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1. Introduction

In this note, we add a new wrinkle to the very old problem of
detérmining the motion of a mass point on a spring. We adopt a
general model for the spring in which the force needed to compress
it to zero length is infinite.‘ (Consequently the motion is
governed by a singular nonlinear second-order ordinary differen-
tial equation.) In this setting we entertain the possibility,
permitted by the governing equations, that such a total
compression is actually attained. This total compression corres-
ponds to a kind of shock. We then extract from the governing
equations all the illumination they can shed on the physical
behavior. Our problem, which presents novel features for ordinary
differential equations, captures in microcosm deep and unresolved
issues involving shocks and their suppression, which arise in the
study of quasilinear hyperbolic and parabolic partial differential

equations. We comment briefly on these issues in Section 8.

Notation. t denotes the time. Ordinary derivatives with respect
to it are denoted by superposed dots. All other ordinary
derivatives are denoted by primes. We denote partial derivatives
by subscripts. Certain symbols such x appear in two roles: as
a real-valued argument of a function and in an expression x(t)
for the value of a real-valued function of t. For the sake of
precision we denote the function with values x(t) by x(-).

2. Formulation of the Governing Equations

A spring {(e.g., in the form of a steel helix or a rubber



cylinder) is confined to a horizontal groove along the x-axis.
The "left" end of the spring is fixed to a wall at x = - 1. A
unit mass point is attached to the "right" end. Without loss of
generality we assume that the natural (unstretched) length of the
spring is 1. We let x(t) denote the position of the mass point.
(x(t) is also the displacement of the mass point from its
equilibrium state.,) See Fig. 1.

We assume that the force exerted at time +t by the spring on
the mass point depends bnly on the position =x(t) and the velocity
k(t) of the mass point. We denote this force by —n(x(t),k(t)).

The function n is assumed to be given. Let us set

(1) n(x,0) ?'(x) with ¢'(0) =0, ¢(0) = 0.
B

Then n has the form

¢'(X) + vg(x,vy) with g(x,0) = 0.

L}

(2) n(x,y)

Here v is a non—-negative parameter. ¢'(x) 1is the tensile
force exerted on the mass point when it has position x and is
not moving. It effectively describes the elastic properties of
the spring. g accounts for-forces that come into play when the
mass point moves. These are the internal frictional or viscous
forces of the spring. When the mass point moves both the groove
and the ambient air can exert frictional forces on the mass point.
Such forces can be absorBéd in g. For our purposes, however, it
is conceptually advantageous to regard these external forces as
absent.(in consequence of a perfect lubrication of the groove and
of the placement of the system in a vacuum). We assume that no

other forces act on the spring. Then the equation of motion for



the mass point is
(3) x(t) + @' (x(t)) + vg(x(t),x(t)) = 0.

For simplicity we assume that n is continuously

differentiable. We require that
(4) nx(x,y) >0 Vx>-1 and Vy

so that an increase in the length of the spring is accompanied by
a corresponding increase in the tensile force. We adopt growth

conditions compatible with (4): For each fixed vy

(5) n(#,y) — {_z} as XxX — {_?}

so that an infinite tensile force is needed to stretch the spring
to infinite length and that a negatively infinite tensile force
(i.e., an infinite compressive force) is needed to compress the
spring to zero length. Conditions (4) and (5) yield corresponding
conditions on ¢'. We illustrate ¢ in Fig.2. (¢ 1is called the

stored energy of the spring). That ¢(x) need not approach o

as X — - 1 1is crucial in our development.
We assume that

(6) ny(x,y) > 0.

Thus an increase in the wvelocity of the end of the spring is
accompanied by a correspopding increase in the tensile force. As
we shall see, this requirement ensures that the effect of ¢g is
to dissipate energy. When v » 0, we accordingly say that the
motion- is damped. We adopt a strong version of (6) that is

required to hold when the spring is under compression (x < 0) and



is being compressed (x < 0): There is a positive-valued function

»’ such that
(7) g(x,y) = p'(xn)y for -1 <xs 0, ys 0.

