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In today’s society that disasters seem to be striking all corners of the
globe, the importance of emergency management is undeniable. Much human loss
and unnecessary destruction of infrastructure can be avoided with better planning
and foresight. When a disaster strikes, various aid organizations often face
significant problems of transporting large amounts of many different commodities
including food, clothing, medicine, medical supplies, machinery, and personnel
from several points of origin to a number of destinations in the disaster areas. The
transportation of supplies and relief personnel must be done quickly and
efficiently to maximize the survival rate of the affected population.

The goal of this research is to develop a comprehensive model that
describes the integrated logistics operations in response to natural disasters at the

operational level. The proposed mathematical model integrates three main



components. First, it controls the flow of several relief commodities from sources
through the supply chain until they are delivered to the hands of recipients.
Second, it considers a large-scale unconventiona vehicle routing problem with
mixed pickup and delivery schedules for multiple transportation modes. And
third, following FEMA’s complex logistics structure, a specia facility location
problem is considered that involves four layers of temporary facilities at the
federa and state levels. Such integrated model provides the opportunity for a
centralized operation plan that can effectively eliminate delays and assign the
limited resources in away that is optimal for the entire system.

The proposed modd is a large-scale mixed integer program. To solve the
model, two sets of heuristic algorithms are proposed. For solving the multi-
echelon facility location problem, four heuristic approaches are proposed. Also
four heuristic algorithms are proposed to solve the general integer vehicle routing
problem. Overal, the proposed heuristics could efficiently find optima or near
optimal solution in minutes of CPU time where solving the same problems with a
commercial solver needed hours of computation time.

Numerical case studies and extensive sensitivity analysis are conducted to
evauate the properties of the model and solution algorithms. The numerica
anaysis indicated the capabilities of the model to handle large-scae relief
operations with adequate details. Solution algorithms were tested for severa
random generated cases and showed robustness in solution quality as well as

computation time.
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Chapter 1: Introduction

In this chapter a general introduction of disasters and disaster management
concepts is presented. Section 1.1 provides some general definitions of disasters
and some disaster numbers and trends in recent years. Section 1.2 introduces
emergency management. Then in section 1.3 federal emergency management
agency (FEMA) is introduced. FEMA'’s logistic supply chain is discussed in
section 1.4. Motivation and objective of this research is emphasized in section 1.5
followed by the contributions of this research in section 1.6. Finaly, the

organization of the rest of this dissertation is summarized in section 1.7.

1.1 Disasters

In this section, first definitions of disasters are presented followed by some

statistics from large-scale disasters in the recent years.

1.1.1 Definitions

The term “disaster” is usually applied to a breakdown in the normal
functioning of a community that has a significant adverse impact on people, their
works, and their environment, and overwhelms local response capacity. This
situation may be the result of a natural event such as a hurricane or earthquake; or
it may be the result of human activities (PAHO 2001). Some organizations make a
distinction between “disasters’—the result of natural phenomena—and “complex
emergencies’ that are the product of armed conflicts or large-scale violence and

often lead to massive displacements of people, famine, and outflows of refugees.



A disaster, as defined by the World Heath Organization (WHO), is any
occurrence that causes damage, destruction, ecologica disruption, loss of human
life, human suffering, deterioration of health and health services on a scale
sufficient to warrant an extraordinary response from outside the affected
community or area. The American Red Cross defines a disaster as an occurrence
or situation that causes human suffering or creates human needs that the victims
cannot aleviate without assistance. Earthquakes, hurricanes, tornadoes, volcanic
eruptions, wild fires, floods, blizzard, drought, terrorism, chemica spills and
nuclear accidents are included among the causes of disasters, and all have
significant devastating effects in terms of human injuries and property damage.

Alexander (1999) defines natural disaster as some rapid, instantaneous or
profound impact of the natural environment upon the socio-economic system. He
also recommends Turner's (1976) definition of natural disaster as “an event,
concentrated in time and space, which threatens a society or subdivision of a
society with magor unwanted consequences as a result of the collapse of
precautions which had previously been culturally accepted as adequate”.

Center for Research on the Epidemiology of Disasters (CRED),
collaborating center with WHO and United Nations, defines disaster as “A
situation or event, which overwhelms local capacity, necessitating a request to
national or international level for external assistance; an unforeseen and often
sudden event that causes great damage, destruction and human suffering” (CRED

2007).



The officia definition of disasters in the United States is presented in the
Stafford Act. The Robert T. Stafford Disaster Relief and Emergency Assistance
Act is the primary legislation in the United States authorizing the federal
government to provide disaster assistance to states, local governments, families,
and individuals. The Stafford Act defines a disaster as

“Any natural catastrophe (including hurricane, tornado, storm,

high water, wind driven water, tidal wave, tsunami, earthquake,

volcanic eruption, landslide, mudslide, snowstorm or drought), or,

regardless of cause, any fire, flood or explosion, in any part of the

United States, which in the determination of the President causes

damage of sufficient severity and magnitude to warrant major

disaster assistance under this Act to supplement the efforts and
available resources of Sates, local governments, and disaster

relief organizations, in alleviating the damage, loss, hardship, or

suffering caused thereby.”

As these definitions indicate, a disaster is a “catastrophe” of such
magnitude and severity that the capacities of states and local governments are
overwhelmed. So the threshold for determining what constitutes a disaster
depends upon the availability of resources and capabilities of responding
communities. Consequently, a disaster can be prevented by increasing the

capacity of the responding organizations.



1.1.2 Numbersand Trends

From global perspective, the number of natural disasters is increasing
every year. For example in 2005, there was 489 country-level disasters affecting
127 countries around the globe resulting in 104,698 people killed and 160 million
people affected. For the same year of 2005, the economic damage estimate varies
from 159 billion to 210 billion in US dollars. Because of the population growth
and new developments in risk prone regions, the exposure of the human kind to
the natural disastersisincreasing even more.

Figure 1.1 shows the number of reported natural disasters around the globe
from 1980 to 2007. A least-square linear regression trend-line is drawn to better
illustrate the overal pattern. Trend-line in Figure 1.1 shows that in spite of
fluctuations due to cyclic or seasonal patterns, the average number of disastersis
growing in the long term. During 1980s number of disasters was around 180 per
year on average. In 1990s, the average number of disasters was increased to
around 300 per year. And in the 2000-2007 period, it was around 460 disasters per
year which indicates a dramatic increase. An increase of this magnitude can be
explained partially by the global warming theory, and partially by the attention of
the media which has increased the numbers of reported disasters al over the
world.

As the number of disasters increases every year, more people are affected
by these disasters. Figure 1.2 illustrates the number of victims of natural or man-
made disastersin the last twenty years. The number of victims includes the people

killed, injured, lost their homes or evacuated as a direct result of the disaster. As



can be seen in figure 1.2, the number of victims has higher fluctuations over the
years. However, the trend-line shows a slow increase in the average number of
peoples affected each year over time. The number of victimsis generally between
100 million and 400 million per year. The exceptionally high number in 2002 is
due to adrought solely affecting 360 million in India and China and a magjor wind

storm and flood affecting 160 million people in China.
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Another important factor is the monetary cost of the natural disasters.
Figure 1.3 shows the amounts of globa economical damage caused by the natural
disasters from 1980 to 2007. The average cost per year is $45 billion from 1980 to
1999. However, for 2000 to 2007 period, the average cost is more than $80 billion
per year. The linear trend-line shows an increase in the economical damage of the
natural disasters over time. Two major disasters affecting the trend are the Kobe

earthquake in 1995 and hurricane Katrinain 2005.

250 ~

200 +

[y
a1
o

100 - =
. =T

. a—

,"

g r TR

Billion US Dollars

al
o

1980 1983 1986 1989 1992 1995 1998 2001 2004 2007
Figure 1.3 Economic damage of the natural disastersover time (CRED)

1.2 Emer gency Management

Emergency management (or disaster management) is the discipline of
avoiding risks and dealing with risks (Haddow et a. 2007). No country and no
community are immune from the risk of the disasters. However, it is possible to
prepare for, respond to and recover from disasters and limit the destructions to a
certain degree. Emergency management is a discipline that involves preparing for

disasters before they happen, responding to disasters immediately, as well as



supporting, and rebuilding societies after the natural or man-made disasters have
occurred.

Emergency management is a continuous process. It is essential to have
comprehensive emergency plans and evaluate and improve the plans
continuously. The related activities are usually classified as four phases of
Preparedness, Response, Recovery, and Mitigation. Figure 1.4 illustrates the order
of these phases according to the onset of the disaster. Appropriate actions at al
points in the cycle lead to greater preparedness, better warnings, reduced

vulnerability or the prevention of disasters during the next iteration of the cycle.

Preparcdness

= Mitigation

‘-i-:::\.'l. ”"-:'{:";,
aDnsastehrﬁ
s e

F o 1

P,

e ./.

-
Response ~  Recovery

Figure 1.4 Four Phases of Emergency M anagement Cycle

Some of the main activities during the four phases of the emergency
management cycle are summarized below:

Preparedness
Activities to improve the ability to respond quickly in the immediate
aftermath of an incident.
Development of response procedures, design and installation of
warning systems, evacuation planning, exercises to test emergency
operations, and training of emergency personnel.

7



Response
Activities during or immediately following a disaster to meet the
urgent needs of disaster victims.
Mobilizing and positioning emergency supplies, equipment and
personnel; including time-sensitive operations such as search and
rescue, evacuation, emergency medical care, food and shelter
programs, and bringing damaged services and systems back online.
Recovery
Actions that begin after the disaster, when urgent needs have been
met. Recovery actions are designed to put the community back
together
Include repairs to roads, bridges, and other public facilities,
restoration of power, water and other municipal services, and other

activities to help restore normal operations to a community.

Mitigation
Activities that prevent a disaster, reduce the chance of a disaster
happening, or lessen the damaging effects of unavoidable disasters
and emergencies.
Includes engineering solutions such as dams and levees; land-use
planning to prevent development in hazardous areas; protecting
structures through sound building practices and retrofitting;

acquiring and relocating damaged structures; preserving the natural



environment to serve as a buffer against hazard impacts, and
educating the public about hazards and ways to reduce risk.

Emergency management process needs the cooperation of al individuals,
groups, and communities to be successful. When a mgor disaster happens,
emergency management agencies from all over the world work with governments
and non-governmental organizations in an effort to decrease the impact of the
disaster. Humanitarian organizations such as American Red Cross, CARE USA,
Catholic Relief Services, International Committee of the Red Cross, International
Federation of Red Cross and Red Crescent Societies, International Rescue
Committee, UNICEF, World Bank, and World Food Program are among the
organizations that work with different national organizations inside the affected
countries to provide humanitarian aids.

In the United States, the federal emergency management agency (FEMA)
is the main agency to deal with emergencies. They work in partnership with other
organizations that are part of the national emergency management system. These
partners include state and local emergency management agencies, 27 other federal
agencies and the American Red Cross. More detalls on FEMA'’s structure and

operations are introduced in the following section.

1.3 Federal Emergency M anagement Agency

Federal emergency management agency (FEMA) is the main organization
responsible for dealing with the federal level emergencies in the United States. It
was initialy created in 1979 as an independent organization but On March 1%,

2003 FEMA became part of the U.S. department of homeland security (DHS)
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along with 22 other government agencies. FEMA isarelatively small agency with
around 2,600 full time employees but it can mobilize nearly 7000 temporary
disaster assistance employees to respond to disasters. Besides the headquarters in
Washington D.C., FEMA has ten regional offices across the country to coordinate
with its state and local government counterparts and with nonprofit and for-profit
organizations. The primary mission of FEMA is

“To reduce the loss of life and property and protect the Nation

from all hazards, including natural disasters, acts of terrorism,

and other man-made disasters, by leading and supporting the

Nation in a risk-based, comprehensive emergency management

system of preparedness, protection, response, recovery, and

mitigation.” (www.fema.gov)

FEMA's strategic plan for fiscal years 2008-2013 declares the vision of
the organization as “The nation’s preeminent emergency management and
preparedness agency”. The plan establishes strategic goals, objectives, and
strategies to fulfill FEM A’ s vision. The strategic goals of the agency are to:

1. Lead an integrated approach that strengthens the nation’s ability to address
disasters, emergencies, and terrorist events

2. Déliver easily accessible and coordinated assistance for al programs

3. Provide reliable information at the right time for all users

4. FEMA investsin people and people invest in FEMA to ensure mission success

5. Build public trust and confidence through performance and stewardship

10
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One of the important documents that define the principles, roles, and
structures of FEMA is the national response framework (NRF). NRF replaced its
older version called the national response plan on March 22, 2008. NRF presents
the guiding principles that enable all response partners to prepare for and provide
a unified national response to disasters and emergencies. It describes how
communities, tribes, states, the federa government, private-sectors, and
nongovernmental partners work together to coordinate national response.
Following the guidelines of NRF are essential to establish a comprehensive,
national, all-hazards approach for disaster response in the United States.

NRF main documents are supplemented by important annexes called
emergency support functions (ESF). The ESFs provide the structure for
coordinating federa interagency support for a federa response to an emergency.
They are mechanisms for grouping functions most frequently used to provide
federal support to states and federal-to-federal support, both for declared disasters
and emergencies under the Stafford act and for non-Stafford act incidents. Table
1.1 gives a summary of the 15 ESFs currently present in the NRF. More
information on the national response framework including documents, annexes,
references and briefings/trainings can be accessed through the NRF resource

center at www.fema.gov/nrf .
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Table 1.1 Emergency Support Function Annexes of the National Response Framework

Emergency
Support Function Scope
ESF1 Aviation management and control; Transportation safety Restoration/recovery of

Transportation

transportation infrastructure; Movement restrictions, Damage and impact assessment

ESF 2
Communications

Coordination with telecommunications and information technology industries;
Restoration and repair of telecommunications infrastructure. Protection, restoration,
and sustainment of national cyber and information technology resources; Oversight
of communications within the Federal incident management and response structures

ESF 3 Public
Works and
Engineering

Infrastructure protection and emergency repair; Infrastructure restoration;
Engineering services and construction management; Emergency contracting support
for life-saving and life-sustaining services

ESF 4 Firefighting

Coordination of Federal firefighting activities; Support to wild land, rural, and urban
firefighting operations

ESF 5 Emergency
M anagement

Coordination of incident management and response efforts; Issuance of mission
assignments; Resource and human capital; Incident action planning; Financial
management

ESF 6 Housing,

and Human Mass care; Emergency assistance; Disaster housing; Human services
Services
ESE 7 Logistics Comprehensive, national incident logistics planning, management, and sustainment
9 capability; Resource support (facility space, office equipment and supplies,
M anagement . .
contracting services, etc.)
=5 tShP”b"C Public health: Medical and Mental health services; Mass fatality management

ESF 9 Search and
Rescue

Life-saving assistance
Search and rescue operations

ESF 10 Hazardous
Materials

Qil and hazardous materials (chemical, biological, radiological, etc.) response;
Environmental short- and long-term cleanup

ESF 11
Agriculture and
Natural Resour ces

Nutrition assistance; Animal and plant disease and pest response; Food safety and
security; Natural and cultural resources and historic properties protection and
restoration; Safety and well-being of household pets

ESF 12 Energy

Energy infrastructure assessment, repair, and restoration; Energy industry utilities
coordination; Energy forecast

ESF 13 Public Facility and resource security; Security planning and technical resource assistance;
Security Public safety and security support; Support to access, traffic, and crowd contro
ESF 14 Long- Long-term community recovery assistance to States, local governments, and the

Term Recovery

private sector
Analysis and review of mitigation program implementation

ESF 15 External
Affairs

Emergency public information and protective action guidance; Media and
community relations, Congressional and international affairs; Tribal and insular
affairs
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Emergency support function 7 is the logistics management and resource
support annex that describes the roles and responsibilities of FEMA and general
services administration (GSA) to jointly manage a supply chain that provides
relief commodities to the victims. Based on ESF 7, FEMA is the primary agency
for logistics management and is responsible for:

Material management that includes determining requirements, sourcing,
ordering and replenishment, storage, and issuing of supplies and
equipment.

Transportation management that includes equipment and procedures for

moving material from storage facilities and vendors to incident victims,
particularly with emphasis on the surge and sustainment portions of
response. Transportation management also includes providing services to
requests from other federal organizations.

Facilities management that includes the location, selection, and
acquisition of storage and distribution facilities. These facilities include
logistics centers, mobilization centers, and federal operations staging
areas.

Personal property management and policy and procedures guidance for
maintaining accountability of material and identification and reutilization
of property acquired to support afederal response operation.

Management of electronic data interchange to provide end-to-end

visibility of response resources.
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Planning and coordination with internal and external customers and other
supply chain partners in the federal and private sectors for improving the
delivery of goods and services to the customer.

The next section introduces the components of FEMA’s logistics operations and

describes the structure of FEMA’ s supply chain.

1.4 FEMA'’sLogistics Supply Chain

FEMA has a complicated and specia structure for its supply chain. There
are seven main components in the FEMA’s supply chain to provide relief

commodities for disaster victims that are briefly described here:

1. FEMA Logistics Centers (L C) - permanent facilities that receive, store, ship,
and recover disaster commodities and equipment. FEMA has a total of 9

logistics centers:

Four continental United States centers containing general commodities
located at Atlanta, Georgia; Ft. Worth, Texas; Frederick, Maryland;
and Moffett Field, California

Three off-shore centers containing general commodities located in
Hawaii, Guam, and Puerto Rico.

Two Continental United States centers containing special products
such as computers, office electronic equipment, medical and
pharmaceutical caches located in Cumberland, Maryland and

Berryville, Virginia
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Examples of disaster relief commodities include ice, water, meals ready to
eat (MRESs), blankets, cots, flashlights, tarps, sleeping bags and tents. Disaster
relief equipments include emergency generators, personal toilet kits, and

refrigerated vans.

2. Commercial Storage Sites (CSS) - permanent facilities that are owned and
operated by private industry and store commodities for FEMA. Freezer

storage space for ice is an example.

3. Other Federal Agencies Sites (VEN) - representing vendors from whom
commodities are purchased and managed. Examples are the defense logistics

agency (DLA) and the general services administration (GSA).

4. Mobilization (MOB) Centers - temporary federal facilities in theater at
which commodities, equipment and personnel can be received and pre-
positioned for deployment as required. In MOBs commodities remain under
the control of the FEMA logistics headquarter and can be deployed to multiple
states. MOBs are generally projected to have the capacity to hold 3 days of

supply commodities.

5. Federal Operational Staging Areas (FOSAS) - temporary facilities at which
commodities, equipment and personnel are received and pre-positioned for
deployment within one designated state as required. Commodities are under
the control of the operations section of the joint field office (JFO) or the

regional response coordination center (RRCC). Commodities are usualy
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being supplied from MOB centers, logistics centers or direct shipments from

vendors. FOSAs are generally projected to hold 1 to 2 days of commodities.

6. State Staging Areas (SSA) - temporary facilitiesin the affected state at which
commodities, equipment and personnel are received and pre-positioned for
deployment within that state. Title transfers for delivered federal commodities

and cost sharing are initiated in SSAS.

7. Points of Distribution (PODs) Sites - temporary loca facilities in the
disaster area at which commodities are distributed directly to disaster victims.

PODs are operated by the affected state.

Figure 1.5 better illustrates this structure. At the top of the pyramid there
are 3 types of facilities namely FEMA logistics centers, commercia storage sites,
and other federa agencies or vendors. These permanent facilities store and ship
commodities and equipment and are considered as the “sources’ of the chain. The
mobilization centers, the federal operational staging areas, and the state staging
areas are 3 types of facilities that mainly play the role of transshipment points.
These are temporary facilities at which commodities, equipment and personnel
are received and pre-positioned for deployment to the lower levels. At the end,
point of distribution sites are temporary local facilities at which commodities are
received and distributed directly to the disaster victims. The PODs can be local

schools, churches, or even large parking lots in the affected area.
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State
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Figure 1.5 FEMA’s Supply Chain Structure

Even this simplified presentation of the FEMA'’s logistics supply chain
indicates the complex structure of the system. Finding the optimal sites for 4
levels of temporary facilities is a complicated location finding problem.
Delivering severa types of relief commodities to the disaster victims is a
multicommodity capacitated network flow problem. Optimizing the movement of
vehicles in the network is a dynamic vehicle routing problem with mixed pickup
and delivery operations. Usualy more than one transportation mode is used in
disaster response operations which makes the problem a multimodal
transportation problem. Other characteristics that make the problem unique

include, but are not limited to, importance of quick response and fast delivery,
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shortage of supply versus overwhelming demands, insufficient capacity of the
facilities and transportation system, and dynamic environment of the emergency

situations.

1.5 Motivation and Objective of the Research

In today’s society that disasters seem to be striking all corners of the
United States and the globe, the importance of the emergency management is
undeniable. Much human loss and unnecessary destruction of infrastructure can
be avoided with more foresight and specific planning as well as a precise
execution. In a world where resources are stretched to the limit and the question
of humanitarian relief seems too often to be tied with economical considerations,
better designs and operations are urgently needed to help save thousands of lives
and millions of dollars.

The question is how to respond to natural disasters in the most efficient
manner to minimize the loss of life and maximize the efficiency of the rescue
operations. In case of these emergencies various organizations often face
significant problems of transporting large amounts of many different commodities
including food, clothing, medicine, medical supplies, machinery, and personnel
from different points of origin to different destinations in the disaster areas. The
transportation of supplies and relief personnel must be done quickly and
efficiently to maximize the survival rate of the affected population and minimize
the cost of such operations.

Federal emergency management agency (FEMA) is the primary
organization for preparedness and response to the federa level disasters in the
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United States. Unfortunately, inadequate response to hurricanes Katrina and Rita
showed the critical need for better mechanisms in emergency operations. Initial
research in this area shows that this is an emerging field and there are great
potentials for research in emergency logistics and disaster response. FEMA has a
very complex logistics structure to provide the disaster victims with critical items
after a disaster strike which involves multiple organizations and spreads across
the country.

The goa of this research is to develop a comprehensive model that
describes the integrated |ogistics operations in response to natural disasters at the
operational level. The proposed mathematical model integrates three main
components. First, it controls the flow of several relief commodities from sources
through the supply chain until they are delivered to the hands of the recipients.
Second, it considers a large-scale unconventiona vehicle routing problem with
mixed pickup and delivery schedules for multiple transportation modes. And
third, following the FEMA’s complex logistics structure, a specia facility
location problem is considered that involves four layers of temporary facilities at
the federal and state levels. Such integrated model provides the opportunity for a
centralized operation plan that can effectively eliminate the delays and assign the

limited resources in away that is optimal for the entire system.

1.6 Contributions of the resear ch

Emergency response is a dynamic and very time sensitive operation. This
research offers an integrated model that not only considers details such as

multimodal vehicle routing and pick up or delivery schedules; but aso considers
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finding the optimal locations for the temporary facilities as well as considering the
capacity constraint for each facility and the transportation system. A mathematical
model at the operational level is presented that can be used in the critical hours
and days immediately after the disaster strikes. Such amodel is a unique tool that
can aso be used at strategic level or planning level anadysis. It is a very
complicated task and up to date, there is no study in the literature that has
addressed this problem sufficiently.

This research also ams at developing optimization agorithms and
heuristics to solve the proposed model and find applicable solutions to decrease
human sufferings in the most economically sensible way. The algorithms need to
be fast so that the results can be used in the initial response phase and also as the
situation changes in the highly dynamic environment after the disaster.

Also, in this research a comprehensive set of numerical case studies and
sensitivity analysis are performed. In-depth analyses of different aspects of the
proposed mathematical model are provided in order to better illustrate the
capabilities of the model and also examine model’s sensitivity in various
circumstances. These analyses are intended to introduce a general framework for
researchers and practitioners. The findings of these analyses may or may not be
directly applicable for other specific disaster response scenarios, however, they
provide a genera study framework for modeling and analysis of each specific
disaster scenario that can be adopted by other researchers and practitioners.

In other words, this research extends the state-of-the-art by presenting an

integrated model at the operationa level that describes the details of the supply
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chain operations in mgor emergency management agencies such as FEMA, in
response to immediate aftermath of a large scale disaster. Development of fast
and efficient solution algorithms and heuristics for the proposed model is the
other major contribution of this research. The simulations and sensitivity analysis
provided in this research can be used as a framework to follow by other

researchers and practitioners.

1.7 Organization of the dissertation

After this introduction, previous works in the fields of logistics and
disaster relief operations are reviewed in chapter 2. The specific problem to be
dealt with in this research is introduced in chapter 3 and then the mathematical
formulation of the model is presented. Chapter 4 offers a set of preliminary
numerical examples to evaluate the model and help better understand the
mechanics of the model. In chapter 5, solution approaches are summarized and a
number of heuristic solution algorithms are proposed to solve the different parts
of the proposed model. Chapter 6 is dedicated to simulation and in-depth analysis
of the proposed model and sensitivity analysis of its parameters. In chapter 7, the
prepositioning of relief supplies and equity constraints are discussed. Finally in
chapter 8, a summary of this dissertation is presented and some suggestions for

future research are discussed.
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Chapter 2: Literaturereview

In this chapter, first in section 2.1 some definitions of supply chain and
supply chain management (SCM) in commercia sector are introduced then some
of the researches that reviewed the supply chain studies are summarized. Then a
brief introduction to facility location problem is presented in section 2.2 and
vehicle routing problem in section 2.3 are presented as two main elements of the
supply chain and logistics modeling. In section 2.4, the similarities and
differences between commercia supply chain and disaster response logistics are
reviewed. In section 2.5, some studies specific to modeling and optimization of
logistics in disaster response are provided. Finally in section 2.6, a summary of
previews works in this area is presented with the emphasis on the gaps in the

literature that needs to be filled.

2.1 Supply Chain Management

Definition of supply chain management differs across authors from
different fields and there is no explicit and universal description of SCM or its
activities in the literature (Tan 2001). The literature is full of buzzwords such as
integrated purchasing strategy, integrated logistics, supplier integration, buyer-
supplier partnerships, supply base management, strategic supplier alliances,
supply chain synchronization and supply chain management, to address elements
or stages of this phenomenon (New, 1997; La Londe and Masters, 1994).

For example Harland (1996) described supply chain management as

managing business activities and relationships (1) internally within an
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organization, (2) with immediate suppliers, (3) with first and second-tier suppliers
and customers along the supply chain, and (4) with the entire supply chain. Scott
and Westbrook (1991) and New and Payne (1995) described supply chain
management as the chain linking each element of the manufacturing and supply
process from raw materials through to the end user, including severd
organizational boundaries. SCM begins with the extraction of raw materials or
minerals from the earth, through the manufacturers, wholesalers, retailers, and the
fina users. Where appropriate, supply chain management aso includes recycling
or re-use of the products or materials.

Another definition of supply chain management emerges from the
transportation and logistics literature of the wholesale and retail industry,
emphasizing the importance of physical distribution and integrated logistics.
There is no doubt that logistics is an important function of business and is
evolving into strategic supply chain management (New and Payne, 1995). In this
definition, the physical transformation of the products is not a critical component
of supply chain management. Its primary focus is the efficient physical
distribution of fina products from the manufacturers to the end users in an
attempt to replace inventories with information and reduce transportation costs.

The definition of supply chain seems to be more common across authors
than the definition of supply chain management (Mentzer et a. 2001). La Londe
and Masters (1994) proposed that the supply chain is a set of firms that pass
materials forward. Eksioglu (2002) defined the supply chain as an integrated

process where different business entities such as suppliers, manufacturers,
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distributors, and retailers work together to plan, coordinate, and control the flow
of materias, parts, and finished goods from suppliers to customers. Severa
independent firms can be involved in manufacturing a product and placing it in
the hands of the end user in a supply chain. For example raw material and
component producers, product assemblers, wholesalers, retailer merchants and
transportation companies are all members of the supply chain.

Beamon (1998) defined supply chain as an integrated manufacturing
process where raw materials are converted into final products, then delivered to
customers. At its highest level, a supply chain is comprised of two basic
integrated processes. (1) the production planning and inventory control process,
and (2) the distribution and logistics process. These processes define the basic
framework for the conversion and movement of raw materias into final products.

Figure 2.1 illustrates a simplified picture of the supply chain process.

Suppliers Distribution
Centers
v Storage v
Manufacturers > o - Transportation > Retailers
Facilities
Production planning and Distribution and Logistics

Inventorv Control
Figure 2.1 Supply chain process (adopted from Beamon 1998)

The production planning and inventory control process includes the
manufacturing and storage sub-processes and their interfaces. More specifically,
production planning describes the design and management of the entire

manufacturing process including raw material scheduling and acquisition,
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manufacturing process design and scheduling, and materia handling design and
control. Inventory control describes the design and management of the storage
policies and procedures for raw materials, work-in-process inventories, and
usually, final products.

The distribution and logistics process determines how products are
retrieved and transported from the storage warehouse to retailers. These products
may be transported to retailers directly, or may be shipped to distribution facilities
first and then being delivered to the retailers. This process includes the
management of inventory retrieval, transportation, and final product delivery.

These processes interact with one another to produce an integrated supply
chain. The design and management of these processes determine the extent to
which the supply chain works as a unit to meet required performance objectives.
Usually in commercia supply chain, the objective is to minimize cost. However,
some have considered a combination of cost and customer service as the objective
of the commercial supply chains.

For many years, researchers and practitioners have concentrated on the
individual processes and entities within the supply chains. However, the recent
trend is to model and optimize SC as a single unified entity. In this approach,
operations research (OR) techniques have shown to be a very useful tool among
researchers and practitioners. Typically, a SC model tries to determine

the transportation modes to be used,

the suppliers to be selected,

the amount of inventory to be held at various locations in the chain,
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the number of warehouses to be used, and

the location and capacities of these warehouses

For a more comprehensive review of models and methods in supply chain
design and analysis, readers are referred to Beamon (1998) and Tan (2001). In the
following sections, some of the elements of SCM that can be applied in disaster

response logistics are introduced in more details.

2.2 Facility L ocation Problem

One of the most important problems in supply chain management is
deciding where to locate new facilities such as factories, warehouses, distribution
centers or retailers to support the material flow through an efficient distribution
system. The genera facility location problem can be stated as: for a given set of

facility locations and a set of customers who are served from these facilities, find:

Which facilities should be used
Which customers should be served from which facilities so as to minimize

the total cost of serving all the customers

The development and acquisition of a new facility istypicaly a costly and
time-consuming project. Before a facility can be purchased or constructed, good
locations must be identified, appropriate facility capacity specifications must be
determined, and large amounts of capital must be alocated. While the objectives

driving a facility location decision depend on the firm or government agency, the
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high costs associated with this process make almost any location project a long-
term investment.

A vast literature has developed out of the broadly based interest in facility
location problem over the last four decades (Daskin 1995, Drezner and Hamacher
2002). Operations research practitioners have developed a number of
mathematical programming models to represent a wide range of location
problems. Several different objective functions have been formulated to consider
numerous applications. Unfortunately, the resulting models can be extremely
difficult to solve to optimality (most problems are classified as NP-hard); many of
the problems require integer programming formulations.

