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Intense, short laser pulses propagating through inhomogeneous plasmas can

ponderomotively drive terahertz (THz) radiation. Theoretical analysis and full for-

mat PIC simulations are conducted to investigate two mechanisms of laser pulse

driven terahertz generation: (i) a resonant transition radiation (RTR) mechanism

occurring as a pulse crosses a plasma boundary and (ii) a slow wave phase match-

ing mechanism (SWPM) that occurs in corrugated plasma channels. These studies

are the first to investigate ponderomotively driven THz self-consistently in the in-

teresting situations in which the interaction occurs over a scale many wavelengths

long.

For the resonant transition radiation mechanism, both theory and simulation

results show the conical THz emission originates in regions of varying density and

covers a broad spectrum with maximum frequency close to the maximum plasma fre-

quency. In the case of a sharp vacuum-plasma boundary, the radiation is generated

symmetrically at the plasma entrance and exit, and its properties are independent

of plasma density when the density exceeds a characteristic value determined by the



product of the plasma frequency and the laser pulse duration. For a diffuse vacuum-

plasma boundary, the emission from the plasma entrance and exit is asymmetric:

increasing and decreasing density ramps enhance and diminish the radiated energy,

respectively. Enhancements by a factor of 50 are found, and simulations show that

a 1.66 J, 50 fs driver pulse can generate ∼400 µJ of THz radiation in a 1.2 mm

increasing density ramp. We present a model that attributes this effect to a plasma

resonance process in the density ramp. The results from the model match those

of the simulations for ramp lengths less than 600 µm. For longer ramps for which

simulations are too time consuming, the model shows that the amount of radiation

reaches a maximum at a ramp length determined by collisional absorption.

For the slow wave phase matching mechanism, excitation of terahertz radiation

by the interaction of an ultra-short laser pulse and the fields of a miniature, cor-

rugated plasma waveguide is considered. Plasma structures of this type have been

realized experimentally, and they can support electromagnetic (EM) channel modes

with properties that allow for radiation generation. In particular, the modes have

subluminal field components, thus allowing phase matching between the generated

THz modes and the ponderomotive potential of the laser pulse. Theoretical analysis

and full format PIC simulations are conducted. We find THz generated by this slow

wave phase matching mechanism is characterized by lateral emission and a coherent,

narrow band, tunable spectrum with relatively high power and conversion efficiency.

We investigated two different types of channels, and a range of realistic laser pulses

and plasma profile parameters were considered with the goal of increasing the con-

version of optical energy to THz radiation. We find high laser intensities strongly



modify the THz spectrum by exciting higher order channel modes. Enhancement

of a specific channel mode can be realized by using an optimum pulse duration and

plasma density. As an example, simulation results show a fixed driver pulse (0.55

J) with spot size of 15 µm and pulse duration of 15 fs excites approximately 37.8

mJ of THz radiation in a 1.5 cm corrugated plasma waveguide with on axis average

density of 1.4 × 1018 cm−3, conversion efficiency exceeding 8% can be achieved in

this case.
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Chapter 1: Introduction

1.1 Terahertz Sources Driven by Intense Laser Pulses

Terahertz radiation, also known as THz or T-ray, is a sub-millimeter electro-

magnetic wave with frequencies spanning from 300 GHz to 20 THz (1 mm - 15

µm) [1]. It lies between microwave and infrared in the electromagnetic spectrum.

Below the THz frequency, electronics is the dominant paradigm for technology and

scientific instrumentation. Above the THz frequency, photonics is the dominant

paradigm. Since optics and electronics converge at this widely acknowledged ”THz

gap” , sources and detectors of electromagnetic radiation have attracted much in-

terest during recent decades. The THz frequency range opens a new frontier for

research and development in physics, chemistry, biology, material science and med-

ical imaging. A wide range of new technologies and applications has been proposed

and developed including time domain spectroscopy (TDS) [2] , remote detection [3],

and medical and biological imaging [4]. One of the most widely used technologies

is the millimeter wave/THz scanners [5, 6] used in nearly every airport. The ma-

terials of clothing are transparent to THz waves, thus allowing security checking,

and causing far fewer radiation effects to the human body compared with X-rays.

Other examples include using THz radiation to probe nonlinear effects in materials

1



[7] since the peak THz field typically exceeds 100 kV/cm, therefore it can be used to

measure optical properties with hundred µm resolution since it is non-ionizing elec-

tromagnetic radiation. THz can also be employed to induce large transient current,

for example, to exceed critical current in the film superconductors [8, 9]. New THz

sources can lead to science and technology advances in various areas. Thus THz

radiation has attracted much interest as the opportunities for research progress.

1.1.1 Existing Terahertz Sources and Recent Advances

Terahertz radiation sources are now available in both continuous wave (CW)

[10, 11] and pulsed form [12, 13]; down to single cycle pulses, with peak power up to

Gigawatt levels. Conventional higher power THz pulses can be generated at large

accelerator facilities via synchrotron [14] or transition radiation [15]. Such facilities

are relatively large and expensive to operate. This motivates the interest in research

into small-scale, high efficiency terahertz sources.

Existing small scale THz sources based on laser-solid interaction are limited

to µJ/pulse levels due to material damage [16] although the recent discovery using

optical rectification (OR) [17–19] in organic crystals can exceed this limit by gener-

ating hundreds of µJ max pulse energy. Plasmas, on the other hand, can withhold

large amplitude optical pulses, which has led to the consideration of THz generation

via laser-plasma interactions [20–22] and THz peak energy of tens of µJ can be

achieved.

Research has been actively conducted to investigate THz radiation generation

2



by laser pulses propagating into plasmas since it was first demonstrated by Hamster

et al. [12, 13]. In this case, the source of the radiation is the current driven by the

ponderomotive force of a laser pulse at the vacuum plasma interface and the genera-

tion of THz radiation is typically minimal. The generated THz pulses via transition

radiation in this case and the detected THz pulse properties can be utilized to diag-

nose the incident optical pulses or partible beams [23, 24]. Many new THz sources

based on laser-plasma interactions have been proposed and demonstrated over time.

A first example is the transition radiation generated by a laser accelerated electron

bunch passing from plasma to vacuum [20, 25–28]. In an experiment reported in

Ref. [20], coherent radiation in the range of 0.3-3 THz was produced by this mech-

anism using nC, femtosecond electron bunches. The THz energy collected within

a limited 30 mrad angle was ∼3-5 nJ and was observed to increase quadratically

with the bunch charge. A more recent experiment [22], performed with intense laser

pulses (up to 5 × 1019 W/cm2) irradiating thin metal foil targets, resulted in the

observation of THz pulses with energies > 436 µJ from a laser driven ion acceler-

ator. A second example is the radiation produced by gas undergoing ionization by

two-color laser pulses [29–31]. In these experiments, fundamental and second har-

monic optical field, combined with correct relative phase, produce a slow, directed,

photoionization current that can drive THz radiation. This mechanism has been

shown to routinely produce peak THz energy in excess of 5 µJ with pump pulse

energy of tens of mJ. The emission is conical with an angle determined by an op-

tical Cherenkov radiation process [32]. It is well established that the generation of

radiation by a laser pulse propagating through a uniform plasma is generally min-
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imal. The is because the electromagnetic modes excited have a polarization that

doesn’t couple to radiation and they are superluminal. In order for these electro-

magnetic modes to efficiently couple to the driving source which travels at its group

velocity, the plasma must be inhomogeneous or a strong background magnetic field

is required. A third example is the coherent radiation involving a laser pulse prop-

agating through a plasma channel with an axially periodic density profile [33, 34].

The channel can be viewed as a slow wave structure that supports electromagnetic

modes with subluminal phase velocities, and further allows phase matching between

the laser driver and the modes, which provides the possibility of high conversion

efficiency. Simulation shows THz energy of 6 mJ is generated with a pulse energy

of 0.5 J with a depletion length of less than 20 cm [34].

Other schemes to significantly enhance the generated THz radiation include

using ultra-short laser pulses propagating through a increasing plasma density gra-

dient [35, 36] or axially modulated plasma channels [37]. Both mechanisms are

included and discussed in detail in this thesis. The former involves enhanced transi-

tion radiation via plasma resonance in the increasing plasma density gradient, while

the latter allows a better phase matching between the generated THz modes and the

laser pulse, as well as providing spectrum tunability and high conversion efficiency.

1.1.2 Laser Driven: Ponderomotive Driver

During laser pulse propagation through plasmas, the plasma electrons interact

with the laser fields in two ways. First, the electrons quiver at the high laser
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frequency. Second, due to the time average of the quiver motion, they experience a

low frequency ponderomotive force [38–40]. The force is the gradient of a potential

proportional to the square of the envelop of the electric field of the laser. Through

this the electrons are pushed out off axis and the plasma wakefields are generated.

To better understand the origin of the ponderomotive force, one can refer to

the electron fluid momentum equation of motion in CGS units,

dp

dt
= −e

(
E +

v ×B

c

)
, (1.1)

where p, v and −e are the electron momentum, velocity and charge, respectively. c

is the speed of light in vacuum. Considering the Coulomb gauge, the laser electric

and magnetic fields can be written as E = −∂A/c∂t and B = ∇×A, respectively,

where A is the vector potential of the laser pulse. In the weakly relativistic limit,

the single electron momentum can be considered as the sum of the rapid oscillating

response pq to the the high frequency laser filed and the slow varying nonlinear

response δp to the podenromotive potential which is essentially the v × B term

in Eq. (1.1), i.e., p = pq + δp. The rapid response component of the electron

momentum satisfies ∂pq/∂t = −eE, therefore the laser vector potential is found

to be pq = eA/c. The nonlinear ponderomotive force is determined by the second

order approximation in the laser field,
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dδp

dt
=
∂δp

dt
+ (v · ∇)pq (1.2a)

= −mc2 (a× (∇× a) + (a · ∇)a) (1.2b)

= −mc2∇ |a|2 /2 (1.2c)

where a = eA/mc2 refers to the normalized laser vector potential and m is the

electron mass. The weakly relativistic condition is generally defined by |a| << 1.

The laser ponderomotive force is determined by the time average of the right side

of Eq. (1.2), which is essentially related to the laser pulse intensity, i.e., F p =

−mc2∇
〈
|a|2

〉
t
/2 ∼ −∇I, where 〈 〉t denotes to the time average.

In the relativistic limit generally defined by |a| >> 1 where the particles, most

of the time electrons, become relativistic, the ponderomotive force has the form,

Fp = −
(
mc2/γ

)
∇ |a|2 /2 , (1.3)

where γ =
√

1 +
∣∣〈p〉

t

∣∣2 /m2c2 +
〈
|a|2

〉
t

is the time averaged relativistic factor of

the electrons and the quantity
〈
p
〉
t

is the momentum averaged over time. The〈
|a|2

〉
t

term represents the contribution of the jitter motion of the electron to the

transverse momentum.

Shown in Figs. 1.1(a) and 1.1(b) are two schematic examples illustrating how

the ponderomotive force affects the electron motions. The laser pulse propagates

in the +z direction and we only consider the transverse (x direction displayed in
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figures) component of the electron motion. Fig. 1.1(a) displays an example of a

plane wave propagating through the plasmas. Each of the red curves represents the

electron trajectory at a different transverse initial position. Since the laser intensity

is uniform transversely in this case, Fp = 0, therefore, we only observe electrons

quiver at the very high laser frequency. However, if the laser pulse has a transverse

shape, as displayed in Fig. 1.1(b), the electrons quiver as well as responding to the

low frequency laser ponderomotive potential. The blue line here shows the slow

varying trajectory of the electron, indicating that electrons are pushed off axis,

through which the plasma wave field (the electron bubbles) is created.

1.1.3 Transition Radiation at the Plasma Vacuum Interface

Transition radiation occurs as a laser pulse or a electron bunch cross the in-

terface separating two media with different dielectric properties. When a charged

particle crosses the interface between two different materials, the fields around the

charge reorganize, thus generating electromagnetic radiation. This phenomenon was

predicted theoretically [41] in early 1940s and the emitted waves came to be called

the transition radiation. It was mentioned also that the transition radiation at an

interface between two media can be generated not only by charged particles but also

by electric and magnetic dipoles, laser pulses, charged particle bunches, and other

objects capable of polarizing the medium. These driving sources excite electron

current in the inhomogeneous plasma, thus generating radiation.

Interest in transition has recently increased considerably based on the possibil-
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Figure 1.1: (a) Electrons only quiver at the laser frequency since the
laser intensity is uniform transversely, i.e., Fp = 0. Each of the red
curves represents the electron trajectory at a different transverse initial
position. (b) For a laser pulse with a transverse Gaussian shape, the
electrons quiver at the laser frequency as well as responding to the low
frequency ponderomotive potential. The blue line indicates the slow
varying trajectory of the electron.

ity of using this mechanism to generated terahertz radiation. A first example is the

THz radiation generation by laser pulses propagating into plasmas demonstrated by

Hamster et al. [12, 13]. In this case, the source of the radiation is the current driven

by the ponderomotive force of a laser pulse at the vacuum plasma interface. A sec-
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ond example is the transition radiation emitted by energetic electrons produced by

an intense short laser pulse focused on a neutral gas jet. This radiation was detected

experimentally and interpreted theoretically [20, 25–28]. The laser ionizes the gas

and produces a plasma wave wake that accelerates an electron bunch. When the

electron bunch crosses the plasma vacuum interface, it drives the THz transition

radiation.

Transition radiation usually occurs at the plasma vacuum boundary. However,

uniform plasmas commonly have varying density regions at the vacuum plasma

interface. Plasma resonance may occur when laser pulses propagate through the

plasma density gradient and excite electromagnetic radiation with frequency less

than the maximum plasma frequency. In particular, it is found that enhanced THz

radiation is generated in an increasing plasma density ramp compared with the

sharp boundary case. In this thesis, we will discuss this effect in Chapter 2.

Besides generating THz waves, another application of the transition radiation

produced at the plasma vacuum interface is as a diagnostic of the incident optical

pulses or particle beams by indirectly detecting the properties of the emitted waves

[23, 24]. Because of the fact that transition radiation is readily generated, it has

been widely utilized in many laboratories.

1.1.4 Axially Modulated Plasma Waveguides

Plasmas are generated by supplying sufficient energy to a neutral gas to pro-

duce ionization. There are a number of methods to do this and these vary depending
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on the application [42]. The most commonly used method of generating and sustain-

ing a low-temperature plasma utilizes the electrical breakdown of a neutral gas in

the presence of an external electric field. Other methods include injection of charged

particle beams, especially electrons, or laser pulses into a neutral gas. Discharge de-

vices such microwave discharges are also widely employed to generate plasmas. Each

of these methods creates a plasma with different properties. Not all are suitable for

THz generation. Uniform plasmas are not suited for ponderomotively driven THz.

A laser pulse in a uniform plasma excites plasma waves which generate only elec-

trostatic fields. Further, the waves in a uniform plasma are superluminal, making

it hard to be phase matched to the laser pulse. A slow wave plasma structure is re-

quired in order to produce electromagnetic modes with subluminal phase velocities.

