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In today’s society that disasters seem to be striking all corners of the 

globe, the importance of emergency management is undeniable. Much human loss 

and unnecessary destruction of infrastructure can be avoided with better planning 

and foresight. When a disaster strikes, various aid organizations often face 

significant problems of transporting large amounts of many different commodities 

including food, clothing, medicine, medical supplies, machinery, and personnel 

from several points of origin to a number of destinations in the disaster areas. The 

transportation of supplies and relief personnel must be done quickly and 

efficiently to maximize the survival rate of the affected population. 

 The goal of this research is to develop a comprehensive model that 

describes the integrated logistics operations in response to natural disasters at the 

operational level. The proposed mathematical model integrates three main 



  

components. First, it controls the flow of several relief commodities from sources 

through the supply chain until they are delivered to the hands of recipients. 

Second, it considers a large-scale unconventional vehicle routing problem with 

mixed pickup and delivery schedules for multiple transportation modes. And 

third, following FEMA’s complex logistics structure, a special facility location 

problem is considered that involves four layers of temporary facilities at the 

federal and state levels. Such integrated model provides the opportunity for a 

centralized operation plan that can effectively eliminate delays and assign the 

limited resources in a way that is optimal for the entire system. 

The proposed model is a large-scale mixed integer program. To solve the 

model, two sets of heuristic algorithms are proposed. For solving the multi-

echelon facility location problem, four heuristic approaches are proposed. Also 

four heuristic algorithms are proposed to solve the general integer vehicle routing 

problem. Overall, the proposed heuristics could efficiently find optimal or near 

optimal solution in minutes of CPU time where solving the same problems with a 

commercial solver needed hours of computation time. 

Numerical case studies and extensive sensitivity analysis are conducted to 

evaluate the properties of the model and solution algorithms. The numerical 

analysis indicated the capabilities of the model to handle large-scale relief 

operations with adequate details. Solution algorithms were tested for several 

random generated cases and showed robustness in solution quality as well as 

computation time. 
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Chapter 1: Introduction 

In this chapter a general introduction of disasters and disaster management 

concepts is presented. Section 1.1 provides some general definitions of disasters 

and some disaster numbers and trends in recent years. Section 1.2 introduces 

emergency management. Then in section 1.3 federal emergency management 

agency (FEMA) is introduced. FEMA’s logistic supply chain is discussed in 

section 1.4. Motivation and objective of this research is emphasized in section 1.5 

followed by the contributions of this research in section 1.6. Finally, the 

organization of the rest of this dissertation is summarized in section 1.7.  

1.1 Disasters 

In this section, first definitions of disasters are presented followed by some 

statistics from large-scale disasters in the recent years. 

1.1.1 Definitions 

The term “disaster” is usually applied to a breakdown in the normal 

functioning of a community that has a significant adverse impact on people, their 

works, and their environment, and overwhelms local response capacity. This 

situation may be the result of a natural event such as a hurricane or earthquake; or 

it may be the result of human activities (PAHO 2001). Some organizations make a 

distinction between “disasters”—the result of natural phenomena—and “complex 

emergencies” that are the product of armed conflicts or large-scale violence and 

often lead to massive displacements of people, famine, and outflows of refugees. 
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A disaster, as defined by the World Health Organization (WHO), is any 

occurrence that causes damage, destruction, ecological disruption, loss of human 

life, human suffering, deterioration of health and health services on a scale 

sufficient to warrant an extraordinary response from outside the affected 

community or area. The American Red Cross defines a disaster as an occurrence 

or situation that causes human suffering or creates human needs that the victims 

cannot alleviate without assistance. Earthquakes, hurricanes, tornadoes, volcanic 

eruptions, wild fires, floods, blizzard, drought, terrorism, chemical spills and 

nuclear accidents are included among the causes of disasters, and all have 

significant devastating effects in terms of human injuries and property damage.  

Alexander (1999) defines natural disaster as some rapid, instantaneous or 

profound impact of the natural environment upon the socio-economic system. He 

also recommends Turner’s (1976) definition of natural disaster as “an event, 

concentrated in time and space, which threatens a society or subdivision of a 

society with major unwanted consequences as a result of the collapse of 

precautions which had previously been culturally accepted as adequate”. 

Center for Research on the Epidemiology of Disasters (CRED), 

collaborating center with WHO and United Nations, defines disaster as “A 

situation or event, which overwhelms local capacity, necessitating a request to 

national or international level for external assistance; an unforeseen and often 

sudden event that causes great damage, destruction and human suffering” (CRED 

2007).  
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The official definition of disasters in the United States is presented in the 

Stafford Act. The Robert T. Stafford Disaster Relief and Emergency Assistance 

Act is the primary legislation in the United States authorizing the federal 

government to provide disaster assistance to states, local governments, families, 

and individuals. The Stafford Act defines a disaster as 

“Any natural catastrophe (including hurricane, tornado, storm, 

high water, wind driven water, tidal wave, tsunami, earthquake, 

volcanic eruption, landslide, mudslide, snowstorm or drought), or, 

regardless of cause, any fire, flood or explosion, in any part of the 

United States, which in the determination of the President causes 

damage of sufficient severity and magnitude to warrant major 

disaster assistance under this Act to supplement the efforts and 

available resources of States, local governments, and disaster 

relief organizations, in alleviating the damage, loss, hardship, or 

suffering caused thereby.” 

As these definitions indicate, a disaster is a “catastrophe” of such 

magnitude and severity that the capacities of states and local governments are 

overwhelmed. So the threshold for determining what constitutes a disaster 

depends upon the availability of resources and capabilities of responding 

communities. Consequently, a disaster can be prevented by increasing the 

capacity of the responding organizations. 
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1.1.2 Numbers and Trends 

From global perspective, the number of natural disasters is increasing 

every year. For example in 2005, there was 489 country-level disasters affecting 

127 countries around the globe resulting in 104,698 people killed and 160 million 

people affected. For the same year of 2005, the economic damage estimate varies 

from 159 billion to 210 billion in US dollars. Because of the population growth 

and new developments in risk prone regions, the exposure of the human kind to 

the natural disasters is increasing even more. 

Figure 1.1 shows the number of reported natural disasters around the globe 

from 1980 to 2007. A least-square linear regression trend-line is drawn to better 

illustrate the overall pattern. Trend-line in Figure 1.1 shows that in spite of 

fluctuations due to cyclic or seasonal patterns, the average number of disasters is 

growing in the long term. During 1980s number of disasters was around 180 per 

year on average. In 1990s, the average number of disasters was increased to 

around 300 per year. And in the 2000-2007 period, it was around 460 disasters per 

year which indicates a dramatic increase. An increase of this magnitude can be 

explained partially by the global warming theory, and partially by the attention of 

the media which has increased the numbers of reported disasters all over the 

world. 

As the number of disasters increases every year, more people are affected 

by these disasters. Figure 1.2 illustrates the number of victims of natural or man-

made disasters in the last twenty years. The number of victims includes the people 

killed, injured, lost their homes or evacuated as a direct result of the disaster.  As 
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can be seen in figure 1.2, the number of victims has higher fluctuations over the 

years. However, the trend-line shows a slow increase in the average number of 

peoples affected each year over time. The number of victims is generally between 

100 million and 400 million per year. The exceptionally high number in 2002 is 

due to a drought solely affecting 360 million in India and China and a major wind 

storm and flood affecting 160 million people in China. 

Figure 1.1 Number of reported natural disasters per year around the world (CRED) 

 

Figure 1.2 Number of victims of natural disasters per year (CRED) 
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Another important factor is the monetary cost of the natural disasters. 

Figure 1.3 shows the amounts of global economical damage caused by the natural 

disasters from 1980 to 2007. The average cost per year is $45 billion from 1980 to 

1999. However, for 2000 to 2007 period, the average cost is more than $80 billion 

per year. The linear trend-line shows an increase in the economical damage of the 

natural disasters over time. Two major disasters affecting the trend are the Kobe 

earthquake in 1995 and hurricane Katrina in 2005. 

Figure 1.3 Economic damage of the natural disasters over time (CRED) 
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supporting, and rebuilding societies after the natural or man-made disasters have 

occurred. 

Emergency management is a continuous process. It is essential to have 

comprehensive emergency plans and evaluate and improve the plans 

continuously. The related activities are usually classified as four phases of 

Preparedness, Response, Recovery, and Mitigation. Figure 1.4 illustrates the order 

of these phases according to the onset of the disaster. Appropriate actions at all 

points in the cycle lead to greater preparedness, better warnings, reduced 

vulnerability or the prevention of disasters during the next iteration of the cycle.  

 

Figure 1.4 Four Phases of Emergency Management Cycle 

Some of the main activities during the four phases of the emergency 

management cycle are summarized below:  

Preparedness  

• Activities to improve the ability to respond quickly in the immediate 

aftermath of an incident. 

• Development of response procedures, design and installation of 

warning systems, evacuation planning, exercises to test emergency 

operations, and training of emergency personnel. 
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Response  

• Activities during or immediately following a disaster to meet the 

urgent needs of disaster victims. 

• Mobilizing and positioning emergency supplies, equipment and 

personnel; including time-sensitive operations such as search and 

rescue, evacuation, emergency medical care, food and shelter 

programs, and bringing damaged services and systems back online. 

Recovery  

• Actions that begin after the disaster, when urgent needs have been 

met. Recovery actions are designed to put the community back 

together  

• Include repairs to roads, bridges, and other public facilities, 

restoration of power, water and other municipal services, and other 

activities to help restore normal operations to a community. 

 

Mitigation  

• Activities that prevent a disaster, reduce the chance of a disaster 

happening, or lessen the damaging effects of unavoidable disasters 

and emergencies.  

• Includes engineering solutions such as dams and levees; land-use 

planning to prevent development in hazardous areas; protecting 

structures through sound building practices and retrofitting; 

acquiring and relocating damaged structures; preserving the natural 
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environment to serve as a buffer against hazard impacts; and 

educating the public about hazards and ways to reduce risk. 

Emergency management process needs the cooperation of all individuals, 

groups, and communities to be successful. When a major disaster happens, 

emergency management agencies from all over the world work with governments 

and non-governmental organizations in an effort to decrease the impact of the 

disaster. Humanitarian organizations such as American Red Cross, CARE USA, 

Catholic Relief Services, International Committee of the Red Cross, International 

Federation of Red Cross and Red Crescent Societies, International Rescue 

Committee, UNICEF, World Bank, and World Food Program are among the 

organizations that work with different national organizations inside the affected 

countries to provide humanitarian aids.  

In the United States, the federal emergency management agency (FEMA) 

is the main agency to deal with emergencies. They work in partnership with other 

organizations that are part of the national emergency management system. These 

partners include state and local emergency management agencies, 27 other federal 

agencies and the American Red Cross. More details on FEMA’s structure and 

operations are introduced in the following section. 

1.3 Federal Emergency Management Agency 

Federal emergency management agency (FEMA) is the main organization 

responsible for dealing with the federal level emergencies in the United States. It 

was initially created in 1979 as an independent organization but On March 1st, 

2003 FEMA became part of the U.S. department of homeland security (DHS) 
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along with 22 other government agencies. FEMA is a relatively small agency with 

around 2,600 full time employees but it can mobilize nearly 7000 temporary 

disaster assistance employees to respond to disasters. Besides the headquarters in 

Washington D.C., FEMA has ten regional offices across the country to coordinate 

with its state and local government counterparts and with nonprofit and for-profit 

organizations. The primary mission of FEMA is  

“To reduce the loss of life and property and protect the Nation 

from all hazards, including natural disasters, acts of terrorism, 

and other man-made disasters, by leading and supporting the 

Nation in a risk-based, comprehensive emergency management 

system of preparedness, protection, response, recovery, and 

mitigation.” (www.fema.gov) 

FEMA’s strategic plan for fiscal years 2008-2013 declares the vision of 

the organization as “The nation’s preeminent emergency management and 

preparedness agency”. The plan establishes strategic goals, objectives, and 

strategies to fulfill FEMA’s vision. The strategic goals of the agency are to: 

1. Lead an integrated approach that strengthens the nation’s ability to address 

disasters, emergencies, and terrorist events  

2. Deliver easily accessible and coordinated assistance for all programs  

3. Provide reliable information at the right time for all users  

4. FEMA invests in people and people invest in FEMA to ensure mission success  

5. Build public trust and confidence through performance and stewardship 

http://www.fema.gov)
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One of the important documents that define the principles, roles, and 

structures of FEMA is the national response framework (NRF). NRF replaced its 

older version called the national response plan on March 22, 2008. NRF presents 

the guiding principles that enable all response partners to prepare for and provide 

a unified national response to disasters and emergencies. It describes how 

communities, tribes, states, the federal government, private-sectors, and 

nongovernmental partners work together to coordinate national response. 

Following the guidelines of NRF are essential to establish a comprehensive, 

national, all-hazards approach for disaster response in the United States. 

NRF main documents are supplemented by important annexes called 

emergency support functions (ESF). The ESFs provide the structure for 

coordinating federal interagency support for a federal response to an emergency. 

They are mechanisms for grouping functions most frequently used to provide 

federal support to states and federal-to-federal support, both for declared disasters 

and emergencies under the Stafford act and for non-Stafford act incidents. Table 

1.1 gives a summary of the 15 ESFs currently present in the NRF. More 

information on the national response framework including documents, annexes, 

references and briefings/trainings can be accessed through the NRF resource 

center at www.fema.gov/nrf . 

  

http://www.fema.gov/nrf
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Table 1.1 Emergency Support Function Annexes of the National Response Framework 

Emergency 
Support Function Scope  

ESF 1 
Transportation 

Aviation management and control; Transportation safety Restoration/recovery of 
transportation infrastructure; Movement restrictions; Damage and impact assessment  

ESF 2  
Communications 

Coordination with telecommunications and information technology industries; 
Restoration and repair of telecommunications infrastructure. Protection, restoration, 
and sustainment of national cyber and information technology resources; Oversight 
of communications within the Federal incident management and response structures  

ESF 3 Public 
Works and 
Engineering 

Infrastructure protection and emergency repair; Infrastructure restoration; 
Engineering services and construction management; Emergency contracting support 
for life-saving and life-sustaining services  

ESF 4 Firefighting Coordination of Federal firefighting activities; Support to wild land, rural, and urban 
firefighting operations  

ESF 5 Emergency 
Management 

Coordination of incident management and response efforts; Issuance of mission 
assignments; Resource and human capital; Incident action planning; Financial 
management  

ESF 6 Housing, 
and Human 
Services 

Mass care; Emergency assistance; Disaster housing; Human services  

ESF 7 Logistics 
Management 

Comprehensive, national incident logistics planning, management, and sustainment 
capability; Resource support (facility space, office equipment and supplies, 
contracting services, etc.)  

ESF 8 Public 
Health Public health; Medical and Mental health services; Mass fatality management  

ESF 9 Search and 
Rescue 

Life-saving assistance  
Search and rescue operations  

ESF 10 Hazardous 
Materials 

Oil and hazardous materials (chemical, biological, radiological, etc.) response; 
Environmental short- and long-term cleanup  

ESF 11 
Agriculture and 
Natural Resources 

Nutrition assistance; Animal and plant disease and pest response; Food safety and 
security; Natural and cultural resources and historic properties protection and 
restoration; Safety and well-being of household pets  

ESF 12 Energy Energy infrastructure assessment, repair, and restoration; Energy industry utilities 
coordination; Energy forecast  

ESF 13 Public 
Safety and 
Security 

Facility and resource security; Security planning and technical resource assistance; 
Public safety and security support; Support to access, traffic, and crowd control  

ESF 14 Long-
Term Recovery 

Long-term community recovery assistance to States, local governments, and the 
private sector  
Analysis and review of mitigation program implementation  

ESF 15 External 
Affairs 

Emergency public information and protective action guidance; Media and 
community relations; Congressional and international affairs; Tribal and insular 
affairs  
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Emergency support function 7 is the logistics management and resource 

support annex that describes the roles and responsibilities of FEMA and general 

services administration (GSA) to jointly manage a supply chain that provides 

relief commodities to the victims. Based on ESF 7, FEMA is the primary agency 

for logistics management and is responsible for: 

• Material management that includes determining requirements, sourcing, 

ordering and replenishment, storage, and issuing of supplies and 

equipment.  

• Transportation management that includes equipment and procedures for 

moving material from storage facilities and vendors to incident victims, 

particularly with emphasis on the surge and sustainment portions of 

response. Transportation management also includes providing services to 

requests from other federal organizations. 

• Facilities management that includes the location, selection, and 

acquisition of storage and distribution facilities. These facilities include 

logistics centers, mobilization centers, and federal operations staging 

areas.  

• Personal property management and policy and procedures guidance for 

maintaining accountability of material and identification and reutilization 

of property acquired to support a federal response operation. 

• Management of electronic data interchange to provide end-to-end 

visibility of response resources. 
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• Planning and coordination with internal and external customers and other 

supply chain partners in the federal and private sectors for improving the 

delivery of goods and services to the customer. 

The next section introduces the components of FEMA’s logistics operations and 

describes the structure of FEMA’s supply chain. 

1.4 FEMA’s Logistics Supply Chain 

FEMA has a complicated and special structure for its supply chain. There 

are seven main components in the FEMA’s supply chain to provide relief 

commodities for disaster victims that are briefly described here: 

1. FEMA Logistics Centers (LC) - permanent facilities that receive, store, ship, 

and recover disaster commodities and equipment. FEMA has a total of 9 

logistics centers: 

• Four continental United States centers containing general commodities 

located at Atlanta, Georgia; Ft. Worth, Texas; Frederick, Maryland; 

and Moffett Field, California. 

• Three off-shore centers containing general commodities located in 

Hawaii, Guam, and Puerto Rico. 

• Two Continental United States centers containing special products 

such as computers, office electronic equipment, medical and 

pharmaceutical caches located in Cumberland, Maryland and 

Berryville, Virginia. 
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Examples of disaster relief commodities include ice, water, meals ready to 

eat (MREs), blankets, cots, flashlights, tarps, sleeping bags and tents. Disaster 

relief equipments include emergency generators, personal toilet kits, and 

refrigerated vans. 

2. Commercial Storage Sites (CSS) - permanent facilities that are owned and 

operated by private industry and store commodities for FEMA. Freezer 

storage space for ice is an example. 

3. Other Federal Agencies Sites (VEN) - representing vendors from whom 

commodities are purchased and managed. Examples are the defense logistics 

agency (DLA) and the general services administration (GSA). 

4. Mobilization (MOB) Centers - temporary federal facilities in theater at 

which commodities, equipment and personnel can be received and pre-

positioned for deployment as required. In MOBs commodities remain under 

the control of the FEMA logistics headquarter and can be deployed to multiple 

states. MOBs are generally projected to have the capacity to hold 3 days of 

supply commodities. 

5. Federal Operational Staging Areas (FOSAs) - temporary facilities at which 

commodities, equipment and personnel are received and pre-positioned for 

deployment within one designated state as required. Commodities are under 

the control of the operations section of the joint field office (JFO) or the 

regional response coordination center (RRCC). Commodities are usually 
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being supplied from MOB centers, logistics centers or direct shipments from 

vendors. FOSAs are generally projected to hold 1 to 2 days of commodities. 

6. State Staging Areas (SSA) - temporary facilities in the affected state at which 

commodities, equipment and personnel are received and pre-positioned for 

deployment within that state. Title transfers for delivered federal commodities 

and cost sharing are initiated in SSAs. 

7. Points of Distribution (PODs) Sites - temporary local facilities in the 

disaster area at which commodities are distributed directly to disaster victims. 

PODs are operated by the affected state. 

Figure 1.5 better illustrates this structure. At the top of the pyramid there 

are 3 types of facilities namely FEMA logistics centers, commercial storage sites, 

and other federal agencies or vendors. These permanent facilities store and ship 

commodities and equipment and are considered as the “sources” of the chain. The 

mobilization centers, the federal operational staging areas, and the state staging 

areas are 3 types of facilities that mainly play the role of transshipment points. 

These are temporary facilities at which commodities, equipment and personnel 

are received and pre-positioned for deployment to the lower levels. At the end, 

point of distribution sites are temporary local facilities at which commodities are 

received and distributed directly to the disaster victims. The PODs can be local 

schools, churches, or even large parking lots in the affected area. 
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Figure 1.5 FEMA’s Supply Chain Structure 

Even this simplified presentation of the FEMA’s logistics supply chain 

indicates the complex structure of the system. Finding the optimal sites for 4 

levels of temporary facilities is a complicated location finding problem. 

Delivering several types of relief commodities to the disaster victims is a 

multicommodity capacitated network flow problem. Optimizing the movement of 

vehicles in the network is a dynamic vehicle routing problem with mixed pickup 

and delivery operations. Usually more than one transportation mode is used in 

disaster response operations which makes the problem a multimodal 

transportation problem. Other characteristics that make the problem unique 

include, but are not limited to, importance of quick response and fast delivery, 
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shortage of supply versus overwhelming demands, insufficient capacity of the 

facilities and transportation system, and dynamic environment of the emergency 

situations. 

1.5 Motivation and Objective of the Research 

In today’s society that disasters seem to be striking all corners of the 

United States and the globe, the importance of the emergency management is 

undeniable. Much human loss and unnecessary destruction of infrastructure can 

be avoided with more foresight and specific planning as well as a precise 

execution. In a world where resources are stretched to the limit and the question 

of humanitarian relief seems too often to be tied with economical considerations, 

better designs and operations are urgently needed to help save thousands of lives 

and millions of dollars.  

The question is how to respond to natural disasters in the most efficient 

manner to minimize the loss of life and maximize the efficiency of the rescue 

operations. In case of these emergencies various organizations often face 

significant problems of transporting large amounts of many different commodities 

including food, clothing, medicine, medical supplies, machinery, and personnel 

from different points of origin to different destinations in the disaster areas. The 

transportation of supplies and relief personnel must be done quickly and 

efficiently to maximize the survival rate of the affected population and minimize 

the cost of such operations. 

Federal emergency management agency (FEMA) is the primary 

organization for preparedness and response to the federal level disasters in the 
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United States. Unfortunately, inadequate response to hurricanes Katrina and Rita 

showed the critical need for better mechanisms in emergency operations. Initial 

research in this area shows that this is an emerging field and there are great 

potentials for research in emergency logistics and disaster response. FEMA has a 

very complex logistics structure to provide the disaster victims with critical items 

after a disaster strike which involves multiple organizations and spreads across 

the country.  

The goal of this research is to develop a comprehensive model that 

describes the integrated logistics operations in response to natural disasters at the 

operational level. The proposed mathematical model integrates three main 

components. First, it controls the flow of several relief commodities from sources 

through the supply chain until they are delivered to the hands of the recipients. 

Second, it considers a large-scale unconventional vehicle routing problem with 

mixed pickup and delivery schedules for multiple transportation modes. And 

third, following the FEMA’s complex logistics structure, a special facility 

location problem is considered that involves four layers of temporary facilities at 

the federal and state levels. Such integrated model provides the opportunity for a 

centralized operation plan that can effectively eliminate the delays and assign the 

limited resources in a way that is optimal for the entire system. 

1.6 Contributions of the research 

Emergency response is a dynamic and very time sensitive operation. This 

research offers an integrated model that not only considers details such as 

multimodal vehicle routing and pick up or delivery schedules; but also considers 
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finding the optimal locations for the temporary facilities as well as considering the 

capacity constraint for each facility and the transportation system. A mathematical 

model at the operational level is presented that can be used in the critical hours 

and days immediately after the disaster strikes. Such a model is a unique tool that 

can also be used at strategic level or planning level analysis. It is a very 

complicated task and up to date, there is no study in the literature that has 

addressed this problem sufficiently. 

This research also aims at developing optimization algorithms and 

heuristics to solve the proposed model and find applicable solutions to decrease 

human sufferings in the most economically sensible way. The algorithms need to 

be fast so that the results can be used in the initial response phase and also as the 

situation changes in the highly dynamic environment after the disaster.  

Also, in this research a comprehensive set of numerical case studies and 

sensitivity analysis are performed. In-depth analyses of different aspects of the 

proposed mathematical model are provided in order to better illustrate the 

capabilities of the model and also examine model’s sensitivity in various 

circumstances. These analyses are intended to introduce a general framework for 

researchers and practitioners. The findings of these analyses may or may not be 

directly applicable for other specific disaster response scenarios; however, they 

provide a general study framework for modeling and analysis of each specific 

disaster scenario that can be adopted by other researchers and practitioners.  

In other words, this research extends the state-of-the-art by presenting an 

integrated model at the operational level that describes the details of the supply 
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chain operations in major emergency management agencies such as FEMA, in 

response to immediate aftermath of a large scale disaster. Development of fast 

and efficient solution algorithms and heuristics for the proposed model is the 

other major contribution of this research. The simulations and sensitivity analysis 

provided in this research can be used as a framework to follow by other 

researchers and practitioners. 

1.7 Organization of the dissertation 

After this introduction, previous works in the fields of logistics and 

disaster relief operations are reviewed in chapter 2. The specific problem to be 

dealt with in this research is introduced in chapter 3 and then the mathematical 

formulation of the model is presented. Chapter 4 offers a set of preliminary 

numerical examples to evaluate the model and help better understand the 

mechanics of the model. In chapter 5, solution approaches are summarized and a 

number of heuristic solution algorithms are proposed to solve the different parts 

of the proposed model. Chapter 6 is dedicated to simulation and in-depth analysis 

of the proposed model and sensitivity analysis of its parameters. In chapter 7, the 

prepositioning of relief supplies and equity constraints are discussed. Finally in 

chapter 8, a summary of this dissertation is presented and some suggestions for 

future research are discussed. 
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Chapter 2: Literature review 

In this chapter, first in section 2.1 some definitions of supply chain and 

supply chain management (SCM) in commercial sector are introduced then some 

of the researches that reviewed the supply chain studies are summarized. Then a 

brief introduction to facility location problem is presented in section 2.2 and 

vehicle routing problem in section 2.3 are presented as two main elements of the 

supply chain and logistics modeling. In section 2.4, the similarities and 

differences between commercial supply chain and disaster response logistics are 

reviewed. In section 2.5, some studies specific to modeling and optimization of 

logistics in disaster response are provided. Finally in section 2.6, a summary of 

previews works in this area is presented with the emphasis on the gaps in the 

literature that needs to be filled. 

2.1 Supply Chain Management  

Definition of supply chain management differs across authors from 

different fields and there is no explicit and universal description of SCM or its 

activities in the literature (Tan 2001). The literature is full of buzzwords such as 

integrated purchasing strategy, integrated logistics, supplier integration, buyer-

supplier partnerships, supply base management, strategic supplier alliances, 

supply chain synchronization and supply chain management, to address elements 

or stages of this phenomenon (New, 1997; La Londe and Masters, 1994). 

For example Harland (1996) described supply chain management as 

managing business activities and relationships (1) internally within an 
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organization, (2) with immediate suppliers, (3) with first and second-tier suppliers 

and customers along the supply chain, and (4) with the entire supply chain. Scott 

and Westbrook (1991) and New and Payne (1995) described supply chain 

management as the chain linking each element of the manufacturing and supply 

process from raw materials through to the end user, including several 

organizational boundaries. SCM begins with the extraction of raw materials or 

minerals from the earth, through the manufacturers, wholesalers, retailers, and the 

final users. Where appropriate, supply chain management also includes recycling 

or re-use of the products or materials. 

Another definition of supply chain management emerges from the 

transportation and logistics literature of the wholesale and retail industry, 

emphasizing the importance of physical distribution and integrated logistics. 

There is no doubt that logistics is an important function of business and is 

evolving into strategic supply chain management (New and Payne, 1995). In this 

definition, the physical transformation of the products is not a critical component 

of supply chain management. Its primary focus is the efficient physical 

distribution of final products from the manufacturers to the end users in an 

attempt to replace inventories with information and reduce transportation costs. 

The definition of supply chain seems to be more common across authors 

than the definition of supply chain management (Mentzer et al. 2001). La Londe 

and Masters (1994) proposed that the supply chain is a set of firms that pass 

materials forward. Eksioglu (2002) defined the supply chain as an integrated 

process where different business entities such as suppliers, manufacturers, 
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distributors, and retailers work together to plan, coordinate, and control the flow 

of materials, parts, and finished goods from suppliers to customers. Several 

independent firms can be involved in manufacturing a product and placing it in 

the hands of the end user in a supply chain. For example raw material and 

component producers, product assemblers, wholesalers, retailer merchants and 

transportation companies are all members of the supply chain. 

Beamon (1998) defined supply chain as an integrated manufacturing 

process where raw materials are converted into final products, then delivered to 

customers. At its highest level, a supply chain is comprised of two basic 

integrated processes: (1) the production planning and inventory control process, 

and (2) the distribution and logistics process. These processes define the basic 

framework for the conversion and movement of raw materials into final products. 

Figure 2.1 illustrates a simplified picture of the supply chain process. 

Figure 2.1 Supply chain process (adopted from Beamon 1998) 

The production planning and inventory control process includes the 

manufacturing and storage sub-processes and their interfaces. More specifically, 

production planning describes the design and management of the entire 

manufacturing process including raw material scheduling and acquisition, 
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manufacturing process design and scheduling, and material handling design and 

control. Inventory control describes the design and management of the storage 

policies and procedures for raw materials, work-in-process inventories, and 

usually, final products. 

The distribution and logistics process determines how products are 

retrieved and transported from the storage warehouse to retailers. These products 

may be transported to retailers directly, or may be shipped to distribution facilities 

first and then being delivered to the retailers. This process includes the 

management of inventory retrieval, transportation, and final product delivery. 

These processes interact with one another to produce an integrated supply 

chain. The design and management of these processes determine the extent to 

which the supply chain works as a unit to meet required performance objectives. 

Usually in commercial supply chain, the objective is to minimize cost. However, 

some have considered a combination of cost and customer service as the objective 

of the commercial supply chains. 

For many years, researchers and practitioners have concentrated on the 

individual processes and entities within the supply chains. However, the recent 

trend is to model and optimize SC as a single unified entity. In this approach, 

operations research (OR) techniques have shown to be a very useful tool among 

researchers and practitioners. Typically, a SC model tries to determine 

• the transportation modes to be used, 

• the suppliers to be selected, 

• the amount of inventory to be held at various locations in the chain, 
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• the number of warehouses to be used, and 

• the location and capacities of these warehouses 

For a more comprehensive review of models and methods in supply chain 

design and analysis, readers are referred to Beamon (1998) and Tan (2001). In the 

following sections, some of the elements of SCM that can be applied in disaster 

response logistics are introduced in more details. 

2.2 Facility Location Problem 

One of the most important problems in supply chain management is 

deciding where to locate new facilities such as factories, warehouses, distribution 

centers or retailers to support the material flow through an efficient distribution 

system. The general facility location problem can be stated as: for a given set of 

facility locations and a set of customers who are served from these facilities, find:  

• Which facilities should be used  

• Which customers should be served from which facilities so as to minimize 

the total cost of serving all the customers 

The development and acquisition of a new facility is typically a costly and 

time-consuming project. Before a facility can be purchased or constructed, good 

locations must be identified, appropriate facility capacity specifications must be 

determined, and large amounts of capital must be allocated. While the objectives 

driving a facility location decision depend on the firm or government agency, the 
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high costs associated with this process make almost any location project a long-

term investment. 

A vast literature has developed out of the broadly based interest in facility 

location problem over the last four decades (Daskin 1995, Drezner and Hamacher 

2002). Operations research practitioners have developed a number of 

mathematical programming models to represent a wide range of location 

problems. Several different objective functions have been formulated to consider 

numerous applications. Unfortunately, the resulting models can be extremely 

difficult to solve to optimality (most problems are classified as NP-hard); many of 

the problems require integer programming formulations. 

The p-median problem, covering problem, and p-center problem are three 

classic forms of facility location problem that are introduced in the following 

subsections. For a comprehensive bibliography of more recent studies in discrete 

location finding problem refer to ReVelle et al (2008). 

2.2.1 P-Median Problem 

One important way to measure the effectiveness of a facility’s location is 

by determining the average distance traveled by those who visit it. As average 

travel distance increases, facility accessibility decreases, and thus the location's 

effectiveness decrease. An equivalent way to measure location effectiveness when 

demands are not sensitive to the level of service is to weight the distance between 

demand nodes and facilities by the associated demand quantity and calculate the 

total weighted travel distance between demands and facilities. Then, the problem 

is to selects the best p sites among a range of possible locations with the objective 
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of minimizing total demand-weighted travel distance between demand nodes and 

selected facilities. The key decisions are where to locate the p facilities and which 

facility should serve each demand node. 