The p-median problem, covering problem, and p-center problem are three
classic forms of facility location problem that are introduced in the following
subsections. For a comprehensive bibliography of more recent studies in discrete

location finding problem refer to ReVelle et a (2008).

2.2.1 P-Median Problem

One important way to measure the effectiveness of a facility’s location is
by determining the average distance traveled by those who visit it. As average
travel distance increases, facility accessibility decreases, and thus the location's
effectiveness decrease. An equivalent way to measure |ocation effectiveness when
demands are not sensitive to the level of service isto weight the distance between
demand nodes and facilities by the associated demand quantity and calculate the
total weighted travel distance between demands and facilities. Then, the problem

isto selects the best p sites among a range of possible locations with the objective
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of minimizing total demand-weighted travel distance between demand nodes and
selected facilities. The key decisions are where to locate the p facilities and which

facility should serve each demand node.

The inputs are the demands (or weights) W, at each node il |, the
distances d;; between each demand nodeil | and each candidate facility site
jT J and p, the maximum number of facilities to be located. The mathematical
formulation of p-median problem is asfollow:

X; =1if afacility islocated at candidate node jT J and 0 otherwise

yi =1if demandnode il | isassigned to facility at candidate node j1 J
0 otherwise.
o O
Minimze A @ Wd;Y, 2.1)
T3l
Subject to
o] _ n 7
ay; =1 L (2.2)
iTd
Y- X, £0 il 1,71 3 3
o n T
a X £Ep jrJ (2.4)
il J
xpy; 1 {0} it 1,0 (2.5)

The objective function (2.1) minimizes the demand-weighted total
distance. Since the demands are known and the total demand is fixed, this is
equivaent to minimizing the demand-weighted average distance. Constraints

(2.2) ensure that each demand node is assigned, while constraints (2.3) stipulate
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that the assignments can only be made to open facilities. Constraint (2.4) states
that a maximum of p facilities are to be opened. Constraints (2.5) are standard

integrality constraints.

2.2.2 Covering Problem

The p-median problem described above can be used to locate a wide range
of public and private facilities. For some facilities, however, selecting locations
which minimize the average distance traveled may not be appropriate. Suppose,
for example, that a city is locating emergency service facilities such as fire
stations or ambulances. The critical nature of demands for service will dictate a
maximum “acceptable’ travel distance or time. Such facilities will thus require a
different measure of location efficiency. To locate such facilities, the key issue is
the “coverage”. A demand is said to be covered if it can be served within a
specified time.

The literature on covering problem is divided into two major segments,
that in which coverage is required and that in which it is optimized. Two covering
problems which illustrate the distinction are the location set covering problem and
the maximal covering problem. We introduce both problem classes. For a more
complete review of covering problems refer to Schilling et al (1993).

In the set covering problem, the objective is to minimize the cost of
facility location such that a specified level of coverage is obtained. The
mathematical formulation of set covering problem is as follow:
¢, =fixed cost of locating afacility at node

S = maximum acceptable distance or travel time
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N; = set of facility sitesj within acceptable distance of nodei ( N; ={j ‘dij £ S} )

X; = 1if afacility islocated at candidate node j1 J and O otherwise

Minimize & ¢, X, (2.6)
ima
Subject to
o "o
aXx;3*1 i (2.7)
it N;
X, 1T{og "j (2.8)

The objective function (2.6) minimizes the cost of facility location. In
many cases, the costs ¢; are assumed to be equal for al potential facility sites |,
implying an objective equivaent to minimizing the number of facilities located.
Constraint (2.7) requires that all demand nodes i have at least one facility located
within the acceptable service distance. Note that this formulation makes no
distinction between nodes based on demand size. Each node, whether it contains a
single customer or alarge portion of the total demand, must be covered regardless
of the cost. If the coverage distance S is small, relative to the spacing of demand
nodes, the coverage restriction can lead to a large number of facilities being
located. Additionally, if an outlying node has a small demand, the cost/benefit
ratio of covering that demand can be extremely high.

In many practical applications, decision makers find that their allocated
resources are not sufficient to build the facilities dictated by the desired level of
coverage. In other words, the goal of coverage within distance S may be
infeasible with respect to construction resources. In such cases, location goals

must be shifted so that the available resources are used to give the desired level of
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coverage to as many customers as possible. This new objective is that of the

maximal covering problem.

Specifically, the maximal covering problem seeks to maximize the amount
of demand covered within the acceptable service distance S by locating a fixed
number of facilities:

X; = 1lif afacility islocated at candidate node jT J and 0 otherwise

Z =1ifademandatnode il | iscovered and O otherwise
Minimize a hZ (2.9)
Subject to
ZEQX, i (2.10)
TN,
ax ep i (2.11)
j
X.,z1 {0 "ij (2.12)

The objective (2.9) is to maximize the amount of demand covered.
Constraint (2.10) determines which demand nodes are covered within the
acceptable service distance. Each node i can only be considered covered (with Z;
=1) if thereis afacility located at some site j which iswithin S of nodei (i.e., if
X; = 1 for some j1 N,). If no such facility is located, the right hand side of
constraint (2.10) will be zero, thus forcing Z; to be zero. Constraint (2.11) limits

the number of facilities to be located to a fixed number p.
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2.2.3 P-Center Problem

Another problem class which avoids the set covering problem's potential
infeasibility is the class of p-center problems. In such problems, we require
coverage of all demands, but we seek to locate a given number of facilitiesin such
a way that minimizes coverage distance. Rather than taking an input coverage
distance S, this model determines endogenously the minimal coverage distance
associated with locating p facilities.

The p-center problem is aso known as the minimax problem, as we seek
to minimize the maximum distance between any demand and its nearest facility.
If facility locations are restricted to the nodes of the network, the problem is a
vertex center problem. Center problems which alow facilities to be located
anywhere on the network are absolute center problems.

The following additional decision variable is needed in order to formulate
the p-center problem:

D = maximum distance between a demand node and the nearest facility.

The resulting integer programming formulation of the P-center problem is

asfollowing:
Minimize D (2.13)
Subject to
ax ep i (2.14)
j
[¢} .
ayY;= " (2.15)
j
Y- X, £0 "1, ] (2.16)
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ady,£D i (2.17)
i

XY, 1 {03  "i,j (2.18)
The objective function (2.13) is simply to minimize the maximum distance
between any demand node and its nearest facility. Constraints (2.14) limits the
maximum number of open facilities to p. constraints (2.15) enforces each demand
point to be assigned to a facility and constraints (2.16) make sure that demands
are assigned only to selected facilities. Constraint (2.17) defines the maximum
distance between any demand node i and the nearest facility j. Finally, constraints
(2.18) areintegrality constraints for the decision variables.

In addition to three classes introduced here, several aternate formulations
of the facility location problem are proposed by researchers over the years. For a

bibliography of recent studies refer to ReVelle et al. (2008).

2.3 Vehicle Routing Problem

The vehicle routing problem (VRP) is a generic name given to a whole
class of problems in which a set of routes for a fleet of vehicles based at one or
several depots must be determined for a number of geographically dispersed cities
or customers. The VRP arises naturally as a central problem in the fields of
transportation, distribution and logistics. Usually, the objective of the VRP is to
deliver a set of customers with known demands on minimum-cost vehicle routes
originating and terminating at a depot. In some market sectors, transportation
means a high percentage of the value added to goods. Therefore, the utilization of

modeling and optimization methods for transportation often results in significant
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savings ranging from 5% to 20% in the total costs, as reported in Toth and Vigo
(2002).

The VRP is a well known integer programming problem which falls into
the category of NP-Hard problems, meaning that the computational effort
required for solving this problem increases exponentially with the problem size.
This difficult combinatorial problem conceptualy lies at the intersection of these
two well-studied NP-Hard problems:

The Traveling Salesman Problem (TSP): If the capacity of the vehiclesis

infinite, we can get an instance of the multiple traveling salesman problem

(MTSP). An MTSP instance can be transformed into an equivalent TSP

instance by adding to the graph k-1 (k being the number of routes)

additional copies of node 0 and its incident edges.

The Bin Packing Problem (BPP): The question of whether there exists a

feasible solution for a given instance of the VRP is an instance of the BPP.

The decision version of this problem is conceptually equivalent to a VRP

model in which all edge costs are taken to be zero (so that all feasible

solutions have the same cost).

Three basic approaches have been proposed for modeling VRP in the
literature (Toth and Vigo 2002). The models of the first type, known as vehicle
flow formulation, use binary integer variables associated with each arc of the
network, which shows if an specific arc is traversed by a vehicle or not. These
models are often used for basic versions of VRP. They are particularly useful for

cases in which the cost of the solution can be expressed as the sum of the costs



associated with the arcs. On the other hand, vehicle flow models cannot be used to
deal with many practical issues; for instance, when the cost of a solution depends
on the sequence of traversed arcs or when the cost depends on the type of vehicle
that is assigned to aroute.

The second approach to VRP modeling is called commodity flow
formulation. In this type of model, additiona integer variables are associated with
arcs that represent the flow of the commodities along the paths traveled by the
vehicles. In some recent studies, these models have been used as a basis to solve
for the exact solutions of capacitated VRP.

In the third approach to VRP modeling, the decision variables are the
feasible routes for the vehicles. These models produce an exponential number of
binary variables each associated with a feasible route. Then the VRP is
formulated as a set partitioning problem that tries to select a set of routes with
minimum cost which serves each costumer once and also satisfies the additional
constraints. Main advantage of this type of model is that it allows for extremely
genera route costs. For example, route costs can be nonlinear or can depend on
the vehicle type or sequence of nodes visited. Also, the linear relaxation of these
models usualy provides a tighter bound than the previous models. However,
these models usually require enumerating the feasible routes which needs

extensive preprocessing and resultsin avery large number of variables.

2.3.1 VRP M athematical For mulation

As mentioned above, vehicle flow based formulation is one of the

approaches to model the VRP. Following formulation is an example for the base
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case of uncapacitated multi-vehicle single depot vehicle routing problem. The

decision variabl&exT which are binary indicate whether vehicle v travels from

point i to point j, >§\j'=1, or not Xi¥=0

C. o0 o v
Minimize @ a a G (2.19)
i j v

Subject to
a 6°1 =1 "j (2.20)
aax=1 i (2.21)
v
é Xi\;I) - é X\;I)j =0 " pT N,"v (222)
i j
ax,£1 v (2.23)
j
101 "ijv (2.24)
X1'S (2.29)

The objective is to minimize the total travel cost (or distance) by all
vehicles. Constraints (2.20) through (2.22) require that only one vehicle enters
each node and that the same vehicle exits that node. Constraints (2.23) insure that
each vehicle leaves the depot only once. The last condition which is imposed on
the matrix X prohibits sub-tours that do not contain the depot. There are several
possible ways to fulfill this condition, for example S might be composed of sub-
tour breaking constraints for each vehicle. S can be defined as the union of sets S,

defined by:
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S, = : X' 8 a X £]Q - 1for all nonempty subset QE (2.26)
T -

/.

i Q il Q
If each customer has a demand of d; units and each vehicle has a capacity
of Ky, then the capacitated VRP can be formulated by adding the following

capacity constraints to the base formulation:

é diéa X; gﬁ K, "v (2.27)
i j

2

2.3.2VRP Variants

Usually, rea world vehicle routing problems are much more sophisticated
than the base case VRP introduced above. Over the years, researchers have
proposed variants of VRP by adding some constraints to the base case VRP
formulation. Here, alist of well-known VRP variants is summarized:

Capacitated VRP (CVRP): Every vehicle has alimited capacity
Distance-Constrained VRP (DCVRP): The maximum tour length islimited
Multiple Depot VRP (MDVRP): The vendor uses many depots to supply the
customers

VRP with Pick-Up and Délivering (VRPPD): Customers may return some
goods to the depot or other customers

Solit Delivery VRP (SDVRP): The customers may be served by different
vehicles

VRP with time windows (VRPTW): Every customer has to be supplied within a

certain time window
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Periodic VRP (PVRP): The deliveries may be done in some consecutive days
Sochastic VRP (SVRP): Some values, such as number of customers, their
demands, service time or travel time, are stochastic variables
There are severa survey papers on the VRP, VRP variants, and ther
solution algorithms and techniques. A classification of the problem was given in
Desrochers et a.(1990). Laporte and Nobert (1987) presented a survey of exact
methods to solve VRP. Other surveys that provided exact and heuristic methods
were presented by Christofides, Mingozzi, and Toth (1981), Magnanti (1981),
Bodin et a.(1983), Fisher (1994), Laporte (1992), Toth and Vigo (2002). An
annotated bibliography was proposed by Laporte (1997). A book on the subject

was edited by Golden and Assad (1988).

2.4 Commer cial Supply Chain vs. Emergency Response L ogistics

Immediately after a disaster, humanitarian organizations often face
significant problems of transporting large amounts of many different commodities
including food, clothing, medicine, medical supplies, machinery, and personnel
from several origins to several destinations inside the disaster area. The
transportation of supplies and relief personnel must be done quickly and
efficiently to maximize the survival rate of the affected population and minimize
the cost of such operations.

When it comes to efficiency of supply deliveries, the modeling and
optimization techniques established in commercial supply chain management
seem to be the most relevant approach. For instance, some of the quickest
emergency assistance to the victims of hurricane Katrina did not come from the
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American Red Cross or FEMA, it came from Wal-Mart. Millions of affected or
displaced people waited for days as agencies struggled to provide assistance. Wal-
Mart moved faster than traditional emergency aid groups mainly because the
retail giant had mastered the fundamentals of logistics and supply chain
management (Dimitruk 2005).

More recently, some studies such as (Beamon 2004; Thomas and
Kopczak, 2005; Van Wassenhove, 2006; Oloruntoba and Gray, 2006; Thomas,
2007), emphasized that some supply chain concepts share similarities to
emergency logistics and therefore some tools and methods developed for
commercial supply chains can be successfully adapted in emergency response
logistics.

Using commercial supply chain techniques in disaster management is still
in its infancy. Beamon (2004) and Thomas (2005) have compared the current
state of supply chain management capabilities within humanitarian organizations
with that of the commercia sector in the 1970s and 1980s. At that time, the
commercia sector just began to realize the strategic advantages and significant
improvements supply chain management could offer in effectiveness and
efficiency. Thisled to extensive research in the area of supply chain and logistical
anaysis but those quantitative methods and principles are rarely applied to
humanitarian operations on the verge of disasters.

The partial reason is the difference in the strategic goals of commercia
supply chain with goals of disaster response logistics. The man goa in

commercia supply chain is to minimize the cost or maximize the profit of
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operations. Actions are justified if they increase the profit but are not perused if
their cost is more than their profit. However, humanitarian organizations are
mostly non-profit organizations with the idea of providing critical services to the
public in order to minimize the pain and sufferings, for example after a natural
disaster.

One mgor difference between the two types of chains is the demand
pattern. For many commercial supply chains, the external demand for products is
comparatively stable and predictable. Often, for the commercia chain, the
demands seen from warehouses occur from established locations in relatively
regular intervals. However, the demands in the relief chain are emergency items,
equipment, and personnel. More importantly, those demands occur in irregular
amounts and at irregular intervals and occur suddenly, such that the locations are
often completely unknown until the demand occurs.

Beamon (2004) suggests other specific characteristics of disaster response
logistics that differentiate them from traditional commercial supply chains. These
include:

Zero lead-time that dramatically affects inventory availability,

procurement, and distribution

High stakes (often life-and-death) that requires speed and efficiency

Unreliable, incomplete, or non-existent supply and transportation

infrastructure

Many relief operations are naturally ad hoc, without effective monitoring

and control
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Variable levels of technology is available depending on the disaster area

Table 2.1 compares some of the differences between commercia and

humanitarian supply chains.

Table 2.1- Commercial supply chainsvs. humanitarian relief chains (Beamon 2004)

Characteristic Commercial Chain Humanitarian Relief Chain
Typically to produce high quality
Minimize loss of life and alleviate
Strategic Goals products at low cost to maximize
suffering
profitability
Distribution | Well-defined methods for Challenging due to the nature of the
Network determining the number and unknowns (locations, type and size of

Configuration

locations of distribution centers.

events, politics, and culture)

Emergency Supplies, equipment and

Demand Type | Commercial Products
Personnel
Lead time determined by the Zero time between the occurrence of the
Lead Time supplier-manufacturer-DC-retailer | demand and the need for the demand
Utilizes well-defined methods for
Inventory control is challenging due to
Inventory determining inventory levels based
the high variationsin lead times,
Control on lead time, demand and target
demands, and demand locations
customer service levels
I nfor mation Generaly well-defined, using Information is often unreliable,
System advanced technology incompl ete or non-existent

It is concluded that some of the concepts associated with commercia

supply chains are directly applicable to humanitarian relief chains. However,

future work must develop methods that specifically address the challenges
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presented by characteristics unique to humanitarian relief and logistics of disaster

response.

2.5 Logisticsin Disaster Response

Altay and Green (2006) surveyed the existing literature of emergency
disaster management. They concluded that most of the disaster management
research was related to socia sciences and humanities literature. Refer to Hughes

(1991) and  http://www.geo.umass.edu/courses/geo510/index.ntm  for a

comprehensive bibliography.

That type of research focuses on subjects such as disaster results,
sociological impacts on communities, psychological effects on survivors or rescue
teams, and organizational design and communication problems. They observed
that the existing literature is relatively light on disaster management articles that
used operations research or management science (OR/MS) techniques to deal with
the problem. However, they realized the literature trend that more studies are
focusing on OR/M S techniques in recent years and emphasized the need for more
research in future.

In the following subsections, a summary of studies is presented that use
OR/MS techniques to model and optimize the emergency disaster management
activities. This is not an exclusive list of publication in the field and is only
intended to focus on key studies in the past that successfully used techniques that

are relevant to the subject of this dissertation.
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2.5.1 Early Ages

A number of authors have recognized the problem of emergency response
management in its early ages. Kemball-Cook and Stephenson (1984) addressed
the need for logistics management in relief operations for the increasing refugee
population in Somalia. Ardekani and Hobeika (1988) addressed the need of
logistics management in relief operations for the 1985 Mexico City earthquake.
Knott (1987) developed a linear programming model for the bulk food
transportation problem and the efficient use of the truck fleet to minimize the
transportation cost or to maximize the amount of food delivered (single
commodity, single modal network flow problem). In another article, Knott (1988)
developed a linear programming model using expert knowledge for the vehicle
scheduling of bulk relief of food to a disaster area.

Ray (1987) developed a single-commodity, multi-modal network flow
model on a capacitated network over a multi-period planning horizon to minimize
the sum of all costs incurred during the transport and storage of food aid. Brown
and Vassiliou (1993) developed a real-time decision support system which uses
optimization methods, simulation, and the decision maker's judgment for
operational assignment of units to tasks and for tactical allocation of units to task
requirements in repairing major damage to public works following a disaster.

The literature in the multi-commaodity, multi-modal network flow problem
was relatively sparse. Crainic and Rousseau (1986) developed an optimization
algorithm based on decomposition and column generation principles to minimize

the total operating and delay cost for multi-commodity, multi-modal freight
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transportation when a single organization controls both the service network and
the transportation of goods. Guelat et a. (1990) presented a multi-commodity,
multi-modal network assignment model for the purpose of strategic planning to
predict multi-commodity flows over a multi-moda network. The objective

function to be minimized was the sum of total routing cost and total transfer costs.

2.5.2 Recent Studies

Technology advancement in recent years has opened new doors for
researchers. Haghani and Oh (1996) proposed a formulation and solution of a
multi-commodity, multi-modal network flow model for disaster relief operations.
Their model could determine detailed routing and scheduling plans for multiple
transportation modes carrying various relief commodities from multiple supply
points to demand points in the disaster area. They formulated the multi-depot
mixed pickup and delivery vehicle routing problem with time windows as a
specia network flow problem over a time-space network. The objective was
minimizing the sum of the vehicular flow costs, commodity flow costs,
supply/demand storage costs and inter-modal transfer costs over all time periods.
They developed two heuristic solution algorithms; the first was a Lagrangian
relaxation approach, and the second was an iterative fix-and-run process. Their
work is one of the few studies that can be implemented at the operational level.

Barbarosoglu et al. (2002) focused on tactical and operational scheduling
of helicopter activities in a disaster relief operation. They proposed a bi-level
modeling framework to address the crew assignment, routing and transportation

issues during the initial response phase of disaster management in a static manner.
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The top level mainly involves tactical decisions of determining the helicopter
fleet, pilot assignments and the total number of tours to be performed by each
helicopter without explicitly considering the detailed routing of the helicopters
among disaster nodes. The base level addresses operational decisions such as the
vehicle routing of helicopters from the operation base to disaster points in the
emergency area, the load/unload, delivery, transshipment and rescue plans of each
helicopter in each tour, and the re-fueling schedule of each helicopter given the
solution of the top level.

Barbarosoglu and Arda (2004) developed a two-stage stochastic
programming model for transportation planning in disaster response. Their study
expanded on the deterministic multi-commodity, multi-moda network flow
problem of Haghani and Oh (1996) by including uncertainties in supply, route
capacities, and demand requirements. The authors designed 8 earthquake
scenarios to test their approach on real-world problem instances. It is a planning
model that does not deal with the important details that might be required at
strategic or operational level. It does not address facility location problem or
vehicle routing problem.

Ozdamar et a. (2004) addressed an emergency logistics problem for
distributing multiple commodities from a number of supply centers to distribution
centers near the affected areas. They formulated a multi-period multi-commodity
network flow model to determine pickup and delivery schedules for vehicles as
well as the quantities of loads delivered on these routes, with the objective of

minimizing the amount of unsatisfied demand over time. The structure of the
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proposed formulation enabled them to regenerate plans based on changing
demand, supply quantities, and fleet size. They developed an iterative Lagrangian
relaxation algorithm and a greedy heuristic to solve the problem.

Yi and Ozdamar (2007) proposed a mode that integrated the supply
delivery with evacuation of wounded people in disaster response activities. They
considered establishment of temporary emergency facilities in disaster area to
serve the medical needs of victims immediately after disaster. They used the
capacity of vehiclesto move wounded people as well as relief commodities. Their
model considered vehicle routing problem in conjunction with facility location
problem. The proposed model is a mixed integer multi-commodity network flow
model that treats vehicles as integer commodity flows rather than binary
variables. That resulted in a more compact formulation but post processing was
needed to extract detailed vehicle routing and pick up or delivery schedule. They
reported that post processing agorithm was pseudo-polynomia in terms of the
number of vehicles utilized.

In a recent study, Balcik and Beamon (2008) proposed a mode to
determine the number and locations of distribution centers to be uses in relief
operations. They formulated the location finding problem as a variant of
maximum covering problem when the demand estimations are available for a set
of likely scenarios. Their objective function maximizes the total expected demand
covered by the established distribution centers. They aso solve for the amount of
relief suppliesto be stocked at each distribution center to meet the demands. Their

study is one of the first to solve location finding problem in relief operation;
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however, they do not consider the location problem as part of a supply chan
network. Consequently, they cannot consider the interactions between optimal
transportation of relief items from sources to the demand points and problem of

finding optimal locations for distribution facilities.

2.6 Conclusions

There are not many publications that directly applied network modeling
and optimization techniques in disaster response. Among those studies, thereis no
model that has integrated the interrelated problems of large scale multicommodity
multimodal network flow problem, vehicle routing problem with split mixed
pickup and delivery, and optimal location finding problem with multiple layers.
Also to the best of our knowledge, there is no mathematical model that describes
the specia structure of FEMA'’ s supply chain system.

It is intended to fill some of these gaps in the following chapters of this
research. After providing a more formal description of the problem, a
mathematical model is proposed that considers the specific characteristics of the
described problem. The proposed mathematical model is a comprehensive system
that integrates all the above mentioned properties. Offering this large-scae
mathematical formulation is a unique theoretica contribution by itself.
Nevertheless, solving this large-scale integrated formulation for real-world size
problems requires special considerations.

This problem belongs to the NP-Hard class that is proven to be extremely
time-consuming as the problem size grows. Offering fast and efficient solution

algorithms and heuristics is another gap that is being addressed in this research.
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Finding fast solution algorithms is especially important because it enables the
real -time optimization and implementation of the proposed model.

Extensive numerical and sensitivity analysis are required to evaluate the
different aspects of the proposed model and solution algorithms. Through
numerical case studies and simulation scenarios, it will be possibleto fully test the
performance of the model and the solution agorithms. The other important
outcome of extensive numerical and sensitivity analysis will be the development
of aset of genera guidelines for practitioners, in order to model and solve similar

case studies for their specific applications.
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Chapter 3: Problem Description and Formulation

In this chapter, first a complete description of the problem and its
properties are provided in section 3.1. In section 3.2, the concept of time-space
network is introduced which is very important in modeling the dynamic behavior
of the described problem. Then the research approach to build a mathematical
model for the problem is described in section 3.3 followed by the list of
assumptions made in order to properly model the problem. In section 3.5, the
details of mathematical formulation for the proposed model are presented. The
notations, parameters and variables are defined in sections 3.5.1 through 3.5.3.
The objective function of the optimization problem is formulated in section 3.5.4,
followed by the formulation and description of the constraints of the problem in
section 3.5.5. Findly, in section 3.6, a short form of the mathematical formulation

is presented for the summary.

3.1 Problem Description

The goal of the mathematical model is to orchestrate all the logistical
components and tasks in the emergency response operations after a large scale
disaster, in order to minimize the loss of life or human sufferings by rapid and
efficient delivery of critical relief itemsto the victimsin the disaster areas.

Logistics planning in emergencies involves sending multiple relief
commodities (e.g., medicine, water, food, equipment, etc) from a number of
sources to severa distribution points in the affected areas through a chain

structure with some intermediate transfer nodes. The supplies may not be
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available immediately but arrive over time. It is a difficult task to decide on the
right type and quantity of relief items, the sources and destinations of the
commodities, and also how to dispatch relief items to the recipients in order to
minimize the pain and sufferings for the disaster victims.

It is necessary to have a quick estimation of the demands during the initial
response time. It is essential to know the types of required commodities, the
amounts of each commaodity per person or household, an estimation of the number
of victims, and the geographical locations of the demands. The list of
commodities includes but is not limited to water, food, shelter, electric generators,
medical supplies, cots, blankets, tarps and clothing. Some of the demand items are
one-time demands while others are recurring (e.g. tent vs. water) and some
demands are subject to expiration while others may be carried over (e.g. food vs.
clothing). The demands usualy overwhelm the capacity of the distribution
network. The demand information might not be complete and accurate at the
beginning but it is expected to improve over time.

Different aid organizations may employ their unique supply chan
structure that governs the types of facilities to be used and the relationships
among components of the chain. For example FEMA has its own supply chain
structure for disaster response which is previously introduced in section 1.4.
FEMA has distinguished 7 layers of facilities in its logistics chain. First 3 layers
are permanent facilities to store and ship the relief items while the next 4 layers
are temporary transfer facilities that their numbers and locations will be chosen

during the response phase.
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During the initial response time it is aso necessary to set up temporary
transfer facilities to receive, arrange, and ship the relief commodities through the
distribution network. In risk mitigation studies for disasters, possible sites where
these facilities can be situated are specified. Logistics coordination in disasters
involves the selection of sites that result in the maximum coverage of affected
areas and the minimum delays for supply delivery operations. Usually the number
of these temporary facilities is limited because of the equipment and personnel
constraints.

Each facility in the chain is subject to some capacity constraints. Various
capacities are defined for operations such as sending, receiving, and storing
commodities. These capacities can be different for each facility and are
determined based on the type, size and layout of that facility. Also the availability
of personnel and equipment may influence the capacities. In general, the capacity
constraints can be defined in terms of the weight or volume of the commodities as
well asin terms of the numbers of the vehicles that are sent, received, or parked at
the facility at a certain time period. These are two different aspects and it is
recommended to consider both capacities for each facility.

The transportation capacity is usually very limited in early hours or days
after a disaster. It is very critica to assign the available fleet to the best possible
use at any time. There is usually a shortage of vehicles in emergency operations
so the model must keep track of the empty vehcilesin order to assign them to new
missions after each delivery. More than one transportation mode may be hired to

facilitate emergency response logistics. Consequently, the coordination and
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cooperation between transportation modes are necessary for managing the
response operations and providing a seamless flow of relief commodities toward
the aid recipients. The intermodal transfer of commodities is expected to happen
in specific facilities but may be subject to some capacity constraints and transfer
delays.

Vehicle routing and scheduling during the disaster response is aso very
important. A large number of vehicles might be used in response to large scale
disasters. The model should be able to keep track of routings for each individual
vehicle. Also, it is required to have a detailed schedule for pickup and delivery of
relief commodities by each vehicle in each transportation mode. Nonetheless, the
vehicle routing in disaster situations are quite different from conventional vehicle
routings. The vehicles do not need to form atour and return to the assigned depot,
but they might be assigned to a new path a any time. They are expected to
perform mixed pickup and delivery of multiple items between different nodes of
the network as the supplies and demands arise over time.

The disaster area is a dynamic environment and emergency logistics are
very time sensitive operations. The disaster might still be evolving when the
response operations start. Also the lack of vital information about available
infrastructure, supplies, and demands in the initial periods after the disaster may
complicate this dynamic environment even more. The high stakes of life-or-death
for disaster victims urge the needs for higher levels of accuracy and tractability.
Despite all the necessary preparedness and planning at strategic level, dealing

with the problem as operational level is very important. Modeling and
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optimization at operation level is the only approach to capture the redlities of the
time sensitive emergency response operations.

The other important issue is considering equity and fairness among aid
recipients. Based on the geographical dispersion of victims and availability of
resources over time and space, it is easy to favor the demands of one group of
victims over another. Even though some variations are inevitable, the ideal pattern
is to distribute the help items evenly and fairly among the victims. The models
and procedures with general objective functions are prone to ignore the equity and
level of service requirements in order to get a better numerical solution. It is very
important to realize the need for procedures and constraints that prevent any sort
of discrimination among victims, as much as possible.

The equity constraint between populations can be defined over time, and
over commodities. It is not appropriate to satisfy all the demands of one group in
early stages while the other group of victims does not receive any help until very
later times. It is more acceptable to fairly distribute the available relief items
among al recipients even though it might not be enough for everyone at the
current instance of time. The relief operations will continue over time as more
resources are expected to become available. The equity over commodities is aso
important. For example, it is not acceptable to send all the available water to one
group of victims and send all the available meals to another group. It is expected
to fairly share the limited resources of transportation capacity and disaster relief

commodities.
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3.2 Time-Space Networ k

A physical network is converted into a time-space network to account for
the dynamic decision process. In the context of the problem in this research,
nodes in the time-space network represent the physical locations of the supply,
demand and transfer points for each mode and over time, while the arcs represent
the connecting routes between these points. Each node in the physical network is
represented by the number of mode types at each time period of the planning
horizon. In a sense the time-space network in this context can be thought of as an
overlay of severa physical networks, one for each transportation mode, which are
represented over time. These overlaid networks are connected to each other by the
transfer links which make it possible for the commodities to be transferred
between modes.