The realization of corrugated slow wave plasma guiding structures has been

reported in [43, 44]. The method employed experimentally uses an axicon to line

focus an intense laser pulse on a cluster gas jet. The hydrodynamic expansion of

the hot column of plasma results in the creation of an electron density profile with

density minimum on the axis for the benefit of optical guiding. Axially modulated

plasma waveguides have been demonstrated by two different techniques. The first

method is to modulate the optical heating on a uniform cluster jet by applying a

fixed transmissive ring gating to pattern the channel formation pulse. The second

method is to corrugate the neutral gas density by using an array of fine wires at the

gas nozzle exit. Corrugated plasma waveguides up to several centimeters in length

with modulation period as short as 35 µm can be created. Recent experimental

progress [44] has been reported using a 2D spatial light modulator (SLM) to impose
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the transverse phase front modulations on the heater pulse, making a programmable

structure with tunable channel parameters. Deep axial modulation with periods

down to tens of µm as well as centimeter scale channel length can be achieved. With

properties similar to the conventional slow wave copper waveguides, such modulated

plasma structures can be used for direct laser acceleration for charged particles [45–

49] and quasi-phase-matched coherent electromagnetic (EM) wave generation, for

example, THz generation [33, 34].

The application of corrugated plasma waveguides to direct laser acceleration

of electrons can be realized considering the quasi phase matching condition when

an intense short laser pulse co-propagates with a nearly relativistic electron beam

in a preformed plasma channel. In uniform plasmas, direct energy gain by an elec-

tron beam interacting with a laser pulse is limited due to the fact that the laser

electric field is transverse to the propagation direction, and the phase velocity is su-

perluminal. However, a laser pulse propagating through axially corrugated plasma

waveguides is composed of different spatial harmonics with subluminal phase ve-

locities and the channel supports modes with axial electric field. With the right

choice of laser pulse polarizations and plasma parameters, the phase velocity of a

specific harmonic can be phase matched to the speed of an realistic electron beam,

thus allowing electron acceleration directly by the guided laser field in the plasma

waveguide. In a standard laser wakefield accelerator, the dephasing length, by which

means the trapped electrons gain longitudinal momentum sufficient to outrun the

acceleration phase of the plasma wakefield, ultimately limits the final electron en-

ergy gain. However, in an axially corrugated plasma waveguide, the guide mode
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is composed of spatial modes whose associated phase velocities can be tuned by

varying the density modulation period. By matching the modulation period to the

dephasing length, the quasi phase matching condition can be satisfied and a rel-

ativistic electron can undergo energy gain over several dephasing length, thus an

increase of the final energy gain can be achieved.

The application of corrugated plasma waveguides to generate THz radiation

will be examined and discussed in detail in Chapter 3. In an axially uniform plasma,

the currents driven by the ponderomotive force are steady in a frame moving at the

group velocity of the laser pulse. Thus, THz radiation will not be generated. If

there is radiation in one frame, there must be radiation in all frames. However,

if the plasma is axially corrugated, then the currents are time dependent in all

frames and the radiation is possible. Further, axially modulated channels support

electromagnetic modes with subluminal phase velocities that can be phase matched

to the velocity of the ponderomotive potential associated with laser pulse, and with

electric field polarizations that make significant THz generation possible as well as

high conversion efficiency from the optical pulse energy into THz radiation.

1.2 Models and Simulation Techniques

1.2.1 Particle In Cell (PIC) Method

The Particle In Cell (PIC) method [50, 51] is one of the most comprehensive

and commonly used simulation approaches in the field of plasma physics including

laser plasma interactions. It self consistently solves Maxwell’s equations along with
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the equation of motion for charged particles as well as the excited electrostatic and

electromagnetic waves in the simulation domain. Quantities such as particle charges

and current densities are accumulated on the simulation grids (Yee grids) [52] based

on the spatial position and velocities of the charged particles and are updated during

the interaction with the electric and magnetic fields self consistently according to

their relativistic equations of motion. The particle charges and current densities

further serve as the source terms in Maxwell’s equations and are used to update

the electric and magnetic fields during each iteration. When computing the particle

charges and current densities, each simulation particle, also called macro particles,

represents a number of real particles to reduce the simulation effort. Therefore, the

number of charged particles used in the simulation is typically much less than the

actual number in real situation.

Since Most PIC simulations of laser plasma interactions have to resolve time

scales down to the laser period, a full format, three dimensional PIC simulation is

always computationally expensive [53–56]. High Performance Computation (HPC),

such as parallel simulation [57, 58] has been developed to accelerate the simulation

process, based on the technology development of multicore CPU clusters and the

Graphical Processing Units (GPUs) with thousands of threads. A number of the

fully parallelized, explicit simulation codes have been developed for the demand-

ing needs in laser plasma interactions including OSIRIS [59, 60], Vorpal [61] and

TurboWAVE [62, 63].
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1.2.2 TurboWAVE

Most of the PIC simulations in this thesis are conducted using the full format,

multi dimensional code TurboWAVE [62, 63], which was developed by D. Gordon

et. al. at the US Naval Research Laboratory. The numerical framework for Tur-

boWAVE uses parallel processing and can work in any number of dimensions with

different geometries. It provides a 3D fully self consistent PIC simulation tool with a

number of field solver modules such as the explicit direct electromagnetic module and

contains reduced models including ponderomotive guiding center and fluid module.

Different coordinate systems such as 2D/3D cartesian, 2D azimuthally symmetric

cylindrical coordinates as well as moving coordinates are allowed in TurboWAVE.

1.2.3 System Setup and Radiation Diagnostics

To simulate the laser pulse driven THz generation in inhomogeneous plasmas,

we set up a region occupied by the preformed plasmas or neutral gases in a 2D

cartesian simulation domain. A laser pulse is initially focused close to the interface

of the plasma region and later propagates through the plasma. The pulse interacts

with the inhomogeneous plasma and the ponderomotive potential drives electron

currents, thus generating electromagnetic radiation. THz continues to radiate after

the laser pulse leaves the region, therefore a relatively large simulation domain is

required in order to collect all the THz radiation. To diagnose the properties of the

generated THz, several simulation boxes enclosing the plasma region were employed

and the Poynting flux across these prescribed surfaces as a function of time was
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saved and later analyzed to determine the spectrum of THz radiation as well as the

total radiated THz energy. Simulation results show that the amount of radiated

THz energy is conserved across each of these enclosed diagnostic surfaces, which

validates the setup of the simulation.

Simulation of small volumes, a plasma with 500 µm longitudinal length, can

be realized on our own desktop computer workstations. In this case, a 2D planar

cartesian geometry is employed in the simulation domain. However, to let the laser

pulse propagate through the plasma for a realistic long distance, typically several

centimeters, the simulation becomes highly time comsuming. To overcome this, a

relatively large moving frame is setup on high performance computer clusters such

as NERSC Edison and the Deepthought2 at UMD. The fully parallelized simula-

tions utilizing thousands of computation threads allows us to investigate the THz

generation by passing an intense short laser pulse through inhomogeneous plasmas

with realistic lengths.

1.3 Structure of the Thesis

This dissertation mainly includes studies of two different mechanisms of pon-

deromotively driven THz generation. The first mechanism is the enhanced laser

pulse driven THz generation via resonant transition radiation originating in regions

of varying plasma density, which will be discussed in detail in Chapter 2. The gen-

erated THz radiation covers a broad frequency spectrum with maximum frequency

close to the maximum plasma frequency. The radiation pattern is conical. It is
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found that in the case of sharp plasma boundary, THz radiation is generated sym-

metrically at the plasma entrance and exit, and its properties are independent of

the plasma density when the density exceeds a characteristic value determined by

the product of the plasma frequency and the laser pulse duration. However, the

results are different for a diffuse plasma boundary, the emission from the plasma

entrance and exit is asymmetric. In particular, the radiation energy from an in-

creasing density ramp is greater than for a decreasing ramp. Further, comparison of

the increasing and decreasing density cases shows that the power radiated in the in-

creasing ramp exceeds that of the sharp boundary radiation, which in turn, exceeds

the power radiated in the decreasing ramp. Simulation results show enhancement

by a factor of 50 can be achieved by using an increasing density gradient compared

with the sharp boundary. We developed a model that attributes this effect to a

resonant plasma wave process in the varying density region. Since the frequency

of the generated THz is below the maximum of the plasma frequency defined as

ωp =
√

4πq2ene/me, where qe, ne and me are the electron charge, density and mass,

respectively, the plasma resonance occurs at the varying density region where the di-

electric function ε(z) ∼ 1−ω2
p(z)/ω2 equals zero. In other words, the THz radiation

of a specific frequency is generated via the plasma resonance at a point where ε = 0,

where its frequency matches the local plasma frequency. To escape the plasma,

the THz radiation must first tunnel to the turning point where the wavenumber k

equals zero before it leaves the plasma and propagates into the vacuum, where the

wavenumber k is defined as k(z) =
√
ω2ε(z)− ω2

p(z)/c. Subsequently, this picture is

further utilized to develop a scaling formula for the radiated THz energy versus the
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length of density ramps. The results from the model match those of the simulation

for ramp lengths less than 600 µm. For longer ramps where simulations are too time

consuming, the model shows that the amount of radiation reaches a maximum at

a ramp length determined by collisional absorption. As an example, the simulation

results show that a 1.66 J, 50 fs driver pulse can generate ∼400 µJ of THz radiation

in a 1.2 mm increasing density ramp.

In Chapter 3, THz generation via the slow wave phase matching mechanism

is explored. Excitation of the THz modes by the interaction of an ultra-short laser

pulse and the fields of a miniature , axially corrugated plasma waveguide is discussed

in detail. Such plasma structures have been demonstrated experimentally and they

can support electromagnetic (EM) channel modes with properties that allow for

radiation generation. In particular, these corrugated structures have Floquet type

dispersion relations. Therefore, the EM modes have subluminal field components,

thus allowing phase matching between the generated THz modes and the pondero-

motive potential of the laser pulse. Both theoretical analysis and full format PIC

simulations are included and compared. THz generation by this slow wave phase

matching mechanism is characterized by lateral emission and a coherent, narrow

band, tunable spectrum with relatively high power and conversion efficiency. Two

different types of axially modulated plasma channels are considered, one has a max-

imum density at the lateral edges and another has the maximum density at the

center of the channel. Both types of channels can be created experimentally. The

channel with the maximum density at the lateral edges is more suitable for laser

guiding purposes, especially for higher laser intensities (larger a0). Therefore most

17



of the laser pulse energy can be guided inside the channel during the propagation

and more of the pulse energy can be converted into THz radiation. The channel

with the maximum density at the center is better to excite a narrow spectrum of

THz modes and the enhancement of THz radiation is observed especially for the

laser pulses with lower intensities (small a0). A range of laser pulse and plasma pro-

file parameters are considered with the goal of maximizing the conversion of optical

energy to THz radiation. It is found that higher laser intensities strongly modify the

THz spectrum by exciting higher order channel modes. Enhancement of a specific

channel mode can be realized by using an optimum pulse duration and plasma den-

sity. The laser pulse evolution is also studied to estimate the pulse depletion length,

which can be helpful in designing the length of the corrugated plasma channel. In

addition, a spectral red shift of the driver pulse is observed during the propagation

in the plasma channel. As long as the laser pulse is well guided in the plasma chan-

nel without side energy leaking, the wave action of the pulse is conserved during

propagation and the normalized vector potential a0 increases. Therefore, more THz

radiation is generated at a later channel position and the amount of THz energy is

above the linear scaling with the channel length. To be able to simulate the propaga-

tion of a laser pulse through a realistic centimeter scale plasma channel and collect

all the radiated THz, we apply a relatively large moving frame in the simulation

domain and a number of fully parallel simulations are implemented on CPU clusters

such as NERSC Edison and Deepthought2 at UMD. As an example, a fixed driver

pulse (0.55 J, a0 = 2) with spot size of 15 µm and pulse duration of 15 fs excites

approximately 37.8 mJ of THz radiation in a 1.5 cm corrugated plasma waveguide
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with on axis average density of 1.4× 1018 cm−3, conversion efficiency exceeding 8%

is achieved according to the simulation.

Chapter 4 summarizes this thesis and gives conclusions.
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Chapter 2: Terahertz Generation via Resonant Transition Radiation

(RTR) in A Plasma Density Gradient

2.1 Overview

Electromagnetic terahertz radiation (THz) spans frequencies from 300 GHz

to 20 THz and has a wide variety of applications [1] including spectroscopy [2],

remote detection [3], and medical and biological imaging [4]. Intense THz pulses

can be generated at large scale accelerator facilities via synchrotron or transition

radiation, but the size and cost of such facilities can be prohibitive for widespread

use. Laser-solid interactions provide a small-scale alternative, but material damage

limits the THz radiation to several µJ per pulse [16]. Plasmas, on the other hand,

can withstand large amplitude optical pulses, motivating laser-plasma interactions

as a path to high efficiency small- scale THz sources [12, 13].

There are a number of schemes in which THz radiation is generated via laser

plasma interactions as introduced in Chapter 1. Here, through theory and simu-

lation, we investigate ponderomotively driven THz radiation that occurs as a laser

pulse crosses a plasma boundary [64]. We will refer to this mechanism as transition

radiation in analogy with the charged particle beam counterpart. The resulting
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THz radiation is characterized by conical emission and a broad spectrum with max-

imum frequency occurring near the maximum plasma frequency [65]. We find that

the amount of THz radiation is substantially enhanced when the laser pulse passes

through a gradual increasing density ramp. In particular, a 1.66 J, 50 fs driver

pulse can generate 400 µJ of THz radiation in a 1.2 mm increasing density ramp,

comparing quite favorably with existing THz generation schemes.

The organization of this chapter is as follows. In Sec. 2.2 , we introduce the

transition radiation mechanism in the case a laser pulse normally incident on a sharp

plasma boundary. A differential equation describing the radiation excitation in 2D

planar geometry with an arbitrary density profile is presented. This equation can

be solved for a sharp boundary, providing an integral expression for the radiated

spectrum. Sec. 2.3 presents analysis and simulations of THz generation when a laser

pulse is incident on a diffuse plasma boundary. An increasing density ramp results

in resonant transition radiation, which enhances the radiation relative to the sharp

plasma boundary. We derive a scaling law describing how the radiation depends on

the plasma and laser parameters. We also show that substantially less radiation is

generated in a decreasing density ramp. In Sec. 2.4 we present our conclusions and

discuss future directions.
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2.2 THz generation via Transition Radiation at a sharp vacuum-

plasma interface

We begin by demonstrating the THz generation mechanism using the full

format PIC simulation TurboWAVE [62]. The simulations, conducted in the lab

frame, consist of a finite sized target plasma illuminated by a laser pulse incident

from the left. Fig. 2.1(a) displays an example for the case of a sharp boundary,

uniform plasma. A range of laser pulse and plasma parameters is considered. To

quantify the radiation emitted from the plasma, we calculate the Poynting flux

through prescribed surfaces outside the plasma region. This captures the radiation

emitted in the forward, backward and lateral directions.