(Note that if (7) is an equality; then (4) holds for all x in
(-1,0] and for all y s 0 if and only if »”(x) < 0.) We take
p(0) = 0. The viscous stress g is allowed to depend upon x
because the internal frictional force when the spring is highly
compressed may well differ from that when the spring is under

tension.

3. Analysis of the Differential Equation for the Undamped Motion

We begin our study of (3) by first studying it for v = 0.
In this case we multiply (3) by x(t) and integrate the resulting

equation to get the energy equation:

(8) 3R(6)% + o(x(1)) = 3x(0)% + 9 (x(0)).

This integral is assumed to hold only on time intervals on which
%(+) is twice differentiable and satisfies x(t) > - 1 for all
t's in the interval.

We often set vy{(t) = k(t). The phase portrait of (3)

consists of the family of curves

(9) G(E):.% v2 + ¢(x) = E(const)

in the (x,y)-plane. Equation (8) says that a phase-plane trajectory
(x(-),%(*)) of the equation is confined to a single curve of the
form (9) on any time interval on which x(:) is twice differen-

tiable. (Since ¢(X) — ® as X — ®, equation (8) implies that



there is a number C (depending on initial condition) such that
|k(t)] < C, x(t) < C. Standard continuation results for ordinary
differential equations (cf. [2, Chap.l1.]) then ensure that the
solution of (3) exists as long as x(t) > - 1.)

If o(xX) — ® as H — —‘1, the phase portrait is given by
Fig. 3, in which no trajectory flirts with the wall x = -1
forming the edge of its universe. But if ¢ has a finite limit
as X — - 1, then the phase portrait has an entirely different
character illustrated in Fig.4: For large enough E the
trajectories actually touch the wall tangentially. If this
happens to a solution, i.e., if there is a 7 such that
x(r) = - 1, we say that the spring suffers a shock. It is not at
all clear what should happen to x(‘) after the first time ¢t
that x(t) = - 1. Our goal is to deduce the fate of x(-) i.e.,

to deduce the shock structure, on the basis of sound mathematical

arguments and physical hypotheses.

Let us note that the intersection of the region enclosed by
{9) and the half-plane ({(x,y): x > - 1} is convex because ¢ Iis
a convex function. Since ¢ has its minimum at =x = 0, the curve

(9) has its greatest separation in the y-direction at =x = 0,

4. The Equation for Damped Motion
We now examine the equation (3) (with v > 0) for damped
motion, which is equivalent to the systen
(10a,b) - X(t) = y(t), y(t) = - 9" (x(t)) - vg(x(t),y(t))
of first-order equations. Eqgquation (10a) says that trajectories

of the phase portrait move right when y > 0 and move left when



Yy < 0. The horizontal isocline of (10) is the locus of points at

which trajectories are horizontal, i.e., the set of (x,y) such
that

(11) o' (x) + vg(x,y) = 0.

Conditions (4), (5) support a global implicit function theorem
(based on the intermediate value theorem) ensuring that (11) has a
unigque solution:

(12) ) X = h(y;v)

where h is a continuoﬁsly differentiable function with
(13) h(o;v) = 0, hy(y;v) < 0, h(y;v) > -1, h(y:;0) = 0.

The vertical isocline of (10) is the locus of points at which
trajectories are vertical; it is the =x-axis as a consequence of
(10a).

Let us multiply (3) by k(t) obtaining
(14) S {% x(t)? + <p(x(t))} = - vg(x(t),x(t))x(t).

For v > 0, the properties of g ensure that the right-hand side
of (14) is negative when k(t) = 0, i.e., when a phase-plane
trajectory is not crossing the x-axis (cf. (10a)). It follows
from (14) that trajectories pierce inward through the level curves
(9). (This fact supports an existence theorem like that discussed
in the remarks following.(Q).) Equation (14) also says that the
energy,.which is the term in braces on the left side of (14), is
decrea#ing for v > 0. It 1s this fact that justifies

characterizing g as dissipative.



