
  

 
 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Document: OPTIMAL SELECTION OF 

MEASUREMENTS AND MANIPULATED 

VARIABLES FOR PRODUCTION CONTROL.   

  
 Wuendy Abi Assali, Doctor of Philosophy, 2008 
  
Directed By: Professor Thomas J. Mc Avoy  

Department of Chemical Engineering 
 
 
The main objective in a chemical plant is to improve profit while assuring products 

meet required specifications and satisfy environmental and operational constraints.  A 

sub-objective that directly affects profit (main objective) is to improve the control 

performance of key economic variables in the plant, such as production rate and 

quality.  An optimal control-based approach is proposed to determine a set of 

measurements and manipulated variables (dominant variables) and to structure them 

to improve plant profitability.  This approach is model-based, and it uses optimal 

control theory to find the dominant variables that affect economic variables in the 

plant.  First, the measurements and manipulated variables that affect product flow and 

quality are identified.  Then, a decentralized control structure is designed to pair these 

measurements with the manipulated variables.  Finally, a model predictive control 



  

(MPC) is built on top of the resulting control structure.  This is done to manipulate 

the set point of these loops in order to change the production rate and product quality.   

 

Another sub-objective that affects the profit in the plant is to improve the control of 

inerts. In general, the inventory of the inerts is controlled using a purge. A new 

methodology to optimally control inerts is presented. This methodology aims to 

reduce the losses that occur throughout the purge by solving an optimization problem 

to determine the maximum amount of inert that can be handled in the plant without 

having shut down of the plant due to inert accumulation. The methodology is 

successfully applied to the Tennessee Eastman Plant where the operating cost was 

reduced approximately 4%.  

 

This methodology solves an approximation to an optimal economic problem. First, it 

improves the control performance of key economic variables in the plant. Therefore, 

tighter control of these economic variables is achieved and the plant can be operated 

closer to operational constraints. Second, it minimizes purge which is a variable that 

generally causes significant costs in the plant. This approach is applied to the 

Tennessee Eastman and the Vinyl Acetate Processes.  Results demonstrating the 

effectiveness of this method are presented and compared with the results from other 

authors.  
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Chapter 1: Introduction 

 

1.1.  Historical Overview of Plantwide Contro1 

In general, a typical chemical process has multiple units, hundreds of measurements 

and manipulated variables, and different control and economic objectives. For many 

years, engineers used the unit operation approach [Stephanopoulos, 1983] to design 

control structures for chemical processes. In this approach, control loops were 

established for each unit operation or equipment in the plant. Then, all these pieces 

were combined for an entire plant. This approach did not always give the expected 

results because, when process units are linked, they interact with one another. Also, 

changes in manipulated variables produce local and global effects in the process. 

These characteristics of the entire process create conflicts between loops. Therefore, 

engineers had to make adjustments either in their final control strategies or in the 

process to avoid these conflicts. Despite these inconveniences, the unit operation 

approach has worked reasonably well. However, in the late 1960’s, with the objective 

of reduceding energy costs, operating costs, and capital investment, engineers started 

to increase the use of recycle streams. Also, they introduced heat integration in both 

existing and new plants. The use of recycle streams and heat integration improves 

economics in the plant. However, they introduce a feedback of material and energy 

among units upstream and downstream. Moreover, recycle streams and heat 

integration interconnect separated unit operations and create a path for disturbance 

propagation [Luyben et al., 1996]. The presence of recycle streams alters the dynamic 
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behavior of the plant by introducing an integrating effect that is not localized to an 

isolated part of the process [Luyben et al., 1997]. These features of complex 

processes can only be considered from the viewpoint of the entire plant. 

Over the last few decades, process control engineers have developed different 

methodologies to generate control structures for an entire plant, and not simply for 

individual units. These methodologies are called plantwide control design 

methodologies, and they consider the local (unit operations) and global characteristics 

of the process (interaction between unit operations, feedback due to recycle stream, 

energy integration, etc.).  The plantwide control design problem is very complex 

because of the following: 1) The size of the problem (large number of measurements 

and manipulated variables, many different unit operations) is significantly larger than 

for single units; 2) The variables to be controlled by a plantwide control system are 

not as clearly and easily defined as for single units [Stephanopoulos et al., 2000]; 3) 

The characteristics of the process, such as several recycle streams and energy 

integration (may affect the entire process); and 4) The large cost involved in making a 

precise problem definition (the use of a detailed dynamic linear and nonlinear model 

and a steady state model). In order to overcome these difficulties, the plantwide 

control problem is decomposed into smaller subproblems. In addition, whenever the 

dynamic model of the process is not available, an alternative to this is to develop 

heuristic rules, based on experience and process insight. Therefore, plantwide control 

design methodologies can be divided into mathematically-oriented, process-oriented 

approaches, and/or a combination of both. The mathematically-oriented approaches 

are based on the use of mathematical models and quantitative methods to determine 
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control structures for the process. The following researchers have presented 

mathematically-oriented approaches: Moore (1992), Georgiou and Floudas (1992), 

Narraway and Perkins (1993, 1994), Mohideen et al. (1996), Bansal and Perkins 

(2000) ,  Kookos and Perkins (2000), and Kookos (2005) among others.  The process-

oriented approaches are based on qualitative methods where heuristics, logic, and 

experience are used determine control structures for the process. Buckley (1964), 

McAvoy et al. (1994), Luyben et al. (1996), Skogestad (2000, 2004) were among the 

authors that proposed process-oriented approaches.   Larsson and Skogestad (2000) 

presented a review on plantwide control design of process-oriented and 

mathematically-oriented approaches.   

 

Several plantwide design methodologies have been presented in recent years (Details 

are given in Chapter 2). However, there is no systematic procedure that has been 

adopted by the control community, as a general procedure to solve this problem. The 

reason is that plantwide control design is very much open-ended which means that 

there is not a unique correct solution. In fact, a control structure that is good for a 

specific control or economic objective might not be good for another objective. 

Therefore, the success of the control design is measured by the extent to which it can 

achieve the desired control, operating, and economic objectives. Proposed control 

strategies can be compared and evaluated, using different criteria, such as control 

performance and analysis of key economic variables in the plant such as production 

rate, variability of product quality and amount of purge.  
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1.2.  Rationale of Research 

The main objective in a chemical plant is to improve profit while satisfying product 

specifications, environmental, and operational constraints. This can be translated into 

the following objectives: increase product throughput (if the market requires more 

product), increase yield of higher valued products, decrease energy consumption, 

decrease purge, decrease off-specification products, decrease pollution, improve 

safety, extend life of equipment, improve operability, and decrease production labor 

[Edgar, 2004]. 

 

In general, in complex processes, more than one variable should be controlled to 

satisfy the operating economic objectives in the plant. However, it is not simple to 

identify a direct relationship between each type of economic benefit (profitability) 

and how controllers are designed and operated.  The key questions to answer are the 

following: 1) which variables (dominant variables) should be controlled?  2) which 

measurements and manipulated variables should be used for this purpose? Different 

techniques have been used for the problem of measurement selection and manipulated 

variable selection. Chapter 3 presents a review of current measurement and 

manipulated variables selection methodologies.  However, in the majority of these 

techniques the effects of measurement and manipulated variable selection on the 

economic objectives in the plant is not considered. To demonstrate the importance of 

measurement selection and its effect on the economic objectives in the plant, two 

examples are presented. One case involves the feedback regulation of the temperature 

in a chemical reactor. The control of this loop affects the productivity, selectivity, 
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yield, and reactor stability. Another case concerns the purity control in a distillation 

column, in which the control of the temperature on the right tray affects the purity 

and, therefore, the economics of the plant.  

 

It is important to point out that the majority of current plantwide control design 

methodologies do not focus on the main economic objective in the plant (to improve 

profit). The reasons for this are the following: 1) These methodologies put more 

emphasis on the control and operation of the plant and 2) It is not an easy task to 

quantify profitability at this stage (when control strategies for the plant are going to 

be determined) because the key economic considerations are not easily formulated, 

using a single objective function.  Among, the limited number of researchers who 

consider economics for control structure design are Nishida (1981), Narraway and 

Perkins (1993), and  Bansal and Perkins (2000), and Kookos (2005). Their 

approaches are rigorous and produce control structures that are optimal within the 

limitations imposed by the model, and the mathematical methods used [Bansal and 

Perkins, 2000]. However, they involve a detailed evaluation which can be translated 

into engineering effort and computational time.  

 

The motivation of this research work is to develop a systematic methodology for 

plantwide control design that focuses on improving profit in the plant. A sub-

objective that directly affects the profit in the plant is to improve the control 

performance of key economic variables in the plant, such as production rate and 

product quality.  



 

 6 
 

 

In this work, an optimal control-based approach is proposed to determine the set of 

measurements and manipulated variables (dominant variables) and to structure them 

to improve profit in a plant.  This approach uses a linear dynamic model of the 

process (linear time invariant, LTI, state space model) and optimal control theory to 

identify the dominant variables that affect production rate and product quality. The 

original idea of using a LTI model and optimal control theory for control structure 

design was presented by Schnelle (1989). More recent research on this subject has 

been presented by Chen and McAvoy (2003, 2004) and Chen (2002). 

 

Another objective that is considered in this dissertation is to improve the control of 

inerts in a plant. In general, the inventory of the inerts is controlled using the purge. 

Sometimes the loss that occurs through the purge is very significant because not only 

the inerts leave the process through the purge but also the reactants and products 

leave. A new methodology to improve the control of inerts in a plant is proposed. 

This methodology uses the amount of inerts that enters in the plant to solve an 

optimization problem to determine the maximum amount of inerts that can be handled 

in the plant without having to shut down the plant due to inert accumulation. This 

methodology uses a Kalman filter to estimate the amount of inerts that enters the 

plant if there is no analyzer to measure it. Then the setpoint of the purge controller is 

modified according to the results of the optimization problem.  
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This methodology solves an approximation to an optimal economic problem. First, it 

improves the control performance of key economic variables in the plant (production 

rate and product quality). Therefore, tighter control of these economic variables is 

achieved and the plant can be operated closer to operational constraints. Second, it 

minimizes purge which is a variable that generally causes significant costs in the 

plant. For example, by looking at the cost function of the Tennessee Eastman plant it 

is obvious that the purge represents a significant cost (approximately 67% of the total 

operational cost).   

 

1.3.  Introduction to Optimal Control 

The plantwide control design methodology presented in this work is based on optimal 

control theory, therefore a brief introduction to some basic definitions in optimal 

control theory is presented in this section. Optimal control theory describes the 

application of different forcing to a dynamic system for the purpose of maximizing 

some measurement of performance or minimizing a cost function [Stengel, 1993]. In 

other words, the optimal control problem consists in finding the control which attains 

the desired objective while maximizing or minimizing a given criterion (performance 

index). Optimal control theory has a large number of applications such as determining 

optimal flight path, maximizing the range of a rocket, minimizing the error in 

estimation of the position of a vehicle. Specifically, in process control, optimal 

control theory has been used as follows: 1) to regulate a system to remain near a 

desired condition in the presence of disturbances, and 2) to follow a nominal path 

with minimum error, even though system parameters have uncertain values. 
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In general, the majority of chemical processes are considered nonlinear. Even though 

there is an optimal control design approach for general nonlinear systems [Lewis, 

1992], no systematic design approach has been suggested at the present time. In fact, 

experience is always needed for solving each particular nonlinear problem. By 

contrast, optimal control theory and linear quadratic regulator (LQR) are firmly 

established for linear and time-invariant  (LTI) systems. The optimal controller design 

for linear time invariant (LTI) systems with quadratic performance indices is called 

the linear quadratic regulator (LQR) problem. In the optimal control theory, LQR is 

the basic controller design for LTI systems. The general formulation for an optimal 

LQR, using state feedback, is given as follows [Lewis, 1992]: 

Process 

BuAxx +=&   ott ≥   oo xtx =)(                  (1.1) 

 

Performance Index or cost function: 

000)()(
2

1
)()()(

2

1
)(

0

0 >≥≥++= ∫ RQtSdtRuuQxxTxTSTxtJ

T

t

TTT   (1.2) 

 

with         0)( ≥TS          0≥Q           0>R     

The optimal LQR is determined by solving a Riccati Equation (Equation 1.3).  

QSBSBRSASAS
TT +−+=− −1

.

                                    (1.3) 

 

where the optimal feedback gain is given by the Kalman gain K(t) as follows:  
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SBRK
T1−=                                                        (1.4) 

 

The control strategy that minimizes the value of a quadratic performance index or 

cost function is described by a state feedback control law. Then the optimal control 

u(t) is a time varying state feedback given by Equation 1.5 

 

xtKu )(−=                                                         (1.5) 

 

Optimal Cost: 

0000 )(
2

1
)( xtSxtJ

T=                                                  (1.6) 

This formulation assumes that the state of the plant is known; therefore, the cost 

function can be calculated before the control action is applied to the plant, if the 

initial state is known in advance. More details of this formulation can be found in 

[Lewis, 1992].  

 

1.4. Topics of the Dissertation 

The organization of this disseration is as follows: Chapter 2 provides a background on 

plantwide control design and a review of current relevant research in this area. 

Chapter 3 provides a background, review, and comparison of current measurements 

and manipulated variable selection methods. In Chapter 4, the optimal control-based 

measurement and manipulated variable selection methodology is presented. In 

Chapters 5 and 6, the proposed methodology is applied to two well-known process 
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models, the Tenessee Eastman Process and the Vinyl Acetate Process, respectively. In 

Chapter 7 the optimal control of inerts methodology is presented. Finally, in Chapter 

8, conclusions and future research are presented.  
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Chapter 2:  Plantwide Control Design  
 

 

 2.1. Background 

Over the last few decades, process control engineers started to consider the entire 

plant, for addressing the control design problem for chemical plants instead of 

individual units of the process.  Numerous authors have proposed plantwide control 

methodologies that consider the local (unit operations) and global characteristics of 

the process (interaction between unit operations, feedback because of recycle streams, 

energy integration, etc).  Today’s chemical plants contain several recycle streams, 

energy integration, many different unit operations, and a large number of 

measurements and manipulated variables which make the plantwide control design 

problem more complex. Several methodologies have been proposed to solve this 

problem. The majority of them decompose the problem into smaller sub-problems 

that are easily handled. In addition, these methodologies can be categorized into 

heuristic-based methodologies, mathematically based-methodologies, and a 

combination of both.  The heuristic-based methodologies are based on qualitative 

methods that use experience and logical rules to generate plantwide control structures. 

The main advantage of these methodologies is that they do not involve any detailed 

evaluation; therefore, the engineering effort and computational time is relatively 

small, compared to mathematically-based methodologies, even for large problems. 

On the other hand, the mathematically-based methodologies use quantitative methods 
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in which mathematical models are formulated and solved, using mathematical 

programming methods. These methodologies are rigorous and produce control 

structures that are optimal within the limitations imposed by the methods and models 

used; however, they involve more engineering effort and computational time.   

 

In this chapter, a number of plantwide control methodologies, proposed by 

researchers in recent years, are reviewed to give a background to the methodology 

presented in this thesis. In Section 2.2, the terms and definitions used in the plantwide 

control area are defined. In Section 2.3, control structure design is explained. In 

Section 2.4, current methodologies for plantwide control design are reviewed. In 

Section 2.5, partial control is explained. Finally, in Section 2.6, simulation techniques 

used to evaluate plantwide control performance are discussed. 

2.2. Plantwide Control Design Terms and Definitions 

The term plantwide refers to an entire chemical plant consisting of recycle streams, 

energy integration, and many different interconnected unit operations (distillation 

columns, reactors, heat exchangers, pumps, compressors, absorbers, tanks, etc.). 

Plantwide control involves the systems and strategies to control an entire chemical 

plant. Therefore, plantwide control tries to address the following question: which 

variables should be controlled, which variables should be measured, which inputs 

should be manipulated and how should they be linked together [Foss, 1973].  The 

main objective of a plantwide control system is to satisfy the desired economic and 

operational objectives, reject disturbances, and handle safety, operational, and 
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environmental constraints. In general, the design of a plantwide control system can be 

an overwhelming task, considering the following: 

1) The size of the design problem is always related to the difficulty of solving the 

problem. Often in a complex process, the number of measurements is large and 

exceeds the number of manipulated variables. Therefore, a large number of control 

schemes can be generated by pairing the manipulated variables with measurements 

(process outputs) in different ways. It is not always obvious, even to experienced 

process control engineers, which of these structures would be the best to accomplish 

the desired objectives. 

2) In some cases, it is relatively easy to determine the variable or set of variables that 

should be controlled to achieve a specific objective. However, when global objectives 

are being considered (e.g. maximize profit, minimize process variations), it is not an 

easy task to find the set of variables that define the behavior represented by the global 

objective. 

3) Features of the entire plant, such as recycle streams, energy integration, interaction 

between units, and a large number of variables can make the size of the mathematical 

problem too large and difficult to handle.  Therefore, plantwide control design 

methodologies divide the overall problem into sub-problems through a hierarchical 

design procedure.  

Hierarchical decomposition 

Buckley [Buckley, 1964] was the first researcher to use the idea of decomposing the 

plantwide design control problem into sub-problems. Buckley, proposed a procedure 

that consisted of two stages: 1) Determine the material balance control structure to 
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handle vessel inventories for low-frequency disturbances; 2) Establish product quality 

control structure to regulate high frequency disturbances. This procedure has been 

used for plantwide control design and as a conceptual framework for developing later 

procedures. The main disadvantage of this methodology is that it does not explicitly 

consider the energy management and recycle streams. Also, by selecting the material 

balance control structure before the product quality controls, the procedure can 

significantly limit flexibility in chosing the control structure for product quality 

[Luyben, 1997].  Another pioneer in the use of a hierarchical solution for the 

plantwide control design problem was Umeda [Umeda, 1978].  His procedure is a 

unit-based approach that consists of four stages: 1)  Decompose the plant into 

individual unit operations; 2)  Generate the best control structure for each unit; 3)  

Combine all these structures to form a complete design for the entire plant; and 4)  

Eliminate conflicts through manual adjustment. Although this approach has been 

widely used in industry, it becomes impractical for today’s chemical plants (recycle 

stream, energy integration, etc.).  The reason is that there are too many conflicts when 

individual unit operation control structures are linked together. In 1980, Morari 

presented a review on plantwide control methodologies. He also discussed two 

hierarchical ways of decomposing the plantwide problem: 

1) Multi-Layer (Vertical) Decomposition. The decomposition can be based on either 

the priorities of the control objectives or the time scale (the frequency of  adjustment of 

the input). Authors that use the vertical decomposition based on time scale in their 

plantwide control methodologies are: [Buckley, 1964], [McAvoy and Ye, 1994], and 

[Ng and Stephanopoulos, 1998], [Chen, 2002], among other. Ng and Stephanopoulos 
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(1998), combine vertical decomposition with horizontal decomposition, discussed 

below.  On the other hand, plantwide control methodologies that use vertical 

decomposition based on the priority of control objectives were presented by [Luyben, 

1997], [McAvoy, 1999], [Ng and Stephanopoulos, 1998], and [Chen, 2002] among 

others.  The control objectives used by these authors are basically the same: stability, 

energy balance, production rate, product quality, safety control, material balance, unit 

operation, optimize economics. However, they were prioritized in a different way. 

Chen (2002) compared the way that [Luyben, 1997], [McAvoy, 1999] and [ Ng, 

Stephanopoulos, 1998] prioritized these control objectives. Also, Chen pointed out that 

McAvoy’s vertical decomposition can be explained from both points of views (time 

scale and priority of the control objective).  

2) Horizontal Decomposition. The system is divided into non-interacting parts.  

Douglas (1988), Ng and Stephanopoulos (1998), and Vasbinder and Hoo et al. (2003) 

are some of the authors that have used horizontal decomposition to solve the plantwide 

design problem. Table 2.1 shows how these authors decompose the problem. 

Table 2.1 Horizontal Decomposition-Based Plantwide Design Methods 

Level Douglas Hoo Ng, Stephanopoulos 

1 Batch/Continuous Operation Batch/Continuous 

Operation 

Preliminary Analysis to Collect 

Plant Operation Information 

2 Definition of Input/Output 

Structure 

Definition of Input/Output 

Structure 

Definition of Input/Output 

Structure 

3 Design of Recycle 

Subsystem 

Design of the Chemical 

Reactor Subsystem 

Design of Recycle Subsystem 

a) Reaction   b)Separation 

4 Design of Separator 

Subsystem 

Design of Separator 

Subsystem 

Define Objectives/Constrains  

for Unit Operations  

5 Energy Integration Unit Operation: a)Recycle 

b) Energy  Integration 

Unit Operation 
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Almost all the available hierarchical design procedures have been consistent with these 

ideas [Chen, 2002]. 

 

2.3. Control Structure Design 

The control structure design consists of five tasks: 1) selection of controlled variables, 

2) selection of manipulated variables, 3) selection of measurements, 4) selection of 

control configuration, and 5) selection of controller law. These tasks are performed for 

each sub-problem or stage in the hierarchical plantwide control design procedure. The 

control structures designed for each sub-problem or stage are used in the next sub-

problem or stage.  Control structure design approaches can be divided into 

mathematically-oriented, process-oriented approaches, and/or a combination of both. 

The mathematically-oriented approaches are based on quantitative models, 

optimization, and the use of mathematical tools.  In general, the control structure design 

problem is difficult to define mathematically because of the size of the problem and the 

effort involved in making a precise problem definition -- for example, a detailed 

dynamic and steady-state model [Skogestad et al., 1998]. The process oriented 

approaches consist of heuristic rules that are based on experience and process 

understanding 

2.3.1. Selection of Controlled Variables 

The selection of controlled variables is probably the least studied of the five 

tasks in the control structure design problem. The decision about which 

variables should be controlled has mostly been based on engineering insight and 
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experience. According to Skogestad (1998), the reason for this is that it is a 

structural decision for which there has not been much theory. In addition, the 

majority of researchers believe that the decision about which variables should 

be controlled is directly related to the operational control objectives in the plant. 

These objectives can be categorized as follows:  

1) Maintain process stability. 

2) Regulate material and energy balances.  

3) Satisfy operational, equipment and environmental constraints.  

4) Satisfy production rate and quality specification. 

5) Maintain normal unit operations. 

6) Optimize economics.   

 

In 2002, Chen explained that the controlled variable selection procedure 

consists of four steps:  Step 1) Define control objectives by analyzing plant 

design and operation specifications.  Step 2) Determine controlled variables for 

each control objective and check the correlation among these variables.  Step 3) 

Rank control objectives by applying engineering judgment.  Step 4) Assign 

controlled variables for each sub-problem or stage in the hierarchical plantwide 

control design procedure. Chen pointed out that, in most cases, it is not difficult 

to assign specific controlled variables for these control objectives. However, 

when there are more controlled variables than manipulated variables, or if the 

controlled variables need to be kept at exact setpoints, then the process needs to 

be modified to provide enough degrees of freedom. On the other hand, if the 
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controlled variables can be kept within prescribed bounds, the idea of partial 

control can be used for this purpose [Arbel, 1996].  To explain the concept of 

partial control, it is important to point out that there are some variables 

(dominant variables) that have a strong influence on other variables of interest. 

Therefore, by controlling the dominant variables, the variables of interest 

(associated with a specific control objective) can be kept within the desired 

limits. This is known as partial control. Research done in the partial control area 

can be found in Arbel, (1996), (1997), and (1999).  

 

Skogestad et al. (1998) addressed the problem of the selection of controlled 

variables for which the setpoints are determined by an optimization layer. They 

pointed out that some people think that it does not really matter which variables 

are specified for controlled variables, as long as all degrees of freedom are used. 

The reason is because the remaining variables are then uniquely determined. 

This is true only when there is no uncertainty (signal uncertainty or model 

uncertainty). In the presence of uncertainty, it does make a difference which 

variables are selected to be controlled at their setpoint (when these setpoints are 

determined by an optimization layer). Therefore, Skogestad stated that when 

selecting controlled variables for the optimization layer, one should try to find a 

set of variables that achieves self-optimizing control. A process (with its control 

structure) is self-optimizing if, by keeping the setpoints of the optimized 

variables constants, it is possible to keep the loss within an acceptable bound, 

and within a specific time period . In other words, the sensitivity of the 
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economic objective to uncertainty is less than the accepted limit [Skogestad, 

1998].  A few researchers [Morari et al., 1980], [Skogestad et al. 1996],  

[Skogestad et al. 1998]  have done work to address the problem of the selection 

of controlled variables to minimize the sensitivity to uncertainty. Skogestad 

(1996) presented two optimization-based methods to select controlled variables 

in the presence of uncertainty. In 2003, Skogestad [Skogestad et al. 2003] 

proposed a methodology to find an optimal linear combination of measurements 

to use as controlled variables. This methodology considers the selection of 

controlled variables that when kept constant, lead to minimum economic loss 

(self-optimizaing control). Skogestad defined self optimizing control as the 

acceptable economical loss that is achieved by keeping the setpoint values of 

the controlled variables constant, in the presence of disturbances. A requirement 

to be a good candidate controlled variable is that its optimal value is insensitive 

to disturbances. More recently, Araujo and Skogestad [Araujo et al., 2007] and 

Kariwala [Kariwala, 2007] presented their research work  using the idea of self-

optimizing control. In his work, Araujo (2007) applied the self-optimizing 

control to a HAD plant. The main limitation with this methodology is that it 

finds a good set of controlled variables for the steady state conditions (not set 

point changes). However, it does not consider cases, such as change of 

production rate or product quality and/or changes in operating conditions. 

 

The minimum singular value (MSV) has been used for selecting control 

structure and manipulated variables. Morari (1983) showed that the MSV is 
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related to input saturation. Yu and Luyben (1986) propose using MSV to select 

between input sets. They claim that the MSV is a measure of the plant’s 

inherent ability to handle disturbances, model plant mismatches, changes in 

operating conditions, etc. [Skogestad et al. 1998]. However, this claim seems to 

be based on experience or intuition since no further justification is given. In 

1990, Chang and Yu proposed a related idea that uses the columns’ sum for 

non-square plants for selecting controlled outputs. The set of outputs with the 

largest row sum will lead to small steady-state sum of square error. Once the 

controlled variables are selected, Chen, (2002) used Singular Value 

Decomposition (SVD) to check for linear correlation between them. The SVD 

is applied to the steady state gain matrix to obtain K=USV
T.  Then the 

correlation matrix, called C,  is calculated, as explained in Appendix I,  for the 

following matrix  z = SV
T.  If any two rows in the C are linearly correlated, 

controlled variables related with these two rows cannot be used in the same 

design. 

2.3.2. Selection of Manipulated Variables 

Manipulated variables are the physical degrees of freedom which typically are 

valve positions or electric power inputs. Skogestad (1998) pointed out that the 

selection of manipulated variables is not a difficult task at the stage of control 

structure design, since these variables generally are a direct consequence of the 

design of the process itself. However, there are still interesting issues to address, 

such as: the need to add more valves, the removal or relocation of the available 

ones, and the selection of the strongest (dominant) manipulated variables for 
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specific control objectives. A detailed review of current approaches for 

selecting manipulated variables is given in Chapter 3. 

2.3.3. Selection of Measurements 

Measurement selection involves the task of determining the number and the 

best set of measurements for controlling a variable or a set of variables. This 

should not be confused with the sensor allocation problem which determines the 

position where the sensor should be installed. Sometimes measurement 

selection can be a difficult task because there are often many possible 

measurements that can be used to control a variable. For example, if only one of 

the pressures in two process units should be controlled, the measurement 

selection method determines which unit should be used to measure the pressure 

[Chen, 2002]. Therefore, the number, location, and accuracy of the 

measurement selected is a tradeoff between cost of measurement and benefits of 

improved control [Skogestad1998]. Since the selection of dominant 

measurements and manipulated variables to control production rate and product 

quality is the main focus of this work, an entire chapter (Chapter 3) is devoted 

to reviewing current approaches for measurement/manipulated variables 

(input/output) selection. 

 

2.3.4. Selection of Control Configuration 

After the measurements and manipulated variables are determined, the next 

step is to interconnect or structure them. This task is known as control 
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configuration, and it is one of the most important tasks in control structure 

design. The way in which the controllers are structured can be centralized 

(multivariable control structure), decentralized (multi-loops control structure), 

or a combination of both. When a hierarchical decomposition is used to solve 

the plantwide control design problem, then control configuration is performed 

in each stage or sub-problem. The control structures designed for each sub-

problem or stage are kept for the next sub-problem or stage. 

There are several approaches that address the control configuration problem. 

These approaches can be categorized as mathematically-based approaches and 

heuristic-based approaches. Within the mathematically-based approaches can 

be found approaches that used steady-state information, such as relative gain 

array, SVD, etc., and approaches based on optimization.     

Mathematically Based Approaches 

In general, the mathematically based approaches use quantitative methods 

where mathematical models are formulated to solve control problems. 

Mathematical-based approaches for the control configuration problem 

generate control structures that are optimal, within the limitations imposed by 

the mathematical methods and models used. The main limitations with 

mathematical-based approaches are the size and complexity of the models that 

can be attempted within a mathematical programming method [Kookos and 

Perkins, 2000]. The approaches reviewed in this section are not only based on 

the use of mathematical models and optimization-based approaches, but also 

based on mathematical techniques (SVD,  eigenvalue analysis, etc.). More 
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detail is given for the most relevant approaches and the ones that serve as 

theoretical background for the methodology proposed in this work.  

 

Relative Gain Array   

Originally, the relative gain array (RGA) was defined and applied at steady 

state by Bristol (1966). Many researchers have studied and extended the RGA 

[McAvoy, 1983], [Shinskey, 1988], and [Hovd and Skogestad, 1992]. The 

RGA is a matrix composed of elements defined as ratios of open-loop to 

closed-loop gains [Marlin, 1995]. The procedure to calculate the RGA is to 

evaluate the open-loop gain matrix K; calculate its inverse transposed (K-1
)
T; 

and multiply them, element by element (Hadamard product) [McAvoy, 1983].  

TKK )(*. 1−=λ     (2.1) 

The closer λij is to one the less difference closing other loops makes on the 

loop being considered. Therefore, the difference between λij and the value 1.0  

is related to the deviation from single loop behavior. In other words, the 

amount that λij deviates from 1.0 indicates, in some sense, the extent of 

transmission of interaction (in a quantitative manner) [Marlin, 1995]. From 

the control configuration point of view, the desired pairings are those whose 

values of  λij  are close to 1.0.  Also, pairing with λij values of 0 and/or 

negative numbers are avoided. The main advantages of the RGA are: 1) it is 

very simple to use; 2) it only uses steady state information (K); and 3) the 

RGA is independent of scaling, which means that the rules for interpretation 

do not change when the units of a variable change. The main limitations with 
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the RGA are: 1) it does not consider the dynamic character of the system; 2) it 

does not consider disturbance rejection.   

 

Linear Quadratic Regulator (LQR) Design Based Approach 

The LQR design-based approach was originally proposed by Schnelle (1989) 

and later extended by the works of Schnelle et al. (1997), Chen et al. (2002) 

and (2004). This is an optimization-based approach that uses a linear state 

space model of the process, a linear quadratic regulator design, and process 

knowledge to generate control structures for an entire plant. The key idea in 

Schnelle’s  approach is to extract information from the dynamic model about 

how the plant should be controlled. In 1997, Schnelle presented an approach 

that addressed the control configuration problem by using the LQR design 

approach.   This approach can be described as follows: Given a linearized 

state space model, a state feedback LQR is used to calculate the optimal static 

state feedback controller K as follows: 
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In this approach, two sensitivity matrices (SFB and SFF), representing the 

dominant feedback and feed-forward paths of a process, are obtained from the 



 

 25 
 

optimal static state feedback controller (K). Then, based on these sensitivity 

matrices, heuristics are used to determine feasible control structures. Also, 

information about the way in which these control structures should be 

implemented (using a centralized or decentralized control structure) is 

obtained.  More details on this approach can be found in Schnelle (1997). 

Although this was an innovative approach, it had the following main 

limitations: 1) the assumption that all states are measurable is generally not 

feasible in practice; 2) setpoint tracking and disturbance rejection were not 

considered in the control structure design. In order to overcome these 

limitations Chen et. al. (2002) extended Schnelle’s approach by using an 

output feedback controller. Also, Chen et al. reformulate the problem to 

consider setpoint tracking and disturbance rejection.  More details on the Chen 

et al. approach can be found in section 2.3. 

Singular Value Decomposition 

Singular values and singular vectors of the process gain matrix are used in 

Lau et al. (1985) to determine control configurations that are preferable for 

control. These control configurations are the ones in which the associated 

loops have minimal interactions with other loops. An interaction measurement 

is developed that quantifies the difference between the control configuration 

candidates. The main limitations with this approach are: 1) it does not 

consider dynamic information; and 2) it does not consider setpoint tracking 

and disturbance rejection. In order to consider both static and dynamic effects, 

the analysis should be carried out over the frequency range of interest. 
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Other Mathematical-Based Approaches: 

A mathematically-oriented approach based on optimization was presented by 

Kookos and Perkins (2000). In this approach, the control objectives are posed 

in terms of economic penalties associated with the effect of disturbances on 

key process variables. These control objectives are then related to a subset of 

potential measured variables, and a suitable set of control variables is selected 

among the potential manipulated variables so that the dynamic economics are 

as favorable as possible. Integer variables are used to model these control 

algorithms in an Mixed Integer Linear Programming (MINLP) formulation of 

special structure [Perkins, 2000]. The main advantage with this approach is 

that global optimality is guaranteed. Another author that uses a mathematical 

approach for control structure selection is Kookos [Kookos 2005]. His 

approach consists of a set of linear constraints that determine the set of 

manipulated and controlled variables and the steady-state operating policy that 

minimizes the effect of disturbances on process economics.  

 

Another optimization-based control configuration that uses MILP is proposed 

by McAvoy and Wang (2001). In this approach the control configuration for 

the base control system (safety loops and product variables) is obtained by 

using a steady state model or a linear dynamic model in terms of valve 

movement and specific disturbances. The main idea in the MILP formulation 

is that a set of manipulated variables is selected if it minimizes the total valve 

movement when a specific disturbance is present. This approach is performed 
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automatically and it was successfully applied to the Tennessee Eastman 

model. 

 

Other Mathematical-based approaches for the control configuration problem 

were categorized and reviewed by Van der Wal and Jager (1995). Among 

these approaches are: Structured Singular Value, Combined Nominal 

Performance and Performance Degradation, Relative Gain Array and Related 

Concepts, Nominal Stability and Integrity, Direct Nyquist Array, Relative 

Degree, Interaction Potential, Numerical Invertibility, and Decentrally Fixed 

Eigenvalues.  Van der Wal and Jager compared these approaches based on 

some desirable properties, such as: efficiency, robust performance and 

stability, effectiveness, general applicability, practical applicability, etc. After 

the comparison they concluded that there is no control configuration selection 

method that satisfies all the desired properties. The main problem seems to be 

with robust performance and stability, since the majority of these methods do 

not tackle the setpoint tracking problems and disturbance rejection problems. 

Also, effectiveness was a key factor since in many of these methodologies it is 

not easy to eliminate nonviable candidates and maintain the viable ones. Van 

der Wal and Jager (1995) proposed some future research to overcome some of 

the limitations with the reviewed methodologies. 
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Heuristic Based Approaches 

Heuristic approaches are based on the use of process insight and experience to 

determine plantwide control structures. Buckley (1964) was the first 

researcher in considering plantwide control.  He discussed important issues, 

such as material balance control (in the direction of flow and in the direction 

opposite of flow), production rate control, indirect control, buffer tanks as low 

pass filters, predictive optimization, recycle, and the need to purge inerts. 

Although Buckley presented a number of useful engineering insights that are 

still used in the industry, he did not present an overall plantwide control 

design procedure.  Wolff and Skogestad (1994) presented a review of previous 

work on plantwide control, with emphasis in process oriented decomposition 

approaches. In their paper, they suggested that plantwide control systems 

should start with a “top-down” selection of controlled and manipulated 

variables and a “bottom-up” design of control systems. They also listed ten 

heuristic guidelines for plantwide control [Skogestad and Larson, 1998]. 

Among the authors that consider heuristic rules for plantwide control are 

Luyben et al (1998), McAvoy et al. (1994), Tyreus (1999) 

The design of a plantwide control system is a difficult task; therefore, the 

majority of the proposed methodologies decompose the problem into 

manageable parts. The most common ways of decomposing the problem are: 

1) Decomposition based on process units.  

2) Decomposition based on process structure. 
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3) Decomposition based on control objective (material balance, energy 

balance, quality, etc.) 

4) Decomposition based on time scale.  

2.3.5. Selection of Control Law 

After the control configuration is determined, the next step is to choose the 

type of controller that will be used. Basically the controller types included 

single-input single-output (SISO) controllers (e.g. PID) and multi-input-multi-

output (MIMO) controllers (e.g. Model Predictive Controller (MPC) and 

Modular Multivariable Controller (MCC)).  

 

2.4. Review of Plantwide Control Design Methodology 

In this section several Plantwide control design methodologies that are relevant for 

this work are presented. The majority of this section is devoted to Chen’s plantwide 

control design procedure because the methodology proposed in this work is based on 

Chen’s methodology. 

 

Luyben’s Approach  

A systematic design procedure is presented for plantwide design control structures 

based on heuristics that were presented by Luyben [Luyben et al., 1997]. This 

procedure consists of 9 steps that deal with plantwide control issues (not being 

addressed by simply combining the control systems for individual unit operations): 

Step 1)  Establish the objectives of the control system.  This is the most important 

step because different objectives lead to different control structures.  Step 2)  
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Determine the available degrees of freedom.  Step 3)  Establish the energy 

management system. The objective in this stage is to obtain a control system that 

prevents the propagation of thermal disturbances and ensures that the exothermic 

reactor heat is dissipated and not recycled.  Step 4)  Set production rate.  The main 

goal in this stage is to select a manipulated variable that provides smooth  and stable 

production-rate transitions and rejects disturbances. Based on previous experience 

and research, Luyben [Luyben et al., 1997] explained that the selected variable should 

have a rapid and direct effect on the reaction rate in the reactor, while having the least 

effect on the separation section. Luyben et al. pointed out the importance of this 

selection because of the implications for component balances examined in Step 7.  

Step 5)  Control product quality and handle safety, operational, and environmental 

constraints. In general, tight control of these variables is required for economic and 

operational reasons. Therefore, the manipulated variables selected should have a 

dynamic relationship with the controlled variables that feature small time constants 

and dead times, and large steady-state gains. Also, the magnitude of the various flow 

rates is considered in this stage.  Step 6)  Involves inventory control (pressures and 

levels) and fixing a flow in every recycle loop. Luyben pointed out that an inventory 

variable should typically be controlled with the manipulated variable that has the 

largest effect on it within that unit. Inventory may also be controlled with fresh 

reactant makeup streams.  Step 7)  Check component balances. In this stage 

component balances are evaluated for each chemical element. The objective is to 

determine whether they are consumed, generated, or leave the system in an exit 

stream (purge or product). Fresh reactant makeup feed streams can be manipulated to 
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control reactor feed or recycle compositions (or to hold pressure or level).  Step 8)  

Control individual unit operations. In this step, the required loops to control each 

individual unit operation in the plant are selected.  Step 9)  Optimize economics or 

improve dynamic controllability.  In this stage, alternatives to improve steady-state 

economic and dynamic performance are evaluated by using the available degrees of 

freedom or the setpoint of some controllers that can be adjusted.  

