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AbstractThe combination of increasingly ubiquitous Internet connectivity and advances in heterogeneous and semi-structured databases has the potential to enable database-style querying over data from sources distributedaround the world. Traditional query processing techniques, however, fail to deliver acceptable performancein such a scenario for two main reasons: First, they optimize for delivery of the entire query result, whileon-line users would typically bene�t from receiving initial results as quickly as possible. Second, slow orbursty delivery of data from remote sources can stall query execution, making the already inadequate batch-like behavior even worse. Both of these problems can be addressed using fully pipelined query execution.The symmetric hash join operator supports such pipelining, but it requires all base data and intermediateresults to be memory-resident, which is unacceptable for complex queries over large datasets. In this paperwe present a multi-threaded extension of the symmetric hash join, called XJoin, that can execute e�ectivelywith far less memory. By reactively scheduling background processing, XJoin hides intermittent delaysin data arrival to produce more tuples earlier. XJoin includes a very e�cient, on-the-y algorithm forpreventing duplicates from being created by its independently running threads. We have implemented theXJoin operator and added it to the PREDATOR Object-Relational DBMS. Using this implementation alongwith traces obtained by monitoring Internet data delivery, we show that XJoin is an e�ective solution forproviding fast query responses to users even in the presence of slow and bursty remote sources.1 Introduction1.1 Wide-Area Query ProcessingThe explosive growth of the Internet and the World Wide Web has made tremendous amounts of data availableon-line. Currently, searching for information in this huge database is usually done using navigational methods,such as following links, or by submitting a few terms to a search engine. Such limited querying capability arisesin part, due to the lack of structure and semantics in most web data sources. Fortunately, however, this situationis beginning to change due to emerging standards such as XML, as well as to the development of technologyfor wrapping sources to provide relational-style interfaces. As a result, it is becoming possible to pose moresophisticated, declarative queries over data sources that are widely distributed across the Internet.1



Beyond the issues of structure and semantics, however, there remain signi�cant technical obstacles to buildingresponsive, usable query processing systems for wide-area environments. A key performance issue that arisesin such environments is response-time unpredictability. Data access over wide-area networks involves a largenumber of remote data sources, intermediate sites, and communications links, all of which are vulnerable tooverloading, congestion, and failures. Such problems can cause signi�cant and unpredictable delays in theaccess of information from remote sources. These delays, in turn, cause traditional distributed query processingstrategies to break down, resulting in unresponsive and hence, unusable systems.In previous work [AFTU96] we identi�ed three classes of delays that can a�ect the responsiveness of queryprocessing: 1) initial delay, in which there is a longer than expected wait until the �rst tuple arrives from aremote source; 2) slow delivery, in which data arrive at a fairly constant but slower than expected rate; and 3)bursty arrival, in which data arrive in a uctuating manner, with bursts of data followed by long periods of noarrivals. With traditional query processing techniques, query execution can become blocked even if only one ofthe accessed data sources experiences such delays.We developed Query Scrambling to address this problem and showed how it can be used to hide initialdelays [UFA98] and bursty arrivals [AFT98]. Query Scrambling is a reactive approach to query execution; itreacts to data delivery problems by on-the-y rescheduling of query operators and restructuring of the queryexecution plan. Query Scrambling is aimed at improving the response time for the entire query, and mayactually slow down the return of some initial results in order to minimize the time required to produce theremaining portion of a query answer once all necessary data has been obtained from all of the remote sources.In this paper, we explore a complementary approach, based on a non-blocking join operator we call XJoin.XJoin extends the symmetric hash join (SHJ) [WA90, HS93] to use secondary storage, which allows it to be usedwith large inputs and to run concurrently with other query operators in a bushy query plan. Simply extendingSHJ to use secondary storage, however, is insu�cient for tolerating signi�cant delays in receiving data fromremote sources. For this reason, a key component of XJoin is a reactively scheduled background process, whichopportunistically utilizes delays to produce more tuples earlier. We show that by using XJoins it is possibleto produce query execution plans that can better cope with data delivery problems and that can deliver initialresults orders of magnitude faster than traditional techniques, with in many cases, little or no degradation inthe time required to deliver the entire result.1.2 Solution OverviewThe XJoin approach is based on two fundamental principles:1. It is optimized for producing results incrementally as they become available. When used in a fully pipelinedquery plan, answer tuples can be returned to the user as soon as they are produced. The early delivery ofinitial answers can provide tremendous improvements in the responsiveness of the system. Furthermore,in many situations, users require only a small subset of the total query answer [CK97], so returning initialresults quickly is the key to system usability. 2



