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ABSTRACT

Random coding theorems are proved for discrete memoryless arbitrarily varying channels
(AVCs) with constraints on the transmitted codewords and channel state sequences. We
consider two types of constraints: peak (i.e., required for each n-length sequence almost surely)
and average (over the message set or over an ensemble). For peak constraints on the codewords
and on the channel state sequences, the AVC is shown to have a (strong) random coding
capacity. If the codewords and/or the channel state sequences are constrained in the average

sense, the AVCs do not possess (strong) capacities; only e-capacities are shown to exist.

* This research was sponsored by the Systems Research Center at the University of Maryland under NSF grant No.
OIR-85-00108 and by the Minta Martin Fund for Aerospace Research from the University of Maryland. 1. Csiszdr is with the
Mathematical Institute of the Hungarian Academy of Sciences. H-1364 Budapest, POB 127, Hungary. P. Narayan is with

the Electrical Engineering Department, University of Maryland, College Park, MD 20742, USA.

1



1. Introduction

A discrete memoryless arbitrarily varying channel (AVC) is a model for a communication
channel with unknown parameters that may vary with time in an arbitrary and unknown
manner during the transmission of a codeword. The encoder transmits over the channel, once
in each unit of time ¢, a symbol z; from a finite alphabet X. The transmitted symbol is
received at the output of the channel as a symbol y; taking values in a finite alphabet Y. The
use of the channel through n units of time, i.e., “n uses of the channel” can be modeled by a
stochastic matrix W™ : X™ — Y™, where W"(y | x,8) is the probability that a transmitted
sequence X = (Z1,...,Zn) is received as the sequence y = (y1,...,yn) given that the channel
resided in the sequence of states 8 = (s1,..., 5, ). Here, the state s;, at each time unit ¢, belongs
to a finite set S of states, and may vary with ¢ in an arbitrary manner. The transmitter and
receiver strive to construct codes for reliably transmitting information across such a channel.

There is a large variety of coding problems for the AVC, depending on the nature of the
error criteria used (average or mazimum error), on the permissible coding strategies (correlated
randomization in encoding and decoding, randomization in encoding only, or no randomization),
and on whether or not the codeword and state sequences are selected with a knowledge of each

other.

Since the introduction of the AVC by Blackwell, Breiman and Thomasian {11}, consider-
able progress has been made in the study of these problems. Much of the work is summarized
in Csiszdr and Kérner {12, Chapter 2, Section 6] (see also Wolfowitz [24]); we cite only a few
results here. The pioneering work of Blackwell, Breiman and Thomasian [11] used random
codes, that is, the encoder and decoder were chosen by a random experiment whose outcome
had to be available to both the encoder and the decoder. The evident practical drawbacks
of such a scheme led to a study of deterministic codes for AVCs [22] with a mazimal error
probability criterion. Ahlswede and Wolfowitz [7] determined the corresponding capacity for
AVCs with a binary output alphabet. For general outputs, the problem is still unsolved and
includes Shannon’s famous zero-error capacity problem [2, 23] as a special case. In a major
breakthrough, Ahlswede [5] determined the capacity of a fairly large class of AVCs for the
maximal probability of error criterion. The best results yet on this problem are due to Csiszdr
and Korner [13]. For the average probability of error criterion, the basic AVC coding theorem

is due to Ahlswede [4] who proved that the capacity for deterministic codes, if positive, is
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always equal to that for random codes. However, the random coding capacity may be positive
when the deterministic capacity is zero; a necessary and sufficient condition for the positivity

of the latter will be given in Csiszdr and Narayan [14].

All the results mentioned above are for the case when the transmitted and state sequences
are chosen without any knowledge of each other. Since this case is being considered in the
present paper, from among results for other cases, we only cite a remarkable recent paper of
Ahlswede [6]. In [6], using previous results of Gel’fand and Pinsker [18], the capacity problem
is completely solved for the case when the state sequence is known to the encoder.

Continuous alphabet AVCs are less understood than their discrete counterparts, and all
the available results refer to the Gaussian case (3, 9, 10, 20]. Of particular interest to us, and
in fact a strong motivation for the present paper, were the Gaussian AVCs of [20]. A Gaussian
AVC (GAVC) in the sense of [20] is a discrete-time, memoryless Gaussian channel with input
power constraint Pr and noise power N,, further corrupted by an additive “jamming signal”
whose statistics may be arbitrary and unknown, subject only to a (known) power constraint
P;. Considering two types of power constraints, viz., peak and average, it was shown for peak
power constraints on both the input (i.e., codeword) and jamming sequences that the GAVC
had a random coding strong capacity. For the remaining combinations of peak and average
power constraints on the input and jamming sequences, the GAVCs were shown in [20] not to
possess strong capacities.

