single events caused permanent destratification (2016 and 

2018), mixing lagged approximately 1-2 days after peak wind speeds were reached 

(Figure 2.5); days after the storm passed, the cold pool remained intact farther 

offshore, with inshore bottom waters increased by 10-15 °C. Modeled bottom 

temperature for these single-storm years showed destratification extending towards 

mid-shelf waters (~30-35 m depth; Figure 2.6). The cold pool shifted offshore, where 

it remained for the rest of the summer-fall season. Stratification during 2017 (Figure 

2.7) exhibited a complex cycle of cold pool restratification. After the July nor’easter, 

the cold pool recovered. Following PTC10, the cold pool recovered more slowly and 

to a lesser extent. The third storm—TS Jose—caused permanent destratification. 

Similarly, bottom water temperatures for 2017 showed a gradual retreat by the cold 

pool farther from shore, with permanent destratification occurring after TS Jose 

(Figure 2.8). Storm-driven spatiotemporal estimates of current velocity and TKE were 

ephemeral (see additional figures in Appendix A).  



 30 

Movement analysis: Observed activity and evacuation behavior 
 
 During all years, significant changes in local activity and evacuation rates 

from reef sites were observed in the wake of storm events. Local activity indices were 

significantly different across all sites before and after single storm events for each 

year (Figure 2.9). In 2016 and 2018, activity at all sites was significantly lower, by 

approximately 50%, during the periods of time following TS Hermine and the 

unnamed wind event, respectively, than during the periods before these storms 

(ANOVA, p <0.001; Tukey, p < 0.001). During 2017, activity indices were 

significantly different across all sites during combined periods of time before and 

after PTC10, with activity declining persistently across sites and during the time 

following that storm (ANOVA, p < 0.01; Tukey, p <0.01). Again, activity was 

reduced by approximately 50%. 

 Observations of transmitter loss over time indicated a steady decline in the 

number of unique tags present at each site over each year of study, modeled through 

exponential decay (Table 2.6). During 2016 and 2018, the Southern site had the 

lowest loss rates (<1% d-1), while during 2017 the instantaneous loss rate was higher 

(2% d-1) than either the Middle or Northern sites (1.5% d-1). Instantaneous loss rates 

at the Middle site were highest during all years except for 2017, when the rate was 

equal to that at the Northern site. Averaged across years, 2018 had the lowest loss rate 

(1% d-1), followed by 2016 (1.3% d-1) then 2017 (1.7% d-1).  

 Significant increases in the number of fish evacuating reef sites were 

identified during days of peak storm wind speed for storm events during all years. 

Rapid declines were noted for some but not all storm events (Figure 2.10). In 2016 
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and 2018, the highest incremental rates of transmitter loss overlapped directly with 

September storm events. In 2017, the Northern site exhibited sharp declines in unique 

transmitter detections associated with the second and third storm events. Results of 

the more formal ARIMA intervention analysis indicated event-driven, permanent 

declines in fish presence at all sites during all years (Figures 2.11-2.13). Permanent 

level shifts were identified at the Northern and Middle sites during 2016, with the 

time series changing significantly the day after TS Hermine’s wind speeds peaked 

(Figure 2.11). In 2017, permanent level shifts were also identified during the July 

nor’easter (at the Middle and Southern sites), the PTC10 (at all sites), and 

immediately before peak winds arrived for TS Jose (at the Northern site) (Figure 

2.12). Lastly, a permanent level shift at the Southern site was identified during the 

date of maximum wind speed associated with 2018’s unnamed wind event (Figure 

2.13). The ARIMA intervention analysis was unable to converge for the tag loss time 

series taken from the Southern site during 2016 and the Middle site during 2018; 

inferences related to evacuation were thus not possible for these events (Figure 2.11, 

2.13). For the Northern 2018 time series, the forecast function utilized to detect 

ARIMA components failed to detect significant interventions, which again precluded 

inferences related to storm-driven evacuations. Still, in the case of the Southern site 

during 2016 and the Middle site during 2018 cases, large excursions in the raw time 

series coincided with storm events.  

Movement analysis: Coupled telemetry-FVCOM mixed effects model 
 
 As predicted, changes in bottom water temperature had the greatest and most 

significant negative impact on movement index (µ=-0.217; p <0.01; where µ is the 
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direction and magnitude of the fitted response), but, contrary to expectations the 

model failed to detect a significant effect of consecutive cumulative storm impacts, 

ANSD (µ=0.002; p=0.84) (Table 2.7). Modeled TKE (µ=-0.168; p<0.01) was also 

influential in the model, with modeled current velocity showing a modest influence 

(µ=-0.099; p<0.01). A significant negative effect was also identified for fish length 

(µ=-0.19; p<0.01), although it did not directly relate to storm influence on movement. 

Both males (µ=0.617; p <0.01) and unidentified individuals (µ=0.683; p<0.01) were 

predicted by the model to have higher movement indices than females. While the 

model did not directly test for the presence and magnitude of interactions between sex 

and size, the distributions of movement indices across tagged individuals suggested 

an interaction, where males had higher movement rates for their size than females 

(Appendix A, Figure A.8: 2017 data only). Males only occurred at lengths > 270 mm 

but many females also occurred at this size. Still, an overall negative effect of length 

on movement holds across the entire sample. 

Autoregressive moving average components analysis indicated the presence of 

autocorrelation within the response variable, lagged by 1 and 2 days. These 

components were incorporated as additional numerical predictors, and both were 

found to be statistically significant (Table 2.7). Table and figure summaries of the 

model quantile residuals can be found in Appendix A.  

 Results of an ANOVA testing the fixed effect of site on movement index, with 

transmitter incorporated as a random effect, found a significant effect of site on 

movement (ANOVA; p<0.01). The Middle site exhibited lower movement indices 
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than the other sites (Tukey contrasts; p<0.01). Contrasts between the Northern and 

Southern sites were not significant (p=0.97). 

Discussion 
 
 By coupling fine-scale telemetry and oceanography, this study demonstrated 

that storm disturbance was a key driver of seasonal movement behaviors by black sea 

bass in the shelf waters of the MAB. My results indicate that the series of summer 

storms observed in 2016-2018 varied in intensity, duration, and timing; and had 

significant, recurring effects on black sea bass habitat conditions, which often caused 

large changes in their movement ecology.  

 Results supported my initial hypotheses that storms impact black sea bass 

habitat through shifts in temperature, current velocity, and turbulent kinetic energy; 

that these storm-driven environmental changes are associated with changes in 

movement behavior; and that these storm-driven changes in movement are caused 

primarily through rapid increases in bottom water temperature. In the multi-storm 

year, 2017, I failed to detect a relationship between cumulative consecutive storm 

days (ANSD) and depressed movements, but rather observed that depressed 

movement occurred as a threshold response to a late season storm, similar to what 

occurred in other study years. This effect of late season storm disturbance occurred 

across all the three sites and resulted in an approximately 50% decreased activity 

level, which in most instances was also associated with incomplete evacuations. 

Movement patterns also covaried by length and sex variables. Males had higher 

movement levels (independent to storm effects), a result previously reported in the 

NY Bight by Fabrizio et al. (2014). 
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 Rapid change in bottom water temperature associated with destratification 

was the predominant driver of shifted movement behaviors during storm events. 

Storm disturbances incurred significant changes in local and broadscale movement 

behavior that depended on the timing of the storm during that year’s season, as well 

as the relative stability of the cold pool. Early summer storms (such as the July 

nor’easter of 2017) did not incur permanent stratification, nor were they associated 

with changes in movement metrics or evacuations across sites. Storms that occurred 

later in the year, however, (such as TS Hermine in 2016, PTC10 in 2017, and the 

unnamed wind event in 2018), triggered permanent breakdowns of the cold pool and 

destratification of the water column. As such, these storms caused significant declines 

in activity levels as well as higher numbers of fish evacuating reef habitats across 

sites. The mechanism driving the impact of these later-season storms on 

stratification—and subsequently fish movement—was not identified during this 

study. Higher degrees of surface heating, and thus higher magnitudes of water column 

instability, however, might occur during late summer and early fall, preconditioning 

cold pool destruction (Beardsley et al. 1985; Lentz et al. 2003).  

 Evacuations are an extreme faunal response to catastrophic change (Gunn and 

Crocker 1951; Waide 1991; Wauer and Wunderle 1992; Secor 2015), yet occurred in 

each year of my study. Biotelemetry detections can be biased low during storm events 

when ambient noise interferes with detection of transmitted signals. Across years, I 

conducted analyses robust to this source of bias through an ARIMA intervention 

analysis, and observed that in all years, late season storms were associated with 

permanent evacuations. However, in 2017, where multiple storm disturbances 
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occurred, no evacuations were observed during storms that followed the permanent 

destruction of the cold pool. The number of evacuations across sites peaked with 

PTC10 in August (when permanent destratification occurred), with a smaller level of 

evacuations associated with TS Jose in early September (when destratified bottom 

water temperatures increased and plateaued). Evacuations were not observed during 

storm activity following cold pool destratification, with the passage of TS Maria. This 

suggests a disturbance threshold to black sea bass was met with the permanent 

destruction of the cold pool and sustained elevation of bottom water temperature—

despite the later season Maria incurring similar increases in TKE and current velocity, 

and having the longest duration observed out of all of the 2016-2018 storms (87 hr). 

The observed patterns in evacuation rates and the 2017 ARIMA intervention analysis 

complement the results of the explanatory GAMLSS analysis, which also identified 

temperature as the dominant variable negatively impacting local movements and did 

not identify ANSD as significantly impacting movement. Such carryover effects of 

one storm disturbance mitigating—or preconditioning—the water column impacts of 

next has also been showed for the North Pacific Ocean. In a numerical model, 

Baranowski et al. (2014) showed how a mid-September typhoon dampened the 

destratification potential of a later mid-October typhoon in the Western North Pacific.  

 Site differences in water column stability were apparent and related to depth 

and proximity of the cold pool front, similar to findings by Lentz et al. (2003), who 

examined cold pool thermal structure in the MAB over repeated wind stress events. 

The cold pool front, which separates offshore-stratified water from inshore-mixed 

water, extends along the continental shelf in waters ranging between 30 m and 100 m 
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deep (Houghton et al. 1982; Chen et al. 2018). The front is bound in the north by 

Nantucket Shoals and the southern perimeter of Georges Bank, and meets mixed 

inner shelf waters at the 40 m isobath; the front is bound in the south towards the 

mouth of Chesapeake Bay and Cape Hatteras at the 30 m isobath (Houghton et al. 

1982; Lentz 2017). The Southern site was located in the shallowest waters and on the 

fringe of the front, and thus showed the highest level of bottom water temperature 

variance and associated water column instability. The Middle site was located in the 

deepest waters; the Northern site was also located in deeper water, and showed 

temperature changes more similar to the Middle site in comparison to the Southern 

site. In accordance with proximity to the cold pool front, I observed the smallest 

storm-driven change in bottom water temperatures at the Southern site, and the 

greatest change at the Middle site. 

 Our results may suggest that fish inhabiting reefs with more stable 

temperature dynamics are less likely to change residency time or local movement 

patterns than fish inhabiting reefs with less stable temperature dynamics. The lowest 

rates of transmitter loss and the lowest number of evacuations occurred at the 

Southern site for all years. I argue that these patterns were driven by the Southern 

site’s comparatively shallow depth and location on the fringe of the cold pool; these 

features caused this site to demonstrate a less severe temperature gradient and 

subsequent lower magnitude of destratification than that occurring at the deeper 

Northern and Middle sites. Similarly, the ANOVA results comparing 2017 movement 

indices across sites identified the greatest difference in movement between the 

Middle vs. Northern and Southern site. Again, this difference is likely related to the 
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interaction of depth with cold pool presence. As the Middle site is located at the 

deepest depths and farthest beyond the cold pool front, it experiences the highest 

magnitude temperature difference following cold pool destruction. It also experiences 

the least stable recurring oscillation in bottom water temperature between cold pool 

destruction and recovery with each storm event, until permanent destratification 

occurs. 

 A similar pattern of storm-driven destratification impacting the local activity 

of a demersal fish species was observed by Fabrizio et al. (2005), Fabrizio et al. 

(2013), and Fabrizio et al. (2014) in the NY Bight, where the authors conducted a 

large acoustic telemetry study on a proposed refuse site, evaluating habitat use of 

black sea bass and summer flounder. Although not the focus of their study, data 

summaries of that research permits some inferences on the effects of storms on 

evacuations and movement behaviors. During this study, Hurricane Isabel passed 

through the receiver array on September 19, 2003, with peak windspeeds of 20.1 m s-

1 observed at Sandy Hook, NJ, which triggered permanent destratification and 

increased bottom water temperatures (approximately 13°C in 12 hr) (Beven and 

Cobb, 2004; Fabrizio et al. 2005, their Figure 15). This storm also caused a rapid and 

prolonged depression in bottom salinity (indicative of mixing) as well as short-lived 

peaks in wave orbital velocity (shear scaled to the effect of wave energy on fluid 

particle oscillation). Estimates of evacuation probabilities estimated through Kaplan 

Meier hazard analysis by Fabrizio et al. (2005) did not exhibit the same strong 

episodic losses associated with storm events as I detected. Rather, evacuations by 

black sea bass occurred in later pulses, principally in October. In contrast, summer 
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flounder did show evidence of a particularly strong loss in tagged fish from the site 

coincident with Isabel. A large majority of fish (8/11) departed during the September 

2-20 period. In a separate analysis examining home range and movement levels at the 

same site, Fabrizio et al. (2014) reported large declines in late season movement 

activities. The authors defined movement indices as a binary metric of 0 or 1, 

indicating whether or not a fish moved between adjacent receivers during a three-hr 

period, a measure with similar intent to that used in my analysis. Whether seasonal 

changed in movement were associated with cooling bottom temperature, seasonal 

migratory cues, or Hurricane Isabel (the latter not deliberately considered in their 

analysis) cannot be clearly distinguished from their analysis. 

 Storm-driven changes in movement and evacuation behaviors by black sea 

bass likely have broader ecological consequences. Here and elsewhere, storms have 

been shown to impact the movement behaviors of coastal fish species across diverse 

taxa (Heupel et al. 2003; Bailey and Secor 2016; Secor et al. 2019; Bacheler et al. 

2019). Reduced movement behavior has been linked to short term reductions in 

feeding rate and encounter rates with optimal foraging habitats, as well as long term 

decreases in growth and fecundity (Werner and Peacor 2003; Preisser and Bolnick 

2008; Strobbe et al. 2011). Black sea bass are known to show small home ranges on 

structured habitats (0.137-7.364 km2, Fabrizio et al. 2014), where they feed on reef 

associated prey items (Sedberry et al. 1988; Mercer and Moran 1989; Appendix C), 

although Steimle and Figley (1996) observed that black sea bass likely foraged on 

sandy bottom areas adjacent to reef habitat (Cullen and Stevens 2017). Reproduction 

has been observed to occur during September-October (Mercer and Moran 1989), 
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which could cause storms to disrupt spawning activity as fish are induced to become 

less active. However, no gonadosomatic indices of fish sampled during October 

indicated a capacity to spawn (Appendix C), suggesting that storms during 2018 

occurred after reproduction occurred. 