There are three types of traffic flow on the physical network. Thefirst type
is the routing traffic that moves from one node to another node by a certain type
of mode. The second type is the transfer traffic that changes mode type from one
mode to another mode at a certain node. The third type is the supply or demand
carry-over that is carried over to the next time period at a certain node.

The duration of one time period should be based on the link travel time for
each mode. It must be small enough so that the amount of slack time on the
routing links is not excessive. However, the planning horizon should not be too
short in order for the time-space network to be meaningful. Also, it should not be
too long as it will increase the dimension of the time-space network and make the

problem very difficult to solve.



The movements of commodities and personnel on a physical network over
time are represented by the links in the time-space network. Routing Links
represent the physica movement of commodities in space. Transfer Links
represent the transfer of traffic between the available modes. Finally, Supply or
Demand Carry-Over Links represent the commodity supply or demand carry over
from one period to the next.

Figure 3.1 shows a physical network that has 4 nodes, 5 two-way arcs, and
2 modes. Node A represents the origin and nodes C and D denote the destinations.
The travel time over the arc in each mode type is shown in terms of time periods.
Figure 3.2 shows the time-space network generated from Figure 3.1 with 6 time
units in the planning horizon. The length of one time period is assumed to be one
time unit. In Figure 3.2, transfer time is assumed to be one time period. The carry-
over links that are created at node A and B represent the supply carry-over links.
On the other hand, the carry-over links that are shown at node C and D denote the

demand carry-over links.

Transfer

Origin Destination

2,3

Destination

Figure3.1 A sample physical network
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Figure 3.2 A sample time-space network

3.3. Modeling Approach

A mathematical framework is suggested to model the supply chain
operations during emergency response similar to the problem description in
section 3.1. The main characteristics of the modeling approach can be
summarized as follow:

Operational Level: to capture time sensitive detaills of the emergency
response operations, the problem is formulated at operational level.

FEMA Structure: the proposed model isin compliance with FEMA’s 7-layer

supply chain structure.
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Time-Space Network: to account for the dynamic decision process, the
physical network must be converted to a time-space network. The nodes of
this network represent the facilities in the FEMA’ s structure. The links consist
of existing physical links, delay or storage links, and intermodal transfer links.
Facility Location: the optimal locations to establish temporary facilities are
selected from a set of potential sites. The maximum number of each facility
type and their locations are dynamic and can change over time as the relief
operations proceed.

Facility Capacity: each facility has maximum capacities for sending,
receiving, and storing commodities as well as vehicles.

Demand: the demand is multi-commodity and usually overwhelms the
capacity of the distribution network. Specific decision variables are defined
that keep track of unsatisfied demand at each demand point for each
commodity and during all time periods.

Supply: similar to the demand, the supply is multi-commodity and may come
from various sources. The problem is formulated as a variation of multi-
commodity network flow problem.

Multi-modal: since more than one mode of transportation may be hired in the
emergency response logistics, the problem is a variation of multi-modal
network flow problem.

Vehicle Routing: in order to model the complicated routing and delivery

operations in disaster response, the vehicles are treated as flow of integer
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commodities over the time-space network. This results in a mixed integer
multi-commodity formulation.

Network Capacity: a set of constraints is used to link the relief commodities
with the vehicles. As a result, the flow of commaodities is only possible when
accompanied by enough vehicle capacity for that specific link and time,
Integrated Model: al decisions of facility location, supply delivery, and
vehicle routing, are interrelated. Our approach provides an integrated model to
find the global solution for this problem.

Equity: equity and fairness among disaster victims is modeled through a set
of constraints that enforce a minimum level-of-service for each victim. The
equity isrequired for each relief item and over al time periods.

Objective Function: the objective of this model is to minimize the pain and
suffering of the disaster victims. It is formulated as minimizing the tota
unsatisfied demand summarized for al victims, for all relief items, and during

all time periods.

3.4 Assumptions

1- It isassumed that the following information is available and given:
Demands: commodity types, demand locations, demand amounts
Supply: commodity types, supply locations, supply amounts
Permanent Facilities: types, locations, capacities
Temporary Facilities: set of potential sites for each type, capacities of

each type
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Network: link-node incidence matrix for each transportation mode
Vehicles: number of vehicles available for each mode and their initial
locations, capacity of each vehicle

Travel Times: travel time on each link for each transportation mode.

2- Because the model is at the operational level, it is assumed that the problem is
deterministic. The required information is estimated or known at the beginning of
the operations by local or federa authorities. The model can adapt to the new
information as the circumstances evolves over time and real-time information
becomes available.
3- Supply Chain Structure:
It is assumed that the flow of commodities between each two nodes is
possible only if it is in compliance with FEMA’s structure shown in
Figure 1.5. For example, the supply from LC cannot be sent directly to
SSA. It should be sent to MOBs or FOSASs irst.
It is assumed that for the empty vehicles, a direct link exists that
connects each pair of nodes. For example, if avehicle ddiversall of its
supply at a POD, it can directly go to any other node of the network to
pick up new supplies.
4- Finding the number and locations of the points of distribution (PODS) is not
considered in this study. It is assumed that PODs are established by loca
authorities. As a result, the location and amount of demands at each POD is a

given datain this model.
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3.5 Mathematical modd

In this section initially the notations and required parameters for the
formulation are introduced. After that, the decision variables of the mathematical
model are defined. Then the objective function formulation is presented followed

by introduction and formulation of the problem constraints.

3.5.1 Notations

N = Set of al nodes. i, jT N areindices

LC = Setof logistic center sites

CSS = Set of commercial storage sites

VEN = Set of commodity vendor sites

MOB = Set of potential sites for mobilization centers

FOSA = Set of potential sitesfor federal operational staging areas
SSA = Set of potential sites for state staging areas

POD = Set of pointsof distribution (demand nodes)

U = Set of supply nodes and transshipment nodes (LC, VEN, CSS, MOB,
FOSA, SSA)

\% = Set of permanent facilities (LC, CSS, VEN)

W = Set of potential sitesfor all temporary facilities (MOB, FOSA, SSA)

C = Set of commodities, ¢ C isan index

M = Set of transportation modes, Ml M is an index

T = Time horizon of response operations. t,td T areindices
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3.5.2 Parameters

Supply and Demand

Sup; = Amount of exogenous supply of commodity type cin nodei at timet
Der; = Amount of exogenous demand of commodity type cin nodei at timet

AV," = Number of vehicles of mode m added to the network in node i at timet,
negative if vehicles removed

RU: = Relative urgency of one unit of commodity c, in nodei at timet

Number of Facilities

MOB; . = Maximum number of mobilization centers at time't
FOSA . = Maximum number of federal operational staging areas at time't

SSA,. = Maximum number of state staging areas at timet

Facility Capacity

Ucap? = Unloading capacity for the facility in node i for mode m at timet

Scap, = Storage capacity for the facility in nodei at timet

Lcap; = Loading capacity for the facility in node i for mode m at timet

VRcap' = Maximum number of mode m vehicles that can be received at the
facility innodei at timet

VPcap;i' = Maximum number of mode m vehicles that can be parked (carried
over) at the facility in nodei fromtimettotimet + 1

VScap;'= Maximum number of mode m vehicles that can be sent out from the

facility innodei at timet
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Vehicle Capacity

cap,, = Loading capacity of vehicles of modem
W, = Unit weight of commaodity ¢
Transportation

t,, = Travel timefrom nodei to nodej for vehicles of mode m

Ko = Timerequired to transfer commodities from mode mto modem¢

3.5.3 Decision Variables

Location Problem

Loc' = 1 if temporary facility of appropriate type is located at potential site i, at
time t; equal to O otherwise. The temporary facility will be a mobilization
center if i1 MOB, afederal operational staging areaif i1 FOSA, and a
state staging areaif i1 SSA.

Commodity and Vehicle Flow

Xt = Flow of commodity type c shipped from node i to node j by mode m at
timet

Y = Flow of vehicles of mode m from nodei to nodej at timet

CX; = Amount of commaodity type c in node i which is carried over from time
periodttot+1
CY;" = Number of vehicles of mode m in nodei which is carried over from time

periodttot+1
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X'I'if”'“¢= Amount of commodity type ¢ in node i which is transferred from mode
m to mode m’ at time't

UD; = Amount of unsatisfied demand of commodity type cinnodei at timet

3.5.4 Objective Function

Minimize Q& § RUS WUDS (3.2)
il t ¢

ilv
The objective function in equation (3.1) minimizes the total amount of

weighted unsatisfied demand over al commodities, times, and demand points.
RU ¢ is the relative urgency associated with each commaodity, time, and demand
point. If there is any desire to consider a commodity being more important than

others at any time or for any demand point, RU; can enforce that desire. Higher
value of RU ; trandates into higher urgencies. If al the commodities happen to be

of the same importance, RU; can be set equal to 1.

3.5.5 Constraints

Commodity Flow Constraints

Supply nodes and Transfer nodes:

Q cm Q cmén c c
a in(t-tjim) +a XTiok,) T CXiqy + 3Py
' me

I

" (3.2)
= XM+q XTI +CXs il U,cmit
i me
Demand nodes:
a a X, +UD;=Dem +UD; ,  "il POD,ct (3.3)
m
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Equations (3.2) and (3.3) enforce the conservation of the flow for all
commodities and modes at all nodes and time periods. Equation (3.2) requires that
for supply nodes and transfer nodes, the sum of the flows entering each node plus
exogenous supply should be equal to the sum of the flows that leave the same
node. Equation (3.3) shows that the total flow entering each demand node plus the
unsatisfied demand is equal to the exogenous demand at that node plus the
unsatisfied demand from the previous time period.

Vehicular Flow Congtraints

AV, *CLy AV = YT +CY il Nomt (3.4)
i j

Equation (3.4) represents the conservation of flow for the vehicles. At any

node i and time period t, total number of available vehicles of mode mis equal to

the number of vehicles of mode m that left node j for nodei at time t- t. , plus

ijm
the number of vehicles that were carried over from the previous time period, plus
the number of vehicles that are added or removed to the fleet at that time. These
vehicles are either sent out of the node or carried over to the next time period.

Linkage between Commodities and Vehicles

Cap,” YI3 awXI il N,mt (3.5)

Constraint (3.5) makes sure that commodities are not sent out of a node
unless anumber of vehicles with enough capacity are available at that node.

Facility Capacities for Permanent Facilities

a a X" £ Leapy "il V,mt (3.6)
j
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a a X, £Ucap] "il LC,mit (3.7)
c ]

aaaXi.,, a CX((y + @ Sup; £ Scap, " i1 V.t (38)
m ¢ c

a " £VScap) "il V,mt (3.9
a i1 T AV £VReapy "il V,mt (3.10)
aYua o FAVT +CY ) EVPeapy il V,mt (3.11)

Equations (3.6), (3.7), and (3.8) are the maximum capacity for loading,
unloading, and storage of commodities at permanent facilities. Equations (3.9),
(3.10), and (3.11) require the maximum number of vehicles that are sent,
received, and parked at each facility to be less than the relevant capacities.

Facility Location and Capacities for Temporary Facilities

aa a X" £ Leapy” Loc! "il W,mt (3.12)
a a X, EUcap]” Log "iT W,mt (3.13)
c

o o0 o© cm
a a a X]I(t tiim) a CX|(t 1)

o . (3.14)
+Q up; £ Scap, Locit "l Wit
a Yitt, + AV £VReapy” Log "il W,mt (3.15)
j
aY,.(t o HAV+CY R, £VPcapy ” Log " iT W, myt (3.16)
a Y.l £vscap!” Loc "iT W,mt (3.17)

j
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a Loc' £MOB. "il MOBt (3.18)
a Loc' £ FOA. "il FOSAt (3.19)

a Loc' £ SSA "il SSAt (3.20)

Equations (3.12) through (3.14) enforce the loading, unloading, and
storage capacity for the temporary facilities. If the facility is selected to be set up
at potentia sitei, the respected capacity constraint is enforced. If it is decided not
to set up the temporary facility at location i, the same constraints require that all
the flows in and out of that node to be equal to zero.

Equations (3.15) through (3.17) require the maximum number of vehicles
that are sent, received, and parked at each temporary facility to be less than the
relevant capacities. The numbers are zero if the facility is not selected for that
node.

Equations (3.18) through (3.20) oblige the maximum number of each
temporary facility type to be limited by the maximum allowable numbers for that
facility type during the chosen time periods.

Capacitiesfor PODs:

a a X, £Ucapy "il POD,m;t (3.21)
c :

a Y. ,£VReap] "il POD,mt (3.22)
]_ ]

a Yy .., +CYiy £ VPcapy "il POD,mt (3.23)
j
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Equation (3.21) enforces the commodity unloading capacity at points of
distribution. Equation (3.22) and (3.23) represent the vehicle receiving and
vehicle parking capacities for each point of distribution.

Equity Constraint:

o o o om
aaad in(t‘Dt”m)
m

S ———3a,, "iT POD,c,t (3.24)
a Demg
te

88 & X A

e a2 b, "il POD,c,t (3.25)
aadaaad in(tlT—tjim)

c t¢ m j

0O 0 o0 © cm

aaaa X, )

AL 2 Ooin "i1 POD,t (3.26)

G 0 0 0 O Lom
aaaaa X,

Equation (3.24) enforces a minimum percentage of total demand for a
specific commodity c, to be satisfied by the time period t. It might not be aways
possible to deliver the required amount by time t; in that case, this constraint
makes the optimization problem infeasible.

Equation (3.25) requires that from all commodities being delivered to
nodei by timet, at least b, percent to be commodity c.

Equation (3.26) ensures that sum of total commodities delivered at point i
to be more than a minimum percentage of al the commodities that are being
delivered among all demand points.

Non-negativity and I ntegrality:
X CXS, XT.S™ UDS 3 0 Real-valued variables

ijt
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Yt CY"3 0 General integer variables

LOC'T (0,0 Binary integer variables

3.6. Summary

The proposed mathematical model in this chapter can be summarized as follows:

Minimize Total weighted unsatisfied demand
Subject to:
Commodity flow constraints
Vehicular flow constraints
Constraints that link commodities and vehicles
Facilities location constraints
Facility capacities constraints
Equity (recipients/commaodities) constraints

Non-negativity and integrality constraints
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Chapter 4: Preliminary Numerical Study

In this chapter, a set of preliminary numerical experiments are conducted
to evauate the features of the proposed formulation. At this stage, it is tried to
keep the problem size manageable so it can be solvable by commercia solver and
the results can be analyzed easier. Nevertheless, this problem instance still fully
represents all the elements of the proposed model. This experimental study is
compliant with FEMA’s specia supply chain structure. The distances, locations,
supplies, demands, capacities and other aspects of this numerical experiment are

designed to be comparable to the real-world-size problems.

4.1 Design of the sample problems

The numerical problem in this chapter is an imaginary scenario where a
natural disaster such as a hurricane strikes the southern coast of the United States.
It is assumed that two separate regions, one in Mississippi and one in Louisiana,
are affected. The disaster area in Mississippi is spread along the coast while the
disaster areain Louisiana is more inland and has a rectangular shape. Figures 4.1

and 4.2 show the affected disaster areas.
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Figure 4.2 Disaster Areasin two affected States
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4.1.1 NETWORK

For the numerical study, it is assumed that only the Atlanta logistics center
(LC) isused. One commercia storage site (CSS) in Charlotte, North Carolina and
one vendor (VEN) in Nashville, Tennessee are also used to store the relief items.

For temporary facilities at federal level, four potential sites for
mobilization centers (MOB) are suggested. There are also four potential sites for
federa operational staging areas (FOSA). These facilities are able to send
supplies to both disaster areas. At the state level, a total of 10 potentia sites for
state staging areas (SSA) are suggested. Four potential SSA are planned to serve
the disaster areain Mississippi and six potential SSA are suggested for Louisiana.
The initial post-disaster surveys estimate that approximately 20,000 people are
affected and twenty points of distribution (POD) are needed to serve this
population. Eight PODs are selected for Mississippi area and twelve PODs will
serve the victims in Louisiana. Table 4.1 summarizes the list of facilities in the
distribution network. For this numerical experiment, there are a total of 41
permanent and temporary facilities in the network. Figures 4.3, 4.4, and 4.5

illustrate the locations of these facilities on the map.
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Table4.1 List of Facilitiesin the Distribution Networ k

Node| Facility TYPE Location Latitude Longitude
1 LC Atlanta, GA 33°44'6.59"N | 84°23'45.13"W
2 CSS Charlotte, NC 35°13'47.00"N | 80°50'36.54"W
3 VEN Nashville, TN 36°11'9.34"N | 86°43'25.24"W
4 MOB Montgomery, AL 32°22'3.90"N | 86°18'6.88"W
5 MOB Jackson, MS 32°18'20.21"N| 90°10'7.65"W
6 MOB Shreveport, LA 32°30'44.00"N | 93°44'25.76"W
7 MOB Beaumont, TX 30°4'47.76"N | 94° 6'2.57"W
8 FOSA Mobile, AL 30°41'20.63"N | 88° 2'44.56"W
9 FOSA Hattiesburg, MS 31°18'16.67"N| 89°18'41.34"W
10 FOSA Baton Rouge, LA 30°26'49.07"N| 91°11'4.33"W
11 FOSA Lafayette, LA 30°12'39.24"N| 92° 0'36.65"W
12 SSA Moss Point, MS 30°25'36.88"N | 88°31'20.06"W
13 SSA Gulf Hills, MS 30°26'14.86"N | 88°48'52.52"W
14 SSA Wool Market, MS 30°28'4.60"N | 88°59'49.49"W
15 SSA Diamond Head, MS 30°22'48.38"N | 89°22'32.34"W
16 SSA Boutte, LA 29°54'5.23"N | 90°23'28.72"W
17 SSA South Vacherie, LA 29°54'40.81"N | 90°43'44.11"W
18 SSA Supreme, LA 29°522.73"N | 90°59'4.48"W
19 SSA Pierre Part, LA 29°57'19.71"N| 91°12'45.39"W
20 SSA Berwick, LA 29°42'3.16"N | 91°13'51.50"W
21 SSA Franklin, LA 29°47'17.49"N | 91°30'33.94"W
22 POD Pascagoula, MS 30°21'54.42"N | 88°32'54.99"W
23 POD Gautier, MS 30°23'26.03"N | 88°38'44.36"W
24 POD Gulf Park, MS 30°22'45.27"N | 88°45'32.84"W
25 POD Ocean Springs, MS 30°24'39.92"N | 88°47'7.53"W
26 POD Biloxi, MS 30°24'27.58"N | 88°55'59.03"W
27 POD Gulf Port, MS 30°21'57.06"N| 89° 5'30.75"W
28 POD Long Beach, MS 30°20'24.34"N | 89°11'1.03"W
29 POD Pass Christian, MS 30°19'33.94"N | 89°14'57.81"W
30 POD Lock Port, LA 29°38'22.61"N | 90°32'14.66"W
31 POD Mathews, LA 29°41'38.04"N | 90°33'6.94"W
32 POD Raceland, LA 29°43'19.20"N | 90°35'17.82"W
33 POD Houma, LA 29°35'13.92"N | 90°42'15.67"W
34 POD Bayou Cane, LA 29°37'29.72"N| 90°45'3.30"W
35 POD Gray, LA 29°40'45.88"N | 90°47'0.88"W
36 POD Shriever, LA 29°44'25.98"N | 90°49'50.30"W
37 POD Tibodaux, LA 29°47'48.50"N [ 90°49'7.77"W
38 POD Amelia, LA 29°40'16.24"N| 91° 6'15.78"W
39 POD Morgan City, LA 29°42'9.13"N | 91°11'25.60"W
40 POD Bayou Vista, LA 29°41'28.15"N | 91°16'13.42"W
41 POD Patterson, LA 29°41'23.98"N| 91°18'33.41"W
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Figure 4.4 Map of the state level facilitiesin Mississippi
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Figure 4.5 Map of the state level facilitiesin Louisiana

4.1.2 Supply and Demand

There are several commodities that need to be distributed among the
disaster victims. The type and amount of each commodity depends on many
factors such as type of disaster, level of destruction, weather conditions, etc. Table
4.2 suggests a list of required items and the amount per day per survivor. Adding
up the last column of Table 4.2, it can be seen that for each survivor a total of
about 30 ft3 of relief items per day are required.

For the sake of simplicity, it is assumed that only 2 types of commodities
(commodity 1 and commodity 2) are required in this numerical experiment.
However, to preserve the scale of demands, the total amount per each survivor is
kept at 30 ft3 per day. It is also assumed that survivors in disaster zone 1
(Mississippi), need 20 ft3 of commodity 1 and 10 ft3 of commaodity 2, per day. On

the other hand, survivors in disaster zone 2 (Louisiana), assumed to need 10 ft3 of
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commodity 1 and 20 ft3 of commodity 2, per day. This will provide the
opportunity to analyze the effects of different demand types in the results of the

model.

Table4.2 List of Required Itemsfor Survivors of a Disaster

ftem | quawy | Suvivors | dmensons@® | vaime | LSS
L |w]|H (ft%)
Water (drinking) lgdlon 1 1 1 1 1 3
Water (non-potable) lgdlon 1 1 1 1 1 3
Meas (MRES) 3 medls 1 1 1 15 15 45
Portable shelter 1 shelter 4 6 2 15 18 4.5
Basic medical kit 1 kit 3 1 1 1 1 0.333
Cot 1 cot 2 3 2 1 6 3
Blanket 1 blanket 1 2 2 | 05 2 2
Tarp 1ltarp 3 3 3 1 9 3
Ice 1galon 10 1 1 1 1 0.1
Baby supplies 1 box 5 1 1 1 1 0.2
Generator 1 generator 500 8 8 6 384 0.768
Clothing 1 bag 1 2 2 1 4 4
Plywood 2 sheets 3 4 8 | 01 3.2 2.133
Nails 1 box 3 1 1 1 1 0.333

Supply sources are the logistics center, the commercial storage site, and
the vendor. It is assumed that 40% of total supply is stored at LC, 20% at CSS,
and 40% at the vendor site. Total demand for 20,000 survivors will be 600,000 ft3
per day. The demand for commodity 1 is 280,000 t3 per day and the demand for
commodity 2 is 320,000 ft3 per day. For this problem, it is assumed that supplies
for one day are available and are stored at the three supply sources prior to the

start of the operation.
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4.1.3 Transportation

For this problem, only one transportation mode is used which is trucking.
The common vehicle is a 53ft trailer truck which has the volume capacity of
approximately 6000 ft3. For the base case, 100 trucks are available at the
beginning of the operations. Initially, 40 trucks are located at LC and 30 trucks

are present at CSS and VEN sites, each.

4.1.4 Network links and travel times

There are 2 types of flows in this problem, flow of commodities and flow
of vehicles. The commodity flows must comply with the hierarchical structure of
FEMA explained in section 1.4. For example, supplies from a VEN can only be
sent to LC, or supply from LC can be sent to al MOBs and FOSAs. Supplies in
MOBs can be sent to other MOBs or to FOSASs. Supplies from FOSAS can be sent
to other FOSAs and to SSAS, as long as it remains in the same state. Supplies
received at each SSA can be sent to other SSAs in the same State or must be
delivered to PODs of that State.

The flow of vehicles in the network is much less restricted compared to
commodity flows. It is assumed that there is alink between each pair of nodesin
the network. Basically, empty vehicles are free to travel between each two nodes
of the network without the need to visit any intermediate nodes. As aresult, when
a vehicle is carrying supplies, it must follow the more restricted hierarchical
network of FEMA. But when the vehicle unloads al its supply, ether at
intermediate nodes or final PODs, it is free to go to any other node in the network

to pick up supplies and start a new round of deliveries.
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Link travel time functions for the proposed formulation can be completely
arbitrary. The formulation is capable of dealing with time-variable travel times as
well as fixed travel times. For this numerical study, the travel distance between
any two nodes of the network is assumed to be equal to their Euclidian distance.
The travel speed is assumed to be fixed for all the vehicles on the federal level
network (between LC, CSS, VEN, MOBs, and FOSA) and to be equal to 50 miles
per hour. However, for the state level networks (between FOSAS, SSAs, and

PODs) the travel speed is assumed to be 40 miles per hour.

4.1.5Time Scale

Selection of appropriate time step is a very important factor that can affect
the performance of time-space networks dramatically. For each time period in the
planning horizon, one layer of physical network will be added to the problem.
This makes the problem size grow extremely fast with the number of time stepsin
the planning horizon. For example if the planning horizon is only 1 day, with the
choice of time step t = 5 minutes, it will be 24 * 60 / 5 = 288 layers of the
network. So to keep the problem at a reasonable size, it is favorable to have
longer time steps.

On the other hand, shorter time steps will improve the accuracy of
modeling the emergency response operations. For example if the time step is 1
hour, it is possible to model the state of the system only at every hour and not at
the times in between. So from the accuracy perspective, it is favorable to have

shorter time steps.
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The other important issue in determining the time-step in this problem is
the issue of dealing with very long and very short links. At the federa level
network, nodes are usually far from each other and the links can range from some
hundred miles to a few thousand miles. The travel time on those links with ground
transportation can range from afew hours to up to one day or more. However, the
nodes at the lower levels in the State networks can be very close to each other. It
is very common to have PODs that are only a few miles apart. In this case, link

travel times can be in the order of minutes. Figure 4.6 better shows the issue of

scalein this problem in disaster area map.

Figure 4.6 Theissue of the scalein the disaster area

It isadifficult challenge to select atime-step that is suitable for very short
links and very long links, at the same time. A very short time-step is necessary to
model the short links even though it will increase the problem size very quickly.
But the main issue is the sensitivity of travel times to the selected time-step. If a

very short time-step is chosen, say 1 minute, it might be good for short links but
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the travel times on very long links will not be sensitive to that. It is very difficult,
if not impossible, to predict the travel time between two nodes that are a thousand
miles apart, with accuracy of 1 minute. For those links the 1-hour unit or 30-

minute unit is more meaningful.

4.1.6 Geographical Decomposition

To dea with the issue of scale, a geographical decomposition method is
proposed. The nodes at federal level (LC, CSS, VEN, MOB, FOSA) will be in
one subset and the nodes at each state (FOSA, SSA, POD) will form another
subset. Since the travel times between nodes in federal level network are usually
long, it is possible to use a large time-step for them. Using similar argument, the
State level nodes and links can be modeled with a shorter time-step. Figure 4.7

shows this decomposition.

| I
' VEN LC Css !
! ! fed
1 I
| I
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I | | I 1 I
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Figure 4.7 Geogr aphical decomposition to implement two time-steps
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Now the important issue is how to connect these separate time-space
networks. Luckily, the specia structure of FEMA’s supply chain offers the
candidates. Federal operational staging areas (FOSA) are the one and only
interface between flow of commodities among the federa level facilities and the
designated state level facilities. We take advantage of this opportunity and select

the FOSAs as transfer terminals between the networks with different time steps.

For this numerical study, time-step for federal zone, t,, is chosen to be 30

minutes and time-step for state level zones, t,, is selected to be 5 minutes. The
travel times for this study are calculated based on the distance and afixed average

travel speed explained earlier. So based on the newly defined time steps of t; and

t,, travel times of federal zone links are being rounded to the nearest 30 minute

interval and the travel times of state level zone links are being rounded to the
nearest 5 minute.

The way FOSA nodes connect two sub-networks with different time steps
is shown in Figure 4.8. This graph indicates that the arcs entering FOSA from

federa network or leaving the FOSA toward the federal network can exist only at

t,=30-minute intervals. But the arcs that connect FOSA to state level facilities

exist for every t, =5-minute interval. The implication is that the downward flows

(from the federal network to the state network) entering a given FOSA can leave
that FOSA at any 5-minute period after that. However, the upward flows (from
the state networks to the federal network) that enter a FOSA at any time other
than 30-minute intervals need to wait at the FOSA until the first available 30-

minute interval.
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Figure 4.8 Connecting two time-Space networ ks with different time

4.2 Generating formulation for commer cial solver

The numerical experiment introduced previously in section 4.1 is a fairly
large mixed integer program with real valued as well as general integer and binary
variables. Because of the large number of variables and constraints in this
problem, computer programming is required to handle the input and output data.
A customized program is coded in the Microsoft Visua Studio environment to
generate the mathematical formulation for each problem instance. The program
read the input data from the prepared data files as well as the coded user interface
to generate each problem instance. Then the mathematical formulation for each

problem instance is generated and written to a text output file.
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At this stage, the numerical sample problems are solved with ILOG
CPLEX (2006) commercial solver. CPLEX isacommercia optimization package
from ILOG company that solves mathematical formulations in the forms of linear
programs (LP), integer programs (IP), and quadratic programs (QP). CPLEX
reads the generated formulations from text files, after optimization the results are
written to text files as well. Another customized program is coded to extract the
results from the output file and generate the required performance measures and

generate charts and graphs.

4.3 Numerical results and analysis

To better evaluate the characteristics of the proposed model, 10 numerical
case studies are generated. All the case studies are based on the described
imaginary scenario with variations in the subset of enforced constraints and some
parameter values. Table 4.3 describes the considered case studies. In general, the
case studies in tables 4.3 start from simple and become more complicated toward
the end. For example, the first case study only considers the conservation of flow
and vehicle capacity constraints. Other constraints are gradually added to the
formulation in the other case studies up to case 7 which has the largest number of
constraint types for a one day operation. First 7 case studies consider only 1 day
of operations whilein the last 3 cases 2 days of operations are formulated.

Table 4.4 summarizes the optimization results for all 10 case studies. case-
1 isthe “base case” with only conservation of flow constraint and vehicle capacity
constraints modeled for 1 day of operations. The solver found the optimal solution

in approximately 4 minutes. Figure 4.9 shows the percent of unsatisfied demand
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for al victims over time. Thefirst delivery to the nearest demand point took about
7 hours. Fifty percent of the total demand was satisfied after 11 hrs and 40

minutes. The last demand was served after 21 hours and 40 minutes.