As an example, we consider a uniform plasma with sharp step boundaries as

illustrated in Fig. 2.1(a). A laser pulse of duration (FWHM) τp = 50 fs traverses

the plasma from left to right. The plasma is 500 µm long and 90 µm wide with

a density of n = 2.8 × 1018 cm−3. The transverse plasma dimension is chosen

mainly for the convenience of simulation. Fig. 2.1(b) shows a false color image of

the longitudinal component of the Poynting flux after the laser pulse traverses the

entire plasma from left to right. Plasma wave excitation can be observed as the rapid

longitudinal oscillations in the Poynting flux. The alternate positive and negative

values of Poynting flux indicate a small average flux. However, at both ends outside

the plasma, we observe transition radiation as the red and blue streaks denoting

forward and backward Poynting flux, respectively.
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Figure 2.1: (a) Diagram of simulation set up for transition radiation
at the vacuum plasma boundary. The diagnostic box is set outside the
plasma channel. The Poynting flux through each surface is calculated.
(b) A snap shot of the Poynting flux ExBy in PIC simulations using
TurboWAVE. The transition radiation is generated at both boundaries
when the laser travels through the plasma from left to right.

The laser pulse produces a low frequency ponderomotive force, which is pro-

portional to the gradient of the laser pulse intensity, FP ∼ −∇I. This force drives
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the ponderomotive currents that produce the THz radiation. We note that a key

element that is required for coherent ponderomotively driven THz generation is

that the plasma currents be dynamic in all inertial reference frames. This occurs in

Refs. [33] and [34] by virtue of the fact that the driving laser pulse propagates in a

spatially periodic plasma channel. It occurs in Refs. [64], [65] and the present work

due to the fact that the ponderomotively driven transition radiation is generated at

the boundary of the plasma. Thus, transition radiation is a possible explanation for

the results of the Refs. [12] and [13]. However, THz radiation will not be generated

by the currents in the steady wake following a laser pulse in a uniform plasma as

suggested by the analysis of Refs. [12] and [13]. In such a case, all currents are steady

in a frame moving with the group velocity of the laser pulse, and consequently no

radiation occurs.

Following Ref. [64], we can derive an expression for the radiated energy per unit

frequency (ω) and per unit angle in 2D planar geometry. We start from Maxwells

equations and the following cold plasma fluid equation,

me
∂J

∂t
= q2eneE − qene∇Vp , (2.1)

where me, qe are the electron mass and charge, respectively. The quantity ne is the

electron density, and Vp is the averaged ponderomotive potential associated with

the incident pulse.

As the pulse propagates through the vacuum plasma interface, the electric
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field of the low frequency radiation can be obtained from the following expression,

∂2E

∂t2
+ ω2

pE + c2∇× (∇×E) =
ω2
p

qe
∇Vp , (2.2)

where ωp = (4πq2ne/me)
1/2

= 5.64× 104×
√
ne [cm−3] is the plasma frequency and

c is the speed of light in vacuum. An axisymmetric laser pulse with ponderomotive

potential Vp is described by Eq. (2.3). We take the laser pulse intensity and hence

ponderomotive potential to be described by a spatio-temporal Gaussian profile,

Vp = Vp0 exp

(
−−x

2

R2
L

− ξ2

L2
p

)
, (2.3)

where Vp0 = mec
2a20/4 is the maximum of the laser ponderomotive potential in terms

of the normalized laser vector potential a0 = eE0/(mecω0) with the laser central

frequency ω0 and field amplitude E0. The quantities
√
ln2RL and 2

√
ln2Lp are the

FWHM laser spot size and pulse duration respectively. The quantity Lp = cτp is

the length and ξ = z − ct is the shifted longitudinal coordinate.

To solve Eq. (2.2) in 2D planar geometry, one can apply Fourier transform to

Eq. (2.2) with respect to both time t and transverse coordinate x according to the
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following definition,

Ē(kx, z, ω) =

∫ ∞
−∞

dtdxE(x, z, t) exp (iωt− ikxx) , (2.4a)

E(x, z, t) =
1

(2π)2

∫ ∞
−∞

dωdkxĒ(kx, z, ω) exp (−iωt+ ikxx) . (2.4b)

By simple calculations, one can obtain a differential equation as described

by Eq. (2.2) for the Fourier transformed transverse component of the electric field

Ēx(kx, z, ω), which is driven by the ponderomotive potential of the laser pulse,

d

dz

(
ε(z)

k2(z)

d

dz
Ēx

)
+ ε(z)Ēx ≡ S(z) = −i d

dz

(
kx
k2(z)

ω2
p(z)

ω2

d

dz

V̄p
qe

)
− ikx

ω2
p(z)

ω2

V̄p
qe
,

(2.5)

where ε = 1 − ω2
p(z)/ω(ω + iν) is the frequency dependent dielectric function of

the plasma and ν is the collision frequency, which in our case is much less than

the radiation frequency ω. In obtaining Eq. (2.5) we have assumed the electron

density depends only on the longitudinal direction z. That is, the plasma has infinite

transverse extent. The longitudinal wavenumber is defined as k2 = ω2ε/c2 − k2x

and kz = ω/c. The quantity V̄p = V̂p(ω, kx) exp (ikzz) is the Fourier transformed

amplitude of the laser pulse Vp with V̂p given by the following expression,

V̂p = Vp0πRLτp exp

(
−
ω2τ 2p

4
− k2xR

2
L

4

)
. (2.6)
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The radiated energy per unit length U ′ can be obtained in the form of a spectral

density in (ω, kx),

dU ′

dω
=

∫ ∞
−∞

dkxSz(ω, kx) , (2.7a)

U ′ =

∫ ∞
0

dω
dU ′

dω
. (2.7b)

The spectral density Sz is given by

Sz(ω, kx) =
c

8π2

1

2π

(
Ex(ω, kx)B

∗
y(ω, kx) + c.c.

)
, (2.8)

where By is the transverse component of the magnetic field, which in turn is given

by [64],

By = i
ω

c

1

k2(z)

(
kzkx

ω2
p(z)

ω2

Vp
qe
− ε(z)

dEx
dz

)
. (2.9)

In 2D planar geometry the nonzero field components are (Ex, By, Ez) and in 2D

cylindrical geometry the field components are (Er, Bθ, Ez). Thus, in an experiment

one expects the radiated THz will be polarized with electric field E in the r − z

plane.

We now consider a sharp vacuum plasma interface in 2D planar geometry such

that the plasma density ne = 0 for z < 0 (vacuum) and ne = n0 for z ≥ 0 with

an infinite transverse size. We solve Eq. (2.5) in the two uniform regions described

above separately and note that the transverse component of electric and magnetic
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field are continuous at the boundary. We then inverse Fourier transform the field

back to the space domain and obtain the following expression for the radiated electric

field in vacuum (z < 0),

Ē(x, z, ω) = −i
√

2π
ω2
pRLτp

8

me

qe
a20

sinχ cos2 χ√
iωr/c

·
exp

(
iω
c
r − ω2τ2p

4
− ω2R2

L sin2 χ

4c2

)
ε cosχ+

√
ε− sin2 χ

,

(2.10)

where χ is the observation angle in Fig. 2.1(a), r =
√
x2 + z2 is the distance in 2D

planar geometry and the dielectric function is given by ε = 1−ω2
p0/ω

2 since ν << ω.

The resulting radiated energy per unit frequency (ω) and length radiated backward

in 2D planar geometry can be obtained using Eq. (2.7a) and is expressed as,

dU ′

dω
=
L2
pR

2
L

|ω|
ω2
p0

32π

m2
e

q2e
a40

∫ 1

0

dα
α2
√

1− α2 × exp
[
− ω2

2c2

(
L2
p +R2

L(1− α2)
)]

∣∣∣ε(ω)α +
√
α2 − ω2

p0/ω
2

∣∣∣2 . (2.11)

The integration over α can be viewed as an integration over all possible transverse

wavenumbers kx since α = cosχ =
√

1− k2xc2/ω2, where χ is the observation angle

as shown in Fig. 2.1(a). Thus the integrand in Eq. (2.11) approximates the angular

distribution of the radiation. We note that the integrand vanishes for both α = 0

and α = 1 . Therefore the emerging radiation will have a conical distribution. The

angular distribution of the radiated energy can be obtained by,

dU ′

dχ
= cosχ

∫ ∞
−∞

dω
ω

c
Sz(ω, kx) . (2.12)
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In the simulation setup as shown in Fig. 2.1(a), a formula describing the radiated en-

ergy flux across the transverse boundary x can be derived to investigate the radiated

energy angle by simply applying Eq. (2.10) to Eq. (2.13),

dU ′

dx
=
ω4
p0L

2
pR

2
L

64π

m2
e

q2e
a40

(
sin3 χ cos3 χ

|x|

)∫ ∞
0

dβ

β

exp
[
−β2ω2

p0

2c2

(
L2 +R2

L sin2 χ
)]∣∣∣(1− β−2) cosχ+

√
cos2 χ− β−2

∣∣∣ ,
(2.13)

where β = ω/ωp0 represents the normalized radiation frequency.

In Fig. 2.2(a) backward radiation spectra predicted by the simulation are com-

pared with Eq. (2.11). For this comparison, the laser pulse energy is 66 mJ ( a0 = 0.4

) with a 800 nm wavelength, 15 µm spot size and 50 fs pulse duration. Below the

maximum plasma frequency, a broad spectrum of radiation is observed. Results are

shown for two different length plasma slabs demonstrating that, as expected, the

radiation is insensitive to the plasma length. This is consistent with the radiation

originating from the left boundary. Comparing the theory and simulation one no-

tices a large deviation around ω/ωp = 0.4 in the simulation results labeled L = 500

µm and L = 100 µm, which is not observed in the 2D theory. This deviation is

dependent on the transverse size of the target plasma. In particular, if we increase

the transverse size from 90 µm to 180 µm, we obtain the curve labelled W = 180

µm in Fig. 2.2(a) in which the deviation is partially suppressed. We speculate that

the deviation is due to the interference between ray paths involving reflection from
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Figure 2.2: (a) Comparison of radiated spectral density. Shown are theo-
retical values (Eq. (2.11), black solid), and simulations using TuroWAVE
for plasma length L = 500 µm (blue dashed) and L = 100 µm (green
dashed). (b) Comparison of emerging radiation angle. Shown are theo-
retical values (Eq. (2.13), black solid), and simulations for plasma length
L = 500 µm (blue dashed) and L = 100 µm (green dashed). Simulation
results for plasma with a larger transverse size W = 180 µm (magenta
dashed) are also provided in both figures.
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the side boundary. One may also notice a low frequency cut-off (ω/ωp = 0.15) for

the simulation which is due to the finite size of the simulation domain. The simu-

lation using the same parameters as in Fig. 2.2(b) shows that the radiation peeks

at an angle χ = 25◦, indicating that the THz emission is conical. In particular, the

conical radiation angle is determined by the spot size of the laser pulse as well as

the plasma density.

Figure 2.3 displays the dependence of the total energy per unit length U ′

on plasma density. The radiated energy is nearly constant for densities above

1.5 × 1018 cm−3. In the inset Fig. 2.3(b), the spectra of radiated energy for differ-

ent densities is displayed, along with the frequency spectrum of the ponderomotive

potential. The spectra of the ponderomotive potential limits the radiated energy

spectrum, explaining the saturation of the radiated energy with density. For den-

sities above the characteristic density determined by the laser pulse duration, the

laser pulse excites a current at the boundary that depends primarily on the proper-

ties of the laser pulse. For example in Fig. 2.3 , the peak radiated energy occurs at

an electron density of 1.5× 1018 cm−3, and we have ωp0τp ∼ π.

We have also conducted simulations to examine the scaling of radiated energy

with laser intensity. According to Eq. (2.11), the radiated energy should scale as

a40 when a0 << 1. The simulations verified this scaling. However, as a0 increases

into the relativistic regime, the radiation saturates possibly due to the increase

in effective electron mass resulting from the quiver velocity. As an example, the

radiated energy is about 140 µJ with a0 = 4 and 48 nJ with a0 = 0.4.

We use the pre-formed plasma in the simulations. However, for practical
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Figure 2.3: (a) Radiated energy versus electron density (2D theory: line;
TurboWAVE: squares.). Energy is insensitive to plasma density above
1.5×1018 cm−3. (b) Radiation spectra for different plasma densities: (i)
1.5×1018 cm−3, (ii) 2.8×1018 cm−3, (iii) 4×1018 cm−3, (iv) 6×1018 cm−3.
The red dotted line (v) is the spectrum of the laser envelope V̄p with
arbitrary units.

setup in the experiment, one can simply shine one single laser pulse into the gas, for

example, hydrogen. Since the laser intensity is so high (> 1017 W/cm2), the front

of the pulse will fully ionize the gas and form the electron plasmas while the peak

of the pulse will drive the transition radiation. Shown in Figs. 2.5(a) and 2.5(b) are

the radiated THz energy across the left and lateral diagnostic boundary as shown in

Fig. 2.1(a), respectively. Simulation results indicate that the radiated THz energy

and spatial distribution are almost identical. Therefore, a pre-formed plasma is not

necessary, which simplifies the experiment setup.
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Figure 2.4: Scaling of radiated THz energy with laser intensities. The
spot size and pulse duration remain the same as 15 µm and 50 fs, respec-
tively. Theory predicts scaling to be a40/(1 + a20) based on ponderomo-
tive effect. Simulation results (blue) from TurboWAVE agree with the
a40 scaling (red) in the weakly relativistic regime where a0 << 1. The
scaling is weaker where a0 >> 1.
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Figure 2.5: Radiated THz energy across the (a) left and (b) lateral
diagnostic boundary as shown in Fig. 2.1(a), respectively.
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2.3 THz generation via Resonant Transition Radiation in diffuse

plasma profiles

The results in Sec. 2.2 are for the case of a sharp plasma-vacuum. When

the density transition has a ramp the results change in two ways. First there is

an asymmetry between radiation generated when the laser enters and leaves the

plasma. Second, the amount of radiation generated as a pulse enters the plasma

increases as the length of the transition region increases. The asymmetry is shown

in Fig. 2.6, where false color images of the spectrum of the Poynting flux through

the lateral simulation boundary are displayed. For a sharp boundary 2.6(a), as

discussed in Sec. 2.2, the radiation generated by the laser pulse entering and leaving

the plasma is the same as evidenced by the equal size patches in 2.6(b). However,

when the ramp is added 2.6(c), the amount of energy radiated when the laser enters

the plasma goes up while the amount radiated upon leaving goes down as displayed

in 2.6(d).

In Fig. 2.7 we plot the total energy per unit length radiated from the increasing

density transition for several ramp lengths. Also shown in this figure are the results

obtained by solving Eq. (2.5) and evaluating Eq. (2.7a). The solid line in Fig. 2.7

is a scaling formula that will be derived subsequently.