The inputs are the demands (or weights) iw  at each node Ii ∈ , the 

distances dij between each demand node Ii ∈  and each candidate facility site 

Jj ∈  and p, the maximum number of facilities to be located. The mathematical 

formulation of p-median problem is as follow: 

xj    = 1 if a facility is located at candidate node Jj ∈  and 0 otherwise 

yij   = 1 if demand node Ii ∈  is assigned to facility at candidate node Jj ∈  

0 otherwise. 

Minimize ∑∑
∈ ∈Jj Ii

ijiji ydw       (2.1) 

Subject to 

Iiy
Jj

ij ∈∀=∑
∈

1       (2.2) 

JjIixy jij ∈∀∈∀≤− ,0     (2.3) 

Jjpx
Jj

ij ∈∀≤∑
∈

      (2.4) 

{ } JjIiyx ijj ∈∀∈∀∈ ,1,0,     (2.5) 

The objective function (2.1) minimizes the demand-weighted total 

distance. Since the demands are known and the total demand is fixed, this is 

equivalent to minimizing the demand-weighted average distance. Constraints 

(2.2) ensure that each demand node is assigned, while constraints (2.3) stipulate 
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that the assignments can only be made to open facilities. Constraint (2.4) states 

that a maximum of p facilities are to be opened. Constraints (2.5) are standard 

integrality constraints.  

2.2.2 Covering Problem 

The p-median problem described above can be used to locate a wide range 

of public and private facilities. For some facilities, however, selecting locations 

which minimize the average distance traveled may not be appropriate. Suppose, 

for example, that a city is locating emergency service facilities such as fire 

stations or ambulances. The critical nature of demands for service will dictate a 

maximum “acceptable” travel distance or time. Such facilities will thus require a 

different measure of location efficiency. To locate such facilities, the key issue is 

the “coverage”. A demand is said to be covered if it can be served within a 

specified time.  

The literature on covering problem is divided into two major segments, 

that in which coverage is required and that in which it is optimized. Two covering 

problems which illustrate the distinction are the location set covering problem and 

the maximal covering problem. We introduce both problem classes. For a more 

complete review of covering problems refer to Schilling et al (1993). 

In the set covering problem, the objective is to minimize the cost of 

facility location such that a specified level of coverage is obtained. The 

mathematical formulation of set covering problem is as follow: 

cj = fixed cost of locating a facility at node j 

S    = maximum acceptable distance or travel time 
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Ni  = set of facility sites j within acceptable distance of node i ( { }SdjN iji ≤=  ) 

Xj  = 1 if a facility is located at candidate node Jj ∈  and 0 otherwise 

Minimize  ∑
∈Jj

jj Xc        (2.6) 

Subject to 

iX
iNj

j ∀≥∑
∈

1        (2.7) 

{ } jX j ∀∈ 1,0        (2.8) 

The objective function (2.6) minimizes the cost of facility location. In 

many cases, the costs cj are assumed to be equal for all potential facility sites j, 

implying an objective equivalent to minimizing the number of facilities located. 

Constraint (2.7) requires that all demand nodes i have at least one facility located 

within the acceptable service distance. Note that this formulation makes no 

distinction between nodes based on demand size. Each node, whether it contains a 

single customer or a large portion of the total demand, must be covered regardless 

of the cost. If the coverage distance S is small, relative to the spacing of demand 

nodes, the coverage restriction can lead to a large number of facilities being 

located. Additionally, if an outlying node has a small demand, the cost/benefit 

ratio of covering that demand can be extremely high. 

In many practical applications, decision makers find that their allocated 

resources are not sufficient to build the facilities dictated by the desired level of 

coverage. In other words, the goal of coverage within distance S may be 

infeasible with respect to construction resources. In such cases, location goals 

must be shifted so that the available resources are used to give the desired level of 
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coverage to as many customers as possible. This new objective is that of the 

maximal covering problem. 

Specifically, the maximal covering problem seeks to maximize the amount 

of demand covered within the acceptable service distance S by locating a fixed 

number of facilities: 

Xj  = 1 if a facility is located at candidate node Jj ∈  and 0 otherwise 

Zi  = 1 if a demand at node Ii ∈  is covered and 0 otherwise 

Minimize  ∑
i

ii Zh        (2.9) 

Subject to 

iXZ
iNj

ji ∀≤ ∑
∈

       (2.10) 

ipX
j

j ∀≤∑        (2.11) 

{ } jiZX ij ,1,0, ∀∈       (2.12) 

The objective (2.9) is to maximize the amount of demand covered. 

Constraint (2.10) determines which demand nodes are covered within the 

acceptable service distance. Each node i can only be considered covered (with Zi 

= 1) if there is a facility located at some site j which is within S of node i (i.e., if 

Xj = 1 for some iNj ∈ ). If no such facility is located, the right hand side of 

constraint (2.10) will be zero, thus forcing Zi to be zero. Constraint (2.11) limits 

the number of facilities to be located to a fixed number p. 



 32 

 

2.2.3 P-Center Problem 

Another problem class which avoids the set covering problem's potential 

infeasibility is the class of p-center problems. In such problems, we require 

coverage of all demands, but we seek to locate a given number of facilities in such 

a way that minimizes coverage distance. Rather than taking an input coverage 

distance S, this model determines endogenously the minimal coverage distance 

associated with locating p facilities. 

The p-center problem is also known as the minimax problem, as we seek 

to minimize the maximum distance between any demand and its nearest facility. 

If facility locations are restricted to the nodes of the network, the problem is a 

vertex center problem. Center problems which allow facilities to be located 

anywhere on the network are absolute center problems. 

The following additional decision variable is needed in order to formulate 

the p-center problem: 

D = maximum distance between a demand node and the nearest facility. 

The resulting integer programming formulation of the P-center problem is 

as following: 

Minimize D          (2.13) 

Subject to 

ipX
j

j ∀≤∑        (2.14) 

iY
j

ij ∀=∑ 1        (2.15) 

jiXY jij ,0 ∀≤−       (2.16) 
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iDYd
j

ijij ∀≤∑        (2.17) 

{ } jiYX ijj ,1,0, ∀∈       (2.18) 

The objective function (2.13) is simply to minimize the maximum distance 

between any demand node and its nearest facility. Constraints (2.14) limits the 

maximum number of open facilities to p. constraints (2.15) enforces each demand 

point to be assigned to a facility and constraints (2.16) make sure that demands 

are assigned only to selected facilities. Constraint (2.17) defines the maximum 

distance between any demand node i and the nearest facility j. Finally, constraints 

(2.18) are integrality constraints for the decision variables. 

In addition to three classes introduced here, several alternate formulations 

of the facility location problem are proposed by researchers over the years. For a 

bibliography of recent studies refer to ReVelle et al. (2008). 

2.3 Vehicle Routing Problem 

The vehicle routing problem (VRP) is a generic name given to a whole 

class of problems in which a set of routes for a fleet of vehicles based at one or 

several depots must be determined for a number of geographically dispersed cities 

or customers. The VRP arises naturally as a central problem in the fields of 

transportation, distribution and logistics. Usually, the objective of the VRP is to 

deliver a set of customers with known demands on minimum-cost vehicle routes 

originating and terminating at a depot. In some market sectors, transportation 

means a high percentage of the value added to goods. Therefore, the utilization of 

modeling and optimization methods for transportation often results in significant 
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savings ranging from 5% to 20% in the total costs, as reported in Toth and Vigo 

(2002). 

The VRP is a well known integer programming problem which falls into 

the category of NP-Hard problems, meaning that the computational effort 

required for solving this problem increases exponentially with the problem size. 

This difficult combinatorial problem conceptually lies at the intersection of these 

two well-studied NP-Hard problems: 

• The Traveling Salesman Problem (TSP): If the capacity of the vehicles is 

infinite, we can get an instance of the multiple traveling salesman problem 

(MTSP). An MTSP instance can be transformed into an equivalent TSP 

instance by adding to the graph k-1 (k being the number of routes) 

additional copies of node 0 and its incident edges. 

• The Bin Packing Problem (BPP): The question of whether there exists a 

feasible solution for a given instance of the VRP is an instance of the BPP. 

The decision version of this problem is conceptually equivalent to a VRP 

model in which all edge costs are taken to be zero (so that all feasible 

solutions have the same cost). 

Three basic approaches have been proposed for modeling VRP in the 

literature (Toth and Vigo 2002). The models of the first type, known as vehicle 

flow formulation, use binary integer variables associated with each arc of the 

network, which shows if an specific arc is traversed by a vehicle or not. These 

models are often used for basic versions of VRP. They are particularly useful for 

cases in which the cost of the solution can be expressed as the sum of the costs 
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associated with the arcs. On the other hand, vehicle flow models cannot be used to 

deal with many practical issues; for instance, when the cost of a solution depends 

on the sequence of traversed arcs or when the cost depends on the type of vehicle 

that is assigned to a route.  

The second approach to VRP modeling is called commodity flow 

formulation. In this type of model, additional integer variables are associated with 

arcs that represent the flow of the commodities along the paths traveled by the 

vehicles. In some recent studies, these models have been used as a basis to solve 

for the exact solutions of capacitated VRP. 

In the third approach to VRP modeling, the decision variables are the 

feasible routes for the vehicles. These models produce an exponential number of 

binary variables each associated with a feasible route. Then the VRP is 

formulated as a set partitioning problem that tries to select a set of routes with 

minimum cost which serves each costumer once and also satisfies the additional 

constraints. Main advantage of this type of model is that it allows for extremely 

general route costs. For example, route costs can be nonlinear or can depend on 

the vehicle type or sequence of nodes visited. Also, the linear relaxation of these 

models usually provides a tighter bound than the previous models. However, 

these models usually require enumerating the feasible routes which needs 

extensive preprocessing and results in a very large number of variables. 

2.3.1 VRP Mathematical Formulation 

As mentioned above, vehicle flow based formulation is one of the 

approaches to model the VRP. Following formulation is an example for the base 
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case of uncapacitated multi-vehicle single depot vehicle routing problem. The 

decision variables v
ijx  which are binary indicate whether vehicle v travels from 

point i to point j, v
ijx =1, or not v

ijx =0 

Minimize  ∑∑∑
i j v

v
ijij xc       (2.19) 

Subject to 

jx
v i

v
ij ∀=∑∑ 1        (2.20) 

ix
v j

v
ij ∀=∑∑ 1        (2.21) 

vNpxx
j

v
pj

i

v
ip ∀∈∀=− ∑∑ ,0      (2.22) 

vx
j

v
j ∀≤∑ 10        (2.23) 

( ) vjix v
ij ,,1,0 ∀∈        (2.24) 

SX ∈          (2.25) 

The objective is to minimize the total travel cost (or distance) by all 

vehicles. Constraints (2.20) through (2.22) require that only one vehicle enters 

each node and that the same vehicle exits that node. Constraints (2.23) insure that 

each vehicle leaves the depot only once. The last condition which is imposed on 

the matrix X prohibits sub-tours that do not contain the depot. There are several 

possible ways to fulfill this condition, for example S might be composed of sub-

tour breaking constraints for each vehicle. S can be defined as the union of sets Sv 

defined by: 



 37 

 









−≤= ∑∑
∈ ∈Qi Qj

v
ij

v
ijv QsubsetnonemptyallforQxxS 1:    (2.26) 

If each customer has a demand of di units and each vehicle has a capacity 

of Kv, then the capacitated VRP can be formulated by adding the following 

capacity constraints to the base formulation: 
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2.3.2 VRP Variants 

Usually, real world vehicle routing problems are much more sophisticated 

than the base case VRP introduced above. Over the years, researchers have 

proposed variants of VRP by adding some constraints to the base case VRP 

formulation. Here, a list of well-known VRP variants is summarized: 

• Capacitated VRP (CVRP): Every vehicle has a limited capacity 

• Distance-Constrained VRP (DCVRP): The maximum tour length is limited 

• Multiple Depot VRP (MDVRP): The vendor uses many depots to supply the 

customers  

• VRP with Pick-Up and Delivering (VRPPD): Customers may return some 

goods to the depot or other customers 

• Split Delivery VRP (SDVRP): The customers may be served by different 

vehicles  

• VRP with time windows (VRPTW): Every customer has to be supplied within a 

certain time window 
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• Periodic VRP (PVRP): The deliveries may be done in some consecutive days 

• Stochastic VRP (SVRP): Some values, such as number of customers, their 

demands, service time or travel time, are stochastic variables 

There are several survey papers on the VRP, VRP variants, and their 

solution algorithms and techniques. A classification of the problem was given in 

Desrochers et al.(1990). Laporte and Nobert (1987) presented a survey of exact 

methods to solve VRP. Other surveys that provided exact and heuristic methods 

were presented by Christofides, Mingozzi, and Toth (1981), Magnanti (1981), 

Bodin et al.(1983), Fisher (1994), Laporte (1992), Toth and Vigo (2002). An 

annotated bibliography was proposed by Laporte (1997). A book on the subject 

was edited by Golden and Assad (1988).  

2.4 Commercial Supply Chain vs. Emergency Response Logistics 

Immediately after a disaster, humanitarian organizations often face 

significant problems of transporting large amounts of many different commodities 

including food, clothing, medicine, medical supplies, machinery, and personnel 

from several origins to several destinations inside the disaster area. The 

transportation of supplies and relief personnel must be done quickly and 

efficiently to maximize the survival rate of the affected population and minimize 

the cost of such operations.  

When it comes to efficiency of supply deliveries, the modeling and 

optimization techniques established in commercial supply chain management 

seem to be the most relevant approach. For instance, some of the quickest 

emergency assistance to the victims of hurricane Katrina did not come from the 
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American Red Cross or FEMA, it came from Wal-Mart. Millions of affected or 

displaced people waited for days as agencies struggled to provide assistance. Wal-

Mart moved faster than traditional emergency aid groups mainly because the 

retail giant had mastered the fundamentals of logistics and supply chain 

management (Dimitruk 2005). 

More recently, some studies such as (Beamon 2004; Thomas and 

Kopczak, 2005; Van Wassenhove, 2006; Oloruntoba and Gray, 2006; Thomas, 

2007), emphasized that some supply chain concepts share similarities to 

emergency logistics and therefore some tools and methods developed for 

commercial supply chains can be successfully adapted in emergency response 

logistics. 

Using commercial supply chain techniques in disaster management is still 

in its infancy. Beamon (2004) and Thomas (2005) have compared the current 

state of supply chain management capabilities within humanitarian organizations 

with that of the commercial sector in the 1970s and 1980s. At that time, the 

commercial sector just began to realize the strategic advantages and significant 

improvements supply chain management could offer in effectiveness and 

efficiency. This led to extensive research in the area of supply chain and logistical 

analysis but those quantitative methods and principles are rarely applied to 

humanitarian operations on the verge of disasters. 

The partial reason is the difference in the strategic goals of commercial 

supply chain with goals of disaster response logistics. The main goal in 

commercial supply chain is to minimize the cost or maximize the profit of 
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operations. Actions are justified if they increase the profit but are not perused if 

their cost is more than their profit. However, humanitarian organizations are 

mostly non-profit organizations with the idea of providing critical services to the 

public in order to minimize the pain and sufferings, for example after a natural 

disaster.  

One major difference between the two types of chains is the demand 

pattern. For many commercial supply chains, the external demand for products is 

comparatively stable and predictable. Often, for the commercial chain, the 

demands seen from warehouses occur from established locations in relatively 

regular intervals. However, the demands in the relief chain are emergency items, 

equipment, and personnel. More importantly, those demands occur in irregular 

amounts and at irregular intervals and occur suddenly, such that the locations are 

often completely unknown until the demand occurs.  

Beamon (2004) suggests other specific characteristics of disaster response 

logistics that differentiate them from traditional commercial supply chains. These 

include: 

• Zero lead-time that dramatically affects inventory availability, 

procurement, and distribution 

• High stakes (often life-and-death) that requires speed and efficiency 

• Unreliable, incomplete, or non-existent supply and transportation 

infrastructure 

• Many relief operations are naturally ad hoc, without effective monitoring 

and control 
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• Variable levels of technology is available depending on the disaster area 

Table 2.1 compares some of the differences between commercial and 

humanitarian supply chains. 

  Table 2.1- Commercial supply chains vs. humanitarian relief chains (Beamon 2004) 

Characteristic Commercial Chain Humanitarian Relief Chain 

Strategic Goals 

Typically to produce high quality 

products at low cost to maximize 

profitability  

Minimize loss of life and alleviate 

suffering 

Distribution 

Network 

Configuration 

Well-defined methods for 

determining the number and 

locations of distribution centers. 

Challenging due to the nature of the 

unknowns (locations, type and size of 

events, politics, and culture) 

Demand Type Commercial Products 
Emergency Supplies, equipment and 

Personnel 

Lead Time 
Lead time determined by the 

supplier-manufacturer-DC-retailer  

Zero time between the occurrence of the 

demand and the need for the demand 

Inventory 

Control 

Utilizes well-defined methods for 

determining inventory levels based 

on lead time, demand and target 

customer service levels 

Inventory control is challenging due to 

the high variations in lead times, 

demands, and demand locations 

Information 

System 

Generally well-defined, using 

advanced technology 

Information is often unreliable, 

incomplete or non-existent 

 

It is concluded that some of the concepts associated with commercial 

supply chains are directly applicable to humanitarian relief chains. However, 

future work must develop methods that specifically address the challenges 
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presented by characteristics unique to humanitarian relief and logistics of disaster 

response.  

2.5 Logistics in Disaster Response 

Altay and Green (2006) surveyed the existing literature of emergency 

disaster management. They concluded that most of the disaster management 

research was related to social sciences and humanities literature. Refer to Hughes 

(1991) and http://www.geo.umass.edu/courses/geo510/index.htm for a 

comprehensive bibliography. 

That type of research focuses on subjects such as disaster results, 

sociological impacts on communities, psychological effects on survivors or rescue 

teams, and organizational design and communication problems. They observed 

that the existing literature is relatively light on disaster management articles that 

used operations research or management science (OR/MS) techniques to deal with 

the problem. However, they realized the literature trend that more studies are 

focusing on OR/MS techniques in recent years and emphasized the need for more 

research in future. 

In the following subsections, a summary of studies is presented that use 

OR/MS techniques to model and optimize the emergency disaster management 

activities. This is not an exclusive list of publication in the field and is only 

intended to focus on key studies in the past that successfully used techniques that 

are relevant to the subject of this dissertation. 

http://www.geo.umass.edu/courses/geo510/index.htm
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2.5.1 Early Ages 

A number of authors have recognized the problem of emergency response 

management in its early ages. Kemball-Cook and Stephenson (1984) addressed 

the need for logistics management in relief operations for the increasing refugee 

population in Somalia. Ardekani and Hobeika (1988) addressed the need of 

logistics management in relief operations for the 1985 Mexico City earthquake. 

Knott (1987) developed a linear programming model for the bulk food 

transportation problem and the efficient use of the truck fleet to minimize the 

transportation cost or to maximize the amount of food delivered (single 

commodity, single modal network flow problem). In another article, Knott (1988) 

developed a linear programming model using expert knowledge for the vehicle 

scheduling of bulk relief of food to a disaster area.  

Ray (1987) developed a single-commodity, multi-modal network flow 

model on a capacitated network over a multi-period planning horizon to minimize 

the sum of all costs incurred during the transport and storage of food aid. Brown 

and Vassiliou (1993) developed a real-time decision support system which uses 

optimization methods, simulation, and the decision maker’s judgment for 

operational assignment of units to tasks and for tactical allocation of units to task 

requirements in repairing major damage to public works following a disaster. 

The literature in the multi-commodity, multi-modal network flow problem 

was relatively sparse. Crainic and Rousseau (1986) developed an optimization 

algorithm based on decomposition and column generation principles to minimize 

the total operating and delay cost for multi-commodity, multi-modal freight 
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transportation when a single organization controls both the service network and 

the transportation of goods. Guelat et al. (1990) presented a multi-commodity, 

multi-modal network assignment model for the purpose of strategic planning to 

predict multi-commodity flows over a multi-modal network. The objective 

function to be minimized was the sum of total routing cost and total transfer costs. 

2.5.2 Recent Studies 

Technology advancement in recent years has opened new doors for 

researchers. Haghani and Oh (1996) proposed a formulation and solution of a 

multi-commodity, multi-modal network flow model for disaster relief operations. 

Their model could determine detailed routing and scheduling plans for multiple 

transportation modes carrying various relief commodities from multiple supply 

points to demand points in the disaster area. They formulated the multi-depot 

mixed pickup and delivery vehicle routing problem with time windows as a 

special network flow problem over a time-space network. The objective was 

minimizing the sum of the vehicular flow costs, commodity flow costs, 

supply/demand storage costs and inter-modal transfer costs over all time periods. 

They developed two heuristic solution algorithms; the first was a Lagrangian 

relaxation approach, and the second was an iterative fix-and-run process. Their 

work is one of the few studies that can be implemented at the operational level.  

Barbarosoglu et al. (2002) focused on tactical and operational scheduling 

of helicopter activities in a disaster relief operation. They proposed a bi-level 

modeling framework to address the crew assignment, routing and transportation 

issues during the initial response phase of disaster management in a static manner. 
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The top level mainly involves tactical decisions of determining the helicopter 

fleet, pilot assignments and the total number of tours to be performed by each 

helicopter without explicitly considering the detailed routing of the helicopters 

among disaster nodes. The base level addresses operational decisions such as the 

vehicle routing of helicopters from the operation base to disaster points in the 

emergency area, the load/unload, delivery, transshipment and rescue plans of each 

helicopter in each tour, and the re-fueling schedule of each helicopter given the 

solution of the top level. 

Barbarosoglu and Arda (2004) developed a two-stage stochastic 

programming model for transportation planning in disaster response. Their study 

expanded on the deterministic multi-commodity, multi-modal network flow 

problem of Haghani and Oh (1996) by including uncertainties in supply, route 

capacities, and demand requirements. The authors designed 8 earthquake 

scenarios to test their approach on real-world problem instances. It is a planning 

model that does not deal with the important details that might be required at 

strategic or operational level. It does not address facility location problem or 

vehicle routing problem.  

Ozdamar et al. (2004) addressed an emergency logistics problem for 

distributing multiple commodities from a number of supply centers to distribution 

centers near the affected areas. They formulated a multi-period multi-commodity 

network flow model to determine pickup and delivery schedules for vehicles as 

well as the quantities of loads delivered on these routes, with the objective of 

minimizing the amount of unsatisfied demand over time. The structure of the 
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proposed formulation enabled them to regenerate plans based on changing 

demand, supply quantities, and fleet size. They developed an iterative Lagrangian 

relaxation algorithm and a greedy heuristic to solve the problem. 

Yi and Ozdamar (2007) proposed a model that integrated the supply 

delivery with evacuation of wounded people in disaster response activities. They 

considered establishment of temporary emergency facilities in disaster area to 

serve the medical needs of victims immediately after disaster. They used the 

capacity of vehicles to move wounded people as well as relief commodities. Their 

model considered vehicle routing problem in conjunction with facility location 

problem. The proposed model is a mixed integer multi-commodity network flow 

model that treats vehicles as integer commodity flows rather than binary 

variables. That resulted in a more compact formulation but post processing was 

needed to extract detailed vehicle routing and pick up or delivery schedule. They 

reported that post processing algorithm was pseudo-polynomial in terms of the 

number of vehicles utilized. 

In a recent study, Balcik and Beamon (2008) proposed a model to 

determine the number and locations of distribution centers to be uses in relief 

operations. They formulated the location finding problem as a variant of 

maximum covering problem when the demand estimations are available for a set 

of likely scenarios. Their objective function maximizes the total expected demand 

covered by the established distribution centers. They also solve for the amount of 

relief supplies to be stocked at each distribution center to meet the demands. Their 

study is one of the first to solve location finding problem in relief operation; 
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however, they do not consider the location problem as part of a supply chain 

network.  Consequently, they cannot consider the interactions between optimal 

transportation of relief items from sources to the demand points and problem of 

finding optimal locations for distribution facilities.   

2.6 Conclusions 

There are not many publications that directly applied network modeling 

and optimization techniques in disaster response. Among those studies, there is no 

model that has integrated the interrelated problems of large scale multicommodity 

multimodal network flow problem, vehicle routing problem with split mixed 

pickup and delivery, and optimal location finding problem with multiple layers. 

Also to the best of our knowledge, there is no mathematical model that describes 

the special structure of FEMA’s supply chain system. 

It is intended to fill some of these gaps in the following chapters of this 

research. After providing a more formal description of the problem, a 

mathematical model is proposed that considers the specific characteristics of the 

described problem. The proposed mathematical model is a comprehensive system 

that integrates all the above mentioned properties. Offering this large-scale 

mathematical formulation is a unique theoretical contribution by itself. 

Nevertheless, solving this large-scale integrated formulation for real-world size 

problems requires special considerations.  

This problem belongs to the NP-Hard class that is proven to be extremely 

time-consuming as the problem size grows. Offering fast and efficient solution 

algorithms and heuristics is another gap that is being addressed in this research. 
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Finding fast solution algorithms is especially important because it enables the 

real-time optimization and implementation of the proposed model.  

Extensive numerical and sensitivity analysis are required to evaluate the 

different aspects of the proposed model and solution algorithms. Through 

numerical case studies and simulation scenarios, it will be possible to fully test the 

performance of the model and the solution algorithms. The other important 

outcome of extensive numerical and sensitivity analysis will be the development 

of a set of general guidelines for practitioners, in order to model and solve similar 

case studies for their specific applications. 
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Chapter 3: Problem Description and Formulation 

In this chapter, first a complete description of the problem and its 

properties are provided in section 3.1. In section 3.2, the concept of time-space 

network is introduced which is very important in modeling the dynamic behavior 

of the described problem. Then the research approach to build a mathematical 

model for the problem is described in section 3.3 followed by the list of 

assumptions made in order to properly model the problem. In section 3.5, the 

details of mathematical formulation for the proposed model are presented. The 

notations, parameters and variables are defined in sections 3.5.1 through 3.5.3. 

The objective function of the optimization problem is formulated in section 3.5.4, 

followed by the formulation and description of the constraints of the problem in 

section 3.5.5. Finally, in section 3.6, a short form of the mathematical formulation 

is presented for the summary. 

3.1 Problem Description 

The goal of the mathematical model is to orchestrate all the logistical 

components and tasks in the emergency response operations after a large scale 

disaster, in order to minimize the loss of life or human sufferings by rapid and 

efficient delivery of critical relief items to the victims in the disaster areas. 

Logistics planning in emergencies involves sending multiple relief 

commodities (e.g., medicine, water, food, equipment, etc) from a number of 

sources to several distribution points in the affected areas through a chain 

structure with some intermediate transfer nodes. The supplies may not be 
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available immediately but arrive over time. It is a difficult task to decide on the 

right type and quantity of relief items, the sources and destinations of the 

commodities, and also how to dispatch relief items to the recipients in order to 

minimize the pain and sufferings for the disaster victims. 

It is necessary to have a quick estimation of the demands during the initial 

response time. It is essential to know the types of required commodities, the 

amounts of each commodity per person or household, an estimation of the number 

of victims, and the geographical locations of the demands. The list of 

commodities includes but is not limited to water, food, shelter, electric generators, 

medical supplies, cots, blankets, tarps and clothing. Some of the demand items are 

one-time demands while others are recurring (e.g. tent vs. water) and some 

demands are subject to expiration while others may be carried over (e.g. food vs. 

clothing). The demands usually overwhelm the capacity of the distribution 

network. The demand information might not be complete and accurate at the 

beginning but it is expected to improve over time. 

Different aid organizations may employ their unique supply chain 

structure that governs the types of facilities to be used and the relationships 

among components of the chain. For example FEMA has its own supply chain 

structure for disaster response which is previously introduced in section 1.4. 

FEMA has distinguished 7 layers of facilities in its logistics chain. First 3 layers 

are permanent facilities to store and ship the relief items while the next 4 layers 

are temporary transfer facilities that their numbers and locations will be chosen 

during the response phase. 
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During the initial response time it is also necessary to set up temporary 

transfer facilities to receive, arrange, and ship the relief commodities through the 

distribution network. In risk mitigation studies for disasters, possible sites where 

these facilities can be situated are specified. Logistics coordination in disasters 

involves the selection of sites that result in the maximum coverage of affected 

areas and the minimum delays for supply delivery operations. Usually the number 

of these temporary facilities is limited because of the equipment and personnel 

constraints. 

Each facility in the chain is subject to some capacity constraints.  Various 

capacities are defined for operations such as sending, receiving, and storing 

commodities. These capacities can be different for each facility and are 

determined based on the type, size and layout of that facility. Also the availability 

of personnel and equipment may influence the capacities. In general, the capacity 

constraints can be defined in terms of the weight or volume of the commodities as 

well as in terms of the numbers of the vehicles that are sent, received, or parked at 

the facility at a certain time period. These are two different aspects and it is 

recommended to consider both capacities for each facility.  

The transportation capacity is usually very limited in early hours or days 

after a disaster. It is very critical to assign the available fleet to the best possible 

use at any time. There is usually a shortage of vehicles in emergency operations 

so the model must keep track of the empty vehciles in order to assign them to new 

missions after each delivery. More than one transportation mode may be hired to 

facilitate emergency response logistics. Consequently, the coordination and 
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cooperation between transportation modes are necessary for managing the 

response operations and providing a seamless flow of relief commodities toward 

the aid recipients. The intermodal transfer of commodities is expected to happen 

in specific facilities but may be subject to some capacity constraints and transfer 

delays. 

Vehicle routing and scheduling during the disaster response is also very 

important. A large number of vehicles might be used in response to large scale 

disasters. The model should be able to keep track of routings for each individual 

vehicle. Also, it is required to have a detailed schedule for pickup and delivery of 

relief commodities by each vehicle in each transportation mode. Nonetheless, the 

vehicle routing in disaster situations are quite different from conventional vehicle 

routings. The vehicles do not need to form a tour and return to the assigned depot, 

but they might be assigned to a new path at any time. They are expected to 

perform mixed pickup and delivery of multiple items between different nodes of 

the network as the supplies and demands arise over time.  

The disaster area is a dynamic environment and emergency logistics are 

very time sensitive operations. The disaster might still be evolving when the 

response operations start. Also the lack of vital information about available 

infrastructure, supplies, and demands in the initial periods after the disaster may 

complicate this dynamic environment even more. The high stakes of life-or-death 

for disaster victims urge the needs for higher levels of accuracy and tractability. 

Despite all the necessary preparedness and planning at strategic level, dealing 

with the problem as operational level is very important. Modeling and 
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optimization at operation level is the only approach to capture the realities of the 

time sensitive emergency response operations.  

The other important issue is considering equity and fairness among aid 

recipients. Based on the geographical dispersion of victims and availability of 

resources over time and space, it is easy to favor the demands of one group of 

victims over another. Even though some variations are inevitable, the ideal pattern 

is to distribute the help items evenly and fairly among the victims. The models 

and procedures with general objective functions are prone to ignore the equity and 

level of service requirements in order to get a better numerical solution. It is very 

important to realize the need for procedures and constraints that prevent any sort 

of discrimination among victims, as much as possible. 

The equity constraint between populations can be defined over time, and 

over commodities. It is not appropriate to satisfy all the demands of one group in 

early stages while the other group of victims does not receive any help until very 

later times. It is more acceptable to fairly distribute the available relief items 

among all recipients even though it might not be enough for everyone at the 

current instance of time.  The relief operations will continue over time as more 

resources are expected to become available. The equity over commodities is also 

important. For example, it is not acceptable to send all the available water to one 

group of victims and send all the available meals to another group. It is expected 

to fairly share the limited resources of transportation capacity and disaster relief 

commodities. 
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3.2 Time-Space Network 

A physical network is converted into a time-space network to account for 

the dynamic decision process. In the context of the problem in this research, 

nodes in the time-space network represent the physical locations of the supply, 

demand and transfer points for each mode and over time, while the arcs represent 

the connecting routes between these points. Each node in the physical network is 

represented by the number of mode types at each time period of the planning 

horizon. In a sense the time-space network in this context can be thought of as an 

overlay of several physical networks, one for each transportation mode, which are 

represented over time. These overlaid networks are connected to each other by the 

transfer links which make it possible for the commodities to be transferred 

between modes. 