Table 4.3 Descriptions of the numerical Case Studies

No. of Variables File
Case Constraints Used Details Constraints Size
Real | Integer (Kb)
Flow Conservation + 1 day
1 Vehicle Capacity 100 Trucks 133275 | 157972 81,891 13,331
Flow Conservation + 1 day
2 Vehicle Capacity 200 trucks 133275 | 157972 81,891 13,331
Flow + Vehicle Capacity 1 day
3 + Facility Capacity 100 Trucks 133275 | 157972 87,094 15,846
Flow + Facility Location 1 day
4 (2,2,5)* + Fadility Cap 100 Trucks 133275 | 157972 87,094 15,846
Flow + Facility Location 1 day
5 (2,2.2) + Facility Cap 100 Trucks 133275 | 157972 87,094 15,846
Flow + Facility Capacity 1 day
6 Const.+ Equity-1 Const | 100 Trucks 133275 | 157972 87,174 17,214
Flow + Facility Location 1 day
! & Capacity + Equity-1,2,3 | 100 Trucks 133275 | 157972 87,294 61,084
Flow + Vehicle Cap, day 2 days
8 by day Supply 100 Trucks 265995 | 315316 163443 27,439
Flow + Facility Location 2 days
9 & Capacity, day by day | 100 Trucks 265995 | 315316 173,878 32,673
Flow + Capacity + 2 davs
10 location (2,2,5) , 2 day &y 265995 | 315316 173,878 32,673
X 100 Trucks
supply available

* Facility location with maximum number of (MOB, FOSA, SSA)
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Table 4.4 Summary of the optimization resultsfor the preliminary experiment

Case | Objective Value La§t ub Temp. Root Sol. lterations CPU Ti Tme
Number (E+7) (hr:min) | Facilities Time (s) (sec)
1 9.0798 21:40 (4,4,10) 33.89 14,957 230
2 8.6118 15:10 (4,4,10) 10.36 5,502 20
3 10.412 22.05 (4,410) 42.73 18,642 778
4 10.412 22.05 (2,2,5) 33.59 17,308 945
5 10.978 24:00° (2,2,2) 204.19 205,588 5575
6 10.439 21:50 (4,410) 42.22 5,810,980 45856*
7 10.417 22.05 (2,2,5) 63.09 7,888,315 81642*
8 17.985 39:10 (4,410) 786.34 63,960 4779
9 20.859 44:45 (2,2,5) 2450.91 408,351 14635
10 18.921 48:00° (2,2,5) 10117.11 2,963,071 231035

* The solver stopped prematurely with “out of memory” error message.
8 The relief operations were not finished by the end of planning horizon.
Tt On a3.0 GHz Intel Pentium CPU with 2.0 GB RAM

Case-2 is similar to case-1 but the only difference is that there are 200

trucks available in case-2 versus 100 trucks in case-1. Even though the number of

vehicles was increased, the optimal solution was found in only 20 seconds. As it

can be seen in Table 4.3, the size of the formulation (number of variables and

constraints) for case-2 is equal to case-l and this is one of the important

advantages of current formulation. Since this formulation treats the vehicles as

commodities, the number of available vehicles appears only as a right-hand-side

parameter and does not have an effect on the problem size. Figure 4.10 shows the
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percent of unsatisfied demand over time for case-2 at optimality. Since there were
enough vehicles available at the beginning, the vehicles did not need to return to
the sources to pickup supplies once they had left. As a result, the delivery

operations were completed after only 15 hours and 10 minutes.
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Figure 4.9 Per cent of unsatisfied demand over timefor case 1
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Figure 4.10 Per cent of unsatisfied demand over timefor case 2
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Case 3 is similar to the base-case with addition of loading, unloading, and
storage capacities for all facilities. In this case, there is no limitation on the
maximum number of temporary facilities and all the potential sites can be active.
Figure 4.11 shows the variation of unsatisfied demand for case-3. The addition of
facility capacities prevented the shipment and delivery of large quantities of
supplies. Instead, the relief commodities are delivered more uniformly over time
compared to case-1 and Figure 4.9. Consequently, the objective function vaue
was higher and the operations lasted for 22 hr and 5 minutes, 25 minutes more
than case-1. The running time was also increased to about 13 minutes to find the
optimal solution.

In case 4 we limited the maximum number of temporary facilities (MOB,
FOSA, SSA) to (2, 2, 5) plus the constraints of case-3. It took the solver about 16
minutes to find the optimal solution which is 3 minutes more than case-3.
However, the objective function value at optimality was the same for case-3 and
case-4. Thisimplies that although we limited the number of temporary facilities to
(2,2,5); it was still possible to run the operations through limited number of
facilities and achieve the same final results. Comparing Figure 4.12 with 4.11
shows that there were minor changes in the flow of commodities, but the fina

results are very similar.
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Figure 4.11 Per cent of unsatisfied demand over timefor case 3

Unsatisfied Demand (%)

Figu

100
90
80
70
60
50
40
30
20
10

0

Time (hr)

re4.12 Percent of unsatisfied demand over time for case 4

In order to see the effect of even more limited numbers of facilities, we

created case-5 with maximum number of temporary facilities as (2,2,2). Table 4.4

shows that the problem became much harder to solve. The running time jumped to

1.5

hours. The objective function was increased and more importantly, the
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delivery operations could not be finished in 24 hours. Figure 4.13 shows that at
the end of the 24 hours, thereis still unsatisfied demand which is about 6% of the
total demand. It indicates that unlike case-4, limiting the number of temporary
facilities affected the operations and resulted in more delays and more unsatisfied
demand.

In case-6 we added the equity constraints to the problem for the first time.
At this stage, only the 1% equity constrains (Equation 3.24) were considered in
addition to conservation of flow and vehicle capacity constraints. Table 4.4 shows
very interesting results. First of all, adding the equity-1 constraint made the
problem much harder. After 13 hours of execution time and more than 5.8 million
iterations, the solver still could not find the optimal solution. However, the best
integer solution found is very close to the best MIP bound (25500 unsatisfied

demands, 0.02% gap).
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Figure 4.13 Percent of unsatisfied demand over timefor case 5
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Finaly in Case-7, al the constraints are considered. The constraints
include conservation of flow for the commodities and vehicles, the linkage
between commodities and vehicles and capacity of each vehicle, facility location
with maximums of (2,2,5); loading, unloading and storage capacities for all
facilities, and finally the 3 equity constraints (Equation 3.24, 3.25, 3.26). The full
problem becomes very large and difficult to solve. After around 23 hours of CPU
time and more than 7.8 million iterations, CPLEX solver stopped and it could not
find the optimal solution. By the way, the best integer solution found is very close
to the best MIP bound (30400 unsatisfied demands, 0.03% gap). Figure 4.14

shows the unsatisfied demand for the best integer solution found by the solver.
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Figure 4.14 Percent of unsatisfied demand over timefor case 7

Another idea was to extend the relief operations duration from 1 day to 2
days and analyze its effect on the problem size and behavior. Case-8 through
case-10 was created to test this idea. Again case-8 is the base case with

conservation of flow and vehicle capacity constraints. Similar to other cases, it
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was assumed that 100 trucks are available. The demands for the second day
appear at the beginning of the second day and locations and quantities are similar
to the demands of the first day. In case-8 it is assumed that supply for the second
day arrives at the beginning of the second day of operations to the same source
nodes as in day one. Table 4.4 shows that the solution time was around 80
minutes. Comparing 80 minutes for case-8 with 4 minutes of CPU time for case-1
shows the growth rate of problem size and difficulty with extending time horizon.
In this case, the duration of operation is only doubled however the solution time is
rapidly increased by afactor of 20.

Figure 4.15 shows the variations in unsatisfied demand over time. The 1%
day’s operations were finished in approximately 18 hours. As a result of the
optimal distribution of empty trucks for the second day, the relief operations in
the second day were over in only 15 hours and 10 minutes. There were no
additiona supplies available before the second day, but modeling the operations
for 2-day provided the opportunity to be prepared and do a better job in the
second day.

In case-9, the facility location constraints with maximum of (2,2,5) and the
loading, unloading, and storage capacity constraints were considered for 2 days of
operations. Similar to the previous case, the supplies become available day by
day. Table 4.4 shows that adding the capacity constraints has increased the
objective function value for about 16% compared to case-8. The running time is

aso increased to more than 4 hours of CPU time.
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Figure 4.15 Percent of unsatisfied demand over timefor case 8

Figure 4.16 shows the results of the optimal solution for case-9. Because
of the capacity constraints the flow of extra large amounts of commodities were
prohibited. As aresult, the demands are satisfied gradually over time and for both
days, the operations took longer compared to case-8. It took 44 hours and 45
minutes to deliver al the supplies in case-9 compared to 39 hours and 10 minutes
in case-8.

The last case study in this numerical experiment is case-10. case-10 is
similar to case-9 with the only variation that all the supplies for 2-days are
assumed to be available at the beginning of the operations. The demands still
appear at the start of each day and supplies cannot be delivered beforehand. The
objective function of optimal solution shows approximately 10% reduction
compared to case-9. The reason is that since the supplies were available at the
beginning, they were sent to intermediate nodes close to demand points so the
delivery of supplies for the 2" day can start as soon as the demands appear for

that day. Figure 4.17 illustrates the details.
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Figure 4.16 Percent of unsatisfied demand over timefor CASE 9
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Figure 4.17 Percent of unsatisfied demand over timefor CASE 10

The possible combinations to manage the operations in case-10 are larger
than any other case. Consequently, the CPLEX solver went over 2.9 million
iterations and it took more than 2 days and 16 hours of CPU time to find the
optimal solution. It is clear that a problem with complete set of constraints (if the
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equity constraints were to be added to the problem) with 2-days of operations,

cannot be solved by the commercial solver in ameaningful time period.

4.4. Summary of the preliminary numerical experiments

The numerical analysis in this chapter was designed to test the proposed
formulation and evaluate the properties of the optimization problem. Ten different
case studies were generated based on the same structure of an imaginary hurricane
scenario to analyze the effects of the different parameters. In genera, the
proposed modeling framework produced reasonable outcome. It was able to
provide the level of details required in the disaster response logistics at the
operational level. For simple cases and small-size problems, the commercial
solver was able to find the optimal solutions, however, when the difficult
constraints such as equity constraints were added or when the time horizon was
extended from 1-day to 2-days, CPLEX commercial solver was unable to deliver
good results. It is concluded that better solution algorithms or heuristics are

needed to address the larger problem instances or real world size problems.
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Chapter 5: Solution Approaches

In this chapter, first some solution approaches for general integer
programming from previous studies in the literature are reviewed in section 5.1.
Then in section 5.2, the solution approaches that were specifically used in
emergency logistics literature are reviewed in more details. After literature
review, in section 5.3 a number of solution techniques are proposed for the
mathematical model presented in chapter 3. Two sets of algorithms are proposed
to solve the different parts of the problem. In section 5.4 solution algorithms are
proposed to solve the hierarchical location finding problem. And in section 5.5,
some heuristic algorithms are proposed to solve the general integer vehicle
routing problem. In section 5.6, more numerical analysis is performed to further
evaluate the robustness of the proposed agorithms. Finally, section 5.7

summarizes the devel opments in this chapter.

5.1 General Solution Approachesfor Integer Programs

In General, integer programming problems are very difficult to solve.
Over the years, different researchers have proposed several very different solution
algorithms. Today, the question is how to select the best approach among the list
of available general approaches. Algorithm selection has become an art as some
algorithms work better on some specific problem instances. A brief discussion of
algorithms is presented in this subsection, attempting to expose readers to their

characteristics. More detailed review of integer and combinatorial optimization
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algorithms can be found in the integer programming literature (e.g. Nemhauser
and Wolsey (1999))

Historically, linear programming (LP) has been the base for integer
programming (IP) solution approaches. LP was invented in the late 1940's. Those
examining LP relatively quickly came to the realization that it would be desirable
to solve problems which had some integer variables (Dantzig, 1960). This led to
development of agorithms for the solution of pure IP problems. The first
algorithms were cutting plane algorithms as developed by Dantzig, Fulkerson and
Johnson (1954) and Gomory (1963). Land and Doig (1960) subsequently
introduced the branch and bound algorithm. More recently, implicit enumeration
(Balas 1965), decomposition (Benders 1962), Lagrangian relaxation (Geoffrion,
1974) and heuristic approaches have been used to solve various integer programs.

McCarl and Spreen (1997) suggested the following classification of

general algorithms for integer programming problems:

5.1.1 Cutting Planes

The first formal IP agorithms involved the concept of cutting planes.
Cutting planes iteratively remove parts of the feasible region without removing
integer solution points. The basic idea behind a cutting plane is that the optimal
integer point is close to the optimal LP solution, but does not fall at the constraint
intersection so additional constraints need to be imposed. Consequently,
constraints are added to force the non-integer LP solution to be infeasible without
eliminating any integer solutions. This is done by adding a constraint forcing the

non-basic variables to be greater than a small nonzero value. The simplest form of
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a cutting plane would be to require the sum of the non-basic variables to be
greater than or equa to the fractiona part of one of the variables. The cutting
plane agorithms continualy add such constraints until an integer solution is
obtained. Methods for developing cuts appear in Gomory (1963) in more details.
Several points need to be made about cutting plane approaches. First,
many cuts may be required to obtain an integer solution. For example, Beale
(2977) reports that a large number of cuts is often required (in fact often more
cuts are required than can be computationally afforded). Second, the first integer
solution found is the optimal solution. This solution is discovered after only
enough cuts have been added to yield an integer solution. Consequently, if the
solution algorithm runs out of time or space the modeler is left without an
acceptable solution (this is often the case). Third, given comparative performance
with other algorithms, cutting plane approaches have faded in popularity

(Beale,1977).

5.1.2 Branch and Bound

The second solution approach developed was the branch and bound
algorithm. Branch and bound, originally introduced by Land and Doig (1960),
pursues a divide-and-conquer strategy. The algorithm starts with a LP solution
and also imposes constraints to force the LP solution to become an integer
solution similar to cutting planes. However, branch and bound constraints are
upper and lower bounds on variables.

The branch and bound solution procedure generates two problems

(branches) after each LP solution. Each problem excludes the unwanted non-
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integer solution, forming an increasingly more tightly constrained LP problem.
There are several decisions required. One must both decide which variable to
branch on and which problem to solve (branch to follow). When one solves a
particular problem, one may find an integer solution. However, one cannot be
sure it is optima until all problems have been examined. Problems can be
examined implicitly or explicitly. Maximization problems will exhibit declining
objective function values whenever additional constraints are added.
Consequently, given afeasible integer solution has been found, then any solution,
integer or not, with a smaller objective function value cannot be optimal, nor can
further branching on any problem below it yield a better solution than the
incumbent (since the objective function will only decline). Thus, the best integer
solution found at any stage of the agorithm provides a bound limiting the
problems (branches) to be searched. The bound is continually updated as better
integer solutions are found.

The problems generated at each stage differ from their parent problem
only by the bounds on the integer variables. Thus, a LP agorithm that can handle
bound changes can easily carry out the branch and bound cal culations.

The branch and bound approach is the most commonly used genera
purpose IP solution algorithm and it is implemented in many commercial solvers.
However, its use can be expensive. The agorithm does yield intermediate
solutions which are usable athough not optimal. Often the branch and bound

algorithm will come up with near optimal solutions quickly but will then spend a
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lot of time verifying optimality. Shadow prices from the agorithm can be
misleading since they include shadow prices for the bounding constraints.

A specialized form of the branch and bound agorithm for zero-one
programming was developed by Balas (1965). This agorithm is called implicit

enumeration.

5.1.3 L agrangian Relaxation

Lagrangian relaxation (Geoffrion (1974), Fisher (1981)) is another area of
|P algorithmic development. Lagrangian relaxation refers to a procedure in which
some of the constraints are relaxed into the objective function using an approach
motivated by Lagrangian multipliers. The basic Lagrangian relaxation problem
for the mixed integer program involves discovering a set of Lagrange multipliers
for some constraints and relaxing that set of constraints into the objective
function. The main ideais to remove difficult constraints from the problem so the
integer programs are much easier to solve. IP problems with structures like that of
the transportation problem can be directly solved with LP. The trick then is to
choose the right constraints to relax and to develop values for the Lagrangian
multipliers leading to the appropriate solution.

Lagrangian relaxation has been mainly used in two settings. 1) to improve
the performance of bounds on solutions; and 2) to develop solutions which can be
adjusted directly or through heuristics so they are feasible in the overall problem
(Fisher (1981)). An important Lagrangian relaxation result is that the relaxed
problem provides an upper bound on the solution to the unrelaxed problem at any

stage. Lagrangian relaxation has been heavily used in branch and bound
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algorithms to derive upper bounds for a problem to see whether further branching

down on that branch is worthwhile.

5.1.4 Bender s Decomposition

Benders decomposition is another algorithm to solve integer programs.
This agorithm solves mixed integer programs via structural exploitation. Benders
(1962) developed the procedure which decomposes a mixed integer problem into
two problems; an integer master problem and a linear subproblem. Then these
problems are solved iteratively. Consider the following decomposable mixed IP

problem: Maximize X+ Cz

st. GX < b
HX + AZ < b
DZ < bs

Xisinteger, Z >0
Assuming X* is a feasible set of points for integer variables X, then the
subproblem for any given X* would be:

Maximize Cz

st. AZ <b, - HX* (o)
DZ <bg B)
Z>0

Solution to this subproblem yields the dual variables in parentheses. In
turn a"master" problem isformed as follows:

Maximize FX + Q
X,a,B,Q
st. Q < o (by—HX) + B bs fori=1,23...,p
GX <y
Xisinteger , Qisunrestricted
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This problem contains the dua information from above and generates a
new X vaue. The constraint involving Q gives a prediction of the subproblem
objective function arising from the dual variables from the i" previous guess at X.
In turn, this problem produces a new and better guess at X. Each iteration adds a
constraint to the master problem. The objective function consists of FX + Q,
where Q is an approximation of CZ. The master problem objective function
therefore constitutes a monotonically non-increasing upper bound as the iterations
proceed. The subproblem objective function (CZ) at any iteration plus FX can be
regarded as a lower bound. The lower bound does not increase monotonically.
However, by choosing the larger of the current candidate lower bound and the
incumbent lower bound, a monotonic non-decreasing sequence of bounds is
formed. The upper and lower bounds then give a monotonically decreasing gap
between the bounds. Benders decomposition convergence occurs when the
difference between the bounds is driven to zero. When the problem is stopped
with atolerance, the objective function will be within the tolerance, but thereis no
relationship giving distance between the variable solutions found and the true
optimal solutions for the variables.

Convergence will occur in apractical setting only if for every X arelevant
set of dual variables is returned. This will only be the case if the subproblem is
bounded and has a feasible solution for each X that the master problem yields.
This may not be generaly true. Also the boundedness and feasibility of the
subproblem says nothing about the rate of convergence. The rea art of utilizing

Benders decomposition involves the recognition of appropriate problems and/or
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problem structures which will converge rapidly. The procedure can work very
poorly for certain structures (Sherali 1981).

In generdl:

1. The decomposition method does not work well when the X variables
chosen by the master problem do not yield a feasible subproblem. Thus,
the more accurately the constraints in the master problem portray the
conditions of the subproblem, the faster will be convergence.

2. The tighter (more constrained) the feasible region of the master problem
the better.

3. When possible, constraints should be entered in the master problem
precluding feasible yet unrealistic (suboptimal) solutions to the overal
problem.

The most common reason to use Benders method is to decompose large
mixed integer problem into a small, difficult master problem and a larger smple
linear program. This allows the solution of the problem by two pieces of software
which individually would not be adequate for the overall problem. It should be
noted that in Benders decomposition method, the master problem is still an

integer program that might be very difficult to solve.

5.1.5 Heuristics

Many IP problems are combinatorial and difficult to solve by nature. In
fact, the study of NP complete problems (Papadimitrou and Steiglitz (1982)) has
shown extreme computational complexity for problems such as the traveling

salesman problem. Such computational difficulties have led to a large number of
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heuristics. These heuristics are used when: a) the quality of the data does not
merit the generation of exact optimal solutions; b) a simplified model has been
used, and/or c) when a reliable exact method is not available, computationally
attractive, and/or affordable.

Arguments for heuristics are aso presented regarding improving the
performance of an optimizer where a heuristic may be used to save time in a
branch and bound code, or if the problem is repeatedly solved. Many IP heuristics
have been developed, some of which are specific to particular types of problems.
For example, there have been a number of traveling salesman problem heuristics
as reviewed in Golden et a (1980). Zanakis and Evans (1981) provide a genera
review of heuristics.

Generdly, heuristics perform well on specia types of problems, quite
often coming up with errors of smaller than two percent (McCarl and Spreen
(1997)). Zanakis and Evans (1981) provide discussions of selections of heuristics

vis-a-vis one another and optimizing methods.

5.1.6 Structural Exploitation

Past experiences on IP have indicated that general-purpose IP agorithms
do not work satisfactorily for al IP problems. Recently, the most promising
developments have involved structural exploitation, where the particular structure
of a problem has been used in the development of the solution algorithm. Benders
decomposition and Lagrangian relaxation are two examples of structural
exploitation. Some problem reformulation approaches and also specialized branch

and bound algorithms adapted to particular problems are examples of structural
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exploitation. The main mechanisms for structural exploitation are to develop an
algorithm especially tuned to a particular problem or, more generaly, to
transform a problem into a smpler problem to solve. The application of such
algorithms has sometimes led to spectacular results, with problems with
thousands of variables being solved in seconds of computer time (McCarl and
Spreen (1997)).

Unfortunately, none of the available algorithms have been shown to
perform satisfactorily for al IP problems. However, certain types of algorithms
are good at solving certain types of problems and a number of efforts have
concentrated on algorithmic development for specially structured IP problems.
The following section reviews some of approaches used in emergency logistics

literature.

5.2 Solution approaches used in emergency logisticsliterature

Chapter 2 provided an extensive review of previous research in the
emergency logistics literature. From the number of researches discussed in
chapter 2 only four publications are found to have a mathematical model that are
partialy similar to the mathematical model proposed in this research. In the
following paragraphs the solution approaches used in these four lead publications
arereviewed.

Haghani and Oh (1996) proposed a formulation and solution of a multi-
commodity, multi-modal network flow model for disaster relief operations. Their
model can determine detailed routing and scheduling plans for multiple

transportation modes carrying various relief commodities from multiple supply
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points to demand points in the disaster area. They formulated the multi-depot
mixed pickup and delivery vehicle routing problem with time windows as a
special network flow problem over a time-space network. The objective was
minimizing the sum of the vehicular flow costs, commodity flow costs,
supply/demand storage costs and inter-modal transfer costs over al time periods.
Structurally, their model was composed of two network flow problems; one with
only real-valued variables and the other with integer variables were connected
with aset of capacity constraints called linkage constraints.

They developed two heuristic solution algorithms; the first one was a
Lagrangian relaxation approach, and the second was an iterative fix-and-run
process. The first solution agorithm decomposes the model into two subproblems
based on the relaxation of linkage constraints. Lagrangian relaxation is used with
penalty for shortage of capacity for linkage constraints. The agorithm was
iteratively applied until two subproblems converge. The second solution
algorithm was an ad hoc method that fixed integer variables gradualy. First al
integer variables were relaxed and LP relaxation is solved. Then based on the LP
solution, the values of some of the integer variables were fixed to an integer value
and the LP was solved again. This process was repeated iteratively until all
integer variables are fixed to integer values.

Haghani and Oh (1996) solved several instances of numerical problems
with both algorithms. For smaller size problems, they showed both agorithms
were successful in solving integer problem instances much faster than commercial

solvers. They aso showed for larger problem instances that the commercial solver
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was unable to find the optimal solution; both algorithms were able to find close to
optimal solution in relatively short CPU times. Comparing the two agorithms,
they concluded that the proposed fix-and-run agorithm outperforms the
Lagrangian relaxation algorithm both in CPU time and final solution quality.

Barbarosoglu and Arda (2004) developed a two-stage stochastic
programming model for transportation planning in disaster response. Their study
expanded on the deterministic multi-commodity, multi-moda network flow
problem of Haghani and Oh (1996) by including uncertainties in supply, route
capacities, and demand requirements. The authors designed 8 earthquake
scenarios to test their approach on real-world problem instances. Their model isa
planning model that does not deal with details required at strategic or operational
levels. The model does not address facility location problem or vehicle routing
problem.

To solve numerical examples, Barbarosoglu and Arda (2004) in the first
stage generate random scenarios for supply, demand, and available capacity. In
the second stage they used the commercial solver GAMS to solve the resulted
network flow problem to minimize the cost. They did not propose any specia
solution algorithms but used GAM S software to solve the numerical studies.

Ozdamar et a. (2004) addressed an emergency logistics problem for
distributing multiple commodities from a number of supply centers to distribution
centers near the affected area. They formulated a multi-period multi-commodity
network flow model to determine pickup and delivery schedules for vehicles as

well as the quantities of loads delivered on these routes, with the objective of
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minimizing the amount of unsatisfied demand over time. The structure of the
proposed formulation enabled them to regenerate plans based on changing
demand, supply quantities, and fleet size. They developed an iterative Lagrangian
relaxation algorithm and a greedy heuristic to solve the problem.

The Lagrangian relaxation approach used in Ozdamar et al. (2004) was
similar to the one previously discussed in Haghani and Oh (1996) with the only
change that Ozdamar et al. (2004) used commercial solver GAMS to solve the
linear relaxations. The proposed greedy agorithm solves the network flow
problem without considering vehicles to find the best routes for the flow of
commodities. Then the algorithm assigns the vehicles to the first available
shipment so to minimize the shipment delay. If the vehicles are not available
immediately, the shipment is postponed till the earliest available vehicle arrives.

The greedy approach is myopic in the sense that the vehicles are
independently assigned to the first available job instead of considering the other
combinations that might be more rewarding. Comparing the Lagrangian
relaxation algorithm and the greedy algorithm in Ozdamar et al. (2004), it was
concluded that the greedy algorithm performs faster than Lagrangian relaxation
algorithm. However, the greedy algorithm usually resulted larger gaps with global
optimal compared to the Lagrangian relaxation. Greedy agorithm did not perform
well especialy when the capacity was tight that is the usua case in disaster
response operations.

Finaly, Yi and Ozdamar (2007) proposed a model that integrated the

supply delivery with evacuation of wounded people in disaster response activities.
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They considered establishment of temporary emergency facilities in disaster area
to serve the medical needs of victims immediately after disaster. They used the
capacity of vehiclesto move wounded people as well asrelief commodities. Their
model considered vehicle routing problem in conjunction with facility location
problem. The proposed model is a mixed integer multi-commodity network flow
model that treats vehicles as integer commodity flows rather than binary
variables.

Their numerical experiment considered a potential earthquake scenario for
the city of Istanbul in Turkey. The numerical problem had 20 nodes, 3
transportation modes, 2 relief commodities and modeled for 8 time periods. They
used commercial solver CPLEX 7.5 to solve the IP model. They did not propose
any new solution algorithm to the problem however they offered an algorithm to
find the itinerary of vehicles from the optimal solution output of CPLEX integer
programming solver. They reported that post processing agorithm was pseudo-
polynomial in terms of the number of vehicles utilized.

Yi and Ozdamar (2007) took the network flow vehicle routing (where
vehicles are treated as general integer-valued commodities) and compared it with
classic 0-1 vehicle routing. They showed that the genera integer formulation is
more compact and it is much more efficient for solving. They experienced CPU
times “in seconds” for general integer VRP versus “in minutes’ for classic binary
VRP. However in genera integer VRP, post processing was needed to extract

detailed vehicle routing and pickup or delivery schedules.
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To summarize, it is shown that in previous publications only a few
mathematical models can be found which have relatively similar structures to the
model proposed in this research. In those publications, three solution approaches
are proposed and tested; Lagrangian elaxation, fix-and-run euristic, and greedy
heuristic algorithm. Lagrangian relaxation is successful in proving a bound but it
was shown to be the most time consuming algorithm. Greedy heuristic algorithm
was shown to be faster compared to Lagrangian relaxation algorithm. However, it
lacked in the quality of final optimal solution and resulted in large optimality gaps
especially when transportation capacity was limited. Fix-and-run heuristic
outperformed Lagrangian relaxation in both categories of speed and solution
quality. Fix-and-run heuristic compared to Lagrangian relaxation found the fina

solution in less CPU time and resulted in smaller optimality gap.

5.3 Solution Techniquesfor Proposed Mathematical Model

The mathematical model proposed in chapter 3 is a complex integrated model.
Such an integrated model provides the opportunity for a centralized operation
plan that can eliminate delays and assign the limited resources to the best possible
use. However, the model is a large-scale mixed general integer programming
model and solving such a comprehensive mathematical model is a big chalenge.
Asit isshown in preliminary numerical experiments in chapter 4, the commercial
solver was unabl e to find the optimal solution in areasonable time.

Based on the analysis of the solution techniques for similar models in the
literature, it is concluded that exact solution algorithms will not be able to

efficiently solve the proposed model. Consequently, the best approach might be
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designing fast heuristic algorithms that can find near optimal solutions in
relatively short computation times. On the other hand, since this model is more
complicated than al the previous works in the literature, it would be favorable to
structurally decompose this problem to some smaller or easier problems.

This model integrates commodity flow problem which is a linear multi-
commodity network flow problem with multi-echelon facility location problem
which is a binary mixed integer program, and multimodal vehicle routing problem
which is alarge-scale general integer-valued network flow problem. The “ldea’ is
to decompose the problem into smaller or easier problems while taking advantage
of the specia structures that already exist.

The multi-commodity network flow problem is a linear program. LP
models are considered easy-to-solve since efficient solution agorithms and
commercia solvers exist that can quickly solve large-scale linear programs. The
difficult parts are the two integer programming subproblems. In the following
sections, a number of heuristic algorithms are proposed to solve the integer
programming part of mathematical model. First in section 5.4, four heuristics are
proposed to solve the hierarchical location finding problem. Then in section 5.5,
four new heuristic agorithms are proposed to solve the general integer vehicle

routing problem.

5.4 Algorithmsfor solving the location problem

As discussed earlier, the mathematical formulation presented in chapter 3
is composed of three subproblems. The linear commodity flow subproblem is

considered easy and can be solved in conjunction to the facility location problem.
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On the other hand, the general integer vehicle routing subproblem is alarge-scale
mixed integer program itself which is considered very difficult to solve.

This problem is not mathematically decomposable and it is important to
keep the interrelations between the three subproblems. To do so, it is suggested to
first relax the integrality condition of vehicle routing subproblem and try to solve
the location problem. When the optimal locations are known, it would be much
easier to solve the vehicle routing problem. Considering relaxed VRP problem
inside the location finding problem is a big advantage because it is easier to solve
meanwhile it dtill reflects the effects of the VRP and available transportation

capacity on the location finding problem. The mathematical formulation of this

location problem can be obtained by only relaxing the Y variables (general
integer variables related to vehicle routing problem) in the original model
presented in chapter 3.

In the following subsections, four solution approaches are considered to

solve the location finding problem in the form explained in the last paragraph.

5.4.1 Explicit Enumer ation

The candidate sites for temporary facility locations are chosen prior to
emergency response. Consequently, the number of potential sites is known and
the number of possible combinations for facility locations is a finite number. The
simplest conceivable optimization approach is explicit enumeration. It is possible
to generate all possible solutions, evaluate each of them, and keep the best.

To test the applicability of explicit enumeration, let’s use the numerical
example introduced in Chapter 4:

110



|
Combinations for selecting 2 MOB out of 4 candidates: % =6

|
Combinations for selecting 2 FOSA out of 4 candidates: % =6

|
Combinations for selecting 4 SSA out of 10 candidates: jl—og =210

Total number of combinations is equal to 6 6° 210=7560. For any
given locations, the remaining problem is a linear program that has a network
structure. Linear network problems are considered easy to solve since good
algorithms and efficient commercial solvers are developed to solve that problem.
For instance, for linear relaxation of the numerical experiment introduced in
chapter 4 with given locations, CPLEX solver was able to solve the problem in
around 7 seconds on average. If it is required to enumerate all combinations, the
total CPU timeisequal to 7560 7sec =52920sec =14.7hours.