We develop a model to describe THz generation in a density ramp via the

process of resonant transition radiation. According to our theory, the radiation at a

given frequency is generated at the point in the plasma where its frequency matches
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Figure 2.6: Comparisons of (a) plasma density with sharp step bound-
aries and (c) plasma density with increasing and decreasing ramps (∼25
µm). Simulation results, radiation spectrum as a function of the longi-
tudinal distance and frequency showing that (b) the step boundary is
symmetric while (d) the case with density ramps shows asymmetry.

the local plasma frequency and with a range of transverse wavenumbers. The radi-

ation must then tunnel out of the plasma to the point where it can propagate. The

process has many similarities to the resonant absorption in a diffuse plasma profile.

A schematic plot is shown in Fig. 2.8 to illustrate this process. As the laser pulse
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Figure 2.7: Comparisons of radiated spectral density using different in-
creasing ramp lengths at a particular radiation frequency ω1 = 0.6ωp0.
Shown are simulation results (square), numerical results of our model
(diamond) and the scaling theory Eq. (11). Note from Fig. 2.2(a) the
corresponding value in the sharp boundary case is dU ′/dω = 1.5× 10−17

(J/Hz·m).

propagates through the increasing density gradient, the THz generated during the

transition process is below the plasma frequency, thus the plasma resonance exists

in the ramp. Radiation of frequency ω is generated at the plasma resonance at z1

(where the dielectric function ε is zero), but needs to transit to the turning point z2

(where the wavenumber k equals zero) to escape the plasma.

Note that the solution to Eq. (2.5) is a combination of a homogeneous solution

(by simply setting the driver S(z) = 0 ) and a particular solution associate with the

driver which describes the excitation of potential plasma wave fields. This particular

solution in a uniform plasma can be analytically expressed as,
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Figure 2.8: Schematic plot for THz generation via resonant transition
radiation in the density ramp region. Shown are plasma density profile
(blue) and the characteristic solution of the electric field Er (black).
Plasma resonance in the ramp is expected.

Ep = −ikx
ε

ω2
p

ω2

V̂p
qe

exp (ikzz) . (2.14)

The particular solution is valid when the density scale length is much longer than

the THz wavelength, which is the case considered here. We note the particular

solution breaks down at the plasma resonance, ε(z1) = 0, where a more complete

solution must be found.

It must be pointed out that this particular solution generates no radiation,

which can be verified by substituting Eq. (2.14) into Eq. (2.8). Therefore, the

radiated energy is given by,
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U ′ =

∫ ∞
0

dω

∫ ∞
−∞

dkxSh(z) , (2.15)

where the spectral density is given in terms of the homogeneous solution,

Sh(z) =
c

16π3

1

i

ω

c

ε

k2

(
E∗h

dEh
dz
− Eh

dE∗h
dz

)
, (2.16)

where Eh is the solution from Eq. (2.5) by setting S(z) = 0. Equation (2.5) also

breaks down at the plasma resonance where the local particular and homogeneous

solutions couple determining the amplitude of the homogeneous solution.

One can show that Sh(z) is a constant (independent of z ) for z < z1, which

is further verified by the numerical solutions shown in Fig. 2.10(a). To determine

the level of homogeneous solution we expand around the plasma resonance where

ε(z1) ≈ 0. We take z1 = 0 and the dielectric function can be approximated as

ε ≈ −z/L0 + iν/ω, where L0 is the characteristic length defined as,

1

L0

= −dRe{ω}
dz

∣∣∣∣
Re{ε}=0

. (2.17)

Near the resonance, the homogeneous version of Eq. (2.5) becomes

d

dz

(
z
d

dz
Eh

)
= 0 . (2.18)
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And the solution of E where z → 0−(z−1 ) satisfies the following,

Eh = c<

(
ln

z

L0

+ α<

)
. (2.19)

An expression of Sh can be obtained by using the above approximation in (2.16),

Sh =
1

16π3

ω

ik2xL0

∣∣c<∣∣2(α∗< − α<) . (2.20)

where c< and α< are constants, which are determined by examining the solution

of Eq. (2.5) near the plasma resonance including the source. A similar expression

for the homogeneous solution for z > 0 applies but with different constants, c> and

α>. We now derive an expression for the total solution near the resonance as shown

following,

Ēx =

∫
z

Ψdz′

z′ − iZν
exp (±ikzz′) + c

[
ln

(
z

L0

− i ν
ω

)
+ α

]
, (2.21)

where Ψ = kzkzL0V̂p/qe , Z = L0ν/ω, c, α are constants to be matched to the

homogeneous solution and the integration contour is to be determined. The ± sign

demotes the direction of the laser pulse. In Eq. (2.21), the first term becomes the

particular solution associated with the laser pulse far from the resonance and the

second term is in the form of the homogeneous solution as described by Eq. (2.19),

which presumably will carry the radiation.
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Expression (2.20) shows that the Poynting flux is given by the imaginary part

of the coefficients α> and α<. For z > 0, the homogeneous solution is evanescent

and consequently α> is real. The integral expression (2.21) relates the coefficients

α> and α<.

We now determine the connection between α> and α<. If the laser is traveling

in the positive-z direction (+ikzz), the upper limit of the limit should be taken to

be z′ = i∞ to give convergence to the integral. The integration contour is the then

of the type shown in the top row of Fig. 2.9. Then for z > 0 the path is C as

illustrated on the top left of Fig. 2.9. Evaluation of Eq. (2.21) using contour C ,

one can fix c and α in (2.21) to be c> and α>.

Ēx =

∫ i∞

z

Ψdz′

z′ − iZν
exp (ikzz

′) + c>

[
ln

(
z

L0

− i ν
ω

)
+ α>

]
. (2.22)

For z < 0, the contour is deformed to the one labeled C ′ and a residue at the pole

z′ = iZν is accumulated.

Ēx =

∫ i∞

z

Ψdz′

z′ − iZν
exp (ikzz

′) +

(
2πΨ exp (−kzZν) + c>

[
ln

(
z

L0

− i ν
ω

)
+ α>

])
.

(2.23)

Matching Eq. (2.19) for z > 0 and z < 0 to Eqs. (2.22) and (2.23) gives

c<

[
ln

(
z

L0

− i ν
ω

)
+ α<

]
= 2πΨ exp (−kzZν) + c>

[
ln

(
z

L0

− i ν
ω

)
+ α>

]
. (2.24)
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Matching the logarithmic and constant parts, the following conditions are obtained,

c< = c> =
2πΨ exp (−kzZν)

α< − α>
. (2.25)

By substituting Eq. (2.19) into Eq. (2.20), finally we obtain an expression for the

total radiated energy per unit frequency ω and per unit wavenumber kx when the

laser pulse is incident on an increasing density ramp,

Sh =
1

4π

ω

ik2xL0

α∗< − α<
|α< − α>|2

∣∣Ψ exp (−kzZν)
∣∣2 . (2.26)

where α< and α> are constants that must be determined by numerical solution of

the homogeneous equation.

If the pulse travels from right to left (kz < 0), it propagates through a decreas-

ing density ramp. As a result of kz < 0, the integral in Eq. (2.21) must be carried

out on a contour that terminates in the lower half plane as illustrated in Fig. 2.9.

The solutions for z > 0 and z < 0 in this case have no jump since there is no

pole (singularity) on the negative image axis (Fig. 2.9). One finds from Eq. (2.24)

without the residue contribution c> = c< and α> = α<. Thus Sh = 0, meaning

that no radiation is generated through the decreasing density ramp. This verifies

our simulation results with TurboWAVE [62] in Fig. 2.6(d), where one can see the

amount of THz generation through an increasing ramp is far more than that through
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Figure 2.9: Contours for evaluation of the integral in Eq. (2.21) for an
increasing (a) and decreasing (b) density ramp.
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the decreasing ramp. The physics of this asymmetry between the increasing and de-

creasing ramps can be explained by a form of phase matching [35, 66]. The phase

of the integrand in Eq. (2.21) is given by φ+ kzz
′ where φ = tan−1(Zν/z

′) decreases

as z′ increases. Therefore, if kz > 0, the phase matching condition can be satisfied

at a point z′ where kz + dφ/dz′ = 0. However, the phase matching condition cannot

be satisfied if kz < 0.

To investigate the effect of a density ramp we turn to numerical solutions of

Eq. (2.5) for the THz electric field in the case of diffuse density profiles. The details of

a numerical method to solve Eq. (2.5) is included in Appendix A. Shown in Fig. 2.10

are the simulation results of the electric field Ēx(ω, kx) at a particular radiation

frequency ω = 0.8ωp0 and wavenumber kx = 0.4ω/c where ωp0 is the maximum

plasma frequency and c is the speed of light in vacuum. The laser properties and

electron density remains the same as in Sec. 2.2. Figs. 2.10(a) and 2.10(b) show

that the laser pulse propagates through an increasing density ramp (kz > 0) and

a decreasing ramp, respectively. This is realized in the solution of Eq. (2.5) not

by reflecting the density profile, but rather, by changing the direction of the laser

propagation. This in turn is done by making the substitution V̄p = V̂p exp (ikzz) to

V̄p = V̂p exp (−ikzz) in Eq. (2.5). In both cases, Figs. 2.10(a) and 2.10(b), the field

in the uniform density region (z > 200 µm) responds to the laser pulse in the form

of a wake with a spatial dependence in the form of a wave, exp (±ikzz). This is the

particular solution given by Eq. (2.14).

To better understand the mechanism of radiation generation we plot the Poynt-

ing flux, Eq. (2.8). It can be seen that only in the case of an increasing density ramp,
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Figure 2.10: THz generation via resonant transition radiation in a diffuse
(a) increasing and (b) decreasing density ramp. Shown are numerical
result of the electric field described by Eq. (2.5) (real part, blue solid
and imaginary part, black dashed), and the electron density profile (red
dashed) with a 200 µm ramp length starting at z = 0 to z = 200 µm .
The Poynting flux, described by Eq. (2.8), is also shown (green solid).
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Fig. 2.10(a), is there an appreciable power flux leaving the plasma. The behavior

of the Poynting flux in Fig. 2.10 shows that the THz radiation is generated at the

plasma resonance z1 , where its frequency matches the local plasma frequency, i.e.,

the dielectric function ε(z1) = 0. This is evidenced by the jump in Poynting flux

that occurs near z = z1. It is shown when the ramp length is much greater than the

THz wavelength, the particular and homogeneous solutions of Eq. (2.5) decouple

except at the resonance, and the Poynting flux is carried by the homogeneous solu-

tion. To escape the plasma, the THz radiation must first tunnel to the turning point

z2, where the wavenumber k(z2) = 0, before it leaves the plasma and propagates

into the vacuum. The oscillations in Poynting flux seen for z < z1 are due to the

beating of the laser generated particular solution of Eq. (2.5) and the homogeneous

solution. This picture will be used to develop a scaling formula subsequently.

As can be seen by comparing Figs. 2.10(a) and 2.10(b) the radiation energy

from an increasing ramp is greater than for a decreasing ramp. Further, comparison

of the increasing and decreasing density cases displayed in Fig. 2.11 shows that the

power radiated in the increasing ramp exceeds that of the sharp boundary radiation,

which in turn, exceeds the power radiated in the decreasing ramp. The generation

of wake fields in the uniform plasma displayed in Fig. 2.11 is identical since the laser

parameters remain the same. This agrees with the PIC simulations discussed in the

context of Fig. 2.6 as well as the analytical calculation confirming this phenomena

presented in Fig. 2.9.

We now compare the spectra of THz radiation predicted by the PIC simu-

lations and by numerical solution of Eqs. (2.5-2.11). Fig. 2.13 shows the energy
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Figure 2.11: Comparison of THz generation in different density
ramps. Shown are numerical results of the generated electric field
described by Eq. (2.5) in a sharp vacuum-plasma boundary (blue,
solid), an upward/increasing density ramp (black dashed) and a down-
ward/decreasing density ramp (green dashed). The density ramp has a
200 µm ramp length between z = 0 and z = 200 µm.

per unit length and frequency (dU ′/dω in Eq. (2.7a)) versus frequency for several

increasing ramps of varying length.

The curves match closely except for a small interval of frequencies near the

maximum plasma frequency. This difference could be due to the finite transverse size

of the plasma in the PIC simulations or the slight difference in the density profiles.

The PIC simulation has a fifth order polynomial representation of the density profile

while the differential equation was solved for a sine-squared profile.

The dependence of the radiated flux, Sz(ω, kx) defined by Eq. (2.8), on trans-

verse wavenumber is shown in Fig. 2.13(a) for ω1 = 0.6ωp0, where ωp0 is the max-
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Figure 2.12: Comparisons of radiated spectral density between Tur-
boWAVE and the proposed model for different increasing ramp lengths.
Shown are TurboWAVE (TW) simulation results (dash, circle marker)
and numerical results from the differential equation (DE) based on our
developed model (solid) for different ramp lengths up to 3200 µm . Inte-
gration over frequency gives the total amount of radiated energy in 2D
geometry; for example, the total energy is 0.1375 J/m for ramp length of
1200 µm , which is an enhancement of ∼50 times compared with 0.0027
J/m for the sharp boundary case.
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imum plasma frequency. The flux is peaked at a wavenumber that decreases as

the ramp length increases. This is shown in Fig. 2.13(b) where the wavenumber

for the peak of the flux is plotted versus ramp length. The dependence of the

peak wavenumber on scale length is a power law with a best-fit exponent −0.3274.

For wavenumbers above the peak value the flux decreases rapidly, and the rate of

decrease increases with ramp length.

We now propose a simple scaling formula for the dependence of the radiated

THz energy on ramp length based on the picture suggested by Fig. 2.10(a). In our

model, THz radiation is first generated by the laser pulse at the plasma resonance

ε(z1) = 0, and it must tunnel to the turning point z2, where ω2ε(z2)− k2c2 = 0. In

the interval z2 < z < z1 the THz radiation has an imaginary wavenumber k(z) =

ω2ε(z)/c2 − k2 = iκ. If we assume that the density varies linearly with distance for

z2 < z < z1, then ε(z) = −(z − z1 − iZν)/L0 and z2 = z1 − L0k
2
xc

2/ω2 where L0 is

the characteristic length defined by Eq. (2.17) and Zν = L0ν/ω. The THz radiation

power escaping the plasma will then have a dependence on parameters due to the

tunneling factor

Sh ∝ exp

(
−2

∫ z1

z2

κ(z)dz

)
= exp

(
−4

3
k3xL0c

2/ω2

)
. (2.27)

This dependence on transverse wavenumber will apply as long as the turning point

z2 and the plasma resonance z1 are well separated.This in turn implies k2x is larger

than a critical value that is displayed in Fig. 2.13(b).

