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is the subject of Section 3. We turn our attention to the linear algebra of un-constrained optimization problems in Section 4, and then review the simplexmethod for linear programming in Section 5. Section 6 discusses linear algebraproblems arising in interior point methods. Nonlinear problems are brie
y con-sidered in Section 7. Section 8 concerns linear algebra problems giving rise tooptimization, and Section 9 discusses computational issues in optimization. Wesummarize our survey in Section 10.2 Linear and Quadratic ModelsThe modeling of complex phenomena in science and economics by linear andquadratic models is ubiquitous. It is motivated by the Taylor series expansionof a thrice continuously di�erentiable function f : Rn ! R asf(x) = f(x0) + f 0(x0)(x� x0) + 12(x � x0)T f 00(x0)(x� x0) +O(kx� x0k3) ;as well as by the relative ease of handling these models rather than fully-nonlinear ones. Often the full nonlinearity of f is neglected in the modelingprocess, either because the simpler models yield su�cient accuracy or becausethe modeling process yields insu�cient information about the higher order co-e�cients.We often determine the coe�cients in a linear model by obtaining the \bestpossible" �t to experimental data. The coe�cients can be highly dependent onour way of measuring \best." In general, given a modelM (t; z) of some functiony(t), and data (ti; yi), i = 1; : : : ;m, we try to determine the model coe�cientsz 2 Z � Rp to minimize the norm of the residual vector, whose entries areri = yi �M (ti; z) ; i = 1; : : : ;m :Common choices of the norm are the 1-norm or in�nity-norm, leading to linearprogramming problems (See x5) or the 2-norm, leading to a linear least squaresproblem (See x3). Narula [68] discusses solution of these various regressionproblems. If the set Z is something other than Rp, then there are constraintson the minimization problem.Thus, modeling of physical phenomena leads to optimization problems, but,conversely, algorithms for optimization often lead to linear and quadratic mod-eling. For instance, an objective function f(x) might be locally modeled as aquadratic function in algorithms such as sequential quadratic programming. Asanother example, we often temporarily replace a constraint by a local linearmodel in order to make a subproblem easier to solve (See x7).Perhaps the oldest use of quadratic models to solve nonlinear problems isthe iteration of Newton for minimizing a function or �nding a zero of a systemof nonlinear equations. At each step in the iteration, we construct a quadraticmodel of the function (or a linear model of the system of equations) and use2



that model to generate a step in the direction of a better solution. A wonderfulsurvey of Newton's method is given in [96], and we consider this method in x4.3 Least SquaresConsider the modeling problemminz kMz � yk2 (1)where M 2 Rm�n, z 2 Rn, and y 2 Rm. This linear least squares problemwas shown by Gauss [38, 37, 39] to produce the z that yields the best linearunbiased estimator of any function cT ztrue whenever the errors in y have meanzero and variance �2I.The oldest algorithms for solving the linear least squares problem can beviewed as applying direct or iterative methods to solve the normal equationsMTMz = MT y ;obtained by setting the derivative of (1) to zero.Within the past 50 years, advances in the solution of least squares problemshave been of three types: analysis of sensitivity and stability, development ofcomputational tools, and consideration of problem variants.The lucid textbook by Bj�orck [8] is the de�nitive reference on the entiresubject of numerical solution of least squares problems, and we recommend itfor exposition and further references. Higham [48] is an alternate source for thehistory of sensitivity analysis for these problems.3.1 Sensitivity and Stability of Least Squares ProblemsImportant contributions to the study of sensitivity of least squares problemshave been made in recent years.Wedin [94, Thm. 5.1], studied the normwise perturbation of z and the resid-ual r = y�Mz whenM is perturbed, showing that if the relative perturbationsin M and y are less than �, and if the condition number �2(M ) (the ratio of itslargest to its smallest singular value) satis�es �2(M )� < 1, thenkz � ẑkkzk � �2(M )�1� �2(M )� �2 + (�2(M ) + 1) krk2kMk2kzk2� ;kr � r̂kkyk � (1 + 2�2(M ))�This result says that if the residual is small, then perturbations are propor-tional to �2(M ), but if the residual is large, then perturbations proportional to�2(M )2 might be seen, and that is indeed the case.3