There are three types of traffic flow on the physical network. The first type 

is the routing traffic that moves from one node to another node by a certain type 

of mode. The second type is the transfer traffic that changes mode type from one 

mode to another mode at a certain node. The third type is the supply or demand 

carry-over that is carried over to the next time period at a certain node. 

The duration of one time period should be based on the link travel time for 

each mode. It must be small enough so that the amount of slack time on the 

routing links is not excessive. However, the planning horizon should not be too 

short in order for the time-space network to be meaningful. Also, it should not be 

too long as it will increase the dimension of the time-space network and make the 

problem very difficult to solve. 
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The movements of commodities and personnel on a physical network over 

time are represented by the links in the time-space network. Routing Links 

represent the physical movement of commodities in space. Transfer Links 

represent the transfer of traffic between the available modes. Finally, Supply or 

Demand Carry-Over Links represent the commodity supply or demand carry over 

from one period to the next.  

Figure 3.1 shows a physical network that has 4 nodes, 5 two-way arcs, and 

2 modes. Node A represents the origin and nodes C and D denote the destinations. 

The travel time over the arc in each mode type is shown in terms of time periods. 

Figure 3.2 shows the time-space network generated from Figure 3.1 with 6 time 

units in the planning horizon. The length of one time period is assumed to be one 

time unit. In Figure 3.2, transfer time is assumed to be one time period. The carry-

over links that are created at node A and B represent the supply carry-over links. 

On the other hand, the carry-over links that are shown at node C and D denote the 

demand carry-over links. 

 

Figure 3.1  A sample physical network 
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Figure 3.2 A sample time-space network 

3.3. Modeling Approach 

A mathematical framework is suggested to model the supply chain 

operations during emergency response similar to the problem description in 

section 3.1.  The main characteristics of the modeling approach can be 

summarized as follow: 

• Operational Level: to capture time sensitive details of the emergency 

response operations, the problem is formulated at operational level.  

• FEMA Structure: the proposed model is in compliance with FEMA’s 7-layer 

supply chain structure. 
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• Time-Space Network: to account for the dynamic decision process, the 

physical network must be converted to a time-space network. The nodes of 

this network represent the facilities in the FEMA’s structure. The links consist 

of existing physical links, delay or storage links, and intermodal transfer links. 

• Facility Location: the optimal locations to establish temporary facilities are 

selected from a set of potential sites. The maximum number of each facility 

type and their locations are dynamic and can change over time as the relief 

operations proceed. 

• Facility Capacity: each facility has maximum capacities for sending, 

receiving, and storing commodities as well as vehicles. 

• Demand: the demand is multi-commodity and usually overwhelms the 

capacity of the distribution network. Specific decision variables are defined 

that keep track of unsatisfied demand at each demand point for each 

commodity and during all time periods. 

• Supply: similar to the demand, the supply is multi-commodity and may come 

from various sources. The problem is formulated as a variation of multi-

commodity network flow problem. 

• Multi-modal: since more than one mode of transportation may be hired in the 

emergency response logistics, the problem is a variation of multi-modal 

network flow problem. 

• Vehicle Routing: in order to model the complicated routing and delivery 

operations in disaster response, the vehicles are treated as flow of integer 
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commodities over the time-space network. This results in a mixed integer 

multi-commodity formulation. 

• Network Capacity: a set of constraints is used to link the relief commodities 

with the vehicles. As a result, the flow of commodities is only possible when 

accompanied by enough vehicle capacity for that specific link and time. 

• Integrated Model: all decisions of facility location, supply delivery, and 

vehicle routing, are interrelated. Our approach provides an integrated model to 

find the global solution for this problem. 

• Equity: equity and fairness among disaster victims is modeled through a set 

of constraints that enforce a minimum level-of-service for each victim. The 

equity is required for each relief item and over all time periods.  

• Objective Function: the objective of this model is to minimize the pain and 

suffering of the disaster victims. It is formulated as minimizing the total 

unsatisfied demand summarized for all victims, for all relief items, and during 

all time periods. 

3.4 Assumptions 

 1- It is assumed that the following information is available and given: 

• Demands: commodity types, demand locations, demand amounts 

• Supply: commodity types, supply locations, supply amounts 

• Permanent Facilities: types, locations, capacities 

• Temporary Facilities: set of potential sites for each type, capacities of 

each type 
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• Network: link-node incidence matrix for each transportation mode 

• Vehicles: number of vehicles available for each mode and their initial 

locations, capacity of each vehicle 

• Travel Times: travel time on each link for each transportation mode. 

 
2- Because the model is at the operational level, it is assumed that the problem is 

deterministic. The required information is estimated or known at the beginning of 

the operations by local or federal authorities. The model can adapt to the new 

information as the circumstances evolves over time and real-time information 

becomes available. 

3- Supply Chain Structure: 

• It is assumed that the flow of commodities between each two nodes is 

possible only if it is in compliance with FEMA’s structure shown in 

Figure 1.5. For example, the supply from LC cannot be sent directly to 

SSA.  It should be sent to MOBs or FOSAs first.  

• It is assumed that for the empty vehicles, a direct link exists that 

connects each pair of nodes. For example, if a vehicle delivers all of its 

supply at a POD, it can directly go to any other node of the network to 

pick up new supplies. 

4- Finding the number and locations of the points of distribution (PODs) is not 

considered in this study. It is assumed that PODs are established by local 

authorities. As a result, the location and amount of demands at each POD is a 

given data in this model. 
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3.5 Mathematical model 

In this section initially the notations and required parameters for the 

formulation are introduced. After that, the decision variables of the mathematical 

model are defined. Then the objective function formulation is presented followed 

by introduction and formulation of the problem constraints. 

3.5.1 Notations 

N  = Set of all nodes. Nji ∈, are indices 

LC = Set of logistic center sites 

CSS = Set of commercial storage sites 

VEN = Set of commodity vendor sites 

MOB = Set of potential sites for mobilization centers 

FOSA = Set of potential sites for federal operational staging areas 

SSA = Set of potential sites for state staging areas 

POD = Set of points of distribution (demand nodes) 

U  = Set of supply nodes and transshipment nodes (LC, VEN, CSS, MOB, 

FOSA, SSA) 

V = Set of permanent facilities (LC, CSS, VEN) 

W = Set of potential sites for all temporary facilities (MOB, FOSA, SSA) 

C = Set of commodities, Cc ∈ is an index 

M = Set of transportation modes, Mm ∈ is an index 

T = Time horizon of response operations. Ttt ∈′, are indices 
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3.5.2 Parameters 

Supply and Demand 

c
itSup  = Amount of exogenous supply of commodity type c in node i at time t 

c
itDem = Amount of exogenous demand of commodity type c in node i at time t 

m
itAV  = Number of vehicles of mode m added to the network in node i at time t, 

negative if vehicles removed 

c
itRU   = Relative urgency of one unit of commodity c, in node i at time t 

Number of Facilities  

tMOBmax  = Maximum number of mobilization centers at time t 

tFOSAmax = Maximum number of federal operational staging areas at time t 

tSSAmax     = Maximum number of state staging areas at time t 

Facility Capacity  

m
itUcap  = Unloading capacity for the facility in node i for mode m at time t 

itScap   = Storage capacity for the facility in node i at time t 

m
itLcap  = Loading capacity for the facility in node i for mode m at time t 

m
itVRcap = Maximum number of mode m vehicles that can be received at the 

facility in node i at time t 

m
itVPcap = Maximum number of mode m vehicles that can be parked (carried 

over) at the facility in node i from time t to time t + 1 

m
itVScap = Maximum number of mode m vehicles that can be sent out from the 

facility in node i at time t 
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Vehicle Capacity 

mcap  = Loading capacity of vehicles of mode m   

cw  = Unit weight of commodity c 

Transportation 

ijmt  = Travel time from node i to node j for vehicles of mode m   

mmK ′  = Time required to transfer commodities from mode m to mode m′  

3.5.3 Decision Variables 

Location Problem 

t
iLoc = 1 if temporary facility of appropriate type is located at potential site i, at 

time t; equal to 0 otherwise. The temporary facility will be a mobilization 

center if MOBi ∈ , a federal operational staging area if FOSAi ∈ , and a 

state staging area if SSAi ∈ . 

Commodity and Vehicle Flow 

cm
ijtX  = Flow of commodity type c shipped from node i to node j by mode m at 

time t 

m
ijtY  = Flow of vehicles of mode m from node i to node j at time t 

c
itCX  = Amount of commodity type c in node i which is carried over from time 

period t to t + 1 

m
itCY  = Number of vehicles of mode m in node i which is carried over from time 

period t to t + 1 
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mcm
itXT ′ = Amount of commodity type c in node i which is transferred from mode 

m to mode m′ at time t 

c
itUD  = Amount of unsatisfied demand of commodity type c in node i at time t 

3.5.4 Objective Function 

Minimize ∑∑∑
∈

⋅
Vi t c

c
it

c
it UDRU      (3.1) 

The objective function in equation (3.1) minimizes the total amount of 

weighted unsatisfied demand over all commodities, times, and demand points. 

c
itRU is the relative urgency associated with each commodity, time, and demand 

point. If there is any desire to consider a commodity being more important than 

others at any time or for any demand point, c
itRU can enforce that desire. Higher 

value of c
itRU translates into higher urgencies. If all the commodities happen to be 

of the same importance, c
itRU  can be set equal to 1.  

3.5.5 Constraints 

Commodity Flow Constraints 
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Equations (3.2) and (3.3) enforce the conservation of the flow for all 

commodities and modes at all nodes and time periods. Equation (3.2) requires that 

for supply nodes and transfer nodes, the sum of the flows entering each node plus 

exogenous supply should be equal to the sum of the flows that leave the same 

node. Equation (3.3) shows that the total flow entering each demand node plus the 

unsatisfied demand is equal to the exogenous demand at that node plus the 

unsatisfied demand from the previous time period. 

Vehicular Flow Constraints 

tmNiCYYAVCYY m
it
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ijt
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m
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 (3.4) 

Equation (3.4) represents the conservation of flow for the vehicles. At any 

node i and time period t, total number of available vehicles of mode m is equal to 

the number of vehicles of mode m that left node j for node i at time ijmtt − , plus 

the number of vehicles that were carried over from the previous time period, plus 

the number of vehicles that are added or removed to the fleet at that time. These 

vehicles are either sent out of the node or carried over to the next time period.  

Linkage between Commodities and Vehicles 
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m
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Constraint (3.5) makes sure that commodities are not sent out of a node 

unless a number of vehicles with enough capacity are available at that node. 

Facility Capacities for Permanent Facilities 
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Equations (3.6), (3.7), and (3.8) are the maximum capacity for loading, 

unloading, and storage of commodities at permanent facilities. Equations (3.9), 

(3.10), and (3.11) require the maximum number of vehicles that are sent, 

received, and parked at each facility to be less than the relevant capacities. 

Facility Location and Capacities for Temporary Facilities 

tmWiLocLcapX t
i

m
it

c j

cm
ijt ,,∈∀×≤∑∑     (3.12) 

tmWiLocUcapX t
i

m
it

c j

cm
ttji jim

,,)( ∈∀×≤∑∑ −     (3.13) 

tWiLocScapSup

CXX

t
iit

c

c
it

c

c
ti

m c j

cm
ttji jim

,

)1()(

∈∀×≤+

+

∑

∑∑∑∑ −−

    (3.14) 

tmWiLocVRcapAVY t
i

m
it

m
it

j

m
ttji jim

,,)( ∈∀×≤+∑ −

  
 (3.15) 

tmWiLocVPcapCYAVY t
i

m
it

m
ti

m
it

j

m
ttji jim

,,)1()( ∈∀×≤++ −−∑
  

 (3.16) 

tmWiLocVScapY t
i

m
it

j

m
ijt ,,∈∀×≤∑      (3.17) 



 66 

 

tMOBiMOBLoc t

i

t
i ,max ∈∀≤∑      (3.18) 

tFOSAiFOSALoc t

i

t
i ,max ∈∀≤∑      (3.19) 

tSSAiSSALoc t

i

t
i ,max ∈∀≤∑       (3.20) 

Equations (3.12) through (3.14) enforce the loading, unloading, and 

storage capacity for the temporary facilities. If the facility is selected to be set up 

at potential site i, the respected capacity constraint is enforced. If it is decided not 

to set up the temporary facility at location i, the same constraints require that all 

the flows in and out of that node to be equal to zero. 

Equations (3.15) through (3.17) require the maximum number of vehicles 

that are sent, received, and parked at each temporary facility to be less than the 

relevant capacities. The numbers are zero if the facility is not selected for that 

node. 

Equations (3.18) through (3.20) oblige the maximum number of each 

temporary facility type to be limited by the maximum allowable numbers for that 

facility type during the chosen time periods. 

Capacities for PODs: 
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Equation (3.21) enforces the commodity unloading capacity at points of 

distribution. Equation (3.22) and (3.23) represent the vehicle receiving and 

vehicle parking capacities for each point of distribution. 

Equity Constraint:  
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Equation (3.24) enforces a minimum percentage of total demand for a 

specific commodity c, to be satisfied by the time period t. It might not be always 

possible to deliver the required amount by time t; in that case, this constraint 

makes the optimization problem infeasible. 

Equation (3.25) requires that from all commodities being delivered to 

node i by time t, at least minβ percent to be commodity c. 

Equation (3.26) ensures that sum of total commodities delivered at point i 

to be more than a minimum percentage of all the commodities that are being 

delivered among all demand points. 

Non-negativity and Integrality: 

cm
ijtX , c

itCX , mcm
itXT ′ , 0≥c

itUD     Real-valued variables 
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m
ijtY , 0≥m

itCY       General integer variables 

)1,0(∈t
iLOC       Binary integer variables 

3.6. Summary 

The proposed mathematical model in this chapter can be summarized as follows: 

 

Minimize Total weighted unsatisfied demand 

Subject to: 

Commodity flow constraints 

Vehicular flow constraints 

Constraints that link commodities and vehicles 

Facilities location constraints 

Facility capacities constraints 

Equity (recipients/commodities) constraints 

Non-negativity and integrality constraints 
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Chapter 4: Preliminary Numerical Study 

In this chapter, a set of preliminary numerical experiments are conducted 

to evaluate the features of the proposed formulation. At this stage, it is tried to 

keep the problem size manageable so it can be solvable by commercial solver and 

the results can be analyzed easier. Nevertheless, this problem instance still fully 

represents all the elements of the proposed model. This experimental study is 

compliant with FEMA’s special supply chain structure. The distances, locations, 

supplies, demands, capacities and other aspects of this numerical experiment are 

designed to be comparable to the real-world-size problems. 

4.1 Design of the sample problems 

The numerical problem in this chapter is an imaginary scenario where a 

natural disaster such as a hurricane strikes the southern coast of the United States. 

It is assumed that two separate regions, one in Mississippi and one in Louisiana, 

are affected. The disaster area in Mississippi is spread along the coast while the 

disaster area in Louisiana is more inland and has a rectangular shape. Figures 4.1 

and 4.2 show the affected disaster areas. 
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Figure 4.1 General Disaster Area of the Numerical Study 

 

 

Figure 4.2 Disaster Areas in two affected States 

Mississippi 

Louisiana 
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4.1.1 NETWORK 

For the numerical study, it is assumed that only the Atlanta logistics center 

(LC) is used. One commercial storage site (CSS) in Charlotte, North Carolina and 

one vendor (VEN) in Nashville, Tennessee are also used to store the relief items. 

For temporary facilities at federal level, four potential sites for 

mobilization centers (MOB) are suggested. There are also four potential sites for 

federal operational staging areas (FOSA). These facilities are able to send 

supplies to both disaster areas. At the state level, a total of 10 potential sites for 

state staging areas (SSA) are suggested. Four potential SSA are planned to serve 

the disaster area in Mississippi and six potential SSA are suggested for Louisiana. 

The initial post-disaster surveys estimate that approximately 20,000 people are 

affected and twenty points of distribution (POD) are needed to serve this 

population. Eight PODs are selected for Mississippi area and twelve PODs will 

serve the victims in Louisiana. Table 4.1 summarizes the list of facilities in the 

distribution network. For this numerical experiment, there are a total of 41 

permanent and temporary facilities in the network. Figures 4.3, 4.4, and 4.5 

illustrate the locations of these facilities on the map. 
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Table 4.1 List of Facilities in the Distribution Network  

Node Facility TYPE Location Latitude Longitude
1 LC Atlanta, GA  33°44'6.59"N  84°23'45.13"W
2 CSS Charlotte, NC  35°13'47.00"N  80°50'36.54"W
3 VEN Nashville, TN  36°11'9.34"N  86°43'25.24"W
4 MOB Montgomery, AL  32°22'3.90"N  86°18'6.88"W
5 MOB Jackson, MS  32°18'20.21"N  90°10'7.65"W
6 MOB Shreveport, LA  32°30'44.00"N  93°44'25.76"W
7 MOB Beaumont, TX  30° 4'47.76"N  94° 6'2.57"W
8 FOSA Mobile, AL  30°41'20.63"N  88° 2'44.56"W
9 FOSA Hattiesburg, MS  31°18'16.67"N  89°18'41.34"W

10 FOSA Baton Rouge, LA  30°26'49.07"N  91°11'4.33"W
11 FOSA Lafayette, LA  30°12'39.24"N  92° 0'36.65"W
12 SSA Moss Point, MS  30°25'36.88"N  88°31'20.06"W
13 SSA Gulf Hills, MS  30°26'14.86"N  88°48'52.52"W
14 SSA Wool Market, MS  30°28'4.60"N  88°59'49.49"W
15 SSA Diamond Head, MS  30°22'48.38"N  89°22'32.34"W
16 SSA Boutte, LA  29°54'5.23"N  90°23'28.72"W
17 SSA South Vacherie, LA  29°54'40.81"N  90°43'44.11"W
18 SSA Supreme, LA  29°52'2.73"N  90°59'4.48"W
19 SSA Pierre Part, LA  29°57'19.71"N  91°12'45.39"W
20 SSA Berwick, LA  29°42'3.16"N  91°13'51.50"W
21 SSA Franklin, LA  29°47'17.49"N  91°30'33.94"W
22 POD Pascagoula, MS  30°21'54.42"N  88°32'54.99"W
23 POD Gautier, MS  30°23'26.03"N  88°38'44.36"W
24 POD Gulf Park, MS  30°22'45.27"N  88°45'32.84"W
25 POD Ocean Springs, MS  30°24'39.92"N  88°47'7.53"W
26 POD Biloxi, MS  30°24'27.58"N  88°55'59.03"W
27 POD Gulf Port, MS  30°21'57.06"N  89° 5'30.75"W
28 POD Long Beach, MS  30°20'24.34"N  89°11'1.03"W
29 POD Pass Christian, MS  30°19'33.94"N  89°14'57.81"W
30 POD Lock Port, LA  29°38'22.61"N  90°32'14.66"W
31 POD Mathews, LA  29°41'38.04"N  90°33'6.94"W
32 POD Raceland, LA  29°43'19.20"N  90°35'17.82"W
33 POD Houma, LA  29°35'13.92"N  90°42'15.67"W
34 POD Bayou Cane, LA  29°37'29.72"N  90°45'3.30"W
35 POD Gray, LA  29°40'45.88"N  90°47'0.88"W
36 POD Shriever, LA  29°44'25.98"N  90°49'50.30"W
37 POD Tibodaux, LA  29°47'48.50"N  90°49'7.77"W
38 POD Amelia, LA  29°40'16.24"N  91° 6'15.78"W
39 POD Morgan City, LA  29°42'9.13"N  91°11'25.60"W
40 POD Bayou Vista, LA  29°41'28.15"N  91°16'13.42"W
41 POD Patterson, LA  29°41'23.98"N  91°18'33.41"W  
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Figure 4.3 Map of the federal level facilities 

 

 

Figure 4.4 Map of the state level facilities in Mississippi  
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Figure 4.5 Map of the state level facilities in Louisiana  

4.1.2 Supply and Demand 

There are several commodities that need to be distributed among the 

disaster victims. The type and amount of each commodity depends on many 

factors such as type of disaster, level of destruction, weather conditions, etc. Table 

4.2 suggests a list of required items and the amount per day per survivor. Adding 

up the last column of Table 4.2, it can be seen that for each survivor a total of 

about 30 ft3 of relief items per day are required. 

For the sake of simplicity, it is assumed that only 2 types of commodities 

(commodity 1 and commodity 2) are required in this numerical experiment. 

However, to preserve the scale of demands, the total amount per each survivor is 

kept at 30 ft3 per day. It is also assumed that survivors in disaster zone 1 

(Mississippi), need 20 ft3 of commodity 1 and 10 ft3 of commodity 2, per day. On 

the other hand, survivors in disaster zone 2 (Louisiana), assumed to need 10 ft3 of 
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commodity 1 and 20 ft3 of commodity 2, per day. This will provide the 

opportunity to analyze the effects of different demand types in the results of the 

model. 

Table 4.2 List of Required Items for Survivors of a Disaster 

Item Quantity  Survivors 
served 

dimensions (ft) Volume 
(ft3) 

Requirement 
per survivor 

(ft3) L W H 

Water (drinking) 1 gallon 1 1 1 1 1 3 

Water (non-potable) 1 gallon 1 1 1 1 1 3 

Meals (MREs) 3 meals 1 1 1 1.5 1.5 4.5 

Portable shelter 1 shelter 4 6 2 1.5 18 4.5 

Basic medical kit 1 kit 3 1 1 1 1 0.333 

Cot 1 cot 2 3 2 1 6 3 

Blanket 1 blanket 1 2 2 0.5 2 2 

Tarp 1 tarp 3 3 3 1 9 3 

Ice 1 gallon 10 1 1 1 1 0.1 

Baby supplies 1 box 5 1 1 1 1 0.2 

Generator 1 generator 500 8 8 6 384 0.768 

Clothing 1 bag 1 2 2 1 4 4 

Plywood 2 sheets 3 4 8 0.1 3.2 2.133 

Nails 1 box 3 1 1 1 1 0.333 

 

Supply sources are the logistics center, the commercial storage site, and 

the vendor. It is assumed that 40% of total supply is stored at LC, 20% at CSS, 

and 40% at the vendor site. Total demand for 20,000 survivors will be 600,000 ft3 

per day. The demand for commodity 1 is 280,000 ft3 per day and the demand for 

commodity 2 is 320,000 ft3 per day. For this problem, it is assumed that supplies 

for one day are available and are stored at the three supply sources prior to the 

start of the operation. 
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4.1.3 Transportation 

For this problem, only one transportation mode is used which is trucking. 

The common vehicle is a 53ft trailer truck which has the volume capacity of 

approximately 6000 ft3. For the base case, 100 trucks are available at the 

beginning of the operations. Initially, 40 trucks are located at LC and 30 trucks 

are present at CSS and VEN sites, each. 

4.1.4 Network links and travel times 

There are 2 types of flows in this problem, flow of commodities and flow 

of vehicles. The commodity flows must comply with the hierarchical structure of 

FEMA explained in section 1.4. For example, supplies from a VEN can only be 

sent to LC, or supply from LC can be sent to all MOBs and FOSAs. Supplies in 

MOBs can be sent to other MOBs or to FOSAs. Supplies from FOSAs can be sent 

to other FOSAs and to SSAs, as long as it remains in the same state. Supplies 

received at each SSA can be sent to other SSAs in the same State or must be 

delivered to PODs of that State. 

The flow of vehicles in the network is much less restricted compared to 

commodity flows. It is assumed that there is a link between each pair of nodes in 

the network. Basically, empty vehicles are free to travel between each two nodes 

of the network without the need to visit any intermediate nodes. As a result, when 

a vehicle is carrying supplies, it must follow the more restricted hierarchical 

network of FEMA. But when the vehicle unloads all its supply, either at 

intermediate nodes or final PODs, it is free to go to any other node in the network 

to pick up supplies and start a new round of deliveries. 
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Link travel time functions for the proposed formulation can be completely 

arbitrary. The formulation is capable of dealing with time-variable travel times as 

well as fixed travel times. For this numerical study, the travel distance between 

any two nodes of the network is assumed to be equal to their Euclidian distance. 

The travel speed is assumed to be fixed for all the vehicles on the federal level 

network (between LC, CSS, VEN, MOBs, and FOSA) and to be equal to 50 miles 

per hour. However, for the state level networks (between FOSAs, SSAs, and 

PODs) the travel speed is assumed to be 40 miles per hour. 

4.1.5 Time Scale 

Selection of appropriate time step is a very important factor that can affect 

the performance of time-space networks dramatically. For each time period in the 

planning horizon, one layer of physical network will be added to the problem. 

This makes the problem size grow extremely fast with the number of time steps in 

the planning horizon. For example if the planning horizon is only 1 day, with the 

choice of time step t = 5 minutes, it will be 24 * 60 / 5 = 288 layers of the 

network. So to keep the problem at a reasonable size, it is favorable to have 

longer time steps. 

On the other hand, shorter time steps will improve the accuracy of 

modeling the emergency response operations. For example if the time step is 1 

hour, it is possible to model the state of the system only at every hour and not at 

the times in between. So from the accuracy perspective, it is favorable to have 

shorter time steps. 
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The other important issue in determining the time-step in this problem is 

the issue of dealing with very long and very short links. At the federal level 

network, nodes are usually far from each other and the links can range from some 

hundred miles to a few thousand miles. The travel time on those links with ground 

transportation can range from a few hours to up to one day or more. However, the 

nodes at the lower levels in the State networks can be very close to each other. It 

is very common to have PODs that are only a few miles apart. In this case, link 

travel times can be in the order of minutes. Figure 4.6 better shows the issue of 

scale in this problem in disaster area map. 

 

Figure 4.6 The issue of the scale in the disaster area 

It is a difficult challenge to select a time-step that is suitable for very short 

links and very long links, at the same time. A very short time-step is necessary to 

model the short links even though it will increase the problem size very quickly. 

But the main issue is the sensitivity of travel times to the selected time-step. If a 

very short time-step is chosen, say 1 minute, it might be good for short links but 
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the travel times on very long links will not be sensitive to that. It is very difficult, 

if not impossible, to predict the travel time between two nodes that are a thousand 

miles apart, with accuracy of 1 minute. For those links the 1-hour unit or 30-

minute unit is more meaningful.  

4.1.6 Geographical Decomposition 

To deal with the issue of scale, a geographical decomposition method is 

proposed. The nodes at federal level (LC, CSS, VEN, MOB, FOSA) will be in 

one subset and the nodes at each state (FOSA, SSA, POD) will form another 

subset. Since the travel times between nodes in federal level network are usually 

long, it is possible to use a large time-step for them. Using similar argument, the 

State level nodes and links can be modeled with a shorter time-step. Figure 4.7 

shows this decomposition. 

 

 

Figure 4.7 Geographical decomposition to implement two time-steps 
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Now the important issue is how to connect these separate time-space 

networks. Luckily, the special structure of FEMA’s supply chain offers the 

candidates. Federal operational staging areas (FOSA) are the one and only 

interface between flow of commodities among the federal level facilities and the 

designated state level facilities. We take advantage of this opportunity and select 

the FOSAs as transfer terminals between the networks with different time steps. 

For this numerical study, time-step for federal zone, 1t , is chosen to be 30 

minutes and time-step for state level zones, 2t , is selected to be 5 minutes. The 

travel times for this study are calculated based on the distance and a fixed average 

travel speed explained earlier. So based on the newly defined time steps of 1t  and 

2t , travel times of federal zone links are being rounded to the nearest 30 minute 

interval and the travel times of state level zone links are being rounded to the 

nearest 5 minute.  

The way FOSA nodes connect two sub-networks with different time steps 

is shown in Figure 4.8. This graph indicates that the arcs entering FOSA from 

federal network or leaving the FOSA toward the federal network can exist only at 

1t =30-minute intervals.  But the arcs that connect FOSA to state level facilities 

exist for every 2t =5-minute interval. The implication is that the downward flows 

(from the federal network to the state network) entering a given FOSA can leave 

that FOSA at any 5-minute period after that. However, the upward flows (from 

the state networks to the federal network) that enter a FOSA at any time other 

than 30-minute intervals need to wait at the FOSA until the first available 30-

minute interval. 
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Figure 4.8 Connecting two time-Space networks with different time  

4.2 Generating formulation for commercial solver 

The numerical experiment introduced previously in section 4.1 is a fairly 

large mixed integer program with real valued as well as general integer and binary 

variables. Because of the large number of variables and constraints in this 

problem, computer programming is required to handle the input and output data. 

A customized program is coded in the Microsoft Visual Studio environment to 

generate the mathematical formulation for each problem instance. The program 

read the input data from the prepared data files as well as the coded user interface 

to generate each problem instance. Then the mathematical formulation for each 

problem instance is generated and written to a text output file. 
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At this stage, the numerical sample problems are solved with ILOG 

CPLEX (2006) commercial solver. CPLEX is a commercial optimization package 

from ILOG company that solves mathematical formulations in the forms of linear 

programs (LP), integer programs (IP), and quadratic programs (QP). CPLEX 

reads the generated formulations from text files, after optimization the results are 

written to text files as well.  Another customized program is coded to extract the 

results from the output file and generate the required performance measures and 

generate charts and graphs. 

4.3 Numerical results and analysis 

To better evaluate the characteristics of the proposed model, 10 numerical 

case studies are generated. All the case studies are based on the described 

imaginary scenario with variations in the subset of enforced constraints and some 

parameter values. Table 4.3 describes the considered case studies. In general, the 

case studies in tables 4.3 start from simple and become more complicated toward 

the end. For example, the first case study only considers the conservation of flow 

and vehicle capacity constraints. Other constraints are gradually added to the 

formulation in the other case studies up to case 7 which has the largest number of 

constraint types for a one day operation. First 7 case studies consider only 1 day 

of operations while in the last 3 cases 2 days of operations are formulated. 

Table 4.4 summarizes the optimization results for all 10 case studies. case-

1 is the “base case” with only conservation of flow constraint and vehicle capacity 

constraints modeled for 1 day of operations. The solver found the optimal solution 

in approximately 4 minutes. Figure 4.9 shows the percent of unsatisfied demand 
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for all victims over time. The first delivery to the nearest demand point took about 

7 hours. Fifty percent of the total demand was satisfied after 11 hrs and 40 

minutes. The last demand was served after 21 hours and 40 minutes. 