49



Figure 2.13: (a) Comparisons of Sz (Eq. (2.8)) at a particular radia-
tion frequency ω1 = 0.6ωp0 for different increasing ramp lengths. Shown
are numerical results of our developed model (solid, cross marker) for
different ramp lengths up to 3200 µm. (b) Peak radiation angle (cor-
responding kx) agrees with our model kx,peakc/ω ∼ (c/L0ω)1/3 << 1.
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To estimate the critical value of the transverse wavenumber we examine the

differential equation, Eq. (2.5), for small k2xc
2/ω2 where the turning point z2 and

resonance z1 are close together. We introduce a new axial coordinate, ζ = µ(z−z1−

iZν), where µ is a scale factor to be determined. We make the following replacement

in Eq. (2.5), ε = −ζ(L0µ)−1, k2 = −k2zζ(L0µ)−1−k2x and dz = dζ/µ, where kz = ω/c.

This transforms Eq. (2.5) to the following,

d

dζ

(
ζ

ζ + ζk

d

dζ
Ēx

)
− k2z
µ3L0

ζĒx =
k2z
µ2
S(z) . (2.28)

where ζk = k2xL0µ/k
2
z and the source S(z) is given in Eq. (2.5).

We now pick a value of the scale factor µ so that both terms on the left of

Eq. (2.28) are the same size, which leads to µ = (k2z/L0)
1/3. Next, we notice that the

turning point ζ = −ζk and the resonance ζ = 0 will be close together when ζk = 1 or

kx,peakc/ω ∼ (c/L0ω)1/3 << 1. This determines the radiation angles (corresponding

to kx,peak) where the peak of THz radiation exists as shown in Fig. 2.13(a), and is

in agreement with the scaling of Fig. 2.13(b).

We also estimate the size of the electric field in this case from Eq. (2.28),

Ēx ∼ (kzL0)
2/3S and the source is evaluated as S ∼ −ikxk2zµ−2V̂pq−1e exp (ikzz),

therefore we have the following expressions,

Ēx ∼ −ik2zL0
V̂p
qe

exp (ikzz) , (2.29a)

dĒx
dz
∼ iµĒx ∼

(
k4zL0

)2/3 V̂p
qe

exp (ikzz) . (2.29b)
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Using Eqs. (2.29), the peak value of Sz as appears in Fig. 2.13(a) is estimated to be,

Sz,peak ∼
c

16π3
k2z (kzL0)

5/3

(
V̂p
qe

)2

. (2.30)

The radiated spectral density which is the integral of Sz according to Eq. (2.7a)

can be further estimated as the product Sz,peakkx,peak and scales as L
4/3
0 . Based

on this analysis one would expect the radiated spectral density dU ′/dω to increase

monotonically with density scale length L0. However, as observed in Figs. 2.7 and

2.13 the radiated spectral density reaches a maximum for L0 = 1200 µm and then

decreases. This is explained by the presence of collisional damping. First there is

local damping near z = z1 where the THz is generated at the plasma resonance. It

is already shown in Eq. (2.26) that the generated radiation is reduced by a factor

TL = exp (−2ωZν/c) ∼ exp (−αLνL/cπ) due to collisions. Another reduction due

to damping occurs during propagation from the turning point to vacuum, i.e.,

TP = exp

(
2

∫ 0

z2

∣∣∣Im(√k2)∣∣∣ dz) ∼ exp (−αPνL/cπ) . (2.31)

Therefore, the scaling formula for the radiated THz spectral density shown in Fig. 2.7

can be approximated as the following,

dU ′

dω
=
(ω
c

)3( V̂p
qe

)2 (ω
c
L0

)4/3
exp

[
− (αL + αP )

νL

cπ

]
. (2.32)
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where αL and αP both depend on radiation frequency ω. Formula (2.32) matches

well with the results based on solution of Eq. (2.5) as well as the PIC simulations

shown in Fig. 2.7.

Finally, to further investigate the radiated energy in the decreasing ramp,

we conducted PIC simulations using different ramp lengths. As predicted by our

model, both PIC simulations and numerical solutions of Eq. (2.5) show that the

amount of THz generated dramatically decreases in the case of a decreasing ramp.

In fact, one can conclude that the THz generated in the decreasing ramp case is

negligible (3 orders of magnitude less) compared with the amount of THz generated

in the increasing density ramp case. The cause of this asymmetry is a form of phase

matching as discussed previously.

2.4 Conclusions

We have both theoretically and numerically investigated ponderomotively driven

resonant THz transition radiation generated at plasma boundaries. Broad-band THz

radiation is generated with frequencies up to the maximum plasma frequency. The

parameters of the driving pulse as well as the plasma profiles affect the properties

of the generated THz radiation. The spectrum and angular distribution of the THz

radiation can also be tuned by varying these parameters.

Resonant transition radiation is generated at a diffuse plasma boundary and is

preferentially enhanced if the laser pulse propagates through an increasing density
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profile. We’ve developed a model to describe the physical processes in this diffuse

plasma case. The THz is generated primarily at the plasma resonance and must

tunnel to a turning point before it leaves the plasma and propagates into vacuum.

The calculated Poynting flux shows that this process enhances the amount of THz

energy efficiently through a density increasing ramp and diminishes THz generation

through a decreasing density ramp. A scaling law was developed to allow one to

estimate the amount of THz energy generated for different density ramp lengths.

Both numerical solutions of Eq. (2.5) and PIC simulations agree with our

model. The amount of THz radiation generated can be dramatically increased

compared with that in the sharp vacuum plasma boundary case [64]. As an example,

a fixed driver pulse (1.66 J) excites approximately 422.9 µJ of THz radiation in a

1.2 mm increasing density ramp. Thus this mechanism provides the possibly of

developing new high power tunable THz sources.

2.5 Appendix A: NUMERICAL METHOD FOR EQUATION (2.5)

In Sec. 2.3, we presented numerical results of solutions for the electric field

Ēx determined by Eq. (2.5). Here we present details of the method. Eq. (2.5) can

be put in the general form,

d

dz

(
p(z)

d

dz
Ēx

)
+ q(z)Ēx = S(z) , (2.33)

where p(z) = ε(z)/k2(z), q(z) = ε(z) = 1−ω2
p(z)/ω(ω+ iν) and k2(z) = ω2ε(z)/c2−
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k2x.

We take z = 0 to be the boundary between the plasma and vacuum. One

boundary condition is that the field Ēx should be an outgoing wave in vacuum

(z < 0). Thus for z < 0, in vacuum,

Ēx = C1 exp (−ik1z) . (2.34)

We assume the density is uniform for z > L where L is the ramp length, then

Ēx = C2 exp (−κz) + Ep(z) , (2.35)

where C1, C2 are two constants to be determined and k21 = ω2/c2−k2x and κ2 = k2x−

1
c2

(
ω2 − ω2

p0

1+iν/ω

)
. The function Ep is the particular solution described by Eq. (2.14).

The homogeneous solutions are exponentially growing and decaying with z for z > z2

(see Fig. 2.10). Thus, direct integration of Eq. (2.33) for large ramp lengths is subject

to errors. To overcome this, we then use the method of variation of parameters by

first considering two homogeneous solutions u1 and u2 of Eq. (2.33) (taking the

source term S(z) = 0), which satisfy the following boundary conditions,

u1(z): u1(z)→ 0 as z → +∞, and

u2(z): u2(z)→ outgoing wave as z → −∞.

We then write the general solution of Eq. (2.33) in the following form,
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Ēx = A1(z)u1(z) + A2(z)u2(z) . (2.36)

Since we have introduced two functions, A1 and A2, to represent a single unknown,

we are free to make up a second relation between them,

u1
dA1

dz
+ u2

dA2

dz
= 0 . (2.37)

Substituting Eq. (2.36) into Eq. (2.33) and applying the condition (2.37), one arrives

at equations for the two functions, A1 and A2,

dA1

dz
= −u2S

W
, (2.38a)

dA2

dz
=
u1S

W
. (2.38b)

The quantity W is the Wronskian defined as,

W = p

(
u1
du2
dz
− u2

du1
dz

)
, (2.39)

and W is independent of z. As an example, shown in Fig. 2.14 is the Wronskian

formed from numerical solutions for u1 and u2 for a 200 µm increasing density

ramp. Other parameters are the same as in Sec. 2.3. The relative variation is

within 0.005%.
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Figure 2.14: Wronskian described by Eq. (2.39) for a 200 µm increasing
density ramp.

After obtaining the Wronskian from the simulation, we can further numerically

solve for the two coefficient functions, A1 and A2, and finally obtain the generated

THz field Ēx in vacuum, z < 0. In Sec. 2.3, Fig. 2.10 is an example of the simulation

result for a particular radiation frequency and transverse wavenumber. Scanning

over all possible radiation frequencies and wavenumbers is conducted to obtain the

total radiated THz energy into vacuum using Eq. (2.15).
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Chapter 3: High-Power Tunable THz Generation in Corrugated Plasma

Waveguides

3.1 Overview

Terahertz radiation (THz) has a wide variety of applications [1] including time

domain spectroscopy (TDS) [2], medical and biological imaging [4], remote detection

[3] and so on. For example, most airports use millimeter wave/THz scanners for

security checking. Research in small-scale, high efficiency terahertz sources has

been actively conducted to investigate THz radiation generation by laser pulses

propagating in plasmas since it was first demonstrated by Hamster et al. [12, 13]. In

this case, the source of the radiation is the current driven by the ponderomotive force

of a laser pulse. However, generation of radiation by laser pulse propagating through

uniform plasma is generally minimal. In order for these electromagnetic modes

to efficiently couple to the driving source which travels at its group velocity, the

plasma must be inhomogeneous or a strong background magnetic field is required.

A scheme involving laser pulses (or possibly electron beams) propagating through

axially corrugated plasma channels has been proposed by Antonsen et at. [33, 67].

This slow wave structure supports electromagnetic modes that have subluminal
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phase velocities, thus providing the possibility of phase matching between the excited

modes and the driver.

In this chapter we report the theoretical and simulation results of investigat-

ing the ponderomotively driven THz generation via the slow wave phase matching

process by laser pulses propagating through corrugated plasma waveguides. Such

corrugated plasma waveguides support electromagnetic (EM) channel modes with

subluminal phase velocities, thus allows the phasing matching between the generated

THz modes and the ponderomotive potential associated with laser pulse, making

significant THz generation possible. These waveguides have been reported routinely

demonstrated in the lab [43, 44] and the experimental set up is shown in Fig. 3.1a. A

first Nd:YAG laser is line-focused onto a cluster jet and the hydrodynamic expansion

process forms the channel. The periodic structure is created by spatial modulation

of laser intensity or the cluster density. A second ultra-short Ti:Sapphire laser pulse

is then sent into the channel with some time delay following the channel formation

pulse and it drives the terahertz generation. Shown in Fig. 3.1b is a snap shot of

the experimentally generated axially modulated plasma density profile. Full format

PIC simulations and theoretical analysis are conducted to investigate this slow wave

phase matching mechanism. We find the generated THz is characterized by lateral

emission from the channel, with a spectrum that may be narrow or broad depending

on laser intensities. A range of realistic laser pulse and plasma profile parameters are

considered with the goal of maximizing the conversion efficiency of optical energy

to THz radiation. As an example, simulation results show a fixed driver pulse (0.55

J) with spot size of 15 µm and pulse duration of 15 fs excites approximately 37.8
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mJ of THz radiation in a 1.5 cm corrugated plasma waveguide with an averaged on

axis density of 1.4× 1018 cm−3, conversion efficiency exceeding 8% can be achieved

in this case.

The organization of this chapter is as follows. In Sec. 3.2, we introduce the

mechanism and provide the principles of generating THz in corrugated plasma

waveguides. A mathematical model of the channel is considered and dispersion

relation is analyzed to determined the frequency of channel mode excitation. In

Section. 3.3, we conduct full format PIC simulations to investigate how to optimize

the conversion efficiency from laser pulse energy to THz. In addition, THz spec-

trum tunability is also discussed. A numerical method to precisely find the mode

frequencies and how many modes can escape the plasma is also provided. The

dependence of THz radiation on plasma density, driver pulse intensity, laser pulse

duration, channel length and other channel parameters is investigated and discussed

in detail. Two different types of experimentally demonstrated plasma channels are

considered and compared. In Section. 3.4 we present our conclusions and discuss

future directions.

3.2 Excitation of THz modes in corrugated plasma channels

3.2.1 Ponderomotive Driver

Our goal is to study the possibility of a high-power, tunable table-top THz

source. In order to efficiently generate terahertz radiation by passing an ultra short,

intense laser pulse through a corrugated plasma channel, there are a number of con-
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Figure 3.1: (a) Diagram of experimental setup for generation of an ax-
ially corrugated plasma channel. To create the plasma structures, a
modulated cluster density can be used in conjunction with a uniform
formation pulse or one can spatially modulate the formation pulse alter-
natively. (b) Snapshot of an experimentally generated axially modulated
plasma channel (only 3 periods are shown here).

ditions to be satisfied. First, if the interaction takes place in a tenuous plasma, the

central frequency of the driver pulse will be significantly higher than the generated

electromagnetic waves. The laser pulse produces a cycle-averaged low frequency

ponderomotive force on the electrons, which induces an electron current that can

produce radiation. The force on electrons is the gradient of the ponderomotive po-

tential of the pulse, Fp = −∇Vp, where Vp = mc2a2/4 in terms of the normalized

laser vector potential a = eEa/mcω0, m is the electron mass, e is the electron charge

and c is the speed of light in vacuum. ω0 is the laser carrier frequency and Ea is the

electric field amplitude with both spatial and temporal distributions. The plasma

ions are relatively heavy and can be treated as stationary background during the

interaction time scale. The rate at which the ponderomotive force does work on a

current is given by
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P =

∫
d3xJ ·∇Vp/q = −

∫
d3xVp

∂n

∂t
, (3.1)

where q = −e is the electron charge, J is the current and n is the electron density.

Eq. (3.1) implies that in order for the laser pulse energy to be efficiently converted

into electromagnetic (EM) modes in the perturbation regime, a density perturba-

tion is required. This can be satisfied in an inhomogeneous plasma or a strongly

magnetized plasma.