Further analysis can be found in [8, Chapter 1], including component-wisebounds on the error [4].3.2 Computational Tools for Least Squares ProblemsThe main computational algorithm for least squares solves the problem by usingthe QR factorization of the matrix M into the product of a matrix Q 2 Rm�nwith orthogonal columns, and an upper triangular matrix R 2 Rn�n. Use ofthis tool was �rst proposed by Golub [41], but great attention has been given tothe relative advantages of factorization using Householder re
ections, Givens ro-tations, or modi�ed Gram-Schmidt [8, Sec. 2.4]. The �rst two alternatives wereknown to have similar desirable error properties, and modi�ed Gram-Schmidtwas �nally shown stable in a paper of Bj�orck and Paige [10] by exploiting thefact, known to many early practitioners such as She�eld, that modi�ed Gram-Schmidt is numerically equivalent to Householder QR applied to the matrix� 0M � :If the problem is di�cult in the sense that M is ill-conditioned, then morere�ned tools are needed. The QR factorization with column pivoting [41] can beused to try to identify the most linearly independent columns �rst and perhapsconstruct a model of reduced size; see [18] for a survey of such rank-revealing QRfactorization methods. This is not foolproof, however, and the singular valuedecomposition [42, x2.5] is a more reliable (and more expensive) factorizationalgorithm for identifying dependencies; see Stewart [85] for historical remarkson the SVD.The LU factorization of M can also be used to solve least squares problems[77], but its use is not common except when the matrixM is sparse, with manyzero elements. In that case, the QR factors may be quite dense, due to creationof nonzeros in the course of the factorization. To minimize this �ll-in, it isimportant to use the best algorithms for reordering the rows and columns of thematrix [29] before factorization.The normal equations can be solved by Cholesky factorization into the prod-uct of a lower triangular matrix times its transpose, but if the problem is largeand sparse, then reordering strategies should again be used to minimize �ll [40].An alternate to factorization for large sparse problems is the use of iterativemethods. The preconditioned conjugate gradient algorithm [42] can be used tosolve (8), and row-action methods [17] and other specialized methods such asCGLS and LSQR avoid forming the normal equations [8, Chapter 7].3.3 Variants of Least Squares ProblemsOften the matrixM has special structure that can be exploited in order to makesolution of the least squares problem more e�cient. One example is the matrix4



that arises from �tting polynomials using the power basis and equally spaceddata points. The resulting matrix for the normal equations, a Vandermonde ma-trix, has beautiful structure but is quite ill-conditioned [11, 9, 27, 47]. A secondexample is the band matrix structure that results from �tting functions whosesupport is local [80, 23]. Wavelet [20] and Fourier bases often give matriceswith small displacement rank [51] again leading to e�cient solution algorithms[86, 24, 67, 44, 76].Some models give rise to nonlinear least squares problemsminz kr(z)k ;where r : Rn !Rm. These are usually solved by Newton variants discussed inSection 4.Constrained least squares problems also arise frequently in practice. Forinstance if the parameters z are constrained to be nonnegative, then the resultingleast squares problem is a special case of quadratic programmingminz 12zTMz + zTw ; (2)Cz � d ;and e�cient algorithms for solving such non-negativity constrained least squaresproblems were �rst proposed by Lawson and Hanson [59]. Alternatively, if thevector z is constrained in 2-norm, then this results in a quadratic objectivefunction with a single quadratic constraint. This is the situation, for example,in trust region methods for optimization (See x4).Often a sequence of least squares problems needs to be solved, each repre-senting an update of the previous one due to the addition of new data or thedowngrading of the importance of old data. Such problems arise, for example,in signal processing when we try to estimate the position of an unknown numberof signal sources (e.g., �nding the position of each aircraft within a given zone)given data from a set of receivers. Updating and downdating can be done quitestabily if the full QR factorization is saved; in this case, Q is m �m. If this istoo expensive, then a variety of algorithms have been proposed that have decentnumerical properties [8, Chap. 3].The weighted least squares problemminz kMz � ykW ;where kxk2W = xTWx, is also useful in practice. Here W is an estimate of theinverse covariance matrix for the zero-mean errors in measurement of y. Thenormal equations become MTWMz = MTWy ;5