 

McAvoy and Ye’s Approach  

They presented a systemathic plantwide design control procedure based upon relative 

loop speed.  This procedure consists of four stages that are described as follows: 

Stage 1) Inner cascade loops are closed. This reduces the effect of disturbances 

associated with these loops. Stage 2)   The basic decentralized PID system is 

designed. This stage involves all the loops except those associated with the process 

analyzer and product rate. Tools, such as relative gain [Bristol, 1966], Niederlinski 

Index, linear saturation analysis, nonlinear disturbance and saturation analysis, and 

dynamic simulation are used for this purpose.  Stage 3)  Analyzer and product rate 

loops are closed. To do so, they use overall mass balance of the plant. Stage 4)  

Higher level controls, such as model predictive control and/or optimization can be 

added. From stages 1 to 3, the speed of loops involve decreases.  
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Optimal Control-Based Plantwide Control Design Methodology (Chen’s 

Approach) 

Chen’s approach is explained in more detail because the methodology presented in 

this work is based on his approach. Chen’s plantwide control design methodology is 

based on output optimal control and uses a linear dynamic process model of the plant 

for designing plantwide control systems. This approach consists of four stages, and 

the results from one stage are used as the inputs to the next. For each stage, the 

following tasks are carried out: 1) An optimal static output feedback controller 

(OSOFC) is designed for the available measurements and manipulated variables. 2) 

Control structure candidates are determined, using mathematical analysis and 

engineering judgment. 3)  For each control structure candidate, centralized or 

decentralized controllers are automatically tuned. 4) Process transients are generated, 

based on linearized models in order to compare the control performance of the 

different candidates.  

Basic Optimal control output Feedback Problem 

Given a linear time invariant (LTI) state space model, an OSOFC is designed to 

stabilized the system and bring the states from arbitrary initial values to zero, 

following a trajectory that minimizes a linear quadratic objective function (LQR) 

[Chen and McAvoy, 2003]. The basic formulation of the OSOF LQR design problem 

is presented by Lewis as follows: 

The LTI Process Model is given as: 
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This is a linearized state space model where x is the vector of the system states, u is 

the vector of control inputs (manipulated variables), and y is the vector of measured 

outputs (controlled variables). A, B and C are matrices whose elements describe the 

system dynamics. The state space model can represent MIMO and SISO systems.  

Output feedback control Equation is given as: 

Kyu −=       (2.5) 

 

where K is a mxp matrix of constant feedback coefficients. The problem to be solved 

is to find the K that minimizes a quadratic time domain performance index function 

given by: 
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where Q  and R  are weighting matrices for y and u respectively, while gij  is a weight 

on element kij in K. In general, gij’s are zero. However, when a single input single 

output (SISO) structure is used, the gij’s elements are used to force the off-diagonal 

elements of K to be zero; then the resulting K has only diagonal elements. In order to 

make the kij’s elements small, large values of the corresponding gij’s elements should 

be used. 
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The design equations needed to calculate K that minimize the performance index 

(2.6) are: 
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where g*K is a matrix with elements gij* kij. These equations result from the first-

order necessary condition for optimality given by Lewis (1992). Because there is no 

explicit analytical solution for the OSOF controller (K) numerical optimization is 

used to solve Equations (2.7), (2.8) and (2.8) simultaneously. In solving these 

equations the following conditions are required: 

1) R should be positive definite, and Q should be positive semidefinite to ensure CQC 

is positive semidefinite 

2) P is positive definite or positive semidefinite as long as AC is stable and 

(CKRKC+CQC) is positive definite or positive semidefinite  

3) S is positive definite or positive semidefinite as long as AC is stable and X is 

positive definite or positive semidefinite.  

The OSOFC K solution depends on:  

1) The initial states x0, and in most of the cases, x0 is unknown. This problem can 

be solved by minimizing the expected value of J [Levine, 1970]: 
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Then, Equation 2.10 is replaced by: 

{ }T

C xxEXBKCAA )0()0(=−=    (2.12) 

 

where X is the initial autocorrelation of the states. Assuming that the initial 

states are uniformly distributed on the unit sphere, then, X=I, the identity 

matrix. Chen (2002), presented alternative OSOF LQR design methods for 

specific setpoint tracking and/or disturbance rejection. Details on the 

calculation of the optimal gain matrix can be found in Appendix II. 

2) How the x, y and u are scaled. The scaling options evaluated in this work are 

presented in the next section.  

Numerical Considerations for the OSOF Problem. 

The algorithms used to solve the OSOF problem are shown in Appendix II. These 

algorithms are based on Chen’s (2003) numerical considerations. In order to solve for 

the OSOFC the following issues need to be considered: 

1) Whether the system can be stabilized by static output feedback (SOF). The 

Even Parity-Interlacing-Property necessary condition on Wei (1990) is used to 

check whether a given system can be stabilized by a SOF. If the system does 

not violate this necessary condition, then, it is assumed that at least a SOF, 

which stabilizes the system, exists [Chen 2003]. 

2) Selection of the algorithms. The Moerder and Calise algorithm algorithm is 

used because of its conditionally global convergence, simplicity and 
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efficiency. This algorithm iteratively calculates a solution that satisfies the 

first-order necessary conditions for optimality.   

3) Convergence properties. Moerder and Calise’s algorithm converges to a local 

optimum. If the set of stabilizing static output feedback gains is convex and 

the solution of K, P, and S is unique, then the global optimum is obtained. 

However these two conditions are not testable, and therefore it is necessary to 

compare different solutions to determine the global optimum.       

4)  Calculation of the initial stabilizing SOF Controller K. The calculation of the 

initial SOF controller is done by generating random numbers (ranging 

between ±α) for the elements of K until A-BKC is asymptotically stable.  α is a 

design parameter and its value is given by the users. The default value of α is 

1. This is not necessary if the uncontrolled plant is stable.  

5)  Computational load. An important issue related to the computational load is 

the order of the model (number of state variables), because the larger the order 

of the model, the slower the calculation of the OSOFC. In order to speed up 

calculations, it is recommended to reduce the order of the model. Because the 

optimal-based measurement selection approach studies the interaction 

between inputs and outputs, the reduced model should retain the major 

characteristics of the process dynamics and interactions as well as inputs and 

outputs. It is important to mention that model reduction techniques always 

introduce some model error.  Therefore, they should only be used when is 

absolutely necessary to reduce the computational load. The model reduction 

method used in this work is the balance and truncate approximation method 
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without coprime factorization [Moore, 1981]. The Matlab program used is 

called sysred() (system reduction) and is provided in the SLICOT package  

[Varga, 1999].   

 

 The inputs for this design procedure include the following information: 1) a state 

space linear time-invariant process model; 2) process flowsheet and steady-state 

process data for state variables, manipulated variables, and measurements; 3) 

operating range for measurements and manipulated variables used for scaling the 

model; 4) control objectives, used to define controlled variables (specifications of 

production rate and product quality); 5) process constraints, used to define controlled 

variables, involve hard constraints related to safety issues in the process; and 6) 

process insight and engineering judgment.  

Stage 1) Preparation. The objectives in this stage are as follows:  

1) Scale the process model. The reason for this is that the elements in the OSOFC 

should be dimensionless and have values in a relatively small range, to be compared 

with one another.  

2) Identify measurements and manipulated variables to be used in the next stage. 

This consists of three operations: a) Identify controlled variables, based on control 

objectives and process constraints; b) Select the best measurement location whenever 

there is more than one measurement that can be used to control  the variables from 

Step a; 3)  Identify unstable and slow-responding variables than can make the process 

unstable. If the process is open-loop unstable, it is necessary to determine which 



 

 38 
 

measurements are best to detect instability. To do so, an eigenvalue analysis is used. 

More details on this can be found in Chen (2002).   

Stage 2) Decentralized control structure for safety variables. The objective in this 

stage is to generate decentralized control structure candidates for the variables 

identified in Stage 1. The control structure candidates are determined by analyzing 

the OSOFC, using the sensitivity matrix and applying engineering judgment. The 

proportional-only controllers are automatically tuned for each control structure 

candidate. These controllers are incorporated into the model for use in later stages. 

Then the control structure candidates that show good performance in tracking setpoint 

changes are retained for the next stage.  

 Stage 3) Control structure for production rate and product quality. The 

objective in this stage is to generate centralized or decentralized control structures for 

controlling production rate and product quality variables, identified from the control 

objectives. Stage 3 should be performed for each control structure generated in stage 

2. In stage 3, the setpoint of the loops closed in stage 2 can be used as manipulated 

variables. Once the control structures for controlling production rate and product 

quality are generated, an important issue to consider is whether to implement a 

centralized or decentralized control structure. This issue is addressed by 

implementing decentralized and multivariable control structures using process 

simulation based on the linearized model. The decentralized control structures are 

implemented by generating an OSOFC that contains only diagonal elements while the 

multivariable control structures are implemented by generating a full OSOFC full 

matrix. Chen (2003) proposed comparing the transients generated from the 
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decentralized and the multivariable control structures to estimate the benefits of using 

multivariable control structures.  

Stage 4)  Control structure for remaining variables (inventory loops and unit 

operation loops). The objective in this stage is to generate decentralized or 

multivariable control structure candidates for maintaining component balances and 

controlling unit operations. To identify the components that need to be controlled in 

this stage, Chen (2003) used a Downs Drill Analysis [Luyben, 1992]. This analysis is 

used for checking the component balances for each control structure generated in 

Stage 3. After the component balance loops are closed, the remaining degrees of 

freedom can be used for unit operation control and process optimization. Once the 

component elements and unit operation measurements have been identified, an 

OSOFC is obtained to generate control structures from them.  

The output for this design procedure is a set of plantwide control structures. These 

structures can be decentralized or multivariable control structures. The control 

performance of these control structures is evaluated by using transients, based on 

linearized models.   

Details for how to generate control structures from the OSOFC are presented:  

Calculate an OSOFC. An OSOFC is analogous to a process-gain matrix.  For Stages 

2, 3, and 4, an OSOFC is calculated for the given set of measurements and 

manipulated variables.  The OSOFC can be a non-square system and its formulation 

is given in Chapter 4 Section 4.2. Users should specify the design parameters, which 

are the weighting matrices to use in the objective function. The default value of the Q 

and R matrices are identity matrices, and the default value for gij is zero.   
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Calculate the sensitivity matrix. The sensitivity matrix, proposed by Chen et al. 

(2002), is a measure similar to the RGA that measures the dynamic process 

interaction between variables. Chen (2002) defined the sensitivity matrix, S, as 
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The sensitivity matrix is calculated as follows: 1) An OSOFC is solved with the R 

matrix equal to Ro (e.g. an identity matrix); 2) The same problem is re-solved, 

emphasizing each manipulated variables. To do so, first, all the diagonal entries in the 

R matrix are multiplied by 100, except the entry for the manipulated variable that is 

being emphasized. In other words, in each of these calculations, only one of the 

manipulated variables is not heavily penalized. Then, the sensitivity matrix is 

calculated by dividing the gains for the base case by the gains when a manipulated 

variable is emphasized. A more detailed explanation of the sensitivity matrix can be 

found in Chen (2002). 

 

Generate a decentralized control structure. Decentralized control structures are 

generated using OSOFC, the sensitivity matrix, and engineering judgment. Chen 

(2002) proposed the following heuristics: 1) Only pairings with elements having an 

absolute value greater than 0.2 in the OSOFC are considered. 2) Only pairings with 
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values between 0.2 and 5 in the sensitivity matrix are considered. 3) The pairings 

accepted by 1 and 2 are checked, using engineering judgment.  

Limitation of the optimal control based plantwide control design methodology: 

The main limitations with this methodology are the following:  

1) This methodology does not consider specific setpoint tracking and/or 

disturbance rejection for designing control structures. In fact, Chen assumed 

that the initial states are uniformly distributed on the unit circle sphere. 

Therefore, the control structures obtained using this methodology might not 

be the most appropriate for specific disturbance rejection and setpoint 

changes.  Even thought Chen (2003) also presented a rigorous formulation 

that includes setpoint changes and disturbance rejection for the calculation of 

the OSOFC he did not show any results using this methodology. In this work 

this formulation was tried but it did not converge.  

2) This methodology uses a fairly simple way to control the key economic 

variables in the plant (production rate and product quality). These two 

variables are controlled using two manipulated variables respectively. In this 

work, it has been proven that using a more sophisticated control structure, that 

involves the adjustment of key dominant variables in the plant has improved 

the control performance of production rate and product quality and therefore 

the economics in the plant. 
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2.5. Partial Control 

Partial control involves whether acceptable control can be indirectly achieved for a 

subset of outputs by controlling only a subset of the outputs.  For instance, the outputs 

are divided into two sets: 

y1 (temporarily) uncontrolled outputs (for which there is an associated control 

objective). The use of the word temporarily means that y1 are normally controlled 

outputs at some higher level in the hierarchy   

y2 (locally) measured and controlled output.  

Then, by controlling only the subset y2, acceptable control can be obtained for y1 

[Skogestgad and Postlethwaite, 1996].  Tyreus (1999) defined partial control as a 

decentralized control structure in which economic operating objectives are controlled, 

either at their setpoints or within a specific range by controlling a few dominant 

variables [Tyreus, 1999].  Research on partial control area are presented by Arbel and 

Shinar, [Arbel, 1995a], [Arbel, 1995b],  [Arbel, 1996], [Arbel, 1997], [Arbel, 1999], 

and [Tyreus, 1999]. In the majority of these papers, dominant variables are determined 

by experience and process insight. However, Tyreus used a thermodynamic 

information-based methodology for identifying dominant variables. In his work, Tyreus 

stated that economic-related variables such as flow and production rates are almost 

always related to the internal process rates. He identified the dominant variables 

affecting these internal rates by using a thermodynamic process description that focuses 

on the power release expression for each process unit. Details in how this methodology 

works are presented in the next chapter and in Tyreus (1999a and 1999b).   
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Chapter 3: Measurements and Manipulated Variables 

(Input/Output) Selection Methods 

 

3.1 Background 

The measurement and manipulated variables selection problem consists in choosing a 

proper set of variables (input’s, u’s, actuators) to be manipulated by the controller, 

and a proper set of measurements (outputs, y’s, sensors) to be given to the controller.  

The selection of the appropriate measurements and manipulated variables will 

determine the success or failure of the control system. The reason is that this choice 

affects the performance, reliability, complexity, and cost of the control system. Also, 

this choice will affect not only the control performance but also the economics of the 

plant. The measurement and manipulated variable selection problem involves 

selecting the appropriate number, place, and type of actuators and sensors. It is also 

possible to study the benefits of adding more measurements and manipulated 

variables.  

 

In this chapter, a review of the available measurements and manipulated variables 

selection methods is presented. These methods are grouped according to the control 

system property they address, their effectiveness, applicability, etc. Also, a qualitative 

assessment and comparison of the reviewed methods is given.  
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3.2 Purpose of Measurement and Manipulated Variable Selection 

In general, there is a large number of measurement and manipulated variables 

available in a complex process, where the number of measurements usually far 

exceeds the number of manipulated variables. Each combination of measurement (y) 

and manipulated variable (u) is called the measurement and manipulated variable (M-

MV) set. The number of the candidate M-MV sets grows exponentially with the 

number of measurements and manipulated variables available. This exponential 

growth motivates the need for systematic methods to select measurements and 

manipulated variables. These methods should complement the engineer’s experience 

to quickly and easily assess a large number of candidate measurements and 

manipulated variable sets. The measurement and manipulated variable selection 

problem has also been studied separately. In general, the measurement selection 

problem (sensor location) has been studied more than the manipulated variable 

selection. The reason is that the number of measurements that can be used to control a 

specific variable or group of variables is usually much larger than the number of 

manipulated variables.   

 

In the past, the optimum sensor location (measurement selection) has been studied for 

different purposes. Originally, the sensor location problem was studied from the 

control perspective. Later, the sensor location was also studied considering the 

observability point of view (amount of information required for good monitoring). 

The design of inferential control schemes was another purpose for studying best 
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sensor location. Also, in the estimation of variables such as states and controlled 

variables finding the best sensor is the main concern.  The sensor location problem 

has been studied mainly for control and monitoring purposes.  

 

The sensor location problem for control and monitoring purposes was studied by 

Jorgensen [Jorgensen S. et al. 1984] and Lim K [Lim K. 1992]. In his work, 

Jorgensen presented a sensor location procedure for chemical processes that 

distinguishes between the purposes of observability and control. In the observability 

case, the method requires knowledge of process dynamics and open loop stationary 

variance. In the control case, additional knowledge of the states required for control is 

needed. In addition, Lim presented a method for selecting optimum sensor location, 

based on the combined degree of controllability and observability. Lim used the 

controllability and observability grammians to weight the projections to reflect the 

degrees of controllability and observability for different structures. 

 

The sensor location problem also has been studied from an inferential measurement 

point of view by Romagnoli  [Romagnoli J. et al. 1981], Morari M. [Morari M. and 

O’Dowd M., 1980], Mejdell [Mejdell, 1991]  and Kresta [Kresta et al., 1994]. When 

the controlled variable is not easily measured, it must be inferred from the available 

measurements. The selection and location of these measurements are very important 

because the performance of the plant depends on it. Consequently, one can think that 

the more information that is available about the plant, the better the monitoring and 

control should be. However, a large number of sensors can increase the cost 
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associated with acquisition, installation, and maintenance of sensors. Furthermore, the 

implementation of a control strategy that uses a large number of measurements 

becomes complicated. Romagnoli [Romagnoli et al. 1981]  proposed a method that 

modified the measurements’ structure and applied them for optimal control. In 

addition, Mejdell (1991) and Kresta (1994) presented methods for building inferential 

models for control purposes, based on Principal Component Regression (PCR) and 

Partial Least Squares (PLS) methods. 

3.3 Review of Techniques for Measurement and Manipulated Variables (M-MV) 

Selection 

This section presents a review of the most relevant methodologies proposed in the 

literature for the M-MV selection problem. These methodologies are divided into 

different groups according to the control system property that is addressed, the 

applications that they solve, and the purpose for this selection. It is important to point 

out that all the reviewed methods apply to linear, time invariant, and continuous 

plants. Also, some of the methods assume that the number of measurements is equal 

to the number of manipulated variables (nu = ny), leading to square controllers. These 

characteristics will be mentioned for the specific method considered. It is important to 

point out that in some cases the measurements (y) are directly related to the control 

variables (z). Then, the control goals can be formulated in terms of y. This is the case 

where z can be measured directly ( z = y ) or if an explicit relationship is known 

between y and z ( z = f(y) ).  The key ideas for each of these methodologies are 

described as follows: 
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3.3.1. Accessibility 

The M-MV selection methods reviewed in this section are based on the use of 

cause-and-effect graphs. These graphs show the relationship between 

variables (measurements, manipulated variables, and controlled variables) and 

can be generated for linear and nonlinear systems. The key idea is that a 

causal path exists between the manipulated and controlled variables and 

between the measurements and the controlled variables.  In other words, the 

manipulated variables must have an effect on the controlled variables, and it 

must be possible to use the measurements to obtain values of the controlled 

variables [Van der Wal, 2001]. The main problem with this idea is that it is a 

qualitative technique that might generate a large number of possible candidate 

M-MV sets. Therefore, additional information should be used to narrow down 

the number of possible M-MV sets. Govind [Govind and Powers 1982]  

propose the use of cause-and-effect graphs, along with steady state gains, time 

constants, and time delays as additional quantitative accessibility measures. 

Other authors that used the cause-and-effect graphs to solve the M-MV 

selection problem are Daoutidis [Daoutidis and Kravaris 1992].  They define 

the relative degree (rij) of a controlled variable (zi) with respect to a 

manipulated variable (uj) as a measure of the dynamic interaction between 

manipulated and controlled variables. They assume that y = z.  Also, rij is 

defined as a measure of the sluggishness of the response of the controlled 

variables to changes in the manipulated variables.  Daoutidis used the cause-

and-effect graphs to study the paths for the number of variables connecting uj 
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with zi. Details about how to calculate the rij can be found in Daoutidis (1992). 

The rij can be intuitively interpreted as the number of integrations the input 

has to perform before it affects the output. The heuristic used for the M-MV 

selection method is as follows: the lower the rij, the better the accessibility of 

uj to zi. Therefore, they compute  

 ∑
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for each manipulated variable set. Then, the preferred M-MV sets are the ones 

with the smallest rzu. 

3.3.2. State Controllability and State Observability. 

In this section, methods based on state controllability and observability of the 

linear model of the plant (state space description) are discussed. The state 

space description of the plant K is as follows: 

DuCxy

BuAxx

+=

+=&
     (3.2) 

where x represents the states; u represents the manipulated variables (inputs); 

y the measurement (outputs); A, B, C, and C are matrices whose elements 

describe the system dynamics.  

State controllability. This system is called state controllable if, for any initial 

state x(0)=xo, any time tf > 0, and any final state xf, there exists an input u(t)  

such that x(tf) = xf. 
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State observability. This system is called state observable if, for any time tf > 

0, the initial state x(0)=xo can be determined from the time history of the input 

u(t)  and the output y(t) in the interval [0,tf].  

The simplest M-MV selection set rule, based on controllability and 

observability, is to reject candidates for which (A, B) is uncontrollable or (C, 

A) is unobservable, Zhou et al. (1996). Other criteria for selecting M-MV sets, 

based on structural state controllability and observability, are presented by 

Morari [Morari and Stephanopoulos 1980]. They used a structural model to 

represent the plant. A structural model only requires information about 

whether a variable is involved in a particular system equation or not, Van de 

Wals (2001). Then, they check for the necessary and sufficient conditions for 

structural state controllability and observabillity and select the M-MV sets that 

satisfy these conditions. An important characteristic of structural models is 

that they can be used to describe nonlinear systems. Therefore, by linearizing 

these nonlinear structural models, it is possible to select M-MV sets for 

nonlinear systems. The main disadvantage with these methods (1. 

controllability and observability and  2. structural controllability and 

obserbability)  is that they are not selective enough. In other words, a large 

number of possible M-MV sets might result. Therefore, quantitative methods, 

based on state controllability and observability were proposed by numerous 

researchers Muller [Muller and Weber, 1972], TaliMaamar [TaliMaamar and 

Babary 1994], Dochain [Dochain et al. 1997], among others]. One of the 

earliest approaches based on optimization was suggested by Muller (1972). 
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They suggested the use of the determinant of the observability matrix, as a 

measure of the observability of the system. They defined a function that 

depends on the observability matrix. Therefore, the sensor location structure 

that maximizes this function improves the degree of observability; it is also 

the optimum sensor location from the observability point of view. Different 

observability measures have been suggested to determine optimum sensor 

location. For instance, TaliMaamar (1994) proposed a method to determine 

optimum sensor location in a fixed bed bioreactor, by considering the 

condition number of the observability matrix. They stated that the optimum 

sensor location is the one in which the condition number is minimized.  They 

tested their method by determining the sensor location that gives the best 

observability. Damak et al. (1992) used the observability matrix. Georges 

(1995) selects optimal sensor (measurement) and actuator (manipulated 

variable) location, based on maximizing the minimum eigenvalue of the 

controllability (Wc(t)) and observability (Wo(t)) matrices (for a given t). The 

key idea is to minimize the input energy to reach a given state and to 

maximize the output energy generated by a given state Van de Walls (2001). 

Georges extended his idea to nonlinear systems. Stephanopoulos (1980); 

Bainum [Bainum and Xing 1997]; TaliMaamar (1997) looked for expressions 

that consider the degree of controllability and observability. All of these 

approaches were based on scalar functions of the observability matrix or 

observability grammian. From the controllability point of view, the best 

sensor location is the one that minimizes the energy required by the control 
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action to reduce the disturbance. In the case of the observability, the best 

sensor location is the one that gives maximum signal response for the sensor 

when disturbances occur. Dochain et al. (1997) proposed a criterion for the 

degree of observability, based on the use of the condition number of the 

observability Grammian to select the best observable system. They stated that 

smaller condition numbers indicate better observable systems. Van den Berg 

et al. (2000) determined the optimum sensor location in a tubular reactor, 

using a method based on a robust degree of observability. They proposed two 

criteria that are scalar measures of the observability Gramian. These criteria 

are based on the idea of maximizing the signal received by a sensor when the 

system faces a disturbance. Other controllability-and-observability-based 

methods can be found in Van der Wall (2001). 

3.3.3. Measurement-Manipulated Variables (Input/Output) 

Controllabillity 

A plant is called input/output controllable if acceptable performance can be 

achieved, in the presence of uncertainties, setpoint changes, disturbances, and 

sensor noise [Van der Wal, 2001].  Several research studies have been done in 

this area. In these studies, different groups of controllability measures,  based 

mainly on singular value decomposition analysis (SVD), have been used.    

Singular Value Decomposition (SVD) is a numerical technique that has been 

proven to be a very useful tool in modern system theory. Basically, SVD is 

designed to determine the rank and the condition of a matix and to 

geometrically map the strengths and weaknesses of a set of equations [Moore, 
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1987]. During the last two decades, SVD has been extensively used by the 

process control community for analysis and design of control systems. For 

instance, Moore (1987) shows how SVD can be used to design a simple but 

effective multivariable control structure. He proposes a tool, based on the 

numerical concept of SVD, that provides quantitative information about 

sensor placement, physical controllability, and controller pairing.  SVD 

analysis decomposes an mxn process gain matrix into three component 

matrices as follows:  

*U Σ YK =     (3.3)  

where: 

K is an nxm matrix.  

Y is an nxn orthonormal matrix called the “left singular vectors”.   

U is an mxm orthonormal matrix called the “right singular vectors”.   

Σ is an  n x m diagonal matrix of scalars, called the  “singular values”  

Σ=diag(σ1, σ2,   σ3, . . . σn) >0.   σi’s are the singular values that are organized 

in descending order such that  σ1 ≥ σ2  ≥  σ3 ≥ . . . σn  ≥  0.  

The important aspect of the SVD, in terms of process control, is that when it is 

applied to a steady state gain matrix (K), the singular vectors and the singular 

values have a strong physical interpretation [Moore, 1987]. Therefore, 

important information, such as potential control problems, control structure 

design, more sensitive measurements, and manipulated variables can be 

obtained. Moore (1987) gives the following general interpretation of the 

elements in a singular value analysis: 



 

 53 
 

K= is the steady state gain matrix. This matrix provides information about the 

sensitivity of each measurement (y, outputs) to changes in each of the 

manipulated variables (u, inputs) for multivariable systems. 

Y= Y1:Y2:Y3…..Yn  form an orthonormal basis for the column (output) space of 

K.  Yi of Y are called the left (output) singular vectors and they provide the 

most appropriate coordinate system for viewing the process sensors 

(outputs). The left singular vectors of this coordinate system point in the 

direction of the first (Y1), the second (Y2), the third (Y3), etc., most 

sensitive combination of sensors (outputs).   

U= U1:U2:U3…..Um  form an orthonormal basis for the row (input) space of K.  

Ui of U are called the right (input) singular vectors and they provide the 

most appropriate coordinate system to for viewing the manipulated 

variables (inputs). The right singular vectors of this coordinate system 

point to the combination of manipulated variables (inputs) that have the 

first (U1), the second (U2), the third (U3), etc., largest effect on the sensor 

(outputs). 

Σ= Σ=diag(σ1, σ2,   σ3, . . . σn) >0.   The singular values represent the 

“decoupled open loop gains” of the multivariable process. In terms of the 

process control problem, the magnitude of the singular values is very 

important for studying control system feasibility. For instance, very small 

singular values indicate that the system is not sensitive enough for control. 

When one tries to implement many loops that have small singular values, 

a problem of valve saturation can occur. This problem can be explained by 
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using the analogy with the process gain. For example, a small process gain 

requires a large controller gain which, for multivariable control, can lead 

to a valve saturation problem. On the other hand, a very large singular 

value indicates a control problem because it requires very small controller 

outputs which, for multivariable systems, can cause a loss of control 

performance. 

Condition Number (CN). The CN is an important parameter that can be 

obtained from the SVD. It is calculated as the ratio of the largest singular 

value to the smallest non-zero singular value:  

n

CN
σ
σ 1=

     (3.4) 

The CN is an indication of the of the difficulty to control the entire set of 

control objectives (n x n  multivariable problem).  The larger the condition 

number is the more difficult it is to control all the variables together. 

 

3.3.3.1. Singular Vectors. The M-MV selection methods reviewed in this 

group are based on the use of the right and left singular vectors from the SVD 

analysis.  

Moore et. al. (1987) proposed three methods for selecting measurements. The 

key idea in these methods is to find a set of measurements that are sensitive to 

changes in the manipulated variables on one hand, and that are mutually 

independent on the other hand. To do so, in the first method, Moore et. al. 

(1987) calculated the SVD of the process gain matrix and used the left 
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singular vector. They explained that each column in Y  (left singular vector) is 

an orthonormal vector whose coordinate directions are described by each one 

of the process measurements. Therefore, for each singular vector, they select 

the measurement (row) with the largest absolute value. Moore et al, stated that 

the selected measurements are sensitive to the inputs and relatively 

independent because of  the orthogonality of the vectors in Y.   Although the 

first method has been proven to work well, it can show problems of 

measurement interaction in some cases. For instance, if the row in Y2 

corresponding to the row of the largest absolute value of Y1 is large and vice 

versa, then there will be a significant interaction between these two 

measurements. In order to overcome this interaction problem, Moore et. al. 

(1987) proposed a second method which is a modified version of the first one. 

The second method is based on the differences between the absolute-values of 

the left singular vectors. This method surely reduces the interaction but 

possibly also reduces sensitivity to manipulated variables. For this method, 

Moore et. al. stated the following: 1) A large value of the minimum singular 

value σn  indicates good sensitivity to manipulated variables, and 2) A small 

value of CN indicates a good mutual independence of the measurements. 

Therefore, they calculate the following index:  
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Then, they looked for sets of measurements that have large Q values, which 

means that the measurements exhibit a good compromise between sensitivity 

to manipulated variables and mutual independence of measurements [Van der 
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Wal 2001]. Moore et. al. (1987) stated that a similar procedure could be 

proposed for input selection.  Other researchers that use the singular vector 

information for selecting manipulated variables are Keller and Bonvin (1987).  

They propose a method for selecting the manipulated variables (u) that have 

the strongest and most orthogonal on the measurements (y). To do so, they 

follow a similar procedure to the one used for Moore et. al., (1987). However, 

they looked for the largest singular values and the corresponding singular 

vectors of the matrix B (from the state space model), instead of using the gain 

matrix (K).  Cao and Biss (1996) also used singular vector information to 

select the set of manipulated variables that has the largest effect on a fixed 

number of measurements. They calculate the SVD of the K matrix for the full 

manipulated variable set. Then, they calculate the single-input-effectiveness 

for uj as follows: 
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The manipulated variables (nu) that exhibit the largest values of vuj(K) should 

be selected. More details about this method can be found in Cao and Biss 

(1996). 

Some of the advantages of using Cao’s method  are: 1) SVD can be applied to 

an existing process or during the design phase, and 2) SVD is easy to 

understand and use. 

 

3.3.3.2. The Minimum Singular Value. The minimum singular value (σn) 

has been also used for selecting M-MV sets [Morari (1983), Luyben (1986), 
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Skogestad and Havre (1996)]. The key idea is to select the M-MV sets that 

exhibit a large value of σn . The main reason for this is that the σn of the plant, 

evaluated as a function of frequency, is a measure for evaluating the 

feasibility of achieving acceptable control. For example, the value of σn 

guarantees that with a manipulated variable (input) of a unit magnitude 

(measure by the 2-norm), an output magnitude of at least σn can be achieved in 

any measurement (output) direction [Skogestad and Postlethwaite, 1996]. 

Therefore, the value of σn in some sense quantifies the effect of the 

manipulated variables in the measurements. The larger the σn, the bigger the 

effect of the manipulated variables (inputs) on the measurements (outputs).  

An important issue concerning the magnitude of σn is considered by Morari 

(1983). Morari explains that for a plant to have good setpoint tracking and 

disturbance rejection in the case of manipulated variables limitation, σn should 

be large (to avoid valve saturation). Yu and Luyben (1986) use this idea and 

call  σn the “Morari Resilience Index” (MRI). In their work, they select the 

manipulated variable set with the largest MRI for the frequency range of 

interest. Havre et al. (1996) also used this idea. Skogestad and Postlethwaite 

(1996) give a detailed explanation of the properties of σn. They also 

demonstrate that σn should be large in order to have independent control of all 

outputs [Van der Wals, 2001].   

 

3.3.3.3. Condition Number.  The condition number is another controllability 

measure that can be used for selecting M-MV sets. The key idea is to select 
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M-MV sets that exhibit a small condition number. Morari (1983), Skogestad 

and Postlethwaite (1986) shows that systems with small CN(K) are more 

robust against uncertainty.  Reeves (1991) proposes a method that uses the CN 

to reduce the number measurements and manipulated variables available, 

before applying more rigorous methods that are more time consuming and 

computationally involved. This method starts with the full set of 

measurements and manipulated variables (Ny x Nu); then a single input or 

single output is eliminated which produces the reduced sets (Ny x [Nu-1]) or 

([Ny-1] x Nu) with smaller CN. The same procedure is performed many times 

until smaller and more manageable  M-MV sets are found. Some variations of 

the condition number definition are presented by Skogestad and Morari (1987) 

and Cao and Rossiter (1996).  Skogestad and Morari (1987) propose the 

disturbance condition number (DCN) which is a measure of the input 

magnitude required to reject a disturbance. Therefore, they look for 

manipulated variable sets with small DCN, which means they are more 

effective for disturbance rejection. Cao and Rossiter (1996) defined the input 

disturbance alignment (IDA) which uses similar basis as Skogestad and 

Morari (1987). However, they look for manipulated variable sets with IDA 

close to 1.   

3.3.3.4. Relative Gain Array (RGA).  RGA has been extensively used for 

control configuration selection. (See Chapter 2). In this section, some RGA-

based methods for the M-MV selection problem are discussed. The simplest 

rule for using the RGA to solve this problem is to avoid M-MV sets that 
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exhibit large RGA elements since the corresponding plant would be difficult 

to control [Chen, Freudenberg, and Nett (1994)]. Reeves (1991) proposed two 

RGA-based heuristics to reduce the full set of measurements and manipulated 

variables into a smaller set. These methodologies narrow down the number of 

M-MV sets available but they do not give an optimal M-MV set. More studies 

in this area are presented by Cao and Biss (1996) and Chan and Yu (1990). 

 

The main advantage of the M-MV controllability based methods is that all the 

measures are simple to compute and give insight into how easy it is to control 

the plant. The main disadvantages are as follows: 1) Some M-MV 

controllability measures are  based on inputs restrictions and uncertainties that 

are not addressed simultaneously, and 2) Some M-MV controllability 

measures assume a suitable scaling because the results critically depend on it 

[Van de Wal, 2001].  

3.3.4. Right-half-plane (RHP) zeros  

In this section, methods for selecting M-MV sets, based on RHP zero location, 

are presented. Because different M-MV sets lead to distinct locations of 

systems zeros, the key idea is to reject M-MV sets which introduce RHP zeros 

with magnitudes below the desired bandwith. Research studies that use this 

idea are presented by Hovd and Skogestad (1993) and Bis and Perkins (1993), 

among others. In the case of unstable plants, M-MV sets with RHP zeros close 

to the RHP poles should be avoided. The reason is that the exact cancellation 
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of RHP poles and zeros causes the unstable mode to become uncontrollable or 

unobservable. More details on this can be found in Van de Wall (2001). 

3.3.5. Optimization-Based M-MV Selection Methods    

Optimization is a common technique that researchers have used to solve the 

M-MV selection problem. Van de Wal (2001) categorized the use of 

optimization to solve this problem as follows:  

1) In a control system, the objective of the manipulated variables is to take 

actions to make the system behave as desired. This should be achieved with 

limited energy. Therefore, optimization can be used to obtain a set of 

manipulated variables (MV) that minimize an MV-set-dependent-cost 

function (Ju) in terms of the MV energy. This is called efficiency of 

manipulation. 

2) The objective of the measurements is to maintain the best possible 

information of the system behavior. Hence, optimization can be used to obtain 

a set of measurements that minimizes a measurement-depended-cost function 

(Jy) that involves the estimation error of relevant variables (e.g. states). This is 

called efficiency of estimation. 

3.3.5.1. Efficiency of Manipulation 

The manipulated variable set that minimizes this cost function (Ju) given by  

∫ +=
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where   Q = QT ≥ 0  and R = RT > 0  is the optimal. Al-Sulaiman and Zaman 

(1994) and Xu, Warnitchai and Igusa (1994) used this idea to solve the M-MV 
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selection problem. Al-Sulaiman and Zaman evaluated Ju after designing a 

state feedback by pole placement and after running a closed-loop simulation 

for a disturbance. Therefore, their choice for an MV depends on the choice of 

the disturbance. Cao, Biss, and Perkins (1996) considered the selection of 

manipulated variables with magnitude constraints for nonlinear systems. Their 

cost function is as follows: 
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where zr is the setpoint for the controlled variables with Q > 0, where Q a 

diagonal weighing matrix. The MV selection problem is solved in the 

following way: for a given MV set, Ju is minimized as a function of the input 

signal u(t) and the final time tf, subject to the constraint ut ≤ u(t) ≤ uu and 

subject to the nonlinear system behavior f(x,x,z,u,t) = 0 and a given initial and 

final state. The MV set that yields the smallest Ju is the optimal. The main 

problem with this method is that it requires a large computational effort [Van 

de Wals (2001)].  

3.3.5.2. Efficiency of Estimation 

Estimation is based on the used of secondary measurements to estimate the 

desired measurements like controlled variables. The key idea in the efficiency 

of estimation methods is to select secondary measurements that minimize the 

error in the estimates of relevant variables (controlled variable). Morari and 

Stephanopoulos (1980) used this idea and looked for a set of measurements 

that minimizes the cost function (Ju). The error sources considered for the 

estimation are model uncertainties, process disturbances, and sensor noise. 
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Morari and Stepanopoulos proposed four measurement selection criteria, 

based on a static estimator (derived for the steady state model). The objectives 

of these methods are to minimize the static estimation error (first criteria), to 

minimize the effect of model uncertainties on the estimates (second criteria), 

and to minimize the estimation errors if the static estimator is used for the 

dynamic system (third and fourth criteria). Kumar and Seinfeld (1978) 

proposed a measurement selection method that minimizes the state-estimation 

errors, using a dynamic estimator (Kalman filter) instead of a static one. In 

1995, Rhodes and Morari proposed a measurement selection method for a 

nonlinear autonomous plant )(),( xgyxfx ==& . The objective is to determine 

the smallest number of secondary measurements (y) that allow an accurate 

recreation of the nonlinear system dynamics. Other methods for measurement 

selection, based on efficiency of estimation, can be found in  Van de Wal 

(2001).  

 

3.3.5.3. Efficiency of Manipulation and Estimation 

The methods presented in this section combine both the efficiency of 

manipulation and estimation. Norris and Skelton (1989) proposed a M-MV 

selection method, based on a cost function which is similar to the linear 

quadratic Gaussian (LQG) control   
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where z=Fx.  The simplest approach would be to calculate the Juy for all M-

MV sets and to select the set that yields to smallest Juy. However, this requires 

a high computational effort [Van der Wal (2001)].  In order to overcome this 

problem, Norris and Skelton (1989) compute Juy only for the full M-MV set. 

They retain the corresponding estimator and feedback gains. Then, the 

effectiveness of each manipulated variable and measurement is expressed as 

the change of Juy if a measurement or a manipulated variable is eliminated 

[Van der Wal (2001)].  

3.3.5.4. Other Measurement Selection Methods Based on Optimization. 

Over the last few decades, optimization has been used as a tool to select 

optimal measurements for different purposes, such as to improve 

controllability, observability, efficiency of estimation, and economics, among 

others. One of the earliest approaches based on optimization was presented by 

Muller and Weber (1972). In their work, they suggested the use of the 

determinant of the observability matrix as a measure of the observability of 

the system. They determined the optimum sensor location by maximizing a 

function, based on the observability matrix.  

 

Optimization was also used to determine the best sensor location for optimal 

control. Since control of a process is often the main objective behind the 

sensor installation, it is worth trying to improve control by selecting optimal 

sensor locations. One of the earliest approaches for control purposes based on 

optimization was presented by Mellefont and Sargent (1977), who considered 
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the case of linear quadratic (LQ) control. They determined that the optimum 

sensor location was the one that minimizes an objective function, based on the 

covariance matrix of the state prediction, error, and cost functions. More 

detailed explanation of this method can be found in the cited literature.  Harris 

and MacGregor (1980) presented an up to date review of the techniques 

available for sensor location based on optimization. A later approach also 

based on optimization was proposed by Maghami and Joshi (1992), who used 

nonlinear programming to determine sensor location for flexible space 

structures.  Grimble and Johnson (1988) and Miller (1998) determine the best 

sensor location by using linear quadratic Gaussian (LQG) theory, based on the 

Levine and Athans (1970) theory. 

