
ABSTRACT

Title of dissertation: DESIGN, FABRICATION, AND
RUN-TIME STRATEGIES FOR
HARDWARE-ASSISTED SECURITY

Domenic J. Forte, Doctor of Philosophy, 2013

Dissertation directed by: Dr. Ankur Srivastava
Department of Electrical and
Computer Engineering

Today, electronic computing devices are critically involved in our daily lives,

basic infrastructure, and national defense systems. With the growing number of

threats against them, hardware-based security features offer the best chance for

building secure and trustworthy cyber systems. In this dissertation, we investigate

ways of making hardware-based security into a reality with primary focus on two

areas: Hardware Trojan Detection and Physically Unclonable Functions (PUFs).

Hardware Trojans are malicious modifications made to original IC designs or

layouts that can jeopardize the integrity of hardware and software platforms. Since

most modern systems critically depend on ICs, detection of hardware Trojans has

garnered significant interest in academia, industry, as well as governmental agen-

cies. The majority of existing detection schemes focus on test-time because of the

limited hardware resources available at run-time. In this dissertation, we explore

innovative run-time solutions that utilize on-chip thermal sensor measurements and

fundamental estimation/detection theory to expose changes in IC power/thermal

profile caused by Trojan activation. The proposed solutions are low overhead and

also generalizable to many other sensing modalities and problem instances. Simu-

lation results using state-of-the-art tools on publicly available Trojan benchmarks

verify that our approaches can detect Trojans quickly and with few false positives.

Physically Unclonable Functions (PUFs) are circuits that rely on IC fabrication

variations to generate unique signatures for various security applications such as

IC authentication, anti-counterfeiting, cryptographic key generation, and tamper

resistance. While the existence of variations has been well exploited in PUF design,

knowledge of exactly how variations come into existence has largely been ignored.

Yet, for several decades the Design-for-Manufacturability (DFM) community has

actually investigated the fundamental sources of these variations. Furthermore,

since manufacturing variations are often harmful to IC yield, the existing DFM

tools have been geared towards suppressing them (counter-intuitive for PUFs). In

this dissertation, we make several improvements over current state-of-the-art work

in PUFs. First, our approaches exploit existing DFM models to improve PUFs at

physical layout and mask generation levels. Second, our proposed algorithms reverse

the role of standard DFM tools and extend them towards improving PUF quality

without harming non-PUF portions of the IC. Finally, since our approaches occur

after design and before fabrication, they are applicable to all types of PUFs and

have little overhead in terms of area, power, etc.

The innovative and unconventional techniques presented in this dissertation

should act as important building blocks for future work in cyber security.

DESIGN, FABRICATION, AND RUN-TIME STRATEGIES
FOR HARDWARE-ASSISTED SECURITY

by

Domenic J. Forte

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor Ankur Srivastava, Chair/Advisor
Professor Rama Chellappa
Professor Joseph F. JaJa
Professor Shuvra S. Bhattacharyya
Professor Amitabh Varshney

c⃝ Copyright by
Domenic J. Forte

2013

Dedication

To my family

ii

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Ankur Srivastava,

for his guidance and patience through my Ph.D. His advice, support, and friendship

have been invaluable on both academic and personal levels, for which I am extremely

grateful. Without him as a continuous source of inspiration and motivation, I would

not have been able to improve and achieve all that I have. It has been a pleasure

to work with and learn from him.

I would also like to extend my gratitude to the members of my dissertation

committee for their time and service. I also offer special thanks to Professor Rama

Chellappa, Professor Joseph JaJa, Professor, Professor Shuvra Bhattacharyya, and

Professor Andre Tits for their support, encouragement, and advice in applying to

jobs in academia.

My colleagues in Prof. Srivastava’s research group have enriched my graduate

life in many ways and deserve a special mention here as well. I owe my gratitude

to Bing Shi, Caleb Serafy, Tiantao Lu, and Chongxi Bao not only for our fruitful

discussions about research, but also the stress relieving conversations and jokes we

shared throughout our time together in the lab.

I would also like to acknowledge the financial support provided by the ECE

department and Northrop Grumman for three semesters of teaching assistantship

and one year of research fellowship respectively.

Last, but by no means least, I thank all of my family and friends for their

support and encouragement throughout my graduate studies. I would especially

iii

like to express my heart-felt gratitude to my parents. I would not be the person

that I am today without their unwavering support, encouragement, and love. I also

owe many thanks to Stephen and Mary Ellen for being my family away from home

and always being there for me.

iv

Table of Contents

List of Figures viii

List of Abbreviations x

List of Publications xi

1 Introduction 1
1.1 Evolution of Computing Devices and Need for Cyber Security 1
1.2 Software vs. Hardware-assisted Security 2
1.3 Hardware-based Attacks . 4

1.3.1 Sources of Attack in the IC Supply Chain 5
1.3.1.1 Design Phase . 5
1.3.1.2 Synthesis Phase . 6
1.3.1.3 Fabrication Phase 7

1.3.2 Post-deployment Attacks . 8
1.4 Theme: A Comprehensive Strategy 10
1.5 Summary and Thesis Organization 14

2 Background 17
2.1 Hardware Trojan Attacks and Mitigation 17

2.1.1 Trojan Anatomy and Taxonomy 18
2.1.1.1 Anatomy of a Trojan 18
2.1.1.2 Trojan Taxonomy 19
2.1.1.3 Real-life Prototypes and Benchmarks 22

2.1.2 Trojan Mitigation Techniques and Associated Challenges . . . 22
2.1.2.1 Destructive Methods 23
2.1.2.2 Test-time Verification Methods 24
2.1.2.3 Run-time Monitoring Methods 26
2.1.2.4 Design-time Methods 27

2.1.3 Summary . 28
2.2 Physically Unclonable Functions (PUFs) 30

2.2.1 PUF Structures . 32
2.2.1.1 Arbiter PUF . 33
2.2.1.2 Ring Oscillator PUF (RO-PUF) 35
2.2.1.3 SRAM PUF . 35

2.2.2 PUF Applications in Hardware Security 37
2.2.3 PUF Quality and Metrics . 38
2.2.4 IC Variations and Impact on PUFs 40

2.2.4.1 Manufacturing Process, Variations, and DFM 40
2.2.4.2 Temporal Variations 43

2.2.5 Existing PUF Research . 44
2.2.5.1 Architectures . 44
2.2.5.2 Circuits . 45

v

2.2.5.3 Post-fabrication . 46
2.2.6 Summary . 47

3 Temperature Tracking for Run-time Detection of Trojans 49
3.1 Introduction . 49

3.1.1 Motivation . 49
3.1.2 Main Contributions . 52

3.2 Preliminary . 54
3.2.1 Thermal Sensors . 54
3.2.2 RC Thermal Model . 55

3.3 Problem Definition and Challenges 57
3.4 Temperature-Based Detection . 59

3.4.1 Design Phase . 60
3.4.2 Test Phase . 61
3.4.3 Run-time Phase . 63

3.4.3.1 Local Sensor Approach 63
3.4.3.2 Global (Kalman Filter-based) Approach 67
3.4.3.3 Qualitative Comparison 72

3.5 Experiments and Discussion . 73
3.5.1 Setup . 73
3.5.2 Results . 75

3.6 Summary . 77

4 Mask Generation for Physically Unclonable Functions 80
4.1 Introduction . 80
4.2 Preliminary . 85

4.2.1 Optical Lithography . 85
4.2.2 Optical Proximity Correction (OPC) 89

4.3 Contributions and Discussion . 93
4.3.1 Wafer Variability Model . 93
4.3.2 Impact of Variations on PUFs 95

4.4 Optical Proximity Correction for PUFs 97
4.4.1 PUF-aware OPC (P-OPC) . 98

4.4.1.1 P-OPC Objective Cost 98
4.4.1.2 P-OPC Optimization Algorithm 99
4.4.1.3 Ensuring Functional Correctness with P-OPC 101
4.4.1.4 Dealing with Systematic Variations 102

4.4.2 Systematic Variation Compensation OPC (SVC-OPC)) 103
4.4.2.1 SVC-OPC Objective Cost 105
4.4.2.2 SVC-OPC Algorithm 106

4.4.3 Qualitative Comparison of P-OPC and SVC-OPC 107
4.5 Simulation Experiments . 109

4.5.1 Simulation Setup . 109
4.5.1.1 Simulation Models 109
4.5.1.2 Mask Generation Algorithms 110

vi

4.5.1.3 PUF Evaluation . 111
4.5.1.4 ROs and RO-PUF Response Extraction 112

4.5.2 Results and Discussion . 113
4.5.2.1 Ranking Approach 113
4.5.2.2 Decoupled Neighbor Approach 114
4.5.2.3 All Pairs Approach 116
4.5.2.4 Mask Generation Algorithm Overheads 118

4.5.3 Summary of Results . 119
4.6 Summary . 120

5 Custom Cell Layouts for Physically Unclonable Functions 122
5.1 Introduction . 122
5.2 Preliminary . 123

5.2.1 Self-compensation . 123
5.2.2 Impact of Variations on PUFs. 125

5.3 Proposed Approach . 127
5.3.1 Self-compensated Cell Layouts for PUFs 127
5.3.2 Reliability Enhancement . 130
5.3.3 Combined Approach . 134

5.4 Simulation Experiments . 135
5.4.1 Experimental Setup . 135
5.4.2 Results and Discussion . 139

5.5 Summary . 143

6 Conclusion and Future Research Directions 144
6.1 Future Research . 145

6.1.1 Defense Against Trojans . 146
6.1.2 Opportunities and Challenges in PUF Manufacturing 148

Bibliography 150

vii

List of Figures

1.1 Attacks on the IC Supply Chain/Process 5
1.2 Summary of Hardware Attacks. The lefthand side is organized based

on location of attack in the IC supply chain. The righthand side is
organized based on the type of post-deployment attack. 11

1.3 Comprehensive Strategy for Self-sustaining Security 12

2.1 Trojan circuity: Trigger and Payload 19
2.2 Trojan Taxonomy . 20
2.3 Trojan Mitigation Techniques . 23
2.4 (a) Switch block constructed with MUXES controlled by challenge

bit; (b) Arbiter PUF; (c) Effects of challenge bits on paths to the
arbiter. 34

2.5 Ring Oscillator (RO) and Ring Oscillator PUF (RO-PUF) 36
2.6 SRAM cell and parameter mismatch between M1 and M3 (∆L, ∆Vth) 37

3.1 Avg. power consumption (nW) in a 250µs time window across Trojan-
inactive and Trojan-active ICs for the RS232-T900 benchmark. 51

3.2 Basic thermal sensor circuit . 54
3.3 IC broken into grids and RC thermal model within dotted region . . . 56
3.4 Phases of the Proposed Approach . 60
3.5 Local Hypothesis Testing (HT) Approach with z sensors and m × n

grid . 66
3.6 KF-based Temperature Tracking . 70
3.7 Global Kalman Filter (KF) Approach with z sensors and m× n grid 71
3.8 Average autocorrelation (â) over time with 4 and 32 sensors for

s38417-T300 . 77

4.1 Summary of existing research geared towards improving PUF quality.
Columns represent the three main areas of research: Systematic Vari-
ation (SV) Compensation, Random Variation (RV) Enhancement,
and Environmental Variation (EV) Resistance. Rows represent the
steps in the IC design/fabrication process. Starred rows denote steps
where research is lacking. New approaches at mask and layout levels
are the focus of Chapters 4 and 5 in this dissertation. 81

4.2 Optical Lithography System . 86
4.3 Basic OPC Algorithm . 90
4.4 (a) Mask: White (gray) areas correspond to transparent (opaque)

pixels; (b) Fragmentation; (c) Mask perturbation 1; (d) Mask pertur-
bation 2 . 93

4.5 Systematic portion of defocus across the wafer (i.e. paw(xw, yw) +
paf(x

′
f , y

′
f) where x

′
f , y

′
f represent the field location in wafer coordinates) 95

viii

4.6 Keep Out Zone Illustration: Non-PUF region, PUF region, and keep
out zone are shown in white, dark gray, and light gray respectively. δ
denotes the length of the keep out zone. Note the figure is not drawn
to scale. 101

5.1 Systematic and opposing behavior of dense and iso patterns with
defocus. 124

5.2 Effective channel lengths (dotted) for cells in series. (a) dense and
iso cells in series; (b) two dense cells in series 124

5.3 Standard and current starved inverters 132
5.4 Channel length vs. Defocus for cell layout types: (1) Very Dense VD;

(2) Dense D; (3) Isolated I; (4) Very Isolated VI; (5) Self-Compensated
S . 136

5.5 Quadtree partitioning for a chip. The depth of the tree shown is 3
levels. 138

ix

List of Abbreviations

AES Advanced Encryption Standard
CMP Chemical Mechanical Polishing
DFM Design for Manufacturability
DoS Denial of Service
ECC Error Correcting Code
EKF Extended Kalman Filter
EM Electromigration
EV Environmental Variation
FIB Focused Ion Beam
FV Fabrication Variation
HCI Hot Carrier Injection
HI Logical High (1)
IC Integrated Circuit
ICUT Integrated Circuit Under Test
IP Intellectual Property
KF Kalman Filter
LO Logical Low (0)
NBTI Negative Bias Temperature Instability
OPC Optical Proximity Correction
OS Operating System
PDF Probability Distribution Function
PSM Phase Shift Mask
PUF Physically Unclonable Function
RO Ring Oscillator
RO-PUF Ring Oscillator Physically Unclonable Function
RV Random Variation
RTL Register Transfer Level
SEM Scanning Electron Microscope
SRAM Static Random Access Memory
SV Systematic Variation
TDDB Temperature-Dependent Dielectric Breakdown
TPM Trusted Platform Module

x

List of Publications

Journal Publications (accepted)

1. D. Forte and A. Srivastava, “Thermal-Aware Sensor Scheduling for Distributed

Estimation”, to appear ACM Transactions on Sensor Networks (TOSN), 2013.

2. D. Forte and A. Srivastava, “Energy and Thermal-Aware Video Coding via

Encoder/Decoder Workload Balancing”, to appear IEEE Transactions on Em-

bedded Computing Systems (TECS), 2013.

3. D. Forte and A. Srivastava, “Resource-Aware Architectures for Adaptive Par-

ticle Filter Based Visual Target Tracking”, to appear ACM Transactions on

Design Automation of Electronic Systems (TODAES), 2013.

Journal Publications (submitted)

1. D. Forte and A. Srivastava, “Improving the Quality of Delay-based PUFs via

Optical Proximity Correction,” with minor revisions to IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), March

2013.

Conference Publications (accepted)

1. D. Forte and A. Srivastava, “Manipulating Manufacturing Variations for Bet-

ter Silicon-Based Physically Unclonable Functions”, IEEE Computer Society

Annual Symposium on VLSI (ISVLSI), pp.171-176, August 2012.

xi

2. D. Forte and A. Srivastava, “On Improving the Uniqueness of Silicon-Based

Physically Unclonable Functions Via Optical Proximity Correction”, Design

Automation Conference (DAC), pp.96-105, June 2012. [DAC-2012 Best

Paper Nomination]

3. D. Forte and A. Srivastava, “Adaptable Architectures for Distributed Vi-

sual Target Tracking”, IEEE International Conference on Computer Design

(ICCD), pp.339-345, October 2011.

4. D. Forte and A. Srivastava, “Energy-Aware and Quality-Scalable Data Place-

ment and Retrieval for Disks in Video Server Environments”, IEEE Interna-

tional Conference on Computer Design (ICCD), pp.457-458, October 2011.

5. D. Forte and A. Srivastava, “Energy-aware video storage and retrieval in server

environments,” International Green Computing Conference and Workshops

(IGCC), pp.1-6, July 2011.

6. D. Forte and A. Srivastava, “Resource-aware architectures for particle filter

based visual target tracking,” International Green Computing Conference and

Workshops (IGCC), pp.1-6, July 2011.

7. D. Forte and A. Srivastava, “Adaptable video compression and transmission

using lossy and workload balancing techniques”, NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), pp.145-152, June 2011. [Awarded

AHS-2011 Best Student Paper]

8. D. Forte and A. Srivastava, “Energy-aware video coding of multiple views

via workload balancing”, NASA/ESA Conference on Adaptive Hardware and

xii

Systems (AHS), pp.295-302, June 2011.

9. D. Forte and A. Srivastava, “Energy and Thermal-Aware Video Coding via En-

coder/Decoder Workload Balancing”, International Symposium on Low Power

Electronics and Design 2010 (ISLPED), pp. 207-212, August 2010.

10. D. Forte and A. Srivastava, “Thermal-Aware Sensor Scheduling for Distributed

Estimation”, International Conference on Distributed Computing in Sensor

Systems (DCOSS), pp. 116-129, June 2010.

Technical Reports

1. D. Forte, C. Bao, and A. Srivastava, “Temperature Tracking: An Innovative

Run-Time Approach for Hardware Trojan Detection”, Institute for Systems

Research (ISR) Technical Reports (TR 2013-03), UMCP.

xiii

Chapter 1

Introduction

1.1 Evolution of Computing Devices and Need for Cyber Security

Continued semiconductor scaling and outsourcing of the integrated circuit (IC)

design/fabrication process have resulted in electronic computing devices with greater

performance at faster time-to-market and lower prices. These factors combined with

the advances in connectivity between devices have revolutionized the technology

landscape and enabled previously unimaginable applications. The computing sys-

tems of today are universal tools and platforms that play an increasing role in our

daily lives and basic infrastructure. For instance, smart phones and other mobile de-

vices are now widely used for communication, personal organization, online banking,

navigation, and internet. Embedded computing devices are also critical components

in larger systems of the financial, commercial, and military sectors. Automobiles, air

traffic control systems, the power grid, national defense systems, etc. all critically

depend on the computing infrastructure provided by integrated circuits (ICs).

While most of these advances have improved our everyday lives, our vulnera-

bility to cyber attacks has also increased dramatically. For example, outsourcing of

various steps of the IC design/fabrication process has made it easier for untrusted

third parties to insert malicious circuits (hardware Trojans), steal intellectual prop-

erty (IP), and make counterfeit electronics. At the same time, the ever decreasing

1

size of IC features and increasing complexity of modern designs are making it nearly

impossible to detect the fake and modified ICs.

Given the pervasiveness of computing devices in commerce and defense, at-

tacks launched against them can have potentially devastating consequences. For

example, consider how much of our personal and confidential information is stored

on smartphones, PCs, and remote servers. If this information falls into the wrong

hands, it could put individuals at risk for identity theft. Even more alarming are

the cyber and denial-of-service (DoS) attacks on networks and safety-critical sys-

tems (power grid, emergency response, defense, etc.) that can result in deaths.

With the growing number of attacks looming, the need for sophisticated technology

that ensures the confidentiality, integrity, and reliability of our computing systems,

stored data, and IP has never been larger.

1.2 Software vs. Hardware-assisted Security

Traditionally, computing systems have relied upon software-assisted security

in the form of user passwords, key encryption algorithms, anti-virus software, anti-

malware software, etc. However, software-based solutions provide only limited secu-

rity and may still leave systems susceptible to intelligent and well-funded attackers.

In the case of encryption, the cryptographic key is a single point of failure and

can be leaked by various vulnerabilities of Operating Systems (software Trojans,

key-loggers, etc.). Antivirus and anti-malware software are attempts to prevent

such attacks, but are also inherently flawed because they rely solely on feedback

2

from developers. Developers must first recognize the existence of an attack and

then address it with an antivirus/anti-malware database entry or patch. However,

zero-day exploits (i.e. the attacks that occur prior to developer intervention) can

still subvert system security [1]. Finally, any software-assisted security solution can

often be subverted by a physical attack on hardware, the platform on which the

software is running. For example, an adversary can de-package a chip, drill into the

inner layers of the circuit, and directly probe signal lines with the help of advanced

semiconductor tools (Scanning Electron Microscope, Focused Ion Beam, etc.) [2].

Due to the limitations of software-based security measures, the role of hardware

in security has been growing in recent years. For instance, secure cryptoprocessors

are dedicated devices embedded in a tamper resistant package which can be used

to carry out cryptographic operations and handle passwords/keys more securely.

Examples include smartcards [3] and Trusted Platform Modules (TPMs) [4]. Phys-

ically Unclonable Functions (PUFs) [5] are promising solutions to many security

issues due their ability to generate IC unique identifiers that are resistant to cloning

attempts as well as physical tampering. Recently, Intel and McAfee have also been

working on security solutions that move beyond Operating Systems (OS) and rely

more heavily on underlying hardware [1].

The trend towards hardware-assisted security is driven by two advantages

hardware has over software:

• Level of Abstraction: Since computer hardware operates at the lowest abstrac-

tion level, hardware-based solutions can be faster, more energy efficient, and

3

tougher to counter than those in software [1]. This also allows hardware to

play roles against both hardware- and software-based attacks. Software, on

the other hand, can do little against attacks on hardware (eg. microprobing).

• Degree of Modifiability: The ability to easily update software is both an ad-

vantage and disadvantage. On the one hand, developers can fix and patch

problems. On the other hand, the same flexibility can also be exploited by

attackers to install and upgrade viruses, Trojans, and malware. In contrast,

hardware chips cannot be (easily) modified by an attacker once they leave the

foundry.

1.3 Hardware-based Attacks

While the assistance of hardware can dramatically improve system security,

even the hardware-based solutions discussed above have a flaw: they rely on the

assumption that the ICs which make up computing platforms are trustworthy. While

in the recent past this assumption was reasonable, continued outsourcing in the

semiconductor industry has made it increasingly possible for counterfeit and Trojan-

infected ICs to be inserted into the supply chain.

Counterfeiting is a practice that causes irrecoverable loss to the IP holder and

can harm the reputation of authentic providers. Unreliability of counterfeits can

also render systems that unknowingly use them unreliable. A hardware Trojan is

“a malicious, undesired, intentional modification of an electronic circuit or design,

resulting in the incorrect behavior of an electronic device when in operation - a

4

Design Phase

RTL

Description
Design

Specifications

Third Party IP

Gate Level

Description

Technology

Mapping

Place and

Route

Third Party Tools Standard Cells

Malicious Designers

Synthesis Phase

Mask

Generation
Fabrication

Fabrication Phase

Malicious Insiders

Third Party Tools

Test, Package,

and Deploy ICs

Malicious Designers

Figure 1.1: Attacks on the IC Supply Chain/Process

back-door that can be inserted into hardware” [6]. Such attacks represent a con-

siderable danger because they allow adversaries to exploit the advantages possessed

by hardware. By modifying the hardware before it leaves the factory, attackers can

essentially circumvent many hardware- and software-based security features [6].