Table 4.3 Descriptions of the numerical Case Studies  

Case Constraints Used Details 
No. of Variables 

Constraints 
File 
Size 
(Kb) Real Integer 

1 Flow Conservation + 
Vehicle Capacity 

1 day 
100 Trucks 133275 157972 81,891 13,331 

2 Flow Conservation + 
Vehicle Capacity 

1 day 
200 trucks 133275 157972 81,891 13,331 

3 Flow + Vehicle Capacity 
+ Facility Capacity 

1 day 
100 Trucks 133275 157972 87,094 15,846 

4 Flow + Facility Location 
(2,2,5)* + Facility Cap 

1 day 
100 Trucks 133275 157972 87,094 15,846 

5 Flow + Facility Location 
(2,2,2) + Facility Cap 

1 day 
100 Trucks 133275 157972 87,094 15,846 

6 Flow + Facility Capacity 
Const.+ Equity-1 Const 

1 day 
100 Trucks 133275 157972 87,174 17,214 

7 Flow + Facility Location 
& Capacity + Equity-1,2,3 

1 day 
100 Trucks 133275 157972 87,294 61,084 

8 Flow + Vehicle Cap,  day 
by day Supply 

2 days 
100 Trucks 265995 315316 163443 27,439 

9 Flow + Facility Location  
& Capacity, day by day 

2 days 
100 Trucks 265995 315316 173,878 32,673 

10 
Flow + Capacity + 

location (2,2,5) , 2 day 
supply available 

2 days 
100 Trucks 265995 315316 173,878 32,673 

* Facility location with maximum number of (MOB, FOSA, SSA) 
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Table 4.4 Summary of the optimization results for the preliminary experiment 

Case 
Number 

Objective Value 
(E+7) 

Last UD 
(hr:min) 

Temp. 
Facilities 

Root Sol. 
Time (s) Iterations CPU Time 

(sec)† 

1 9.0798 21:40 (4,4,10) 33.89 14,957 230 

2 8.6118 15:10 (4,4,10) 10.36 5,502 20 

3 10.412 22:05 (4,4,10) 42.73 18,642 778 

4 10.412 22:05 (2,2,5) 33.59 17,308 945 

5 10.978    24:00§ (2,2,2) 204.19 205,588 5575 

6 10.439 21:50 (4,4,10) 42.22 5,810,980 45856* 

7 10.417 22:05 (2,2,5) 63.09 7,888,315 81642* 

8 17.985 39:10 (4,4,10) 786.34 63,960 4779 

9 20.859 44:45 (2,2,5) 2450.91 408,351 14635 

10 18.921 48:00§ (2,2,5) 10117.11 2,963,071 231035 

* The solver stopped prematurely with “out of memory” error message. 
§ The relief operations were not finished by the end of planning horizon.  
† On a 3.0 GHz Intel Pentium CPU with 2.0 GB RAM 

 

Case-2 is similar to case-1 but the only difference is that there are 200 

trucks available in case-2 versus 100 trucks in case-1. Even though the number of 

vehicles was increased, the optimal solution was found in only 20 seconds. As it 

can be seen in Table 4.3, the size of the formulation (number of variables and 

constraints) for case-2 is equal to case-1 and this is one of the important 

advantages of current formulation. Since this formulation treats the vehicles as 

commodities, the number of available vehicles appears only as a right-hand-side 

parameter and does not have an effect on the problem size. Figure 4.10 shows the 
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percent of unsatisfied demand over time for case-2 at optimality. Since there were 

enough vehicles available at the beginning, the vehicles did not need to return to 

the sources to pickup supplies once they had left. As a result, the delivery 

operations were completed after only 15 hours and 10 minutes. 

 
Figure 4.9 Percent of unsatisfied demand over time for case 1 

 

 
Figure 4.10 Percent of unsatisfied demand over time for case 2 
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Case 3 is similar to the base-case with addition of loading, unloading, and 

storage capacities for all facilities. In this case, there is no limitation on the 

maximum number of temporary facilities and all the potential sites can be active. 

Figure 4.11 shows the variation of unsatisfied demand for case-3. The addition of 

facility capacities prevented the shipment and delivery of large quantities of 

supplies. Instead, the relief commodities are delivered more uniformly over time 

compared to case-1 and Figure 4.9. Consequently, the objective function value 

was higher and the operations lasted for 22 hr and 5 minutes, 25 minutes more 

than case-1. The running time was also increased to about 13 minutes to find the 

optimal solution. 

In case 4 we limited the maximum number of temporary facilities (MOB, 

FOSA, SSA) to (2, 2, 5) plus the constraints of case-3. It took the solver about 16 

minutes to find the optimal solution which is 3 minutes more than case-3. 

However, the objective function value at optimality was the same for case-3 and 

case-4. This implies that although we limited the number of temporary facilities to 

(2,2,5); it was still possible to run the operations through limited number of 

facilities and achieve the same final results. Comparing Figure 4.12 with 4.11 

shows that there were minor changes in the flow of commodities, but the final 

results are very similar. 
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Figure 4.11 Percent of unsatisfied demand over time for case 3 

 
Figure 4.12 Percent of unsatisfied demand over time for case 4 

In order to see the effect of even more limited numbers of facilities, we 

created case-5 with maximum number of temporary facilities as (2,2,2). Table 4.4 

shows that the problem became much harder to solve. The running time jumped to 

1.5 hours. The objective function was increased and more importantly, the 

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hr)

U
ns

at
is

fie
d 

D
em

an
d 

(%
)

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hr)

U
ns

at
is

fie
d 

D
em

an
d 

(%
)



 88 

 

delivery operations could not be finished in 24 hours. Figure 4.13 shows that at 

the end of the 24 hours, there is still unsatisfied demand which is about 6% of the 

total demand. It indicates that unlike case-4, limiting the number of temporary 

facilities affected the operations and resulted in more delays and more unsatisfied 

demand. 

In case-6 we added the equity constraints to the problem for the first time. 

At this stage, only the 1st equity constrains (Equation 3.24) were considered in 

addition to conservation of flow and vehicle capacity constraints. Table 4.4 shows 

very interesting results. First of all, adding the equity-1 constraint made the 

problem much harder. After 13 hours of execution time and more than 5.8 million 

iterations, the solver still could not find the optimal solution. However, the best 

integer solution found is very close to the best MIP bound (25500 unsatisfied 

demands, 0.02% gap).  

 
Figure 4.13 Percent of unsatisfied demand over time for case 5 
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Finally in Case-7, all the constraints are considered. The constraints 

include conservation of flow for the commodities and vehicles, the linkage 

between commodities and vehicles and capacity of each vehicle, facility location 

with maximums of (2,2,5); loading, unloading and storage capacities for all 

facilities, and finally the 3 equity constraints (Equation 3.24, 3.25, 3.26). The full 

problem becomes very large and difficult to solve. After around 23 hours of CPU 

time and more than 7.8 million iterations, CPLEX solver stopped and it could not 

find the optimal solution. By the way, the best integer solution found is very close 

to the best MIP bound (30400 unsatisfied demands, 0.03% gap). Figure 4.14 

shows the unsatisfied demand for the best integer solution found by the solver. 

 
Figure 4.14 Percent of unsatisfied demand over time for case 7 
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was assumed that 100 trucks are available. The demands for the second day 

appear at the beginning of the second day and locations and quantities are similar 

to the demands of the first day. In case-8 it is assumed that supply for the second 

day arrives at the beginning of the second day of operations to the same source 

nodes as in day one. Table 4.4 shows that the solution time was around 80 

minutes. Comparing 80 minutes for case-8 with 4 minutes of CPU time for case-1 

shows the growth rate of problem size and difficulty with extending time horizon. 

In this case, the duration of operation is only doubled however the solution time is 

rapidly increased by a factor of 20.  

Figure 4.15 shows the variations in unsatisfied demand over time. The 1st 

day’s operations were finished in approximately 18 hours. As a result of the 

optimal distribution of empty trucks for the second day, the relief operations in 

the second day were over in only 15 hours and 10 minutes. There were no 

additional supplies available before the second day, but modeling the operations 

for 2-day provided the opportunity to be prepared and do a better job in the 

second day. 

In case-9, the facility location constraints with maximum of (2,2,5) and the 

loading, unloading, and storage capacity constraints were considered for 2 days of 

operations. Similar to the previous case, the supplies become available day by 

day. Table 4.4 shows that adding the capacity constraints has increased the 

objective function value for about 16% compared to case-8. The running time is 

also increased to more than 4 hours of CPU time. 
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Figure 4.15 Percent of unsatisfied demand over time for case 8 
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Figure 4.16 Percent of unsatisfied demand over time for CASE 9 

 
Figure 4.17 Percent of unsatisfied demand over time for CASE 10 
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equity constraints were to be added to the problem) with 2-days of operations, 

cannot be solved by the commercial solver in a meaningful time period. 

4.4. Summary of the preliminary numerical experiments 

The numerical analysis in this chapter was designed to test the proposed 

formulation and evaluate the properties of the optimization problem. Ten different 

case studies were generated based on the same structure of an imaginary hurricane 

scenario to analyze the effects of the different parameters. In general, the 

proposed modeling framework produced reasonable outcome. It was able to 

provide the level of details required in the disaster response logistics at the 

operational level. For simple cases and small-size problems, the commercial 

solver was able to find the optimal solutions, however, when the difficult 

constraints such as equity constraints were added or when the time horizon was 

extended from 1-day to 2-days, CPLEX commercial solver was unable to deliver 

good results. It is concluded that better solution algorithms or heuristics are 

needed to address the larger problem instances or real world size problems. 
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Chapter 5: Solution Approaches 

In this chapter, first some solution approaches for general integer 

programming from previous studies in the literature are reviewed in section 5.1. 

Then in section 5.2, the solution approaches that were specifically used in 

emergency logistics literature are reviewed in more details.  After literature 

review, in section 5.3 a number of solution techniques are proposed for the 

mathematical model presented in chapter 3. Two sets of algorithms are proposed 

to solve the different parts of the problem. In section 5.4 solution algorithms are 

proposed to solve the hierarchical location finding problem. And in section 5.5, 

some heuristic algorithms are proposed to solve the general integer vehicle 

routing problem. In section 5.6, more numerical analysis is performed to further 

evaluate the robustness of the proposed algorithms. Finally, section 5.7 

summarizes the developments in this chapter. 

5.1 General Solution Approaches for Integer Programs 

In General, integer programming problems are very difficult to solve. 

Over the years, different researchers have proposed several very different solution 

algorithms. Today, the question is how to select the best approach among the list 

of available general approaches. Algorithm selection has become an art as some 

algorithms work better on some specific problem instances. A brief discussion of 

algorithms is presented in this subsection, attempting to expose readers to their 

characteristics. More detailed review of integer and combinatorial optimization 
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algorithms can be found in the integer programming literature (e.g. Nemhauser 

and Wolsey (1999)) 

Historically, linear programming (LP) has been the base for integer 

programming (IP) solution approaches. LP was invented in the late 1940's. Those 

examining LP relatively quickly came to the realization that it would be desirable 

to solve problems which had some integer variables (Dantzig, 1960). This led to 

development of algorithms for the solution of pure IP problems. The first 

algorithms were cutting plane algorithms as developed by Dantzig, Fulkerson and 

Johnson (1954) and Gomory (1963). Land and Doig (1960) subsequently 

introduced the branch and bound algorithm. More recently, implicit enumeration 

(Balas 1965), decomposition (Benders 1962), Lagrangian relaxation (Geoffrion, 

1974) and heuristic approaches have been used to solve various integer programs.  

McCarl and Spreen (1997) suggested the following classification of 

general algorithms for integer programming problems: 

5.1.1 Cutting Planes 

The first formal IP algorithms involved the concept of cutting planes. 

Cutting planes iteratively remove parts of the feasible region without removing 

integer solution points. The basic idea behind a cutting plane is that the optimal 

integer point is close to the optimal LP solution, but does not fall at the constraint 

intersection so additional constraints need to be imposed. Consequently, 

constraints are added to force the non-integer LP solution to be infeasible without 

eliminating any integer solutions. This is done by adding a constraint forcing the 

non-basic variables to be greater than a small nonzero value. The simplest form of 
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a cutting plane would be to require the sum of the non-basic variables to be 

greater than or equal to the fractional part of one of the variables. The cutting 

plane algorithms continually add such constraints until an integer solution is 

obtained. Methods for developing cuts appear in Gomory (1963) in more details. 

Several points need to be made about cutting plane approaches. First, 

many cuts may be required to obtain an integer solution. For example, Beale 

(1977) reports that a large number of cuts is often required (in fact often more 

cuts are required than can be computationally afforded). Second, the first integer 

solution found is the optimal solution. This solution is discovered after only 

enough cuts have been added to yield an integer solution. Consequently, if the 

solution algorithm runs out of time or space the modeler is left without an 

acceptable solution (this is often the case). Third, given comparative performance 

with other algorithms, cutting plane approaches have faded in popularity 

(Beale,1977). 

5.1.2 Branch and Bound 

The second solution approach developed was the branch and bound 

algorithm. Branch and bound, originally introduced by Land and Doig (1960), 

pursues a divide-and-conquer strategy. The algorithm starts with a LP solution 

and also imposes constraints to force the LP solution to become an integer 

solution similar to cutting planes. However, branch and bound constraints are 

upper and lower bounds on variables.  

The branch and bound solution procedure generates two problems 

(branches) after each LP solution. Each problem excludes the unwanted non-
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integer solution, forming an increasingly more tightly constrained LP problem. 

There are several decisions required. One must both decide which variable to 

branch on and which problem to solve (branch to follow). When one solves a 

particular problem, one may find an integer solution. However, one cannot be 

sure it is optimal until all problems have been examined. Problems can be 

examined implicitly or explicitly. Maximization problems will exhibit declining 

objective function values whenever additional constraints are added. 

Consequently, given a feasible integer solution has been found, then any solution, 

integer or not, with a smaller objective function value cannot be optimal, nor can 

further branching on any problem below it yield a better solution than the 

incumbent (since the objective function will only decline). Thus, the best integer 

solution found at any stage of the algorithm provides a bound limiting the 

problems (branches) to be searched. The bound is continually updated as better 

integer solutions are found. 

The problems generated at each stage differ from their parent problem 

only by the bounds on the integer variables. Thus, a LP algorithm that can handle 

bound changes can easily carry out the branch and bound calculations. 

The branch and bound approach is the most commonly used general 

purpose IP solution algorithm and it is implemented in many commercial solvers. 

However, its use can be expensive. The algorithm does yield intermediate 

solutions which are usable although not optimal. Often the branch and bound 

algorithm will come up with near optimal solutions quickly but will then spend a 
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lot of time verifying optimality. Shadow prices from the algorithm can be 

misleading since they include shadow prices for the bounding constraints. 

A specialized form of the branch and bound algorithm for zero-one 

programming was developed by Balas (1965). This algorithm is called implicit 

enumeration.  

5.1.3 Lagrangian Relaxation 

Lagrangian relaxation (Geoffrion (1974), Fisher (1981)) is another area of 

IP algorithmic development. Lagrangian relaxation refers to a procedure in which 

some of the constraints are relaxed into the objective function using an approach 

motivated by Lagrangian multipliers. The basic Lagrangian relaxation problem 

for the mixed integer program involves discovering a set of Lagrange multipliers 

for some constraints and relaxing that set of constraints into the objective 

function. The main idea is to remove difficult constraints from the problem so the 

integer programs are much easier to solve. IP problems with structures like that of 

the transportation problem can be directly solved with LP. The trick then is to 

choose the right constraints to relax and to develop values for the Lagrangian 

multipliers leading to the appropriate solution. 

Lagrangian relaxation has been mainly used in two settings: 1) to improve 

the performance of bounds on solutions; and 2) to develop solutions which can be 

adjusted directly or through heuristics so they are feasible in the overall problem 

(Fisher (1981)). An important Lagrangian relaxation result is that the relaxed 

problem provides an upper bound on the solution to the unrelaxed problem at any 

stage. Lagrangian relaxation has been heavily used in branch and bound 
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algorithms to derive upper bounds for a problem to see whether further branching 

down on that branch is worthwhile.  

5.1.4 Benders Decomposition 

Benders decomposition is another algorithm to solve integer programs. 

This algorithm solves mixed integer programs via structural exploitation. Benders 

(1962) developed the procedure which decomposes a mixed integer problem into 

two problems; an integer master problem and a linear subproblem. Then these 

problems are solved iteratively. Consider the following decomposable mixed IP 

problem: Maximize   FX   +   CZ 

 s.t.  GX   ≤  b1 

   HX + AZ ≤  b2 

     DZ ≤  b3 

   X is integer,  Z  ≥  0 

Assuming X* is a feasible set of points for integer variables X, then the 

subproblem for any given X* would be: 

Maximize  CZ 

 s.t.  AZ  ≤ b2  -  HX* (α) 

   DZ  ≤ b3  (β) 

   Z   ≥   0 

Solution to this subproblem yields the dual variables in parentheses. In 

turn a "master" problem is formed as follows: 

Maximize   FX   +   Q 
X, α, β, Q 

 s.t.  Q  ≤  αi (b2 – HX) + βi b3 for i = 1,2,3…, p 

   GX  ≤  b1 

   X is integer ,  Q is unrestricted 



 100 

 

This problem contains the dual information from above and generates a 

new X value. The constraint involving Q gives a prediction of the subproblem 

objective function arising from the dual variables from the ith previous guess at X. 

In turn, this problem produces a new and better guess at X. Each iteration adds a 

constraint to the master problem. The objective function consists of FX + Q, 

where Q is an approximation of CZ. The master problem objective function 

therefore constitutes a monotonically non-increasing upper bound as the iterations 

proceed. The subproblem objective function (CZ) at any iteration plus FX can be 

regarded as a lower bound. The lower bound does not increase monotonically. 

However, by choosing the larger of the current candidate lower bound and the 

incumbent lower bound, a monotonic non-decreasing sequence of bounds is 

formed. The upper and lower bounds then give a monotonically decreasing gap 

between the bounds. Benders decomposition convergence occurs when the 

difference between the bounds is driven to zero. When the problem is stopped 

with a tolerance, the objective function will be within the tolerance, but there is no 

relationship giving distance between the variable solutions found and the true 

optimal solutions for the variables.  

Convergence will occur in a practical setting only if for every X a relevant 

set of dual variables is returned. This will only be the case if the subproblem is 

bounded and has a feasible solution for each X that the master problem yields. 

This may not be generally true. Also the boundedness and feasibility of the 

subproblem says nothing about the rate of convergence. The real art of utilizing 

Benders decomposition involves the recognition of appropriate problems and/or 
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problem structures which will converge rapidly. The procedure can work very 

poorly for certain structures (Sherali 1981). 

In general: 

1. The decomposition method does not work well when the X variables 

chosen by the master problem do not yield a feasible subproblem. Thus, 

the more accurately the constraints in the master problem portray the 

conditions of the subproblem, the faster will be convergence.  

2. The tighter (more constrained) the feasible region of the master problem 

the better.  

3. When possible, constraints should be entered in the master problem 

precluding feasible yet unrealistic (suboptimal) solutions to the overall 

problem.  

The most common reason to use Benders method is to decompose large 

mixed integer problem into a small, difficult master problem and a larger simple 

linear program. This allows the solution of the problem by two pieces of software 

which individually would not be adequate for the overall problem. It should be 

noted that in Benders decomposition method, the master problem is still an 

integer program that might be very difficult to solve. 

5.1.5 Heuristics 

Many IP problems are combinatorial and difficult to solve by nature. In 

fact, the study of NP complete problems (Papadimitrou and Steiglitz (1982)) has 

shown extreme computational complexity for problems such as the traveling 

salesman problem. Such computational difficulties have led to a large number of 
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heuristics. These heuristics are used when: a) the quality of the data does not 

merit the generation of exact optimal solutions; b) a simplified model has been 

used, and/or c) when a reliable exact method is not available, computationally 

attractive, and/or affordable. 

Arguments for heuristics are also presented regarding improving the 

performance of an optimizer where a heuristic may be used to save time in a 

branch and bound code, or if the problem is repeatedly solved. Many IP heuristics 

have been developed, some of which are specific to particular types of problems. 

For example, there have been a number of traveling salesman problem heuristics 

as reviewed in Golden et al (1980). Zanakis and Evans (1981) provide a general 

review of heuristics. 

Generally, heuristics perform well on special types of problems, quite 

often coming up with errors of smaller than two percent (McCarl and Spreen 

(1997)). Zanakis and Evans (1981) provide discussions of selections of heuristics 

vis-a-vis one another and optimizing methods.  

5.1.6 Structural Exploitation 

Past experiences on IP have indicated that general-purpose IP algorithms 

do not work satisfactorily for all IP problems. Recently, the most promising 

developments have involved structural exploitation, where the particular structure 

of a problem has been used in the development of the solution algorithm. Benders 

decomposition and Lagrangian relaxation are two examples of structural 

exploitation. Some problem reformulation approaches and also specialized branch 

and bound algorithms adapted to particular problems are examples of structural 
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exploitation. The main mechanisms for structural exploitation are to develop an 

algorithm especially tuned to a particular problem or, more generally, to 

transform a problem into a simpler problem to solve. The application of such 

algorithms has sometimes led to spectacular results, with problems with 

thousands of variables being solved in seconds of computer time (McCarl and 

Spreen (1997)).  

Unfortunately, none of the available algorithms have been shown to 

perform satisfactorily for all IP problems. However, certain types of algorithms 

are good at solving certain types of problems and a number of efforts have 

concentrated on algorithmic development for specially structured IP problems. 

The following section reviews some of approaches used in emergency logistics 

literature. 

5.2 Solution approaches used in emergency logistics literature 

Chapter 2 provided an extensive review of previous research in the 

emergency logistics literature. From the number of researches discussed in 

chapter 2 only four publications are found to have a mathematical model that are 

partially similar to the mathematical model proposed in this research. In the 

following paragraphs the solution approaches used in these four lead publications 

are reviewed. 

Haghani and Oh (1996) proposed a formulation and solution of a multi-

commodity, multi-modal network flow model for disaster relief operations. Their 

model can determine detailed routing and scheduling plans for multiple 

transportation modes carrying various relief commodities from multiple supply 
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points to demand points in the disaster area. They formulated the multi-depot 

mixed pickup and delivery vehicle routing problem with time windows as a 

special network flow problem over a time-space network. The objective was 

minimizing the sum of the vehicular flow costs, commodity flow costs, 

supply/demand storage costs and inter-modal transfer costs over all time periods. 

Structurally, their model was composed of two network flow problems; one with 

only real-valued variables and the other with integer variables were connected 

with a set of capacity constraints called linkage constraints.  

They developed two heuristic solution algorithms; the first one was a 

Lagrangian relaxation approach, and the second was an iterative fix-and-run 

process. The first solution algorithm decomposes the model into two subproblems 

based on the relaxation of linkage constraints. Lagrangian relaxation is used with 

penalty for shortage of capacity for linkage constraints. The algorithm was 

iteratively applied until two subproblems converge. The second solution 

algorithm was an ad hoc method that fixed integer variables gradually. First all 

integer variables were relaxed and LP relaxation is solved. Then based on the LP 

solution, the values of some of the integer variables were fixed to an integer value 

and the LP was solved again. This process was repeated iteratively until all 

integer variables are fixed to integer values. 

Haghani and Oh (1996) solved several instances of numerical problems 

with both algorithms. For smaller size problems, they showed both algorithms 

were successful in solving integer problem instances much faster than commercial 

solvers. They also showed for larger problem instances that the commercial solver 



 105 

 

was unable to find the optimal solution; both algorithms were able to find close to 

optimal solution in relatively short CPU times. Comparing the two algorithms, 

they concluded that the proposed fix-and-run algorithm outperforms the 

Lagrangian relaxation algorithm both in CPU time and final solution quality. 

Barbarosoglu and Arda (2004) developed a two-stage stochastic 

programming model for transportation planning in disaster response. Their study 

expanded on the deterministic multi-commodity, multi-modal network flow 

problem of Haghani and Oh (1996) by including uncertainties in supply, route 

capacities, and demand requirements. The authors designed 8 earthquake 

scenarios to test their approach on real-world problem instances. Their model is a 

planning model that does not deal with details required at strategic or operational 

levels. The model does not address facility location problem or vehicle routing 

problem.  

To solve numerical examples, Barbarosoglu and Arda (2004) in the first 

stage generate random scenarios for supply, demand, and available capacity. In 

the second stage they used the commercial solver GAMS to solve the resulted 

network flow problem to minimize the cost. They did not propose any special 

solution algorithms but used GAMS software to solve the numerical studies. 

Ozdamar et al. (2004) addressed an emergency logistics problem for 

distributing multiple commodities from a number of supply centers to distribution 

centers near the affected area. They formulated a multi-period multi-commodity 

network flow model to determine pickup and delivery schedules for vehicles as 

well as the quantities of loads delivered on these routes, with the objective of 
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minimizing the amount of unsatisfied demand over time. The structure of the 

proposed formulation enabled them to regenerate plans based on changing 

demand, supply quantities, and fleet size. They developed an iterative Lagrangian 

relaxation algorithm and a greedy heuristic to solve the problem. 

The Lagrangian relaxation approach used in Ozdamar et al. (2004) was 

similar to the one previously discussed in Haghani and Oh (1996) with the only 

change that Ozdamar et al. (2004)  used commercial solver GAMS to solve the 

linear relaxations. The proposed greedy algorithm solves the network flow 

problem without considering vehicles to find the best routes for the flow of 

commodities. Then the algorithm assigns the vehicles to the first available 

shipment so to minimize the shipment delay. If the vehicles are not available 

immediately, the shipment is postponed till the earliest available vehicle arrives.  

The greedy approach is myopic in the sense that the vehicles are 

independently assigned to the first available job instead of considering the other 

combinations that might be more rewarding. Comparing the Lagrangian 

relaxation algorithm and the greedy algorithm in Ozdamar et al. (2004), it was 

concluded that the greedy algorithm performs faster than Lagrangian relaxation 

algorithm. However, the greedy algorithm usually resulted larger gaps with global 

optimal compared to the Lagrangian relaxation. Greedy algorithm did not perform 

well especially when the capacity was tight that is the usual case in disaster 

response operations. 

Finally, Yi and Ozdamar (2007) proposed a model that integrated the 

supply delivery with evacuation of wounded people in disaster response activities. 
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They considered establishment of temporary emergency facilities in disaster area 

to serve the medical needs of victims immediately after disaster. They used the 

capacity of vehicles to move wounded people as well as relief commodities. Their 

model considered vehicle routing problem in conjunction with facility location 

problem. The proposed model is a mixed integer multi-commodity network flow 

model that treats vehicles as integer commodity flows rather than binary 

variables.  

Their numerical experiment considered a potential earthquake scenario for 

the city of Istanbul in Turkey. The numerical problem had 20 nodes, 3 

transportation modes, 2 relief commodities and modeled for 8 time periods. They 

used commercial solver CPLEX 7.5 to solve the IP model. They did not propose 

any new solution algorithm to the problem however they offered an algorithm to 

find the itinerary of vehicles from the optimal solution output of CPLEX integer 

programming solver. They reported that post processing algorithm was pseudo-

polynomial in terms of the number of vehicles utilized. 

Yi and Ozdamar (2007) took the network flow vehicle routing (where 

vehicles are treated as general integer-valued commodities) and compared it with 

classic 0-1 vehicle routing. They showed that the general integer formulation is 

more compact and it is much more efficient for solving. They experienced CPU 

times “in seconds” for general integer VRP versus “in minutes” for classic binary 

VRP. However in general integer VRP, post processing was needed to extract 

detailed vehicle routing and pickup or delivery schedules. 
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To summarize, it is shown that in previous publications only a few 

mathematical models can be found which have relatively similar structures to the 

model proposed in this research. In those publications, three solution approaches 

are proposed and tested; Lagrangian elaxation, fix-and-run euristic, and greedy 

heuristic algorithm. Lagrangian relaxation is successful in proving a bound but it 

was shown to be the most time consuming algorithm. Greedy heuristic algorithm 

was shown to be faster compared to Lagrangian relaxation algorithm. However, it 

lacked in the quality of final optimal solution and resulted in large optimality gaps 

especially when transportation capacity was limited. Fix-and-run heuristic 

outperformed Lagrangian relaxation in both categories of speed and solution 

quality. Fix-and-run heuristic compared to Lagrangian relaxation found the final 

solution in less CPU time and resulted in smaller optimality gap. 

5.3 Solution Techniques for Proposed Mathematical Model 

The mathematical model proposed in chapter 3 is a complex integrated model. 

Such an integrated model provides the opportunity for a centralized operation 

plan that can eliminate delays and assign the limited resources to the best possible 

use. However, the model is a large-scale mixed general integer programming 

model and solving such a comprehensive mathematical model is a big challenge. 

As it is shown in preliminary numerical experiments in chapter 4, the commercial 

solver was unable to find the optimal solution in a reasonable time. 

Based on the analysis of the solution techniques for similar models in the 

literature, it is concluded that exact solution algorithms will not be able to 

efficiently solve the proposed model. Consequently, the best approach might be 
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designing fast heuristic algorithms that can find near optimal solutions in 

relatively short computation times. On the other hand, since this model is more 

complicated than all the previous works in the literature, it would be favorable to 

structurally decompose this problem to some smaller or easier problems.  

This model integrates commodity flow problem which is a linear multi-

commodity network flow problem with multi-echelon facility location problem 

which is a binary mixed integer program, and multimodal vehicle routing problem 

which is a large-scale general integer-valued network flow problem. The “Idea” is 

to decompose the problem into smaller or easier problems while taking advantage 

of the special structures that already exist.  

The multi-commodity network flow problem is a linear program. LP 

models are considered easy-to-solve since efficient solution algorithms and 

commercial solvers exist that can quickly solve large-scale linear programs.  The 

difficult parts are the two integer programming subproblems. In the following 

sections, a number of heuristic algorithms are proposed to solve the integer 

programming part of mathematical model. First in section 5.4, four heuristics are 

proposed to solve the hierarchical location finding problem. Then in section 5.5, 

four new heuristic algorithms are proposed to solve the general integer vehicle 

routing problem. 

5.4 Algorithms for solving the location problem 

As discussed earlier, the mathematical formulation presented in chapter 3 

is composed of three subproblems. The linear commodity flow subproblem is 

considered easy and can be solved in conjunction to the facility location problem. 
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On the other hand, the general integer vehicle routing subproblem is a large-scale 

mixed integer program itself which is considered very difficult to solve.  

This problem is not mathematically decomposable and it is important to 

keep the interrelations between the three subproblems. To do so, it is suggested to 

first relax the integrality condition of vehicle routing subproblem and try to solve 

the location problem. When the optimal locations are known, it would be much 

easier to solve the vehicle routing problem. Considering relaxed VRP problem 

inside the location finding problem is a big advantage because it is easier to solve 

meanwhile it still reflects the effects of the VRP and available transportation 

capacity on the location finding problem. The mathematical formulation of this 

location problem can be obtained by only relaxing the m
ijtY  variables (general 

integer variables related to vehicle routing problem) in the original model 

presented in chapter 3. 

In the following subsections, four solution approaches are considered to 

solve the location finding problem in the form explained in the last paragraph.  

5.4.1 Explicit Enumeration 

The candidate sites for temporary facility locations are chosen prior to 

emergency response. Consequently, the number of potential sites is known and 

the number of possible combinations for facility locations is a finite number. The 

simplest conceivable optimization approach is explicit enumeration. It is possible 

to generate all possible solutions, evaluate each of them, and keep the best.  

To test the applicability of explicit enumeration, let’s use the numerical 

example introduced in Chapter 4: 
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Combinations for selecting 2 MOB out of 4 candidates:  6
!2!2

!4
=  

Combinations for selecting 2 FOSA out of 4 candidates:  6
!2!2

!4
=  

Combinations for selecting 4 SSA out of 10 candidates:  210
!6!4

!10
=  

Total number of combinations is equal to 756021066 =×× . For any 

given locations, the remaining problem is a linear program that has a network 

structure. Linear network problems are considered easy to solve since good 

algorithms and efficient commercial solvers are developed to solve that problem. 

For instance, for linear relaxation of the numerical experiment introduced in 

chapter 4 with given locations, CPLEX solver was able to solve the problem in 

around 7 seconds on average. If it is required to enumerate all combinations, the 

total CPU time is equal to hours7.14sec52920sec77560 ==× . 

It can be concluded that since it is easy to solve the problem after locations 

are given, it is still possible to explicitly enumerate all combinations and find the 

final optimal solution. It might not be wise to solve for every single combination, 

however, it indicates the level of difficulty of the IP problem and provides a 

benchmark for development and comparison of other solution algorithms. Some 

other heuristic algorithms are introduced in the following subsections.  

5.4.2 Branch and bound - Hierarchical decomposition 

Branch and bound algorithm is widely used to solve integer programs. It is 

especially successful when the integer variables are 0-1 binary variables as it is 

the case in location finding problems. Good algorithms and efficient commercial 

solvers are developed that use the branch and bound technique. ILOG CPLEX 
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solver is a commercial solver that can apply branch and bound to solve binary 

mixed integer programs.  

The proposed mathematical model contains three levels of temporary 

facilities. Mobilization centers (MOB) are at the top. Federal operational staging 

areas (FOSA) are the intermediate level facilities that receive commodities from 

MOB. Then there is state staging areas (SSA) that receive commodities from 

FOSAs. It is possible to use branch and bound to solve all three levels 

simultaneously. However, it is possible to hierarchically decompose the facility 

location problems and solve them consecutively.   

Three decomposition approaches are proposed and tested: 

1. Top-to-Bottom: Decompose the problem into federal level facilities and 

state level facilities. Assume all state level facilities are open (i.e. 

SSAiLoc i ∈∀= 1 ). Solve the integer program to find the optimal 

locations for federal level facilities. Fix the solution for top level to its 

optimal values and solve the integer program for the state level facilities. 

2. Bottom-to-Top: Decompose the problem into federal level facilities and 

state level facilities. Assume all federal level facilities are open (i.e. 