Secondly the phase velocity of the excited channel modes must be phased

match to the group velocity of the laser pulse in the plasma to have significant

THz emission. In a uniform plasma, the modes typically have superluminal phase

velocities by simply regarding the dispersion relation ω2 = k2c2 + ω2
p, where ωp =√

4πe2n/m is the plasma frequency. However, the phase matching condition is

possible in a corrugated plasma channel. The periodicity of the channel makes it

a slow wave structure, and the electromagnetic modes of these channels have the

Floquet type dispersion relations as discussed in Sec. 3.2.3. The frequencies of the

channel modes are determined by the channel parameters and each mode of channel

consists of the sum of spatial harmonics [34]. Because of the superposition of spatial

harmonics, these EM modes can have subluminal phase velocities. Thus, significant

THz emission may be achieved.
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3.2.2 Corrugated Plasma Channels

We consider the corrugated plasma waveguides to be cylindrical symmetric,

with electron densities described by the following,

n(r, z)

n00

=



n0 + (n1 − n0)
r2

r2c
r ≤ rc

n1
r0 − r
r0 − rc

rc < r < r0

0 r ≥ r0

(3.2)

where n00 is a normalization density. The channel has a density modulation period

of λm and the modulation wavenumber is defined as km = 2π/λm. Here the axially

modulated z dependence is carried through the parameters n0, n1, rc and r0. The

quantity n0(z) is the normalized on-axis density and n1(z) is normalized density at

r = rc as shown in Fig. 3.2. The quantities n0 and n1 are both axially modulated,

n0 = 1+δ sin (kmz) and n1 = n1+δ1 sin(kmz), respectively. Here δ is the modulation

amplitude of the on-axis density n0. The quantity n1 is the average transverse peak

density and δ1 is the modulation amplitude of n1. The density has a parabolic

transverse profile to guide the laser pulse during propagation. The quantity rc is

the radius at which n1 characterizes the density, and the density then decreases

linearly to zero between rc and r0. The quantities rc and r0 may also be axially

modulated. Figs. 3.2a and 3.2b are false color images of two different types of the

modeled density profiles, both of them are experimentally demonstrated.
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Figure 3.2: False color image of two example electron density profiles
generated by Eq. (3.2): (a) a channel with maximum density at lateral
edges, with δ1 = δ = 0.7, n1 = 1.3, rc = 30 µm and r0 = 40 µm. (b)
a channel with maximum density at the center, with δ = 0.7, n1 = 1.3,
δ1 = 0.1. Both cut-off radius and channel radius are also modulated as
rc[µm] = 22.5− 7.5 sin (kmz) and r0[µm] = rc + 15.

3.2.3 Dispersion Relation and Mode Excitation

We assume the plasma is a cold fluid with linear response and consider the

radially polarized, azimuthally symmetric TM modes (Er, Ez, Bθ) of the channel.

Following Maxwell’s Equations, an approximate wave equation [33, 34] for transverse

electric field Er can be derived

(
− 1

c2
∂2

∂t2
+

∂2

∂z2
+

1

r

∂

∂r
r
∂

∂r
− 1

r2

)
Er =

ω2
p0

c2
n(r, z)

n00

Er , (3.3)

where ωp0 is the plasma frequency evaluated for the normalization density n00. Here

we have assumed |∇ ·E| << |E| /rc. This equation is exact in the case of TE mode

with Er replaced by Eθ.

In the case which the channel is parabolic as r → ∞ and only characterized

by the first line of Eq. (3.2), we assume δ1 = δ and consider the γth order of radial
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eigenmode of the channel can be described by

Er(r, z, t) = E0f(z)Hγ

(
r

wch

)
exp

(
− r2

w2
ch

)
, (3.4)

where wch is the mode width given by 4/w4
ch = ω2

p0(n1 − n0)/r
2
cc

2 and and we

require wch < rc. Hγ is the γth odd polynomial defined as
∑n=2γ−1

n=1 αn (r/wch)
n

with coefficients determined by αn/αn−2 = 4(n − 1 − 2γ)/(n2 − 1), a1 = 1 and

a0 = 0. The function f(z) satisfies the following Mathieu equation,

d2f

dz2
+ k20f =

ω2
p0

c2
δ sin (kmz)f , (3.5)

Here, the value of k0 is defined such that

ω2 = ω2
p0 +

8γc2

w2
ch

+ k20c
2 . (3.6)

The dispersion relation is found by solving Eq. (3.5) with Floquet boundary condi-

tions, f(z + λm) = exp (ikzλm)f(z). The parameter k0 depends implicitly on the

phase advance per period kzλm and can be numerically found [34]. Then k0(kz)

inserted in Eq. (3.6) gives ω(kz) the dispersion relation.

Shown in Fig. 3.3 is the dispersion relation for the lowest (γ = 1) radial mode

of the model channel. The dependence of ω on phase advance demonstrates the

characteristic periodicity of frequencies in k space for periodic structures. The laser
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Figure 3.3: Dispersion relation curves of the lowest (fundamental) radial
mode of a corrugated channel evaluated by Eq. (3.6) with n00 = 1.4 ×
1018 cm−3, δ1 = δ = 0.9, n1 = 3 and rc = 30 µm. The straight line (red)
corresponds to the laser pulse moving at the speed of light, ω = kzc.
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pulse, represented by a straight line in the plot, moves at its group velocity (vg ' c)

in the plasma channel. At places where the dashed pulse line and the dispersion

relation curve intersect, phase matching occurs, and THz excitation can be expected

of these frequencies.

Equations (3.5) and (3.6) apply as long as wch < rc. Eq. (3.6) is a good

approximation of the dispersion relation regarding the axially average density pro-

file and assuming the transverse parabolic shape extends to infinity. However, to

determine the exact frequencies of the excited modes, one can numerically evaluate

the wave equation Eq. (3.3) using an exact electron density profile. A discussion of

the more accurate calculation of dispersion relation, including the comparison with

Eq. (3.6) is provided in Sec. 3.3.1.

3.3 Simulation Results

3.3.1 Radial eigenmodes

In this section, we discuss the numerical method to calculate the exact fre-

quencies of the modes. Assuming the channel is axially uniform, Eq. (3.3) can be

rewritten as,

(
1

r

∂

∂r
r
∂

∂r
− 1

r2

)
Er +

(
k2c − k2p(r)

)
Er = 0 , (3.7)

where the cut off wavenumber kc of EM modes and plasma wavenumber kp, are

defined as, k2c = ω2/c2−k20 and k2p(r) = ω2
p(r)/c

2, respectively. Boundary conditions

imply Er vanishes on axis, i.e., Er(r = 0) = 0. Outside the channel, n(r > r0) =
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Table 3.1: Exact values of numerically calculated kc and estimation from Eq. (3.6)
for different radial modes.

Mode number kc[µm
−1], exact kc[µm

−1], Eq. (3.6)

1st 0.30195 0.3024
2nd 0.36384 0.3652

0, thus Eq. (3.7) becomes the Bessel’s differential equation. The field Er outside

the channel must match the properties of an outgoing wave. Thus it takes the

form of the first kind Hankel function H
(1)
1 (kcr), which asymptotically behaves as

Er ∼ 1√
r

exp (ikcr). The boundary condition allows us to know the ratio of Er to

its derivative outside the channel, and we can numerically integrate Eq. (3.7) using

the shooting method to determine the kc values that satisfy the on axis boundary

condition Er(0) = 0. Appendix A provides more details of this calculation.

The calculation of kc for radial eigenmodes is displayed in Table 3.1 and match

closely with the estimation kc =
√
ω2
p0/c

2 + 8γ/w2
ch from Eq. (3.6).

3.3.2 PIC simulation results

3.3.2.1 THz Mode Excitation

THz generation in corrugated plasma waveguides is simulated using the full

format PIC code TurboWAVE [62]. The simulations, performed in 2D planar ge-

ometry, employ a finite sized plasma channel illuminated by an ultra short, intense

laser pulse incident from the vacuum. Figure 3.4(a) displays an example for a plasma

channel of 10 periods with modulation wavelength λm = 50 µm. To quantify the
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radiation emitted from the plasma channel, we calculate the Poynting flux through

each prescribed surface outside the plasma region, which captures the emission in

the forward, backward and lateral directions. The 2D simulations are performed

in the lab frame. The domain size is 102.4k−1n × 374.8k−1n with 1024 × 20480 cells

in the x and z directions, respectively, where k−1n = 2.01115 µm is the normaliza-

tion used in the simulation. A laser pulse with central wavenumber λ = 800 nm,

duration τFWHM = 50 fs and spot size 15 µm traverses the plasma channel from

left to right. The normalized vector potential a0 = 0.4 (pulse energy UL = 66 mJ)

with a0 defined as a0 = eE0/mcω0, where E0 is the peak field amplitude and ω0 is

the laser central frequency. Fig. 3.4(b) shows a false color image of the transverse

component of Poynting flux Px after the laser pulse traverses the channel. The

plasma wave excitation can be observed as the rapid oscillations inside the channel

and the alternate positive and negative values of the Poynting flux indicate a small

average flux. However, at both lateral boundaries, one can observe the THz emis-

sion as the red and blue streaks denoting the lateral Poynting flux. The forward

and backward radiation that is also observed at both the left and right ends of the

channel in Fig. 3.4(b) is the resonant transition radiation due to inhomogeneity of

plasma described previously[36, 65]. As we discussed in Sec. 3.2, the lateral THz

emission that is not observed in uniform plasmas [36] is a result of to the excitation

of subluminal EM modes in the modulated channel.

To further investigate the spectrum of the lateral THz emissions, the radiated

energy per unit length U ′ through each diagnostic surface in Fig. 3.4(a) can be

obtained in the form of a spectral density in (ω, r), where r denotes the 2D spatial
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Figure 3.4: (a) Diagram of simulation set up. The diagnostic box is set
outside the plasma channel and the Poynting flux through each surface
is calculated. The plasma channel consists of 10 modulation periods
with the following parameters: λm = 50 µm, n00 = 1.4 × 1018 cm−3,
δ1 = δ = 0.9, n1 = 3, rc = 30 µm and r0 = 40 µm. (b) A snap shot
of the transverse component of Poynting flux EzBy in PIC simulations
after the laser propagates through the channel from left to right, with
bright and dark streaks indicating lateral THz radiation is generated.
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coordinates (x, z),

dU ′

dω
=

∫
dAn̂ · S(ω, r) (3.8a)

U ′ =

∫ ∞
0

dω
dU ′

dω
, (3.8b)

where n̂ is the unit vector normal to surface A. The spectral density is given by,

S(ω, r) =
c

8π2

(
E(ω, r)×B∗(ω, r) + c.c.

)
. (3.9)

Therefore, to quantify THz radiation emitted across each diagnostic surface, we

calculate the z component of the spectral density, Sz, for the left and right diagnostic

boundaries and the x component, Sx, for the lateral boundary. Figure 3.5(b) is the

radiated spectral density from the PIC simulations. The low frequency, broad-band

THz radiation observed at the entrance of the channel also shown in Fig. 3.5(a)

is the resonant transition radiation [36], however, lateral THz radiation [37] is also

observed in the corrugated plasma channel and characterized by a coherent, narrow

band spectrum as shown in Fig. 3.5(c). The frequencies of the first three excited

THz modes based on our simplified model are 13.18 THz, 15.3 THz and 16.5 THz,

respectively, as predicted by the phase matching condition in Fig. 3.3. In this case,

the simulation shows that THz leaves the channel, creating a intensity pattern with

maxima at the 9 separate locations along the longitudinal distance in Fig. 3.5(b)

where the fundamental mode emits.

Figure 3.6(a) shows the spatial and temporal evolution of the Poynting flux

71



Figure 3.5: (a) Radiated THz energy across the lateral diagnostic bound-
ary shows two different mechanisms of generating THz. (b) Simulation
results of radiated THz spectral density across the lateral diagnostic
boundary using the same channel parameters in Fig. 3.4(a) and a0 = 0.4.
Besides the low frequency, broad band THz radiation when laser pulse
crosses the plasma interface, lateral THz radiation is also observed. (c)
Radiated THz spectrum (only channel modes are considered in this plot)
shows different channel modes are excited. The frequency of each excited
mode matches well with the phase matching condition in Fig. 3.3.

Px across the lateral boundary. As the driver pulse propagates through the channel,

EM modes in the THz range are excited and escape the channel. Also observed

in simulation results is that the lateral THz radiation propagates approximately

perpendicularly to the lateral boundary. Shown in Fig. 3.6(b) is a typical temporal

profile of the excited THz mode, with amplitude built up in a few THz cycles and

then decreasing.
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Figure 3.6: (a) False color image of the spatial and temporal evolution
of Poynting flux Px across the lateral diagnostic boundary from PIC
simulations. Lateral THz emission of channel modes is observed. (b) A
typical temporal profile of the excited THz mode, with frequency ∼12.5
THz.
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3.3.2.2 Dependence on Plasma Density

Terahertz generation via the slow wave phase matching process depends on

plasma density. As shown in Fig. 3.7(a), THz radiation generated from SWPM

peaks around plasma density of 1.75× 1017 cm−3 for the parameters we used in the

simulation. The fundamental mode of the channel contributes dominantly to the

THz radiation for all the plasma densities considered in Fig. 3.7(a). As discussed

in Ref. [33], the energy extracted from the driver pulse is essentially converted into

both electromagnetic radiation (EM) and plasma waves (PW). Fig. 3.7(b) displays

the radiated spectral density dU ′/dω, as the plasma density is reduced, the fre-

quency of the fundamental mode decreases, and most importantly, the ratio of the

generation of electromagnetic radiation at these frequencies over plasma waves in-

creases. In particular, at the averaged on axis density around 1.75× 1017 cm−3, the

THz generation peaks at the fundamental frequency of 6.6 THz corresponding to the

local maxima of coupling. This means more energy extracted from the driver pulse

is converted into THz radiation due to the fact that the central channel density is

tending low and the excitation of plasma waves becomes small.

3.3.2.3 Dependence on Laser Intensity

Ponderomotively driven radiation is expected to scale quadratically as the

laser intensity, i.e., a40/γ
2 ∼ a40/(1 + a20). From the simulation results shown in

Fig. 3.8, one can see THz radiation can be enhanced by increasing the laser in-

tensity. However, for larger a0, the THz radiation is enhanced above the scaling
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Figure 3.7: (a) THz radiation for different plasma densities. Simulation
results include the broad band THz generated by resonant transition
radiation (RTR) at the side end of plasma channel and the narrow band
THz generated by the slow wave phase matching (SWPM) process as
we discussed in this paper. For the latter case, when density is reduced
until the optimal density 1.75×1017 cm−3, more THz radiation leaks out
the channel. (b) Radiated spectral density dU ′/dω of THz shows that as
plasma density decreases, the frequency of excited THz decreases while
at the same time, more THz radiation is generated until the optimal
density 1.75× 1017 cm−3 is reached.
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estimate. This enhancement phenomenon is accompanied by a change in the spec-

trum as illustrated by the comparisons in Fig. 3.8. We find that in this case higher

order channel modes are excited by nonlinear currents and interference between

higher order modes is also observed. According to the simulation results, one can

conclude that all excited channel modes are enhanced simultaneously by increasing

laser intensities. However, the enhancement rate for higher order modes is more

rapid than lower order modes, resulting the evident higher order modes excitation

as shown in Fig. 3.8(c).