This paper considers problems analogous to those in [20] for a general class of discrete
AVCs with peak and average constraints (defined in Section 2) on the input and state se-
quences. Preliminary results are available in [19]. As in [20], it turns out that the random
coding strong capacity exists only in the case of peak constraints on both the input and state
sequences, while otherwise the e-capacities do depend on €. This is explained by the fact that
AVCs with average state constraints are similar to ordinary “averaged channels,” for which a
strong capacity does not exist (cf. Ahlswede [1}), while under average input constraints not
even a discrete memoryless channel has a strong capacity.

The capacity problem for the AVC under constraints using deterministic codes will be
addressed in a forthcoming paper [14]. Here we only mention that the proof technique of
Ahlswede [4] may not work in the constrained case and, in fact, the deterministic average

error capacity may be positive and strictly less than the random code capacity.
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In the remainder of this paper, we introduce the terminology and definitions in Section

2, and prove our results in Section 3. Section 4 is devoted to a discussion of these results.



2. Terminology and Definitions

We have adopted much of our terminology and definitions from [12].

In particular, X,Y, and § denote finite sets, and X, Y, and S random variables taking
values in these sets. The distributions (resp. joint distributions) of such random variables are
denoted by Px, Py, Pxy, etc., while conditional distributions are denoted by Py|x, Pr|xs,
etc. A channel W : X — Y is given by a transition probability matrix {W(y | z) : zeX ,yeY}.
A discrete memoryless channel (DMC) {W} defined by W is a sequence of channels {W™ :
X" — Y} where

"(y | x) H W yt l z: (2.1)

with x = (21, ...,Z5) and y = (Y1, .., Yn)-

Let W = {W(-|+,5),5€S} be a family of channels W : X — Y, where X and Y represent
the input and output alphabets; seS denotes the state of the channel and can be interpreted as
an index identifying a particular WeW. For n-lengths sequences, the transition probabilities

corresponding to a sequence of states 8 = (s1,...,5,) are assumed to be given by

y ' X, S) H W yt l i, sz) (2.2)

=1

The family of channels W*(- | -,8) : X™ — Y™, 8eS™ will be denoted by W™.

A (discrete memoryless) arbitrarily varying channel (AVC) with input alphabet X, output
alphabet Y and set of states § is a sequence {W"}32, as above; henceforth, we shall denote
it simply by {W}.

A code of block-length n is a pair of mappings f : M — X™,¢: Y™ — M, and its rate is
Llog | M |, where | M | denotes the cardinality of the message set M. The performance of the
code (f, ¢) on any channel W) . X - Yn is evaluated in terms of its rate and the decoding

error probabilities. The probability of error for the message meM is given by

€m — em(W(n)’ fa ¢) é 1- W(n) (¢—1(m) ‘ f(m))' (2‘3)
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The corresponding average error probability is

=W, 2 [ Y e 24

In particular, for W(®) = W"(- | -,8), the dependence of the error probabilities on the state

sequence 8eS™ will be indicated by writing

em(8) = em(8,1,8) = em(W"(- | ,8), £, 9); (2.5)

e(s) = &(s, f, é Z (2.6)

A random code (F, ®) is a random variable taking values in the family of all codes (f, $) with

the same blocklength n and the same message set M.

We now impose constraints on the input (transmitted codeword) sequences and define
random codes that satisfy these constraints. Let g be a nonnegative-valued function on X,

and let

l!l>
§Iv-*

Z (2.7)

for x = (21,...,Z5) in X™. A random code (F, ®) is said to satisfy a peak input constraint T,

if for all meM,

g(F(m)) <T almost surely (a.s.).

It satisfies a message average (m-average) input constraint m-T, if G(F) < T a.s., where

g(F) £ TM] g(F(m)), (2.8)



and a code-ensemble/message average (cm-average) input constraint em-F, if Eg(F) < T.
Clearly, the peak input constraint T is stronger than the m-average input constraint m-T'

which, in turn, is stronger than the cm-average input constraint ¢cm-T.