MOBFOSAiLoc i ∪∈∀= 1 ). Solve the integer program to find the 

optimal locations for state level facilities. Fix the solution for bottom level 

and solve the integer program to find the optimal state level facilities. 

3. Tier-by-Tier: First solve the integer program to find the optimal locations 

for MOB level facilities assuming all other facilities are open. Then fix the 
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optimal MOB, assume all SSA are open and solve IP for FOSA facilities. 

Finally, fix optimal MOB and FOSA then solve for SSA. 

Table 5.1 shows the results of applying the abovementioned approaches to 

the numerical problem in chapter 4. Comparing the total CPU times, it can be 

seen that Tier-by-Tier decomposition resulted in the least computation time. It 

was able to reduce the CPU time from 379 seconds when all tiers are considered 

together, to about 203 seconds (a reduction of about 46%). The Top-to-Bottom 

approach also gives good results with a total of 215 seconds computation time 

(43% reduction). On the other hand, it seems that for the current example, 

Bottom-to-Top approach did not provide favorable results. Mainly, when all 

federal level facilities are forced to be open, it generates an unnecessarily large 

number of combinations. Exploring all those combinations result in higher than 

usual computation times in Bottom-to-Top approach. 

Table 5.1 Branch and Bound and Hierarchical Decomposition  

Case Solution 
Time

Final Obj 
(E+7) Iterations Total Time 

(S)
Solve for All Location Tiers 378.69 3.83595 204402 378.69

All State Level = 1, Solve for FED level 191.91 3.83595 181589

Given FED level, SOLVE for State 22.92 3.83595 43781

ALL FED level = 1, Solve for State 819.23 3.77795 559223

Given State, Solve for FED 138.97 3.83595 106213

Solve for MOB, Rest = 1 151.03 3.82113 139943

Given MOB, Solve for FOSA, SSA =1 28.66 3.83595 59960

Given MOB & FOSA, Solve for SSA 22.94 3.83595 43781

214.83

958.2

202.63

 
Solution times for solver CPLEX 11.0 on Dell desktop with 3GHz CPU and 4GB RAM  

It is important to mention that all three proposed approaches provided the 

same optimal locations. Although it is not a proof, it is a very favorable property 
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to have a number of heuristic algorithms that find the exact solution. The design 

of proposed hierarchical decompositions allows the heuristics to find the exact 

optimal solution by not cutting the feasible region. For example in Tier-by-Tier 

approach, when solving for top tier (MOB level), all other lower level facilities 

are forced to be open regardless of the limitation on the maximum number of 

open facilities in lower levels. This provides the chance to find the optimal 

locations for the tier in hand because all lower levels facilities are at their best 

theoretical combination.  

5.4.3 Highest Capacity Ratio 

Solving linear relaxation of integer programming problems and analyzing 

the results can reveal very valuable insights. The idea in this heuristic is to use the 

linear relaxation to find the facility or facilities that are most important for the 

performance of the system. Returning to capacity constraints in the mathematical 

formulation in chapter 3, the following equation enforces the sum of all flows 

leaving facility i, to be less than the loading capacity of facility i if it is selected to 

be open; or to be zero otherwise: 

tmiLocLcapX i
m
it

c j

cm
ijt ,,∀×≤∑∑    Repeated (3.12) 

If the binary integer variable Loci is relaxed to take any real number 

between 0 and 1, it can show the capacity ratio that is used in facility i. The 

facilities with higher capacity ratios are more favorable because they handle the 

most flow and their existence is more important to the entire response operations.  
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The steps of the Highest Capacity Ratio (HCR) Algorithm are: 

Step 1- Relax the integrality condition for all temporary facility variables 

Step 2- Add 10 ≤≤ iLoc for all relaxed binary variables 

Step 3- Solve the linear relaxation problem and obtain optimal values for all 

Loci variables  

Step 4- For each facility type; sort the Loci variables in descending order 

Step 5- For each facility type; select the facilities with highest capacity ratio 

from top of the list until the maximum number allowed is reached 

By following these five steps, one can find the selected facilities in a 

single snapshot. However, it can be argued that selecting a facility may affect the 

selection of others. So it might be beneficial to select the one facility with the 

highest ratio, solve the linear relaxation again, and repeat until maximum number 

of each facility is selected. 

The steps of Iterative Highest Capacity Ratio (IHCR) algorithm are: 

Step 1- Relax the integrality condition for all temporary facility variables 

Step 2- Add 10 ≤≤ iLoc for all relaxed binary variables 

Step 3- Solve the linear relaxation problem and obtain optimal values for all 

Loci variables  

Step 4- Find the facility i with the highest Loci value 

Step 5- If the maximum number of facilities are not reached, select facility i, 

add 1=iLoc to the formulation and go to Step 3. Otherwise stop. 
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To test HCR algorithm, the LP relaxation of the numerical experiment 

formerly introduced in chapter 3 is solved again. Table 5.2 shows the values for 

relaxed Loci variables. The constraints for the maximum number of facilities 

required the selection of 2 MOB out of 4, 2 FOSA out of 4 and 4 SSA out of 10 

potential SSA nodes. Solving the linear relaxation with additional 10 ≤≤ iLoc

constraints only took about 32 seconds. The resulted node selection shown in 

Table 5.2 is obtained with using the single snapshot HCR algorithm. It is worth 

mentioning that for this example, the HCR algorithm was able to find the exact 

optimal solution and did so incredibly faster than branch and bound method (32 

seconds versus 379 seconds). 

Table 5.2 Values of Loci variables for HCR heuristic algorithm 

Facility Type MOB FOSA SSA 

(node number) 
Loci Value 

(4)     0.6807 (8)       1.0 (12)     1.0 (17)     0.6174 

(5)     1.0 (9)       0 (13)     0.5357 (18)     0.3131 

(6)     0 (10)     0.8532 (14)     0.4164 (19)     0.8359 

(7)     0.3193 (11)     0.1468 (15)     0 (20)     0.2054 

  (16)     0 (21)     0.0762 

Selected Nodes 4 , 5 8 , 10 12 , 13 , 17 , 19 

5.4.4 Static Network-Location 

Considering a time varying structure and a time-space network is essential 

to capture the details of emergency response logistics at the operational level. 

However, it expands the size of the formulation drastically and makes the 

problem extremely difficult to solve. The idea for this heuristic is to build a static 

version of the formulation that can be solved much easier and faster. It should still 
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consider the special structure of the network and account for supplies, demands, 

and facility capacities; but manage to aggregate over the time dimension in order 

to generate a smaller formulation. To do so, the following mathematical 

formulation is proposed: 

∑∑∑
m c ji

cm
ij

m
ij XtMin

,
.       (5.1) 

cUiSupXX c
i

m j

cm
ji

m j

cm
ij ,∈∀≤− ∑∑∑∑     (5.2) 

cWiXX
m j

cm
ji

m j

cm
ij ,0 ∈∀=−∑∑∑∑     (5.3) 

cViDemXX c
i

m j

cm
ji

m j

cm
ij ,∈∀=−∑∑∑∑    (5.4) 

mUiLcapX m
i

c j

cm
ij ,∈∀≤∑∑      (5.5) 

mVUiUcapX m
i

c j

cm
ji ,+∈∀≤∑∑     (5.6) 

mWiLocLcapX i
m
i

c j

cm
ij ,. ∈∀≤∑∑     (5.7) 

mWiLocUcapX i
m
i

c j

cm
ji ,. ∈∀≤∑∑     (5.8) 

maxLocLoc
i

i ≤∑        (5.9) 

( ) WiLoci ∈∀∈ 1,0   and  mcjiX cm
ij ,,,0 ∀≥  

The notations are similar to the original problem that is previously defined in 

section 3.5 with the exception that time index t is dropped from all variables and 

parameters. As a result, all variables and parameters are static and defined as the 

aggregate value of the original variables over all time periods. For example, c
iSup  
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and c
iDem are the aggregate supply and aggregate demand of commodity c in 

node i, over the entire planning horizon. Decision variable cm
ijX is the aggregate 

amount of commodity c that is shipped from node i to node j with transportation 

mode m, over the entire planning horizon. 

In this new formulation the details of unsatisfied demand over time is not 

available. Consequently, the objective function (5.1) is chosen to minimize the 

total travel time by all commodities. Equation (5.2) and (5.4) enforce the supply 

and demand constraints for each node and each commodity. Equation (5.3) 

imposes the conservation of flow at intermediate nodes. Loading and unloading 

capacity constraints are defined in equations (5.5) and (5.6) for the permanent 

facilities. Similar constraints for temporary facilities are required by equations 

(5.7) and (5.8). Finally, equation (5.9) enforces the maximum number of open 

facilities for each facility type. 

In the proposed static formulation, vehicle routing constraints are dropped 

from the formulation. It is equivalent to assume that ample transportation capacity 

is available or the initial distribution of vehicles is done in such a way that does 

not affect the choice of temporary facilities. Also, time-space structure is removed 

from the original model. It can be explained if the variations of supplies, 

demands, and capacities over the planning horizon are not very drastic. No link 

capacity is imposed in this formulation; however capacity limitations are reflected 

in loading and unloading capacities for each facility. 

It should be noticed that the static formulation is still an integer 

programming model. However, it is of much lower size and complexity compared 
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to the original formulation while still reflecting the structure and important 

properties of the original model.  

Similar to previous heuristics, static network location problem (SNLP) 

heuristic is also tested with the numerical example of chapter 4. CPLEX solver 

version 11.0 is used to solve the problem on a Dell desktop computer with 3 GHz 

CPU and 4GB of RAM. After presolve modifications, reduced MIP had 130 rows, 

491 columns, and 1713 nonzeros. It took less than 1 second to solve the modified 

problem which is extremely faster than the previous heuristics. However, optimal 

locations obtained from this formulation do not exactly match with the optimal 

locations of the original IP problem. Using the locations suggested by SNLP 

results in 2.5% higher objective function value compared to the case that exact 

optimal locations are used. 

To summarize, four heuristic approaches are proposed to solve the 

location finding problem.  Computation times vary greatly across the algorithms 

ranging from 14 hours to less than 1 second. Firstly, explicit enumeration showed 

that even though LP solution when locations are given takes only 7 seconds, the 

large number of possible combinations makes it very difficult to explore all the 

combinations. Secondly, hierarchical decomposition approach suggested that it is 

beneficial to choose it over the general branch and bound (46% faster). Among 

the three suggested hierarchical decompositions, Tier-by-Tier decomposition was 

the fastest. Thirdly, highest capacity ratio heuristic was the fastest among all other 

heuristics that could still find the exact optimal solution. And finally, SNLP 

proposed a new formulation that is very efficient and can be solved to find the 
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locations for the original problem. SNLP was the fastest algorithm but the 

resulted locations were different from those of the exact optimal solution. 

 5.5 Algorithms for solving Vehicle Routing Problem 

In section 5.2 the relevant literature that suggested solution methods was 

summarized. Mainly, three heuristic approaches were proposed to solve the 

general integer vehicle routing problem: Lagrangian relaxation, Fix-and-Run 

algorithm, and a greedy algorithm. Using the numerical results, it was also 

concluded that the Fix-and-Run algorithm proposed by Haghani and Oh (1996) 

had the best performance. It was the fastest algorithm and it had the least 

optimality gap compared to the other algorithms. 

In the following subsections, four heuristic algorithms are proposed to 

solve the general integer vehicle routing problem. The general idea is adopted 

from the successful experience of Fix-and-Run heuristic algorithm suggested by 

Haghani and Oh (1996). The main steps of the proposed algorithms are: 

1. The mixed integer linear problem is solved with the relaxation of 

integer variables.  

2. The values of some integer variables are fixed in an orderly manner and 

the problem is solved again with the relaxation of the remaining integer 

variables iteratively.  

3. When all integer variables are fixed, the process is terminated.  

5.5.1 T-Counter Heuristic 

The steps of T-Counter algorithm are as following: 
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Step 1- Relax all general integer variables and solve the relaxed LP. Set t=0 

Step 2- Check all m
ijtY  variables for current time period t. If all m

ijtY variables 

are integer, then if t = tlast, terminate. Otherwise, set t = t + 1 and restart 

Step 2. 

Step 3- For current time period t, fix all m
ijtY variables to the closest integer 

number 

Step 4- Create a new problem by adding ( m
ijtY = the fixed value from step 3) 

constraints to the problem 

Step 5- Relax the rest of the integer variables and solve the new LP problem 

Step 6- Set t = t + 1 and go to Step 2 

In this algorithm, starting from the first time period, Y variables are fixed 

iteratively and in a chronological order. If the flow of the vehicles through the 

network is fixed to be integral at time period t, because of the network structure of 

the problem, it is more likely that the flows at time periods after t, also turn out to 

be integral. Conservation of flow in a time-space network requires that if the 

flows that enter a node are integer, then sum of the flows that leave the same node 

must also be integral. This does not mean that every single flow leaving that node 

will definitely be integer but it is a necessary condition.  

If the planning horizon of the problem is consisted of T time periods, then 

in worst case the algorithm will go through only T iterations. It is the worst case 

scenario and not the average case because during an iteration if all Y variables are 

already integer, the algorithm directly proceeds to next t without solving a LP 

relaxation. This is a very important property to have because this algorithm will 
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stop at most after T iterations. Fast convergence rate is expected from this 

algorithm.  

5.5.2 Origin-Based T-Counter Heuristic 

In the previous algorithm, in each iteration all the m
ijtY variables for current 

time period t are fixed at the same time. That approach reduces the flexibility of 

the algorithm to reroute the vehicles within one time period which can sometimes 

cause suboptimal assignments. To remedy this, Origin-based T-Counter heuristic 

algorithms is proposed. In this algorithm, outgoing flows from only one origin 

node will be fixed during each iteration. In other words, for current time period t, 

we start from node i = 1 and fix all outgoing m
ijtY variables, solve LP relaxation, 

then fix all flows from node i = 2, and move to the next node until all nodes are 

fixed. Then the same procedure is followed for the next time periods until the end 

of the planning horizon. 

The steps of Origin-based T-Counter algorithm are: 

1- Set t = 0 and i=1 

2- Relax all general integer variables and solve the relaxed LP. 

3- If all relaxed variables are integer, the IP solution is found, Terminate 

4- For current t and i, fix all m
ijtY variables to the closest integer number 

5- Create a new problem by adding ( m
ijtY = the fixed value from step 4) 

constraints 

6- If i < ilast then set i = i + 1 and go to step 2. Otherwise go to the next step 

7- If t = tlast terminate otherwise set i = 1 and set t = t +1, go to step 2 
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This algorithm is more general compared to T-Counter algorithm. If the 

planning horizon of the problem is consisted of T time periods and N is the 

number of nodes in the network, then at most T × N iterations are required to 

solve the problem. Again this is a worst case scenario and in general the algorithm 

is expected to find the integer solution before going through all T × N iterations. 

5.5.3 Y-List Heuristic 

In the previous two algorithms, several Y variables are fixed during each 

iteration. For example in T-Counter algorithm, at first iteration all m
ijtY variables 

with t = 0 are fixed simultaneously that can lead to under utilization of the 

available vehicles. For more clarification assume a hypothetical scenario where 

there are 4 vehicles available at node i and 3 exactly similar arcs are leaving node 

i. Solving the linear relaxation of the problem will assign 1.33 vehicles to each 

path. Applying T-Counter algorithm or even Origin-based T-Counter algorithm to 

this example rounds down 1.33 and as a results it assignments 1 vehicle to each 

path and 1 vehicle will remain unused.  

The idea of Y-List algorithm is to fix this problem by only selecting one Y 

variable in each iteration. This will allow the LP model to adjust itself and take 

advantage of any potential vehicles that might be available and are not being used 

due to rounding down. Returning to our hypothetical scenario, if the 3 arcs are 

fixed one by one then all available vehicles will be used. The vehicle assignment 

will be 1, 1, 2 and all 4 vehicles are utilized. 
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To run this algorithm, it is required to have a priority list of all Y 

variables. When the first LP relaxation is solved, the algorithm needs to select a Y 

variable among all non-integer Y variables to fix. It is faster to have a pre-

populated list of all Y variables and then fix them one by one if they have a non-

integer value. The steps of Y-List algorithm are: 

1- Populate a sorted list of all m
ijtY  variables 

2- Relax all general integer variables and solve the relaxed LP 

3- If all m
ijtY variables are integer, save the solution & terminate the 

algorithm, otherwise 

4- Select the 1st m
ijtY from the list, Fix it to the closest integer number and 

remove it from the Y-list 

5- Create a new problem by adding ( m
ijtY = the fixed value from step 4) 

constraint 

6- Go to step 2  

Theoretically in the worst case scenario, the algorithm can go through Y  

iterations. Y is the total number of all m
ijtY  variables and also the size of the Y-

List set. In large scale numerical problems, Y  can be a very large number. For 

example in the numerical experiment in chapter 4, thousands of m
ijtY  variables 

exist. In the worst case scenario the algorithm need to go over thousands of 

iterations and fix every single Y variable. However, as it will be shown, usually 

the algorithm does not need to fix every single Y variable before finding an IP 
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solution. In fact due to having a network structure, an IP solution is found very 

quickly and the algorithm converges relatively fast in typical numerical examples.  

5.5.4 Y-List Modal Heuristic 

In large-scale logistic operations often multiple transportation modes are 

utilized. From theoretical perspective, each transportation mode can be considered 

as the flow of a special commodity over the network. Different transportation 

modes are not competing for share resources and there is no explicit constraint 

that relates the flow of different modes. Consequently, it can be assumed that each 

transportation mode is acting somehow independently. It should be mentioned 

that relief commodities that are carried by each transportation mode can be 

transferred to another mode inside intermodal terminal but the vehicles of each 

mode are never interchangeable. For example, if 2 trucks and 2 helicopters enter a 

node, always the same 2 trucks and 2 helicopters have to leave that node and it 

can never transform into 3 trucks and 1 helicopter.  

Taking advantage of this independence among multiple transportation 

modes is the idea behind Y-List Modal heuristic. Y-List Modal is very similar to 

previously described Y-List heuristic, however it tries to fix a Y variable from 

each transportation mode during each iteration.  For example, if two 

transportation modes exist, the algorithm will fix two Y variables in each 

iteration. Consequently, if M  is the number of available transportation modes, 

the algorithm will fix M  variables in each iteration and it can stop after Y / M  

iterations in the worst case. 
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The steps of Y-List Modal algorithm are: 

1- Populate a sorted list of all m
ijtY  variables for each mode m 

2- Relax all general integer variables and solve the relaxed LP 

3- If all m
ijtY variables are integer, save the solution & terminate the 

algorithm, otherwise 

4- For each mode m, Select the 1st m
ijtY from the list, Fix it to the closest 

integer number and remove it from its Y-list 

5- Create a new problem by adding ( m
ijtY = the fixed value from step 4) 

constraints 

6- Go to step 2  

5.5.5 Comparing Performance of the Proposed Algorithms 

In previous sections, four heuristic algorithms are proposed to solve the 

general integer vehicle routing problem. In this section, these algorithms are 

analyzed and their performance is compared. All four algorithms are applied to 

the similar numerical example that is previously defined in Chapter 4. The facility 

location problem is solved in advance and the optimal locations of the facilities 

are assumed to be known at this stage. 

The mathematical model is generated and initially solved by CPLEX 

Software. Table 5.3 represents the statistics of the mathematical model and also 

the optimization results obtained by the commercial solver. It is shown that the 

problem is a large-scale mixed integer program with a large number of general 

integer variables. CPLEX version 11.0 is used on a Dell desktop computer with 3 
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GHz Intel CPU and 4 GB of RAM. As it can be seen in the table, the commercial 

solver got to as close as 0.5 percent gap but it was unable to find the exact 

solution for the problem even after a long computation time. 0.5 percent 

optimality gap should be acceptable in many applications; nonetheless it shows 

the difficulty of solving the MIP problem even with a strong commercial solver 

on a fast computer. 

Table 5.3- Model Statistics and Optimization Results from CPLEX Solver 

Problem Stats 

Objective nonzeros = 3881 

No. of Variables : 110572 [Nonnegative : 48300, Binary : 18, General Integer : 62254 ] 

No. of Linear Constraints : 36593 [Equality : 11960 , Non-equality : 24633 ] 

Nonzeros : 372305    [RHS nonzero : 1467] 

CPLEX Optimization Results 

Objective 
Value(E+7) 

Solution 
Time(s) 

GAP 
(%) 

Initial LP 
Bound 

MIP Best 
Bound(E+7) Comments 

3.8709 81000 0.51 3.8059 3.8511 User-Stopped after 22.5 hrs 

3.9121 1041 1.98 3.8059 3.8345 Stopping gap set to 2% 

 

Table 5.4 shows the results of solving the same problem using the four 

heuristic algorithms proposed in this chapter to solve general integer vehicle 

routing problem. Comparing gap percentiles from the best IP, it is concluded that 

the proposed algorithms were generally successful. Three of the four proposed 

heuristic algorithms provided very small optimality gaps of between 1 and 2.5 

percent to the best IP solution provided by the commercial software after 22.5 

hours. Comparing the solution times is even more impressive. It can be seen that 



 128 

 

all algorithms found an IP solution and all of them converged in less than about 4 

minutes. It is very important to quickly find close to optimal solutions especially 

in this problem that deals with dynamic emergency response operations.  

Table 5.4 Numerical results of the proposed VRP Heuristic Algorithms 

Algorithm Objective 
Value (E+7) 

% GAP 
(Initial LP) 

%GAP 
(Best IP) Iterations Solution 

Time (s) 

T-Counter 4.2525 10.85 9.85 98 113.3 

Origin-Based 
T-Counter 3.9668 3.41 2.47 3977 247.1 

Y-List 3.91615 2.09 1.16 851 89.1 

Y-List Modal 3.9300 2.45 1.52 507 73.7 

 

Comparing the four algorithms, the Y-List algorithm is shown to find the 

best solution quality with the minimum gap. Y-List Modal and Origin-Based T-

Counter algorithms also resulted in very good objective functions and small 

optimality gap. T-Counter algorithm has the largest gap of about 10 percent. It 

should be reminded that the idea for T-Counter algorithm was adopted from 

Haghani and Oh (1996) which was the best practice in literature available to this 

date, to the best of our knowledge. 

Comparing the solution speed and rate of convergence, it can be seen that 

all algorithms are quite fast. Y-List Modal was the fastest algorithm with only 

73.7 seconds CPU time. Y-List and T-Counter algorithms are in 2nd and 3rd place 

with relatively close solution times. Y-List Modal produced the longest solution 

time of about 4 minutes, mainly due to the large number of iterations that was 

required. It is very important to notice that the number of iterations is not directly 
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related to the solution time, because different iterations take different CPU times. 

For example, Origin-Based T-Counter goes through about 4000 iterations in about 

4 minutes compared to about 100 iterations of T-Counter that takes about 2 

minutes. Also, Y-List Modal that recorded the least solution time does not have 

the least number of iterations. 

Figure 5.1 shows the convergence rate of the four algorithms. All 

algorithms initially start from LP relaxed solution which is an infeasible solution 

for the IP problem. Over time, algorithms try to find integer solutions and reduce 

this infeasibility.  As more and more integer variables are found, the objective 

function increases. In this way, as soon as an all-integer set of variables are found; 

the algorithms will stop and report the best solution that is feasible for the IP 

problem. Figure 5.1 shows a steep slope only for T-Counter algorithm and all 

other algorithms have a steady and very gradual slope. The main reason is that T-

Counter algorithm fixes a large number of integer variables in every iteration that 

reduces the number of iterations but on the other hand does not permit the LP 

relaxation to re-adjust and utilize the vehicles that are left behind due to rounding 

down. All other three algorithms, fix a very small number of variables in every 

iteration. This allows the LP relaxation to adjust to the fixed values and re-route 

the commodities and vehicles to take advantage of any remaining transportation 

capacity. 
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 Figure 5.1 Convergence rate comparisons of the proposed algorithms 

Table 5.5 summarizes the analysis and comparisons of the four proposed 

algorithms. Each row shows a criterion and comparatively ranks the four 

algorithms for those criteria. For example in best solution criteria, Y-List and Y-

List Mode are ranked one and two. Comparing the convergence rate, it can be 

seen that Y-List Modal was the fastest algorithm followed by Y-List algorithm. 

On the other hand when the least number of iterations are compared, T-Counter is 

the winner. Also for theoretical worst-case criteria, T-Counter and Origin-Based 

T-Counter algorithms are ranked 1st and 2nd. As explained earlier, one iteration of 

each algorithm does not take the same amount of time as one iteration of the other 

algorithms. Origin-Based T-Counter has the fastest time per iteration followed by 

Y-List algorithm. 

  



 131 

 

Table 5.5 – Comparative Rankings of the Proposed Heuristic Algorithms 

Comparative 
Ranking T-Counter Origin-Based 

T-Counter Y-list Y-list Modal 

Best Solution 
Quality 4th 3rd 1st 2nd 

Convergence 
Speed 3rd 4th 2nd 1st 

Least No. of 
Iterations 1st 4th 3rd 2nd 

Best worst-
case Scenario 1st 2nd 4th 3rd 

CPU Time per 
Iteration 4th 1st 2nd 3rd 

 

To summarize, it is shown that all four algorithms are capable of finding 

good quality solutions in relatively short computational times. Having short 

computation time is the most important property of the proposed algorithms that 

makes it possible to apply them in real-world dynamic operations. In Fact, the 

applicability of proposed mathematical model in chapter 3 could be hardly 

justified without fast solution algorithms that can adjust and re-optimize in real-

time.  

Comparing the four algorithms, it is concluded that no single algorithm 

dominates the others in all criteria rankings. When solution quality and 

convergence speed is more important, Y-List and Y-List Modal are showed to 

perform better. On the other hand, when good performance under worst-case 

scenario is important, T-Counter and Origin-Based T-Counter algorithms are 

shown to have better statistics. 

It should be noted that all of the four proposed algorithms are heuristic 

algorithms.  Even though they showed very impressive results for the current 
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numerical experiment, there is no proof that they will always have equally good 

performances for all problem instances. As explained in section 5.1.5, this is in 

the nature of most heuristic algorithms and is not limited to this study. However, 

to test the robustness of the proposed algorithms further, more numerical 

experiments are conducted in the following section. 

5.6 Testing robustness of the proposed VRP heuristics 

In section 5.5, four heuristics solution algorithms were proposed to solve 

the general integer vehicle routing problem. All four algorithms showed 

reasonably good result for a particular numerical experiment. In this section, more 

cases are generated and solved to test the robustness of the proposed algorithms in 

various conditions.  

A total of ten random numerical cases are generated and solved by all four 

proposed heuristics algorithms as well as the CPLEX commercial solver. In all 

these ten cases, the network structure is similar to FEMA’s structure that was 

introduced in previous numerical experiments. Also, for all these cases the 

location problem is solved in advance and the optimal locations of all levels of 

temporary facilities are known and fixed.  

Table 5.6 lists the objective function values for these 10 cases. Linear 

relation of the problem is also solved and the objective function of relaxed LP is 

reported as a lower bound for comparison. Also in Table 5.6, average of the 

objective functions for the 10 cases and its standard error is reported. The last row 

of the table shows the average gap between the final solution of each algorithm 

and the optimal solution for linear relaxation of the problem.  



 133 

 

Table 5.6 Objective function values for 10 random cases 

Objective 
Function 

LP 
relaxation T-Counter Origin-bsd 

T-Counter Y-list Y-list Modal 

CASE 1 3.50445 3.79365 3.5454 3.52815 3.54615 

CASE 2 3.46545 3.69225 3.5121 3.4965 3.48285 

CASE 3 3.5199 3.7290 3.56865 3.5481 3.5418 

CASE 4 3.53715 3.84465 3.5979 3.5712 3.56535 

CASE 5 3.49095 3.7296 3.5433 3.52395 3.51495 

CASE 6 3.48825 3.73365 3.55515 3.51705 3.51255 

CASE 7 3.73995 3.98055 3.77055 3.75705 3.7791 

CASE 8 3.4392 3.7134 3.4773 3.45825 3.4677 

CASE 9 3.50805 3.7758 3.55755 3.5331 3.5388 

CASE 10 3.5262 3.76065 3.5766 3.5568 3.5586 

Average 3.521955 3.77532 3.57045 3.549015 3.550785 

Coef.of.Var 0.0232 0.0223 0.0218 0.0224 0.0242 

Avg GAP(%) 0 7.20 1.38 0.77 0.82 

 

Across the 10 random cases, all four algorithms present consistent 

performances in general. Comparing the average gap percentile, it is shown that 

Y-list modal had the best overall performance closely followed by Y-list modal. 

For both of these cases the average gap is less than 1 percent which is a very 

favorable outcome. Origin-based T-counter algorithm has also acceptable results 

with only 1.38% optimality gap on average. The largest gap is produced by T-

counter algorithms at 7.2 percent on average. 
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Table 5.7 lists the running time of the proposed algorithms for the same 10 

random cases.  On average, Y-list algorithm has the fastest convergence rate at 

about 2 minutes. The running time for other 3 algorithms is also in the acceptable 

range. Highest average running time belongs to Origin-based T-Counter algorithm 

at about 5 minutes.  

Table 5.7 Running time comparisons of the algorithms for 10 random cases 

CPU Time 
(sec) T-Counter Origin-based 

T-Counter Y-list Y-list Modal 

Case 1 191 210 119 159 

Case 2 107 197 137 84 

Case 3 170 420 155 140 

Case 4 284 481 132 112 

Case 5 263 270 110 97 

Case 6 211 357 111 127 

Case 7 192 399 124 307 

Case 8 254 266 109 161 

Case 9 195 262 92 172 

Case 10 243 304 179 162 

Average 211 316.6 126.8 152.1 

Coef.of.Var 0.2468 0.2971 0.1998 0.4080 

 

5.7 Summary 

In this chapter, first some solution approaches for general integer 

programming from previous studies in the literature were reviewed. It was 

concluded that the current model is very complex and a reliable exact solution 

method is not available that would be computationally attractive or affordable. 
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Consequently, it is more realistic to develop fast and efficient heuristic algorithms 

to find near optimal solutions.  

The solution approaches exclusively used in emergency logistics were also 

reviewed. Most studies used commercial solvers to solve their model, only three 

solution approaches were proposed and tested; Lagrangian Relaxation, Fix-and-

Run Heuristic, and Greedy Heuristic algorithm. Lagrangian relaxation was 

successful in proving a bound but it was shown to be the most time consuming 

algorithm. Greedy Heuristic algorithm was shown to be faster compared to 

Lagrangian relaxation algorithm but the quality of final optimal solution was not 

good. Fix-and-Run heuristic outperformed Lagrangian Relaxation in both 

categories of speed and solution quality. Fix-and-Run heuristic compared to 

Lagrangian relaxation found the final solution in less CPU time and resulted in 

smaller optimality gap. 

To solve the mathematical model in this research, it was structurally 

decomposed into three sub-problems: multicommodity network flow, location 

finding with multiple layers, and general integer vehicle routing problem. These 3 

problems were solved one-by-one, however the interrelation between these 3 

problems were preserved at all times.  

Multicommodity network flow problem is a linear program and is 

considered easy since efficient commercial solvers exist that can solve very large 

LP programs quickly. To solve the multi-layer facility location problem, 4 

heuristic methods are proposed. From those, the Branch-and-bound with 
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hierarchical decomposition and the highest capacity ratio were the 2 algorithms 

that showed better results. 

To solve the general integer vehicle routing problem four heuristic 

algorithms were proposed. The algorithms were tested with a large size numerical 

experiment. All four algorithms were successful in finding a good integer 

solution. The convergence rates of the proposed algorithms were also much faster 

than the commercial solver for the same optimality gap.  

The proposed VRP algorithms were compared to each other. It was 

concluded that Y-list and Y-list Modal algorithms were better in solution quality 

and the convergence speed.  However, when worst-case scenario is considered, T-

counter and Origin-based T-counter algorithms were shown to have better 

performances. Finally, all four algorithms were used to solve 10 random 

generated problem instances. It was concluded that the proposed algorithms could 

find good solutions very quickly. In fact, for most cases less than 2% optimality 

gap was reached in less than 2 minutes of computation time.   
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Chapter 6: Detailed Analysis of the Mathematical Model  

In this chapter, in-depth analyses of different aspects of the proposed 

mathematical model are presented. These analyses are provided in order to better 

illustrate the capabilities of the model and also examine model’s sensitivity in 

various circumstances. The analyses in this chapter are divided into two main 

categories: sensitivity analysis of the structural parameters of the model, and 

sensitivity analysis of the main input values of the model.  