Hardware attacks occurring during IC design/fabrication and after IC deploy-

ment are discussed in more detail in the sections below.

1.3.1 Sources of Attack in the IC Supply Chain

The wide spectrum of attacks on hardware and the ease with which attacks

can now occur within the IC supply chain is very concerning. Essentially, attacks

on hardware are possible at any stage of the design and manufacturing process. We

highlight the attackers and attacks in Figure 1.1, and we summarize them in the

sections below.

1.3.1.1 Design Phase

The IC supply chain/process starts with the design phase where a designer or

design team writes a register transfer level (RTL) description of the IC according

5

to design specifications. In the past, an IC company might have designed every

component of the RTL itself. However, today most companies typically integrate

third party Intellectual Property (IP) along with their own IP. Attacks in the de-

sign phase can occur through this third party IP, by adversaries who infiltrate the

design process, and by malicious insiders. Infiltrators and insiders are particularly

dangerous since they may have full access to the design and source files.

There are two main attacks that are possible during the design phase:

1. Trojan insertion: If the attacker has write access, he or she can maliciously add

or remove hardware components from the original design (so-called hardware

Trojan attacks). Such attacks can leak sensitive data such as cryptographic

keys or reduce the reliability of the design (discussed in greater detail in Chap-

ter 2). The third party IP may also behave unexpectedly and maliciously.

2. IP Theft: If the attacker only has read access, he or she can still analyze the

design or steal the company’s IP. Stolen IP can be used by the attacker to

produce counterfeit instances of the design. Analysis of the stolen IP can be

used to aid in future software or hardware-based attacks as well.

1.3.1.2 Synthesis Phase

When the design phase is complete, the RTL design is synthesized using third

party software tools from Cadence, Synopsys, Mentor Graphics, etc. Synthesis

begins by translating the high-level RTL to a technology-independent gate level

logic diagram. The technology-independent design is then mapped to a standard

6

cell library and converted to a transistor-level netlist. Finally, place-and-route tools

determine the physical layout of the entire design. Performance-based optimization

algorithms (number of literals/gates, area, timing, power, etc.) are often employed

in each abstraction level.

During the synthesis phase, an attacker can once again perform two attacks:

1. Trojan insertion: If the attacker has write access, he or she can insert Trojans

by adding or removing gates and transistors at the various steps of the syn-

thesis process. The attacker can also reduce the performance and reliability

of the design by manipulating interconnects in the layout (increase capacitive

coupling, aging effects, etc.). Even if the attacker does not have direct access

to the synthesis process, the third party tools and standard cell libraries might

also be untrustworthy and execute similar attacks.

2. IP Theft: If the attacker only has read access, he or she can gather information

from netlists, layout, etc. to aid in future attacks or to create counterfeit

devices.

1.3.1.3 Fabrication Phase

When synthesis is complete, the layout files are sent to a foundry, which gen-

erates lithography masks and then fabricates the chips. In the past, an IC company

could use an in-house foundry (i.e. fab) facility. However, the costs to not only

establish but maintain a full-scale fab have become prohibitively expensive. Thus,

the use of contract (untrusted) foundries has become a necessity for all but a few

7

IC companies (eg. Intel). Attackers in the foundry may accomplish three different

kinds of attacks:

1. Trojan Insertion: An attacker at the foundry will have access to the layout

geometry as well as the mask generation, which will enable him or her to insert

Trojans before fabrication.

2. Overbuilding: Current IC fabrication practices provide little to limit the num-

ber of ICs produced by the fab. Therefore, once the fab has produced the

amount of ICs requested by the IC company, an attacker may be able to

create additional ICs to sell on the black market. This is referred to as an

overbuilding attack and results in irrecoverable loss to the IP holder.

3. IP theft: With the layout or masks, it is feasible (albeit expensive) for an

attacker to reverse-engineer the original design. Once again, the attacker could

then analyze the design for reference in future attacks or use the information

to produce counterfeit instances of the design.

1.3.2 Post-deployment Attacks

Aside from vulnerabilities during design and fabrication, there are also a vari-

ety of attacks that can occur once an IC has been deployed:

1. Trojan Activation: While Trojans are inserted during the design or manufac-

turing process, the malicious circuitry is often such that the Trojan remains

dormant until some triggering event (more details to come in Chapter 2). In

8

doing so, the adverse effects caused by the Trojan can be hidden from post-

manufacturing tests, thereby increasing the likelihood that a Trojan-infected

IC passes tests and is deployed into the field. Later on, when Trojan is acti-

vated, it can execute its attack (leak information, open back-doors, etc.) on

an unsuspecting system.

2. Counterfeiting: Aside from the IP theft discussed above, counterfeiting can

also be accomplished in other ways. For instance, in IC recycling attacks, old

ICs are refurbished and promoted as new products. This is dangerous because

the refurbishing process itself can harm the IC and result in premature failure

of any system dependent on the IC. Failure to adequately test an IC for long

term use and reliability (a process known as upscreening) can lead to similar

issues for unsuspecting consumers and systems as well.

3. Reverse-Engineering: Well-funded adversaries can spend weeks using special-

ized equipment to de-package, de-layer, and image an IC [7]. While this pro-

cess is invasive (i.e. destroys the chip), the recovered information can be

exploited by attackers to understand the IC’s internal features at various lev-

els of abstraction (system level, transistor level, etc.), thereby enabling both

counterfeiting and future Trojan insertion attacks.

4. Microprobing: The same equipment used for reverse-engineering can also be

used to access the chip surface directly and observe nodes of the IC. For

example, one can exploit vulnerabilities (i.e. data remanence) in “erased”

non-volatile and “unpowered” volatile memory to steal sensitive/secret data

9

[8].

5. Fault Injection: Malfunctions in an IC can be triggered by exposing it to abnor-

mal environmental conditions (intensive light pulses, radiation, local heating,

etc.) and then used to infer secret information [8].

6. Side Channel Attacks: Side channels of a device are parameters that charac-

terize the device’s physical implementation, such as delay, power consumption,

glitches, etc. Correlation existing between side channels and the data being

processed by the device can be exploited by attackers to gain information

about the IC. Such attacks have been shown to successfully recover keys from

smartcards on the order of seconds [9], which is a far cry from the billions of

years it would take to crack most encryption standards (eg. AES) by brute

force methods.

1.4 Theme: A Comprehensive Strategy

The attacks discussed above are summarized in Figure 1.2 with supply chain

attacks on the left and post-deployment attacks on the right. One can see that they

are quite diverse and interdependent, which makes providing assurances against all

of them very challenging. For instance, even if one designs a PC with a TPM [4],

there’s no guarantee that a Trojan won’t be inserted into the TPM during synthesis

or fabrication steps. When the Trojan is activated in the field, the security of the

PC will be compromised. Furthermore, even if one could guarantee trust in the

entire supply chain, this would not provide assurances against all post-deployment

10

Hardware Attacks

IC Supply Chain Post-deployment

Design Phase

Synthesis Phase

Fabrication Phase

Trojan Insertion

IP Theft

Trojan Insertion

IP Theft

Overbuilding

Trojan Insertion

IP Theft

Trojan Activation

Invasive
Reverse Engineering

Fault Injection

Microprobing

Noninvasive

Side Channel attacks

Counterfeiting

Physical Attacks

IC Recycling

Inadequate Testing

Figure 1.2: Summary of Hardware Attacks. The lefthand side is organized based on location of

attack in the IC supply chain. The righthand side is organized based on the type of

post-deployment attack.

attacks.

These challenges have motivated us to come up with better solutions in this

dissertation. To deal with the complex interdependencies between the phases of

the IC supply chain/process and the IC’s post-deployment lifetime, we emphasize a

comprehensive strategy. Essentially, our strategy borrows from solutions that have

been used to improve yield, reliability, etc. in the past and extends them towards

security. Our strategy is shown in Figure 1.3 and consists of three steps:

1. Bootstrap: Since ICs are basically unmodifiable after fabrication, designers

have begun to rely on embedded infrastructures that improve IC performance,

yield, and reliability. For example, it is now common practice to deploy error

11

Bootstrap Validate Monitor & React

Design-for-Security

Record Design Behavior

Manufacturing Tests

Trojan Detection Tests

Record IC Behavior

Monitor IC Behavior

Collect Forensic Data

Thwart and Report Attacks

Figure 1.3: Comprehensive Strategy for Self-sustaining Security

correcting code (ECC) in memory for robustness against soft and hard er-

rors. Our ‘Bootstrap’ step is essentially an extension of this concept towards

security.

In the past, security has been only considered as an afterthought during design

and fabrication. However, it is becoming apparent that security constraints

are just as important as performance, power, etc. constraints. The main

function of our ‘Bootstap’ step is to provide better infrastructure, circuits,

and fabrication methods that support IC validation and attack forensics once

chips are fabricated and deployed. For example, by fabricating sensors that

monitor IC side-channel activity, we may be able to detect Trojan presence

at run-time. Information leakage-resistant circuit designs, IC watermarking,

and tamper-resistant structures (such as PUFs [10]), should also enable better

post-deployment security. The key challenge of implementing these ‘Boot-

stap’ features is to do so with minimal overheads and impact on area, power,

performance, etc.

2. Validate: Conventionally, post-manufacturing tests are used to verify that

the gates of an IC operate as expected. The need to do this arises from the

defects that might occur during chip fabrication, such as shorted and floating

12

nodes. The ’Validate’ step in our approach uses similar procedures to test

for security. For example, one can exploit recent work in the literature which

detects hardware Trojans by testing for unexpected changes in logical and side-

channel behavior from the original design (more details in Section 2.1.2.2).

In this step, we can also collect data from (verified) Trojan-free and non-

counterfeit devices to establish expected IC behavior and validate ICs at run-

time. For example, one can record the challenge-response behavior of a PUF

embedded in the design (more details in Section 2.2.2) to verify IC authenticity.

3. Monitor and React: While the pre-deployment testing performed in the ‘Vali-

date’ step is extremely important, it cannot be relied on to find all IC instances

containing Trojans [11, 6]. Furthermore, it cannot protect against other post-

deployment attacks, such as IC recycling. The ‘Monitor and React’ step in

our strategy aims to overcome this flaw. In this step, one can use the infras-

tructures and sensors (added by ‘Bootstrap’) to ‘Monitor’ the IC behavior at

run-time. Data gathered from design simulations and from ‘Validate’ can be

compared against run-time behavior, and any anomalous behavior detected

might indicate a potential Trojan or counterfeit attack. Once an attack is

suspected, built-in defenses could then be triggered to ‘React’ or thwart it be-

fore it does any damage. For example, one might react to a Trojan attack by

quarantining the Trojan-infected portion of the IC before it can leak sensitive

information. In the case of counterfeits, the best mode of defense might be to

warn others by reporting the attack to a central database.

13

The above three-phase strategy is both comprehensive and self-sustaining in

nature. It is comprehensive in that it effectively combines several techniques for

attack prevention, detection, and recovery. Each step builds on infrastructure and

results from the previous step to overcome security vulnerabilities in prior steps.

Furthermore, the above strategy is also self-sustaining because the information ob-

tained from latter steps can be exploited to improve future device instances. For

example, forensic data on hardware Trojans obtained from the ‘Monitor and React’

step could be used to make future designs and tests more robust to the hardware

Trojans detected in past deployments.

1.5 Summary and Thesis Organization

ICs are the basic building blocks of today’s computing systems. Advance-

ments that have created higher-performance, lower-cost ICs have also resulted in

new opportunities for hardware-based attacks during IC design, manufacturing, and

lifetime. Hardware-based attacks, such as Trojan insertion and counterfeit devices,

are a critical danger since they have the ability to subvert many forms of software-

and hardware-based security. The ever growing complexity of ICs and reliance on

outsourcing have made ensuring IC security more difficult than ever. In parallel,

modern computing hardware, tools, and imaging technology, are also making it

easier to attack ICs after they are deployed.

In this dissertation, we investigate new solutions to overcome attacks during

IC design, manufacturing, and post-deployment lifetime. Specifically, we focus on

14

two areas:

• Hardware Trojans: We study hardware Trojans because they are among the

most challenging attacks to prevent, detect, and counter. First, they can be

inserted at any untrusted step of the IC supply chain/process. Second, they

are extremely challenging to detect because of their small size and stealthy na-

ture. Third, the sheer number of attacks against both hardware and software

that can be executed or aided by a hardware Trojan is immense. Further-

more, the persistence of hardware Trojan attacks (i.e. the threat is present

as long as the infected IC is in use) makes detection of their presence ex-

tremely important. In this dissertation, we present a novel Trojan detection

approach [12] which is a basic instance of the comprehensive strategy shown

in Figure 1.3. Specifically, we combine new and old infrastructures, a new side

channel metric (temperature), and advanced statistical techniques to estimate

an IC’s internal state at run-time and detect hardware Trojan attacks as they

occur.

• Physically Unclonable Functions (PUFs): We also investigate PUFs [5], which

are embedded components in ICs that extract IC manufacturing variations

to generate unique, random, and unclonable signatures. At a relatively small

overhead, the PUF signatures can be used to deal with the IP theft, over-

building, counterfeiting, and physical attacks [13] shown in Figure 1.2. Our

work with respect to PUFs is an instance of the ‘Bootstrap’ step in the com-

prehensive strategy (see Figure 1.3). Specifically, we leverage existing models

15

(which are largely ignored in current PUF research) to summarize the sources

of IC variation as well as their impacts on PUFs. Automated approaches for

physical layout and mask generation are then re-investigated in the context

of these variations in order to improve PUF quality and make PUFs more

effective against post-deployment attacks.

Organization. The rest of the dissertation is organized as follows. In Chapter 2,

we discuss the background of hardware Trojans and PUFs in greater detail, includ-

ing the current state-of-the-art research and associated shortcomings. Chapter 3

discusses the motivation and details of our proposed Trojan detection approach,

which is a basic instance of the comprehensive strategy shown in Figure 1.3. In

Chapters 4 and 5, we discuss our innovative techniques for enhancing PUF quality

over the current state-of-the-art methods. We summarize the conclusions of our

work and discuss future work in Chapter 6.

16

Chapter 2

Background

In this chapter, we discuss the background and key challenges of research

related to Hardware Trojans and Physically Unclonable Functions (PUFs).

2.1 Hardware Trojan Attacks and Mitigation

The emerging trend of outsourcing integrated circuit (IC) design and fabri-

cation has created new opportunities called hardware Trojan attacks that can seri-

ously jeopardize the integrity of any electronic system. As discussed in the previous

chapter, anyone with access to the IC manufacturing process, which includes de-

sign, synthesis, and fabrication, can make malicious alterations to the original or

intended circuity which expose system hardware and software to various attacks. In

this section, we discuss the background of hardware Trojans and current research

directions. The section is organized as follows:

• Hardware Trojans have various physical, activation, and attack characteris-

tics which shall determine their effects on a computing system. Our ability

to defend against Trojans relies heavily on our understanding of these char-

acteristics. In Section 2.1.1, we summarize Trojan anatomy, taxonomy, and

real-life examples to frame our discussion of Trojan research in latter sections

and chapters.

17

• Due to the serious threat that hardware Trojans pose to all systems and sec-

tors dependent on ICs, detection of hardware Trojans has garnered significant

interest not only in academia, but also in governmental agencies and industry.

In Section 2.1.2, we discuss the current state-of-the-art methods for Trojan

prevention and detection as well as their associated challenges and shortcom-

ings.

• Finally, we conclude with a summary of the section.

2.1.1 Trojan Anatomy and Taxonomy

2.1.1.1 Anatomy of a Trojan

An example of Trojan circuitry is shown in Figure 2.1. Trojans typically

consist of two components [14]:

• Trojan Trigger: The trigger waits for a special event and then activates the

Trojan’s attack. Common events include rare external input patterns and in-

ternal logic states. Before the Trojan is triggered, the IC containing the Trojan

functions mainly as intended (excluding the trigger’s activity). Figure 2.1 is

an illustration of Trojan circuitry with a NAND gate acting as the trigger.

As long as at least one of the n input nets is a logic 0 (LO), the Trojan will

remain inactive and the net of the original circuit will remain unchanged.

• Trojan Payload: After the Trojan is triggered, the IC’s functionality is changed

by the Trojan Payload. In Figure 2.1, the payload is an AND gate. When

18

internal net 1

Original Circuit Path

internal net n

modified netoriginal net

Figure 2.1: Trojan circuity: Trigger and Payload

the Trojan is triggered and the original net signal is logic 1 (HI), the payload

changes the net to a LO signal.

In this dissertation, we refer to ICs with Trojans as Trojan-inserted or

Trojan-infected. We refer to ICs without Trojans as Trojan-free. Trojan-

inserted ICs whose payloads have been triggered and not triggered are referred

to as Trojan-active and Trojan-inactive respectively.

2.1.1.2 Trojan Taxonomy

In order to facilitate development of Trojan detection and mitigation schemes,

there have been various hardware Trojan taxonomies proposed in the literature.

Our taxonomy (inspired from [15, 14]) is shown in Figure 2.2 and classifies Trojans

according to physical, activation, and action characteristics:

1. Physical Characteristics describe the hardware manifestations of Trojans and

are subdivided into four categories: Distribution, Structure, Size, and Type.

Distribution denotes how the Trojan appears in the layout (e.g. spread out or

isolated). Structure refers to the changes to the original layout caused by the

19

Physical Characteristics

Distribution

Structure
 Layout Change

 Layout Same

Size

Type
 Parametric

 Functional

Activation Characteristics Action Characteristics

Trojan Taxonomy

Externally Activated
 Antenna

 Sensor

 User Input

Internally Activated
 Always On

 Conditional
 Logic

 Sensor

 State

Leak Information

Modify Specification

Modify Functionality
 Change

 Disable

Figure 2.2: Trojan Taxonomy

Trojan insertion. The Size category accounts for the number of components

in the chip that have been added, deleted, or compromised. Type partitions

the Trojans into functional and parametric classes. The functional class refers

to a Trojan that adds gates to or removes gates from the original design. The

parametric class denotes Trojans that are realized by modifying transistor

and interconnect parameters (to reduce performance and/or reliability). The

nature of the changes to the physical characteristics will heavily impact our

ability to detect the Trojan’s presence. For example, a small Trojan which

does not change the IC structure will be more challenging to detect compared

to a larger Trojan that does affect the structure.

2. Activation Characteristics refer to the criteria that trigger Trojan attacks.

First, Trojans can be triggered externally. For example, a rare sequence of

keystrokes on a keyboard can activate a Trojan. Second, Trojans can be acti-

vated internally. Internal activation is further subdivided into ‘always on’ and

20

‘conditional’ cases. ‘Always on’ refers to the class of Trojans that are always

active and do not require a trigger (e.g. parametric type Trojans discussed

above). ‘Conditionally’ triggered Trojans refer to Trojans that are activated

when a certain logical state is reached by the IC (as shown in Figure 2.1).

Typically, an attacker will choose the activation conditions wisely so that the

Trojan is rarely active, thereby preventing accidental detection during simu-

lations and post-fabrication testing.

3. Action Characteristics identify the types of disruptive changes caused by the

Trojan. Trojans can leak information such as a secret key through unused

output ports or side channels. The modify specification class of attacks denote

Trojans that modify the performance of the IC. For example, by modifying

existing wire and transistor geometries in an IC’s critical paths, a Trojan can

degrade the IC’s performance. Modify functionality refers to Trojans that

change or bypass the original logic of an IC. For example, a Trojan can cause

a Denial-of-Service (DoS) in a processor by driving its internal clock signal to

a permanent logic 0 (LO) state.

Although it is possible for Trojans to be hybrids of the above classification

(e.g. having multiple activation characteristics), this taxonomy captures the char-

acteristics of Trojans and is useful for evaluating the capabilities of various detection

strategies [15]. For example, the above taxonomy and others like it have been critical

in developing Trojan attack models, prototypes, and benchmarks for the research

community.

21

2.1.1.3 Real-life Prototypes and Benchmarks

While many of the Trojan actions and characteristics seem like something

out of science fiction, there have been various real-life prototypes and benchmarks

discussed in the literature that show just how easy it is to insert Trojans into an

unsuspecting system and bypass detection schemes. For example, the Illinois Mali-

cious Processor [16] implemented two attacks (a memory attack and a hidden shadow

mode) on a general purpose processor with only 1341 gates. During the 2008 CSAW

Embedded Systems Challenge [17], participating groups successfully implemented

several Trojan-based information leakage attacks which evaded manual detection:

leakage through RS232 protocol, thermal state, AM transmission, LED transmis-

sion, etc. [18]. Malicious Off-chip Leakage Enabled by Side channels (MOLES) [19]

was a Trojan implemented in an AES cryptographic circuit with less than 50 gates

that could leak information through power side channels. In [20], authors showed

how it was possible to intentionally modify circuit parameters without detection for

gradual performance degradation and early IC wear-out. Finally, the Trust-Hub

team has set up a website [21] for the community to upload new Trojan benchmarks

for better evaluation and comparison of different methodologies. As of this writing,

there are currently 88 benchmarks available at [21].

2.1.2 Trojan Mitigation Techniques and Associated Challenges

Due to the variety of Trojans available to an attacker, detecting hardware

Trojans is a very challenging problem. Deterministic validation via exhaustive tests

22

Destructive

Trojan Mitigation

Non-destructive

Design-time

Formal Proofs

Test-time

Logical Test

Run-time

BlueChip Emulation

Infrastructural

 Support

Side Channel

 Analysis

Side Channel

 Analysis

BlueChip Prevention

Verify Golden ICs

Figure 2.3: Trojan Mitigation Techniques

is simply infeasible due to the large size of modern designs. Furthermore, since

Trojans are often triggered by rare events, conventional post-manufacturing tests

which only target common and repeatable faults cannot be relied upon [22]. Thus,

researchers have had to develop new schemes to outwit attackers. The main detec-

tion and mitigation approaches are shown in Figure 2.3 and discussed in the sections

below.

2.1.2.1 Destructive Methods

Destructive techniques are reverse-engineering based approaches [23] that use

Chemical Mechanical Polishing (CMP) for de-metalization and Scanning Electron

Microscopes (SEMs) to extract layer-by-layer images of an IC. Image analysis follows

to identify transistors, gates, and interconnects and reconstruct the manufactured

IC. The reconstructed IC can be compared to the original IC design to determine if

a Trojan exists. The advantage of this approach is that provided the reconstruction

process is accurate, it is a foolproof method for detecting whether a Trojan exists

23

in the IC or not.