5. Shock Absorbers

The dissepativity embodied by (6) ensures that any trajectory
(10) originating within or on the distinguished curve & (¢(-1))
of (9), which is tangent to the line x = - 1, must ultimately
wind - down to the origin. (Thisvfact is a standard result from the
theory of ordinary differential equations.) But it is not clear
whether a typical trajectory starting outside 8 (¢(-1)) will
intersect the line x = - 1, thereby generating a shock, or will
safely negotiate this déngerous edge and ultimately bring the
system to rest at (x,y) = (0,0).

Suppose that ¢ has a finite limit as x — - 1 (or
equivalently, that ¢’ is integrable on (0,1]). Then g is

called a shock absorber if for each v > 0 there is no trajectory

starting to the right of the line X = - 1 that reaches this
line. We determine conditions that ensure that g is a shock
absorber and then show how shock absorbers can be used to develop
a shock structure for the undamped equation.

We integrate (3) from O to t obtaining
. ) , t ) t

(15) 0 = x(t)-x(0) + v j g(x(7),x(r)dr + j o' (x(7))dr.
0 0

We study (3) and (15) on a time interval [0,t] . for which
(x(-),x(-)) lies entirely in the quadrant Q = ({(x,y):-1<x<0,y<0}.
Without loss of generalitﬁ‘we take initial conditions with

x(0) < 0, k(O) < 0. Every trajectory in Q may be regarded as
originating from such an initial point. Condition (7) implies

that



t t
(16) 0 5 x(t)-x(0) + v [ ¥ (x(r))k(r)dr + [ o'(x(v))dr
o 0
for trajectories in Q. Since ¢°(0) = 0, condition (4) implies

that ¢'(x) < 0 for x < 0. Thus inequality (16) immédiately

yields

v

t
(17) pp(x(t)) = x(0)-%X(t) + » p(x(0)) - j o' (x(7))dr
0

X(0) + vy (x(0))

v

for trajectories in Q.
Now k(O) <0 in Q. If p(x) —m - ® as x3¥ -1, then

(18) x(t) = » T(p(x(0)) + x(0)/v) > - 1 for v > 0

so that g is a shock absorber. If p(x) has a finite limit «
as x ~ - 1, then there are initial data, including those with
x(0) < va, for which shocks must occur. See Fig. 5. (Note what
happens as v ¥ 0.)

The physical significance of the requirement that p(x) — - ®
as x ¥ - 1 is that internal friction increases without bound as

the spring is subjected to increasingly severe compression.

6. Shock Structure

Suppose that the elastic energy ¢(x) has.a finite 1imit as
X — - 1, in which case the undamped problem has phase portrait
Fig.4. Let g be a shock absorber. We adopt the view that the
physicaily natural behavior for solutions of the undamped problem
in the presence of shocks is that dictated by the nonuniform limit

as v ¥ 0 for the problem damped with a shock absorber.



To determine this behavior, let us assume that v is small.
Then standard perturbation results of ordinary differential
equations (cf. [2, Chap.2], e.g.) tell us that away from the wall
X = - 1 (where the equation ceases to be regular), the
trajectories of (3) are close to those of the undamped equation.
(I.e., on any compact subset of ((x,y): -1 < x} the trajectories
of (30) uniformly approach those of the undamped equations as
v ¥y 0.)

We illustrate a typical trajectory in Fig. 6 with large
initial data. It stays close to the level curve & (E) until it
approaches the wall. Since g is a shock absorber, the
trajectory cannot touch the wall. Its motion in Q satisfies
x(*) < O, &(-) > 0 so that it must move nearly parallel to the
wall in Q. It is therefore constrained to enter the second
gquadrant. But this trajectory must pierce inwardly through every
level curve (9). Therefore, in the second quadrant it cannot
cross the level curve &8(¢(-1)), which is tangent to x = - 1.