In the following subsections, first in section 6.1 a numerical case study is 

introduced that is being used to perform the analyses in the rest of this chapter.  

Then in section 6.2, some parameters that affect the structure of the model are 

introduced and sensitivity analysis is performed to investigate their role. In 

section 6.3, sensitivity analysis is performed over several input parameters.  It is 

shown that changing some input parameters not only affects the optimization 

results but it can also largely alter the problem size and solution computation 

times. Section 6.4 summarizes the overall findings of the sensitivity analysis. 

6.1 Introduction of the numerical case study 

The numerical problem in this chapter is an imaginary scenario where a 

natural disaster such as a hurricane strikes the southern coast of the United States. 

It is assumed that two separate regions, one in Mississippi and one in Louisiana, 

are affected. The network structure of the problem is similar to the case study 

introduced in chapter 4. One logistics center (LC), one commercial storage site 

(CSS) and one vendor (VEN) are the three main permanent sources to store and 
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ship the relief items. Three levels of temporary facilities that receive and transfer 

relief items and vehicles include: Four mobilization centers (MOB), four federal 

operational staging areas (FOSA) and ten state staging areas (SSA). The demands 

are concentrated at twenty points of distribution (POD) between two disaster 

areas. Figure 6.1 shows the disaster area and the locations of the facilities. The 

other definitions and parameter values are similar to those expressed in chapter 4 

unless otherwise is stated in the following subsections. 

 
Figure 6.1 Disaster area map and facility locations 

The computer used for the computational experiments presented in the rest 

of this chapter is a Dell desktop computer with Intel Xeon 3.0 GHz CPU with 3.5 

GB of RAM and Windows XP operation system. To solve the mathematical 

formulation, ILOG CPLEX 11.0 is used. Microsoft Visual Basic 6 is used to 

create the formulation and post processing of the optimization results. 
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6.2 Sensitivity Analysis of the Structural Parameters 

Structural parameters are those parameters in the model that affect the 

structure of the mathematical formulation. Different values of these parameters 

can drastically change the size and behavior of the model. For current 

formulation, some examples of the structural parameters include: 

1. Number of commodities C 

2. Number of transportation modes M 

3. Time-step resolution t 

In the following subsections, the effects of different values of these 

parameters are investigated: 

6.2.1 Analysis of Number of Commodities 

In the proposed model, different values of C (number of commodities), 

fundamentally change the structure of the model and can largely affect the size 

and the difficulty of solving the model. When C=1, the formulation represents a 

single-commodity problem but when C > 1 the formulation transforms into a 

multi-commodity problem that can be more difficult to solve. 

A multi-commodity problem compared to a single commodity problem 

requires more data, larger number of decision variables and a larger number of 

constraints. From decision maker’s perspective, in multi-commodity problems 

another dimension is added to the problem in order to find the optimal balance 

between the amounts of several commodities that are being loaded in each 

shipment. 
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To test the effect of the number of commodities, four cases are considered 

each with one, two and three and four commodities respectively. In order for all 

four cases to be relatively comparable, the amounts of total demand and total 

supply of all commodities at each location are kept the same. However, for any 

given node the supply and demand is different for each commodity. For example, 

in two-commodity problem, supply and demand for 1st commodity is assumed to 

be twice the supply and demand for the 2nd commodity; and so on for three-

commodity and four-commodity problems. 

Using a customized Visual Basic code, the mathematical formulation for 

these four cases are generated. Table 6.1 reports the problem size for each of these 

cases. Then each case is solved with CPLEX commercial solver. Since the supply 

and demand amounts are the same, the objective function values are not that 

different for all four cases. However, the CPU time to solve each case is different. 

It takes only 7.11 seconds to solve the single commodity problem. However, for 

2, 3, and 4 commodity problems solution times rapidly increase to 71.76, 212.28 

and 582.38 seconds respectively.  

Table 6.1 Problem sizes for different number of commodities 

Case Description Number of 
Variables 

Number of 
Constraints 

None-Zero 
Coefficients 

Input file 
size (Kb) 

Single Commodity 89185 32601 260075 5384 

Two Commodities 110570 36585 372297 7355 

Three Commodities 134719 40569 484519 9326 

Four Commodities 158868 44553 596741 11298 
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Figure 6.2 illustrates the solution time as well as problem sizes for the four 

cases with different number of commodities. The stopping criteria for 

optimization is set to be 1% optimality gap. As it can be seen in the graph, when 

the number of commodities increases, number of variables, constraints and CPU-

time also increase. It is interesting to notice that increase in problem size is almost 

linear; however the CPU-time increases much faster. It can be concluded that 

larger number of commodities makes the problem exponentially difficult to solve. 
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Figure 6.2 – Problem size and solution time versus the number of commodities 

6.2.2 Analysis of the Number of Transportation Modes 

Another example of the structural parameters is M (number of 

transportation modes) that can have a major affect on the structure of model as 

well as the difficulty of solving the problem and the behavior of the results. When 

M=1 only one transportation mode is used to deliver the relief commodities. In a 

single modal problem, all shipments are transported by only one mode from 
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origins to their destinations. On the other hand, in multimodal systems there is 

this question of which transportation mode to utilize and how to balance the 

commodity flows among different modes.  

Another concern in multimodal environments is considering the 

intermodal transfer. From application’s perspective it is important to provide 

suitable facilities and required equipments in order to transfer the relief 

commodities between transportation modes quickly and efficiently. From 

modeling perspective it is important to consider the properties of each 

transportation mode and correctly model the delays during intermodal transfers. 

Also for intermodal transfer facilities, it is important to consider the loading and 

unloading capacities based on the availability of the relevant equipments. 

The mathematical formulation presented in chapter 3 is capable of 

modeling multiple modes of transportation. It is assumed that main FEMA 

facilities at federal level have access to multiple modes and also act as intermodal 

transfer nodes. Equation (3.2) controls the flow of commodities by each mode and 

also keeps track of commodity transfers between modes. For example mcm
itXT ′ is 

equal to the amount of commodity type c in node i which is transferred from 

mode m to mode m′ at time t. Also mmK ′  is used as intermodal delay which is 

equal to the time required to transfer commodities from mode m to mode m′ . 

The numerical example of chapter 4 only considered one mode of 

transportation which was the ground transportation and only one kind of vehicle 

which was 53ft trailer truck. To analyze the effect of multimodal operations in 

this chapter, air transportation mode is added to the problem. For the sake of the 
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numerical example in this chapter, the aircraft of choice is selected to be C130-

Hercules cargo planes. C130 has the capacity of about 4500 cft and is assumed to 

travel at an average speed of 250 mph. 

Adding a new transportation mode, adds a new layer of network to our 

time-space framework. Since having air transport facilities at local level or very 

close to disaster areas might not be possible, it is assumed that only federal level 

facilities have access to air transportations. In other words, federal level facilities 

(e.g. LC, CSS, VEN, MOB, and FOSA) are connected through air and ground 

transportation but state staging areas (SSA) and points of distribution (POD) are 

only accessible by ground transportation. Consequently, a shipment from logistics 

center (LC) can be sent with airplane to a federal operational staging area then 

transferred to ground transportation and then sent to SSA and finally delivered at 

PODs. This is only an assumption for current numerical example and not a 

general limitation for the proposed mathematical model. 

Based on the above description, two numerical cases are formulated and 

solved. The first case is a single-modal problem with only ground transportation. 

Supplies, demands, capacities and other parameters are fixed and similar to those 

in the previous sections. The number of tractor trailers used is 60 which are 

initially located at the three source nodes (e.g. LC, CSS, VEN) with 20 trucks at 

each location. In the second case, air-transportation mode is also available 

between federal-level facilities. Twenty C130 cargo planes with 4500 cft capacity 

are utilized. Ten planes are initially located at CSS and 10 planes are located at 

VEN facilities. 
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Table 6.2 represents the problem size for each of these cases. In this 

example, by adding the second transportation mode, number of variables 

increases by about 6 percent and number of constraints increases by about 8 

percent compared to the single modal case. Both cases are solved by CPLEX 

commercial solver and Table 6.3 summarizes the optimization results. Comparing 

the objective functions (sum of all unsatisfied demand over demand nodes, 

commodities and time periods) it is evident that by introducing a new 

transportation mode, the objective function is improved. It is expected because 

new transportation mode increases the transportation capacity which results in 

faster delivery of relief commodities.  

Table 6.2 Problem sizes for different number of transportation modes 

Case 
Description 

Number of 
Variables 

Number of 
Constraints 

None-Zero 
Coefficients 

Input file 
size (Kb) 

Single Modal 104641 33902 349785 6966 

Multimodal 110570 36585 372297 7355 

 

The improvement in objective function value is about 10 percent. In 

single-mode case, the relief operation is not completed and unsatisfied demand 

still exists until the end of the planning horizon (minute 1440). However, by 

adding the second transportation mode, we are able to satisfy all demands by 

minute 1290 which is 2.5 hours before the end of the planning horizon.  
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Table 6.3 Optimization results for single and multimodal cases 

Case 
Description 

Objective 
Function Locations Selected Time of Last 

UD (min) 
CPU time 

(sec) 

Single Modal 38848500 4,5,8,10,12,13,17,19 1440 27 

Multimodal 35110500 4,5,8,10,12,13,17,19 1290 3263 

 

The most important comparison between the two cases is related to the 

CPU time to find the optimal solution in each case. Single modal formulation is 

solved to optimality (MIP gap = 0.1%) in only 27 seconds but it takes much 

longer (3263 seconds) to solve the multimodal numerical case. It is very 

interesting to notice that the number of variables and constraint in multimodal 

case is only about 10% more than single-mode case but it is much more difficult 

to solve the multimodal problem and it takes about 120 times longer to find the 

optimal solution in the second case. 

Figure 6.3 compares the performance of the relief operations for both 

cases over time. Total unsatisfied demand for both cases is shown for the duration 

of the operation. It can be seen that the two cases perform similarly for the first 8 

hours of the operations; in fact no commodity is delivered to demand points 

during this time. However, the multimodal system has performed constantly better 

than the single-modal case after that initial period.  
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Figure 6.3 Comparison of performance for single and multi-modal cases 

It was explained that air transportation mode only covers the federal level 

network nodes. In other words, both modes cover all the nodes in federal level 

network but state level networks are covered only by the ground transportation 

mode. Analyzing the flow of commodities in the second case shows that for the 

federal network, 789500 units of commodities are sent by ground transportation 

mode versus 417000 units that are sent using the air mode. The market share of 

air transport is about 35 percent which shows the importance of fast transportation 

modes such as airplanes in emergency operations. It is important to notice that the 

number of available planes is one third of the number of trucks and the capacity 

of one plane is about 75% of the capacity of a trailer truck. 

6.2.3 Analysis of Time-Step t 

Another parameter that affects the structure and behavior of the model is 

the length of time-step t. Time-step t is the length of time between two 

consecutive states that the problem is modeled. Selection of appropriate time-step 
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is a very important factor that can affect the performance of time-space networks 

dramatically. For each time period in the planning horizon, one layer of physical 

network will be added to the problem. This makes the problem size grow 

extremely fast with the number of time-steps in the planning horizon. For 

example if the planning horizon is 1 day, with the choice of time-step t = 5 

minutes, 24 * 60 / 5 = 288 layers of the network is required to cover 1 day of 

operations. So to keep the problem at a reasonable size, it is favorable to have 

longer time-steps. 

On the other hand when t is short, the situation on the ground can be 

modeled in greater details which would not be possible with longer time-steps. 

For example if the time-step is 1 hour, it is only possible to model the state of the 

system at every hour and not at the times in between. So from the accuracy 

perspective, it is favorable to have shorter time-steps. 

Finding a reasonable time-step is an important modeling challenge. In 

selecting the time-step one should consider the level of accuracy that is required 

for that specific application and also the computational power that is available to 

them. In this section, it is tried to create and test numerical experiments with 

different values of time-step t and then analyze the findings in order to provide 

insight for other researchers or practitioners. 

In addition to computational aspects, changing the time-step length also 

affects some other elements of generating the mathematical formulation: 

1. Link travel times 

2. Capacity constraints 
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3. Objective function unit 

First, all link travel times for all transportation modes should be a 

multiplier of time-step t. For example when t = 5 minutes, travel time of a link 

cannot be 28 minutes or 47 minutes but it should be rounded to 30 and 45 minutes 

respectively . When the time-step is changed in a problem instance, for example 

from t = 5 to t = 10, a computer code is required to automatically recalculate the 

travel times and round them to the new time step. 

Second, loading and unloading capacity constraints at facilities are also 

required to be adjusted for different time-steps. For example, loading capacity of a 

given facility when t = 5 is equal to 1000 which means up to 1000 units of 

commodities can be loaded in that facility during that 5 minute time interval. If 

time-step lenght is changed to say t = 15 minutes, then it is necessary to adjust 

that loading capacity to 1000 * (15/5) = 3000 units. 

Third, the objective function in the proposed model is to minimize the sum 

of all unsatisfied demands and this summation is taken over all time periods. In 

the case that planning horizon is divided into N time periods of length t, the 

objective function summation involves N sets of variables. However, if a longer t 

is selected which is twice the previous t, then the same planning horizon consists 

of N/2 time periods, and the objective function value of these two cases will not 

have the same unit. To deal with this issue, it is recommended to normalize the 

unsatisfied demand over time and pay attention to the units that are used for those 

variables.  
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To analyze the effect of different values of t, 4 cases with values of t = 5, 

10, 15, and 30 minutes are formulated and solved. Table 6.4 summarizes the 

problem size for these 4 cases.  It is evident that the length of time step t has a 

huge impact on the number of variables and the number of constraint in the 

formulation.  

Table 6.4 Problem sizes for different values of time-step t 

Case 
Description 

Number of 
Variables 

Number of 
Constraints 

None-Zero 
Coefficients 

Input file 
size (Kb) 

t = 5 297194 90738 986268 19745 

t = 10 157226 50125 525753 10456 

t = 15 110570 36585 372297 7355 

t = 30 63914 23033 218777 4257 

 

 Optimization results for these 4 cases are presented in Table 6.5.  The 

stopping criteria for optimization code is set to be 0.5% optimality gap and 

objective function values are normalized to be of the same unit and comparable 

among all 4 cases.  

Table 6.5 Optimization results for different time-step length 

Case 
Description 

Objective 
Function Locations Selected Time of Last 

UD (min) 
CPU time 

(sec) 

t = 5 35155100 4,5,8,10,12,13,17,19 1295 888.39 

t = 10 35238100 4,5,8,10,12,14,17,19 1290 124.34 

t = 15 35199000 4,5,8,10,12,13,17,19 1290 79.16 

t = 30 35344600 4,5,8,10,12,13,17,19 1290 62.45 
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Selecting the time-step length is a trade-off between modeling accuracy 

and solution time. Figure 6.4 illustrates the variations of the problem size and 

CPU time for the four cases modeled in this section. It is evident that when the 

length of the time-step is increased, the problem size and solution times both 

decrease. For this problem, t = 15 minutes seems to be a good trade-off between 

the accuracy and the problem size. For any specific application, it is 

recommended to initially perform similar analysis and then select the appropriate 

time-step length based on the required accuracy and availability of computational 

resources. 
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Figure 6.4 Variations of problem size and CPU time for different time steps 

6.3 Sensitivity Analysis of the Main Input Parameters 

In this section, the main input parameters of the model are classified into 3 

major categories: parameters of the facility location problem, parameters of the 

vehicle routing problem and parameters of the commodity flow problem. 
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Sensitivity analyses of the parameters in each of these categories are provided in 

the following subsections. 

6.3.1 Sensitivity Analysis for Parameters of the Facility Location 

Number, location and capacity of the facilities in the network can have a 

major affect on the emergency response operations. From a list of potential 

locations, only a subset of them can be selected due to limitations of cost, 

equipment, or personnel. Also the capacities of each facility type can affect the 

response operations. In this section, the effect of variation of maximum number of 

facilities as well as loading capacity and unloading capacity at each facility is 

investigated. 

Maximum Number of Temporary Facilities 

As described earlier in the problem statement, there are three types of 

temporary facilities in FEMA’s supply chain structure. First, the mobilization 

centers (MOB) that receive the relief commodities from the permanent sources 

and forward them to federal operational staging areas (FOSA). Second, the FOSA 

that receive the commodities from permanent sources as well as mobilization 

centers and forward them to the state level facilities called state staging areas 

(SSA). Finally the state staging areas that receive flow from the FOSA and send 

them toward the final points of distribution (POD).  

In the current numerical example, 4 potential sites for MOBs are planned. 

Opening all facilities for operation provides the maximum capacity for relief 

operations, however; it might not always be possible to use all 4 facilities due to 

the high cost or limitations of the equipment and personnel. In order to investigate 
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the effect of this limitation, 5 numerical cases are formulated and solved. Table 

6.6 introduces these cases and reports the optimization results. For these cases, it 

is assumed that all temporary facilities at lower levels (i.e. FOSAs and SSAs) are 

forced to be open.   

Table 6.6 Analysis of Number of Mobilization Centers 

Case No. Case Description Objective 
Function 

MOB Selected 
(Node number) 

1 No MOB 3.78945 E+7 NA 

2 1 MOB 3.55320 E+7 5 

3 2 MOB 3.44932 E+7 4 , 5 

4 3 MOB 3.44670 E+7 4 , 5 , 6 

5 4 MOB 3.44580 E+7 4 , 5 , 6 , 7 

 
 In case 1, there is no MOB selected. It is shown that the relief operations 

can still proceed even without a mobilization center. The reason for that is the 

special structure of FEMA’s supply chain. As shown in figure 1.5, relief 

commodities can be send from the logistics centers and commercial storage sites 

directly to the federal operational staging areas and from there to each state and 

local area. However, having MOBs can provide more options and facilitate the 

flow of commodities and vehicles to the lower level facilities. Comparing case 1 

and 2, by only opening one MOB in case 2, the objective function is considerably 

reduced. Figure 6.5 illustrates the effect of the number of MOBs on the objective 

function. 
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From the results presented in Table 6.6 and Figure 6.5, it can be concluded 

that adding more mobilization centers is beneficial in reducing the total 

unsatisfied demand. In Table 6.6, the objective function is constantly reduced 

when more MOBs become available. However, as shown in Figure 6.5, the 

improvements in objective functions become marginal when more that 2 MOBs 

are selected. Consequently, it is suggested to have a maximum of 2 mobilization 

centers in this specific numerical example. 

 
Figure 6.5 Effect of the number of mobilization centers on the objective function 

The same analysis is performed for the number of federal operational 

staging areas (FOSA). In this part, it is assumed that the 2 MOB are open and also 

all lower level facilities (SSA) are open. In order to investigate the effect of the 

number of FOSAs, 5 numerical cases are formulated and solved. Table 6.7 

introduces these cases and reports the optimization results. 

In case 1 when there is no FOSA selected, the objective function is very 

high. In fact, no commodity is delivered in case 1 because without any FOSA the 

federal level and state level networks are disconnected. Based on the assumptions 
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of the FEMA’s supply chain structure, the commodities can only pass through 

FOSA nodes in order to be delivered to the state and local facilities. Figure 6.6 

demonstrates the effect of the various number of FOSAs on the objective 

function. Having more FOSA has a positive effect in minimizing the objective 

function; however, this effect becomes very marginal for more than 2 FOSAs. 

Table 6.7 Analysis of the number of the federal operational staging areas 

Case No. Case Description Objective 
Function 

FOSA Selected 
(Node number) 

1 No FOSA 5.82000 E+7 NA 

2 1 FOSA 4.52235 E+7 8 

3 2 FOSA 3.50445 E+7 8 , 10 

4 3 FOSA 3.46125 E+7 8 , 9 , 10 

5 4 FOSA 3.44932 E+7 8 , 9 , 10 , 11 
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Figure 6.6 Effect of the number of the federal operational staging areas on the objective 

function value 
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The next level of temporary facilities in the FEMA’s structure is the state 

staging areas (SSA). A similar study is conducted for the number of SSAs. There 

is a total of ten potential locations for SSAs in this problem. Number of MOBs 

and FOSAs are limited to 2 facilities for each type. Table 6.8 introduces these 

cases and summarizes the optimization results. Figure 6.7 illustrates the variation 

of objective function in each case. The objective function is constantly reduced in 

the first 5 cases but becomes steady after that. It can be concluded that for this 

numerical example, opening more than 4 state staging areas (2 in each disaster 

area) does not improve the performance of the operations. 

Table 6.8 Analysis of the number of the state staging areas 

Case No. Case Description Objective 
Function SSA Selected (Node number) 

1 No SSA 5.82000 E+7 NA 

2 max 1 SSA 4.66815 E+7 13 

3 max 2 SSAs 3.81090 E+7 13,17 

4 max 3 SSAs 3.56775 E+7 13,17,19 

5 max 4 SSAs 3.50445 E+7 12,13,17,19 

6 max 5 SSAs 3.50445 E+7 12,13,14,17,19 

7 max 6 SAAs 3.50445 E+7 12,13,14,17,19,20 

8 max 7 SSAs 3.50445 E+7 12,13,14,17,19,20,21 

9 max 8 SSAs 3.50445 E+7 12,13,14,16,17,19,20,21 

10 max 9 SSAs 3.50445 E+7 12,13,14,15,16,17,19,20,21 

11 max 10 SSAs 3.50445 E+7 12,13,14,15,16,17,18,19,20,21 
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Figure 6.7 Effect of the number of state staging areas on the objective function value 

In the cases introduced in tables 6.6 to 6.8, the facility location constraints 

in each tier are treated independently. In fact, the problem is first solved to find 

the optimal number of MOBs then it is solved for FOSAs and then SSAs 

respectively. However, when the resources (e.g. equipment and personnel) can be 

shared among the different facility types, the maximum number of each facility 

type is not independent anymore. For example instead of having 2 MOBs and 2 

FOSAs, it might be beneficial to have 1 MOB and 3 FOSAs.  

Nineteen cases are generated and solved for the maximum number of 

facilities of all types. Table 6.9 lists these cases and optimization results.  In case 

0, no temporary facility is selected and no commodity can be delivered because 

the supply chain is disconnected. The relative objective function column in table 

6.9 shows the ratio of the objective function of each case to the maximum 

objective function value given in case 0.  
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Figure 6.8 illustrates the objective function values and optimization CPU 

times for the cases introduced in table 6.9. 

Table 6.9 Sensitivity analysis of the total number of the temporary facilities 

Case Max No of 
Facilities 

Objective 
Function 

Relative 
O.F. (%) Locations Selected CPU 

Time(sec) 

0 0 5.82 100 - 0.3 

1 1 5.82 100 4 37 

2 2 4.66815 80.21 8,13 137 

3 3 4.55725 78.30 8,12,13 423 

4 4 4.1403 71.14 8,10,13,17 650 

5 5 3.89115 66.86 4,5,10,13,17 364 

6 6 3.70395 63.64 5,8,10,13,17,19 478 

7 7 3.56775 61.30 4,5,8,10,13,17,19 257 

8 8 3.50445 60.21 4,5,8,10,12,13,17,19 133 

9 9 3.48225 59.83 4,5,8,10,11,12,13,17,19 190 

10 10 3.46305 59.50 4,5,8,10,11,12,13,17,19,20 115 

11 11 3.4566 59.39 4,5,8,9,10,11,12,13,17,19, 
20 128 

12 12 3.450825 59.29 4,5,8,9,10,11,12,13,15,17, 
19,20 156 

13 13 3.4485 59.25 4,5,6,8,9,10,11,12,13,15,17,
19,20 52 

14 14 3.447 59.23 4,5,6,8,9,10,11,12,13,14,15,
17,19,20 60 

15 15 3.4461 59.21 4,5,6,7,8,9,10,11,12,13,14, 
15,17,19,20 24 

16 16 3.4458 59.20 4,5,6,7,8,9,10,11,12,13,14, 
15,17,19,20,21 6 

17 17 3.4458 59.20 4,5,6,7,8,9,10,11,12,13,14, 
15,17,18,19,20,21 5 

18 18 3.4458 59.20 4,5,6,7,8,9,10,11,12,13,14, 
15,16,17,18,19,20,21 6 
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Figure 6.8 Objective function and CPU time versus the number of temporary facilities 

Analyzing the results shows that increasing the number of the available 

temporary facilities can effectively help the operations and reduce the total 

unsatisfied demand. However, after a certain number of facilities, adding more 

facilities does not reduce the objective function value. For example in current 

problem, selecting more than 8 temporary facilities has very marginal benefits. 

The CPU time is relatively low for the first 3 cases because the combinations are 

limited. CPU times considerably increase for case 3 to 7 mainly due to the 

increase in the number of potential combinations. For the final 6 cases, CPU time 

is reduced again because ample capacity is available and opening more facilities 

does not affect the objective function and does not change the flow of 

commodities or vehicles. 

Loading and Unloading Capacities 

Any facility that sends or receives the relief commodities is subject to a 

limited capacity for loading and unloading (for mathematical formulations refer to 
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section 3.5.5). These constraints are mainly due to the limitations of equipment or 

personnel during the emergency response operations. In this section, it is intended 

to evaluate the effect of these capacities on the performance of the model and the 

optimization results.  

Table 6.10 lists loading and unloading capacities (cft/hr) for each 

transportation mode and each facility type that are used in the base case scenario.  

Table 6.10 The loading and unloading capacities 

 Ground Transportation Air Transportation 

Facility Type Loading Unloading Loading Unloading 

LC - CSS - VEN 60000 60000 18000 18000 

MOB 48000 48000 9000 9000 

FOSA 36000 36000 - - 

SSA 24000 24000 - - 

POD 12000 12000 - - 

 
To evaluate the effect of variations in loading capacity, five different 

values are considered each with 50%, 75%, 100%, 125% and 150% of the original 

value. The same five variations are also considered for unloading capacity. Also 

to evaluate the joint effect of loading and unloading capacity on the performance 

of the model a matrix is generated to consider all 25 combinations. Table 6.11 

reports the optimization results for these 25 cases. 
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Table 6.11 Optimization results for various Loading and Unloading Capacities 

Objective Function 
Unloading Capacity 

50% 75% 100% 125% 150% 

Loading 
Capacity 

50% 4.19625 4.19235 4.19235 4.19235 4.19235 

75% 4.19235 3.7632 3.69975 3.66765 3.66765 

100% 4.19235 3.7578 3.50445 3.468675 3.44715 

125% 4.19235 3.7578 3.49965 3.3771 3.35835 

150% 4.19235 3.7578 3.49965 3.37185 3.31095 

 

Focusing on the 3rd row it is shown that when loading capacity is kept at 

100%, increase in unloading capacity from 50% to 150% constantly improved the 

objective function value. The same behavior is shown in the 3rd column for 

original unloading capacity when loading capacity varies from 50% to 150%. 

However, comparing the objective function values of the first row, it is evident 

that when loading capacity is fixed at 50%, the problem is not sensitive to the 

unloading capacity anymore. The similar behavior is observed in the first column 

when unloading capacity is fixed at 50% and extra loading capacity has no 

benefits.  

It is concluded that extra capacity at facilities can be useful in reducing the 

objective function. However, these additional capacities are beneficial only when 

both loading and unloading capacities are increased at the same time and 

proportionally. If one capacity is kept considerably low, additional capacity of the 

other type is not effective anymore. To visualize, figure 6.9 illustrates the 
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objective function values versus different values of the loading and unloading 

capacities. 
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Figure 6.9 Objective function value versus variations in the loading and unloading capacity 

6.3.2 Sensitivity analysis for Parameters of Vehicle Routing 

Vehicle routing problem is a major part of the proposed integrated 

logistics model. Variations in the inputs of vehicle routing can drastically impact 

the behavior and results of the entire model. In this section, a series of analysis is 

performed to investigate the nature and extent of these effects. In the following, 

sensitivity analysis is performed on the number of vehicles of each type, capacity 

of vehicles, and travel speeds of the vehicles. 

Number of Available Vehicles  

Having more vehicles is always favorable from operator’s perspective 

because it can provide more capacity for faster and easier delivery of relief items. 

However, the number of available vehicles is limited especially during the initial 
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periods of disaster response operations. Analysis of the effects of different 

number of vehicles can provide invaluable insight to the problem for planning 

purposes. In table 6.12 ten cases are tested with various numbers of vehicles for 

each mode. For all these cases, the vehicles of ground transportation mode are 53 

ft tractor trailers with 6000 cft capacity. At the beginning of the operations, trucks 

are evenly distributed among 3 source nodes (LG, CSS, VEN). The vehicles of air 

transportation mode are C-130 Hercules cargo planes with 4500 cft capacity that 

are located at CSS and VEN nodes at the beginning of the operations.  

Table 6.12 Sensitivity analysis of number of vehicles 

Case No. No. of 
Trucks 

No. of 
Planes 

Objective 
Function (E+7) 

CPU-Time 
(sec) 

1 12 4 4.1345 68.9 

2 24 8 4.08015 372.42 

3 36 12 3.82065 237 

4 48 16 3.63045 848 

5 60 20 3.51075 610 

6 72 24 3.44025 50 

7 84 28 3.39105 43.45 

8 96 32 3.3546 4.86 

9 108 36 3.32715 8.05 

10 120 40 3.32565 8.72 

 
In cases 1 to 10, the numbers of vehicles of both modes are gradually 

increased. Case 5 is similar to the base case in previous subsections. CPLEX 

commercial solver is used to optimize these case studies. Stopping criteria is set to 

be 0.1% optimality gap. Figure 6.10 illustrates the objective function and the CPU 

times for optimal solutions in each case.  
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Figure 6.10 Effect of the number of vehicles on the objective function and the CPU time 

The value of objective function decreases as the number of vehicles 

increase. It complies with expectations since more vehicles provide higher 

capacity and faster delivery of relief items which minimizes the objective function 

value. The rate of decrease in objective function is faster for the first five cases 

compared to the last five cases. For example, the objective function value 

decreases by 17% from case 1 to case 5. The same measure is only about 6% from 

case 5 to case 10. It can be concluded that when number of vehicles are increased 

in cases 6 to 10, the other constraints become binding. In that case, it is 

recommended to invest in other parts of the system and increase other capacities 

such as loading and unloading capacities at transfer facilities. 

CPU-time variations are very interesting. At the beginning, the CPU time 

is relatively low because there is a very small number of vehicles available and 

there is not much room for improvement. As the number of vehicles increase, the 

combinations for vehicle routing problem increases rapidly. As a result, the CPU 

time to find the optimal solution is grown considerably. At the end, it might be 
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surprising to notice that the CPU time is decreased. The reason is that for cases 6 

to 10, a large number of vehicles are available. When there are ample vehicles 

available, the model can easily assign a new vehicle from depot to any required 

task. On the other hand, when the number of vehicles are limited, a great deal of 

time is spend to search all possible combinations and make sure to assign the 

vehicles to the best possible task.  

It is concluded that the number of vehicles not only affects the model’s 

results such as objective function value, but it also affects the difficulty of solving 

the model and CPU time to find the optimal solution. When the number of 

vehicles is very low or very high, it is much easier and faster to solve the model. 

For an in-between range of vehicle numbers, it can become very difficult and time 

consuming to find the optimal solution. This range is problem-specific and can 

depend on the other model inputs as well. Researchers and practitioners should be 

aware of this behavior and perform the similar analysis for a range of vehicle 

numbers that is specific to their specific application. 

Capacity of the Vehicles 

Another factor that can affect the performance of the entire model is the 

capacity or type of vehicles that are used in the response operations. The general 

conception is that higher capacity is always better. That might be true; however it 

might not be possible to always use the largest vehicle in the fleet. In this section 

it is intended to analyze the effects of having vehicles with different capacities. 

Ten different cases are tested. In the first 5 cases, the capacity of ground 

transportation vehicles are changed from 2000 cft to 10000 cft while the capacity 
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of planes are fixed at 4500 cft. Then in cases 6 through 10, the capacity of air 

transportation vehicles are changed from 1500 cft to 7500 cft while capacity of 

truck are kept fixed at 6000 cft. Table 6.13 lists these cases and reports the 

optimization results. 