Unfortunately, there are several disadvantages of reverse-engineering based

detection. First and foremost, they are extremely expensive and time-consuming,

potentially taking several months to reconstruct a single IC [24]. Second, the reverse-

engineering process ends up destroying the IC under test (ICUT), and hence cannot

be applied to every IC. Finally, the results of one IC cannot be extrapolated to the

entire manufactured lot, because an attacker might only insert a Trojan into a small

subset of ICs.

Due to these disadvantages, the only use for destructive methods in the current

literature is to validate a small set of “golden chips” that can be used for process

calibration and comparison of side-channels with other ICUTs (see below).

2.1.2.2 Test-time Verification Methods

These approaches consist of additional tests that take place after conventional

post-manufacturing testing. They operate under the assumption that the Trojan

circuitry will cause unexpected changes in logical and side-channel behavior from

the original design. For example, when the Trojan shown in Figure 2.1 is activated,

the payload changes a signal propagating in the circuit. The trigger and payload

also represent additional loads on the circuit that do not exist in the original design.

The additional gates have to be driven by existing gates in the design and powered

by the voltage supply, thereby causing larger delay and power consumption than in

the original design.

24

There have been two types of approaches that exploit these properties:

• Logic-based approaches [25, 26, 27] develop directed test patterns that activate

Trojan payloads in order to detect errors in the output. While such approaches

have been shown to be effective for very small Trojans and be robust in the

face of noise [22], they also have several disadvantages. First, simulation-

based and functional testing both suffer from state-space explosion. Second,

the complexity of modern designs makes it difficult to control and observe all

internal node activity. Finally, such approaches cannot detect parametric type

Trojans (see Section 2.1.1.2) since IC parameters are not explicitly tested.

Thus, the scope and effectiveness of these approaches are limited.

• Side Channel-based approaches [28, 29, 30, 31] measure physical parameters of

ICUTs, such as power consumption and path delay, and compares them with

expected parameters of a “golden model” or “golden IC”. “Golden models” can

be determined through simulation tools or from verified Trojan-free ICs (see

destructive methods above). Then, if a side channel of the ICUT falls beyond

a threshold determined by empirical observations of the golden model/IC, the

ICUT is categorized as a Trojan-infected IC.

A major advantage over logic-based methods is that the Trojan payload need

not necessarily be activated in order to detect the Trojan because the trigger

alone will impact IC delay, power, etc. The drawback of side-channel ap-

proaches is their vulnerability to noise (measurement and process), which can

make it challenging to detect very small Trojans [22]. Another problem with

25

side-channel analysis is that the golden model/IC may not always exist. For

example, one cannot apply side-channel analysis on third party IP since the

original/intended design and its behavior are unknown.

Due to the above disadvantages and the fact that there is only a limited

amount of time to perform post-manufacturing tests, some Trojans may be missed

by test-time methods. Thus, run-time monitoring has also been explored as an

additional line of defense against the well-hidden Trojans that circumvent test-time

verification.

2.1.2.3 Run-time Monitoring Methods

Run-time monitoring approaches [32, 33, 34] exploit the same properties as

test-time methods (i.e. differences in logical and side-channel behavior caused by

Trojans). However, the testing is performed after the IC has been deployed, which

has several unique advantages. First, rare Trojan activation can be overcome by

effective run-time monitoring. If run-time monitoring never stops, then the Trojan

activation event itself and its (potentially) large impacts on logic and side-channel

behavior can be more easily detected. Second, run-time monitors offers the flexi-

bility to tolerate Trojan-inserted ICs. In short, if the Trojan remains inactive (i.e.

not triggered) for the IC’s entire lifetime, the IC will always perform its intended

functions. Hence, a valid option would be to deploy the Trojan-inserted IC. If the

Trojan ever does become active, the run-time monitor can respond accordingly with

a defense mechanism. For example, it can disable the IC entirely to prevent the

26

attack or bypass the Trojan logic to maintain correct operation (e.g. [35, 36]).

The main disadvantage of run-time monitoring has been the high resource

overheads [22] required to monitor ICs and defend against Trojan attacks. For

example, the DEFENSE platform proposed in [35] has not been prototyped and

would be difficult to implement in practice [6]. The path delay characterization

approach proposed in [32] suffers from considerable area overhead for modern designs

with millions of paths [14]. The approach in [33] adds sensors to IC power bumps for

high-resolution localized current measurements, which should come with significant

area and power overheads as well.

2.1.2.4 Design-time Methods

Design-time methods have been used in three ways:

1. Trojan Prevention/Removal: In [36], a hybrid compile-time/run-time Trojan

countermeasure called BlueChip was developed to prevent Trojan insertion.

In BlueChip, an Untrusted Circuit Identification (UCI) algorithm and tool-set

automatically identify and remove potentially malicious circuits. Any removed

hardware is replaced by logic that will trigger an exception if the removed

hardware is ever activated at run-time. Low-level trusted software will then

try to emulate what the missing hardware was trying to achieve. While this

approach is promising, it has been shown [37] that there are malicious circuits

that can still evade UCI detection. Furthermore, the proposed approach can

only be applied in processors where software can emulate removed hardware.

27

2. Formal Verification/Proofs: In [38], the authors propose a new protocol where

the IP consumer provides both a hardware specification and a list of “security-

related properties” to the IP vendor. The IP vendor’s task is two-fold: (i) to

write the HDL that implements the design; (ii) to produce a formal proof that

the specified HDL fulfills all the required properties. The IP consumer can

then use a theorem prover to verify the properties when the IP is delivered.

While this is a novel approach, it also has some shortcomings. First, it relies

on a trustworthy IP vendor that will not add Trojans to the proof. Second,

specifying the security-related properties that need to be addressed in the

hardware is a nontrivial task for both IP consumers and vendors.

3. Test-time Support: There have also been several design-time strategies that

aid test-time approaches. Examples include [39] and [40] which use scan flip-

flops to increase the probability of Trojan activation and enhance side channel

analysis. The former approach increases the probability of rarely-activated

nets (i.e. places where Trojans may be triggered) during manufacturing tests.

The latter approach increases circuit activity in specific regions of the IC while

minimizing circuit activity in all other regions to provide better resolution for

side-channel analysis.

2.1.3 Summary

Hardware Trojans have various physical, activation, and attack characteristics

which can determine their effects on a computing system as well as our ability to

28

detect them. Due to the serious threat that hardware Trojans pose to all systems

and sectors dependent on ICs, prevention and detection of hardware Trojans has

garnered significant interest not only in academia, but also in governmental agencies

and industry.

There have been four basic approaches to mitigate Trojans: Destructive,

Design-time, Test-time, and Run-time. While the Destructive approach may be the

most effective way to check the integrity and genuineness of an individual IC, the

complexity, amount of time, high costs, and destructive nature limit its scope. Test-

time approaches can miss out on Trojans because of the lack of observability and con-

trollability of modern ICs, the limited amount of time available for testing, and the

presence of measurement/process noise. Design-time approaches have been mostly

used to aid in run-time and test-time detection of Trojans. Although run-time mon-

itoring is flexible and can significantly improve Trojan detection/mitigation, there

has yet to be a high-quality approach with low resource overhead proposed in the

literature.

In Chapter 3, we propose a new comprehensive strategy for Trojan detection,

which attempts to overcome many of the above issues in existing research. Our

main contribution is a run-time approach with low sensing overhead that makes use

of thermal sensors. Our approach is complementary to test-time approaches and

monitors for Trojan activation at all times when the IC is in use. We also exploit

fundamental theory to deal with measurement/process noise and detect Trojans

more accurately.

29

2.2 Physically Unclonable Functions (PUFs)

In response to the counterfeiting and tampering attacks discussed in Chapter

1, there have been a variety of anti-cloning and anti-tampering solutions proposed

in academia as well as industry. One promising solution that covers many of these

attacks is the Physically Unclonable Function (PUF). PUFs are essentially an ex-

tension of biometrics towards physical objects. In the field on biometrics, random

physical features such as fingerprints, which are unique to each individual and diffi-

cult to remove/duplicate, have a long history of use in human identification. Simi-

larly, PUFs can be used to distinguish physical objects by extracting and comparing

their associated random characteristics.

Silicon PUFs were first proposed by researchers at MIT in [5] as a way to iden-

tify ICs. Due to variations occurring in the manufacturing process, each IC instance

of a design has slightly different physical features and performance characteristics.

A silicon PUF is a special circuit embedded in an IC that extracts the IC’s random

characteristics to generate a unique signature, identifier, or key [41, 42, 13]. Silicon

PUFs have properties that make them exceptional candidates to thwart counterfeit-

ing and physical tampering attacks [13]. First, since many of the fabrication varia-

tions are random, the unique signature generated by the PUF cannot be cloned or

replicated even by the manufacturer. Thus, in order to obtain the PUF’s signature,

one must have or have previously been in physical possession of the IC containing

the PUF. Second, the PUF technology is tamper resistant because any attempt to

physically tamper with the IC may harm the IC’s physical features and modify its

30

associated performance characteristics. For example, if an attacker attempted to

steal the PUF key through microprobing, the de-metalization and delayering steps

would destroy or modify the key, thereby leaving the attacker empty-handed.

In this section, we discuss PUFs, PUF applications, and existing PUF research.

The rest of the section is organized as follows:

• Section 2.2.1 discusses some PUF terminology and several of most common

structures proposed as silicon PUFs in the literature: Arbiter PUF, Ring

Oscillator PUF (RO-PUF), and SRAM PUF.

• As discussed above, the features of PUF signatures make them promising for

many applications in hardware-assisted security. In Section 2.2.2, we highlight

the applications which have been envisioned for PUFs.

• For success in hardware security applications, the PUFs and PUF-generated

signatures should have three major properties: uniqueness, reliability, and

unpredictability. We discuss these properties as well as the metrics which

have been used in the literature to measure PUF quality in Section 2.2.3.

• The PUF properties and quality critically depend on the manufacturing vari-

ations and temporal variations experienced by the PUF/IC. Manufacturing

variations are the source of PUF quality, but are often suppressed in general-

purpose ICs. Temporal variations such as voltage supply noise, changes in

IC temperature, and aging lead to PUF reliability issues. In Sections 2.2.4.1

and 2.2.4.2, we give a high-level overview of these variations and how they

impact PUF quality.

31

• In Section 2.2.5, we discuss the various architectural and circuit-based ap-

proaches that have been proposed in related work to improve PUF quality.

In general, these approaches occur during pre-fabrication or post-fabrication

steps of the IC/PUF and do not involve modeling of the actual fabrication

process or its sources of variation.

• Finally, we conclude with a summary of the section.

2.2.1 PUF Structures

In general, there are two types of silicon PUF discussed in the literature [13]:

1. Delay-based PUFs use race conditions to extract variations of wire and gate

delays to generate PUF signatures. Examples include the Arbiter and Ring

Oscillator (RO) PUFs [41] which are discussed below.

2. Memory-based PUFs exploit the random settling behavior of volatile memory

elements to generate PUF signatures. An example is the SRAM PUF [42]

which is also discussed below.

Before we discuss the operation of basic PUF structures, please make note

of the following terminology. Inputs and outputs of PUF circuits are typically

referred to as challenges and responses respectively. An applied challenge and

its measured response is referred to as a challenge-response pair (CRP). In this

dissertation, we refer to all the PUF response bits as the PUF signature.

32

2.2.1.1 Arbiter PUF

The Arbiter PUF [5] was the first silicon PUF realized in an IC. The Arbiter

PUF sets up two paths (designed symmetrically for same intended path delay) and

uses a race condition to generates a 1-bit output (response) as follows. The two

paths are simultaneously asserted with an input pulse. At the end of the paths,

an “Arbiter” determines which asserted path won the race. If the pulse reaches

the output of the first path faster, the Arbiter outputs a logic 1 (HI). Otherwise, it

outputs a logic 0 (LO). The output/response depends on the delay present in both

paths and is a function of the variations experienced during IC fabrication.

The Arbiter PUF structure is shown in Figure 2.4(b). Each path consists of

a set of stages with each stage containing a switch circuit. The switch circuit is

composed of two MUXES (see Figure 2.4(a)) which are controlled by a challenge

bit. The challenge bit determines which paths the input signals shall take within

each switch. For example, with a challenge bit set as LO, the input signals will

continue to the output along their current paths. When the challenge bit is set

HI, the signals will switch paths. To illustrate, the paths to a particular challenge

are shown in Figure 2.4(c). Due to the variations occurring in the manufacturing

process, the delays of each path within the switches will vary among ICs. Hence,

the propagation time through both of the selected paths is random. The Arbiter at

the end of the paths is typically implemented with a D-latch.

While the Arbiter PUF was the first PUF proposed in the literature, a robust

Arbiter PUF is tough to achieve in practice. First, to generate a correct response,

33

0

0

1

1

(a) Switch

LatchSwitches

input

pulse

response

challenge

bits c1 c2 cn-1 cn

(b) Arbiter PUF

input

pulse

response

0 1 1 0

(c) Example

Figure 2.4: (a) Switch block constructed with MUXES controlled by challenge bit; (b) Arbiter

PUF; (c) Effects of challenge bits on paths to the arbiter.

the timing difference between the two paths has to satisfy the setup time and hold

time of the D-latch. Second, the routing of both paths must be perfectly symmetric

which can be difficult to obtain in practice [43], especially in FPGAs. Without

symmetric routing, the PUF response bits are biased towards one value (LO or HI).

Finally, it is been shown that after observing a number of CRPs, simple machine-

learning techniques can be used to predict PUF responses to unseen challenges with

relatively high accuracy [13]. This flaw could allow attackers to determine a PUF

response to a new challenge without being in possession of the IC.

34

2.2.1.2 Ring Oscillator PUF (RO-PUF)

The Ring Oscillator PUF (RO-PUF) is a delay-based PUF structure that is

easier to implement than the Arbiter PUF. In this dissertation, we use the RO-PUF

in most of our examples and experimental results.

A ring oscillator (RO) circuit consists of an odd number of inverters as shown

in Figure 2.5. The oscillation frequency of an RO is determined by the total delay of

its inverters. Due to process variations, the precise frequency is random and IC de-

pendent. An RO-PUF generates signature bits by comparing oscillation frequencies

of two or more ROs. A common RO-PUF architecture is shown in Figure 2.5 [41]

and functions as follows. The RO-PUF contains a fixed number of ROs, which are

each expected to have slightly different delay/frequency due to process variation. A

challenge (input) to the RO-PUF selects two of the ROs. The frequencies of the

selected ROs are compared and the response is one bit: a logic 0 (logic 1) if the

upper (lower) RO has higher frequency than the lower (upper) RO.

The frequencies of the selected ROs can be obtained quite easily using standard

digital components. An edge detector detects the rising edges in output oscillations

and a digital counter counts the number of edges over a period of time. A comparator

can be used to compare the total number of edges (∝ frequencies) of the two ROs.

2.2.1.3 SRAM PUF

An SRAM cell is a circuit that stores one bit of information. A typical SRAM

cell consists of cross-coupled inverters (M1,M2 and M3,M4) and access transistors

35

odd #

RO1
MUX1

RO2

RON

MUX2

counter1

counter2

challenge

response
<?

edge

detector1

edge

detector2

Figure 2.5: Ring Oscillator (RO) and Ring Oscillator PUF (RO-PUF)

(M5 and M6) as shown in Figure 2.6. During typical operation, the inverters drive

the output nodes (labeled A and A′ in Figure 2.6) to opposing logic values. The

SRAM cell stores a LO when A,A′ = 0, 1V and a HI when A,A′ = 1, 0V. The access

transistors are used to either overwrite or read the bit contained in the SRAM cell.

An SRAM cell exhibits random behavior when reset: (i) when the cell’s power

supply is off (Vdd = Vgnd), it enters into an unstable state where A = A′ = 0V;

(ii) when power is re-applied to the cell, it transitions from the unstable state into

one of the two stable states (LO or HI). The transition to a stable state depends

on the parameters (channel length, channel width, threshold voltage, etc.) of each

transistor in the cell. Due to manufacturing variations, all these parameters are

random and result in a tendency towards one of the stable states after power is

reset. An SRAM PUF exploits the random settling behavior of a group of SRAM

cells. The challenge (input) to the PUF selects a subset of the SRAM cells to power

off. Response bits are the resulting logic values of the selected cells when power is

re-applied.

36

M3

M4

Vdd

M2

M1

Vgnd

M5

M6

A

A'

M1

M3

L1

L3

ΔL=L1-L3Vth1

Vth3 ΔVth=Vth1-Vth3

Figure 2.6: SRAM cell and parameter mismatch between M1 and M3 (∆L, ∆Vth)

2.2.2 PUF Applications in Hardware Security

Silicon PUFs and their associated signatures are convenient for many applica-

tions in IC security:

1. IC Identification/Authentication: After manufacturing a device, the vendor

can record the challenge-response pairs (CRPs) of its PUF in an enrollment

phase. After deployment, a device’s identity can be verified at any time by

the vendor by applying any challenge from the enrollment phase to the PUF.

Since each PUF provides a unique response and the response can only be

measured if one has the physical device, the identity of the device is verified

as authentic when the response returned is the same as the response recorded

during the enrollment phase. To avoid replay (eavesdropping) attacks, the

selected challenge should only be used once to identify the device [13].

The above enrollment/verification procedure can be used by IC vendors to

prevent counterfeiting and overbuilding attacks (see Section 1.3)

2. Safe Encryption Key Generation/Storage: The safety of cryptographic algo-

37

rithms critically depends on the secrecy of encryption keys. Traditionally, keys

are permanently stored in non-volatile memory of a device where they are sus-

ceptible to invasive attacks on memory. However, if a PUF’s response to a

unique challenge (or some derivative of its response) is used as an encryption

key [41] , then the key is physically embedded in the device rather than stored

in memory and is therefore protected against such attacks.

3. Tamper Resistance/Evidence: Many PUFs have a property that if their phys-

ical device is modified, their CRPs also change [13]. This property can keep

the key safe (i.e. self-destruction) while also determining if a device has been

tampered with in the field. By exploiting similar principles, PUF structures

have also been used [44] to identify old ICs in IC recycling attacks (see Sec-

tion 1.3.2).

Use of silicon PUFs in the above applications is not only been restricted to

research in academia. Several companies, such as Verayo and Intrinsic-ID, are also

using them [45].

2.2.3 PUF Quality and Metrics

For success in the above applications, there are three properties that are very

important for PUFs [10]:

1. Uniqueness: In order for a PUF signature to be used as a form of identity,

then for any particular challenge the difference in responses of any two PUF

instances (in separate devices) should be large. A typical measure for unique-

38

ness is mean inter-distance [46]

dinter(C) =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

HD(ri, rj)

m
× 100% (2.1)

where HD(ri, rj) is the hamming distance between any two responses ri and rj

from different PUFs to the same challenge C; k is the number of chips/devices

in the population under test; and m is the number of bits per response. The

optimal dinter(C) is 50%.

2. Reliability: The response of a particular PUF instance for the same challenge

may vary due to temporal variations (see Section 2.2.4.2). However, one desires

relatively stable responses so that the PUF can re-generate its key/identifier.

A common measure for reliability is mean intra-distance. This is calculated

by collecting s samples of a response at different operating conditions (supply

voltage, temperature, etc.) and computing [46]

dintra(C) =
1

s

s∑
j=1

HD(ri, r
′
i,j)

m
× 100% (2.2)

where ri is the nominal response of a challenge C to a PUF; r′i,j is the jth

sample of ri for that same challenge and same PUF instance; and m is the

number of bits per response. Ideally, dintra(C) = 0 which corresponds to no

changes in response for challenge C (i.e. perfect reliability).

3. Unpredictability: Since PUFs can be used to store secrets and cryptographic

keys, PUF responses should be unpredictable/random in order to ensure that

the secret remains safe from machine-learning attacks. Several measures of

unpredictability have been utilized in the literature. One ad-hoc approach is

39

to determine how well machine learning attacks can be used to model PUF

CRPs [10]. More formal metrics such as min-entropy [47] and bit-aliasing [46]

measure randomness in the signatures.

2.2.4 IC Variations and Impact on PUFs

The above PUF properties are heavily influenced by the nature of the varia-

tions experienced during IC manufacturing and over the lifetime of the IC.

2.2.4.1 Manufacturing Process, Variations, and DFM

Variation in the IC fabrication process has a large impact on the yield and

performance of ICs as well as PUFs. IC fabrication on a silicon wafer involves three

basic steps [48]:

1. Patterning: Optical lithography and etching are used to create patterns on

the silicon wafer. In short, light is shined through a mask (which contains the

desired patterns) onto a wafer covered by a photoresist film. The portions of

the resist that receive enough light are removed by development and etching

processes.

2. Semiconductor Doping: Various regions of the silicon wafer (exposed by the

above patterning step) are selectively doped with impurities. This allows the

conductivity of the silicon to be changed when voltage is applied.

3. Film Deposition: Films of conductors and insulators are used to connect and

isolate electronic devices respectively. A chemical mechanical polishing (CMP)

40

step is used to planarize the films and photoresist.

The above manufacturing steps have become more complex and difficult to

maintain with continued semiconductor scaling. As a result, there are several sources

of variability during fabrication which include CMP, optical proximity effects, lens

imperfections in the lithography system, etching precision (line edge roughness or

LER), and the number and position of dopants in the channel [48, 49]. These

variations lead to physical differences in device structures (channel length/width,

oxide thickness, etc.), differences in device electrical parameters (threshold voltage,

drain-to-source current, etc.), and also variation in device performance specifications

(timing, power).

Nature of Variations. Process variations have been modeled in the literature

as consisting of two components [49]:

1. Systematic. This component is a function of the optical lithography system,

the IC layout, chemical mechanical polishing (CMP), etc. and can be (mostly)

predicted upfront [49]. During patterning, light passing through the mask

diffracts resulting in constructive and destructive interference of light on the

wafer. This is known as the proximity effect and heavily depends on the

mask patterns [48]. Chemical mechanical polishing (CMP) is a function of

layout/mask density and results in non-planarity in the photoresist film and

light reaching the wafer out of focus (lower patterning resolution). Since the

sources of systematic variation are similar for each wafer, systematic variations

result in all instances of a chip having the same deterministic deviation from

41

design specifications [46].

2. Random. The major sources of random variation include doping, etching

(LER), variation in oxide thickness, and material granularities [48, 49]. Since

these sources are orthogonal to design implementation, they result in truly un-

certain physical-parameter variations and are often modeled as random vari-

ables.