 

In general, optimization is associated with the minimization or maximization 

of an objective function. Nishida et al. (1981) stated that this objective 

function can be divided into two main categories: control objectives based on 

pure economic consideration, and control objectives based on control 

purposes. In the past, researchers used optimization techniques to determine 

sensor location, only for control purposes without considering the economic 

point of view. However, Kookos and Perkins (1999) studied the problem of 

sensor location, based on optimization techniques, considering both aspects. 

They proposed a mixed-integer linear programming (MILP) problem 

formulation, based on the assumption that the control objectives can be related 

to the variability of certain process variables. The selection of an optimum 



 

 65 
 

sensor location is based on the minimization of the maximum time domain 

deviation of these process variables in the presence of disturbances. In other 

words, the objective is to maintain process variables within the constraints that 

define the feasible region of operation. These constraints come from safety 

and operational requirements, quality specifications, and environmental 

regulation, among others. From this formulation, Kookos and Perkins (1999) 

claim that the sensor location chosen in this way will be the optimum because 

process variables are directly related to the economic performance of a plant. 

A more detailed explanation of this technique can be found in Kookos and 

Perkins (1999 and 2000). 

 

3.3.6. Combined Robust Stability and Nominal Performance. 

The methods discussed in this section use as selection criteria robust stability 

(RS) and nominal performance (NP). RS guarantees stability in the presence 

of uncertainties while nominal performance NP guarantees stability and 

performance in the absence of uncertainties. The key idea for combined RS 

and NP methods is to reject those M-MV sets for which there is no controller 

achieving joint RS and NP. 

Research studies in this area were presented by Reeves (1991); Banerjee and 

Arkun (1995); Reeves, Nett, and Arkun (1991); Ross and Swartz (1997);  Van 

de Wal et al. (1997); and Van de Wal (1998).  A detailed review of these 

methods can be found in Van der Wal (2000). The combined RS and NP 

based M-MV selection methods are useful for initial screening of M-MV sets, 
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but are very time consuming because of the large number of combinations that 

must be checked. 

 

3.3.7. Robust Performance (RP). 

In this section, methods that use robust performance (RP) as a selection 

criterion are presented. RP guarantees stability and performance in the 

presence of uncertainty. The key idea for RP methods is to reject those M-MV 

sets for which there is no controller achieving RP. This method is used for 

initial screening of M-MV sets.  Research studies in this area were presented 

by Braatz (1993); Trierweiler and Engell (1997); Van de Wal (1998); among 

others. A detailed review of these methods can be found in Van de Wal 

(2001).  

 

3.3.8. Search methods 

The majority of the M-MV selection methods discussed are evaluated on a per 

candidate basis which means that all the M-MV sets should be checked for 

viability. However, it is not always necessary to check all these candidate M-

MV sets in order to determine viable ones. Optimization can be used along 

with other M-MV selection methods to avoid exhaustive testing on a 

candidate-by-candidate basis. Adding an optimization criterion may lead to a 

unique solution. In this section, methods that combine optimization and other 

M-MV selection methods are discussed.      
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3.3.9. Measurement Selection Method Based on Thermodynamics 

Information 

This method used to determine dominant variables in a process, was presented 

by Tyreus (1999). In his work, Tyreus stated that economic-related variables, 

such as flow and production rates, are almost always related to the internal 

process rates. He identified the dominant variables affecting these internal 

rates by using a thermodynamic process description that focuses on the power 

release expression for each process unit. The thermodynamic method consists 

of using a generalized balance equation to describe all physical processes. 

Tyreus used the idea, proposed by Schmid (1984), that certain thermodynamic 

quantities behave as if they were substance-like. Substance-like means any 

physical quantity that behaves like an actual substance (physical material). 

Examples of substance-like quantities are as follows: the total mass of 

material within a process, the amount of chemical components, energy, 

entropy, and momentum. The generalized equation that is applicable to all 

substance-like quantities in a system can be written as the continuity equation 

for the accumulation of the component within the reactor: 

ii

i nIn
dt

dn
Π+−=     (3.10) 

The first term of the equation accounts for the accumulation of the substance-

like quantity over time. The second term (negative term on the right-hand 

side) is the net flow of material leaving the system. Finally, the last term 
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models the generation or consumption of the substance-like quantity within 

the system. To solve the balance equations, quantitative expressions for the 

flow and production terms are needed. These expressions are called 

constitutive equations. These equations describe how substance-like quantities 

affect the state of a particular dynamic system and how the quantities flow in 

and out of the system, depending on the system state. Examples of constitutive 

equations are ideal gas law, ideal gas heat capacities, Fourier’s law for heat 

conduction, and Fick’s law for material diffusion, among others. Since all 

physical systems can be modeled through a combination of balance equations 

and constitutive equations, an important question is which substance-like 

quantities should be used to describe the dynamics of the system. In the case 

of chemical systems, they are modeled, using N component balances and one 

entropy balance as the substance-like quantities. In this approach, energy is 

seen as the connection between the descriptions of different systems. Energy 

is also treated as a quantity that is always carried and associated with another 

substance-like quantity. Since energy cannot be created or destroyed, every 

system must export as much energy as was carried into the system.  In the 

thermodynamic method, the unit operations are treated as energy exchangers 

or receivers of energy between different energy carriers. Tyreus (1999) stated 

that the economic objectives of a process are tied to the rates governed by the 

constitutive equations of the system. These equations relate the flow and 

production rate of substance-like quantities with the intensive variables that 

help establish these rates. Hence, Tyreus used the concept of internal energy 
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exchange (common to all processes) and focused on this rate exchange to 

determine the variables that tend to dominate the behavior of the system 

exchange. The main disadvantage of this method is that it requires experience 

and knowledge of the process to select the M-MV variables (dominant 

variables). 

Other works based on physical insight from thermodynamics for process 

control were presented by Ydstie et al. (1996, 2000). They linked physics 

from thermodynamics to key principles of nonlinear system theory in the 

analysis and control of processes.  They describe the process model in terms 

of its thermodynamic properties which are then used directly to evaluate the 

stability of the system. They used typical passivity (Lyapunov) and 

thermodynamics based storage function to determine the stability of the 

system. Application and extension of this approach can be found Ydstie et al. 

(2002, 2007). 

 

3.4 Comparison between M-MV selection methods. 

In this section, the more relevant current methodologies for the M-MV selection 

problem are compared, using some evaluation properties presented in Van der Wal 

(2001).  The main contributions of this review are 1) the addition of new M and/or 

MV selection methodologies to those presented in Van de Wal et al (2001); 2) the 

addition of three new properties; and 3) the addition of different application of the M-

MV selection methods.  The properties considered to evaluate these methods are as 

follows: 
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1) Well-founded: In this property, the theoretical bases for the M-MV selection 

methods are considered.  Also, the difficulty and transparency of the methods as well 

as applications used to prove them are considered.  

2) Efficient: In this property the capability for the method to quickly evaluate (in 

polynomial time) a large number of candidate M-MV sets is considered. Algorithms 

are called efficient if they solve problems in polynomial time in a measure of the 

problem size.  

3) Effective:  This property implies that the candidate M-MV sets for which the 

considered selection criterion cannot be achieved (nonviable M-MV sets) are 

eliminated while the ones that can be achieved (viable M-MV sets) are kept. 

4) Generally Applicable: This property considers the applicability of the methods. For 

example, if the method can be applied to linear and nonlinear systems, for square and 

nonsquare systems (Ny>Nu) etc.,   

5) Rigorous: This property considers the rigorousness of the selection method used. 

For example, a M-MV selection method based on robust stability (RS) is more 

rigorous than a criterion based on nominal performance (NP). The more rigorous the 

criterion is the smaller the number of viable M-MV sets are.  

6) Quantitative: This property evaluates if the methods generate quantitative measures 

for selecting the best M-MV set.   

7) Controller Independent:  This property evaluates whether the M-MV selection 

method is controller independent or not.  In general, it is not desirable to impose 

restrictions on the controller design method, because this can generate biased 

conclusions on the M-MV sets viability. However, in some cases, restrictions on the 
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controller design play an important role; therefore, a controller dependent M-MV 

selection method might be desired. Frequently, M-MV selection methods should not 

involve complete controller design.  

8) Direct: This property evaluates whether the method directly characterizes the 

viable M-MV sets, instead of performing candidate-by-candidate tests for each 

particular criterion in other words, if the candidates are evaluated on a one by one 

basis.  

9) Scaling Independent: This property evaluates if the method is scale-independent or 

not. The reason for checking scaling dependence is because wrong scaling leads to 

inaccurate results.   

10) Plant Model Not Required: This property evaluates whether the methods require a 

linearized plant model  or not. 

11) Disturbance and Setpoint Tracking: This property evaluates whether disturbances 

and setpoint tracking are considered in the M-MV selection. 

These properties are the basis for the evaluation and qualitative comparison of the M-

MV selection methods reviewed. The grade in which these methods fulfill the 

properties is expressed by the following symbols: 

+:  The method exhibits this property to a satisfactory extent 

0:  The method exhibits this property to a moderate extent 

-:   The method does not exhibit this property, or only to a minor extent 

Table 1 shows the evaluation of these properties for each M-MV selection criterion. 

This Table presents the essential information about the current M-MV selection 
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methods available and their main advantages and disadvantages.  The most important 

issues considered in Table 1 for each property are discussed below:  

1) Most of the M-MV methods lack of a well-known theoretical background. The 

selection methods that totally satisfy this property are accessibility, state 

controllability and observability, right-half-plane zeros, and thermodynamic 

information. The remaining selection methods satisfy this property to a moderate 

extent.  

2) The more efficient methods, regarding computational effort, are accessibility, 

state controllability and observability, M-MV controllability, and right half-plane 

zeros. The remaining methods, except for the thermodynamic information 

method, require more computational effort in their calculations. It is important to 

point out that a less rigorous M-MV selection method usually requires less details 

and, therefore, less analytical effort. 

Table 3.1 Qualitative Assessment of the Reviewed M-MV Selection Methods 

                                                                        Desirable Properties for M-MV Selection Methods  

                   

 M-MV Method   1   2   3   4   5   6   7   8   9 10 11 

3.1 Accessibility 
 

  +   +   +   +   _   _   +   _   +   +   _ 

3.2 State Controllability and 
Observability 

 +   +   +   +   _   0   +   _   _   _   0 

3.3 M-MV Controllability 
 

 0   +   0   0   0   +   +   0   0   0   + 

3.4 Right Half-Plane Zeros 
 

 +   +   0   0   _   +   +   _   0   _   0 

3.5 Optimization Efficiency of 
Manipulation and Estimation 

 0   0   0   +   +   +   _   0   _   _   + 

3.6 Robust Stability & Nominal 
Performance  

 0   0   0   0   +   +   +   _   0   0   0 

3.7 Robust Performance  
 

 0   0   _   0   +   +   0   _   0   0   0 

3.8 Search Methods & Robust 
Performance 

 0   0   +   +   +   +   0   _   _   _   0 

3.9 Thermodynamic Information 
 

 0   _   +   +   0   0   +   0   +   0   0 
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3) The more effective methods are accessibility, state controllability and 

observability, and the search and robust performance method.     

4) The methods that fully satisfy this property are accessibility, state controllability 

and observability, search methods and robust performance, and thermodynamic 

information. The reason is that these methods have been successfully applied to 

nonlinear systems. For other M-MV methods, generalizations to nonlinear 

systems might also be possible. 

5)  The major disadvantage of the accessibility and state controllability and 

obserbavility methods is the lack of rigor. The M-MV controllability method is 

not very rigorous either; however, this can be improved by sequential M-MV 

selection for distinct M-MV controllability measures [Van der Wall 2001]. 

6) Almost all M-MV selection methods use some quantitative criterion, except for 

accessibility, state controllability and observability, and thermodynamic 

information. The quantitative measure used by accessibility (the relative degree) it 

is not rigorous enough to indicate whether the intended control can be achieved or 

not. 

7) The majority of M-MV selection methods, are controller independent except for 

some optimization-based methods, robust performance-based methods, and search 

methods. For instance, some of the optimization-based methods assume static 

feedback or output feedback control. In the case of RP methods, some of them 

assume integral control, LQG control, MPC, etc. Other methods, such as M-MV 
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controllability, assume perfect control to avoid controller dependence [Van der 

Wal, 2000]   

8)  In the majority of the M-MV selection methods discussed in this chapter, all the 

candidates generated should be evaluated. This implies an exhaustive search for 

all possible combinations of measurements and manipulated variables, which is 

inefficient. However, some of the optimization-based methods reviewed can lead 

to a unique solution, based on the desired control objective. This is also the case 

for the thermodynamic information-based methods. 

9)  The M-MV selection methods with the “+” symbol are scaling independent, 

while the methods with the “-” depend on scaling. The M-MV selection methods 

that directly depend on scaling are state controllability and observability, 

optimization-based methods, and search and robust performance methods. It is 

important to select the appropriate scaling because inappropriate scaling leads to 

inaccurate results and therefore, wrong conclusions.   

10) The M-MV selection methods that fully require a linearized model of the plant are 

state controllability and observability, optimization-based methods, and search 

and robust performance-based methods.  

11)  The M-MV methods that consider setpoint tracking and disturbance rejection  are 

M-MV controllability and optimization-based methods.  

 

As can be seen from this analysis, only a few M-MV selection methods are readily 

applicable to nonlinear systems. Also, only a few methods give a unique solution for 

the best set of M-MV variables.  There is no single method that satisfies all the 
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properties evaluated. Every method shows different advantages and disadvantages. 

The development of an M-MV selection method that satisfies all these properties is 

probably too ambitious. However, these properties can serve as guidelines for the 

development of new M-MV selection methodologies.  
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Chapter 4: The Optimal Control Based Measurement Selection 

Methodology 

 

4.1. Background 

The plantwide process control problem involves the design of strategies to control an 

entire chemical plant, consisting of many interconnected unit operations.  This 

problem is open-ended, which means that there are several possible solutions. In fact, 

the control structures obtained depend on the economic and control objectives that 

were considered during the control design stage. Because different objectives lead to 

different control structures, the most important step in plantwide control design is to 

define the desired objectives. For example, some of the control objectives that have 

been used for the Tennessee Eastman process (process simulation) are as follows: to 

improve the control of key economic variables in the plant, such as production rate 

and product quality [Ricker, 1996 and Tyreus]; to be able to have rapid changes in the 

production rate [Luyben, 1996 and Tyreus 1998]; to reduce the variability in the feed 

streams to the process by not using them (feed streams) for controlling fast loops 

[McAvoy et. at. 1996]; etc.  

 

 In general, the most common economic objective in any chemical process is to 

maximize profit, while considering the environmental and safety regulations. This 



 

 77 
 

objective is closely related to the control performance of key economic variables in 

the plant (production rate, product quality, and purge losses). Often in complex 

processes, in order to achieve the desired economic and control objectives (e.g. 

control some key variables at their setpoints or within a specified range), a few other 

important variables should be controlled. This means that the setpoints of these key 

controllers are the manipulators to hold the economic objectives in the desired range. 

This is called partial control. Works in partial control have been presented by Arbel 

(1995a, 1995b, 1996, 1997, 1999), and Tyreus (1999), among others.  Tyreus (1999a 

and 1999b) used partial control to improve the control of the production rate. Tyreus 

used thermodynamic principles to identify the dominant variables that affect the 

economic variables in the plant (production rate and product quality). Then, he used a 

partial control scheme to control these dominant variables in order to: 1) increase and 

hold the production rate by approximately 50% of the steady state value and 2) 

improve the control performance (transient responses) of the process for disturbance 

rejection.  

 

The main objective of this Thesis is to determine the set of measurements and 

manipulated variables (important variables) and to structure them to maximize profit 

in the plant. A sub-objective that directly affects the main objective is to improve the 

control performance of production rate and quality. The reason is that by improving 

the control performance of these variables, the plant can be operated closer to 

operational constraints. In this Thesis, a methodology based on optimal control theory 

that uses the idea of partial control is presented to solve this control problem. The 
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optimal control measurement selection methodology uses a linear quadratic regulator 

(LQR) design method to generate an optimal static output feedback controller 

(OSOFC). The OSOFC is analogous to a gain matrix in the sense that it can provide 

dynamic information about the process interaction while the gain matrix contains 

static information about process interaction. This gain matrix (OSOFC) is used to 

determine the important measurements and manipulated variables that affect 

production rate and product quality. Then, control structures (interconnections) for 

these important variables (manipulated variables and measurements) are determined, 

using OSOFC.  After closing these loops, the setpoints of the important 

measurements become manipulated variables. Finally, the idea of using partial control 

for controlling production rate and product quality is implemented as follows. In this 

methodology, production rate and product quality are controlled by manipulating the 

setpoint of important manipulated variables.  The main difference between the 

plantwide control design methodology presented in this Thesis and the majority of the 

current methodologies is as follows. In this methodology, production rate and product 

quality are controlled by manipulating a set of dominant variables in the plant, while 

in other methodologies production rate and product quality are controlled using only 

two manipulated variables (one for each controlled variable).  It is important to point 

out that the original idea of using an LTI process model and optimal control theory 

for control structure design was presented by Schenelle (1989). More recent research 

on this subject has been presented by McAvoy and Chen (2002 and 2003).  In their 

work, Chen and McAvoy (2002 and 2003) use the OSOFC for control structure 

design.  
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The structure of this chapter is as follows: First, the basic OSOF LQR design Linear 

Quadratic Regulator (OSOF LQR) is presented. Then, the optimal control-based 

measurement selection methodology is described. Next, the OSOF LQR design 

considering economics is addressed. Finally, a discussion and comparison with other 

schemes is presented.  

4.2. The Basic Optimal Static Output Feedback Linear Quadratic Regulator 

(OSOF LQR) Design 

In general, the majority of chemical processes are considered nonlinear. Even though 

there is an optimal controller design approach for general nonlinear systems [Lewis, 

1992], no systematic design approach has been suggested at the present time. In fact, 

experience is always needed for solving each particular nonlinear problem. By 

contrast, optimal control theory and LQR are firmly established for linear and time-

invariant  (LTI) systems. The optimal controller design for linear time invariant (LTI) 

systems with quadratic performance indices is called the linear quadratic regulator 

(LQR) problem. In the optimal control theory, LQR is the basic controller design for 

LTI systems. The general formulation for an optimal LQR, using state feedback, is 

given in Chapter 1 Section 1.3.   However, in practice, only some of the states are 

available as measured outputs. Therefore, in order to determine the LQR when not all 

the states are available, two approaches can be used: 1) to estimate the states by using 

a Kalman filter or 2) to use output feedback instead of state feedback. The second 

approach is called the optimal static output feedback linear quadratic regulator 

(OSOF LQR) design problem, and its formulation is presented in Chapter 2 Section 
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2.4.  It is important to understand the OSOF LQR because the methodology proposed 

in this work (optimal control based measurement and manipulated variables selection 

methodology) is based on the OSOF LQR.  

 

4.3. The Optimal Control Based Measurement and Manipulated Variables 

Selection Methodology   

The optimal control measurement selection methodology uses a linear quadratic 

regulator (LQR) design method to generate an optimal static output feedback 

controller (OSOFC), which is analogous to a process gain matrix. The OSOFC (gain) 

is used to determine the important measurements and manipulated variables that 

affect production rate and product quality (those variables for which production rate 

and product quality are most sensitive). Then, control structures for these important 

variables (measurements and manipulated variables) are generated, using OSOFC.  

After closing these loops, the setpoints of the important measurements become 

manipulated variables. Finally, partial control is used for controlling production rate 

and product quality by adjusting all the important manipulated variables. 

 

The main problem to be solved in this stage is to find a set of measurements and 

manipulated variables that affect the production rate and quality, without using these 

two measurements in the control law. In other words, these two measurements should 

be used to define the control objective (in the objective function), but they should not 

be considered as available measurements at this stage. The logic behind this is 

explained as follows: Production rate and product quality are considered in the 
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objective function in order to define the control objective -- to control production rate 

and product quality. By not considering them within the available measurements, the 

idea is to find other dominant variables (measurements and manipulated variables) 

that can be used to control production rate and product quality. The reasons for using 

partial control to control production rate and product quality is that, by controlling the 

dominant variables, there is an improvement in the control performance of production 

rate and product quality for setpoint changes and disturbance rejection 

 

In order to solve this problem, two methods based on OSOFC are proposed. For both 

methods, given a LTI state space model (Equation 2.4) an optimal static output 

feedback controller (OSOFC) is designed to stabilize the system and bring the states 

from arbitrary initial values to zero, following a trajectory that minimizes a linear 

quadratic objective function. The output feedback equation is given as: 

Kyu −=      (4.1) 

where K is a mxp matrix of constant feedback coefficients. The problem to be solved 

is to find the K that minimizes a quadratic time domain performance index function 

given by: 
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where Q  and R  are weighting matrices for y and u respectively, while gij  is a weight 

on element kij in K. In general, gij’s are zero. However, when a single input single 

output (SISO) structure is used, the gij’s elements are used to force the off-diagonal 

elements of K to be zero; then the resulting K has only diagonal elements. In order to 
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make the kij elements small, large values of the corresponding gij elements should be 

used.  

 

Two methods are proposed to find the set of measurement and manipulated variables 

that affect production rate and product quality. Both methods are based on OSOFC. 

The first method to find the set of measurement and manipulated variables that 

affect production rate and product quality uses the weight matrix Q. By changing the 

elements of this matrix, the control objectives can be defined. To do so, two sets of 

measurements are generated: a first set (Cs) which includes all the measurements, 

except the production rate and quality, and a second set (Cc) which includes all the 

measurements including production rate and product quality). Then Equations 2.7, 

2.9, and 2.10 are replaced by the following algebraic Riccati Equations: 

 

0=+++ QCcCcRKCsKCsPAPA
TTT

C

T

C    (4.3) 

0* =+− KgPSCsBRKCsSCs
TTT   (4.4) 

T

C xxXBKCsAA )0()0(=−=   (4.5) 

To achieve the control objective, all the elements in the Q matrix are set equal to zero, 

except for the elements that correspond to the production rate and product quality in 

the Cc matrix.  

 

The second method to solve this problem uses the gij elements in Equation 4.4. In 

this method, only one set of measurements (C) is generated. This set of measurements 

includes the production rate and product quality. The key idea is to make all the 
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elements in the rows of K matrix corresponding to the production rate and product 

quality measurements very small. To do so, a large value for the corresponding 

weighting gij elements is used. Several simulations were performed using both 

methods.  The results obtained using both methods were the same; however; the 

computation speed of the second method is much slower. An example that 

demonstrates that these two methods give the same results is presented in Appendix 

III. Because both methods give the same results the first method is chosen to be used 

due to the speed of the calculation. If the first method is used then gij are equal to 0. 

On the other hand, R is chosen to be the identity matrix; therefore, all manipulated 

variables are treated equally. In solving this problem (using method 1)the following 

conditions are required: 

1) R should be positive definite, and Q should be positive semidefinite to ensure 

C

T

C QCC  is positive semidefinite. 

2) P is positive definite or positive semidefinite as long as AC is stable 

)( C

T

CS

TT

S QCCRKCKC +  is positive definite or positive semidefinite.  

3) S is positive definite or positive semidefinite as long as AC is stable and X is 

positive definite or positive semidefinite.  

The OSOFC K solution depends on the initial states x0 (as explained in Chen’s 

methodology in Chapter 2 Section 2.4), and in most of the cases, x0 is unknown. This 

problem can be solved by minimizing the expected value of J [Levine, 1970]: 
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Then, Equation 4.5 is replaced by: 
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{ }T

CC xxEXBKCAA )0()0(=−=    (4.6) 

 

where X is the initial autocorrelation of the states. It is usual to assume that the initial 

states are uniformly distributed on the unit sphere, therefore X=I, the identity matrix. 

Chen (2002, 2003) used this assumption to solve the OSOFC. Therefore, the control 

structures obtained using Chen’s methodology might not be the most appropriate for 

specific disturbance rejection and setpoint changes.  In contrast, to Chen’s 

methodology, in this methodology, the initial states X are calculated for considering 

disturbance rejection and setpoint change.  Then the initial condition for (4.6) for the 

proposed methodology is given by  
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where xd represents the disturbances states, n represents the total number of 

disturbances, and xsp is a vector related to setpoint changes in the production rate and 

quality. The calculation for xd and  xsp is given by 

id dWAx
i

**1−−=     (4.8) 

W  is the matrix whose elements describe the dynamics for the disturbances, and d is 

the vector that considers the disturbances. 

mCx
isp *=      (4.9) 

C is the matrix that has information about the measurements and m is the vector that 

specifies the measurements that are considered for control, in this case production 

rate and product quality. Therefore, the size of m is the total number of 
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measurements.  All the elements of m are zero, except for the elements that 

correspond to production rate and product quality.  

 

 After the OSOFC is obtained, the next question is how to extract information about 

the best set of measurements and manipulated variables to control production rate and 

product quality. Since the process model is scaled, the OSOFC is dimensionless. 

Therefore, the absolute value of the elements in the OSOFC can be compared to one 

another. In the OSOFC the rows represent manipulated variables while the columns 

represent measurements, as can be seen form Equation 4.1. Generally, an element 

with absolute value close to zero indicates a weak relationship between the 

manipulated variable and the measurement. In this methodology, the L1-norm of a 

vector is used as a measure of the degree of importance for the measurements and 

manipulated variables. The L1-norm is defined as follows: 

nx . . . . . xxxx ++++= 3211
   (4.10) 

In order to determine which measurements and manipulated variables should be used 

to control production rate and product quality the following rules of thumb are used: 

1) The L1-norm for each row of the OSOFC is calculated as the sum of the 

absolute value of all the elements in each row. These values are called Σrowi 

and represent the total contribution of each manipulated variable.  The 

manipulated variables that have more effect on the production rate and 

product quality (strongest manipulated variables) are the ones that have the 

largest values of Σrow (L1-norm row).   
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2) The L1-norm for each column of the OSOFC is calculated as the sum of the 

absolute value of the elements in each column. These values are called Σcoli 

and represent the total contribution of each measurement. The measurements 

that have more effect on the production rate and product quality (strongest 

measurements) are the ones that have the largest values of Σcol (L1-norm col).   

3) If a row of the OSOFC contains only small elements the corresponding 

manipulated variable should not be consider in the control structure for 

controlling production rate and product quality. 

4) If a column of the OSOFC contains only small elements the corresponding 

measurement should not be consider in the control structure for controlling 

production rate and product quality. 

 

The Optimal Control-Based Measurement and Manipulated Variable Selection 

Procedure  

In this section, the implementation of the optimal control-based measurement and 

manipulated variable selection methodology for controlling production rate and 

product quality is explained. This methodology is one of the most important tasks in 

the plantwide control design methodology presented in this work.  This methodology 

it is closely related to the plantwide control design methodology presented by Chen 

and McAvoy (2002, 2003). The reason is that some of their ideas about control 

structure design and the calculation of the OSOFC are used in this methodology. 

Therefore, the differences between both methodologies are pointed out in each stage. 

If the procedure is similar or the same, references are given.  The plantwide control 
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design methodology proposed is based on the following ideas: 1) the use of optimal 

control theory, 2) the use of hierarchical design procedure for process control design, 

and 3) the use of partial control. The original idea of using optimal control theory for 

control structure selection was presented by Schenelle (1989) and more recently, by 

Chen and Mc Avoy (2002 and 2003). In this Thesis, a new idea of using optimal 

control theory for finding dominant measurement and manipulated variables that 

affect production rate and product quality is presented. The optimal control theory is 

also used for control structure selection based on Chen and McAvoy (2002, 2003) 

presented in Chaper 2 Section 2.4. The original idea of using a hierarchical design 

procedure for plantwide control design was presented by Mc Avoy (1994). The 

plantwide control design methodology presented in this work uses the idea proposed 

by McAvoy in the following way: The plantwide control design problem is divided 

into four sub-problems: 1) controlling variables related to safety issues, 2) controlling 

the component balances, 3) controlling production rate and product quality variables, 

and 4) controlling the unit operations with the available degrees of freedom. The 

reason for dividing the problem into sub-problems is that, from the plantwide design 

point of view, it is easier to solve an optimization problem,  when not all the 

objectives are being considered at the same time. In fact, a hierarchical design 

procedure can provide a systematic and practical way to locate satisfactory solutions 

in a small search space. Finally, partial control was used by Tyreus (1999) for 

controlling economic operating objectives in a plant. Tyreus uses a thermodynamic-

based method for the identification of the dominant variables. Then the partial control 

structure is implemented by feedback control of all the dominant variables and by 
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manipulating the setpoint of the dominant variables manually. In the methodology 

presented in this work, optimal control theory is used to identify the dominant 

variables (measurement and manipulated variables). Then optimal control is also used 

to generate control structures to pair these measurements with the manipulated 

variables.  Finally, a model predictive control (MPC) is built on top of the resulting 

control structure to manipulate the set point of these loops, in order to change the 

production rate and product quality.  

 

Data Requirements 

In order to use this methodology, the following data should be available: 

1)  A linearized model (a state space linear time invariant process model). The linear 

model can be obtained from the first principle nonlinear model by numerically 

calculating the first order Taylor expansions coefficients of the nonlinear model 

around the operating point. Also, the linear model can be obtained from model 

identification using process data. 

2) Steady state process data for state variables, manipulated variables, and 

measurements. 

3) Operating ranges of the measurements and manipulated variables. 

4) Defined control objectives, i.e. the control of key economic variables (production 

rate and quality) 

5) Process constraints used to define the safety variables. 

6) Information about possible disturbances and/or setpoint changes. 
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The optimal control-based measurement and manipulated variable selection procedure 

for plantwide control design consists of 6 stages. Even though the methodology 

presented in this work, has many similarities with Mc Avoy and Chen’s plantwide 

control design methodology (2002) the main differences between them are listed at the 

end of this section.This methodology is tested in two-process simulations: 1) the 

Tennessee Eastman Process, presented in Chapter 5, and the Vinyl Acetate process, 

presented in Chapter 6.  

 

1) Stage 1:  Preparation. 

The first stage, the preparation, is divided into three substages:  

1.1) Scaling the model: The main purpose of this scaling is to obtain an optimal gain 

matrix ( K ) that has no units; therefore, every element of this matrix can be compared 

directly with each other. Because K depends on the scaling of the models, a proper 

scaling is required. The scaling can be made using the following: 

- State Variables: They can be scaled by their steady state values or by the ranges of 

their desired movements. 

- Measurements: They can be scaled by the range of the transmitter or by the range of 

desired movements (operational ranges). The operational ranges are decided by 

engineering judgment. 

- Manipulated Variables (MVs): They are either valve opening percentages or 

setpoints of inner cascade controllers. The  MVs can be scaled by the physical valve 

range or by the range of desired movements (operational ranges).  
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In this work, the operation range values are used for scaling, and their values are 

decided by engineering judgment.  

To scale the model given by Equation 2.1, x, u and y are scaled using 

susysx uNuyNyxNx === ,, .  

yN = diagonal scaling matrix for the measurements  

uN = diagonal scaling matrix for the manipulated variables  

xN = diagonal scaling matrix for the state variables.  

 Therefore, the scaled model is 
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where xxs NANA **)( 1−=      uxs NBNB **)( 1−=      xys NCNC **)( 1−=  

xxs NQNQ **)( 1−=      uus NRNR **)( 1−=  

The scaling values used in this work are given in Chapters 5 and 6 for the Tennessee 

Eastman process and Vinyl acetate process, respectively. 
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values of the scaling factors in the matrices Nx, Ny or Nu 

1.2) Closing the inner cascade loops (secondary loops): In this step, flow loops and 

temperature loops are closed. The manipulated variables then become the setpoints of 

the flow and temperature loops. The main advantage of closing the inner cascade 

loops is that the upset (disturbances) can be caught more quickly. For example, if the 
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secondary (inner) loop has a response that is five times faster (or more) than the 

master (outer) loop, then upsets entering the inner loop can be caught and corrected 

before they affect the primary loop. Therefore, better control of the primary variables 

is achieved because they are less affected by disturbances. The main difference 

between the performance of cascade loops and direct loops can be seen in the 

presence of disturbances. 

1.3) Steady state correlation analysis: In this step a correlation analysis is carried out 

on the steady state gain matrix to identify variables (measurements) that are highly 

correlated. This is an important issue for overall plantwide control because when 

there are two or more variables that are highly correlated, trying to control all of them 

at the same time results in severe interactions. In addition, several simulations showed 

that when highly correlated variables (measurements) are considered simultaneously, 

the algorithm used to calculate the OSOFC did not converge, or the calculation was 

very slow. The reason for this is that the condition number of the C matrix increases 

significantly whenever two or more highly correlated variables are considered 

simultaneously. Because the algorithm used to calculate the OSOFC involves the 

inversion of the C*S*C’ matrix (equation 4.4), it is recommended not to work with ill-

conditioned systems to avoid convergence problems. In order to overcome this 

problem, a condition number analysis is used to determine how the condition number 

of the C matrix is affected when highly correlated measurements are considered 

simultaneously. To do so, the condition number (CN) of the C matix is calculated, 

eliminating one variable at a time from each correlated group until there is not 

significant change in the CN.  
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In this stage, the differences between this methodology and Chen’s methodology are 

as follows: 

In this methodology, a correlation analysis and condition number analysis are 

performed, while Chen does not consider these analyses. The reason for this is that 

the problem solved with this methodology is much larger than the problem solved by 

Chen’s methodology. For instance, the problem of finding the dominant variables that 

affect production rate and product quality through calculating an OSOFC is a large 

optimization problem because all the available measurements in the plant are 

considered simultaneously. These analyses are used for identifying highly correlated 

variables that make the system ill-conditioned, causing slow calculation and 

convergence problems. Chen does not require these analyses because he solves 

smaller optimization problems in each stage. In these problems, he chooses the 

controlled variables, based on experience, and he calculates the OSOFC to find the 

best manipulated variables to control them. 

In this stage, inner cascade loops, such as flows and temperatures, are closed while 

Chen does not consider inner cascade loops. 

 

2) Stage 2:  Generate decentralized control structure candidates. 

In this stage the safety variables identified in Chen’s first stage are used.  Then, 

decentralized control structures are generated for these safety variables. The 

procedure used here is similar to the one proposed by Chen (2002). Details on this 

procedure can be found in Chapter 2 Section 2.4 or Chen (2002, 2003).  However, the 

main difference is that in this procedure the initial states are calculated for specific 
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disturbances and setpoint changes (Equations 4.7, 4.8, and 4.9) while Chen’s assumed 

that the initial states are uniformly distributed on the unit sphere.  The control 

structures for the safety variables are determined using Chen’s guidelines. Then, these 

loops are closed, using proportional-only controllers. The tuning of the controllers is 

carried out by generating a diagonal optimal static output feedback controller 

(OSOFC) for each control candidate. This tuning method was proposed by Chen 

(2002), and it can be used to automatically tune proportional-only controllers.  More 

details can be found in Chaper 2 Section 2.4. In this methodology the calculation of 

the diagonal OSOFC is also done for specific disturbance rejection and setpoint 

changes while Chen uses generic forcing (X=I).  

 

3) Stage 3:  Control Structure for Inventory Variables (Inventory Control). 

The goal of this stage is to maintain component balances. The plant chemical 

components are characterized by Luyben (1999) as reactants, products, and inerts. In 

chemical processes it is very important to satisfy the overall component balance of all 

chemical species at steady state. In fact, this is particularly important in processes 

with recycle streams because any imbalance of any component will cause an 

accumulation of the component that is in excess [Luyben, 1999]. In this methodology, 

the component balance control design is done before the production rate and product 

quality control design, while in Chen’s methodology, the sequence of these two 

stages is inverted. The reason for doing the component balance control design early 

(in the plantwide control design process), is to avoid the use of the feed streams 

(manipulated variables used to control component) to satisfy other control objectives, 
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instead of keeping the component balances. Although Chen does the production rate 

and product quality control design (Stage 3 in Chen’s methodology) before the 

component balance control design (Stage 4 in Chen’s methodology), he does not 

close the product loops until he closes the component balances. For instance, in Chen 

(2003), he said, “Before product loops are tuned (Stage 3), the component balances 

should be examined in Stage 4 because these balances might reduce the number of 

manipulated variables that can be used in Stage 3.”   Therefore, it is not clear why he 

first considers the production rate and product quality control design. 

 

In 1992, Downs pointed out the importance of verifying whether the control structure 

in the plant satisfies the component balance. To do so, it is necessary to check the 

specific mechanism or control loop that guarantees that there will be no accumulation 

of that chemical component (Downs drill). There are three ways to ensure this: 1) to 

limit the feed flow of reactants, 2) to control their reaction, or 3) to adjust the product 

or the purge in the plant. In order to verify the component balances, Luyben (1999) 

recommended the use of a Downs drill analysis. This is shown in a Table that lists 

each chemical component, its input, its generation or consumption, and its output. In 

this methodology, Downs drill Tables are generated for each candidate obtained in 

Stage 2. However, a difference from Chen’s methodology is that, in this methodology 

only the reactants, inerts, and byproducts are considered for this analysis since the 

products will be controlled in the next stage. The Downs drill Tables generated have 

the following  information:  list of the components of the plant (reactant, inerts, and 

byproducts) and their categories, whether the components are regulated or not, why 
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they are self-regulating, and all possible measurements and manipulated variables for 

controlling each component. After the number of control loops for the uncontrolled 

chemical components are identified, the same number of manipulated variables 

should be used. In general, the manipulated variables used to control the inventory of 

a component are their feed flows. In the case of the inerts the purge is used. The 

measurements used in this stage are not available for future stages. Then, the new 

manipulated variables are the setpoints of the component inventories. These loops are 

tuned by generating a diagonal optimal static output feedback controller (OSOFC) for 

each control candidate.  

 

4) Stage 4 :  Control Structure for Production Rate and Product Quality 

The objective in this stage is to determine the set of measurements and manipulated 

variables that have more effect on the key economic variables in the plant (production 

rate and product quality). The measurements used in this stage are all the remaining 

measurements (measurements not used to close loops) from the previous stages. It 

should be pointed out that production rate and product quality are not included in the 

set of available measurements. They are only considered to define the control 

objective. On the other hand, the setpoints of the loops, closed in Stages 1, 2, and 3, 

become manipulated variables for this stage. Then, an OSOFC is calculated to 

determine the set of variables that have the strongest effect on production rate and 

product quality. The OSOFC can be a non-square system. The initial states used can 

be: 1) not known then, the initial states are assumed uniformly distributed on the unit 
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sphere, X=I; and 2) calculated based on disturbance rejection and setpoint change. 

The parameters used for the calculation of the OSOFC are as follows: 

Parameter Value 

R  Identity matrix, which gives the same importance to all the 

manipulated variables 

gij 0,  which means there is no control structure specified 

Cs All remaining measurements from stages 1, 2, and 3 except 

for the production rate and product quality 

Cc All remaining measurements from stages 1,2, 1and 3, and 

the production rate and product quality 

Q Q  is the weight matrix that can be used to define the desire 

control objective. All the elements of this matrix should be 

zero except for those that correspond to the variables 

associated with production rate and product quality in Cc. 

X The initial states are calculated for setpoint change and 

disturbance rejection using Equations 4.7, 4.8, and 4.9. 

 

The OSOFC obtained from this procedure is similar to a gain matrix in which the 

elements of each row and column can be compared to one another because the 

OSOFC is dimensionless. In the OSOFC matrix, the rows represent the manipulated 

variables while the columns represent the measurements.  To obtain the information 

about the important measurements and manipulated variables from the OSOFC, the 

following rules of thumb are used: 

1) The sum of the absolute value of the elements of each column is called Σcol. 

The Σcol is calculated for each column.  

∑ ∑
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The best measurements (strongest measurements) are the ones that have the 

largest values of Σcol. 

2) The sum of the absolute value of all the elements in a row is called Σrow . The 

Σrow is calculated for each row.  

∑ ∑
=

=
m

j

jii Krow
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,      ni ,.......1=           (4.13) 

The best manipulated variables (strongest manipulated variables) are the ones 

that have the largest values of Σrow. 