It is therefore subsegquently confined to remain within this level
curve, slowly winding down to the equilibrium state (x,y) = (0,0).

The behavior of the phase portrait in the limit as v v 0 is
nearly obvious. The limiting trajectory corresponding to that of
Fig. 6 1is given in Fig. 7. It consecutively passes through
points O, 17, 1+, 2, 3,‘4 with the cycle 1+, 2, 3, 4 repeated
periodically. The only question facing us to determine what is
happenigg on the segment 1_,1+. To answer this we revert to

the study of (3) when v 1is small. Let &£ be a small positive

number. We study the phase portrait of (3) or (10) in the strip
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{(x,¥): -1 <x<-1+¢, y < 0}). Here &(t) > 0. Thus let

y(+), defined on (tl,t correspond to a trajectory lving in

2),
this strip. Let - t(*) denote its inverse, defined on (yl,yz),
where v, = y(tl),y2 = y(tz). The time lapse in traversing this

portion of the trajectory is

(19) ty-t; =] t(vidy=| | _ dy ’
Y, v, v(t(y)) Y@  (x(t(y)))+g(x(t(y)),y)

the last equality coming from (10b). Since x < -1 + ¢, we find
from (19) that
Yo~¥y

(20) tz-tlSm.

As ¢ ¥ 0, t ¥ 0, We have seen in Fig. 6 that as v ¥ ©

27t
the trajectory must get closer and closer to x = - 1 in gquadrant
Q. In virtue of (20) we therefore conclude that the appropriate
time lapse for the trajectory to go from 1  to 1¥ in Figure 8
is the limit of the time lapse needed to traverse the nearly
vertical part of Fig. 6; this limit is 0. Thus we may
characterize the shock structure of the undamped problem as being
embodied in the phase portrait of Fig. 7 with the jump from 1~
to 1+ occurring instantaneously. Thus i(-) is discontinuous.
(A discontinuity in the velocity field is a difining property of
shock in the theory of partial differential equations of
mechanics. Our notion of shock is consequently consistent with

this usage.) We now plot in Figs. 8 the position x(+) and

velocity x(+) in light of this interpretation of Fig. 7.
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This development has some interesting consequences. Suppose
that ¢ 1is integrable on (-1,0) and that g is a shock

absorber. Let us integrate (3) with respect to t over (tl'tz)

obtaining the Impulse-Momentum Principle

2

(21)  X(ty) - k(t,) = - [ [e'(x(£)) + pg(x(t),%(t))]at,

Y

which is to hold for (almost) all intervals (tl’tz)’ The left

side of (21) is the difference in the linear momentum (since the

mass is unity) and the right side, thé'time'integral of the force,
is the impulse. The Impulse - Momentum Principle generalizes
Newton's Second Law of Motion to handle cases in which the
velocity k(') is not a differentiable function of +t. More

t

generally, we could regard the impulse over (t not as an

1’ 2)'
integral of a prescribed force function, but rather as a
prescribed functional of x{(-}).

Suppose that the situation illustrated in Fig.6 prevails.
Let v ¥ 0. Then the trajectory of Figure 7 approaches the line
X = -1 and in the limit touches it along 1_,1+ of PFig.7 for
an instant T of time. Let (tl'tz) > T and let tlaT, t2NT.
Since x suffers a jump at T in PFig.7, the formal limit of
(21) as v ¥ 0 cannot hold. What happens is that the integrand
on the right hand side of (21) converges in the sense of
distributions to a Dirae delta. This means that it would be a
fruitless exercise to seek a solution of (21) "with v = 0 in the
class of functions x(-) for which ¢‘(x(¢)) 4is integrable. 1In

this limiting case the right-hand side of (21) should be

interpreted as the value of a functional of x(°), depending on

12



Let us also note that the energy drops across 7. Indeed,
the impulse functional can be expressed in terms of the energies
at T*- and 7T+. (cf.(8)). Thus'in the limit as v approaches

0, the effects of dissipation become concentrated at the shock.