Remarks: Even what we term a peak input constraint is in a sense, an average constraint,
as the constraining function g is defined by averaging over n time units (cf. (2.7)). We feel
that the term “peak” is justified in comparison with the other types of constraints, and will
not lead to ambiguity. It would also be possible to consider a fourth type of input constraint,

namely

Eg(F(m)) <T for all meM.

This, however, would not lead to a new problem because for any random code (F,®) there

exists another random code (F', ') with the same message set such that for every meM and

every channel W() : X  y»,

Eg¢(F'(m)) = E§(F), Eea (W™, F', ') = E¢(W(™, F, 3). (2.9)

To obtain this (F’, ®') we may suppose that M = {1,...,M}. Then, denoting by Z a random

variable independent of (F,®) and uniformly distributed over M, we set

F'(m) £ F(m + Z (modM)); ®'(y) = @(y) — Z (modM).

This fact also shows that for random codes it does not matter whether we adopt the average

or maximum probability of error performance criterion.

Constraints can also be imposed on the sequence of channel states as follows. Let £ be a

nonnegative-valued function on §, and let

os) 2 % zn:e(s,.), (2.10)

i=1

for 8 = (51, ..., 65 ) in §”. We also consider random state sequences S = (54, ..., Sy). Through-

out this paper, it will be assumed that the transmitted and state sequences are chosen without
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any knowledge of each other. Mathematically, this is reflected by the assumption that the
random variables (F,®) and S are statistically independent. We say that S satisfies a peak

state constraint A, if

£(S) < A as.,

and satisfies an average state constraint a-A if

E¢(S) < A.

Clearly, the latter constraint is the weaker one.

For convenience, we shall assume that

min g(z) = min £(s) =0,

and all input and state constraints will be considered with I" > 0,A > 0.

Definition 2.1 For 0 < € < 1, A > 0, an (n, A, ¢)-random code for the AVC {W} is a random
code (F, ®) of blocklength n satisfying

Ee(s, F,®) < ¢ for 8 inS™ with £(s) < A. (2.11)

Further, an (n,a-A, ¢)-random code for the AVC {W} is a random code (F, ®) satisfying

Ee(S,F,®) < e (2.12)

for all random state sequences S = (Sy, ..., Sn) meeting the a-A constraint E¢(S) < A. Clearly,
every (n,a-A,¢)-code is also an (n, A, €)-code.

Definition 2.2 Given 0 < € < 1, a non-negative number R is an e-achievable rate on the AVC
{W} under peak (resp. m-average resp. cm-average) input constraint I' (resp. m-T', resp.
¢m-T') and peak state constraint A if for every § > 0 and every sufficiently large n there exist
(n, A, €)-random codes with rates > R — § and satisfying the corresponding input constraint.

The e-achievable rates under peak (resp. m-average or cm-average) input constraint and
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average state constraint are defined similarly but with (n,a-A, €) random codes. Finally, R is
an achtevable rate under any pair of input and state constraints if it is e-achievable for every
0<e<l.

Definition 2.3 The maximum of all e-achievable rates under a pair of input and state con-
straints is called the (random coding) e-capacity of the AVC under these constraints. If it does
not depend on ¢, its value is called the strong capacity. Otherwise, the limit of the e-capacity

as € — 0 or, equivalently, the maximum of all achievable rates, is called the (weak) capacity.

The e-capacity under input constraint A and state constraint B will be denoted by
Cc(A, B), where A stands for either of I' (peak) or m-T' (m-average) or cm-I' (cm-average)
and B stands for A (peak) or a-A (average).



8. Random Coding Theorems

Our main results are random coding theorems determining the e-capacities C (T, A), C((T,
a-A),C¢(m-T,A), and C.(em-T',A) of the AVC {W} under either of the three kinds of input
constraints with peak state constraint, and under the peak input constraint with average state

constraint. First we introduce some notation and prove two technical lemmas.