2. It allows progress to be made even when one or more sources experience delays. There are two reasonsfor this. First, by using less memory XJoin allows for bushier query plans than are possible with otherpipelined join methods. Thus, some parts of a query plan can continue while others are stalled waitingfor input. Second, by employing background processing on previously received input, an XJoin operatorcan run and produce results even when both of its inputs become blocked.The symmetric hash join, on which XJoin is based, was aimed at addressing similar issues. As originallyproposed, however, symmetric hash join requires that hash tables for both of its inputs be kept in main memoryuntil all of the tuples have been received from both of its inputs. As a result, symmetric hash join cannot beused for joins with large inputs, and the ability to run multiple joins (e.g., in a bushy query plan) is severelylimited. XJoin avoids these problems by allowing tuples from one or both of the inputs to be temporarilyspooled to secondary storage. In a sense, XJoin provides for symmetric hash join, the same exibility that thehybrid hash join provides for the classic hash join [Sha86]. Not surprisingly, similarly to hybrid hash join it isbased on partitioning.The main challenges in developing XJoin include the following:� Managing the ow of tuples between memory and secondary storage.� Controlling the background processing that is initiated when inputs are delayed.� Ensuring that the full answer is ultimately produced (i.e., no answers should be lost).� Ensuring that no duplicate tuples are inadvertently produced.In this paper, we describe the design and performance of XJoin, focusing on how it addresses the aboveissues. In order to evaluate its e�ciency and its ability to deal with delays we have implemented it in thecontext of the PREDATOR Object-Relational DBMS [SP97]. Using network traces recorded by transferringdata from various remote sites in the Internet along with workloads derived from the Wisconsin benchmark weshow that XJoin is indeed an e�ective solution for providing fast query responses to users in the presence ofslow and bursty remote sources.The work described in this paper is related to other recent projects on improving the responsiveness ofquery processing, including techniques for returning initial answers more quickly [BM96, CK97] and those forreturning continually improving answers to long running queries [VL93, HHW97]. Our work di�ers from thisother research due to (among other reasons) the focus on coping with unpredictable delays arising from wide-area remote data access. As mentioned previously, the XJoin approach is complementary to our earlier work onQuery Scrambling for unpredictable delays in distributed query processing [AFTU96, AFT98, UFA98], as wellas to other dynamic approaches such as [ONK+97, TRV96]. A recent paper [IFFL+99] describes the Tukwillasystem that contains an operator similar to XJoin, which can adapt to limited memory, but that di�ers fromXJoin in several ways. Most importantly that operator does not include the reactively scheduled backgroundprocessing of XJoin (called the \second stage"), which is a key to its performance. This is and other relatedwork is discussed in more detail in Section 5. 3
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partitions of source A partitions of source BFigure 2: Handling the partitions.2 XJoinXJoin is based on the Symmetric Hash Join (SHJ) [WA90, HS93], which was originally designed to allow a highdegree of pipelining in parallel database systems. Unlike traditional hash joins, which build a hash table onone input and then probe it with tuples from the other input, SHJ (shown in Figure 1) builds two hash tables,one for each source. When a tuple arrives on one of the inputs, it is �rst inserted into the hash table for thatinput, and then immediately used to probe the hash table of the other input. Thus, even if one source becomestemporarily blocked, the operator can still produce results.It may not be immediately apparent that the algorithm is correct, i.e. that 1) it produces all the tuples inthe result, and 2) it produces no extra duplicate result tuples. The correctness of symmetric hash join is dueto the fact that probing, which produces the output tuples, is performed for all matching pairs once and onlyonce, namely when the later-arriving tuple of the pair is processed. As we will see, preserving these correctnessproperties in XJoin requires some additional attention, due to its more asynchronous nature.XJoin extends the symmetric hash join to use less memory by allowing parts of the hash tables to be movedto secondary storage. It does this by partitioning its inputs, similar to the way that hybrid hash join solves thememory problems of classic hash join.2.1 PartitioningXJoin splits both of its inputs into a number of partitions based on a hash function.1 Each partition is composedof a memory-resident portion and a disk-resident portion. The memory-portion contains the tail (i.e., recentlyarrived tuples) of the partition, and the disk-resident portion contains the rest. The memory-resident portionsare maintained as hash tables as in symmetric hash join. Each memory-resident portion (for both sources) has atleast one block of memory reserved for it at all times. The remaining memory (if any) is divided evenly betweenthe two sources and is used to allow the memory-resident portions to grow as tuples arrive from the sources.When XJoin receives a tuple from one of its sources, it inserts the tuple into its corresponding partition,which is found by applying a hash function to its join attribute (Figure 2). When the memory becomes full,1The number of partitions is determined by using the formulapF � kRk where F is the \fudge" factor, and kRk is the numberof pages in the smaller input [Sha86]. 4



