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Chapter 1. Introduction 

Much education research involves evaluating the effect of interventions, such as 

the effect of a retention program or the National School Lunch Program, on student 

achievement. The ideal design for making causal inference regarding such topics is the 

experimental design where all subjects are randomly assigned to the treated and control 

groups, which, unfortunately, is not always feasible. For example, we could neither 

ethically randomly hold back students nor randomly assign students to receive free or 

reduced-price lunch without considering the household income level. In such quasi-

experimental designs, in which it is not feasible to control the assignment of the 

experimentation and units are not allocated randomly to the two groups, the treatment 

group assignment tends to depend on the pretreatment characteristics of group members; 

thus differences between groups can be attributed in part or possibly entirely to the 

pretreatment characteristics as opposed to the treatment itself (Schneider, Carnoy, 

Kilpatrick, Schmidt, & Shavelson, 2007). 

According to the What Works Clearinghouse Standards Handbook (2017), only 

when the confounding effects in quasi-experimental designs are appropriately considered 

can the causal inference of the related research meet group design standards with 

reservations. This goal, as indicated in the Handbook, can be achieved mainly by 

controlling for the confounding factors via obtaining baseline equivalence between 

groups. An approach that has received a great surge of interest in facilitating valid causal 

inference in quasi-experimental designs is the propensity score (PS) method (Stuart, 

2010). 
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The PS method, a widely-used approach in social sciences and education to 

facilitate causal inference, can effectively account for selection bias in quasi-

experimental settings. In particular, a typical PS procedure involves the selection of the 

confounding pretreatment covariates that are believed to affect the nonrandom 

assignment to the treatment group in a quasi-experimental design. The probability of 

being assigned to the treatment condition for each person (i.e., the PS estimate), then, can 

be estimated as a function of the selected covariates. Following this PS estimation 

process, a PS conditioning method is conducted to make sure that only those with similar 

PS estimates (and thus similar probabilities of receiving the treatment) are compared 

between the treatment and control conditions. The treatment effect can then be estimated 

based on the conditioned data, in which the selection bias has been controlled.  

According to the above brief description of the PS method, PS conditioning is the 

key step to minimize the selection bias so as to facilitate causal inference. The fact that 

the PS conditioning process is highly dependent on the PS estimates makes the relative 

PS distribution between the treated and control groups an important, yet not well known, 

factor in the generation of appropriate causal estimates. The primary objective of this 

dissertation is to further explore the use of the PS methods and to disseminate the 

findings of the effects of different relative PS distributions on causal estimates to provide 

guidance to education researchers on PS application. This will include dissemination on 

what type of PS conditioning methods you should use depending on the PS distributions 

and how the heterogeneity of treatment effect (TE) impacts the performance of PS 

methods. Findings from this study will add to the literature on the implementation of the 

PS method – one more step of relative PS distribution checking and PS conditioning 
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method selection might be necessary as opposed to the traditional PS procedure where 

relative PS distributions is never a concern. 

In addition to the methodological perspective taken in this dissertation, an 

empirical study will demonstrate the steps and implementation considering PS 

distributions. The goal is to provide a guide, or example, to other researchers who are 

using national data for causal effect analyses that utilize PS methods. The results could 

also serve as a resource for future educational technology related policy making (e.g., 

broadening home computer access to first grade students in the United States to help their 

academic achievement).  

This dissertation starts with an overview of the PS methods, including the 

potential outcomes framework and key assumptions, as well as the implementation 

procedure of different PS methods, followed by the importance of relative PS 

distributions on TE estimation. Chapter 3 describes the detailed research design of the 

simulation study and discusses the limitations of the simulation design, followed by 

interpretation of results in Chapter 4. Chapter 5 introduces the data source and design of 

the empirical demonstration, as well as illustrates the results and inferences. Finally, 

Chapter 6 summarizes the results, limitations of the study, and talks about the 

possibilities for future research.   
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Chapter 2. Conceptual Framework and Literature Review 

As previously mentioned, the main objective for the application of PS methods is to 

identify the causal relations between the treatment and the outcome in quasi-experimental 

designs. The first part of this chapter briefly introduces the potential outcomes framework for 

estimating causal inference. I then provide an overview of the PS methods, including the key 

concepts, recent developments, and assumptions, and then I elaborate on each step of the 

implementation procedure. I continue the chapter with a detailed description of the potential 

implications of PS relative distributions and heterogeneous treatment effects that motivated this 

study. Finally, I conclude the chapter with the two research questions that are addressed in this 

study. 

2.1 Causal Inference and the Potential Outcomes Framework 

In the potential outcomes framework, two treatments are available, the active treatment 

(i.e., treatment) and the control treatment (i.e., control). Each individual thus potentially has two 

outcomes, the outcome under the treatment and that under the control. First proposed by Rubin 

(1974), a causal effect can be calculated by comparing the two potential outcomes. In particular, 

the causal effect of the treatment on unit ! is simply the difference between i’s outcomes from 

receiving treatment "#(1) and receiving control "#(0), that is,  

.                                                        (1) 

Unfortunately, each individual can receive either treatment or control and thus only one 

outcome can be observed (Holland, 1986). For example, for a subject assigned to the treatment 

condition, only "#(1) is available and the counterfactual outcome "#(0) only exists under the 

unobserved condition. Therefore, the individual causal effect of treatment cannot be determined. 

When units are randomly assigned to treatment or control conditions, however, the subjects in 

( ) ( ) 1 0i i iY Yd = -
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one group can be considered the counterparts of those in the other group, and thereby, one can 

still estimate the treatment effect via comparing the two groups. The average causal effect, in 

turn, is simply the difference between the outcomes of the two groups, 	as expressed in the 

following, under the assumption that the two groups are “equal in expectation” (Murnane & 

Willett, 2010, p. 31): 

.                                                    (2) 

However, in a non-experimental design, groups may differ systematically with respect to 

unobserved pretreatment covariates and are incomparable. Thus, it is desirable to replicate an 

experimental design as closely as possible via obtaining treated and control groups with similar 

distributions on each pretreatment covariate (Stuart, 2010), and this goal can be achieved by 

using PS methods. 

2.2 An Overview of the Propensity Score Methods 

The following sections introduce the recent developments of the PS methods. The major 

assumptions, as well as the specific implementation procedures are also described in detail. 

2.2.1 Propensity score methods and recent developments 

A propensity score, defined as the conditional probability of a participant to be assigned 

to the treatment condition (Rosenbaum & Rubin, 1983), is considered a composite of all 

pretreatment variables that describes the selection process (Murnane & Willett, 2011). In 

particular, conditional on the propensity scores obtained from the correct PS model, the selection 

bias is controlled, so that the distributions of the baseline covariates between the control and 

treatment groups are similar as in a randomized design (Austin, 2011a). The assumption in using 

this method are further described in Section 2.2.2. 

( ) ( )1 0E Y E Yd = -é ù é ùë û ë û
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Alternatives to the PS methods include direct control for covariates using regression 

analysis, instrumental-variables estimation, structural equation modeling, and so on. The PS 

methods have shown advantageous features compared to the other methods. First, taking the 

most popular multiple regression approach as an example, it can be problematic when the 

number of covariates is large. Imagine that in a study where there are 30 covariates, if all these 

covariates and their two-, three-, four-, and multi-way interactions are included as controls in a 

regression analysis, it may eventually run out of degrees of freedom, which may in turn 

overestimate the standard errors and dramatically reduce the power (Murnane & Willett, 2011). 

Compared to regression, the PS methods focus on a balancing score, that is, a combination of the 

covariates rather than controlling for all related covariates. In other words, the purpose of 

estimating propensity scores is to obtain balance between the two groups as opposed to 

estimating precisely and using any parameter coefficients. This idea of a balancing score is to a 

large degree robust to the overfitting issue, as the precision and the power in the PS estimation 

step are not concerns. A second concern with the use of regression approaches, is that sufficient 

overlap of the covariates between the two groups have been shown an important factor for 

obtaining accurate TE estimates (Dehejia & Wahba, 1999; Glazerman, Levy & Myers, 2003). In 

the TE estimation process, regression-based approaches may be highly dependent on model 

extrapolation, which can give rise to biased estimates (Arpino & Cannas, 2015; Drake, 1993). 

This is the case especially when the two treatment groups have substantial differences, in other 

words, insufficient overlap (also referred to as a lack of common support), in terms of the 

covariates. This issue of the regression-based approaches is also not accounted appropriately in 

the alternative methods. The PS methods, on the other hand, involve a diagnostic procedure of 
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checking the common support, which helps reduce unrealistic extrapolation and improves 

estimation accuracy.  

In recent years, developments and applications of PS methods have occurred in many 

scientific areas including medical research for evaluation of medical outcomes (Stone, Obrosky, 

Singer, Kappor, & Fine, 1995), empirical labor economics for evaluation of labor market policies 

(e.g., Bryson, Dorsett, & Purdon, 2002; Dehejia & Wahba, 1999; Heckman, Ichimura, & Todd, 

1998), educational and psychological research to study the effect of programs on students’ 

performances (e.g., Hong & Raudenbush, 2006; Morgan, Frisco, Farkas, & Hibel, 2010), and so 

on. In addition to evaluation of interventions, use of the propensity score methods has also 

increased in psychometrics for the assessment of students’ ability (e.g., Becker, Lüdtke, 

Trautwein, Köller, & Baumert, 2012; Guo, 2009; Jiao, Zou, Liao, Li, & Lissitz, 2016; Li, Liao, 

Zou, Jiao, & Lissitz, 2016; Sireci, 1997). 

Given that PS methods are experiencing such a tremendous increase of interest, there are 

several published instructive works that focus on implementation guidance and suggestions for 

the PS analysis (Austin, 2011a; Caliendo & Kopeinig, 2008; Harder & Stuart, 2010; Stuart, 

2010; Shadish & Steiner, 2010).  At the same time, a variety of specific practical issues have 

arisen from PS applications that have attracted PS methodological researchers’ attention and lead 

to research on many specific topics. Examples include PS model specification (Drake, 1993; 

McCaffrey, Ridgeway, & Morral, 2004), caliper selection for PS matching (Austin, 2011b; 

Cochran & Rubin, 1973; Rosenbaum & Rubin, 1984), weight trimming strategies for PS 

weighting (Lee, Lessler, & Stuart, 2011), the application of PS methods using data that come 

from a complex sampling structure (DuGoff, Schuler, & Stuart, 2014; Hahs-Vaughn, 2015; Lee, 

Lessler, & Stuart, 2010; Thoemmes & West 2011), and Bayesian PS estimation (Alvarez & 
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Levin, 2014; Kaplan & Chen, 2012; McCandless, Gustafson, & Levy, 2009a; McCandles et al., 

2009b). Although a broad array of topics have been studied, there are still remaining questions 

yet to explore, including the interest of this study – the use of PS methods with different relative 

PS distributions. This issue will be further discussed in Section 2.3. 

2.2.2 Assumptions  

A key assumption of PS methods related to PS model estimation is strong ignorability, 

that is, all nonequivalence between the treated and control groups (except for the nonequivalence 

in the outcome measures) is removed after controlling for the pretreatment covariates. The 

assumption of ignorability has two components: (a) the potential outcomes are independent of 

the treatment status conditioning on the pretreatment covariates and (b) every unit has a positive 

(i.e., nonzero) probability of receiving the treatment. These ideas can be expressed as 

["#(1), "#(0)] ⊥ -#|/# and 0 < 1#(-# = 1|/#) < 1. These two components together imply that the 

PS analysis will yield unbiased estimates only if all confounding covariates (including the 

interactions among the covariates), observed and unobserved, are controlled and there is at least 

some overlap between the two treatment groups (Rosenbaum & Rubin, 1983).  

Because neither the covariates used in treatment selection nor the relations among the 

covariates are known (Drake, 1993), two steps are required to meet this assumption and 

successfully obtain the PS estimates: identifying all possible pretreatment covariates and 

specifying the accurate functional form of the PS models. Sensitivity analyses (Imbens, 2004; 

Rosenbaum & Rubin, 1983; Rosenbaum, 2002) are available to examine the extent to which the 

inference about the causal effect would change if there were unobserved confounders. As will be 

addressed later, the use of sensitivity analysis was not part of this dissertation.  
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Another assumption to obtain unbiased estimates of causal effects using PS methods is 

referred to as the Stable Unit Treatment Value Assumption (SUTVA; Rubin, 1980). To be more 

specific, it requires that the assignment of an individual does not affect the outcome of any other 

individuals. SUTVA can be violated due to “spill over” effects, such as siblings assigned to 

different treatment groups talk about it at home and affect each other’s outcome. Another 

example of violation of SUTVA is that a student’s math score is improved only because his/her 

friend joined the same math tutoring program and they often help each other. Rubin also pointed 

out that SUTVA is difficult to claim in educational (e.g. school and classroom) type settings 

because children always interact with each other. Regardless of the plausibility of SUTVA in 

educational settings, the chance of violation of this assumption can be decreased by taking 

careful control over the experiment and reducing the interaction between the two treatment 

groups (Stuart, 2010). 

2.2.3 Propensity score implementation (5 steps) 

As was briefly introduced in Chapter 1, a typical PS procedure involves five steps, which 

include (1) identifying appropriate pretreatment covariates that could potentially cause bias in the 

TE estimate, if ignored; (2) estimating propensity scores via, typically, a logistic regression on 

the baseline covariates; (3) conditioning on (or matching on) propensity scores between the 

treated and control groups; (4) assessing the conditioning quality (i.e., balance check); and (5) 

estimating the treatment effect based on the conditioned, or matched, sample (Stuart, 2010; 

Thoemmes & West, 2011). Each of these steps is described in the sections that follow. 

2.2.3.1 Identification of critical covariates. Identifying appropriate covariates that could 

potentially cause bias in the TE estimate is the first step of a PS analysis. The key point for an 

effective PS analysis is to select appropriate covariates. Stuart and Rubin (2007) suggested two 
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points that need to be carefully considered when selecting covariates. First, the covariates 

selected should be able to yield desired good matches between the treatment and control groups. 

In particular, the covariates selected must be related to the treatment assignment and it is 

important to include a large set of covariates (Hill, Reiter, & Zanutto, 2004; Rubin & Thomas, 

1996). Hill, Reiter, and Zanutto (2004) and Rubin and Thomas (1996) suggest to include as 

many covariates as possible. Greevy, Lu, Silber, and Rosenbaum (2004) concluded from an 

empirical study that including a larger set of covariates yields greater power, even when some 

covariates are indirectly related to the treatment through their correlation with the other directly 

related variables. Second, the covariates selected should not be affected by treatment assignment. 

This is because the propensity score represents the probability of treatment exposure conditional 

on covariates (Lunceford & Davidian, 2004). Treatment must happen after the covariates. 

Otherwise, matching can lead to substantial bias in the estimated treatment effect (Frangakis & 

Rubin, 2002; Imbens, 2004; Stuart & Rubin, 2007). 

2.2.3.2 Estimation of the PS. As was introduced earlier, the traditional way of obtaining 

propensity scores is to fit a logistic regression on all pretreatment covariates. The estimated 

propensity score is then the predicted probability of being in the treatment. The overall PS model 

can be expressed as: 

,                                                     (3) 

where 3#	is the propensity score for person !, 45 is the intercept of the model,  46 represents the 

regression coefficients for the 789 covariate, and /6# is the score of the 789 covariate (or 

potential interaction among or polynomials for particular covariates) for subject !.  

In the case where more than two treatment groups exist, a few options are available for 

the PS estimation, such as to estimate the multinomial logit, the multinomial probit, or a series of 

( ) 0
1

P

i p pi
p

logit e Xb b
=

= +å
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binomial models (Lechner, 2001). The advantages and disadvantages of these options are not 

further discussed here as this study only focused on the situation where there are only two 

treatment groups. 

The PS estimation method based on logistic regression can be challenging in practice. As 

was discussed earlier, for the PS method, the assumption of ignorability implies that making an 

unbiased inference via PS analysis not only requires one to find all the related covariates, but 

also suggests to appropriately identify the nonlinear components such as polynomial and 

interaction terms. Since the true PS model is almost always unavailable, researchers have tried 

the following methods to approach it.   

The most commonly considered criterion for nonlinear term examination is to directly 

check the balance between the two treatment groups after PS adjustment. The idea originally 

articulated by Rosenbaum and Rubin (1984) is a stepwise procedure. In general, it involves 

fitting a PS model with main effects only based on the selected covariates and stratifying the 

propensity scores into five subclasses testing for covariate differences between the two groups 

within each subclass (i.e., F test for group comparison in terms of variance; : test can be another 

option for checking group mean differences), and adding polynomial or interaction terms to the 

previous PS model where significant group differences still exist. This procedure is iterated until 

there is no statistically significant group differences. Similar methods have been implemented in 

Dehejia and Wahba (1999) and Mojtabai and Graff Zivin (2003). 

Another nonlinear term selection procedure proposed by Hirano and Imbens (2001) does 

not involve checking the covariate balance. Instead, it suggests to lay out all possible predictors 

of the propensity score model, including the main effects of the pretreatment covariates, higher 

order terms of the covariates, possible interactions of the covariates, and selected higher order 
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terms of the interactions. The next step is to run logistic regressions with a single predictor from 

all the above candidate predictors one by one and keep the ones with : statistics larger in 

absolute values than some pre-specified cutoff value. Despite decreasing the possibility of model 

misspecification to the most extent, the authors admitted that this method can be prohibitively 

expensive, especially when the number of covariates is relatively large.  

The above parametric logistic regression methods with selected polynomials and 

interactions have been used almost exclusively in existing literature. However, even if these 

proposed methods are applicable, most applications still assume that the PS model follows an 

additive and linear logistic regression on the log-odds scale, probably due in large part to its 

complexity (McCaffrey et al., 2004). In 2004, McCaffrey and colleagues started to 

comprehensively explore the possibility of using data mining techniques (also referred to as 

nonparametric methods; e.g., regression trees, random forest, boosted regression, etc.) for PS 

estimation without considering model specification, followed by Setoguchi, Schneeweiss, 

Brookhart, Glynn, and Cook (2008); Lee et al. (2010), and Cham (2013). These methods do not 

assume any functional form between the covariates and the binary treatment outcome yet are 

able to capture complex relations among the covariates. 

This simulation study only focused on the PS estimation based on logistic regressions. 

Because the true PS model was known, on the one hand, implementing an accurate PS model 

using logistic regression would isolate the noise caused by PS misspecification from the results. 

On the other hand, a PS misspecification scenario was also simulated in the study to investigate 

how it would interact with the relative PS distributions and affect the accuracy and precision in 

the final inference.    
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2.2.3.3 PS conditioning. Once propensity scores are obtained, the PS conditioning 

procedure (also referred to as matching in general in the literature) is implemented to make the 

treatment and control groups comparable. This is the key step to obtain group equivalence on 

each pretreatment covariate, which in turn allows for the two groups to be considered 

comparable as in an experimental design. A variety of PS conditioning techniques are available 

in practice and the most popular ones include PS matching (the PS matching here refers to a 

specific technique of PS conditioning), subclassification, and weighting.  

PS matching. The goal of PS matching is to obtain a sample in which the subjects from 

the treated and control groups are similar on their propensity scores, with the unmatched cases 

discarded (Rosenbaum & Rubin, 1985; Rubin, 1973). Thus, the PS matching method does not 

necessarily use all of the data. 

There are a variety of options for the implementation of PS matching, with the most 

important decisions being the following: the measures of similarity (or “distance”) between 

propensity scores (i.e., exact matching to match directly on the PS estimates and matching on the 

transformed propensity scores such as Mahalonobis matching),  the size of the matched samples 

(e.g., 1:1 or 1:; matching, where ; = 2, 3, … , ?, depending on the ratio of the target matched 

group sizes), whether to restrict the distances between the matched individuals (i.e., caliper 

matching), whether to use the sample repeatedly (i.e., matching with or without replacement), 

and which matching algorithm to use (e.g., greedy/nearest neighbor matching or optimal 

matching depending on how the researcher wants to minimize the differences between the 

matched samples). For example, the 1:1 nearest neighbor caliper matching without replacement 

matches each subject in the treatment group with the smallest distance (nearest neighbor) from 

an individual in the control group; a treatment observation with a distance to the nearest neighbor 
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that is larger than the pre-specified caliper (e.g., 0.25) is discarded; the process is done without 

replacement, that is, an untreated subject that has been matched to a treated subject is no longer 

eligible to be matched to other treated subjects.   