It can be concluded that since it is easy to solve the problem after locations
are given, it is still possible to explicitly enumerate all combinations and find the
final optimal solution. It might not be wise to solve for every single combination,
however, it indicates the level of difficulty of the IP problem and provides a
benchmark for development and comparison of other solution algorithms. Some

other heuristic algorithms are introduced in the following subsections.

5.4.2 Branch and bound - Hierar chical decomposition

Branch and bound algorithm is widely used to solve integer programs. It is
especially successful when the integer variables are 0-1 binary variables as it is
the case in location finding problems. Good algorithms and efficient commercial

solvers are developed that use the branch and bound technique. ILOG CPLEX
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solver is a commercial solver that can apply branch and bound to solve binary
mixed integer programs.

The proposed mathematical model contains three levels of temporary
facilities. Mobilization centers (MOB) are at the top. Federal operational staging
areas (FOSA) are the intermediate level facilities that receilve commodities from
MOB. Then there is state staging areas (SSA) that receive commodities from
FOSAs. It is possible to use branch and bound to solve al three levels
simultaneously. However, it is possible to hierarchically decompose the facility
location problems and solve them consecutively.

Three decomposition approaches are proposed and tested:

1. Top-to-Bottom: Decompose the problem into federal level facilities and

state level facilities. Assume all state level facilities are open (i.e.

Loc, =1 " il SSA). Solve the integer program to find the optimal

locations for federa level facilities. Fix the solution for top level to its
optimal values and solve the integer program for the state level facilities.

2. Bottom-to-Top: Decompose the problem into federal level facilities and
state level facilities. Assume all federal level facilities are open (i.e.
Loc, =1 " il FOSAE MOB). Solve the integer program to find the
optimal locations for state level facilities. Fix the solution for bottom level
and solve the integer program to find the optimal state level facilities.

3. Tier-by-Tier: First solve the integer program to find the optimal locations

for MOB level facilities assuming all other facilities are open. Then fix the
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optimal MOB, assume all SSA are open and solve IP for FOSA facilities.

Finally, fix optimal MOB and FOSA then solve for SSA.

Table 5.1 shows the results of applying the abovementioned approaches to
the numerical problem in chapter 4. Comparing the total CPU times, it can be
seen that Tier-by-Tier decomposition resulted in the least computation time. It
was able to reduce the CPU time from 379 seconds when @l tiers are considered
together, to about 203 seconds (a reduction of about 46%). The Top-to-Bottom
approach aso gives good results with a total of 215 seconds computation time
(43% reduction). On the other hand, it seems that for the current example,
Bottom-to-Top approach did not provide favorable results. Mainly, when all
federa level facilities are forced to be open, it generates an unnecessarily large
number of combinations. Exploring al those combinations result in higher than

usual computation times in Bottom-to-Top approach.

Table 5.1 Branch and Bound and Hierar chical Decomposition

Case Solgtion Final Obj lterations Total Time
Time (E+7) (S
Solvefor All Location Tiers 378.69 3.83595 204402 378.69
All State Level = 1, Solve for FED level 191.91 3.83595 181589 21483
Given FED level, SOLVE for State 22.92 3.83595 43781
ALL FED level =1, Solvefor State 819.23 3.77795 559223 958.2
Given State, Solve for FED 138.97 3.83595 106213
Solvefor MOB, Rest =1 151.03 3.82113 139943
Given MOB, Solve for FOSA, SSA =1 28.66 3.83595 59960 202.63
Given MOB & FOSA, Solve for SSA 22.94 3.83595 43781

Solution times for solver CPLEX 11.0 on Dell desktop with 3GHz CPU and 4GB RAM

It is important to mention that all three proposed approaches provided the

same optimal locations. Although it is not a proof, it is a very favorable property
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to have a number of heuristic algorithms that find the exact solution. The design
of proposed hierarchica decompositions allows the heuristics to find the exact
optimal solution by not cutting the feasible region. For example in Tier-by-Tier
approach, when solving for top tier (MOB level), al other lower level facilities
are forced to be open regardless of the limitation on the maximum number of
open facilities in lower levels. This provides the chance to find the optimal
locations for the tier in hand because all lower levels facilities are at their best

theoretica combination.

5.4.3 Highest Capacity Ratio

Solving linear relaxation of integer programming problems and analyzing
the results can reveal very valuable insights. Theideain this heuristic is to use the
linear relaxation to find the facility or facilities that are most important for the
performance of the system. Returning to capacity constraints in the mathematical
formulation in chapter 3, the following equation enforces the sum of all flows
leaving facility i, to be less than the loading capacity of facility i if it is selected to
be open; or to be zero otherwise:

a a XM £ Leap!” Loc, "i,mt Repeated (3.12)
¢ |

If the binary integer variable Loc; is relaxed to take any real number
between 0 and 1, it can show the capacity ratio that is used in facility i. The
facilities with higher capacity ratios are more favorable because they handle the

most flow and their existence is more important to the entire response operations.
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The steps of the Highest Capacity Ratio (HCR) Algorithm are:
Step 1- Relax the integrality condition for all temporary facility variables

Step 2- Add O£ Log £1for all relaxed binary variables

Step 3- Solve the linear relaxation problem and obtain optimal values for all
Loc; variables
Step 4- For each facility type; sort the Loc; variablesin descending order
Step 5- For each facility type; select the facilities with highest capacity ratio
from top of thelist until the maximum number alowed is reached
By following these five steps, one can find the selected facilities in a
single snapshot. However, it can be argued that selecting a facility may affect the
selection of others. So it might be beneficial to select the one facility with the
highest ratio, solve the linear relaxation again, and repeat until maximum number
of each facility is selected.
The steps of Iterative Highest Capacity Ratio (IHCR) algorithm are:

Step 1- Relax the integrality condition for all temporary facility variables

Step 2- Add O£ Log £1for all relaxed binary variables

Step 3- Solve the linear relaxation problem and obtain optimal values for al
Loc; variables

Step 4- Find the facility i with the highest Loc; value

Step 5- If the maximum number of facilities are not reached, select facility i,

add Loc =1to the formulation and go to Step 3. Otherwise stop.
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To test HCR algorithm, the LP relaxation of the numerical experiment
formerly introduced in chapter 3 is solved again. Table 5.2 shows the values for
relaxed Loc; variables. The constraints for the maximum number of facilities
required the selection of 2 MOB out of 4, 2 FOSA out of 4 and 4 SSA out of 10
potential SSA nodes. Solving the linear relaxation with additional O£ Log £1
constraints only took about 32 seconds. The resulted node selection shown in
Table 5.2 is obtained with using the single snapshot HCR algorithm. It is worth
mentioning that for this example, the HCR agorithm was able to find the exact
optimal solution and did so incredibly faster than branch and bound method (32

seconds versus 379 seconds).

Table 5.2 Values of Loc; variablesfor HCR heuristic algorithm

Facility Type MOB FOSA SSA
(4) 0.6807 ©® 10 12) 10 (17) 06174
5) 10 @ o0 (13) 05357 | (18) 0.3131
(”E%z”\ygj‘sg) 6 0 (100 08532 | (14) 04164 | (19) 0.8359
(7) 0.3193 (11) 01468 | (15) O (20) 0.2054
16 0 (21) 0.0762
Selected Nodes 4,5 8,10 12,13,17,19

5.4.4 Static Networ k-L ocation

Considering atime varying structure and a time-space network is essential
to capture the details of emergency response logistics at the operational level.
However, it expands the size of the formulation drasticaly and makes the
problem extremely difficult to solve. The idea for this heuristic is to build a static

version of the formulation that can be solved much easier and faster. It should still
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consider the specia structure of the network and account for supplies, demands,
and facility capacities; but manage to aggregate over the time dimension in order
to generate a smaler formulation. To do so, the following mathematical

formulation is proposed:

Min aaa t X" (5.1
m c¢ i,j

aaxm-aaxrmesp il Ugc (5.2)

m m j

aaxm-aaxes "iT W,c (5.3)

m m

aaxm-aaxyr=penf “ilvec (5.4)

m j m

aaxmeLeap” il U,m (5.5)

c ]

aaXrEUcap"  "iTU+V,m (5.6)

c

aaXxX,mELcaphLlog il w,m (5.7)

c ]

a a X" EUcap™Loc il W,m (5.8)

c ]

a Loc £ Loc, (5.9)

Log? (0) "iTw  ad X™30 "ijcm

The notations are similar to the original problem that is previously defined in
section 3.5 with the exception that time index t is dropped from al variables and

parameters. As aresult, all variables and parameters are static and defined as the

aggregate vaue of the origina variables over al time periods. For example, Sup’
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and Denfare the aggregate supply and aggregate demand of commodity c in
node i, over the entire planning horizon. Decision variable X{™is the aggregate

amount of commodity c that is shipped from node i to node j with transportation
mode m, over the entire planning horizon.

In this new formulation the details of unsatisfied demand over time is not
available. Consequently, the objective function (5.1) is chosen to minimize the
total travel time by all commodities. Equation (5.2) and (5.4) enforce the supply
and demand constraints for each node and each commodity. Equation (5.3)
imposes the conservation of flow at intermediate nodes. Loading and unloading
capacity constraints are defined in equations (5.5) and (5.6) for the permanent
facilities. Similar constraints for temporary facilities are required by equations
(5.7) and (5.8). Finally, equation (5.9) enforces the maximum number of open
facilities for each facility type.

In the proposed static formulation, vehicle routing constraints are dropped
from the formulation. It is equivalent to assume that ample transportation capacity
is available or the initial distribution of vehicles is done in such a way that does
not affect the choice of temporary facilities. Also, time-space structure is removed
from the origina model. It can be explained if the variations of supplies,
demands, and capacities over the planning horizon are not very drastic. No link
capacity isimposed in this formulation; however capacity limitations are reflected
in loading and unloading capacities for each facility.

It should be noticed that the static formulation is still an integer

programming model. However, it is of much lower size and complexity compared
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to the origina formulation while still reflecting the structure and important
properties of the original model.

Similar to previous heuristics, static network location problem (SNLP)
heuristic is aso tested with the numerical example of chapter 4. CPLEX solver
version 11.0 is used to solve the problem on a Dell desktop computer with 3 GHz
CPU and 4GB of RAM. After presolve modifications, reduced MIP had 130 rows,
491 columns, and 1713 nonzeros. It took less than 1 second to solve the modified
problem which is extremely faster than the previous heuristics. However, optimal
locations obtained from this formulation do not exactly match with the optimal
locations of the original IP problem. Using the locations suggested by SNLP
results in 2.5% higher objective function value compared to the case that exact
optimal locations are used.

To summarize, four heuristic approaches are proposed to solve the
location finding problem. Computation times vary greatly across the algorithms
ranging from 14 hours to less than 1 second. Firstly, explicit enumeration showed
that even though LP solution when locations are given takes only 7 seconds, the
large number of possible combinations makes it very difficult to explore al the
combinations. Secondly, hierarchical decomposition approach suggested that it is
beneficial to choose it over the general branch and bound (46% faster). Among
the three suggested hierarchical decompositions, Tier-by-Tier decomposition was
the fastest. Thirdly, highest capacity ratio heuristic was the fastest among all other
heuristics that could still find the exact optimal solution. And finally, SNLP

proposed a new formulation that is very efficient and can be solved to find the
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locations for the origina problem. SNLP was the fastest algorithm but the

resulted locations were different from those of the exact optimal solution.

5.5 Algorithmsfor solving Vehicle Routing Problem

In section 5.2 the relevant literature that suggested solution methods was
summarized. Mainly, three heuristic approaches were proposed to solve the
general integer vehicle routing problem: Lagrangian relaxation, Fix-and-Run
algorithm, and a greedy algorithm. Using the numerical results, it was aso
concluded that the Fix-and-Run algorithm proposed by Haghani and Oh (1996)
had the best performance. It was the fastest algorithm and it had the least
optimality gap compared to the other a gorithms.

In the following subsections, four heuristic algorithms are proposed to
solve the genera integer vehicle routing problem. The general idea is adopted
from the successful experience of Fix-and-Run heuristic agorithm suggested by
Haghani and Oh (1996). The main steps of the proposed algorithms are:

1. The mixed integer linear problem is solved with the relaxation of
integer variables.

2. Thevaues of someinteger variables are fixed in an orderly manner and
the problem is solved again with the relaxation of the remaining integer
variablesiteratively.

3.  When dl integer variables are fixed, the process is terminated.

5.5.1 T-Counter Heuristic

The steps of T-Counter algorithm are as following:
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Step 1- Relax al general integer variables and solve the relaxed LP. Set t=0

Step 2- Check al Y, variables for current time period t. If al Y, variables
are integer, then if t = to¢, terminate. Otherwise, sett =t + 1 and restart
Step 2.

Step 3- For current time period t, fix al Y, variables to the closest integer

number

Step 4- Create a new problem by adding (Y, = the fixed value from step 3)

constraints to the problem
Step 5- Relax the rest of the integer variables and solve the new LP problem
Step 6- Sett =t + 1 and go to Step 2

In this algorithm, starting from the first time period, Y variables are fixed
iteratively and in a chronological order. If the flow of the vehicles through the
network isfixed to beintegra at time period t, because of the network structure of
the problem, it is more likely that the flows at time periods after t, aso turn out to
be integral. Conservation of flow in a time-space network requires that if the
flows that enter a node are integer, then sum of the flows that |eave the same node
must also be integral. This does not mean that every single flow leaving that node
will definitely beinteger but it is a necessary condition.

If the planning horizon of the problem is consisted of T time periods, then
in worst case the agorithm will go through only T iterations. It is the worst case
scenario and not the average case because during an iteration if all Y variables are
already integer, the algorithm directly proceeds to next t without solving a LP

relaxation. This is a very important property to have because this algorithm will
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stop at most after T iterations. Fast convergence rate is expected from this

algorithm.

5.5.2 Origin-Based T-Counter Heuristic

In the previous algorithm, in each iteration all the Yijrtn variables for current
time period t are fixed at the same time. That approach reduces the flexibility of
the algorithm to reroute the vehicles within one time period which can sometimes
cause suboptimal assignments. To remedy this, Origin-based T-Counter heuristic

algorithms is proposed. In this agorithm, outgoing flows from only one origin

node will be fixed during each iteration. In other words, for current time period t,

we start from node i = 1 and fix all outgoing Yij’t“variables, solve LP relaxation,
then fix al flows from node i = 2, and move to the next node until al nodes are
fixed. Then the same procedure is followed for the next time periods until the end
of the planning horizon.
The steps of Origin-based T-Counter algorithm are:

1- Sett=0andi=1

2- Relax al general integer variables and solve the relaxed LP.

3- If al relaxed variables are integer, the IP solution is found, Terminate

4- For current t and i, fix all Y;{' variables to the closest integer number

5- Create a new problem by adding (Y= the fixed value from step 4)

constraints
6- If i <ijxthenseti =i+ 1andgo to step 2. Otherwise go to the next step

7- If t =55 terminate otherwiseseti =1 and sett =t +1, go to step 2
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This agorithm is more general compared to T-Counter algorithm. If the
planning horizon of the problem is consisted of T time periods and N is the
number of nodes in the network, then at most T x N iterations are required to
solve the problem. Again thisis aworst case scenario and in genera the algorithm

is expected to find the integer solution before going through al T x N iterations.

5.5.3Y-List Heuristic

In the previous two algorithms, several Y variables are fixed during each

iteration. For example in T-Counter algorithm, at first iteration all Y,{' variables
with t = 0 are fixed simultaneously that can lead to under utilization of the
available vehicles. For more clarification assume a hypothetical scenario where
there are 4 vehicles available at node i and 3 exactly similar arcs are leaving node
i. Solving the linear relaxation of the problem will assign 1.33 vehicles to each
path. Applying T-Counter algorithm or even Origin-based T-Counter algorithm to
this example rounds down 1.33 and as a results it assignments 1 vehicle to each
path and 1 vehicle will remain unused.

Theideaof Y-List algorithm isto fix this problem by only selecting one Y
variable in each iteration. This will allow the LP model to adjust itself and take
advantage of any potentia vehicles that might be available and are not being used
due to rounding down. Returning to our hypothetical scenario, if the 3 arcs are

fixed one by one then al available vehicles will be used. The vehicle assignment

will be 1, 1, 2 and al 4 vehicles are utilized.
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To run this agorithm, it is required to have a priority list of all Y
variables. When the first LP relaxation is solved, the algorithm needsto selecta’Y
variable among al non-integer Y variables to fix. It is faster to have a pre-
populated list of al Y variables and then fix them one by one if they have a non-
integer value. The steps of Y-List algorithm are:

1- Populate asorted list of all i variables

2- Relax dl general integer variables and solve the relaxed LP

3- If dl Y variables are integer, save the solution & terminate the
algorithm, otherwise

4- Select the 1st Yi' from the list, Fix it to the closest integer number and
remove it from the Y -list

5- Create a new problem by adding (i = the fixed value from step 4)

constraint
6- Gotostep2

Theoretically in the worst case scenario, the algorithm can go through |Y|

iterations. |Y|is the total number of all Y,T' variables and also the size of the Y-

List set. In large scale numerical problems, |Y| can be a very large number. For

example in the numerical experiment in chapter 4, thousands of Y, variables
exist. In the worst case scenario the algorithm need to go over thousands of
iterations and fix every single Y variable. However, as it will be shown, usually

the algorithm does not need to fix every single Y variable before finding an IP
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solution. In fact due to having a network structure, an IP solution is found very

quickly and the algorithm converges relatively fast in typical numerical examples.

5.5.4Y-List Modal Heuristic

In large-scale logistic operations often multiple transportation modes are
utilized. From theoretical perspective, each transportation mode can be considered
as the flow of a special commodity over the network. Different transportation
modes are not competing for share resources and there is no explicit constraint
that relates the flow of different modes. Consequently, it can be assumed that each
transportation mode is acting somehow independently. It should be mentioned
that relief commodities that are carried by each transportation mode can be
transferred to another mode inside intermodal terminal but the vehicles of each
mode are never interchangeable. For example, if 2 trucks and 2 helicopters enter a
node, always the same 2 trucks and 2 helicopters have to leave that node and it
can never transform into 3 trucks and 1 helicopter.

Taking advantage of this independence among multiple transportation
modes is the idea behind Y-List Modal heuristic. Y-List Modal is very similar to
previously described Y-List heuristic, however it tries to fix a Y variable from
each transportation mode during each iteration. For example, if two

transportation modes exist, the agorithm will fix two Y variables in each

iteration. Consequently, if |M| is the number of available transportation modes,

the algorithm will fix |[M| variablesin each iteration and it can stop after |Y|/|M|

iterations in the worst case.
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The steps of Y-List Modal agorithm are:

1- Populate asorted list of all i variables for each mode m

2- Relax al general integer variables and solve the relaxed LP

3- If dl Yjvariables are integer, save the solution & terminate the

algorithm, otherwise

4- For each mode m, Select the 1st Y;ifrom the list, Fix it to the closest

integer number and remove it fromitsY-list

5- Create a new problem by adding (i = the fixed value from step 4)

constraints

6

Gotostep 2

5.5.5 Comparing Perfor mance of the Proposed Algorithms

In previous sections, four heuristic agorithms are proposed to solve the
general integer vehicle routing problem. In this section, these algorithms are
analyzed and their performance is compared. All four algorithms are applied to
the similar numerical examplethat is previously defined in Chapter 4. The facility
location problem is solved in advance and the optimal locations of the facilities
are assumed to be known at this stage.

The mathematica model is generated and initially solved by CPLEX
Software. Table 5.3 represents the statistics of the mathematical model and also
the optimization results obtained by the commercial solver. It is shown that the
problem is a large-scale mixed integer program with a large number of general

integer variables. CPLEX version 11.0 is used on a Dell desktop computer with 3
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GHz Intel CPU and 4 GB of RAM. Asit can be seen in the table, the commercial
solver got to as close as 0.5 percent gap but it was unable to find the exact
solution for the problem even after a long computation time. 0.5 percent
optimality gap should be acceptable in many applications; nonetheless it shows
the difficulty of solving the MIP problem even with a strong commercial solver

on afast computer.

Table 5.3- Model Statisticsand Optimization Resultsfrom CPLEX Solver

Problem Stats

Objective nonzeros = 3881

No. of Variables: 110572 [Nonnegative : 48300, Binary : 18, General Integer : 62254 ]

No. of Linear Constraints : 36593 [Equality : 11960 , Non-equality : 24633 ]

Nonzeros: 372305 [RHS nonzero : 1467]

CPLEX Optimization Results

Objective | Solution | GAP | Initia LP | MIP Best Comments
Vaue(E+7) | Time(s) | (%) Bound | Bound(E+7)
3.8709 81000 0.51 3.8059 3.8511 User-Stopped after 22.5 hrs
3.9121 1041 1.98 | 3.8059 3.8345 Stopping gap set to 2%

Table 5.4 shows the results of solving the same problem using the four
heuristic algorithms proposed in this chapter to solve general integer vehicle
routing problem. Comparing gap percentiles from the best IP, it is concluded that
the proposed algorithms were generally successful. Three of the four proposed
heuristic algorithms provided very small optimality gaps of between 1 and 2.5
percent to the best IP solution provided by the commercial software after 22.5

hours. Comparing the solution times is even more impressive. It can be seen that
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all algorithms found an IP solution and all of them converged in less than about 4
minutes. It is very important to quickly find close to optimal solutions especially

in this problem that deals with dynamic emergency response operations.

Table 5.4 Numerical results of the proposed VRP Heuristic Algorithms

P — Objective % GAP %GAP | |\ . | Solution
9 Vaue(E+7) | (Initid LP) | (BestIP) Time (9)
T-Counter 4.2525 10.85 9.85 98 113.3
Origin-Based 3.9668 3.41 2.47 3977 247.1
T-Counter
Y-List 3.91615 2.09 1.16 851 89.1
Y-List Modal 3.9300 2.45 152 507 73.7

Comparing the four agorithms, the Y-List algorithm is shown to find the
best solution quality with the minimum gap. Y-List Moda and Origin-Based T-
Counter agorithms aso resulted in very good objective functions and small
optimality gap. T-Counter algorithm has the largest gap of about 10 percent. It
should be reminded that the idea for T-Counter algorithm was adopted from
Haghani and Oh (1996) which was the best practice in literature available to this
date, to the best of our knowledge.

Comparing the solution speed and rate of convergence, it can be seen that
al agorithms are quite fast. Y-List Modal was the fastest algorithm with only
73.7 seconds CPU time. Y-List and T-Counter algorithms are in 2™ and 3" place
with relatively close solution times. Y-List Modal produced the longest solution
time of about 4 minutes, mainly due to the large number of iterations that was

required. It is very important to notice that the number of iterationsis not directly
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related to the solution time, because different iterations take different CPU times.
For example, Origin-Based T-Counter goes through about 4000 iterations in about
4 minutes compared to about 100 iterations of T-Counter that takes about 2
minutes. Also, Y-List Modal that recorded the least solution time does not have
the least number of iterations.

Figure 5.1 shows the convergence rate of the four agorithms. All
algorithms initialy start from LP relaxed solution which is an infeasible solution
for the IP problem. Over time, algorithms try to find integer solutions and reduce
this infeasibility. As more and more integer variables are found, the objective
function increases. In thisway, as soon as an all-integer set of variables are found,;
the algorithms will stop and report the best solution that is feasible for the IP
problem. Figure 5.1 shows a steep slope only for T-Counter agorithm and all
other algorithms have a steady and very gradual slope. The main reason is that T-
Counter algorithm fixes a large number of integer variables in every iteration that
reduces the number of iterations but on the other hand does not permit the LP
relaxation to re-adjust and utilize the vehicles that are left behind due to rounding
down. All other three algorithms, fix a very small number of variables in every
iteration. This alows the LP relaxation to adjust to the fixed values and re-route

the commodities and vehicles to take advantage of any remaining transportation

capacity.
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Figure 5.1 Convergence rate comparisons of the proposed algorithms

Table 5.5 summarizes the analysis and comparisons of the four proposed
algorithms. Each row shows a criterion and comparatively ranks the four
algorithms for those criteria. For example in best solution criteria, Y-List and Y-
List Mode are ranked one and two. Comparing the convergence rate, it can be
seen that Y-List Moda was the fastest algorithm followed by Y-List agorithm.
On the other hand when the least number of iterations are compared, T-Counter is
the winner. Also for theoretical worst-case criteria, T-Counter and Origin-Based
T-Counter algorithms are ranked 1% and 2. As explained earlier, one iteration of
each algorithm does not take the same amount of time as one iteration of the other
algorithms. Origin-Based T-Counter has the fastest time per iteration followed by

Y-List algorithm.
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Table 5.5 — Comparative Rankings of the Proposed Heuristic Algorithms

Comparative | 1 oo e | OMOINBased |y i | vt Modal
Ranking T-Counter
Best Solution
Quality 4th 3rd 1st
Convergence
Speed 3rd 4th 1st
Least No. of
Iterations 1st 4th 3rd
Best worst-
e 1st 4th 3rd
G J T s s 4th 1st 3rd
Iteration

To summarize, it is shown that all four algorithms are capable of finding
good quality solutions in relatively short computational times. Having short
computation time is the most important property of the proposed algorithms that
makes it possible to apply them in real-world dynamic operations. In Fact, the
applicability of proposed mathematical model in chapter 3 could be hardly
justified without fast solution algorithms that can adjust and re-optimize in real-
time.

Comparing the four agorithms, it is concluded that no single algorithm
dominates the others in al criteria rankings. When solution quality and
convergence speed is more important, Y-List and Y-List Moda are showed to
perform better. On the other hand, when good performance under worst-case
scenario is important, T-Counter and Origin-Based T-Counter agorithms are
shown to have better statistics.

It should be noted that all of the four proposed agorithms are heuristic

algorithms. Even though they showed very impressive results for the current
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numerical experiment, there is no proof that they will aways have equally good
performances for al problem instances. As explained in section 5.1.5, thisisin
the nature of most heuristic algorithms and is not limited to this study. However,
to test the robustness of the proposed algorithms further, more numerica

experiments are conducted in the following section.

5.6 Testing robustness of the proposed VRP heuristics

In section 5.5, four heuristics solution algorithms were proposed to solve
the genera integer vehicle routing problem. All four algorithms showed
reasonably good result for a particular numerical experiment. In this section, more
cases are generated and solved to test the robustness of the proposed algorithmsin
various conditions,

A total of ten random numerical cases are generated and solved by al four
proposed heuristics algorithms as well as the CPLEX commercial solver. In all
these ten cases, the network structure is similar to FEMA’s structure that was
introduced in previous numerica experiments. Also, for al these cases the
location problem is solved in advance and the optimal locations of al levels of
temporary facilities are known and fixed.

Table 5.6 lists the objective function values for these 10 cases. Linear
relation of the problem is also solved and the objective function of relaxed LP is
reported as a lower bound for comparison. Also in Table 5.6, average of the
objective functions for the 10 cases and its standard error is reported. The last row
of the table shows the average gap between the final solution of each algorithm

and the optimal solution for linear relaxation of the problem.
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Table 5.6 Objective function valuesfor 10 random cases

Objective

LP

Origin-bsd

Function relaxation | | CoUNter T-Counter Yelist Y-list Modal
CASE 1 3.50445 3.79365 3.5454 3.52815 3.54615
CASE 2 3.46545 3.69225 35121 3.4965 3.48285
CASE 3 3.5199 3.7290 3.56865 3.5481 3.5418
CASE 4 3.53715 3.84465 3.5979 3.5712 3.56535
CASE5 3.49095 3.7296 3.5433 3.52395 3.51495
CASE 6 3.48825 3.73365 3.55515 3.51705 3.51255
CASE 7 3.73995 3.98055 3.77055 3.75705 3.7791
CASE 8 3.4392 3.7134 34773 3.45825 3.4677
CASE 9 3.50805 3.7758 3.55755 3.5331 3.5388
CASE 10 3.5262 3.76065 3.5766 3.5568 3.5586
Average 3.521955 3.77532 3.57045 3.549015 3.550785
Coef.of Var 0.0232 0.0223 0.0218 0.0224 0.0242
Avg GAP(%) 0 7.20 1.38 0.77 0.82

Across the 10 random cases, al four agorithms present consistent

performances in general. Comparing the average gap percentile, it is shown that

Y-list modal had the best overall performance closely followed by Y-list modal.

For both of these cases the average gap is less than 1 percent which is a very

favorable outcome. Origin-based T-counter algorithm has also acceptable results

with only 1.38% optimality gap on average. The largest gap is produced by T-

counter algorithms at 7.2 percent on average.
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Table 5.7 lists the running time of the proposed a gorithms for the same 10
random cases. On average, Y-list algorithm has the fastest convergence rate at
about 2 minutes. The running time for other 3 algorithmsis aso in the acceptable
range. Highest average running time belongs to Origin-based T-Counter algorithm

at about 5 minutes.

Table 5.7 Running time comparisons of the algorithmsfor 10 random cases

CPUTIme | ¢ counter | Ofiginbased |y ;ig | vijig Modal
(sec) T-Counter

Casel 191 210 119 159
Case?2 107 197 137 84
Case3 170 420 155 140
Case 4 284 481 132 112
Case5 263 270 110 97
Case6 211 357 111 127
Case7 192 399 124 307
Case8 254 266 109 161
Case9 195 262 92 172
Case 10 243 304 179 162
Average 211 316.6 126.8 152.1

Coef.of Var 0.2468 0.2971 0.1998 0.4080

5.7 Summary

In this chapter, first some solution approaches for general integer
programming from previous studies in the literature were reviewed. It was
concluded that the current model is very complex and a reliable exact solution

method is not available that would be computationally attractive or affordable.
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Consequently, it is more realistic to develop fast and efficient heuristic algorithms
to find near optimal solutions.

The solution approaches exclusively used in emergency logistics were also
reviewed. Most studies used commercial solvers to solve their model, only three
solution approaches were proposed and tested; Lagrangian Relaxation, Fix-and-
Run Heuristic, and Greedy Heuristic agorithm. Lagrangian relaxation was
successful in proving a bound but it was shown to be the most time consuming
algorithm. Greedy Heuristic algorithm was shown to be faster compared to
Lagrangian relaxation algorithm but the quality of final optimal solution was not
good. Fix-and-Run heuristic outperformed Lagrangian Relaxation in both
categories of speed and solution quality. Fix-and-Run heuristic compared to
Lagrangian relaxation found the final solution in less CPU time and resulted in
smaller optimality gap.

To solve the mathematical model in this research, it was structurally
decomposed into three sub-problems. multicommodity network flow, location
finding with multiple layers, and general integer vehicle routing problem. These 3
problems were solved one-by-one, however the interrelation between these 3
problems were preserved at all times.

Multicommodity network flow problem is a linear program and is
considered easy since efficient commercial solvers exist that can solve very large
LP programs quickly. To solve the multi-layer facility location problem, 4

heuristic methods are proposed. From those, the Branch-and-bound with
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hierarchical decomposition and the highest capacity ratio were the 2 algorithms
that showed better results.

To solve the general integer vehicle routing problem four heuristic
algorithms were proposed. The algorithms were tested with alarge size numerical
experiment. All four algorithms were successful in finding a good integer
solution. The convergence rates of the proposed algorithms were also much faster
than the commercial solver for the same optimality gap.

