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Abstract

In this paper, we examine alternative methods for re-
ducing the dimensionality of nonlinear dynamical sys-
tem models arising in control of rapid thermal chemical
vapor deposition (RTCVD) for semiconductor manufac-
turing. We focus on model reduction for the ordinary
differential equation model describing heat transfer to,
from, and within a semiconductor wafer in the RTCVD
chamber. Two model reduction approaches are stud-
ied and compared: the proper orthogonal decomposition
and the method of balancing. This leads to a discussion
of computational issues in the practical implementation
of balancing for nonlinear systems.

1 Introduction

Model reduction deals with methods for reducing the
dimensionality of dynamical system models. The moti-
vation is that models of lower dimension are less com-
plex and easier to work with for various purposes such
as simulation, optimization, and control. One source of
dynamical system models which are good candidates for
model reduction is rapid thermal chemical vapor depo-
sition (RTCVD), a process used to deposit thin films on
a semiconductor wafer via thermally activated chemical
mechanisms.

This paper describes our recent progress and on-
going investigation in nonlinear model reduction for
RTCVD. These efforts have taken place as part of a joint
industry—academia research project to optimize the epi-
taxial growth of silicon—germanium (Si-Ge) heterostruc-
tures in a commercial RTCVD reactor. Participants are
the University of Maryland’s Institute for Systems Re-
search (ISR) of College Park, MD, and the Northrop
Grumman Corporation’s Electronic Sensors and Systems
Division (ESSD) of Linthicum, MD. Details and some
results from this project are described in [1, 2].

Our approach to model development for control and
optimization combines first—principles, experimental and
simulation data, and system—theoretic ideas for purposes
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of model validation and model reduction. This paper
focuses on two main topics: a comparison of model
reduction approaches as applied to one component of
the overall RTCVD model, and computational issues
in nonlinear balancing. Attractive properties, draw-
backs, and challenges of model reduction via established
statistically—based empirical methods and balanced real-
ization methods are discussed, demonstrated, and com-
pared via numerical studies.

2 RTCVD Models

Process and equipment models for RTCVD involve pre-
diction of time evolution for heat transfer within and
among the wafer, chamber walls, and process gases (tem-
perature fields in solids and gases), momentum transport
in the gas phase (gas flow velocity vectors), mass trans-
port in the gas phase (species concentrations), and chem-
ical reaction kinetics in the gas phase and at the wafer
surface (reaction rates, deposition thickness). Thus,
they consist mainly of balance equations for conservation
of energy (heat equation), momentum (Navier—Stokes),
and mass (continuity), along with equations that de-
scribe the relevant chemical mechanisms (e.g. Arrhenius
laws) and boundary and initial conditions.

In their continuum form, the balance equations for
RTCVD yield a system of nonlinear coupled partial dif-
ferential equations (PDEs) with associated boundary
conditions (BCs) and initial conditions (ICs). Lumped
versions of the equations can be obtained using an ap-
propriate discretization method, e.g., finite—elements, to
yield a system of coupled nonlinear ordinary differen-
tial equations (ODEs). The system of ODEs can be
decoupled by invoking certain simplifying assumptions.
Even the resulting simplified nonlinear system is typ-
ically of relatively high—order, so that not only is the
model computationally demanding for simulation, but
moreover it is computationally prohibitive for real-time
control. Thus, the motivation for reducing the model
order is apparent.

To illustrate ideas in model reduction, we focus on the
evolution system describing heat transfer on the surface
of a silicon wafer in the ASM Epsilon—1, a commercial
RTCVD reactor used by Northrop Grumman ESSD. The
Epsilon—1 has a horizontally oriented process chamber,
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Figure 1: Semiconductor wafer discretized into annular
regions. Heat transfer in wafer is described by energy
balance for each discrete element.

with gases flowing parallel to and over the top surface of
the wafer. The silicon wafer is very thin and rotating on
a susceptor so that it is reasonable to assume axial and
azimuthal symmetry, i.e., all mechanisms, including heat
transfer, are functions only of time ¢ and radial position
r on the wafer surface. The wafer is heated by lamps,
grouped into “lamp zones”, whose radiant intensity pro-
files are functions of r with corresponding power levels
that are available as control inputs. The relevant heat
transfer mechanisms are shown in Figure 1.