3) An element with absolute value close to zero indicates a weak relationship 

between the manipulated variable and the measurement.  

These rules of thumb provide information about the strongest measurements and 

manipulated variables; however, there is no rule to decide how many of these 

variables should be used in the final control structure. Since only the manipulated 

variables will be used to build the MPC, control structures for the important 

measurements should be determined, using the available manipulated variables. 

To do so, the following procedure is carried out:  

 

- Control Structures for Important Measurements.  In this section, 

decentralized control structures are identified to control the strongest 

measurements. An OSOFC is calculated where the control objective is to 

control the strongest measurement. All the strongest measurements and all the 

manipulated variables are used. The reason for using all the manipulated 

variables, instead of using only the strongest ones, is because now the 

objective is to control the strongest measurements. Therefore, different 
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manipulated variables, rather than the strongest ones, might be needed for this 

new objective. The following parameters are used for the calculation of the 

OSOFC: 

 

 

Parameter Value 

R  Identity matrix, which gives the same importance to all the 

manipulated variables 

gij  0,  which means there is no control structure specified 

Cs All the strongest measurements 

Cc All the strongest measurements 

Q Q  is the identity matrix that gives the same importance to 

all the measurements  

X The initial states are calculated for setpoint change and 

disturbance rejection using Equations 4.7, 4.8, and 4.9. 

 

From the OSOFC, the best manipulated variables to control strongest 

measurements are the ones with the largest values in the column. These loops 

are tuned by generating a diagonal OSOFC. The tuning method used is the 

same as the one used in stages 2 and 3. The proportional gains for these loops 

are given in Appendix IV. After closing these loops, the setpoints of these 

variables become manipulated variables. 

 

- Determination of Control Structures for Controlling Production Rate and 

Product Quality.  
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After the loops that correspond to the strongest measurements are closed, the 

setpoints of these control systems become new manipulated variables. Then, 

two possible alternatives are considered to build the MPC: 1) to use the 

manipulated variables generated by closing the important measurement loops 

first, and then to add the strongest manipulated variables, one at a time, and 2) 

to recalculate an OSOFC to check for any changes in the strongest 

manipulated variables, once the important measurements loops are closed.  

The second alternative is used in this work. The reason is that it takes into 

consideration any changes in the order of importance of the manipulated 

variables due to the addition of the important measurements loops that were 

closed.  

 

As mentioned above, an MPC is used to control production rate and product 

quality by adjusting the strongest manipulated variables. This MPC will have 

two outputs or controlled variables (production rate and product quality) and 

many inputs or manipulated variables. The questions become how many 

manipulated variables and which ones should be used. To answer these 

questions, the manipulated variables are added, one at a time, in descending 

order of Σrow, until there is no significant improvement in the control 

performance for disturbance rejection and setpoint changes. In order to 

identify the cut-off for the manipulated variables, a multivariable OSOFC is 

used as a quick screening tool, to have an initial idea about the numbers of 

important manipulated variables that should be used (check length. The reason 
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for using a multivariable OSOFC before the MPC is that the multivariable 

OSOFC will give insight about the effects of the addition of a manipulated 

variable in control performance; it is easier to implement, and therefore, it is 

less time consuming than generating a new MPC every time a new 

manipulated variable is added. When a new manipulated variable is added, a 

new control structure or candidate is generated. The resulting control 

structures are evaluated for disturbance rejection and setpoint changes. The 

control performance of the resulting candidates is compare using transients’ 

response characteristics, such as settling time and offset value for critical 

variables in the plant, as well as the integral of the absolute value for the error 

(IAE). The critical variables in the plant are selected depending on the control 

objectives. The offset of the critical variables is calculated as the difference 

between the setpoint of a critical variable and the final steady state value, 

reached after a disturbance or setpoint change. Then, the summation of the 

absolute value of the offset for the critical variables is calculated for 

disturbances and setpoint changes, for each candidate using the following 

Equation:  

∑∑
= =

=
m

j

n

i

*k i))offset(j, variables alabs(critic  Value Offset
1 1

α  (4.14) 

α:  weights for the critical variables (selected depending on importance of 

control objectives) 

i: critical variables offsets. i= 1 to n, where n is the total number of critical 

variables 
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j: Disturbances and setpoint change. j= 1 to m, where m, where m, is the 

summation of the disturbances and setpoint changes 

k: total offset value for each candidate k=1 to max number of candidates. 

Equation 4.14, shows that the offset values per candidate are the summation of 

the offset for the all the critical variables for disturbances and the setpoint 

changes.  

The IAE is calculated, using Equation as follows: 

[ ]∫
∞

−=
0

k dttCVtSP  variables critical for AEI )()(   (4.15) 

The IAE for each candidate is calculated as follows 

∑∑
= =

=
m

1

n

1

i)(j, variablescriticalfor  AE  AE
j i

II    (4.16) 

 

i: IAE for critical variables: selected depending on control objectives. 

 i= 1 to n, where n is the total number of critical variables 

j: Disturbances and setpoint change. j= 1 to m, where m, where m, is the 

summation of the disturbances and setpoint changes 

k: total IAE for the critical variables for each candidate. k=1 to max number 

of candidates 

Every time a new manipulated variable is added, a new candidate is generated, 

and the values for the summation of the offset and IAE for this candidate are 

compared with the previous candidate. The goal is to evaluate whether there is 

significant improvement or not when a new manipulated variable is added. It 
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can be said that there is significant improvement under the following 

conditions: 

a) The percentage of change in the IAE with the addition of a new 

manipulated variable is greater than 5%. The percentage of change is 

calculated as the change between two consecutive candidates. If it is 

less than 5%, there might be no significant improvement. Therefore, 

the addition of a new manipulated variable will not give significant 

control benefits. However, since this is just an initial screening tool if 

the % change is between 1 to 5%, it might be checked with the 

nonlinear simulation, just to corroborate that the variable does not 

significantly improve the control performance.  

b) The total summation of the offset value decreases more than 5% 

between two consecutives candidates.  

 

The most important difference between this methodology and Chen’s 

methodology is in this stage. The difference is the way in which both 

methodologies handle the production rate and product quality control design. For 

instance, Chen solves the problem of finding the best set (two) of manipulated 

variables to control production rate and product quality (one manipulated 

variables for each measurement). In Chen’s methodology, based on experience, 

he chooses the controlled variables (in this case production rate and product 

quality are the controlled variables); then he uses optimal control theory, process 

insight, and experience to find the best manipulated variable for each controlled 
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variable. Therefore, production rate and the product quality are controlled by 

adjusting only two manipulated variables, one for each controlled variable. On the 

other hand, in the methodology proposed in this work, production rate and 

product quality are controlled using the partial control idea by manipulating 

several dominant variables. The main benefit for using the partial control idea for 

controlling production rate and product quality is that there is an improvement in 

the control performance of production rate and product quality for setpoint 

changes and disturbance rejection. In addition, the product quality can be kept 

under specifications, even though the product quality analyzer has problems.  

 

5) Stage 5:  Control Structure for Individual Unit Operations 

The number of valves available in a plant is equal to the number of degrees of 

freedom. In general these valves are used to: 1) set production rate, 2) control gas 

and liquid inventories, 3) control product quality, and 4) avoid safety and 

environmental constraints [Luyben, 1999]. In this stage, the degrees of freedom that 

are still available are determined. Then, control loops for individual unit operations 

are determined, using the remaining degrees of freedom. If there is more than one 

loop that needs to be closed, an OSOFC is used to determine the control structure.  

If, at the end of this stage, there are still degrees of freedom available, they can be 

used for process optimization, which is not considered in this work.  

 

6) Stage 6:  Control Production Rate and Product Quality Using MPC 
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The objective in this stage is to improve the control of the production rate and 

product quality by adjusting the setpoints of the important variables in the plant 

(strongest manipulated variables determined in stage 4).  One important question to 

consider in this stage is whether to use a multivariable controller (OSOFC which is 

a proportional controller used in stage 4) or a model predictive control (MPC) for 

implementing the production rate and product quality control. In this work, 

multivariable controller (OSOFC) is used as a screening tool to determine how 

many strongest manipulated variables should be used. The reason is that 

multivariable controller uses the linear model of the plant (which is available) and it 

is easier to implement than the MPC applied to the nonlinear model. Once the 

system is defined an MPC is used for implementing the resulting control structure 

because of the following reasons:  

1) The MPC is a more general model based control methodology, in which the 

dynamic optimization problem is solved on-line at each control execution 

while the OSOFC is solved offline. The MPC drives the outputs to their 

steady-state optimal values (dynamic output optimization)  and the inputs to 

their steady-state optimal values, using the remaining degrees of freedom 

(dynamic input optimization) 

2) The MPC formulation can handle process constraints (inputs and outputs) 

while the OSOFC cannot. This is very important because, in general, the most 

efficient operation is achieved by operating the process at an optimum set of 

constraints that represent the physical limitations of the equipment in the plant 

or quality specifications of the products. In the MPC, process input and output 
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constraints can be included directly in the process formulation; therefore, 

future constraint violations are anticipated and prevented. Then by using 

MPC, the process can be operated closer to the true process equipment and 

product quality constraint achieving more economic benefits.   

3) The MPC allows moving the system from different steady states. The inputs 

may receive the steady state operating point from a plantwide steady state 

optimizer. 

4) The MPC prevents excessive movement of the manipulated variables because 

it has weights for the manipulated variables movement that can be adjusted. 

In this particular case, the outputs of the MPC are production rate and product 

quality, while the inputs are the important manipulated variables. 

 

Another difference from this methodology and Chen’s methodology is the way in 

which control performance is evaluated. In this methodology, the performance of 

the final control structure candidates is evaluated, using nonlinear process 

simulation, while in Chen’s methodology, only linear process simulations are 

considered.  If the process is kept close to the operating point, there should not be a 

big difference between using linear and nonlinear simulations. However, if the 

process is moved far form the operating point (for example big changes in 

production rate, changes between different operating modes in the plant, etc.), then 

it is necessary to evaluate the control performance of the candidate by using 

nonlinear simulations.  
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Important Considerations: 

Chen (2002 and 2003) presented three groups of numerical algorithms to solve for the 

OSOFC (see Chapter 2, Section 2.4). In this methodology the Moerder and Caliese’s 

algorithm is chosen to calculate the OSOFC because of its simplicity and efficiency. 

Also, Chen (2003) presented three methods (Moerder and Calise’s, Toivonen, 

Toivonen and Malika’s algorithms)  for calculating an initial guess for K that makes 

an unstable open-loop process model asymptotically stable. The method chosen in 

this methodology is the first method (Moerder and Calise’s algorithm) because of its 

simplicity and efficiency. In this method random numbers, ranging between ±α, are 

generated for the elements of K until A-BKC is asymptotically stable.  α is a design 

parameter, and its value is given by users, with a default value of 1.0 [Chen 2003]. 

More details about whether the system can be stabilized or not, what the sufficient 

conditions are for global convergence, what the convergence properties are, and how 

the calculation of an initial stabilizing SOF controller K is done are presented in Chen 

(2003). 

Tuning  

In each stage a diagonal OSOFC is generated for each candidate. There are two 

possible ways to obtain the diagonal OSOFC [Chen, 2002]: 

1) to force all the off-diagonal elements in the OSOFC to be 0 by using large 

gij’s that correspond with the off diagonal elements. The computation speed is 

much slower than using zero gij’s.  
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2) to generate a diagonal initial OSOFC and keep it diagonal while it is updated 

by solving the design equations. More details in this method and the algorithm 

can be found in Chen (2002). 

In this methodology the second method is selected because it runs much faster and 

give the same results as the first method. 

 

 

4.4. Summary  and Discussion  

In this section important aspects of the optimal control based approach for 

measurement and MVs for controlling key economic variables are discussed. 

4.4.1.- Comparison between Optimal Control Approach with other 

Approaches    

Comparing this method with the methods presented in the previous Chapters: 

1)   The optimal control based measurement selection approach extracts 

information from a linear time invariant (LTI) state space model. Therefore, 

there is more insight of the process in the sense of information about the 

dynamic of the process than the approaches that use steady state information 

[Moore (1992) and Tyreus (1999)].  

2)   This method is a plantwide measurement selection based approach instead 

of a unit operation based approach. This is an important fact because the 

plantwide approach finds the measurements and manipulated variables that 

have more effect in certain control objectives taking into account the 

interaction between unit operations. For instance, in general, when the units 
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are controlled alone they show good control performance but when all the unit 

operations are combined the interaction between variables causes an overall 

bad control performance.  

3)   The use of this method does not require an experienced control engineer 

because the amount of engineering judgment involved is limited, making this 

methodology very attractive. 

4)   This method represents a systematic way to determine measurements and 

manipulated variables that affect key economic variables in the plant. 

5)   The main difference between this methodology and other  proposed ones 

[Chen et. al. (2002, 2003), McAvoy et. al. (1994), among others, is that, in 

this methodology, the key economic variables (production rate and product 

quality) are controlled by manipulating the important MVs in the plant, 

instead of using just one manipulated variable for each controlled variable.   

There are three main advantage of this approach: 1) It uses dynamic process 

information to select measurement for global plants which means that the 

interaction between units is considered;  2) It finds the best set of 

measurements and manipulated variables for specific control objectives and 3) 

Decentralized control structures can be generated to pair these variables. Then 

a MPC controller is built on top of them to control the production rate and 

product quality in the plant by adjusting their setpoints. In Chapter 5 and 6 

this methodology is applied to the Tennessee Eastman Process and to the 

Vinyl Acetate process respectively. 
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4.4.2.- Effects on Scaling    

Scaling is very important in many process control applications because it 

makes the controller design (weight selection) and the analysis of the results 

much simpler.  There are few practical cases in which scaling does not affect 

the analysis of the results (for example, RGA analysis). However, whenever 

the results depend on scaling (for example: OSOFC results, SVD, etc.), it is 

very important to use the appropriate scaling. Mainly in the literature authors 

have used the maximum physical limits imposed by the process design for 

scaling measurements and manipulated variables. Another option is to use the 

operational range. The operational range for measurements is the allowed 

deviation value for each measurement while for the manipulated variables is 

the allowed magnitude of each input signal. In this research work, the scaling 

on the measurements is done according to their relative importance with 

respect to the control objective desired while the manipulated variables are 

scaled according to the physical limits obtained from the process design. 
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Chapter 5:  Case Study: Tennessee Eastman Process 
 

 

5.1.  Introduction 

For many years, researchers in plantwide control design have been using realistic 

process simulation to test new technologies and algorithms. This chapter presents the 

application of the optimal control-based approach for measurement selection to a 

well-known process, the Tennessee Eastman (TE) Challenge, in order to demonstrate 

the effectiveness of this method. This process consists of five operating units that 

involve the production of 2 products, G and H, from four reactants, A, D, E, and C. In 

addition, there is an inert B that enters with one of the feed streams, and two side 

reactions that occur. The exothermic irreversible reactions are: 

A(g) + C(g) + D(g)   G(l) Product 1   (5.1) 

A(g) + C(g) + E(g)    H(l) Product 2   (5.2) 

A(g) + E(g)    F(l)  Byproduct   (5.3) 

3D(g)   2F(l)   Byproduct   (5.4) 

 

The model of the process has 50 states, 12 manipulated variables, and 41 

measurements. A schematic diagram of the plant is shown in Figure 5.1. 
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Figure 5.1  Tennessee Eastman  Plant 
 

Downs and Vogel (1993) provided 6 operating modes at three different G/H  (Product 

1/Product 2) mass ratios that are listed in Table 5.1 

 

Table 5.1   Operational Modes for TE Process 

Mode G/H mass ratio Production rate 

1 50/50 7038 kg h-1 G  and  7038  kg h-1 H 

2 10/90 1408 kg h-1 G  and  12669  kg h-1 H 

3 90/10 10000 kg h-1 G  and  1111  kg h-1 H 

4 50/50 maximum production rate 

5 10/90 maximum production rate 

6 90/10 maximum production rate 

   

In 1994, Ricker calculated the optimal steady states process values for each of the 6 

operating modes. Ricker’s results showed that the base case provided by Downs is far 
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from optimal. A detailed description of the TE process, model formulations, physical 

property data, and steady state process values for each operating mode can be found 

in Downs and Vogel (1993), Ricker (1994), and Ricker and Lee (1995).  

 

Different decentralized control structures for the TE process have been published 

during last decade. In 2002, Chen categorized these control structures and proposed a 

plantwide design methodology, based on optimal control that was tested on the TE 

process. The majority of the authors evaluated their control structures by their 

capability to reject the disturbances listed in Downs (1993), using nonlinear 

simulations. Other authors such as Tyreus (1999), Luyben (1996), and Ricker (1996) 

also evaluated the ability of their structures to move the process over wide areas of 

steady state operation. To do so, Tyreus (1999) and Luyben (1996) demonstrated that 

their control structures could achieve the maximum production rate for optimal mode 

1. Ricker (1996) not only achieved the maximum production rate for mode 1 but also 

for operation modes 2 and 3. Tyreus (1999), Luyben (1996), and Ricker (1996) used 

process-oriented approaches, which are based on engineering experience and process 

insight to generate their control structures. Tyreus (1999) used thermodynamic 

analysis to identify the dominant variables that affect production rate and product 

quality in the plant. Then, he used these dominant variables to apply partial control to 

the Tennessee Eastman Process. On the other hand, Luyben (1996) used the general 

plantwide control procedure developed by Luyben et al. (1996) to generate a simple 

regulatory control structure for the TE process. More details on this procedure can be 

found in Luyben (1996). Ricker (1996) developed a plantwide control design 



 

 113 
 

procedure which relies on heuristics and insight into the process dynamics to assign 

the available degrees of freedom for control. Details on this design procedure are 

given in Ricker (1996). He generated a decentralized control structure for the TE 

Process. Results for Ricker’s structure showed good performance for disturbance 

rejection, and the production rate could be maximized for any of the three operation 

modes.  

 

In this chapter, the optimal control-based approach for measurement selection is 

applied to the TE process to generate plantwide control structures that are feasible for 

all the three optimal operation modes. These control structures should be able to 

reject disturbances and change the production rate to its maximum value for each 

operation mode as shown in Ricker (1994). The methodology used is based on 

optimal control theory and uses a linear dynamic model of the process in designing 

the planwide control structures. Because the nonlinear model (first-principle dynamic 

model) of the process is available, the linear models for each mode are obtained by 

numerically calculating the first order Taylor expansion coefficients of the nonlinear 

model. More details can be found in Chen  (2002).  

 

The optimal control-based approach for measurement selection consists of 6 stages. 

In Stage 1, the process model is scaled, the inner cascade loops are closed, and a 

correlation and a condition number analysis are carried out. In Stage 2, the variables 

related to safe process operation (safety variables) are identified, and control 

structures for these variables are generated. Chen (2002) used engineering judgment 
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to identify the safety variables for the Tennessee Eastman Process. Then he used 

optimal control theory to identify control structures for these safety variables. The 

safety variables identified by Chen are used in Stage 2 of this work. In Stage 3, 

control structures for inventory variables (components) are designed. In Stage 4, 

important measurements and manipulated variables that affect production rate and 

product quality are identified. Then, control structures are designed to control the 

important measurements with the available manipulated variables. In Stage 5, control 

structures are designed for other variables related to individual unit operations using 

the available degrees of freedom. In Stage 6, a Model Predictive Controller (MPC) is 

designed in the top on the resulting control structure to manipulate the set point of 

these loops, in order to change the production rate and product quality. 

 

The structure of this chapter is as follows: First, control structures are designed for 

the three operational modes. Then, an alternative method with economic 

considerations is applied and compared with the previous results. Next, the control 

structure design to improve purge control is presented. Finally, a discussion and 

comparison with other schemes is presented. 

 

5.2. Control Structure Design for the Three Operation Modes 

In some cases, a process should operate in different steady states (operation modes). 

This is the case for the TE process which has three operation modes. Some control 

structures may be feasible for one or more operation modes, but not for all of them. If 

the process needs to alternate (to be moved) frequently between the different 
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operation modes, it is desirable to find a control structure that works in all the 

operation modes.  

 

The objective in this section is to find control structures that are feasible for the three 

operation modes of the TE process. These control structures should be able to reject 

disturbances 1 and 2 (Downs, 1992) and to change the production rate to its 

maximum value for each mode (Ricker, 1994).  The current methodology uses the 

linear dynamic model of the process to determine the control structure. Since the TE 

plant has three different linear models that describe the three operation modes, three 

control structures can be obtained. In order to find a single control structure that is 

feasible for all the operation modes, the following procedure is applied: 

1) Find the control structure for each operation mode individually. This step not 

only gives the structure but also the tuning parameters for the controller. 

2) If the control structure obtained for the each mode is the same, then trial and 

error is used to find a set of tuning parameters that works for the three 

operation modes.  

3) If the control structure obtained is different for any operating mode, then the 

Multiple Steady State Operation Design Procedure, proposed by Chen et. al. 

(2003), is applied. The only limitation of this method is that if specific forcing 

is desired, then the forcing must have the same effect on each state for each 

operating mode.   
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In all the optimal operation modes in Ricker (1994), the agitator rate is fixed at its 

maximum speed, the gas recycle flow is fixed at its maximum value, and the steam 

flow is fixed at its minimum value. Therefore, there are nine manipulated variables 

available for control. However, Downs (1992) stated that the A,C, and D feed streams 

have frequency constraints. For these reason, it is not desirable to use these 

manipulated variables to control loops that require fast responses.  

 

The main goal in this section is to generate control structures that improve the control 

performance of key economic variables in the plant, such as product rate and quality.  

The optimal control-based approach for measurement selection is used to generate the 

control structures. This methodology divides the design problem into 4 sub-problems, 

based on the control objectives: 1) controlling variables related to the safety operation 

of the process; 2) controlling the component balances; 3) controlling variables related 

to production rate and product quality; and 4) controlling unit operations with 

available degrees of freedom. The steps in this design procedure are as follows: 

 

5.2.1. Preparation 

This stage consists of three parts. First, the model is scaled. Then the inner 

cascade loops are closed. Finally, a steady state correlation analysis and a 

condition number analysis on the C matrix of the state space model are carried 

out. 

 a) Scaling the state space model is done, as explained in Chapter 4, using the 

following scaling factors: 
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-The measurements are scaled using the following scaling factors: 200 KPa 

for pressures; 30C for temperatures; 50% for levels; and steady state values 

for mass flow rates, volumetric flow rates, molar compositions and 

compressor work.  

-The manipulated variables are scaled, using the measurement scaling factors 

because the inner loops are closed, and, therefore, the manipulated variables 

are the set points of the inner loops.  

b) Closing the inner cascade loops eliminates 10 measurements, and the 

setpoints of the inner cascade loops become manipulated variables. Table 5.2 

presents the measurements and manipulated variables available after closing 

the cascade loops. Ten proportional-only controllers were used for the inner 

cascade loops. The proportional gains used are given in Appendix IV.  

 

Table 5.2   Measurements and Manipulated Variables after Closing Cascades 

Loops 

# Measur. Measurements Manipulated Variables 

1 Recycle Flow D Feed Set Point 

2 Reactor Feed E Feed Set Point 

3 Reactor Pressure A Feed Set Point 

4 Reactor Level C Feed Set Point 

5 Reactor Temperature Purge Set Point 

6 Separator Temp Separator Exit Flow Set Point  

7 Separator Level Stipper Exit Flow Set Point 

8 Separator Pressure Product Flow Set Point 

9 Stripper Level Reactor Cooling Water Temp SP 

10 Stripper Pressure Condenser Cooling Water Temp  SP 

11 Stripper temperature  

12 Compressor work  

13-18 Reactor Feed Composition  

19-26 Purge Compositions  

27-31 Product Composition  
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c) Steady state correlation and condition number analysis of C matrix:  

Several simulations were conducted, and results show that the algorithm used 

to calculate the optimal static output feedback controller (OSOFC) did not 

converge or the calculation was very slow, whenever highly correlated 

variables were considered simultaneously.  For this reason, a steady state 

correlation analysis is carried out to identify the variables that are highly 

correlated. The equations used for this analysis can be found in Appendix I.  

Results show that the following group of variables are highly correlated: 

Group # 1:  Reactor pressure, separator pressure, and stripper pressure 

Group # 2:  Composition of G and H in the purge 

Group # 3:  Reactor feed and recycle flow 

 

Then, the condition number of the C matrix is calculated. The objective is to 

determine how the condition number of the C matrix is affected when highly 

correlated measurements are considered together. The measurements 

considered for this analysis are presented in Table 5.2. These measurements 

are divided into two groups: 

1) Highly correlated measurements: reactor pressure, separator pressure, 

stripper pressure, composition of G in the purge, composition of H in the 

purge, reactor feed, and recycle flow. 

2) Basic measurements (BM) all the measurements in Table 5.2 except for the 

highly correlated measurements. Table 5.3 shows the values of the condition 

number of the C matrix. 
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The results from Table 5.3 demonstrate that the condition number of the C 

matrix has a significant increase when two or more highly correlated variables 

are considered simultaneously.  

 

Table 5.3  Condition Number of C Matrix 

Measurements included CN of the C 

matrix 

BM + Reactor pressure 982.0030 

BM + Reactor and separator pressure  1.6637e+004 

BM + Reactor and stripper pressure 1.3718e+004 

BM + Reactor, separator and stripper pressure 2.3442e+012 

BM + Composition of G in the purge  9.0452e+004 

BM + Composition of H in the purge  5.9808e+004 

BM + Compositions of G and H in the purge 7.5591e+016 

BM + Reactor feed  1.2037e+004 

BM + Reactor feed and recycle flow 2.5037e+007 

 
 

Because the algorithm to calculate the OSOF gain involves the inversion of 

the C*S*C’ matrix (discussed in Chapter 4 in section 4.3 Stage 1), it is 

recommended not to work with ill-conditioned systems to avoid convergence 

problems. Therefore, only one variable in each group of highly correlated 

variables is considered. Table 5.4 shows the available measurements and 

manipulated variables after eliminating the correlated measurements.  
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Table 5.4 Meas. and Manipulated Variables after eliminating the correlated 

Variables 

# Measur Measurements Manipulated Variables 

1 Reactor Feed Rate D Feed Set Point 

2 Reactor Pressure E Feed Set Point 

3 Reactor Level A Feed Set Point 

4 Reactor Temperature C Feed Set Point 

5 Separator Temp Purge Set Point 

6 Separator Level Separator Exit Flow Set Point  

7 Stripper Temperature Separator Exit Flow Set Point 

8 Stripper Level Product Flow Set Point 

9 Compressor work Reactor Cooling Water Temp SP 

10 Comp of A in Feed Condenser Cooling Water Temp  SP 

11 Comp of B in Feed  

12 Comp of C in Feed  

13 Comp of D in Feed  

14 Comp of E in Feed  

15 Comp of F in Feed  

16 Comp of A in Purge  

17 Comp of B in Purge  

18 Comp of C in Purge  

19 Comp of D in Purge  

20 Comp of E in Purge  

21 Comp of F in Purge  

22 Comp of G in Purge  

 
 

5.2.2. Control Structure for Safety Variables 

In this stage, the safety variables are identified and decentralized control 

structures candidates are generated. The safety variables are the variables 

related to safe process operation. These variables are those that have limits of 

operation and can cause the shutdown of the plant if they exceed some 

shutdown limit. Chen, (2002) used eigenvalue analysis, the process gain 

matrix, and engineering judgment to determine the safety variables in the 

plant. Moreover, Chen (2002) used an optimal control-based plantwide 
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control design methodology to generate control structure candidates for the 

safety variables. Details on the identification of the safety variables and the 

generation of control structures candidates can be found in Chen (2002).  

In this stage, the control structure candidates for controlling the safety 

variables proposed by Chen (2002) for the operational modes of the 

Tennessee Eastman process are used. Table 5.5 shows the control structures 

recommended by Chen (2002) 

 

Table 5.5   Control Structures for Controlling the Safety Variables 

Candidate Reactor P Reactor L Reactor T Separator L Stripper L 

1 Purge E RCT CW Sep.Bottom Str.Bottom 

2 Purge CON CW RCT CW Sep.Bottom Str.Bottom 

3 CON CW E RCT CW Sep.Bottom Str.Bottom 

4 Purge E RCT CWT Sep.Bottom Str.Bottom 

5 Purge CON CW RCT CWT Sep.Bottom Str.Bottom 

6 CON CW E RCT CWT Sep.Bottom Str.Bottom 

7 Purge E  Sep.Bottom Str.Bottom 

8 Purge CON CW  Sep.Bottom Str.Bottom 

9 CON CW E  Sep.Bottom Str.Bottom 

 

In this work, only candidates 4, 5, 6, 7, 8, and 9 are considered for the 

following reason: Candidates 1, 2 and 3 are almost the same as candidates 4, 5 

and 6 respectively. The difference between them is that in candidates 1, 2, and 

3, the reactor temperature is controlled using the reactor cooling water valve, 

while in candidates 4, 5, and 6, a cascade configuration is used. In this 

configuration, the reactor temperature is controlled by manipulating the 
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setpoint of the reactor cooling water temperature setpoint. In this work, 

candidates 1, 2, and 3 are not evaluated for the following reasons: 1) there is 

not a significant difference between candidates 1, 2, 3, and 4, 5, and 6 and 2) 

the reactor cooling water valve (RCT CW) is already used to control the 

reactor cooling water temperature (RCT CWT); therefore the RCT CW is not 

longer available.  

 

In this section, candidate 4 is considered first. The same procedure is applied 

to the remaining candidates. Five proportional-only controllers are 

automatically tuned for candidate 4 using the tuning method proposed by 

Chen (2002). The tuning is obtained by calculating an optimal static output 

feedback (OSOF) controller that contains only diagonal terms. The only 

difference is that, in this work, the tuning is calculated for a different type of 

process forcing (disturbance rejection and setpoint change) while in Chen’s, it 

is calculated for the generic forcing (initial states around unitary sphere, X=I). 

Averaging level control is used for the two integrating levels (separator and 

stripper levels). The gains for the averaging level controls are +1 or –1 (%/%), 

depending on the sign of the process gain. The proportional gains for these 

loops are given in Appendix IV. After the safety loops are closed, the 

measurements corresponding to these variables are no longer available as 

measurements. Instead, the setpoints of these loops become the new 

manipulated variables. This procedure drops the number of available 

measurements from 22 to 17.  
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5.2.3. Control Structure for Inventory Variables (Components) 

It is well known that to satisfy the material balance in a plant, all the reactants 

fed into the system must be consumed in the reaction or leave the system as 

impurities in the product or purge streams. In the case of the inerts, they 

should also be removed from the process through the purge or product streams 

(Luyben,1992). In chemical plants, any imbalance in the number of moles of 

any reactant will cause an accumulation of the reactant that is in excess. For 

this reason, it is very important to control the inventory of components so that 

exactly the right amount of the reactants is fed in. There are three ways to 

avoid component accumulation: 1) limit the feed flow of reactants, 2) control 

their reaction or 3) adjust the product in the plant.  

Downs (1992) has pointed out the importance of verifying if the control 

structure in use satisfies component balances. To do so, it is necessary to 

check, for each component, the specific mechanism or control loop that 

guarantees that there will be no accumulation of that chemical component. 

This procedure is called Downs Drill Analysis. Luyben (1992), recommended 

the use of this analysis for checking component balances in a control scheme. 

Chen (2002) used Downs Drill Analysis to identify the components that need 

to be controlled for his proposed control schemes. He explained that the 

inventory of components should be controlled unless they are self-regulating 

or made self-regulating by closing other loops.  Chen analyzed reactants, 

inerts, and products. In this case, only the reactants, inerts, and byproducts are 
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considered for the Downs Drill Analysis since products will be controlled in 

the next stage. The Downs Drill Analysis for reactants and purge components 

for candidate 4 is given in Table 5.6. The Downs Drill Analysis for the other 

candidates and operating modes can be seen in Appendix IV. 

 
Table 5.6   Downs Drill Analysis 

Candidate Component Self-

Reg 

Why Self-Reg Manipulated 

Var 

Measurement 

A  (reactant) No  A Feed  %A RCT Feed, %A Purge 

B (inert) Yes Purge-RCT P   

C (reactant) No  C Feed  %C RCT Feed,%C Purge 

D (reactant) No  D Feed  %D RCT Feed,%D Purge 

E (reactant) Yes E Feed-RCT L   

 

 

Candidate 4 

F (byproduct) Yes RCT CW-RCT T   

 

The second column of Table 5.6 tells if the component is self-regulating or 

not. If it is self-regulating, the third column shows which loop makes it self-

regulating. For example, the component B is self-regulated because the purge 

is used to control the reactor pressure (RCT P). The fourth and fifth columns 

indicate the measurement and manipulated variables that can be used to 

control the inventory variables. From the Downs Drill Analysis for this 

control structure, components A, C, and D are left uncontrolled after stage 2 

and they need to be controlled. The manipulated variables used for controlling 

the inventories of A, C, and D are their respective feeds (See Chen, 2002). 

There are two analyzers in the gas loop that can be used for measuring the 

inventories of A, C, and D. One is in the reactor feed, and the other is in the 

purge stream. In this case, the analyzer in the reactor feed is used because it is 
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located closer to the manipulated variables. It should be pointed out that, even 

though A, C, and D feeds have frequency constraints, these feeds can be used 

to control the compositions of A, C, and D in the reactor feed without 

affecting upstream processes. In other words, there will be no aggressive 

changes in the A, C, and D feeds because of the following: 1) in general, loops 

that involve analyzers are slow because of delays in the measurements, and 2) 

no aggressive tuning parameters are being used. So far, candidate 4 contains 8 

loops (5 safety variables, compositions of A, C, and D). Three proportional-

only controllers are automatically tuned to control the inventory loops (%A in 

the reactor feed - A feed,  %C in the reactor feed - C feed, and %D in the 

reactor feed - D feed). These loops are included into the model for use in later 

stages. The tuning method used is the same as the one used in stage 2.  The 

proportional gains for these loops are given in Appendix IV.  

 

5.2.4. Control Structure for Production Rate and Product Quality 

In this stage, the optimal static output feedback controller (OSOFC) is 

calculated to determine the best set of measurements and manipulated 

variables that affect production rate and product quality. The idea is to control 

these variables to improve the control of the production rate and quality 

variables. At this point, the available measurements and manipulated variables 

are shown in Table 5.7. 
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Table 5.7   Measurements and Manp Variables after Closing the Safety and 

Inventory Variables 

# Measur. Measurements Manipulated Variables 

1 Reactor Feed %A in Feed Set Point 

2 Separator Temp Reactor Pressure Set Point 

3 Stripper temperature %C in Feed Set Point 

4 Compressor work %D in Feed Set Point 

5 Comp of B in Feed Reactor Temperature Set Point 

6 Comp of E in Feed Cond Cooling Water Temp SP 

7 Comp of F in Feed Reactor Level Setpoint 

8 Comp of B in Purge Separator Level Set Point 

9 Comp of E in Purge Stripper Level Set Point 

10 Comp of F in Purge  

11 Comp of G in Purge  

 

Then, an OSOFC is calculated, as discussed in Chapter 4, Section 4.2. The 

OSOFC is analogous to a process gain matrix and represents the dynamic 

information about process interaction. The control objective is to control the 

production rate and product quality.  The following parameters are used for 

the calculation of the OSOFC: 

1) R =I, this gives the same importance to all the manipulated variables.  

2)  gij =0. In setting gij equal 0 we do not solve for a specific SISO control 

structure.  

3) Q is the weight matrix that can be used to define the desire control 

objective. All the elements of this matrix should be zero except for those that 

correspond with the variables associated with production rate and product 

quality.  
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To extract information about the important measurements and manipulated 

variables to control production rate and quality (control objective) from the 

OSOFC matrix, the absolute value of each element is considered. Since the 

process model has been scaled, the OSOFC matrix is dimensionless, and 

therefore it’s elements can be compared to one another. Generally, an element 

with absolute value close to zero indicates a weak relationship between the 

manipulated variable and the measurement. The following rules of thumb are 

used:  

5) The sum of the absolute value of the elements of each manipulated 

variables (element in each row) is calculated for each measurement (columns). 

This is called Σcol. The best measurements (strongest measurements) are the 

ones that have the largest values of Σcol.   

6) The sum of the absolute value of the elements of each measurement 

(element in each column) is calculated for each manipulated variable (rows). 

This is called Σrow. The best manipulated variables (strongest manipulated 

variables) are the ones that have the largest values of Σrow.   

Table 5.8 shows the OSOFC matrix. The numbers that are in bold case in 

Table 5.8, correspond to the strongest measurements and manipulated 

variables to control product rate and product quality. From Table 5.8, the 

strongest manipulated variables are reactor temperature, composition of D in 

the reactor feed, condenser cooling water temperature SP, composition of A in 

the reactor feed, reactor level, and composition of C in the reactor feed. 
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Table 5.8  OSOFC Matrix 

Control Objective: to Control Product Rate and Quality 

SP         RF       SpT       StT      CpW      BF        E F       F F         BP        EP        FP        GP        Σrow  

%A     0.036    0.676   -0.185    0.043   -0.029   -0.022   -0.013   -0.019    0.006   -0.013   -0.211     1.252 

 RP      0.054   -0.514    0.028    0.021    0.023    0.011     0.012   -0.002    0.013    0.001    0.190      0.871     

%C     0.026    0.571   -0.368   -0.011   -0.001    0.014   -0.000   -0.013   -0.017   -0.014   -0.176     1.212 

%D     0.225   -2.839    0.236    0.211    0.045   -0.145    0.025     0.006    0.048    0.033    1.065      4.876    

R T    -0.120    4.923   -0.822    0.087   -0.190   -0.147   -0.073   -0.057    0.034   -0.065   -1.579     8.097    

CCW -0.238    2.102   -0.353   -0.264    0.054   -0.049    0.047   -0.186    0.075   -0.096   -0.599     4.065     

R L    -0.093    1.327   -0.197   -0.126    0.005    0.241     0.008   -0.002    0.002   -0.025   -0.503     2.530    

S  L    -0.101    0.237    0.070   -0.098    0.027   -0.030   -0.005   -0.047    0.043   -0.010   -0.183     0.851     

St L    -0.011   -0.388    0.236   -0.002    0.016   -0.024   -0.002   -0.014    0.025    0.008     0.119     0.845 

Σcol     0.905    13.58    2.496    0.863    0.390     0.681    0.185    0.346    0.263    0.265    4.626 

 

This result seems to be very reasonable, considering that throughput changes 

can be achieved only by altering, either directly or indirectly, conditions in the 

reactor. In addition, to obtain the composition of D as a dominant variable is 

reasonable, because it affects the rate of formation of component G, which is 

one of the control objectives. 

 

The strongest measurements are separator temperature, composition of G in 

the purge, and stripper temperature. In this case only the separator temperature 

is considered as the important measurement for three reasons: 1) It has the 

largest value in Σcol which is more than twice the value of closest important 

measurement; 2) There is no need to control product G in the purge because it 

is going to be controlled in the product stream by adjusting the important 

manipulated variables; and 3) The manipulated variable that is most often 



 

 129 
 

used to control the stripper temperature, the steam flow, is fixed at its 

minimum value for all the optimal operating modes. The other manipulated 

variables are located too far to the stripper temperature or do not seem to have 

big effect in the stripper temperature. 

 

Once these important variables are identified, the final objective is to build an 

MPC that will have two outputs (production rate and product quality) and 

several inputs (important manipulated variables in the plant). As can be seen 

in Table 5.8, this methodology, not only gives information about the important 

manipulated variables but also about the important measurements. Since only 

the manipulated variables will be used to build the MPC, control structures for 

the important measurements are determined, using the available manipulated 

variables. In this example, the separator temperature is a measurement and, 

therefore, cannot be manipulated. For this reason, decentralized control 

structures are generated for the separator temperature. Once the important 

measurements are closed, these loops become new manipulated variables, 

available for the MPC.  

 

 

Control Structure for Important Measurement  

In this stage, the control objective is to control the separator temperature. An 

OSOFC is calculated, using the separator temperature and all the manipulated 
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variables. The following parameters are used for the calculation of the 

OSOFC: 

1) R =I, this gives the same importance to all the manipulated variables.  