The proposed VRP agorithms were compared to each other. It was
concluded that Y-list and Y-list Modal algorithms were better in solution quality
and the convergence speed. However, when worst-case scenario is considered, T-
counter and Origin-based T-counter algorithms were shown to have better
performances. Finaly, al four agorithms were used to solve 10 random
generated problem instances. It was concluded that the proposed al gorithms could
find good solutions very quickly. In fact, for most cases less than 2% optimality

gap was reached in less than 2 minutes of computation time.
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Chapter 6: Detailed Analysis of the Mathematical M odel

In this chapter, in-depth analyses of different aspects of the proposed
mathematical model are presented. These analyses are provided in order to better
illustrate the capabilities of the model and also examine model’s sensitivity in
various circumstances. The analyses in this chapter are divided into two main
categories. sensitivity analysis of the structural parameters of the model, and
sensitivity analysis of the main input values of the model.

In the following subsections, first in section 6.1 a numerical case study is
introduced that is being used to perform the analyses in the rest of this chapter.
Then in section 6.2, some parameters that affect the structure of the model are
introduced and sensitivity analysis is performed to investigate their role. In
section 6.3, sensitivity analysis is performed over severa input parameters. It is
shown that changing some input parameters not only affects the optimization
results but it can also largely ater the problem size and solution computation

times. Section 6.4 summarizes the overall findings of the sensitivity analysis.

6.1 Introduction of the numerical case study

The numerical problem in this chapter is an imaginary scenario where a
natural disaster such as a hurricane strikes the southern coast of the United States.
It is assumed that two separate regions, one in Mississippi and one in Louisiana,
are affected. The network structure of the problem is similar to the case study
introduced in chapter 4. One logistics center (LC), one commercial storage site

(CSS) and one vendor (VEN) are the three main permanent sources to store and
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ship the relief items. Three levels of temporary facilities that receive and transfer
relief items and vehicles include: Four mobilization centers (MOB), four federal
operationa staging areas (FOSA) and ten state staging areas (SSA). The demands
are concentrated at twenty points of distribution (POD) between two disaster
areas. Figure 6.1 shows the disaster area and the locations of the facilities. The
other definitions and parameter values are similar to those expressed in chapter 4

unless otherwise is stated in the following subsections.

Figure 6.1 Disaster area meip and facility locations

The computer used for the computational experiments presented in the rest
of this chapter is a Dell desktop computer with Intel Xeon 3.0 GHz CPU with 3.5
GB of RAM and Windows XP operation system. To solve the mathematical
formulation, ILOG CPLEX 11.0 is used. Microsoft Visual Basic 6 is used to

create the formulation and post processing of the optimization results.
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6.2 Sensitivity Analysis of the Structural Parameters

Structural parameters are those parameters in the model that affect the
structure of the mathematical formulation. Different values of these parameters
can drastically change the size and behavior of the model. For current
formulation, some examples of the structural parameters include:

1. Number of commodities C
2. Number of transportation modes M
3. Time-step resolution t
In the following subsections, the effects of different values of these

parameters are investigated:

6.2.1 Analysis of Number of Commaodities

In the proposed model, different values of C (number of commodities),
fundamentally change the structure of the model and can largely affect the size
and the difficulty of solving the model. When C=1, the formulation represents a
single-commodity problem but when C > 1 the formulation transforms into a
multi-commodity problem that can be more difficult to solve.

A multi-commodity problem compared to a single commodity problem
requires more data, larger number of decision variables and a larger number of
constraints. From decision maker’'s perspective, in multi-commodity problems
another dimension is added to the problem in order to find the optimal balance
between the amounts of several commodities that are being loaded in each

shipment.
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To test the effect of the number of commaodities, four cases are considered
each with one, two and three and four commodities respectively. In order for al
four cases to be relatively comparable, the amounts of tota demand and total
supply of al commodities at each location are kept the same. However, for any
given node the supply and demand is different for each commodity. For example,
in two-commodity problem, supply and demand for 1% commodity is assumed to
be twice the supply and demand for the 2" commodity; and so on for three-
commodity and four-commodity problems.

Using a customized Visua Basic code, the mathematical formulation for
these four cases are generated. Table 6.1 reports the problem size for each of these
cases. Then each case is solved with CPLEX commercial solver. Since the supply
and demand amounts are the same, the objective function values are not that
different for all four cases. However, the CPU time to solve each case is different.
It takes only 7.11 seconds to solve the single commodity problem. However, for
2, 3, and 4 commodity problems solution times rapidly increase to 71.76, 212.28

and 582.38 seconds respectively.

Table 6.1 Problem sizes for different number of commodities

CasDasrpion | b= | Mmber o | Nrezero | i e
Single Commodity 89185 32601 260075 5384
Two Commodities 110570 36585 372297 7355

Three Commodities 134719 40569 484519 9326
Four Commodities 158868 44553 596741 11298

140




Figure 6.2 illustrates the solution time as well as problem sizes for the four
cases with different number of commodities. The stopping criteria for
optimization is set to be 1% optimality gap. As it can be seen in the graph, when
the number of commaodities increases, number of variables, constraints and CPU-
time also increase. It isinteresting to notice that increase in problem size is almost
linear; however the CPU-time increases much faster. It can be concluded that

larger number of commodities makes the problem exponentially difficult to solve.
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Figure 6.2 — Problem size and solution time ver sus the number of commodities

6.2.2 Analysis of the Number of Transportation Modes

Another example of the structura parameters is M (number of
transportation modes) that can have a magjor affect on the structure of model as
well as the difficulty of solving the problem and the behavior of the results. When
M=1 only one transportation mode is used to deliver the relief commodities. In a

single moda problem, all shipments are transported by only one mode from
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origins to their destinations. On the other hand, in multimodal systems there is
this question of which transportation mode to utilize and how to balance the
commodity flows among different modes.

Another concern in multimodal environments is considering the
intermodal transfer. From application’s perspective it is important to provide
suitable facilities and required equipments in order to transfer the relief
commodities between transportation modes quickly and efficiently. From
modeling perspective it is important to consider the properties of each
transportation mode and correctly model the delays during intermodal transfers.
Also for intermodal transfer facilities, it is important to consider the loading and
unloading capacities based on the availability of the relevant equipments.

The mathematical formulation presented in chapter 3 is capable of
modeling multiple modes of transportation. It is assumed that main FEMA
facilities at federal level have access to multiple modes and aso act as intermodal
transfer nodes. Equation (3.2) controls the flow of commodities by each mode and

also keeps track of commodity transfers between modes. For example XT.™is

equal to the amount of commodity type c in node i which is transferred from
mode m to mode m’ at time t. Also K, is used as intermodal delay which is

egual to the time required to transfer commodities from mode m to moden.

The numerical example of chapter 4 only considered one mode of
transportation which was the ground transportation and only one kind of vehicle
which was 53ft trailer truck. To analyze the effect of multimodal operations in

this chapter, air transportation mode is added to the problem. For the sake of the
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numerical example in this chapter, the aircraft of choice is selected to be C130-
Hercules cargo planes. C130 has the capacity of about 4500 cft and is assumed to
travel at an average speed of 250 mph.

Adding a new transportation mode, adds a new layer of network to our
time-space framework. Since having air transport facilities at local level or very
close to disaster areas might not be possible, it is assumed that only federal level
facilities have access to air transportations. In other words, federal level facilities
(eg. LC, CSS, VEN, MOB, and FOSA) are connected through air and ground
transportation but state staging areas (SSA) and points of distribution (POD) are
only accessible by ground transportation. Consequently, a shipment from logistics
center (LC) can be sent with airplane to a federal operationa staging area then
transferred to ground transportation and then sent to SSA and finally delivered at
PODs. This is only an assumption for current numerical example and not a
genera limitation for the proposed mathematical model.

Based on the above description, two numerical cases are formulated and
solved. The first case is a single-modal problem with only ground transportation.
Supplies, demands, capacities and other parameters are fixed and similar to those
in the previous sections. The number of tractor trailers used is 60 which are
initially located at the three source nodes (e.g. LC, CSS, VEN) with 20 trucks at
each location. In the second case, air-transportation mode is aso available
between federal-level facilities. Twenty C130 cargo planes with 4500 cft capacity
are utilized. Ten planes are initially located at CSS and 10 planes are located at

VEN facilities.
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Table 6.2 represents the problem size for each of these cases. In this
example, by adding the second transportation mode, number of variables
increases by about 6 percent and number of constraints increases by about 8
percent compared to the single modal case. Both cases are solved by CPLEX
commercia solver and Table 6.3 summarizes the optimization results. Comparing
the objective functions (sum of all unsatisfied demand over demand nodes,
commodities and time periods) it is evident that by introducing a new
transportation mode, the objective function is improved. It is expected because
new transportation mode increases the transportation capacity which results in

faster delivery of relief commodities.

Table 6.2 Problem sizesfor different number of transportation modes

Case Number of | Number of | None-Zero | Input file
Description Variables | Constraints | Coefficients | size (Kb)

Single Modal 104641 33902 349785 6966

Multimodal 110570 36585 372297 7355

The improvement in objective function value is about 10 percent. In
single-mode case, the relief operation is not completed and unsatisfied demand
still exists until the end of the planning horizon (minute 1440). However, by
adding the second transportation mode, we are able to satisfy all demands by

minute 1290 which is 2.5 hours before the end of the planning horizon.
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Table 6.3 Optimization resultsfor single and multimodal cases

Case Objective . Timeof Last | CPU time
Description Function Locations Selected UD (min) (sec)
Si ngl e Moda 38848500 45,8,10,12,13,17,19 1440 27
Multimodal 35110500 45,8,10,12,13,17,19 1290 3263

The most important comparison between the two cases is related to the
CPU time to find the optimal solution in each case. Single modal formulation is
solved to optimality (MIP gap = 0.1%) in only 27 seconds but it takes much
longer (3263 seconds) to solve the multimodal numerical case. It is very
interesting to notice that the number of variables and constraint in multimodal
case is only about 10% more than single-mode case but it is much more difficult
to solve the multimodal problem and it takes about 120 times longer to find the
optimal solution in the second case.

Figure 6.3 compares the performance of the relief operations for both
cases over time. Total unsatisfied demand for both cases is shown for the duration
of the operation. It can be seen that the two cases perform similarly for the first 8
hours of the operations; in fact no commodity is delivered to demand points
during this time. However, the multimodal system has performed constantly better

than the single-modal case after that initial period.
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Figure 6.3 Comparison of performance for single and multi-modal cases

It was explained that air transportation mode only covers the federal level
network nodes. In other words, both modes cover all the nodes in federa level
network but state level networks are covered only by the ground transportation
mode. Analyzing the flow of commaodities in the second case shows that for the
federa network, 789500 units of commodities are sent by ground transportation
mode versus 417000 units that are sent using the air mode. The market share of
air transport is about 35 percent which shows the importance of fast transportation
modes such as airplanes in emergency operations. It is important to notice that the
number of available planes is one third of the number of trucks and the capacity

of one planeis about 75% of the capacity of atrailer truck.

6.2.3 Analysis of Time-Step t

Another parameter that affects the structure and behavior of the model is
the length of time-step t. Time-step t is the length of time between two

consecutive states that the problem is modeled. Selection of appropriate time-step
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is avery important factor that can affect the performance of time-space networks
dramatically. For each time period in the planning horizon, one layer of physica
network will be added to the problem. This makes the problem size grow
extremely fast with the number of time-steps in the planning horizon. For
example if the planning horizon is 1 day, with the choice of time-step t = 5
minutes, 24 * 60 / 5 = 288 layers of the network is required to cover 1 day of
operations. So to keep the problem at a reasonable size, it is favorable to have
longer time-steps.

On the other hand when t is short, the situation on the ground can be
modeled in greater details which would not be possible with longer time-steps.
For example if the time-step is 1 hour, it is only possible to model the state of the
system at every hour and not at the times in between. So from the accuracy
perspective, it is favorable to have shorter time-steps.

Finding a reasonable time-step is an important modeling challenge. In
selecting the time-step one should consider the level of accuracy that is required
for that specific application and also the computational power that is available to
them. In this section, it is tried to create and test numerical experiments with
different values of time-step t and then analyze the findings in order to provide
insight for other researchers or practitioners.

In addition to computational aspects, changing the time-step length also
affects some other elements of generating the mathematical formulation:

1. Link travel times

2. Capacity constraints
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3. Objective function unit

First, al link travel times for al transportation modes should be a
multiplier of time-step t. For example when t = 5 minutes, travel time of a link
cannot be 28 minutes or 47 minutes but it should be rounded to 30 and 45 minutes
respectively . When the time-step is changed in a problem instance, for example
fromt=5tot = 10, a computer code is required to automatically recalculate the
travel times and round them to the new time step.

Second, loading and unloading capacity constraints at facilities are aso
required to be adjusted for different time-steps. For example, loading capacity of a
given facility when t = 5 is equal to 1000 which means up to 1000 units of
commodities can be loaded in that facility during that 5 minute time interval. If
time-step lenght is changed to say t = 15 minutes, then it is necessary to adjust
that loading capacity to 1000 * (15/5) = 3000 units.

Third, the objective function in the proposed model is to minimize the sum
of all unsatisfied demands and this summation is taken over al time periods. In
the case that planning horizon is divided into N time periods of length t, the
objective function summation involves N sets of variables. However, if alonger t
is selected which is twice the previous t, then the same planning horizon consists
of N/2 time periods, and the objective function value of these two cases will not
have the same unit. To deal with this issue, it is recommended to normalize the
unsatisfied demand over time and pay attention to the units that are used for those

variables.
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To analyze the effect of different values of t, 4 cases with values of t = 5,
10, 15, and 30 minutes are formulated and solved. Table 6.4 summarizes the
problem size for these 4 cases. It is evident that the length of time step t has a
huge impact on the number of variables and the number of constraint in the

formulation.

Table 6.4 Problem sizesfor different values of time-step t

Case Number of | Number of | None-Zero | Input file
Description Variables | Constraints | Coefficients | size (Kb)
t=5 297194 90738 986268 19745
t=10 157226 50125 525753 10456
t=15 110570 36585 372297 7355
t=30 63914 23033 218777 4257

Optimization results for these 4 cases are presented in Table 6.5. The
stopping criteria for optimization code is set to be 0.5% optimality gap and
objective function values are normalized to be of the same unit and comparable

among all 4 cases.

Table 6.5 Optimization resultsfor different time-step length

T prem— LT
t=5 35155100 4,5,8,10,12,13,17,19 1295 888.39
t=10 35238100 4,5,8,10,12,14,17,19 1290 124.34
t=15 35199000 4,5,8,10,12,13,17,19 1290 79.16
t=30 35344600 45,8,10,12,13,17,19 1290 62.45
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Selecting the time-step length is a trade-off between modeling accuracy
and solution time. Figure 6.4 illustrates the variations of the problem size and
CPU time for the four cases modeled in this section. It is evident that when the
length of the time-step is increased, the problem size and solution times both
decrease. For this problem, t = 15 minutes seems to be a good trade-off between
the accuracy and the problem size. For any specific application, it is
recommended to initially perform similar analysis and then select the appropriate

time-step length based on the required accuracy and availability of computational

resources.
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Figure 6.4 Variations of problem size and CPU timefor different time steps

6.3 Sensitivity Analysis of the Main | nput Parameters

In this section, the main input parameters of the model are classified into 3
major categories. parameters of the facility location problem, parameters of the

vehicle routing problem and parameters of the commodity flow problem.
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Sensitivity analyses of the parameters in each of these categories are provided in

the following subsections.

6.3.1 Sensitivity Analysisfor Parameters of the Facility Location

Number, location and capacity of the facilities in the network can have a
major affect on the emergency response operations. From a list of potential
locations, only a subset of them can be selected due to limitations of cost,
equipment, or personnel. Also the capacities of each facility type can affect the
response operations. In this section, the effect of variation of maximum number of
facilities as well as loading capacity and unloading capacity at each facility is
investigated.

Maximum Number of Temporary Facilities

As described earlier in the problem statement, there are three types of
temporary facilities in FEMA’s supply chain structure. First, the mobilization
centers (MOB) that receive the relief commodities from the permanent sources
and forward them to federal operational staging areas (FOSA). Second, the FOSA
that receive the commodities from permanent sources as well as mobilization
centers and forward them to the state level facilities called state staging areas
(SSA). Findly the state staging areas that receive flow from the FOSA and send
them toward the final points of distribution (POD).

In the current numerical example, 4 potential sites for MOBs are planned.
Opening all facilities for operation provides the maximum capacity for relief
operations, however; it might not always be possible to use al 4 facilities due to

the high cost or limitations of the equipment and personnel. In order to investigate
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the effect of this limitation, 5 numerical cases are formulated and solved. Table
6.6 introduces these cases and reports the optimization results. For these cases, it

is assumed that all temporary facilities at lower levels (i.e. FOSAs and SSAS) are

forced to be open.

Table 6.6 Analysis of Number of Mobilization Centers

CaseNo. | CaseDescription ol ect_ive MOB Selected
Function (Node number)
1 No MOB 3.78945 E+7 NA
2 1MOB 3.55320 E+7 5
3 2MOB 3.44932 E+7 4,5
4 3MOB 3.44670 E+7 4,5,6
5 4MOB 3.44580 E+7 4,5,6,7

In case 1, there is no MOB selected. It is shown that the relief operations
can still proceed even without a mobilization center. The reason for that is the
gpecial structure of FEMA'’s supply chain. As shown in figure 1.5, relief
commodities can be send from the logistics centers and commercia storage sites
directly to the federa operational staging areas and from there to each state and
local area. However, having MOBs can provide more options and facilitate the
flow of commodities and vehicles to the lower level facilities. Comparing case 1
and 2, by only opening one MOB in case 2, the objective function is considerably
reduced. Figure 6.5 illustrates the effect of the number of MOBSs on the objective

function.
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From the results presented in Table 6.6 and Figure 6.5, it can be concluded
that adding more mobilization centers is beneficia in reducing the tota
unsatisfied demand. In Table 6.6, the objective function is constantly reduced
when more MOBs become available. However, as shown in Figure 6.5, the
improvements in objective functions become marginal when more that 2 MOBs
are selected. Consequently, it is suggested to have a maximum of 2 mobilization

centersin this specific numerical example.
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Figure 6.5 Effect of the number of mobilization centers on the objective function

The same analysis is performed for the number of federal operationa
staging areas (FOSA). In this part, it is assumed that the 2 MOB are open and also
al lower level facilities (SSA) are open. In order to investigate the effect of the
number of FOSAs, 5 numerical cases are formulated and solved. Table 6.7
introduces these cases and reports the optimization results.

In case 1 when there is no FOSA selected, the objective function is very
high. In fact, no commodity is delivered in case 1 because without any FOSA the

federal level and state level networks are disconnected. Based on the assumptions
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of the FEMA’s supply chain structure, the commodities can only pass through
FOSA nodes in order to be delivered to the state and local facilities. Figure 6.6
demonstrates the effect of the various number of FOSAs on the objective
function. Having more FOSA has a positive effect in minimizing the objective

function; however, this effect becomes very marginal for more than 2 FOSAs.

Table 6.7 Analysis of the number of the federal operational staging areas

CaseNo. | CaseDescription ol ect_ive FOSA Selected
Function (Node number)
1 No FOSA 5.82000 E+7 NA
2 1 FOSA 452235 E+7 8
3 2 FOSA 3.50445 E+7 8,10
4 3 FOSA 3.46125 E+7 8,9,10
5 4 FOSA 3.44932 E+7 8,9,10,11

Objective Function (E+7)

No. of FOSA
Figure 6.6 Effect of the number of the federal operational staging areas on the objective

function value
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The next level of temporary facilities in the FEMA’s structure is the state

staging areas (SSA). A similar study is conducted for the number of SSAs. There

is atotal of ten potential locations for SSAs in this problem. Number of MOBs

and FOSAs are limited to 2 facilities for each type. Table 6.8 introduces these

cases and summarizes the optimization results. Figure 6.7 illustrates the variation

of objective function in each case. The objective function is constantly reduced in

the first 5 cases but becomes steady after that. It can be concluded that for this

numerical example, opening more than 4 state staging areas (2 in each disaster

area) does not improve the performance of the operations.

Table 6.8 Analysis of the number of the state staging areas

Case No. | Case Description CF’BL ﬁg’f SSA Selected (Node number)
1 No SSA 5.82000 E+7 NA
2 max 1 SSA 4.66815 E+7 13
3 max 2 SSAs 3.81090 E+7 13,17
4 max 3 SSAs 3.56775 E+7 13,17,19
5 max 4 SSAs 3.50445 E+7 12,13,17,19
6 max 5 SSAs 3.50445 E+7 12,13,14,17,19
7 max 6 SAAsS 3.50445 E+7 12,13,14,17,19,20
8 max 7 SSAs 3.50445 E+7 12,13,14,17,19,20,21
9 max 8 SSAs 3.50445 E+7 12,13,14,16,17,19,20,21
10 max 9 SSAs 3.50445 E+7 12,13,14,15,16,17,19,20,21
11 max 10 SSAs 3.50445 E+7 | 12,13,14,15,16,17,18,19,20,21
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Figure 6.7 Effect of the number of state staging ar eas on the objective function value

In the cases introduced in tables 6.6 to 6.8, the facility location constraints
in each tier are treated independently. In fact, the problem is first solved to find
the optimal number of MOBs then it is solved for FOSAs and then SSAs
respectively. However, when the resources (e.g. equipment and personnel) can be
shared among the different facility types, the maximum number of each facility
type is not independent anymore. For example instead of having 2 MOBs and 2
FOSASs, it might be beneficia to have 1 MOB and 3 FOSAS.

Nineteen cases are generated and solved for the maximum number of
facilities of all types. Table 6.9 lists these cases and optimization results. In case
0, no temporary facility is selected and no commodity can be delivered because
the supply chain is disconnected. The relative objective function column in table
6.9 shows the ratio of the objective function of each case to the maximum

objective function value given in case 0.
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Figure 6.8 illustrates the objective function values and optimization CPU

times for the cases introduced in table 6.9.

Table 6.9 Sensitivity analysis of the total number of thetemporary facilities

Case | N | o g?:at(lf:/;e) LEEiETs S2EsE TirgZ(l;ec)
0 0 5.82 100 : 0.3
1 1 5.82 100 4 37
2 2 4.66815 80.21 813 137
3 3 455725 78.30 812,13 423
4 4 4.1403 71.14 8,10,13,17 650
5 5 3.89115 66.86 4,5,1013,17 364
6 6 3.70395 63.64 5,8,10,13,17,19 478
7 7 3.56775 61.30 4,5,8,10,13,17,19 257
8 8 3.50445 60.21 45,8,10,12,13,17,19 133
9 9 3.48225 50.83 4,58,10,11,12,13,17,19 190
10 10 3.46305 5050 | 45810,11,1213,17,1920 | 115
1 1 3.4566 5939 | 8101112131715, 128
12 12 3450825 | 5029 | 4 ’5'8’9’10’113%'13'15'17' 156
13 13 3.4485 59.25 4'5’6'8'9’1°i;2(1)2’13’15’17' 52
14 14 3.447 59.23 4'5*6'8'9*11‘;*,11312%’13*14*15' 60
15 15 3.4461 59.21 4*5'6*7*5135'117(,"1191"2102*13*14* 24
16 16 3.4458 5020 | AOOTOOINL LS IS 6
17 17 3.4458 59.20 4*5'61;:?;?'118(?'1191"2102'*2113*14* 5
18 18 3.4458 59.20 4’5@7{3’3#&?115225%14’ 6
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Figure 6.8 Objective function and CPU time ver susthe number of temporary facilities

Analyzing the results shows that increasing the number of the available
temporary facilities can effectively help the operations and reduce the total
unsatisfied demand. However, after a certain number of facilities, adding more
facilities does not reduce the objective function value. For example in current
problem, selecting more than 8 temporary facilities has very marginal benefits.
The CPU time is relatively low for the first 3 cases because the combinations are
limited. CPU times considerably increase for case 3 to 7 mainly due to the
increase in the number of potential combinations. For the fina 6 cases, CPU time
is reduced again because ample capacity is available and opening more facilities
does not affect the objective function and does not change the flow of
commodities or vehicles.

Loading and Unloading Capacities

Any facility that sends or receives the relief commodities is subject to a

limited capacity for loading and unloading (for mathematical formulations refer to
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section 3.5.5). These constraints are mainly due to the limitations of equipment or
personnel during the emergency response operations. In this section, it is intended
to evaluate the effect of these capacities on the performance of the model and the
optimization results.

Table 6.10 lists loading and unloading capacities (cft/nr) for each

transportation mode and each facility type that are used in the base case scenario.

Table 6.10 Theloading and unloading capacities

Ground Transportation Air Transportation
Facility Type Loading Unloading Loading Unloading
LC-CSS-VEN 60000 60000 18000 18000
MOB 48000 48000 9000 9000
FOSA 36000 36000 - -
SSA 24000 24000 - -
POD 12000 12000 - -

To evaluate the effect of variations in loading capacity, five different
values are considered each with 50%, 75%, 100%, 125% and 150% of the original
value. The same five variations are also considered for unloading capacity. Also
to evaluate the joint effect of loading and unloading capacity on the performance
of the model a matrix is generated to consider all 25 combinations. Table 6.11

reports the optimization results for these 25 cases.
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Table 6.11 Optimization resultsfor various L oading and Unloading Capacities

Unloading Capacity

Objective Function
50% 75% 100% 125% 150%

50% 4.19625 4.19235 4.19235 4.19235 4.19235

75% 4.19235 3.7632 3.69975 3.66765 3.66765

L oading

. 100% 4.19235 3.7578 350445 | 3.468675 | 3.44715
Capacity

125% 4.19235 3.7578 3.49965 3.3771 3.35835

150% 4.19235 3.7578 3.49965 3.37185 3.31095

Focusing on the 3" row it is shown that when loading capacity is kept at
100%, increase in unloading capacity from 50% to 150% constantly improved the
objective function value. The same behavior is shown in the 3 column for
origina unloading capacity when loading capacity varies from 50% to 150%.
However, comparing the objective function values of the first row, it is evident
that when loading capacity is fixed at 50%, the problem is not sensitive to the
unloading capacity anymore. The similar behavior is observed in the first column
when unloading capacity is fixed a 50% and extra loading capacity has no
benefits.

It is concluded that extra capacity at facilities can be useful in reducing the
objective function. However, these additional capacities are beneficial only when
both loading and unloading capacities are increased at the same time and
proportionally. If one capacity is kept considerably low, additional capacity of the

other type is not effective anymore. To visualize, figure 6.9 illustrates the
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objective function values versus different values of the loading and unloading

capacities.
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Figure 6.9 Objective function value versusvariationsin the loading and unloading capacity

6.3.2 Sensitivity analysis for Parameters of Vehicle Routing

Vehicle routing problem is a maor part of the proposed integrated
logistics model. Variations in the inputs of vehicle routing can drastically impact
the behavior and results of the entire model. In this section, a series of analysisis
performed to investigate the nature and extent of these effects. In the following,
sensitivity analysisis performed on the number of vehicles of each type, capacity
of vehicles, and travel speeds of the vehicles.

Number of Available Vehicles

Having more vehicles is aways favorable from operator’s perspective
because it can provide more capacity for faster and easier delivery of relief items.
However, the number of available vehiclesis limited especialy during the initia
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periods of disaster response operations. Analysis of the effects of different
number of vehicles can provide invaluable insight to the problem for planning
purposes. In table 6.12 ten cases are tested with various numbers of vehicles for
each mode. For all these cases, the vehicles of ground transportation mode are 53
ft tractor trailers with 6000 cft capacity. At the beginning of the operations, trucks
are evenly distributed among 3 source nodes (LG, CSS, VEN). The vehicles of air
transportation mode are C-130 Hercules cargo planes with 4500 cft capacity that

arelocated at CSS and VEN nodes at the beginning of the operations.

Table 6.12 Sensitivity analysis of number of vehicles

Case No. No. of No. of Obj_ective CPU-Time
Trucks Planes Function (E+7) (sec)
1 12 4 4.1345 68.9
2 24 8 4.08015 372.42
3 36 12 3.82065 237
4 48 16 3.63045 848
5 60 20 3.51075 610
6 72 24 3.44025 50
7 84 28 3.39105 43.45
8 96 32 3.3546 4.86
9 108 36 3.32715 8.05
10 120 40 3.32565 8.72

In cases 1 to 10, the numbers of vehicles of both modes are gradually
increased. Case 5 is similar to the base case in previous subsections. CPLEX
commercia solver is used to optimize these case studies. Stopping criteriais set to
be 0.1% optimality gap. Figure 6.10 illustrates the objective function and the CPU

times for optimal solutions in each case.
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Figure 6.10 Effect of the number of vehicles on the objective function and the CPU time

The value of objective function decreases as the number of vehicles
increase. It complies with expectations since more vehicles provide higher
capacity and faster delivery of relief items which minimizes the objective function
value. The rate of decrease in objective function is faster for the first five cases
compared to the last five cases. For example, the objective function value
decreases by 17% from case 1 to case 5. The same measure is only about 6% from
case 5 to case 10. It can be concluded that when number of vehicles are increased
in cases 6 to 10, the other constraints become binding. In that case, it is
recommended to invest in other parts of the system and increase other capacities
such as loading and unloading capacities at transfer facilities.

CPU-time variations are very interesting. At the beginning, the CPU time
is relatively low because there is a very small number of vehicles available and
there is not much room for improvement. As the number of vehicles increase, the
combinations for vehicle routing problem increases rapidly. As aresult, the CPU
time to find the optimal solution is grown considerably. At the end, it might be
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surprising to notice that the CPU time is decreased. The reason is that for cases 6
to 10, a large number of vehicles are available. When there are ample vehicles
available, the model can easily assign a new vehicle from depot to any required
task. On the other hand, when the number of vehicles are limited, a great deal of
time is spend to search al possible combinations and make sure to assign the
vehiclesto the best possible task.

It is concluded that the number of vehicles not only affects the model’s
results such as objective function value, but it also affects the difficulty of solving
the model and CPU time to find the optima solution. When the number of
vehiclesis very low or very high, it is much easier and faster to solve the model.
For an in-between range of vehicle numbers, it can become very difficult and time
consuming to find the optimal solution. This range is problem-specific and can
depend on the other model inputs as well. Researchers and practitioners should be
aware of this behavior and perform the similar analysis for a range of vehicle
numbers that is specific to their specific application.

Capacity of the Vehicles

Another factor that can affect the performance of the entire model is the
capacity or type of vehicles that are used in the response operations. The general
conception is that higher capacity is always better. That might be true; however it
might not be possible to aways use the largest vehicle in the fleet. In this section
it is intended to analyze the effects of having vehicles with different capacities.
Ten different cases are tested. In the first 5 cases, the capacity of ground

transportation vehicles are changed from 2000 cft to 10000 cft while the capacity
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of planes are fixed at 4500 cft. Then in cases 6 through 10, the capacity of air
transportation vehicles are changed from 1500 cft to 7500 cft while capacity of
truck are kept fixed at 6000 cft. Table 6.13 lists these cases and reports the

optimization results.