 Longer-term carryover effects owing to disruptions to activity and site fidelity 

caused by storm-induced destratification include changed timing in fall-winter 

migrations and regional shifts in summer habitats. These longer-term consequences 

are relevant in the context of a changing climate, which predicts an increased 

frequency of high-energy storm events in the NW Atlantic Ocean (Knutson et al. 

1998; Lin et al. 2012; Vermaire et al. 2013; Holland and Bruyère 2014). A possible 

outcome of increased high-energy storms in the MAB, depending on their timing and 

tracks, could be long-term changes to the timing, location, and stability of the cold 

pool (Houghton et al. 1982; Chen et al 2018). This in turn could influence range shifts 

and seasonal timing of offshore migrations of black sea bass and other demersal 

species in the MAB. As an initial expectation, one might predict that the cold pool 

will shift northward and towards deeper waters with increased frequency of high-

intensity storms; these storms can be predicted to permanently destratify the water 

column earlier in the summer-fall season and perhaps prompt earlier winter 

migrations by MAB black sea bass. That these dynamics might occur elsewhere and 

affect other species is suggested by the impacts of Hurricane Isabel on the early 

dispersal of winter flounder in the NY Bight (Fabrizio et al. 2005).  

 Beyond the direct influences of storms on demersal fish ecology, storms also 

impact fisheries and assessment activities on those same species. Storms in the Gulf 
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of Mexico have negatively impacted commercial harvest of grouper (Solís et al. 

2013), shrimp, and oyster (Petterson et al. 2006) fisheries through destruction of 

fishing infrastructure and habitat. Increased freshwater input in North Carolina during 

Hurricane Floyd led to dense blue crab aggregations, which rendered the population 

susceptible to subsequent overfishing, as well as increased loss of bay scallop yield to 

the fishery (Bin et al. 2007). Assessment of species abundance for management can 

also be impacted when survey vessels cannot operate in high seas during fall storms 

(B. Frey, CBL, pers. comm.).  

 A priority assessment focus in shelf ecosystems is evaluating the impacts of 

wind farm development. Wind tower construction and maintenance impacts will 

likely concur with natural storm disturbances. Stresses related to wind tower 

construction can include sound caused by piledriving or vessel operation (Wahlberg 

and Westerberg 2005; Thomsen et al. 2006; Casper et al. 2013), alterations to local 

electromagnetic fields (Öhman et al. 2007; Gill et al. 2012); or, altered distribution of 

local benthic and demersal species through the emplacement of additional structured 

habitat (Andersson and Öhman 2010; Bergström et al. 2013; Stenberg et al. 2015 ). 

Each of these stresses can interact with storm disturbance, obscuring or enhancing 

impacts associated with wind tower construction alone. Likely responses to pile 

driving include changes in local (on-reef) and broad-scale (off-reef) movements 

(Popper and Hastings 2009). Increased vessel noise has also been identified as a 

potential source of physical and behavioral disturbance (Slabbekoorn et al. 2010), 

with studies demonstrating avoidance of areas with high vessel activity by herring 

(Vabø et al. 2006) and disruption of schooling behavior in response to vessel activity 
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by bluefin tuna (Sarà et al. 2007). In summary, offshore wind farm baseline and 

impact monitoring should include the effect of storms as a dominant source of year-

to-year disturbance. 

 Key limitations to my findings relate to study design, including assumptions 

that (1) the three-receiver array sufficiently overlapped with the distribution of black 

sea bass at each reef site; and (2) that movement rates were realistically indexed as 

unique movements between receivers. The study design did not adjust for site 

differences in reef dimensions and how the different sites may have functioned 

different as habitats for refuge, forage, and reproduction (Steimle and Figley 1996; 

Steimle and Zetlin 2000; Fabrizio et al 2014). Where fish were caught and released 

may have also caused differences in how well their home ranges were represented 

across sites and years. Importantly, this study did not account for changes in vertical 

movement behaviors in response to storm disturbances. A strong expectation in the 

literature is that disturbed reef fishes become more tightly coupled to structure 

(Lassig 1983; Williams 1984; Syms and Jones 1999) Unpublished data from a 2019 

biotelemetry study at the Northern site did indeed show that black sea bass implanted 

with depth-pressure transmitters used deeper habitats and showed less vertical 

movements following an August storm-destratification event (D. Secor, CBL, pers. 

comm.).  

 A key assumption was that daily synchrony between peaks in storm winds and 

tag losses were evidence for storm-driven evacuations, while slower decays in tag 

presence resulted from seasonal departures or predation. Despite the episodic losses 

associated with storm events, these cannot definitively distinguish evacuation from 
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seasonal emigration into deeper shelf habitat. Additional sources of uncertainty 

include tag loss unrelated to storm-driven evacuation, such as predation or capture of 

tagged individuals by anglers. Tagged fish were vulnerable to predation immediately 

following their surgery and release, but by releasing them at depth, risk of surface 

depredation by birds and fishes (e.g., sharks) was eliminated. Although I targeted 

sublegal fish for tagging, larger individuals likely grew into the legal size limit during 

each year’s study period; additionally, anglers may have incidentally retained some 

sublegal fish. 

 Future research can address the integral role of storm disturbance in shaping 

demersal fish species’ movement ecology in the MAB by incorporating more fine-

scaled measures of movement behaviors, which occur during high energy wind 

events. Improvements to account for 3D motion could include the use of multiple 

strategically placed receivers that triangulate transmitter position in the water column, 

as well as by deploying depth-recording transmitters. Additional efforts should also 

be made to better characterize reef habitats in greater detail, so as to better understand 

the use of such habitats during storm response, and how certain habitats might be 

more prone to evacuation behaviors. These differences in reef structure—and how 

these differences impact habitat use and movement behavior—may then also be 

accounted for by better telemetry receiver array designs. Improved designs might 

incorporate a larger number of receivers over habitat gradients, thus facilitating 

census counts of tagged fish at a finer spatial resolution (similar to the array design 

employed by Fabrizio et al. 2014).  
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 Future research would also be improved by examining storm variables and 

movement behaviors of black sea bass at other regions in the Western Atlantic, across 

differing reef habitats and through deployment of replicate census-oriented receiver 

arrays; this replication of a common study design across differing habitat gradients 

would inform this study’s expectation that storm disturbance is an integral feature to 

the movement ecology and habitat use of demersal fish species. Also important are 

longer term, multi-year telemetry studies that can capture how storms shape the full 

seasonal evolution of the cold pool in the MAB (Lentz et al. 2003), and related 

responses by demersal fish communities. Finally, natural cues to evacuation and 

migration warrant investigation. Valuable additional methods may include otolith 

stable isotope analysis (Sturrock et al. 2012) and hormone signals (Leatherland 1982). 

Both methods, with increased sampling over the summer-winter season, would 

provide an opportunity to compare chemical tracers of fish movement immediately 

prior to and following migration, as well as explore the relationship between internal 

migratory cues vs. external evacuation cues. 
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Tables 
 
Table 2.1. Receiver site, mooring position, deployment location, and deployment duration information for 2016-2018 study periods. 
Note that the Northern site SW receiver was not recovered in 2017. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Location  Date Deployed  Date Retrieved  # Days Active 
Site, Mooring Latitude Longitude  2016 2017 2018  2016 2017 2018  2016 2017 2018 
Northern, N 38.4377  -74.7700  6/10 6/22 7/15  11/2 10/26 10/23  145 126 126 
Northern, SE 38.4287  -74.7597  6/10 6/22 6/19  11/2 10/26 10/23  145 126 126 
Northern, SW 38.4262 -74.7747  6/10 6/22 6/19  11/2 - 10/23  145 - 100 
Middle, N 38.2307  -74.7581  6/12 6/22 7/15  11/1 10/26 10/23  142 126 100 
Middle, SE 38.2212 -74.7472  6/12 6/22 7/15  11/1 10/26 10/23  142 126 100 
Middle, SW 38.2186  -74.7630  6/12 6/22 7/15  11/1 10/26 10/23  142 126 100 
Southern, N 38.1556  -74.9486  6/9 6/29 7/31  11/1 10/26 10/26  145 119 87 
Southern, SE 38.1473  -74.9391  6/9 6/29 7/31  11/1 10/26 10/26  145 119 87 
Southern, SW 38.1449  -74.954  6/9 6/29 7/31  11/1 10/26 10/26  145 119 87 
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Table 2.2. Receiver site, mooring position, and depth for 2016-2018 study periods. 
Note that the Northern site SW receiver was not recovered in 2017. 
 

 Depth (m) 
Site, Mooring 2016  2017  2018 
Northern, N 26.68  25.90  25.22 
Northern, SE 26.08  25.64  26.66 
Northern, SW 25.45  -  25.57 

Middle, N 22.63  22.26  21.23 
Middle, SE 32.33  32.47  30.74 
Middle, SW 25.03  25.39  27.49 
Southern, N 20.22  22.46  22.39 
Southern, SE 19.85  22.38  19.01 
Southern, SW 20.67  22.77  21.76 
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Table 2.3. Year, location, and size for black sea bass tagged and released during the summers of 2016-2018. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Site Year Latitude Longitude N Size (mm) Weight (g) 
Northern 2016 38.4309 -74.7680 15 260 ± 25 200 ± 90 

 2017 38.4307 -74.7677 15 262 ± 28 250 ± 70 
 2018 38.43094 -74.76803 27 251 ± 38 240 ± 70 

Middle 2016 38.2237 -74.7562 15 232 ± 30 260 ± 100 
 2017 38.2234 -74.7558 15 283 ± 17 320 ± 60 
 2018 38.223683 -74.756183 16 271 ± 37 280 ± 110 

Southern 2016 38.1480 -74.9472 15 267 ± 24 270 ± 80 
 2017 38.1589 -74.9439 8 256 ± 20 240 ± 50 
 2018 38.148047 -74.947197 17 241 ± 30 190 ± 60 
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Table 2.4. Description of variables utilized in black sea bass movement GAMLSS model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Variable Type Units Source 
Movement index Numerical 

response 
Average number of movements 
per unique receiver per hr 

VEMCO VR2AR 
receiver array 

Turbulent kinetic 
energy 

Numerical 
predictor 

Square meters per square second 
(m2 s-2) 

FVCOM prediction 

Bottom water 
temperature 

Numerical 
predictor 

Degrees Celsius (°C) VEMCO VR2AR 
receiver array 

Current velocity, 
differenced 

Numerical 
predictor 

Meters per second (m s-1) FVCOM prediction 

Accumulated 
number of storm 
days 

Numerical 
predictor 

Total number of days FVCOM prediction 

Tagged individual, 
length 

Numerical 
predictor 

Millimeters (mm) Tagged black sea bass 
measurement 

Tagged individual, 
sex 

Categorical 
predictor 

Male (M), Female (F), 
Unidentified (U) 

Tagged black sea bass 
measurement 

Transmitter Random 
effect 

No units VEMCO V9-2x 
acoustic transmitter ID 
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Table 2.5. Year and names of identified Mid-Atlantic Bight storm events detected between June-October of 2016-2018, presented 
along dates and times of storm arrival, departure, and maximum windspeed, as well as calculations of storm duration (hr), maximum 
wind speed (m s-1), mean wind speed (m s-1 ± SD), and minimum windspeed (m s-1). A storm was considered present in the area when 
wind speeds consistently increased over 5 m s-1. Windspeeds refer to average velocity vectors. 
 

Year Name 
Arrival 
Date 

Departure 
Date 

Maximum 
Windspeed 

Date 
Duration 

(hr) 

Maximum 
Windspeed 

(m s-1) 

Mean 
Windspeed 
(m s-1 ± SD) 

Minimum 
Windspeed 

(m s-1) 

2016 Tropical Storm 
Hermine 

Sep 2 
09:00 

Sep 5 
18:00 

Sep 3 
21:00 81 15.25 8.28 ± 3.02 5.02 

2017 

Nor’easter 
(unnamed) 

Jul 29 
15:00 

Jul 31 
00:00 

Jul 29 
18:00 33 14.79 10.25 ± 2.88 5.57 

Potential 
Tropical 

Cyclone 10 
Aug 26 
15:00 

Aug 30 
12:00 

Aug 30 
00:00 81 16.28 8.9 ± 2.75 5.1 

Tropical Storm 
Jose 

Sep 17 
12:00 

Sep 20 
15:00 

Sep 19 
12:00 75 16.6 9.0 ± 3.36 5.23 

Tropical Storm 
Maria 

Sep 25 
15:00 

Sep 29 
06:00 

Sep 27 
18:00 87 13.44 8.93 ± 1.96  5.23 

2018 Wind event 
(unnamed) 

Sep 8 
15:00 

Sep 10 
12:00 

Sep 9 
18:00 45 14.3 8.18 ± 3.06 5.05 
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Table 2.6. Slope and adjusted R-square values for black sea bass transmitter loss time series data, fit to exponential curves for all sites 
and years. Absolute loss rate, calculated as the average percent decrease in transmitter presence per day, is also presented for each site 
for 2016-2018. 

 
 
 
 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

  Transmitter loss rates 
  Instantaneous loss rate  Absolute loss rate 

(%/day) Year Site Slope R2  

2016 
Northern -0.013 0.811  0.013 
Middle -0.021  0.822  0.021 

Southern -0.005 0.870  0.005 

2017 
Northern -0.015 0.771  0.015 
Middle -0.015 0.965  0.015 

Southern -0.021 0.793  0.021 

2018 
Northern -0.011 0.919  0.011 
Middle -0.012 0.773  0.012 

Southern -0.004 0.843  0.004 
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Table 2.7. Mu estimates (the direction and magnitude of the fitted response), standard error, t-values, and p-values for numerical and 
categorical predictors used in the GAMLSS model for black sea bass movements. Note that all numerical predictors were centered and 
scaled prior to incorporation in the model, allowing cross-comparisons of both the direction and magnitude of mu. 
 