A simplified version of the temperature field evolution
on the surface of a silicon wafer during RTCVD is given
by the ODE

Tw=ATy+ ATt + A, T,+T+BP (1)

where T, (t) is a n—vector of temperatures correspond-
ing to radial positions on the wafer surface, 4., A,, and
A, are constant n X n matrices representing the effects of
conductive, radiative, and convective heat transfer mech-
anisms, respectively, I' is a constant n—vector which ac-
counts for the gas and chamber wall temperature, B is a
n X m matrix of discretized lamp zone radiant intensity
profiles, and P is a m—vector of control inputs corre-
sponding to lamp zone power levels. Note that for the
nonlinear term 772 the exponent is taken component—
wise. Our model uses m = 3 lamp zone actuators and
n = 101 grid points for the spatial discretization. The
parameters and lamp zone intensity profiles used in A,
A, A,, T', and B are derived from material properties,
radiative heat transfer analysis, and experimental results
(see [2]).

To model the measurement of temperature at discrete
points on the wafer surface via thermocouples, we aug-
ment the nonlinear state equation (1) with the linear
output equation

th = CTw (2)

where T;. is a p—vector of thermocouple measurements,
and C is a p X n matrix with entries corresponding to
thermocouple locations. We use p = 3 thermocouples in
our model, at the center, edge, and midpoint between
center and edge.

Later, we make use of a linearized version of (1). The
state equation is linearized about the constant tempera-
ture profile T, = I" and is of the form

t=Ax+ Bu 3)

with
A=A.+ A, +4F

where

[Flij = [As]i; T3

and x and u are translations of 77, and P, respectively.

3 Model Reduction

A general approach to model reduction is to find a coor-
dinate transformation of the state space under which the
state components can be ranked in a meaningful way in
terms of their influence on the system behavior. Then,
state components of the transformed system with rela-
tively small influence can be truncated without substan-
tially degrading the correctness, i.e., predictive capabil-
ity, of the model. We note that for systems evolving
on R™, each coordinate transformation can be identified
with a corresponding set of basis n—vectors.

Proper Orthogonal Decomposition

One approach to finding a basis for the desired co-
ordinate transformation is application of the Karhunen—
Loeve decomposition (see, e.g., [3, 4, 5, 6]), also known as
the proper orthogonal decomposition (POD), method of
empirical eigenfunctions, or principal components anal-
ysis (PCA). The POD is a statistical pattern analysis
technique for finding the dominant structures in an en-
semble of spatially distributed data. These structures
can be used as an orthogonal basis for efficient repre-
sentation of the ensemble. In particular, the POD basis
elements are the orthogonal eigenfunctions of the two—
point spatial covariance of the data ensemble. When the
data ensemble consists of vectors in R", the POD basis
vectors are just the the columns of the matrix U in the
singular value decomposition

X =vuxvT (4)

where X is a matrix whose columns are the members of
the data ensemble.

For the case of a dynamical system describing a flow,
e.g., a heat flow, the data ensemble is typically time se-
ries data, i.e., “snapshots” of the flow captured at equally
spaced intervals in time. The POD coordinate transfor-
mation diagonalizes, or decouples, the covariance of the
time series data. The basis elements are the principal
axes of the flow which generated the time series empiri-
cal data. Each has a corresponding eigenvalue (given by
the entries on the diagonal of ¥ in (4)), which provides a
measure of the relative “energy”, i.e., mean square fluc-
tuation, associated with that particular direction in the
state space. This measure can also be interpreted as the
relative amount of time that the flow spends along the
corresponding principal axis. Thus, it serves as a well-
defined measure of the influence of a state component on
the system behavior.

The POD basis is optimal from the points of view of
data compression and error minimization. Specifically, a
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Figure 2: Lamp power settings for RSC recipe.

truncated series representation of the data has a smaller
mean square error than a representation by any other
basis of the same dimension (see, e.g., [3]).

Application

The attractive properties of the POD have led to suc-
cess in applying it to areas such as turbulence model-
ing (e.g., [3]) and pattern recognition (e.g., [7]). Re-
cently, much work has been done to study its use for
RTCVD model reduction (e.g., [8, 9, 10, 11]). We have
performed a similar study, applying the POD technique
toward finding a low—order approximation to (1), de-
scribed as follows.

To generate empirical time series data, i.e., snapshots
of the wafer temperature field, the system (1-2) was sim-
ulated using two different types of control input recipes.
They are referred to as Ramp—Soak—Cool (RSC) and
Perturbation-Of-Constant (POC).