2)  gij =0. In setting gij equal 0 we do not solve for a specific SISO control 

structure.  

3) Q is the weight matrix that can be used to define the desired control 

objective. All the elements of this matrix should be zero, except the ones that 

correspond to the control objective (in this case, the separator temperature). 

 The OSOFC is given in Table 5.9 

Table 5.9  Optimal Static Output Feedback Controller (OSOFC) 

Man Var S T 

%A  -0.022 

RP -0.001 

%C  -0.009 

%D  0.007 

RCT T SP 0.129 

CCW SP 0.512 

RCT L SP 0.009 

Sep L SP -0.004 

Stp L SP 0.000 

 

From Table 5.9, the best manipulated variable to control the separator 

temperature is the condenser cooling water setpoint (largest value in the 

column), followed by the reactor temperature setpoint. Controlling the 

separator temperature by manipulating the setpoint of the reactor temperature 

was proposed by Luyben (1999). Luyben explains that changes in the 

separator temperature affect the stripper. A low separator temperature drops 
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too many light components into the stripper and, therefore, the product quality 

is affected. The tuning method used is the same as the one used in Stage 2. 

The proportional gain for this loop (separator temperature) is given in 

Appendix IV along with the proportional gains for the safety and inventory 

variables controllers. The separator temperature loop is included in the model 

for use in later stages.  

 

After closing the important measurements, two possible alternatives are 

considered to build the MPC: 1) to use the manipulated variables generated by 

closing the important measurement loops first, and then to add the strongest 

manipulated variables, one at a time, and 2) to recalculate an OSOFC to check 

for any changes in the strongest manipulated variables, once the important 

measurements loops (in this case the separator temperature-condenser cooling 

water temperature) are closed.  The second alternative is evaluated below. 

The OSOFC is calculated in the same way; the only difference is that, this 

time, the separator temperature set point is a manipulated variable and it 

replaces the condenser cooling water temperature set point (See underlined 

variables in Table 5.10). In addition, the separator temperature is removed 

from the set of measurements being evaluated. Table 5.10 shows the OSOFC 

results for this case.  
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Table 5.10  OSOFC Matrix                                                                             

Control Objective: to Control Product Rate and Quality 

SP         RF       StT      CpW      BF        E F       F F         BP        EP        FP        GP        Σrow  

%A     0.071   -0.080    0.072   -0.050    0.014   -0.010    0.028    0.022    0.001   -0.070     0.418 

 RP      0.018   -0.065    0.008    0.024    0.007     0.014   -0.021    0.010   -0.011    0.053     0.231    

%C     0.048   -0.263    0.044   -0.047   -0.004   -0.008    0.044    0.007    0.003   -0.084     0.552 

%D     0.016   -0.301    0.047    0.083   -0.202    0.022   -0.136  -0.028   -0.032     0.375     1.243    

R T     0.193   -0.017    0.321   -0.302    0.025   -0.089    0.255    0.051    0.066   -0.389     1.709   

SepT  -0.171   -0.110    0.093   -0.054   -0.092   -0.003    0.006    0.066   -0.018   -0.297     0.909  

R L      0.025    0.077   -0.018   -0.021    0.281    0.014    0.083    0.066    0.003   -0.197 0.784   

S  L    -0.092    0.127   -0.079    0.016   -0.040   -0.009   -0.037    0.058   -0.003   -0.135     0.597    

St L    -0.038    0.205   -0.024    0.024   -0.031   -0.001   -0.029    0.015    0.001    0.020     0.388 

Σcol     0.671    1.246    0.707    0.622     0.695     0.171    0.638    0.324    0.137    1.620 

 

As can be seen from comparing Tables 5.8 and 5.10, the order of importance 

for the manipulated variables and the measurements remains almost the same. 

However, the main differences are that now the separator level is in the fifth 

place of importance, and that %A and %C switched their order of importance.  

In this case, the separator level and stripper level are not considered for the 

following reasons:  1) These levels use averaging level control, and 2) These 

levels are affected by the separator temperature. Since the order of importance 

for measurements and manipulated variables is practically the same, the 

results from Table 5.10 regarding key manipulated variables and their order of 

importance are used in the next step. 
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Determination of Control Structure for controlling Production Rate and 

Product Quality 

In this section, the objective is to identify how many and which manipulated 

variables should be used to control production rate and product quality. 

Because there is no rule to decide how many and which of these important 

manipulated variables should be used as inputs to the MPC, the strongest 

manipulated variables will be added, one at a time, in descending order of 

importance according to the Σrow value in Table 5.10. Every time a new 

manipulated variable is added, a new control system is generated, and each 

new control system is called a Candidate (See Table 5.11). Each candidate 

starts with the number of the base candidate (candidate for safety variables in 

Table 5.5) being evaluated, in this case, Candidate 4. Each candidate has two 

control variables or outputs (production rate and product quality) and a 

different number of manipulated variables or inputs. According to Table 5.10, 

the order in importance of the manipulated variables (from the strongest to the 

weakest) is as follows: separator temperature, composition of D in the reactor 

feed, separator temperature setpoint, reactor level, and composition of C and 

A in the reactor feed. Table 5.11 shows all the generated candidates. 

 

Because building an MPC for each one of the generated candidates can be a 

very time consuming task, a multivariable OSOFC is used instead, as a quick 

screening tool, to have an initial idea about the numbers of important variables 
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that should be used, and to eliminate candidates (manipulated variables)  with 

poor performance. These linear simulations are used to obtain an initial insight 

about the resulting control structure. The resulting control structures are 

evaluated, using nonlinear process simulations and model predictive controller 

(MPC).   The MPC and the multivariable OSOFC will have two outputs 

(production rate and product quality) and different inputs, depending on the 

candidate being evaluated.  All the generated candidates are tested for a 

setpoint change of a 50% increase in the production rate, and to reject the first 

two process disturbances IDV(1) and IDV(2), in Downs (1993). These process 

disturbances are step upsets.  

 

To compare the control performance of these candidates the following control 

objectives presented by Downs and Vogel (1992) are considered: 1) maintain 

the process variables at the desired values, 2) recover quickly and smoothly 

from disturbances, and 3) minimize the variability of production rate and 

product quality during disturbances. The Product variability (product flow and 

quality) should be less than ±5%.  Transients’ response characteristics, such as 

settling time and offset value for critical variables in the plant, as well as the 

integral of the absolute value for the error (IAE), are used as a measure of the 

candidates’ performance. These critical variables in the plant are: some of the 

safety variables (reactor pressure, temperature, and level) and the economic 

variables in the plant (production rate and product quality) Production rate and 

product quality are considered critical variables because they are directly 
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specified as control objectives by Downs and Vogel (1992). The safety 

variables are considered critical variables because they are directly related to 

safety and operational constraints. The separator level and the stripper level 

are not considered among the critical variables because they are averaging 

level control. Indirectly, the purge flow (another economic variable) is already 

taken into consideration because the purge flow is used to control the reactor 

pressure.   

 

The offset value is calculated as the difference between the setpoint of a 

critical variable and the final steady state value reached by that particular 

variable after a disturbance or setpoint change. Then, the summation of the 

absolute value of the offset for the critical variables is calculated for 

disturbances IDV(1), IDV(2), and for setpoint changes, for each candidate. 

Because the offsets of different critical variables will be added together, these 

offset values are scaled by dividing them by the steady state values. In order 

to calculate the summation of the offset, the following weights are given to the 

critical variables:   production rate: 0.25, product quality: 0.25, reactor 

temperature: 0.20, and reactor level: 0.20, reactor pressure: 0.1. These weights 

are chosen based on the control objectives of the plant and the operating cost 

function given by Downs and Vogel (1992). The summation of the offset 

values for each candidate is calculated as follows:  

∑∑
= =

=
3

j

5

i

*k i))offset(j, variables alabs(critic  Value Offset
1 1

α   

 (5.5) 
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α:  weights for the critical variables (0.25, 0.25, 0.20, 0.20, 0.10) 

i: critical variables offsets: production rate, product quality, reactor 

temperature, reactor level and reactor pressure 

j: Disturbances and setpoint change. J=1 IDV(1), J=2 IDV(2), and  

J=3 set point change  

k: total offset value for each candidate k=1 to7. 

As can be seen in Equation 5.5, the offset values per candidate are the 

summation of the offset for the all the critical variables for disturbances 

IDV(1), IDV(2) and the setpoint change.  

The IAE is calculated, using Equation 5.6. 

[ ]∫
∞

−=
0

k dttCVtSP  variables critical for AEI )()(   (5.6) 

The IAE for each candidate is calculated as follows 

∑∑
= =

=
3

j

5

i

i)j,variables( critical for AEI  AEI
1 1

   (5.7) 

 

i: IAE for critical variables: production rate, product quality, reactor 

temperature, level, and pressure 

j: Disturbances and setpoint change. J=1 IDV(1), J=2 IDV(2), and  

J=3 set point change.  

k: total IAE for the critical variables for each candidate k=1 to7. 

 

There are three conditions that a candidate has to pass in order to be 

considered: 1) to reject disturbances IDV(1), and IDV(2), 2) to increase 
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production rate by 50% in less than five hours, and 3) to have less than ±5% 

product rate and product quality variability for disturbance rejections. As 

mentioned above, every time a new manipulated variable is added, its values 

for the summation of the offset and IAE are compared with the previous 

candidate to evaluate whether there is significant improvement or not. It can 

be said that there is significant improvement when: 

- The percentage of change in the IAE with the addition of a new 

manipulated variable is greater than 5%. The percentage of change is 

calculated as the change between two consecutive candidates. If it is 

less than 5%, there might be no significant improvement. Therefore, 

the addition of a new manipulated variable will not give significant 

control benefits. However, since this just an initial screening tool if the 

% change is between 1 to 5% it might be checked with the nonlinear 

simulation, just to corroborate that the variable does not improve 

significantly the control performance.  

- The total summation of the offset value decreases more than 5% 

between two consecutives candidates.  

Transients of 6 measurements (production rate; product quality; purge flow; 

reactor pressure, level, and temperature) are calculated for each disturbance 

(IDV(1) and IDV(2)) and production rate set point change for 60 hours. Table 

5.11 shows all the candidates generated, the controlled and manipulated 

variables for each candidate, the ability of each candidate to reject 

disturbances IDV(1) and IDV(2) and to achieve maximum production rate 
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change in less than five hours. In addition, it shows the summation of the 

offset (see Eq 5.6), and the IAE values (see Eq 5.7) for the critical variables in 

the plant for each candidate. It also shows the percentage of change for the 

summation of the offset values and the IAE between consecutives candidates. 
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Table 5.11  Candidates  for Alternative 1 

Candidate 

number 

Controlled 

Variables 

Manipulated  

Variables 

Can maximize 

production rate 

and reject 

disturbances?  

Summation 

offset values / 

% change btw 

candidates 

IAE   / 

% change btw 

candidates 

Candidate 

4-1 

Production rate  

Product Quality 

Reactor Temperature SP 

 

SP change  No 

IDV(1)       Yes 

IDV(2)       Yes 

0.0092  

               

330.67 

Candidate 

4-2 

 

Production rate  

Product Quality 

Reactor Temperature SP 

%D in Reactor Feed SP 

 

SP change  No 

IDV(1)      Yes 

IDV(2)      Yes 

0.0094     

2.12 

321.89 

2.8 

Candidate 

4-3 

Production rate  

Product Quality 

Reactor Temperature SP 

%D in Reactor Feed SP 

Sep Temp SP-CCWT 

 

SP change Yes 

IDV(1)      Yes 

IDV(2)      Yes 

  

0.0083 

13.25 

     

 

291.29 

10.51 

Candidate 

4-4 

Production rate  

Product Quality 

Reactor Temperature SP 

%D in Reactor Feed SP 

Sep Temp SP-CCWT 

Reactor Level SP 

SP change Yes 

IDV(1)      Yes 

IDV(2)      Yes 

 

0.0072 

15.27 

 

231.70 

25.71 

Candidate 

4-5 

Production rate  

Product Quality 

Reactor Temperature SP 

%D in Reactor Feed SP 

Sep Temp SP-CCWT 

Reactor Level SP  

%C in Reactor Feed SP 

SP change  Yes 

IDV(1)       Yes 

IDV(2)       Yes 

 

0.0072  

0    

 

230.70 

0.43 

Candidate 

4-6 

Production rate  

Product Quality 

Reactor Temperature SP 

%D in Reactor Feed SP 

Sep Temp SP-CCWT 

Reactor Level SP  

%C in Reactor Feed SP  

%A in Reactor Feed SP 

SP change Yes 

IDV(1)      Yes 

IDV(2)      Yes 

 

0.0071 

1.40    

 

229.17 

0.67 

Candidate 

4-7 

Production rate  

Product Quality 

Reactor Temperature SP 

%D in Reactor Feed SP 

Sep Temp SP-CCWT 

Reactor Level SP  

%C in Reactor Feed SP 

%A in Reactor Feed SP 

Reactor Pressure SP  

SP change Yes 

IDV(1)      Yes 

IDV(2)      Yes 

 

0.0071 

0 

 

229.16 

0.002 
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After running the linear simulations, using a multivariable OSOFC and 

evaluating the values for the summation of the offset, IAE for each candidate 

and their respective percentage of change, and the transient responses,  the 

following statements can be made: 1) For disturbance IDV(1) and IDV(2): all 

the candidates are able to reject both disturbances. 2) Candidates 4.1 and 4.2, 

are not able to achieve maximum production rate. 3) For maximizing 

production rate: At least the setpoint of three loops need to be considered 

(reactor temperature, composition of D in the reactor feed, and separator 

temperature). 4) Candidates 4.3 to 4.7 are able to achieve maximum 

production rate in less than 5 hours. 5) It can be said that there is no 

significant improvement in the control performance after candidate 4.4, when 

the reactor level setpoint is added. Therefore, the addition of extra 

manipulated variables, after candidate 4.4, will not give control benefits. 

According to Table 5.10 the most important manipulated variables are reactor 

temperature SP, % D in feed, separator temperature SP, and reactor level. 

However, by evaluating the summation of the offset and the IAE and their 

respective %of change between candidates (see Table 5.11) it appears to be 

that reactor level is more important than separator temperature.  These linear 

simulations are used to obtain an initial insight about the resulting control 

structure. Then, the resulting control structures are evaluated, using nonlinear 

process simulations and model predictive controller (MPC).   
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5.2.5. Control structure for individual unit operations using the available 

degrees of freedom. 

So far, the only degrees of freedom that have not been used are the agitator 

speed, the recycle valve, and the stripper steam flow. The stripper steam can 

be used for unit operation control (control of the stripper temperature). 

However, as was mentioned at the beginning of this section, in all the optimal 

operation modes (Ricker, 1994) the agitator speed and the recycle valve are 

fixed at their maximum values, and the steam flow is fixed at its minimum 

value. Moreover, Ricker (1994) and Tyreus (1999) clearly state that the 

stripper temperature and the heat to the reboiler are not dominant variables 

and serve no purpose in a feedback control. 

 

5.2.6. Control production rate and product quality, using MPC.  

In this stage, a Model Predictive Controller (MPC) is built on the top of the 

resulting control structure. The main objective is to improve the control of the 

production rate and product quality by adjusting the setpoint of the important 

loops (i.e. the ones with the strongest manipulated variables) in the plant. The 

control structure implemented is the best control structure obtained in step 

5.2.4, Candidate 4-4 from Table 5.11. The resulting control structure is 

implemented and its performance is studied using nonlinear process 

simulations. The controller tuning parameters used for these simulations were 

obtained from linear calculations.  The first two process disturbances,  IDV(1) 

and IDV(2), in Downs (1993), which are step upsets, and a 50% setpoint 
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change in the production rate (maximize production rate for operating mode 

1) are considered. Transients of 16 measurements (production rate; product 

quality; purge flow; reactor pressure, level, and temperature; separator level; 

stripper level; composition of A, B, C and D in the reactor feed; A feed; D 

feed; E feed; and C feed) are calculated for each disturbance (IDV(1) and 

IDV(2)) and production rate set point change for 60 hours. Since proportional 

gains are available from the design phase, nonlinear simulations using 

proportional-only controllers, are used to show the control performance of the 

resulting structure. However, for the final control structure, the one that is 

feasible for all the three operation modes, proportional-integral controllers 

will be used. As mentioned above, at least the setpoint of three loops (reactor 

temperature, composition of D in the reactor feed, and separator temperature) 

should be adjusted by the MPC in order to achieve the maximum production 

rate, while avoiding valve saturation and plant shutdown. There is 

improvement in the transients for production rate and product quality 

variables until candidate 4.4 (when the reactor level SP is added is added to 

the MPC inputs).  The model predictive controller is build using the function 

scmpcnl in Matlab. This function designs an MPC controller for constrained 

problems and simulates closed loop systems with hard constraints. This MPC 

is tested using the nonlinear model simulations. In other words, the input 

values calculated by the MPC are fed continuously into the nonlinear 

simulation for the Tennessee Eastman Plant.  The scmpcnl function uses the 

plant model in Simulink format.  
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The tuning parameters for the MPC are the following: 

1) The control horizon (M). This is the number of control moves 

2) Length of prediction horizon (P) 

3) Penalty weighting for changes in manipulated variables (uwt)  

4) Penalty weighting for setpoint tracking (ywt) 

The MPC is tuned by trial and error using the following guidelines:  

The control action becomes more aggressive when: P decreases, M increases, 

and uwt decreases. Even thought, this is a general trend, for some controllers 

the adjustment of P and M does not have significant effect in the control 

performance. In these cases, uwt is used as the main tuning parameter. In this 

work, the same weight (ywt) is given to both controlled variables (production 

rate and product quality). P and M are used to give an initial tuning while uwt 

is used to obtain a fine tuning.  Different values of uwt are given to the 

manipulated variables depending on how fast these variables can be 

manipulated, and the desired control performance. 

 

Figures 5.2, 5.3, show the nonlinear simulations for a 50% setpoint change in 

the production rate (maximum production rate for Candidate 4-4). Figure 5.2 

shows transients of the 8 variables (product flow, product quality, purge flow, 

reactor pressure, reactor level, reactor temperature, separator level and stripper 

level.  Figure 5.3 shows transients for 8 variables %A feed, %B feed, %C 
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feed, %D feed, A feed, Dfeed, E feed and C feed. Figure 5.2 shows how the 

large and fast changes in the production rate are handled. It is worth noting 

that the production rate changes more than 50% in less than two hours. 

Although this is a big change, the proposed control structure can handle it 

without valve saturation and/or plant shutdown. An important consideration 

from the economic point of view is the amount of purge used. In this case, the 

purge flow is less than what Tyreus (1999) reported for his control scheme.  

Figure 5.2 shows the purge flow. 

  

 

Figure 5.2  Maximum Production Rate for Operation Mode 1 (Candidate 4-4) 
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Figure 5.3  Maximum Production Rate  (Candidate 4-4) 

 

 
 
 
 
Figure 5.4 and 5.5 show the response of the proposed control scheme for 

IDV(1) a change in the composition of A, and C in the C feed stream. This 

figure shows that the control scheme can easily reject IDV(1). When the 

amount of A in the system decreases the A feed increases to counteract this 

fact.  
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Figure 5.4  IDV(1)  for  Operation Mode 1  (Candidate 4-4) 

 

 

Figure 5.5  IDV(1)  for  Operation Mode 1  (Candidate 4-4) 
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Figure 5.6 and 5.7 show the response of the proposed control scheme for 

IDV(2) a change in the composition of B in the C feed stream. This figure 

shows how the system opens the purge to control the amount of B (inert).  

 

 

Figure 5.6  IDV(2)  for  Operation Mode 1  (Candidate 4-4) 
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Figure 5.7  IDV(2)  for  Operation Mode 1  (Candidate 4-4) 
 

 
 

 

Control Structure for Candidate 4 for Operation Modes 2 and 3 

Since the TE process needs to operate in 3 different operation modes, it is 

desirable to determine a control structure that is feasible for each mode. So 

far, only candidate 4 (from Table 5.5) for operating mode 1 has been 

evaluated. To determine the control structure for the same candidate for 

operation modes 2 and 3, the same procedure is applied. Stages 1 

(preparation), 2 (control structure for safety variables), and 3 (control structure 

for inventory variables) from the procedure are the same for each operation 

mode. Stage 4 (control structure for production rate and quality) is the key 

stage in determining the control structure because this stage is the one that 

gives information about the strongest measurements and manipulated 
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variables to control production rate and product quality. If stage 4 gives the 

same strongest measurements and manipulated variables for operation modes 

2 and 3 as the ones given in mode 1, then the same MPC design is used for 

these modes. Since there are three different set of tuning parameters (one for 

each mode), trial and error is used to find a single set of tuning parameters that 

works for the three operation modes.  

In the case that a different set of strongest measurements and manipulated 

variables are obtained for any mode then, 1) the scaling factor should be 

evaluated since the OSOF solutions depends on how measurements, 

manipulated variables and states are scaled; and 2) the multiple steady state 

operation design procedure, proposed by Chen et. al. (2003), is applied. 

Results for Candidate 4 for Operating modes 2 and 3 as well as the rest of the 

rest of the candidates in Table 5.5 with their respective operating modes (1, 2 

and 3) are shown in Appendix IV 

5.3. Discussion and Comparison with Other Control Schemes 

During the last decade, several control structures were proposed for the TE process. 

The main differences among these control schemes are the ways in which the 

production rate (throughput), the reactor pressure, and the liquid levels are controlled. 

The majority of authors have focused on controlling production rate with one or more 

flow rates. For example, McAvoy and Ye (1994) use the flowrate of C feed as a 

throughput manipulator; Lyman and Georgakis (1995) recommended using the 

coolant rate for the condenser; Ricker (1996) uses all material streams in ratio to the 

product flow; Chen (2002) also uses C feed; and Luyben (1996) uses the product flow 
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as the throughput manipulator. A different idea to control production rate, using the 

partial control idea was introduced by Tyreus (1999). He controls the production rate 

by manipulating the set point of reactor pressure, reactor temperature, and separator 

temperature. In the proposed control structure, the production rate is controlled by 

manipulating the setpoint of the reactor temperature, the separator temperature, the 

reactor level, and the compositions of D, C, and E in the reactor feed.  

 

The plantwide design control problem is open-ended, which means there is no unique 

correct solution. A control structure is considered acceptable if it is able to achieve 

the desired control objectives. Because different control objectives lead to different 

control strategies, one of the most important steps in plantwide control design is to 

define the control objectives. For the TE process, Downs (1992) listed the following 

control objectives: 

1) Maintain process variables at desired values. 

2) Keep process operating conditions within equipments constraints. 

3) Minimize variability of product rate and product quality during disturbances. 

4) Minimize movement of valves which affect other processes (frequency 

constraints). 

5) Recover quickly and smoothly from disturbances, production rate changes or 

product mix changes. 

Several authors have proposed different control structures for the TE process. It 

seems that they had interpreted these control objectives in different ways and, 

therefore, they obtained different control structures. For example, McAvoy et. al. 
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(1994) consider all control objectives. However, it seems that their control structure 

attempts to reduce the variability of feed flows (objective 4). On the other hand, 

Luyben (1996) and Tyreus (1999) control objective is to achieve rapid changes in the 

production rate. These authors also considered all the control objectives presented in 

Downs (1992), except for objective 4 (Minimize movement of valves that affect other 

processes). Luyben (1996) and Tyreus (1999) ignore the frequency constraint on the 

C feed and used this valve to control reactor pressure, which is a fast loop.  Ricker 

(1996) proposed a control structure that not only satisfies the control objectives 

(Downs, 1992), but also attempts to satisfy economic objectives. He also 

demonstrated through nonlinear simulations that his control structure could achieve 

the maximum production rate and could work for all operation modes. Although the 

change in production rate is not as fast as Luyben’s, Tyreus, or the proposed control 

structure, Ricker ramped the SP, which is more like what actually happens in real 

processes. The majority of the investigators have not demonstrated how to maximize 

production rate with their control schemes.  

 

One of the most important factors that should be considered when comparing control 

structures is the economic benefit obtained by using any given control structure.  In 

this section, some of control structures proposed in the literature for the TE problem 

are compared to the proposed control structure in this work, from the economic point 

of view. To do so, the objective function given by Downs and Vogel (1992) and 

based on operating cost, is used. The operating costs for the TE process are mainly 

determined by the loss of raw materials through the purge stream and the product 
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stream, and by means of the two side reactions. Costs of the compressor work and 

stripper steam costs are also included. The objective function is as follows: 

Total operating cost at base case: 

 

Total Costs = (Purge Cost)(Purge Rate) + (Product Stream Cost)(Product Rate) + 

(Compressor Costs) ( Compressor Work) + (Steam Costs)(Steam Rate) 

 

Where: 

Purge Costs = 7.5973 $/Kgmol 

Product Stream Costs = 0.1434 $/Kgmol 

Compressor Costs = 0.0536 $/kWh 

Steam Costs = 0.0318 $/Kg 

 

The larger cost for the base operating mode [Downs and Vogel, 1992] is caused by 

purge losses, followed by the product stream losses. The purge losses cost represents 

67% of the total cost, while the product losses cost represents 17%. It is obvious that 

a control strategy that reduces the purge losses is translated into economic benefits. 

Therefore, in order to evaluate the economic benefits for using any given control 

structure for the TE plant, their respective purge losses costs are calculated and 

compared.  These purge losses are calculated by using steady date information of the 

purge rate and compositions for the control schemes where the data is available.  
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Comparison with Tyreus’s Control  

The proposed control structure in this research and Tyreus’s control structure are able 

to achieve the desired change in production rate. However, from the economic point 

of view, the control scheme proposed in this work has better performance than 

Tyreus’ scheme. The control scheme proposed allows working with a larger amount 

of component B in the purge (21%) than Tyreus' scheme (15%). Therefore, the 

amount of purge (0.3 kscmh) in the proposed scheme is less than the amount of purge 

(0.5 kscmh) in Tyreus’ control scheme. By using the proposed control scheme the 

purge losses cost is reduce by 68 $/h, which is about more than half a million dollars 

a year. Some limitations with Tyreus’ control structure for the Tennessee Eastman 

plant are the following: 

1) His control structure is difficult to apply in a real process since the final product 

flow controller requires changing 4 setpoints (3 dominant variables and %B 

purge) simultaneously. Also, the values of these setpoints should be calculated 

continuously in order to change the product rate. 

2) Tyreus’ control structure ignores the frequency constraints on the C, D, and A 

feeds. 

3) Negative RGA pairing results from his structure.  

4)  Tyreus did not demonstrate that his control structure is able to work for all 

operating modes for the TE process. 
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Comparison with  Luyben’s Control Structure  

Luyben used common heuristics to determine a decentralized control structure for the 

TE plant. He demonstrated through nonlinear simulations that his control structure is 

able to do the following: 1) to decrease the production rate of the plant in 50% almost 

immediately, and 2) to reject disturbance 1 (change in the C Feed composition). A 

direct comparison between the proposed control structure (optimal control-based 

control structure) and Luyben’s control structure cannot be made because Luyben 

applied his control structure to the base case (Downs 1992), while the proposed 

control structure is applied to the optimal operating modes (Rickers 1994). However, 

it should be pointed out that the main limitation with Luyben’s control structure is 

that he ignored frequency constraints by using C Feed to control reactor pressure. 

Therefore, he did not consider one of the control objectives stated in Downs (1992): 

“Minimize the movement of valves which affect other processes.”  Also, Luyben did 

not demonstrate that his control structure is able to work for all operating modes for 

the TE process. 

 

Comparison with Chen’s Control Structure  

Even thought the methodology presented in this work has a lot of similarities with 

Chen’s proposed methodology, it can be said that this methodology gives better 

control results that Chen’s methodology. The reason is that, this methodology, is not 

only is able to reject disturbances as Chen’s, but also to increase the production rate 

by 50% in less than 5 hours while decreasing the purge flow. Chen’s methodology is 

not able to have such a large change in the production rate. In addition, this 
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methodology is tested using the nonlinear model for the Tennessee Eastman Plant, 

while Chen’s only uses the linear model of the plant.  

 

Comparison with Ricker’s Control  

Ricker proposed one of the best control structures for the TE process, considering that 

his structure satisfies all the control objectives presented in Downs (1992).  In his 

design methodology, Ricker, explained very clearly how to: determine the degrees of 

freedom in the process, select variables that must be controlled, set production rate, 

and decide what to do with the remaining degrees of freedom. When comparing 

Ricker’s control structure with the proposed one, it should be pointed out that both 

structures are able to reject disturbances and maximize production rate for all 

operating modes in the plant with similar results in control performance. 

  

From the results of the linear and nonlinear simulations it can be said that the most 

important variables in the plant to control production rate and product quality are: 

reactor temperature, composition of D in the reactor feed, separator temperature 

setpoint, and reactor level setpoint. The proposed methodology has proven to be a 

reliable method to determine the key manipulated variables and measurements in the 

plant. In addition, it can be said that the resulting control strategy gives better control 

results than Chen’s and Tyreus’ and similar results  to Ricker’s control structure.  
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Chapter 6:  Case Study: Vinyl Acetate Process 

 

 

6.1. Introduction 

For many years, academic researchers in process design, control, and related areas 

have been interested in industrial examples of realistic processes that can be used in 

developing and testing new technologies.  These processes should have a realistically 

large process flowsheet containing standard chemical unit operations, and typical 

industrial characteristics of recycle streams and energy integration [Luyben et. al., 

1998].  One process with these characteristics is the Tennessee Eastman Process 

[Downs et. al., 1993]. This process (presented in Chapter 5) has been highly used by 

researchers in the process control field to test their ideas and technical developments. 

In fact, many publications have appeared about the Tennessee Eastman Process. 

Because of the continuous interest among researchers to have additional industrial 

examples of realistic processes, Luyben et al. (1998) presented design details of an 

industrial process for the production of vinyl acetate monomer (the Vinyl Acetate 

process). This process has a flowsheet with the typical unit operations in chemical 

plants. In contrast with the Tennessee Eastman Process, the Vinyl Acetate Process has 

real components and two recycle streams (gas and liquid) that make the problem 

more realistic. On the other hand, unlike Downs et al. (1993), Luyben et. al. (1998) 

does not make available any code to simulate the Vinyl Acetate (VA) Process. A 

nonlinear dynamic model for the VA Process was developed by Luyben and Tyreus 

in TMODS, which is a Dupont in-house process simulation software system. Because 
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TMODS is not accessible for the public use, a first principle model has been 

developed by Chen et al. (2001). The code for this model can be downloaded from 

the Internet [Chen et. al., 2003].  

This chapter presents the application of the optimal control-based approach for 

measurement and manipulated variables selection to the Vinyl Acetate (VA) Process. 

This process consists of 10 basic unit operations: a vaporizer, a catalytic plug-flow 

reactor, a feed-effluent heat exchanger (FEHE), a separator, a gas compressor, an 

absorber, a carbon dioxide (CO2)  removal system, a gas removal system, a tank for 

the liquid recycle stream, and an azeotropic distillation column with a decanter. The 

flowsheet for the Vinyl Acetate (VA) process is shown in Figure 6.1.  

 

 
Figure 6.1 The Vinyl Acetate Process 
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There are seven chemical components in this process. Three reactants, Ethylene 

(C2H4), oxygen (O2), and acetic acid (HAc), react to produce vinyl acetate product 

(VAc), and two byproducts (water (H2O) and carbon dioxide (CO2) ). There is an 

inert component, ethane (C2H6) that enters with the fresh ethylene feed. The reactions 

that take place in the reactor are: 

322342 2/1 CHOCOCHCHOCOOHCHHC =→++
  (6.1) 

OHCOOHC 22242 223 +→+     (6.2) 

 

More details for this process can be found in Chen et. al., (2003) and Luyben et. al., 

(1998).  The model of this process has 246 states, 26 manipulated variables and 43 

measurements.  

 

At present, there are four decentralized control structures available for the VA 

Process. Luyben (1998) proposed the first control structure based on engineering 

experience and process insight. In 2003, Chen et al., proposed four control structures, 

by using their plantwide control design methodology that is based on optimal control. 

One of the control structures proposed by Chen is exactly the same control structure 

proposed by Luyben et al. (1998). These authors evaluated their control structures by 

their capability to reject process disturbances and to change setpoints. Luyben et al., 

tested his proposed control structure for: 1) 8oC decrease in the reactor temperature, 

2) 6oC increase in the reactor temperature, 3) 10oC decrease in the reactor 

temperature, 4) 5 minutes shutoff of column feed, 5) 20% increase in acetic acid 

recycle flow, and 6) increase in the column base water composition from 9 to 18%, 
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while Chen et al. [Chen et al. 2003], tested for the 1oC reactor outlet temperature 

setpoint change. In addition, the control system must be able to change the production 

rate (as measure by steady organic flow from the decanter) by at least 20% (up or 

down) in a period of six hours [Luyben and Tyreus, 1998]. This is because of limits 

on tank storage. It is important to mention that neither Chen et al. (2003) nor Luyben 

et al. (1998) have demonstrated that their control schemes are able to make this 

change in the production rate.   

 
In this work, two additional process disturbances are considered: 1) step change in the 

composition of ethane in the fresh ethylene feed stream from 0.001 to 0.003 mol 

fraction, and 2) 0.0003 mol fraction of water (impurity) in the fresh acetic acid feed 

stream. The last disturbance is generated for this work in order to have another 

possible disturbance scenario for testing the methodology proposed for specific 

disturbance rejection and setpoint changes.  There are two key safety constraints that 

must be considered: 1) the oxygen composition must not exceed 8 mol % anywhere in 

the gas recycle loop to remain outside the explosivity envelope of ethylene, and 2) the 

pressure in the gas recycle loop and distillation column cannot exceed 140 psia. There 

are other operational constraints that should be considered, such as: 

1) the peak reactor temperature along the length of the tube must remain bellow 

200oC, otherwise mechanical damage occurs to the catalyst requiring shutdown. 

2) liquid levels in the vaporizer, separator, absorber base, distillation column base, 

and decanter must operate within the limits of 10-90%. 

3) reactor inlet temperature must exceed 130oC to prevent condensation of liquid in 

the reactor.  
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4) the hot side exit temperature from the feed-effluent heat exchanger (FEHE) must 

remain above 130oC to avoid condensation in the exchanger, which has been design 

to handle only vapor-phase flow. 

5) the acetic acid in the decanter organic phase in the distillation column must not 

exceed 600 mol/million to prevent product contamination. 

6) the vinyl acetate composition in the in the bottoms stream must remain bellow 100 

mol/million to minimize polymerization and fouling in the column reboiler and 

vaporizer. 

In this Chapter, the optimal control-based approach for measurement and manipulated 

variable selection is applied to the VA Process in order to generate control structures 

that are able to reject process disturbances and to make rapid and large changes in the 

production rate. As presented in Chapter 4, this methodology is based on optimal 

control theory and requires a linear dynamic model of the process. Because only the 

nonlinear model of the process is available, the linear model is obtained by 

numerically calculating the first order Taylor expansion coefficients of the nonlinear 

model [Chen, 2002]. This methodology divides the design problem into 4 sub-

problems, based on the control objectives: 1) controlling variables related to the 

safety operation of the process; 2) controlling the component balances; 3) controlling 

variables related to production rate and product quality; and 4) controlling unit 

operations with available degrees of freedom. The structure of this chapter is as 

follows: the control structures are designed for the VA process and a discussion and 

comparison with other schemes proposed for the VA process are presented. 
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6.2.  Control Structure Design for Vinyl Acetate Process 

The main goal in this section is to generate control structures that improve the control 

performance of key economic variables in the plant.  The optimal control-based 

approach for measurement and manipulated variable selection method is used to 

generate the control structures. This methodology consists of 6 stages. In Stage 1, the 

process model is scaled, the inner cascade loops are closed, and a correlation and a 

condition number analysis are carried out. In Stage 2, the variables related to safe 

process operation (safety variables) are identified, and control structures for these 

variables are generated. Chen (2003) used optimal control theory to identify the 

safety variables for the Vinyl Acetate Plant(VAP) and to generate control structures 

for controlling these variables.  These results are used in this stage. In Stage 3, control 

structures for inventory variables (components) are designed. In Stage 4, important 

measurements and manipulated variables that affect production rate and product 

quality are identified. Then, control structures are designed to pair the important 

measurements with the available manipulated variables. In Stage 5, control structures 

are designed for other variables related to individual unit operations using the 

available degrees of freedom. In Stage 6, a Model Predictive Controller (MPC) is 

designed in the top of the resulting control structure to manipulate the set point of 

these loops, in order to change the production rate and product quality. 

6.2.1. Preparation 

a) Scaling the state space model is done using the following scaling factors: 

- The measurements are scaled using the following scaling factor: 

Pressures:  10 psia 
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Temperatures:  minimum value between 40 C and the steady state value of the 

variable being scaled 

Levels: 50% 

Molar Flows:  steady state values 

Molar fraction:  20% of the steady state value if the molar fraction is greater 

than 0.04 otherwise, the steady state value composition is used 

- The manipulated variables are scaled using their full range given in Chen 

(2003) and Luyben (1996). In the case of the cascade loops, these variables 

are scaled using the measurement scaling factors because the inner loops are 

closed and, therefore, the manipulated variables become the setpoints of the 

inner cascade loops. 

 

b) Closing the inner cascade loops eliminated three measurements. Then the 

setpoints of these loops become manipulated variables for later stages. Three 

proportional-only controllers were used for the inner cascade loops. The 

proportional gains for these loops are given in Appendix V. Table 6.1 shows 

the inner cascade loops. 