 Mu estimate (µ) Standard error T value P value 
Intercept -0.4966 0.0601 -8.259 <0.001 
TKE -0.1680 0.0314 -5.328 <0.001 
Temperature -0.2173 0.0413 -5.260 <0.001 
Current velocity, 
differenced -0.0992 0.0309 -3.208 0.0014 
Lag-1 0.2110 0.0165 12.767 <0.001 
Lag-2 0.0780 0.0146 5.335 <0.001 
ANSD 0.0016 0.0081 0.200 0.8413 
Sex, male 0.6170 0.0692 8.913 <0.001 
Sex, unidentified 0.6832 0.0662 10.321 <0.001 
Length -0.1904 0.0295 -6.459 <0.001 
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Figures 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1. Experimental study sites. Map of three reef sites east of the Maryland 
coast, consistent for the 2016-2018 study seasons. Colored points refer to receiver 
deployment locations, while black points refer to approximate tagging locations. The 
black line depicts the selected 38.73 km transect for cross-sectional FVCOM 
estimates. The black asterisk refers to the location of National Data Buoy Center 
Station 44009. 
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Figure 2.2. Observed hourly bottom water temperature (°C), averaged across each 
study site for each year. Black dashed lines refer to dates of observed maximum 
windspeed for identified storm events (see Table 2.5). 
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Figure 2.3. Time series of hourly directional wind vectors for 2016, 2017, and 2018. 
Wind vectors are observed for the Middle site of each year, and are measured in m s-1. 
Wind direction corresponds to compass direction, and dashed red lines refer to the 
date and time (month-day hour) of peak wind speeds for each storm event (see Table 
2.5). 
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2.4.a. 
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2.4.b. 
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2.4.c 
Figure 2.4.a-c. Modeled hourly time series estimates of bottom water temperature 
(°C), averaged for each site for (a) August-September 2016, (b) June-October 2017, 
and (c) June-October 2018. Dashed red lines refer to modeled maximum wind speeds 
occurring during each of the six identified storm events (see Table 2.5). 
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Figure 2.5. Modeled bottom water temperature cross-sectional profiles predicted by 
the FVCOM for storm events in 2016 and 2018. The left column predicts 
temperatures related to TS Hermine (2016); the right column predicts temperatures 
related to the unnamed wind event (2018). Vertical black dashed lines in each pane 
refer to the transmitter release locations central to each study site (Southern, 
Northern, and Middle, for both years in increasing depth and distance from coastline). 
Cross sections are taken along a transect spanning the Middle site (Figure 1), and 
depict snapshot predictions at 00:00 for each given day. 
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Figure 2.6. Modeled bottom water temperature in the southern MAB predicted by the 
FVCOM for single storm events occurring in 2016 (left column) and 2018 (right 
column). Black asterisks refer to the location of transmitter release, central to each 
study site. 
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Figure 2.7. Modeled bottom water temperature cross-sectional profiles predicted by the FVCOM for storm events in 2017. The left 
column predicts temperatures related to the July nor’easter; the middle column predicts temperatures related to PTC10; and the right 
column predicts temperatures related to TS Jose (see Table 2.5). Vertical black dashed lines in each pane refer to the transmitter 
release locations central to each study site (Southern, Northern, and Middle, increasing depth and distance from coastline). Cross 
sections are taken along a transect spanning the Middle site (Figure 1), and depict snapshot predictions at 00:00 for each given day. 
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Figure 2.8. Modeled bottom water temperature in the southern MAB predicted by the 

FVCOM for storm events occurring in 2017. The left column predicts temperatures 

related to the July nor’easter; the middle column predicts temperatures related to 

PTC10; and the right column predicts temperatures related to TS Jose (see Table 2.5). 

Black asterisks refer to the location of transmitter release, central to each study site. 
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Figure 2.9. Hourly black sea bass activity index across study sites for each year before and after storm events (see Table 2.5). Box and 
whisker plots are shown where the black horizontal line central to each plot defines the median activity index value; the horizontal 
lines above and below the median value (completing the box) describe the range of the upper and lower quartile values; the vertical 
lines extending above and below each box provide upper and lower extremes, respectively; and the black dots provide outliers. 
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Figure 2.10. Black sea bass tag loss time series across sites, 2016-2018. The colored lines refer to site-specific time series of the last 
day a unique tag was detected within a given site, across years. Dashed black lines refer to the day of maximum windspeed associated 
with a given storm event (Table 2.5). 
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Figure 2.11. ARIMA intervention analysis output for 2016 study sites. The black and blue lines in the upper pane refer to the 
observed transmitter loss time series and modeled ARIMA output, respectively. The red lines in the lower panes refers to the model’s 
identified interventions, where step-wise declines indicate permanent level shifts and sharp curvatures that dip and recover indicate 
temporary shifts. Note that the model failed to converge and achieve stationarity at the Southern site, thus no identifiable interventions 
were detected at that reef. The vertical dashed black lines refer to the date of maximum wind speed associated with TS Hermine.  
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Figure 2.12. ARIMA intervention analysis output for 2017 study sites. The black and blue lines in the upper panes refer to the 
observed transmitter loss time series and modeled ARIMA output, respectively. The red line in the lower panes refers to the model’s 
identified interventions, where step-wise declines indicate permanent level shifts and sharp curvatures that dip and recover indicate 
temporary shifts. The vertical dashed black lines refer to the date of maximum wind speed associated with the July nor’easter, PTC10, 
TS Jose, and TS Maria.  
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Figure 2.13. ARIMA intervention analysis output for 2018 study sites. The black and blue lines in the upper panes refer to the 
observed transmitter loss time series and modeled ARIMA output, respectively. The red line in the lower panes refers to the  
model’s identified interventions, where step-wise declines indicate permanent level shifts and sharp curvatures that dip and recover 
indicate temporary shifts. Note that the model failed to converge and achieve stationarity at the Middle site and failed to identify 
ARIMA model components in the time series for the Northern site. Thus, no identifiable interventions were detected at those reefs, 
and no model fit or intervention visualizations were provided for the Northern site. The vertical dashed black lines refer to the date of 
maximum wind speed associated with the unnamed wind event in early September. 
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Chapter 3. The effect of swim bladder presence and morphology on 
sound sensitivity for marine and freshwater fishes. 
 
Introduction 
 
 Anthropogenic sound and its impacts on fish communities is of urgent 

concern to scientists and mangers alike (Popper and Hastings 2009; Slabbekoorn et 

al. 2010; Hawkins and Popper 2017; Weilgart 2018). Anthropogenic sound in the 

world’s oceans has increased steadily over the past several decades, related to 

increases in commercial shipping and recreational vessel traffic in coastal areas 

(National Research Council 2003; McDonald et al. 2006; Frisk et al. 2007) as well as 

seismic exploration (McCauley et al. 2002; Nowacek et al. 2015; Carroll et al. 2017). 

Sound related to offshore energy development, primarily pile-driving sound—which 

can reach peak sound pressure levels at 200 dB re: 1 µPa with the highest energy 

levels concentrated at low frequencies (>1000 Hz) (Bailey et al. 2010; Casper et al. 

2013)—has been identified as a significant source of acoustic disturbance to fish 

communities, one that will likely increase exponentially in shelf waters during the 

next several decades (BOEM 2018). Percussive noise related to pile-driving has a 

wide frequency spectrum, but lower frequencies (<1000 Hz) within the hearing 

ranges of fishes tend to carry the highest energies during hammer impact (Bailey et 

al. 2010). Resulting effects can range from behavioral changes to auditory threshold 

shifts to tissue damage and death (Hildebrand 2009; Halvorsen et al. 2012; Casper et 

al. 2013). The use of seismic airguns in geophysical surveys—another impulse sound 

similar to pile-driving, ranging from 160-1000 Hz and peaking at approximately 200 

dB re: 1 µPa (McCauley et al. 2000)—is also a significant source of acoustic 
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disturbance to fish communities, affecting movement behaviors as well as hearing 

threshold shifts in individuals (Skalski et al. 1992; Wardle et al. 2001; McCauley et 

al. 2002; Popper et al. 2005).  

 Current levels and future projected increases of anthropogenic sound 

disturbance fuel an increased interest in understanding their impacts on fish 

populations. More specifically, there is a need to better characterize where fish 

operate in the surrounding soundscape—which sound frequencies and sensitivities are 

detected, and which evoke biological responses (Popper and Hawkins 2019). As 

hearing capabilities have been explored for only approximately 100 (Ladich and Fay 

2013), of the c. 33,000 identified fish species (Froese and Pauly, 2000) there is a 

priority to efficiently and effectively estimate hearing abilities in diverse fishes, 

prompted by ever-increasing anthropogenic sound disturbances in marine and 

freshwater ecosystems. 

 Hearing structures and sensitivity in fishes are exceptionally diverse in 

morphology and frequency bandwidths among vertebrates, substantially altering 

expected responses to anthropogenic sound (Dijkgraaf 1960; Popper and Fay 1993; 

Popper and Hawkins 2019). Initial empirical evidence relied on behavioral studies to 

infer audition from a curtailed set of model species (Kenyon et al. 1998; Popper and 

Fay 2011; Ladich and Fay 2013). Hearing function investigation of a greater number 

of species was enabled by auditory brainstem response (ABR) techniques developed 

to measure auditory evoked potential (AEP) (Bullock and Corwin 1979; Kenyon et al. 

1998). The ABR technique has allowed more rapid auditory testing, greater 

replication, and less reliance on the same set of model species with well-characterized 
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behavioral responses (Kenyon et al. 1998; Ladich and Fay 2013; Ladich and Yan 

1998). Conversely, however, the results of this method remain somewhat unreliable, 

particularly across laboratory settings and when compared to measurements of 

sensitivity obtained from behavioral methods (Sisneros et al. 2016). Nonetheless, the 

AEP approach has been applied to a large number and diversity of marine and 

freshwater species (Ladich and Fay 2013; Popper and Fay 2011; Table 3.1). Still, a 

call for revision of how we measure sensitivity suggests systematic inaccuracies may 

have pervaded the literature regardless of testing method (Popper and Fay 2011). 

Despite a rich physiological literature indicating the otolithic organ directly responds 

to particle motion rather than pressure waves (Popper and Hawkins 2018), the 

majority of fish auditory studies have measured received sound as pressure levels 

(i.e., in units of dB re: 1 µPa) (Table 3.1). 

 The literature base on fish auditory studies is limited and rather static (Figures 

3.1, 3.2) likely owing to the costly equipment and intensive methodology to conduct 

rigorous studies, yet there is an ever-increasing need for information on fish hearing 

sensitivity for management purposes. This mismatch has led to past classification 

schemes that separated hearing specialists and hearing generalists. More recently, a 

gradient of hearing functions has been proposed in order to better facilitate and guide 

further exploration of fish hearing (Popper et al. 2014), which uses four categories: 

(1) fishes without a swim bladder; (2) fishes where the swim bladder does not aide 

with hearing; (3) fishes where the swim bladder aides with hearing; and (4) fish eggs 

and larvae. Multiple studies have shown that specialized modifications to the swim 

bladder confer sensitivity to a wider spectrum of sound frequencies (Poggendorf 
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1952; Coombs and Popper 1979; Tavolga and Wodinsky 1963; Ladich and Fay 

2013). For instance, species with swim bladder extensions towards the inner ear show 

expanded audible frequency ranges compared to those without (Ramcharitar and 

Popper 2004; Ramacharitar et al. 2006; Mann et al. 2007; Dale 2014). Furthermore, 

additional studies argue that evolution of more complex swim bladder morphologies 

correspond to selective forcing in differing acoustic environments (Ladich and Popper 

2004; Ladich 2000). More specifically, the evolution of the swim bladder has been 

proposed to specifically permit detection of and sensitivity to a broader range of 

higher sound frequencies via the detection of sound pressure waves in addition to 

particle motion, as opposed to particle motion alone (Ladich and Popper 2004; Ladich 

2000). This expanded range of sound detection conferred by morphology may thus 

alter how individuals respond to predator-prey interactions, communicate with 

conspecifics, and navigate marine habitats (Ladich and Popper 2004; Ladich 2000). 

Despite the influence of the swim bladder in potentially defining a fishes’ acoustic 

scene, no systematic literature review exists to support the hearing classification 

based upon swim bladder presence and its modification, such as that introduced by 

Popper et al. (2014).  

 Here, I evaluate swim bladder specialization, methodology, and measured 

sound form through a quantitative literature review on hearing threshold and 

sensitivity data across studied adult marine and freshwater species. I hypothesize, in 

accordance with Popper et al. (2014), that increases in the structural complexity of the 

swim bladder will correspond to increased thresholds of detected frequencies. More 

specifically, I hypothesize that fish species categorized by swim bladder morphology 
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will detect a broader frequency range and higher optimum frequencies with 

increasing swim bladder complexity, and that this signal may be captured and 

described across experimental approaches. Based on previously identified ranges of 

potential hearing acuity related to swim bladder structure, I broadly categorized 

comparable hearing types into Type 1(individuals without swim bladders), Type 2 

(individuals with basic swim bladders, without additional structures), Type 3 

(individuals with swim bladders that have structural modifications but lack Weberian 

ossicles—vertebrae connecting skull to swim bladder—or bullae—twin gas bladders 

directly connected to the ear and skull), and Type 4 (true otophysans [having 

Weberian ossicles] and mormyrids [having bullae]) (von Frisch 1938; Popper et al. 

2014; Hawkins and Popper 2015). I incorporated additional metrics to account for 

individual studies’ experimental conditions and any related confounding variance 

(Popper et al. 2014; Ladich and Fay 2013; Hawkins et al. 2015). These metrics 

included methodology used to evaluate response (AEP or behavior); measured sound 

form (particle motion or sound pressure); experimental rigor (indexed as the number 

of replicates); and the taxonomic order of each species tested. The relationship 

between hearing frequency benchmarks (minimum, maximum, and optimal sound 

frequencies detected) and predictor variables was evaluated using parametric models, 

ultimately isolating the effect of hearing type on each frequency benchmark while 

incorporating variance related to experiment-specific parameters. 

Materials and methods 
 
Literature Review 
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 I conducted a literature review of 63 papers that measured sound frequency 

detection in individual fish species. Studies were identified using online databases of 

peer-reviewed publications. Databases included the University of Maryland library, 

The Journal of the Acoustical Society of America, JSTOR, Wiley Online Library, 

Springer, and ProQuest. Search terms included “audiogram,” “hearing ability,” “fish,” 

“swim bladder,” “audition,” and combinations of said terms. From those papers, I 

identified 173 unique experiments measuring the audition of individual species under 

specific laboratory conditions, with many papers providing audiogram data for 

multiple species. From the experiments identified, I obtained tabulated data reported 

by the authors from audiograms examining the hearing abilities of 130 species. For 

each audiogram, I selected the highest and lowest frequencies detected, as well as the 

frequency detected at the lowest sound level (Figure 3.3); the latter representing the 

frequency of optimal hearing sensitivity. For audiograms that indicated this nadir 

occurred for a range of frequencies, the optimum frequency was estimated as the 

mean of the values within this range. Of the 173 unique experiments, 159 optimal 

frequencies were single nadir points and 14 were mean estimates. Analysis was 

limited to detected frequency range, barring hearing sensitivity amplitudes at 

identified frequency ranges, assuming that the presence of frequency detection alone 

would be sufficient in determining coarse discriminations of hearing ability 

bandwidth driven by swim bladder morphology. 

 Hearing morphologies were classified by increasing complexity of the swim 

bladder and were categorized as Type 1 (T1; no swim bladder), Type 2 (T2; 

unmodified swim bladder), and Type 3 (T3; swim bladder structural modifications 
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barring Weberian ossicles or bullae); otophysan and mormyrid species were classified 

as Type 4 (T4). The method classes included audio-evoked potential (AEP) methods, 

where the neurological response to sound was measured directly using 

electrophysiological techniques, and behavioral (BEH) methods, where changes in 

behavior or physiology were observed in response to sound (usually following a 

period of training). Sound-form classes included particle motion (PAL) and sound 

pressure level (SPL). I also evaluated the influence of taxonomic order and the 

number of replicate individuals evaluated per experimentally-derived audiogram. 