the tuples of the partition with the largest memory-resident portion are written to the disk. This grows the sizeof the disk-resident portion (e.g., partition k of source B in Figure 2). The memory-resident portion of thatpartition is then reduced to a single (initially, empty) block, and the remaining free blocks are made availablefor use by any of the partitions as new tuples arrive. The ushing process is repeated whenever the memorybecomes full.In the remainder of the paper we use the following notion: PiA denotes the ith partition of source A. Thememory and disk-resident portions of PiA are referred to as MPiA and DPiA respectively. Thus, we alwayshave MPiA [DPiA = PiA and MPiA \DPiA = ;. The two input sources will be referred to as A and B.2.2 The Three Stages of XJoinXJoin proceeds in three stages, each of which is performed by a separate thread. The �rst stage joins tuplesin the memory resident portions of the partitions, acting similarly to the standard symmetric hash join. Thesecond stage joins tuples from disk with tuples that have not yet been ushed to disk. The third stage is aclean-up stage, which performs any necessary matching to catch any results missed by the �rst two stages. The�rst and second stages run in an interleaved fashion | the second stage takes over when the �rst becomesblocked due to a lack of input. These stages are terminated after all input has been received, at which pointthe third stage is initiated.If care is not taken, spurious duplicate result tuples can be produced by the interaction of the three stages.In order to prevent duplicates XJoin employs a fast, on-the-y duplicate detection mechanism, which will bepresented in Section 2.3. We now describe the three stages in more detail.First StageThe �rst stage works similarly to the original symmetric hash join. The main di�erence is that in XJoin, thetuples are organized in partitions based on their join attribute values. Figure 3 shows an example of the �rststage when a tuple is received from SourceA (respectively SourceB) that hashes to partition i (resp. partitionj). If there is room for the tuple in memory, then the tuple is stored in its partition and used to probe thememory-resident portion of the corresponding partition for the other source. Any matches that occur are outputas results. If, however, memory is full, then one of the memory-resident portions is chosen as a victim and ushedto disk as described in Section 2.1. Join processing then continues as usual. The �rst stage runs as long as atleast one of its inputs is producing tuples. When the �rst stage times-out on both of its inputs (e.g., due tosome unexpected delays), it blocks and the second stage is allowed to run. The �rst stage terminates when ithas received all of the tuples from both of its inputs.Second StageThe second stage (shown in Figure 4) is activated whenever the �rst stage blocks. It picks a disk-residentportion of one of the partitions2, say DPiA and uses its tuples to probe the memory-resident portion of thecorresponding partition of the other source (i.e., MPiB, in this case). Any matches found are output (subject2The partition is chosen using optimizer-generated estimates of the output cardinality and the cost of performing the stage usingthe partition. 5
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i iFigure 4: Stage 2 - Disk-to-Memory joinsto duplicate detection as described in Section 2.3) as result tuples. After a disk-resident portion has beencompletely processed, the operator checks to see if either of the join inputs are ready to begin producing tuplesagain, if so, then the second stage halts and the �rst stage is resumed. If not, then a di�erent disk-residentportion is chosen and the second stage is continued.In contrast to the �rst stage, this stage does not depend on the availability of tuples from the sources. Itdeals with the tuples that have already been stored locally (either in the memory or on the disk) and canproduce output even when both relations are delayed. The second stage may use the same partition multipletimes, as the partition grows over the course of the join execution. Once the second stage begins processing adisk-resident portion of a partition, it runs until that portion is completely processed. Only after the partitionhas been processed does the operator check to see if either of the input sources has become unblocked. If so, thenthe �rst stage is resumed, otherwise, the second stage continues by choosing another partition to process. Thiscoarse-grained approach simpli�es the implementation of the second stage, but it also raises some performancerisks. The second stage incurs overhead in the hope of generating result tuples. This overhead is essentially\free", as long as the inputs of the XJoin are delayed, as no progress could be made in that situation anyway.If, however, one or both of the inputs becomes unblocked, the additional costs of the second stage could delaythe delivery of results. This aspect of the second stage is investigated in the experiments described in Section 4.Third StageThe third stage executes after all tuples have been received from both inputs. It is a clean-up stage thatmakes sure that all the tuples that should be in the result set are ultimately produced. This step is necessarybecause the �rst and second stages may only partially compute the result. The �rst stage fails to join tuplesthat were not in the memory at the same time. If two matching tuples are received far apart in time, one ofthem might have already been ushed to disk by the time the other tuple arrived. Such pairs of tuples cannotbe joined by the �rst stage. The second stage similarly fails to join two tuples if one of them is not in thememory when the other is brought from the disk and used to probe the memory-resident tuples.The third stage joins all the partitions (both the memory-resident and disk-resident portions) of the twosources. It distinguishes between the smaller and the larger of the input relations while operating. Assume6



source A produces the smaller input. The third stage �rst brings all the tuples of DP1A into the memory andcreates a hash table for them. Of course, this process might require some memory-resident portions of otherpartitions to be ushed to disk. The hash table is then probed with the tuples from both MP1B and DP1B.This process is repeated for all the remaining partitions. The operation of the third stage is similar to theprocessing done by hybrid hash join after it has partitioned its inputs. The third stage typically will performless work, however, because it produces only those result tuples that haven't already been produced by the �rstand second stages, which can result in signi�cant savings in CPU usage.2.3 Handling Duplicates in XJoinAs stated in the previous section, the multiple stages of XJoin may produce spurious duplicate tuples becausethey can potentially perform overlapping work. Duplicates can be created in both the second and third stages.The �rst stage does not generate spurious duplicates for the same reason that duplicates are not created by theoriginal symmetric hash join, namely, that it matches pairs of memory resident tuples only at the instant thatthe later of the two tuples arrives from its source.The creation of duplicates in the second and third stages and the mechanism used to avoid these problemsare described in the following two sections. The duplicate prevention mechanisms rely on timestamp values thatare maintained by the XJoin operator. Timestamps are implemented using a counter whose value is incrementedevery time a new tuple is received from a source or ushed to the disk.XJoin augments the structure of tuples to contain two timestamps that are set during the �rst stage. Onetimestamp, called the arrival timestamp (ATS) is assigned when the tuple is �rst received from its source. Thesecond timestamp, called the departure timestamp (DTS) is assigned when the tuple is ushed from memory tomake room for additional input as described previously. The ATS and DTS together describe the time intervalduring which a tuple was in the memory-resident portion of its partition. The ATS and DTS of a tuple arenever changed once they are assigned.2.3.1 Detecting duplicates in the second and third stagesAs stated previously, duplicates cannot be generated in the �rst stage, but both the second and third stages dohave the potential of creating duplicates. Tuples that are matched during these stages could have been matchedby the �rst stage, or by a previous run of the second stage. Checking for the matches from �rst stage is easy.For a pair of tuples to have been matched by the �rst stage they both must have been in the memory at thesame time, thus they must have overlapping ATS and DTS ranges. Any such pair of tuples are not consideredfor joining by the second or third stages. Figure 5 shows two cases. The tuples in Figure 5(a) have overlappingranges (in fact TupleA was in the memory the entire time that TupleB was in memory) so these tuples shouldnot be joined again by the later stages. In contrast, the tuples in Figure 5(b) were never in the memory at thesame time during the �rst stage so they could not have been joined during the �rst stage.The ATS and DTS can be used to avoid duplicates of results produced by the �rst stage, but they do notsolve the potential for duplicates created by multiple runs of the second stage. Recall that the second stage7