 

Table 6.1  Cascade Loops 

Measurements Manipulated Variables 

Compressor Exit Temperature Compressor Heater Duty 

Circulation Cooler Exit Temperature Circulation Cooler Duty 

Scrub Cooler Exit Temperature Scrubber Cooler Duty 

 

c) Steady state correlation and condition number analysis of the C matrix are 

performed to identify the variables that are correlated. The reason for doing 
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this analysis is because, after conducting several simulations, results show that 

the algorithm used to calculate the optimal static output feedback controller 

(OSOFC) did not converge, or the calculation was very slow when highly 

correlated variables were considered simultaneously. This happens because 

the algorithm used to calculate the OSOF gain involves the inversion of the 

C*S*C’ matrix (discussed in Chapter 4 in section 4.3). Therefore, in order to 

avoid convergence problems,  it is not  recommended to use ill-conditioned 

systems. One way to avoid having ill-conditioned systems is by eliminating 

variables that are highly correlated. Therefore, a correlating analysis is 

performed on the gain matrix to identify variables that are correlated. The 

equations used for the correlation analysis can be found in Appendix I. The 

measurements considered for this analysis are listed in Table 6.2. These 

measurements include all the available measurements except for the 

measurements used to close the cascade loops (Table 6.1).  
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Table 6.2 Available Measurements and Manipulated Variables 

1 Vaporizer Pressure                              (1) Fresh O2 Feed 

2 Vaporizer Level                                  (2) Fresh C2H4 Feed 

3 Vaporizer Temperature                       (3) Fresh HAc Feed 

4 Heater Exit Temperature                    (4) Vaporizer Steam Duty 

5 Reactor Exit Temperature                   (5) Vaporizer Vapor Exit 

6 Reactor Exit Flowrate                         (6) Vaporizer Heater Duty 

7 FEHE Cold Exit Temperature            (7) Reactor Shell Temperature 

8 FEHE Hot Exit Temperature              (8) Separator Liquid Exit 

9 Separator Level                                   (9) Separator Preheater Temperature 

10 Separator Temperature                     (10) Separator Vapor Exit 

11 Absorber Pressure                             (12) Compressor Exit Temp Set Point 

12 Absorber Level                                 (13) Absorber Liquid Exit 

13 Gas Recycle Flowrate                       (16) Absorber Circulation Flow 

14 Organic Product Flowrate                 (17) Circulation Cooler Exit Temp Set Point  

15 Decanter Level (Organic)                 (18) Absorber Scrub Flow 

16 Decanter Level (Aqueous)                (19) Scrub Cooler Exit Temp Set Point  

17 Decanter Temperature                      (20) CO2 Removal Inlet 

18 Column Bottom Level                      (21) Purge 

19 Tray 5 Temperature                          (22) FEHE Bypass Ratio 

20 HAc Tank Level                               (23) Column Reflux 

21 VAc  Organic Product Comp            (24) Column Reboiler Duty 

22 H2O   Organic Product Comp           (25) Column Condenser Duty 

23 HAc  Organic Product Comp            (26) Column Organic Exit 

24 VAc  Column Bottom Comp            (27) Column Aqueous Exit 

25 H2O   Column Bottom Comp           (28) Column Bottom Exit  

26 HAc  Column Bottom Comp            (29) Vaporizer Liquid Exit  

27 O2  Gas Recycle Comp                     (30)  

28 CO2  Gas Recycle Comp                  (31)  

29 C2H4 Gas Recycle Comp                  (32)  

30 C2H6  Gas Recycle Comp                 (33)  

31 VAc  Gas Recycle Comp                  (34)  

32 H2O  Gas Recycle Comp                  (35)  

33 HAc  Gas Recycle Comp                  (36)  

34 O2   Reactor Feed Comp                   (37)  

35 CO2  Reactor Feed Comp                 (38)  

36 C2H4  Reactor Feed Comp                (39)  

37 C2H6  Reactor Feed Comp                (40)  

38 VAc   Reactor Feed Comp                (41)  

39 H2O   Reactor Feed Comp                (42)  

40 HAc   Reactor Feed Comp                (43)  
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The correlation analysis shows that the following groups of variables are 

correlated: 

Group 1: Vaporizer Pressure and Absorber Pressure 

 Tray 5 Temperature, VAc, H2O, and HAc Column Bottom 

Composition, H2O Gas Recycle, VAc Gas Recycle, H2O Reactor 

Feed, HAc Reactor Feed,  

Group 2: O2 Gas Recycle Composition and O2 Reactor Feed Composition 

 C2H6 Gas Recycle Composition and C2H6 Reactor Feed Composition 

 VAc Gas Recycle Composition and VAc Reactor Feed Composition 

 C2H4 Gas Recycle Composition and C2H4 Reactor Feed Composition 

   CO2 Gas Recycle Composition and CO2 Reactor Feed Composition 

Group 3: VAc Gas Recycle Composition, HAc Gas Recycle Composition, 

VAc Reactor Feed  

Group 4: Reactor Exit Flow, Organic Product Flowrate  

 

Results from the correlation analysis show that there are several variables that 

are correlated. One alternative would be to consider only one variable from 

each group and to eliminate the rest of them. However, at this point, it is not 

obvious which variables from each group should be eliminated. The reason is 

that some of these variables might be required in later stages. In addition, it is 

important to point out that the correlation analysis is performed using steady 

state information (the gain matrix), which means it does not consider the 

process dynamics. Therefore, even though two variables seem correlated if 
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there is a significant delay between them, they can be controlled 

simultaneously.  A condition number analysis on the C matrix (CN-C) is 

performed to determine which of the correlated measurements have the 

greatest effect on the condition number. The measurements considered for this 

analysis are presented in Table 6.2. The condition number of the C matrix that 

includes all the measurements in Table 6.2 is calculated and is called CN-AM 

(condition number of all measurements). Then, correlated variables from each 

group are eliminated, one at a time, to determine their effect on the condition 

number.  

Table 6.3 shows the values of the condition number of the C matrix. 

Table 6.3  Condition Number of C Matrix 

Measurements included CN of the C matrix 

CN-AM 1.3033e+018 

CN-AM - HAc Column Bottom Composition 
                 HAc Gas Recycle Composition 
                 H2O Reactor Feed Composition 
                 HAc Reactor Feed Composition 
                 Organic Product Flowrate 

2.0554e+004 

 

The results from Table 6.3 show that the condition number of the C matrix has 

a significant decrease when the highly correlated variables (HAc column 

bottom composition, HAc gas recycle composition, H2O reactor feed 

composition, and HAc reactor feed composition, and organic product 

flowrate) are considered simultaneously. The rest of the correlated variables 

did not produce a large change in the condition number when they were 

eliminated. Therefore, they remain in the group of available measurements 

because they can be used in later stages 
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6.2.2. Control Structure for Safety Variables 

The objective in this stage is to identify the safety variables and to generate 

decentralized control structures to control them. The safety variables are the 

variables that have hard constraints. This means that they have limits of 

operation that can cause the shutdown of the plant if they exceed these limits. 

Also, the integrating variables and the variables that can cause instability are 

identified in this stage. Chen (2002) identified the safety, integrating variables 

and the variables that cause instability for the VA Plant by using the process 

gain matrix, eigenvalue analysis, and engineering judgment. In addition, he 

used an optimal control-based plantwide control design methodology that 

involves the calculation of an OSOF and a sensitivity matrix to generate 

control structures for these variables. More details for these procedures can be 

found in Chen (2002). Results from Chen’s analysis show that the VA plant 

does not have process instabilities (the overall model does not have positive 

eigenvalues). The integrating variables for this process are the seven levels, 

the tray 5 temperature, and the bottom composition of VAc. In his work, Chen 

found that controlling the tray 5 temperature results in both of these variables 

being controlled (tray 5 temperature and bottom composition of VAc). The 

correlation analysis results show that these two variables are correlated.  

Finally, the safety variables identified by Chen (2002) according to Luyben et 

al. process constraints are: % O2 in the reactor inlet stream, vaporizer 

pressure, absorber pressure, heater exit temperature, reactor exit temperature, 

and FEHE exit temperature.  Then, the OSOFC and the sensitivity matrix are 
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calculated in order to determine control structures for the safety variables. In 

this stage, the OSOFC is calculated for a specific type of process forcing 

(disturbance rejection and setpoint change) while in Chen’s, it is calculated for 

the generic forcing (initial states around unitary sphere, X=I). A more detailed 

explanation can be found in Chapter 4. The control structure candidates 

obtained using this method are similar to the ones obtained by Chen (2002).  

Table 6.4 shows the control structures for the safety variables for the Vinyl 

Acetate Process.  

Table 6.4   Control Structures for Controlling the Safety and Integrating 

Variables 

  Candidates   

Variables 1 3 7 9 

Vaporizer level Vap steam duty Vap steam duty Vap liquid inlet Vap liquid inlet 

Separator level Sep liquid exit Sep liquid exit Sep liquid exit Sep liquid exit 

Absorber level Abs liquid exit Abs liquid exit Abs liquid exit Abs liquid exit 

Organic  level Col organic exit Col organic exit Col organic exit Col organic exit 

Aqueous level Col aqueous exit Col aqueous exit Col aqueous exit Col aqueous exit 

Column base level Col bottom exit Col bottom exit Col bottom exit Col bottom exit 

HAc tank level Fresh HAc feed Fresh HAc feed Fresh HAc feed Fresh HAc feed 

Tray 5 temperature Col reboiler duty Col reboiler duty Col reboiler duty Col reboiler duty 

% O2  reactor feed Fresh O2 feed Fresh O2 feed Fresh O2 feed Fresh O2 feed 

Vaporizer pressure Vap vapor exit Vap vapor exit Vap vapor exit Vap vapor exit 

Absorber pressure Fresh C2H4 feed Sep vapor exit Fresh C2H4 feed Sep vapor exit 

Reactor input temp Vap heater duty Vap heater duty Vap heater duty Vap heater duty 

Reactor exit temp Reactor shell temp Reactor shell temp Reactor shell temp Reactor shell temp 

FEHE exit temp FEHE bypass ratio FEHE bypass ratio FEHE bypass ratio FEHE bypass ratio 
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In this section, Candidate 1 is considered first. The same procedure is applied 

to the remaining candidates. Fourteen proportional-only controllers are 

automatically tuned for Candidate 1. The tuning is obtained by calculating an 

optimal static output feedback (OSOF) controller that contains only diagonal 

terms. The only difference is that, in this work, the tuning is calculated for a 

specific type of process forcing (disturbance rejection and setpoint change) 

while in Chen’s, it is calculated for the generic forcing (initial states around 

unitary sphere, X=I). More details in the tuning method can be found in 

Appendix II. The seven integrating levels are controlled, using averaging level 

control. The reasons for this are: 1) there is not a requirement for tight level 

control and 2) the liquid capacities can filter out flow disturbances. The gains 

for the averaging level controls are +1 or –1 (%/%), depending on the sign of 

the process gain. The proportional gains for these loops are given in Appendix 

V. After the safety loops are closed, the measurements corresponding to these 

variables are no longer available as measurements. Instead, the setpoints of 

these loops become the new manipulated variables that are used later in the 

process.  

 

 

6.2.3. Control Structure for Inventory Variables (Components) 

In this stage, the Downs Drill Analysis (recommended by Luyben (1992) and 

used in Chen (2002, 2003) and in Chapter 5 of this work) is used to check 

component balances in a control scheme, in order to identify the components 
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that need to be controlled. This analysis helps to determine whether a 

component (reactant, product, and inert) leave or are consumed in the process. 

Chen (2003) used Downs Drill Analysis to identify the components that need 

to be controlled for his proposed control schemes for the VA process. He 

explained that the inventory of components should be controlled, unless they 

are self-regulating or are made self-regulating by closing other loops.  Chen 

analyzed reactants, inerts, and products. In this work, only the reactants, 

inerts, and byproducts are considered for the Downs Drill Analysis since 

products will be controlled in the next stage. Table 6.5 shows the Downs Drill 

Analysis for Candidate 1 for the VA process. Appendix V shows the Downs 

Drill Analysis for the remaining Candidates in Table 6.4. 

 

Table 6.5 Downs Drill Analysis for Candidate 1 

Candidate Component Self-

Reg 

Why Self-Reg Manipulated 

Var 

Measurement 

O2 (react) Yes O2 Feed - %O2   

C2H4 (react) Yes C2H4 feed -Abs pressure   

HAc (react) Yes HAc feed-HAc level   

C2H6 (inert) No  Purge % C2H6 in gas recycle – 

reactor feed  

H2O (byprod) No  Organic reflux  

 

%H2O Column bottom - 

organic product composition 

 

 

Candidate 1 

CO2 (byprod) No  CO2 removal inlet %CO2 in gas recycle – 

reactor feed 
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The third column of Table 6.5 shows whether the components are self-

regulating or not. If they are self-regulating, the fourth column shows which 

closed loops make them self-regulating. Then, the fifth and sixth columns 

indicate the measurement and manipulated variables available that can be used 

for controlling these components. From the Downs Drill Analysis for 

Candidate 1 the following information is obtained: 1) All the reactants are 

being controlled. 2) The inert and byproducts (H2O and CO2) are left 

uncontrolled after Stage 2.  The manipulated variables used for controlling the 

inert (C2H6) and the byproduct CO2 are the purge and the CO2 removal inlet, 

respectively. These two components (C2H6 and CO2) are essentially in the gas 

phase. There are two analyzers in the gas phase that measure the compositions 

of the  inert (C2H6) and the CO2. One is located in the gas recycle stream and 

the other, in the reactor feed. The analyzer located in the gas recycle stream is 

chosen for controlling the inert (C2H6) and CO2 compositions because it is 

located closer to the manipulated variables (purge and CO2 removal inlet).  

Moreover, to measure the other component (H2O), which is essentially in the 

liquid phase, there are two analyzers that can be used.  One is located in the 

column bottom, and the other, in the organic product. From engineering 

judgment, the analyzer located in the column bottom is selected.   

 

The manipulated variables (degrees of freedom) available for controlling the 

inventory of H2O are: MV9, MV10, MV13, MV15, MV20, MV22, and 

MV26. None of these manipulated variables is able to control the inventory of 
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H2O except for the organic reflux stream flowrate (MV20) or the condenser 

duty (MV22). Even though the condenser duty changes the reflux temperature 

and, therefore, the effective reflux ratio, the organic reflux stream flowrate 

(MV20) is selected for controlling the inventory of H2O because is a more 

direct way to control. It is important to point out that Luyben et. al. (1998) 

used the organic reflux stream to control the inventory of component H2O.  At 

this point, Candidate 1 contains 17 loops (14 safety variables and 

compositions of C2H6, CO2, and H2O). Three proportional-only controllers are 

automatically tuned to control the inventory loops: 1) composition of C2H6 in 

the recycle stream - purge,  2) composition of CO2 in the recycle stream – 

CO2 removal inlet, and 3) composition of H2O in column bottom –organic 

reflux). These loops are included into the model for use in later stages.  The 

tuning method used is the same as the one used in Stage 2.  The proportional 

gains for these loops are given in Appendix V.  Table 6.6 shows the 

measurements and manipulated variables available after closing the safety 

variables and the inventory variables. Therefore, the measurements 

corresponding to these loops are no longer available as measurements. 

Instead, the setpoints of these loops become the new manipulated variables.  
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Table 6.6 Available Measurements and Manipulated Variables after Closing 

Safety loops and Inventory Control Loops 

1 Vaporizer Temperature              (3) %O2 Reactor Feed Set Point 

2 FEHE Cold Exit Temperature    (7) Absorber Pressure Set Point 

3 Separator Temperature              (10) HAc Tank Level 

4 Gas Recycle Flowrate                (16) Vaporizer Level Set Point 

5 Organic Product Flowrate         (17) Vaporizer Pressure Set Point 

6 Decanter Temperature               (20) Heater Exit Temperature Set Point 

7 VAc Column Bottom Comp      (27) Reactor Exit Temperature Set Point 

8 HAc Column Bottom Comp      (29) Separator Level Set Point 

9 C2H4 Gas Recycle Comp          (32) Separator Preheater Temperature 

10 VAc  Gas Recycle Comp           (34) Separator Vapor Exit 

11 H2O  Gas Recycle Comp           (35) Compressor Exit Temperature Set Point  

12 HAc  Gas Recycle Comp          (36) Absorber Level Set Point 

13 C2H4  Reactor Feed Comp        (39) Absorber Circulation Flow 

14 VAc  Reactor Feed Comp         (34) Circulation Cooler Exit Temperature Set Point  

15 H2O   Reactor Feed Comp        (42) Absorber Scrub Flow 

16 HAc   Reactor Feed Comp        (43) Scrub Cooler Exit Temperature Set Point  

17  CO2  Gas Recycle Comp Set Point 

18  C2H6 Gas Recycle Comp Set Point 

19  FEHE Exit Temperature Set Point 

20  H2O Column bottom comp Set Point (reflux) 

21  Tray 5 Temperature Set Point 

22  Column Condenser Duty 

23  Organic Phase Level Set Point 

24  Aqueous Phase Level Set Point 

25  Column Base Level Set Point  

26  Vaporizer Liquid Inlet 

 

6.2.4. Control Structure for Production Rate and Product Quality 

In this stage, the optimal static output feedback (OSOF) is calculated to 

determine the best set of measurements and manipulated variables (dominant 

variables) that affect production rate and product quality.  For this stage the 

available measurements and manipulated variables are shown in Table 6.6.  
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Product rate and composition measurements are not included within the 

available measurements because the objective is to determine what other 

measurements and manipulated variables can be used for controlling 

production rate and product quality. The production rate measurement is the 

organic flowrate from the decanter (17). However, this measurement does not 

show any relationship to any other variable in the linearized model. Therefore, 

the reactor exit flowrate is chosen as the production rate measurement. Then, 

an OSOFC is calculated, as discussed in Chapter 4, section 4.2. The OSOF is 

analogous to a process gain matrix and represents the dynamic information 

about process interaction. The control objective is to control the production 

rate and product quality.  The following parameters are used for the 

calculation of the OSOFC: 

1) R =I   This gives the same importance to all the manipulated variables.  

2)  gij =0  In setting gij equal 0 (not solving for a specific SISO control 

structure).  

3) Q is the weight matrix that can be used to define the desired control 

objective. All the elements of this matrix should be zero, except for those that 

correspond with the variables associated with production rate and product 

quality.  

To extract information about the important measurements and manipulated 

variables to control production rate and quality from the OSOF matrix, the 

absolute value of each element is considered. Since the process model has 

been scaled, the OSOF matrix is dimensionless, and therefore, its elements 
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can be compared to one another. Generally, an element with an absolute value 

close to zero indicates a weak relationship between the manipulated variable 

and the measurement. The following rules of thumb are used:  

1) The sum of the absolute value of the elements of each manipulated 

variable (element in each row) is calculated for each measurement (columns). 

This is called Σcol. The best measurements (strongest measurements) are the 

ones that have the largest values of Σcol.   

2) The sum of the absolute value of the elements of each measurement 

(element in each column) is calculated for each manipulated variable (rows). 

This is called Σrow. The best manipulated variables (strongest manipulated 

variables) are the ones that have the largest values of Σrow.   

Table 6.7 shows the OSOFC matrix. 
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Table 6.7 OSOF Matrix 

 

Control Objective: to Control Product Rate and Quality 

 

SP              VapT   FEHET    SpT     GRF     DecT    O2GR   C2H4GR   VAcGR   H2OGR    HAcGR    CO2    C2H4RF   C2H6RF   VAcRF    Σrow    

                 1       2       3       4       5       6       7       8       9       10      11      12      13       14                                           

1  %O2         

2  AbP         

3  HAcL      

4  VapL       

5  VapP       

6  HET        

7  RET        

8  SepL       

9  SepT      

10 SepV      

11 CET       

12 AbL             

13 AbCF          

14 CCET         

15 AbSF          

16 SCET            

17 %CO2 GR    

18 %C2H6 GR  

19 FEHE ET       

20 %H2O Col     

21 T5T               

22 CondD           

23 OrgL              

24 AqL               

25 ColL             

26 VapI    

 

 Σ col          

  0.017  -0.000   0.000  -0.031   0.001   0.004  -0.001  -0.010   0.002   0.009  -0.000   0.017   0.008   0.001     0.101 

  0.003  -0.001   0.001  -0.043   0.002   0.019   0.008  -0.016   0.002   0.016  -0.007   0.012   0.011   0.002     0.143 

  0.001   0.000   0.000  -0.001   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.001   0.000   0.000     0.003 

 -0.038  -0.003  -0.001  -0.122  -0.002   0.013   0.008   0.009   0.000   0.002  -0.009   0.006   0.001   0.004     0.218    

 -0.100  -0.003   0.001   0.317  -0.000  -0.025  -0.008   0.004  -0.003   0.003   0.002  -0.126  -0.047   0.001     0.640   

 -0.004  -0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000  -0.002  -0.001   0.000     0.007   

 -0.009  -0.000   0.000   0.013   0.000  -0.001   0.000   0.002   0.000  -0.001   0.002  -0.009  -0.004  -0.001     0.042 

 -0.013  -0.001  -0.000  -0.003  -0.000   0.003   0.002   0.002   0.000   0.000  -0.002  -0.007  -0.003   0.001     0.037 

  0.049  -0.001  -0.001  -0.097  -0.001   0.026   0.012  -0.003   0.003   0.003  -0.020   0.066   0.025   0.007     0.314 

  0.034   0.004  -0.001   0.426  -0.000  -0.046  -0.022   0.008  -0.003  -0.018   0.017  -0.052  -0.028  -0.005     0.664 

  0.015   0.001  -0.000  -0.001  -0.000  -0.002  -0.001   0.001   0.000  -0.003   0.001   0.011   0.003   0.000     0.039 

 -0.026  -0.002  -0.001  -0.008  -0.001   0.007   0.004   0.004   0.000   0.000  -0.007  -0.013  -0.005   0.003     0.081 

 -0.056  -0.003   0.001   0.003   0.000   0.010   0.006  -0.003   0.000   0.010  -0.005  -0.040  -0.010   0.001     0.148 

  0.022   0.001  -0.000  -0.001  -0.000  -0.004  -0.002   0.002   0.000  -0.005   0.002   0.016   0.004   0.000     0.059 

  0.042   0.007   0.004   0.109   0.001  -0.030  -0.023  -0.028   0.004   0.025   0.007   0.007   0.010   0.000     0.297 

  0.003   0.000   0.000   0.001   0.000  -0.001  -0.001   0.000   0.000  -0.001  -0.001   0.002   0.000   0.000     0.010 

  0.003   0.000   0.000   0.002   0.000  -0.001  -0.001   0.003  -0.000  -0.003   0.001   0.002  -0.000  -0.001     0.017  

 -0.000   0.000   0.000   0.000   0.000   0.000   0.000  -0.000   0.000   0.000   0.000   0.000   0.000   0.000     0.000 

  0.002   0.000   0.000   0.003   0.000  -0.002  -0.001   0.000   0.000   0.000   0.000   0.001   0.000   0.000     0.009 

 -0.005  -0.000   0.000  -0.017   0.000   0.005   0.002   0.001   0.000   0.001  -0.003  -0.001   0.001   0.000     0.036 

 -0.018  -0.001   0.001  -0.044   0.001   0.014   0.006  -0.007   0.001   0.009  -0.008  -0.008   0.003  -0.003     0.124 

 -0.191  -0.018  -0.015  -0.177  -0.023   0.067   0.053   0.123  -0.003  -0.069  -0.075  -0.036  -0.050   0.047     0.947 

  0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000     0.000 

  0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000     0.000  

 -0.005   0.000   0.000  -0.013   0.000   0.004   0.002  -0.002   0.000   0.002  -0.003  -0.002   0.001  -0.001     0.035 

  0.165   0.015   0.001   0.295   0.001  -0.116  -0.062  -0.005  -0.001  -0.018   0.058   0.039   0.001  -0.011     0.788 

 

  0.821   0.061   0.028   1.727   0.033   0.400   0.225   0.233   0.022   0.198   0.230   0.476   0.216   0.089 
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The numbers that are in bold case, underlined in Table 6.7, correspond to the 

strongest measurements and manipulated variables to control product rate and 

product quality.  From Table 6.7, the most important manipulated variables 

are vaporizer pressure setpoint-vaporizer vapor exit, separator vapor exit,  

column condenser duty,  vaporizer liquid inlet. Other manipulated variables 

that seem to be important are separator preheater temperature, vaporizer level 

setpoint - vaporizer steam duty, absorber scrub flow, absorber circulation 

flow, absorber pressure - fresh C2H4 feed,  tray 5 temperature - column 

reboiler duty,  composition of O2 in the recycle gas setpoint  - fresh O2 feed.  

From the group of important manipulated variables, the condenser duty and 

the tray 5 temperature setpoint directly affect the product composition while 

the others affect the production rate. This result seems to be very reasonable, 

considering that throughput changes can be achieved only by altering (either 

directly or indirectly) conditions in the reactor. However, some of the 

important manipulated variables are not considered for controlling production 

rate and product quality, and the reasons are explained as follows:  The 

absorber scrub flow and the absorber circulation flow are not considered 

because their flowrates are comparatively small. Also, the composition of O2 

setpoint in the recycle gas is not considered because this is a safety variable 

that has a hard constraint (The O2 composition must not exceed 8 mol % 

anywhere in the gas loop). On the other hand, from Table 6.7, the strongest 

measurements are the gas recycle flowrate, the vaporizer temperature, and the 

composition of C2H4 in the reactor feed. In this case, only the gas recycle gas 



 

 178 
 

flowrate and the vaporizer temperature are considered as important 

measurements (IM)  because their value of  Σcol is more than twice the value 

of closest important measurement. Also, the inventory of C2H4 has already 

been regulated in the plant by the absorber pressure – fresh C2H4 feed loop.  

The strongest manipulated variables can be used to achieve the desired control 

objective. However, the recycle gas flowrate and the vaporizer temperature 

are measurements and cannot be manipulated by the MPC. For this reason, 

decentralized control structures are generated for the strongest measurements 

using all the available manipulated variables. Once the important 

measurements are closed, these loops become new manipulated variables, 

available for the MPC. 

 

Control Structure for Important Measurements  

In this stage, the control objective is to control the gas recycle flowrate and 

the vaporizer temperature. An OSOFC is calculated, using the gas recycle 

flowrate, the vaporizer temperature and all the manipulated variables. The 

following parameters are used for the calculation of the OSOFC: 

1) R =I   This gives the same importance to all the manipulated variables.  

2)  gij =0 In setting gij equal 0 (not solving for a specific SISO control 

structure).  

3) Q is the weight matrix that can be used to define the desired control 

objective. All the elements of this matrix should be zero, except the ones that 

correspond to the control objective (in this case, the vaporizer temperature). 
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 The OSOFC is given in Table 6.8 

Table 6.8  Optimal Static Output Feedback Controller (OSOFC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.8 shows that there are four manipulated variables that can be used to 

control gas recycle flowrate and three to control the vaporizer temperature. In 

order to identify the best manipulated variable for each measurement a 

sensitivity matrix is calculated. (Details on the sensitivity matrix are given in 

Chapter 2, Section 2.4). In this methodology, the OSOFC is analogous to a 

gain matrix, while the sensitivity matrix is analogous to a relative gain array. 

The sensitivity matrix considers the interaction between variables. Therefore, 

the sensitivity matrix is calculated whenever there is more than one important 

measurement that is being considered. Details on how to calculate the 

sensitivity matrix are given in Chapter 2.  The sensitivity matrix is presented 

in Table 6.9. 

 Man Var        VapT        GRF     

1  %O2         

2  AbP         

3  HAcL      

4  VapL       

5  VapP       

6  HET        

7  RET        

8  SepL       

9  SepT      

10 SepV      

11 CET       

12 AbL             

13 AbCF          

14 CCET         

15 AbSF          

16 SCET            

17 %CO2 GR    

18 %C2H6 GR  

19 FEHE ET       

20 %H2O Col     

21 T5T               

22 CondD           

23 OrgL              

24 AqL               

25 ColL             

26 VapI    

  0.0048    -0.0754   

 -0.0606    -0.2154   

 -0.0020    -0.0009   

 -1.6866    -1.0319   

  0.0641     0.0955   

  0.0000    -0.0034   

  0.0110    -0.0044   

  0.0043    -0.0163   

 -0.0091     0.2915     

 -1.0898    -1.4209        

  0.0000     0.0151    

  0.0043    -0.0212    

 -0.0016    -0.0588    

  0.0010     0.0247    

  0.0244    -0.2043    

  0.0040     0.0085    

  0.0035    -0.0025    

 -0.0210     0.0889    

 -0.0196    -0.0073    

  0.0003    -0.0011    

  0.0019     0.0035   

 -0.0266     0.1151    

  0.0000     0.0000  

  0.0000     0.0000  

 -0.0009     0.0019    

  1.1462     1.7788  
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Table 6.9  Sensitivity Matrix 

 Man Var        VapT        GRF     

1  %O2         

2  AbP         

3  HAcL      

4  VapL       

5  VapP       

6  HET        

7  RET        

8  SepL       

9  SepT      

10 SepV      

11 CET       

12 AbL             

13 AbCF          

14 CCET         

15 AbSF          

16 SCET            

17 %CO2 GR    

18 %C2H6 GR  

19 FEHE ET       

20 %H2O Col     

21 T5T               

22 CondD           

23 OrgL              

24 AqL               

25 ColL             

26 VapI    

 -0.1668    -0.0940   

 -1.0315     1.1399   

  0.2085    -0.0087   

  1.7161    -1.7362   

  0.4249    -0.0623   

  0.0090    -1.5685   

  0.2321     0.0068   

  1.2170    -0.5262   

  0.0691    -0.0724   

  0.8883    -0.1819   

 -0.0256    -0.6564   

  2.2914    -0.5815   

 -0.3848    -0.3147   

 -0.2273    -0.6358   

  0.9090    -0.6022   

  1.0058    -0.0991   

  0.1609     0.0130   

  0.9323     8.5377   

  0.3612     0.0270    

  1.8822     1.4605    

  4.1147    -0.6486    

  1.3595     1.9686    

 -1.2152    -0.1586    

  0.0854    -1.7638    

  0.2903     0.0436    

  0.9047    -0.1231 

 

Then, decentralized control structures for the important measurements are 

generated, using OSOFC, the sensitivity matrix, and engineering judgment. 

Chen (2002) proposed the following heuristics: 1) Only pairings with 

elements having an absolute value greater than 0.2 in the OSOFC are 

considered. 2) Only pairings with values between 0.2 and 5 in the sensitivity 

matrix are considered. 3) The pairings accepted by 1 and 2 are checked, using 

engineering judgment.  

From these heuristics and by looking at the bold and underlined elements in 

Table 6.9 there are three possible manipulated variables that can be used to 

control vaporizer temperature and one to control gas recycle flowrate. The 

vaporizer liquid inlet is chosen for controlling the vaporizer temperature. The 

separator vapor flowrate and the vaporizer level are ruled out by using 
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engineering judgment. The first one is ruled out because it is located far away 

from the controlled variable, and the second one is ruled out because the 

vaporizer level is controlled, using average level control; therefore, precise 

control of the vaporizer temperature is not possible. Then, the recycle gas 

flowrate is controlled, using the absorber pressure, and the vaporizer 

temperature is controlled, using the vaporizer liquid inlet. The tuning method 

used is the same as the one used in Stage 2. The proportional gains for these 

loops are given in Appendix V. These loops are included in the model for use 

in later stages.  Next, an OSOFC is calculated, after closing the important 

measurements, to check for any changes in the strongest manipulated 

variables. The OSOFC is calculated in the same way as in Table 6.7; the only 

difference is that now the vaporizer temperature and the gas recycle flow are 

removed from the set of measurements, and their setpoints become new 

manipulated variables. Table 6.10 shows the OSOFC after closing the 

important measurements loops. 
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 Table 6.10 OSOF Matrix 

 

Control Objective: to Control Product Rate and Quality 

 

SP             FEHET    SpT     DecT    O2GR   C2H4GR   VAcGR   H2OGR    HAcGR    CO2    C2H4RF   C2H6RF   VAcRF    Σrow    

                 1       2       3       4       5       6       7       8       9       10      11      12                                                 

1  %O2         

2  RGF-AbP         

3  HAcL      

4  VapL       

5  VapP       

6  HET        

7  RET        

8  SepL       

9  SepT      

10 SepV      

11 CET       

12 AbL             

13 AbCF          

14 CCET         

15 AbSF          

16 SCET            

17 %CO2 GR    

18 %C2H6 GR  

19 FEHE ET       

20 %H2O Col     

21 T5T               

22 CondD           

23 OrgL              

24 AqL               

25 ColL             

26 Vap T    

 

 Σ col          

 0.0033  0.0007  0.0006  0.0023  0.0018 -0.0066  0.0004  0.0052 -0.0081  0.0055  0.0040  0.0039    0.0424 

-0.0093 -0.0004 -0.0002  0.0072  0.0101 -0.0013  0.0002 -0.0013 -0.0331  0.0073  0.0068  0.0020    0.0791 

 0.0000  0.0005  0.0010 -0.0012 -0.0018 -0.0015 -0.0017  0.0022  0.0048 -0.0024 -0.0005 -0.0010    0.0184 

-0.0003  0.0004 -0.0027 -0.0105 -0.0013  0.0284 -0.0128 -0.0231 -0.0570  0.0362  0.0113  0.0189    0.2029 

-0.0249 -0.0028 -0.0002 -0.0084 -0.0189  0.0428  0.0015 -0.0094  0.1635 -0.0726 -0.0429 -0.0457    0.4336 

 0.0004  0.0001 -0.0001 -0.0002 -0.0002  0.0003  0.0003  0.0003  0.0010 -0.0003 -0.0001 -0.0000    0.0033 

 0.0181  0.0031  0.0001 -0.0018 -0.0102 -0.0023  0.0068  0.0167  0.0637 -0.0144 -0.0045 -0.0041    0.1457 

-0.0016 -0.0006 -0.0014 -0.0006  0.0012  0.0091 -0.0009 -0.0077 -0.0036  0.0013 -0.0009  0.0005    0.0293 

-0.0014 -0.0021 -0.0025  0.0173  0.0156 -0.0001 -0.0009 -0.0098 -0.0785  0.0340  0.0135  0.0149    0.1906 

-0.0335 -0.0052  0.0004  0.0030  0.0117  0.0728 -0.0106 -0.0409  0.1602 -0.0977 -0.0462 -0.0615    0.5438 

 0.0013 -0.0001 -0.0001 -0.0002 -0.0001  0.0021 -0.0009 -0.0029 -0.0019  0.0004 -0.0003  0.0001    0.0105 

-0.0037 -0.0012 -0.0028 -0.0006  0.0026  0.0172 -0.0016 -0.0128 -0.0088  0.0037 -0.0011  0.0017    0.0578 

-0.0045  0.0004  0.0002  0.0009  0.0015 -0.0057  0.0031  0.0096  0.0086 -0.0016  0.0008 -0.0003    0.0372 

 0.0007 -0.0001 -0.0001 -0.0001  0.0001  0.0012 -0.0006 -0.0017 -0.0012  0.0003 -0.0001  0.0001    0.0061 

 0.0041 -0.0007 -0.0012  0.0232  0.0190 -0.0340  0.0130  0.0244 -0.0490  0.0326  0.0169  0.0184    0.2365 

 0.0125 -0.0023 -0.0021  0.0419  0.0336 -0.0684  0.0261  0.0468 -0.0845  0.0599  0.0283  0.0342    0.4405 

-0.0039 -0.0001 -0.0020  0.0015  0.0469  0.0021  0.0013  0.0001 -0.0420 -0.0057  0.0173  0.0056    0.1285 

-0.0003  0.0000  0.0000 -0.0000 -0.0002  0.0001 -0.0000  0.0002 -0.0000 -0.0002  0.0001 -0.0002    0.0014 

 0.0009  0.0002  0.0001 -0.0008 -0.0011  0.0003 -0.0001  0.0004  0.0026 -0.0007 -0.0003 -0.0003    0.0077 

 0.0004  0.0001 -0.0001  0.0017  0.0015 -0.0020  0.0006  0.0013 -0.0083  0.0032  0.0020  0.0016    0.0228 

 0.0001  0.0007  0.0003  0.0052  0.0039 -0.0103  0.0031  0.0068 -0.0221  0.0064  0.0061  0.0024    0.0674 

-0.0004 -0.0166 -0.0263  0.0119  0.0353  0.1116 -0.0094 -0.0759 -0.1062  0.0867 -0.0003  0.0598    0.5406 

 0.0000  0.0000 -0.0000  0.0000  0.0000 -0.0000  0.0000  0.0000 -0.0000  0.0000  0.0000  0.0000    0.0000 

-0.0000 -0.0000 -0.0000 -0.0000 -0.0000  0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000    0.0000 

-0.0014  0.0007  0.0006 -0.0006 -0.0007  0.0027 -0.0029 -0.0010 -0.0041 -0.0009  0.0011 -0.0007    0.0175 

-0.0136  0.0028  0.0025 -0.0498 -0.0408  0.0802 -0.0301 -0.0541  0.1050 -0.0726 -0.0344 -0.0413    0.5272 

 

 0.1406  0.0421  0.0477  0.1912  0.2603  0.5030  0.1286  0.3546  1.0175  0.5464  0.2396  0.3194 
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Comparing Tables 6.7 and 6.10, it can be said that the majority of important 

manipulated variables remains the same. However, there are three 

manipulated variables that become important which are reactor exit 

temperature setpoint (7), separator temperature setpoint (9), and vaporizer 

level (4).  It appears that the order of importance of the remaining manipulated 

variables is almost the same in both tables (6.7 and 6.10). Therefore, results 

from Table 6.10 regarding the order of the importance of the key variables, 

are used in the next step. 

 

Determination of Control Structure for controlling Production Rate and 

Product Quality  

The objective in this section is to identify how many and which of the 

important manipulated variables should be used to control production rate and 

product quality. Because there is no rule to decide how many and which of 

these important manipulated variables should be used as inputs to the MPC, 

the strongest manipulated variables will be added, one at a time, in descending 

order of importance according to the Σrow value in Table 6.10. Each time a 

new manipulated variable is added, a new control system is generated, and 

each these control systems is called Candidates (See Table 6.11). Each 

candidate starts with the number of the base candidate (candidate for safety 

variables in Table 6.4) being evaluated (in this case - Candidate 1).  Each of 

the generated candidates has two control variables or outputs (production rate 
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and product quality) and a different number of manipulated variables or 

inputs.  

 

In this stage, a multivariable OSOFC is used as a quick screening tool, to 

determine the number and which manipulated variables should be used to 

control the economic variables with the MPC. These linear simulations give 

an initial insight about the manipulated variables that have better control 

performances for production rate and quality control. Candidates with poor 

control performance will be eliminated and that particular manipulated 

variable will not be considered as an inputt to the MPC. The resulting control 

structures are evaluated, using nonlinear process simulations and model 

predictive controller (MPC).  The final control structure will have two outputs 

(production rate and product quality) and a different number of inputs, 

depending on the candidate being evaluated. All generated candidates are 

tested for the following disturbances and setpoint changes:  

1) 20% increase in the production rate (measured as organic product 

flowrate) 

2) DTB(1): Step change in the composition of ethane in the fresh ethylene 

feed stream, from 0.001 to 0.003 mol fraction 

4) DTB(2):  6oC increase in the reactor temperature 

 

The control performance of the generated candidates, are evaluated and 

compared using transients’ response characteristics such, as offset value for 
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critical variables in the plant and the integral of the absolute value for the error 

(IAE).  To do so, the transients and the final steady state values for 

disturbance rejection and setpoint changes, of the critical variables are 

compared for the generated the Candidates. The critical variables in the plant 

are: the following safety variables: %O2 reactor feed, absorber pressure, heater 

exit temperature, reactor exit temperature, FEHE hot exit temperature, tray 5 

temperature, and the following economic variables in the plant: reactor exit 

flowrate and VAc organic product composition.  The safety variables are 

considered critical variables because they are directly related to safety and 

operational constraints, while the economic variables are related to the 

economic objectives.  

 

The offset value is calculated as the difference between the setpoint of a 

critical variable and the final steady state value reached by that particular 

variable after a disturbance or setpoint change. Then, the summation of the 

absolute value of the offset for the critical variables is calculated for all the 

disturbances and for setpoint changes, for each candidate. Because the offsets 

of different critical variables will be added together, these offset values are 

scaled by dividing them by the steady state values. In order to calculate the 

summation of the offset, the following weights are given to the critical 

variables: production rate: 0.2, product quality: 0.2, %O2 reactor feed: 0.1, 

absorber pressure: 0.1, heater exit temperature: 0.1, reactor exit temperature: 

0.1,  FEHE hot exit temperature: 0.1, and tray 5 temperature: 0.1. These 
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weights are chosen based on the control objectives of the plant. The 

summation of the offset values for each candidate is calculated as follows:  

∑∑
= =

=
3

j

8

i

*k i))offset(j, variables alabs(critic  Value Offset
1 1

α  (6.3) 

α:  weights for the critical variables (0.2, 0.2, 0.1, 0.1, 0.1,0.1,0.1,0.1) 

i: critical variables offsets: %O2 reactor feed, absorber pressure, heater exit 

temperature, reactor exit temperature, FEHE hot exit temperature, tray 5 

temperature, reactor exit flowrate, and VAc organic product composition 

j: Disturbances and setpoint change. j=1 DTB(1), j=2 DTB(2),  and j=3 set 

point change  

k: total offset value for each. 

As can be seen in Equation 6.3, the offset values per candidate are the 

summation of the offset for the all the critical variables for disturbances 

DTB(1), DTB(2), and the setpoint changes.  

The IAE is calculated, using Equation 6.4. 

[ ]∫
∞

−=
0

k dttCVtSP  variables critical for AEI )()(   (6.4) 

The IAE for each candidate is calculated as follows 

∑∑
= =

=
3

j

8

i

i)j,variables( critical for AEI  AEI
1 1

   (6.5) 

 

i: IAE for critical variables: %O2 reactor feed, absorber pressure, heater exit 

temperature, reactor exit temperature, FEHE hot exit temperature, tray 5 

temperature, reactor exit flowrate, and VAc organic product composition 
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j: Disturbances and setpoint change. j=1 DTB(1), j=2 DTB(2), and j=3 

set point change  

k: total IAE for the critical variables for each 

 

There are four conditions that a candidate has to pass in order to be 

considered: to reject disturbances DTB(1), DTB(2), and to increase 

production rate by 20% in 6 hours. As mentioned above, every time a new 

manipulated variable is added, its values for the summation of the offset and 

IAE are compared with the previous candidate to evaluate whether there is 

significant improvement or not. It can be said that there is significant 

improvement when: 

- The percentage of change in the IAE with the addition of a new 

manipulated variable is greater than 5%. The percentage of change is 

calculated as the change between two consecutive candidates. If it is 

less than 5%, there might be no significant improvement. Therefore, 

the addition of a new manipulated variable will not give significant 

control benefits. However, since this just an initial screening tool if the 

% change is between 1 to 5% it might be checked with the nonlinear 

simulation, just to corroborate that the variable does not improve 

significantly the control performance.  