and if we introduce the residuals s = W (y �Mz), then we can transform thenormal equations into an augmented system� W�1 MMT 0 � � sz � = � y0 � : (3)We will see this system again in Section 6.If there are outliers in the data, then the least squares criterion is not veryuseful unless the weights are adjusted so that the outliers do not a�ect the �tvery much. This is the goal in iteratively reweighted least squares, or robustregression [50], in which the �xed weight matrixW is replaced by some functionof the size of a component of the residualminz mXi=1 w(yi � (Mz)i) :If w(u) = u2, then we recover the least squares problem. Functions that diminishthe e�ects of outliers include Huber's choice [49]w(u) = � u2=2; juj � �;�juj � �2=2; jzj > �;where � is a problem dependent parameter. Minimizing Huber's function leadsto a quadratic programming problem. Computational issues arising in itera-tively reweighted least squares problems are discussed, for example, in [73].4 Unconstrained OptimizationGiven a point x0 and a quadratic model of a functionf(x) � f(x0) + f 0(x0)(x� x0) + 12(x� x0)Tf 00(x0)(x� x0) ;it is natural to approximate the minimizer of f by the minimizer of this model.If f 00(x0) is positive de�nite, this minimizer is given byx = x0 � f 00(x0)�1f 0(x0) :This equation motivates Newton's method. Given x0, we de�ne a sequence ofiterates xk+1 = xk + pkwhere the direction pk is the solution to the linear system�Bkpk = �f 0(xk) : (4)6



and �Bk = f 00(xk). If f is quadratic, then x1 is a stationary point of f , aglobal minimizer if f 00 is positive de�nite. If f is not quadratic, the procedureis convergent at a quadratic rate of convergence to a local minimizer of f underconditions such as those of the Newton-Kantorovich theorem [74, x12.6]Developments of Newton's method during the last forty years have focussedon improving this method by making it more reliable and by adapting it for useon very large problems.4.1 Making Newton's MethodMore Reliable: Line Searchesand Trust RegionsTwomethods have been used to make Newton's method (or its variants) globallyconvergent to a local minimizer: line searches and trust regions.In the line search method, the Newton-like direction pk is scaled so thatxk+1 = xk + �kpk ;where �k is a parameter chosen to ensure that the objective function f decreasessu�ciently in proportion to the size of the step. See [74, x14.4.3] for conditionson �k that guarantee global convergence (e.g., Wolfe conditions, Goldstein-Armijo conditions).The trust region method constrains the length of the step so that we do notexit some region in which we \trust" the accuracy of the quadratic model. Thuswe solve the problem minp M (xk + p) ;kpk � � ;where M is the quadratic model and � is the radius of the trust region. If theconstraint is active, then the solution to this problem is( �Bk + �I)p = �f 0(xk)for some nonnegative parameter � chosen to make kpk = � . This problem can besolved by eigendecomposition of �Bk, but this is generally too expensive. Oftenan iterative approach is used; we generate a sequence of approximations to p,stopping and backtracking when the norm of p exceeds � ; see, for example, [71,p.320]. This does not give a step in the Newton direction unless the radius ofthe trust region exceeds the norm of tne Newton direction pk de�ned in (4).4.2 Making Newton's Method More Reliable for Noncon-vex FunctionsIf the matrix �Bk used in the Newton equation is not positive de�nite, thenNewton's method may fail to have a downhill search direction. To remedy this,7



algorithms based on line search usually diagnose inde�niteness as (4) is solvedand cure it by adding a small correction matrix. These techniques are easilyincorporated into a Cholesky factorization of the matrix [71, p.320].Another approach to making Newton's method more reliable is to take verysmall steps { in fact, to follow the pathdxdt = �f 00(x)�1f 0(x)starting with x(0) = x0. This is the idea behind methods such as homotopymethods [54], which also introduce a parameterized function in order to locatemultiple local minimizers. The linear algebra is heavily drawn from that usedin ordinary di�erential equation solvers [93].4.3 Adapting Newton's Method for Large Problems.Computing, storing, and factoring the Hessian matrix may be impractical if thesize is large. Quasi-Newton methods mimic Newton's method by generatingless expensive approximations Bk to the matrix �Bk. These approximations aregenerated by updating the approximation for �Bk�1, and some have come to beinterpreted as matrix approximation problems [28]. The most popular quasi-Newton variant is that proposed by Broyden, Fletcher, Goldfarb, and Shanno(BFGS), which is de�ned by the update formulaBk+1 = Bk � BksksTkBksTkBksk + ykyTkyTk skwhere yk is the change in gradient and sk is the change in x.An alternative is to use �Bk but avoid factoring it. This can be achieved bycomputing an approximate Newton search direction pk as the solution to (4) us-ing an iterative method (e.g., conjugate gradients or some other Krylov subspacemethod) that uses �Bk only for matrix-vector products. If a conjugate gradientalgorithm is used, then there are very e�ective ways to handle inde�nitenessand to determine the step for the trust region. The iteration can be terminatedif the increment d to p is a direction of negative curvature (i.e., dT �Bkd < 0) orif the algorithm steps out of the trust region [71, p.320] Preconditioning can beused to improve convergence of the iterative methods [42, x10.3], but how thisbiases the generation of directions is an open question.If �Bk is too expensive to compute or store, then the necessary products inthe iterative method can be approximated by di�erence quotients�Bkp = f 00(xk)p � f 0(xk + hp) � f 0(xk)hfor a suitably small parameter h. This produces an algorithm that has come tobe known as the truncated Newton method [26, 72, 69].8