Table 6.13 Sensitivity analysis of the vehicle's capacity

Case No. Capacity of | Capacity of Obj_ ective CPU-Time
Trucks Planes Function (E+7) (sec)
1 2000 4500 453145 13
2 4000 4500 3.86310 1333
3 6000 4500 3.51075 610
4 8000 4500 3.42365 532
5 10000 4500 3.35250 285
6 6000 1500 3.62205 258
7 6000 3000 3.55590 148
8 6000 4500 3.51075 610
9 6000 6000 3.50175 647
10 6000 7500 3.51075 665

Figure 6.11 illustrates the variations of the objective function value and
the CPU-time for these 10 cases. For cases 1 to 5 and 6 to 10, the objective
function is decreased when the vehicle capacity is increased. Comparing the first
5 cases (left side of the graph) to the last 5 cases (right side) it is evident that the
slope of the objective function is steeper for the left curve. It means that the
problem is more sensitive to the capacity of trucks rather than to the capacity of
planes. This might be ssimply due to the fact that the ground transportation does

the majority of the deliveriesin this problem. For example in the base case (case 3
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and 8), total amount of commodity-miles that are shipped with ground

transportation is about 250 million cft.mile versus about 107 million cft.mile for

air transportation. Share of ground transportation in this problem is about 70%.
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Figure 6.11 Sensitivity analysis of the vehicle's capacity

Travel speed

The other factor in the vehicle routing problem that can affect the response
operations is the travel time between the nodes. Faster vehicles are favorable from
two perspectives. First, the flow of relief commodities through the network can
happen faster. Second, empty vehicles can travel faster and reach the pick-up
nodes to start another round of deliveriesin a shorter period of time. On the other
hand, in some cases the travel speeds might be reduced due to the changes in
disaster environment such as inclement weather or flooding. In order to
investigate the effects of travel speed on the operation’s performance, 8 different

cases are generated and tested. Table 6.14 lists these cases and summarizes the

optimization results.
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The first case is the base case scenario. In the base casg, it is assumed that
average travel speed for ground transportation is 50 mph for the arcsin the federa
level network and 40 mph for the arcs of the state level network. Average air

travel speed is also assumed to be 200 mph.

Table 6.14 Sensitivity Analysisfor network Travel Speeds

Ground Travel Speed
Case No. Federal State Air Travel Obj_ective CPU-Time

Network | Network Speed Function (E+7) (sec)
1 50 40 200 3.51075 610
2 60 48 240 3.06945 54.19
3 40 32 160 4.18710 3116
4 50 40 250 3.48735 678
5 50 40 300 3.47805 3519
6 50 40 400 3.46155 1024
7 40 40 200 4.06125 357
8 50 30 200 3.6528 961

In case 2 and case 3, it is assumed that for both transportation modes and
the entire network the travel speed isincreased by 20% in case 2 and decreased by
20% in case 3. It can be seen that if travel speed is increased by 20%, the
objective function can be improved by 12.6%. However, if the travel speed is
decreased by 20%, then the objective function is increased by 19.3%. It is evident
that travel speed has amajor effect on the efficiency of the operations. Comparing
the first 3 cases, it can be concluded that faster transportation improves the
performance but having slower transportation can have alarger negative impact.

Case 4, case 5 and case 6 are Similar to base case but the average air travel

speed is increased from 200 mph to 250, 300 and 400 mph respectively (25%,
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50%, and 100% increase). In these cases, the objective function is improved but
only by 0.7 percent, 0.9 percent and 1.4 percent, respectively. It can be concluded
that using faster planes can improve the operations but this improvement is very
margina when the ground transportation is not enhanced proportionally.

In case 7, it is assumed that the ground travel speed in federal level
network is reduced from 50 mph to 40 mph while other inputs are similar to the
base case. In case 8, only the speed in state level networks is reduced from 40
mph to 30 mph and all other inputs are unchanged. In case 7, objective function is
higher than base case by about 16% but the same measure is only 4% higher for
case 8. Comparing case 7 and 8, it seems that travel speed at federal level network
has a stronger effect than travel speed at the state level networks. In other words,
if we can choose to improve the conditions of the roads in either federal level or

state level roadways, it can be more rewarding to improve the federal level links.

6.3.3 Sensitivity analysis for Parameters of the Commodity Flow

In this section, sensitivity analysis is performed to investigate the effect of
various amounts of supply, random demands and the relative urgency factor.

Sensitivity to Supply

In the base case scenario, the entire supply for one day of operations is
assumed to be available at the beginning of the operations. Total supply for one
day of operations is 600,000 units that include 400,000 units of commodity 1 and
200,000 units of commodity 2. At the beginning of the operations, supply is
stored at three main source facilities. 40% of supply is stored at the logistics

center site in Atlanta, GA. 20% is stored at commercia storage site in Charlotte,
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NC and 40% of supply is stored at the vendors site in Nashville, TN. The
availability of supply can play amajor role in disaster response operations. In this
section, 8 different cases are generated and tested to evaluate the effect of
availability of different levels of supply. Table 6.15 introduces these cases and

summari zes the optimization results.

Table 6.15 Sensitivity analysisfor supply availability

Case No. AvSaliJIF;?)IiBI/i ty Fugckt)gscnti(\(;?) CPE.{;)ime L ocations Used
1 50% 4.23225 11 45,8,10,12,13,17,19
2 60% 4.02015 8.75 4,5,8,10,12,13,17,19
3 70% 3.84705 5.7 4,5,8,10,12,13,17,19
4 80% 3.70785 4.39 4,5,8,10,12,13,17,19
5 90% 3.59085 5.84 4,5,8,10,12,13,17,19
6 100% 3.50445 7.78 4,5,8,10,12,13,17,19
7 110% 3.49905 7.08 4,5,8,10,12,13,17,19
8 120% 3.49905 8.97 45,8,10,12,13,17,19

Figure 6.12 illustrates the results of table 6.15. Case 6 is the base case in
which supply is equal to 100% of the demand and can be used as a benchmark.
From case 5 to case 1, the amounts of supplies available at the sources are
gradually reduced. It can be seen that shortage of supplies can strongly affect the
results. For example in case 1, shortage of supplies has resulted in about 20%
higher objective function value. On the other hand, in cases 7 and 8 there are extra
supplies available at each source node. It is evident that having additiona supplies
has a marginal effect on improving the objective function (less than 1%

reduction). The reason is that in these cases the other constraints of the problem
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become binding. In fact, limitations such as the transportation capacity and the
facility constraints limit the amounts of supply that can be delivered and having

extra supply cannot help to reduce the objective function.
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Figure 6.12 Sensitivity analysisfor amount of supplies available

Sensitivity to Demand

Locations and amounts of demands are other variables that affect the
details of the response operation. In this section, 10 cases with random demand
values are generated and solved to optimality. The demands in current numerical
example are located at 20 points of distribution (POD) that are spread over 2
disaster areas. Random populations are assigned to each POD and demand for
each commodity is generated based on the population of each POD. The totd
population of 2 disaster areas are kept fixed but population of PODs are different
in each of the 10 cases. Random population for each POD is generated using a

uniform distribution between 300 and 1700 people.
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Table 6.16 and figure 6.13 represent the optimization results. Even though
the demands at each POD are different, the values of the objective function across
the cases are not that different. The coefficient of variation for objective function
value among the 10 random cases is relatively small (only 2.3%) which shows
that the proposed model is successful in managing the demand variations. Also, it
is important to notice that the same set of temporary facility locations are selected
for al ten cases. This observation is favorable and can be interpreted as a good

measure of robustness of the model in case of fluctuations in demand.

Table 6.16 Sensitivity analysisfor variationsin demand

Case No. Fur?c?ggﬁti(\ée_ﬂ) CPth-e'(I;;me Locations Used
1 3.50445 7.78 4,5810,12,13,17,19
2 3.46545 12.84 4,58,10,12,13,17,19
3 35199 11.31 4,58,10,12,13,17,19
4 353715 10.55 4,58,10,12,13,17,19
5 3.49095 16.45 4,58,10,12,13,17,19
6 3.48825 7.7 4,58,10,12,13,17,19
7 3.73995 19.91 4,58,10,12,13,17,19
8 3.4392 6.09 4,58,10,12,13,17,19
9 3.50805 6.55 4,5810,12,13,17,19
10 35262 18.66 4,5810,12,13,17,19
Average 3521955 11.784
CEERRIVER 0.0232 0.429
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Figure 6.13 Optimization resultsfor random demand values

Relative Urgency factor

As defined in section 3.5.2, RU; is relative urgency of one unit of

commodity ¢, in node i at timet. It is aweight factor in the objective function to
enforce the importance of one commodity over another or one demand point over
another demand point. For example, if one unit of commodity 1 is more important
than 1 unit of commodity 2, then RU for commodity 1 should be higher than RU
for commodity 2. In this section, effect of different values of the relative urgency
factor isinvestigated.

First, the effect of using different relative urgency factors among
commodities is investigated. There are 2 commodities in the current numerical
example. Five cases are generated to test the different combinations of weight for
these 2 commodities. In the base case, RU is equal to 1 for all commodities. In

cases 2 and 3, the priority is given to the 1% commodity (Cy). In cases 4 and 5, the
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priority is given to the 2™ commodity (C,). Table 6.17 introduces these cases and
reports the optimization results. In Table 6.17, UR", and UR*, are the relative
urgency factors for commodity 1 and 2. The two columns on the right side of the
table represent the sums of unsatisfied demand of each commaodity by itself. Total

unsatisfied demand is the sum of these two columns.

Table 6.17 Sensitivity analysis of therelative urgency factor for each commodity

Total
Case No. URY UR% | Unsatisfied Z uD z uD
Demand Cc1 Cc2
1 1 1 35044500 22891500 12153000
2 2 1 35044500 20714000 14330500
3 5 1 35044500 20714000 14330500
4 1 2 35069500 26216000 8853500
5 1 5 35096500 26264000 8832500

Figure 6.14 better illustrates the results of Table 6.17. In cases 2 and 3,
urgency factor of commodity 1 isincreased to 2 and 5. As a result, total sum of
unsatisfied demands of commodity 1 is decreased compared to the base case (case
1). On the other hand, the same measure for commodity 2 isincreased in cases 2
and 3. It can be said that, while the total objective function is the same, the
shipments of commaodity 1 are delivered faster (in earlier times) than commodity
2 because of the higher urgency factor.

In cases 4 and 5, the relative urgency factor for commodity 2 is increased.

In these cases, demands for commodity 2 are satisfied earlier and share of
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unsatisfied demand of commodity 2 in the objective function is decreased

compared to the base case scenario.
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Figure 6.14 Sengitivity analysis of therelative urgency factor for each commodity

Figure 6.15 can help to better understand the effect of the RU factor on the
performance of the response operations. In Figure 6.15, variations of unsatisfied
demand for each commodity over time are shown for cases 1, 2 and 4. The solid
line shows commodity 1 and the dashed line belongs to commodity 2. In case 1
(left-side graph), at time zero the demand for commodity one is 400,000 units
versus 200,000 units for commodity 2. RU is equal to 1 for both commodities. It
can be seen that over time, the demands for both commodities are satisfied almost
proportionally and by the end of the operations both lines get to zero amost at the
same time.

In case 2 (Figure 6.15, center graph), the priority is given to commodity 1.

Even though the initial unsatisfied demand for commodity 1 is much higher, as
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the time goes by, the demands of commodity 1 are satisfied more rapidly. In fact,
for the first 13 hours of the operation al of the deliveries are the shipments of
commodity 1 only. The dashed line shows the rate of demand satisfaction for
commodity 2. Compared to the left side graph, the demands of commodity 2 are
satisfied much later in Case 2 due to the higher priority of commodity 1. On the
contrary in case 4 (Figure 6.15, right-side graph), the priority is given to
commodity 2. Consequently, the demands of commodity 2 (dashed line) are

satisfied much earlier compared to case 1 or case 2.
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Figure 6.15 Effect of relative urgency factor on variations of unsatisfied demand over time

Overdl, it is shown that using relative urgency factors can be very
effective when there is a reason to give priority to one commodity over another.
Usually, high priority commodities are needed in much smaller quantities
compared to the commodities with normal priority. For example demand for
medical supplies are usualy in much lower volumes compared to clothing or
construction items but with a much higher priority. When there is no urgency
factor in the model, the commodities with higher demand volumes tend to be
given the priority in order to minimize their demand. However, when there is a

small amount of demand for a commodity with high priority (e.g. medica
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supplies), it is very effective to use a higher RU factor in the model to make sure
that the priority is given to that commaodity regardless of its small quantity.
Relative urgency factors can also be used to enforce priorities among
different points of distribution. If the demands for relief commodities at one or
more locations have priorities, higher RU factors for those locations should be
used to imply these priorities. The effect of using higher RU factors to prioritize a
subset of locations is investigated in the following. Using the same numerical

experiment from previous section, 2 numerical cases are simulated and compared.
Case 1 is the base case whereRU;; =1 " ¢,i,t. In Case 2, one demand node in

each disaster area is selected to have a higher priority. In the state of Mississippi,
the POD located at node 29 is selected and from demand nodes in the state of
Louisiana, the POD located at node 41 is selected to have a higher priority. These
2 nodes are selected among all PODs because they were distant locations and in
the results of the base case scenario, they were the 2 nodes that received relief
items later than other nodes. For these 2 nodes, a relative urgency factor of 2 is
applied to the demands of al commodities and all time periods. (For geographical

locations of the nodes of the network refer to Table 4.1)

Case 1 is simulated withRU;; =1 " ¢,i,tand Case 2 is formulated and

solved withRU,,, =1 " citandRU,, =1 " c,t, and al other RU =1 for the rest

of the demand nodes. Figures 6.16 and 6.17 illustrate the optimization results of
the both cases for POD nodes 29 and 41. In both figures, it is evident that the
required priorities are successfully enforced by using higher RU factors. In figure

6.16, before enforcing priorities, the last demand is satisfied by t = 960 minute;

176



however, after using priorities the last demand is satisfied by t = 510 minute

which is much faster.
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Figure 6.16 Effect of using higher priority for POD 29

In figure 6.17, the effect of using and not using priorities for POD node 41
isillustrated. In case 1, when no priority is required, the last demand is satisfied
by time t = 1290 minutes. However, by using priority in Case 2, the time of the
last unsatisfied demand is reduced to only t = 870 minutes.

These analyses show that the relative urgency factors can be successfully
used to give priority to the demands of certain PODs if required by the user.
However, the user should be aware of the fact that assigning these priorities
would only improve the demand satisfaction rates for the intended nodes.
Meanwhile, since the limited resources are directed to high priority nodes, the

demand nodes with lower priorities would perform worse than before.
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Figure 6.17 Effect of using higher priority for POD 41

6.4 Summary and Conclusions

In this chapter, in-depth analyses of different aspects of the proposed
mathematica model were presented. These analyses were provided in order to
better illustrate the capabilities of the model and also examine model’s sensitivity
in various circumstances. The analyses in this chapter were divided into two main
categories. sengitivity analysis of the structural parameters of the model, and
sengitivity analysis of the main input values of the model. It was shown that
changing some input parameters not only affects the optimization results but it
can aso largely change the problem size and solution computation times.

The structura parameters investigated in section 6.1 include the number of
commodities C, the number of transportation modes M, and the length of time-
step resolution t. To test the effect of the number of commodities, four cases are

considered each with one, two, three and four commodities respectively. It is
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shown that the number of variables and the number of constraints increase
linearly with the number of commodities. Number of variables grows faster than
number of constraints. More importantly, it is shown that when number of
commodities increase, the problem becomes much harder to solve and the
computation times rapidly increase. This increase in computation time was
exponential in the range tested.

Number of the transportation modes is also an important factor. Using
multimodal compared to single modal transportation not only increases the size of
the formulation but also makes the problem much harder to solve. In multimodal
systems there is the question of which transportation mode to utilize and how to
balance the commodity flows among different modes. Another concern in
multimodal environments is considering the intermodal transfers. From
application’s perspective it is important to provide suitable facilities and required
equipments in order to transfer the relief commodities between transportation
modes quickly and efficiently. From modeling perspective it is important to
consider the properties of each transportation mode and correctly model the
delays during intermodal transfers.

Multimodal problem is more difficult to solve. In fact, for the current
numerical example the single modal formulation was solved in only 27 seconds
but it took much longer (3263 seconds) to solve the multimoda numerical case. It
is very interesting to notice that the number of variables and constraint in

multimodal case was only about 10% more than single-mode case but it was
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much more difficult to solve the multimodal problem and it took about 120 times
longer to find the optimal solution in multimodal problem.

The other structural parameter in the model is the length of time-steps t.
Time-step t is the length of time between two consecutive states that the problem
is modeled. Selection of appropriate time step is a very important factor that can
affect the performance and accuracy of the time-space networks dramatically.
When t is short, the situation on the ground can be modeled in greater details
which would not be possible with using longer time-steps. So from accuracy
perspective, it is favorable to have shorter time-steps. On the other hand, for each
time period in the planning horizon, one layer of physical network will be added
to the time-space structure of the problem. This makes the problem size grow
extremely fast with the number of time-steps in the planning horizon. To keep the
problem size manageable, it is preferred to have longer time-steps.

Finding a reasonable time-step t is an important modeling challenge. In
selecting the time-step, one should consider the level of accuracy that is required
for that specific application and also the computational power that is available to
them. For this problem, t = 15 minutes seemed to be a good trade-off between the
accuracy and the problem size. For any specific application, it is recommended to
initially perform similar analysis and then select the appropriate time-step length
based on the required accuracy and availability of computational resources.

The main input parameters investigated in section 6.2 are divided into 3
categories. parameters of the facility location problem, parameters of the vehicle

routing problem and parameters of the commodity flow problem.
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It is shown that the number, location and capacity of the facilities in the
network can have a mgor affect on the emergency response operations. In
analysis of the number of facilities, it was concluded that adding more facilitiesis
beneficial in reducing the unsatisfied demand over time. However, these
improvements became marginal when more that 2 MOBs, 2 FOSAs and 4SSAs
were selected.

The loading and unloading capacity in each facility was shown to impact
the flow of commodities and how the low capacities would increase unsatisfied
demand. Numerical studies tested a range of capacities for both loading and
unloading capacity factors. It was concluded that investments to expand the
capacity should improve both capacities at the same time. If one of the capacities
iskept at afixed level, then additional capacity for the other type remains unused.

For vehicle routing problem, the number of available vehicles was one of
the main factors. It was concluded that the number of vehicles not only affected
the model’s results such as objective function value, but it also affected the
difficulty of model and CPU time to find the optimal solution. When the number
of vehicles was very low or very high, it was much easier and faster to solve the
model. For an in-between range of vehicle numbers, it became very difficult and
time consuming to find the optimal solution. This range is problem-specific and
can depend on the other model inputs as well. Researchers and practitioners
should be aware of this behavior and perform the similar analysis for a range of

vehicle numbersthat is appropriate for their specific application.
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Another factor that affected the performance of the entire model was the
capacity or type of vehicles used in the response operations. The general
conception is that higher capacity is aways better. However it might not aways
be possible to use the largest vehicle in the fleet. Analysis of the capacity of
trucks and planes in the system indicated that the problem was more sensitive to
the capacity of trucks versus the capacity of planes. This might be simply due to
the fact that the ground transportation does the majority of the deliveries in this
problem.

The other factor in vehicle routing problem that affected the response
operations was the travel speeds. Faster vehicles are favorable from two
perspectives. First, the flow of relief commodities through the network can
happen faster. Second, empty vehicles can travel faster and reach the pickup
nodes to start another round of deliveriesin a shorter period of time. However, the
travel speed might be reduced in the disaster area due to the inclement weather or
road blockings. It was shown that lower travel speeds would increase the
unsatisfied demands over time.

Comparing the travel speeds, it was shown that travel speeds at federal
level network had a stronger effect than travel speed at the state level networks. In
other words, if we could choose to improve the conditions of the roads in either
federal level or state level roadways, it would be more rewarding to improve the
conditions of the federal level links.

In commodity flow problem, senstivity analysis was performed to

investigate the effect of various amounts of supply, random demands and the

182



relative urgency factor. In analyzing available supplies, it was shown that the lack
or delay of supplies at source nodes had a large negative effect on the objective
function value. On the other hand, when supplies were abundant, the objective
function was improved only dlightly. In fact, other limitations such as
transportation capacity and facility constraints limited the amounts of supply that
could be delivered and having extra supply could not help.

Locations and amounts of demands are other factors that affect the details
of the response operation. Variability in demand locations and amounts is a
negative factor for emergency response operations. Ten cases with random
demand values were generated and solved to optimality. It was shown that in
spite of variations in demand, the proposed model was successful in finding good
solutions. Equally important, the same set of facility locations were used for all
random cases that could be interpreted as a good measure of robustness of the
model in case of fluctuations in demand.

Finally, the effect of relative urgency factor was tested. It was proven that
using relative urgency factor can be very effective when there was a reason to
give priority to one commodity over another or one demand node over another.
The demands for commodities or nodes with higher RU factor were satisfied at
very earlier times compared to the other commodities or nodes. Use of the RU
factor is highly recommended when there is a small amount of demand for a
commodity with high priority (e.g. medical supplies).lt is very effective to use a
higher RU factor in the model to make sure that the priority is given to that

commodity/node regardless of its small quantity.
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Chapter 7: Prepositioning and Equity

In this chapter 2 new subjects are investigated that are very important in
emergency response operations. In section 7.1, first the concept of prepositioning
is introduced and then the mathematical formulation to model the prepositioning
problem is described. After that, a set of numerical experiments are conducted to
illustrate the potentia benefits of considering prepositioning in emergency
response operations. In section 7.2, equity constraints that were previously
introduced in chapter 3 are further investigated then a new set of equations are
proposed that can model the equity constraints more effectively. Numerical

experiments illustrate the successful use of the new equity constraints.

7.1 Prepositioning of supplies and vehicles

Planning and preparedness play a vital role in disaster management and
emergency response. After a disaster strikes, the initial unavailability of supplies
or the slow pace in mobilizing them can cause magor delays in emergency
response that would result in increased loss of life and human sufferings.
Prepositioning is a valuable tool for emergency response organizations to enhance
their emergency response capacity and preparedness for responding to large-scale
disasters. However, effective prepositioning of supplies and personnel is not an
easy task. Uncertainty about future disasters and also the high costs of inventory
and maintenance are some of the obstacles in effective prepositioning for large-

scale emergency operations.
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A number of researches in recent years have considered the prepositioning
of supplies for emergency operations (Rawls and Turnquist, 2010). These studies
emphasized the importance and benefits of considering strategic inventory and
prepositioning of supplies. In this section, it is tired to use the mathematical
model introduced in chapter 3, in order to model and optimize the prepositioning
of supplies aswell as transportation capacity for disaster response.

It should be emphasized that technically, prepositioning problem is usually
considered at the planning or strategic level. Conversely, the mathematical model
proposed in chapter 3 is a tool to model and optimize emergency response
operations at the operational level. Nevertheless, the unique capabilities of the
proposed model can still be used to solve the prepositioning problem. To do so, it
is required to generate a wide range of potential disaster scenarios in advance and
solve them with the proposed model and then implement the aggregated outcomes

of all scenariosin planning or strategic level decision making.

7.1.1 Mathematical For mulation

In the mathematical model proposed in chapter 3, the amount of
exogenous supply for each commodity at each node of the network was assumed
to be a parameter that was given for each problem instance. Equation (7.1) below

issimilar to EQ. (3.2) from chapter 3:

9 cm 9 c c 9 cm
a ijt ta XTitnTn( +Cxit -a in(t-tjim)
i . mé j _ (7.2)
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i(t- Kyen)

For the initial time period, § Xiitt-t,,) 1S €qual to 0 aswell as Q XTom
j me

and CX{,. . So, if the parameter Sup; is being considered as a variable of the

model for the initial time period (t = 0), then we have:

aa Xii' +CXii - Sup; =0 "i,¢t=0 (7.2)
m ]

Equation 7.2 is the new constraint for conservation of flow for the initial
time period. Equation 7.2 requires that for any given node and any given
commodity, the sum of all commodities that are shipped from i to any node by
any transportation mode plus the amount being stored at that node for the next
time period minus the exogenous supply is equal to zero.

Since the total supply available at time O is limited, we need to add a new

constraint to the problem to limit the amount of total initial supply Sup; :

a supf=Sup  "ct=0 (7.3)

Based on FEMA's recommendations, the supplies can also be
prepositioned at the temporary facilities. However, a temporary facility must be
open and have enough storage capacity to hold prepositioned supplies. Equation

7.4 enforces these regquirements:

a Sup £ Scap, Lot "il W,t=0 (7.4)

By adding the equations 7.2, 7.3 and 7.4 to the main model, we can solve for the
optimal amounts and location for prepositioning of the available supplies.
Prepositioning is not limited to the relief commodities but can be

considered for the vehicles that transport these commaodities. Finding the optimal

186



location for vehicles of each transportation mode for the initial time period is aso
very important. Using the concepts similar to the ones used for prepositioning of

supplies, we will have:

[]

avYr+Cy- A" =0 "il NNmt=0 (7.5
j

QA" = AV "mt=0 (7.6)
AV £VPcap!” Loc  "iT W,t=0 (7.7)

Equation (7.5) is the conservation of flow for the vehicles and AV, is the

number of vehicles of mode m at node i for timet = 0. Equation (7.6) limits the
total number of vehicles of each mode available at time t = 0. Equation (7.7)
prevents the temporary facilities that are not open from accepting any vehicular

flow and enforces the vehicle parking capacity for the facilities that are open.

7.1.2 Numerical Experiments

In the numerical experiments that were presented in previous chapters, it
was aways assumed that the supplies were stored only at the permanent source
nodes (i.e. LC, CSS, VEN). Also the initial distribution of supplies among these 3
sources was a given fixed data. For example for most numerical cases in this
study, it was assumed that 40% of supply was stored at the logistics center site in
Atlanta, GA. 20% was stored at commercia storage site in Charlotte, NC and
40% of supply was stored at the vendors site in Nashville, TN. A mostly similar
approach was used to initially locate the trucks and planes. That prepositioning

scheme was arbitrary and obviously can be very far from optimal.
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In this section a number of cases are generated and solved in order to
investigate the properties of an optimal prepositioning scheme. Prepositioning is
considered at different levels. First, it is assumed that only the 3 permanent
sources can be used for prepositioning and the objective is to find the optimal
amounts of supply for each commodity to be stored at these 3 facilities. Secondly,
this constraint is removed and it is assumed that all of the facilities in the federal
level network can be used for prepositioning.

Another important issue is the prepositioning of the vehicles. Numbers
and locations of the transportation vehicles at the beginning of the operation can
also have a magjor impact on the efficiency and speed of the operations. If the
vehicles are not located optimally at the beginning of the operations, along period
of very valuable time is wasted before the vehicles can arrive at the supply sites,
load the relief items and start the delivery process.

In fact, the prepositioning of supplies and vehicles are two problems that
are related very closdly. If supplies are located optimally but vehicles are not
readily available then the operations cannot start. On the other hand,
prepositioning of vehicles without considering the supply sites is not beneficial
either. Consequently, it is very important to consider the prepositioning of
supplies and vehicles in conjunction. Optimizing the two problems jointly is the
only way to find the best prepositioning scheme.

Six cases are generated and solved to optimality to test the effects of
prepositioning at different levels. Table 7.1 introduces these cases and presents

their optima objective function value. Case 1 is the base case when no
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preposition is applied. In the base case, 40% of supplies are located at LC, 20% at
CSS and 40% at VEN site. In the base case, 60 trucks are available that are evenly
distributed among these 3 source nodes. Also, 20 C130 cargo planes are available
that are assumed to be initially located at CSS and VEN facilities, 10 planes at
each location. The amount of supply for each commodity and also the number of
vehicles of each type is the same for all cases. Facility location problem is
considered for al 6 cases with a maximum of 2 MOBs, 2 FOSAs and 4 SSAs.
Supplies and vehicles can only be prepositioned at an open temporary facility site

and is subject to the capacity constraints of each particular facility.

Table 7.1 Introduction of prepositioning case studies

CASE Description O{)/j;‘ﬁieve rlnrgmp{(z:g
e e
2 | sy aoone | s |2
o | ooy a1 | s |
et nhen | g | s
s | ammm oot aome | s | s
o |y | s | g

The main conclusion from the analysis presented in table 7.1 is that the
prepositioning of supplies and vehicles can be very effective. All of the cases with
prepositioning show an improvement over the base case scenario. Cases 2 and 3
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show a modest improvement over the base case. The main reason for that is
because the initial distribution of the empty vehicles is not optimal. In these two
cases, the vehicles are still located at the source nodes, so there is not much
advantage in prepositioning the supplies in other nodes. However, in cases 2 and
3, the supply distribution is adjusted to the initia locations of the vehicles and
resulted in a better objective function.

In cases 4, 5, and 6 the prepositioning of supplies is combined with
optimal distribution of empty vehicles. Since both supplies and vehicles are
located in optimal locations, the operations can proceed much faster than the base
case scenario. The maximum gain is observed in case 6. In case 6, supplies can be
prepositioned in any of the 11 federa level facilities and the vehicles are free
available at the same 11 sites. Consequently, the supplies are prepositioned at the
nodes closer to the affected states combined with the appropriate number of
vehicles available at those sites. This resulted in huge saving of 50% in the
objective function compared to the base case.

Table 7.2 illustrates the percent of total supply that is prepositioned at
each facility type for the 6 cases introduced previously. In case 1, supply
assignment is fixed for the source nodes. In case 2, al supply must remain in the
source facilities however, it is possible to shift it among the source facilities. Asa
result, the supplies are moved from LC to CSS and VEN mainly because the
majority of empty vehicles are stored at these 2 facilities. In case 3, prepositioning
in temporary facilitiesis alowed. As aresult, 30% of supply is moved to 2 FOSA

facilities that are closer to the disaster areas. In cases 4 and 5 no supplies are
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stored at MOB and FOSA facilities because there are no empty vehicles available
at those points. Joint prepositioning of vehicles and supplies are alowed in case 6.
Therefore a large portion of supplies are prepositioned at MOB and FOSA
facilitiesin case 6.

Table 7.2 Percent of total supply prepositioned at each facility type

% Supply LC css VEN MOBs FOSAs
Casel 40.00 20.00 40.00 - -
Case2 17.92 50.00 32.08 - -
Case3 46.83 23.17 - - 30.00
Case4 40.00 20.00 40.00 - -
Case5 20.04 50.00 29.96 - -
Case6 1.75 14.17 21.50 32.58 30.00

To anayze the effect of prepositioning on the distribution of empty
vehicles refer to Table 7.3. In table 7.3, the number and locations of vehicles for
ground and air transportation is shown for the 6 different prepositioning cases. In
the first 3 cases the numbers and locations were fixed and only shown for
comparison. The general pattern in cases 4, 5 and 6 indicates that the majority of
trucks are prepositioned at MOB and FOSA facilities but most of the planes
remained at the source nodes. The trucks are moved to MOBs and FOSAs to be
closer to the disaster states. Because at the state level, only ground transportation
is available and the trucks located at FOSAs can continue to the state level
networks and eventually deliver the relief items to the final PODs. On the other

hand, at the federa level network, distances among the nodes are much longer
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which is preferable to be covered by much faster air transportation mode. This
pattern in prepositioning of the vehicles is a very important observation that

shows the successful collaboration between these 2 transportation modes.