 Austin (2014) provided a comprehensive overview of the matching method and 

examines the performance of different combinations of the PS matching options introduced 

above via Monte Carlo simulations and provides suggestions for practice. One of the important 

findings from Austin was that greedy nearest neighbor caliper matching without replacement 

(with subjects chosen for matching in a random order or the order of the best possible 

match) tended to yield TE estimates with minimal bias across a wide range of scenarios.  

In addition to the regular matching methods introduced above, Iacus, King, and Porro 

(2012) recommended a new matching method known as “Coarsened Exact Matching” (CEM) 

that belongs to a new generalized class of matching methods known as “Monotonic Imbalance 

Bounding” (MIB). Iacus et al. argued that the traditional matching methods depend on an ex ante 

process where the level of reduction in imbalance between the two groups is not guaranteed for 

all pretreatment covariates. As a result, many applications of matching methods that fail the 

balance check need to be repeatedly tweaked and rerun, sometimes even making the balance on 

some of the covariates worse and so could be the accuracy of the TE estimates. With CEM, 

rather than matching all covariates all together based on the PS estimates, each covariate is 

coarsened by recoding depending on the practical meaning of the covariate, so that values are 

grouped and assigned the same value (e.g., years of education are recoded into high school, 

college, and post-graduate degrees); then perform the exact matching algorithm to prune the 

unmatched data. That said, the improvement on balance of one covariate does not affect the 

balance of the other covariates. Although CEM has been demonstrated more efficient and can 



 

15 

produce better balance in many cases, it was not considered in this study, as choosing the 

appropriate coarsening is challenging without knowing the practical meaning of the covariates 

with simulated data. In addition to matching, another popular PS conditioning method is 

subclassification. 

Subclassification. Subclassification, also known as stratification, involves stratifying all 

subjects into multiple mutually exclusive subsets based on percentiles of the PS estimates 

(Austin, 2011a; Rosenbaum & Rubin, 1984). The treated and control subjects should then have 

similar and thus comparable propensity scores within each subclass. Once the subclasses are 

created, a subclass-specific treatment effect can be estimated within each subclass by directly 

comparing the means of the outcome measures between the two groups. Each subclass-specific 

TE estimate can then be pooled to produce an overall treatment effect. Pooling can be achieved 

by weighting each estimate by the inverse the proportion of subjects that are classified into that 

subclass. Two kinds of weighting are available in the PS literature depending on which 

population is of interest: all individuals or just those who are treated (the distinction between 

these two populations is discussed in Section 2.2.3.5). These two types of subclassifications can 

be expressed in the following equations: 

,                                                           (4) 

,                                                          (5) 

where @ABB and @8CDA8 are the two types of treatment effects mentioned above and will be further 
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k
all k

k n
nd dæ ö= ç ÷
è ø

å

1 kT
treat k

k
k

n
nk

d d
æ ö

= ç ÷
è ø

å



 

16 

respectively represent the sample size for subclass ;, the sample size for the treated subjects in 

subclass ;, and the total sample.  

It was found by Rosenbaum and Rubin (1984) that creating five subclasses using the 

quintiles removes more than 90% of the bias in the TE estimates and subclassifying on quintiles 

has been used by researchers as a rule of thumb. More recent work (e.g., Lunceford & Davidian, 

2004; Huppler Hullsiek & Louis, 2002) suggest that stratifying on quintiles may not be ideal 

with increasing sample size, however, guidelines for choosing the number of subclasses 

depending on sample size have not been established. Therefore, this paper still followed the most 

popular five-subclass recommendation by Rosenbaum and Rubin, utilizing both weighting 

strategies mentioned above to address the two different population inferences.   

PS weighting. PS weighting is similar to the idea of weighting a sample selected 

following a complex sampling design so that weighted estimates appropriately represent specific 

population parameters (Morgan & Todd, 2008). Two PS weighting methods, inverse probability 

of treatment weighting (IPTW) and weighting by the odds (WBO), are available also depending 

on whether all individuals or just those who are treated are of interest in the study. Again the 

distinction in these two inference populations is illustrated in detail in Section 2.2.3.5.  

Each subject’s IPTW weight is the inverse of the probability of receiving the treatment 

that the individual actually received. Specifically, as expressed in Equation 6, subjects in the 

treated group are weighted by the inverse of their propensity scores and those in the control 

group are weighted by the inverse of the probability of not receiving the treatment (Czajka, 

Hirabayashi, Little, & Rubin, 1992; Imbens, 2004).  

,                                                         (6) IPTW.
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where HIJKL.# is the IPTW weight for the !th subject, -# is an indicator variable denoting 

whether or not subject ! received the treatment, 3# is the estimated propensity score for subject !. 

With WBO, as expressed in Equation 7, the treated subjects receive a weight of 1 while 

the control subjects are weighted by the odds of being treated (Harder et al., 2010; Hirano et al., 

2003). This way, both groups are weighted to the treatment group and thus gives the TE estimate 

for the population that was selected to the treatment. 

,                                                         (7) 

where HLNO.# is the WBO weight for the !89 subject and remaining are defined as in Equation 6. 

The same as subclassification, with PS weighting, all subjects are retained in the analyses. In this 

simulation study, these PS conditioning methods including 1:1 nearest PS matching, 

subclassification, as well as PS weighting for both treatment effects were all implemented and 

compared in terms TE accuracy and precision. 

In summary, in the PS conditioning step, the data from the two treatment groups that 

have been adjusted for TE estimation via any of the conditioning methods are referred to as 

conditioned data. The goal of these PS conditioning methods is to achieve balance between the 

conditioned data such that the treated and control groups are comparable, although a good 

balance is not guaranteed. Therefore, balance check is another important step before moving 

forward to estimating unbiased treatment effects.  

2.2.3.4 Assessing the conditioning quality. The idea of balance check is to see if the 

conditioning procedure is able to obtain balance between control and treated groups on the 

distributions of the relevant covariates (Caliendo & Kopeinig, 2008). A typical procedure is to 

check the standardized bias of the covariates in the treatment group compared to those in the 

control group (Rubin, 1985). Standardized bias is often defined as the standardized mean 
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difference (SMD) between control and treated groups, a quantity similar to a standardized effect 

size (Cohen’s d). Covariates a considered balanced if SMD is less than 0.25 (Ho, Imai, King, & 

Stuart, 2007). Usually, an even stricter cutoff, such as 0.10, indicates better balance (Harder, 

Stuart, & Anthony, 2010). SMD can be calculated from: 

,                                                          (8) 

where  /P6G and /P6Q  are the means of covariate 7 in the treated and control groups and R6G is the 

standard deviation of the covariate within the treatment group. For IPTW and WBO, the 

components are weighted equivalents. For subclassification, the balance within each stratum is 

calculated; the weighted mean of all balance measures across strata is then computed. If 

conditioned samples are found to be unbalanced on one or more covariates, a common solution is 

to reconsider what other pretreatment covariates can be included and/or add possible interactions 

or polynomials in the PS estimation model. In this simulation study, balance was always checked 

after PS conditioning. Given that all important pretreatment covariates were included in the PS 

models, balance was mostly desirable. In the conditions where balance was not good, I moved 

forward to TE estimation without going back to the PS model again and discussed this in the 

results. 

2.2.3.5 Treatment effect estimation. After covariate selection and PS estimation, 

conditioning, and balance checking, the last step in applying PS techniques is to obtain and 

interpret the TE estimate. As was mentioned in Section 2.2.3.4, there are two causal estimands 

commonly of interest in quasi-experimental settings depending on the population of interest: the 

average treatment effect on the treated (ATT, Equation 9) and the average treatment effect in the 

population (ATE, Equation 10).  

SMDp =
X pT − X pC

SpT
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.                                                   (9) 

.                                                 (10) 

The ATT is the treatment effect for the subjects in the treated group only (Hirano, 

Imbens, & Ridder, 2003; Imbens, 2004). The ATE refers to the treatment effect on all subjects, 

both treated and control (Czajka et al., 1992; Imbens, 2004). In the math tutoring example, ATT 

compares the math achievement between students who had taken the treatment and the math 

achievement for the same students if, instead, they did not take the program. ATE, in 

comparison, represents the difference in math achievement if all students took the program 

compared to if none of them were in the treatment program. As is seen in Equation 10, the 

definition of ATE is identical to that of the general causal effect in the potential outcomes 

framework. 

The PS conditioning methods (matching, subclassification, and weighting) differ in terms 

of the estimands, for the reason that they vary with respect to the relative weights each subject 

receives as well as the number of subjects that retain after conditioning (Stuart, 2010). In 

particular, the PS method based on matching produces an estimate of the ATT, while 

subclassification and weighting can estimate both the ATT and the ATE. When the treatment 

effects vary only randomly across individuals, the expected values of the ATT and ATE will be 

equal (or homogeneous). Otherwise, when the treatment effect varies at different levels of a 

baseline characteristic or the propensity score that is a function of one or more such baseline 

characteristics, it is considered heterogeneous (Harder, Stuart, & Anthony, 2010; Kurth et al., 

2006; Wang, Lagakos, Ware, Hunter, & Drazen, 2007) and the ATT and ATE will no longer be 

expected to be comparable, as will be further discussed in Section 2.4.  

( ) ( ) 1 0 | 1i iATT E Y Y T= - =é ùë û

( ) ( )1 0i iATE E Y Y= -é ùë û
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In addition to the two estimands, researchers have a choice of method to use to estimate 

the treatment effect. Previous studies have suggested that approaches other than simply 

comparing the two matched groups should be used when utilizing matched groups to evaluate the 

treatment effect. Regression analysis which can also control for remaining covariate differences 

between matched treated and control groups in observational studies is a typical option (Cochran 

& Rubin, 1973; Ho et al., 2007; Rubin, 1973; Rubin & Thomas, 2000). This way, the matched 

data are further adjusted to control for the small remaining pretreatment differences between 

groups. The combination of conditioning and regression analysis is referred to as the “doubly 

robust” procedure which produces a consistent effect estimator as long as one of the methods in 

the combination is correctly specified (Funk, Westreich, Davidian, & Wiesen, 2011; Stuart & 

Rubin, 2007).  

Following the ideas introduced above, both the ATT and ATE can be obtained as the 

estimated coefficient for the treatment variable in a regression function. The functional form is 

shown as: 

,                                                   (11) 

where "#	is the outcome score for person ! (i.e., math achievement), S5 is the intercept of the 

model, STis the TE estimate, and -# is the treatment status. The term  represents the 

idea of doubly robust, that is, the linear regression adjustment after conditioning is applied. 

Although a doubly robust approach is a common method to improve the TE estimates, it was not 

an interest of this simulation study. Given that the true PS model was known and all pretreatment 

covariates used for data generation were included in the PS estimation model, doubly robust was 

unlikely to further explain the variance in the outcome.  
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 Summary of Section 2.2: In this subsection, I introduced what a propensity score is, in 

what areas it has been applied, the important assumptions that underlie the estimation of causal 

effects using PS methods, and how to implement these PS methods step-by-step. With this 

introduction of the basic steps of using the PS methods, the next section, 2.3, explains the 

theoretical framework of how relative PS distributions could possibly affect the performance of 

the methods, the central focus of this proposed dissertation study.  

2.3 Potential Effect of Propensity Score Distributions 

In a non-experimental design where the data are not randomly assigned to the treatment 

conditions, the treated and control groups may differ systematically with respect to the related 

pretreatment covariates. As a function of these covariates, the PS estimates may distribute 

differently for each treatment group. Specifically, assuming the model used to predict probability 

of treatment (“the PS model”) is correct (the functional form is accurate) and informative (the 

selection into treatment was not random), the PS estimates may differ in a variety of ways 

including means, variances, skewness, and kurtosis. In terms of the PS density distributions, the 

propensity scores tend to distribute towards 1 for the treated group and 0 for the control group 

(see Figure 1), reflecting that the overall probabilities of receiving the treatment are higher for 

the treated group and lower for individuals in the control group. In short, the differences in the 

pretreatment covariates between the two groups would lead to different relative PS distributions. 

Because the relative PS distributions may differ in unlimited forms (due to unlimited patterns of 

differences in a number of covariates and thus unlimited possibilities of central tendency, 

variability, skewness, and kurtosis of the associated PS distributions), in this study, the 

distinction of the relative PS distributions is defined as the overlap of the two distributions (i.e., 
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the proportion of the intersection of the two distributions divided by the union of the two 

distributions). A larger distinction between the two PS distributions yields a smaller overlap.  

 
Figure 1. An example of relative PS distributions of the treated and control groups (via 

probability density functions). In this example, these two distributions differ in multiple ways 

including mean, variance, skewness, kurtosis, in addition to overlap. 

Arguments have been made in the literature that the estimated PS distributions are not 

meaningful, because the purpose of PS conditioning is to obtain two comparable samples rather 

than accurate PS estimates (Dugoff et al., 2014; Hahs-Vaughn, 2015). However, good balance is 

not the ultimate goal of the use of a PS method and does not guarantee that the TE estimates are 

unbiased. As clearly seen from the Subsection 2.2.3.3, all of the conditioning methods are 

directly based on the PS estimates. Different PS estimates, or the relative PS distributions (or 

overlap) between the two groups, accordingly, may affect the performance of each conditioning 

method.  

To illustrate, when there is a relatively large distinction between the two PS distributions, 

the overlap would be smaller. As a result, for PS matching, more subjects with relatively extreme 
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propensity scores will be discarded without having appropriate matches and the matched data 

could be smaller. For PS subclassification, the cut-off propensity scores used for grouping could 

be more extreme; meanwhile, the PS overlaps between the two groups within each subclass, 

especially within the highest and the lowest subclasses, could be very small (i.e., few cases for 

one group and many cases for the other), which could lead to unstable within-subclass estimates, 

and in turn affect the overall TE estimates for the full sample. When there are few control or 

treatment cases in a stratum due to extreme propensity scores, strata need to be collapsed and 

that likely would further add bias to the TE estimates.  

With respect to PS weighting, when there are extreme propensity scores, the PS weights 

could be extremely high. Table 1 shows examples of IPTW and WBO weights (calculated with 

Equations 6 and 7) for each group at different levels of propensity scores. A concern with PS 

weighting is that overweighting abnormal subjects could lead to biased and less precise TE 

estimates (Austin, 2011a). Take the propensity score of 0.99 as an example, the corresponding 

IPTW weight is 100 for a control subject, indicating that this particular subject represents 100 

subjects in the population when estimating the treatment effects. Imagine that this subject 

happens to be a student who never participated in the math tutoring program but had a superior 

math grade, his math performance would possibly inflate the average math scores for the control 

group and lead to underestimation of the treatment effect of that math program. Furthermore, in 

the case of PS adjustment via weighting, extreme weights that are due to extreme propensity 

scores may increase the variability of the weights and thereby result in a loss of precision for the 

TE estimates (Czajka et al., 1992; Kalton & Flores-Cervantes, 2003; Lee, Lessler, & Stuart, 

2011). The quantity of the loss of precision is a function of the following variance inflation 

factor: 
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,                                                            (12) 

where UV and WV are the standard deviation and mean of the weights respectively (Kalton & 

Flores-Cervantes, 2003; Kish, 1992). As clearly seen from Equation 12, more extreme weights 

tend to inflate the ratio 	UV/WV (also referred to as the coefficient of variation), and in turn, lead 

to a loss in precision. In summary, for PS weighting, the possible changes in both accuracy and 

precision due to potential different extreme weights based on the relative PS distributions may 

contribute to treatment effects of different qualities.  

Table 1  

IPTW and WBO Weights at Different Levels of Propensity Scores 
Propensity 
Scores 

IPTW Weight  WBO Weight 
Treated Control  Treated Control 

0.99 1.01 100.00  1.00 99.00 
0.90 1.11 10.00  1.00 9.00 
0.80 1.25 5.00  1.00 4.00 
0.70 1.43 3.33  1.00 2.33 
0.60 1.67 2.50  1.00 1.50 
0.50 2.00 2.00  1.00 1.00 
0.40 2.50 1.67  1.00 0.67 
0.30 3.33 1.43  1.00 0.43 
0.20 5.00 1.25  1.00 0.25 
0.10 10.00 1.11  1.00 0.11 
0.01 100.00 1.01  1.00 0.01 

 

Researchers have developed two popular techniques, weight stabilization and trimming, 

to accommodate the undesirable effects of extreme weights. These two techniques are different 

in purpose and implementation. The way to stabilize weights is to multiply a constant, that is, the 

mean of the probabilities of being assigned to the corresponding group, to the original PS 

weights (Robins, 1998, 1999; Robins, Hernán, & Brumback, 2000). The equations for weight 

stabilization for IPTW and WBO are respectively shown in Equations 13 and 14.  
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,                                   (13) 

   ,                                  (14) 

where RHYZG[.# and RH[\].# represent the stabilized IPTW and WBO weights, HYZG[.# and 

H[\].#; ^G is the size of group -, which is either the treated or the control group; -# is the 

treatment status for person !; and 3# is the PS estimate for person !. The calculations for  

and  are shown in Equations 6 and 7. 

Because stabilization does not change the weighted means for each group, it does not 

affect the point estimate. The purpose of implementing stabilization, then, is to reduce the 

variance (or to improve the precision) of the estimates. Robins and colleagues (1998, 1999, & 

2000) also found that when the PS model is accurately specified, stabilization will not change the 

variance either and thus is not useful.  

Weight trimming is a technique often used in survey analysis to truncate the extreme 

weights to improve the precision of the outcome estimates. Although a decrease in sampling 

error can be expected with the use of trimming, this technique increases the potential for bias in 

the estimates, because the weighted cases after trimming are no longer perfectly representative of 

the original population (Potter, 1990). The weight trimming technique has been recently 

introduced into PS studies (Lee, et al., 2011). Lee et al. conducted a simulation study to 

investigate if the benefits of weight trimming found in the survey sampling setting also apply to 

the PS setting and whether the benefits vary depending on PS estimation methods (i.e., logistic 

regression vs. non parametric methods such as boosted classification trees and random forests). 
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The authors found that with weight trimming following logistic regression, the accuracy and 

precision of final parameter estimates were improved; however, the benefit did not apply to any 

nonparametric PS estimation. They also indicated that although weight trimming can improve 

causal inferences in some settings, the research should always focus on improving the generated 

weights (e.g., via specifying a more accurate PS model) rather than relying on this ad-hoc 

method of trimming. The weight trimming technique was still applied in this study to provide 

comprehensive information for those who are interested in this technique.  

A popular way of performing trimming is to use percentile cutpoints (Cole & Hernán, 

2008; Lee et al., 2011), that is, setting a percentile cutpoint as the maximum value of the weights. 

Taking the 90th percentile as an example, any weights that are greater than the 90th percentile are 

set equal to the 90th percentile. This way, the extremely high are trimmed downwards and will 

not inflate to an unexpected degree. As the optimal level of trimming is difficult to determine, 

one can set a range of cutpoints ranging from the 50th to the 99th percentiles and report all results. 

In addition to setting percentile cutpoints, one can also set the original PS weights to a range 

based on the raw weight values (i.e., no more than 10; Harder et al., 2010).   

According to the above description, the undesirable effect of relative distributions 

regarding extreme weights on the precision of the TE estimates can be addressed, in part, by the 

application of weight stabilization and trimming. However, the potential bias caused by different 

relative PS distributions, as well as the further biased TE estimates from weight trimming have 

been rarely discussed in the PS literature.  

With the discussion of the potential effects of PS relative distributions, the primary focus 

of this study was to explore how the selection of a specific PS conditioning method might be 

affected by different levels of PS relative distributions. This issue was investigated via a 
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simulation study in which different relative PS distributions (in terms of different sizes of 

overlap, in combination with mean, variance, skewness, and kurtosis) were manipulated. By 

comparing the accuracy and precision of the TE estimates obtained using different PS 

conditioning methods, I was able find out which PS conditioning method had the best 

performance under which relative PS distribution condition. As a brief summary, PS matching 

and subclassification are likely to be sensitive to the relative PS distributions in certain 

conditions, while PS weighting without trimming tends to be more robust across a variety of data 

conditions. The results are discussed in more detail in Chapter 4. 