Table 6.13 Sensitivity analysis of the vehicle's capacity 

Case No. Capacity of 
Trucks 

Capacity of 
Planes 

Objective 
Function (E+7) 

CPU-Time 
(sec) 

1 2000 4500 4.53145 13 

2 4000 4500 3.86310 1333 

3 6000 4500 3.51075 610 

4 8000 4500 3.42365 532 

5 10000 4500 3.35250 285 

6 6000 1500 3.62205 258 

7 6000 3000 3.55590 148 

8 6000 4500 3.51075 610 

9 6000 6000 3.50175 647 

10 6000 7500 3.51075 665 

 

Figure 6.11 illustrates the variations of the objective function value and 

the CPU-time for these 10 cases. For cases 1 to 5 and 6 to 10, the objective 

function is decreased when the vehicle capacity is increased. Comparing the first 

5 cases (left side of the graph) to the last 5 cases (right side) it is evident that the 

slope of the objective function is steeper for the left curve. It means that the 

problem is more sensitive to the capacity of trucks rather than to the capacity of 

planes. This might be simply due to the fact that the ground transportation does 

the majority of the deliveries in this problem. For example in the base case (case 3 
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and 8), total amount of commodity-miles that are shipped with ground 

transportation is about 250 million cft.mile versus about 107 million cft.mile for 

air transportation. Share of ground transportation in this problem is about 70%.   

 
Figure 6.11 Sensitivity analysis of the vehicle's capacity 

Travel speed 

The other factor in the vehicle routing problem that can affect the response 

operations is the travel time between the nodes. Faster vehicles are favorable from 

two perspectives. First, the flow of relief commodities through the network can 

happen faster. Second, empty vehicles can travel faster and reach the pick-up 

nodes to start another round of deliveries in a shorter period of time. On the other 

hand, in some cases the travel speeds might be reduced due to the changes in 

disaster environment such as inclement weather or flooding.  In order to 

investigate the effects of travel speed on the operation’s performance, 8 different 

cases are generated and tested. Table 6.14 lists these cases and summarizes the 

optimization results. 
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The first case is the base case scenario. In the base case, it is assumed that 

average travel speed for ground transportation is 50 mph for the arcs in the federal 

level network and 40 mph for the arcs of the state level network. Average air 

travel speed is also assumed to be 200 mph. 

Table 6.14 Sensitivity Analysis for network Travel Speeds 

 Ground Travel Speed  

Case No. Federal 
Network 

State 
Network 

Air Travel 
Speed 

Objective 
Function (E+7) 

CPU-Time 
(sec) 

1 50 40 200 3.51075 610 

2 60 48 240 3.06945 54.19 

3 40 32 160 4.18710 3116 

4 50 40 250 3.48735 678 

5 50 40 300 3.47805 3519 

6 50 40 400 3.46155 1024 

7 40 40 200 4.06125 357 

8 50 30 200 3.6528 961 

 
In case 2 and case 3, it is assumed that for both transportation modes and 

the entire network the travel speed is increased by 20% in case 2 and decreased by 

20% in case 3. It can be seen that if travel speed is increased by 20%, the 

objective function can be improved by 12.6%.  However, if the travel speed is 

decreased by 20%, then the objective function is increased by 19.3%. It is evident 

that travel speed has a major effect on the efficiency of the operations. Comparing 

the first 3 cases, it can be concluded that faster transportation improves the 

performance but having slower transportation can have a larger negative impact. 

Case 4, case 5 and case 6 are similar to base case but the average air travel 

speed is increased from 200 mph to 250, 300 and 400 mph respectively (25%, 
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50%, and 100% increase). In these cases, the objective function is improved but 

only by 0.7 percent, 0.9 percent and 1.4 percent, respectively. It can be concluded 

that using faster planes can improve the operations but this improvement is very 

marginal when the ground transportation is not enhanced proportionally. 

In case 7, it is assumed that the ground travel speed in federal level 

network is reduced from 50 mph to 40 mph while other inputs are similar to the 

base case. In case 8, only the speed in state level networks is reduced from 40 

mph to 30 mph and all other inputs are unchanged. In case 7, objective function is 

higher than base case by about 16% but the same measure is only 4% higher for 

case 8. Comparing case 7 and 8, it seems that travel speed at federal level network 

has a stronger effect than travel speed at the state level networks. In other words, 

if we can choose to improve the conditions of the roads in either federal level or 

state level roadways, it can be more rewarding to improve the federal level links. 

6.3.3 Sensitivity analysis for Parameters of the Commodity Flow 

In this section, sensitivity analysis is performed to investigate the effect of 

various amounts of supply, random demands and the relative urgency factor.  

Sensitivity to Supply 

In the base case scenario, the entire supply for one day of operations is 

assumed to be available at the beginning of the operations. Total supply for one 

day of operations is 600,000 units that include 400,000 units of commodity 1 and 

200,000 units of commodity 2. At the beginning of the operations, supply is 

stored at three main source facilities. 40% of supply is stored at the logistics 

center site in Atlanta, GA. 20% is stored at commercial storage site in Charlotte, 



 169 

 

NC and 40% of supply is stored at the vendors site in Nashville, TN. The 

availability of supply can play a major role in disaster response operations. In this 

section, 8 different cases are generated and tested to evaluate the effect of 

availability of different levels of supply. Table 6.15 introduces these cases and 

summarizes the optimization results. 

Table 6.15 Sensitivity analysis for supply availability 

Case No. Supply 
Availability 

Objective 
Function (E+7) 

CPU-Time 
(sec) Locations Used 

1 50% 4.23225 11 4,5,8,10,12,13,17,19 

2 60% 4.02015 8.75 4,5,8,10,12,13,17,19 

3 70% 3.84705 5.7 4,5,8,10,12,13,17,19 

4 80% 3.70785 4.39 4,5,8,10,12,13,17,19 

5 90% 3.59085 5.84 4,5,8,10,12,13,17,19 

6 100% 3.50445 7.78 4,5,8,10,12,13,17,19 

7 110% 3.49905 7.08 4,5,8,10,12,13,17,19 

8 120% 3.49905 8.97 4,5,8,10,12,13,17,19 

 
Figure 6.12 illustrates the results of table 6.15. Case 6 is the base case in 

which supply is equal to 100% of the demand and can be used as a benchmark. 

From case 5 to case 1, the amounts of supplies available at the sources are 

gradually reduced. It can be seen that shortage of supplies can strongly affect the 

results. For example in case 1, shortage of supplies has resulted in about 20% 

higher objective function value. On the other hand, in cases 7 and 8 there are extra 

supplies available at each source node. It is evident that having additional supplies 

has a marginal effect on improving the objective function (less than 1% 

reduction). The reason is that in these cases the other constraints of the problem 
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become binding. In fact, limitations such as the transportation capacity and the 

facility constraints limit the amounts of supply that can be delivered and having 

extra supply cannot help to reduce the objective function. 
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Figure 6.12 Sensitivity analysis for amount of supplies available 

Sensitivity to Demand 

Locations and amounts of demands are other variables that affect the 

details of the response operation. In this section, 10 cases with random demand 

values are generated and solved to optimality. The demands in current numerical 

example are located at 20 points of distribution (POD) that are spread over 2 

disaster areas. Random populations are assigned to each POD and demand for 

each commodity is generated based on the population of each POD. The total 

population of 2 disaster areas are kept fixed but population of PODs are different 

in each of the 10 cases. Random population for each POD is generated using a 

uniform distribution between 300 and 1700 people. 
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Table 6.16 and figure 6.13 represent the optimization results. Even though 

the demands at each POD are different, the values of the objective function across 

the cases are not that different.  The coefficient of variation for objective function 

value among the 10 random cases is relatively small (only 2.3%) which shows 

that the proposed model is successful in managing the demand variations. Also, it 

is important to notice that the same set of temporary facility locations are selected 

for all ten cases. This observation is favorable and can be interpreted as a good 

measure of robustness of the model in case of fluctuations in demand. 

Table 6.16 Sensitivity analysis for variations in demand 

Case No. Objective 
Function (E+7) 

CPU-Time 
(sec) Locations Used 

1 3.50445 7.78 4,5,8,10,12,13,17,19 

2 3.46545 12.84 4,5,8,10,12,13,17,19 

3 3.5199 11.31 4,5,8,10,12,13,17,19 

4 3.53715 10.55 4,5,8,10,12,13,17,19 

5 3.49095 16.45 4,5,8,10,12,13,17,19 

6 3.48825 7.7 4,5,8,10,12,13,17,19 

7 3.73995 19.91 4,5,8,10,12,13,17,19 

8 3.4392 6.09 4,5,8,10,12,13,17,19 

9 3.50805 6.55 4,5,8,10,12,13,17,19 

10 3.5262 18.66 4,5,8,10,12,13,17,19 

Average 3.521955 11.784 
 

Coef.of var. 0.0232 0.429 
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Figure 6.13 Optimization results for random demand values 

Relative Urgency factor 

As defined in section 3.5.2, c
itRU  is relative urgency of one unit of 

commodity c, in node i at time t. It is a weight factor in the objective function to 

enforce the importance of one commodity over another or one demand point over 

another demand point. For example, if one unit of commodity 1 is more important 

than 1 unit of commodity 2, then RU for commodity 1 should be higher than RU 

for commodity 2. In this section, effect of different values of the relative urgency 

factor is investigated. 

First, the effect of using different relative urgency factors among 

commodities is investigated. There are 2 commodities in the current numerical 

example. Five cases are generated to test the different combinations of weight for 

these 2 commodities. In the base case, RU is equal to 1 for all commodities. In 

cases 2 and 3, the priority is given to the 1st commodity (C1). In cases 4 and 5, the 
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priority is given to the 2nd commodity (C2). Table 6.17 introduces these cases and 

reports the optimization results. In Table 6.17, UR1
it and UR2

it are the relative 

urgency factors for commodity 1 and 2. The two columns on the right side of the 

table represent the sums of unsatisfied demand of each commodity by itself. Total 

unsatisfied demand is the sum of these two columns. 

Table 6.17 Sensitivity analysis of the relative urgency factor for each commodity 

Case No. UR1
it UR2

it 
Total 

Unsatisfied 
Demand 

            

1 1 1 35044500 22891500 12153000 

2 2 1 35044500 20714000 14330500 

3 5 1 35044500 20714000 14330500 

4 1 2 35069500 26216000 8853500 

5 1 5 35096500 26264000 8832500 

 
Figure 6.14 better illustrates the results of Table 6.17. In cases 2 and 3, 

urgency factor of commodity 1 is increased to 2 and 5. As a result, total sum of 

unsatisfied demands of commodity 1 is decreased compared to the base case (case 

1). On the other hand, the same measure for commodity 2 is increased in cases 2 

and 3. It can be said that, while the total objective function is the same, the 

shipments of commodity 1 are delivered faster (in earlier times) than commodity 

2 because of the higher urgency factor. 

In cases 4 and 5, the relative urgency factor for commodity 2 is increased. 

In these cases, demands for commodity 2 are satisfied earlier and share of 
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unsatisfied demand of commodity 2 in the objective function is decreased 

compared to the base case scenario.  
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Figure 6.14 Sensitivity analysis of the relative urgency factor for each commodity 

Figure 6.15 can help to better understand the effect of the RU factor on the 

performance of the response operations. In Figure 6.15, variations of unsatisfied 

demand for each commodity over time are shown for cases 1, 2 and 4. The solid 

line shows commodity 1 and the dashed line belongs to commodity 2. In case 1 

(left-side graph), at time zero the demand for commodity one is 400,000 units 

versus 200,000 units for commodity 2. RU is equal to 1 for both commodities. It 

can be seen that over time, the demands for both commodities are satisfied almost 

proportionally and by the end of the operations both lines get to zero almost at the 

same time.  

In case 2 (Figure 6.15, center graph), the priority is given to commodity 1. 

Even though the initial unsatisfied demand for commodity 1 is much higher, as 
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the time goes by, the demands of commodity 1 are satisfied more rapidly. In fact, 

for the first 13 hours of the operation all of the deliveries are the shipments of 

commodity 1 only.  The dashed line shows the rate of demand satisfaction for 

commodity 2. Compared to the left side graph, the demands of commodity 2 are 

satisfied much later in Case 2 due to the higher priority of commodity 1. On the 

contrary in case 4 (Figure 6.15, right-side graph), the priority is given to 

commodity 2. Consequently, the demands of commodity 2 (dashed line) are 

satisfied much earlier compared to case 1 or case 2.  

 
  Figure 6.15 Effect of relative urgency factor on variations of unsatisfied demand over time 

Overall, it is shown that using relative urgency factors can be very 

effective when there is a reason to give priority to one commodity over another. 

Usually, high priority commodities are needed in much smaller quantities 

compared to the commodities with normal priority. For example demand for 

medical supplies are usually in much lower volumes compared to clothing or 

construction items but with a much higher priority.  When there is no urgency 

factor in the model, the commodities with higher demand volumes tend to be 

given the priority in order to minimize their demand. However, when there is a 

small amount of demand for a commodity with high priority (e.g. medical 
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supplies), it is very effective to use a higher RU factor in the model to make sure 

that the priority is given to that commodity regardless of its small quantity.  

Relative urgency factors can also be used to enforce priorities among 

different points of distribution. If the demands for relief commodities at one or 

more locations have priorities, higher RU factors for those locations should be 

used to imply these priorities. The effect of using higher RU factors to prioritize a 

subset of locations is investigated in the following. Using the same numerical 

experiment from previous section, 2 numerical cases are simulated and compared. 

Case 1 is the base case where ticRU c
it ,,1 ∀= . In Case 2, one demand node in 

each disaster area is selected to have a higher priority. In the state of Mississippi, 

the POD located at node 29 is selected and from demand nodes in the state of 

Louisiana, the POD located at node 41 is selected to have a higher priority. These 

2 nodes are selected among all PODs because they were distant locations and in 

the results of the base case scenario, they were the 2 nodes that received relief 

items later than other nodes. For these 2 nodes, a relative urgency factor of 2 is 

applied to the demands of all commodities and all time periods. (For geographical 

locations of the nodes of the network refer to Table 4.1) 

Case 1 is simulated with ticRU c
it ,,1 ∀= and Case 2 is formulated and 

solved with tcRU c
t ,129 ∀= and tcRU c

t ,141 ∀= , and all other RU = 1 for the rest 

of the demand nodes. Figures 6.16 and 6.17 illustrate the optimization results of 

the both cases for POD nodes 29 and 41. In both figures, it is evident that the 

required priorities are successfully enforced by using higher RU factors. In figure 

6.16, before enforcing priorities, the last demand is satisfied by t = 960 minute; 
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however, after using priorities the last demand is satisfied by t = 510 minute 

which is much faster. 

 
Figure 6.16 Effect of using higher priority for POD 29 

In figure 6.17, the effect of using and not using priorities for POD node 41 

is illustrated. In case 1, when no priority is required, the last demand is satisfied 

by time t = 1290 minutes. However, by using priority in Case 2, the time of the 

last unsatisfied demand is reduced to only t = 870 minutes. 

These analyses show that the relative urgency factors can be successfully 

used to give priority to the demands of certain PODs if required by the user. 

However, the user should be aware of the fact that assigning these priorities 

would only improve the demand satisfaction rates for the intended nodes. 

Meanwhile, since the limited resources are directed to high priority nodes, the 

demand nodes with lower priorities would perform worse than before. 

0

2000

4000

6000

8000

10000

12000

0 240 480 720 960 1200 1440

U
ns

at
is

fie
d 

D
em

an
d 

of
 P

O
D

 2
9

Operations time (min)

Case 1

Case 2



 178 

 

 
Figure 6.17 Effect of using higher priority for POD 41 

6.4 Summary and Conclusions 

In this chapter, in-depth analyses of different aspects of the proposed 

mathematical model were presented. These analyses were provided in order to 

better illustrate the capabilities of the model and also examine model’s sensitivity 

in various circumstances. The analyses in this chapter were divided into two main 

categories: sensitivity analysis of the structural parameters of the model, and 

sensitivity analysis of the main input values of the model. It was shown that 

changing some input parameters not only affects the optimization results but it 

can also largely change the problem size and solution computation times. 

The structural parameters investigated in section 6.1 include the number of 

commodities C, the number of transportation modes M, and the length of time-

step resolution t. To test the effect of the number of commodities, four cases are 

considered each with one, two, three and four commodities respectively. It is 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 240 480 720 960 1200 1440

U
ns

at
is

fie
d 

D
em

an
d 

of
 P

O
D

 4
1

Operations time (min)

Case 1

Case 2



 179 

 

shown that the number of variables and the number of constraints increase 

linearly with the number of commodities. Number of variables grows faster than 

number of constraints. More importantly, it is shown that when number of 

commodities increase, the problem becomes much harder to solve and the 

computation times rapidly increase. This increase in computation time was 

exponential in the range tested.  

Number of the transportation modes is also an important factor. Using 

multimodal compared to single modal transportation not only increases the size of 

the formulation but also makes the problem much harder to solve. In multimodal 

systems there is the question of which transportation mode to utilize and how to 

balance the commodity flows among different modes. Another concern in 

multimodal environments is considering the intermodal transfers. From 

application’s perspective it is important to provide suitable facilities and required 

equipments in order to transfer the relief commodities between transportation 

modes quickly and efficiently. From modeling perspective it is important to 

consider the properties of each transportation mode and correctly model the 

delays during intermodal transfers.  

Multimodal problem is more difficult to solve. In fact, for the current 

numerical example the single modal formulation was solved in only 27 seconds 

but it took much longer (3263 seconds) to solve the multimodal numerical case. It 

is very interesting to notice that the number of variables and constraint in 

multimodal case was only about 10% more than single-mode case but it was 



 180 

 

much more difficult to solve the multimodal problem and it took about 120 times 

longer to find the optimal solution in multimodal problem. 

The other structural parameter in the model is the length of time-steps t. 

Time-step t is the length of time between two consecutive states that the problem 

is modeled. Selection of appropriate time step is a very important factor that can 

affect the performance and accuracy of the time-space networks dramatically. 

When t is short, the situation on the ground can be modeled in greater details 

which would not be possible with using longer time-steps. So from accuracy 

perspective, it is favorable to have shorter time-steps. On the other hand, for each 

time period in the planning horizon, one layer of physical network will be added 

to the time-space structure of the problem. This makes the problem size grow 

extremely fast with the number of time-steps in the planning horizon. To keep the 

problem size manageable, it is preferred to have longer time-steps. 

Finding a reasonable time-step t is an important modeling challenge. In 

selecting the time-step, one should consider the level of accuracy that is required 

for that specific application and also the computational power that is available to 

them. For this problem, t = 15 minutes seemed to be a good trade-off between the 

accuracy and the problem size. For any specific application, it is recommended to 

initially perform similar analysis and then select the appropriate time-step length 

based on the required accuracy and availability of computational resources. 

The main input parameters investigated in section 6.2 are divided into 3 

categories: parameters of the facility location problem, parameters of the vehicle 

routing problem and parameters of the commodity flow problem. 
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It is shown that the number, location and capacity of the facilities in the 

network can have a major affect on the emergency response operations. In 

analysis of the number of facilities, it was concluded that adding more facilities is 

beneficial in reducing the unsatisfied demand over time. However, these 

improvements became marginal when more that 2 MOBs, 2 FOSAs and 4SSAs 

were selected. 

The loading and unloading capacity in each facility was shown to impact 

the flow of commodities and how the low capacities would increase unsatisfied 

demand. Numerical studies tested a range of capacities for both loading and 

unloading capacity factors. It was concluded that investments to expand the 

capacity should improve both capacities at the same time. If one of the capacities 

is kept at a fixed level, then additional capacity for the other type remains unused. 

For vehicle routing problem, the number of available vehicles was one of 

the main factors. It was concluded that the number of vehicles not only affected 

the model’s results such as objective function value, but it also affected the 

difficulty of model and CPU time to find the optimal solution. When the number 

of vehicles was very low or very high, it was much easier and faster to solve the 

model. For an in-between range of vehicle numbers, it became very difficult and 

time consuming to find the optimal solution. This range is problem-specific and 

can depend on the other model inputs as well. Researchers and practitioners 

should be aware of this behavior and perform the similar analysis for a range of 

vehicle numbers that is appropriate for their specific application. 
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Another factor that affected the performance of the entire model was the 

capacity or type of vehicles used in the response operations. The general 

conception is that higher capacity is always better. However it might not always 

be possible to use the largest vehicle in the fleet. Analysis of the capacity of 

trucks and planes in the system indicated that the problem was more sensitive to 

the capacity of trucks versus the capacity of planes. This might be simply due to 

the fact that the ground transportation does the majority of the deliveries in this 

problem. 

The other factor in vehicle routing problem that affected the response 

operations was the travel speeds. Faster vehicles are favorable from two 

perspectives. First, the flow of relief commodities through the network can 

happen faster. Second, empty vehicles can travel faster and reach the pickup 

nodes to start another round of deliveries in a shorter period of time. However, the 

travel speed might be reduced in the disaster area due to the inclement weather or 

road blockings. It was shown that lower travel speeds would increase the 

unsatisfied demands over time. 

Comparing the travel speeds, it was shown that travel speeds at federal 

level network had a stronger effect than travel speed at the state level networks. In 

other words, if we could choose to improve the conditions of the roads in either 

federal level or state level roadways, it would be more rewarding to improve the 

conditions of the federal level links. 

In commodity flow problem, sensitivity analysis was performed to 

investigate the effect of various amounts of supply, random demands and the 
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relative urgency factor. In analyzing available supplies, it was shown that the lack 

or delay of supplies at source nodes had a large negative effect on the objective 

function value. On the other hand, when supplies were abundant, the objective 

function was improved only slightly. In fact, other limitations such as 

transportation capacity and facility constraints limited the amounts of supply that 

could be delivered and having extra supply could not help. 

Locations and amounts of demands are other factors that affect the details 

of the response operation. Variability in demand locations and amounts is a 

negative factor for emergency response operations. Ten cases with random 

demand values were generated and solved to optimality.  It was shown that in 

spite of variations in demand, the proposed model was successful in finding good 

solutions. Equally important, the same set of facility locations were used for all 

random cases that could be interpreted as a good measure of robustness of the 

model in case of fluctuations in demand. 

Finally, the effect of relative urgency factor was tested. It was proven that 

using relative urgency factor can be very effective when there was a reason to 

give priority to one commodity over another or one demand node over another. 

The demands for commodities or nodes with higher RU factor were satisfied at 

very earlier times compared to the other commodities or nodes. Use of the RU 

factor is highly recommended when there is a small amount of demand for a 

commodity with high priority (e.g. medical supplies).It is very effective to use a 

higher RU factor in the model to make sure that the priority is given to that 

commodity/node regardless of its small quantity.  
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Chapter 7: Prepositioning and Equity 

In this chapter 2 new subjects are investigated that are very important in 

emergency response operations. In section 7.1, first the concept of prepositioning 

is introduced and then the mathematical formulation to model the prepositioning 

problem is described. After that, a set of numerical experiments are conducted to 

illustrate the potential benefits of considering prepositioning in emergency 

response operations. In section 7.2, equity constraints that were previously 

introduced in chapter 3 are further investigated then a new set of equations are 

proposed that can model the equity constraints more effectively. Numerical 

experiments illustrate the successful use of the new equity constraints. 

7.1 Prepositioning of supplies and vehicles 

Planning and preparedness play a vital role in disaster management and 

emergency response. After a disaster strikes, the initial unavailability of supplies 

or the slow pace in mobilizing them can cause major delays in emergency 

response that would result in increased loss of life and human sufferings. 

Prepositioning is a valuable tool for emergency response organizations to enhance 

their emergency response capacity and preparedness for responding to large-scale 

disasters. However, effective prepositioning of supplies and personnel is not an 

easy task. Uncertainty about future disasters and also the high costs of inventory 

and maintenance are some of the obstacles in effective prepositioning for large-

scale emergency operations. 
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A number of researches in recent years have considered the prepositioning 

of supplies for emergency operations (Rawls and Turnquist, 2010). These studies 

emphasized the importance and benefits of considering strategic inventory and 

prepositioning of supplies. In this section, it is tired to use the mathematical 

model introduced in chapter 3, in order to model and optimize the prepositioning 

of supplies as well as transportation capacity for disaster response.  

It should be emphasized that technically, prepositioning problem is usually 

considered at the planning or strategic level. Conversely, the mathematical model 

proposed in chapter 3 is a tool to model and optimize emergency response 

operations at the operational level. Nevertheless, the unique capabilities of the 

proposed model can still be used to solve the prepositioning problem. To do so, it 

is required to generate a wide range of potential disaster scenarios in advance and 

solve them with the proposed model and then implement the aggregated outcomes 

of all scenarios in planning or strategic level decision making. 

7.1.1 Mathematical Formulation 

 In the mathematical model proposed in chapter 3, the amount of 

exogenous supply for each commodity at each node of the network was assumed 

to be a parameter that was given for each problem instance. Equation (7.1) below 

is similar to Eq. (3.2) from chapter 3: 
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Equation 7.2 is the new constraint for conservation of flow for the initial 

time period. Equation 7.2 requires that for any given node and any given 

commodity, the sum of all commodities that are shipped from i to any node by 

any transportation mode plus the amount being stored at that node for the next 

time period minus the exogenous supply is equal to zero.  

Since the total supply available at time 0 is limited, we need to add a new 

constraint to the problem to limit the amount of total initial supply cSup0 : 

0,0 =∀=∑ tcSupSup c

i

c
it        (7.3) 

Based on FEMA’s recommendations, the supplies can also be 

prepositioned at the temporary facilities. However, a temporary facility must be 

open and have enough storage capacity to hold prepositioned supplies. Equation 

7.4 enforces these requirements: 

0, =∈∀×≤∑ tWiLocScapSup t
iit

c

c
it      (7.4) 

By adding the equations 7.2, 7.3 and 7.4 to the main model, we can solve for the 

optimal amounts and location for prepositioning of the available supplies. 

Prepositioning is not limited to the relief commodities but can be 

considered for the vehicles that transport these commodities. Finding the optimal 
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location for vehicles of each transportation mode for the initial time period is also 

very important. Using the concepts similar to the ones used for prepositioning of 

supplies, we will have: 
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Equation (7.5) is the conservation of flow for the vehicles and m
itAV is the 

number of vehicles of mode m at node i for time t = 0. Equation (7.6) limits the 

total number of vehicles of each mode available at time t = 0. Equation (7.7) 

prevents the temporary facilities that are not open from accepting any vehicular 

flow and enforces the vehicle parking capacity for the facilities that are open. 

7.1.2 Numerical Experiments 

In the numerical experiments that were presented in previous chapters, it 

was always assumed that the supplies were stored only at the permanent source 

nodes (i.e. LC, CSS, VEN). Also the initial distribution of supplies among these 3 

sources was a given fixed data. For example for most numerical cases in this 

study, it was assumed that 40% of supply was stored at the logistics center site in 

Atlanta, GA. 20% was stored at commercial storage site in Charlotte, NC and 

40% of supply was stored at the vendors site in Nashville, TN. A mostly similar 

approach was used to initially locate the trucks and planes. That prepositioning 

scheme was arbitrary and obviously can be very far from optimal. 
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 In this section a number of cases are generated and solved in order to 

investigate the properties of an optimal prepositioning scheme. Prepositioning is 

considered at different levels. First, it is assumed that only the 3 permanent 

sources can be used for prepositioning and the objective is to find the optimal 

amounts of supply for each commodity to be stored at these 3 facilities. Secondly, 

this constraint is removed and it is assumed that all of the facilities in the federal 

level network can be used for prepositioning. 

Another important issue is the prepositioning of the vehicles. Numbers 

and locations of the transportation vehicles at the beginning of the operation can 

also have a major impact on the efficiency and speed of the operations. If the 

vehicles are not located optimally at the beginning of the operations, a long period 

of very valuable time is wasted before the vehicles can arrive at the supply sites, 

load the relief items and start the delivery process.  

In fact, the prepositioning of supplies and vehicles are two problems that 

are related very closely. If supplies are located optimally but vehicles are not 

readily available then the operations cannot start. On the other hand, 

prepositioning of vehicles without considering the supply sites is not beneficial 

either. Consequently, it is very important to consider the prepositioning of 

supplies and vehicles in conjunction. Optimizing the two problems jointly is the 

only way to find the best prepositioning scheme.  

Six cases are generated and solved to optimality to test the effects of 

prepositioning at different levels. Table 7.1 introduces these cases and presents 

their optimal objective function value. Case 1 is the base case when no 



 189 

 

preposition is applied. In the base case, 40% of supplies are located at LC, 20% at 

CSS and 40% at VEN site. In the base case, 60 trucks are available that are evenly 

distributed among these 3 source nodes. Also, 20 C130 cargo planes are available 

that are assumed to be initially located at CSS and VEN facilities, 10 planes at 

each location. The amount of supply for each commodity and also the number of 

vehicles of each type is the same for all cases. Facility location problem is 

considered for all 6 cases with a maximum of 2 MOBs, 2 FOSAs and 4 SSAs. 

Supplies and vehicles can only be prepositioned at an open temporary facility site 

and is subject to the capacity constraints of each particular facility. 

Table 7.1 Introduction of prepositioning case studies 

CASE Description Objective 
Value 

Improve
ment (%) 

1 base case - amounts and locations of supplies and 
vehicles are fixed at time 0 3.50445 0 

2 supplies can be prepositioned optimally at 3 source 
facilities but vehicles are fixed 3.43035 2.1 

3 supplies can be prepositioned optimally at 11 federal 
facilities but vehicles are fixed 3.3051 5.7 

4 amounts and locations of supplies are fixed but 
vehicles are prepositioned freely 2.51325 28.3 

5 Supplies can be prepositioned optimally at 3 source 
facilities, vehicles are prepositioned freely 2.51325 28.3 

6 supplies can be prepositioned optimally at 11 federal 
facilities, vehicles are prepositioned freely 1.75203 50 

 
The main conclusion from the analysis presented in table 7.1 is that the 

prepositioning of supplies and vehicles can be very effective. All of the cases with 

prepositioning show an improvement over the base case scenario. Cases 2 and 3 
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show a modest improvement over the base case. The main reason for that is 

because the initial distribution of the empty vehicles is not optimal. In these two 

cases, the vehicles are still located at the source nodes, so there is not much 

advantage in prepositioning the supplies in other nodes. However, in cases 2 and 

3, the supply distribution is adjusted to the initial locations of the vehicles and 

resulted in a better objective function. 

In cases 4, 5, and 6 the prepositioning of supplies is combined with 

optimal distribution of empty vehicles. Since both supplies and vehicles are 

located in optimal locations, the operations can proceed much faster than the base 

case scenario. The maximum gain is observed in case 6. In case 6, supplies can be 

prepositioned in any of the 11 federal level facilities and the vehicles are free 

available at the same 11 sites. Consequently, the supplies are prepositioned at the 

nodes closer to the affected states combined with the appropriate number of 

vehicles available at those sites. This resulted in huge saving of 50% in the 

objective function compared to the base case. 

Table 7.2 illustrates the percent of total supply that is prepositioned at 

each facility type for the 6 cases introduced previously. In case 1, supply 

assignment is fixed for the source nodes. In case 2, all supply must remain in the 

source facilities however, it is possible to shift it among the source facilities. As a 

result, the supplies are moved from LC to CSS and VEN mainly because the  

majority of empty vehicles are stored at these 2 facilities. In case 3, prepositioning 

in temporary facilities is allowed. As a result, 30% of supply is moved to 2 FOSA 

facilities that are closer to the disaster areas. In cases 4 and 5 no supplies are 
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stored at MOB and FOSA facilities because there are no empty vehicles available 

at those points. Joint prepositioning of vehicles and supplies are allowed in case 6. 

Therefore a large portion of supplies are prepositioned at MOB and FOSA 

facilities in case 6.  