In very large problems, the updates to the quasi-Newton matrix may provetoo numerous to store. In that case we might discard updates as they age, orskip some intermediate updates. These limited memory methods were proposedby Nocedal [70], and the properties of various discarding strategies are studiedin [57].4.4 Alternatives to Newton's Method for Large ProblemsThere is a vast set of low-storage alternatives to Newton-like methods. Theysacri�ce the superlinear convergence rate that can be achieved under carefulimplementation of the Newton-like methods [71] in order to avoid storing amatrix approximation. Many of these methods are derived from methods forsolving linear systems Ax� = b involving a symmetric positive de�nite matrixA. The conjugate gradient method [46] takes a sequence of A-conjugate descentsteps for the function (x�x�)TA(x�x�) beginning with the steepest descent di-rection. Many authors proposed nonlinear extensions of this method, beginningwith Fletcher-Reeves [34]. The algorithms are all equivalent to quasi-Newtonalgorithms on quadratic functions [33, Chap. 3], but the most robust algo-rithm for general functions is that of Polak and Ribi�ere [78], restarting with thesteepest descent direction in case trouble is diagnosed.Another set of methods is related to �xed-point methods for solving linearsystems. These linear methods are of the formxk+1 = Exk + c ;where x� is a �xed point of the iteration and the matrix E is chosen so thatits spectral radius is small, yielding linear convergence of the sequence to x�.Often these methods are derived by some variant of solving the i-th equationfor the i-th variable, and then using estimates for the other variables to form anew value for the i-th component of x. Examples of such methods are Jacobi,Gauss-Seidel, and SOR. See Varga [90] for a good discussion of such iterationsin the linear case, and Ortega and Rheinboldt [74] for the general case.5 Simplex Method for Linear ProgrammingIn the 1940s and 1950s, several events led to an explosion of interest in com-putational methods. The �rst was the computational need generated by theparticipants in World War II. Data �tting (least squares) and logistics support(optimization) created enormous demands for solution to ever-larger models.At the same time, electronic computing machines for the �rst time made it pos-sible to solve problems larger than those that could be handled by a roomful ofhuman calculators. 9



George Dantzig was among those who realized the need for automatic algo-rithms for solving optimization problems, and, working for the U.S. war e�ortat Rand Corporation, he devised a tableau to organize the data in a linearprogramming problem minx cTx (5)Ax = bx � 0 ;where A 2 Rm�n, with m < n. The tableau of numbers could be stored andmodi�ed systematically to produce an optimal solution to the problem, as wellas information on the sensitivity of the solution to the data in A, b, and c [25].Not only was this scheme well adapted to single or multiple human calculators,but it could also be implemented for large problems on electronic computers,enabling logistics planning that was unthinkable a few years earlier. The solutionof linear programs, which earlier could in general be done only approximatelyby heuristic methods, could now be automated.Dantzig's simplex algorithm was based on generating a path through thefeasible set S = fx � 0 : Ax = bg through a set of vertices (i.e., points xfor which at most m components are nonzero) that are adjacent (i.e., have allbut one zero component in common). Along this path, the objective functioncTx usually decreases, but in any case does not increase. Once an anti-cyclingsafeguard is added that prevents any vertex from being visited too many times,the algorithm can be proven to converge, because there are only a �nite numberof vertices and it can be shown that one of them is an optimal solution.For a given vertex x, we let I denote the set of indices i for which xi isnonzero. Then, if AI denotes the set of columns of A corresponding to indicesin I, we see that the nonzero components xI are de�ned byAIxI = b : (6)In order to step from this vertex to an adjacent one, we replace one index in Iby an index not in I, and the index is determined by solving a linear systeminvolving the matrix ATI . In order to compute the x corresponding to thisstep, we must modify our coe�cient matrix by replacing one column with anew one. Dantzig proposed accumulating the matrix inverse and updating itusing elementary row operations. Equivalently, his algorithm can be viewed asGauss-Jordan elimination without pivoting [5]. This algorithm is numericallyunstable, and simplex practitioners use periodic reinversions to recalculate thematrix inverse directly and eliminate the accumulated inaccuracies. This is stillnot unconditionally stable, but for many applications it works well. For densematrices, the initial factorization cost is O(m3) and the cost of each updateis O(m2). Typically the simplex algorithm takes a reasonably small numberof iterations { a small multiple of m [25, p.160] { but in the worst case the10