2.4 Potential Effect of Heterogeneous Treatment Effects 

Section 2.2.3 reviewed that ATT and ATE are both average treatment effects across 

individuals. The treatment effect is considered homogeneous when the effects vary only 

randomly for all individuals. In practice, however, there is a possibility that the treatment effects 

vary systematically depending on certain covariates. For example, subjects from different 

pretreatment subgroups may have different treatment effects. Continuing the example from the 

last section, the effect of a math tutoring program, the program may have a larger effect on 

students who spend a longer time on studying, which is also a covariate in the PS model. In this 

case, when the treatment assignment interacts with any covariate of the PS model (or the PS 

estimates that are based on the related covariates), the treatment effects will vary across subjects, 

in other words, are heterogeneous. That said, the ATT and ATE are very likely to differ when 

heterogeneous treatment effects exist, because they represent different populations, in which the 

distributions of the treatment effect-related covariates may also differ.  

Section 2.3 explains how relative PS distributions can affect the conditioned data and 

thus the TE estimates. As was introduced in Section 2.2.3.5, when the TE estimates are 
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heterogeneous, individuals with different PS estimates will have different individual treatment 

effects (ITE) given that the ITEs are associated with one or more pretreatment covariates. The 

heterogeneous treatment effects could further affect the TE estimates via interacting with the 

relative PS distributions. For PS matching, relative PS distributions affect TE estimates via 

changing which and how many treated cases are discarded; heterogeneous effects could further 

affect the TE estimate due to the fact that the cases discarded may have different ITEs. When it 

comes to PS weighting, the situation is more complicated. Consider the ATT estimation using 

WBO weights as an example, imagine that the treated and control groups each have 11 subjects 

with the 11 propensity scores shown in Table 1, while the WBO weights for those in the treated 

group are all 1, the relative weights (i.e., weight/ sum weight) for the control subjects vary 

substantially (shown in Figure 2). When the ITEs are independent of the PS estimates, the ATT 

estimate will just be the weighted mean difference of the two groups. If the ITEs are 

heterogeneous, in other words, correlated with one or more pretreatment covariates, the ITEs 

would increase monotonically along with the PS estimates (also shown in Figure 2). The overall 

ATT estimate, then, is the function of the association between the relative weights and the 

heterogeneous ITEs. In a condition with large relative distributions of propensity scores, for 

example, more subjects in the control group will have large weights and thus larger OVERALL 

relative standing in the treated population; if these large weights are further associated with 

greater ITEs, the overall ATT estimate will be inflated compared to the condition of 

homogeneous treatment effects. Similar effects of heterogeneous treatment effects will apply to 

IPTW weighting, as well as subclassification, which has the combined features of PS matching 

and PS weighting. Therefore, different levels of heterogeneity in treatment effects will also be 

manipulated in the study, to facilitate the exploration of the relative PS distributions. 
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Figure 2.  Illustration of the possible effect of heterogeneous treatment effects. 

 
2.5 Research Questions  

The purpose of this dissertation was to investigate whether, and in what way, the relative 

PS distributions between the treated and control groups affect the performance of each PS 

conditioning method. The effects of interest were examined in terms of the accuracy and 

precision of the TE estimates, by answering the following methodological questions via a 

simulation:  

(1) Do the relative PS distributions between the treated and control groups affect the 

quality of the TE estimates obtained via different PS conditioning methods?  

(2) Does the relation between the relative distributions and performance differ across 

levels of TE heterogeneity?  

The answers to these questions would have the potential to affect behaviors of researchers who 

use PS methods – they might first be encouraged to evaluate the differential PS distribution 
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across groups, and then choose a method that works best for that kind of differential. Findings 

from this study thus will add to the literature on the implementation of the PS method – an extra 

step of checking the relative PS distribution and select the best PS conditioning method, in 

addition to the traditional five steps, might be necessary to make more accurate and precise 

causal inference.  

While the simulation study was to answer the above research questions, as a 

demonstration of the issues involved in addressing the importance of PS distributions across 

groups, an empirical data analysis was conducted to investigate the relation between having 

home access to computers and first grade students’ math achievement using data selected from 

the Early Childhood Longitudinal Study Kindergarten Class of 2010-11 (ECLS-K:2011; 

Tourangeau et al., 2015). It did not only serve as an illustration of the proposed six-step PS 

procedure, obtaining an estimate of the treatment effect of having a home computer may also be 

desirable for education policy makers. In Chapter 3, I present the simulation design to evaluate 

the two research questions and, in Chapter 4, I interpret the results. Chapters 5 and 6 respectively 

discuss the design and results of the empirical analysis. 
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Chapter 3. Simulation Design 

The primary goal of this study was to investigate whether the relative PS distributions 

between the treated and control groups affect the quality of the TE estimates obtained via 

different PS conditioning methods. Another question the study was trying to answer was whether 

the relation between the relative distributions and performance of the PS conditioning methods 

would be different across levels of TE heterogeneity. The answers to these questions were 

evaluated through a simulation study.  

In this chapter, I begin by introducing briefly how the major manipulated factors were 

selected, followed by describing how each of the study factors was generated in more detail. I 

then specify the implementation of two major steps involved in a typical PS method, including 

PS estimation and the PS conditioning methods used in this study, as well as the selection of the 

TE model. Next, I provide a summary of the simulation conditions, followed by measures of 

performance that were compared to answer the research questions.  

3.1 Important Simulation Factors 

The simulation mainly manipulated three fully-crossed factors: differences in the relative 

PS distributions, the level of heterogeneity in treatment effects, and sample size. First, the effect 

of PS distributions on the conditioning performance was the focus of the study and thus the level 

of relative PS distributions, in terms of varying overlap, was manipulated. The four empirically-

defined relative distributions that were manipulated in the study are shown in Figure 3. The 

overlap quantities (.61, 0.35, 0.20, and 0.32 from left to right) were calculated as the proportion 

of the intersection of the two PS distributions over the union of the two distributions, based on 

super populations with a sample size of 50,000 for both groups, with homogeneous treatment 

effects. The calculation was done via integration, using the R package of “sfsmisc”. The overlap 
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shows how similar the PS distributions are between the two groups, which further indicates how 

comparable the two groups are before PS adjustment. With smaller overlap (or greater the 

difference in the PS distributions), more pretreatment adjustment is needed to get the data ready 

for TE esimation. The hypothesis here was that some PS conditioning methods may perform 

better than others when more pretreatment adjustment is needed.  

The second factor manipulated was the level of heterogeneity in treatment effects. This 

factor was related to the two popular causal estimands, ATT and ATE. As was indicated in 

Section 2.2.3.5, the treatment effects are considered homogeneous when they are independent of 

the propensity scores, that is, the expected values of ATT and ATE are equal. When the 

treatment effects are heterogeneous, they must be correlated with one or more of the 

pretreatment covariates and would possibly interact with the relative PS distributions, which may 

in turn, affect the performance of the PS methods. Therefore, both homogeneous and 

heterogeneous treatment effects were simulated to further understand the relations between 

relative PS distributions on the performance of PS conditioning methods. Three levels of 

heterogeneity were manipulated via an interaction of the treatment exposure variable and a 

pretreatment covariate in the TE model. The heterogeneity level of treatment effects was 0 

(homogeneity) when this correlation was set 0.  

Sample size was the third factor manipulated in the simulation study. This sample size 

factor is mostly likely to affect PS matching and subclassification. For PS matching, depending 

on the specific matching technique (e.g., 1:1 matching with a caliper), not all treated cases can 

find a match from the control group. Therefore, the sample size, particularly the relative sample 

sizes in the two groups, may affect the matching rate and thus may furhter affect the accuracy of 

the treatment effect. For subclassification, the relative numbers of cases falling in each subclass 



 

33 

may change how the treatment effects are weighted across subclasses and further affect the 

accuracy and precision.  

3.2 Data Generation 

Considering the conditions discussed above, a simulation was designed with population 

data generated following the three fully-crossed factors: 

(1) PS distributions with small, medium, and large differences between the two groups 

(with the overlap of 0.61, 0.35, and 0.20 calculated as the proportion of the 

intersection of the two relative PS distributions over the union of the two 

distributions). In all these three conditions, the PS esimates in both groups have a full 

coverage from above 0 to below 1. Another “truncated” form of relative PS 

distributions was generated to reflect the situation when the PS estimates in the two 

groups have different coverage (with a simulated overlap of 0.32). These four PS 

distribution conditions are visually shown in Figure 3; the statistical features for each 

distribution are presented in Table 2. 

(2) Heterogeneity of treatment effects at zero (i.e., homogeneity), slight, and substantial 

levels. The heterogeneous treatment effects were generated by increasing the 

interaction effect between the treatment status and one of the pretreatment effects in 

the outcome generation model. Details on how these effects were quantified are 

illustrated in the following along with the introduction to the true PS and TE models. 

When heterogeneity exists (i.e., slight or substantial), the ATT and ATE are different 

when the heterogeneity is not zero.
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Table 2  

Descriptives of the Simulated PS Relative Distributions 
Relative 
Distribution 

 Overlap 
 Mean   Variance   Skewness   Kurtosis 
 Treat Control   Treat Control   Treat Control   Treat Control 

Small 0.61  0.56 0.37  0.09 0.08  -0.24 0.50  1.75 2.00 
Medium 0.35  0.57 0.21  0.09 0.05  -0.26 1.37  1.76 4.06 
Large 0.20  0.57 0.10  0.09 0.02  -0.25 2.53  1.76 9.96 
Truncated 0.32  0.86 0.60  0.02 0.05  -1.81 -0.36  6.53 2.13 

 

 
Figure 3. The relative PS distributions of the treated and control groups; ds – small PS relative distribution, dm – medium PS relative 

distribution, dl – large PS relative distribution; dt – truncated PS relative distribution.
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(3) Small, medium, and large sample sizes for the control group. Specifically, 500, 1500, 

and 5000 cases for the control group and correspondingly 500, 500, and 500 cases for 

the treatment group were generated.  

Because the true PS model is usually unknown with real data, PS model misspecification 

is a common issue in practice. In addition to the three primary factors introduced above, the 

simulation also generated two types of PS population data as another factor. For the two 

population settings, the same PS estimation model would be considered correct and incorrect 

specifications respectively. The population setting where the PS model was correctly specified is 

represented as Scenario A and that with PS misspecification is Scanrio B. Scenario A data 

generation followed, in part, the additivity and linearity model introduced in Setoguchi, et al. 

(2008) which was further applied in Lee et al (2010). In addition to the Scenario A framework 

with additivity and linearity (i.e., main effects only), a second set of data with moderate non-

additivity and non-linearity (i.e., ten two-way interaction terms and three quadratic terms) were 

generated in Scenario B (Lee et al., 2010; Setoguchi et al., 2008). The data generation models are 

specified in Equations 15 and 16. 

,                   (15)  

where  are the simulated coefficients for the true PS model in Scenario A, where 

, , , , , and  ;  is the random 

error term; and  are vectors of random normal variables with mean of 0 (for the small 

relative PS distributions condition) and standard deviation of 1. As the level of relative PS 

distributions moved up by one category, the means of each covariate in the treated group were 

decreased by an effect size (measured by Cohen’s d) of 0.3. The conceptual model for this 

logit(e |T = 1) = β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + ε

β1 – β7

β1 = β5 = 0.80 β2 = 0.25 β3 = 0.60 β4 = 0.40 β6 = 0.50 β7 = 0.70 ε

X1 – X7
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generation is shown in Figure 4, with correlations illustrated in the figure. Some of the 

continuous variables then were converted to binary variables and thus the actual correlations of 

the generated variable values were smaller. The correlations among the variables were generated 

to reflect the complexity in research data in the real world. For example, in an educational 

setting, X2 represents for mother’s education level for a student and  X6 is whether the student 

goes to a private school. These two variables are likely to be positively correlated naturally in the 

real world for the reason that the education level may directly affect the household income, 

living area, expectation on the children, etc. 

The data for Scenario B, with moderate non-additivity and non-linearity, were generated 

following Equation 16: 

 ,          (16) 

where the variables and coefficient remain the same as in Equation 16. The parameters used for 

generating the covariates were consistent with those in Scenario A (see Equation 15).  

When fitting the non-additive and non-linear data generated in Scenario B with the same 

linear logistic regression PS model as used for the additive and linear data in Scenario A, 

ignoring the interaction and quadratic terms, the fitted PS model would be considered 

misspecified. This way, both correct and misspecified PS models were examined in combination 

with the proposed PS conditioning methods. The results revealed how PS misspecification could 

possibly interact with the PS relative distributions and homogeneous treatment effects, and in 

turn, affect the performance of each PS conditioning method.  

logit(e |T = 1) = β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 +

β2X2
2 + β4X4

2 + β7X7
2 +

(0.5)β1X1X3 + (0.7)β2X2X4 + (0.5)β3X3X5 + (0.7)β4X4X6 + (0.5)β5X5X7 +
(0.5)β1X1X6 + (0.7)β2X2X3 + (0.5)β4X4X5 + (0.5)β5X5X6 + ε



 

37 

 
Figure 4. The data generation model for the simulation study (Scenario A). The framework was 

originally created in Setoguchi et al. (2008), and was further applied in Lee et al. (2010) and 

Austin (2012). X1, X3, X5, X6, X8 and X9 are dichotomized variables, while the others are 

random normal variables. , 

. 

In addition to the PS generation model, the model used to generate outcome scores is 

expressed as: 

,         (17)  

where  and  are the same covariates from the PS generation model;  are 

the simulated coefficients for the for the true TE model, where , , 

, , , , , and ;  is the 

treatment exposure and thus the simulated baseline treatment effect was  when there 

was no heterogeneity. The homogeneous treatment effect was generated by adding an interaction 

effect of  between the treatment status  and one of the covariates . To simulate three 

different sizes of the heterogeneous treatment effects,  was set to be 0 to reflect zero 

Corr X1,X5( ) = Corr X3,X8( ) = 0.2

Corr X2 ,X6( ) = Corr X4 ,X9( ) = 0.9

Y =α0 +α1X1 +α 2X2 +α3X3 +α 4X4 +α5X8 +α6X9 +α7X10 + γ 0T + γ 1X7T + ε

X1 – X4 X8 – X10 α0 –α7

α0 = −3.85 α1 = 0.30

α 2 = −0.36 α3 = −0.73 α 4 = −0.20 α5 = −0.71 α6 = −0.19 α7 = 0.26 T

γ 0 = −0.40

γ 1 T X7

γ 1
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heterogeneity (homogeneous treatment effect), -0.40 and -0.80 for the slight and substantial 

heterogeneity. Therefore, the real treatment effects (homogeneous or heterogeneous) can be 

expressed as: 

 .                                                        (18) 

The actual sizes of the heterogeneous treatment effects were measured via coefficient of 

variation , a standardized measure of dispersion of the heterogeneous treatment effects 

distribution defined as the ratio of the standard deviation  to the mean : 

 .                                                         (19) 

The values of were respectively 0, -1.68, and -7.54 for zero (i.e., homogeneous), 

slight, and substantial heterogeneous treatment effects based on super populations of 50,000 

cases in both treated and control groups, under the condition of large relative PS distributions.  

 
3.3 PS Estimation  

Following data generation, propensity scores were estimated via a logistic regression 

before undertaking any PS conditioning techniques. The data in both scenarios were fit via the 

PS estimation model expressed in Equation 20: 

,                  (20) 

where -  are the estimated coefficients for each of the pretreatment covariates . As 

was indicated in Section 3.2, the PS model was cosidered mispecified in Scenario B where 

moderate non-additivity and non-linearity were generated.  

γ heter = γ 0 + γ 1X7

cvheter

δ heter µheter

cvheter =
δ heter
µheter

cvheter

( ) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
ˆ ˆ ˆ ˆ| ˆ ˆ ˆˆ 1 ˆlogit e T X X X X X X Xb b b b b b b b= = + + + + + + +

β̂0 β̂7 X1 – X7
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3.4 PS Conditioning Methods and Balance Check 

Once the PS estimates were available, the selection bias between the two treatment 

groups were adjusted by different PS conditioning methods. In this study, I compared the TE 

estimates after conditioning with PS matching, subclassification, and PS weighting (i.e., IPTW 

and WBO). Each of the choices made for these conditioning methods is described as follows.  

3.4.1 Matching 

Among the various matching options, 1:1 nearest neighbor matching without replacement 

with a caliper of 0.25 (Cochran & Rubin, 1973; Rosenbaum & Rubin, 1984) was used as an 

example due to its popularity and simplicity in practice. As unmatched cases were removed in 

the PS matching process, this technique was used to obtain an estimate of the ATT.  

3.4.2 Subclassification 

The subclassification technique was based on 5 subclasses identified by the quintiles of 

the overall propensity scores to remove at least 90% of the bias (Rosenbaum & Rubin, 1984). 

Both estimates of the ATT and ATE were calculated with subclassification following the 

corresponding methods of weighting TE estimates for each subclass introduced in Section 

2.2.3.3. If there were not sufficient numbers of treated or control cases in any subclass, for 

example, 0 control in the first stratum, I collapsed the adjacent strata for the simulation and 

calculated the TE utilizing fewer than 5 subclasses.  

3.4.3 PS weighting 

Similarly, for PS weighting, IPTW and WBO were applied to obtain estimates of both the 

ATE and ATT. Weight stabilization was not used in combination with PS weighting in this 

simulation study, because in the scenario of the primary interest of the study (Scenario A), PS 

specification in Scenario A the PS model were accurately specified and thereby stabilization 
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would not be useful in improving the precision of the estimates (Robins and colleagues, 1998, 

1999, and 2000). As for trimming, I set a lower bound of 0.10 and an upper bound of 10 as the 

cutpoints for the raw WBO and IPTW weights following Harder et al. (2010). In particular, any 

weight that was greater than 10 or smaller than 0.10 was set to 10 or 0.10 instead, respectively. 

Other options, such as setting percentile cutpoints as the maximum value of the weights (Cole & 

Hernán, 2008; Lee et al., 2011), were not considered in this study. This is because trimming was 

only implemented to demonstrate an option for PS application, and thus finding and using the 

optimal level of trimming was not the interest of the study.  

3.4.4 Balance check 

Following the application of these PS conditioning methods, balance in terms of SMD 

(Equation 8) was computed and compared to the criterion of 0.25. In an applied setting, PS 

practitioners usually keep tweaking the PS models until the point at which the balance measures 

meet the criterion. For this simulation study, the balance metric was only used as a supplemental 

index for the examination of the relations between the performance of the PS conditioning 

methods and relative PS distributions. That said, I moved to TE estimation for all conditions, 

regardless of the quality of balance.  

3.5 TE Estimation Model 

With the comparable samples were obtained via each of the above PS conditioning 

techniques, the treatment effect, then, was estimated as the function of the treatment. Doubly 

robust was not considered for this simulation study because all related covariates were known 

and included in PS estimation, and thus including them in the TE estimation model would 

unlikely in further explaining the remaining variance in the outcome.  
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Additionally, the simulated interaction term between the treatment ( ) and the covariate, 

, was not considered either, because the interaction might not be anticipated by (nor of 

interest to) the researcher. Therefore, the fitted TE model can be expressed as: 

,                                                              (21) 

where  is the intercept and  represents the TE estimate;  is the weight for each subject.  

The weight ( ) was 1 for all subjects for matching and subclassification; it represents the 

corresponding WBO or IPTW weights for each subject in the PS weighting methods.  

For subclassification, the final TE estimate, as well as the SE estimate, were calculated as the 

weighted mean across all subclasses. Details on how weighting was done across subclasses for 

ATT and ATE are described in detail in Section 2.2.3.3. For PS weighting, weighted means were 

compared instead between the two groups. Because the observations were weighted in the PS 

weighting methods, the standard errors were computed using the sandwich variance estimator, 

which was robust to non-constant residual variance. 

3.6 Summary of Simulation Conditions 

To summarize the controlled conditions, the designed study had 72 cells generated by the 

3 primary study factors(i.e., relative PS distributions, heterogeneity in treatment effect, and 

sample size) and 1 secondary factor (PS specification). Within each cell, 8 PS conditioning 

methods (including a naïve model without adjustment for selection bias) were implemented to 

estimate ATE or ATT. All these simulation conditions are summarized in Table 3. The data 

generation, PS estimation and conditioning, and TE estimation were repeated using 250 Monte 

Carlo replications within each cell. . All data generation and analyses in this dissertation were 

conducted using R. The MatchIt and twang packages were used for the PS for the 

implementation of the PS methods.