The RSC recipe mimics a typical processing recipe in
which a lamp zone power setting is gradually ramped
up from zero to full power, maintained at full power for
a specified period of time, and then gradually ramped
down from full to zero power, as shown in Figure 2. This
recipe is applied to one of the lamp zones, while the
other two zones are held at zero power. The simulation
is then repeated using RSC individually for each of the
other two lamp zones. The entire ensemble (three sets)
of time series data is combined and used to compute the
POD basis elements, which are then ranked according to
magnitude of associated eigenvalue. The basis elements
with the four largest eigenvalues are shown in Figure 3.
Corresponding relative energy values are contained in
Table 1.

The POC recipe applies small perturbations of a pre-
determined set of constant power settings which, if left
unperturbed, would result in a uniform steady state tem-
perature field of 1000K. The perturbations are achieved
by adjusting the power setting of each lamp zone, one
at a time, first to 110% and then to 90%, of the original
setting. This results in 6 different control recipes (see [2]
for details).

The system response to excitation from each of the six
POC recipes is sampled and combined as the time series
data for computing POD basis elements. Once again,
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Figure 3: Basis elements computed using POD from
RSC empirical data.
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Figure 4: Thermocouple readings for original and re-
duced models with Test Recipe 2 using POD RSC coor-
dinate transformation. Original n = 100. Reduced k =
1,2, 3.

basis elements are ranked by corresponding relative en-
ergy value, contained in Table 1.

We now test the efficiency of each POD basis by
projecting (1) onto a k—dimensional subspace spanned
by the k most important basis vectors using standard
Galerkin projection, where k < n. The reduced or-
der approximation is numerically integrated using two
test recipes as control inputs, that are different from the
recipes used to generate the RSC and POC data ensem-
bles.

Test Recipe 1 P =[0.50505 0<t<60

Test Recipe 2 P =1[1.00.00.00 0<t<24
P=1[001.000] 24<t<42
P=100.00.010] 42<t¢<60

Figure 4 shows simulated thermocouple readings for
Test Recipe 2, where the k basis vectors for the Galerkin
projection are from POD RSC, for £ = 1, 2, 3. For
complete results see [2]. The error between original and
reduced models is computed as the maximum deviation
between actual and approximate thermocouple readings.
Results for all test simulations are contained in Table 2.



Shortcomings

It is clear that the efficiency of a basis determined via
the POD method depends strongly on how well the data
ensemble captures the relevant system behavior. This
leads to serious shortcomings for model reduction of con-
trol systems with inputs and outputs. The POD basis
elements will be sensitive to the choice of control in-
puts, ICs, and BCs used to generate the empirical time—
series data. For nonlinear systems, small perturbations
in these parameters may produce qualitatively different
system responses. In addition, the data may fail to cap-
ture dynamical effects occuring at widely differing time
scales. Usually, these issues are ignored, because the
model is only being used for a particular purpose, e.g.,
to simulate tracking of one particular reference trajec-
tory. In that case, a representative set of control inputs,
BCs, and ICs is selected for generating the data ensem-
ble. But the optimality property of the POD basis, and
the predicitive capability of the resulting reduced order
model, may be localized to a relatively small region of
the space of allowable inputs, BCs, and ICs. In addi-
tion, the POD approach fails to consider the influence of
state components on the system measurements, or out-
puts. It would be desirable to truncate state compo-
nents that have small influence on the outputs, i.e. that
do not appear in our measurements. The POD method
does not do this, thus its efficiency may be diminished
when constructing “black—box” input—output models of
the system.

Balancing

In response to these and other concerns, we considered
an alternative approach based on the method of balanced
realizations (see, e.g., [12, 13]). In this method, a coor-
dinate transformation is computed which allows state
components to be ranked according to their influence on
the input—output behavior of the system as measured
by the Hankel norm of the system, i.e., the gain from
past inputs to future outputs. The resulting basis for
the linear transformation makes the transformed realiza-
tion “equally controllable and observable,” i.e. balanced,
and depends only upon intrinsic properties of the orig-
inal model, specifically controllability and observability,
embodied in its evolution equation and output equation.
In the linear case, explicit bounds can be computed for
the error between the original and reduced order mod-
els. These error bounds are independent of any partic-
ular set of control input signals, BCs, or ICs. Although
explicit error bounds have not yet been found for the
nonlinear case, we still wish to exploit the property that
the correctness of an approximation using a truncated
balanced realization does not depend upon generating
a representative data ensemble. Furthermore, the bal-
ancing method emphasizes state components that are
both strongly controllable and strongly observable, so
that state components which are least likely to influence
the measurements are truncated.