7. Example. Quadratic Damping.
We can illuminate the nature of the inequalities (6), (7) by
examining a situation in which theyﬂéfé-notrsafisfied, that of -

gquadratic damping:

v (x)yly]., v (x) 2 o.

NI

(22) g(x,y) =

~

On any t-interval for which X(t) < 0, we can let t(-) be
the inverse of x(-) and set v(x)==k(t(x)). Then

%(t(x)) =v(x)v'(x) and (3) reduces to

(23) %i[%v(x)z] + ' (x) - %zp‘(x)v(x)2 = 0 where x(t) < O

(The sign of the last term on the left-hand side of (23) changes

where k(t) > 0.) Let w = % v2. Since (23) is a linear

equation for w(-:), its solution is
X

(24) wix) = e’?(Elyi0) - &¥?(¥) Jq),(t)e—vw(t) ae .
(0]

We assume that ¢(x) has a finite limit as x — - 1. Noting
that the independent variable in (24) is x, we refer to Figure 6
to dedﬁce that (22) is a shock absorber if for each w(0) > 0 and
for éach v in (0,1] there is an x in (-1,0) for which

w(x) = 0, 1In this case, (24) implies that there is an x in

13



(-1,0) such that

X
(25) wio) = [erie) e qr,
0

If 9(x) bhas a finite limit as x - - 1, then the integrability
of ¢’ ensures that the right-hand side of (25) has an upper
bound independent of v for v s 1. Thus (22) cannot be a shock
absorber. If p(xX) — - ® as X -— - 1, the situation is far
more delicate than that for (6), (7), discussed in Section 5.
E.g., if p(x) = én(1+x), then the right-hand side of (25)

reduces to

X
(26) jow%t)(1+t)“”dz.

If there are numbers C>0, pu in (0,1) such that ¢’'(x) 2 -C(1+¢) ¥,
then (26) is bounded above for -1 < x < 0 when v < 1 - u. Thus

even though p(x) — - ®» as x — - 1, equation (22) fails to be

a shock absorber. On the other hand, if p(x) - (1+x)—a with

a >0 for x < - 1/2, then for x < - 1/2 the right-hand side of

(25) exceeds
-1/2 o
-o'(-1/2)1 [ e”117F) T
X
(14x)" ¢
[-¢'(-1/2)1a”" | e
C(1/2)7®

vn n—(a+1)/adn

(27)

(1+x)—a
> [-p'(-1/2)1a” | [1+un+e - +(0n) ¥ /K117
(1/72)7¢

-(a+1)/adn

14



QA

(14x)
> v¥[-p'(-1/2) 1 (ak!) ~? | k(1) /ag,
(1/2)™%
where k 1is an integer exceeding (a+l)/a. Then as x % - 1, the

rightmost term of (27) approaches ® for each » > 0. Thus (22)

with this class of p’s are shock absorbers.

8. Conclusion

Our treatment in Sections 4-6 produced a doctrine for con-
structing solutions of the undamped equation near a time <7 at which
x(t) = - 1. One interpretation of this doctrine is that it yields
a criterion for selecting a unique way to continue the solution
after the shock. Without such a well-founded doctrine we could
have invoked a spurious argument based on the conservation of energy
to infer that a trajectory arriving at (x,x) = (-1,-y,) should
leave along the tail of the same trajectory at (x,k) = (—1,y0).