T

X7

Ŷ = γ̂ 0 + γ̂ 1wiTi

γ̂ 0  γ̂ 1 wi

wi
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Table 3  

Summary of Simulation Conditions 
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small Method 0: naïve method using unconditioned sample without any selection adjustment. 
Method 1: 1:1 nearest neighbor matching without replacement with a caliper of 0.25. 
Method 2: subclassification with five PS subclasses to estimate ATT. 
Method 3: weighting by the original WBO weights to estimate ATT. 
Method 4: Weighting by the trimmed WBO weights to estimate ATT. 
Method 5: subclassification with five PS subclasses to estimate ATE. 
Method 6: weighting by the original IPTW weights to estimate ATE. 
Method 7: weighting by the trimmed IPTW weights to estimate ATE. 

medium 

large 

Note. This table summizes both scenarios (A and B).
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3.7 Measures of Performance 

The quality of the TE estimation (for both ATE and ATT) under each condition was 

evaluated in terms of accuracy and precision of the TE estimates via relative bias, empirical (i.e., 

true) standard error, and relative bias in the SE estimate. The definitions of these three measures 

are presented in Equations 22,  23, and 24. 

,                                                    (22) 

where is the relative bias of the estimated treatment effects across all  replications, 

is the TE estimate for the  replication, and  is the simulated true treatment effect, which 

is the function of the simulated baseline effect, interaction coefficient between treatment and a 

covariate, and that covariate itself (Equation 18).  

,                                                   (23) 

where  is the empirical (true) standard error of the estimated treatment effects ,  is the 

average of the TE estimates across all replications, and the others are as above. 

 ,                                                (24) 

where  is the relative bias in the SE estimate, is the SE of the treatment 

effect for the  replication; the others are as above.  

In the results, the relative bias indicates how accurate the TE estimates are across all 

conditions. The empirical standard error shows how precise the TE estimates are via each PS 

conditioning method, while the relative bias in SE estimate measures whether the SE estimates 

θREL.BIAS =
1
B r=1

B

∑(θ̂r −θTRUE ) /θTRUE

θREL.BIAS B θ̂r  

rth θTRUE

SE(θ̂ ) = ( 1
B −1

)
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B

∑(θ̂r − θ̂ )2

SE θ̂( ) θ̂ θ̂

SE(θ̂ )REL.BIAS =
1
B
∑
r=1

B

(SE(θ̂r )− SE(θ̂ )) / SE(θ̂ )
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are trustworthy. The two SE metrics would respectively demonstrate how large the actual 

sampling error was and whether we could trust the estimated SE that appeared in the output as 

being a good estimate of that SE. Among the three performance metrics, the relative bias in TE 

and SE estimates were the primary metrics used to decide whether the results were valuable, 

while the empirical SE estimates could tell how precise the results were when the SE estimates 

were accurate. Therefore, performance thresholds were only defined for the two relative bias 

metrics.   

Hoogland and Boomsma (1998) suggested that the acceptable relative bias of parameter 

estimates is less than 5% and the acceptable relative bias of SE estimates is smaller than 10%. In 

addition to these acceptable thresholds (interpreted as “good to use” in the rest of the paper), 

another category of “use with caution” was added between “good to use” and “untrustworthy” to 

define the results that can be “used with caution.” This transitioning category allows practitioners 

to further understand how desirable/undesirable their results are. The definitions of each category 

for each of the two metrics are defined in Table 4. According to the thresholds, the results from 

each PS conditioning method for all data conditions are presented in Chapter 4 as guideline 

tables to help practitioners make decisions. Although the Hoodland and Boomsma standard is not 

ideal for all settings, it is the most popular criterion in literature so far. Other options can be 

found in Bradley (1978) and Muthén, Kapaln, and Hollis (1987). 

Table 4  

Guidelines for Results Thresholds 

  
Relative bias  
in TE estimate 

Relative bias  
in SE estimate 

Good to use < 5% < 10% 
Use with caution >= 5% &< 10% >= 10% &< 15% 
Untrustworthy >= 10%  >= 15%  
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This chapter has elaborated on the design of the simulation study, including the 

importance and levels of the four study factors for data generation, that is, relative PS 

distributions, possible heterogeneous treatment effects, sample size, and PS population models to 

reflect PS specification. Following the data generation section, the approaches for the analyses of 

the simulated data were adapted from the five-step procedure introduced in Section 2.2.3. The 

outcome measures of the simulated study were then discussed. The three measures of 

performance were compared across the between-cell factors to find out (1) how the performance 

of PS conditioning methods differ in getting accurate and precise TE estimates across different 

relative PS distributions, and (2) how this pattern was interacted by different levels of TE 

heterogeneity, sample size, and PS model specification. The results from this simulation study 

(discussed in Chapter 4) not only provided guidance for researchers and practitioners about 

which PS conditioning methods to choose under which data settings, but also demonstrated how 

to implement PS distribution checking and PS conditioning method selection as an extra step in 

an empirical setting as further described in Chapter 5. 
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Chapter 4. Simulation Results  

This chapter summarizes and analyzes the results of the simulation study. The following 

sections will interpret how each of the PS conditioning methods performed under the simulated 

data conditions. In particular, this chapter summarizes the balance, relative bias in TE and SE 

estimates, and the precision of each PS conditioning method. As Scenarios A and B (i.e., PS 

estimation with correct and incorrect specification) demonstrated similar patterns in the results, 

the following interpretation only focuses on Scenario A. The results for Scenario B are attached 

in the Appendices as supplemental information. Given the interactions between the manipulated 

simulation factors, interpreting the effects directly was challenging. Instead, the individual 

treatment effects (ITEs) are introduced to unpack the effects of PS relative distributions, 

treatment effect heterogeneity, and sample size on the performance of some of the PS 

conditioning methods. The averaged ITEs at different propensity score categories for three 

example conditions (i.e., small sample size in the control group and large difference in PS 

relative distributions with homogeneous, medium and large homogeneous treatment effects) are 

presented in Table 7 as reference.  

4.1 PS matching 

PS matching is a typical method used to estimate the ATT. This section interprets the 

results for PS matching with respect to balance of the covariates after matching, as well as the 

accuracy and the precision of ATT estimates based on the conditioned samples produced via 1:1 

nearest neighbor matching with caliper (details explained in Chapter 3).  

4.1.1 Balance 

The balance results for PS matching and other PS conditioning methods for Scenario A is 

shown in Figure 5. The balance values were robust to heterogeneity in treatment effects because  
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the heterogeneous treatment effects were generated via adding an interaction effect between the 

treatment status and one of the covariates to the true TE model. In other words, heterogeneity did 

not affect the characteristics (e.g., distributions) of the covariates across treatment assignment 

groups. Therefore, the balance estimates presented in Figure 5 are only for the conditions with a 

homogeneous treatment effect.
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Figure 5. Standardized mean difference (SMD) for all PS conditioning models (Scenario A). The balance plot for scenario B follows 

the same pattern and is presented in Appendix A.  dl(dm/ds/dt) = large(medium/small/truncated) difference in PS relative 

distributions. nl(nm/ns) = large(medium/small) sample size in the control group.  
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In general, PS matching produced very good balance between the treatment and control 

groups across all covariates and conditions manipulated in the simulation study. The SMD values 

were almost always below the strict criterion of 0.1, except for some covariates in the condition 

characterized by large PS relative distribution and small control group sample size. The results 

were similar in Scenario B when the PS score model was misspecified (plot presented in 

Appendix A). 

4.1.2 Accuracy of ATT estimation 

PS matching was sensitive to the relative difference in PS distributions across treated and 

control groups, that is, higher relative bias was associated with larger PS relative distributions, 

especially with more heterogeneity in treatment effects. However, as the sample size in the 

control group increased, in general, the bias in the TE estimates decreased (Figure 6, Table 5). 

Although it would be ideal for PS matching to find matches for all subjects in the treatment 

group, cases may be discarded from the treatment group depending on whether there is sufficient 

overlap between the treated and control groups. The smaller the overlap, the more subjects in the 

treatment group will be discarded. Losing any treated cases would result in some degree of bias 

in the TE estimates, as the remaining treated cases are no longer fully representative of the 

overall treated population. In the current simulated conditions, the overlap between the two 

groups tended to be smaller with larger PS relative distributions, and thus more cases were 

discarded which in turn, resulted in more bias in the TE estimates. The average matching rates 

for each simulated condition are presented in Table 6.
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Figure 6. Relative bias for ATT methods (Scenario A). The plot for scenario B is presented in Appendix B.  dl(dm/ds/dt) = 

large(medium/small/truncated) difference in relative PSdistributions. nl(nm/ns) = large(medium/small) sample size in the control 

group. hl(hm/hs) = large(medium/small) heterogeneous treatment effects, another way of saying substantial, slight, and zero 

heterogeneous treatment effects discussed in Chapter 3.
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Table 5  

Relative Bias in ATT Estimate 
Conditions  Relative Bias (ATT) 

Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 Naïve  Matching Subclassification WBO WBO-Trimmed 

Large Truncated Substantial  6.61  -0.03 0.13 -0.01 0.43 
Large Truncated Slight  2.28  -0.01 0.14 -0.01 0.46 
Large Truncated Zero  1.03  0.02 0.16 -0.01 0.51 
Large Large Substantial  -7.81  -0.28 0.38 -0.05 0.76 
Large Large Slight  9.14  -0.13 0.41 -0.04 0.82 
Large Large Zero  1.75  0.02 0.45 -0.04 0.91 
Large Medium Substantial  20.63  -0.06 0.18 -0.02 0.50 
Large Medium Slight  3.15  -0.04 0.18 -0.03 0.54 
Large Medium Zero  1.20  0.02 0.21 -0.03 0.59 
Large Small Substantial  1.78  -0.01 0.06 -0.01 0.25 
Large Small Slight  1.08  -0.01 0.06 -0.01 0.28 
Large Small Zero  0.61  0.00 0.06 -0.01 0.30 
Medium Truncated Substantial  4.02  -0.09 0.11 0.00 0.08 
Medium Truncated Slight  1.93  -0.04 0.11 -0.01 0.07 
Medium Truncated Zero  1.01  0.03 0.11 -0.03 0.06 
Medium Large Substantial  -21.11  -0.39 0.23 0.00 0.40 
Medium Large Slight  5.87  -0.17 0.27 0.01 0.45 
Medium Large Zero  1.81  0.11 0.30 0.01 0.48 
Medium Medium Substantial  7.13  -0.16 0.13 -0.01 0.12 
Medium Medium Slight  2.57  -0.07 0.14 -0.03 0.12 
Medium Medium Zero  1.23  0.07 0.17 0.00 0.15 
Medium Small Substantial  1.43  0.01 0.06 0.00 0.01 
Medium Small Slight  0.97  0.02 0.07 0.01 0.02 
Medium Small Zero  0.62  0.02 0.07 -0.01 0.01 
Small Truncated Substantial  2.16  -0.23 0.07 -0.01 0.03 
Small Truncated Slight  1.51  -0.07 0.08 0.00 0.04 
Small Truncated Zero  1.03  0.13 0.10 -0.01 0.04 
Small Large Substantial  9.16  -0.43 0.14 0.03 0.40 
Small Large Slight  3.53  -0.15 0.20 0.07 0.45 
Small Large Zero  1.84  0.18 0.19 0.08 0.47 
Small Medium Substantial  3.09  -0.28 0.10 0.00 0.10 
Small Medium Slight  1.92  -0.08 0.11 0.02 0.11 
Small Medium Zero  1.22  0.15 0.12 0.00 0.11 
Small Small Substantial  1.00  -0.09 0.05 0.00 0.00 
Small Small Slight  0.83  0.03 0.07 0.01 0.01 
Small Small Zero  0.60  0.11 0.05 -0.01 -0.01 
Note. The corresponding table for Scenario B is presented in Appendix E.
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Table 6  

PS Matching Rate 
 
 
 
 
Scenario 

Sample 
Size 

Rel. PS Dist. 
L 

 Rel. PS Dis. 
M 

 Rel. PS Dist. 
S 

 Rel. PS Dist. 
T 

Heter. TE  Heter. TE  Heter. TE  Heter. TE 
L M S  L M S  L M S  L M S 

A L 0.76 0.77 0.76  0.95 0.95 0.95  1.00 1.00 1.00  0.98 0.98 0.98 
 M 0.55 0.55 0.56  0.81 0.81 0.82  0.98 0.98 0.98  0.89 0.89 0.89 
 S 0.34 0.34 0.34  0.54 0.55 0.55  0.79 0.78 0.79  0.62 0.62 0.62 

B L 0.77 0.77 0.77  0.95 0.95 0.95  1.00 1.00 1.00  0.98 0.98 0.98 
 M 0.55 0.56 0.55  0.82 0.82 0.81  0.98 0.98 0.98  0.89 0.89 0.89 
 S 0.35 0.35 0.35  0.54 0.55 0.55  0.78 0.78 0.78  0.62 0.62 0.62 

Note. L = large, M = medium, S = small, and T = truncated. The L, M, S for TE heterogeneity are the same 
as substantial, slight, and zero respectively. 

 

With larger sample sizes in the control group, although the proportion of cases with high 

propensity scores in the control group was still relatively low compared to that for lower 

propensity scores, the actual number of cases with high propensity scores was bigger such that 

the pool to find a match (i.e., without replacement) from the control group for the treated cases 

was larger than the conditions with smaller sample sizes in the control group. Therefore, a larger 

sample size in the control group mitigated the bias by increasing the matching rate between the 

two groups. In particular, the correlation between the matching rate and the absolute values of 

relative bias was -0.73 across all conditions. The negative relation between matching rate and 

relative bias is shown in Figure 7.  
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Figure 7. The correlation between matching rate and absolute relative bias. Each dot represents 

one of the 72 conditions (e.g., large relative difference in PS distribution–small sample size in 

the control group–large heterogeneous treatment effects–Scenario A). Only different levels of PS 

relative distributions are differentiated in the chart. 

Interactions between the heterogeneous treatment effects and the other factors (i.e., PS 

distribution and sample size) were also observed in the resulting bias in the TE estimates. 

Specifically, in the way the data were simulated for this study, the subjects that did not have 

matches from the control group and thus were removed from the treatment group tended to have 

higher propensity scores with large negative individual treatment effects (the levels of propensity 

scores and the associated individual treatment effects are shown in Table 7); as a result, the more 

subjects removed, the more bias was produced (positive bias in particular) in the TE estimates. 

This is also the reason why the relative bias for PS matching tended to be negative (i.e., positive 

bias divided by negative true treatment effect). When the treatment effects were homogeneous, 

the results were robust to the PS relative distributions. This is because when all subjects have the 
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same individual treatment effects regardless of the associated propensity scores, the remaining 

cases are always representative of the treatment population, such that how many and which cases 

were removed do not affect the accuracy of the TE estimates.  

Table 7  

Empirical Average Individual Treatment Effects at Different Levels of Propensity Scores 

PS Level Heter. TE (L)  Heter. TE (M)  Heter. TE (S) 
ITE (ATT) ITE (ATE)  ITE (ATT) ITE (ATE)  ITE (ATT) ITE (ATE) 

0 ~ 0.1 0.40 0.57  0.00 0.08  -0.40 -0.40 
0.1 ~ 0.2  0.18 0.18  -0.10 -0.10  -0.40 -0.40 
0.2 ~ 0.3 0.06 0.06  -0.15 -0.16  -0.40 -0.40 
0.3 ~ 0.4 0.00 0.00  -0.21 -0.20  -0.40 -0.40 
0.4 ~ 0.5 -0.09 -0.08  -0.24 -0.24  -0.40 -0.40 
0.5 ~ 0.6 -0.15 -0.15  -0.29 -0.29  -0.40 -0.40 
0.6 ~ 0.7 -0.22 -0.22  -0.32 -0.31  -0.40 -0.40 
0.7 ~ 0.8 -0.31 -0.31  -0.36 -0.36  -0.40 -0.40 
0.8 ~ 0.9 -0.42 -0.42  -0.42 -0.42  -0.40 -0.40 
0.9 ~ 1 -0.81 -0.80  -0.61 -0.60  -0.40 -0.40 
overall -.048 -0.12  -0.44 -0.26  -0.40 -0.40 

Note. The numbers are from Scenario A, for the conditions of large relative PS distribution and small 
sample size in the control group. L, M, and S refer to substantial, slight, and zero heterogeneity in 
treatment effects. The averaged individual treatment effects (ITE) for ATT were calculated based on 
the treatment group only; the averaged ITEs for the ATE were averaged across both groups. 

 

4.1.3 Precision 

The precision for TE estimates (i.e., the empirical SE for each condition was computed as 

the standard deviation of the TE estimates across all 250 replications) generated by PS matching 

was sensitive to the PS relative distributions when there was a small sample size in the control 

group; specifically,  better precision was observed when the differences in the relative PS 

distributions were small. With medium and large sample sizes in the control group, the precision 

of the TE estimation was relatively robust to relative PS distributions (Figure 8). The empirical 

SEs were the lowest with a large sample size in the control group, also possibly due to a higher 

matching rate (Table 6, Table 8). Compared to the other PS conditioning methods, PS matching 
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demonstrated the best precision in the condition with a small sample size in the control group. 

The precision for PS matching did not vary across different levels of heterogeneity of treatment 

effects. 
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Table 8  

Empirical Standard Error for ATT Estimate 
Conditions  Empirical Standard Error (ATT) 

Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 Naïve  Matching Subclassification WBO WBO-Trimmed 

Large Truncated Substantial  0.06  0.06 0.05 0.05 0.05 
Large Truncated Slight  0.04  0.05 0.04 0.04 0.04 
Large Truncated Zero  0.04  0.05 0.03 0.04 0.04 
Large Large Substantial  0.06  0.06 0.06 0.08 0.06 
Large Large Slight  0.05  0.05 0.05 0.07 0.05 
Large Large Zero  0.04  0.05 0.04 0.07 0.04 
Large Medium Substantial  0.05  0.06 0.05 0.05 0.05 
Large Medium Slight  0.04  0.05 0.04 0.04 0.04 
Large Medium Zero  0.04  0.05 0.04 0.04 0.04 
Large Small Substantial  0.06  0.06 0.05 0.05 0.05 
Large Small Slight  0.05  0.05 0.04 0.04 0.04 
Large Small Zero  0.04  0.05 0.03 0.03 0.04 
Medium Truncated Substantial  0.06  0.05 0.05 0.06 0.06 
Medium Truncated Slight  0.05  0.05 0.04 0.05 0.05 
Medium Truncated Zero  0.05  0.05 0.04 0.05 0.05 
Medium Large Substantial  0.06  0.07 0.07 0.12 0.07 
Medium Large Slight  0.05  0.07 0.07 0.11 0.07 
Medium Large Zero  0.05  0.06 0.06 0.11 0.07 
Medium Medium Substantial  0.06  0.06 0.06 0.07 0.07 
Medium Medium Slight  0.05  0.06 0.05 0.07 0.06 
Medium Medium Zero  0.04  0.05 0.04 0.05 0.05 
Medium Small Substantial  0.06  0.06 0.05 0.06 0.06 
Medium Small Slight  0.05  0.05 0.04 0.04 0.04 
Medium Small Zero  0.05  0.05 0.04 0.04 0.04 
Small Truncated Substantial  0.07  0.07 0.07 0.08 0.07 
Small Truncated Slight  0.06  0.06 0.07 0.08 0.08 
Small Truncated Zero  0.06  0.05 0.07 0.08 0.07 
Small Large Substantial  0.07  0.09 0.15 0.20 0.10 
Small Large Slight  0.06  0.08 0.16 0.21 0.10 
Small Large Zero  0.05  0.08 0.14 0.19 0.09 
Small Medium Substantial  0.07  0.07 0.08 0.10 0.08 
Small Medium Slight  0.06  0.06 0.07 0.09 0.07 
Small Medium Zero  0.06  0.06 0.07 0.09 0.07 
Small Small Substantial  0.07  0.06 0.06 0.07 0.07 
Small Small Slight  0.06  0.05 0.05 0.05 0.05 
Small Small Zero  0.05  0.05 0.05 0.05 0.05 
Note. The corresponding table for Scenario B is presented in Appendix E.
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Figure 8. Standard Error for ATT methods (Scenario A). The plot for scenario B is presented in Appendix C.  dl(dm/ds/dt) = 

large(medium/small/truncated) difference in PS relative distributions. nl(nm/ns) = large(medium/small) sample size in the control 

group.  hl(hm/hs) = large(medium/small) heterogeneous treatment effects.
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4.1.4 Relative bias in SE estimate 

Having demonstrated relatively low and consistent precision across different data 

conditions compared to other PS conditioning methods, PS matching is not necessarily always 

the best method that yields the most trustworthy SE estimates. As is shown in Figure 9 and Table 

9, although the fluctuation of the relative bias in SE estimates was relatively small compared to 

subclassification and even WBO, there were only 3 conditions when PS matching eventually 

produced trustworthy SE estimates (< 10% according to Table 4) and 4 conditions when it could 

be used with caution (>= 10% & < 15%). When the sample size was small, the SE estimates 

never met the thresholds. The bias is also found at the sampling variance level, so the relative 

bias in SE estimates was not just the result of non-linear transformation of the variance to the SE. 