Given an AVC {W} and a random variable S with values in §, we denote by Wy the
channel X — Y defined by

Ws(-|-)=EW([-S). (3.1)
For any DMC {W}, we denote by C(W,T) its capacity under (peak) input constraint T', that

is,

c(w,T) 2 I(XAY), (3.2)

max
X:EQ(X)SF,P}/!X=W

and define for the AVC {W}

A
= i . 3.3
CT,4) = min  C(Ws,T) (3.3)
Lemma 3.1 For every ' > 0,A > 0,
= i Y
C(T,4) s:EIIESn)SA x:Erzl(%gr I(X AYx.s)

(3.4)

= i XAY
x:EI?(aj?)gr S:Er{tlsn)SA I x,8)

where X and S denote independent r.v.s and Y is a random variable such that Pr{Y =y |
X =1=z,8 = s} = W(y | z,8), or, Pyjx = Ws. Furthermore, C(T,A) is a nondecreasing,
continuous, concave function of T, and a nonincreasing, continuous, convex function of A.
Proof: I(X A Yx,s) is convex in Ps since I is convex in Py|x = Ws which, in turn, is
linear in Ps (by eq. (3.1)); also I(X A Yx,s) is concave in Px. Since {Ps : E¢(S) < A} and
{Px : Eg(X) < T} are compact convex sets, the equality in (3.4) follows from the Minimax
theorem (cf. e.g., Karlin [21]).

10



The convexity of I(X A Yx,s) in Px implies in a standard manner that mins:ge(s)<a
I(X AYx,s) is a convex function of A. Thus C(I,A) is the maximum of a family of convex
functions of A and, hence, is itself convex. The concavity of C(T, A) as a function of T follows
similarly. The nondecreasing (resp. nonincreasing) property is trivial, and the continuity

follows from the concavity (resp. convexity) property.

Lemma 3.2 For any S with E£(S) < A, and any ¢ > ¢ > 0, every (n, A, €¢)-random code for
the AVC {W} satisfies

Ee(WZ,F,®) <€ (3.5)

for the DMC {Ws} defined by eq. (3.1), if n is large enough.

Proof: Let S = (S),...,S,) be n independent and identically distributed repetitions of a
random variable S with E£(S) < A. Then, for every x in X", y in Y™, by (2.2) and (3.1), we

have

Wiy |x) =] BW(3i | =i, )

=1

=F ﬁ W(y,- | Iy, S,') (3.6)

1=1

=EW"™(y | %,8).

Any code (f,$) when used on the memoryless channel {Ws} defined by eq. (3.1) gives

SWZ,1,6) = l’ﬁlﬂ S (1= WE(#~ (m) | £(m))
meM
= L S - Ewn($ (m) | £(m),S)] (by(3.6))
M 2
= Ee(S, f,¢)

< E[e(S, f,¢) | £(S) < Al + Pr{¢(S) > A},

which implies that any random code (F, ®) used on the DMC {Ws} satisfies
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Ee(W,F,8) < E[&(S, F, ®) | £(S) < A] + Pr{(S) > A}. (3.7)

If (F,®) is an (n, A, €)-random code for the AVC {W}, the first term on the right side of (3.7)
is clearly no larger than e. Also, for n large enough, using the independent and identically
distributed property of the S; and the weak law of large numbers, the second term on the

right side of (3.7) will be less than (¢' — €). Thus (3.7) gives (3.5).

We now state the random coding theorem for the case of peak constraints on the input

and state sequences.

Note: Theorems 3.1 and 3.2 below (without the input constraints) were announced in [19]

without proofs. The proofs presented here are new.

Theorem 3.1 For the AVC {W} with peak input/peak state constraints, the strong capacity
(for random codes) exists and equals C(T', A) defined by eq. (3.3).

Proof: The proof is similar to the case of the AVC without constraints (cf. e.g., [12, chapter
2, section 6]). The forward part of the proof is relegated to the appendix; the (strong) converse

part is proved below.
We first observe that

C(T,A) = s:Ei?sf)<A C(Ws,T). (3.8)

In fact, the right side can be written as a double infimum, the inner one for S with E£(S) < A’
and the outer one for A’ < A. The inner infimum equals C(T,A’) by definition, and (3.8)
follows by the monotonicity and continuity of C(T,A) as a function of A.

Now, for any given R > C(T,A) and 0 < € < 1, pick an ¢ with € < ¢ < 1 and a random
variable S with E£(S) < A such that

R > C(Ws,T),

which is possible by (3.8). Then, by the strong converse to the coding theorem for the DMC

{Ws} with (peak) input constraint T, every code (f,¢) of rate > R satisfying the input
constraint g(f(m)) < T for all meM, has an average probability of error €(Wg, f,¢) > € if
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n > ng. Thus, for every random code (F, ®) of rate > R such that g(F(m)) < T a.s., for all

meM, we have

Ee(Wg,F,®) > €.

This implies, by Lemma 3.2, that no such (F, ®) can be an (n, A, €)-code for the AVC {W}, ifn
is sufficiently large. This proves that no rate above C(T',A) is e-achievable, for any 0 < € < 1.