uses tuples from one source that have been evicted from memory to probe the memory-resident portion of thecorresponding partition of the other source. If a disk-resident tuple is used by several di�erent runs of thesecond stage, then spurious duplicates could be created. This latter problem is solved by using timestamps torecord the times that the second stage has used each disk-resident portion.
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and MPiA could also use the cached tuples from DPiA.Figure 7 shows two consecutive runs of the second stage with the caching optimization enabled. In the �rstrun the second stage algorithm reads DPiA from the disk and uses it to probe MPiB. Some of its tuples arealso stored in the cache. In the next run of the second stage DPiB is read from the disk and joined with MPiAand with the tuples of DPiA that have been stored in the cache.
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3 Experimental EnvironmentIn order to study the performance of XJoin we have implemented it in an extended version of PREDA-TOR [SP97], an Object-Relational DBMS that uses SHORE as its underlying storage manager. In previouswork We extended PREDATOR to support Query Scrambling [UFA98]. Most of the relational engine has beenmodi�ed to support both a data-driven and a control-driven execution model, and to process arbitrary bushyplans. In addition to adding the XJoin operator itself, we extended the query optimizer to account for theoperator and to provide some of the statistics and calculations required by XJoin.Because performing experiments directly on the Internet would not provide repeatable results, we insteadmodeled the behavior of the network using trace data that could be easily replayed. These traces provide detailedinformation about the characteristics of data transfer as perceived by the receiver. It includes connection delays,when and how much data was received, the silent periods between the data transfers, etc. In order to obtainthese traces we performed experiments on the Internet by fetching large �les (such as images, large texts etc)from 15 randomly chosen sites. The sources were sampled every hour for two days, and statistics were collected.We have seen that the sources exhibited widely di�erent degrees of burstiness and we saw average transfer ratesthat ranged between 5 KBytes/sec and 180 KBytes/sec with most values occurring between the 20 KBytes/secand 120 KBytes/sec.From the arrival patterns we collected, we chose two as representatives of the behavior of a bursty and afast source (�gures 9, and 10). The arrival patterns in these �gures show the quantity of data is received at thequery site. Each trace is bucketized by dividing the time axis into 100 buckets and aggregating the amount ofdata transferred within each bucket. Each impulse gives the magnitude of the data transfer (in bytes) duringthe corresponding time bucket. The bursty and fast patterns have average transfer rates of 23.5 KBytes/sec.and 129.6 KBytes/sec. respectively. Since the �rst pattern has a slow overall transfer rate we refer to it as the\slow" arrival pattern.
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SEMI13.Apr-30-23Figure 10: Fast arrival. Avg. Rate 129.6 KBytes/sec.The arrival behavior of a remote relation is modeled by using one of the network traces in the followingmanner. First the network trace is read and stored in memory (network traces are usually small). The tuplesof the relation are then generated on-the-y in the PREDATOR scan operator, but rather than sending tuplesof the relation directly to the parent (i.e., join) operator, the scan introduces arti�cial delays corresponding tothe arrival pattern in the chosen network trace.In the experiments we use a database containing up to six 100,000 tuple Wisconsin benchmark rela-tions [BDT83]. Each tuple is 288 bytes for a total of 28.8 MB per relation. For some of the experiments11



we project these tuples down to 86 bytes or 8.6 MB total. Each relation is populated according to the Wiscon-sin benchmark speci�cations, using di�erent random seeds. All of the experiments described here use a unique,unclustered integer attribute (unique1) as the join attribute so the result cardinality of all of the queries is also100,000 tuples.We ran the experiments on a Sun Ultra 5 Workstation running Solaris 2.6, with 128 MBytes of real memory,and approximately 4 GBytes of disk space. Each disk and memory page is 8KBytes. In all the experimentsthe SHORE (i.e., storage manager) bu�er size was set at 800 Kbytes; the amount of main memory allocated toeach XJoin operator is 3 MBytes, unless noted otherwise.4 ResultsIn this section we investigate the performance of XJoin and compare it to that of Hybrid Hash Join (HHJ).5 Weexamine three variations of XJoin, in order to separate out the contributions of the major components of thealgorithm. The �rst variation, labeled XJoin-No2nd, does not use the second stage at all. Thus, it simply runsthe �rst stage (ushing tuples to disk as necessary) until all input tuples have been received, at which pointthe third stage is initiated. The second variation, labeled XJoin-NoCache uses second stage, but without thecaching optimization described in Section 2.4.1. The third variation, labeled XJoin, is the full implementationof XJoin as described in Section 2 (i.e., including the second stage with caching).We have examined two variations of HHJ: one in which tuples from remote sources are fetched only whenthey are required by the operator, and one in which tuples from all of the remote sources are fetched in parallel,and those that are not needed when they arrive are temporarily spooled to the local disk. Reading the tuplesin the background reduces the amount of time that the operator must spend waiting for the tuples to arrive(especially for slow sources) so the latter approach was found to perform better in all of our experiments. Thus,the results we report for HHJ in this section are those for the version that reads all inputs in parallel. Thisimprovement to HHJ levels the playing �eld since XJoin also inherently accesses its inputs in parallel.4.1 Experiment 1 - Basic performance of XJoinIn the �rst set of experiments, we examine the basic performance of XJoin and HHJ using a simple two-way join query and four di�erent delay scenarios. The join in this query is the 1-to-1 join of 100,000-tupleWisconsin relations described in the previous section. The delay scenarios are constructed by applying the fourcombinations of the slow and fast arrival patterns shown in Figures 9, and 10 to the two input relations. In thisexperiment, the join operators are allocated 3 MBytes of memory, and the input relations contain 28.8 MByteseach. Note for this �rst set of experiments, the activation threshold for the second stage is set to 0.01, which isa fairly aggressive setting. This threshold is the focus of the second set of experiments, described in Section 4.2.Figures 11 thru 14 show the cumulative response times for the four algorithms (the three variations of XJoin5We also compared the performance of XJoin to the basic Symmetric Hash Join (SHJ). In the case where there is su�cientmemory to run SHJ, XJoin was found to perform nearly identically to SHJ. When there is less memory (as is the case in theexperiments reported here) SHJ was found to thrash, at which point it became impractical to use. Thus, we do not report resultsfor SHJ here. 12