Application

We have applied the balancing method to the lin-
earized control system given by (3) and (2). The lin-
earized version is used because efforts toward develop-
ment of useful algorithms for nonlinear balancing are
still underway, as described later in this paper.

Numerical difficulties arise when applying standard
linear balancing algorithms to our linearized system. In
particular, the system is nearly nonminimal, i.e., the
condition numbers of the controllability and observabil-
ity Gramian matrices are very large (see [2] for details).
Safanov and Chiang [14] have proposed a method for
overcoming such difficulties, based on the ordered Schur
decomposition of the product of the controllability and
observability Gramian matrices. We have used their
method to produce coordinate transformation basis vec-
tors and kth—order reduced models for the linearized sys-
tem. The results are shown in Tables 1 and 2.

Discussion

Due to the shape of the lamp zone heat flux intensity
profiles and the smoothing effect of the diffusion oper-
ator, the evolution of the wafer temperature field does
not produce especially interesting behavior, e.g., spatial
profiles whose fluctuations from the mean vary substan-
tially in the mean square sense from the initial profile,
assuming the initial profile is relatively smooth. Thus,
we expect little difficulty in capturing the essence of the
input—output behavior of the system in a low dimen-
sional model. Our results show that this is indeed the
case.

For the inputs used in the validation tests, the input—
output behavior of the wafer heat transfer system can
be reconstructed using reduced models of order 4 so
that thermocouple readings are within 1 degree C of the
readings obtained using the original model. This holds
whether the POD or balancing method is used, and for
whichever empirical data ensemble was used for comput-
ing the POD transformation. Even reduced models of or-
der 2 produce a reasonable approximation with “worst
case” errors less than 15 degrees C.

The POD method appears to have performed slightly
better than the balancing method in this study. One
reason for this result is that the balancing transforma-
tion was computed for the linearized system, while the
validation tests were performed for the reduced order
nonlinear system. Another reason is the simple input—
output behavior of this particular system. The princi-
pal components of the flow are relatively insensitive to
the choice of inputs, and hence, any set of empirically
determined eigenfunctions for this system will likely be
efficient for model reduction purposes.

Thus, the results of this preliminary study are not de-
cisive regarding choice of reduction method. We seek a
model reduction approach which provides explicit error
bounds, does not depend on a specific data ensemble,
and which can be applied directly to the nonlinear con-
trol system.



| Method | Mode 1 | Mode 2 | Mode 3 | Mode 4 |
POD RSC | 95.06 4.77 0.14 0.03
POD POC | 93.43 6.25 0.23 0.09
Balancing | 98.02 1.83 0.13 0.02

Table 1: Normalized eigenvalues, i.e., percent energy,
corresponding to basis elements used in model reduction
for POD method with RSC data, POD method with
POC data, and balancing approach.

Reduction Reduced Model Order
Simulation | Method 1 | 2 | 3 | 4
Test 1 POD RSC | 27.23 | 2.68 | 0.58 | 0.11
POD POC | 26.85 1.26 | 1.13 | 0.10
Balancing | 50.68 | 7.03 | 0.44 | 0.08
Test 2 POD RSC | 72.33 | 5.22 | 1.48 | 0.18
POD POC | 72.60 | 4.79 | 4.35 | 0.43
Balancing | 80.81 | 14.28 | 1.70 | 0.12

Table 2: Maximum deviation (degrees C) between out-
puts of original and reduced models for POD method
with RSC data, POD method with POC data, and bal-
ancing approach.

4 Computational Issues In Non-
linear Balancing

In order to address some of the deficiencies in model re-
duction via the POD and linear balancing approaches,
we seek a procedure to apply the balancing method di-
rectly to the nonlinear system of interest. We have al-
ready seen that for linear systems, the balancing coor-
dinate transformation can be determined efficiently us-
ing known algorithms. The theory of balancing was ex-
tended to a class of nonlinear systems by Scherpen [15],
in which a general theory and procedure is proposed.
In contrast to the linear case, the theory and procedure
for nonlinear balancing is not immediately amenable to
computational implementation. Here, we begin to ad-
dress some important computational issues in balancing
for nonlinear systems.