This conclusion applies to the results of the other PS conditioning methods. 
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Table 9  

Relative Bias in the SE Estimate for ATT 
Conditions  Relative Bias in SE Estimate (ATT) 

Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 
Naïve  Matching Subclassification WBO WBO-Trimmed 

Large Truncated Substantial  -0.23  0.16 0.58 0.12 0.07 

Large Truncated Slight  0.05  0.20 1.32 0.40 0.34 
Large Truncated Zero  0.05  0.15 1.33 0.29 0.24 
Large Large Substantial  -0.20  0.20 0.33 0.07 0.13 

Large Large Slight  -0.05  0.17 0.52 0.08 0.14 
Large Large Zero  0.17  0.20 0.72 0.02 0.23 
Large Medium Substantial  -0.13  0.17 0.65 0.19 0.18 

Large Medium Slight  -0.01  0.14 0.89 0.17 0.18 
Large Medium Zero  -0.02  0.27 1.04 0.25 0.17 
Large Small Substantial  -0.20  0.10 0.86 0.21 0.13 

Large Small Slight  -0.05  0.28 1.33 0.32 0.21 
Large Small Zero  -0.02  0.25 1.52 0.33 0.20 
Medium Truncated Substantial  -0.11  0.26 0.94 0.22 0.20 

Medium Truncated Slight  0.06  0.32 1.32 0.30 0.30 
Medium Truncated Zero  0.00  0.25 1.34 0.24 0.25 
Medium Large Substantial  -0.08  0.24 0.84 -0.08 0.17 

Medium Large Slight  -0.03  0.08 0.66 -0.06 0.16 
Medium Large Zero  0.00  0.28 0.74 -0.07 0.14 
Medium Medium Substantial  -0.18  0.18 0.72 0.13 0.10 

Medium Medium Slight  -0.07  0.16 0.91 0.00 0.03 
Medium Medium Zero  0.07  0.22 1.28 0.22 0.25 
Medium Small Substantial  -0.18  0.06 0.88 0.10 0.09 

Medium Small Slight  -0.03  0.28 1.36 0.29 0.27 
Medium Small Zero  -0.05  0.24 1.60 0.33 0.32 
Small Truncated Substantial  -0.01  0.22 1.19 0.16 0.16 

Small Truncated Slight  0.01  0.22 1.02 0.05 0.07 
Small Truncated Zero  0.00  0.38 1.07 0.13 0.18 
Small Large Substantial  -0.03  0.25 0.78 -0.21 0.04 
Small Large Slight  0.04  0.21 0.48 -0.25 0.05 
Small Large Zero  0.03  0.22 0.59 -0.22 0.08 
Small Medium Substantial  -0.03  0.21 1.16 0.02 0.12 
Small Medium Slight  -0.01  0.22 1.13 0.05 0.15 
Small Medium Zero  -0.05  0.25 1.09 0.11 0.21 
Small Small Substantial  0.04  0.28 1.17 0.09 0.09 
Small Small Slight  0.00  0.31 1.38 0.27 0.27 
Small Small Zero  0.06  0.36 1.51 0.26 0.26 
Note. The corresponding table for Scenario B is presented in Appendix E.
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Figure 9. Relative bias in SE for ATT methods (Scenario A). The plot for scenario B is presented in Appendix D.  dl(dm/ds/dt) = 

large(medium/small/truncated) difference in PS relative distributions. nl(nm/ns) = large(medium/small) sample size in the control 

group.  hl(hm/hs) = large(medium/small) heterogeneous treatment effects. The grey dotted lines indicate the thresholds between use 

with caution and untrustworthy ( ).±15%
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4.2 Subclassification 

PS subclassification was implemented to estimate both the ATT and the ATE in the 

simulation study. As a reminder, subclassification was conducted using 5 classes defined by an 

even split of ALL subjects ordered by PS estimates into classes. For the subclasses that had 

fewer than 2 cases, they were collapsed with the neighbor subclass. This section analyzes the 

results for both the ATT and ATE estimates, in terms of covariate balance, estimation accuracy, 

precision, and how trustworthy the SE estimate was (i.e., relative bias in SE estimates). 

4.2.1 Balance 

The covariate balance using subclassfication was not as good as that found with PS 

matching. Although most of the balance values fell under the relaxed criterion of 0.25, they were 

not acceptable in the conditions with large PS relative distributions with medium and large 

sample sizes in the control group. This is because the subclasses were generated based on the 

quintiles of the overall sample, and the subclasses associated with the lowest propensity scores 

would have very few cases in the treated group, in the conditions indicated above. That said, the 

balance, and therefore the TE estimates for those subclasses (as will be discussed in Sections 

4.2.2 and 4.2.3), would be dependent on sampling fluctuation and might not reflect the true 

relations in the population. This was more of an issue for the ATE than the ATT, because the 

results from these imbalanced subclasses were weighted minimally with the ATT, however, were 

weighted equally as the other subclasses with ATE. The fact that the balance for these conditions 

was bad indicated the fact that the treated and control groups were not comparable, and therefore 

the TE estimates obtained in these conditions may not be accurate. 
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4.2.2 Accuracy of ATT estimation 

With smaller differences in the distributions across treat and control, PS subclassification, 

like PS matching, demonstrated better accuracy in ATT estimates. At the same time, PS 

subclassification produced more bias under the condition of a larger sample size in the control 

group and it did not show a clear difference in performance across the conditions of TE 

heterogeneity when holding the other conditions constant.   

The way the data were simulated resulted in more subjects clustering at higher propensity 

scores in the treatment group and at lower propensity scores in the control group. Subclassified 

by the quintiles of the propensity scores in the overall sample (i.e., both control and treat), more 

treated cases fell in the subclass with higher propensity scores. Because the ATT is weighted by 

the number of cases in the treated group,  the highest subclass thus weighted most heavily in the 

calculation of the ATT. What is more, because higher propensity scores were associated with 

lower individual treatment effects (shown in Table 7) in the heterogeneous treatment effect 

conditions, when subclasses with higher propensity scores received more weight, the TE 

estimates tended to be negatively biased. The relative bias shown in Table 5 and Figure 6 were 

thus all positive for the reason that both bias and true treatment effect were negative. Under the 

condition of a larger difference in PS relative distributions, even more treated subjects relative to 

controlled ones would fall in the higher-propensity-score subclasses, and therefore generated 

more bias in general.   

With respect to sample size, when the sample size is very big in the control group, the PS 

distribution of the control group dominates the subclassification. In particular, when 

subclassifying by the quintiles of the propensity scores, almost all subjects in the subclasses 

associated with lower propensity scores are from the control group while very few are in the 
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treatment group. As a result, in the calculation of the overall ATT estimate, the subclasses with 

lower propensity scores take little weight compared to those with higher propensity scores. This 

issue, similar to that found in the condition with the large difference in PS relative distributions, 

results in greater negative bias and accordingly greater positive relative bias due to negative true 

treatment effects. 

The relative bias in ATT estimates produced by subclassification did not seem to change 

across different levels of TE heterogeneity. Because the propensity scores and ITEs were 

simulated to be negatively correlated, larger heterogeneous treatment effects resulted in more 

extreme individual treatment effects at both ends of propensity scores – greater negative ITEs 

associated with higher propensity scores and positive ITEs associated with lower propensity 

scores. With more weight received by subclasses with higher propensity scores, as indicated in 

the previous paragraphs, the overall ATT estimates in the conditions with greater heterogeneous 

treatment effects tended to decrease (i.e., negatively greater, shown in Figure 10).   
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Figure 10. ATT estimates at different levels of TE heterogeneity. The two dots for each shape 

(conditions of sample size) and color (conditions PS relative distributions) respectively represent 

the two scenarios (A and B) with correct and incorrect PS specifications)��

Given that the ATT estimates varied at different levels of TE heterogeneity, why was the 

relative bias robust to TE heterogeneity? This is because the relative bias is determined by both 

ATT estimates and true ATTs (Equation 22).  In this simulation study, in addition to the changes 

observed in ATT estimates, the true treatment effects also decrease (i.e., increase negatively) as 

the level of heterogeneity goes up (true ATT distributions shown in Figure 11).  This is the way 

the data were generated. Specifically, there is a statistically significantly positive linear relation 

between the true ATT values and the ATT estimates (r = .61, p < .001, shown in the left panel of 

Figure 12). The relative bias, accordingly, are relatively constant across different levels of TE 

heterogeneity (right panel of Figure 12).  
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Figure 11. The distributions of true ATTs at different levels of TE heterogeneity. The means of 

the ATTs for zero, medium, and high levels of TE heterogeneity are -.40, -.44, and -.48 

respectively. 

 

Figure 12. The relation between true ATTs and subclassification ATT estimates (left) and the 

relation between true ATT and subclassification relative bias (right).  

4.2.3 Accuracy of ATE estimation 

For ATE estimation with PS subclassification, it is still the case that larger bias was 

associated with greater difference in PS relative distributions, as well as larger sample size in the 
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control group, except that in some extreme cases (i.e., the combination of larger size of control 

and difference in PS relative distributions) the relative bias was negative (Table 10, Figure 13). 

Unlike subclassification for ATT, subclassification for ATE was seemingly sensitive to 

heterogeneous treatment effects, with large differene in PS relative distributions and larger 

sample size in the control group. However, this was more of the issue of imbalanced samples 

between the two groups. As indicated in Section 4.2.1, in these conditions (i.e., medium and 

large sample sizes in the control group with large PS relative distribution), the high-propensity-

score subclass only included few observations which may not be sufficient to produce reasonable 

balance and to represent the true treatment effects. When these subclasses were weighted equally 

as the other subclasses in producing the final ATE estimate, it introduced more bias. 
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Table 10  

Relative Bias in ATE Estimate 
Conditions  Relative Bias (ATE) 

Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 
Naïve  Subclassification IPTW IPTW-Trimmed 

Large Truncated Substantial  6.61  0.72 0.09 3.54 
Large Truncated Slight  2.28  0.21 -0.03 1.19 
Large Truncated Zero  1.03  0.09 -0.03 0.52 
Large Large Substantial  -7.81  -1.30 -0.26 -4.43 
Large Large Slight  9.14  1.38 0.14 5.10 
Large Large Zero  1.75  0.17 -0.01 0.95 
Large Medium Substantial  20.63  2.18 0.07 11.06 
Large Medium Slight  3.15  0.30 -0.06 1.66 
Large Medium Zero  1.20  0.08 -0.05 0.61 
Large Small Substantial  1.78  0.17 -0.02 0.96 
Large Small Slight  1.08  0.10 -0.01 0.57 
Large Small Zero  0.61  0.06 0.00 0.32 
Medium Truncated Substantial  4.02  0.41 0.02 0.86 
Medium Truncated Slight  1.93  0.18 -0.01 0.37 
Medium Truncated Zero  1.01  0.09 -0.01 0.18 
Medium Large Substantial  -21.11  -2.73 -0.72 -9.23 
Medium Large Slight  5.87  0.71 0.09 2.51 
Medium Large Zero  1.81  0.21 0.04 0.73 
Medium Medium Substantial  7.13  0.69 0.02 1.98 
Medium Medium Slight  2.57  0.25 -0.01 0.67 
Medium Medium Zero  1.23  0.12 0.02 0.30 
Medium Small Substantial  1.43  0.16 0.02 0.12 
Medium Small Slight  0.97  0.10 -0.01 0.06 
Medium Small Zero  0.62  0.06 0.00 0.03 
Small Truncated Substantial  2.16  0.20 -0.02 0.11 
Small Truncated Slight  1.51  0.15 0.01 0.09 
Small Truncated Zero  1.03  0.09 -0.01 0.05 
Small Large Substantial  9.16  0.88 0.12 3.32 
Small Large Slight  3.53  0.39 0.14 1.27 
Small Large Zero  1.84  0.17 0.06 0.65 
Small Medium Substantial  3.09  0.32 -0.01 0.39 
Small Medium Slight  1.92  0.21 0.02 0.25 
Small Medium Zero  1.22  0.12 0.00 0.15 
Small Small Substantial  1.00  0.09 -0.01 -0.01 
Small Small Slight  0.83  0.09 0.01 0.01 
Small Small Zero  0.60  0.05 -0.02 -0.01 

Note. The corresponding table for Scenario B is presented in Appendix E.
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Figure 13. Relative bias for ATE methods (Scenario A). dl (dm/ds/dt) = 

large(medium/small/truncated) difference in PS relative distributions. nl(nm/ns) = 

large(medium/small) sample size in the control group.  hl(hm/hs) = large(medium/small) 

heterogeneous treatment effects. Five large relative bias produced by IPTW with trimming are 

out of boundary of the plot. The values are -4.43, 11.06, 3.54, 5.10,  -9.23, and 3.31 for nl_dl_hl, 

nl_dm_hl, nl_dt_hl, hl_dl_hm, nm_dl_hl,  ns_dl_hl, respectively. The plot for scenario B is 

presented in Appendix B.  
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4.2.4 Precision 

With subclassification, the standard errors for ATT estimates were sensitive to PS 

relative distributions only with small sample size in the control group (see Figure 8, Table 8); for 

ATE estimation, they were sensitive to PS relative distributions across all sample size conditions 

(see Figure 14, Table 11). Similar to PS matching, the precision was not affected by different 

levels of heterogeneity of treatment effects. As was discussed in Chapter 4,  this metric is good 

to keep in mind however was not used to measure the performance of the models, because the SE 

estimates may not even reflect the true SE of an estimation in real life. Therefore, the 

performance of the relative bias in SE estimate will be discussed in the next section (Section 

4.2.5).
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Table 11  

Empirical Standard Error for ATE Estimate 
Conditions  Empirical Standard Error (ATE) 

Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 
Naïve  Subclassification IPTW IPTW-Trimmed 

Large Truncated Substantial  0.06  0.07 0.09 0.05 
Large Truncated Slight  0.04  0.06 0.09 0.04 
Large Truncated Zero  0.04  0.05 0.07 0.04 
Large Large Substantial  0.06  0.16 0.29 0.06 
Large Large Slight  0.05  0.12 0.23 0.05 
Large Large Zero  0.04  0.12 0.19 0.04 
Large Medium Substantial  0.05  0.08 0.13 0.05 
Large Medium Slight  0.04  0.07 0.11 0.04 
Large Medium Zero  0.04  0.07 0.09 0.04 
Large Small Substantial  0.06  0.05 0.06 0.05 
Large Small Slight  0.05  0.04 0.04 0.04 
Large Small Zero  0.04  0.04 0.04 0.04 
Medium Truncated Substantial  0.06  0.06 0.08 0.05 
Medium Truncated Slight  0.05  0.05 0.06 0.04 
Medium Truncated Zero  0.05  0.05 0.06 0.04 
Medium Large Substantial  0.06  0.14 0.26 0.07 
Medium Large Slight  0.05  0.11 0.26 0.06 
Medium Large Zero  0.05  0.11 0.18 0.05 
Medium Medium Substantial  0.06  0.08 0.12 0.06 
Medium Medium Slight  0.05  0.06 0.09 0.05 
Medium Medium Zero  0.04  0.06 0.07 0.05 
Medium Small Substantial  0.06  0.05 0.05 0.05 
Medium Small Slight  0.05  0.04 0.04 0.04 
Medium Small Zero  0.05  0.04 0.04 0.04 
Small Truncated Substantial  0.07  0.06 0.08 0.07 
Small Truncated Slight  0.06  0.06 0.07 0.06 
Small Truncated Zero  0.06  0.05 0.06 0.05 
Small Large Substantial  0.07  0.13 0.25 0.09 
Small Large Slight  0.06  0.12 0.19 0.07 
Small Large Zero  0.05  0.12 0.19 0.07 
Small Medium Substantial  0.07  0.07 0.11 0.07 
Small Medium Slight  0.06  0.06 0.09 0.06 
Small Medium Zero  0.06  0.06 0.07 0.06 
Small Small Substantial  0.07  0.06 0.05 0.05 
Small Small Slight  0.06  0.05 0.05 0.05 
Small Small Zero  0.05  0.04 0.04 0.04 

Note. The corresponding table for Scenario B is presented in Appendix E.
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Figure 14. Standard Error for ATE methods (Scenario A). The plot for scenario B is presented in Appendix C. dl(dm/ds/dt) = 

large(medium/small/truncated) difference in PS relative distributions. nl(nm/ns) = large(medium/small) sample size in the control 

group.  hl(hm/hs) = large(medium/small) heterogeneous treatment effects.  
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4.2.5 Relative Bias in SE Estimate 

Although the empirical SEs for treatment effects associated with subclassification 

methods can be low (meaning better precision) relative to other PS conditioning methods, 

especially when the PS relative distribution was small, the relative bias in SE was the largest 

among all PS conditioning methods (Table 9, Table 12, Figure 9, Figure 15). According to 

guidelines for results thresholds shown in Table 4, the SE estimates were never trustworthy, with 

relative bias in SE always >50%. 
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Table 12  

Relative Bias in the SE Estimate for ATE 
Conditions  Relative Bias in SE Estimate (ATE) 

Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 Naïve  Subclassification IPTW IPTW-Trimmed 

Large Truncated Substantial  -0.23  0.87 0.08 0.16 
Large Truncated Slight  0.05  1.25 -0.07 0.30 
Large Truncated Zero  0.05  1.27 0.02 0.18 
Large Large Substantial  -0.20  0.25 -0.29 0.12 
Large Large Slight  -0.05  0.77 -0.27 0.09 
Large Large Zero  0.17  0.76 -0.23 0.27 
Large Medium Substantial  -0.13  0.76 -0.02 0.20 
Large Medium Slight  -0.01  1.16 -0.03 0.14 
Large Medium Zero  -0.02  1.02 0.01 0.14 
Large Small Substantial  -0.20  1.08 0.21 0.17 
Large Small Slight  -0.05  1.61 0.30 0.25 
Large Small Zero  -0.02  1.50 0.18 0.15 
Medium Truncated Substantial  -0.11  1.18 0.19 0.34 
Medium Truncated Slight  0.06  1.57 0.28 0.42 
Medium Truncated Zero  0.00  1.41 0.16 0.28 
Medium Large Substantial  -0.08  0.45 -0.25 0.24 
Medium Large Slight  -0.03  0.74 -0.33 0.15 
Medium Large Zero  0.00  0.80 -0.21 0.18 
Medium Medium Substantial  -0.18  0.84 0.00 0.22 
Medium Medium Slight  -0.07  1.26 0.06 0.20 
Medium Medium Zero  0.07  1.40 0.19 0.28 
Medium Small Substantial  -0.18  1.34 0.38 0.37 
Medium Small Slight  -0.03  1.73 0.42 0.43 
Medium Small Zero  -0.05  1.66 0.32 0.29 
Small Truncated Substantial  -0.01  1.41 0.27 0.34 
Small Truncated Slight  0.01  1.49 0.30 0.32 
Small Truncated Zero  0.00  1.63 0.32 0.36 
Small Large Substantial  -0.03  1.00 -0.12 0.19 
Small Large Slight  0.04  0.92 -0.07 0.20 
Small Large Zero  0.03  0.94 -0.18 0.16 
Small Medium Substantial  -0.03  1.37 0.12 0.31 
Small Medium Slight  -0.01  1.61 0.17 0.34 
Small Medium Zero  -0.05  1.43 0.24 0.27 
Small Small Substantial  0.04  1.51 0.40 0.40 
Small Small Slight  0.00  1.59 0.39 0.39 
Small Small Zero  0.06  1.90 0.44 0.44 

Note. The corresponding table for Scenario B is presented in Appendix E.
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Figure 15. Relative bias in SE for ATE methods (Scenario A). The plot for scenario B is presented in Appendix D.  dl(dm/ds/dt) = 

large(medium/small/truncated) difference in PS relative distributions. nl(nm/ns) = large(medium/small) sample size in the control 

group.  hl(hm/hs) = large(medium/small) heterogeneous treatment effects. The grey dotted lines indicate the thresholds between use 

with caution and untrustworthy ( ).±15%
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4.3 PS weighting 

The results for PS weighting, including balance, accuracy, precision, and relative bias in 

SE estimate are interpreted in this section for both WBO and IPTW. The interpretation focused 

on PS weighting without trimming. Section 4.3.3 briefly presents the results for PS weighting 

with trimming and explains why it is not a good idea. 