Replication was used as an index of experimental rigor. Eleven audiogram 

experiments of the original 173 experiments evaluated did not contain information on 

the number of replicates and were excluded from analysis, yielding a final sample 

size of 162 unique study combinations of species, experimental method, sound form, 

number of replicates, and taxonomic order (Table 3.2).  

Data analysis 
 
 Models were developed and compared for maximum and optimal frequency 

benchmarks across hearing types. Minimum frequency benchmarks could not be 

assessed owing to the strongly truncated distribution of minimum detected 

frequencies in the pooled audiogram data (see Results, Figure 3.4), suggesting a 

pervasive experimental artifact across studies. The relationship between maximum 

and optimal frequency benchmark values and hearing type were separately evaluated 

using linear mixed effect (LME) and generalized least square (GLS) models, 

incorporating and comparing variance structures to account for the effects of 

experimental method, taxonomic order, and number of replicates. Models for both 
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benchmarks examined log10-transformed sound frequency as a primary response of 

hearing type under the following structures, listed in order of increasing complexity: 

(1) as a linear response to hearing type alone; (2) with hearing frequency fixed with 

respect to the number of replicates; (3) with the interaction between hearing type and 

experimental method incorporated as a constant variance structure; (4) with the 

aforementioned hearing type-experimental method interaction [3] fixed with variance 

related to the number of replicates; and (5) with the former variance structure [4] and 

including taxonomic order incorporated as a random effect. Models were selected 

based on lowest Akaike Information Criterion (AIC) numbers. All models were 

developed using the nlme package in R (Pinheiro et al. 2018).  

 Sound form was not included in model comparisons based on the substantial 

dominance in the number of studies testing sound pressure (N=133) versus particle 

motion (N=29); the latter subsample was further curtailed when divided across the 

additional metrics of hearing type, experimental method, number of replicates, and 

taxonomic order. Post hoc analyses included calculations of least square mean 

contrasts across hearing types using the selected model and a Bonferroni adjustment 

of p-values. Post hoc calculations were conducted using the lsmeans (Russel 2016) 

and multcompView (Graves et al. 2015) packages in R.  

 The influence of experimental method and sound form on detected hearing 

frequencies were examined within each hearing type. As the data violated 

assumptions of normality and heterogeneity of variance, a non-parametric Kruskal-

Wallis test was conducted for each hearing type, testing for significant differences in 

maximum and optimal frequencies between BEH and AEP methods. Similarly, 
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Kruskal-Wallis tests were applied to evaluate differences in hearing metrics between 

SPL and PAL sound forms. Although the effects of experimental method and sound 

form are likely confounded—both with each other as well as with hearing type—this 

analysis was undertaken to provide a broader-scale assessment of the distributions of 

frequencies detected under each method and each sound form. 

 Lastly, the relationship between detected frequency benchmarks across 

hearing types and sound form was separately assessed. Spearman correlation 

coefficients (r) were calculated and compared to evaluate correlations between 

maximum and optimum frequency benchmarks for both hearing types and taxonomic 

groups. For expedient and effective analysis across the latter category, taxonomic 

orders (n=23) were assigned to broader phylogenetic classifications based on 

common morphological characteristics inherent to individual orders (Table 3.3). 

Results 
 
 Distributions of detected frequency benchmarks among species increased with 

swim bladder complexity (Figure 3.4). Still, these distributions were confounded by 

differences in experimental method, sound form, taxonomy, and number of replicates, 

which were then explicitly considered in statistical model fitting. Selected models that 

incorporated these factors confirmed a statistically significant and positive association 

between detected frequencies and swim bladder morphology. The model for 

maximum hearing threshold with the lowest AIC was an LME model including all 

predictor variables (Table 3.4). This model contained the interaction between hearing 

type and method incorporated as a constant variance structure, then adjusted by the 

variance related to the number of replicates, with taxonomic order included as a 
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random effect. The optimal hearing frequency model with the lowest AIC was a GLS 

model that included the hearing type-method interaction as a constant variance 

structure alone. Unlike the maximum frequency model, neither adjusting the variance 

associated with the number of replicates nor incorporating the effects of taxonomic 

order improved the AIC (Table 3.4).  

 Post hoc comparisons of least square mean contrasts across hearing types for 

each of the selected final models indicated significant differences across maximum 

and optimal hearing thresholds based on swim bladder presence and its specialization. 

Contrasts among maximum frequency benchmarks across hearing types based on the 

selected model (Model 5 in Table 3.4) were significantly different across all groups 

(a=0.05), with least square means increasing with increasing swim bladder 

complexity and the presence of Weberian ossicles or bullae (Figure 3.5). Contrasts 

among optimal frequency benchmarks across hearing types based on the selected 

model (Model 3 in Table 3.4) were significantly different across combined hearing 

types T1-T3 and T4 (a=0.05) (Figure 3.6). 

 Kruskal-Wallis tests identified significant influences of experimental method 

and sound form on both maximum and optimal frequency benchmarks when applied 

within hearing types. While maximum frequency benchmarks across hearing types 

were generally lower for studies using BEH methods than those using AEP methods, 

significant differences in maximum frequency benchmarks between methods were 

identified only for Type 3 (p<0.05; Figure 3.7). Note that the AEP maximum hearing 

metrics were increasingly ordered by hearing type, while BEH metrics were not. 

Optimal frequency metrics also showed this differing pattern across hearing types 
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according to AEP (consistent increasing trend) and BEH (interrupted trend) methods. 

Within hearing Type 2 (unmodified swim bladder), BEH methods yielded 

significantly higher optimal frequencies than AEP methods for Type 2 experiments 

alone (p<0.05; Figure 3.8). Kruskal-Wallis tests comparing frequency benchmarks 

across sound forms within groups demonstrated an influence of sound form tested on 

the estimation of both maximum and optimal frequencies detected. Distributions of 

maximum frequency benchmarks across hearing types were consistently lower for 

PAL-derived frequencies as opposed to SPL-derived frequencies, with PAL-

frequencies significantly lower only within hearing type T2 (p<0.05; Figure 3.9). 

Broad distributions of optimal frequency benchmarks followed a similar pattern, with 

benchmarks for types T1 and T2 were significantly lower for PAL sound forms than 

SPL sound forms (p<0.05; Figure 3.10). For the literature pool reviewed, no PAL 

experiments were identified for Type 4 species. 

 Evaluation of Spearman’s correlation coefficients (r) revealed high variance in 

the associations between optimum and maximum frequencies (Figures 3.11, 3.12). 

All associations across hearing types and phylogenetic groups were positive, though 

they varied in strength depending on type and group (Table 3.5). Type 1 (T1) hearing 

morphologies demonstrated the strongest correlation (r=0.63), while Type 4 (T4) 

morphologies demonstrated the weakest correlation (r=0.15). Similarly, optimum and 

maximum frequency benchmarks were most strongly correlated for Elasmobranchs 

(r=0.63) and most weakly correlated for neoteleosts (r=0.11). A correlation 

coefficient could not be calculated for the Chondrostei/Holostei group due to limited 

sample size (n=4) and a lack of variance among this sample’s data points. 
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Distributions of frequency benchmarks across hearing type (Figure 3.11) or 

phylogenetic groups (Figure 3.12) suggested an increase in frequency detection range 

with increased swim bladder complexity, with experiments measuring response to 

particle motion detecting a more limited range of lower frequencies than those studies 

measuring response to pressure waves. Phylogenetic groups with less complex swim 

bladder morphologies demonstrate a narrower range of frequency detection, 

concentrated at lower frequencies and in response to particle motion (Figure 3.12). 

Discussion 
 
 The literature on fish hearing sensitivity is surprisingly limited (63 identified 

studies) given the diversity of species and species habitats that are impacted by 

anthropogenic sound. This in part has led to past classification schemes that can 

model likely hearing sensitivity across broad hearing types. My literature analysis of 

diverse fish taxa supported the view that the generalist vs. specialist dichotomy is 

over simplistic (Popper et al. 2011) and that sensitivity threshold classifications based 

on swim bladder elaboration would be an improvement. Across taxa, experimental 

types, and sound forms, the literature analysis supported a more resolved, statistically 

significant and reliable classification of hearing performance corresponding to the 

presence and specialization of the swim bladder as an accessory hearing structure. 

Hearing type classification showed significant differences in audition between two 

hearing benchmarks (maximum and optimum frequencies): associations that were 

robust to possible confounding effects of study method, rigor (replication), and taxa. 

Evaluation of the relationship between optimum and maximum benchmarks 

supported the hypothesis that more complex swim bladder morphologies permit a 
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broader range of detection frequency, related to the ability of the swim bladder to 

facilitate detection of pressure waves.  

 The literature’s skew towards sound pressure over particle motion in 

particular directs caution in drawing inferences from a review of past literature. Still, 

the limited particle motion literature base supported the overall inference of increased 

acuity with swim bladder presence and specialization. This finding corresponds with 

increasing recognition by the bioacoustics community of the potential for swim 

bladder specializations to widen frequency bandwidths in fishes, likely associated 

with convergent radiations into acoustic niche space (i.e., predator avoidance, 

conspecific communication, prey detection, etc.)—though direct drivers of its 

evolution remain unknown (Popper and Coombs 1982; Ladich and Popper 2004; 

Braun and Grande 2008). 

 Analyses of published audiograms are subject to sources of error associated 

with (1) the quality of the audiogram data used, and (2) an overall skew in the 

existing literature towards sound forms measured as pressure waves rather than 

particle motion. The veracity of individual audiogram studies—both AEP and 

behavioral in acquisition—in providing an accurate estimate of fish hearing acuity is 

contingent upon appropriate measurement and incorporation of the experimental 

sound field and received noise level; these levels can be quite heterogenous within 

tank systems and can result in substantial error in nominal (treatment) frequency and 

amplitude levels, should the acoustic conditions of the tank and background noise 

levels not be measured appropriately (Rogers et al. 2016; Sisneros et al. 2016). The 

use of AEP-derived audiograms has evoked caution from the scientific community, 
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given that AEP techniques measures microphonic potentials of auditory hair cells—a 

physical stimulus, rather than proof of auditory processing and response achieved 

with behavioral studies (Sisneros et al. 2016). The value of such experimental results 

may be further confounded when attempting to relate audiometrically-derived hearing 

thresholds to thresholds detected in the natural environment, during which issues of 

auditory masking in experimental settings and mismatching of impedance levels 

between environments (ratios of sound pressure to particle motion levels) may occur 

and distort results (Ladich and Fay 2013; Hawkins et al. 2015; Popper et al. 2014). 

Furthermore, the accurate comparison of data obtained from multiple audiograms 

demands similar, mathematically accurate measurements of the experimental sound 

field among studies, the absence of which would allow for increased variance across 

study-specific audiograms (Popper and Fay 2011; Hawkins 2015; Sisneros et al. 

2016).  

 Experimental variables that affect hearing performance—method of detection, 

replication, and taxonomic order—were all included in best fitted models of hearing 

acuity. Of these variables, method of detection was associated with the greatest drop 

in AIC (affording the model with the highest explanatory power) for both maximum 

and optimum frequency benchmarks. The AEP-derived measurements exhibited 

poorer sensitivities and broader frequency thresholds than measurements derived 

from behavioral methods (Figures 3.7, 3.8; Popper and Fay 2011; Hawkins et al. 

2015). Taxonomic effects were most apparent for the maximum frequency 

benchmark, which is not surprising as the T1 and T4 hearing type species originate 

from small sets of orders respectively; the former consists mainly of elasmobranchs 
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and a small subset of teleosts, while the latter is confined to a small set of orders 

comprising the otophysans and mormyrids. Replication had a significant, but more 

limited influence on hearing acuity wherein its inclusion in both benchmark models 

increased AIC (reducing model explanatory power) unless either experimental 

method, sound form, or both were incorporated as well. This response suggests that 

the inclusion of replication was successful in capturing a degree of experimental 

variance, but likely not a significant driver of acuity differences, alone.  

 An important source of uncertainty, particularly related to the absolute values 

of hearing benchmarks stems from the discord identified in the literature across 

experiments evaluating fish response to sound pressure level as opposed to particle 

motion. Of the 173 experiments reviewed, 143 monitored response to sound pressure 

waves and only 30 monitored response to particle motion. Recent advances provide 

strong evidence that the prevalent mode of hearing in fish is in response to particle 

motion (Popper and Fay 2011; Popper and Hawkins 2018). It is therefore likely that 

the sensitivities recorded in audiograms derived from pressure wave stimulus are 

inaccurate measurements, providing a wider bandwidth of threshold response to 

pressure waves in the given setting. The amplitudes of the corresponding sensitivities 

are most likely underestimated at dominant particle motion-sensitive frequencies, 

which are probably misrepresented by their sound pressure wave measurements 

(Popper et al. 2014). Still, I posit that the relative differences between the four 

hearing types are likely robust across particle motion and pressure wave sound forms 

(Figures 3.9, 3.10).  
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 These findings contribute to the current dialogue of how to characterize fish 

audition in a more effective and efficient manner. I utilized a fairly coarse taxonomy 

of hearing types in an effort to start delving through existing—albeit imperfect—

resources in the literature pool in an effort to more rigorously identify and quantify 

categories of fish hearing abilities. As a jumping off point to gauge possible impacts 

of anthropogenic and environmental noise to the hearing ecology of fishes, swim 

bladder presence and specialization merits attention. Hearing type classes could 

inform expectations on likely fish responses in impact studies of anthropogenic noise. 

Doing so might support more efficient field and laboratory study designs associated 

with hearing types to begin informing hearing abilities across a wide spectrum of fish 

species. 

 As common to literature reviews, certain themes within fish hearing function 

emerged associated with methodology, taxonomic bias, and rigor. One of the broader 

themes surrounding this dialogue has been the need for greater experimentation in the 

field and expanded datasets focusing on the detection of particle motion in a 

standardized sound field, an undertaking that will require greater priority and retooled 

methodology within fish audition studies. 
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Tables 
 
Table 3.1. Detected frequency benchmarks, associated metadata, and sourced study for each species-, method-, and sound 
form-specific audiogram experiment identified. Experiments are listed in alphabetical order of the source studies. 
 

Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Common 
carp Cyprinus carpio Cypriniformes T4 AEP SPL 6 4000 800 100 

Amoser and 
Ladich 2005 

European 
perch Perca fluviatilis Perciformes T2 AEP SPL 6 1000 200 100 

Amoser and 
Ladich 2005 

Roach Rutilis rutilis Cypriniformes T4 AEP SPL 2 4000 800 100 
Amoser et 
al. 2004 

European 
whitefish 

Coregonus 
lavaretus Salmoniformes T2 AEP SPL 6 800 250 100 

Amoser et 
al. 2004 

Round 
goby 

Neogobius 
melanostomus Perciformes T1 AEP SPL 37 600 400 100 

Belanger et 
al. 2010 

Round 
goby 

Neogobius 
melanostomus Perciformes T1 AEP PAL 37 600 100 100 

Belanger et 
al. 2010 

Atlantic 
sharpnos
e shark 

Rhizoprionodon 
terraenovae Carcharhiniformes T1 AEP PAL 3 1000 20 20 

Casper and 
Mann 2009 

Nurse 
shark 

Ginglymostoma 
cirratum Orectolobiformes T1 AEP PAL 5 1000 600 100 

Casper and 
Mann 2006 

Yellow 
stingray 

Urobatis 
jamicensis Myliobatiformes T1 AEP PAL 5 1000 800 100 

Casper and 
Mann 2006 

Nurse 
shark 

Ginglymostoma 
cirratum Orectolobiformes T1 AEP SPL 5 1000 600 100 

Casper and 
Mann 2006 

Brownba
nded 
bamboo 
shark 

Chiloscyllium 
punctatum Orectolobiformes T1 AEP PAL 2 200 100 20 

Casper and 
Mann 2007 

Whitespo
tted 
bamboo 
shark 

Chiloscyllium 
plagiosum Orectolobiformes T1 AEP PAL 4 200 100 20 

Casper and 
Mann 2007 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Horn 
shark 

Heterodontus 
francisci Heterodontiformes T1 AEP PAL 3 300 20 20 

Casper and 
Mann 2007 

Whitespo
tted 
bamboo 
shark 

Chiloscyllium 
plagiosum Orectolobiformes T1 AEP PAL 5 200 20 20 

Casper and 
Mann 2007 

Little 
skate 

Leucoraja 
erinacea Rajiformes T1 AEP SPL 3 800 150 100 

Casper et al. 
2003 

Little 
skate 

Leucoraja 
erinacea Rajiformes T1 BEH SPL 4 800 250 200 

Casper et al. 
2003 

Pollack 
Pollachius 
pollachius Gadiformes T3 BEH SPL 2 470 250 40 

Chapman 
1973 

Haddock 
Melanogrammu
s aeglefinus Gadiformes T3 BEH SPL 9 470 200 30 

Chapman 
1973 

Ling Molva molva Gadiformes T3 BEH SPL 1 550 200 40 
Chapman 
1973 

Atlantic 
cod Gadus morhua Gadiformes T3 BEH SPL 43 470 160 30 

Chapman 
and 
Hawkins 
1973 

Brown 
meagre Sciaena umbra Perciformes T2 AEP SPL 6 3000 300 100 

Codarin 
2009 

Mediterr
anean 
damselfis
h 

Chromis 
chromis Perciformes T2 AEP SPL 6 600 200 100 

Codarin 
2009 

Red-
mouthed 
goby 

Gobius 
cruentatus Perciformes T2 AEP SPL 6 700 200 100 

Codarin 
2009 

Squirrelfi
sh 

Sargocentron 
xantherythrum Beryciformes T2 BEH SPL 3 800 500 100 

Coombs and 
Popper 1979 

Squirrelfi
sh 

Mypristis 
kuntee Beryciformes T3 BEH SPL 2 3000 1000 100 

Coombs and 
Popper 1979 

Clown 
knifefish Chitala ornata Osteoglossiformes T2 BEH SPL 3 1000 500 100 

Coombs and 
Popper 1982 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Pacific 
bluefin 
tuna 

Thunnus 
orientalis Perciformes T2 BEH SPL 6 800 450 325 Dale 2014 

Pacific 
bluefin 
tuna 

Thunnus 
orientalis Perciformes T2 BEH PAL 6 800 450 325 Dale 2014 

Sergeant 
major 
damselfis
h 

Abudefduf 
saxatilis Perciformes T2 AEP SPL 32 1600 100 100 

Egner and 
Mann 2005 

Oyster 
toadfish Opsanus tau Batrachoidiformes T3 BEH SPL 3 700 75 37.5 

Fish and 
Offut 1972 

Atlantic 
salmon Salmo salar Salmoniformes T3 BEH SPL 5 380 160 32 

Hawkins 
and 
Johnstone 
1978 

Atlantic 
salmon Salmo salar Salmoniformes T3 BEH PAL 5 380 160 32 

Hawkins 
and 
Johnstone 
1978 

Zebrafish Danio rerio Cypriniformes T4 AEP SPL 10 4000 800 100 
Higgs et al. 
2001 

Redeye 
bass 

Micropterus 
coosae Perciformes T2 AEP SPL 5 2000 100 100 

Holt and 
Johnston 
2011 

Alabama 
bass 

Micropterus 
henshalli Perciformes T2 AEP SPL 5 600 100 100 

Holt and 
Johnston 
2011 

Redeye 
bass 

Micropterus 
coosae Perciformes T2 AEP PAL 5 2000 100 100 

Holt and 
Johnston 
2011 

Alabama 
bass 

Micropterus 
henshalli Perciformes T2 AEP PAL 5 600 100 100 

Holt and 
Johnston 
2011 

Spotted 
seatrout 

Cynoscion 
nebulosus Perciformes T3 AEP SPL 6 1000 500 100 

Horodysky 
et al. 2008 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Red 
drum 

Sciaenops 
ocellatus Perciformes T2 AEP SPL 6 1000 300 100 

Horodysky 
et al. 2008 

Northern 
kingfish 

Menticirrhus 
saxatilis Perciformes T2 AEP SPL 6 1000 800 100 

Horodysky 
et al. 2008 

Weakfish 
Cynoscion 
regalis Perciformes T3 AEP SPL 6 1000 600 100 

Horodysky 
et al. 2008 

Spot 
Leiostomus 
xanthurus Perciformes T2 AEP SPL 6 1000 200 100 

Horodysky 
et al. 2008 

Atlantic 
croaker 

Micropogonias 
undulatus Perciformes T3 AEP SPL 6 1000 300 100 

Horodysky 
et al. 2008 

Spotted 
seatrout 

Cynoscion 
nebulosus Perciformes T3 AEP PAL 6 1000 400 100 

Horodysky 
et al. 2008 

Red 
drum 

Sciaenops 
ocellatus Perciformes T2 AEP PAL 6 1000 100 100 

Horodysky 
et al. 2008 

Northern 
kingfish 

Menticirrhus 
saxatilis Perciformes T2 AEP PAL 6 1000 100 100 

Horodysky 
et al. 2008 

Weakfish 
Cynoscion 
regalis Perciformes T3 AEP PAL 6 1000 100 100 

Horodysky 
et al. 2008 

Spot 
Leiostomus 
xanthurus Perciformes T2 AEP PAL 6 1000 100 100 

Horodysky 
et al. 2008 

Atlantic 
croaker 

Micropogonias 
undulatus Perciformes T3 AEP PAL 6 1000 100 100 

Horodysky 
et al. 2008 

Yellowfi
n tuna 

Thunnus 
albacares Perciformes T2 BEH SPL NA 800 500 325 

Iverson 
1969 
audiogram, 
published in 
Dale 2014 

Kawaka
wa 

Euthynnus 
affinis Perciformes T1 BEH  SPL NA 800 500 325 

Iverson 
1969 
audiogram, 
published in 
Dale 2014 

European 
seabass 

Dichentrarchus 
labrax Perciformes T2 BEH SPL 17 700 150 100 

Kastelein et 
al. 2008 

Thicklip 
grey 
mullet 

Chelon 
labrosus Mugiliformes T2 BEH SPL 11 700 450 400 

Kastelein et 
al. 2008 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Pout 
Trisopterus 
luscus Gadiformes T3 BEH SPL 9 250 100 100 

Kastelein et 
al. 2008 

Atlantic 
horse 
mackerel 

Trachurus 
trachurus Perciformes T2 BEH SPL 13 2000 100 100 

Kastelein et 
al. 2008 

Horn 
shark 

Heterodontus 
francisci Heterodontiformes T1 BEH PAL 4 160 80 20 

Kelly and 
Nelson 1975 

Horn 
shark 

Heterodontus 
francisci Heterodontiformes T1 BEH SPL 4 160 40 20 

Kelly and 
Nelson 1975 

Goldfish 
Carassius 
auratus Cypriniformes T4 AEP SPL 8 5000 700 100 

Kenyon et 
al. 1998 

Oscar 
Astronotus 
ocellatus Perciformes T3 AEP SPL 8 2000 100 100 

Kenyon et 
al. 1998 

Oscar 
Astronotus 
ocellatus Perciformes T3 BEH SPL NA 800 200 200 

Kenyon et 
al. 1998, 
audiogram 
published in 
Yan and 
Popper 1992 

Common 
carp Cyprinus carpio Cypriniformes T4 BEH SPL 5 2000 1000 100 

Kojima et al. 
2005 

Common 
carp Cyprinus carpio Cypriniformes T4 AEP SPL 8 3010 505 100 

Kojima et al. 
2005 

Red 
seabream Pagrus major Perciformes T2 BEH SPL 35 1100 300 110 

Kojima et al. 
2010 

Red 
seabream Pagrus major Perciformes T2 AEP SPL 18 1100 300 110 

Kojima et al. 
2010 

Red 
seabream Pagrus major Perciformes T2 AEP PAL 10 200 200 50 

Kojima et al. 
2010 

Bull 
shark  

Carcharhinus 
leucas 

Charcharhiniforme
s T1 BEH SPL 2 1500 500 100 

Kritzler and 
Wood 1961 

Blue 
botia 

Yasuhikotakia 
modesta Cypriniformes T4 AEP SPL 7 5000 600 100 Ladich 1999 

Red-
bellied 
piranha 

Pygocentrus 
nattereri Characiformes T4 AEP SPL 6 5000 900 100 Ladich 1999 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Spotted 
talking 
catfish 

Agamyxis 
pectinifrons Siluriformes T4 AEP SPL 12 5000 800 100 Ladich 1999 

Pictus 
catfish 

Pimelodus 
pictus Siluriformes T4 AEP SPL 11 5000 550 100 Ladich 1999 

Blue 
leopard 
corydora
s 

Corydoras 
paleatus Siluriformes T4 AEP SPL 10 4000 600 100 Ladich 1999 

Glass 
knifefish 

Eigenmannia 
virescens Gymnotiformes T4 AEP SPL 6 5000 500 100 Ladich 1999 

Dusky 
pimelodi
d 

Pimelodus 
blochii Siluriformes T4 AEP SPL 11 5000 500 100 Ladich 1999 

Croaking 
gourami 

Trichopsis 
vittata Perciformes T3 AEP SPL 11 5000 1500 100 

Ladich and 
Yan 1998 

Pygmy 
gourami 

Trichopsis 
pumila Perciformes T3 AEP SPL 9 5000 250 100 

Ladich and 
Yan 1998 

Blue 
gourami 

Trichopodus 
trichopterus Perciformes T3 AEP SPL 9 5000 800 100 

Ladich and 
Yan 1998 

Dwarf 
gourami 

Trichogaster 
lalia Perciformes T3 AEP SPL 9 5000 1000 100 

Ladich and 
Yan 1998 

Paradise 
fish 

Macropodus 
opercularis Perciformes T3 AEP SPL 9 5000 150 100 

Ladich and 
Yan 1998 

Tete sea 
catfish 

Ariopsis 
seemanni Siluriformes T4 AEP SPL 6 5000 3000 50 

Lechner and 
Ladich 2008 

Bumbleb
ee jelly 
catfish 

Batrochoglanis 
raninus Siluriformes T4 AEP SPL 6 5000 2000 50 

Lechner and 
Ladich 2008 

Electric 
catfish 

Malapterurus 
beninensis Siluriformes T4 AEP SPL 6 5000 2000 50 

Lechner and 
Ladich 2008 

Onespot 
squeaker 

Synodontis 
schoutedeni Siluriformes T4 AEP SPL 7 5000 800 50 

Lechner and 
Ladich 2008 

Striped 
woodcat 

Trachelyopteric
hthys taeniatus Siluriformes T4 AEP SPL 6 5000 2000 50 

Lechner and 
Ladich 2008 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Medusa 
pleco 

Ancistrus 
ranunculus Siluriformes T4 AEP SPL 8 5000 1000 50 

Lechner and 
Ladich 2008 

False 
network 
catfish 

Corydoras 
sodalis Siluriformes T4 AEP SPL 6 5000 500 50 

Lechner and 
Ladich 2008 

Flagtail 
catfish 

Dianema 
urostriatum Siluriformes T4 AEP SPL 8 5000 500 50 

Lechner and 
Ladich 2008 

Pinocchi
o 
whiptail 
catfish 

Hemiodontichth
ys 
acipenserinus Siluriformes T4 AEP SPL 7 5000 500 50 

Lechner and 
Ladich 2008 

Big-eyed 
armored 
catfish 

Hypoptopoma 
thoracatum Siluriformes T4 AEP SPL 7 5000 800 50 

Lechner and 
Ladich 2008 

America
n 
paddlefis
h 

Polyodon 
spathula Acipenseriformes T2 AEP SPL 12 500 250 100 

Lovell et al. 
2005 

Lake 
sturgeon 

Acipenser 
fulvescens Acipenseriformes T2 AEP SPL 12 500 200 100 

Lovell et al. 
2005 

America
n 
paddlefis
h 

Polyodon 
spathula Acipenseriformes T2 AEP PAL 12 500 250 100 

Lovell et al. 
2005 

Lake 
sturgeon 

Acipenser 
fulvescens Acipenseriformes T2 AEP PAL 12 500 200 100 

Lovell et al. 
2005 

Silver 
carp 

Hypopthalmicht
hys molitrix Cypriniformes T4 AEP SPL 12 3000 750 100 

Lovell et al. 
2006 

Bighead 
carp 

Aristichthys 
nobilis Cypriniformes T4 AEP SPL 12 3000 1500 100 

Lovell et al. 
2006 

Padanian 
goby 

Padogobius 
bonelli Perciformes T2 AEP SPL 5 800 100 75 

Lugli et al. 
2003 

Arno 
goby 

Padogobius 
nigricans Perciformes T2 AEP SPL 4 800 100 75 

Lugli et al. 
2003 

America
n shad 

Alosa 
sapidissima Clupeiformes T3 AEP SPL 8 4000 800 100 

Mann et al. 
1998 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Gulf 
menhade
n 

Brevoortia 
patronus Clupeiformes T3 AEP SPL 10 1500 300 300 

Mann et al. 
2001 

Bay 
anchovy 

Anchoa 
mitchilli Clupeiformes T3 AEP SPL 15 2000 100 100 

Mann et al. 
2001 

Scaled 
sardine 

Harengula 
jaguana Clupeiformes T3 AEP SPL 16 1500 800 100 

Mann et al. 
2001 

Spanish 
sardine 

Sardinella 
aurita Clupeiformes T3 AEP SPL 2 1500 100 100 

Mann et al. 
2001 

Lake 
chub 

Couesius 
plumbeus Cypriniformes T4 AEP SPL 5 1600 500 100 

Mann et al. 
2007 

Longnos
e sucker 

Catostomus 
catostomus Cypriniformes T4 AEP SPL 4 1600 600 100 

Mann et al. 
2007 

Trout-
perch 

Percopsis 
omiscomaycus Percopsiformes T2 AEP SPL 4 1600 100 100 

Mann et al. 
2007 

Ninespin
e 
stickleba
ck 

Pungitius 
pungitius Gasterosteiformes T2 AEP SPL 4 1600 200 100 

Mann et al. 
2007 

Northern 
pike Esox lucius Esociformes T2 AEP SPL 5 1600 200 100 

Mann et al. 
2007 

Spoonhe
ad 
sculpin Cottus ricei Scorpaeniformes T1 AEP SPL 4 1600 200 100 

Mann et al. 
2007 

Burbot Lota lota Gadiformes T3 AEP SPL 1 1600 200 100 
Mann et al. 
2007 

Broad 
whitefish 

Coregonus 
nasus Salmoniformes T2 AEP SPL 5 1600 200 100 

Mann et al. 
2007 

Hawaiian 
sergeant 
damselfis
h 

Abudefduf 
abdominalis Perciformes T2 AEP SPL 6 1000 125 90 

Maruska et 
al. 2007 

Peter’s 
elephant
nose fish 

Gnathonemus 
petersii Osteoglossiformes T4 BEH SPL 4 2500 400 100 

McCormick 
and Popper 
1984 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Dusky 
damselfis
h 