- The total summation of the offset value decreases more than 5% 

between two consecutives candidates.  
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Since DTB(2) is setpoint changes in the reactor temperature proportional 

integral (PI) controllers are used for the final control structure. The tuning 

parameters for the controllers can be found in Appendix V. These PI 

controllers are included in the state space model formulation. The derivation 

to incorporate PI controllers into state space model in presented in Appendix 

VI.  Transients of 8 measurements (Production rate, Product quality, %O2 

reactor feed, absorber pressure, reactor exit temperature, separator 

temperature, vaporizer pressure, temperature, tray 5 temperature are 

calculated for each disturbance and setpoint change. Table 6.11 shows all the 

candidates generated, the controlled and manipulated variables for each 

candidate, the ability of each candidate to reject disturbances DBT(1), 

DBT(2), and to achieve 20% increase in the production rate. In addition, it 

shows the summation of the offset (see Eq 6.3), and the IAE values (see Eq 

6.5) for the critical variables in the plant for each candidate. It also shows the 

percentage of change for the summation of the offset values and the IAE 

between consecutives candidates. Only candidates that are able to reject both 

disturbances and achieve maximum production rate will be considered for this 

analysis. 
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Table 6.11  Candidates for Alternative 1 

Candidate 

number 

Controlled 

Variables 

Manipulated  

Variables 

Can maximize 

production rate 

and reject 

disturbances?  

Summation offset 

values / 

% change btw 

candidates 

IAE   / 

% change btw 

candidates 

Candidate 
1-1 

Production Rate  
Product Quality 

GRP SP- Ab Pressure (IM) 
 
 
 

SP change  No 
DTB(1)   Yes 
DTB(2)   Yes 

Not considered, 
do not satisfy all 
conditions for SP 
and disturbance 

Not considered, 
do not satisfy all 
conditions for SP 
and disturbance 

Candidate 
1-2 

Production Rate  
Product Quality 

GRP SP- Ab Pressure (IM) 
Vaporizer Temp SP  (IM) 
 
 

SP change  No 
DTB(1)   Yes 
DTB(2)   Yes 

Not considered, 
do not satisfy all 
conditions for SP 
and disturbance 

Not considered, 
do not satisfy all 
conditions for SP 
and disturbance 

Candidate 
1-3 

 

Production Rate 
Product Quality 

GRP SP- Ab Pressure (IM) 
Separator Vapor Exit 
 

SP change  No 
DTB(1)   Yes 
DTB(2)   Yes 

Not considered, 
do not satisfy all 
conditions for SP 
and disturbance 

Not considered, 
do not satisfy all 
conditions for SP 
and disturbance 

Candidate 

1-4 

Production Rate 
Product quality 

GRP SP- Ab Pressure (IM) 
Separator Vapor Exit 
Decanter Temp SP 
 

SP change  Yes 
DTB(1)   Yes 
DTB(2)   Yes 

 
0.9989 

 
2.7205e+004 

Candidate 
1-5 

Production Rate 
Product Quality 

GRP SP- Ab Pressure (IM) 
Separator Vapor Exit 
Decanter Temp SP 
Vaporizer Pressure SP 

SP change  Yes 
DTB(1)   Yes 
DTB(2)   Yes 

 
0.9979 
< 5% 

 
2.7203e+004 

< 5%  

Candidate 
1-6 

Production Rate 
Product Quality 

GRP SP- Ab Pressure (IM) 
Separator Vapor Exit 
Decanter Temp SP 
Scrub Cooler Exit Temp SP 

SP change  Yes 
DTB(1)   Yes 
DTB(2)   Yes 

 
0.9989 
< 5% 

 
2.7205e+004 

< 5%  

Candidate 
1-7 

Production Rate 
Product Quality 

GRP SP- Ab Pressure (IM) 
Separator Vapor Exit 
Decanter Temp SP 
Separator Temperature SP 

SP change  No 
DTB(1)   Yes 
DTB(2)   Yes 

 
0.9979 
< 5% 

 
2.7202e+004 

< 5% 

Candidate 
1-8 

Production Rate 
Product Quality 

GRP SP- Ab Pressure (IM) 
Separator Vapor Exit 
Decanter Temp SP 
Vaporizer Level SP 

Reactor Exit Temp SP 

SP change  Yes 
DTB(1)   Yes 
DTB(2)   Yes 

 
0.9970 
< 5%  

 
2.7197e+004 

< 5% 

 

After running the linear simulations and evaluating the transients for 

disturbances DTB(1), DTB(2), and for increasing production rate by 20%, the 

following statements can be made: 1) For disturbance rejection: All the cases 

are able to reject disturbances DTB(1) and DTB(2). 2) for setpoint changes 

only the following candidates: 1.4, 1.5, 1.6, 1.7 and 1.8 are able to increase the 

production rate. When a new manipulated variable is added, if this variable 

does not have significant effect in the IAE or in the summation of the offset 



 

 190 
 

values, the variables will not be considered for the next candidate and it will 

be eliminated from the list of manipulated variables. In table 6.11 all the 

variables that are in bold does not have significant effect and therefore are not 

considered for the final control structure.  

From table 6.11 it can be seen that the best candidate is 1.8.  This candidate 

has two outputs production rate and product quality and four manipulated 

variables that are gas recycle –Absorber pressure SP, Separator vapor exit 

flow, Decanter temperature setpoint.  

These linear simulations are used to obtain an initial insight about the 

resulting control structure. The resulting control structures are evaluated, 

using nonlinear process simulations and model predictive controller (MPC).  

6.2.5. Control Structure for Individual Unit Operations Using the 

Available Degrees of Freedom. 

So far, the only degrees of freedom that have not been used are separator 

preheater temperature (MV9), column condenser duty (MV22), absorber 

circulation flow (MV13), and absorber scrub flow (MV15). The separator 

preheater temperature (9) can be used to control the separator temperature 

(10), and the column condenser duty (22) can be used to control the decanter 

temperature (20).  The absorber circulation flow and the absorber scrub flow, 

are fixed at their steady state values. 
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6.2.6. Control production rate and product quality, using MPC 

In this Stage, an MPC is built on the top of the resulting control structure. The 

main objective is to improve the control of the production rate and product 

quality by adjusting the setpoint of the important loops (strongest manipulated 

variables) in the plant. The control structure implemented is the best control 

structure obtained in step 6.2.4, Candidate 1-4, from Table 6.11. The resulting 

control structure is evaluated, using nonlinear process simulations. The tuning 

used for these simulations was obtained from linear calculations.  

Proportional-integral controllers are used in the nonlinear process simulation. 

The tuning parameters for these controllers can be found in Appendix V.   

Transients of 8 measurements (Production rate, Product quality, %O2 reactor 

feed, absorber pressure, reactor exit temperature, separator temperature, 

vaporizer pressure, temperature, tray 5 temperature) are calculated for each 

disturbance and setpoint change.  The model predictive controller is build 

using the function scmpcnl in Matlab. This function designs an MPC 

controller for constrained problems and simulates closed loop systems with 

hard constraints. This MPC is tested using the nonlinear model simulations. In 

other words, the input values calculated by the MPC are fed continuously into 

the nonlinear simulation for the Tennessee Eastman Plant.  The scmpcnl 

function uses the plant model in Simulink format. The tuning parameters for 

the MPC are the following: 

1) The control horizon (M). This is the number of control moves 

2) Length of prediction horizon (P) 
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3) Penalty weighting for changes in manipulated variables (uwt)  

4) Penalty weighting for setpoint tracking (ywt) 

The MPC is tuned by trial and error using the following guidelines:  

The control action becomes more aggressive when: P decreases, M increases, 

and uwt decreases.. In this work, the same weight (ywt) is given to both 

controlled variables (production rate and product quality). P and M are used to 

give an initial tuning while uwt is used to obtain a fine tuning.  Different 

values of uwt are given to the manipulated variables depending on how fast 

these variables can be manipulated, and the desired control performance. 

 

Figures 6.2, 6.3, and 6,4 show the nonlinear simulations for a 20% increase in 

the production rate, DTB(1) and DB(2).  
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Figure 6.2  20% Setpoint change in the Product flow 
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Figure 6.3  DTB(1) Change Composition of Ethane in Feed 

from 0.001 to 0.003 mol fraction 
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Figure 6.4   DTB(2) 6 Increase in Reactor Temperature 
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Chapter 7:  Optimal Control of Inerts 

 

7.1. Introduction 

Inerts are chemical components that are generally present in chemical processes. 

They can be introduced into the process through impure feed streams, or they are 

generated by irreversible chemical reactions. In general, inerts do not significantly 

affect the process. However, the inerts become very important when there are recycle 

streams in the process. The reason is that the inerts can accumulate and cause 

undesirable site effects, such as a rapid increment of the reactor pressure that might 

cause the shut down of the plant. Therefore, it is necessary to eliminate the inerts at 

some point in the process. In general, the inerts leave the system through the purge 

flow. In some cases, the loss that occurs through the purge is very significant because 

reactants and products also leave the process through the purge. The purpose of this 

study is to develop a general methodology to improve the control of the inerts in a 

process, when the amount of inert that enters into the process is changing. This 

methodology considers the economics of the plant by avoiding unnecessary purge. 

 

In general, the inventory of inerts in the process is controlled by manipulating the 

purge flow. For instance, the composition of inerts in the process is measured by an 

analyzer in the purge flow; this measurement is compared with a fixed set point value 

for the composition of the inert; then the purge flow is adjusted to account for this 

difference. In general, the setpoint of the inert composition in the process is a fixed 
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value that can be obtained through optimization. However, when the amount of inert 

that enters into the process changes, it would not necessarily be good to use a fixed 

composition of the inert setpoint for all values of inert coming into the process. 

Therefore, as the amount of inert that enters into the process varies, the purge flow 

can potentially be varied, avoiding unnecessary purge. The idea is to change the 

purge flow so that the total flow of the inert that leaves the system is equal to the total 

flow of the inert that enters. Therefore, it is necessary to know the amount of inerts 

that enter into the process. One of the most frequent and important problems in the 

control of chemical processes is to find adequate and reliable sensors to measure 

important variables in the plant. Some of these important variables are key 

compositions in the process. In general, the sensors used to measure compositions 

(analyzers) are very expensive and require a lot of maintenance. Therefore, their 

installation should be justified from an economical point of view. For this reason, 

many times engineers develop soft sensors to estimate the desired measurements. 

Sometimes these estimations are not very accurate. Therefore, if the variable being 

estimated is not critical then the error in the estimation might be acceptable. 

However, when the variable being estimated is very critical from the operational 

point of view or the economic point of view it is recommended to install a hard 

sensor.  

 

The proposed methodology uses the amount of inert that enters into the process to 

solve an optimization problem that determines the maximum amount of inert 

(minimum amount of purge) that can be handled in the process without having to shut 
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down the plant. Therefore, whenever there is a change in the amount of inert that 

enters into the process, the setpoint of the purge composition (inert composition) 

controller is changed, according to the optimization results to avoid unnecessary 

purge.  This methodology is applied to the Tennessee Eastman Process, where 67% of 

the loss occurs through the purge. In this process there is an inert component (B) that 

enters into the process as an impurity trough one of the reactant feed streams (C 

Feed). The amount of inert that enters into the plant varies, according to two 

disturbances IDV(2) and IDV(8). Disturbance IDV(2) represents a step change in the 

B composition that enters in the C feed stream, while disturbance IDV(8) represents a 

random change in the composition of components A, B, and C in the C feed stream. 

7.2. Optimal Control of Inerts Methodology 

1) Identify the inerts in the process, whether they enter as an impurity with the feed 

streams and/or are generated in the process. Also, identify whether or not there is a 

sensor (analyzer) that measures the amount of inerts that enter in the plant, and where 

the inerts leave the process. In the case where there is not a sensor that measures the 

amount of inerts that enter into the process, this can be estimated using a Kalman 

Filter.  In this work, the Kalman Filter Theory is used to estimate the unknown inputs 

[Zasadzinski, D et al. 1995]. 

The formulation of the problem is as follows:  

kkk

kkkkk

vxy

wduxx

+=

+++=+

C

GBA1
       (7.1) 

where ,n

k Rx ∈     ,p

k Ry ∈    m

k Ru ∈     and     q

k Rd ∈    are the state,  measurement, 

control and unknown disturbance vectors at instant k respectively. Matrices A, B, C, 
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and G are known matrices.  wk  and  vk are zero mean white sequence. Their 

covariance is given as: 

kj

T

jkkj

T

jk VvvEWwwE δδ == )(,)(    (7.2) 

where  W > 0,  V > 0 and kjδ  is the Kronecker delta. The unknown disturbance vector 

dk can be estimated under the following assumptions.  

1)  qp ≥  

2)   rank(CG) = rank(G) = q 

3)   rank(C) = p 

 

The system defined by   Eq. 7.1  can be rewritten as an augmented system under the 

following form: 
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From this point A, B, C, xk,  xk+1,  and uk are defined as the augmented values. 

The estimate based on the measurements up to k is 
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and the estimation error covariance matrix is  

T

kkkkkkkk xxxxEP )ˆ)(ˆ( /// −−=     (7.6) 
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kkP / is partitioned as follows: 


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where  

T

kkkkkk

x

kk xxxxEP )ˆ)(ˆ( /// −−=    (7.8) 

is the state estimation error covariance matrix, 

T

kkkkkk

d

kk ddddEP )ˆ)(ˆ( 1/11/1/1 −−−−− −−=    (7.9) 

represents the unknown input estimation error covariance matrix, and 

( ) T

kkkkkk

Tdx

kk

xd

kk ddxxEPP )ˆ)(ˆ( 1/11/// −−− −−==    (7.10) 

is the cross state and unknown input estimation error covariance matrix.  

The augmented system given in Eq. (7.3) is used for the derivation of the unknown 

input optimal filter. By using the generalized Kalman filter theory, we obtain the 

following optimal state estimator for the augmented system: 
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Following the approach developed in Darauach et al. (1995) the estimation of the 

state and the unknown input are given by: 
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where the covariance matrices are computed recursively by: 
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2) Develop a model to express the change of inerts in the process. In this case, this 

formulation is used in the Tennessee Eastman plant to determine the amount of inert 

B that enters into the process with the C feed. This is a simplified model to represent 

the essential process characteristics without introducing unnecessary details. The 

model assumptions are: 1) the amount of B (moles of B) that enters into the plant with 

the C feed can be estimated, 2) the composition of B in the system is uniform, i.e. the 

composition of B in the reactor feed and that in the purge are identical.  

The model used to describe the change of inert B in the process is as follows: 

BsBB

B XPurgePurgeXn
dt

dX
M

s
−−=    (7.20) 

where  

BX = Composition of inert B in the system (mole fraction) 

Bn =  amount of B that enters in the system with the C Feed (moles) 

Purge =  Purge flow  (moles/hr) 

M =   Total gas holdup (moles) 
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Since both XB and Purge flow are time varying, the model is linearized and then 

translated into a state space form. The Kalman Filter algorithm is implemented in 

Matlab, and it uses the composition of B in the purge, the purge flow, and the total 

gas holdup to determine the amount of inert B that enters into the process (unknown 

inputs). This estimation is done for disturbances IDV(2) and IDV(8).  Figure 7.1 

shows the change of the following variables: product flow, product composition, 

purge flow, inert composition in the purge stream, reactor pressure, C Feed flow, 

composition of B in the C Feed, and the estimated value for B in the C feed change 

for disturbance IDV(2). 

 

Figure 7.1 Estimation for XB in C Feed for IDV(2) 

 
The last plot in Figure 7.1  shows the %B in the C feed estimated (curve line) vs the 

real value of the %B in the C Feed (straight line) for disturbance IDV(2). This plot 



 

 201 
 

shows that the estimation reaches the real value, but it is delayed. The reasons for this 

delay  are: 1) the dynamics of the process (the time constant for the process is very 

large) and 2) the inaccuracy of the model. Therefore, it takes a long time for the 

analyzer in the purge to measure the effect of a change of B in the C Feed.   

Figure  7.2   shows the same variables as Figure 7.1 but for disturbance IDV(8). The 

last plot in Figure 7.2 shows the comparison between the real composition of B in the 

C feed versus the estimated value. The real composition is one with greater variation.  

From this plot, it can be seen that the estimation of the % B in the C feed is not 

accurate. This inaccuracy is due to the fact that the time constant of the process is 

very large and the frequency of the change of B in the C feed is much larger than the 

frequency at which the composition of B is changing in the purge  

 

Figure 7.2 Estimation for XB in C Feed for IDV(8) 
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The estimation of B in the C feed was also calculated for the situation when  there is 

no change in the %B entering the process. For this case the estimation is more 

accurate and can be seen in Figure 7.3. From this Figure it can be seen that there is a 

very small difference between the real value and the estimated value.  

 

  

 

Figure 7.3 Estimation for XB in C Feed for no disturbance 
 

The Kalman Filter formulation for unknown input estimation was tested on other 

models that have a smaller time constant than the Tennessee Eastman model. The 

results obtained for these cases were excellent and ruled out (eliminate) the possibility 
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of problems with the estimation formulation used. Therefore, this formulation should 

not be used for processes with large time constant (slow dynamics), for example the 

Tennessee Eastman plant.  

 

2)  Determine the maximum amount of inert (minimum amount of purge) that can be 

handled in the plant without having side effects such as the accumulation of inert in 

the process that might cause shut down of the process. Once the amount of inert that 

enters in the plant is known the next step is to do an optimization to maximize the 

steady state amount of inert in the purge or minimize the steady state value of the 

purge flow, subject to the steady state values of the state variables and to keep the 

controlled variables at their set point. 

7.3. Formulation of the Optimization Problem 

The formulation for this problem is based in one presented by Ricker (1995) 

Given a model of the process as: 

( )

),()(

,,)(

txhty

tuxftx
dt

dx

=

== &
     (7.21) 

where 

)(tx = vector of n state variables 

)(tu = vector of nu manipulated variables 

y(t) =  vector of ny measurements 
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),,( tuxf = non linear function that contains the model of the process (mass and 

energy balances, multicomponent equilibrium, physical properties, etc). It also 

includes disturbances.  

),( txh = non linear function that includes random measurement noise. 

 

The optimization problem that is being solved is to determine the steady state value of 

the states x(0) and the manipulated variables u(0) that maximize the amount of B in 

the purge (XB purge) while satisfying certain constraints:  

purgeinert
ux

X _
,

max     (7.22) 

subject to 

0)0,,( =uxf  

yii nu ,11000)0(0 =∀≤≤  Bounds for manipulated variables 

nx ii ,10 =∀≤    Bounds for state variables 

0)0,,( ≤uxg  g nonlinear vector function that specifies the target 

values for key variables in the plant, such as controlled 

variables and variables that have limited of operations 

that might cause shut down of the plant.  

 

For the Tennessee Eastman Plant the formulation of the problem is as follows:  

purgeB
ux

X _
,

max      (7.23) 
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Find the steady state value for the state and the manipulated variables that maximize 

the amount of the inert in the purge, subject to the following nonlinear equality 

constraints: 

0)38:1( =x&    Steady state value of the state variables  

12,1)0()0(38 =∀=+ iii ux&  Steady state value of manipulated variables 

spyyg _881 −=   Control reactor level 

spyyg _12122 −=   Control separator level 

spyyg _15153 −=   Control stripper level 

spyyg _774 −=   Control reactor pressure 

spyyg _29295 −=   Control composition of A in purge 

spyyg _18186 −=   Control stripper temperature 

spyyg _17177 −=   Control production rate 

spyyg _22228 −=   Control condenser cooling water  

spyyg _40409 −=   Control product composition 

 

This optimization problem is solved using the  function “fmincon” in Matlab. The 

maximum amount of inert B (XB_purge) in the purge is calculated for different values of 

IDV(2) (amount of inert (B) that enters into the plant with the C Feed (XB_C_Feed)).  

The composition of inert B in the C feed is increased from 0.5 to 1.0 with increments 

of 0.1. Table 7.1 shows the maximum composition of B in the purge and its 

corresponding purge flow for the different compositions of B n the C feed.   
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Table 7.1  Maximum amount of B in the Purge XB purge 

XB C Feed IDV(2) Max  XB purge Purge Flow 

1.0 24.7513 0.3738 

0.9 24.3503 0.3413 

0.8 23.9737 0.3071 

0.7 23.5081 0.2734 

0.6 23.0812 0.2382 

0.5 22.5353 0.2028 

 

After the optimization problem is solved, it is important to check the stability of this 

solution. To do so, the plant model is linearized around the steady state obtained from 

solving the optimization problem. Then, the eigenvalues of this linearized model are 

checked for stability. If there are positive eigenvalues, the optimization problem 

needs to be solved again until the plant is stable. In this case, the starting point for the 

new optimization problem is the result obtained from the previous optimization 

problem. Every time a new solution is reached the plant model is linearized around 

the steady state obtained, and the eigenvalues are calculated to check for stability. 

This process is repeated until the solution is stable. The maximum XB purge obtained 

from optimization is tested using the nonlinear simulation. The maximum 

composition of inerts that can be handled in the plant is used as a reference (setpoint) 

value for the inert composition controller in the purge. When the composition of inert 

that enters into the process changes, this value is fed forward to change the setpoint of 

the composition of inert in the purge (inventory control).  The idea is to minimize the 
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amount of purge and, therefore, the amount of reactant and products that leave the 

process through the purge. Therefore, every time the amount of inert that enters the 

plant changes, the setpoint of the inert composition in the purge controller is adjusted, 

according to the values obtained from the optimization problem. This methodology 

should be used when the maximum composition in the purge (XB purge) changes 

considerably (more than 5%), with changes in the amount of inert that enters into the 

plant (XB C Feed). If not, the setpoint for the inventory control can be a fixed value.  

 

The values obtained in Table 7.1 for maximum XB purge are the limit values that can be 

handled by the plant. Therefore, it is not convenient to work with these exact values 

as reference values (setpoint) for the inert inventory control. The reason is that any 

transient and/or inaccuracy in the model can put the plant operation over the limit, 

causing the shut down of the plant. Therefore, these values should be lowered 

(approximately 10%) to avoid operating too near the limit which might cause a shut 

down of the plant. 

 

In order to determine the economic benefits of using this methodology two simulation 

of the Tennessee Eastman plant were done. The only difference between these 

simulations is that one uses the XB in purge=21.83 suggested by Ricker (1995) (Figure 

7.4) while the other uses the max XB in purge=24.7 (Figure 7.5) obtained from this 

methodology.  



 

 208 
 

 

Figure 7.4 Plant Simulation for IDV(2)  using XB in purge=21.83 

 

Figure 7.5  Plant Simulation got IDV(2)  using  max XB in purge=24.7 
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Comparing the results obtained from both simulations it can be seen that the purge 

flow is reduced from 0.42 to 0.38 (approximately 9.5%) by using the max XB in purge. 

In addition, the process operating costs for these simulations were calculated using 

Downs and Vogel (1993) equation and cost values for reactants and products. The 

operating cost (OP) for these simulations was calculated for the steady state values. 

For the first simulation (XB in purge=21.83) the operating cost is OP1=180.24 $/hr  and 

for the second simulation (XB in purge=24.7) OP2=173.29 $/hr. By using this 

methodology, there is approximately 4% savings in the operation cost  

Figure 7.6 shows the control of inert B in the purge using the Kalman Filter 

estimation for XB in C Feed. The setpoint of inert controller in the purge (max XB in 

purge) is adjusted according to Table 7.1. However, the values of max XB in purge were 

lowered 5% to avoid operating at the limit.  
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Figure 7.6 Control of inventory of inert using Kalman Filter estimation 
 

Figure 7.6 shows that it is possible to use the estimation of the amount of inert that 

enter in the plant (using Kalman Filter) to control the amount of purge in the process. 

However, in the case of the Tennessee Eastman plant it is better to use a hard 

analyzer because of the dynamics of the process.  

7.4. Summary 

In this section a new methodology to have optimal control of inerts is presented. This 

methodology aims to reduce the losses that occur trough the purge by solving an 

optimization problem to determine the maximum amount of inert that can be handled 

in the plant without having shut down of the plant due to inert accumulation. To use 

this methodology it is needed to have an analyzer that measures the concentration of 
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inert within the process as well as an analyzer that measure the amount of inert that 

enters in the process.  If there is not an analyzer that measure the amount of inerts that 

enters in the plant; this amount can be estimated by developing a soft sensor based on 

Kalman Filter. If the plant has a slow dynamics and the only analyzer available is in 

the purge it might be needed to install a real analyzer to measure the composition of 

inert that enters into the process.  Once this composition is known, an optimization 

problem is solved to determine the maximum amount of inert or minimum amount of 

purge that can be handled in the plant without having the plant shut down. This 

optimization problem is solved every time the amount of purge that enters in the 

process changes. Then the setpoint of the composition of inert in the purge is changed 

accordingly with the results of the optimization. This methodology should be used 

when the maximum composition in the purge (XB purge max) changes considerably 

(more than 5%), with changes in the amount of inert that enters into the plant (XB C 

Feed). This methodology is tested to the Tennessee Eastman plant were the operating 

cost was reduced approximately 4%. As a conclusion, the optimal control of inert is a 

practical approach to reduce the costs related to purge.    
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Chapter 8:  Conclusions and Future Work 

 

Summary and Future work 

This dissertation presents a systematic procedure to determine measurements and 

manipulated variables that affect key economic variables in the plant, such as 

production rate and product quality. This methodology can be used as a tool by 

process control engineers, not only to identify key variables that should be controlled 

to improve economics in the plant, but also to design, test, and compare performance 

of the different control strategies.  The main characteristics of this methodology are as 

follows:  

1)  It uses a linear time invariant (LTI) state space model of the plant and optimal 

control theory, to determine key variables in the plant that affect production rate 

and product quality. To do so, an optimal static output feedback controller is 

calculated. The control objective is to control production rate and product 

quality, using other variables in the plant.  The information about the interaction 

and the effect of the variables on production rate and product quality is 

determined by analyzing and comparing the relative values of the elements of 

the OSOFC.  

2)   It aims to improve economics in the plant because of the following:  

a) It improves the control performance of production rate and product quality. 

Therefore, the plant can be operated close to the operational limits.  
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b) The calculation of the OSOFC is done for specific disturbance rejection and 

setpoint changes. Therefore, the resulting control structures are best suited for 

these cases.  

c) It considers economics in the plant by including some of the operational costs 

(i.e. cost of raw material lost trough the purge and product as weighing 

elements for production rate and quality in the objective function.  

3)   It is a hierarchical design procedure that divides the plantwide control problem 

into sub-problems (stages), more manageable pieces that are easy to solve.  

4)  It is an automated tool that can be use to design control structures to improve 

economics in the plant by improving control performance of key economic 

variables. 4) It has a MPC built on top of the resulting control structure, to 

control production rate and product quality by manipulating the setpoint of key 

variables in the plant.  

5)  The final control structure is tested, using the nonlinear model of the plant.  

 

The methodology presented is successfully applied to two well-known process 

models: the Tennessee Eastman Model [Downs, 1993] and the Vinyl Acetate 

Model [Luyben, 1998], obtaining similar or even better results than the ones 

proposed in the literature. In the case of the Tennessee Eastman Plant, the key 

variables obtained, using the proposed methodology, are similar to the variables 

obtained, using Tyreus’ Thermodynamic-based approach.  The resulting control 

strategies have demonstrated their efficiency, since the production rate can be 
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easily increased and held to more than 50% of the steady state value. They are 

also able to reject disturbances IDV1 and IDV2. Tyreus is the only author who 

demonstrated the performance of his control strategy by increasing the setpoint of 

the production rate by 50%. To do so, Tyreus ramped the setpoint of the key 

variables that he identified in a five hour period. The resulting control structure 

has proven to be more efficient than Tyreus’. It accomplish the same production 

rate change in a shorter period of time. In addition, it uses less purge flow than 

Tyreus’ control structure, demonstrating in this way its economic benefits. 

Although, this methodology is based on LTI systems, all the generated control 

structures were tested, using the nonlinear model of the plant. 

 

This dissertation also presents a systematic methodology to improve the control of the 

inerts in the process.  This methodology not only improves the control of inerts but 

also the economics in the plant by avoiding unnecessary purge. It is used when the 

amount of inert that enters in the plant is unknown and changes over time.  The main 

characteristics of this methodology are as follows:   

1)  It uses the amount of inert that enters in the plant to solve an optimization 

problem that determines the maximum amount of inert (minimum amount of 

purge) that can be handled in the process, without having to shut down the 

plant.  

2)  It adjusts the purge flow so that the total flow of inert that leaves the process is 

equal to the total flow of the inert that enters it. To do so, the setpoint for the 

inert inventory control (which, in general, is controlled by adjusting the purge 
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flow) is modified, according  to the optimization results. Therefore, every time 

the amount of inert that enters in the process varies, the setpoint of the purge 

composition (inert composition) controller is changed.   

3)  It requires an analyzer that measures the amount of purge at some point in the 

process (i.e. reactor exit or purge flow) as well as an analyzer that measures the 

amount of inert that enters in the process. This methodology addresses the case 

where there is no measurement of the amount of inert that enters in the plant. It 

does that by estimating this amount using a Kalman Filter or by installing a real 

analyzer. 4) It should be applied when the changes in the composition of purge 

that enters into the process changes considerably (more than 5%).  

 

This methodology was successfully applied to the Tennessee Eastman Plant, where 

the amount of inert that enters in the stream C is unknown and changes for different 

disturbances. By using this methodology, in the Tennessee Eastman Plant, there is 

approximately 4% savings in the operation cost. In this case the amount of inert was 

estimated using Kalman Filter. However, a real analyzer should be used when the 

following situations occur simultaneously: 1) there is only one analyzer that measures 

the amount of inert in the process; 2) this measurement is located far from the amount 

that that is being estimated; and 3) the plant has slow dynamics. 

 

In conclusion, the optimal control-based measurements and manipulated variables 

selection methodology is a practical approach, to help control engineers in the 

selection of key variables that affect economic variables in the plant. In addition, it 
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can be used to pair these key variables by designing control structures to improve the 

control performance and , therefore,  the economics in the plant. This methodology 

solves an approximation to an optimal economic problem. First, it improves the 

control performance of key economic variables in the plant (production rate and 

product quality). Therefore, tighter control of these economic variables is achieved 

and the plant can be operated closer to operational constraints. Second, it minimizes 

purge which is a variable that generally causes significant costs in the plant.  

 

 

Future work 

Even though this methodology has proven to give excellent results, there are several 

features that can be improved to make it more robust. For instance, this methodology 

is scaling dependent. In this work, several simulations were performed using different 

scaling factors. The scaling factors used were normal operational ranges for the 

process variables. The results obtained for the different scaling factors were similar 

because, in almost all cases, the same set of key measurements and manipulated 

variables were obtained. However, the order of importance for the key variables 

sometimes varied. Some results of the effects of the scaling factor in the OSOFC can 

be seen in Appendix VII. More work is recommended on the scaling effects, to 

identify key variables in the plant and their degree of importance. To do so, a 

sensitivity analysis can be performed to evaluate the effects of the scaling on the 

important measurements and manipulated variables. 
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Another important aspect that can be the object of future work is to improve the 

algorithm used to calculate the OSOFC.  Since all the variables in the plant are 

considered in this methodology, this can be a computationally intensive, especially 

when highly correlated variables are considered simultaneously. Several simulations 

demonstrated that when variables that are linearly dependant are considered 

simultaneously, the algorithm did not converge, or that the convergence was very 

slow. Currently, this problem is solved by carrying out a correlation and a condition 

number analysis, to eliminate highly correlated variables and to improve the 

conditioning of the problem. However, more study on the use of different algorithms 

such as gradient-based methods (DFP method) for faster convergence in the 

calculation of OSOFC is recommended.   

 

In addition, economic aspects such as the costs of the reactant, purge, steam and 

product flows, and work require  by process equipments could be taken into 

consideration to find a control structure that satisfies the economic objectives (to reduce 

the operation cost) in the plant. An alternative to weighing the product flow and quality 

could involve using cost as the objective function. The Tennessee Eastman plant  can 

be used to illustrate this idea. In the Tennessee Eastman Plant the objective function 

based on operating cost has the following form: 

 

Total operation cost=    (purge cost)(purge rate) + (product stream cost)(product rate) 

     +(compressor cost)(compressor work)+(steam cost)(steam rate)  
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Operating costs for this plant are mainly determined by the loss of raw materials. Raw 

materials are lost in the purge gas, the product stream and by means of the two side 

reactions.  The total operating cost is determined by adding the cost of raw material and 

the products leaving in the purge stream, the cost of raw material leaving in the product 

stream, and using an assigned cost to the amount of byproduct formed. Cost of the 

compressor work and steam to the stripping column are also included [Downs and 

Vogel, 1993].  

Cost=   (ypurge comp cost)( ypurge rate) + (yproduct  comp cost)( yproduct  rate)+ 

    (ycompressor cost)( ycompressor work) + (ysteam  cost)( ysteam rate) 

where 

ypurge comp cost:  (mole fraction of component in purge) (molar cost)    

yproduct  comp cost:  (mole fraction of component in product) (molar cost)    

To use cost as the objective function the molar cost of reactants, products and inerts 

could be included in the Q matrix. These cost elements can be included as off 

diagonal element that correspond with the flows (purge and product) and their related 

compositions. In this case the cost of the compressor work and steam work can be 

neglected because they are relatively small compare to the costs of the components 

 

 

 

 

.  
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Appendix I 
 

Correlation Analysis  

In this work, the interaction between measure ements is determined by 

analyzing the correlation of the measurements in each of the left singular vectors of 

the U matrix. To do so,  the model for measurements are calculated as follows: 

 

∑= jjii ay µ,      A1.1 

where jia ,  is an element of the left singular vectors by the singular values (U*Σ) from 

the SVD analysis. Then the correlation coefficient between the measurements can be 

calculated as 

))()(/()(, kikiji yyyyr σσε=     A1.2 

where ε  is the expected value, σ  is the variance, and ki,  refer to different rows. The 

correlation matrix has elements  

∑ ∑ ∑=
j j j

jkjijkjiki aaaar )*(/ 2

,

2

,,,,              A1.3 

  

The elements of the correlation matrix are known as coefficients of 

determination )(
2

,kir . These elements measure the variation of the measurement i that 

is explained by measurement k. Therefore, to determine the correlation between two 

measurements, the elements of the correlation matrix in each column are analyzed. If 

2

,kir  is close to 1 then iy  and ky  are correlated. If there is more than one 

measurement that has a value of 
2

,kir  close to 1, in the same column, this means that 

these measurements have interaction between them. 

After this correlation analysis we found that the following groups of variables are 

correlated 
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Correlation Analysis and Condition number Analysis for the 

Tennessee Eastman Plant 

Group # 1:  Reactor Pressure, separator pressure and stripper pressure 

Group # 2:  Separator temperature, stripper temperature, stripper steam flow, recycle 

flow and reactor feed. 

Group # 3:  Composition of E in the reactor feed and composition E in the purge 

Group # 4:  Composition of F in the reactor feed and composition of F in the purge 

Group # 5:  Composition of G and H in the purge 

 
 
 
Condition Number Analysis of the C Matrix 

Table A1.1 shows how the condition number of the C matrix is affected when highly 

correlated measurements are included together in the C matrix.  

 

Table I-I Condition Number Analysis of C Matrix 

Measurements included CN of the C matrix 

Reactor pressure 982.0030 

Reactor and separator pressure  1.6637e+004 

Reactor and stripper pressure 1.3718e+004 

Reactor, separator and stripper pressure 2.3442e+012 

Composition of G in the purge  9.0452e+004 

Composition of H in the purge  5.9808e+004 

Compositions of G and H in the purge 7.5591e+016 
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Correlation Analysis and Condition number Analysis for the Vinyl 

Acetate Process 

 
The correlation analysis shows that the following groups of variables are 

correlated: 

Group 1: Vaporizer Pressure and Absorber Pressure 

 Tray 5 Temperature, VAc, H2O, and HAc Column Bottom 

Composition, H2O Gas Recycle, VAc Gas Recycle, H2O Reactor 

Feed, HAc Reactor Feed,  

Group 2: O2 Gas Recycle Composition and O2 Reactor Feed Composition 

 C2H6 Gas Recycle Composition and C2H6 Reactor Feed Composition 

 VAc Gas Recycle Composition and VAc Reactor Feed Composition 

 C2H4 Gas Recycle Composition and C2H4 Reactor Feed Composition 

   CO2 Gas Recycle Composition and CO2 Reactor Feed Composition 

Group 3: VAc Gas Recycle Composition, HAc Gas Recycle Composition, 

VAc Reactor Feed  

Group 4: Reactor Exit Flow, Organic Product Flowrate  

 

Table I-II  Condition Number of C Matrix 

Measurements included CN of the C matrix 

CN-AM 1.3033e+018 

CN-AM - HAc Column Bottom Composition 
                 HAc Gas Recycle Composition 
                 H2O Reactor Feed Composition 
                 HAc Reactor Feed Composition 
                 Organic Product Flowrate 

2.0554e+004 

 



 

 222 
 

Appendix II 
 
 
The OSOF LQR calculation procedure is outlined as follows:  
Inputs: 

- A scaled state space model (A, B, C, D) 
- Weight matrices (Q, R, gij) 
- Initial autocorrelation states (X) 
- Selection of one of the following LQR numerical algorithms: 

1) Basic Moerder’s algorithm 
2) Toivonen’s algorithm 
3) Ectended Moerder’s algorithm  
4) Extended Toivonen’s algorithm 

- Selection of one of the following methods of generating an initial stabilizing K   Procedure:  
1) Ramdom selection method  
2) Minimization of the maximum eigenvalue of A-BKC method 
3) Petkovski and Rakic’s method 
 

Procedure: 

- Conditions to run the program: 
 1) C has to be full range 
 2) R should be positive definite  

 3) CT
QC should be positive semi-definite 

 4) ACQ ,  should be detectable when A is not stable 

- Calculate the OSOF controller K using Equation 3.8 
An effective iterative solution algorithm specifically for the output feedback LQR design 
problem was presented in [Moerder and Calise 1985].  It is given as follows: 

 
1)  Set k = 0  
Determine a gain K0 so that A-BK0C is asymptotically stable 

 
2)  Set Ak = A-BKkCNx 

  
Solve for Pk and Sk in: 0 = Ak

T
Pk + PkAk + C

T
Kk

T
RKk

T
C + Q  

    0 = AkSk + SkAk
T
 + X  

Set Jk = trace(PkX) 
 

Evaluate the gain update direction: △△△△K = R
-1

B
T
PSC

T
(CSC

T
)

-1 
- Kk 

Update the gain by: Kk+1 = Kk + α△△△△K 
where α is chosen so that A-BKk+1C is asymptotically stable and Jk+1 = trace(Pk+1X) <= Jk 
If Jk+1 and Jk are closer enough to each other, go to 3, otherwise, set k = k +1 and go to 2 
3.- Set Kopt = Kk+1  and Jopt = Jk+1 

end 
Output: 

- The OSOF controller K  
- The optimal cost J  
 

Details in the generation of the initial K, convergence, algorithms used and programming can be found 

in Chen (2002)..  
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Diagonal optimal static output feedback controller (OSOFC) 
 

Chen (2002) proposed 2 alternatives to obtain the diagonal OSOFC: 

1) To force the off-diagonal elements in the OSOF controller to be 0 by using large gij’s 

that correspond to the off-diagonal elements. The problem with this alternative is that 

the computation speed is much slower than using zero gij’s in Equation 3.8.  

2) To generate a diagonal initial OSOFC and keep it diagonal when updating it by 

solving the coupled design equations. The algorithm used for obtaining the diagonal 

OSOFC is extended from the basic OSOFC explained in Appendix I.  