plus HHJ) as result tuples are produced for the four combinations of network traces. The x-axis shows a countof the result tuples produced (from one to 100,000) and the y-axis shows the time at which that result tuplewas produced. As can be seen in the �gures, in all cases the three variants of XJoin produce the �rst answersseveral orders of magnitude faster than HHJ, thereby providing far superior interactive performance. Perhapseven more surprisingly, the XJoin variations are competitive even in terms of the completion time in most ofthe cases. Among the XJoin variants, for cases with at least one slow source, the full XJoin algorithm performsbest, and the variant without the second stage performs worst the entire execution of the query. In fact, inthese cases, XJoin-No2nd provides little if any advantage over HHJ after the delivery of the �rst 10% of theanswer. These results demonstrate the importance of the reactive background processing of the second stagefor coping with delays and bursty arrival. In the case where both sources are fast, this ordering of the XJoinvariants holds for the delivery of the initial results, but inverts for the later results. In fact, for this last case,HHJ performs somewhat better than XJoin and XJoin-NoCache for the delivery of the second half of the result.This latter result demonstrates the pitfalls of overly aggressive use of the second stage in cases where tupledelivery is relatively fast. These results are described in more detail in the following sections.4.1.1 Slow NetworkFigure 11 shows the case when both sources are slow. HHJ starts producing tuples very late, since it waitsfor the entire build relation to arrive before it produces any tuples. It then produces the remaining tuplesfairly quickly, since it has already prefetched most of the probe relation while processing the build relation.In contrast to HHJ, all of the XJoin variants produce all the tuples faster than HHJ, with several orders ofmagnitude improvement in getting the initial results.A comparison of the XJoin variants reveals the bene�ts of the second stage and of using a cache. XJoin-No2nd, which does not use the second stage, performs comparably to the other two XJoin variants for the �rstfew results, but its performance quickly degrades. The �rst stage stays active until the 850th second, i.e. untilboth sources arrive completely. During this time it produces only about 9000 tuples due to the limited memory.Recall that the �rst stage can only join tuples while they are memory resident. In this case, only about 5% ofthe tuples can be memory resident at a given time. The third stage takes over after all the input has arrived andproduces the remaining 91000 of the tuples in 45 seconds. Thus, although XJoin-No2nd still performs betterthan HHJ it produces the majority of the tuples only after a large latency.The e�ect of enabling the second stage is shown by the XJoin-NoCache curve. In this case the second stageis interleaved with the �rst stage and both stages are executed in this fashion until the 851th second. In thesame time it takes XJoin-No2nd to produce only 9000 tuples XJoin-NoCache produces about 77000 tuples.Therefore the second stage considerably boosts (by a factor of about 8.5) the performance of XJoin in this case.Recall that the advantage of the second stage is that it joins memory-resident tuples with disk-resident tupleswhile waiting for additional input to arrive. Without the second stage, these joins would be delayed until allinput was received. Comparing the XJoin and XJoin-NoCache lines, it can be seen that adding a cache to thesecond stage provides further improvement in this case by allowing additional tuples to be joined during delays.13
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HHJFigure 14: Fast build, Fast probeIn this case, for example, the �rst 5,000 tuples are produced 29% faster when a cache is used.Interestingly, the performance bene�ts of XJoin carry over even to the last tuple delivered in this case,indicating that the third stage of XJoin is as fast or faster than the later stages of HHJ once all input tupleshave arrived. The reasons for this are twofold. First, recall that HHJ spools tuples of the probe relation todisk until they are needed. Thus, the probe relation tuples must be partitioned before they can be used. Ifthis overhead were removed (which, conceivably, it could be), HHJ would produce its last tuple slightly faster,namely at about the time that XJoin-No2nd completes, but still later than the other XJoin variants. The morefundamental di�erence is that due to the tuples produced by the second stage, XJoin-NoCache and XJoin bothproduce far fewer tuples in the third stage. The creation of result tuples incurs CPU overhead; incurring thisoverhead in the second stage allows it to be overlapped with the arrival delays, while in contrast, incurring theoverhead after all tuples have arrived (as is done by XJoin-No2nd and HHJ) simply adds to the completion timeof the query.This experiment showed the following results for a slow or bursty environment: (a) XJoin can provide majorimprovements in the delivery of initial answers to users, (b) the use of reactive background processing to exploitdelays (as embodied in the second stage) is crucial for attaining good performance beyond just the initial tuples,and (c) the use of a cache can further improve performance. We now turn to the other three delay scenariosstudied in this experiment. 14