Stegastes 
adustus Perciformes T2 BEH SPL 4 1200 500 100 

Myrberg and 
Spires 1980 

Beau 
gregory 

Stegastes 
leucosticus Perciformes T2 BEH SPL 4 1200 500 100 

Myrberg and 
Spires 1980 

Bicolor 
damselfis
h 

Stegastes 
partitus Perciformes T2 BEH SPL 2 1200 500 100 

Myrberg and 
Spires 1980 

Cocoa 
damselfis
h 

Stegastes 
variabilis Perciformes T2 BEH SPL 3 1200 500 100 

Myrberg and 
Spires 1980 

Honey 
gregory 

Eupomacentrus 
mellis Perciformes T2 BEH SPL 2 1200 500 100 

Myrberg and 
Spires 1980 

Longfin 
damselfis
h 

Stegastes 
diencaeus Perciformes T2 BEH SPL 2 1200 500 100 

Myrberg and 
Spires 1980 

Threespo
t 
damselfis
h 

Stegastes 
planifrons Perciformes T2 BEH SPL 4 1200 500 100 

Myrberg and 
Spires 1980 

European 
seabass 

Dicentrarchus 
labrax Perciformes T2 AEP SPL NA 1600 100 10 

Nedwell 
2004 

Common 
dab 

Limanda 
limanda Pleuronectiformes T1 BEH PAL 3 250 60 40 

Chapman 
and Sand 
1974; 
audiogram 
taken from 
Nedwell 
2004 

Atlantic 
cod Gadus morhua Gadiformes T3 BEH SPL NA 400 17.6 17.6 

Buerle et al. 
1967; 
audiogram 
taken from 
Nedwell et 
al. 2004 



 109 

Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Lemon 
shark 

Negaprion 
brevirostris Carcharhiniformes T1 BEH SPL 3 640 320 10 Nelson 1967 

Atlantic 
cod Gadus morhua Gadiformes T3 BEH SPL 20 600 150 10 Offut 1974 
Scallope
d 
hammerh
ead Sphyrna lewini Carcharhiniformes T1 BEH SPL NA 750 310 250 

Olla 1962; 
audiogram 
taken from 
Nelson 1967 

Chinook 
salmon 

Oncorhynchus 
tshawytscha Salmoniformes T2 AEP SPL 40 1000 250 75 

Oxman et al. 
2007 

Tomato 
clownfis
h 

Amphiprion 
frenatus Perciformes T2 AEP SPL 5 1800 150 75 

Parmentier 
et al. 2009 

Clownfis
h 
anemone
fish 

Amphiprion 
ocellaris Perciformes T2 AEP SPL 7 1800 75 75 

Parmentier 
et al. 2009 

Yellowta
il 
clownfis
h 

Amphiprion 
clarkii Perciformes T2 AEP SPL 5 1800 75 75 

Parmentier 
et al. 2009 

Silver 
mojarra 

Eucinostomus 
argenteus Perciformes T3 AEP SPL 15 1800 300 75 

Parmentier 
et al. 2011 

Mexican 
tetra 

Astyanax 
mexicanus Characiformes T4 BEH SPL 11 7500 200 50 Popper 1970 

Cave 
tetra 

Astyanax 
jordani Characiformes T4 BEH SPL 6 7500 1000 50 Popper 1970 

Black 
drum 

Pogonias 
cromis Perciformes T2 AEP SPL 7 800 300 100 

Ramcharitar 
and Popper 
2004 

Atlantic 
croaker 

Micropogonias 
undulatus Perciformes T3 AEP SPL 7 1000 300 100 

Ramcharitar 
and Popper 
2004 

Silver 
perch 

Bairdiella 
chrysoura Perciformes T3 AEP SPL 17 4000 600 100 

Ramcharitar 
et al. 2004 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Weakfish 
Cynoscion 
regalis Perciformes T3 AEP SPL 5 2000 500 100 

Ramcharitar 
et al. 2006 

Spot 
Leiostomus 
xanthurus Perciformes T2 AEP SPL 5 700 500 200 

Ramcharitar 
et al. 2006 

Topmout
h 
minnow 

Pseudorasbora 
parva Cypriniformes T4 AEP SPL 8 4000 500 100 

Scholz and 
Ladich 2006 

Slender 
lion head 
cichlid 

Steatocranus 
tinanti Perciformes T2 AEP SPL 8 700 200 100 

Schulz-
Mirbach et 
al. 2012 

Jewel 
cichlid 

Hemichromis 
guttatus Perciformes T2 AEP SPL 7 3000 200 100 

Schulz-
Mirbach et 
al. 2012 

Black 
diamond 
cichlid 

Paratilapia 
polleni Perciformes T3 AEP SPL 5 3000 500 100 

Schulz-
Mirbach et 
al. 2012 

Orange 
chromide 

Etroplus 
maculatus Perciformes T3 AEP SPL 8 3000 500 100 

Schulz-
Mirbach et 
al. 2012 

Slender 
lion head 
cichlid 

Steatocranus 
tinanti Perciformes T2 AEP PAL 8 700 200 100 

Schulz-
Mirbach et 
al. 2012 

Jewel 
cichlid 

Hemichromis 
guttatus Perciformes T2 AEP PAL 7 1000 100 100 

Schulz-
Mirbach et 
al. 2012 

Black 
diamond 
cichlid 

Paratilapia 
polleni Perciformes T3 AEP PAL 5 1000 500 100 

Schulz-
Mirbach et 
al. 2012 

Orange 
chromide 

Etroplus 
maculatus Perciformes T3 AEP PAL 8 1000 500 100 

Schulz-
Mirbach et 
al. 2012 

Cubbyu 
Pareques 
acuminatus Perciformes T2 BEH SPL 3 2000 600 100 

Tavolga and 
Wodinsky 
1963 

Beau 
gregory 

Stegastes 
leucosticus Perciformes T2 BEH SPL 4 1200 550 100 

Tavolga and 
Wodinsky 
1963 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Beau 
gregory 

Stegastes 
leucosticus Perciformes T2 BEH SPL 4 600 200 100 

Tavolga and 
Wodinsky 
1963 

Blue 
striped 
grunt 

Haemulon 
sciurus Perciformes T2 BEH SPL 4 1100 250 100 

Tavolga and 
Wodinsky 
1963 

Schoolm
aster 
snapper 

Lutjanus 
apodus Perciformes T2 BEH SPL 3 1000 400 100 

Tavolga and 
Wodinsky 
1963 

Schoolm
aster 
snapper 

Lutjanus 
apodus Perciformes T2 BEH SPL 3 400 300 100 

Tavolga and 
Wodinsky 
1963 

Leopard 
searobin 

Prionotus 
scitulus Scorpaeniformes T3 BEH SPL 3 600 400 100 

Tavolga and 
Wodinsky 
1963 

Dusky 
squirrelfi
sh 

Holocentrus 
vexillarius Beryciformes T3 BEH SPL 3 1200 600 100 

Tavolga and 
Wodinsky 
1963 

Squirrelfi
sh 

Holocentrus 
adscensionis Beryciformes T3 BEH SPL 5 2800 700 100 

Tavolga and 
Wodinsky 
1963 

Lusitania
n 
toadfish 

Halobatrachus 
didactylus Batrachoidiformes T2 AEP SPL 9 1000 50 50 

Vasconcelos 
et al. 2007 

Nagasaki 
damselfis
h 

Pomacentrus 
nagasakiensis Perciformes T2 AEP SPL NA 2000 600 100 

Wright et al. 
2010 

Leopard 
coral 
grouper 

Plectropomus 
leopardus Perciformes T2 AEP SPL NA 2000 600 100 

Wright et al. 
2010 

Spanish 
flag 
snapper 

Lutjanus 
carponotatus Perciformes T2 AEP SPL NA 2000 700 100 

Wright et al. 
2010 

Ambon 
damsel 

Pomacentrus 
amboinensis Perciformes T2 AEP SPL NA 2000 600 100 

Wright et al. 
2010 

Rainbow 
runner 

Elagatis 
bipinnulata Perciformes T2 AEP SPL NA 800 700 100 

Wright et al. 
2010 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Golden 
trevally 

Gnathanodon 
speciosus Perciformes T2 AEP SPL NA 2000 700 100 

Wright et al. 
2010 

Goldfish 
Carassius 
auratus Cypriniformes T4 AEP SPL 7 4000 500 200 

Wysocki 
and Ladich 
2005 

Striped 
raphael 
catfish 

Platydoras 
costatus Siluriformes T4 AEP SPL 6 4000 500 200 

Wysocki 
and Ladich 
2005 

Pumpkin
seed 
sunfish 

Lepomis 
gibbosus Perciformes T2 AEP SPL 7 800 100 100 

Wysocki 
and Ladich 
2005 

Red-
mouthed 
goby 

Gobius 
cruentatus Perciformes T2 AEP SPL 6 700 200 100 

Wysocki et 
al. 2009 

Mediterr
anean 
damselfis
h 

Chromis 
chromis Perciformes T2 AEP SPL 6 600 200 100 

Wysocki et 
al. 2009 

Brown 
meagre Sciaena umbra Perciformes T2 AEP SPL 6 3000 300 100 

Wysocki et 
al. 2009 

Red-
mouthed 
goby 

Gobius 
cruentatus Perciformes T2 AEP PAL 6 700 200 100 

Wysocki et 
al. 2009 

Mediterr
anean 
damselfis
h 

Chromis 
chromis Perciformes T2 AEP PAL 6 600 200 100 

Wysocki et 
al. 2009 

Brown 
meagre Sciaena umbra Perciformes T2 AEP PAL 6 1000 300 100 

Wysocki et 
al. 2009 

Black 
baby 
whale 

Brienomyrus 
brachyistius Osteoglossiformes T4 AEP SPL 4 4000 500 100 

Yan and 
Curtis 2000 

Oyster 
toadfish Opsanus tau Batrachoidiformes T3 AEP SPL 5 800 100 100 

Yan et al. 
2000 

Blue 
gourami 

Trichopodus 
trichopterus Perciformes T3 AEP SPL 7 4000 800 300 

Yan et al. 
2000 
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Common 
name Genus species Order 

Hearing 
type 

Experimental 
method 

Sound 
form 

No. 
replicates 

Maximum 
frequency 
(Hz) 

Optimal 
frequency 
(Hz) 

Minimum 
frequency 
(Hz) Source 

Goldfish 
Carassius 
auratus Cypriniformes T4 AEP SPL 6 4000 650 300 

Yan et al. 
200 
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Table 3.2. Counts of available unique studies, experimental method (BEH, AEP), sound form (SPL, PAL), mean number 
of replicates per experiment ± standard deviation (SD), and number of taxonomic orders across hearing type (types 1-4). 
 

Hearing 
type BEH AEP SPL PAL 

Mean no. 
replicates ± SD 

No. 
taxonomic 

order 
Total (no. 

experiments) 
1 6 12 8 10 7.39 ± 10.81 8 18 
2 21 47 54 14 7.56 ± 6.89 10 68 
3 13 28 36 5 8.29 ± 7.06 7 41 
4 4 31 35 0 7.26 ± 2.51 5 35 

Total 44 118 133 29 7.66 ± 6.78 23 162 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 115 

Table 3.3. Orders of species included in this literature review categorized by broader phylogenetic subgroups, based on 
common morphological characteristics. 
 
Order  Phylogenetic subgroup  N 
Carcharhiniformes     
Heterodontiformes 
Myliobatiformes       
Orectolobiformes 
Rajiformes 

Elasmobranchs 15 

Acipenseriformes Chondrostei/Holostei 4 
Characiformes        
Clupeiformes 
Cypriniformes        
Gymnotiformes 
Mugiliformes         
Osteoglossiformes 
Siluriformes 

Otomorph 42 

Esociformes          
Salmoniformes Protocanthopterygii 3 

Batrachoidiformes      
Beryciformes 
Gadiformes           
Gaterosteiformes 
Perciformes           
Percopsiformes  
Pleuronectiformes      
Scorpaeniformes 

Neoteleost 107 
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Table 3.4. Model structures, predictor variables, degrees of freedom, and absolute AIC values for both maximum and 
optimal hearing frequency benchmarks. Generalized least squares (GLS) and linear mixed effect (LME) models were 
constructed and compared. 
 