Our goal is to optimize the efficiency of the optical laser pulse energy converted

to THz. Channel lengths in our simulations are limited by computation time, so

we are not able to simulate every channel long enough to substantially deplete the

laser pulse. We define an alternate efficiency that is the fraction the depleted laser

energy transferred to THz, η = ETHz/|∆ELaser|. By maximizing this efficiency,

less power is expended driving the plasma oscillations, thus freeing it to drive THz

over longer distances. We note that this efficiency does not depend on the laser

intensity for a0 < 1 based on the linear theory that both ETHz and ∆ELaser scale

as a20. However, for large a0, higher order THz modes are excited by nonlinear

currents, which enhances the efficiency scaling. We’ve achieved an energy conversion

efficiency of approximate 3% for the THz generation as displayed in Fig. 3.9 and this

could be further optimized by varying the corrugated plasma density profiles. For

example, the conversion efficiency for the weakly relativistic case can be efficiently

enhanced by finding an optimum plasma density as discussed in Fig. 3.7(a). As

laser propagates through the channel, the vector potential increases, which also
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Figure 3.8: Radiated THz spectrum across the lateral diagnostic bound-
ary for different laser intensities (a) a0 = 0.2 (pulse energy 16.7 mJ) (b)
a0 = 0.8 (pulse energy 0.267 J) (c) a0 = 2.0 (pulse energy 1.66 J). All
other parameters remain the same in the simulation. As laser intensity
increases, more THz energy is generated. In addition, high order channel
modes are excited as well.
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Figure 3.9: Efficiency η = ETHz/ |∆Elaser| for different laser intensities.
Same channel parameters as shown in Fig. 3.4(a) are used. For a0 < 1,
η is independent of a0 as expected. However, for a0 > 1, scaling is
enhanced since higher order channel modes are excited due to nonlinear
currents.

contributes to the enhancement of conversion efficiency. Such phenomena will be

discussed in detail in Sec. 3.3.2.5.

3.3.2.4 Dependence on Laser Pulse Duration

Since the frequencies of the channel modes are determined by the plasma pro-

files, the pulse duration does not affect the THz mode frequency but does determine

the amplitude of the driving current at each frequency. Suppose the laser pulse has

a Gaussian temporal profile exp[−(t− z/c)2/τ 2p ] with 2
√
ln(2)τp as the pulse dura-

tion (FWHM), the amplitude of the ponderomotive driver at a mode frequency ω is
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given by τp exp(−ω2τ 2p /4), which has a peak value when ωτp =
√

2. Therefore, the

value of τp can be adjusted to excite a specific range of channel mode frequencies.

For the fundamental mode of 13.18 THz, the value is τp = 16.9 fs corresponding

to a FWHM pulse duration of 28.4 fs. The simulation results further verify our

estimation. Shown in Figs. 3.10(a)-3.10(c) are the radiated THz spectra crossing

the lateral diagnostic boundary for pulse durations of 100 fs, 30 fs, and 15 fs, re-

spectively. The normalized vector potential a0 = 0.4 remains the same for all 4

cases. For the case of a 100 fs laser pulse as shown in Fig. 3.10(a), the amplitude

of the ponderomotive driver for any channel mode is small, therefore minimal THz

generation is observed. For the fundamental mode (13.18 THz) of the same plasma

channel, the desired pulse duration is 30 fs and the simulation result in Fig. 3.10(b)

shows that the most amount of THz radiation at this frequency is generated. In

addition, higher order radiation is observed as the pulse duration is shortened to 15

fs shown in Fig. 3.10(c), where there is an enhancement of the channel mode near

20 THz. Figure 3.11 displays a comparison of the radiated spectral density dU ′/dω

for these pulse durations, showing the dependence on pulse duration.

3.3.2.5 Scaling with Channel Length

As the laser pulse propagates through the plasma channel, the pulse energy will

be depleted and converted into both electromagnetic radiation and plasma waves

[33, 40, 68–70]. Spectral red shift [71, 72] of the driver pulse is also observed in

simulations. For example, the energy of a laser pulse with a0 = 2.0 and pulse
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Figure 3.10: Radiated THz spectrum across the lateral diagnostic bound-
ary for different laser pulse durations (a) 100 fs (b) 30 fs (c) 15 fs.
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Figure 3.11: Displayed is the comparison of radiated spectral density for
these pulse durations as shown in Fig. 3.10.
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duration of 15 fs propagating through the 10 period channel shown in Fig. 3.4(a),

will depleted by 1.12%. At the same time the central frequency shifts from 375

THz to 371 THz. Consistent with action conservation, as the pulse depletes, the

normalized vector potential a0 associated with the laser pulse increases and the laser

pulse changes shape. This accounts for the results shown especially in Fig. 3.8(c)

where evident enhancement of THz is generated at the tail of the channel. In

order to maximize generation of THz radiation, the pulse energy must be efficiently

depleted within the length of the channel. The depletion length Ldp for a pulse with

duration matched to the plasma period is given [69] by Ldp = 17.4k2l k
−3
p a−20 in the

weakly relativistic regime (a0 << 1) and Ldp = 8.7k2l k
−3
p in the relativistic regime

(a0 >> 1), where kl is the central wavenumber of the laser pulse and kp = ωp0/c.

These formulas give, for laser pulses of normalized vector potential a0 = 0.4 and

a0 = 2.0, depletion length of 53 cm and 4.25 cm, respectively. The averaged on axis

density of the channel is 1.4× 1018 cm−3.

The pulse evolution in the laser frame in 2D planar geometry can be estimated

by the following calculation. Assume the laser vector potential has the following

term,

A = Â (x⊥, ξ, t) exp (−ik0ξ) + c.c. , (3.10)

where Â is the slowly varying envelope and ξ = ct − z. The wave equation is then

described by,
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[
− ∂2

c2∂t2
+

2

c

∂

∂t

(
ik0 −

∂

∂ξ

)
+ O2

⊥

]
Â =

ω2
p(ξ, t)

c2
Â . (3.11)

One can define a time the wave action as

I = Re

{∫
d2x⊥dξ

2πc
Â∗
[
k0 + i

∂

∂ξ
+ i

∂

c∂t

]
Â

}
. (3.12)

The ∂/∂t term can be neglected since k2x, ω
2
p << k2z [72]. The wave action defined

in Eq. (3.12) is the conserved during the pulse propagation. On the other hand, the

energy stored in the laser pulse is given by,

UL =

∫
d2x⊥dξ

2π

∣∣∣∣(k0 + i
∂

∂ξ

)
Â (x⊥, ξ, t)

∣∣∣∣2 (3.13a)

=

∫
d2x⊥dξ

2π

∣∣∣∣ ∂∂ξA (x⊥, ξ, t)

∣∣∣∣2 . (3.13b)

Since the electromagnetic fields associated with the pulse are (Ex, By, Ez) and

according to Maxwell’s Equations the vector potential can be estimated By =

−∂Ax/∂z = ∂Ax/∂ξ. Applying a Fourier transform to the above Eqns. (3.12) and

(3.13a) and using Parseval’s Theorem, one can obtain the following expressions of

wave action and pulse energy in frequency domain,

I = Re

{∫
d2x⊥
2πc

∫
dk

2π

1

k

∣∣B (x⊥, k, t)
∣∣2} . (3.14)
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UL =

∫
d2x⊥
2π

∫
dk

2π

∣∣By (x⊥, k, t)
∣∣2 . (3.15)

To study this, we simulate an 800 nm laser pulse of duration 15 fs, transverse

spot size of 15 µm and a0 = 2.0 (pulse energy 0.55 J). The channel parameters

remain the same as in Fig. 3.4(a), except the channel length is extended to 1.5 cm.

The simulation is conducted with a moving window of length 750 µm to collect all

the possible THz emission after incidence of the pulse. Simulation domain has a size

of 102.4k−1n ×374.8k−1n with 1024×20480 cells in the x and z directions, respectively,

where k−1n = 2.01115 µm is the normalization used in the simulation. The energy

stored in the laser pulse is displayed in Fig. 3.12(a) as a function of distance. Within

the propagation distance of 1.5 cm, 80% of the pulse energy is depleted. Fig. 3.12(b)

displays the radiated THz energy versus propagation distance. The rate (dU ′/dz)

of THz energy generation increases with distance as the normalized vector potential

a0 increases during propagation due to the action conservation [40, 68, 71, 72]. As

a result, after the propagation of 1.5 cm, more than 8% of the total pulse energy is

converted into THz radiation.

We also investigate the laser pulse evolution during the propagation. For exam-

ple, the pulse properties, i.e., spatial shape and frequency, are displayed in Fig. 3.13

at three different locations (initial, 4.5 mm, 7 mm) as shown in Fig. 3.16(a). The

temporal profiles of on axis magnetic field By at these different locations displayed

in Fig. 3.13 indicate that the front of the laser pulse is preferentially eroded during

the interaction with the plasma channel. Since the laser pulse is well guided by
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Figure 3.12: (a) Pulse energy depletion of an initial laser with a0 =
2.0 (0.55 J) during the propagation in a corrugated plasma channel.
Simulation result shows that around 80% of the energy stored in the
laser pulse is depleted within the propagation distance of 1.5 cm.(b)
Scaling of Radiated THz energy versus plasma channel length.
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the channel structure, the transverse profiles still retain a Gaussian shape after the

propagation. However, one can notice from the simulation that the on axis peak field

By increases during the interaction. On the other hand, as shown in Fig. 3.14(b),

a red shift is observed during the propagation. Therefore, the normalized vector

potential, as defined by a = eE0/mecω0, increases during the propagation in the

plasma channel as long as the wave action is conserved. One may expect that the

more THz radiation is generated per distance toward the end. The wave action

during the propagation in the same corrugated plasma channel is also displayed in

Fig. 3.15. The wave action can be considered as conserved within the propagation

distance of 1 cm. However, beyond that distance, the laser pulse is strongly modified

and depleted after 1 cm; the action then drops quickly.

To illustrate the scaling shown in Fig. 3.12(b) in detail, we calculated the ra-

diated THz energy dU ′/dZ at three different locations with the same channel length

as displayed in Fig. 3.16(b). As a result of the increase of a0 and spectral modi-

fication of the driver pulse, more THz is generated during the propagation despite

of the same channel length. Furthermore, the radiated spectral density shown in

Fig. 3.16(c) shows that broader spectrum of THz is expected at a forward/later

channel location.

For comparison, THz generation using a relatively low intensity laser pulse

with pulse duration of 30 fs, transverse spot size of 15 µm and a0 = 0.4 (pulse

energy 44.5 mJ) is also simulated. In this case, we found the optimum plasma

density for short propagation distance (10 periods) is 1.4 × 1017 cm−3 as shown in

Sec. 3.3.2.2. The lower plasma density and laser intensity lead to a much longer
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Figure 3.13: Temporal profiles of on axis magnetic field By of the pump
laser at the three different locations (initial, 4.5 mm, 7 mm) of the chan-
nel as displayed in Fig. 3.16(a) indicate that the front of the laser pulse
is preferentially eroded during the interaction with the plasma channel.
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Figure 3.14: (a) Transverse profiles of the magnetic field By of the pump
laser at the three different locations (initial, 4.5 mm, 7 mm) remain a
good Gaussian shape since the pulse is well guided by the channel struc-
ture. However, the peak filed on axis increases. (b) Fourier transform of
the magnetic field By of the pump laser shows spectral modification of
the pulse, the central frequency shifts from the initial 375 THz to 331.6
THz within a propagation distance of 7 mm.
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Figure 3.15: Wave action defined in Eq. (3.12) as a 800nm laser pulse
with pulse duration of 15 fs, transverse spot size of 15 µm and a0 = 2.0
propagates through the same corrugated plasma channel in Fig. 3.2a.

89



Figure 3.16: (a) Investigate THz generation during the pulse propagation
in a corrugated plasma channel at three different locations, 0-500 µm
(black), 4500-5000 µm (blue), and 7000-7500 µm (red), respectively. (b)
Radiated THz energy dU’/dZ at these three different locations. The x
axes are shifted to 0-500 µm so that the three simulation results can
be aligned. The increase of a0 explains why more THz is generated
during the propagation despite of the same channel length. (c) Radiated
spectral density dU’/dω for the corresponding three locations shows that
the THz spectrum becomes broader during the propagation.
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pulse depletion length than for that of the previous case displayed in Fig. 3.12(b).

Consequently, due to computational restrictions, we were not able to simulate a

channel long enough to substantially deplete the pulse energy. Instead, we simulate

pulse propagates through a corrugated plasma channel for a distance of 1.5 cm.

The simulation result displayed in Fig. 3.17(a) indicates that only 10% of the energy

stored in the laser pulse is depleted within the same distance. The different steps are

oscillations in beam radius due to the mismatch between the transverse pulse width

and the guiding structure. Shown in Fig. 3.17(b) is the radiated THz energy versus

plasma channel length. About 50 µJ of THz energy is generated within a 1.5 cm

interaction distance. As a result, it can be concluded that the conversion efficiency

for a0 = 0.4 is much lower than that of a higher intensity pulse. In addition, a much

longer plasma channel is needed to deplete the pulse energy for a0 = 0.4.

3.3.2.6 Other parameters

It has been discussed [34] that the mode width wch, channel characteristic

radius rc and r0, density modulation amplitude and modulation period will all affect

the spectrum and excitation of THz modes. In this section, we consider another

corrugated plasma channel as shown in Fig. 3.2b. This channel has a maximum

local density in the center, which in contrast, the channel we considered in previous

sections has the maximum local density at the lateral edges. The channel has the

same 10 periods with modulation wavelength of 50 µm, other channel parameters are

δ = 0.7, n1 = 1.3, δ1 = 0.1. In order to match the density profile shown in Fig. 3.1b,
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Figure 3.17: (a) Pulse energy depletion of an initial laser with a0 =
0.4 (44.5 mJ) during the propagation in a corrugated plasma channel.
Simulation result shows that only 10% of the energy stored in the laser
pulse is depleted within the propagation distance of 1.5 cm. (b) Scaling
of Radiated THz energy versus plasma channel length indicates that only
1.1% of the depleted laser energy is concerted into THz radiation in this
case.
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both cut-off radius and channel radius are also modulated as rc[µm] = 22.5 −

7.5 cos (kmz) and r0[µm] = rc + 15. Simulation results of two different laser pulses

propagating through the same channel are presented in Fig. 3.18(a) and 3.18(b),

with normalized vector potential a0 = 0.4 and a0 = 2.0, respectively. Both laser

pulses have the same transverse spot size of 15 µm and pulse duration (FWHM) of

50 fs with a central wavenumber of 800 nm. Figure 3.18(a) shows narrow band THz

radiation is excited around the fundamental frequency of 13.6 THz. The amount of

generated THz energy as well as the calculated THz conversion efficiency for this

channel displayed in Table 3.2 is significantly higher than the case shown in Fig. 3.5

using the same laser pulse. This could be explained by the excitation of a higher

electron current since the driver pulse encounters more electrons due to the local

density maximum on axis for the density profile shown in Fig. 3.2b. In addition, the

axially averaged density profile has a lower radial barrier that allows the generated

THz waves to escape the channel. For a higher intensity laser pulse with a0 = 2.0,

the generated THz shown in Fig. 3.18(b) is characterized by a different spectrum

compared with Fig. 3.8(c). Although the amount of THz energy is enhanced for

both cases, the spectrum is still confined in a relatively narrow band fundamental

frequency while in the case of Fig. 3.8(c), higher order THz modes are significantly

generated and consequently modify the spectrum.
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Figure 3.18: False color image of radiated THz spectrum across the
lateral diagnostic boundary for two different laser pulses (a) a0 = 0.4
(b) a0 = 2.0. The integral over all boundary locations yields to the total
THz spectrum dU ′/dz and is also included in the plot (white, dashed).
The plasma density profile used in the simulations is shown in Fig. 3.2b
and has a local maximum in the center of the channel. Simulation result
shows that an ideal narrow band THz spectrum is excited and higher
THz energy is preferentially generated in this type of channel.
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3.4 Conclusions and Discussions

We have investigated a mechanism by which an intense, ultrashort laser pulse

can ponderomotively drive THz radiation in an underdense corrugated plasma waveg-

uide. These slow wave periodic structures have been generated experimentally and

can support electromagnetic modes that can couple with the currents ponderomo-

tively driven by the laser pulse. This provides the possibility of generating signifi-

cant THz radiation. We presented a mathematical model for the corrugated plasma

waveguides, from which the dispersion relation of the channel modes is derived, en-

abling prediction of the generated THz frequencies. Theoretical analysis and Full

format PIC simulations are conducted to study the THz generation in corrugated

plasma waveguides. Our study is the first to study the nonlinear regime including

generation of nonlinear plasma wakes and self-consistent evolution of the driving

laser pulse. A range of laser pulse parameters and plasma channel structures are

considered with the goal of maximizing the conversion efficiency of optical pulse

energy to THz.