Impact of Variation on PUFs. With respect to PUF quality, recent research

has shown that the systematic type of the variations are detrimental to PUF quality

while the random variations are beneficial to PUFs [46, 50]. Intuitively, the system-

atic variations result in PUF circuity that behaves more predictably and similar

among different device instances. This has the effect of making the signatures gen-

erated by the PUF more similar (less unique) and less random. Random variations,

on the other hand, can enhance the signatures produced by the PUFs.

Design-for-Manufacturability. Since manufacturing variations increase the prob-

ability of yield loss, current chip fabrication methods (commonly referred to as

Design-for-Manufacturability or DFM [51]) attempt to generate ICs which are im-

mune to both systematic and random variations. Current DFM practices are actu-

ally counterintuitive for PUFs because decreasing random variations will result in

lower PUF quality.

42

2.2.4.2 Temporal Variations

While ICs are designed to operate at some nominal system conditions, the

conditions in which they do operate will actually change over time. Operating

conditions can be due to environmental variations (voltage supply noise and thermal

variations) as well as aging effects. Such changes can alter the underlying behavior

of the ICs [52] and therefore affect the reliability of PUF signatures.

• Voltage Supply Variation. Voltage may vary due to many reasons includ-

ing tolerances of the voltage regulator, IP drops along supply rails, and dI
dt

noise [52]. Since circuit speed is roughly proportional to voltage supply, varia-

tions will cause the IC to speed up and slow down. In the case of delay-based

PUFs which critically depend on delay, such variations will cause PUF re-

sponses and signatures to change over time. This is undesired in many PUF

applications and results in lower reliability. For example, in the RO-PUF (see

Section 2.2.1.2), voltage noise can cause the oscillation frequencies of ROs

being compared to swap their original sorted order, thereby changing the as-

sociated response bit in the PUF signature.

• Thermal Variation. Temperature across the IC is a function of the environ-

ment’s temperature (where the IC is operating) and the activity levels, power

consumption, etc. across the IC. Since delay, current, power consumption,

etc. are strong functions of temperature, thermal variations can also causes

changes in PUF signatures.

• Variations due to Aging. Aging effects are caused by phenomena such as neg-

43

ative bias temperature instability (NBTI), temperature-dependent dielectric

breakdown (TDDB), hot carrier injection (HCI) and electromigration (EM),

which are becoming more prominent with the continuous shrinking of ICs [53].

While voltage supply and thermal variations are transient in nature, aging

causes irreversible changes (oxide wear-out and interconnect failure) in circuit

components and leads to permanent shifts in IC parameters and behavior.

Experimental results in [54] show that PUF reliability decreases with aging.

2.2.5 Existing PUF Research

As discussed above, PUF quality critically depends on the PUF’s ability to gen-

erate signatures that are simultaneously: (i) different between IC instances (unique

and unpredictable/random) and (ii) the same for a given IC instance under dif-

ferent operating conditions (reliable). In an effort to improve the uniqueness, un-

predictability, and reliability of PUF signatures, researchers have investigated new

architectural designs, circuit designs, and post-fabrication processing elements.

2.2.5.1 Architectures

New PUF structures and architectures have been proposed to improve PUF

quality. For example, [55] and [41] proposed feed-forward and XOR-based Arbiter

PUF architectures that increase randomness and nonlinearity of responses for better

resistance to machine-learning attacks. Mecca PUF [56] utilizes SRAM write fail-

ures to produce PUF signatures that are more reliable and random. [46] explored

44

proximity-based methods for selecting ROs in order to reduce the impact of system-

atic variations in the RO-PUF. [57] generated ternary numbers using unreliable bits

in memory-based PUFs to improve PUF signature entropy (unpredictability).

Others have proposed PUF architectures that have lower implementation over-

heads and better features. For instance, [58] is a hybrid delay-memory based PUF

implemented with a ring of inverters that produced a larger number of CRPs com-

pared to existing PUFs. [59] proposed a fast, low-power PUF that relied on a sense

amplifier architecture. Finally, [60] proposed a new memory-based PUF called the

Butterfly PUF which, unlike the SRAM PUF, does not require removal of power to

generate response bits.

2.2.5.2 Circuits

Aside from architectures, several groups have proposed circuit designs that

are less sensitive to systematic variations or more sensitive to random fabrication

variations. For example, the authors in [61] improved the Arbiter PUF uniqueness

by careful choice of sub-threshold parameters. The current starved inverter was

proposed as a new element in delay-based PUFs [62] for its high sensitivity to random

fabrication variations.

Other groups have examined new circuit designs that are more robust in the

face of environmental variations. For example, in [63], the authors use feedback from

thermal sensors to dynamically adjust voltage supplies in the RO-PUF and prevent

signature bits from flipping due to thermal variations. [64] looks at two ways to im-

45

prove PUF reliability across thermal variations. First, they choose an optimal (fixed)

supply voltage which can effectively balance out the changes in threshold voltage

and mobility cause by thermal variation. Second, they use feedback polysilicon

resistances to create temperature insensitive drain currents in delay-based PUFs.

2.2.5.3 Post-fabrication

There has also been a great deal of work devoted towards dealing with temporal

variations and systematic fabrication variations once the IC/PUFs are fabricated.

While PUF reliability was dealt with above by reducing circuit noise levels,

one can also deal with them after fabrication. In such approaches, one accepts

that some level of noise will always exist in the PUF signatures and overcomes

it by storing redundant helper data and employing error correction schemes. The

key challenge is to make sure that no secret bits of the PUF signature/key are

leaked by the helper data. For example, “fuzzy extractors” [65] have utilized helper

data and hash functions to regenerate keys without revealing PUF output. “Fuzzy

embedders” [66, 67] have been used to embed keys and reliably regenerate them

using PUF responses. Soft information that measures the confidence of bits in the

key has also been applied to enhance PUF reliability [68, 69, 70]. Finally, schemes

that model the changes in delay/frequency of PUFs caused by temperature and then

adjust the PUF output to compensate for the current temperature have also been

investigated [71].

Recently, groups have begun investigating ways to counteract systematic varia-

46

tions within fabricated PUFs by adding compensation hardware to the PUF. In [72],

the authors proposed a programmable delay line (PDL) that tunes the delay bias in

Arbiter PUFs caused by asymmetric routing in FPGAs. The PDL is also used to

determine challenges that are more robust against environmental variations for each

PUF instance. Their results show that they can achieve close to ideal uniformity

(randomness measure) with 14 tuning blocks added to an arbiter PUF. In [50], the

authors estimate the systematic variation within an RO-PUF by solving an overde-

termined system of equations using the ordinary least squares (OLS) method. The

systematic biases are corrected using an entropy distiller for two challenges. Their

proposed approach improves the randomness (NIST tests [73]) in PUF responses

when 2nd order and 3rd order polynomials are used to estimate the systematic

portion of oscillation frequencies.

2.2.6 Summary

While manufacturing variations are undesirable in general-purpose ICs and

typically suppressed by Design-for-Manufacturability (DFM), silicon PUFs rely on

random variations to be successful against hardware-based attacks. Thus, there

has been a great deal of work geared towards improving PUF quality by enhancing

uniqueness, unpredictability, and reliability of PUF signatures.

There have been three basic directions for improving PUF quality in existing

work: new architectural designs, new circuit designs, and additional post-fabrication

processing hardware. The architectures have tried to extract signatures with greater

47

randomness and less biases. Circuit level approaches have attempted to increase

sensitivity to random process variations and/or reduce sensitivity to noise. Post-

processing has mostly been used to correct noise in the PUF signatures from tem-

poral variations. While all these approaches have met with success, they require

larger overheads (area, power, etc.) than necessary since they have to overcome the

suppression of random variations by DFM.

In Chapters 4 and 5, we propose innovative techniques [74, 75] that improve

PUF quality by focusing more heavily on the source of IC variations: the manufac-

turing process. In doing so, our approaches can improve PUF quality at low design

cost while also complimenting prior approaches.

48

Chapter 3

Temperature Tracking for Run-time Detection of Trojans

3.1 Introduction

3.1.1 Motivation

As discussed in Chapters 1 and 2, hardware Trojans pose a very serious threat

because they have the ability to subvert both software- and hardware-based security

measures. As a result, there has been a strong initiative in academia, industry, etc.

to develop ways to mitigate hardware Trojan attacks. Detection approaches have

been proposed at all three stages of the IC lifecycle: design-time, test-time, and run-

time. The majority of existing schemes occur at test-time, but flaws in test-time

approaches can allow Trojan-infected ICs to end up being deployed.

• Inactive Trojans. Inputs to the Trojan trigger are often chosen carefully by the

attacker to prevent accidental Trojan triggering during test-time. Since there

is only a limited amount of time to perform tests, the Trojan may remain

inactive/dormant and hence, will not cause any changes to the IC’s logical

behavior.

• Small Triggers. While Trojan triggers have been used in the past to detect

Trojan presence, very small triggers (eg. one gate [76]) can be difficult to

detect because their impact on side-channels (delay, power, etc.) is negligible

49

and can easily be masked by process variation and measurement noise.

• Low Impact on Side Channels. The impact of the Trojan payload on side-

channels can also be masked while the Trojan is inactive. As discussed in [76],

the trigger can be used to “power gate” [52] the payload, which effectively

minimizes its impact on power consumption and delay.

The above flaws have motivated others to investigate run-time approaches to com-

pliment test-time detection. Simply put, since run-time approaches can be utilized

for the entire lifetime of the IC, they can overcome many of the shortcomings of test-

time approaches. While a Trojan-inserted IC’s behavior may be indistinguishable

from a Trojan-free IC’s while the Trojan is inactive, at some point during run-time

the Trojan will have to be activated in order to attack the IC. When a Trojan is

activated at run-time, its attack may have much larger impact on both logical and

side-channel behavior, thereby enabling easier detection.

As a motivating example, we compare power consumption of Trojan-free,

Trojan-inactive, and Trojan-active ICs for a publicly available Trojan benchmark:

RS232-T900 from trust-HUB [21]. RS232-T900 is a micro-UART core with a Trojan

inserted in its transmitter. The Trojan is triggered by a sequence of four transmis-

sion messages and its payload prevents any further transmission.

We determined power and layout information for each of the RS232-T900

design instances by using state-of-the-art Cadence software. First, switching activity

was recorded for the Trojan-free, Trojan-inactive, and Trojan-active instances by

simulating each in Cadence SimVision. Next, Cadence RTL Compiler was used

50

Trojan−active: Power (nW)

5 10 15 20

5

10

15

20

25

Trojan−inactive: Power (nW)

5 10 15 20

5

10

15

20

25
0

1

2

3

x 10
5

Figure 3.1: Avg. power consumption (nW) in a 250µs time window across Trojan-inactive and

Trojan-active ICs for the RS232-T900 benchmark.

to convert the Trojan-free and Trojan-inserted designs to netlists. Then, with the

switching activity, we obtained estimates of power consumption for the netlists of

all three instances. Finally, we determined the cell layout and spatial distribution

of power for each instance by performing place-and-route in Cadence Encounter.

Between the Trojan-free and Trojan-inactive cases, we found little difference

in the spatial distribution of power and only a 3% difference in total power con-

sumption. The difference in power is mainly due to the switching activity in the

Trojan trigger (which does not exist in the Trojan-free design). A 3% difference is

challenging to detect at test-time, especially in the presence of measurement noise

and process variation. In contrast, the spatial distribution of power consumption

of Trojan-inactive and Trojan-active ICs is shown in Figure 3.1. Comparing these

two cases, one can see that the power differs in the upper left quadrant where the

transmitter hardware is located. Once the Trojan is triggered (Trojan-active case),

the Trojan payload blocks transmission. The Trojan-inactive instance, on the other

hand, transmits and receives data at all times. Overall, there is a 30% decrease in

total power consumption after the Trojan is triggered. Such a change should be

51

significantly easier to observe, thereby enabling better Trojan detection.

3.1.2 Main Contributions

The above results demonstrate that run-time monitoring of power can be

very effective for detecting Trojans. Unfortunately, as previously discussed in Sec-

tion 2.1.2.3, such approaches have very large resource overheads. Thus, their use in

practical applications has been limited.

In this chapter, we propose an innovative low-overhead solution for Trojan

detection at run-time. Our approach explores a new side channel for Trojan de-

tection: temperature1. Simply put, Trojans can cause significant changes in power

consumption after activation which will also be reflected in the IC’s thermal profile.

In contrast to prior run-time approaches, temperature-based Trojan detection has

much lower sensing overhead because many electronic systems are already equipped

with thermal sensors (e.g. AMD Operton processor has 38 sensors). Thermal sen-

sors are heavily utilized for dynamic thermal management (DTM) to prevent IC

reliability issues and excessive power consumption. By exploiting these existing

sensors, we can amortize the cost of detecting Trojans at run-time.

Our main contributions are summarized as follows:

• We propose a comprehensive framework for temperature-based Trojan detec-

tion which consists of design-time, test-time, and run-time phases. In the

1As of this writing, there is only one other paper [77] that uses temperature to detect Trojans.

Their work was developed in parallel with ours and, in contrast to ours, is a test-time Trojan

detection approach.

52

design phase, we statistically characterize an IC’s power/thermal dynamics

and optimally place thermal sensors. The test-time phase is used to calibrate

each IC to account for fabrication variation. The run-time phase integrates

the information from the previous phases with thermal sensor measurements

to detect Trojan activation.

• We propose two mechanisms to detect Trojan activation during run-time. The

first is a local sensor-based approach that uses information from thermal sen-

sors, statistical information provided by the test phase, and hypothesis testing.

The second is a global approach that exploits correlation between sensors and

maintains track of the IC’s thermal profile using a Kalman filter (KF). Devi-

ations from the “expected” thermal profile are used to detect the presence of

Trojans.

• We test our detection mechanisms on five publicly available Trojan bench-

marks (from [21]) and use state-of-the-art Cadence simulation tools to compute

power/thermal profiles. In all but one benchmark, the proposed approaches

are capable of detecting Trojan activation quickly (on the order of millisec-

onds) and with very few false-positives.

The remainder of the chapter is organized as follows. In Section 3.2, we dis-

cuss how thermal sensors and predictive models have been used in prior work for

dynamic thermal management and to track temperature. Our specific problem and

its challenges are clearly defined in Section 3.3. The proposed framework and de-

tection mechanisms are discussed in Section 3.4. Experimental results are discussed

53

Figure 3.2: Basic thermal sensor circuit

in Section 3.5. We summarize the merits of techniques proposed in this chapter in

the last section.

3.2 Preliminary

3.2.1 Thermal Sensors

Thermal sensors are heavily utilized for dynamic thermal management (DTM)

to prevent IC reliability issues [78] and excessive power consumption [79, 80]. For

example, the AMD Opteron multicore processor is equipped with 38 thermal sen-

sors [81]. A basic thermal sensor, consisting of a ring oscillator (RO), counter, and

encoder, is shown in Figure 3.2 [82] and functions as follows. The oscillation fre-

quency of the RO is a function of temperature. The counter measures the oscillation

frequency by counting the output pulses from the RO over a fixed period of time.

The encoder then converts the count to a temperature value. Since it consists of ba-

sic digital components, this thermal sensor can easily be added to processor, ASIC,

and FPGA designs.

Basic DTM approaches are reactive in nature. If the temperature of a sensor

exceeds a predefined threshold (typically around 80oC), DTM will trigger one or

54

more mechanisms to cool the IC at the sensor’s location. While reactive approaches

can be effective, they also have shortcomings:

• Limited # of Sensors. Since thermal sensors take up space in the design

and consume power, they cannot be placed everywhere leaving some locations

less observable. Hence, thermal hotspots at locations without sensors can be

missed.

• Measurement Noise. Since the thermal sensor is a circuit, it is susceptible to

noise in the voltage supply (see Section 2.2.4.2). This noise will have an impact

on the RO’s oscillation frequency and will cause the sensor’s temperature

measurement to be noisy. With the thermal sensor being used to trigger

cooling, the noise may cause certain hotspots to be missed or cause the DTM

to overreact.

To overcome the above issues, recent DTM research [83, 84] has tried to com-

bine the sensor measurements with predictive thermal models such as the RC ther-

mal model which is discussed below.

3.2.2 RC Thermal Model

Temperature is a strong function of power consumption. Hence, if one knows

the power profile of chip, the IC’s thermal profile can be estimated. One popular

method for predicting temperature in academia is the RC thermal model [80].

In the RC model, the IC is divided into grids and the temperature and power

consumption of each grid at time t are represented as constants (see Figure 3.3). A

55

T 1 T 2 T 3 T 4

T15 T16

P7

P11

P15
P16

P12

P8

T16
T15

T11 T12

Figure 3.3: IC broken into grids and RC thermal model within dotted region

circuit is used to estimate the IC’s thermal profile where node voltage and circuit

current are analogous to temperature and power/heat flow in each grid. Voltage

ground is analogous to the environment’s ambient temperature. Thermal capaci-

tance and thermal resistance between neighboring nodes determine how heat flows

between nodes/grids of the IC. Temperature for the entire IC can be determined by

solving the following set of ODEs:

∑
∀j∈Ni

1
Rij

(Ti(t)− Tj(t)) + Ci
dTi(t)
dt

− Pi(t) = 0 ∀i (3.1)

where Ti(t) and Pi(t) are the temperature and power dissipated at node i and time

t; Ci denotes thermal capacitance at node i; Rij denotes thermal resistance between

nodes i and j; and Ni is the set of all neighbors for node i. The above equations are

often written in a discrete matrix form [85]:

T⃗ [k] = AT⃗ [k − 1] +BP⃗ [k − 1] (3.2)

where T⃗ [k] and P⃗ [k] are temperature and power vectors (each element corresponds

to one node/grid) at discrete timestep k; A and B are coefficient matrices that

depend upon the RC circuit and timestep duration.

56

By combining the predictive RC thermal model with sensor measurements, the

issues above associated with reactive DTM (limited number of sensors, measurement

noise) can be overcome. For instance, recent DTM approaches [83, 84] have used a

Kalman Filter (KF) to merge prior knowledge of power consumption and statistical

noise characteristics with run-time sensor measurements to obtain optimal thermal

profile estimates of the entire IC over time.

In this chapter, we exploit the key features of thermal sensors, the RC thermal

model, and the Kalman Filter (KF) to detect unexpected changes in IC power/temperature

caused by active Trojans. Temperature-based Trojan detection is a relatively un-

explored avenue which should have lower overheads compared to previous run-time

approaches.

3.3 Problem Definition and Challenges

Our problem is inspired by the example discussed in Section 3.1.1 (RS232-

T900). We assume that there are three possible states that an electronic system

or IC can be in: Trojan-free, Trojan-inactive, and Trojan-active. Each state is

defined by a set of statistical characteristics Sf , Si, Sa respectively. The Trojan-free

and Trojan-inactive characteristics, while not necessarily identical, are close enough

such that the Trojan-inserted IC can evade test-time Trojan detection methods (i.e.

Sf ≈ Si). The Trojan-active characteristics Sa on the other hand differ significantly

from the other two. Our goal is a run-time temperature-based approach that can

detect changes from Sf and Si to Sa after the Trojan is activated. Note, we are not

57

concerned with Trojan-inactive ICs since, prior to Trojan activation, they essentially

provide the same functionality as Trojan-free ICs. Stated formally, our problem is

as follows:

Given two hypotheses of the system’s state:
H0 The state is Trojan-free or Trojan-inactive

H1 The state is Trojan-active

Use thermal sensor observations to determine if the IC’s state (characteristics)

correspond to H0 (Sf , Si) or H1 (Sa).

The above problem has various challenges to overcome some of which are

specific to temperature tracking and some of which are common to Trojan detection:

• Golden IC/model. Most Trojan detection approaches rely on the existence

of a “golden model” to distinguish Trojan-free and Trojan-inserted ICs. In

our case, we assume that the Trojan-free design is given and from it we can

compute Sf characteristics to function as our golden model.

• Autonomous detection. Since the Sf characteristics are known and Sf ≈ Si,

we should be able to easily track temperature for Trojan-free and Trojan-

inactive designs as in prior work. The challenge is detecting active Trojan ICs

because the Sa characteristics are unknown. We propose two mechanisms for

detecting Trojan activation at run-time.

• Sensor Infrastructure and Noise. Prior work has shown that sensor placement,

number of sensors, sensor noise, etc. have a profound impact on temperature

58

tracking [82]. In this chapter, we vary the number of sensors to see the im-

pact on temperature-based Trojan detection. One of our approaches uses the

Kalman Filter which explicitly accounts for measurement noise.

• Fabrication Variation (FV). FV makes it more challenging to track tempera-

ture as well as detect Trojans. For tracking, FV results in larger uncertainty in

the estimated thermal profile [84]. For Trojan detection, FV makes it difficult

to distinguish between deviations in power/temperature due to manufacturing

and Trojan presence [31]. In our approach, calibration is performed for each

IC to ensure robustness in the face of FV.

3.4 Temperature-Based Detection

In this section, we discuss the overall framework and algorithms for our temperature-

based Trojan detection. While detection itself occurs at run-time, the approach itself

is comprehensive in nature with each phase of the IC supply chain/process playing

a critical role. Namely, offline profiling steps at design-time and test-time are used

to deal with many of the challenges discussed in the previous section. An overview

of entire approach with design, test, and run-time phases is shown in Figure 3.4.

The details of each phase are discussed below.

Assumptions. Before we begin, please make note of the following assumptions.

As discussed above, side channel-based Trojan detection often relies on a “golden”

model or IC. Our approach assumes that we have access to the Trojan-free design

or prototype from which we can obtain statistical characteristics (Sf) of switching

59

design-time

test-time

run-time

Statistical Profiling of Power and Temperature

Calculate Optimal Sensor Placement

fabricate ICs

deploy ICs

IC Calibration for Parameterized Model

Online Trojan Detection Mechanisms

Design Benchmarks

Prior Trojan Detection Approaches

Thermal Model

Sensor Measurements

Figure 3.4: Phases of the Proposed Approach

activity, power consumption, thermal dynamics, etc. For simplicity, we shall also

assume that the statistical characteristics are Gaussian. In general, this a valid

assumption due to the central limit theorem (CLT) which states that the statistical

characteristics of a sufficiently large number of independent random variables will be

approximately normally distributed. Note, however, that our detection approaches

are very general and can be extended to deal with other statistical characteristics as

well.