Response 
variable 

Model 
(N) 

Model 
structure Predictor variables 

Degrees of 
freedom AIC 

Maximum 
frequency 
detected 

1 GLS Hearing type 5 37.08 
2 GLS Hearing type, no. replicates  5 74.69 
3 GLS Hearing type, experimental method 12 3.68 

4 GLS 
Hearing type, experimental method, no. 
replicates 12 21.71 

5 LME 
Hearing type, experimental method, no. 
replicates, taxonomic order 13 0.58 

Optimal 
frequency 
detected 

1 GLS Hearing type 5 120.18 
2 GLS Hearing type, no. replicates  5 137.83 
3 GLS  Hearing type, experimental method 12 101.18 

4 GLS 
Hearing type, experimental method, no. 
replicates 12 116.94 

5 LME 
Hearing type, experimental method, no. 
replicates, taxonomic order 13 119.80 
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Table 3.5. Spearman correlation coefficients (r) measuring the correlation between maximum and optimum frequency 
benchmarks for individual hearing types and phylogenetic groups 
 

 
 
 
 
 
 

 

Hearing type r Phylogenetic group r 
T1 0.63 Elasmobranchs 0.63 
T2 0.13 Chondrostei/Holostei - 
T3 0.52 Otomorph 0.36 
T4 0.15 Protocanthopterygii 0.35 
  Neoteleost 0.11 
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Figures 
 
 

 
Figure 3.1. Distribution of fish hearing sensitivity studies over time, categorized by 
sound form type used: particle acceleration (PAL) or sound pressure level (SPL). 
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Figure 3.2. Distribution of fish hearing sensitivity studies over time, categorized by 
method of sound detection used: auditory-evoked potential (AEP) or behavioral 
(BEH). 
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Figure 3.3. An example audiogram, showing frequency benchmarks. Maximum and 
minimum frequency benchmarks refer to the maximum and minimum frequencies 
detected (the endpoint frequency values of the audiogram). The optimal frequency 
benchmark refers to the frequency detected with the greatest sensitivity to sound and 
at the lowest sound level (here, the frequency value corresponding to the sound 
pressure minimum.) 
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Figure 3.4. Distributions of log10-transformed frequency benchmarks detected for 
each hearing type under all study conditions included in the literature review. Box 
and whisker plots are shown where the black horizontal line central to each plot 
defines the median; the horizontal lines above and below the median (completing the 
box) describe the range of the upper and lower quartile values; the vertical lines 
extending above and below each box provide upper and lower extremes, respectively; 
and the black dots provide outliers. 
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Figure 3.5. Log10-transformed least square means and 0.95 confidence intervals 
across hearing type for maximum detected frequency benchmarks. Hearing types with 
significantly different numbers next to their means were significantly different at p < 
0.05. 
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Figure 3.6. Log10-transformed least square means and 0.95 confidence intervals 
across hearing type for optimal detected frequency benchmarks. Hearing types with 
significantly different numbers next to their means were significantly different at p < 
0.05. 
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Figure 3.7. Log10-transformed values for maximum frequencies detected across 
hearing types, broken down by the method of identifying sound detection used in the 
study. Box and whisker plots are shown where the black horizontal line central to 
each plot defines the median; the horizontal lines above and below the median 
(completing the box) describe the range of the upper and lower quartile values; the 
vertical lines extending above and below each box provide upper and lower extremes, 
respectively; and the black dots provide outliers. 
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Figure 3.8. Log10-transformed values for optimal frequencies detected across 
hearing types, broken down by the method of identifying sound detection used in the 
study. Box and whisker plots are shown where the black horizontal line central to 
each plot defines the median; the horizontal lines above and below the median 
(completing the box) describe the range of the upper and lower quartile values; the 
vertical lines extending above and below each box provide upper and lower extremes, 
respectively; and the black dots provide outliers. 
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Figure 3.9. Log10-transformed values for maximum frequencies detected across 
hearing types, broken down by the sound form measured in the study. Box and 
whisker plots are shown where the black horizontal line central to each plot defines 
the median; the horizontal lines above and below the median (completing the box) 
describe the range of the upper and lower quartile values; the vertical lines extending 
above and below each box provide upper and lower extremes, respectively; and the 
black dots provide outliers.  
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Figure 3.10. Log10-transformed values for optimal frequencies detected across 
hearing types, broken down by the sound form measured in the study. Box and 
whisker plots are shown where the black horizontal line central to each plot defines 
the median; the horizontal lines above and below the median (completing the box) 
describe the range of the upper and lower quartile values; the vertical lines extending 
above and below each box provide upper and lower extremes, respectively; and the 
black dots provide outliers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 128 

Figure 3.11. Log10 optimum frequency benchmarks v. log10 maximum benchmarks 
from same experiments. Colors refer to hearing types (T1-T4), with shapes referring 
to sound forms measured: particle acceleration (PAL) and pressure waves (SPL). 
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Figure 3.12. Log10 optimum frequency benchmarks v. log10 maximum benchmarks 
from same experiments. Colors refer to groups of similar phylogenetic characteristics, 
with shapes referring to sound forms measured: particle acceleration (PAL) and 
pressure waves (SPL). 
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Appendix A. Supplemental Figures to Chapter 2: FVCOM performance, 
spatiotemporal estimates of current velocity and turbulent kinetic energy, 
and GAMLSS movement model diagnostics. 
 
Methods 
 
FVCOM model performance 
 
 Prior to running spatial and time series estimates of storm variables, the Finite 

Volume Community Ocean Model (FVCOM) was assessed for performance. Model 

outputs for bottom water temperature were compared to observed bottom water 

temperatures obtained from VR2AR receivers at each site. 

FVCOM current velocity and TKE output 
 
 In addition to estimates of bottom water temperature, the FVCOM was also 

used to estimate cross-sectional of current velocity and both cross-sectional and later 

estimates of turbulent kinetic energy (TKE), during the summer-fall of 2016-2018. 

Again, the model was initialized from August 25 to September 29 for 2016, and from 

January 1 to December 31 for 2017 and 2018, with model configuration, 

optimization, and execution carried out by the Li Lab (M. Li and F. Zhang; Horn 

Point Laboratory, Cambridge, MD). Estimated regional measurement extended across 

the shelf in the DelMarVa portion of the MAB, and estimated cross-sectional 

measurements were taken along a 39 km transect, bisecting the Middle study site 

(Chapter 2; Figure 2.1). 

Movement model sex-length interaction 
 
 Model estimates of the mu parameter (or the magnitude of the fitted response 

for a given variable) for sex and length suggested a potentially contradictory effect.  

The model identified males and unidentified fish as having significantly higher 
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movement indices compared to females, while length was identified as having a 

negative impact on movement.  However, the model did not identify the direction of 

impact on length.  In order to inform both the direction of the impact of length on 

movement, between relatively larger and smaller fish, as well as the potential for an 

interaction between length and sex, I evaluated the distributions of movement index 

across length and sex of each individual tagged fish. 

Movement model diagnostics 
 
 Following the development and implementation of the Generalized Additive 

Model for Location, Scale, and Shape, model performance was assessed through 

evaluation of quantile residual values and plots. Assessments include evaluating 

distributions of quantile residuals over fitted values, quantile residuals against index 

values, density estimates against quantile residuals and the linear fit of sample vs. 

theoretical quantiles. 

Results 
 
FVCOM model performance 
 
 Modeled bottom water temperatures estimated by the FVCOM were overall 

consistent with available observed data. Estimations of hourly bottom water 

temperature produced by the model mirrored threshold changes during storm events 

but slightly underestimated observed hourly temperatures at all sites and years 

(Figure A.1a-c). Importantly, the model consistently tracked destratification and 

recovery of cold pool temperatures relative to storm presence and elevated wind 

speed.  

FVCOM current velocity and TKE output 
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 Cross-sectional FVCOM estimates of current velocities during 2016-2018 

summer storms revealed short-term patterns in storm-driven currents across single-

storm and multi-storm years. During 2016 and 2018, where only one storm event 

occurred, current velocities were stratified during and immediately after the storm 

(Figure A.2). On days that TS Hermine (2016) and the unnamed wind event (2018) 

peaked in wind speeds, inshore current movement increased near the surface while 

offshore current increased towards the bottom of the water column. This stratification 

dissipated four days after each storm had passed, where after current velocities were 

predominantly inshore throughout the entire water column, decreasing in magnitude 

with increasing depth. During summer-fall 2017, when multiple storms occurred, a 

similar pattern of stratified current velocity was modeled, with surface currents 

moving inshore and bottom currents moving offshore during and immediately 

following the day of peak wind speeds for each storm (Figure A.3). However, unlike 

the post-storm period for TS Hermine and the unnamed wind-event, in 2016 and 2018 

respectively, four days following the first storm of 2017 (the July nor’easter) and four 

days following the second of 2017 (PTC10), surface current velocities shifted 

strongly offshore throughout the entire water column, diminishing with depth. For the 

third storm of 2017 (TS Jose), current velocity stratification was comparatively 

weaker, and four days after the storm inshore current velocities dominated the entire 

water column. 

 Cross-sectional FVCOM peak estimates of TKE were inconsistently timed 

across storm events from 2016-2018, but were also tightly coupled to either the 

surface or bottom boundary layer, as well as wind speed. During 2016, where a single 
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storm event occurred (TS Hermine), cross sectional estimates of TKE increased 

initially at the surface (during the day prior to storm arrival); once the storm arrived, 

and later peaked in wind speed, on September 3, 2016, TKE values increased rapidly 

and tracked estimates of bottom topography. Elevated values of bottom TKE were 

estimated four days after TS Hermine passed (Figure A.4). Lateral shelf estimates 

during TS Hermine indicate that elevated bottom levels of TKE increased across all 

study sites and continued to encompass all study sites up to four days after the storm 

left the area (Figure A.6). During the 2018 unnamed wind event, cross-sectional 

estimates bottom TKE values increased slightly during the day before the storm—

reflecting estimates of bathymetry—but remained consistently low during the day of 

maximum wind speed and the days after (Figure A.4). Lateral estimates of bottom 

turbulent kinetic energy values during the 2018 event suggest a patchy, ephemeral 

disturbance that unequally impacted reef sites and transited from the area shortly after 

the storm wind’s peaked and the event moved from the southern MAB (Figure A.6). 

Model cross-sectional estimates of TKE for adjacent storm events occurring in 2017 

reflect a lag to maximum wind speed (with peak storm-specific increases to TKE 

occurring the day after peak winds occurred), a tight coupling of increased TKE 

values to surface and bottom boundary layers (with the latter reflecting patterns in 

bathymetry) as well as the dissipated of elevated TKE shortly after the storm event 

passed (Figure A.5). Modeled lateral estimates of TKE during 2017 reflect both the 

lag in TKE with regards to peak storm wind speed, as well as dissipation in TKE 

values with decreased wind (Figure A.7). For the first three storms to occur in 2017, 
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TKE peaked the day after storm winds peaked and subsequently declined across shelf 

after the storms left the region. 

Movement model sex-length interaction 

 Distributions of movement index across individual tagged fish, coded by 

length and sex, strongly support the presence of an interaction between the two terms 

though such an interaction was not directly incorporated into the original GAMLSS 

model (2017 data only; Figure A.8). Distributions of movement index, ordered by 

increasing length, indicate the highest movement indices concentrated around smaller 

individuals (< 240 mm) of unidentified sex. Male fish only occurred at larger sizes 

(>270 mm), but females also occurred at this large size interval. Within this larger 

size interval, males showed higher movement rates than females.   

Movement model diagnostics 
 
 Quantile residual summary plots indicate overall randomness and normality of 

GAMLSS movement model residuals (Figure A.9). The distribution of quantile 

residuals against fitted values is random and symmetric at zero, indicating that the 

model achieved homoscedasticity. However, there is still an artifact structure for 

lower fitted values (< 2), likely due to the distribution of the response variable 

(movement index) and the compatibility with the family distribution used in the 

model. Similarly, the quantile residual vs. index plot is predominantly random in 

distribution (again suggesting homoscedasticity was achieved). The density 

distribution of quantile residuals, as well as the sample vs. theoretical quantile 

distribution also suggest that normality of quantile residuals was achieved. However, 

the bimodal density distribution of quantile residuals indicates some lingering 

structure within residuals. This is again likely due to slight structural differences of 
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the response variable distribution relative to the selected distribution family used in 

the model. 
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Figures 
 
 
 

A.1.a. 
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A.1.b. 
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A.1.c. 
Figure A.1.a-c. Modeled and observed hourly bottom water temperature values 
across sites for 2016-2018. Vertical black dashed lines refer to maximum wind speed 
dates for identified storm events. 
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Figure A.2. Modeled current velocity cross-sectional profiles predicted by the 
FVCOM for storm events in 2016 and 2018. The left column predicts current speed 
and direction related to TS Hermine (2016); the right column predicts current speed 
and direction related to the unnamed wind event (2018). Red colors refer to offshore 
current movement, and blue colors refer to inshore current movement. Vertical black 
dashed lines in each pane refer to the transmitter release locations central to each 
study site (Southern, Northern, and Middle, for both years in increasing depth and 
distance from coastline). Cross sections are taken along a transect spanning the 
Middle site (Figure 2.1), and depict snapshot predictions at 00:00 for each given day. 
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Figure A.3. Modeled current velocity cross-sectional profiles predicted by the FVCOM for storm events in 2017. The left column 
predicts current direction and speed related to the July nor’easter; the middle column predicts current direction and speed related to 
PTC10; and the right column predicts current and speed related to TS Jose. Red colors refer to offshore current movement, and blue 
colors refer to inshore current movement. Vertical black dashed lines in each pane refer to the transmitter release locations central to 
each study site (Southern, Northern, and Middle, increasing depth and distance from coastline). Cross sections are taken along a 
transect spanning the Middle site (Figure 2.1), and depict snapshot predictions at 00:00 for each given day. 
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Figure A.4. Modeled turbulent kinetic energy (TKE) cross-sectional profiles 

predicted by the FVCOM for storm events in 2016 and 2018. The left column 

predicts TKE values related to TS Hermine (2016); the right column predicts TKE 

values related to the unnamed wind event (2018). Vertical black dashed lines in each 

pane refer to the transmitter release locations central to each study site (Southern, 

Northern, Middle, for both years in increasing depth and distance from coastline). 

Cross sections are taken along a transect spanning the Middle site (Figure 2.1), and 

depict snapshot predictions at 00:00 for each given day. 
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Figure A.5. Modeled turbulent kinetic energy (TKE) profiles predicted by the FVCOM for storm events in 2017. The left column 
predicts TKE values related to the July nor’easter; the middle column predicts TKE values related to PTC10; and the right column 
predicts temperatures related to TS Jose. Vertical black dashed lines in each pane refer to the transmitter release locations central to 
each study site (Southern, Northern, and Middle, increasing depth and distance from coastline). Cross sections are taken along a 
transect spanning the Middle site (Figure 2.1), and depict snapshot predictions at 00:00 for each given day. 
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Figure A.6. Modeled turbulent kinetic energy (TKE) in the southern MAB predicted 

by the FVCOM for single storm events occurring in 2016 (left column) and 2018 
(right column). Black asterisks refer to the location of transmitter release, central to 

each study site.  
 

 
 



 144 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.7. Modeled turbulent kinetic energy (TKE) in the southern MAB predicted 

by the FVCOM for storm events occurring in 2017. The left column predicts TKE 
values related to the July nor’easter; the middle column predicts TKE values related 

to PTC10; and the right column predicts TKE values related to TS Jose. Black 
asterisks refer to the location of the transmitter release, central to each site.
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Figure A.8. Distributions of log-transformed movement index across individual tagged fish in 2017, ordered by increasing length and 
color-coded by sex; F, M, and U refer to female, male, and unidentified fish, respectively.  X-axis labels refer to the tag number, as 
well as the length of the individual (mm). Box and whisker plots are shown where the black horizontal line central to each plot defines 
the median; the horizontal lines above and below the median (completing the box) describe the range of the upper and lower quartile 
values; the vertical lines extending above and below each box provide upper and lower extremes, respectively; and the black dots 
provide outliers. 
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Figure A.9. Quantile residual summary plots for the final fitted Generalized Additive 
Model for Location, Shape, and Scale (GAMLSS) model. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 147 

Appendix B. Temporal and spectral characterization of sound data 
obtained from a single Mid-Atlantic Bight storm event, 2018. 
 
Methods 
 

During June 2018, three acoustic recorders—two Snap and one LX1 

hydrophones (Loggerhead Instruments)—were deployed 16-46 km east of the coast 

of Maryland. Each hydrophone was deployed at one mooring within one of three 

arrays of acoustic receivers, with arrays deployed surrounding previously identified 

black sea bass reef habitat (Figure B.1; Table B.1). The two Snap recorders were 

programmed to operate at a 1:9 minute (on:off) duty cycle, while the LX1 was 

programmed with a 5:5 (on:off) duty cycle. The Snap recorder deployed at the 

Northern site was retrieved, the data offloaded, and the instrument redeployed during 

early August 2018. All three recorders were retrieved in late October 2018.   