For the remaining combinations of peak and average constraints on the input and state

sequences, the e-capacities do depend on e.

Theorem 8.2 For the AVC {W} with peak input, average state constraints the e-capacity
C(T,a-A) equals C(T',A/¢), defined by eq. (3.3). In particular, the (weak) capacity equals

C(T',€max) Where £1,,x = max,.s £(s).
Proof: (i) C¢(T,a- A) > C(T', A/€) (forward part):

To show that C(T',A/e) is e-achievable, on account of the continuity of C(T,A) in A, it
sufficies to show that any R < C(T',A/€') is e-achievable whenever 0 < €' < e.

Theorem 3.1 implies that if R < C(T,A/€'), for n large enough, there exists a random
code (F, ®) of rate R with g(F(m)) <T as. for all m in M, that satisfies

A

Ee(s, F,®) < e — € for all 8 with £(s) < o

Hence, for any random state sequence S with E£(S) < A, we have

B&(S, F, 9) = E[e(S, F, #)/4(S) < 5] Pr{f(s) < 3)

}

+ E[e(S, F, ®)/£(S) > %] Pr{{(s) > %
< E[e(S, F,®)/¢(S) < —CA—,] + Pr{¢(s) > %}
Sl-€)+e=e

This means that (F, ®) is an (n, a-A, ¢)-random code, and part (i) is proved.
(ii) Ce(T',a-A) < C(T,A/e€) (Converse part):
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To show that no R > C(T', A/€) is e-achievable, it suffices to show this for R > C(T, A/¢’),
whenever ¢ > €. Pick R > C(T',A/¢') and let (F, ®) be any random code of rate R satisfying
the peak input constraint I'. Theorem 3.1 implies that for sufficiently large n, the average
error probability under peak state constraint A/e¢’ cannot be smaller than any fixed n < 1.

This means that

Ee(s, F,®) > n

for some 8 = (s1,...,5,) with £(s8) < A/€¢'. Now, let S = (S}, ..., Sn) be a random state sequence
such that S = 8 with probability €’ and £(S) = 0 with probability (1 — €¢'). Then, E£(S) < A,

and

Ee(S, F,8) > €E[¢(S, F,8) | S =]
= ¢'Ee(s, F,®) > ¢'n.

Choosing n = ¢/¢€, it follows that no random code of rate R > C(T', A/¢'), satisfying the peak

input constraint I', can be an (n,a-A,€)-random code. This proves part (ii).
The last assertion follows as lim_,o C(T',A/€) = C(T, €max)-

Next, we prove a lemma and its corollary for a DMC with m-average and cm-average

input constraints. These will be used in establishing the converse parts of Theorem 3.3.

Lemma 3.3 For any DMC {W}, any § > 0, and

R > C(W,T)+5, (3.9)

(cf. eq. (3.2)), every code (f, 4) of blocklength n > no and rate R has average error probability

W, 1,¢) 2 1-6 - L0 (3.10)

where ny depends only on § and the alphabet size | X |,| Y |.

Proof: We assume that §(f) < (1 ~ 8)T in order to avoid a trivial assertion. Partition the
message set M as M = M; UM, with My = {m : g(f(m)) <T} and Mz = {m: g(f(m)) >T}.
F|Mi|l=a|M|and | Mz |=(1-a) | M|, 0 <a< 1, then clearly (1 — )T < g(f), i.e.,
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alf)

>1-
®= T

> 6. (3.11)

Now consider the subcode of (f,¢) with message set M, and satisfying the (peak) input
constraint T'. The rate of this subcode is B + %loga >R+ %log& > C(W,T) + % if n > no.
Hence, by the strong converse to the coding theorem for a DMC (specifically by [12, p. 104,
corollary 1.4)), the average error probability of this subcode is at least (1 — §) if n > no
(depending only on 6, | X L1Y D).

Thus, using (3.11), we have

E(Wn’ f, ¢) = l—_;'{—l Z em(Wnaf’ ¢)
meM

Corollary: For a DMC {W}, any random code (F,®) of rate R > C(W,I')+6 and blocklength -

n > no (as in Lemma 3.3) has

Eg(F),

Ee(W",F,8) > 1-6 - —

(3.12)

Proof: First observe that Lemma 3.3 immediately implies (3.12) for random codes (F, o)
for which g(F) is constant. In fact, were (3.12) not to hold in this case, there would exist a
realization (f, ) (a deterministic code) of the random code (F, ®) violating (3.10). It follows
then for an arbitrary (F,®) of rate satisfying (3.9) that

Ble(w™,F,8) | 5(F) 2 1- 6 - B2,

and hence
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Ee(W", F, %) = E[E[(W", F, ¢) | §(F))]]

Eg(F
21—5'— IS)’

as claimed.