3.4.1 Design Phase

Design Profiling. We profile the Trojan-free designs using the RC thermal

model (see Section 3.2.2), benchmarks, and either state-of-the-art simulation tools

or prototype ICs. The RC thermal model divides the power consumed by the design

into grids and uses a vector P⃗ to represent power consumed in the grids. The

60

statistical approaches for temperature tracking and Trojan detection used in this

chapter require probability distribution functions (PDFs) to summarize the design’s

expected power and/or temperature. Benchmarks that are representative of the

design’s expected workload along with simulation tools are used to estimate the

PDFs. Alternatively, IC prototypes that are verified as Trojan-free can be used. We

approximate the PDFs as Gaussian with mean vectors µ⃗p and µ⃗T and covariance

matrices Qp and QT (for power and temperature respectively).

Sensor Placement. We adopt the sensor placement approach from [82] which

uses the temperature covariance matrix QT . Specifically, sensors are placed in a

greedy fashion to minimize the following cost function

cost =
∑

∀grids:imax
(
0, 1−

∑
∀sensors:jqi,j

)
(3.3)

where qi,j denotes the element at location i and j of matrix QT (i.e. correlation in

temperature between IC grids i and j). The cost captures how much information

is provided by sensors in selected locations and encourages sensor placement at

locations that have high correlation with other locations and are not yet covered by

a sensor. It has been shown that using this approach improves thermal estimation

accuracy [82].

3.4.2 Test Phase

When the design phase is complete, we fabricate the ICs. At this point, we

assume that some Trojan-inserted ICs are fabricated and inserted into the supply

chain.

61

IC Parameter Calibration. Fabrication variation (FV) results in ICs that have

different physical, electrical, and performance parameters from the nominal design.

As discussed above, FV makes it more challenging to accurately detect Trojans and

track temperature. To ensure robustness, we must have accurate power/thermal

statistics (µ⃗p, µ⃗T , Qp, QT) for each IC under test (ICUT). One can accomplish this

by applying test vectors to the ICUT, measuring power consumption, and estimat-

ing the PDFs after fabrication. For example, gate-level characterization has been

applied in prior work [31] to successfully profile IC gate parameters. Temperature-

based approaches which utilize infrared cameras [77] and Expectation Maximization

(EM) [86] are also applicable.

Test-time Detection. One can argue that our temperature-based approach may

not be able to detect all types of Trojans. For example, Trojans that are only active

for a few clock cycles may not have a large impact on power and/or temperature.

This is why we emphasize an integrated framework as shown in Figure 3.4. Prior

test-time detection schemes are used during this phase to remove Trojan-inserted

ICs (that might be missed by our approach) before they are deployed. The proposed

run-time approach would then complement test-time approaches by detecting the

Trojan-inserted ICs (that are missed by test-time schemes) as they are activated in

the field.

62

3.4.3 Run-time Phase

As discussed in Section 3.3, our main problem is to decide the correct hypoth-

esis (state of the system): H0 or H1. In other words, is the IC Trojan-free/Trojan-

inactive or Trojan-active? In this section, we propose two mechanisms to solve the

problem. The first is a local sensor-based approach that uses an hypothesis testing

(HT) framework and Bayesian decision theory. The second is a global approach that

exploits correlation between sensors and maintains track of the IC’s thermal profile

with a Kalman filter (KF).

3.4.3.1 Local Sensor Approach

For simplicity, let us suppose we have one sensor measurement at timestep k

denoted by S[k] from which we shall decide the state (we’ll consider more sensors

later). In an hypothesis testing (HT) framework, one assumes that S[k] can only

come from one of two PDFs: S0 or S1 which correspond to null and alternative

hypotheses respectively.

In our case, the null and alternative hypotheses correspond to the IC thermal

state in Trojan-free/Trojan-inactive (H0) and Trojan-active ICs (H1) respectively.

We shall choose the correct state as the one with the highest probability of oc-

currence given S[k] (i.e. argmaxP (Hx

∣∣S[k]), x ∈ {0, 1}). By applying Bayesian

decision theory, it can be shown the optimal decision is [87]:

Choose H1 (Trojan-active state) when:

p(S[k]
∣∣H1)

p(S[k]
∣∣H0)

>
P (H0)

P (H1)
(3.4)

63

Otherwise, choose H0 (Trojan-inactive state).

where P (x) and p(x
∣∣y) denote the prior probability of x and probability of x given

y respectively.

While the above decision rule is theoretically sound, it is difficult to directly

apply to our problem for two reasons.

• One cannot assume that all measurements come from single stationary PDF

(i.e. one that is time invariant) since the IC temperature varies with time.

• Even if the PDFs were stationary, we do not have access to the Trojan-active

design and therefore cannot accurately estimate p(S[k]
∣∣H1) or P (H1).

We get around these issues by making the following simplifying assumptions.

Stable State Temperature. The first issue no longer presents a problem when

the IC’s temperature has reached a stable state. Put simply, if an IC’s power con-

sumption is similar for a long period of time, the IC’s temperature will end up

converging to a “stable state” [88] where measurements of its thermal state are ac-

tually samples from a stationary PDF. In our approach, we assume that we have a

verified Trojan-free design/IC (see Section 2.1.2.1) and benchmarks that can charac-

terize the IC’s activity. We can then run the benchmarks on the verified Trojan-free

design/IC until reaching the stable state. From there, we take measurements and

approximate p(S[k]
∣∣H0), as Gaussian with mean µ0 and variance σ2

0.

Trojan PDF Estimate: To overcome the second issue, we exploit the fact that

S0 and S1 must be slightly different and assume a simple Trojan attack model.

Specifically, we assume that the mean of p(S[k]
∣∣H1) (µ1) differs from p(S[k]

∣∣H0)’s

64

known mean (µ0) by some fixed percentage difference S% and both possess the same

variance (σ0 = σ1.) If S% < 0 (S% > 0), Trojan activation causes the IC to lose

(gain) some functionality. While this assumption is imperfect, it’s simply the best

we can do to apply the theory since we have little if any knowledge of the actual

Trojan-active design/attack. Moreover, it does allow us to make optimal guarantees

for Trojan detection. If the assumed statistics hold, then we can optimally detect

the active Trojan. Furthermore, if the H1 statistics differ from the H0 statistics by

more than S%, we can also probably detect the Trojan.

Single sensor Decision Rule. With the above assumptions, we now have enough

information to apply the optimal decision rule in Eqn. (3.4). For simplicity, we

assume that P (H0) = P (H1) = .5 and express the conditional probabilities with

p(S[k]
∣∣Hx) =

1

σx

√
2π

exp

(
−(S[k]− µx)

2

2σ2
x

)
, x ∈ {0, 1} (3.5)

With the above, one can easily solve Eqn. (3.4) w.r.t. thermal measurement S[k]

to determine the test statistic [87] (i.e. a hypothesis test specified in terms of

temperature)

Choose H1 (Trojan-active state) when:

S[k] ∈ R1 (3.6)

Otherwise, choose H0 (Trojan-inactive state).

In the above equation, R1 defines a set of temperature values belonging to the

Trojan-active state H1. If the sensor measurement S[k] is from R1, then the IC’s

state is most likely H1. Otherwise, the state is most likely H0. Note that for the

65

1

2

z

n

m

S [k] in R ?1

< z/2?

Trojan-

active ?

Local Sensor

Decisions
Majority VotingIC grids and sensors

S [k] in R ?1

S [k] in R ?1

(1)

(2)

(z)

(1)

(2)

(z)

Figure 3.5: Local Hypothesis Testing (HT) Approach with z sensors and m× n grid

single mode Gaussian PDFs assumed in this chapter, Eqn. (3.6) can be simplified to

either S[k] < r1 or S[k] > r1 (depending on the sign of S%) where r1 is a threshold

value. Nevertheless, the theory and associated decision rule are general enough to

handle other PDFs as well.

Multi-sensor Decision Rule. For multiple sensors, we can easily extend the

above rule by collecting the sensor measurements as a vector S⃗[k] and using multi-

variate Gaussian PDFs. For simplicity, we take a simple ad-hoc approach instead.

We evaluate Eqn. (3.6) for each sensor and come to decision (H0 or H1) by majority

voting.

Overheads. A high-level overview of the local HT approach and its overheads

is shown in Figure 3.5. HT’s offline overhead includes computing the optimal test-

statistics (R1) for each sensor. At run-time, a simple circuit determines if the sensor

measurement is in the sensor’s corresponding R1 and outputs a 1-bit vote. Note that

for the single mode Gaussian PDFs assumed in this paper, the circuit one needs to

implement is a simple comparator. Majority voting is used to combine the decisions

66

of z sensors and obtain a final decision. All these operations are simple and the

overall complexity depends only on the number of sensors z.

3.4.3.2 Global (Kalman Filter-based) Approach

Our second approach is a global approach that exploits correlation between

sensors and uses a Kalman Filter (KF) to dynamically track the system’s thermal

profile at run-time. An autocorrelation based metric then decides between hypothe-

ses H0 and H1 (Trojan-free/Trojan-inactive and Trojan-active).

Temperature Tracking Via Kalman Filter. We track IC temperature at run-

time using the standard Kalman filtering (KF) approach developed in prior work [83,

84]. For simplicity, we only consider dynamic power, but leakage power can be

handled as well [89]. The KF relies on a state-space equation to model the random

dynamics of the state being estimated and on a measurement equation to relate mea-

surements with the state being estimated. The state-space equation for temperature

tracking is the discrete form RC thermal model equation discussed in Section 3.2.2

(copied below for convenience)

T⃗ [k] = AT⃗ [k − 1] +BP⃗ [k − 1] (3.7)

The above equation assumes that the current thermal state T⃗ [k] depends on the

previous thermal state T⃗ [k− 1] (Markovian assumption) and also local power dissi-

pation P⃗ [k−1]. Due to variations in the voltage supply noise, system workload, etc.,

the power P⃗ is random at each timestep and T⃗ [k] cannot be precisely computed with

the state-space model alone. To improve the estimate, the KF uses measurements

67

collected by thermal sensors and the following measurement model

S⃗[k] = HT⃗ [k] + v⃗[k] (3.8)

where S⃗[k] is a vector of sensor measurements at timestep k; H is a transformation

matrix based on the sensor placement; and v⃗[k] is a Gaussian random vector with

zero mean and known covariance R [83] representing measurement noise.

The KF estimates the thermal state of a chip as follows. P⃗ [k] is modeled

as a Gaussian random vector2 with known mean µ⃗p and covariance Qp (which we

determine in the design/test phases). KF estimation is then performed recursively

with predict and update steps. In the predict step, the KF uses µ⃗p and the previous

temperature estimate to predict the IC’s new thermal state. In the update step, the

KF corrects this estimate based on new sensor measurements. This predict-update

2Note that while Gaussian distributions are assumed for power/temperature by the KF in this

paper, prior work [85, 86] has shown that the KF framework can be extended to handle a mixture

of Gaussians (MOGs) for more general PDFs. Such approaches can easily account for multiple

power profiles, modes of IC operation, etc. For simplicity, we assume a single Gaussian PDF in

this paper, but shall evaluate MOGs for Trojan detection in future work.

68

process is shown in Figure 3.6 and described by the following equations:

predict: T⃗ [k|k − 1] = AT⃗ [k|k − 1] +Bµ⃗p (3.9)

C[k|k − 1] = AC[k|k − 1]AT +BQpB
T (3.10)

update: e⃗[k] = S⃗[k]−HT⃗ [k
∣∣k − 1] (3.11)

T⃗ [k|k] = T⃗ [k|k − 1] +K[k]e⃗[k] (3.12)

K[k] = C[k|k − 1]HT (R+HC[k|k − 1]HT)−1 (3.13)

C[k|k] = (I−K[k]H)C[k|k − 1] (3.14)

T⃗ [k|k] and T⃗ [k|k−1] are estimates of the temperature at timestep k computed with

and without sensor information respectively; C[k|k − 1] and C[k|k] are the error

covariance matrices associated with T⃗ [k|k − 1] and T⃗ [k|k]; e⃗[k] is the KF residual

which reflects the discrepancy between the predicted and actual measurements; I

is the identity matrix; K[k] represents the Kalman gain at the kth step and is

chosen to minimize the error in T⃗ [k|k]. First, Eqn. (3.9) is used to compute a

prediction of the temperature (T⃗ [k|k−1]). Then, Eqn. (3.12) updates the prediction

(T⃗ [k
∣∣k− 1] → T⃗ [k

∣∣k]) based on the residual (Eqn. (3.11)). The filter also generates

error covariance matrices associated with T⃗ [k|k− 1] and T⃗ [k|k] which keep track of

the error in the thermal estimates and are computed based on the power and sensor

noise covariance matrices (Qp and R).

Steady State Kalman Filter. When the statistical characteristics of P⃗ and

measurement noise are fixed (or do not change for a relatively long time), the KF

stabilizes which means C[k|k − 1],C[k|k], and K[k] converge to static values. This

is referred to as the KF steady state During the steady state, even though the

69

Initialization Measurements

Predict Update

Accurate Temperature Estimates

state-space meas.
KF

Figure 3.6: KF-based Temperature Tracking

temperature may change with time, the error associated with the estimates remains

the same. The steady state allows one to create low overhead implementations of

the KF [84] by replacing C[k|k − 1],C[k|k], and K[k] in Eqns. (3.9) to (3.14) by

constants.

Autocorrelation-based Detection Rule. While the KF can be used to accu-

rately track temperature, we also need a rule to decide on the correct state (H0 or

H1). Our decision rule is based on the KF residual and uses the autocorrelation

function of the residual process. In the KF, residual e⃗[k] represents the discrepancy

between the predicated temperature and thermal sensor measurements. If e⃗[k] is

small (large), the two agree (disagree) on the thermal state. Assuming the state-

space model/parameters and the sensor noise covariance are reasonably accurate,

the autocorrelation of the residual should be close to zero on average [90]. When a

Trojan gets activated, the state-space model (which does not account for the power

of an active Trojan) becomes less accurate and should cause the autocorrelation to

diverge from zero.

We use the following method to detect a Trojan at timestep x. We record the

residual in the N previous timesteps of the KF (e⃗[x−N], e⃗[x−N +1], . . . , e⃗[x]) and

70

1

2

z

n

m

A Bu K H

T[k|k-1]=AT[k-1|k-1]+Bu

e[k]=S[k]-HT[k|k-1]

T[k|k]=T[k|k-1]+Ke[k]

p

p
a[k]>a^

T

a[k-1]>a^
T

a[k-V]>a^
T

< V?

Steady State Kalman Filter

Trojan-

active ?

(mn X mn) (mn X 1) (mn X z) (z X mn)

Autocorrelation

e[k]

IC grids and sensors

Figure 3.7: Global Kalman Filter (KF) Approach with z sensors and m× n grid

then compute the following cost function

â[x] =
1

N

x∑
i=x−N+1

(
e⃗[i] · e⃗[i− 1]T

)
(3.15)

This cost is the average autocorrelation of the residual process in the lastN timesteps.

To decide if a Trojan is activated, we define thresholds aT and V . If (|â[x]| > aT)

for more than V consecutive timesteps, we assume a Trojan has been activated (i.e.

state H1). aT and V are parameters that tune the aggressiveness of the decision

rule.

Overheads. A high-level overview of the KF approach and its overheads is

shown in Figure 3.7. The main offline overheads are estimating the power statis-

tics (µ⃗p and Qp) and computing the steady state Kalman gain matrix K. During

run-time, the KF performs some matrix-vector multiplications and vector addi-

tions/subtractions (Eqns. (3.9), (3.11), (3.12)) at each timestep k. The size of the

matrices/vectors and complexity of these operations depend on the number of grids

in the RC thermal model (mn) and the number of sensors (z). Running averages of

the autocorrelation â for the last V timesteps must be stored and the final state is

chosen based on V + 1 thresholding operations.

71

3.4.3.3 Qualitative Comparison

The salient differences between the above two detection mechanisms are as

follows:

• Stable State Assumption: The local hypothesis testing (HT) approach requires

the system under test to be in a stable thermal state so that the sensor mea-

surements can be compared with stationary PDFs. The global Kalman Filter

(KF) approach works with the system in any thermal state since it tracks the

system’s thermal profile at all timesteps.

• Sensor Correlation: The local HT approach compares each sensor measure-

ment with its corresponding stable state PDF in an independent fashion.

Correlation between the sensors is not exploited and the final decision is made

based on a majority vote. The global KF approach exploits the correlation

between sensors to accurately track temperature and detect Trojans.

• Run-time Overheads: The KF approach clearly has larger run-time overheads

than the HT approach (see Figs. 3.5 and 3.7). While the HT approach primar-

ily works with scalar values and computes 1-bit decisions, the KF approach

requires matrix-vector storage and computations which are more expensive

(O(mn)).

72

3.5 Experiments and Discussion

3.5.1 Setup

Benchmarks. We tested our Trojan detection schemes on five publicly available

Trojan benchmarks (from trust-HUB [21]):

1. RS232-T900 was discussed in Section 3.1.1.

2. s38417-T300 contains a Trojan trigger with activation probability of 1.7e-44.

Once activated, the payload leaks the value of a specific net through a 29 stage

ring oscillator.

3. BasicRSA-T200 is an RSA encoder with a Trojan triggered by a specific plain-

text input. The payload permanently disables encoding of the plaintext.

4. MC8051-T300 is an implementation of the 8051 microprocessor with a Trojan.

The Trojan is triggered when a specific string is sent through the UART and

the payload blocks new messages from the UART.

5. MC8051-T600 is another implementation of the 8051 microprocessor with a

Trojan. The Trojan is activated by an external interrupt and disables 8051

instructions containing jumps.

We determined power and layout information in the above benchmarks by simulat-

ing, synthesizing, and placing each design with Cadence SimVision, RTL Compiler,

and Encounter tools for two different testbench instances: one which activates the

Trojan (i.e. Trojan-active) and one which does not (i.e. Trojan-inactive). The

73

Benchmark RS232-T900 s38417-T300 BasicRSA-T200 MC8051-T300 MC8051-T600

% difference -39.97% 54.33% -28.40% -1.5% -72.16%

Table 3.1: % difference in total power consumption between Trojan-inactive and Trojan-active

in 250ms experiment

difference in power consumption between the two is shown in Table 3.1 for all the

benchmarks. In all cases but one (MC8051-T300) there is a % difference larger than

25%.

Temperature-based Trojan Detection. We divided the IC into 20 by 16 grids

(320 distinct regions). In the design phase, we computed power and temperature

statistics using 250ms of data generated by Cadence (from the Trojan-free designs)

and the RC thermal model [80]. With the resulting statistics, we placed sensors

as discussed in Section 3.4.1. The number of sensors we tested were 4, 16, and 32.

For simplicity, we ignored fabrication variation and therefore did not implement the

test phase. For the run-time phase, we computed “real” dynamic thermal profiles

using the RC thermal model. A steady state Kalman filter (KF) implementation

was used to estimate the thermal profile for Trojan-active and Trojan-inactive cases.

Sensor measurements were made by overlaying noise onto the “real” thermal profile.

We assumed sensor noise variance of 0.1 which seems like a worst-case for state-of-

the-art thermal sensors [91]. For KF-based Trojan detection, we stored N = 50

residuals and chose autocorrelation thresholds V = 10 and aT = .18, .34, .40 for 4,

16, and 32 sensors respectively (based on data from the Trojan-free designs). For

the hypothesis testing (HT) approach, we used mean difference S% = ±2.5% to

74

RS232-T900 s38417-T300 BasicRSA-T200 MC8051-T300 MC8051-T600

sensors t+ f+ tdec t+ f+ tdec t+ f+ tdec t+ f+ tdec t+ f+ tdec

HT

4 100% 79% 4.9E-2 100% 45% 1.9E-3 100% 66% 1.7E-2 0% 0% - 100% 66% 5.2E-2

16 100% 0% 1.7E-1 100% 0% 4.3E-3 100% 0% 3.9E-2 0% 0% - 100% 0% 1.6E-1

32 100% 0% 2.1E-1 100% 0% 5.1E-3 100% 0% 4.8E-2 0% 0% - 100% 0% 2.0E-1

KF

4 100% 0% 1.0E-3 100% 0% 3.6E-3 100% 0% 8.3E-3 1% 1% 1.2E-2 100% 0% 3.7E-2

16 100% 0% 8.3E-4 100% 0% 2.7E-3 100% 0% 6.3E-3 3% 3% 1.1E-2 100% 0% 3.2E-2

32 100% 0% 5.9E-4 100% 0% 2.2E-3 100% 0% 5.2E-3 7% 7% 1.0E-2 100% 0% 2.4E-2

Table 3.2: Average true positive rate t+, false positive rate f+, and detection time tdec

(seconds) for 100 trials. Note detection time is given in seconds and only includes true positives.

‘-’ indicates no true positives.

estimate the Trojan-active stable state PDF S1. Except where specified, one can

assume the experiments were conducted while the ICs were in stable thermal states.

3.5.2 Results

We conducted 100 trials with random sensor noise on both the Trojan-inactive

and Trojan-active ICs. We recorded the following data: average true positive rate

t+, average false positive rate f+, and average time tdec to obtain a true positive. The

results are shown for all 5 benchmarks and both detection mechanisms in Table 3.2.

“HT” and “KF” denote the local hypothesis testing and global Kalman Filter based

approaches respectively.

Local Hypothesis Testing (HT). HT was able to detect the active Trojans

(true positives) in all the benchmarks with 100% accuracy except for MC8051-T300.

MC8051-T300 had the smallest difference in power consumption between Trojan-

active and Trojan-inactive cases (see Table 3.1) and thus there was little deviation

75

in the thermal profile. False positives on the inactive Trojans were only an issue in

the 4 sensor case and went to 0% with additional sensors. Increasing the number

of sensors also resulted in slower Trojan detection. Put simply, it took a longer

time for the majority of sensors to agree on a true positive when there were more

sensors. On average, 4 sensors could detect Trojans 70% faster than 32 (ignoring

MC8051-T300), but with higher false positive rate.

Global Kalman Filtering (KF). The KF was also very successful with true pos-

itives in every benchmark but one. Once again, the deviation in power/temperature

was too small to detect for MC8051-T300. The KF had a false positive rate of zero in

all instances but MC8051-T300. In contrast to HT, increasing the number of sensors

from 4 to 32 improved detection time by 38% on average (ignoring MC8051-T300).

Basically, the more measurements the better the resolution of thermal profile and

autocorrelation â. To illustrate, Figure 3.8 shows â of Trojan-inactive (blue) and

Trojan-active (red) ICs with 4 and 32 sensors for s38417-T300. The Trojan-inactive

autocorrelation stays below the threshold aT (black line) while the Trojan-active

autocorrelation diverges from zero and exceeds the threshold. The Trojan-active

case crosses the threshold more quickly in the 32 sensor case.