Table 7.2 Percent of total supply prepositioned at each facility type 

% Supply LC CSS VEN MOBs FOSAs 

Case 1 40.00 20.00 40.00 - - 

Case 2 17.92 50.00 32.08 - - 

Case 3 46.83 23.17 - - 30.00 

Case 4 40.00 20.00 40.00 - - 

Case 5 20.04 50.00 29.96 - - 

Case 6 1.75 14.17 21.50 32.58 30.00 

 

To analyze the effect of prepositioning on the distribution of empty 

vehicles refer to Table 7.3. In table 7.3, the number and locations of vehicles for 

ground and air transportation is shown for the 6 different prepositioning cases. In 

the first 3 cases the numbers and locations were fixed and only shown for 

comparison. The general pattern in cases 4, 5 and 6 indicates that the majority of 

trucks are prepositioned at MOB and FOSA facilities but most of the planes 

remained at the source nodes. The trucks are moved to MOBs and FOSAs to be 

closer to the disaster states. Because at the state level, only ground transportation 

is available and the trucks located at FOSAs can continue to the state level 

networks and eventually deliver the relief items to the final PODs. On the other 

hand, at the federal level network, distances among the nodes are much longer 
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which is preferable to be covered by much faster air transportation mode. This 

pattern in prepositioning of the vehicles is a very important observation that 

shows the successful collaboration between these 2 transportation modes.  

Table 7.3 Number of vehicles prepositioned at each facility type 

No. Of 
Vehicles 

Ground Transportation Air Mode 

LC-CSS-VEN MOBs FOSAs LC-CSS-VEN MOBs 

CASE 1 60 - - 20 - 

CASE 2 60 - - 20 - 

CASE 3 60 - - 20 - 

CASE 4 3 45 12 17 3 

CASE 5 4 39 17 16 4 

CASE 6 1 35 24 20 - 

 

Overall, it is concluded that prepositioning is very important and it can 

greatly improve the speed and efficiency of emergency response logistics. It is 

also shown that prepositioning is especially effective when it is considered in the 

deployment of relief supplies as well as the transportation capacity both at the 

same time. If prepositioning of supplies is done without considering the 

availability of transportation means, the improvements are very marginal in the 

best case. 

7.2 Equity  

As initially introduced in chapter 3, considering equity and fairness among 

aid recipients is an important issue. Based on the geographical dispersion of 

victims and availability of resources over time and space, it is easy to favor the 
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demands of one group of victims over another. Some variations are inevitable; 

however, the ideal pattern is to distribute the help items evenly and fairly among 

all victims. The mathematical models and procedures with general objective 

functions are prone to ignore equity and level of service requirements in order to 

get a better numerical solution. It is very important to realize the need for 

procedures and constraints that prevent any sort of discrimination among victims, 

as much as possible. 

The equity constraint between populations can be defined over time, and 

over commodities. It is not appropriate to satisfy all the demands of one group in 

early stages while the other group of victims does not receive any help until very 

later times. It is more acceptable to fairly distribute the available relief items 

among all recipients even though it might not be enough to satisfy all demands. 

The equity over commodities is also important. For example, it is not acceptable 

to send all the available water to one group of victims and send all the available 

meals to another group.  

In chapter 3, equity constraints were mathematically modeled for the first 

time. Those equity constraints were tested in the preliminary numerical study in 

chapter 4. The results indicated that the proposed equity constraints were 

successful in implementing the required minimum level of service for demand 

points. However, the equity constraints would increase the size of the model and 

make it much more difficult to solve. In fact, when all equity constraints were 

used, the CPLEX solver was not able to find the optimal solution in a reasonable 

time. In this section, it is tried to analyze the equity constraints proposed in 



 194 

 

chapter 3 and also introduce a new set of equity constraints with stronger 

properties.  

7.2.1 New Equity Constraints 

Equations 3.24, 3.25, and 3.26 represented the equity constraints in 

chapter 3. Equation (3.24) enforces a minimum percentage of total demand for a 

specific commodity c, to be satisfied by the time period t. Equation (3.25) requires 

that from all commodities being delivered to node i by time t, at least minβ percent 

to be commodity c. Equation (3.26) ensures that the sum of total commodities 

delivered to point i, to be more than a minimum percentage of the commodities 

that are being delivered to all other demand points. 
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Equation (3.24) enforces a minimum percentage of total demand for a 

specific commodity c, to be satisfied by the time period t. It might not be always 

possible to deliver the required amount by time t; in that case, this constraint 

makes the optimization problem infeasible. 
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Equation (3.25) requires that from all commodities being delivered to 

node i by time t, at least minβ percent to be commodity c. However, if the demand 

for a specific commodity is only a small portion of the total demand at that node, 

then minβ  cannot be enforced and can cause infeasibility.  

Equation (3.26) ensures that sum of total commodities delivered at point i 

to be more than a minimum percentage of all the commodities that are being 

delivered to all other demand points. Eq. 3.26 might also perform poorly when the 

amount of demands between different PODs has large fluctuations. In the 

following, improved equity constraints are proposed to deal with these 

shortcomings.  

It is important to notice that the amounts delivered at each node should be 

proportional to their total demands, in other words: 
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This translates to 
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We define a new variable UDRi = relative unsatisfied demand at node i (Total 

unsatisfied demand at node i divided by total demand at node i). Then we have: 

nUDRUDRUDR ≈≈≈ ...21        (7.10) 

To implement this in mathematical programming language, we should 

define a tolerance factor µt and enforce it for each pair of demand nodes. It 

translates to 
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Equation 7.12 requires the difference of percentage of unsatisfied demand 

between each pair of demand nodes to be smaller than a tolerance factor µt. This 

new formulation compared to the equity constraints 3.26 is simpler, more 

compact, and can better describe the concept of equity among demand nodes. 

Also, the issue of infeasibility caused by previous equations is solved since 

equation 7.12 considers the relative unsatisfied demand.   

Equation 7.12 is compact but it can still be improved. If there are N nodes 

in the network, we need to enforce equation 7.12 for each pair of nodes. In fact 

we will have N*(N-1)*t equations when the number of nodes is N. In this case, 

the number of constraints grows very fast with number of demand nodes. To deal 

with this issue we define 2 new variables (Rmin and Rmax) and reformulate 

equitation 7.12: 

Rt
min = Auxiliary variable for minimum relative unsatisfied demand 

among all nodes at time t 

Rt
max = Auxiliary variable for maximum relative unsatisfied demand 

among all nodes at time t 
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Equations 7.13 find the minimum and maximum relative unsatisfied demands and 

require their difference to be less than a tolerance parameter µ set by the user. 

This provides an exclusive control that was not possible before. Also, equation 

7.13 is more efficient than equation 7.12. If the number of nodes are N, it only 

requires (2n+1) constraints to formulate equity compared to N*(N-1) constraints 

in equation 7.12. This is very important especially when number of nodes is very 

large. For example in case of 100 nodes, equation 7.12 needs 9900 constraints 

compared to only 201 constraints if equation 7.13 is being used. 

Using similar analogy for other equity constraints, new equations are 

derived. Equations 7.14 to 7.20 present the new equity constraints that would 

replace equation 3.24, 3.25 and 3.26 in the original formulation. 
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tcViDemUD
t

c
it

c
it ,,).1( min ∈∀−≤ ∑α      (7.14) 

Equity over Commodities: 

tcViDemrUD
t

c
it

t

t

c
it ,,.min ∈∀≥ ∑∑      (7.15) 

tcViDemrUD
t

c
it

t

t

c
it ,,.max ∈∀≤ ∑∑      (7.16) 

trr t
tt ∀≤− λminmax        (7.17) 

Equity among different Points of Distribution: 
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7.2.2 Numerical Experiment 

To test the effect of using new equity constraints, 3 new numerical cases 

are generated and solved. The results are compared to each other as well as to the 

base case scenario. In these cases, only the equity among points of distribution is 

considered and it is enforced once at t = 12 hours. Case 1, is the base case 

scenario without the enforcement of any equity constraints. In Case 2, µ = 0.5 is 

required that means the difference between highest and lowest relative unsatisfied 

demand should be less than 50%. In cases 3 and 4 higher equity requirements are 

enforced by reducing the tolerance to µ = 0.25 and µ = 0.10, respectively. 

 Table 7.4 presents the outcome of the optimal solutions for each case. In 

Table 7.4, the total demand for each of the 20 POD nodes is shown as well as the 

total unsatisfied demand at each POD after 12 hours of operation for the base case 

and other 3 cases. 

It is very interesting to notice that applying equity constraints in case 2 

and case 3 changed the details of the operation however it did not change the 

objective function value compared to the base case. This indicates that the model 

was capable of satisfying the new level of service requirements without 

sacrificing the objective function. For case 4, the objective function is a little 

higher which is the trade off for satisfying the greater restrictions when µ = 0.1.  

In table 7.4 the initial demand and unsatisfied demand after 12 hours are 

given for different cases. From these results, we can calculate the relative 

unsatisfied demand for each node and each case. The relative unsatisfied demand 
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is equal to unsatisfied demand at each node divided by its initial demand. Table 

7.5 reports UDR values. 

Table 7.4 Effect of equity constraints on demand satisfaction at PODs 

POD Node Initial 
Demand 

Unsatisfied Demand after 12 hours 

Base case Case 2 Case 3 Case 4 

22 13500 6625 13500 8470.588 10125 

23 36000 12000 18000 22588.24 27000 

24 21000 19250 14333.33 13176.47 15750 

25 24000 18000 13500 15058.82 18000 

26 37500 13500 23166.67 23529.41 28125 

27 42000 24500 28500 26352.94 31500 

28 55500 41000 31500 34823.53 41625 

29 10500 10000 6000 6588.235 7875 

30 37500 33500 31500 32904.41 31875 

31 25500 19500 13500 22375 21675 

32 12000 11000 12000 10529.41 10200 

33 16500 16500 9333.333 12247.79 14025 

34 28500 27500 28500 25007.35 24225 

35 25500 25500 25500 22375 21675 

36 39000 39000 33000 34220.59 33150 

37 57000 41125 54500 48808.82 48450 

38 10500 10500 10500 9213.235 8925 

39 46500 34500 40500 40801.47 39525 

40 18000 18000 18000 15794.12 15300 

41 43500 43500 38666.67 37722.79 36975 

Objective Function (E+7) 3.50445 3.50445 3.50445 3.51866 
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Table 7.5 Relative unsatisfied demand for various equity tolerance levels 

POD Node 
Relative Unsatisfied Demand after 12 hours 

Base case Case 2 Case 3 Case 4 

22 0.491 1.000 0.627 0.750 

23 0.333 0.500 0.627 0.750 

24 0.917 0.683 0.627 0.750 

25 0.750 0.563 0.627 0.750 

26 0.360 0.618 0.627 0.750 

27 0.583 0.679 0.627 0.750 

28 0.739 0.568 0.627 0.750 

29 0.952 0.571 0.627 0.750 

30 0.893 0.840 0.877 0.850 

31 0.765 0.529 0.877 0.850 

32 0.917 1.000 0.877 0.850 

33 1.000 0.566 0.742 0.850 

34 0.965 1.000 0.877 0.850 

35 1.000 1.000 0.877 0.850 

36 1.000 0.846 0.877 0.850 

37 0.721 0.956 0.856 0.850 

38 1.000 1.000 0.877 0.850 

39 0.742 0.871 0.877 0.850 

40 1.000 1.000 0.877 0.850 

41 1.000 0.889 0.867 0.850 

Min  0.333 0.500 0.627 0.750 

Max  1.000 1.000 0.877 0.850 

µ 0.667 0.50 0.25 0.10 
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Table 7.5 shows that for the base case which had no equity restriction, 

minimum and maximum relative unsatisfied demands are at 33.3 and 100 percent. 

This means that for the base case, at least one node has 33% unsatisfied demand 

while at least one other node has 100% unsatisfied demand after 12 hours of 

operations. This gap is very large and might not be acceptable from the equity 

perspective. As it is shown at the bottom of table 7.5, for cases 2, 3, and 4 this 

discrepancy is lower. In case 2, the differences between the nodes with highest 

and lowest satisfaction rate are 50%. The same measure is 25% and 10% for cases 

3 and 4 respectively. 

Figure 7.1 better illustrates the outcome of using equity constraints. In 

figure 7.1 the relative unsatisfied demand is depicted for the four cases described 

earlier and calculated in table 7.5. It is evident that in the base case, when there 

are no restrictions, the satisfaction rates for different PODs have large 

fluctuations. The fluctuations among PODs are reduced when equity constraints 

are enforced. In fact, for case 4 with µ = 0.1, the fluctuations are very much 

controlled and the differences are reduced to less than 10%. 
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Figure 7.1 Satisfaction rate variations among points of distribution 
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Chapter 8: Summary and Future Research 

In today’s society that disasters seem to be striking all corners of the 

globe, the importance of emergency management is undeniable. Much human loss 

and unnecessary destruction of infrastructure can be avoided with better planning 

and foresight. When a disaster strikes, various aid organizations often face 

significant problems of transporting large amounts of many different commodities 

including food, clothing, medicine, medical supplies, machinery, and personnel 

from several points of origin to a number of destinations in the disaster areas. The 

transportation of supplies and relief personnel must be done quickly and 

efficiently to maximize the survival rate of the affected population. 

Federal emergency management agency (FEMA) is the primary 

organization for preparedness and response to federal level disasters in the United 

States. FEMA has a very complex supply chain structure to provide the disaster 

victims with critical items after a disaster which involves multiple organizations 

and spreads all across the country. Unfortunately, inadequate response to 

hurricanes Katrina and Rita showed the critical need for better mechanisms in 

emergency operations.  

In this research, first FEMA’s supply chain structure is investigated. There 

are seven main components in FEMA’s supply chain to provide relief 

commodities for disaster victims that are briefly described here: 

1. FEMA Logistics Centers (LC): permanent facilities that receive, store, 

ship, and recover disaster commodities and equipment.  
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2. Commercial Storage Sites (CSS): permanent facilities that are owned and 

operated by private industry and store commodities for FEMA. Freezer 

storage space for ice is an example. 

3. Other Federal Agencies Sites (VEN): representing vendors from whom 

commodities are purchased and managed. Examples are Defense Logistics 

Agency (DLA) and General Services Administration (GSA). 

4. Mobilization (MOB) Centers: temporary federal facilities in theater at 

which commodities, equipment and personnel can be received and pre-

positioned for deployment as required. In MOBs commodities remain 

under the control of FEMA logistics headquarter and can be deployed to 

multiple states. MOBs are generally projected to have the capacity to hold 

3 days of supply commodities. 

5. Federal Operational Staging Areas (FOSAs): temporary facilities at which 

commodities, equipment and personnel are received and pre-positioned for 

deployment within one designated state as required. Commodities are 

usually being supplied from MOB Centers, Logistics Centers or direct 

shipments from vendors. FOSAs are generally projected to hold 1 to 2 

days of commodities. 

6. State Staging Areas (SSA): temporary facilities in the affected state at 

which commodities, equipment and personnel are received and pre-

positioned for deployment within that state. Title transfers for delivered 

federal commodities and cost sharing are initiated in SSAs. 
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7. Point of Distribution (PODs) Sites: temporary local facilities in the 

disaster area at which commodities are distributed directly to disaster 

victims. PODs are operated by the affected state. 

The modeling and optimization techniques established in commercial 

supply chain management seem to be the most relevant approach to be used in 

emergency logistics. Some recent studies emphasized that some supply chain 

concepts share similarities to emergency logistics and therefore tools and methods 

developed for commercial supply chains can be successfully adapted in 

emergency response logistics. However, using commercial supply chain 

techniques in disaster management is still in its infancy. The partial reason is the 

difference in the strategic goals of commercial supply chain with the goals of 

disaster response logistics. The main goal in commercial supply chain is to 

minimize the cost or maximize the profit of the operations. Actions are justified if 

they increase the profit but are not perused if their cost is more than their profit. 

However, humanitarian organizations are mostly non-profit organizations with the 

idea of providing critical services to the public in order to minimize the pain and 

sufferings of the affected populations.  

 There are not many publications that directly applied network modeling 

and optimization techniques in disaster response. Among those studies, there is no 

model that has integrated the interrelated problems of large-scale multicommodity 

multimodal network flow problem, the vehicle routing problem with split mixed 

pickup and delivery, and the optimal location finding problem with multiple 
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layers. Also to the best of our knowledge, there is no mathematical model that 

describes the special structure of FEMA’s supply chain system. 

The goal of this research is to develop a comprehensive model that 

describes the integrated logistics operations in response to natural disasters at the 

operational level. The proposed mathematical model integrates three main 

components. First, it controls the flow of several relief commodities from sources 

through the supply chain until they are delivered to the hands of recipients. 

Second, it considers a large-scale unconventional vehicle routing problem with 

mixed pickup and delivery schedules for multiple transportation modes. And 

third, following FEMA’s complex logistics structure, a special facility location 

problem is considered that involves four layers of temporary facilities at the 

federal and state levels. Such integrated model provides the opportunity for a 

centralized operation plan that can effectively eliminate delays and assign the 

limited resources in a way that is optimal for the entire system. 

The proposed model considers sending multiple relief commodities (e.g., 

medicine, water, food, equipment, etc) from a number of sources to several 

distribution points in the affected areas through a chain structure with some 

intermediate transfer nodes. The supplies may not be available immediately but 

arrive over time. It is a difficult task to decide on the right type and quantity of 

relief items, the sources and destinations of commodities, and also how to 

dispatch relief items to the recipients in order to minimize the total unsatisfied 

demand for all disaster victims.  
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Vehicle routing and scheduling during the disaster response is also very 

important. A large number of vehicles are used in response to large-scale 

disasters. The proposed model is able to keep track of routings for each individual 

vehicle. Also, the model provides a detailed schedule for pickup and delivery of 

relief commodities by each vehicle in each transportation mode. Nonetheless, the 

vehicle routing in disaster situations are quite different from conventional vehicle 

routings. The vehicles do not need to form a tour and return to the initial depot, 

but they can be assigned to a new path at any time. They are expected to perform 

mixed pickup and delivery of multiple items between different nodes of the 

network as the supplies and demands arise over time.  

During the initial response time it is also necessary to set up temporary 

transfer facilities to receive, arrange, and ship the relief commodities through the 

distribution network. The proposed model considers optimal selection of several 

facilities that results in the maximum coverage of the affected areas and the 

minimum delays for supply delivery operations. Usually the number of these 

temporary facilities is limited because of the equipment and personnel constraints. 

Each facility in the model is subject to some capacity constraints.  Various 

capacities are defined for operations such as sending, receiving, and storing 

commodities. These capacities can be different for each facility and are 

determined based on the type, size and layout of that facility. Also the availability 

of personnel and equipment may influence the capacities. The capacity constraints 

are defined in terms of the weight or volume of the commodities as well as in 
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terms of the number of the vehicles that are sent, received, or parked at each 

facility during each time period.  

The other important issue is considering equity and fairness among aid 

recipients. Based on the geographical dispersion of victims and availability of 

resources over time and space, it is easy to favor the demands of one group of 

victims over another. Even though some variations are inevitable, the ideal pattern 

is to distribute the help items evenly and fairly among the victims. The proposed 

model recognizes this need and considers a set of constraints that prevent 

discrimination among victims, as much as possible. 

A set of preliminary numerical experiments was designed to test the 

proposed formulation and evaluate the properties of the optimization problem. 

Different case studies were generated based on the same structure of an imaginary 

hurricane scenario to analyze the effects of different parameters. In general, the 

proposed modeling framework produced reasonable outcomes. It was able to 

provide the level of details required in the disaster response logistics at the 

operational level. For simple cases and small size problems, the commercial 

solver was able to find the optimal solutions; however, for the full size problem 

CPLEX commercial solver was unable to deliver good results within a 

meaningful computation time. It is concluded that better solution algorithms or 

heuristics are needed to address the larger problem instances or real world size 

problems. 

To develop solution algorithms, first some solution approaches for general 

integer programming from previous studies in the literature were reviewed. It was 
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concluded that the current model is very complex and a reliable exact solution 

method is not available that would be computationally attractive or affordable. 

Consequently, it is more realistic to develop fast and efficient heuristic algorithms 

to find near optimal solutions.  

To solve the proposed mathematical model, the problem was structurally 

decomposed into three sub-problems: multicommodity network flow, location 

finding with multiple layers, and general integer vehicle routing problem. These 3 

problems were solved one-by-one, however the interrelation between these 3 

problems were preserved at all times.  

Multicommodity network flow problem is a linear program and is 

considered easy since efficient commercial solvers exist that can solve very large 

LP programs quickly. To solve the multi-layer facility location problem, 4 

heuristic methods are proposed. From those, the Branch-and-bound with 

hierarchical decomposition and the highest capacity ratio were the 2 algorithms 

that showed better results. 

To solve the general integer vehicle routing problem, four heuristic 

algorithms were proposed. The algorithms were tested with large-size numerical 

experiments. All four algorithms were successful in finding good integer 

solutions. The convergence rates of the proposed algorithms were also much 

faster than the commercial solver for the same optimality gap.  

The proposed VRP algorithms were compared to each other. It was 

concluded that Y-list and Y-list Modal algorithms were better in solution quality 

and the convergence speed.  However, when worst-case scenario is considered, T-
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counter and Origin-based T-counter algorithms were shown to have better 

performances. Finally, all four algorithms were used to solve several random 

generated problem instances. It was concluded that the proposed algorithms could 

find good solutions very quickly. In fact, for most cases less than 2% optimality 

gap was reached in less than 2 minutes of computation time. 

In chapter 6, in-depth analyses of different aspects of the proposed 

mathematical model were presented. These analyses were provided in order to 

better illustrate the capabilities of the model and also examine model’s sensitivity 

in various circumstances. The analyses were divided into two main categories: 

sensitivity analysis of the structural parameters of the model, and sensitivity 

analysis of the main input values of the model. It was shown that changing some 

input parameters not only affects the optimization results but it can also largely 

change the problem size and solution computation times. 

The structural parameters included number of commodities C, number of 

transportation modes M, and the time-step resolution t. To test the effect of the 

number of commodities, four cases are considered each with one, two and three 

and four commodities respectively. It is shown that the number of variables and 

number of constraints increases linearly with the number of commodities. 

Number of variables grows faster than number of constraints. More importantly, it 

is shown that when number of commodities increase, the problem becomes much 

harder to solve and the computation time increases rapidly. This increase in 

computation time was exponential in the range tested.  
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Number of transportation modes is also an important factor. Using 

multimodal compared to single modal transportation not only increases the size of 

the formulation but also makes the problem much harder to solve. In multimodal 

systems there is this question of which transportation mode to utilize and how to 

balance the commodity flows among different modes. Another concern in 

multimodal environments is considering the intermodal transfer. From 

application’s perspective it is important to provide suitable facilities and the 

required equipments in order to transfer the relief commodities between 

transportation modes quickly and efficiently. From modeling perspective it is 

important to consider the properties of each transportation mode and correctly 

model the delays during intermodal transfers.  

Multimodal problem is more difficult to solve. In fact, for a numerical 

example the number of variables and constraint in multimodal case is only about 

10% more than single-mode case but it was much more difficult to solve the 

multimodal problem and it took about 120 times longer to solve the multimodal 

problem. 

The other structural parameter in the model is the length of time-steps t. 

Time-step t is the length of time between two consecutive states that the problem 

is being modeled. Selection of appropriate time-step is a very important factor 

that can affect the performance and accuracy of time-space networks 

dramatically. When t is short, the situation on the ground can be modeled in 

greater details which would not be possible with longer time-steps. So from 

accuracy perspective, it is favorable to have shorter time-steps. On the other hand, 
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for each time period in the planning horizon, one layer of physical network will 

be added to the time-space structure of the problem. This makes the problem size 

grow extremely fast with the number of time-steps in the planning horizon.  

Finding a reasonable time-step t is an important modeling challenge. In 

selecting the appropriate time-step one should consider the level of accuracy that 

is required for that specific application and also the computational power that is 

available to them. For any specific application, it is recommended to perform an 

initial analysis and then select the appropriate time-step length based on the 

required accuracy and availability of computational resources. 

The three main categories of input parameters are: parameters of the 

facility location problem, parameters of the vehicle routing problem and 

parameters of the commodity flow problem. 

It is shown that the number, location and capacity of the facilities have a 

major affect on the emergency response operations. In analysis of number of 

facilities, it was concluded that adding more facilities is beneficial in reducing 

total unsatisfied demand. However, these improvements became marginal when 

more that 2 MOBs, 2 FOSAs and 4SSAs are selected. 

The loading and unloading capacity in each facility is shown to impact the 

flow of commodities. Numerical studies tested a range of capacities for both 

loading and unloading capacity factors. It was concluded that investments to 

expand the capacity should improve both capacities at the same time. If one of the 

capacities is kept at a fixed level, then additional capacity of the other type 

remains unused. 
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For vehicle routing problem, number of available vehicles is one of the 

main factors. It is concluded that the number of vehicles not only affects the 

model’s results, but it also affects the difficulty of the model and CPU time to find 

the optimal solution. When the number of vehicles is very low or very high, it is 

much easier and faster to solve the model. For an in-between range of vehicle 

numbers, it can become very difficult and time consuming to find the optimal 

solution. This range is problem-specific and can depend on the other model inputs 

as well. Researchers and practitioners should be aware of this behavior and 

perform the similar analysis for a range of vehicle numbers that is appropriate for 

their specific application. 

Another factor that can affect the performance of the entire model is the 

capacity or type of vehicles that are used during the response operations. The 

general conception is that the higher capacity is always better. However it might 

not always be possible to use the largest vehicles in the fleet. Analysis of capacity 

of trucks and planes in the system indicated that the problem was more sensitive 

to the capacity of trucks than to the capacity of planes. This might be simply due 

to the fact that the ground transportation does the majority of the. 

The other factor in vehicle routing problem that affects the response 

operations is the travel speed. Faster vehicles are favorable from two perspectives. 

First, the flow of relief commodities through the network can happen faster. 

Second, empty vehicles can travel faster and reach the pickup nodes to start 

another round of deliveries in a shorter period of time. However, the travel speed 

might be reduced in the disaster area due to the inclement weather or road 
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blockings. It was shown that lower travel speeds will increase the unsatisfied 

demands. 

Comparing the travel speeds, it was shown that travel speed at federal 

level network had a stronger effect than travel speed at the state level network. In 

other words, if we could choose to improve the conditions of the roads in either 

federal level or state level roadways, it would be more rewarding to improve the 

federal level links. 

For commodity flow problem, sensitivity analysis was performed to 

investigate the effect of various amounts of supply, random demands and the 

relative urgency factor. In analyzing available supplies, it was shown that the lack 

of supplies at source nodes had a large negative effect on the objective function 

value. On the other hand, when supplies were abundant, the objective function 

was only slightly improved. In fact, other limitations such as transportation 

capacity and facility constraints limit the amounts of supply that could be 

delivered and having extra supply is not always beneficial. 

Locations and amounts of demands are the other factors that affect the 

details of the response operations. Variability in demand locations and amounts is 

a negative factor for emergency response operations. Several cases with random 

demand values were generated and solved to optimality.  It was shown that in 

spite of variation in demands, the proposed model was successful in managing the 

demand variations. Also, the same set of facility locations were used for all 

random cases that could be interpreted as a good measure of robustness of the 

model in case of fluctuations in demand. 
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Finally, the effect of relative urgency factor was tested. It was shown that 

using relative urgency factor can be very effective when there was a reason to 

give priority to a commodity over another. The demands for commodities with 

higher RU factor were satisfied at very earlier times compared to the other 

commodities. Use of RU factor is highly recommended when there is a small 

amount of demand for a commodity with high priority (e.g. medical supplies).It is 

very effective to use a higher RU factor in the model to make sure that the priority 

is given to that commodity regardless of its small quantity. RU factor can also be 

applied to give priorities to some demand points over the others. Numerical 

experiments indicated that RU factors can be effectively used if a some PODs 

have higher priorities. 

Recommendations for Future Research 

In this section some recommendations are listed for future research. 

1- Demand Estimation 

The mathematical model presented in this dissertation is intended for 

modeling and optimization of disaster response logistics at the operational level. 

Consequently, the locations, types, and amounts of demand are assumed to be 

known at the any time. However, in reality the demands are not known in 

advance. In fact, the demands might be very different in any special case based on 

the type and intensity of the disaster and the characteristics of the impacted 

community. 

It is recommended to research and develop demand estimation models for 

all potential disaster types and intensities for the targeted communities. Demand 
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estimation models should predict the potential types and locations of demands. It 

is also very important to predict the variations of demands over time.  

2- Modeling intermodal transfer terminals 

The model proposed in current dissertation is capable of considering 

multiple transportation modes. It was assumed that relief commodities can be 

transferred between different modes at some intermediate facilities. Loading, 

unloading, and storage capacities are considered for these intermodal transfer 

terminals. Also, the model considers a fixed delay when commodities from one 

transportation mode are being transferred to another independent of the volume or 

the type of commodities. Therefore, this is a relatively simplified version of what 

happens in real world scenarios.  

It is recommended to do further research on the operational details of 

intermodal transfer terminals. These terminals are large-scale facilities with 

various systems and mechanisms inside them. It is suggested to try to model the 

interactions inside these facilities and then possibly combine the resulted models 

with the integrated logistic model proposed in this research. 

3- Comparison to real world disaster scenarios 

The integrated mathematical model proposed in this research is a general 

framework that can be adapted to different disaster scenarios. However, every 

disaster scenario can be different based on its type, intensity, geographical region 

and also the amount of available resources and infrastructure. 

It is recommended to do further research on different disaster types and 

investigate the requirements specific to that disaster. By doing so, disaster 
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response organizations can improve their operations and gain valuable 

information in order to deal with future disasters. It is also recommended to gather 

data and information from previous disasters and use them to calibrate the model 

proposed in this dissertation in order to tailor this general-purpose model to their 

specific region and potential disaster scenario. 

4- Third party logistics provider and collaborative response 

In this research, it is assumed that a central organization is in control of 

managing and operating the entire system. In the United States, federal 

emergency management agency is the main organization responsible in dealing 

with large-scale disasters. However in general case, several organizations might 

run parallel response operations and these organization might act independently. 

It is also possible that the main relief organization uses other logistics providers 

(e.g. Contractors, state or local organizations) to help with response to large-scale 

disasters.  

It is recommended to investigate the roles and responsibilities of these 

third party logistic (3PL) providers. It is recommended to develop mathematical 

models (similar to the one proposed in this dissertation) specific to the operations 

of 3PL providers. Then, another important research question is how to integrate 

the operations of the main response organization with those of 3PL providers in 

order to maximize the benefits for the disaster victims. 

5- Dealing with uncertainty 
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In the assumptions section of the proposed model (section 3.4), it was stated that 

the required data for the model is available and given. For example, it was 

assumed that following information is given: 

• Demands: commodity types, demand locations, demand amounts 

• Supply: commodity types, supply locations, supply amounts 

• Permanent Facilities: types, locations, capacities 

• Temporary Facilities: set of potential sites for each type, capacities of 

each type 

• Network: link-node incidence matrix for each transportation mode 

• Vehicles: number of vehicles available for each mode and their initial 

locations, capacity of each vehicle 

• Travel Times: travel time on each link for each transportation mode 

Since the model is at the operational level, it is assumed that the 

abovementioned data is given and consequently, the model is deterministic. In the 

proposed model, the required information is estimated or known at the beginning 

of the operations and the model can adapt to the new information as the 

circumstances evolves over time. 

Therefore, the proposed model in this study is a reactive model and can 

only adjust to the changes after they happen. An interesting variation of this 

model is considering a predictive approach. By considering uncertainties and 

using predicted values for variations of input data over time, the model can plan 

for events before they happen and achieve greater savings. The investigation and 

formulation of such a model can be a remarkable contribution. 
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6- Non-homogeneous fleet 

In the proposed model, it was assumed that all the vehicles of one 

transportation mode have the same characteristics. The important characteristics 

are capacity and travel speed of each vehicle type. Modifying the formulation to 

consider non-homogeneous vehicles within each transportation mode can be 

investigated in future. Non-homogeneous fleet can be considered in the proposed 

model however each type of vehicle should be defined as a separate transportation 

mode. It is suggested to modify the formulation in a way that can consider non-

homogeneous fleet of the same transportation mode without defining a new mode 

that can increase the size of the problem rapidly. 

7- Other Objective Functions 

The objective function modeled in this study was to minimize total 

unsatisfied demands over time for all commodities and all demand nodes. It is 

suggested to investigate the possibility of considering and modeling other 

objective functions. Some examples include maximizing throughput, maximizing 

utilization, minimizing cost, minimizing operations duration, etc. When such 

objective functions are formulated, one can analyze and compare the effects of 

each objective on the details of the operations. 
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