Theorem 3.3 For the AVC {W} with m-average or cm-average input constraints and peak
state constraint, the e-capacities C¢(m-T, A) and Cc(cm-T', A) are the same and equal C(T'/(1—
€),A), defined by eq. (3.3). In particular, the (weak) capacity for both cases equals C (T, A).

Proof: In order to prove the theorem, we need only prove:
(i) the forward part for the m-average input constaint; and

(ii) the converse part for the cm-average input constraint.

(i) We show that any R < C(I'/(1-¢'),A) is e-achievable under m-average input/peak
state constraints whenever ¢ < e. Partition the message set M as M = M; U M, such that

J{%[l = 1— €, with ¢, — €. If R < C(T'/(1 - €'),A), by Theorem 3.1 there exists, for n

sufficiently large, an (n,A, ‘;2‘—') random code (F,®) with message set M; and satisfying the

input constraint g(F(m)) < L as., e,

e—¢€

E[T_)iTI 3 em(e @) < S5 for all ses™ with ¢(s) < A.

meM;

Let (F',®') be a random code which equals (F, ®) whenever meM;, and maps each m in M,
into a constant sequence (o, ..., Zo) With g(zg) = 0. Then Tﬁ[ Yomem 9(F'(m)) <T as., and

for any s in $™ with £(s) < A, we have

Efe(e, ', 8] = Byl 1 en(6,5:2)+ 3 em(s F',2)

meM) meMz

!
€—¢
<

+en < €

This proves part (i).
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(ii) It suffices to show that no R > C(T'/(1 — €'),A) is e-achievable under the cm-average

input/peak state constraints whenever €' > e.

Given any R > C(I'/(1 — €'),A), there exists by (3.8) a random variable S with E£(S) < A
such that

R>C(Ws,T/(1-¢€))+6

for some 6 > 0; we may assume that § < ¢/ — . Now, by the Corollary to Lemma 3.3, any
random code (F,®) of rate > R satisfying the cm-average input constraint Eg(F) < T, has
for the DMC {Ws}

Eg(F) >e -6

n >1—-8 —
Ee(Wg,F,®) > 16 T ey 2

if n > no. Since €' —§ > ¢, this implies by Lemma 3.2, for n sufficiently large, that this (F, ®)
cannot be an (n, A, €)-random code for the AVC {W}, as claimed.
For the remaining case of average input/average peak constraints, we have not been able

to determine the e-capacity. However, the (weak) capacity is easily obtained from the previous

results:

Theorem 3.4. For m-average (resp. cm-average) input constraint m-T' (resp. ¢m-T') and

average state constraint a-A the (weak) capacity of the AVC {W} equals C(T, £pax)-

Proof. The forward part immediately follows from Theorem 3.2, as C(T', £max) is an achievable
rate even under the peak input constraint I'. The converse part follows from Theorem 3.3 as

the peak state constraint with A = £.x is always fulfilled.
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4. Discussion

Random coding techniques serve as useful mathematical tools for proving coding theorems
for a conventional (fixed) channel. Their use is justified by the fact that if the expected value
of the decoding error probability over an ensemble of randomly selected codes is small, then
there must exist a specific (deterministic) code leading to an error probability just as small.

Thus, for a fixed channel, the deterministic code capacity equals the random code capacity.

In sharp contrast, an AVC exhibits the characteristic that the capacity for random codes
generally exceeds that for deterministic codes. Consequently, as Ericson [16] remarks, in
addition to helping prove coding theorems, random codes become significant as models of
practical engineering devices. In fact, commonly used techniques such as “direct sequence”
and “frequency hopping” can be interpreted as practical implementations of random codes
[17], employing synchronized random number generators at the transmitter and receiver. The
practical feasibility of random codes for AVCs is greatly enhanced by Ahlswede’s [4] discovery
that the random code capacity of an AVC can be achieved by codes restricted to random selec-
tions from no more than n? deterministic codes. This results in a desirably drastic reduction
in the amount of additional information needed to convey the result of the random experiment
of code selection from the encoder to the decoder across a special channel; in the terminology
of Ericson [15], the “key rate” may be arbitrarily small.