Note that the results in Table 3.2 correspond to the case where the ICs were in

stable thermal states, but we also ran trials at room temperature. For the latter, the

KF yielded similar results.

Comparing Local HT and Global KF. While both approaches worked well, the

KF achieved better results. The KF found active Trojans 60% faster on average

than HT and was effective even with only 4 sensors. Also, while the HT approach

76

0 0.05 0.1
0

0.2

0.4

0.6

0.8

time (seconds)

A
ve

ra
ge

 A
ut

oc
or

re
la

tio
n s38417−T300: Four Sensor Case

Trojan−inactive
Trojan−active
Threshold a

T

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

time (seconds)

A
ve

ra
ge

 A
ut

oc
or

re
la

tio
n s38417−T300: Thirty−two Sensor Case

Trojan−inactive
Trojan−active
Threshold a

T

Figure 3.8: Average autocorrelation (â) over time with 4 and 32 sensors for s38417-T300

could only operate with the ICs in a stable thermal state, the KF worked in all

scenarios. The advantage of HT is its lower overheads.

3.6 Summary

In this chapter, we proposed innovative temperature-based approaches for on-

line Trojan detection. The merits and key features of our approaches are summarized

as follows:

• Exploit Thermal Sensors For Low Sensing Overhead. Existing run-time ap-

proaches [32, 33] have suffered from high overheads and lack of scalability.

Our approach exploits the fact that Trojan activation can cause significant

changes in power consumption, which will be reflected in the IC’s thermal

profile. Our temperature-based Trojan detection has lower sensing overhead

compared to prior run-time approaches because many electronic systems are

already equipped with thermal sensors for dynamic thermal management.

• Comprehensive in Nature. Our novel temperature-based Trojan detection is

a basic instance of the comprehensive strategy discussed in Section 1.4. Each

77

phase of the IC supply chain/process plays a critical role in our method. In

the design phase, we statistically characterize an IC’s power/thermal dynam-

ics to create “golden models” and place optimally thermal sensors based on

these statistics. At the test-time phase, we weed out Trojan-infected ICs with

prior detection approaches. We also gather information from ICs that pass

logic-based approaches and side-channel analysis in order to calibrate each IC

for fabrication variation. The run-time phase integrates the information from

the previous phases with thermal sensor measurements to detect Trojan acti-

vation. Any Trojans that are detected at run-time can be reported to warn

other IC consumers as well as to improve future design instances and test-time

verification approaches.

• Strong Theoretical Foundations. Existing methods for Trojan detection tend

to be ad-hoc in nature. They fail to make optimal decisions regarding Tro-

jan presence and do not directly account for measurement/process noise. In

contrast, the temperature-based detection schemes that we propose are more

rigorous and rely on fundamental theories from signal estimation and detection

theory. Specifically, we use well-known Kalman Filter (KF) theory to com-

bines prior knowledge of state transitions and statistical noise characteristics

with sensor measurements in order to optimally estimate IC thermal profiles

in time. We also exploit Bayesian decision theory and autocorrelation metrics

to create optimal thresholds in our detection schemes.

• Highly Generalizable. Our approaches are highly generalizable in various re-

78

spects. First, the thermal sensing circuits (eg. ring oscillators) are easy to

manufacture on processor, ASIC, and FPGA platforms. Second, the KF ap-

proach itself can be extended to utilize multiple and heterogeneous sensing

modalities for better IC temperature or state tracking. Our proposed frame-

work can also be extended to utilize nonlinear and non-Gaussian filtering

approaches such as the Extended Kalman Filter (EKF) and Particle Filter

(PF). Finally, while we have only applied our approach to hardware Trojans,

it should also be able to handle software Trojan attacks which may have a

similar impact on power/temperature profiles.

79

Chapter 4

Mask Generation for Physically Unclonable Functions

4.1 Introduction

As discussed in Chapter 2, silicon PUFs rely on the existence of variations

occurring during IC fabrication to produce unique, unclonable, and tamper-resistant

signatures. At a relatively small overhead, the PUF signatures can be used to

deal with many hardware-related attacks, such as overbuilding, counterfeiting, and

microprobing. While improving PUF quality has been an important area of research,

we have recognized two significant shortcomings in prior work:

• Limited Focus on Fabrication. Figure 4.1 summarizes the techniques used to

improve PUF quality and is organized according to each technique’s goal and

with respect to its place in the IC design/fabrication process. One can see

that existing work (with lone exception in [92]) has only attempted to im-

prove PUF sensitivity to systematic variations (SV), random variations (RV),

and environmental variations (EV) at architectural level, at circuit level, and

with additional post-fabrication processing. While such techniques success-

fully exploit the existence of variations, they do not explicitly focus on the

fabrication process itself, which is the source of PUF quality in the first place.

Rather, they treat the manufacturing process and underlying variations as a

black box.

80

SV Compensation RV Enhancement Resistance to EV

Architectural/Circuit Design [61, 46, 57] [41, 55, 62, 56] [63, 64, 56]

Synthesis/Physical Layout* [92]

Mask Generation*

Fabrication Process *

Post-Fabrication [72, 50] [65, 66, 67, 68, 69, 70, 71]

Figure 4.1: Summary of existing research geared towards improving PUF quality. Columns

represent the three main areas of research: Systematic Variation (SV) Compensation, Random

Variation (RV) Enhancement, and Environmental Variation (EV) Resistance. Rows represent the

steps in the IC design/fabrication process. Starred rows denote steps where research is lacking.

New approaches at mask and layout levels are the focus of Chapters 4 and 5 in this dissertation.

• Current DFM Flow Counterintuitive for PUFs. With each generation of VLSI

technology, the miniaturization and complexity of state-of-the-art products is

making it more challenging to achieve high-yielding designs. In short, modern

feature sizes make the fabrication process and resulting ICs more susceptible

to process variations. In response, there has been an initiative called Design-

for-Manufacturability (DFM) in the fabrication community. DFM research

models the sources of fabrication variations and develops tools for suppress-

ing all of them. While DFM has been critical to continuous scaling of ICs,

PUFs designed and manufactured by such approaches will be more immune

to random variations and, therefore, shall generate signatures of lower qual-

ity. Furthermore, since the existing techniques for enhancing PUFs (shown

in Figure 4.1) do not address the fabrication process or DFM directly, they

81

must incur larger overheads than necessary to counter DFM’s suppression of

random variations.

In this chapter and the next chapter of this dissertation, we propose innovative

techniques which overcome the above shortcomings. In an attempt to bridge the

gap between DFM and PUF research, we take a fundamentally different approach

that places greater emphasis on physical layout, mask generation, and the fabrication

process to improve PUF quality. Specifically, in Chapter 4, we propose two new mask

generation techniques that improve fabrication variation caused in PUFs during IC

patterning/lithography. In Chapter 5, we propose new standard cell layouts that

reduce the impact of systematic variation on PUFs and show how they can be

combined with existing circuit design approaches.

The key features of our approaches and main contributions are summarized as

follows:

• Role-reversal for DFM. Our approaches exploit the existing DFM models and

tools that are ignored in current PUF research. We also develop new algo-

rithms that reverse the role of standard DFM tools and extend them towards

improving PUF quality. Rather than trying to suppress all fabrication varia-

tions, our techniques are designed to increase sensitivity to random variations

and thereby improve the uniqueness, unpredictability, and reliability of PUF

signatures. Furthermore, we also develop techniques that focus on suppress-

ing only systematic variations within PUFs. All this is done such that the

non-PUF circuits remain unaffected (more below).

82

• Effectively Balance DFM and PUF Quality. Although PUFs rely heavily on

random variations, non-PUF portions of an IC (CPU, etc.) desire less vari-

ability during fabrication. Our approaches can balance these competing needs.

For mask generation, we need only apply our techniques to PUF portions of

the IC. The mask for remaining parts of the IC can still be obtained using

standard DFM approaches. Since spatial correlations imposed by mask gen-

eration algorithms decay very quickly with distance [93], we can easily avoid

any interference between the two mask patterns. In the case of standard cells,

the cells we develop for PUFs need only be used in PUF portions of the IC.

• Complimentary to Existing PUF Research. As shown in Figure 4.1, phys-

ical layout and mask generation occur in between circuit design and post-

fabrication steps of the standard design/fabrication flow. Since our approaches

occur after design, they can be applied to any PUF architecture/circuit design

(delay-based, memory-based, etc.) to generate better PUF signatures. Since

they enhance PUF quality during fabrication, they can also be complimented

by post-fabrication approaches if necessary. For example, the underlying PUF

circuits can also utilize existing error correction schemes to obtain further

improvements.

• Lower Overhead. Since our approaches are fabrication-based, they shall gen-

erally improve PUF quality with little architectural or circuit overheads (area,

power, etc.). Furthermore, by improving PUF quality, they can also reduce

the need for the architectural and circuit blocks required to overcome DFM.

83

• Highly Generalizable. The models, objective functions, framework, and anal-

ysis used by our approaches are very general and can be used as a guide in

future mask generation, physical layout, and IC fabrications techniques for

improving PUF quality.

For the remainder of this chapter, we examine the variations occurring during

optical lithography and develop new mask generation techniques to improve PUF

quality at fabrication. In Chapter 5, we look at a layout-based approach to improve

PUF quality.

Outline. The rest of this chapter is organized as follows.

• As discussed in Chapter 2, variations during manufacturing heavily influence

PUF quality. In this chapter, we look at the lithography/patterning step of

manufacturing to improve variations in PUFs. Our main goal is to generate

lithography masks that result in better PUF signatures. In Section 4.2, we dis-

cuss background for optical lithography, Optical Proximity Correction (OPC,

often used to suppress fabrication variations, and state-of-the-art OPC-based

mask generation.

• In order to understand the impact of variations, we must have effective models

for fabrication variation. Section 4.3 discusses variability models from the lit-

erature. We also qualitatively illustrates the impact of systematic and random

variations on the RO-PUF.

• In Section 4.4, we discuss alternative OPC formulations and cost functions

called P-OPC and SVC-OPC that generate mask which improve PUF suscep-

84

tibility to random and systematic variations respectively. We also highlight

how our approaches can be applied without affecting non-PUF portions of the

ICs.

• In Section 4.5, we discuss our experimental setup and results. We compare

the PUF quality resulting from conventional OPC and our proposed OPC

approaches for several different PUF architectures.

• The advantages of our mask-based approaches are summarized in the final

section of the chapter.

4.2 Preliminary

Notation. We denote matrices by bold letters and use subscripts and super-

scripts to denote matrix elements. For example, an element at row j and column i

of a matrix A is given by Ai
j.

4.2.1 Optical Lithography

Optical lithography is the process by which a photoresist covering a silicon

wafer is exposed to optical wavelengths and then developed to form desired pat-

terns/structures on the wafer. An optical lithography system consists of two mod-

ules [94] (shown in Figure 4.2) which are described below:

1. Illumination Module. A mask that contains the desired silicon patterns is

illuminated by a light source through an illumination lens. The mask is typ-

ically binary, meaning it consists of only transparent and opaque structures

85

Figure 4.2: Optical Lithography System

which allow light to reach and prevent light from reaching the photoresist

respectively.

2. Projection Module. Light diffracts as it passes through transparent parts of

the mask. A projection lens picks up a portion of this light and projects an

“image” (pattern) onto the photoresist. Depending on the type of photoresist,

it either hardens or remains soft in presence of light. The portions of the resist

that receive enough light are removed by a chemical etching process. The parts

of the wafer still covered with resist are protected from doping, deposition, etc.

Lithography Models. The above lithography process and variations have been

modeled in the literature (eg. [48]) and there are many simulation tools that estimate

the structures in chips resulting from lithography (eg. Calibre Workbench). The

lithography process (illustrated in Figure 4.2) is modeled with two basic steps:

1. Light passing through the mask is projected onto the photoresist creating an

“aerial” image Ia. Let My
x ∈ {0, 1} denote the pixels at the location x, y for

the mask M where zero (one) refers to opaque (transparent) pixels. For a

86

coherent imaging system, the aerial image is given by [95, 96]

Ia = |M ∗ h|2 (4.1)

where ∗ denotes the convolution operator. h denotes the point spread function

(PSF) of the projection lens and is modeled as

hy
x =

J1

(
2πNA

√
x2 + y2/λ

)
2πNA

√
x2 + y2/λ

(4.2)

where J1 is the Bessel function of the first kind, order one [95], NA is the

numerical aperture of the projection lens, and λ is the source light wavelength.

2. Once the optical image falls onto the resist-coated wafer, the photoresist is

developed and etched based on image intensity at the corresponding wafer

location. If the photoresist material is positive (negative) and the image in-

tensity at a certain location is greater (lesser) than a specific threshold, the

resist gets etched out. The resulting image is called the resist or pattern image

I and is often calculated as follows [95]

Iyx =


1, if Ia

y
x ≥ Ith

0, otherwise

(4.3)

where Ith is a constant intensity threshold.

Lithography Process Variations. Fundamentally, the optical light pattern

falling on the wafer decides what physical structures are fabricated. There are many

sources of variation in the optical lithography process which include imperfections

in the mask, light source, and lenses as well as variation in the distance between the

projection lens and wafer. These sources of variation result in differences between

87

the pattern appearing on the photoresist and the desired pattern, which in turn

result in variation in structures and features as well as performance deviation from

design specifications.

Process variations during lithography are typically modeled as a combination

of focal and dose variations [48]:

1. Focal Variations (Defocus): Focal errors (defocus) are essentially small changes

in the distance between the light source and resist/wafer from the ideal setting.

Focus variations are modeled as a change to the PSF of the projection lens [96]

h(F)yx = F−1{(h̃(fx, fy)e−jπF (f2
x+f2

y)} (4.4)

In Eqn. (4.4), F−1 denotes the inverse Fourier transform, h̃ = F (h), fx and

fy are spatial frequencies, and F denotes the defocus. Equation (4.4) is used in

place of hy
x in Eqn. (4.1) to produce an aerial image Ia(F) for a given defocus

F at the wafer plane. This impacts the pattern image I and therefore the

final manufactured transistor/wire parameters. Defocus has both random and

systematic components, with the systematic components generally regarded

as having six times the standard deviation of the random ones [48].

2. Exposure Dose Variations: Exposure dose variations result from differences in

light source intensity, exposure duration, etc. Dose variations are often mod-

eled by replacing the constant Ith in Eqn. (4.3) with a random variable [94].

Models for the systematic and random variation of defocus, dose, etc. are

discussed in Section 4.3.1.

88

4.2.2 Optical Proximity Correction (OPC)

As IC features scale downward, it is more difficult to print high resolution pat-

terns on the wafer [94]. This is because the source light wavelengths are much larger

than modern feature sizes which increases their susceptibility to process variations.

Thus, there has been a great deal of work devoted towards developing techniques

that make the fabrication process more robust. For example, Optical Proximity

Correction (OPC) [94, 96] is a widely used technique that modifies the lithography

mask in order to improve the chance of obtaining desired patterns on the wafer.

There have been two types OPC algorithms discussed in the literature:

1. Polygon-based OPC treats the transparent parts of the mask as a set of poly-

gons. Then the polygons are broken down into edge segments which are iter-

atively moved with the goal of improving a cost function [93].

2. Pixel-based OPC represents each pixel of the mask as a 0 or 1 decision and

models the printed pattern as a continuous function [95]. Then an optimization

problem is solved by using a gradient descent-like algorithm. These algorithms

are also referred to as inverse lithography (ILT).

Basic OPC Algorithm Instance. Before moving on, we briefly discuss a basic

OPC algorithm and cost function which we feel summarize state-of-the-art OPC.

The algorithm follows a polygon-based approach, but also includes some pixel-based

elements. In latter sections, our OPC approaches will closely follow this basic frame-

89

Fragmentation
Mask

Perturbations

printed features

OPC

Controller

Lithography

Simulation
Parameter

Extraction

extracted

parameters

stopping

criteria

met?

current

mask

mask solution

initial

mask

perturbed

mask(s)

Iterate

yes

no

Figure 4.3: Basic OPC Algorithm

work1. In a nutshell, the basic algorithm [93] iteratively moves “mask edges” to

improve an optimization cost function (see below) until a stopping criterion is met.

The main steps are shown in Figure 4.3 and described as follows [93, 97]:

1. Inputs: An initial mask pattern is used as input.

2. Fragmentation: Polygons within the initial mask are fragmented into edges

(see Figure 4.4(a-b)). These fragmented edges are essentially optimization

variables. When shorter edges are used, there are more degrees of freedom

during the OPC algorithm [93]. The current mask M is set to the initial

mask.

3. Mask Perturbation: One or more edges in current mask M are chosen for

perturbation (i.e. offset from their current position). For example, a vertical

edge can be perturbed by moving one grid unit to the left or right from the

current position. Similarly, a horizontal edge can be perturbed by moving it

1Note that we illustrate our approaches using this basic framework, but the main concepts

should easily extend to other frameworks as well.

90

up or down by one grid unit. Edges can be chosen for perturbation in a fixed

or random order. Two perturbed masks are shown in Figure 4.4(c-d).

4. Lithography Simulation: Perturbed masks result in different features in the

resist/wafer. Patterns resulting from the perturbed masks are simulated by a

calibrated lithography tool.

5. Parameter Extraction: The patterns themselves or characteristics of the pat-

terns (eg. channel length, active regions, etc.) are examined. IC performance

may also be computed from these patterns [97].

6. OPC controller: An objective cost is computed based on the extracted patterns

and/or performance. A perturbed mask is accepted if it improves the cost.

7. Iterate: If the algorithm’s stopping criteria has not been met, the algorithm

returns to step 3 and continues. Otherwise, the current mask is output as the

solution.

Conventional OPC (C-OPC) Objective. As discussed above, the typical goal

of OPC is a mask that obtains desired patterns on the wafer with high probability.

Most OPC objective functions will therefore use some difference between desired and

estimated patterns/parameters in the algorithm’s cost function. Several difference

metrics have been used in the literature including Edge Placement Error (EPE) [94]

and pixel-based Mean Square Error (MSE) [96].

As an example, we illustrate an objective cost function for state-of-the-art OPC

approaches. By state-of-the-art, we refer to OPC that accounts for the variations

in lithography. While in general not every OPC cost function models variations,

91

approaches which do have been shown to produce more accurate IC features (eg. [94,

96]). For ease of exposition, we discuss an MSE-based cost function. MSE between

the desired and printed resist patterns can be calculated as follows (dose variation

ignored for simplicity)

MSE(M;F) =
∑
x,y

(Îyx − Iyx(M;F))2 (4.5)

where x and y denote the horizontal and vertical coordinates of the pattern; M is

a matrix denoting the lithography mask (each element in M ∈ {0, 1} with 0 and 1

representing opaque and transparent pixels respectively); Îyx represents the desired

pattern at location x,y; Iyx(M;F) denotes the estimated pattern at location x,y as

a function of mask M and defocus F . Note that MSE(M;F) is a random variable

since it depends upon defocus F which is random. A mask that generates an IC

close to the target design can be determined by minimizing the expected MSE [96]

M∗ = argmin (µMSE) (4.6)

µMSE =

∫
MSE(M;F)p(F)dF (4.7)

where µMSE is the expected MSE and p(F) represents the probability distribution

function of defocus. For this C-OPC objective, the basic OPC algorithm modifies

the mask patterns on each iteration so that the resulting IC patterns more closely

resemble the desired patterns across process variations. This cost function would

typically be applied to all portions of an IC (including PUFs) and reduce all variation

(systematic and random) in the printed patterns.

92

(a) (b) (c) (d)

Figure 4.4: (a) Mask: White (gray) areas correspond to transparent (opaque) pixels; (b)

Fragmentation; (c) Mask perturbation 1; (d) Mask perturbation 2

4.3 Contributions and Discussion

In this dissertation, we focus on a delay-based PUF called the Ring Oscillator

PUF (RO-PUF) which was discussed earlier in Section 2.2.1.2. Note that this is

merely for the sake of illustration. The models, analysis, and algorithms proposed

in this dissertation are general and may be applied to other PUF instances as well.

4.3.1 Wafer Variability Model

PUF quality critically depends on the systematic and random variation present

in the PUFs. In this section, we discuss a wafer variability model which frames our

discussion on variation in chips and PUFs in future sections. In general, wafer

variation consists of the following components: (i) wafer-to-wafer; (ii) across wafer;

(iii) field-to-field; (iv) across field; and (v) device-to-device. In this chapter, we

adopt the hierarchical model discussed in [98] to analyze and model variation across

the wafer. In this model, any parameter p can be modeled as:

p = p0 + psys + pran (4.8)

93

where

psys = paw + paf (4.9)

pran = pw2w + pf2f + pd2d (4.10)

p0 is the nominal parameter value and p is the actual value which includes systematic

and random deviations (psys and pran respectively) from the nominal value. psys

includes an across wafer component (paw) and an across field component (paf). pran

includes a wafer-to-wafer component (pw2w), a field-to-field component (pf2f), and a

device-to-device component (pd2d). pw2w, pf2f, and pd2d are assumed to be zero mean

Gaussian random variables. The systematic components paw and paf are modeled as

2D parabolic functions [98]:

paw(xw, yw) = awx
2
w + bwxw + cwy

2
w + dwyw + ewxwyw + fw (4.11)

paf(xf , yf) = afx
2
f + bfxf + cfy

2
f + dfyf + efxfyf + ff (4.12)

where xw and yw denote horizontal and vertical locations on the wafer, xf and yf

denote horizontal and vertical locations in a field, and the remaining terms (aw,

bw, etc.) are modeling coefficients. The modeling coefficients for the systematic

variation and standard deviations for the random variations can be determined by

sampling from wafers as discussed in [98].

The above model is very general and has been used to characterize device

channel length, leakage power, and delay. In this chapter, we shall use it to char-

acterize RO oscillation frequency and the defocus experienced by chips/PUFs in a

wafer (as well as their corresponding probability distribution functions). For ex-

ample, Figure 4.5 illustrates the systematic components of defocus using the above

94

0

100

200

300

020406080100120
−2

−1

0

1

2

x 10
−7

x
wy

w

 p
aw

 +
 p

af

Figure 4.5: Systematic portion of defocus across the wafer (i.e. paw(xw, yw) + paf(x
′
f , y

′
f) where

x′
f , y

′
f represent the field location in wafer coordinates)

models (Eqns. (4.11) and (4.12)) with coefficients from [98]2. By including the

random components (pw2w, pf2f, and pd2d), one could obtain the defocus distribution

for any given chip. In this dissertation, we shall assume that the PDFs associated

with defocus are known.