algorithm can visit every vertex [56], so the bound on the cost is exponential inthe problem size.In the last half of the century, the dimensions of linear programming prob-lems have become much larger than �rst envisioned. At the same time, thematrices of interest have tended to become more sparse, with many zero ele-ments. Consequently, even though the original matrix has large dimension, itusually can be stored in a small amount of memory. But the original simplexalgorithm explicitly stores the matrix inverse, which is usually completely dense.Thus various modi�cations were made to the linear algebra of the algorithm tomake it less of a storage hog. In the revised simplex algorithm with product formof the inverse, the inverse matrix is stored as a product of updates: a matrixAI is represented as A�1I = Rk�1 : : :R1;where each update matrix Ri di�ers from the identity by one column. Thisform is easily updated by accumulating additional matrices R, but when thestorage for the updates becomes prohibitive, or when inaccuracies accumulate,reinversion is performed.The computational linear algebra community became interested in the sim-plex method in the late 1960s. Bartels and Golub [6, 5] showed how the updatingalgorithm could be made stable through the use of partial pivoting, the inter-change of rows of the matrix in order to bring the largest magnitude element inthe current column to the main diagonal at every stage of the factorization. Bycomputing in this way, it is possible to bound the error in the computed solutionin two important ways: the computed solution solves a nearby problem, and thecomputed solution is close to the true solution [48, Chapter 9]. Neither of theseproperties is guaranteed to hold for earlier variants of the simplex algorithm.Still, the use of this stabilized algorithm met with resistance. Pivoting makesthe implementation of updating much more costly, and for sparse matrices, itmakes the data handling more di�cult and the storage space generally higher.The QR algorithm is an alternate matrix factorization that does not requirepivoting for stability, but its �ll-in often makes it prohibitively expensive forsparse matrices, so it was never widely used.Much research in matrix reordering was spurred in part by the simplex al-gorithm. See [29] for more information on reordering.Although iterative methods could be used to solve the linear systems in thesimplex method, they have been proposed only for some special applications.6 Interior Point Methods for Linear Program-mingThe proof by Khachian [55] that linear programming problems can be solvedin polynomial time began a new era in the solution of optimization problems.11



Khachian's algorithm was not practical for computation, but suddenly a greatdeal of attention was focused on the interior point method (IPM), algorithms inwhich the path of the iterates stays in the relative interior of the the feasible setrather than marching around the boundary from vertex to vertex. Karmarkar[52] was the �rst to propose a relatively practical interior point algorithm thathad polynomial complexity, and that announcement spurred a 
urry of workon new methods, as well as further work on older proposals such as the SUMTtechnique of Fiacco and McCormick [31].The structure of IPMs is quite di�erent from that of the simplex algorithm,but one similarity remains: the main computational work in the algorithm isthe solution of a linear system of equations. Unlike the simplex algorithm,however, this linear system arises from a linear least squares problem, and thisextra structure can be quite useful. Further, although the sparsity structureof the matrix in the simplex algorithm changes from iteration to iteration, thestructure of the matrix in the IPM is constant, and only the weights in a diagonalmatrix are changing. This fact makes data management much easier.Consider our linear programming problem (5). Gonzaga [43] and Wright [95]surveyed interior point methods, and many computational issues are addressedby Lustig, Marsten, and Shanno [64] and Andersen, Gondzio, M�esz�aros, andXu [1]. The basic idea is to replace the linear program by a nonlinear problemformed by using Lagrange multipliers y to handle the linear equality constraints,and using barrier functions to avoid violating the nonnegativity constraints. Onepopular barrier function is the logarithmic barrier, lnxj, which goes to �1 asxj ! 0+. The resulting Lagrange-barrier function isL(x; y; �) = cTx� yT (Ax � b)� � nXj=1 lnxj :The solution to our linear programming problem (5) is the limit of the saddle-points of L as � ! 0. If we set the derivative of L equal to zero, we obtainnecessary (�rst-order) conditions for a solution (x; y; �) to be optimal:Ax = b ;c�AT y � z = 0 ;XZe = �e :Here, e denotes a vector of all ones, and upper case letters X and Z denotediagonal matrices created from the entries of the vectors x and z respectively.In some sense this is a relaxation of the linear program, since these are optimalityconditions for the linear program if we take z = 0 and � = 0. The idea is tosolve a sequence of problems; initially, � is taken large in order to easily obtaina solution, and then � is reduced.The introduction of the variables z makes the �rst two equations linear, andthe Lagrange multipliers y can also be interpreted as the solution to the linear12