4.3.1 Balance 

After PS weighting, the balance of the covariates between the two groups was largely 

improved. Similar to PS matching, which has a great reputation in obtaining desirable balance, 

the SMD values were always below 0.25 and were mostly below the strict criterion of 0.1. The 

only situation when the imbalance was slightly large (still to an acceptable degree) was with 

large difference in PS relative distributions (see Figure 5).  

4.3.2 Accuracy of ATT and ATE estimation (without trimming) 

As is shown in Figure 6 and Table 5, the ATT estimated via WBO was robust to PS 

relative distributions, heterogeneous treatment effects, and relative sample sizes between the two 

groups. WBO constantly produced accurate ATT estimates regardless of the data conditions 

simulated in the study. This can be explained by the final weighted PS distributions used to 

calculate the TE estimate generated by weighting. As was illustrated in Chapter 2, with PS 

weighting, each subject is weighted such that the weighted PS distribution either reflects the true 

PS distribution of the treatment group with WBO, or the PS distribution of the overall population 

(including both groups) with IPTW. Figure 16 shows what the weighted PS distributions look 

like as compared to the original PS distribution with a large difference between the two groups 

(i.e., small overlap). 
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Figure 16. Original vs. weighted PS distributions 

After weighting, the PS distributions of the treatment and control groups were almost 

identical, with the WBO weighted distributions perfectly mimicking the true PS distribution of 

the treatment group and the IPTW weighted distributions perfectly mimicking the true PS 

distribution of the full population. This is true regardless of what the original PS distributions 

look like and it explains why PS weighting is robust to PS relative distributions.  

The fact that the weighted PS distribution perfectly reflect the true PS distribution of the 

population also explains why PS weighting is robust to heterogeneous treatment effects. Because 

different propensity scores are associated with different treatment effects, a PS method is usually 

sensitive to TE heterogeneity in that the estimated PS distribution is different from the 

population. A good example is PS 1:1 matching. By removing cases, the weights taken by 

subjects that represent different treatment effects are changed and so will be the overall TE 

estimates. With PS weighting, the weighted PS distribution is almost identical to the true PS 

distribution, regardless of differences in treatment effects across propensity scores.  

4.3.3 Accuracy of ATT and ATE estimation (with trimming) 

Unlike PS weighting without trimming, PS weighting with trimming is sensitive to PS 

relative distributions. With PS trimming, the WBO weights that were greater than 10 or smaller 

than 0.1 were set to be 10 and 0.1 in the control group, while those in the treatment group 
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remained the same. In the simulated data, take the condition of large PS relative distribution as 

an example, about 1.5% of high weights and 42.9% of low weights were trimmed in the control 

group. Trimming low weights seemingly affected more subjects in the data and might have been 

much more influential on the TE estimates, however, the actual numbers of subjects trimmed off 

due to high weights and added in by bringing up the low weights respectively represented 24.5% 

and 2.7% subjects in the treatment population, indicating that the trimmed high weights that 

corresponded with higher propensity scores were the dominate reason for the bias in the ATT 

estimate (Figure 16). To illustrate with more detail, in the current simulation, higher propensity 

scores were associated with lower ITEs (i.e., r = -.65, p < .001), trimming more subjects with 

higher propensity scores brought up the weighted mean of the control group. Since TE estimates 

were calculated as the weighted mean difference in the outcome between the treatment and 

control groups, increasing the weighted mean of the control group resulted in a negative bias and 

thus positive relative bias given that the true treatment effect was negative (Figure 6). How 

trimming inflated the bias in the ATE estimates with IPTW follows the same logic and thus is 

not repeated.  

The direction of the relative bias is data-dependent. For example, the relative bias might 

be negative if more weights on the lower end were trimmed; the relative bias would be small 

only if the higher and lower weights were equally trimmed, which is almost always impossible in 

the real world. Since PS trimming changes the weighted PS distributions that are almost 

perfectly representative of the population, it is very likely to cause bias in the TE estimates, 

especially with greater difference in PS relative distributions where more weights will be 

trimmed due to more extreme propensity scores. PS trimming is thus not recommended. 
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4.3.4 Precision 

The standard errors for PS weighting were most sensitive to PS relative distributions 

compared to the other methods (Table 8,  Table 11, Figure 8, and Figure 14). When the 

difference in relative PS distribution was large, the precision generated by PS weighting (both 

WBO and IPTW) were drastically worse than the other methods, indicating that the TE estimates 

were not generalizable to other samples in the population even though PS weighting obtained 

desirable accuracy. Although trimming is not recommended due to unacceptable bias, 

unsurprisingly, it showed the best precision for most conditions compared to the other PS 

conditioning methods. After tweaking ways of setting cutoffs, PS weighting with trimming may 

yield some balance between balance and precision, however, this is beyond the scope of this 

study. Again, while the precision of the TE estimates from the PS weighting methods indicates 

whether the results are generalizable, it is not used as a key performance metric to decide 

whether or not to choose a PS conditioning method with a particular dataset, as it may not always 

be correctly estimated in the first place. Instead, the relative bias in SE estimate does the work.  

4.3.5 Relative bias in SE estimate 

Both WBO and IPTW had lower relative biases in SE estimates relative to other PS 

conditioning methods (i.e., WBO compared to matching and subclassification for ATT, IPTW 

compared to subclassification for ATE; Table 9, Table 12, Figure 9, and Figure 15). There were 

more data conditions for PS weighting when the relative bias in SE estimate was acceptable (i.e., 

either trustworthy or use with caution).  

No clear pattern was observed in terms of which simulated conditions were associated 

with acceptable relative bias in SE. This is understandable because unlike the other performance 



 

79 

metrics, this metric is depending on two variables – the empirical SE of the model and the 

average SE estimate. 

Similar to precision, PS weighting with trimming provided low and stable relative bias in 

SE estimates. However, because the TE estimates were biased in the first place (interpreted in 

Section 4.3.3), the results here were not of interest of the study. 

4.4 Guideline Tables 

In summarizing the performance metrics, relative bias in TE and SE estimates in 

particular, guideline tables were generated to show which PS conditioning methods were 

trustworthy or untrustworthy in which data condition (Table 13 and Table 14). A hybrid 

guideline table (Table 15) was further put together combining the results presented in Table 13 

and Table 14, providing a one-stop guideline for which PS method to choose. Practitioners can 

easily refer to these tables to decide which PS conditioning method produces the most 

trustworthy TE and SE results under the data condition of interest. The thresholds for each of the 

three categories (i.e, “good to use”, “use with caution”, and “untrustworthy) were discussed in 

Section 3.5 and presented in Table 4. The following chapter (Chapter 5) illustrated, via an 

empirical analysis, how to use the guideline tables effectively.  
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Table 13  

Guideline of Accuracy (Relative Bias in TE Estimate) 
    Scenario A Scenario B 
    dl dm ds dt dl dm ds dt 
    hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs 
ns Matching                                                 

Sub (ATT)                                                 
WBO                                                 
WBO trimmed                                                  
Sub (ATE)                                                 
IPTW                                                  
IPTW 
trimmed                                                 

nm Matching                                                 
Sub (ATT)                                                 
WBO                                                 
WBO trimmed                                                  
Sub (ATE)                                                 
IPTW                                                  
IPTW 
trimmed                                                 

nl Matching                                                 
Sub (ATT)                                                 
WBO                                                 
WBO trimmed                                                  
Sub (ATE)                                                 
IPTW                                                  
IPTW 
trimmed                                                 

Note. Green = good to use (relative bias in TE estimate < 5%), yellow = use with caution (>= 5% & < 10%), red = untrustworthy (>= 
10%). nl(nm/ns) = large(medium/small) sample size in the control group. dl(dm/ds/dt) = large(medium/small/truncated) difference in 
PS relative distributions; hl(hm/hs) = substantial(slight/zero) heterogeneous treatment effects. 
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Table 14  

Guideline of Precision (Relative Bias in SE Estimate) 
    Scenario A Scenario B 
    dl dm ds dt dl dm ds dt 
    hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs 
ns Matching                                                 

Sub (ATT)                                                 
WBO                                                 
WBO trimmed                                                  
Sub (ATE)                                                 
IPTW                                                  
IPTW 
trimmed                                                 

nm Matching                                                 
Sub (ATT)                                                 
WBO                                                 
WBO trimmed                                                  
Sub (ATE)                                                 
IPTW                                                  
IPTW 
trimmed                                                 

nl Matching                                                 
Sub (ATT)                                                 
WBO                                                 
WBO trimmed                                                  
Sub (ATE)                                                 
IPTW                                                  
IPTW 
trimmed                                                 

Note. Green = good to use (relative bias in SE estimate < 10%), yellow = use with caution (>= 10% & < 15%), red = untrustworthy 
(>= 15%). nl(nm/ns) = large(medium/small) sample size in the control group. dl(dm/ds/dt) = large(medium/small/truncated) difference 
in PS relative distributions; hl(hm/hs) = substantial(slight/zero) heterogeneous treatment effects. 
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Table 15 

Overall Guideline (Combination of Accuracy and Precision) 
    Scenario A Scenario B 
    dl dm ds dt dl dm ds dt 
    hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs hl hm hs 
ns Matching         t   t t     t           t   t t     t   

Sub (ATT)             t t t t t t             t t t t t t 

WBO t t t     t t t t t   t t t t       t t t   t t 
WBO trimmed  s s s         t t t   t s s s s s s t t t t t t 
Sub (ATE)             t t t     t             t t t     t 
IPTW  s s t t   t t t t t t t t t t t t t t t t t t t 
IPTW trimmed             t t t   t t             t t t   t t 

nm Matching   s     t t   t t t t t     t   t t t t t t t t 
Sub (ATT)             t t t                   t t t       
WBO       t   t t t t t t t   t t t t   t t t t t t 
WBO trimmed      s s s     t t t t t s s s       t t t s t t 
Sub (ATE)               t t     t               t t       
IPTW      t     t t t t t t t     t     t t t t t t t 
IPTW trimmed               t t           s       t t t       

nl Matching     s s t t   t t t t t     t t t t t t t t t t 
Sub (ATT)             t t t                   t t t       
WBO       t t t t t t t t t   t s t t t   t t t t t 
WBO trimmed  s s         s     s     s   s       s     s     
Sub (ATE)           t     t     t                 t       
IPTW      t s s s t t t s       t t       t t t       
IPTW trimmed s s     s s                 s           s s     

Note. Each color represents for the combination results of TE and SE estimates. Green = both are good to use, yellow = both use with caution, red = both 
untrustworthy. The other colors indicate inconsistent relative bias in TE and SE estimates, with t = TE estimate falls in a better category,  s = SE estimate is 
better. Olive =  good to use & use with caution, orange = use with caution & untrustworthy, purple = good to use & untrustworthy. nl(nm/ns) = 
large(medium/small) sample size in the control group. dl(dm/ds/dt) = large(medium/small/truncated) difference in PS relative distributions; hl(hm/hs) = 
substantial(slight/zero) heterogeneous treatment effects. 
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Chapter 5. Empirical Illustration  

In addition to the methodological study presented in Chapters 3 and 4, I conducted an 

empirical analysis to demonstrate the PS procedure including an extra step of checking PS 

relative distributions and choosing the most appropriate PS conditioning method. The analysis 

was conducted using the data selected from the Early Childhood Longitudinal Study 

Kindergarten Class of 1998-99 (ECLS-K) released by the National Center for Education 

Statistics (NCES, Tourangeau et al., 2015), assessing the effect of having home computers 

(COMPUTER) on first grade students’ math scores. To be consistent with the simulation study 

where the data were generated following a single-level structure, the initial data analysis was 

conducted as if the ECLS-K:2011 data were collected following a simple random sampling 

strategy. After the procedure demonstration, in order to provide education decision makers an 

unbiased and precise inference, a second analysis was conducted accounting for the complex 

sampling structure of the data. This chapter includes a data description, how the two data 

analyses were implemented, and the corresponding results. 

5.1 Data 

Data were selected from ECLS-K:2011, released by NCES, which was designed to 

provide comprehensive and reliable data that contain repeated observations of a nationally 

representative sample of students, their families, teachers, and schools across the United States. 

The ECLS-K:2011 data employed a three-stage sampling design. Specifically, geographic areas 

(i.e., counties or county groups) were first selected as primary sampling units (PSU); within each 

of the selected PSUs, public and private schools with kindergarten programs were selected, and 

children were then sampled from the selected schools. In the first two stages, both geographic 

areas and schools were selected with probability proportional to measures size. Sampling 
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weights were generated to compensate for differential probabilities of selection and to adjust for 

the potential effects due to nonresponse (Tourangeau et al., 2015). 

This analysis was limited to children who had a non-zero base weight W4C4P_40 (their 

parents completed surveys conducted during the fall [2010, wave 1] and spring [2011, wave 2] of 

children’s kindergarten year, the spring [2012, wave 4] of their year in the first grade), complete 

data on the treatment variable P2HOMECM (having access to a computer at home in the spring 

semester of the kindergarten year), and complete data on the outcome variable X4MSCALK1 

(math scores in the spring semester of first grade). This analytic sample includes 9,209 students 

from 1,398 schools, among which only 75.5% students had computer(s) at home.  

Among the PS conditioning methods, nearest neighbor matching for the estimation of 

ATT assumes that the number of treated cases is no larger than the controlled cases. This is 

because it usually matches controlled cases to treatment cases and discards the controls that are 

not matched to the treatment group (Stuart, 2010�; if the sample size in the control group is 

smaller than the treatment group and therefore treated cases are discarded to yield the balance 

between the two groups, it will cause “bias due to incomplete matching” (Rosenbaum & Rubin, 

1985). Considering that PS matching was one of the major conditioning methods and had the 

potential to be selected as the best approach in the analyses, the treatment in this data analysis 

was switched from “having a computer at home” to “not having computer at home”. With the 

new treatment definition, the sample size for the control group is about 3 times of that for the 

treatment group.�

5.2 Methods for Empirical Illustration 

The empirical illustration followed the new six-step PS procedure suggested in the 

simulation study, including a new step of checking the PS relative distribution and selecting the 
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most appropriate PS conditioning method for the corresponding PS distributions. This section 

describes how each of the six steps (i.e., variable selection, PS estimation, PS relative 

distribution checking and conditioning method selection, PS conditioning, balance checking, and 

TE estimation) were implemented in detail. 

5.2.1 Variable selection and missing data 

In this empirical illustration, the effect of COMPUTER was examined following the 

typical five-step PS procedure, with the application of the PS conditioning methods studied in 

the simulation. A challenge that did not exist in the simulation study was to select appropriate 

pretreatment covariates for the PS model, as the true model was not available. Selection of 

pretreatment covariates for the PS model was based on literature regarding educational 

technology, data structure, and statistical rules suggest by previous studies.  

Literature on educational technology shows that income and other socioeconomic factors 

(e.g., education and occupation) were identified as strong predictors of the adoption of home 

computers (Becker, 2000; Hoffman & Novak, 1998). For example, according to Becker (2000), 

at the end of 1998, 91% of children living with a parent having at least a Master’s degree had 

home access to a computer, compared to only 16% of children with parents who did not graduate 

high school. Similarly, the disparities of COMPUTER between families whose household 

incomes were under $20,000 per year and those higher than $75,000 per year are also substantial. 

Other than socioeconomic factors, demographic categories such as ethnicity, parents’ marital 

status, and number of children in household can also explain the disparities on COMPUTER 

(Becker, 2000; Carroll, Rivara, Ebel, Zimmerman, & Christakis, 2005; Hoffman & Novak, 

1998). 
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Selection into the treatment COMPUTER can be relatively well explained by the 

individual-level variables described above. However, in this data setting where students are 

nested within different schools, it is not sufficient to solely consider the individual-level 

descriptive structural characteristics of students and their families. The school environment, such 

as school type and school resources, could also contribute to the treatment and thus were 

included.  

In addition to the conceptual considerations, covariates were selected also following the 

statistical suggestions summarized in Stuart and Rubin (2007), that is, selecting covariates that 

are related to the treatment assignment, including a large set of covariates for greater power, and 

not selecting covariates that are affected by treatment assignment.  

As such, a total number of 28 covariates from the year of kindergarten were selected for 

the PS model, aiming to incorporate as much potential confounding as possible. The number of 

covariates selected for the research data is substantially greater than the number of covariates 

generated in the simulation study. This is because the simmulated data were intentionally 

simplified to focus on the research interest related to the relative PS distributions. The number of 

covariates should not affect the comparability between the empirical illustration and the 

simulation results, as long as the empirical distribution is evaluated appropriately. The 

descriptions and coding schemes of each covariate are presented in Table 16.  
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Table 16   

Selected (ECLS-K:2011) Variables for the Data Analysis 
   Variable (recoded) Type Original Variables in the Data and Description 

WEIGHT  Child base weight adjusted for nonresponse associated with child assessment data from both kindergarten rounds 
and spring first grade, parent data from fall kindergarten or spring kindergarten, and parent data from spring first 
grade (W4C4P_40).  

STRATA  Stratum identifier (W4PF_4STR). 
CLUSTER  PSU (cluster) identifier (W4PF_4PSU). 
MATH C Outcome variable, math IRT scale score (X4MSCALK1). 
NOCOMPUTER D Treatment variable, students have NO computer at home (P2HOMECM!=1) 
EXPECT D Parents expect children to at least get a college degree (P1EXPECT=4, 5, 6, 7).  
PREMATH C Treatment effect predictor, math IRT scale score in the kindergarten year (X2MSCALK1). 
SES C X12SESL (RENAME TO SES). 
PARENTED D Parent has at least a college degree (X12PAR1ED_I=6, 7, 8 or X12PAR2ED_I=6, 7, 8). 
PARENTOCC D Parent's occupation related to science and technology (X1PAR1OCC_I=2,3,5,7,10,11,18; 

X1PAR2OCC_I=2,3,5,7,10,11,18). Combine the two variables into one dummy variable indicating parent's 
occupation related to computer technology (e.g., scientists, engineers, and technologists). 

INCOME C Household income intervals (X2INCCAT_I, assuming a continuous scale) 
POVERTY D X2POVTY=1 
MARRIAGE D Bio-parents are married (P2BIOMRY=1). 
Race D White (X_RACETH_R=1). 

D African American (X_RACETH_R=2). 
D Hispanic (X_RACETH_R=3, 4). 
D Asian (X_RACETH_R=5). 

TVRULE D Rule on hours of watching TV each week (P2TVRUL3=1).  
VISION D Students have difficulty seeing objects in the distance or letters on paper (P2SIGHT=1). Use the kindergarten 

variable to reduce the effect of treatment on the covariate. 
BEDRULE D Children go to bed the same time (P2GOTOBD=1).  
HTOTAL C Number of children (aged<18) in each household (X2LESS18). 
LIBRARY D Visited library in the past month (P2LIBRAR=1).  
ATHLET D Students participate in athletic activities outside of school hours (P2ATHLET=1). 
NONENGLISH D Students speak non-English language at home (C2ENGHM=1). 

(Continued) 
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Table 16 (Continued) 
   Variable (recoded) Type Original Variables in the Data and Description 

LAB D Whether computer lab meets needs (S2COMPOK=5). 
PRIVATE D Private school (X2PUBPRI=2). 
URBAN D Urban school (X2LOCALE=1). 
SUBURBAN D Suburban school (X2LOCALE=2). 
FREELCH D 50% of students eligible for Free lunch (P2LUNCHS). 
SCHSIZES D Small school size (X2KENRLS=1). 
SCHSIZEL D Large school size (X2KENRLS=4, 5). 
MEANSES C Mean SES (aggregate X12SESL). 
SDSES C The standard deviation of SES scores within each school. 