4.3.2 Impact of Variations on PUFs

Below, we discuss how the variations in the lithography step affect the behavior

in wafers and PUFs. Note that this discussion is given in the context of RO-PUFs

merely for the sake of illustration. In general, effects of variation on other PUFs

can be modeled similarly.

Assume we have a wafer with n chips, each containing an RO-PUF with m

2Note that [98] contains modeling coefficients for effective channel length distributions (cal-

culated from RO frequencies). In this dissertation, we assume that RO frequency variations are

caused only by defocus errors and ignore dose variations for simplicity. We obtain defocus distri-

butions by scaling the distributions from [98] to a suitable defocus range (determined from [99]).

95

ROs. We denote the jth ring oscillator on chip i as ROi
j and its oscillation frequency

by

f i
j = f0 + f i

sys,j + f i
ran,j + f i

env,j (4.13)

where f0 is the nominal frequency (intended by design), f i
sys,j is the systematic com-

ponent of the oscillation frequency, f i
ran,j is the random component of the oscillation

frequency, and f i
env,j denotes the noise due to environmental variations. f i

ran,j is a

random variable that differs for every RO on all the wafers. f i
ran,j comes from lithog-

raphy as well as semiconductor doping (RDF) and etching (LER). f i
sys,j is mainly

from the lithography step and can be modeled as a function of the mask, defocus,

and exposure dose. In this dissertation, we assume that the systematic components

are constants for all wafers (wafer-to-wafer variation is purely random).

For chip i’s RO-PUF, the PUF response bit rig,h can be determined by the

difference in frequency ∆f i
g,h between ROi

g and ROi
h

∆f i
g,h = f i

g − f i
h

= (f i
sys,g + f i

ran,g + f i
env,g)− (f i

sys,h + f i
ran,h + f i

env,h)

= (f i
sys,g − f i

sys,h) + (f i
ran,g − f i

ran,h) + (f i
env,g − f i

env,h)

= ∆f i
sys,g,h +∆f i

ran,g,h +∆f i
env,g,h (4.14)

rig,h =


1 if ∆f i

g,h < 0

0 otherwise

(4.15)

In most applications, nominal PUF responses are recorded in an enrollment/provisioning

step (see Section 2.2.2) where ∆f i
env,g,h = 0. After deployment, the responses are

re-generated (subject to noise) for authentication or cryptography. There are several

96

major points about PUF responses that can be drawn from Eqns. (4.13)-(4.15):

• During provisioning, a PUF’s nominal response is determined by the random

and systematic components only. In instances where |∆f i
sys,g,h| >> |∆f i

ran,g,h|,

response rig,h will be heavily biased towards one bit value for all the wafers

because ∆f i
sys,g,h is a similar for all wafers (wafer-to-wafer variation is purely

random). As a result, the PUF responses shall possess lower uniqueness and

lower unpredictability. One should be able to improve this by decreasing

|∆f i
sys,g,h|, increasing |∆f i

ran,g,h|, or both.

• After deployment, responses may not re-generate exactly due to noise. For

|∆f i
sys,g,h + ∆f i

ran,g,h| < |∆f i
env,g,h|, the response will differ from the provi-

sioned response when the sign of ∆f i
g,h changes. To improve the reliability,

one could increase ∆f i
sys,g,h, increase ∆f i

ran,g,h, or both. However since sys-

tematic variations reduce uniqueness, increasing random variations would be

the best approach. One could also try to decrease ∆f i
env,g,h such as in the

approaches from Section 2.2.5.2).

4.4 Optical Proximity Correction for PUFs

In this section we propose two new OPC cost functions and corresponding

approaches for improving PUF quality. We begin by discussing our assumptions.

Then we describe the proposed algorithms and their objective cost functions (ran-

dom variation enhancement and systematic variation suppression respectively).

Assumptions. As discussed in Section 4.2.1, the wafer patterns resulting from

97

lithography depend on the mask patterns, defocus, and dose in optical lithography.

In this chapter, we shall assume that the dose variations are zero3. In that case,

the underlying circuits (in our case ROs) depend strictly on the mask patterns and

defocus. We shall assume that the defocus in the wafer follows the model given by

Eqn. (4.8) and the corresponding probability distribution is known. We shall ignore

lot-to-lot variations for simplicity.

4.4.1 PUF-aware OPC (P-OPC)

Our first algorithm is called PUF-aware OPC (P-OPC) and it tries to do the

opposite of conventional OPC in PUF portions of the IC. Rather than suppress

random variations in the PUF patterns, P-OPC tries to enhance them in order to

obtain larger random variation in PUF parameters. Note that the remaining (non-

PUF) portions of the IC can still use the conventional approach provided that there

is a small “keep out” zone around the PUF that does not contain any non-PUF

portions of the IC (see Section 4.4.1.3 for details).

4.4.1.1 P-OPC Objective Cost

To illustrate P-OPC, we discuss an objective cost for RO-PUFs. As discussed

in Section 2.2, randomness in the RO frequency improves PUF quality. Our objective

function leverages this fact and finds an optimal mask pattern M∗ that increases

3This assumption is merely made for simplicity and ease of exposition. Our approaches can

easily be extended to handle both dose and defocus.

98

randomness as follows

M∗ = argmax

(
σf

µMSE

)
(4.16)

σf represents the variance in RO frequency for a given mask and defocus distribu-

tion. µMSE denotes the average MSE between the intended and printed patterns.

Note that σf and µMSE can be computed using lithography simulations and distri-

butions for the defocus (details forthcoming). Our objective function balances two

competing goals: (i) we increase randomness in the RO frequency by maximizing

the variance in RO frequency (σf) across the chips in the numerator; (ii) since in-

creasing frequency variation in the ROs may result in patterns that do not resemble

the size and structure of the intended design and may not function correctly, we also

include a corrective term in the denominator. The corrective term (µMSE) captures

the fact that we also want to keep the printed RO patterns similar to the desired

patterns on average.

4.4.1.2 P-OPC Optimization Algorithm

In this chapter, we use an instance of the basic OPC algorithm shown in

Figure 4.3 to solve our optimization problem. For brevity, we only highlight the

salient features of the P-OPC version:

• Inputs: An initial RO mask pattern is used as input. A discrete probability

distribution p(F) for the defocus F for the chips in the wafer is also needed.

This could be generated from the model discussed in Section 4.3.1. It can be

assumed that an initial cost value is computed for the initial mask.

99

• Mask Perturbation: In each iteration, we perturb every edge of the current

mask twice (i.e. move each vertical edge left and right, each horizontal edge

up and down). This results in a set of perturbed masks which differ from the

current mask by one (different) perturbed edge.

• Lithography Simulation: For each perturbed mask, we compute the RO polysil-

icon patterns I(M, F) by a simulation model that employs Eqns. (4.1)-(4.4)

for different random values of defocus F (drawn from defocus distribution

p(F)).

• Parameter Extraction: The polysilicon patterns from the above simulations

represent physical parameters for the transistors in the ROs (channel length,

active region, etc.) which influence the RO frequencies. From the polysili-

con layers (which are non-rectangular), we extract effective channel lengths

for the transistors in the ROs [100]. A distribution for each RO’s oscillation

frequency is computed using standard models [101] with the effective chan-

nel lengths (from the polysilicon patterns generated by p(F)) and nominal

electrical parameters (threshold voltage, oxide thickness, etc.).

• OPC controller: The OPC controller computes µMSE and σf as follows:

µMSE = εF{MSE(M, F)} ≈
∑
∀F

MSE(M, F)p(F) (4.17)

σf =
√
εF {f(M, F)2} − εF{f(M, F)}2 (4.18)

where MSE(M, F) denotes the mean square error between the intended and

printed patterns (Î and I(M, F)) for mask M and defocus F ; p(F) represents

the discrete probability distribution function of defocus; f(M, F) is the ex-

100

IC Keep out

Figure 4.6: Keep Out Zone Illustration: Non-PUF region, PUF region, and keep out zone are

shown in white, dark gray, and light gray respectively. δ denotes the length of the keep out zone.

Note the figure is not drawn to scale.

tracted frequency for mask M and defocus F . The cost of each perturbed

mask is computed as σf/µMSE. Note that if a perturbed mask results in a

pattern that does not produce functional ROs, then its cost is set to zero and

hence it will not be selected as a solution. The controller chooses the perturbed

mask resulting in the greatest improvement to cost as the mask for the next

iteration.

• Stopping Criteria: (i) We put a limit on the total number of iterations; (ii)

If the cost cannot be improved by perturbing any edge before the limit is

reached, we terminate.

4.4.1.3 Ensuring Functional Correctness with P-OPC

Since P-OPC increases variation, there is a risk that portions of the IC and

the PUF may not function properly. Our approach can overcome reliability issues

in the IC and PUF as follows

• Non-PUF Regions: We use small “keep out zone” around the PUF which

ensures the patterns of light corresponding to the P-OPC algorithm and con-

101

ventional OPC algorithm do not interfere. An illustration of the IC and PUF

with keep out zone is shown in Figure 4.6. The length of the keep out zone,

which we denote by δ, depends on parameters of the optical lithography sys-

tem. From [93], δ is proportional to λ/NA where λ is the wavelength of light

and NA is the numerical aperture of the optical system’s projection lens. For

90nm process technology, we estimate δ’s range as .25 to 1µm from [93].

• PUF region: In the parameter extraction step of the algorithm, we extract

polysilicon patterns and determine whether the perturbed mask can produce

a functional RO with high probability. If not, we guarantee that the perturbed

mask is not selected by the OPC controller. In some instances (modeling errors

etc.), the P-OPC mask may still result in some PUF failures. One way we

propose to overcome this is with self-correcting designs [102]. For example, by

fabricating x redundant ROs in the PUF and including some reconfigurable

hardware, we could detect failures with built-in self-test and correct up to x

failing ROs after fabrication.

4.4.1.4 Dealing with Systematic Variations

As discussed in Section 4.3.2, systematic variation is detrimental to PUF qual-

ity while random variation benefits PUF quality. Since the sources of variation in

lithography have both random and systematic components [48], the above method

will effectively amplify both which is undesired. Thus, the P-OPC approach should

ideally be applied when architectural or circuit compensation methods to the PUF

102

layout/design which counteract systematic variation (eg. [46, 103]) are also applied.

This ensures that the variations being amplified are mostly random.

4.4.2 Systematic Variation Compensation OPC (SVC-OPC))

As discussed in Section 4.3.2, in instances where systematic variations are

large, the PUF responses can be biased resulting in lower uniqueness and lower

unpredictability. One way to improve this is to reduce the systematic variation

(and resulting correlation) in the PUFs generated from lithography. In this section,

we discuss an algorithm called Systematic Variation Compensation OPC (SVC-

OPC) to accomplish this. Once again, we discuss the algorithm in the context of an

RO-PUF, but the same basic framework should also extend to other PUF structures.

In the SVC-OPC approach, we relax the notion from conventional OPC that

the PUF patterns must closely match the design patterns across process variations.

Rather, we allow the PUF patterns to deviate from the nominal design patterns as

long as it lessens the impact that systematic variation will have on the PUFs. For

example, in the RO-PUF, one can allow each RO’s silicon patterns to deviate from

the nominal patterns as long as the patterns of each RO result in similar systematic

frequency components for all ROs in the chip. In that case, when PUF responses

are generated (subtracting oscillation frequency of any two ROs), the systematic

components will cancel (∆fsys = 0). Note that any reliability and keep out zone

related issues with SVC-OPC can be dealt with as previously discussed for P-OPC

(see Section 4.4.1.3).

103

Notation. Let there be n chips on a wafer and let each chip contain an RO-

PUF with m ROs. We denote the jth ring oscillator on chip i as ROi
j and its

oscillation frequency by f i
j . Let f i

j be a function of the mask pattern Mj (i.e. the

mask pattern used to fabricate ROi
j ∀i) and the defocus experienced by ROi

j during

the lithography step. We assume that the defocus probability distribution functions

corresponding to each RO location in the wafers are known. Let pj(F) denote the

defocus distribution (including both systematic and random variation components)

for the jth RO across the chips (1 ≤ j ≤ m).

General Objective Goal. Since defocus is similar between wafers (wafer-to-

wafer variation assumed to be random), the systematic component of RO oscilla-

tion frequency will also be similar for ROs at the same corresponding location on

different wafers. Thus, for any given chip, there will be similar (biased) challenge

response behavior and signatures (lowering PUF uniqueness) as discussed in Sec-

tion 4.3.2. In order to remove the systematic bias in any chip’s RO-PUF, all the ROs

in the RO-PUF should have the same systematic oscillation frequency component

(i.e. f i
sys,g(Mg) = f i

sys,h(Mh) ∀g, h, i). This effectively means any difference in oscil-

lation frequency between ROs in a chip is purely determined by the random sources

(∆frand) because the systematic components cancel each other out (∆fsys = 0). As

a result, each PUF’s responses (signature) will be as unique and unpredictable as

possible. Mathematically, we may express this goal as

M∗(i) = argmin σf
(i), 1 ≤ i ≤ n (4.19)

σf
(i) represents the variance in the RO oscillation frequencies on chip i. M∗(i) =

104

{M1,M2, . . . ,Mm} and represents the set of masks for chip i that minimize the vari-

ance σf
(i). Basically, we want to find mask patterns for all ROs in the RO-PUF such

that the systematic variation between all ROs within each chip i is small. In that

case, we ensure that each RO-PUF’s responses depend mostly on random frequency

components. The systematic variation within chips does not matter because the

systematic components of RO frequencies will (mostly) cancel when any ROs are

compared. This differs from conventional state-of-the-art approaches where the goal

is to minimize all variations without regarding the systematic differences between

RO frequencies.

4.4.2.1 SVC-OPC Objective Cost

One issue with the above goal (Eqn. (4.19)) is that there may not be one set of

masks that minimizes the systematic variation in oscillation frequency within every

chip on the wafer simultaneously (i.e. M∗(g) ̸= M∗(h), g ̸= h). However, only one

set of masks can be used for all the chips in the wafer. Thus, we use a more relaxed

cost function given by

M∗ = argmin
n∑

i=1

σf
(i) (4.20)

In Eqn. (4.20), we find the optimal mask patterns that minimize the sum of RO

frequency variances σf
(i) across the chips. This objective captures the fact that

we want small variance in RO frequency within each chip. As discussed above, if

the systematic frequency difference between all ROs within each chip i is small,

each RO-PUF’s responses depend mostly on random frequency components (eg.

105

semiconductor doping, threshold voltage, etc.). Thus, this should result in responses

that are less biased, more unique, and less predictable.

4.4.2.2 SVC-OPC Algorithm

The optimal solution to the SVC-OPC objective function is a set of masks

pattern (one mask for each RO in the RO-PUFs, i.e. Mj, 1 ≤ j ≤ m). However,

the P-OPC algorithm discussed earlier was only interested in one RO mask for all

the ROs in the chip. Thus, we had to modify the P-OPC algorithm with some

additional steps to accommodate SVC-OPC. Specifically, we cycle through each RO

mask pattern in the chip on every iteration of the algorithm. The SVC-OPC steps

are as follows:

1. Inputs: Initial mask patterns M0
j and the discrete defocus PDFs pj(F) (1 ≤

j ≤ m) are the algorithm inputs. It can be assumed that an initial cost value

is computed for the initial masks.

2. Fragmentation: Polygons within M0
j are fragmented into edges for each j.

3. Current Mask Pattern Index: Let index a denote which mask that we shall

perturb and optimize in the current iteration of the algorithm. We begin by

optimizing the mask corresponding to the first RO M0
1 . Thus, we set the

current mask index to a = 1.

4. Mask Perturbation: Same as P-OPC.

5. Lithography Simulation: Same as P-OPC.

6. Performance Extraction: Same as P-OPC.

106

7. OPC controller: Based on the frequency distributions generated in the above

steps, the controller computes the cost

k∑
i=1

σ̂
(i)
f (4.21)

where

σ̂
(i)
f =

√
εM {f(M, Fi)2} − εM{f(M, Fi)}2 (4.22)

εM{f(M, Fi)} =
m∑
j=1

f(Mj, Fi)pj(Fi) (4.23)

pj(F) denotes the discrete defocus distribution for the jth RO across the

chips; k denotes the number of bins in each distribution; f(M, Fi) represents

the frequency at defocus sample Fi; εM is an average operation taken over all

the RO frequencies at sample Fi. Essentially, σ̂
(i)
f is the RO frequency variance

(includes all m ROs) at sample Fi from the PDFs. The perturbed mask with

the greatest improvement to cost is chosen as the ath RO’s new mask.

8. Iterate: We increment the mask index a and return to step 4. Thus, in the

next iteration, we perturb the mask for the next RO in the PUF and calculate

the new cost. Note that if a > m (we’ve cycled through all the RO patterns),

we set a = 1 (returning back to the first RO mask pattern). The algorithm

repeats steps 4-8 until the stopping criteria are met. We use the same stopping

criteria as P-OPC.

4.4.3 Qualitative Comparison of P-OPC and SVC-OPC

The P-OPC and SVC-OPC approaches, overheads, advantages, disadvantages,

etc. are summarized as follows:

107

• Overall Approach. While both algorithms manipulate the lithography mask

to improve PUF quality, they do so with opposite goals in mind. P-OPC

tries to increase sensitivity to random fabrication variation. SVC-OPC tries

to minimize the impact of systematic variations on the PUFs.

• Area overheads. Both approaches require that the PUF regions of the IC be

surrounded by a keep out zone where no transistors are fabricated. The keep

out zone ensures that non-PUF portions on the IC remain unaffected by the

P-OPC and SVC-OPC objective functions. As discussed in Section 4.4.1.3,

the length of the keep out zone δ is dependent on the process technology and

is generally quite small when compared to the length of the entire IC. Thus,

the area overheads in both approaches are small.

• Algorithm Overheads. In the RO-PUF instance of the problem, P-OPC solves

its objective cost function and obtains one mask for all ROs. Since SVC-

OPC tries to eliminate correlation within all the chips on the wafer (a more

challenging objective), it obtains a new mask pattern for each RO. Thus, SVC-

OPC should have higher runtime overhead. Note that since both algorithms

only apply to the small PUF-region of a chip, the overheads should be small

relative to the overhead of standard OPC on the whole chip.

• Designer/Fab Collaboration. Since both approaches are manufacturer-based,

collaboration between the design house and the manufacturer is required. The

design house must explicitly reveal the PUF’s location to the manufacturer so

the manufacturer can apply the proposed algorithms at the PUF region. In

108

case of large companies which own their own fabs (eg. Intel), collaboration

should be no problem whatsoever. In the case of smaller companies, we think

that manufacturers could offer this service at a premium to interested cus-

tomers.

In the next section, we shall simulate the proposed approaches and compare

the resulting PUF quality, algorithm overheads, etc. with current state-of-the-art

OPC.

4.5 Simulation Experiments

4.5.1 Simulation Setup

4.5.1.1 Simulation Models

We simulated fabrication of RO-PUFs using the models, masks, etc. described

below. The RO-PUF architecture is shown in Figure 2.5. Each RO consisted of 3

inverters and ROs were organized in an array on the chips.

Wafer Defocus. Our wafer contains 165 chips. We used the hierarchical model

discussed in Section 4.3.1 with coefficients and Gaussian parameters from [98] for

defocus. From this model, we also generated discrete probability distributions for

defocus which were used in the lithography simulations.

Optical Lithography Parameters. Our feature size (critical dimension) is 90nm.

The numerical aperture (NA) is 0.65 and the wavelength of the optical light is 193nm.

For simplicity, the illumination source is assumed to be coherent.

109

Fabrication Simulation. We simulated fabrication of the 165 chips in the wafer.

We determined physical and electrical parameters of the ROs in the chips from two

sources in the manufacturing process: (i) polysilicon layers generated by the simula-

tions; (ii) random threshold voltages of the RO transistors. Polysilicon layers were

computed using the equations discussed in Section 4.2.1, masks generated by the

algorithms (see below) and defocus values for the wafer. The defocus values were

randomly chosen for each RO in the wafer according to the defocus distribution dis-

cussed above. We extracted effective channel lengths [100] for all transistors in the

ROs from the resulting polysilicon patterns. Threshold voltages for the transistors

in each RO and in each chip were randomly chosen from a Gaussian distribution

which varied ±12.5% around a mean threshold voltage. We assumed typical sup-

ply voltage, mobility, etc. for the remaining parameters and computed the RO

oscillation frequencies as in [101].

4.5.1.2 Mask Generation Algorithms

We generated four PUF populations each containing 165 chips. Masks were

generated by the following algorithms and used to simulate fabrication of the ROs

in each RO-PUF population:

• C-OPC:We generated one mask for all the ROs using the C-OPC cost function

and the basic OPC Algorithm discussed in Section 4.2.2. We used the RO

polysilicon pattern corresponding to the standard minimum design rules for

90nm devices as the algorithm’s initial mask pattern.

110

• P-OPC: We generated one mask for all the ROs using the P-OPC cost function

and algorithm discussed in Section 4.4.1. As the initial mask, we used the mask

generated by C-OPC.

• SVC-OPC: We generated a mask for every RO in the PUF using the SVC-

OPC algorithm discussed in Section 5.3.1. As the initial mask for all the ROs,

we used the mask generated by C-OPC.

For all the algorithms, we used discrete PDFs with k = 31 sampling points/bins.

4.5.1.3 PUF Evaluation

For each PUF, we extracted x response bits at nominal voltage supply in

a provisioning step. The x response bits were concatenated together to form an

x bit identifier/key for each PUF device. We evaluated the quality of each PUF

population’s signatures/keys as follows:

• Uniqueness was estimated using inter-distance (Eqn. (2.1)).

• Reliability was estimated assuming voltage supply variation using intra-distance

(Eqn. (2.2)). We randomly varied voltage supply for each inverter in each RO

and chip by ±1% and collected s = 100 sample responses.

• Unpredictability (randomness) was estimated by either min-entropy or the

NIST test suite [73]. Min-entropy is computed as

H∞ = − log2

(
max
∀S

(Pr(S))
)

(4.24)

111

where S represents a PUF signature and Pr(S) denotes the probability of gen-

erating signature S. Since it is computationally expensive, we only calculated

min-entropy for small RO-PUFs (10 ROs per PUF). We used the NIST test

suite for large RO-PUFs (512 ROs per PUF). The NIST test suite takes as

input several bitstreams from the same source and determines if the streams

can be considered random. We evaluated our PUFs using the NIST test suite

in two ways. First, we used the signatures generated by each PUF as the

input bitstreams to NIST. We call this the within-chip approach since it de-

termines the predictability/randomness among the response bits within each

chip’s signature. Second, we grouped response bits of all the PUF signatures

according to their bit position in the signatures. For x-bit PUF signatures,

there are x groups. These x groups were used as the input bitstreams to NIST.