programming problem that is dual to (5). The most successful IPMs have beenthose that preserve primal feasibility by keeping Ax = b while at the same timemaintaining dual feasibility by keeping c� ATy � 0.We now have a system of nonlinear equations to solve, and we can applyNewton's method. We compute the Newton direction by solving the KKT(Karush-Kuhn-Tucker) system� �X�1Z ATA 0 �� �x�y � = � rd + Ze � �X�1erp � ; (7)or by solving the equations formed by eliminating�x from this system. De�ningrp = b�Ax, rd = c�AT y�z, and D2 = Z�1X, we obtain the normal equations(AD2AT )�y = AD2(rd + Ze � �x�1e) + rp: (8)Once �y is determined, �x may be easily computed from�(X�1Z)�x+AT�y = rd + Ze � �X�1e:Solving either equation (7) or (8), then, is the central computational problem inapplying IPMs to linear programming problems. The remaining considerationsare what sequence of � values to use, how accurately to solve intermediateproblems, and when to terminate the algorithm or switch to direct solutiononce the optimal vertex is identi�ed. For more information on these aspects,see, for example, [64, 1]. Here we concentrate on the issues involved in solving(7) or (8).The normal equations (8) involve a symmetric positive semi-de�nite matrix(positive de�nite if A is full rank), and the Cholesky factorization is an e�-cient tool for solving such systems. If the matrix is sparse, though, then theCholesky factor has the same sparsity structure as the triangular factor in theQR factorization of A, and this can be quite dense. We observe thatATDA = nXj=1 ajdjjaTj ;where aj is a column ofA. If a small number of columns are causing excessive �ll-in, then these columns can be omitted from the factorization, and the Sherman-Morrison-Woodbury formula [42, Sec 2.1.3] can be used to correct for theirabsence [3].Table 6 compares the features of the matrix problems in the simplex algo-rithm and in IPMs.If the matrix is ill-conditioned (which often happens at the end-stage, when� is small and some solution components go to zero) or rank-de�cient (perhapsdue to omission of columns in the factorization), it may be desirable to adda diagonal correction to ATDA so that a factorization of a better conditioned13