Table 3.2 displays the simulation results for different driver pulse parameters

and plasma densities for two types of corrugated channels displayed in Fig. 3.2. Most

of the simulations were conducted using a 10 period channel (0.5 mm in length) to

investigate the conversion efficiency of the depleted optical pulse energy to generated

THz. For these simulations, the pulse energy only depletes a small percentage

within 0.5 mm. Only few longer runs with substantial pulse energy depletion were

conducted. Simulating long propagation distances of 1.5 cm is included in Table 3.2.
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More THz energy is generated using the channel type shown in Fig. 3.2b. A laser

pulse with higher intensity, i.e., larger a0 and shorter pulse duration, also contributes

to more THz generation. It is found an optimum lower plasma density enables more

THz radiation to escape the channel, however, since the excited THz modes depends

on the channel structures according to the dispersion relation discussed in Sec. 3.2.3,

lower plasma density also modifies the generated THz spectrum. In addition, to

efficiently deplete the pulse energy into the plasma within a shorter channel, a

higher plasma electron density is preferred. Therefore, we choose a laser pulse with

a0 = 2.0 and pulse duration of 30 fs. The same channel shown in Fig. 3.2b is used

with an averaged on axis electron density of 1.4 × 1018 cm−3 except the channel

length is extended to 1.5 cm. The simulation result as displayed in Table 3.2 shows

after the laser pulse propagates through the channel for 1.5 cm, around 48% of the

pulse energy is depleted. At the same time, 16 mJ of THz energy with a narrow

spectrum is generated. The conversion efficiency is around 3% and less than the case

shown in Sec. 3.3.2.5. The is probably due to the fact that the channel displayed in

Fig. 3.2b no longer remains a transverse parabolic structure for optical guiding. In

fact, laser energy leaks laterally and the wave action is not conserved as the laser

pulse propagates through the channel. Therefore, the normalized vector potential

a0 decreases with the propagation distance and less THz energy is generated.

In order for the present mechanism to be a useful high power source of THz

radiation, the spectrum should have flexible tunability. Since the excited THz is

the channel modes of the corrugated plasma structure, all the parameters used in

Eq. (3.2) can be tuned to modify the THz spectrum, more specifically, tuning the

96



T
ab

le
3.

2:
C

om
p
ar

is
on

of
ge

n
er

at
ed

T
H

z
en

er
gy

fo
r

d
iff

er
en

t
la

se
r

in
te

n
si

ti
es

an
d

d
en

si
ty

p
ro

fi
le

s.

C
h
an

n
el

T
y
p

e
a
0

p
u
ls

e
d
u
ra

ti
on

on
-a

x
is

d
en

si
ty

ch
an

n
el

le
n
gt

h
en

er
gy

d
ep

le
ti

on
T

H
z

en
er

gy
effi

ci
en

cy
[f

s]
[×

10
1
8
cm
−
3
]

[m
m

]
in

to
th

e
ch

an
n
el

[m
J
]

η

F
ig

.
3.

2b

0.
4

30
1.

4
0.

5
0.

03
3%

0.
00

16
12

.0
3%

0.
4

50
1.

4
0.

5
0.

02
4%

0.
00

13
8.

17
%

0.
4

50
0.

14
0.

5
0.

00
6%

4.
68

e-
4

11
.7

%
2.

0
30

1.
4

15
48

%
16

3%
2.

0
50

1.
4

0.
5

0.
4%

0.
64

93
9.

84
%

F
ig

.
3.

2a

0.
4

30
0.

14
15

10
.1

1%
0.

04
8

1.
11

%
0.

4
50

1.
4

0.
5

0.
01

75
%

3.
36

e-
5

0.
28

%
2.

0
15

1.
4

15
81

.8
%

38
8.

44
%

2.
0

50
1.

4
0.

5
0.

39
%

0.
2

3.
25

%

97



averaged on axis density n00 is the easiest way in the experiment. For example, a

lower density n00 = 1.75 × 1018 cm−3 can enhance the THz generation as well as

decreasing the THz frequency for the case of a driving pulse with a0 = 0.4. At

lower laser intensities, for example a0 = 0.4, only lower frequency of the channel

modes is efficiently excited and thus a narrow band spectrum (0.4 THz in FWHM

band width) is generated. However, at higher laser intensities (a0 = 2.0), higher

order channel modes are excited by nonlinear currents and strongly modify the THz

spectrum. Laser pulse duration also contributes to the enhancement of a specific

THz frequency by the maximizing the amplitude of the ponderomotive driver. Since

the generated THz waves emit laterally, one can use an axicon mirror to focus the

THz radiation to one direction for practical uses. Overall, the present mechanism

using realistic corrugated plasma structures in this paper provides a potential higher

power source of THz with tunable spectrum and a very high conversion over 8%

efficiency is achieved.

3.5 Appendix A: CALCULATING THE RADIAL EIGENMODES

To calculate the radial eigenmodes numerically for a arbitrarily given trans-

verse density profile, one can numerically evaluate Er by Eq. (3.7) using shoot-

ing method given a set of parameter k⊥ and determine what k⊥ satisfies the on

axis boundary condition Er(0) = 0. For mathematical simplicity we set Φ = rEr,

β(r) = k2p(r) and Eq. (3.7) yields to,
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∂2Φ

∂r2
− 1

r

∂Φ

∂r
+
(
k2c − β(r)

)
Φ = 0 . (3.16)

One can also find as r → 0, Φ ∼ a · r2 + b, therefore the on axis boundary

condition is satisfied if b → 0. The finite difference (FD) shooting method can be

implemented by,

Φj−1 = −
Φj+1(2j − 1) + 2j

[
h2(k2c − βj)− 2

]
Φj

1 + 2j
, (3.17)

where h is the step size.

To find out the number of different radial modes, i.e., kc, can be supported by

the channel with finite transverse size, one can scan the parameter kc in Eq. (3.17)

and apply the Nyquist Theory illustrated in Fig. 3.19. F (s) is an analytic function

in a closed region of complex plane s given as left. As s travels on the path on the

s plane in the clockwise direction, F (s) encircles the origin on the complex plane N

times,

N = Z − P , (3.18)

where Z and P denote the number of zeros and poles of function F (s) in the closed

region, respectively. For our shooting method, as shown in Eq. (3.17), Φ(0) has no

poles and the result yields to N = Z.

Fig. 3.20 shows that for a given density profile, Φ(0) encircles origin twice as kc
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Figure 3.19: Nyquist Theory: Cauchy’s principle.

scans from 0.301 µm−1 to 0.402 µm−1, which implies that the channel can support

two radial eigenmodes according to Cauchy’s principle. Further one can apply linear

interpolation to narrow the range of kc for each mode and find the exact value of kc

in which the field satisfies the boundary condition. Fig. 3.21(a) and 3.21(b) are two

figures indicating the range of kc during the interpolation to find the exact value kc

for first and second radial eigenmodes, respectively.
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Figure 3.20: Φ(0) encircles origin (red dot) twice as kc scans from 0.301
µm to 0.402 µm. The density profile in this case is: n00 = 1.4×1018 cm−3,
δ1 = δ = 0.9, n1 = 3, rc = 30 µm and r0 = 40 µm.
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Figure 3.21: (a) kc of the fundamental radial mode is found to between
0.301 µm−1 and 0.303 µm−1. (b) kc of the second order radial mode is
found to between 0.36 µm−1 and 0.37 µm−1. Applying linear interpola-
tion can help narrow the range of kc and we find kc = 0.30195 µm−1 for
the first radial mode and kc = 0.3638 µm−1 for the second radial mode.
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Chapter 4: Summary and Conclusions

We have investigated two different mechanisms of ponderomotively driven THz

generation in inhomogeneous plasmas: (i) a resonant transition radiation (RTR)

mechanism occurring as a pulse crosses a plasma boundary and (ii) a slow wave

phase matching mechanism (SWPM) that occurs in corrugated plasma channels.

The two mechanisms are fundamentally different in two aspects although they are

both based on laser plasma interactions. THz generated by resonant transition

radiation originates from the varying density at the plasma boundary while THz

generated in axially modulated plasma channels is enabled by the subluminal chan-

nel modes supported by these slow wave structures, which can be phase matched

to the laser ponderomotive potential. The former mechanism generates backward

broad band THz with maximum frequency close to the maximum of the plasma fre-

quency while the latter is characterized by lateral emission and a coherent, narrow

band, tunable spectrum. Since most of the laser pulse energy can be depleted as the

pulse propagates through the channel, the latter mechanism provides possibilities of

THz generation with higher power and conversion efficiency.

In the chapter entitled Terahertz Generation via Resonant Transition Radi-

ation (RTR) in A Plasma Density Gradient, we have both theoretically and nu-
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merically investigated ponderomotively driven resonant THz transition radiation

generated at plasma boundaries. Broad-band THz radiation is generated with fre-

quencies up to the maximum plasma frequency. The parameters of the driving pulse

as well as the plasma profiles affect the properties of the generated THz radiation.

The spectrum and angular distribution of the THz radiation can also be tuned by

varying these parameters.

Resonant transition radiation is generated at a diffuse plasma boundary and is

preferentially enhanced if the laser pulse propagates through an increasing density

profile. We’ve developed a model to describe the physical processes in this diffuse

plasma case. The THz is generated primarily at the plasma resonance and must

tunnel to a turning point before it leaves the plasma and propagates into vacuum.

The calculated Poynting flux shows that this process enhances the amount of THz

energy efficiently through a density increasing ramp and diminishes THz generation

through a decreasing density ramp. A scaling law was developed to allow one to

estimate the amount of THz energy generated for different density ramp lengths.

Both numerical solutions of the wave equation and PIC simulations agree with

our model. The amount of THz radiation generated can be dramatically increased

compared with that in the sharp vacuum plasma boundary case. As an example,

a fixed driver pulse (1.66 J) excites approximately 422.9 µJ of THz radiation in

a 1.2 mm increasing density ramp. Thus this mechanism provides the possibly of

developing new high power tunable THz sources.

The second mechanism is studied in detail in Chapter 3, High-Power Tun-

able THz Generation in Corrugated Plasma Waveguides. We have investigated the
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mechanism by which an intense, ultrashort laser pulse can ponderomotively drive

THz radiation in an underdense corrugated plasma waveguide. These slow wave

periodic plasma structures have been routinely demonstrated experimentally and

can support subluminal channel modes to be further phase matched with the driver

pulse, thus providing possibility of generating significant THz radiation. We pro-

posed a complete mathematical model for the corrugated plasma waveguides and

the dispersion relation of the channel modes is derived to predict the generated THz

frequency. A numerical method is developed to precisely calculate the radial eigen-

modes of the excited wave and how many modes can be confined by the channel.

Full format PIC simulations conducted in 2D planar geometry show that evident

THz radiation is generated. A range of laser pulse parameters and plasma channel

structures are considered with the goal of maximizing the conversion efficiency of

optical pulse energy to THz.

Two different types of axially modulated plasma channels are considered, one

has the maximum density at the lateral edges and another has the maximum density

at the center of the channel. Both two types of channels can be created experimen-

tally. The channel with the maximum density at the lateral edges is more suitable for

laser guiding purposes, especially for higher laser intensities (larger a0). Therefore

most of the laser pulse energy can be guided inside the channel during the propaga-

tion and more of the pulse energy can be converted into THz radiation. The channel

with the maximum density at the center is better to excite the narrow fundamental

THz modes and the enhancement of THz radiation is observed especially for the

laser pulses with lower intensities (small a0).
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Most of the simulations are conducted using a complimentary 10 periods chan-

nel to investigate the conversion efficiency of the depleted optical pulse energy to

generated THz, although the pulse energy only depletes a small percentage within

0.5 mm. We then define an alternate efficiency that is the fraction the depleted laser

energy transferred to THz, η = ETHz/|∆ELaser|. By maximizing this efficiency, less

power is expended driving the plasma oscillations, thus freeing it to drive THz over

longer distances. We note that this efficiency does not depend on the laser inten-

sity for a0 < 1 based on the linear theory that both ETHz and ∆ELaser scale as

a20. More THz energy is generated using the channel type which has a maximum

density at the center. A laser pulse with higher intensity, i.e., larger a0 and shorter

pulse duration, also contributes to more THz generation. It is found an optimum

lower plasma density enables more THz radiation to escape the channel, however,

since the excited THz modes depends on the channel structures according to the

dispersion relation, lower plasma density also modifies the generated THz spectrum.

In addition, to efficiently deplete the pulse energy into the plasma, a higher plasma

electron density is preferred. Therefore, we choose a laser pulse with a0 = 2.0 and

pulse duration of 30 fs. Both two channel types are considered with an averaged

on axis electron density of 1.4 × 1018 cm−3. These simulations are computational

expensive and due to the computational restrictions, we were only able to simulate

a number of long propagation distance of 1.5 cm which can substantially deplete

the pulse energy. For the channel with a maximum density at the center, after the

laser pulse propagates through the channel for 1.5 cm, around 48% of the pulse

energy is depleted. At the same time, 16 mJ of THz energy with a narrow spectrum
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is generated. In this case, the laser pulse is not well guided since the channel no

longer sustains a parabolic density profile in the transverse plane. For the channel

with a density maximum at the lateral edges, the laser pulse can be well guided

and most of the pulse energy is depleted into the channel instead of lateral leaking.

Simulation result shows a fixed driver pulse (0.55 J) with spot size of 15 µm and

pulse duration of 15 fs excites approximately 37.8 mJ of THz radiation in a 1.5

cm corrugated plasma waveguide with on axis average density of 1.4 × 1018 cm−3,

conversion efficiency exceeding 8% can be achieved in this case.
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