Sound files obtained from retrieved hydrophones were assessed for temporal 

and spectral signals. Temporal analysis consisted of calculating root mean square 

(RMS) sound pressure levels (SPL) (dB re: 1 µPa) for the total deployment period, 

using MATLAB and R. Prior to calculation of RMS SPL values, signals were 

adjusted for removal of DC offset [signal – mean signal], as well as individual 

hydrophone sensitivity, gain, (Table B.2), and the transmission of the signal through 

water [signal/10^((calibration + gain)/20). Spectral analysis consisted of calculating 

hourly detected frequency sound (dB re: 1 µPa) and power dB re: muPa2 Hz-1 levels 

during the week of storm activity (September 6 – September 11, 2018). Both band 

sound level and power spectral density analyses were conducted using MATLAB and 

PAMGuard respectively. Calculations of band sound level were conducted across 

third octave levels, with an additional band defining low frequencies (0-100 Hz, 
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anticipated to be within black sea bass hearing range [Chapter 3]). Power spectral 

density identified dominant frequencies with the highest power during the week storm 

activity. 

Results 
 
 The temporal signal RMS SPL values at two of the three sites captured the 

presence of the September 9, 2018 unnamed wind event (Figure B.2). The Middle site 

stopped recording on August 8, 2018 (21 days into deployment), and missed the event 

entirely. The Northern site stopped recording on September 10, 2018 (57 days into 

deployment), and was able to capture the SPL RMS signal for the first half of the 

storm but stopped recording before the event left the area. This truncation of the 

anticipated recording at both sites was likely caused by errors within the 

hydrophones’ battery sensors, which may have incorrectly read a false low battery 

voltage and triggered a premature shutdown of the instruments (David Mann, 

Loggerhead Instruments, Sarasota, FL; pers. comm.) The Southern site however 

successfully logged sound measurements for the duration of its deployment period 

and captured the RMS SPL signal for the entire period of time the wind event was in 

the study area.  SPL values recorded at both the Southern and Northern sites indicate 

a rapid increase (13.74 ± 2.77 dB re: 1 µPa) in sound levels occurring on the date of 

maximum wind speed associated with the storm. Furthermore, RMS SPL values at 

the Southern site remained elevated following the storm, with the average sound 

pressure level during the post-storm increasing period by 12.12 dB re: 1 µPa, 

compared to pre-storm average.  
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 Due to the unanticipated truncation of recordings at the Northern and Middle 

sites, spectral energy level and power analyses were conducted on sound files 

obtained at the Southern site alone, for the week of September 6-September 11, 2018. 

Calculations of sound levels within third octave bands identified a gradual increase in 

sound levels across all frequency bands as wind speeds approached maximum levels 

on September 9 (Figure B.3). However, sound levels within the low frequency band 

(0-100 Hz) were substantially elevated before the storm and increased the most 

during the storm, compared to the third octave bands. Across all frequency bands, 

sound levels increase cumulatively and remain increased following the storm event. 

The PAMGuard software used for this analysis did not account for DC signal offset, 

however, so while the peaks maintained in sound pressure levels over time are likely 

accurate, the magnitude of said peaks in dB re: 1 µPa should not be interpreted 

directly.  

 Calculations of hourly power spectral density values demonstrated an isolated 

increase in power within low frequencies (<1000 Hz) corresponding to storm 

presence in the area and declining after the storm passes (Figure B.4). During the 

entire week, power levels are concentrated in frequencies below 1000; however, 

during the wind event, they increase and decline rapidly with storm arrival and 

departure. On September 6, prior to the storm’s arrival, dominant power levels 

sporadically occur in frequencies below 1000 Hz, but for the greater part of the day 

fluctuate at approximately 80-90 dB re: muPa2 Hz-1. When the storm winds peak in 

the evening on September 9 (Chapter 2), power levels in frequencies below 1000 Hz 

increase and are consistently sustained between approximately 95-105 dB re: muPa2 
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Hz-1. After the storm departs in the afternoon on September 10, low frequency power 

levels remain relatively high, and do not return to sustained pre-storm ranges until 

September 11. 
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Tables 
 
Table B.1. Moorings, locations, deployment duration, and recording settings for each hydrophone deployed in the summer of 2018. 
 
 

  Location Deployment summary 

Hydrophone 
Site, 

Mooring Latitude Longitude 
Date 

Deployed 
Date 

Retrieved 
# Days 

deployed 
Duty cycle 

(on:off, min) 
Snap Northern, SE 38.42878 -74.75977 6/16 10/23 126 1:9 
Snap Middle, SW 38.21886 -74.76277 7/17 10/23 100 1:9 
LX1 Southern, N 38.15602 -74.94942 7/31 10/26 87 5:5 
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Table B.2. Moorings, calibration sensitivities, and gain values for each deployed 
hydrophone. 
 

Hydrophone Site, Mooring Calibration (dB) Gain (dB) 
Snap Northern, NE -179.7 2.05 
Snap Middle, SW -180.2 2.05 
LX1 Southern, N -180.2 2.05 
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Figures 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.1. Experimental study sites, including locations of receiver sites, tagging 
sites, and hydrophone deployments. Colored points refer to receiver deployment 
locations, while black points refer to approximate tagging locations. Black asterisks 
refer to hydrophone deployment locations at each receiver site. 
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Figure B.2. Root mean square (RMS) sound pressure levels (SPL) calculated from 
sound voltage measurements taken at each site during 2018. The black dotted line 
refers to the date of maximum wind speed associated with the 2018 unnamed wind 
event. 
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Figure B.3. Sound pressure levels calculated during the week of storm activity, September 6 – September 11, 2018, calculated across 
third octave bands and a predefined low frequency band (0-100 Hz). The black dotted line refers to the date of maximum wind speed 
associated with the 2018 unnamed wind event. 
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Figure B.4. Hourly power spectral density values calculated across detected 
frequencies for September 6, 9, 10, and 11 of September, 2018. Warmer colors 
indicate higher power values.  
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Appendix C. Body condition and feeding ecology of black sea bass 
sampled from the Middle-Atlantic Bight 2018. 
 
Methods 
 

During the summer and fall 2018 deployments and retrievals of acoustic 

recorders and receivers, a total of 116 black sea bass were collected at the Northern, 

Middle, and Southern sites for laboratory diet analysis (Table C.1; see Figure 2.1).  

Individuals were sampled at all sites in the summer (June 19 and July 15, 31) during 

receiver deployment and at the Northern and Southern sites during the fall retrieval 

(October 23). No individuals were sampled from the Middle site during the fall 

season due to increasing sea state and wind speed on site, which interfered with 

angling. Individuals were frozen in dry ice immediately following capture, then 

transported to Chesapeake Biological Laboratory, Solomons, MD for freezer storage 

and processing. Individuals were thawed prior to dissection and disposed immediately 

post-dissection. Dissection processing included taking measurements of length, body 

weight, gonad weight, liver weight, total stomach weight, stomach lining weight, and 

individual prey item weight. All weight measurements were taken as wet weights (g), 

and prey items were identified and categorized by phyla.   

Sampled fish were processed for measurements describing body condition and 

diet composition. Body condition was evaluated and described using Fulton’s 

condition factor (K): 

! = 100 ∗ &'()*	,'-.	/0123(
4052(36

  ; 

gonadosomatic index (GSI) as the percent bodyweight contribution of gonad weight: 

789 = 		100 ∗ :'5)-	/0123(

&'()*	,'-.	/0123(
 ; 
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 hepatosomatic index (HSI) as the percent bodyweight contribution of liver weight: 

;89 = 100 ∗ 41<0=	/0123(

&'()*	,'-.	/0123(
 ; 

and a linear regression of log-transformed body length by log-transformed weight. 

This regression model was used to fit predictions of weight based on length. Possible 

differences in K, GSI, HSI, and length-weight regression across site and sampling 

season were evaluated using separate ANOVA and Tukey multiple comparison tests 

for each metric. Diet composition was evaluated through the calculation of percent 

gut fullness: 

%	7?@	A?BBCDEE = 100 ∗	 (&'()*	G('H)I3	/0123(JG('H)I3	*15152	/0123()
&'()*	,'-.	/0123(

		; 

 and stomach content. Stomach content was assessed by percent number (%N) and 

percent weight (%W) expressed relative to percent frequency of occurrence (%FO) of 

prey items identified in non-empty stomachs. 

%L = 100 ∗ MNH,0=	'O	P=0.	1(0H	1

&'()*	5NH,0=	'O	P=0.	1(0HG
 ; 

%Q = 100 ∗ R0123(	'O	P=0.	1(0H	1

&'()*	/0123(	'O	P=0.	1(0HG
 ; 

%ST = 100 ∗ MNH,0=	'O	G('H)I3G	/1(3	P=0.	1(0H	1

&'()*	5NH,0=	'O	5'5J0HP(.	G('H)I3G
 ; 

 All statistical analyses were conducted in R, utilizing the car package (Fox 

and Weisberg 2019).  

Results 
 
 Body condition of sampled individuals differed across site and season, for all 

metrics used. Significant differences in K were identified between seasons (ANOVA, 

p<0.05); within the summer sampling period, additional significant differences were 

identified between samples taken from the Northern and Southern sites (Tukey HSD, 



 159 

p<0.01) and samples taken from the Middle and Southern sites (Tukey HSD, p<0.01) 

(Figure C.1). No significant differences were identified across sites sampled during 

the fall (ANOVA, p=0.77). Measurements of GSI indicated differential contributions 

of gonad weight to total body weight across both sites and season (Figure C.2). Fish 

sampled during the fall had a significantly lower GSI than those fish sampled during 

the summer (ANOVA, p <0.01), suggesting that spawning activity occurred at some 

point during the June-October study period at monitored reef sites. Within the subset 

of fish sampled during the summer, GSI differed significantly across sites (ANOVA, 

p<0.01), with significant differences occurring between those fish sampled at the 

Northern versus Middle sites (Tukey HSD, p<0.01) and those sampled at the 

Northern versus Southern sites (Tukey HSD, p<0.05). Measurements of HSI 

indicated similar seasonal differences in condition (Figure C.3), as were observed 

through K and GSI, with HSI values for summer-sampled fish being significantly 

higher than those values for fall-sampled fish (ANOVA, p<0.01). HSI values differed 

significantly across sites during the summer sampling period (ANOVA, p<0.05)—

similar to trends described in GSI values—with differences in percent contributions 

of liver to total bodyweight observed between the Northern and Middle sites (Tukey 

HSD, p<0.05) as well as between Northern and Southern sites (Tukey HSD, p<0.05).  

Unlike those relationships observed in GSI values, HSI values also differed 

significantly across sites—Northern and Southern—during the fall (ANOVA, 

p<0.05). 

 Predictions of the length-weight regression model, predicting weight based on 

a logarithmic relationship to observed length, were overall consistent with observed 
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weight (Figure C.4). An ANOVA test for log-transformed weights as a function of 

the model residuals, nested by site and sampling season, identified a significant effect 

of site (p<0.01), but not sampling season (p=0.176); post-hoc comparisons further 

specified a significant difference between fish sampled at the Middle site (p<0.05) 

and fish sampled at the Southern site during the summer (p<0.05) (Figure C.5).   

 Of the 116 black sea bass stomachs evaluated for diet composition, 50 

contained prey items, 58 were empty, and 8 were inverted (likely due to barotrauma 

from sampling) and subsequently discarded (Table C.2). Percent gut fullness was 

consistently low across sites and season, with the exception being substantially higher 

percentages observed in fish sampled at the Southern site during the summer, where 

barotrauma was less frequently encountered (Figure C.6). Gut fullness across seasons 

did not differ significantly (ANOVA, p=0.12), although it did differ significantly, 

across sites within seasons, between Northern and Southern sites (ANOVA, p<0.05; 

TukeyHSD, p<0.01) and Middle and Southern sites (Tukey HSD, p<0.05). Identified 

prey types included arthropods (i.e., multiple crab species), mollusks (i.e., clams, 

squid), and bony fish (i.e., sand eels), with one stomach containing intact synthetic 

bait. Comparisons of %N and %W by %FO suggested a unanimous dominance of 

Arthropoda in the diet of sampled black sea bass (Table C.3; Figure C.7). The 

presence of Arthropoda in sampled stomachs was not skewed by either quantity or 

weight of the prey items observed. Presence of Mollusca and Osteichthyes prey, 

however, was skewed towards fewer, heavier prey items in the former phylum and 

towards more numerous, albeit lighter, prey items in the latter phylum.   
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Tables 
 
Table C.1. Distribution of individuals sampled for diet study, across site and season 
of sampling. Summer refers to the months of June-July, whereas Fall refers to 
October. No fish were sampled at the Middle site during the Fall season because of 
inclement weather and sea state conditions on site. 
 

 No. individuals 
 Summer Fall 

Northern 32 20 
Middle 20 - 

Southern 23 21 
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Table C.2. Counts of sampled stomachs, categorized by stomachs found containing prey, empty, or inverted, across site and season. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 No. sampled stomachs 
 Contained prey  Empty  Inverted 
 Summer Fall  Summer Fall  Summer Fall 

Northern 11 8  20 10  1 2 
Middle 8 -  8 -  4 - 

Southern  18 5  5 15  0 1 
Total 50  58  8 
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Table C.3. Calculations of percent number (%N), percent weight (%W), and percent 
frequency of occurrence (%FO), alongside respective counts, for each phylum of prey 
type. 
 

Prey type %N %W %FO n 
Anthropoda 76.03 71.84 70 74 

Mollusca 14.83 11.65 24 12 
Osteichthys 7.17 10.68 22 5 

Synthetic bait 1.17 4.85 10 1 
Unknown 0.79 0.97 2 11 
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Figures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.1. Distributions of Fulton’s K (K) for sampled fish, calculated across 
sampling site and season. K assumes an allometric relationship where weight (g) = 
length (cm3). Here K was thus determined by dividing observed weight (g) by cubed 
observed length (cm) and multiplying the quotient by 100. 
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Figure C.2. Distribution of GSI calculations for sampled fish, across site and season 
of sampling. GSI was calculated as the percent contribution of gonad weight (g) 
relative to total body weight (g) per individual. 
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Figure C.3. Distribution of HSI calculations for sampled fish, across site and season 
of sampling. HSI was calculated as the percent contribution of liver weight (g) 
relative to total body weight (g) per individual. 
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Figure C.4. Log-transformed measurements of weight plotted as a function of log-
transformed measurements of length for individuals sampled. The black line refers to 
log length-weight regression model predictions of weight based on input observed 
length. The color and shape of the plotted points refer to the site of sampling and the 
sampling season, respectively. 
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Figure C.5. Distribution of weights across sampling site and season. Site had a 
significant effect (ANOVA, p<0.01) but sampling season did not (ANOVA, 
p=0.176). Weights taken from the Middle and Southern sites were significantly 
different from other distributions (Tukey HSD, p<0.05). 
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Figure C.6. Distributions of percent gut fullness of sampled individuals, across 
sampling site and season. Gut fullness was calculated as the percent weight of 
stomach contents (stomach weight minus the weight of stomach lining; (g)) relative to 
total body weight (g). 
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Figure C.7. Percent number (%N) and percent weight (%W) of each identified prey 
phylum, plotted against respective prey percent frequency of occurrence (%FO). 
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