Table 1: Comparison of Matrix Problems in the Simplex Algorithm and in IPMsSimplex Method Interior Point Methodsnonsymmetric symmetric positive de�nite (normal equations)or inde�nite (augmented system)changing sparsity pattern �xed sparsity patternusually well-conditioned can become increasingly ill-conditioned as � be-comes smallermatrix changes by rank-2 update matrix changes completely, but only because D ischangingmatrix is computed. This technique of Stewart [84] has been used by Andersen[3] and others.The matrix of the KKT system (7) is always symmetric inde�nite. We alsosaw this matrix in optimality conditions (3) for weighted least squares problems.Cholesky factorization is unstable for inde�nite matrices, so other alternativesmust be applied. The Bunch-Kaufman-Parlett factorization [14, 13] into theproduct LSLT , where L is lower triangular and S is block diagonal with 1� 1or 2� 2 blocks, is a convenient tool for such problems.If A is large and sparse, then the factorizations for (7) or (8) usually includesparsity considerations in the choice of pivot order.Iterative methods for solving the linear systems in IPMs have received agreat deal of attention but rather limited success. The key problem is thechoice of preconditioner. Chin and Vannelli [19] solved the KKT system (7)using an incomplete factorization as a preconditioner, while Freund and Jarre[36] proposed SSOR preconditioners. Most of the preconditioning work hasbeen on the normal equation formulation (8). Karmarkar and Ramakrishnan[53] used the factorization of the matrix for one value of � to preconditionthe problem when � is changed. Mehrotra [65] used an incomplete Choleskyfactorization as a preconditioner, recomputing the factorization for each new �value. Carpenter and Shanno [16] used diagonal preconditioning, and Portugal,Resende, Veiga, and J�udice [79] also used spanning-tree preconditioners.The best solution algorithm will surely be a hybrid approach that sometimeschooses direct solvers and sometimes iterative ones. Wang and O'Leary [92, 91]proposed an adaptive algorithm for determining whether to use a direct oriterative solver, whether to reinitialize or update the preconditioner, and howmany updates to apply, but further work remains.The ill-conditioning of the matrices has stimulated a lot of work in tryingto understand why the algorithms work as well as they do. Saunders [81] setsforth a set of reliable solution strategies, and a stability analysis is presented in14



[35].7 Nonlinear ProgrammingOptimization problems with nonlinearities in their objective function or theirconstraints can be more di�cult to solve than linear programming. We surveyselected nonlinear programming problems and strategies that make use of linearalgebra.Linear algebra plays a key role in the solution of quadratic programmingproblems (2) and of linear complementarity problems (LCP)Ax� b = z ;xT z = 0 ;x � 0 ; z � 0 :Approaches include variations of the simplex algorithm, extensions of lineariterations such as Jacobi and Gauss-Seidel, descent methods such as conjugategradient, and interior point algorithms. See [66] for a comprehensive discussion.Questions of existence and uniqueness of solutions to LCP spurred work inmatrix theory on matrix cones [22].In the past, two popular methods were used to handle constraints in nonlin-ear programming problems [62, Chap. 11]. In the �rst, certain constraints wereheld active for a portion of the iteration, and the iterates were not permitted todepart from them. Any descent step was augmented by a step back to the ac-tive constraints. In the second, descent directions were projected onto equalityconstraints before the step was taken; thus, steps were computed relative to a re-duced gradient that corresponded to the gradient on the constraint surface. Thecomputations were performed by projection matrices. Both of these strategiesare currently in eclipse, due to the advent of sequential quadratic programming(SQP) and interior point methods.In SQP, we solve a sequence of quadratic programming problems (2) aris-ing from quadratic models of the original constrained problem, using IPM orsimplex-based methods for the subproblems. Again we need modi�cations tomaintain positive de�niteness. Boggs and Tolle [12] give an excellent survey ofthese methods.Interior point methods are also applied to nonlinear optimization problemsdirectly [87]. The matrix in the augmented system (7) becomes somewhat morecomplicated than in the linear case; the lower right block can become nonzero,the upper left block may be full instead of diagonal, and in many formulations,the matrix is increasingly ill-conditioned [95, 83]. The structure of this ill-conditioning is now somewhat understood, though, and, with care, the linearsystems can be solved successfully [81].Even these newer approaches, SQP and IPM, are not completely satisfactory,especially when the constraints are ill-behaved [21].15



A rather di�erent approach to some classes of optimization problems is theuse of neural networks [30]. These networks �t a surface to a function of manyvariables. There are various viewpoints for interpreting such methods, but oneway is that the training of the network corresponds to optimizing parameters ina function that discriminates among di�erent classes of points. The functionalform is predetermined, and the optimization problem is generally nonconvex,with many local solutions. To overcome this di�culty, Vapnik and colleaguesproposed support vector machines, a more limited set of functional forms thatare easier to analyze; see, for example, [89]. Many useful choices lead to convexoptimization problems { in fact, to very large dense least squares or quadraticprogramming problems (2). Burges [15] provides a good introduction to theconcepts and computational issues, while [88] is a more detailed study.8 Matrix and Eigenvalue Optimization ProblemsAnd now we come full circle. We have seen how computational linear algebrahas enabled e�ciency advances in computational optimization. We have seenthat the optimization community has raised interesting questions about matrixtheory and about stability analysis of linear algorithms. Now we discuss a setof optimization problems that arise from linear algebra and have motivated thedevelopment of important optimization algorithms and advances in the under-standing of duality theory for optimization problems.These problems involve eigenvalue optimization [60]. An important sub-class is the class of semide�nite programs. Super�cially, they resemble linearprogramming problems (5), since they can be writtenminX C �X (9)AX = B ;X � 0 ;but here C and X are symmetric n � n matrices, C � X = trace(CX), andX � 0 means that X is positive semide�nite. This problem is convex butnonlinear. The duality structure for semide�nite programming, the existenceand construction of another problem that has the same optimality conditions as(9), is not as satisfying as that for linear programming. Despite the di�erencesbetween the two classes of problems, linear programming gives much insighthere, both for the theory and for the algorithms, and interior point methodsthat are direct generalizations of those for linear programming are the methodsof choice.Thus, semide�nite programming problems are eigenvalue optimization prob-lems, and these problems have important linear algebra applications in control,16