4.1.2 Mixed NetworkFigures 12 and 13 show the results when one of the sources is fast and the other is slow. As in the slow/slowcase, the XJoin variants all perform as well or better than HHJ, and the XJoin variants that use the secondstage perform signi�cantly better. The XJoin variants exhibit the same behavior in both the slow/fast andfast/slow cases since they do not distinguish between the build and probe relation. Compared to the slow/slowcase, the XJoin variants that include the second stage perform better, as they are able to exploit the fasterarrival of either of the inputs. XJoin-No2nd produces its initial tuples slightly earlier than in the slow/slowcase, but it still incurs signi�cant blocking, which causes it to lag far behind the other XJoins for most of theexecution. The performance of HHJ for the initial results is dominated the by speed of the build relation, thus ithas much better initial performance for the fast/slow case than for the slow/fast case. Still, in either situation,HHJ incurs signi�cant slowdown compared to XJoin-NoCache and the full XJoin.4.1.3 Fast NetworkXJoin is intended to solve the problem of bursty and slow arrivals and the previous three cases have shown thatXJoin e�ectively deals with these arrival problems. Now we examine how XJoin performs when the networkis relatively fast. In this case (shown in Figure 14) all three XJoin variants still provide substantial bene�ts inthe delivery of the initial results. Users of HHJ would have to wait over 2.5 minutes before seeing their �rstresults, whereas XJoin would give the �rst result after only about 2 seconds. As the query progresses, however,the bene�ts of XJoin diminish in this case. In fact, HHJ is able to deliver the second half of the result fasterthan XJoin-NoCache and the full XJoin here. Furthermore, XJoin-No2nd, which performed the worst of the 3variants in the previous cases, loses here initially, but ultimately delivers the last 60% of the result faster thanthe variants that use the second stage. These results demonstrate the tradeo�s of the background processingdone by the second stage that were identi�ed in Section 2.2. Namely, that the overhead incurred by the secondstage pays o� only when it is used to o�set delays. Recall that the fairly coarse-grained nature of the secondstage causes it to commit to some amount of work each time it is executed. In this experiment, the second stagewas run in a very aggressive manner (i.e, activation threshold = 0.01). This aggressiveness is bene�cial in thepresence of delays, but as shown in this case, can hurt in their absence. Thus, in the next set of experimentswe investigate a way of controlling the aggressiveness of the second stage.4.2 Experiment 2 { Controlling the Second StageThe previous set of experiments showed that the second stage of XJoin is crucial for a good interactive perfor-mance when dealing with slow and bursty data sources, but that with more reliable sources, it could adverselya�ect the overall query response time. One way to reduce this overhead is to employ the second stage lessaggressively, i.e. less often. Recall that the ability of the second stage to operate can be manipulated by varyingthe activation threshold presented in Section 2.4.2. A higher threshold value makes it less likely for the secondstage to be executed.Looking more closely at the results of the previous experiment, it can be seen that the bene�ts of the15



second stage are highest during the early parts of the query execution and that they diminish as the executionprogresses. This behavior arises because as the disk-resident portions of the partitions grow, the coarseness ofthe second stage increases (recall that a disk-resident portion is the unit of granularity at which the second stageexecutes). This increases the risk of executing the second stage. Because of this behavior we have developed aversion of XJoin, called XJoin-Dyn, that is more aggressive in the early stages of the query and becomes lessaggressive as more of the result is produced. XJoin-Dyn starts with a low threshold value (0.01), and linearlyincreases it to a much larger value (0.20) as the percentage of result tuples produced grows.
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XJOIN-DynFigure 16: 2 Fast relationsThe e�ectiveness of XJoin-Dyn is examined in Figures 15 and 16, which show the performance for the queryused in the previous experiments with the slow/slow and fast/fast network settings respectively. In additionto XJoin-Dyn, the �gures show the HHJ and XJoin (i.e., threshold = 0.01) algorithms, as well a conservativeversion of XJoin with the threshold �xed at 0.20 (labeled XJoin-Conservative in the �gures). As seen in theprevious experiments, when both sources are slow (Figure 15) the more aggressive XJoin performs best. The lessaggressive setting (XJoin-Conservative) provides poor initial performance, but provides reasonable (althoughstill worse than XJoin) performance as the query progresses. XJoin-Dyn initially follows XJoin but then becomesmore like XJoin-Conservative as it becomes increasingly conservative, that is, it performs slightly worse thanthe aggressive setting.With two fast sources, (Figure 16) as seen in the previous section, the aggressive setting (XJoin) providesgood performance initially, but quickly falls behind, eventually losing even to HHJ. In this case XJoin-Dyn isable to combine the best aspects of both conservative and aggressive behavior. Its initial aggressiveness leads togood interactive performance, while its gradual conversion to a more conservative behavior reduces the overhead.Thus, in this case, XJoin-Dyn is able to provide excellent interactive performance initially, while performingbetter than HHJ throughout the entire query. Because of its good behavior for fast networks and small costsfor slow networks, we adopt this dynamic version of XJoin for the remaining experiments, and simply refer toit as \XJoin".4.3 Experiment 3 { The e�ect of memory sizeRecall that a prime motivation for designing XJoin was the huge memory requirements of the symmetric hashjoin. The memory requirements of XJoin are reduced by allowing the staging of data to disk. This staging,however adds overhead, both in terms of disk I/O and in terms of duplicate detection. In order to explore16