Note. C=continuous variable; D=dichotomous variable. All PS pretreatment covariates were selected from fall [2010, wave 1] or spring [2011, 
wave 2] of children’s kindergarten year to ensure that the covariates were not affected by the treatment. The first 3 variables in the list WEIGHT, 
STRATA, and CLUSTER were selected to accommodate the complex sampling structure. 
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The ECLS-K:2011 data were not without missingness. For most of the dummy 

variables, missingness were treated as 0 without losing useful information. Take the 

parent occupation variables as an example, the occupation question was not applicable 

for 0.2% of the samples who did not have any job at that time; 3% of the parents chose 

“not ascertained” because they were unemployed, retired, or the occupation was 

unclassifiable. In this case, it is reasonable to classify the missing subjects as not having 

an occupation related to science and technology. Another example is whether parents 

expect their child to at least get a college degree. About 30 parents either refused to 

answer the question or indicated that they did not know. Because they did not clearly 

state that they had an expectation for their children to get at least a college degree, they 

were coded as 0. Other missing imputation techniques included mean imputation for 

continuous variables (i.e., for 22 math scores that were missing in the previous semester, 

19 schools in which SES was not available) and mode imputation for count/categorical 

variables (i.e., the number of children in the family for 33 students was “not ascertained” 

and the mode of 2 for this variable was imputed). The limitation of data imputation with 

central tendency is that it tends to reduce the variance of the imputed variables and 

therefore may lead to inflated Type II error rate. Given that only a small number of 

observations had to be imputed, mean/mode imputation likely had little effect on the 

resulting variance estimates.  

5.2.2 PS estimation 

Based on the 28 covariates selected from the first step, I constructed a conceptual 

diagram as is shown in Figure 17. Following the conceptual framework, a logistic 
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regression (shown in Equation 22) was fit to estimate the propensity scores for each 

observation:  

,    (22)  

where  represents the PS estimates; –  are the estimated coefficients for each of 

the pretreatment covariates presented inTable 16. With the PS estimates, the PS relative 

distribution was checked to decide which PS conditioning method would produce the best 

performance in terms of accuracy and relative bias in SE for TE estimation. 

 
Figure 17. The conceptual model for the empirical study. A complete list of covariates is 

shown in Table 16. 

5.2.3 PS distribution checking and conditioning method selection 

Based on the PS model, PS estimates as well as the descriptive statistics of the 

relative PS distributions of the real data were calculated. The statistics related to the PS 

relative distributions (i.e., overlap, mean, variance, skewness, and kurtosis) are presented 

in Table 17, and the distributions are visualized in Figure 18. Although the statistics for 

the real data do not perfectly match any of the simulated conditions shown in Table 2, the 

distributions look very similar to the medium relative distributions. Having the sample 

logit(ê |T = 1) = β̂0 + β̂1PREMATH + β̂2EXPECT + β̂3SES + ...+ β̂28SDSES

ê β̂0 β̂28
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size in the control group (i.e., having a computer at home) about 3 times of the sample 

size in the treatment group (i.e., not having a computer at home), it falls in the medium 

sample size category in the simulated conditions. With respect to heterogeneity in 

treatment effects, medium heterogeneity was assumed to reflect reality because 

homogeneity of treatment effect tends to be a strong assumption to make with real data 

(Wyss, Glynn & Brookhart, 2014; Xie, Brand, & Jann, 2012). In addition to the relative 

PS distribution, sample size, and heterogeneity, the PS model was assumed to be 

correctly specified (i.e., consistent with Scenario A) given that the simulation results for 

Scenarios A and B were similar. By checking the guideline tables (Table 13 and Table 

14), WBO and IPTW produced the best accuracy in TE and SE estimates for the 

condition of medium PS relative distribution–medium sample size in the control group–

medium heterogeneity in the treatment effects–Scenario A, and thus, were selected as the 

conditioning methods for this analysis, producing ATT and ATE estimates respectively. 

Table 17  

Descriptives of the Relative PS Distributions of the Empirical Data 

Overlap 
 Mean  Variance  Skewness  Kurtosis 
 Treat Control  Treat Control  Treat Control  Treat Control 

0.46  0.35 0.21  0.03 0.02  0.10 1.19  1.97 3.80 
Note. The overlap quantities are calculated as the proportion of the intersection of the two 
PS distributions over the union of the two distributions. 
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Figure 18. The relative PS distributions of the treated and control groups for the empirical 

data. 

5.2.4 PS conditioning 

The WBO and IPTW weights were calculated based on Equations 6 and 7. For the 

reasons indicated in Section 4.3.3 regarding how weights were trimmed and how that 

introduced more bias in the TE estimates, weight trimming was not considered in the data 

analysis. Before using the weights for TE estimation, a diagnostic step was implemented 

to check the balance, that is, whether the conditioned data were comparable between the 

treatment and control groups. 

5.2.5 Balance checking 

For the conditioned data, balance was checked via the performance metric SMD 

defined in Equation 8. The balance presented in Figure 19 indicated that both WBO and 
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IPTW did a good job yielding comparable control and treated objects, on aggregate. The 

analysis was then proceeded for TE estimation.  

 

 
Figure 19. Standardized mean difference (SMD) for all PS conditioning models for the 

empirical data. 

 
5.2.6 TE estimation  

According to the conceptual diagram shown in Figure 17, the TE model can be 

statistically expressed as: 

,                                              (23) 

where  is the intercept;  represents for the TE estimate and is the focus of the 

research. This was a weighted model using WBO and IPTW weights respectively for the 

estimation of ATT and ATE. The results for a naïve model without PS adjustment for 

confounding was also implemented for comparison.  

Ŷ = γ̂ 0 + γ̂ 1T

γ̂ 0 γ̂ 1
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The results presented in Table 18 indicate that for the 1st grade students in the US 

who did not have computers at home, their scores would have increased by only 0.5 

points (out of a full score of 100) if they did have computers at home; for all 1st grade 

students in the US, not having computers at home would make their math scores drop by 

0.004 points compared to if they did have computers at home. The two interpretations 

respectively represented the results for ATT and ATE. Neither of the results, however, 

was statistically significant.�

Table 18  

The TE Estimates and Standard Errors for the First Empirical Analysis 

   ATT  ATE 

 Naïve             WBO  IPTW 

TE -6.63***  -0.50  -0.004 
SE 0.31  0.38  0.39 
Note. p < .05, ** p < .01, *** p < .001. To find the p-values for the PS weighting methods, the 
squared z-statistics (TE estimates divided by the standard errors calculated via the robust 
sandwich variance estimator) were calculated and compared to a chi-squared distribution on one 
degree of freedom. 
 

5.3 A Second Data Analysis 

While the simulation design only focused on data with a simple random sampling 

structure, as described in Section 5.1, the large-scale education data ECLS-K:2011 were 

collected following a three-stage complex sampling design (Tourangeau et al., 2015) that 

involves clustering, stratification, and disproportional selection. To simply demonstrate a 

complete process of the six-step PS procedure recommended in the simulation study, the 

first analysis was conducted as if the ECLS-K:2011 data were selected following a 

simple random sampling strategy. However, failure to address any of the complex 

sampling features could directly bias either the TE estimate or its standard error. For 

example, standard errors can be deflated if not considering clustering whereas inflated if 
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stratification is ignored; deflation in standard errors as well as biased parameter estimates 

will occur if the probability of unequal selection is not taken into account (Heeringa, 

West, & Berglund, 2010; Pfeffermann, 1993). The purpose of this second analysis, 

therefore, was to make adjustments to the TE model to account for the complex sampling 

structure of the data, in order to obtain a more accurate and generalizable TE estimate. 

This better inference would be valuable for education policy makers who are interested in 

making decisions based on how not having a home computer would affect 1st grade 

students’ math achievement.   

As a supplement to the first analysis, the second data analysis directly adopted the 

conditioned samples via the selected PS conditioning methods (i.e., WBO and IPTW) in 

the first analysis based on the single-level PS model. In fact, using a single-level PS 

model in a complex sampling data setting is a reasonable idea, because the PS estimates 

are only used to obtain balance between the treatment and control groups rather than to 

directly make inferences about the PS model in the population (Zanutto et al., 2005). 

According to the simulation study by An and Stapleton (2016), the balance yielded via a 

single-level PS model was very comparable to multiple other methods that accounted for 

the complex data structure. That being said, the only difference between the first and the 

second analyses was how the treatment effects were estimated.  

Researchers have explored two types of methods in the application of PS methods 

for TE estimation: model-based techniques to consider the clustering effect via multilevel 

models (Hong & Raudenbush, 2006; Hong & Yu, 2007, 2008; Kelcey, 2011; Thoemmes 

& West, 2011) and design-based techniques to account for the features of complex 

sample data (Dugoff et al., 2014; Hahs-Vaughn, 2015; Zanutto, 2006; Zanutto et al., 
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2005). For this analysis, the TE model was selected following the recommendations by 

An and Stapleton (2016), that is, fitting a design-based model for the TE estimation using 

the sampling weight * IPTW or WBO weights as the final weight for the TE model. 

The results for these two models are presented in Table 19. To interpret the results 

in more details, for the 1st grade students who had no home computer, their scores would 

have been .62 points higher if they did have computers at home. For all 1st grade students 

in the US, having computer at home would have increase their math scores by .09. 

However, neither of the results were statistically significant. Therefore, there is no 

sufficient evidence to support that not having a computer at home would affect 1st grade 

students’ math achievement in the US. This inference can be used to support decision 

making. For example, for policy makers who are considering distributing free computers 

to 1st grade students in the US who do not have any computers at home to improve their 

math scores, they may reconsider the idea because the investment would not be 

statistically effective in improving their math scores. 

Table 19  

The TE Estimates and Standard Errors for the Second Empirical Analysis 
 WBO IPTW 
TE -.62 -.09 
SE .15 .83 

Note. * p < .05.  
 

5.4 Summary 

In Chapter 5, I introduced the designs and results for two empirical analyses. The 

first one was a complete illustration of how to check PS relative distribution and select 

the best PS conditioning method in practice. The second data analysis further accounted 

for the complex sampling structure in the TE model and provided to the education policy 
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makers unbiased causal inference about how not having a home computer affects 1st 

grade students’ match achievement. The results showed that there was no sufficient 

evidence that not having computers would have affected 1st grade students’ math 

achievement. 
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Chapter 6. Discussion & Recommendation 

The study extended the propensity score literature by investigating whether and 

how the relative PS distributions affect the performance of PS conditioning methods (i.e., 

matching, subclassification, and PS weighting) for the purpose of generating appropriate 

causal estimates. In addition to PS relative distributions, two other primary factors were 

manipulated in the simulation study, including heterogeneity in the treatment effect and 

sample size in the control group. A final manipulation of PS specification in two 

scenarios did not produce obvious differences in the performance metrics and thus was 

not discussed in detail in the study. Following the simulation study, an empirical 

illustration was completed as a demonstration of how to utilize the results from the 

simulation study in practice. This chapter covers a summary of key findings from the 

simulation study, limitations, as well as possible extensions for future research.  

6.1 Summary of Key Findings 

The goal of the study was to answer the questions that appear to have never been 

directly discussed in the literature, that is, whether the quality of the TE estimates via 

different PS conditioning methods are affected by the relative PS distributions between 

the treated and control groups, and whether the relation between the relative distributions 

and performance of the PS conditioning methods differs across levels of TE 

heterogeneity. The key findings of different PS conditioning methods (including PS 

matching, subclassification for ATT and ATE, as well as IPTW and WBO) are 

summarized as follows. PS weighting with trimming is not recommened due to the fact 

that it introduced bias to the TE estimates, and thus is not discussed here.   
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First, almost all PS conditioning methods yielded acceptable balance across 

different data conditions, except when the PS relative distribution was large with medium 

and large sample sizes in the control group. Balance was not sensitive to heterogeneous 

treatment effects at all due to the fact that the heterogeneous treatment effects reflect the 

relations between the outcome and the propensity scores obtained via covariates, rather 

than the characteristics of the covariates within each treatment group, which actually 

determine what the balance metric should look like. In addition to SMD used in this 

study, the ratios of the variances for each covariate between the treated and control 

groups can be another option to measure balance (Austin, 2009).  

Second, PS weighting (both IPTW and WBO) almost constantly produced 

accurate TE estimates, regardless of the data conditions simulated in the study. Matching 

was sensitive to PS relative distributions, with more TE bias associated with larger 

differences in PS relative distributions unless there was sufficient sample in the control 

group such that all treated cases were retained for TE estimation. Therefore, in the 

simulated conditions, the more cases in the control group, the better the accuracy. For 

matching, in addition to the sample size in the control group, the level of heterogeneity in 

treatment effects also contributed to how many cases were removed from the control 

group, for the reason that the PS estimates tend to be more extreme with a higher level of 

TE heterogeneity. Therefore, the factor of heterogeneous treatment effects also affected 

the accuracy of ATT estimates. Similar to PS matching, subclassification (for both ATT 

and ATE) was also sensitive to PS relative distributions, however, with lower accuracy in 

TE estimate associated with larger sample size in the control group. This is because the 

sample size in the control group determined how many treated cases were classificed into 



 

100 

each subclass. Specifically, with a larger controlled sample size, a smaller number of 

cases (sometimes too small) would be assigned to the treatment group for certain 

subclasses, for the reason that the classification was made based on the overall sample 

rather than the treated sample only. This will be further discussed in Section 6.2. 

Subclassification for ATT was surprisingly not sensitive to heterogeneous treatment 

effects, due to the fact that the estimated treatment effects were highly correlated (r = .61) 

with the generated true treatment effects and thus the bias was almost consistent across 

different heterogeneity levels. Since this result possibly depended on the way the data 

were generated, the accuracy in ATT estimates for subclassification in the condition of 

large heterogeneous treatment effects should be considered with caution.  

Third, although the PS weighting methods were the best in terms of producing 

accurate TE estimates, they showed worse precision (i.e., measured via empirical SE) in 

general compared to the other PS conditioning methods. PS matching was sensitive to 

large differences in relative PS distributions with respect to precision and produced the 

best precision in TE estimates with small sample size in the control group compared to 

the other methods. Precision for matching however was robust to heterogeneous 

treatment effects. Subclassification (both ATT and ATE) followed similar pattern as 

matching in terms of precision. PS weighting (i.e., both WBO and IPTW) showed larger 

SE in general compared to the other methods. While the empirical SE is informative of 

how generalizable the results are, it is not recommended as a performance measurement 

metric, because the SE estimate may not even reflect the true SE of a model (i.e., SE 

estimates untrustworthy). Therefore, the realtive bias in SE estimates is further discussed 
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in the following paragraph as another quality measure for different PS conditioning 

methods.  

In addition to considering whether the parameter estimates are generalizable, we 

care more about whether the estimates are trustworthy (i.e., the accuracy of the SE 

estimates in terms of relative bias). Although weighting had higher SEs in general, the SE 

estimates tended to be more accurate among all PS conditioning methods. In practice, 

choosing a method that produces trustworthy result is more desirable than selecting the 

one that has better but unreliable precision. There were fewer conditions where PS 

matching generated more trustworthy SE estimates than PS weighting, even though the 

fluctuation in the SE relative bias was relatively small across conditions. 

Subclassification, according to the simulation results, never generated SE estimates that 

were acceptably trustworthy. Because relative bias in SE did not really follow any easy 

patterns, one needs to refer to the guideline table to decide which method works best 

under a certain condition.  

Finally, the results revealed that when the interaction and quadratic terms in the 

true PS model were ignored in the PS estimation step, the patterns of the results almost 

always followed the situation when the PS model was correctly specified. This indicates 

that, TE estimation is robust to a certain degree of PS misspecification, specifically, 

ignoring the interaction and quardratic terms. This finding however may not generalize to 

missing important covariates in the PS model.  

6.2 Limitations and Potential Extensions 

There are several limitations of the study and potential extensions. First, among 

the controlled conditions, the PS distribution (and thus the relative PS distribution) is a 
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data-dependent factor which may differ substantially depending the selected covariates 

and the distributional features (i.e., mean, variance, skewness, and kurtosis) of the 

matched data. The shapes of the four relative distribution conditions were empirically 

rather than quantitatively defined (and the quantities of the overlap were calculated based 

on the empirical distributions). Although the four relative PS distribution conditions 

controlled in the simulation already represented different levels of relative patterns of PS 

distributions, the current design did not cover all scenarios nor produced exact guidelines 

on how much the treatment effects would be affected by the relative PS distributions. A 

major consequence could be that when a practitioner is trying to follow the 

recommendations of this study, he could not match his data to any of the scenarios 

generated in this design. A possible extension is to collect more empirical PS relative 

distributions from real data analyses and add more conditions to the simulation. However, 

a simulation is never going to cover all practical scenarios. An additional point regarding 

the empirically simulated distributions is that it may seem tempting to use the overlap 

quantities to evaluate the relative PS distributions, but it should be noted that, if the two 

distributions have different moments, the results may not generalizable to the empirical 

research data. 

Second, the fact that the PS model misspecification did not produce different 

patterns in the simulation results could be due to how the misspecification was generated. 

For the misspecication conditions, I generated a different set of data by incorporating 

quadratic and interaction terms in the PS data generation model, simply followed the 

stereotype set by Setoguchi, et al. (2008), without quantifying how big the 

misspecification was. It could be that the magnitude of the misspecification was not big 
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enough to produce any significant differences in the results. A possible way to quantify 

the actual model misspecification is to use the degree of misspecification (DoM) metric 

proposed by Lenis, Ackerman, and Stuart (2018).  

Third, the comparisons made among different methods across the simulated 

conditions were not based on statistical tests. Instead, thresholds were set as guidance for 

practice. The justification for not conducting any statistical tests include: (1) Omnibus 

tests might not be informative given the large number of conditions maniuplated. While 

multiple comparisons were available to investigate more details such as which conditions 

differ from others, a larger number of replications might be needed to control for inflated 

Type I error rate due to multiple testing. (2) Significance test is sensitive to sample size, 

that is, statistical tests can always be significant with sufficient sample size. That said, the 

results from the statistical tests might not be generalizable to other real-life scenarios and 

can be misleading.  

Fourth, this study only focused on one popular option of each conditioning 

method as a first-step investigation, while other options are available and may improve 

the current results and make the specific conditioning method more competitive 

compared to others. Take subclassification as an example, a popular way for splitting 

observations into subclasses and thus was the focus of the study was to use the quintiles 

of the overall sample (Austin, 2011a; Lunceford & Davidian, 2004; Rosenbaum & 

Rubin, 1983; Stuart, 2010). In the simulation study, this way of splitting classes resulted 

in extremely small sample size in the treatment group with large PS relative distributions, 

especially when the sample size in the control group was medium or large. A direct 

consequence of the imbalanced treated cases across subclasses was that the balance of 
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covariates between the two groups was not good, indicating that the two groups were not 

quite comparable in those subclasses. Another consequence was that in certain subclasses 

where the treated sample size was small, the TE estimates were unreliable and 

accordingly contributed to an unreliable final TE estimate. Subclassification for ATT 

tends to be relatively robust to this issue, because the subclasses with few treated cases 

also take a smaller weight in the overall TE estimate. For ATE, however, because each 

subclass is equally weighted equal weight, the bias resulting from imbalanced sample 

size would definitely be reflected in the final ATE estimate. That said, a way to better use 

PS subclassification, although it is not the most popular in literature, is to stratify based 

on the sample size in the treatment group. Because the treatment group usually has a 

smaller sample size, subclassifying by quintiles of the treatment group would help reduce 

the chance of having extremely small sample sizes within subclasses, and therefore 

improve the results (i.e., better accuracy in TE and SE estimates). In addition to 

subclassification, possible ways to improve matching is to minimize “bias due to 

incomplete matching” (Rosenbaum & Rubin, 1985), via releasing the caliper for 1:1 

matching, using 1:n matching instead, etc. It is also possible to improve the quality of TE 

estimates from PS weighting by optimizing the trimming thresholds. These illuminate 

directions for future research. Details are not discussed here as they are not the interest of 

the study. 

Another limitation is that due to its two-stage nature (i.e., PS estimation and TE 

estimation), the propensity score method is subject to the two-stage estimation problem. 

To illustrate, TE estimation utilized the matched samples constructed based on the PS 

estimates from the first estimation stage, and therefore the covariance matrix of the 
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second stage estimator includes noise induced by the first-stage estimates (Karaca–

Mandic & Train, 2003). This study, as what most people would do, only considered the 

two stages independently. However, ignoring the two-stage estimation problem may lead 

to underestimation in the SE estimates. Future studies are recommended to consider the 

dependency between the two stages and try to correct the SEs for better inferences.   

In addition to the limitations regarding the simulation, the second empirical data 

analysis in this paper aimed to provide actionable insights to the educators and policy 

makers. The complex sampling design was considered to reach this goal although the 

simulation was not conducted under the complex sampling data structure, assuming that 

the pattern of the simulation results would hold under a complex sampling structure. 

Comparing the PS conditioning methods with different PS relative distributions in a 

complex sampling data environment is a recommended area for future research.  