in minimizing the condition number of a matrix by diagonal scaling, and in solv-ing Lyapunov inequalities. Further information can be obtained from a reviewarticle of Lewis and Overton [60], a review article of Lobo, Vandenberghe, Boyd,and Lebret describing a subclass known as second-order cone programming [61],and a collection of papers [75].9 Computational TrendsOptimization algorithms can consume a great deal of computational resources,and they have always been run on state-of-the-art computer architectures. Moreand more, these algorithms are packaged and portable. There is reliable softwarefor least squares problems on parallel computers [82], and signi�cant work hasbeen done with neural networks [30, x4.1] and systolic arrays [58]. But thereis limited experience with parallelization of constrained optimization codes. Anotable e�ort is the parallel version of the CPLEX code by Lustig and Rothberg[63].A second computational trend is the development of software that performsmore of the drudgery for the user. Problem generators have been widely avail-able for many years, but new tools are also being developed. Programs for auto-matic di�erentiation, for example, have contributed to the practical applicationof optimization techniques to a much larger set of problems. An automaticdi�erentiation program uses the computational de�nition of a function in someprogramming language to generate a program for evaluating the derivative ofthe function. There are two basic strategies, both involving repeated applica-tions of the chain rule. The forward mode consumes a great deal of intermediatestorage, while the backward mode generally takes more time. Practical imple-mentations generally use a combination of the two strategies, guided by linearalgebra tools such as sparsity structure analysis and the construction of struc-turally orthogonal basis vectors [7].10 ConclusionsMajor developments in the basic linear algebra of optimization algorithms inthe 20th century include:� Invention of the simplex algorithm, based on Gauss-Jordan eliminationand updating.� Learning to implement the simplex algorithm in a stable way while pre-serving sparsity.� Development and understanding of Newton alternatives: truncated New-ton for use when derivatives are not available, quasi-Newton for use when17



second derivatives are not available, limited-memory and conjugate gradi-ent methods for large problems.� Development of least squares algorithms for solving dense and sparse prob-lems in a provably stable way.� Development of algorithms for a wider range of constrained optimizationproblems, including those involving eigenvalue placement.� Making automatic di�erentiation practical.� Understanding the sensitivity of linear [48] and constrained problems [25,Sec. 12.4], [32] to perturbations in the data.In addition, the development of e�cient \o�-the-shelf" packages of reliable soft-ware for dense linear algebra (LAPACK) [2] and sparse linear algebra (e.g.,Harwell codes [45]) makes the development of e�cient and reliable optimizationsoftware much easier, and most optimization packages do make use of this linearalgebra basis.Research areas that will remain active in the next century include:� Hybrid algorithms for solving the linear systems from IPMs and othersources, involving automatic preconditioning.� More e�ective algorithms for global optimization.� More e�ective algorithms for nonlinear constraints.� Sensitivity analysis.Much progress in linear algebra in the 20th century has been motivated,at least in part, by optimization problems. This progress includes matrix up-and down-dating, sparse direct and iterative methods for linear systems, andsolution of least squares problems. Conversely, progress in optimization enablesmany previously intractable linear algebra problems to be solved, especiallythose related to eigenvalue placement. During the next century, this symbiosiswill undoubtably continue. Progress in optimization will inevitably be linkedwith progress in linear algebra.11 AcknowledgementsI am grateful for the hospitality provided by Professor Walter Gander and theDepartement Informatik, ETH Z�urich, Switzerland, which enabled this work tobe completed. 18
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