the e�ect of memory size on XJoin, we have performed experiments varying the size of the memory. For theseexperiments, we used the single join query similar to the one used in the previous sections, but with the sizeof the input relations projected down to 8.6 MBytes (rather than the 28.8 MBytes used earlier). We use threedi�erent memory allocations: 3MB, 10MB, 20MB. 3MB represents the limited memory cases where neither ofthe inputs �t into the memory, while the other two represent cases where one input, and both inputs �t intothe memory respectively.
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20 MBFigure 18: Fast network, Varying memoryFigures 17 and 18 show the result delivery times of XJoin and HHJ for the three memory sizes in theslow/slow and fast/fast cases respectively. In all the cases XJoin performs better than HHJ, with orders ofmagnitude improvement in the interactive region. XJoin also wins in terms of the completion time in all thecases. Note that when both relations �t in memory (e.g., 20 MB), the basic Symmetric Hash Join (SHJ) is aviable alternative. In this case however, its performance (not shown) is virtually identical to that of XJoin forall delay scenarios.4.4 Experiment 4 { Stress testing XJoinFinally, we briey report on one additional set of experiments that investigates the impact of query complexityon XJoin. We varied the number of relations in the query from 2 to 6 (i.e., 1 to 5 joins). Again, all joins wereon the unique1 attribute, so the cardinality of all the results was 100,000 tuples. Up to 6 di�erent relationswere used, each one was projected down to 8.6 MBytes. The available memory was scaled with the queries byallocating 3 MBytes to each join operator. We have repeated the experiment for two network settings: Table 19contains the production times of various tuples for XJoin and HHJ when all the sources are slow. Each rowcorresponds to a di�erent degree of complexity in terms of the number of relations joined. Table 20 comparesthe performance of both operators in a similar manner, but for an extreme case; i.e. when none of the inputsis problematic.In general we see that in all the cases for both network settings, XJoin continues to deliver very goodperformance in delivering the initial portions of the query results. When the network is slow (table 19) XJoinperforms better than HHJ in all the cases including the query completion time. Thus, XJoin is e�ective incoping with slow and bursty sources even for fairly complex queries.Table 20 shows the performance of both algorithms in the unlikely case where none of the remote sources17



are problematic. Here too, XJoin performs better than HHJ in delivering the initial results (e.g., up to the�rst 20,000 tuples) for all of the cases. For example, even with 6 relations, XJoin produces the �rst tuple over6 times faster than HHJ. With increasing query complexity and the lack of delays, however, the delivery ofthe later tuples by XJoin begins to lag behind that of HHJ. This behavior arises because the second stages ofindividual operators are controlled on a per-operator basis rather than globally, and thus, the second stage ofone operator can interfere with the �rst and third stage processing of other operators. While this issue couldbe addressed by a more global scheduling mechanism, even in the extreme case here (with 6 fast relations) thedegradation in the delivery of the last tuple is only 35%.5 Related workCarey and Kossmann [CK97] worked on returning the �rst N tuples of the result of queries including an ORDERBY clause. Their method tries to minimize the time it takes to produce �rst N tuples, although the user maynot get any result until all N tuples are computed. Their algorithm does not attempt to compute more than Ntuples and does not extend to the bursty and slow environments since joins would still block when a relationshows bursty nature.Bayardo and Miranker [BM96] worked on returning the �rst result of a query. In doing so they have modi�edthe well known nested loops join algorithm to detect and minimize the wasted work in a long pipeline of nestedloops join operators. The limitation of their work is twofold. First nested loops join is an ine�cient join forlarge inputs when there are no indices on the join attributes of the relations. Thus nested loops does not scalewell if the user wishes to get more than one result fast. Second, the output characteristics of the nested loopsjoin is a�ected by the behavior of the inner relation. If the inner relation is slow or bursty the output of thejoin will also be slow or bursty.The online aggregation work presented in [HHW97] allows the output of a query (in their case an aggregatequery) to be presented to the user as it improves in real time. This requires joins that are non-blocking, i.e. thatsupply their output early and in a steady fashion. In [Hel97], Hellerstein discusses di�erent versions of nestedloops join algorithms with di�erent traversal patterns. One could change the traversal pattern dynamically ifone of the input sources block. However the query execution is still likely to su�er from the ine�cient natureof the nested loops join when the inputs are large.The Approximate query processor [VL93] �rst computes a semantically approximate answer to a query. Thisanswer is then re�ned over time. However their work requires that the base relations be partitioned on some ofselection attributes for e�cient processing. This may not be true on a widely distributed heterogeneous system.Rels First tuple 5,000 20,000 50,000 Last Tuplexjoin HHJ xjoin HHJ xjoin HHJ xjoin HHJ xjoin HHJ2 5 823 195 826 452 836 668 836 860 8783 17 862 340 873 561 901 763 930 865 9494 46 916 482 938 684 979 786 992 907 10185 85 353 563 965 709 1019 864 1036 981 10666 79 992 400 1075 631 1120 860 1144 952 1174Figure 19: Tuple Production rates of XJoin and HHJ in secs. Slow Network18