We consider the balancing procedure presented in [15]
for open loop stable nonlinear systems of the form

f(@) +g(z)u (5)
= h(z) (6)

where © = (x1,...,2,) € R" are local coordinates for a
smooth state manifold denoted by M, u € R™, y € R?,
f and h are of class C*°, f(0) =0, and h(0) = 0.

To determine the balancing state space transformation
we seek a change of coordinates under which the trans-
formed system realization is equally controllable and ob-
servable. The degree to which a system realization is
controllable or observable, respectively, can be measured

in a precise way using the controllability and observabil-
ity energy functions of the system [15].

Definition 4.1 The controllability function,
L. : R" — R, and observability function, L, : R™" — IR,
for (5-6) are defined by

. 1 [ )

Lle)= | _min | a0
z(—o00) =0
z(0) = xo

and
1 o0
Lofan) =5 [ I . )
z(0) =20, u(t)=0, 0<t<oo.

In the linear case, the controllability and observability
functions specialize to the quadratic forms

1 _

L.(zg) = 51‘(7;WC 2o ©))
1

Lo(zo) = §x0TW0m0 (10)

where the constant n x n matrices W, and W, are the
familiar controllability and observability Gramian ma-
trices, respectively.

It is not surprising, then, that a key step in the nonlin-
ear balancing procedure of [15] is to find a change of co-
ordinates under which L. is locally quadratic in a neigh-
borhood U of its critical point 0. This is accomplished
by appealing to the Morse Lemma (see, e.g., [16]).

Theorem 4.2 (Morse Lemma) Let p be a non—
degenerate critical point for the real-valued function F
with index r. Then in a neighborhood U of p there exists
a local change of coordinates z — x = ¥(z), ¥(0) = p,
such that

F(z)=F(¥(2))=F(p) - Y #+ > = (1)
i=1

i=r+1
holds for all x € U.

There are various difficulties in the computation of
L. and L,, and numerical implementation of the Morse
Lemma. We are currently investigating several ap-
proaches for each problem. Here, we discuss the prob-
lem of diagonalizing a particular z—dependent symmetric
matrix on a neighborhood of 0, which arises in determi-
nation of a smooth Morse coordinate transformation for
a function F' around a critical point 0. The key is that
the diagonalization must be done in a smooth way on
IR", and thus results in a search over smooth functions
taking values in the matrix Lie group SO(n).

It is known (see, e.g., [16]) that for F with critical
point 0 there exists a symmetric matrix H(z) for each x
in a neighborhood U of 0 such that

F(zx)=2" H(z)x (12)



with H(0) = 92F(0). Suppose we have an algorithm
that produces the desired H(x) for each x. The next
step in implementation of the Morse Lemma is to find a
smooth diagonalization of the matrix H(z), i.e., find a
smooth function U(x) taking values in SO(n) such that

UT (&) H(z) U(z) = Aw) = diag{M(2), . .-, An(2)}
(13)
for each x in U.

We propose the following approach. Choose a basis
{a1,a9,...} for the Lo—completion of C§°(U,R), i.e.,
smooth real-valued functions with compact support on
the closure of U, and a basis {A1,..., A} for so(n),
i.e., skew matrices, with ¥ = n(n — 1)/2. Then a Nk-
dimensional approximation to the desired U(x) is given
by

R k N
U(z) = exp Z A; Z cij () (14)
i=1 j=1
and can be found by solving the finite-dimensional min-
imization problem

min /M |T(2) Hz) O(z) - A@)|| dz. (15)
i1k
j=1,...,N

5 Conclusion

We have presented a comparison of nonlinear model re-
duction methods, POD and balancing, which appear to
perform well for a specialized problem in RTCVD, but
give no guarantees of satisfactory performance in general
for dimensionality reduction of nonlinear systems with
control inputs and outputs. We address these deficien-
cies by appealing to the theory of nonlinear balancing,
and point out difficulties in terms of numerical imple-
mentation. We focus on one step involved in computa-
tion of the Morse coordinate transformation, in which
a smooth SO(n)-valued function must be determined
to diagonalize a particular z—dependent symmetric ma-
trix. We suggest an approach which requires solution of
a finite-dimensional minimization problem.
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