One can contemplate problems, analogous to the one we

treated, for the longitudinal motion of a viscoelastic rod. This

motion is governed by a partial differential equation of the form

(28) p(s)u (s, t) = n(ug(s,t),u (s, t))g

[e'(u(s,t)) + vg(u_(s,t),u, (s,t))]

where p 1is the mass density of the rod per unit reference

length, u(s,t) is the diéplacement of the material point s at
time ¢t, and n has the form (2). Pioneering analyses of the
existence of solutions for initial-boundary value problems for (28)

were carried out by Greenberg, MacCamy, & Mizel [6] for
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|

(29) n(x,y) = ¢'(x) + vy, v >0,

by Kanel' [8] (and later independently by MacCamy [19]) when
there is a number C > 0 such that

(30) n(x,y) = ¢'(x) + »'(x)y, »'(x) 2 C I,

and by Dafermos [3] when there is a number C > 0 such that

-1 2
(31) nY 2 C ' (nx) < CnY

It is clear that if ¢’ has the form show in Fig.2, then
(20) satisfies (4)-(7). Obviously (30) satisfies (6),(7). But if
p’'(x) is not constant, then (4) cannot hold for all vy. Under
mild additional condi{ions on n it can be shown [1] that the
second condition of (31) is incompatible with the second limit of
(5).

These observations do not deprive (30) and (31) of their
physical significance. Equation (28) subject to (30) is the
material (or Lagrangian) form of the one-dimensional Navier-Stokes
equations for the flow of a compressible viscous fluid, provided
that the first limit of (5) is replaced with the inequality
n(x,y) < 0. Here us+1 is the specific volume and -n is the
pressure. Equation (28) subject to (31) furnishes a perfectly
good model for one-dimensional shearing motion of a viscoelastic
body.

To the best of my kaowledge, there is no global existence
theory. for initial-boundary value problems for (28) for a general
class of functions n satisfying (4)-{(6). The difficulty lies in
the treatment of the possibility that u(s,t) = - 1 for some s,t

and thus reflects a very challenging version of the analogous

16



obstacle overcome in Sections 4-6. {In technical terms, the
uniform parabolicity of (28) inherent in the assumption that
nY 2 C—l, is insufficient to overcome the extreme hyperbolicity
inherent in the second limit of (5).) I conjecture that an
appropriate existence theory can be fashioned on the basis of (7).
The limiting process of Section 6 represents one particularly
attractive way to develop a doctrine for handling shocks. Hopf
[7] was able to effect a very elegant treatment of the limiting
process for a special partial differential equation, but the few
extensions of it to more general equations, by DiPerna [4,5], have

required formidable exercises in analysis. 1In all these cases the

dissipative terms have the special character of (30).
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Captions

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.®6

Geometry of the spring-mass systen.
Typical stored energy functions ¢. The actual graphs
shows are for

P (x) = 3(14:)% + (14)71 -

Wik

(14372 - 3(14+x)1/2 4 2,

9, (%)

p(x) —m ® as x ¥ - 1, That plotted here is for ?q

introduced in the caption of Fig.2.

Typical phase portrait for the undamped equation when
¢(-1) < ®». That plotted here is for Py introduced in

the caption of Fig.2.

A function % that generates a shock absorber. That
plottéd here has the formula

p(x) = (1+x) - (1+x)'1.

The dashed line corresponds toa p» with p(-1) > - ®,

Typical phase portrait of the damped system 10 when g
is a shock absorber. The trajectory shown is computed
for Py of Fig.2, for v = 0.1 and for

gi{x,y) = { p'(x)y for v =< O
y for y =2 0

where 9y has the form given in the caption of Fig.5.
(That g is not continuously differentiable has no

appreciable effect on the phase portrait. This g can
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Fig.?

Fig.8

be readily approximated by a function with any

prescribed number of derivations for which (4) - (7)

hold.)

The limit as » ¥ 0 of the trajectory of Fig.6.

The displacement x(-) and the discontinuous velocity

v(+) for the trajectory of Fig.7.

20



=
S-
£
e
AERL
_.mdommrhw

\

Cort

X&)







v ke

e L T R N i il T O N T T







Ea

RN S & pi i< e T A PR S i T Y e D G SRR ]






‘2. 0c¢c 01 00 0°1- 0'¢-0%-

"t
ra ,

6.0

1.5 3.0 4.5

0.0

{dynef.i... IR I TR T TR T TR G, S s T v