Rels First tuple 5% 20% 50% Last Tuplexjoin HHJ xjoin HHJ xjoin HHJ xjoin HHJ xjoin HHJ2 1 150 36 153 87 163 127 181 178 2013 4 184 90 195 157 223 233 252 296 2704 17 285 175 307 282 348 378 362 470 3875 35 353 274 417 406 469 538 487 635 5166 75 476 381 559 598 605 803 629 892 660Figure 20: Tuple Production rates of XJoin and HHJ in secs. Fast NetworkAlso their method is not directly extensible to the bursty environments.Our previous work on Query Scrambling [UFA98] tries to react to the changes in the network by dynamicallyrestructuring the query plan on the y. This approach is aimed primarily at improving the overall responsetime of the entire query, rather than improving the response of the �rst few tuples. As such, we have developedXJoin as a complementary approach to Query Scrambling.Finally, as mentioned in the introduction, we have just recently become aware of a related project that hasbeen developed independently from and concurrently with the XJoin work. This is the Tukwilla system beingdeveloped at Washington [IFFL+99]. This system includes techniques based on Query Scrambling, but alsoincludes a pipelined join operator based on Symmetric Hash Join. The join operator used in Tukwilla adjuststo limited memory by ushing tuples to secondary storage in various ways, and then completes the join usingtechniques similar to Hybrid Hash Join. This approach is similar to the �rst stage and third stages of XJoin.As demonstrated in the preceding sections, a key component of XJoin's ability to provide fast answers in thepresence of slow and bursty sources is the background processing that is triggered in response to both inputsbecoming temporarily delayed. This \second stage", is a source of additional complexity and tradeo�s in thealgorithm (e.g., duplicate elimination, scheduling, degree of aggressiveness, etc.), but is also crucial for goodperformance in an unpredictable environment. Thus, our experiments lead us to believe that the XJoin operatoris a better solution in dealing with bursty and slow sources.6 Conclusion and Future WorkIn this paper, we addressed the problem of getting fast query answers in an unpredictable communicationsenvironment, such as the Internet. We presented a multi-staged join algorithm, called XJoin, that extends thesymmetric hash join. XJoin has similar performance when memory is plentiful, but can operate e�ciently withfar less memory, making it much more practical for this environment.The XJoin lowers its memory requirement by partitioning its inputs and achieves a high level of pipeliningby running its stages in an interleaved fashion. We have also presented a fast, on-the-y duplicate eliminationalgorithm to eliminate potential duplicate tuples that could be created due to the overlapping nature of thestages. An important feature of XJoin is its ability to react to delays and take advantage of silent periodsto produce more tuples faster. The algorithm includes a dynamic mechanism by which its aggressiveness inexploiting delays is adjusted during the execution of a query.We have implemented XJoin in the PREDATOR Object-Relational DBMS, and compared its performancewith that of hybrid hash join using real network traces. We performed at detailed experimental study, which19



investigated the performance of XJoin in the presence of di�erent data delivery rates, memory sizes, and querycomplexity. In all the cases studied, XJoin had much better (often by several orders of magnitude) interactiveperformance (i.e., in terms of producing the initial portions of the result) than hybrid hash join, and in mostcases it performed better than hybrid hash join for the entire query, delivering even the �nal result tuple as fastor faster.In terms of future work, we plan to tie our current work with our previous work on Query Scrambling toprovide a uni�ed set of techniques for dealing with the problem of unpredictable data delivery in wide-areanetworks. We also plan to work on delivering more \interesting" portions of a result (such as some subsetof columns) faster in wide-area environments. Such query behavior is desirable when the semantics of theapplication are such that some identi�able portions of the data are substantially more important than others.References[AFTU96] L. Amsaleg, M. J. .Franklin, A. Tomasic, and T. Urhan. Scrambling Query Plans to Cope WithUnexpected Delays. PDIS Conf., Miami, USA, 1996.[AFT98] L. Amsaleg, M. J. .Franklin, and A. Tomasic. Dynamic Query Operator Scheduling for Wide-AreaRemote Access. Journal of Distributed and Parallel Databases, Vol. 6, No. 3, July 1998.[BDT83] D. Bitton, D. J. Dewitt, C. Turby�ll. Benchmarking Database Systems, a Systematic Approach.VLDB Conf., Florence, Italy, 1983.[BM96] R. Bayardo, and D. Miranker. Processing Queries for the First Few Answers. Proc. 3rd CIKM Conf.,Rockville, MD, 1996.[CK97] M. J. Carey, and D. Kossman. On Saying \Enough Already!" in SQL. ACM SIGMOD Conf., Tucson,AZ, 1997.[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Surveys, 25(2), 1993.[GRVB98] J. Gruser, L. Raschid, M. E. Vidal, L. Bright Wrapper Generation for Web Accessible Data Sources.Int. Conf. Cooperative Information Systems, New York City, NY, 1998.[HHW97] J. M. Hellerstein, P. J. Hass, and H. J. Wang. Online Aggregation. ACM SIGMOD Conf., Tucson,AZ, 1997.[Hel97] J. M. Hellerstein. Online Processing Redux. Data Engineering Bulletin, 20(3), 1997.[HS93] W. Hong, M. Stonebraker. Optimization of Parallel Query Execution Plans in XPRS. Distributed andParallel Databases, 1(1):9-32, 1993.[IFFL+99] Z. Ives, D. Florescu, M. Friedman, A. Levy, D. S. Weld. An Adaptive Query Execution System forData Integration. To appear in ACM SIGMOD Conf., Philadelphia, PA, 1999.[ONK+97] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, A. Dogac. Dynamic Query optimization in Multi-databases. Data Engineering Bulletin, Vol. 20, No. 3, September, 1997.[Sha86] L. D. Shapiro. Join Processing in Database Systems with Large Main Memories. ACM Transactionson Database Systems, 11(3), 1986.[SP97] P. Seshadri, M. Paskin PREDATOR: An OR-DBMS with Enhanced Data Types. ACM SIGMOD Conf.,Tucson, Arizona, 1997.[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. Scaling Heterogeneous Databases and the Design of DISCO.ICDCS Conf., Hong Kong, 1996.[UFA98] T. Urhan, M. J. .Franklin, and L. Amsaleg. Cost Based Query Scrambling for Initial Delays. ACMSIGMOD Conf., Seattle, WA, 1998.[VL93] S. V. Vrbsky, and J. W. S. Liu. Approximate, A Query Processor that Produces Monotonically ImprovingApproximate Answers. IEEE Transactions od Knowledge and Data Engineering, Vol.5, No.6, December 1993.20



[WA90] A. N. Wilschut, and P. M. G. Apers. Pipelining in Query Execution. Conf. on Databases, ParallelArchitectures, and their Applications, Miami, 1991.

21