6.3 Conclusion 

The goal of the study was to find out whether and how different PS relative 

distributions affect the performance of multiple PS conditioning methods, and how the 

possible effects would interact with levels of heterogeneity in treatment effects, sample 

sizes, and PS model specifications. The conclusion is that PS matching and 

subclassification are both very likely to be sensitive to these conditions depending on 

what the data look like. PS weighting (without trimming) tends to be robust to a variety 

of data conditions and produces more accurate and trustworthy TE and SE estimates. An 

important recommendation for the educational practitioners is that before using the PS 

methods to make causal inference, try to take an extra step of checking the PS relative 

distributions and selecting the PS conditioning method that yields the most accurate TE 
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and SE estimates (see the flowchart in Figure 20). Knowing the relative PS distributions, 

together with the sample size ratio between the control and treatment groups, as well as 

an assumption on the level of heterogeneous treatment effects, the practitioners could use 

the guideline tables created in this study to decide on which PS conditioning method is 

the most appropriate. 
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Figure 20. Flowchart of the new six-step PS procedure including relative PS distribution 

checking. 
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Appendix A: Balance Plot (Scenario B) 

 

 
Figure A1. Standardized mean difference (SMD) for all PS conditioning models (Scenario B). dl(dm/ds/dt) = 

large(medium/small/truncated) difference in PS relative distributions. nl(nm/ns) = large(medium/small) sample size in the 

control group.  
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Appendix B: Plots for Relative Bias in TE Estimates (Scenario B) 

 

Figure B1. Relative bias for ATT methods (Scenario B). dl(dm/ds/dt) = large(medium/small/truncated) difference in relative 

PSdistributions. nl(nm/ns) = large(medium/small) sample size in the control group. hl(hm/hs) = large(medium/small) heterogeneous 

treatment effects, another way of saying substantial, slight, and zero heterogeneous treatment effects discussed in Chapter 3.
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Figure B2. Relative bias for ATE methods (Scenario B). dl(dm/ds/dt) = large(medium/small/truncated) difference in PS relative 

distributions. nl(nm/ns) = large(medium/small) sample size in the control group.  hl(hm/hs) = large(medium/small) heterogeneous 

treatment effects.  Five large relative bias produced by IPTW with trimming are out of boundary of the plot. The values are -4.41, 

11.75, 3.61, 5.06,  -9.32, and 3.15 for nl_dl_hl, nl_dm_hl, nl_dt_hl, hl_dl_hm, nm_dl_hl,  ns_dl_hl, respectively.
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Appendix C: Plots for Empirical SEs (Scenario B) 

 

 
Figure C1. Empirical SE for ATT methods (Scenario B). dl(dm/ds/dt) = large(medium/small/truncated) difference in PS relative 

distributions. nl(nm/ns) = large(medium/small) sample size in the control group.  hl(hm/hs) = large(medium/small) heterogeneous 

treatment effects.
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Figure C2. Standard Error for ATE methods (Scenario B). dl(dm/ds/dt) = large(medium/small/truncated) difference in PS relative 

distributions. nl(nm/ns) = large(medium/small) sample size in the control group.  hl(hm/hs) = large(medium/small) heterogeneous 

treatment effects.
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Appendix D: Plots for Relative Bias in SE Estimates (Scenario B) 

 

Figure D1. Relative bias in SE for ATT methods (Scenario B). dl(dm/ds/dt) = large(medium/small/truncated) difference in PS relative 

distributions. nl(nm/ns) = large(medium/small) sample size in the control group.  hl(hm/hs) = large(medium/small) heterogeneous 

treatment effects. The grey dotted lines indicate the thresholds between use with caution and untrustworthy (±15%).
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Figure D2. Relative bias in SE for ATE methods (Scenario B). dl(dm/ds/dt) = large(medium/small/truncated) difference in PS relative 

distributions. nl(nm/ns) = large(medium/small) sample size in the control group.  hl(hm/hs) = large(medium/small) heterogeneous 

treatment effects. The grey dotted lines indicate the thresholds between use with caution and untrustworthy (±15%). 
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Appendix E: Tables for Scenario B 

Table E1 
Relative Bias in ATT Estimate 

Conditions  Relative Bias (ATT) 
Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 Naïve  Matching Subclassification WBO WBO-Trimmed 

Large Truncated Substantial  6.76  -0.02 0.13 -0.01 0.42 
Large Truncated Slight  2.28  -0.01 0.14 -0.01 0.46 
Large Truncated Zero  1.02  0.01 0.16 -0.02 0.50 
Large Large Substantial  -7.80  -0.29 0.37 -0.05 0.75 
Large Large Slight  9.15  -0.15 0.41 -0.05 0.82 
Large Large Zero  1.75  0.03 0.45 -0.06 0.90 
Large Medium Substantial  21.99  -0.06 0.18 -0.02 0.50 
Large Medium Slight  3.15  -0.04 0.19 -0.02 0.54 
Large Medium Zero  1.21  0.01 0.22 -0.01 0.61 
Large Small Substantial  1.77  -0.01 0.06 -0.01 0.25 
Large Small Slight  1.07  0.00 0.06 -0.01 0.28 
Large Small Zero  0.62  0.01 0.08 0.00 0.31 
Medium Truncated Substantial  4.06  -0.09 0.11 0.01 0.08 
Medium Truncated Slight  1.93  -0.04 0.11 -0.02 0.07 
Medium Truncated Zero  1.03  0.06 0.12 -0.01 0.08 
Medium Large Substantial  -21.23  -0.39 0.24 -0.02 0.39 
Medium Large Slight  5.81  -0.17 0.26 -0.02 0.42 
Medium Large Zero  1.80  0.10 0.28 -0.01 0.47 
Medium Medium Substantial  7.20  -0.16 0.14 -0.01 0.12 
Medium Medium Slight  2.59  -0.05 0.15 -0.01 0.14 
Medium Medium Zero  1.23  0.06 0.17 -0.01 0.15 
Medium Small Substantial  1.42  0.00 0.05 0.00 0.01 
Medium Small Slight  0.98  0.02 0.06 0.00 0.01 
Medium Small Zero  0.62  0.03 0.07 0.00 0.01 
Small Truncated Substantial  2.18  -0.22 0.08 0.01 0.04 
Small Truncated Slight  1.49  -0.07 0.07 -0.01 0.03 
Small Truncated Zero  1.03  0.14 0.09 -0.01 0.04 
Small Large Substantial  8.86  -0.47 0.14 0.04 0.37 
Small Large Slight  3.50  -0.15 0.14 0.03 0.41 
Small Large Zero  1.83  0.18 0.19 0.05 0.46 
Small Medium Substantial  3.05  -0.27 0.11 0.03 0.11 
Small Medium Slight  1.91  -0.09 0.10 0.01 0.11 
Small Medium Zero  1.24  0.14 0.13 0.01 0.12 
Small Small Substantial  1.02  -0.09 0.04 -0.01 -0.01 
Small Small Slight  0.82  0.03 0.06 0.01 0.01 
Small Small Zero  0.62  0.12 0.06 0.00 0.00 
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Table E2 
Relative Bias in ATE Estimate 

Conditions  Relative Bias (ATE) 
Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 Naïve  Subclassification IPTW IPTW-Trimmed 

Large Truncated Substantial  6.76  0.74 0.02 3.61 
Large Truncated Slight  2.28  0.23 0.01 1.20 
Large Truncated Zero  1.02  0.10 -0.01 0.52 
Large Large Substantial  -7.80  -1.29 -0.31 -4.41 
Large Large Slight  9.15  1.40 0.12 5.06 
Large Large Zero  1.75  0.22 0.05 0.96 
Large Medium Substantial  21.99  2.18 -0.08 11.75 
Large Medium Slight  3.15  0.31 0.03 1.66 
Large Medium Zero  1.21  0.12 0.00 0.63 
Large Small Substantial  1.77  0.18 -0.01 0.96 
Large Small Slight  1.07  0.10 -0.01 0.57 
Large Small Zero  0.62  0.07 0.00 0.33 
Medium Truncated Substantial  4.06  0.38 -0.02 0.87 
Medium Truncated Slight  1.93  0.17 -0.01 0.38 
Medium Truncated Zero  1.03  0.10 0.00 0.19 
Medium Large Substantial  -21.23  -3.00 -0.63 -9.32 
Medium Large Slight  5.81  0.73 0.14 2.44 
Medium Large Zero  1.80  0.22 0.05 0.72 
Medium Medium Substantial  7.20  0.65 0.02 1.96 
Medium Medium Slight  2.59  0.25 0.03 0.68 
Medium Medium Zero  1.23  0.12 0.00 0.30 
Medium Small Substantial  1.42  0.14 -0.01 0.08 
Medium Small Slight  0.98  0.10 0.00 0.06 
Medium Small Zero  0.62  0.06 -0.01 0.03 
Small Truncated Substantial  2.18  0.22 -0.01 0.12 
Small Truncated Slight  1.49  0.13 -0.02 0.07 
Small Truncated Zero  1.03  0.09 0.00 0.05 
Small Large Substantial  8.86  0.90 0.29 3.15 
Small Large Slight  3.50  0.37 0.08 1.24 
Small Large Zero  1.83  0.18 0.05 0.64 
Small Medium Substantial  3.05  0.31 0.04 0.40 
Small Medium Slight  1.91  0.19 0.01 0.24 
Small Medium Zero  1.24  0.12 0.00 0.15 
Small Small Substantial  1.02  0.10 -0.01 -0.01 
Small Small Slight  0.82  0.09 0.00 0.00 
Small Small Zero  0.62  0.06 0.00 0.00 
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Table E3 
Empirical Standard Error for ATT Estimate 

Conditions  Empirical Standard Error (ATT) 
Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 Naïve  Matching Subclassification WBO WBO-Trimmed 

Large Truncated Substantial  0.06  0.06 0.05 0.05 0.05 
Large Truncated Slight  0.04  0.05 0.04 0.04 0.04 
Large Truncated Zero  0.04  0.05 0.03 0.03 0.03 
Large Large Substantial  0.05  0.06 0.06 0.08 0.06 
Large Large Slight  0.04  0.05 0.05 0.06 0.05 
Large Large Zero  0.04  0.05 0.04 0.07 0.05 
Large Medium Substantial  0.05  0.05 0.05 0.05 0.05 
Large Medium Slight  0.04  0.05 0.04 0.04 0.04 
Large Medium Zero  0.04  0.05 0.04 0.04 0.04 
Large Small Substantial  0.06  0.06 0.05 0.05 0.05 
Large Small Slight  0.05  0.05 0.04 0.04 0.04 
Large Small Zero  0.04  0.05 0.03 0.03 0.04 
Medium Truncated Substantial  0.06  0.06 0.06 0.06 0.06 
Medium Truncated Slight  0.05  0.05 0.04 0.05 0.05 
Medium Truncated Zero  0.04  0.05 0.04 0.05 0.04 
Medium Large Substantial  0.05  0.07 0.07 0.13 0.08 
Medium Large Slight  0.05  0.06 0.07 0.12 0.07 
Medium Large Zero  0.05  0.06 0.07 0.12 0.07 
Medium Medium Substantial  0.06  0.06 0.06 0.07 0.06 
Medium Medium Slight  0.05  0.06 0.05 0.06 0.05 
Medium Medium Zero  0.05  0.05 0.04 0.06 0.05 
Medium Small Substantial  0.06  0.05 0.05 0.05 0.05 
Medium Small Slight  0.05  0.05 0.04 0.04 0.04 
Medium Small Zero  0.04  0.05 0.04 0.04 0.04 
Small Truncated Substantial  0.06  0.06 0.07 0.08 0.08 
Small Truncated Slight  0.06  0.06 0.07 0.08 0.07 
Small Truncated Zero  0.05  0.05 0.06 0.08 0.07 
Small Large Substantial  0.09  0.09 0.15 0.19 0.10 
Small Large Slight  0.08  0.08 0.15 0.20 0.10 
Small Large Zero  0.08  0.08 0.14 0.23 0.09 
Small Medium Substantial  0.07  0.07 0.09 0.10 0.08 
Small Medium Slight  0.06  0.06 0.08 0.10 0.08 
Small Medium Zero  0.06  0.06 0.07 0.10 0.07 
Small Small Substantial  0.06  0.06 0.06 0.06 0.06 
Small Small Slight  0.05  0.05 0.05 0.06 0.06 
Small Small Zero  0.05  0.05 0.05 0.05 0.05 
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Table E4 
Empirical Standard Error for ATE Estimate 

Conditions  Empirical Standard Error (ATE) 
Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 Naïve  Subclassification IPTW IPTW-Trimmed 

Large Truncated Substantial  0.06  0.07 0.10 0.05 
Large Truncated Slight  0.04  0.06 0.08 0.04 
Large Truncated Zero  0.04  0.06 0.08 0.04 
Large Large Substantial  0.05  0.16 0.29 0.06 
Large Large Slight  0.04  0.12 0.21 0.04 
Large Large Zero  0.04  0.12 0.20 0.05 
Large Medium Substantial  0.05  0.07 0.13 0.04 
Large Medium Slight  0.04  0.07 0.10 0.04 
Large Medium Zero  0.04  0.07 0.08 0.04 
Large Small Substantial  0.06  0.05 0.06 0.05 
Large Small Slight  0.05  0.04 0.05 0.04 
Large Small Zero  0.04  0.04 0.04 0.04 
Medium Truncated Substantial  0.06  0.06 0.09 0.05 
Medium Truncated Slight  0.05  0.05 0.07 0.05 
Medium Truncated Zero  0.04  0.05 0.06 0.04 
Medium Large Substantial  0.05  0.14 0.32 0.06 
Medium Large Slight  0.05  0.11 0.20 0.06 
Medium Large Zero  0.05  0.10 0.18 0.06 
Medium Medium Substantial  0.06  0.07 0.13 0.06 
Medium Medium Slight  0.05  0.06 0.10 0.05 
Medium Medium Zero  0.05  0.06 0.08 0.05 
Medium Small Substantial  0.06  0.04 0.05 0.05 
Medium Small Slight  0.05  0.04 0.04 0.04 
Medium Small Zero  0.04  0.04 0.04 0.04 
Small Truncated Substantial  0.07  0.06 0.08 0.07 
Small Truncated Slight  0.06  0.05 0.06 0.06 
Small Truncated Zero  0.06  0.05 0.06 0.05 
Small Large Substantial  0.06  0.12 0.23 0.08 
Small Large Slight  0.06  0.11 0.22 0.07 
Small Large Zero  0.06  0.11 0.20 0.07 
Small Medium Substantial  0.07  0.07 0.10 0.07 
Small Medium Slight  0.06  0.06 0.09 0.06 
Small Medium Zero  0.05  0.06 0.07 0.06 
Small Small Substantial  0.07  0.05 0.05 0.05 
Small Small Slight  0.06  0.05 0.05 0.05 
Small Small Zero  0.06  0.04 0.05 0.05 
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Table E5 
Relative Bias in the SE Estimate for ATT  

Conditions  Relative Bias in SE Estimate (ATT) 
Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 Naïve  Matching Subclassification WBO WBO-Trimmed 

Large Truncated Substantial  -0.22  0.15 0.66 0.17 0.10 
Large Truncated Slight  -0.03  0.16 1.13 0.27 0.21 
Large Truncated Zero  0.14  0.26 1.51 0.35 0.36 
Large Large Substantial  -0.18  0.15 0.30 0.01 0.07 
Large Large Slight  -0.01  0.25 0.52 0.17 0.19 
Large Large Zero  0.02  0.18 0.65 0.05 0.15 
Large Medium Substantial  -0.14  0.33 0.74 0.21 0.19 
Large Medium Slight  -0.01  0.25 1.03 0.25 0.23 
Large Medium Zero  0.17  0.26 1.18 0.22 0.28 
Large Small Substantial  -0.24  0.11 0.65 0.08 0.05 
Large Small Slight  -0.06  0.14 1.23 0.27 0.18 
Large Small Zero  -0.02  0.26 1.63 0.36 0.20 
Medium Truncated Substantial  -0.14  0.18 0.81 0.11 0.10 
Medium Truncated Slight  -0.01  0.34 1.36 0.33 0.33 
Medium Truncated Zero  0.11  0.26 1.56 0.29 0.31 
Medium Large Substantial  -0.04  0.27 0.72 -0.07 0.12 
Medium Large Slight  0.04  0.24 0.59 -0.12 0.10 
Medium Large Zero  -0.05  0.19 0.60 -0.14 0.07 
Medium Medium Substantial  -0.12  0.27 0.94 0.12 0.16 
Medium Medium Slight  -0.04  0.15 1.01 0.16 0.21 
Medium Medium Zero  0.03  0.33 1.20 0.10 0.22 
Medium Small Substantial  -0.19  0.30 0.98 0.20 0.18 
Medium Small Slight  0.02  0.32 1.61 0.42 0.41 
Medium Small Zero  0.10  0.19 1.63 0.34 0.34 
Small Truncated Substantial  -0.06  0.31 1.19 0.09 0.12 
Small Truncated Slight  0.03  0.26 1.15 0.12 0.14 
Small Truncated Zero  0.03  0.32 1.16 0.13 0.14 
Small Large Substantial  0.05  0.26 0.74 -0.18 0.04 
Small Large Slight  -0.07  0.21 0.49 -0.24 -0.01 
Small Large Zero  0.02  0.24 0.57 -0.33 0.11 
Small Medium Substantial  0.02  0.34 1.03 0.02 0.08 
Small Medium Slight  -0.02  0.28 0.94 -0.01 0.09 
Small Medium Zero  0.06  0.38 1.07 0.03 0.13 
Small Small Substantial  0.03  0.36 1.35 0.19 0.19 
Small Small Slight  -0.02  0.23 1.33 0.21 0.21 
Small Small Zero  -0.03  0.26 1.56 0.31 0.31 
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Table E6 
Relative Bias in the SE Estimate for ATE  

Conditions  Relative Bias in SE Estimate (ATE) 
Sample 
Size 

Rel. PS 
Dist. 

Heter. 
TE 

 Naïve  Subclassification IPTW IPTW-Trimmed 

Large Truncated Substantial  -0.22  0.93 0.03 0.13 
Large Truncated Slight  -0.03  1.19 0.08 0.23 
Large Truncated Zero  0.14  1.09 -0.02 0.24 
Large Large Substantial  -0.18  0.25 -0.33 0.17 
Large Large Slight  -0.01  0.69 -0.20 0.26 
Large Large Zero  0.02  0.82 -0.28 0.14 
Large Medium Substantial  -0.14  1.08 -0.01 0.33 
Large Medium Slight  -0.01  0.96 0.04 0.23 
Large Medium Zero  0.17  1.04 0.04 0.24 
Large Small Substantial  -0.24  1.13 0.23 0.20 
Large Small Slight  -0.06  1.38 0.21 0.21 
Large Small Zero  -0.02  1.60 0.25 0.13 
Medium Truncated Substantial  -0.14  1.24 0.13 0.32 
Medium Truncated Slight  -0.01  1.47 0.16 0.33 
Medium Truncated Zero  0.11  1.50 0.21 0.31 
Medium Large Substantial  -0.04  0.41 -0.34 0.28 
Medium Large Slight  0.04  0.70 -0.16 0.22 
Medium Large Zero  -0.05  0.85 -0.25 0.14 
Medium Medium Substantial  -0.12  0.92 -0.08 0.22 
Medium Medium Slight  -0.04  1.14 -0.01 0.20 
Medium Medium Zero  0.03  1.24 0.12 0.26 
Medium Small Substantial  -0.19  1.52 0.48 0.44 
Medium Small Slight  0.02  1.91 0.44 0.50 
Medium Small Zero  0.10  1.69 0.37 0.38 
Small Truncated Substantial  -0.06  1.51 0.24 0.32 
Small Truncated Slight  0.03  1.57 0.33 0.33 
Small Truncated Zero  0.03  1.71 0.36 0.32 
Small Large Substantial  0.05  1.07 -0.10 0.29 
Small Large Slight  -0.07  1.14 -0.20 0.21 
Small Large Zero  0.02  1.06 -0.21 0.17 
Small Medium Substantial  0.02  1.45 0.19 0.32 
Small Medium Slight  -0.02  1.42 0.15 0.29 
Small Medium Zero  0.06  1.60 0.25 0.34 
Small Small Substantial  0.03  1.77 0.48 0.48 
Small Small Slight  -0.02  1.64 0.37 0.38 
Small Small Zero  -0.03  1.84 0.41 0.41 
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