In this paper we have determined the e-capacities of the AVC for random codes under
various, though not all possible, combinations of input and state constraints. The strong
capacity turned out to exist only in the case of peak input, peak state constraints. The weak
capacity was determined for all possible combinations of input and state constraints. It is
interesting to note that even the discrete memoryless channel does not have a strong converse
under the m-average input constraint, and that the bound given in Lemma 3.3 is actually tight
(up to replacing —6 by +6); this simple fact has apparently not been pointed out before in
the literature.

We did not consider the problem of whether, and under what conditions, deterministic
codes can achieve the same capacities as random codes. The elimination technique of Ahlswede
[4] gives that Theorem 3.1 remains valid for random codes restricted to random selections out
of no more than n? deterministic codes. The final step of the elimination of randomness in

[4], which intuitively means using a small fraction of the codeword to inform the decoder of
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which of the n? codes was actually used, however cannot be performed unless the capacity (for
deterministic codes) is positive even without a state constraint. Hence the capacity problem
for deterministic codes has remained open for many practically interesting models. In a forth-
coming paper [14], we will determine the deterministic code capacity of the AVC with (peak)
constraints on the transmitted codewords as well as on the state sequences, and demonstrate

that it may be positive but less than the corresponding random code capacity.

The e-capacities (resp. weak capacity) of the AVC given by Theorems 3.1-3.3 (resp.
Theorem 3.4) remain unchanged if the input (resp. state) constraints are imposed on each
individual symbol of a sequence of length n, rather than on the sequence itself. Under the
stronger symbol constraints, this holds by dint of the choice of codeword (resp. state) sequences
used in the proofs of the forward (resp. converse) parts of Theorems 3.1-3.3. Furthermore,
the results in this paper can be easily extended to the case of several constraints imposed
simultaneously on the input (resp. state) sequence. For example, suppose that the random
state sequence S is required to satisfy both the average constraint E4(S) < A and the peak
constraint £(S) < A’ a.s.,, with A’ > A. It then follows, just as in Theorem 3.2, that the
e-capacity under the peak input constraint T' equals C(T', min{A’,A/¢}).

Our results do not depend in an essential way on the assumption | § [< co. Most of
the arguments hold also for infinite channel input and output alphabets, and in particular
for the Gaussian AVCs considered in [20]. We believe that the approach in this paper makes
the results in [20] more transparent. One difficulty in the general nondiscrete alphabet case
appears to be with Lemma A.2, where the analog of L,,(X,Y) may not have a finite variance.
Of course, our results cannot be expected to hold, without additional hypotheses, for AVCs

with infinite alphabets because not even the strong converse for a memoryless channel does

(cf. [8]).
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Appendix
Forward Part of Theorem 3.1

Following the proof in Csiszér and Korner [12, pages 211-214], we establish the e-
achievability of C(T, A), for each 0 < € < 1, by the following two lemmas and their corol-
laries.

Lemma A.1 Let X be a random variable satisfying g(X) < T a.s., and let d be a non-negative

valued function on X X Y such that

Ed(X,y) <1 for all yely. (1)

Then there exists a random code (F, ®) of block-length 1 with g(F(m)) <T a.s. for all meM
such that for every channel W : X — VY, every meM, and € > 0 arbitrary

| M|

€

Ee,,(W, F,®) < Pr{d(X,Y) <

}+e (2)

where Y is connected with X by the channel W, that is, Py x = W.
The proof is identical to that of Lemma 6.9 in [12, p. 211].

Corollary: If X and d are as in Lemma A.1 but X does not necessarily satisfy ¢(X) <T a.s.,
there exists a random code (F, ®) of blocklength 1 with g(F(m)) < T a.s. for all meM, such
that for every channel W : X — Y, every meM, and € > 0 arbitrary

Ben(W,F,8) < e+ PHX,Y) < el BLo/Prio(0 < 1), ®)

Proof: Apply Lemma A.1 to a random variable X' in the role of X such that the distribution
of X' equals the conditional distribution of X given that ¢(X) < T, and to d'(z,y) = d(=z,y) -
Pr{g(X) < T} in the role of d. Then (1) holds since

Ed'(X',y) = Pr{g(X) <T}- E[d(X,y) | ¢(X) <T] < Ed(X,y) < 1,

and (2) gives (3) because
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Pr{d/(X",Y") < Ug‘—'} = Pr{d(X,Y) < — L] (X) <T}

= ePr{g(X) < r}/-"

< Pr{d(X,¥) € o S /Prig() <)

For any distribution P on X, and any channel W : X — VY, let us denote by I(P,W) the
mutual information I(X AY') for random variables X and Y connected by the channel W such
that Px = P.