Table 7.3 Number of vehicles prepositioned at each facility type

No. Of Ground Transportation Air Mode
Venicles | | c.cssVEN | MOBs | FOSAs | LC-CSSVEN | MOBs
CASE1 60 - - 20 -
CASE 2 60 - - 20 -
CASE 3 60 - - 20 -
CASE 4 3 45 12 17 3
CASE 5 4 39 17 16 4
CASE 6 1 35 24 20 -

Overadl, it is concluded that prepositioning is very important and it can
greatly improve the speed and efficiency of emergency response logigtics. It is
also shown that prepositioning is especially effective when it is considered in the
deployment of relief supplies as well as the transportation capacity both at the
same time. If prepositioning of supplies is done without considering the
availability of transportation means, the improvements are very marginal in the

best case.

7.2 Equity

Asinitialy introduced in chapter 3, considering equity and fairness among
aid recipients is an important issue. Based on the geographical dispersion of

victims and availability of resources over time and space, it is easy to favor the
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demands of one group of victims over another. Some variations are inevitable;
however, the ideal pattern is to distribute the help items evenly and fairly among
al victims. The mathematical models and procedures with general objective
functions are prone to ignore equity and level of service requirements in order to
get a better numerical solution. It is very important to realize the need for
procedures and constraints that prevent any sort of discrimination among victims,
as much as possible.

The equity constraint between populations can be defined over time, and
over commodities. It is not appropriate to satisfy all the demands of one group in
early stages while the other group of victims does not receive any help until very
later times. It is more acceptable to fairly distribute the available relief items
among all recipients even though it might not be enough to satisfy all demands.
The equity over commodities is aso important. For example, it is not acceptable
to send al the available water to one group of victims and send all the available
meals to another group.

In chapter 3, equity constraints were mathematically modeled for the first
time. Those equity constraints were tested in the preliminary numerical study in
chapter 4. The results indicated that the proposed equity constraints were
successful in implementing the required minimum level of service for demand
points. However, the equity constraints would increase the size of the model and
make it much more difficult to solve. In fact, when all equity constraints were
used, the CPLEX solver was not able to find the optimal solution in a reasonable

time. In this section, it is tried to analyze the equity constraints proposed in
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chapter 3 and aso introduce a new set of equity constraints with stronger

properties.

7.2.1 New Equity Constraints

Equations 3.24, 3.25, and 3.26 represented the equity constraints in
chapter 3. Equation (3.24) enforces a minimum percentage of total demand for a
specific commodity c, to be satisfied by the time period t. Equation (3.25) requires
that from all commodities being delivered to nodei by timet, at least b, percent

to be commodity c. Equation (3.26) ensures that the sum of total commodities
delivered to point i, to be more than a minimum percentage of the commodities

that are being delivered to all other demand points.
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Equation (3.24) enforces a minimum percentage of total demand for a
specific commodity c, to be satisfied by the time period t. It might not be always
possible to deliver the required amount by time t; in that case, this constraint

makes the optimization problem infeasible.
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Equation (3.25) requires that from all commodities being delivered to
nodei by timet, at least b, percent to be commodity c. However, if the demand
for a specific commodity is only a small portion of the total demand at that node,
then b;, cannot be enforced and can cause infeasibility.

Equation (3.26) ensures that sum of total commodities delivered at point i
to be more than a minimum percentage of al the commodities that are being
delivered to al other demand points. Eq. 3.26 might aso perform poorly when the
amount of demands between different PODs has large fluctuations. In the
following, improved equity constraints are proposed to deal with these
shortcomings.

It is important to notice that the amounts delivered at each node should be

proportional to their total demands, in other words:

(delivered), (delivered), =~ (delivered),

7.8
(demand), =~ (demand), (demand ), (7.8)
Thistrandatesto
(unsatisfied),  (unsatisfies), (unsatisfied ), (7.9

(demand), ~ (demand), =~~~ (demand),
We define a new variable UDR; = relative unsatisfied demand at node i (Total
unsatisfied demand at node i divided by total demand at node i). Then we have:
UDR »UDR, »...» UDR, (7.10

To implement this in mathematical programming language, we should
define a tolerance factor |, and enforce it for each pair of demand nodes. It

trandatesto
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UDR' - UDR}| £ m "i,j1 Nt (7.12)
Whichisequivalentto - m £UDR - UDR,£m"i,j,t  andfinaly wehave

}UDR' - UDR| £m "i,jT N,t

P ; o (7.12)
fUDR' - UDR' £m i T Nt

Equation 7.12 requires the difference of percentage of unsatisfied demand
between each pair of demand nodes to be smaller than a tolerance factor ;. This
new formulation compared to the equity constraints 3.26 is simpler, more
compact, and can better describe the concept of equity among demand nodes.
Also, the issue of infeasibility caused by previous equations is solved since
equation 7.12 considers the relative unsatisfied demand.

Equation 7.12 is compact but it can still be improved. If there are N nodes
in the network, we need to enforce equation 7.12 for each pair of nodes. In fact
we will have N*(N-1)*t equations when the number of nodes is N. In this case,
the number of constraints grows very fast with number of demand nodes. To deal
with this issue we define 2 new variables (Ryin and Rma) and reformulate
equitation 7.12:

Riwin = Auxiliary variable for minimum relative unsatisfied demand

among all nodes at timet

Rinex = Auxiliary variable for maximum relative unsatisfied demand

among all nodes at timet

_\I_UDRlt 3 R:nin "
lUDR ER, i (7.13)

TR - Ry £m
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Equations 7.13 find the minimum and maximum relative unsatisfied demands and
require their difference to be less than a tolerance parameter p set by the user.
This provides an exclusive control that was not possible before. Also, equation
7.13 is more efficient than equation 7.12. If the number of nodes are N, it only
requires (2n+1) constraints to formulate equity compared to N*(N-1) constraints
in equation 7.12. Thisis very important especially when number of nodes is very
large. For example in case of 100 nodes, equation 7.12 needs 9900 constraints
compared to only 201 constraints if equation 7.13 is being used.

Using similar analogy for other equity constraints, new eguations are
derived. Equations 7.14 to 7.20 present the new equity constraints that would
replace equation 3.24, 3.25 and 3.26 in the origina formulation.

Minimum fill rate:

UDSE£(l-a,.)g Demt  "ilV,ct (7.14)
t

Equity over Commodities:

aubDesrl d Demt  "ilV,ct (7.15)
t t
QUDCEr §Demt  "ilV,ct (7.16)
t t
(N A o I "t (7.17)

Equity among different Points of Distribution:

aaupisR,.Q4Deny il Vi (7.18)
C t c t
A QUDER A aDent il Vit (7.19)
C t C t
Ria - Run £M "t (7.20)
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7.2.2 Numerical Experiment

To test the effect of using new equity constraints, 3 new numerical cases
are generated and solved. The results are compared to each other as well as to the
base case scenario. In these cases, only the equity among points of distribution is
considered and it is enforced once at t = 12 hours. Case 1, is the base case
scenario without the enforcement of any equity constraints. In Case 2, p = 0.5 is
required that means the difference between highest and lowest relative unsatisfied
demand should be less than 50%. In cases 3 and 4 higher equity requirements are
enforced by reducing the tolerance to u = 0.25 and p = 0.10, respectively.

Table 7.4 presents the outcome of the optimal solutions for each case. In
Table 7.4, the total demand for each of the 20 POD nodes is shown as well as the
total unsatisfied demand at each POD after 12 hours of operation for the base case
and other 3 cases.

It is very interesting to notice that applying equity constraints in case 2
and case 3 changed the details of the operation however it did not change the
objective function value compared to the base case. This indicates that the model
was capable of satisfying the new level of service requirements without
sacrificing the objective function. For case 4, the objective function is a little
higher which is the trade off for satisfying the greater restrictionswhen p = 0.1.

In table 7.4 the initial demand and unsatisfied demand after 12 hours are
given for different cases. From these results, we can calculate the relative

unsatisfied demand for each node and each case. The rdative unsatisfied demand
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is equal to unsatisfied demand at each node divided by its initial demand. Table

7.5 reports UDR values.

Table 7.4 Effect of equity constraints on demand satisfaction at PODs

Unsatisfied Demand after 12 hours

POD Node Dlgrlr:g d 5
ase case Case?2 Case3 Case4
22 13500 6625 13500 8470.588 10125
23 36000 12000 18000 22588.24 27000
24 21000 19250 14333.33 13176.47 15750
25 24000 18000 13500 15058.82 18000
26 37500 13500 23166.67 23529.41 28125
27 42000 24500 28500 26352.94 31500
28 55500 41000 31500 34823.53 41625
29 10500 10000 6000 6588.235 7875
30 37500 33500 31500 32904.41 31875
31 25500 19500 13500 22375 21675
32 12000 11000 12000 10529.41 10200
33 16500 16500 9333.333 12247.79 14025
34 28500 27500 28500 25007.35 24225
35 25500 25500 25500 22375 21675
36 39000 39000 33000 34220.59 33150
37 57000 41125 54500 438808.82 48450
38 10500 10500 10500 9213.235 8925
39 46500 34500 40500 40801.47 39525
40 18000 18000 18000 15794.12 15300
41 43500 43500 38666.67 37722.79 36975
Objective Function (E+7) 3.50445 3.50445 3.50445 3.51866
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Table 7.5 Relative unsatisfied demand for various equity tolerance levels

Relative Unsatisfied Demand after 12 hours
POD Node
Base case Case?2 Case3 Case4

22 0.491 1.000 0.627 0.750
23 0.333 0.500 0.627 0.750
24 0.917 0.683 0.627 0.750
25 0.750 0.563 0.627 0.750
26 0.360 0.618 0.627 0.750
27 0.583 0.679 0.627 0.750
28 0.739 0.568 0.627 0.750
29 0.952 0.571 0.627 0.750
30 0.893 0.840 0.877 0.850
31 0.765 0.529 0.877 0.850
32 0.917 1.000 0.877 0.850
33 1.000 0.566 0.742 0.850
34 0.965 1.000 0.877 0.850
35 1.000 1.000 0.877 0.850
36 1.000 0.846 0.877 0.850
37 0.721 0.956 0.856 0.850
38 1.000 1.000 0.877 0.850
39 0.742 0.871 0.877 0.850
40 1.000 1.000 0.877 0.850
41 1.000 0.889 0.867 0.850
Min 0.333 0.500 0.627 0.750
M ax 1.000 1.000 0.877 0.850
M 0.667 0.50 0.25 0.10
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Table 7.5 shows that for the base case which had no equity restriction,
minimum and maximum relative unsatisfied demands are at 33.3 and 100 percent.
This means that for the base case, at least one node has 33% unsatisfied demand
while at least one other node has 100% unsatisfied demand after 12 hours of
operations. This gap is very large and might not be acceptable from the equity
perspective. As it is shown at the bottom of table 7.5, for cases 2, 3, and 4 this
discrepancy is lower. In case 2, the differences between the nodes with highest
and lowest satisfaction rate are 50%. The same measure is 25% and 10% for cases
3 and 4 respectively.

Figure 7.1 better illustrates the outcome of using equity constraints. In
figure 7.1 the relative unsatisfied demand is depicted for the four cases described
earlier and calculated in table 7.5. It is evident that in the base case, when there
are no redtrictions, the satisfaction rates for different PODs have large
fluctuations. The fluctuations among PODs are reduced when equity constraints
are enforced. In fact, for case 4 with p = 0.1, the fluctuations are very much

controlled and the differences are reduced to less than 10%.
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Chapter 8: Summary and Future Research

In today’s society that disasters seem to be striking all corners of the
globe, the importance of emergency management is undeniable. Much human loss
and unnecessary destruction of infrastructure can be avoided with better planning
and foresight. When a disaster strikes, various aid organizations often face
significant problems of transporting large amounts of many different commodities
including food, clothing, medicine, medical supplies, machinery, and personnel
from several points of origin to a number of destinations in the disaster areas. The
transportation of supplies and relief personnel must be done quickly and
efficiently to maximize the survival rate of the affected population.

Federal emergency management agency (FEMA) is the primary
organization for preparedness and response to federal level disasters in the United
States. FEMA has a very complex supply chain structure to provide the disaster
victims with critical items after a disaster which involves multiple organizations
and spreads all across the country. Unfortunately, inadequate response to
hurricanes Katrina and Rita showed the critical need for better mechanisms in
emergency operations.

In this research, first FEMA’s supply chain structure is investigated. There
are seven main components in FEMA’s supply chain to provide relief
commodities for disaster victims that are briefly described here:

1. FEMA Logistics Centers (LC): permanent facilities that receive, store,

ship, and recover disaster commodities and equipment.
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. Commercia Storage Sites (CSS): permanent facilities that are owned and
operated by private industry and store commodities for FEMA. Freezer
storage space for ice is an example.

. Other Federa Agencies Sites (VEN): representing vendors from whom
commodities are purchased and managed. Examples are Defense Logistics
Agency (DLA) and General Services Administration (GSA).

. Mobilization (MOB) Centers. temporary federal facilities in theater at
which commodities, equipment and personnel can be received and pre-
positioned for deployment as required. In MOBs commodities remain
under the control of FEMA logistics headquarter and can be deployed to
multiple states. MOBs are generally projected to have the capacity to hold
3 days of supply commodities.

. Federal Operational Staging Areas (FOSAS): temporary facilities at which
commodities, equipment and personnel are received and pre-positioned for
deployment within one designated state as required. Commodities are
usualy being supplied from MOB Centers, Logistics Centers or direct
shipments from vendors. FOSAs are generally projected to hold 1 to 2
days of commodities.

. State Staging Areas (SSA): temporary facilities in the affected state at
which commodities, equipment and personnel are received and pre-
positioned for deployment within that state. Title transfers for delivered

federa commodities and cost sharing are initiated in SSAs.
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7. Point of Digribution (PODs) Sites: temporary local facilities in the
disaster area at which commodities are distributed directly to disaster
victims. PODs are operated by the affected state.

The modeling and optimization techniques established in commercid
supply chain management seem to be the most relevant approach to be used in
emergency logistics. Some recent studies emphasized that some supply chain
concepts share similarities to emergency logistics and therefore tools and methods
developed for commercia supply chains can be successfully adapted in
emergency response logistics. However, using commercial supply chain
techniques in disaster management is still in its infancy. The partial reason is the
difference in the strategic goals of commercia supply chain with the goals of
disaster response logistics. The main goal in commercial supply chain is to
minimize the cost or maximize the profit of the operations. Actions are justified if
they increase the profit but are not perused if their cost is more than their profit.
However, humanitarian organizations are mostly non-profit organizations with the
idea of providing critical services to the public in order to minimize the pain and
sufferings of the affected populations.

There are not many publications that directly applied network modeling
and optimization techniques in disaster response. Among those studies, thereis no
model that has integrated the interrelated problems of large-scale multicommodity
multimodal network flow problem, the vehicle routing problem with split mixed

pickup and delivery, and the optimal location finding problem with multiple

205



layers. Also to the best of our knowledge, there is no mathematical model that
describes the specia structure of FEMA'’ s supply chain system.

The goa of this research is to develop a comprehensive model that
describes the integrated logistics operations in response to natural disasters at the
operational level. The proposed mathematical model integrates three main
components. First, it controls the flow of several relief commodities from sources
through the supply chain until they are delivered to the hands of recipients.
Second, it considers a large-scale unconventiona vehicle routing problem with
mixed pickup and delivery schedules for multiple transportation modes. And
third, following FEMA’s complex logistics structure, a specia facility location
problem is considered that involves four layers of temporary facilities at the
federal and state levels. Such integrated model provides the opportunity for a
centralized operation plan that can effectively eliminate delays and assign the
limited resources in away that is optimal for the entire system.

The proposed model considers sending multiple relief commaodities (e.g.,
medicine, water, food, equipment, etc) from a number of sources to severa
distribution points in the affected areas through a chain structure with some
intermediate transfer nodes. The supplies may not be available immediately but
arrive over time. It is a difficult task to decide on the right type and quantity of
relief items, the sources and destinations of commodities, and also how to
dispatch relief items to the recipients in order to minimize the total unsatisfied

demand for all disaster victims.
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Vehicle routing and scheduling during the disaster response is aso very
important. A large number of vehicles are used in response to large-scale
disasters. The proposed model is able to keep track of routings for each individual
vehicle. Also, the model provides a detailed schedule for pickup and delivery of
relief commodities by each vehicle in each transportation mode. Nonetheless, the
vehicle routing in disaster situations are quite different from conventional vehicle
routings. The vehicles do not need to form a tour and return to the initial depot,
but they can be assigned to a new path at any time. They are expected to perform
mixed pickup and delivery of multiple items between different nodes of the
network as the supplies and demands arise over time.

During the initial response time it is aso necessary to set up temporary
transfer facilities to receive, arrange, and ship the relief commodities through the
distribution network. The proposed model considers optimal selection of severa
facilities that results in the maximum coverage of the affected areas and the
minimum delays for supply delivery operations. Usually the number of these
temporary facilitiesislimited because of the equipment and personnel constraints.

Each facility in the model is subject to some capacity constraints. Various
capacities are defined for operations such as sending, receiving, and storing
commodities. These capacities can be different for each facility and are
determined based on the type, size and layout of that facility. Also the availability
of personnel and equipment may influence the capacities. The capacity constraints

are defined in terms of the weight or volume of the commodities as well as in
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terms of the number of the vehicles that are sent, received, or parked at each
facility during each time period.

The other important issue is considering equity and fairness among aid
recipients. Based on the geographical dispersion of victims and availability of
resources over time and space, it is easy to favor the demands of one group of
victims over another. Even though some variations are inevitable, the ideal pattern
is to distribute the help items evenly and fairly among the victims. The proposed
model recognizes this need and considers a set of constraints that prevent
discrimination among victims, as much as possible.

A set of preliminary numerical experiments was designed to test the
proposed formulation and evaluate the properties of the optimization problem.
Different case studies were generated based on the same structure of an imaginary
hurricane scenario to analyze the effects of different parameters. In general, the
proposed modeling framework produced reasonable outcomes. It was able to
provide the level of details required in the disaster response logistics at the
operational level. For simple cases and smal size problems, the commercia
solver was able to find the optimal solutions, however, for the full size problem
CPLEX commercial solver was unable to deliver good results within a
meaningful computation time. It is concluded that better solution algorithms or
heuristics are needed to address the larger problem instances or real world size
problems.

To develop solution algorithms, first some solution approaches for genera

integer programming from previous studies in the literature were reviewed. It was
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concluded that the current model is very complex and a reliable exact solution
method is not available that would be computationally attractive or affordable.
Consequently, it is more realistic to develop fast and efficient heuristic algorithms
to find near optimal solutions.

To solve the proposed mathematical model, the problem was structurally
decomposed into three sub-problems. multicommodity network flow, location
finding with multiple layers, and general integer vehicle routing problem. These 3
problems were solved one-by-one, however the interrelation between these 3
problems were preserved at all times.

Multicommodity network flow problem is a linear program and is
considered easy since efficient commercial solvers exist that can solve very large
LP programs quickly. To solve the multi-layer facility location problem, 4
heuristic methods are proposed. From those, the Branch-and-bound with
hierarchical decomposition and the highest capacity ratio were the 2 algorithms
that showed better results.

To solve the general integer vehicle routing problem, four heuristic
algorithms were proposed. The algorithms were tested with large-size numerical
experiments. All four agorithms were successful in finding good integer
solutions. The convergence rates of the proposed algorithms were aso much
faster than the commercial solver for the same optimality gap.

The proposed VRP agorithms were compared to each other. It was
concluded that Y-list and Y-list Modal algorithms were better in solution quality

and the convergence speed. However, when worst-case scenario is considered, T-
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counter and Origin-based T-counter agorithms were shown to have better
performances. Finaly, all four agorithms were used to solve several random
generated problem instances. It was concluded that the proposed al gorithms could
find good solutions very quickly. In fact, for most cases less than 2% optimality
gap was reached in less than 2 minutes of computation time.

In chapter 6, in-depth analyses of different aspects of the proposed
mathematical model were presented. These analyses were provided in order to
better illustrate the capabilities of the model and also examine model’s sensitivity
in various circumstances. The analyses were divided into two main categories:
sensitivity analysis of the structural parameters of the model, and sensitivity
analysis of the main input values of the model. It was shown that changing some
input parameters not only affects the optimization results but it can also largely
change the problem size and solution computation times.

The structural parameters included number of commodities C, number of
transportation modes M, and the time-step resolution t. To test the effect of the
number of commaodities, four cases are considered each with one, two and three
and four commodities respectively. It is shown that the number of variables and
number of constraints increases linearly with the number of commodities.
Number of variables grows faster than number of constraints. More importantly, it
is shown that when number of commodities increase, the problem becomes much
harder to solve and the computation time increases rapidly. This increase in

computation time was exponential in the range tested.
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Number of transportation modes is also an important factor. Using
multimodal compared to single modal transportation not only increases the size of
the formulation but also makes the problem much harder to solve. In multimodal
systems there is this question of which transportation mode to utilize and how to
balance the commodity flows among different modes. Another concern in
multimodal environments is considering the intermodal transfer. From
application’s perspective it is important to provide suitable facilities and the
required equipments in order to transfer the relief commodities between
transportation modes quickly and efficiently. From modeling perspective it is
important to consider the properties of each transportation mode and correctly
model the delays during intermodal transfers.

Multimodal problem is more difficult to solve. In fact, for a numerical
example the number of variables and constraint in multimodal case is only about
10% more than single-mode case but it was much more difficult to solve the
multimodal problem and it took about 120 times longer to solve the multimodal
problem.

The other structural parameter in the model is the length of time-steps t.
Time-step t is the length of time between two consecutive states that the problem
is being modeled. Selection of appropriate time-step is a very important factor
that can affect the performance and accuracy of time-space networks
dramatically. When t is short, the situation on the ground can be modeled in
greater details which would not be possible with longer time-steps. So from

accuracy perspective, it isfavorable to have shorter time-steps. On the other hand,
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for each time period in the planning horizon, one layer of physical network will
be added to the time-space structure of the problem. This makes the problem size
grow extremely fast with the number of time-steps in the planning horizon.

Finding a reasonable time-step t is an important modeling challenge. In
selecting the appropriate time-step one should consider the level of accuracy that
is required for that specific application and also the computational power that is
available to them. For any specific application, it is recommended to perform an
initial analysis and then select the appropriate time-step length based on the
required accuracy and availability of computational resources.

The three main categories of input parameters are: parameters of the
facility location problem, parameters of the vehicle routing problem and
parameters of the commodity flow problem.

It is shown that the number, location and capacity of the facilities have a
major affect on the emergency response operations. In analysis of number of
facilities, it was concluded that adding more facilities is beneficial in reducing
total unsatisfied demand. However, these improvements became margina when
more that 2 MOBs, 2 FOSAs and 4SSAs are sel ected.

The loading and unloading capacity in each facility is shown to impact the
flow of commodities. Numerical studies tested a range of capacities for both
loading and unloading capacity factors. It was concluded that investments to
expand the capacity should improve both capacities at the same time. If one of the
capacities is kept at a fixed level, then additional capacity of the other type

remains unused.
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For vehicle routing problem, number of available vehicles is one of the
main factors. It is concluded that the number of vehicles not only affects the
model’ s results, but it also affects the difficulty of the model and CPU timeto find
the optimal solution. When the number of vehiclesis very low or very high, it is
much easier and faster to solve the model. For an in-between range of vehicle
numbers, it can become very difficult and time consuming to find the optimal
solution. This range is problem-specific and can depend on the other model inputs
as well. Researchers and practitioners should be aware of this behavior and
perform the similar analysis for a range of vehicle numbers that is appropriate for
their specific application.

Another factor that can affect the performance of the entire model is the
capacity or type of vehicles that are used during the response operations. The
genera conception is that the higher capacity is aways better. However it might
not always be possible to use the largest vehicles in the fleet. Analysis of capacity
of trucks and planes in the system indicated that the problem was more sensitive
to the capacity of trucks than to the capacity of planes. This might be smply due
to the fact that the ground transportation does the majority of the.

The other factor in vehicle routing problem that affects the response
operations is the travel speed. Faster vehicles are favorable from two perspectives.
First, the flow of relief commodities through the network can happen faster.
Second, empty vehicles can travel faster and reach the pickup nodes to start
another round of deliveries in a shorter period of time. However, the travel speed

might be reduced in the disaster area due to the inclement weather or road
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blockings. It was shown that lower travel speeds will increase the unsatisfied
demands.

Comparing the travel speeds, it was shown that travel speed at federal
level network had a stronger effect than travel speed at the state level network. In
other words, if we could choose to improve the conditions of the roads in either
federal level or state level roadways, it would be more rewarding to improve the
federal level links.

For commodity flow problem, sensitivity analysis was performed to
investigate the effect of various amounts of supply, random demands and the
relative urgency factor. In analyzing available supplies, it was shown that the lack
of supplies at source nodes had a large negative effect on the objective function
value. On the other hand, when supplies were abundant, the objective function
was only dlightly improved. In fact, other limitations such as transportation
capacity and facility constraints limit the amounts of supply that could be
delivered and having extra supply is not always beneficial.

Locations and amounts of demands are the other factors that affect the
details of the response operations. Variability in demand locations and amounts is
a negative factor for emergency response operations. Several cases with random
demand values were generated and solved to optimality. It was shown that in
spite of variation in demands, the proposed model was successful in managing the
demand variations. Also, the same set of facility locations were used for all
random cases that could be interpreted as a good measure of robustness of the

model in case of fluctuations in demand.
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Finally, the effect of relative urgency factor was tested. It was shown that
using relative urgency factor can be very effective when there was a reason to
give priority to a commodity over another. The demands for commodities with
higher RU factor were satisfied at very earlier times compared to the other
commodities. Use of RU factor is highly recommended when there is a small
amount of demand for a commodity with high priority (e.g. medical supplies).Itis
very effective to use a higher RU factor in the model to make sure that the priority
is given to that commodity regardless of its small quantity. RU factor can aso be
applied to give priorities to some demand points over the others. Numerical
experiments indicated that RU factors can be effectively used if a some PODs

have higher priorities.

Recommendations for Future Research

In this section some recommendations are listed for future research.

1- Demand Estimation

The mathematica model presented in this dissertation is intended for
modeling and optimization of disaster response logistics at the operational level.
Conseguently, the locations, types, and amounts of demand are assumed to be
known at the any time. However, in readity the demands are not known in
advance. In fact, the demands might be very different in any special case based on
the type and intensity of the disaster and the characteristics of the impacted
community.

It is recommended to research and develop demand estimation models for

all potential disaster types and intensities for the targeted communities. Demand
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estimation models should predict the potential types and locations of demands. It
isalso very important to predict the variations of demands over time.

2- Modeling intermodal transfer terminals

The model proposed in current dissertation is capable of considering
multiple transportation modes. It was assumed that relief commodities can be
transferred between different modes at some intermediate facilities. Loading,
unloading, and storage capacities are considered for these intermodal transfer
terminals. Also, the model considers a fixed delay when commodities from one
transportation mode are being transferred to another independent of the volume or
the type of commodities. Therefore, thisis arelatively simplified version of what
happens in real world scenarios.

It is recommended to do further research on the operationa details of
intermodal transfer terminals. These terminals are large-scale facilities with
various systems and mechanisms inside them. It is suggested to try to model the
interactions inside these facilities and then possibly combine the resulted models
with the integrated logistic model proposed in this research.

3- Comparison to real world disaster scenarios

The integrated mathematical model proposed in this research is a genera
framework that can be adapted to different disaster scenarios. However, every
disaster scenario can be different based on its type, intensity, geographical region
and also the amount of available resources and infrastructure.

It is recommended to do further research on different disaster types and

investigate the requirements specific to that disaster. By doing so, disaster
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response organizations can improve their operations and gain vauable
information in order to deal with future disasters. It is also recommended to gather
data and information from previous disasters and use them to calibrate the model
proposed in this dissertation in order to tailor this general-purpose model to their
specific region and potential disaster scenario.

4- Third party logistics provider and collabor ative response

In this research, it is assumed that a central organization is in control of
managing and operating the entire system. In the United States, federd
emergency management agency is the main organization responsible in dealing
with large-scale disasters. However in genera case, severa organizations might
run paralel response operations and these organization might act independently.
It is also possible that the main relief organization uses other logistics providers
(e.g. Contractors, state or local organizations) to help with response to large-scale
disasters.

It is recommended to investigate the roles and responsibilities of these
third party logistic (3PL) providers. It is recommended to develop mathematical
models (similar to the one proposed in this dissertation) specific to the operations
of 3PL providers. Then, another important research question is how to integrate
the operations of the main response organization with those of 3PL providers in
order to maximize the benefits for the disaster victims.

5- Dealing with uncertainty
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In the assumptions section of the proposed model (section 3.4), it was stated that
the required data for the model is available and given. For example, it was
assumed that following information is given:
Demands: commodity types, demand locations, demand amounts
Supply: commodity types, supply locations, supply amounts
Permanent Facilities: types, locations, capacities
Temporary Facilities: set of potential sites for each type, capacities of
each type
Network: link-node incidence matrix for each transportation mode
Vehicles: number of vehicles available for each mode and their initial
locations, capacity of each vehicle
Travel Times: travel time on each link for each transportation mode

Since the model is a the operational level, it is assumed that the
abovementioned data is given and consequently, the model is deterministic. In the
proposed model, the required information is estimated or known at the beginning
of the operations and the model can adapt to the new information as the
circumstances evolves over time.

Therefore, the proposed model in this study is a reactive model and can
only adjust to the changes after they happen. An interesting variation of this
model is considering a predictive approach. By considering uncertainties and
using predicted values for variations of input data over time, the model can plan
for events before they happen and achieve greater savings. The investigation and

formulation of such amodel can be aremarkable contribution.
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6- Non-homogeneous fleet

In the proposed model, it was assumed that al the vehicles of one
transportation mode have the same characteristics. The important characteristics
are capacity and travel speed of each vehicle type. Modifying the formulation to
consider non-homogeneous vehicles within each transportation mode can be
investigated in future. Non-homogeneous fleet can be considered in the proposed
model however each type of vehicle should be defined as a separate transportation
mode. It is suggested to modify the formulation in a way that can consider non-
homogeneous fleet of the same transportation mode without defining a new mode
that can increase the size of the problem rapidly.

7- Other Objective Functions

The objective function modeled in this study was to minimize total
unsatisfied demands over time for all commodities and al demand nodes. It is
suggested to investigate the possibility of considering and modeling other
objective functions. Some examples include maximizing throughput, maximizing
utilization, minimizing cost, minimizing operations duration, etc. When such
objective functions are formulated, one can analyze and compare the effects of

each objective on the details of the operations.
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