In this work we used the second alternative. A brief description of how the diagonal OSOFC 

is given as follows  

 

Inputs: 

- A scaled state space model (A, B, C, D) 
- Weight matrices (Q, R, gij) 
- Initial autocorrelation states (X) 
- Design parameters (selection of the LQR algorithm and the methods of generating an 

initial stabilizing K)    
 
 
Procedure: 

- Calculate the diagonal OSOFC  

1) Generate the initial stabilizing Ki, in which all the off-diagonal elements are 
zeros. 

2) Solve the Pi and Si based on Ki and calculate Ji. 
3) Use optimization to find a K* in which all the off-diagonal elements are zeros, 

such that 
2

TTT
PSCBRKCSC − is minimized. 

4) Let ∆K=K*-Ki and Ki+1=Ki+αλ∆K, where λ is a random number between -0.5 and 
0.5. This step should be repeated until A-BKC is stable. 

5) Calculate Ji+1. 
6) If  Ji+1>Ji, go to step 4, else if ∆K is small enough, go to step 7, else go to step 2. 
7) Output Ki+1 

Output: 
- The diagonal OSOFC K  
- The optimal cost J  
 
Details on the tuning algorithm used can be found in Chen (2002).  
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Appendix III 
 

Results for Method 1 and Method 2 
 
In this Appendix results form methods 1 and 2, presented in Chapter 4, to determine 
the set of measurements and manipulated variables that affect production rate for the 
Tennessee Eastman Plant are presented. 
 

Method 1:   
This method does not include the production rate (xmeas17) in the set of available 
measurements. It does not penalize K from Equation 4.3. 
 
Optimal_K = 
 
          7              8             9           5             6             11           18            20             23          24          25            26                           
   -0.0044   -0.0042    0.0092    0.0004   -0.0156    0.0140   -0.0035   -0.0600   -0.0653    0.0080    0.0216    0.0251 
   -0.0014   -0.0033    0.0022   -0.0002   -0.0102    0.0026    0.0011   -0.0215   -0.1228   -0.0136   -0.0389    0.0127 
    0.0001    0.0005   -0.0001    0.0001    0.0013   -0.0002   -0.0003    0.0017    0.0202    0.0029    0.0083   -0.0013 
   -0.0003    0.0101    0.0023    0.0016    0.0209    0.0123   -0.0112    0.0076    0.4470    0.0724    0.2014   -0.0249 
   -0.0000   -0.0001    0.0000   -0.0000   -0.0003   -0.0001    0.0001   -0.0004   -0.0036   -0.0005   -0.0013    0.0003 
    0.0041   -0.0014   -0.0041   -0.0000    0.0134   -0.0423    0.0094    0.0478   -0.0043   -0.0102   -0.0131    0.0037 
    0.0028   -0.0006    0.0046    0.0012    0.0148   -0.0624    0.0109    0.0261    0.1141    0.0194    0.0891    0.0273 
   -0.0002    0.0001    0.0002   -0.0000   -0.0008    0.0026   -0.0006   -0.0028   -0.0016    0.0003   -0.0003   -0.0005 
   -0.0060    0.0008    0.0139    0.0017   -0.0070    0.0225   -0.0120   -0.0713    0.2308    0.0622    0.1738    0.0165 
    0.0020   -0.0008   -0.0062   -0.0015   -0.0066    0.0173    0.0047    0.0143   -0.2592   -0.0558   -0.1657   -0.0067 
 
     0.0213    0.0219    0.0428    0.0068    0.0908    0.1762    0.0538    0.2534    1.2691    0.2453    0.7136    0.1190 
 
      27           28          29             30           31            32          33           34         
    0.0810    0.0178    0.0491    0.0281    0.0558    0.0087    0.0568   -0.0055 
    0.0243    0.0049    0.0008    0.0121    0.0268    0.0042    0.0439    0.0024 
   -0.0009   -0.0002    0.0003   -0.0017   -0.0037   -0.0005   -0.0065   -0.0007 
    0.0061    0.0041    0.0827   -0.0074   -0.0277   -0.0054   -0.1065   -0.0184 
    0.0005    0.0001   -0.0008    0.0000    0.0002    0.0001    0.0010    0.0001 
   -0.0135   -0.0088   -0.1977   -0.0749   -0.1344   -0.0095   -0.0850   -0.0013 
    0.0634    0.0017   -0.3203   -0.1226   -0.2276   -0.0133   -0.1623   -0.0141 
    0.0004    0.0006    0.0115    0.0044    0.0080    0.0006    0.0051    0.0001 
    0.1137    0.0263    0.0990    0.0231    0.0384    0.0068   -0.0093   -0.0212 
   -0.0823   -0.0150    0.0817    0.0505    0.0932    0.0036    0.1005    0.0226 
 
     0.3861    0.0794    0.8438    0.3248    0.6159    0.0527    0.5768    0.0864 
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Method 2:  
This method includes the production rate (xmeas17) in the set of available 
measurements. It penalizes the production rate measurements in the K of Equation 4.4 
by using large corresponding weighting gij elements. 
 
 
 
Optimal_K = 
 
          7              8             9           5             6             11           17          18            20             23          24          25                           
   -0.0043   -0.0042    0.0091    0.0004   -0.0156    0.0139    0.0003   -0.0035   -0.0599   -0.0656    0.0080    0.0215 
   -0.0014   -0.0032    0.0022   -0.0002   -0.0102    0.0025   -0.0000    0.0011   -0.0215   -0.1229   -0.0136   -0.0389 
    0.0001    0.0004   -0.0001    0.0001    0.0013   -0.0002    0.0000   -0.0003    0.0018    0.0202    0.0029    0.0083 
   -0.0003    0.0100    0.0023    0.0016    0.0209    0.0122    0.0006   -0.0111    0.0078    0.4469    0.0723    0.2012 
   -0.0000   -0.0001    0.0000   -0.0000   -0.0003   -0.0001   -0.0000    0.0001   -0.0004   -0.0036   -0.0005   -0.0013 
    0.0041   -0.0014   -0.0041   -0.0000    0.0134   -0.0421   -0.0004    0.0093    0.0476   -0.0042   -0.0102   -0.0130 
    0.0027   -0.0006    0.0046    0.0012    0.0148   -0.0622   -0.0005    0.0109    0.0259    0.1142    0.0194    0.0892 
   -0.0002    0.0001    0.0002   -0.0000   -0.0008    0.0026    0.0000   -0.0006   -0.0028   -0.0017    0.0003   -0.0003 
   -0.0060    0.0007    0.0139    0.0017   -0.0069    0.0223    0.0007   -0.0119   -0.0710    0.2305    0.0621    0.1736 
    0.0019   -0.0007   -0.0062   -0.0015   -0.0066    0.0174   -0.0004    0.0047    0.0142   -0.2591   -0.0557   -0.1655 
 
    0.0212    0.0215    0.0427    0.0068    0.0907    0.1755    0.0031    0.0535    0.2528    1.2690    0.2450    0.7127 
 
 
        26          27           28          29             30           31            32          33           34         
    0.0252    0.0811    0.0178    0.0485    0.0279    0.0555    0.0087    0.0566   -0.0055 
    0.0127    0.0244    0.0049    0.0007    0.0121    0.0268    0.0042    0.0439    0.0024 
   -0.0013   -0.0009   -0.0002    0.0003   -0.0017   -0.0038   -0.0005   -0.0065   -0.0007 
   -0.0248    0.0060    0.0040    0.0821   -0.0077   -0.0281   -0.0054   -0.1067   -0.0183 
    0.0003    0.0005    0.0001   -0.0008    0.0000    0.0002    0.0001    0.0010    0.0001 
    0.0036   -0.0135   -0.0088   -0.1969   -0.0746   -0.1339   -0.0095   -0.0848   -0.0013 
    0.0272    0.0634    0.0017   -0.3193   -0.1222   -0.2270   -0.0133   -0.1619   -0.0141 
   -0.0005    0.0004    0.0006    0.0114    0.0044    0.0080    0.0006    0.0051    0.0001 
    0.0165    0.1135    0.0262    0.0981    0.0228    0.0378    0.0067   -0.0095   -0.0211 
   -0.0068   -0.0821   -0.0149    0.0820    0.0506    0.0933    0.0036    0.1005    0.0226 
 
     0.1190    0.3857    0.0792    0.8401    0.3240    0.6144    0.0526    0.5764    0.0863 
 
 
 
 
 

As can be seen both methods give the same results 
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Appendix IV 
 
This Appendix contains additional results for other control candidates of the 
Tennessee Eastman Plant. First, the results for the downs drill analysis, for the 
different candidates identified in Chapter 5 (Table 5.5) are presented in Table IV-I. 
Then, control structures identified for each of these candidates are shown in Table IV-
II, followed by the tuning parameters used for these candidates (Table IV-III).  In 
addition, since the TE process needs to operate in three different operation modes, it 
is desirable to determine a control structure that is feasible for each mode. Therefore, 
this appendix shows results for other operating modes.  
 

 

 

 

 

Table IV-I      Downs Drill Analysis for TE Process 

 

Candidate Component Self-Reg Why Self-Reg Manipulated Var Measurement 

A   No  A Feed  %A RCT Feed, %A Purge 

B  Yes Purge-RCT P   

C  No  C Feed  %C RCT Feed,%C Purge 

D  No  D Feed  %D RCT Feed,%D Purge 

E  Yes E Feed-RCT L   

 

 

Candidate 4 

F  Yes RCT CW-RCT T   

A No  A Feed  %A RCT Feed, %A Purge 

B  Yes Purge-RCT P   

C No  C Feed  %C RCT Feed,%C Purge 

D  No  D Feed  %D RCT Feed,%D Purge 

E  No  E Feed %E RCT Feed,%E Purge 

 

 

Candidate 5 

F  Yes RCT CW-RCT T   

A  No  A Feed  %A RCT Feed, %A Purge 

B  No  Purge %B RCT Feed,%B Purge 

C  No  C Feed  %C RCT Feed,%C Purge 

D  No  D Feed  %D RCT Feed,%D Purge 

E  Yes E Feed-RCT L   

 

 

Candidate 6 

F  Yes RCT CW-RCT T   
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Candidate Component Self-Reg Why Self-Reg Manipulated Var Measurement 

A  No  A Feed  %A RCT Feed, %A Purge 

B  Yes Purge-RCT P   

C  No  C Feed  %C RCT Feed,%C Purge 

D  No  D Feed  %D RCT Feed,%D Purge 

E  Yes E Feed-RCT L   

 

 

Candidate 7 

F  Yes RCT CW-RCT T   

A  No  A Feed  %A RCT Feed, %A Purge 

B  Yes Purge-RCT P   

C  No  C Feed  %C RCT Feed,%C Purge 

D  No  D Feed  %D RCT Feed,%D Purge 

E  No  E Feed %E RCT Feed,%E Purge 

 

 

Candidate 8 

F  Yes RCT CW-RCT T   

A  No  A Feed  %A RCT Feed, %A Purge 

B  No  Purge %B RCT Feed,%B Purge 

C  No  C Feed  %C RCT Feed,%C Purge 

D  No  D Feed  %D RCT Feed,%D Purge 

E  Yes E Feed-RCT L   

 

 

Candidate 9 

F  Yes RCT CW-RCT T   
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Table IV-II      Plantwide Control Structure Candidates for the TE Process 

 

 
 

 

 

Table IV-III  Tuning Parameters for Tennesse Eastmant Plant 

 

Mode # R P R L R T Sp L St L %A %C %D Sp T 

Mode 1 -12.14 6.97 2.64 -0.50 -0.50 7.11 2.59 2.26 2.55 

Mode 2 -10.29 7.64 1.90 -0.50 -0.50 11.51 2.47 1.50 2.74 

Mode 3 -14.33 7.60 4.25 -0.50 -0.50 4.61 2.18 4.08 1.96 

All Modes -12.5 7.6 2.6 -0.5 -0.5 7.1 2.3 2.2 2.5 

No. RCT 

P 

RCT 

L 

RCT 

T 

Sep. 

L 

Str. L %

A 

%B %

C 

%

D 

%E Sep T MPC  Prod &  

%G 

4 Purge E RCT 

CW 

Sep. 

Bot. 

Stri. 

Bot. 

A  C D  CCW RCT T,   %D,  Sep 

T,  

RCT L,  %A,   %C, 

5 Purge CCW RCT 

CWT 

Sep. 

Bot. 

Stri. 

Bot. 

A  C D E   

6 CCW E RCT 

CWT 

Sep. 

Bot. 

Stri. 

Bot. 

A Purge C D  RCT 

T 

RCT P, Sep T,  %D 

%A, %C 

7 Purge E  Sep. 

Bot. 

Stri. 

Bot. 

A  C D  CCW  

8 Purge CCW  Sep. 

Bot. 

Stri. 

Bot. 

A  C D E   

9 CCW E  Sep. 

Bot. 

Stri. 

Bot. 

A Purge C D  RCT 

T 
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  Control Structure for Candidate 4 for Operation Modes 2 and 3 

Chapter 5 shows results for candidate 4 (from Table 5.5) for operating mode1. 

To determine the control structure for the same candidate for operation modes 

2 and 3, the same procedure is applied. Stages 1 (preparation), 2 (control 

structure for safety variables), and 3 (control structure for inventory variables) 

from the procedure are the same for each operation mode. Stage 4 (control 

structure for production rate and quality) is the key stage in determining the 

control structure because this stage is the one that gives information about the 

strongest measurements and manipulated variables to control production rate 

and product quality. If stage 4 gives the same strongest measurements and 

manipulated variables for operation modes 2 and 3 as the ones given in mode 

1, then the same MPC design is used for these modes. Since there are three 

different set of tuning parameters (one for each mode), trial and error is used 

to find a single set of tuning parameters that works for the three operation 

modes.  

In the case that a different set of strongest measurements and manipulated 

variables are obtained for any mode then, 1) the scaling factor should be 

evaluated since the OSOF solutions depends on how measurements, 

manipulated variables and states are scaled; and 2) the multiple steady state 

operation design procedure, proposed by Chen et. al. (2003), is applied. The 

only limitation of this method is that if specific forcing is desired then, the 

forcing must have the same effect on each state for each operating mode. 
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Results for Candidate 4 Operation Mode 2 

Table IV-IV  OSOFC Matrix     Mode2 

Control Objective: to Control Product Rate and Quality 

SP         RF       SpT       StT      CpW      BF        E F       F F         BP        EP        FP        GP        Σrow  

%A      0.108    0.523   -0.804    0.072   -0.002   -0.004   -0.016    0.017   -0.015   -0.007   -0.222     1.792    

 RP       0.092   -0.639    0.127    0.023    0.045     0.033    0.028   -0.018    0.040    0.006    0.212      1.264    

%C       0.125   -0.337  -1.685    0.001    0.014     0.018    0.009     0.012   -0.030  -0.017    0.067      2.313    

%D      0.176   -2.409    0.399    0.159    0.026   -0.130    0.019     0.024    0.066    0.065    0.873      4.344   

R T     -0.467    6.284   -2.642    0.031   -0.250   -0.838   -0.154    0.052   -0.103   -0.171   -1.760     12.75   

CCW  -0.494    4.293   -2.688   -0.316   -0.085   -0.805   -0.024   -0.140   -0.079   -0.243   -0.950    10.12    

R L     -0.165    2.887   -1.006   -0.072    0.013     0.220    0.024   -0.088    0.046   -0.124   -0.941     5.585    

S  L     -0.111    0.251   -0.451   -0.103    0.019   -0.237   -0.020   -0.083    0.019   -0.042   -0.131     1.467    

St L       0.016   -0.438    0.344    0.038    0.006   -0.073   -0.011   -0.049     0.038   0.006    0.151      1.171 

Σcol      1.754    18.06    10.15    0.815     0.460    2.358    0.304    0.483    0.436    0.681    5.306 

 

 

Table IV-V  Optimal Static Output Feedback Controller (OSOFC) 

Man Var S T 

%A  -0.028 

RP  0.004 

%C      -0.008 

%D   0.001 

RCT T SP  0.124 

CCW SP  0.484 

RCT L SP  0.019 

Sep L SP     -0.005 

Stp L SP     -0.000 
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Table IV- VI  OSOFC Matrix    Mode 3 

Control Objective: to Control Product Rate and Quality 

SP         RF       SpT       StT      CpW      BF        E F       F F         BP        EP        FP        GP        Σrow  

%A      0.032   -0.111   -0.228    0.058   -0.007   -0.013   -0.000   -0.003    0.017   -0.001    0.062     0.532 

 RP       0.024   -0.208   -0.025    0.037    0.008   -0.017    0.002   -0.007    0.011   -0.000    0.080     0.419 

%C       0.026   -0.117   -0.181    0.044   -0.003  -0.021   -0.000   -0.004    0.002    0.000    0.064     0.461 

%D      0.166   -1.588    0.191    0.222    0.067   -0.122    0.007   -0.027    0.011    0.006    0.604     3.010     

R T      0.211   -0.957   -0.285    0.270    0.010     0.005   -0.001    0.004    0.012    0.009    0.402    2.166     

CCW  -0.155    0.030   -0.217   -0.106   -0.012   -0.168    0.016   -0.099    0.109   -0.020    0.007    0.939     

R L     -0.086    0.708   -0.155   -0.103   -0.050    0.077   -0.002   -0.015    0.027   -0.006   -0.277    1.506     

S  L     -0.041    0.142   -0.071   -0.042   -0.019   -0.014   -0.001   -0.010    0.009   -0.003   -0.081   0.433     

St L     -0.044   -0.038    0.081   -0.048    0.010   -0.017   -0.001    0.001    0.010   -0.000   -0.020    0.270 

Σcol      0.786    3.899    1.434    0.929    0.186     0.453    0.030    0.169    0.208    0.045    1.598 

 

Table IV-VII  Optimal Static Output Feedback Controller (OSOFC) 

Man Var S T 

%A  -0.006 

RP -0.001     

%C       0.000     

%D   0.009     

RCT T SP  0.145     

CCW SP  0.514     

RCT L SP  0.001    

Sep L SP     -0.003    

Stp L SP -0.000 

 

 

Next figures (IV-I, IV-II, IV-III, V-IV, IV-V, IV-VI, IV-VII, IV-VIII , and 

IV-IX), show the nonlinear simulations for Candidate 4 for setpoin change (to 

achieve maximum production rate) and disturbance rejection for operation 

modes 1, 2, and 3 using the tuning parameter that work for all modes. 
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Figure IV-I  Maximum Production Rate for Operation Mode 1   (Candidate 4-6) 

 

Figure IV-II  IDV(1)  for  Operation Mode 1   (Candidate 4-6) 
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Figure IV-III   IDV(1)  for  Operation Mode 1   (Candidate 4-6) 

 

Figure IV-IV  Maximum Production Rate for Operation Mode 2 (Candidate 4-6) 
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Figure IV-V   IDV(1)  for  Operation Mode 2   (Candidate 4-6) 

 

Figure IV-VI   IDV(2)  for  Operation Mode 2   (Candidate 4-6) 
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Figure IV-VII  Maximum Production Rate for Operation Mode 3   (Candidate 4-

6) 

 

Figure IV-VIII   IDV(1)  for  Operation Mode 3   (Candidate 4-6) 
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Figure IV-IX   IDV(2)  for  Operation Mode 3   (Candidate 4-6) 
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 Appendix V 
 
This Appendix contains results for the Vinyl Acetate Plant. First, the results for the 
downs drill analysis for the different candidates identified in Chapter 6 are presented 
in Table V-I. Then, control structures identified for each of these candidates are 
shown in Table V-II, followed by the tuning parameters used (Table V-III).  

 

 

Table V - I   Downs Drill Analysis for Vinyl Acetate Process 

 

 
Candidate Component Self-

Reg 

Why Self-Reg Manipulated 

Var 
Measurement 

O2 (react) Yes O2 Feed - %O2   

C2H4 (react) Yes C2H4 feed -Abs pressure   

HAc (react) Yes HAc feed-HAc level   

C2H6 (inert) No  Purge % C2H6 in gas recycle – 
reactor feed  

VAc (prod) Yes Column exit-Column level   

H2O (byprod) No  Organic reflux  
 

%H2O Column bottom - 
organic product 
composition 

 
 
 

 

Candidate 1 

CO2 (byprod) No  CO2 removal 
inlet 

%CO2 in gas recycle – 
reactor feed 

O2 (react) Yes O2 Feed - %O2   

C2H4 (react) Yes  C2H4 feed % C2H4 in gas recycle – 
reactor feed 

HAc (react) Yes HAc feed-HAc level   

C2H6 (inert) No  Purge % C2H6 in gas recycle – 
reactor feed  

VAc (prod) Yes Column exit-Column level   

H2O (byprod) No  Organic reflux  
 

%H2O Column bottom - 
organic product 
composition 

 
 
 

 

 

Candidate 3 

CO2 (byprod) No  CO2 removal 
inlet 

%CO2 in gas recycle – 
reactor feed 

O2 (react) Yes O2 Feed - %O2   

C2H4 (react) Yes C2H4 feed -Abs pressure   

HAc (react) Yes HAc feed-HAc level   

C2H6 (inert) No  Purge % C2H6 in gas recycle – 
reactor feed  

VAc (prod) Yes Column exit-Column level   

H2O (byprod) No  Organic reflux  
 

%H2O Column bottom - 
organic product 
composition 

 
 
 

 

 

Candidate 7 

CO2 (byprod) No  CO2 removal 
inlet 

%CO2 in gas recycle – 
reactor feed 
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Candidate Component Self-

Reg 

Why Self-Reg Manipulated 

Var 
Measurement 

O2 (react) Yes O2 Feed - %O2   

C2H4 (react) Yes  C2H4 feed % C2H4 in gas recycle – 
reactor feed 

HAc (react) Yes HAc feed-HAc level   

C2H6 (inert) No  Purge % C2H6 in gas recycle – 
reactor feed  

VAc (prod) Yes Column exit-Column level   

H2O (byprod) No  Organic reflux  
 

%H2O Column bottom - 
organic product 
composition 

 
 
 

 

 

Candidate 9 

CO2 (byprod) No  CO2 removal 
inlet 

%CO2 in gas recycle – 
reactor feed 
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Table V-II Plantwide Control Structure Candidates for the VA Process 

  Candidates   

Variables 1 3 7 9 

Vaporizer level Vap steam duty Vap steam duty Vap liquid inlet Vap liquid inlet 

Separator level Sep liquid exit Sep liquid exit Sep liquid exit Sep liquid exit 

Absorber level Abs liquid exit Abs liquid exit Abs liquid exit Abs liquid exit 

Organic  level Col organic exit Col organic exit Col organic exit Col organic exit 

Aqueous level Col aqueous exit Col aqueous exit Col aqueous exit Col aqueous exit 

Column base level Col bottom exit Col bottom exit Col bottom exit Col bottom exit 

HAc tank level Fresh HAc feed Fresh HAc feed Fresh HAc feed Fresh HAc feed 

Tray 5 temperature Col reboiler duty Col reboiler duty Col reboiler duty Col reboiler duty 

% O2  reactor feed Fresh O2 feed Fresh O2 feed Fresh O2 feed Fresh O2 feed 

Vaporizer pressure Vap vapor exit Vap vapor exit Vap vapor exit Vap vapor exit 

Absorber pressure Fresh C2H4 feed Sep vapor exit Fresh C2H4 feed Sep vapor exit 

Reactor input temp Vap heater duty Vap heater duty Vap heater duty Vap heater duty 

Reactor exit temp Reactor shell temp Reactor shell temp Reactor shell temp Reactor shell temp 

FEHE exit temp FEHE bypass ratio FEHE bypass ratio FEHE bypass ratio FEHE bypass ratio 

O2 (react) Self-Regulated Self-Regulated Self-Regulated Self-Regulated 

C2H4 (react) Self_Regulated C2H4 feed Self-Regulated C2H4 feed 

HAc (react) Self -Regulated Self -Regulated Self-Regulated Self-Regulated 

C2H6 (inert) Purge Purge Purge Purge 

VAc (prod) Self-Regulated Self -Regulated Self -Regulated Self -Regulated 

H2O (byprod) Organic Reflux Organic reflux Organic reflux Organic reflux 

CO2 (byprod) CO2 removal inlet CO2 removal inlet CO2 removal inlet CO2 removal inlet 

MPC  
Prod rate 
Prod Quality 

GRP SP- Ab Pressure  
Separator Vapor Exit 
Decanter Temp SP 
Reactor E Temp SP 

GRP SP- Ab Pressure  
Separator Vapor Exit 
Reactor E Temp SP 
Decanter Temp SP 

Same as 1       Same as 3 

 

Table V-III  Tuning   Parameters for Vinyl Acetate Model 

Vap L Sep L Abs L Org L Aq L Col L HAc L  T 5 T %O2 F Vap P 

-0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.2 0.14018      0.50576 -0.3968 

Abs P R inT REx T FEHE T %C2H6 I %H2O    CO2  GR F Vap T  

0.59966      0.22001      0.88649      0.44747      -0.77644 -1.838 -0.0628 0.7749 0.3687  
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Results for Vinyl Acetate Plant using proportional only controllers 

 

Figure V-I  20% Setpoint change in the Product flow 

 

 

Figure V-II   DTB(1) from 0.001 to 0.003 mol fraction 
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Figure V-III   DTB(2) 0.0003 mol fraction of water (impurity) in acetic acid feed 

stream  

 

 

Figure V-IV   DTB(3): 6
o
C increase in the reactor temperature 
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Figure V-V  DTB(4): 10
o
C Decrease in the reactor temperature 
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Appendix VI 
 
Derivation to include proportional integral (PI) controller in the state space model for 
the plant   
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Appendix VII 
 

This Appendix contains scaling results for the Tennessee Eastman Plant. These 
results show the effects of the scaling factors of some measurements and manipulated 
variables in the Σcol (L1-norm col) and Σrow (L1-norm row) of the OSOFC matrix.  
 
These results show that changes in the scaling factor of the measurements and/or the 
manipulated variables result in changes in the OSOFC element values, for the 
particular variable being scaled and other related variables. However, the dominant 
measurements and manipulated variables remain the same but in some cases the order 
of importance of these variables might vary. 
 
  

Efects of the Scaling in measurement  

Reactor Feed scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP        FP        GP       Scalinf F  
0.0905  13.5773  2.4964  0.8634  0.3899  0.6814  0.1853  0.3464  0.2627  0.2652 4.6259    0.01xms(6) 
0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464  0.2627  0.2652 4.6259    0.1*xms(6) 
9.0525  13.5778  2.4964  0.8634  0.3899  0.6813  0.1853  0.3465  0.2627  0.2652 4.6259    1*xms(6) 

 
  % A        R P         %C          %D         RT        CCW        RL          SL          StL 
1.2204    0.8218    1.1887    4.6739    7.9884    3.8500    2.4462    0.7602    0.8350              0.01*xms(6) 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445              0.1*xms(6) 
1.5732    1.3585    1.4504    6.9032    9.1787    6.2105    3.3710    1.7625    0.9390              1* xms(6) 

 

 
 
Separator Temperature scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP        FP        GP  
0.9053    6.7886  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464  0.2627  0.2652  4.6258       10 
0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464  0.2627  0.2652  4.6259       20 
0.9053  33.9442  2.4964  0.8634  0.3899  0.6813  0.1853  0.3465  0.2627  0.2652  4.6259       50 
 
  % A        R P         %C          %D         RT        CCW        RL          SL          StL 
0.9145    0.6136    0.9267    3.4569    5.6348    3.0137    1.8666    0.7329    0.6507                  10 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445                  20 
2.2664    1.6413    2.0698    9.1354   15.4821   7.2173    4.5212    1.2067    1.4259                  50 
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Stripper Temperature scaling Effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP        FP        GP  
0.9053  13.5774  1.2482  0.8634  0.3900  0.6814  0.1853  0.3464  0.2627  0.2652  4.6259    10 
0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464  0.2627  0.2652  4.6259    20 
0.9053  13.5777  6.2411  0.8634  0.3899  0.6813  0.1853  0.3465  0.2627  0.2652  4.6259    50   
0.9053  13.5774  12.482  0.8634  0.3900  0.6814  0.1853  0.3464  0.2627  0.2652  4.6259    100 
 

  % A        R P         %C          %D         RT        CCW        RL          SL          StL 
1.1600    0.8565    1.0282    4.7586    7.6857    3.8880    2.4317    0.8161    0.7263                10 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445                20 
1.5299    0.9128    1.7652    5.2305    9.3296    4.5946    2.8258    0.9569    1.1990                50 
1.9920    0.9834    2.6863    5.8201    11.384    5.4779    3.3187    1.1330    1.7898                100 

 
 
Compressor work scaling effect  
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP        FP        GP  
0.9053  13.5773  2.4964  0.2878  0.3900  0.6814  0.1853  0.3464 0.2627 0.2652 4.6259     0.1*xms(20) 
0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464 0.2627 0.2652 4.6259     0.3*xms(20) 
0.9053  13.5779  2.4964  1.4390  0.3899  0.6813  0.1853  0.3465 0.2627 0.2652 4.6259     0.5*xms(20) 
0.9053  13.5773  2.4964  2.8780  0.3900  0.6814  0.1853  0.3464 0.2627 0.2652 4.6259     1*xms(20)  
 
  % A        R P         %C          %D         RT        CCW        RL          SL         StL 
1.2239    0.8565    1.2050    4.7361    8.0387    3.8885    2.4461    0.7857    0.8431              0.1*xms(20) 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445              0.3*xms(20)   
1.2811    0.8846    1.2201    5.0170    8.1546    4.2408    2.6143    0.9170    0.8459              0.5*xms(20) 
1.3522    0.9198    1.2386    5.3678    8.2990    4.6813    2.8248    1.0810    0.8493              1*xms(20) 

 

 
Composition of B in Reactor Feed scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP        FP     GP  
0.9053  13.5776  2.4964  0.8634  0.1950  0.6814  0.1853 0.3464 0.2627 0.2653 4.6259      0.1*xms(24) 
0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853 0.3464 0.2627 0.2652 4.6259      0.2*xms(24) 
0.9053  13.5774  2.4964  0.8634  0.9749  0.6814  0.1853 0.3464 0.2627 0.2652 4.6259      0.5*xms(24) 
0.9053  13.5774  2.4964  0.8634  1.9498  0.6814  0.1853 0.3464 0.2627 0.2652 4.6259      1*xms(24)  
 
  % A        R P         %C          %D         RT        CCW        RL          SL          StL 
1.2381    0.8590    1.2121    4.8540    8.0017    4.0375    2.5279    0.8379    0.8365             0.1*xms(24)  
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445             0.2*xms(24) 

1.2958    0.9052    1.2137    4.9442    8.3813    4.1461    2.5375    0.8919    0.8685             0.5*xms(24) 

1.3680    0.9630    1.2158    5.0569    8.8558    4.2818    2.5497    0.9595    0.9086             1*xms(24)   
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Manipulated Variables 
%A in Reactor Feed scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP        FP      GP  
0.8044  11.7080  2.5936  0.7324  0.4907  0.7111  0.1798  0.3482 0.2971 0.2630 3.9671      0.5*xms(1) 

0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464 0.2627 0.2652 4.6259      2*xms(1) 
1.2495  15.0645  2.0996  1.0004  0.2808  0.6394  0.1833  0.4714 0.2353 0.2881 5.1132      4*xms(1) 
 
  % A        R P         %C          %D         RT        CCW        RL          SL         StL 
0.3919    0.9535    1.0682    4.5653    7.8749    3.9768    1.7892    0.8005    0.6753               0.5*xms(1) 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445               2*xms(1) 
2.8660    0.7425    1.6223    4.8206    8.1030    3.9688    2.6174    0.8869    0.9980               4*xms(1) 
 

 
 
%C Composition in reactor feed scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP       FP      GP  
0.9452  13.2945  2.0301  1.0990  0.2445  0.4730  0.1549  0.6191 0.2701 0.2969 4.3560     0.1*xms(4) 

0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464 0.2627 0.2652 4.6259     0.25*xms(4) 

1.2098  13.4706  2.1884  1.0309  0.7988  1.0259  0.2510  0.3010 0.2860 0.2345 5.1250     1*xms(4) 
 
  % A        R P         %C          %D         RT        CCW        RL          SL         StL 
1.3179    0.7338    0.8418    5.2071    7.4031    3.8227    2.5540    1.1663    0.7366              0.1*xms(4) 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445              0.25*xms(4)  
1.2042    0.9670    1.3119    4.4239    9.3438    4.6230    2.4882    0.7354    0.8246              1*xms(4) 

 
 
 
%D Composition in reactor feed scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP       FP      GP  
0.8190  13.1109  2.3959  0.8000  0.3635  0.6351  0.1758  0.3540 0.2514 0.2676 4.4363     0.05*xms(2) 

0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464 0.2627 0.2652 4.6259     0.1*xms(2) 
1.0015  13.0670  2.5626  0.8850  0.4411  0.7069  0.1982  0.2929 0.2205 0.2305 4.4452     1*xms(2) 
 
  % A        R P         %C          %D         RT        CCW        RL          SL         StL 
1.5316    0.7389    1.4385    3.1954    8.3945    3.8331    2.7101    0.8640    0.9036              0.05*xms(2)  
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445              0.1*xms(2) 
0.5816    0.9636    0.6230    7.4716    6.6737    4.8033    1.4252    0.8379    0.6713              1*xms(2) 
 

 
 
Reactor Level scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP       FP      GP  
0.9570  14.5946  2.4305  0.8692  0.4306  0.6265  0.2031 0.3900 0.2839 0.2866 4.8493      0.05*xms(3) 
0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853 0.3464 0.2627 0.2652 4.6259      0.1*xms(3) 
0.9440  13.5347  6.2456  0.9170  0.5723  1.5929  0.1521 0.2589 0.4654 0.2637 5.0912      1*xms(3) 

 
  % A        R P         %C          %D         RT        CCW        RL          SL        StL 
1.3928    0.9409    1.3000    5.5534    9.1397    3.9617    2.0552    0.7562    0.8211              0.05*xms(3) 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445              0.1*xms(3) 
1.0791    1.5698    1.3638    6.1393    7.3917    4.1695    6.5412    0.6061    1.1773              1*xms(3) 
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Reactor Pressure scaling effect   
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP       FP     GP  
1.0015  11.2722  3.3884  0.9606  0.6595  0.7271  0.2275 0.3619 0.1932 0.2816 3.6035      0.1*xms(10)  
0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853 0.3464 0.2627 0.2652 4.6259      1*xms(10) 
0.9980  18.7778  1.0725  0.9082  0.2168  0.6696  0.0933 0.3911 0.5226 0.2023 7.0545      10*xms(10) 

 
  % A        R P         %C          %D         RT        CCW        RL          SL         StL 
0.9177    0.1642    0.6774    4.7534    8.3141    3.7562    2.4223    0.7963    0.8755              0.1*xms(10) 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445              1*xms(10) 
1.5915    2.5519    1.8299    5.5980    8.2861    5.9053    3.4742    0.9338    0.7360              10*xms(10)  

 
 
 

Separator Level  scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP       FP      GP  
1.0333  13.2347  2.3618  0.8531  0.6575  0.9021  0.1822 0.4580 0.2782 0.2196 4.7918      0.5*xms(14) 
0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853 0.3464 0.2627 0.2652 4.6259      xms(14) 
0.8939  14.5294  2.6833  0.8442  0.2605  0.6455  0.1641 0.5294 0.2786 0.3025 4.6746      2*xms(14) 
 
  % A        R P         %C          %D         RT        CCW        RL          SL         StL 
0.8786    0.6091    1.3391    4.0196    7.3195    6.1318    2.8147    1.1758    0.6841              0.5*xms(14) 

1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445              xms(14) 
1.7314    0.9353    1.4738    5.3476    9.3557    3.0149    2.4945    0.6159    0.8368              2*xms(14) 
 

 
 

Stripper Level  scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP      FP      GP  
0.8704  13.4731  2.5534  0.8068  0.3857  0.6585  0.1857 0.3669 0.2449 0.2689 4.4782      0.5*xms(17) 

0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853 0.3464 0.2627 0.2652 4.6259      xms(17) 

0.8927  13.4886  2.6019  0.8852  0.3966  0.6799  0.1842 0.3285 0.2718 0.2533 4.6524      2*xms(17) 
 

  % A        R P         %C          %D         RT        CCW        RL          SL         StL 
1.2800    0.8122    1.3169    4.5712    8.3358    3.6688    2.3786    0.9884    0.9407              0.5*xms(17) 

1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445              xms(17) 

1.2397    0.8967    1.1219    5.0392    7.8630    4.3830    2.6196    0.8029    0.6691              2*xms(17) 
 

 

 

Reactor Temperature scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP        FP        GP  
0.8757  14.1089  2.7528  0.8502  0.4576  0.6839  0.2030  0.3256  0.2499  0.2762  4.8341      10 
0.9053  13.5774  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464  0.2627  0.2652  4.6259      20 
0.8587  13.0472  2.2705  0.8364  0.3569  0.6778  0.1733  0.3882  0.2673  0.2556  4.4385      50 

 
1.6785    0.8931    1.4900    5.0788    8.3028    3.9109    2.6400    0.7697    0.8541                  10 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445                  20 
1.0302    0.8139    1.0751    4.5987    7.8678    4.0821    2.3873    0.8683    0.8472                  50 
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Product Flow scaling effect 
   RF       SpT         StT     CpW      BF        E F       F F         BP        EP        FP        GP  
1.0773 14.815  2.7422  1.2058  0.3845  0.9077  0.1941  0.3186 0.3203 0.2383 5.1726     0.05xms(17) 

0.9053 13.577  2.4964  0.8634  0.3900  0.6814  0.1853  0.3464 0.2627 0.2652 4.6259     0.1*xms(17) 

0.4657 12.311  2.5456  0.3444  0.4198  0.5164  0.1807  0.3260 0.2060 0.2565 3.9046      0.5*xms(17) 
0.4314 12.149  2.5257  0.3181  0.4174  0.5002  0.1821  0.3186 0.1980 0.2530 3.8392      1*xms(17) 

0.4191 12.083  2.5170  0.3129  0.4159  0.4960  0.1826  0.3163 0.1942 0.2516 3.8133      10*xms(17)  
 
  % A        R P         %C          %D         RT        CCW        RL          SL          StL 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445            0.1*xms(17) 
1.5613    0.5769    1.4112    2.8928    9.1542    2.9701    1.8313    0.7974    0.2816            0.5*xms(17) 
1.5835    0.5638    1.4090    2.7885    9.2134    2.9240    1.7841    0.7802    0.0865            1*xms(17) 

1.5910    0.5593    1.4074    2.7569    9.2344    2.9077    1.7673    0.7767    0.0009            10*xms(17) 
 
 

 

Composition of G in the product scaling effect  
   RF       SpT         StT     CpW      BF        E F       F F       BP        EP      FP        GP  
0.9053  13.577  2.4964  0.8634  0.3900  0.6814  0.1853 0.3464 0.2627 0.2652 4.6259      0.02*xms(40) 
0.4694  2.0454  1.7868  0.5343  0.1455  0.2369  0.0683 0.1702 0.1579 0.0545 0.7317      0.1*xms(40) 

0.3691  0.9222  1.8710  0.4579  0.1015  0.2290  0.0526 0.1161 0.1624 0.0351 0.3493      0.5*xms(40) 
0.3644  0.8821  1.8738  0.4561  0.1003  0.2336  0.0523 0.1130 0.1627 0.0348 0.3308      1*xms(40) 
  
  % A        R P         %C          %D         RT        CCW        RL          SL         StL 
1.2524    0.8706    1.2125    4.8765    8.0965    4.0646    2.5303    0.8514    0.8445            0.02*xms(40) 
0.4831    0.2499    0.2533    1.2614    1.1287    0.9421    0.7961    0.6640    0.6223            0.1*xms(40) 

0.4650    0.0483    0.2654    0.0945    1.0493    1.2943    0.1507    0.7524    0.5462            0.5*xms(40) 

0.4600    0.0395    0.2643    0.0470    1.0473    1.3177    0.1268    0.7579    0.5435            1*xms(40) 
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