Lemma A.2. For any r.v. with distribution Px = P such that Eg(X) < T, and any € > 0,
for sufficiently large n there exist (n, A, ¢)-random codes (F, ®) for the AVC {W}, satisfying
g(F(m)) <T a.s. for all m in M, and of rate at least I(P,A) — € where

A .
I(P,A) = s:EIalsn)gAI(P’ Ws). (4)

Proof: Let Wg, minimize I(P,Ws) subject to E{(S) < A. Then for every S such that

E¢(S) < A, and for 0 < a < 1, we obtain by using the convexity of i {Ws: EL(S) < A},
that

I(P,aWs + (1 — &)Ws,) > I(P,Ws,) = I(P, A). (5)

Hence, it follows as in [12, page 213] that P(z)Wg(y | ) > 0 implies Wg, (v | £) > 0, and that

> PlaWsly | =)log %%)‘-l > I(P,A) ©
if ££(S) < A, where Q(y) £ 3, P(X)Ws, (v | 2).

Let X = (Xi,...,Xn) be a sequence of independent and identically distributed random
variables with distribution P. We apply the Corollary to Lemma A.1 to X™ and Y™ in the
roles of X and Y, with this X, and d(x,y) defined by

_WE v Ix) 7 W, (y: | =)
)= =g - U™ 0w g

=1
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and set d(x,y) = 1if Q"*(y) = 0. Clearly, Ed(X,y) = 1 for all yeY™. Then the said corollary
guarantees the existence of a block-length n random code (F, ®) such that for every meM,

g(F(m)) < T a.s., and for every 8eS™,

w3 (Y|X) (M|
e Pr{—&m < iy}
< e Pr{g(X)<T}
Een(s, F,®) < 5 + Pr{s(%) <T} (8)

where Y = (Y1, ..., Yy, satisfies Pyjx(- | -) = W"(- | -,8).

Defining the random variable L,(X,Y) by

L.(X,Y)21o ———%&TJ)X), (9)

we observe that

WSO s | Ti
EPn )W (y | x,8) log[H __QTy—l)__l]

WSo(y I Z)
_ZZP |a:s.,)log—————Q(y) .

=1 z,¥

Now, if seS™ satisfies £(s) < A, then letting S denote a random variable whose distribution

equals the type of 8 = (s1,...,8s), We have
ZW(y | z,8;) = nWg(y | z) with E£(S) < A.
=1

Thus, by (6), we obtain from (10) that

EL.(X,Y) > nI(P,A) if £(s) < A, (11)

Furthermore, since W, (y | z) > 0 whenever P(z)Ws(y | z) > 0, it can be seen as in [12, page
214] that

22



var L, (X,Y) < nflogm(Ws,))?, (12)

where m(Wg, ) is the smallest positive entry in W, .

Since Eg(X) < T, for sufficiently large n we have Pr{g(X) < T} > 1 —e. Then if

| M |= exp[n{I(P,A) — €}], (13)

from egs. (8) - (13), we obtain by Chebyshev’s inequality for every s in §™ satisfying £(s) < A
that

M
Een(s,F,®) < %_*_ Pr{Ln(X,\(fl)j:)Og ;(%_7&75}
€ Pr{L.(X,Y) <n(I(P,A) —¢)~—log 5(12;6)}
<+
i (-9 (14)
€ Pr{l Ln - ELn l> 5'2£
s 2 + (1-¢)

€

+

< 3 —7;;—5(—411—_—6) log[m(Ws,))2.

It follows from (14) that for n sufficiently large

Een(s, F,®) < eif £(s) <A

for all m in M; thus (F, ®) is an (n, A, €) random code. This proves the assertion of the lemma.
Corollary: C(T,A) is an achievable rate.

Proof: It follows from Lemma A.2 that there exist (n, A, €) random block codes (F, ®) with

g(F(m)) <T a.s. for all m in M, having rates arbitrarily close to

sup I(Px,A).
X:Eg(X)<T

By Lemma 3.1, it can be seen by analogy with (3.8) that here the < sign can be replaced by
<, and that the supremum equals C(T',A). This completes the proof.
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