We call this the between-chip approach because it determines the predictabil-

ity/randomness of each response bit among the PUFs themselves. The NIST

tests we used were the following4: Frequency, Block Frequency, Cumulative

Sums (2 variants), Runs, Longest Run, Approximate Entropy, and Serial (2

variants).

4.5.1.4 ROs and RO-PUF Response Extraction

We used two architectures in our experiments: one with 10 ROs per PUF and

one with 512 ROs per PUF. We used three strategies for generating PUF response

4These are the only NIST tests appropriate for the size of our dataset.

112

bits:

• Ranking: ROs are sorted based on oscillation frequency and the sorted order

acts as the response/signature [104]. In a PUF with m ROs, there are m!

possible ways to sort them which yields ⌈log2(m!)⌉ response bits.

• Decoupled Neighbor: We generated each response bit by comparing two ROs

in the PUF. We chose ROs to compare as follows [50]. The ROs were bro-

ken into pairs. Each RO was only used in one pair and the ROs in the pair

were neighbors in the RO-PUF array. Since nearby ROs experience similar

defocus, this setup is naturally resilient to effects of systematic variation. How-

ever, assuming m ROs in the PUF, only m/2 bits can be generated with this

approach.

• All Possible Pairs: In this approach, we compared every possible pair of ROs in

the PUF rather than just neighbors. Assumingm ROs in the PUF,m(m−1)/2

response bits can be generated.

Results for the PUF populations in these three scenarios are discussed below.

4.5.2 Results and Discussion

4.5.2.1 Ranking Approach

We use this approach since it is a strong indicator of how much entropy can

be extracted from the RO-PUFs. The RO-PUFs tested in this scenario contained

10 ROs per PUF and the signature/keys were 22 bits long. Table 4.1 shows the

113

uniqueness, reliability, and min-entropy for each PUF population.

PUF Uniqueness (Inter-distance). We found that the mean uniqueness was

closest to the ideal 50% for SVC-OPC. We expected SVC-OPC to have high unique-

ness compared to the others since it minimizes systematic variation in the PUFs.

P-OPC and C-OPC obtained approximately the same uniqueness.

PUF Reliability (Intra-distance). Table 4.1 shows that the P-OPC approach

has mean intra-distance closest to the ideal 0% followed by SVC-OPC. As a result of

increasing all variation, PUFs generated by P-OPC are more easily distinguishable

and therefore more reliable as the voltage supply varies. C-OPC had the lowest

reliability since it essentially minimizes all variation in the ROs.

PUF Unpredictabilty (Min-entropy). The upper bound for min-entropy in

this setup is − log2(10!) = 21.7911. The closest to the upper bound was SVC-OPC

with 19.66. This is not surprising because SVC-OPC reduces the systematic vari-

ation between the ROs and should make the PUF signatures less biased. P-OPC

obtained the second highest min-entropy followed by C-OPC which obtained the

lowest. Overall, SVC-OPC and P-OPC masks resulted in 33% and 5.75% improve-

ments respectively over the conventional approach.

4.5.2.2 Decoupled Neighbor Approach

In this approach, systematic variation in the PUFs is reduced by choosing ROs

with similar systematic offset. The systematic variations are naturally less since the

neighboring RO systematic frequency components will cancel out. The RO-PUFs

114

C-OPC P-OPC SVC-OPC

Uniqueness
µ 49.5% 49.5% 49.8%

σ 10.8% 10.7% 10.6%

Reliability
µ 14.9% 8.84% 12.1%

σ 8.26% 7.62% 8.07%

Unpredictability H∞ 14.78 15.63 19.66

Table 4.1: Mean (µ) inter-distance and intra-distance, standard deviation (σ) of inter-distance

and intra-distance, and Min-entropy (H∞) for ranking case

tested in this scenario contained 512 ROs per PUF. The signature/keys in this case

were 256 bits long. Table 4.2 shows the uniqueness, reliability, and unpredictability

for this scenario.

PUF Uniqueness (Inter-distance). Table 4.2 indicates that the PUFs generated

by each approach have very similar means and standard deviations for inter-distance.

This is not surprising since the decoupled neighbor approach reduces systematic

variation in the PUFs.

PUF Reliability (Intra-distance). The results show that the P-OPC approach

has the best reliability. Since the P-OPC approach increases random variation

between RO frequencies, response bits (which are generated by comparing two ROs)

are less likely to flip due to voltage supply noise. The C-OPC and SVC-OPC

approaches are more susceptible to noise because they do not increase variation

between ROs in the chips. Since C-OPC explicitly reduces all variation, it has the

lowest reliability.

PUF Unpredictabilty (NIST tests). Table 4.2 shows how many within-chip and

115

C-OPC P-OPC SVC-OPC

Uniqueness
µ 50.0% 50.0% 50.0%

σ 3.10% 3.13% 3.15%

Reliability
µ 15.8% 9.52% 12.2%

σ 3.88% 4.93% 4.84%

NIST
within-chip 9/9 9/9 9/9

between-chip 9/9 9/9 9/9

Table 4.2: Mean (µ) inter-distance and intra-distance, standard deviation (σ) of inter-distance

and intra-distance, and NIST pass rates for decoupled neighbor case

between-chip NIST tests were passed in each mask generation approach. We found

all the approaches did quite well since the decoupled neighbor approach reduces

systematic variation in the PUF architecture. The C-OPC, SVC-OPC, and P-OPC

approaches passed all the tests which indicates that their signatures are random.

4.5.2.3 All Pairs Approach

This approach should be more susceptible to systematic variation since ROs

fabricated with very different defocus values are used to generate responses. How-

ever, it can generate longer PUF signatures compared to the decoupled neighbor

approach. The RO-PUFs tested in this scenario contained 512 ROs per PUF. The

signature/keys were as large as 130816 bits long. Tables 4.3 and 4.4 show the

uniqueness, reliability, and unpredictability for this scenario.

PUF Uniqueness (Inter-distance). Table 4.3 shows that the SVC-OPC ap-

proach obtained average uniqueness closest to the ideal 50% and with lowest stan-

116

dard deviation. C-OPC obtained the worst average uniqueness compared to the

other approaches but lower standard deviation that P-OPC.

PUF Reliability (Intra-distance). Table 4.3 also shows the reliability. The

results were similar to the previous two cases and will not be discussed for brevity.

PUF Unpredictabilty (NIST tests). Using every RO pair possible (130816)

results in correlation in the bitstreams input to NIST because the response bits are

not independently generated. Thus, none of the approaches passed the NIST tests

in this scenario. In order to compare the approaches and still potentially pass the

NIST tests, we generated new keys as follows:

• We use the 256 challenges from the decoupled neighbor case as input to the

PUF and generate the first 256 bits of every PUF’s key.

• To generate a key of x total bits, we arbitrarily choose (x − 256) additional

challenges. Each arbitrary challenge utilizes a new RO pair (i.e. different from

the original 256) and generates another response bit.

• The same 256 challenges and (x− 256) arbitrary challenges are used as input

to all the PUFs in each population to generate their keys.

In practice, we generated arbitrary challenges by randomly choosing new RO pairs.

We did this 100 times and ended up with 100 “sample keys”. We also repeated the

process for several different values of x and obtained keys that were 320, 384, 448,

and 512 bits long. We ran the NIST tests for each of the 100 samples and values of

x. We recorded the percentage of cases that passed all the NIST tests in Table 4.4.

The results show that only the SVC-OPC approach could generate keys longer than

117

C-OPC P-OPC SVC-OPC

Uniqueness
µ 47.3% 48.5% 50.0%

σ 3.61% 6.49% 3.19%

Reliability
µ 15.0% 8.71% 11.6%

σ 3.73% 4.81% 4.29%

Table 4.3: Mean and standard deviation of inter-distance and intra-distance for all pairs case

key size (bits)

320 384 448 512

C-OPC 0% 0% 0% 0%

P-OPC 0% 0% 0% 0%

SVC-OPC 46% 32% 16% 14%

Table 4.4: NIST pass rates for 100 random

challenges/keys

time

(hr:min:sec)

C-OPC 00:42:41

P-OPC 01:39:05

SVC-OPC 05:17:12

Table 4.5: Mask Generation Overhead

256 bits that still pass NIST tests. Furthermore, as one would expect, the longer the

key the less often the NIST tests were passed. The results support our prior results

for the ranking approach which indicated that the keys generated by the SVC-OPC

approach have larger min-entropy.

4.5.2.4 Mask Generation Algorithm Overheads

We also recorded the time required by the mask generation algorithms in

Table 4.5. Note that since the P-OPC and SVC-OPC algorithms used the C-OPC

mask as initial input, we have included the initialization (C-OPC) in their overall

runtime. Thus, both cases have larger overhead than C-OPC. Comparing SVC-OPC

118

and P-OPC overheads, SVC-OPC required much more time because it generates a

mask for every RO in the PUF. In any case, since masks only need to be generated

once for the PUF region and can be used to fabricate PUFs in countless chips, these

overheads should be acceptable.

4.5.3 Summary of Results

The results in this section can be summarized as follows:

• The proposed approaches (SVC-OPC and P-OPC) outperform the conven-

tional approach (C-OPC) in at least one of the PUF quality metrics (unique-

ness, reliability, unpredictability) and yield comparable results in others.

• The SVC-OPC approach generates PUFs that have excellent uniqueness and

unpredictability. The uniqueness/unpredictability are high in all our test sce-

narios because the SVC-OPC masks reduce systematic variation. Results also

showed that only SVC-OPC could generate longer keys that pass the NIST

tests. While the reliability was lower than P-OPC, it still better than the con-

ventional approach (21% improvement). We also feel that this could always

be improved by using SVC-OPC on variation resistant circuit designs [63, 64]

and shall investigate this in future work.

• The P-OPC approach generates PUFs with higher variation between ROs.

The uniqueness/unpredictability end up lower than SVC-OPC since P-OPC

doesn’t suppress the systematic variation. However, the larger overall variation

results in higher reliability than SVC-OPC and C-OPC (40% improvement

119

over C-OPC).

• The SVC-OPC and P-OPC mask generation algorithms have the larger run-

time overheads than C-OPC. However, since masks only need to be generated

once for the PUF region and can be used to fabricate countless chips, the

overhead should be acceptable for practical applications.

4.6 Summary

In this chapter, we presented a novel framework for improving PUFs which

focused on mask generation for lithography. The merits of the approaches from this

chapter are as follows:

• PUF Quality Improvements at Mask Generation Step: Our approaches are

the first to exploit existing DFM models and tools that are ignored in current

PUF research. Specifically, we used the hierarchical variability model [98] to

express random and systematic variations in wafers. Then, we re-investigated

OPC with new PUF-based cost functions to make improvements in PUF qual-

ity: one that enhanced random variations and one that suppressed systematic

variations. Since both approaches occur after design, they can be applied

to any PUF architecture/circuit design (delay-based, memory-based, etc.) to

generate better PUF signatures.

• Lower Overhead: Our approaches do not have the same hardware overheads

as architectural/circuit based approaches. The main overheads occur during

mask generation and, since the portion of the mask for the PUF is small

120

compared to the rest of the IC design, these overheads are small. Our two

approaches also require a keep-out zone around the PUF. However, the length

of the zone is on the order of .25 to 1µm for 90nm process technology, which

is an insignificant cost to chip area.

121

Chapter 5

Custom Cell Layouts for Physically Unclonable Functions

5.1 Introduction

In the previous chapter, we demonstrated how Optical Proximity Correction

(OPC) could be used to manipulate systematic and random variations for better

PUF quality. Being that OPC applies to the lithography mask, it is best suited for

fabrication companies rather than fab-less IC design houses (who cannot control the

mask). Our objective in this chapter is to investigate DFM techniques applied at

the physical layout level, which is the last portion of the design in the hands of the

designer.

Fundamentally, the physical layout affects the wafer topography, CMP, optical

proximity effects, etc.; all of which contribute to PUF variability. Thus, by altering

the layout, one should be able to manipulate manufacturing variations and once

again improve the uniqueness, reliability, and unpredictability of PUF signatures.

In this chapter, we take advantage of a technique called self-compensation [103] and

use it to create customized standard cell layouts for PUFs that are less sensitive

to systematic variations. We also combine our custom cell layouts with random

variation enhancing PUF circuit designs. This combined procedure effectively al-

lows the designer to simultaneously increase sensitivity to random variations while

suppressing systematic variations for better PUF quality.

122

Outline. Background on the self-compensation technique is discussed in Sec-

tion 5.2.1. Section 5.2.2 discusses the impact of variations on delay of PUFs. Our

self-compensation-based optimization procedure for creating custom cell layouts for

PUFs is described in Section 5.3.1. Two random variation enhancing circuit designs

are discussed in Section 5.3.2. Experimental setup and results are discussed in Sec-

tion 5.4. We summarize the main results and merits of our approach in the last

section.

5.2 Preliminary

5.2.1 Self-compensation

As discussed in the previous chapter, defocus is one of the main sources of

variation in the patterning/lithography step of IC fabrication. The impact of defocus

depends heavily on the density of features/patterns in the IC’s physical layout [48].

Features that are further apart (isolated or iso) result in shorter channel lengths

while dense features obtain longer channel lengths under varying defocus [103] (see

Figure 5.1).This behavior is important because devices with shorter/longer channel

lengths have faster/slower performance. Since defocus is more systematic in nature,

performance (delay, power, etc.) will be systematically biased within chips/PUFs

and can be predicted with knowledge of chip layout, cell layout, and defocus values.

In [103], the authors exploit the behavior shown in Figure 5.1 to reduce IC

timing and leakage power sensitivity to systematic variations. We discuss the basic

idea below and then extend it to PUFs in the next section.

123

defocus

dense 1

iso 1

iso 2

dense 2
channel length

Figure 5.1: Systematic and

opposing behavior of dense and

iso patterns with defocus.

defocus

dense

self-

compensated

iso

effective channel length

(a)

defocus

dense

very dense

effective channel length

(b)

Figure 5.2: Effective channel lengths (dotted) for cells in

series. (a) dense and iso cells in series; (b) two dense cells in

series

Self-Compensation Technique. Given the opposing behavior of dense and iso

patterns during fabrication (see Figure 5.1), [103] shows that one can compensate

for systematic variation in two ways:

1. Intra-cell Self-Compensation. Within a cell, transistor polysilicon, intercon-

nects, etc. can be divided into iso/dense lines for performance compensation.

Assuming the transistors in a given cell have the same defocus value (valid as-

sumption since they are in close proximity), if an “iso” transistor and “dense”

transistor are placed in series, then at any defocus their respective delays (iso-

fast, dense-slow) will balance out, thereby resulting in an “effective” channel

length that is independent of defocus (i.e. self compensated) as shown in

Figure 5.2(a). In contrast, if both cells are dense or iso, the overall delay and

effective channel length vary more drastically with defocus (see Figure 5.2(b)).

2. Inter-cell Self-Compensation. The cells within a circuit can be divided into

iso/dense patterned cells for performance compensation as well. For example,

if an “iso” cell and “dense” cell are placed in series, then at any shared defocus

124

value their respective delays (iso-fast, dense-slow) shall balance out. Thus in

this case, the delay of the circuit should be similar to an outsider regardless

of the defocus experienced during chip fabrication.

Typical circuits are designed with all iso cells (for faster speed) or all dense

cells (for lower power leakage and chip area). However, since such cells/circuits vary

heavily with defocus, ICs using either approach will suffer from high systematic vari-

ation. Self-compensation essentially makes individual cells or interconnected cells

(circuits) insensitive to defocus so that every cell or circuit has similar performance

regardless of chip location (no systematic variation across chips).

5.2.2 Impact of Variations on PUFs.

As discussed in the previous chapter, the nature of the variations experienced

during manufacturing has a large influence on PUF quality. In this section, we

qualitatively discuss the impact of systematic and random fabrication variations on

delays within PUFs below. Note that the discussion is given in the context of RO-

PUFs merely for the sake of illustration. In general, effects of variation on other

PUFs can be modeled similarly.

Assume we have an RO-PUF with m ROs. We denote the jth ring oscillator

as ROj, the delay through ROj by dj, and ROj’s oscillation frequency by fj. The

delay and oscillation frequency of ROj may be expressed as follows

dj = d0 + dsys,j + dran,j (5.1)

fj =
1

2dj
(5.2)

125

where d0 is the nominal delay (intended by design), dsys,j is the systematic compo-

nent of the RO’s delay, and dran,j is the random component of the RO’s delay. dran,j

is a random variable that differs for every RO and in every PUF. dsys,j is mainly

from the lithography step and while it varies within each chip (i.e. ∀ j) it is the

same between chips/wafers (see Section 4.3.1). Note that in the above formulation,

environmental noise and across wafer variation have been ignored for simplicity.

The RO-PUF response bit generated by comparing ROg and ROh, rg,h, is

determined by the difference in delay ∆dg,h between the two ROs. Ignoring noise,

we can express ∆dg,h and rg,h by

∆dg,h = dg − dh = (dsys,g + dran,g)− (dsys,h + dran,h)

= (dsys,g − dsys,h) + (dran,g − dran,h)

= ∆dsys,g,h +∆dran,g,h (5.3)

rg,h =


1 if ∆dg,h < 0

0 otherwise

(5.4)

∆dran,g,h is random. ∆dsys,g,h is a function of the ROs’ locations on the chip through

systematic defocus and the PUF’s physical/cell layout. The effects of ∆dran,g,h and

∆dsys,g,h on RO-PUF response are as follows:

• In instances where |∆dsys,g,h| >> |∆dran,g,h|, the response rg,h is heavily biased

in the PUF population, resulting in lower uniqueness and unpredictability.

For example, if we compare an RO that experiences zero defocus with one

that experiences large defocus (assuming both ROs are composed of standard

cells), responses in the PUF population will be biased towards 1 or 0 depending

126

on the density of features in the RO cells. If the cells have isolated (more

dense) features, the second RO will be faster (slower) on average resulting in a

response biased towards 1 (0). Lowering |∆dsys,g,h| should reduce such biases

and result in more unique and unpredictable responses. In Section 5.3.1, we

accomplish this by exploiting self-compensation and carefully selecting the

density of cells that make up the ROs.

• For large |∆dsys,g,h| and/or |∆dran,g,h|, the difference in delay between any

two ROs (∆dg,h) is on average greater. The larger gap in behavior of ROs

should make it more difficult for environmental variations (voltage supply,

temperature, etc.) to alter responses (i.e. change sign of ∆dg,h). This implies

greater reliability. Since the self-compensation approach reduces systematic

variation, it may actually degrade PUF reliability. One way to compensate for

losses in reliability is to increase ∆dran,g,h. We discuss approaches to do this

in Section 5.3.2.

5.3 Proposed Approach

5.3.1 Self-compensated Cell Layouts for PUFs

As discussed above, we want to make ∆dsys,g,h close to zero ∀ h, g in order

to improve PUF uniqueness and unpredictablity. The self-compensation technique

(discussed in Section 5.2.1) is one way to effectively accomplish this goal. In self-

compensation, the density of cells in a layout is chosen carefully to remove systematic

127

biases in IC timing or leakage power. In our case, we choose the combination C⃗ of

cell densities in the ROs in order to reduce the impact of systematic biases in RO

frequencies and PUF responses. The formulation and objective are discussed below.

Let there be N inverter cells per RO. We assume that the delay of any inverter

cell is a function of the cell’s density p and its defocus value F at manufacturing

time. Then, the delay (frequency) of an RO can be expressed as the sum of its N

inverters in series

d =
N∑
i=1

di(pi, Fi) (5.5)

di is the delay of the ith inverter in the RO. pi and Fi denote the cell density and

defocus respectively of the ith inverter in the RO. Note that since the designer has

control over the physical layout, the pi’s are variables within our control. On the

other hand, the defocus values (Fi’s) are variables determined by the manufacturing

process and, hence, they are not within our control. While defocus is uncontrol-

lable, its statistical characteristics can be determined by sampling wafers in an early

manufacturing process (see Section 4.3.1). Hence, we assume that the probability

distribution function (PDF) of defocus is known and denote it by pdf(F).

As shown in Figure 5.1, the effective channel length of the inverter will shrink

or grow depending on density pi and defocus Fi. If the inverter cell is more dense

(isolated), the effective channel lengths will grow (shrink) with defocus. By choosing

the inverter cell densities carefully, we can reduce the impact of systematic defocus

on PUF responses. In our formulation we choose the combination of cell densities

128

C⃗ = [p1, p2, . . . , pN]
T according to the following objective function:

C⃗∗ = argmin σd, (5.6)

where

σd =

√√√√ 1
k

k∑
j=1

(dj − µd)
2 (5.7)

µd =
k∑

j=1

d(C⃗, F⃗j)pdf(F⃗j) (5.8)

In the above equations, σd represents the sampling variance of delay in the popula-

tion of ROs in the PUFs; µd represents the average RO delay and is computed using

the discrete defocus PDF pdf(F⃗); F⃗j is a vector denoting the defocus experienced by

each inverter in the RO for sample j of the defocus PDF; and k denotes the number

of bins in the PDF. The goal of the above objective function is to minimize the vari-

ance in the RO delays (frequencies) across the chip according to the defocus PDF.

This goal is similar to the one discussed in Section 5.3.1 for SVC-OPC. In order

to remove the systematic bias in any chip’s RO-PUF, all the ROs in the RO-PUF

should have the same systematic delay/frequency component (i.e. dsys,g = dsys,h

∀g, h). This effectively means any difference in delay/frequency between ROs in a

chip is purely determined by the random sources (∆dran) such as RDD, LER, etc.

because the systematic components cancel each other out (∆dsys = 0). As a result,

each PUF’s responses (signature) will be as unique and unpredictable as possible.

Note that alternative objective functions are also possible and shall be investigated

in future work.

In Section 5.4, we solve the above problem and compare the PUF responses

129

resulting from our self-compensated cell layouts with standard layout approaches

(i.e. fixed cell densities for ROs in the PUFs).

5.3.2 Reliability Enhancement

As discussed in the previous chapter, increasing random variation in PUFs

has several benefits to PUF quality: better uniqueness, better unpredictability, and

higher reliability. In this section, we discuss circuit-based approaches for increasing

sensitivity to random variation in PUFs.

Targeted Source of IC variations. Threshold voltage is an independent random

variable with respect to doping [49]. Thus even for transistors that are located near

one another within a chip and across chips, there is significant random variation

in threshold voltage with little spatial correlation. In this section, we utilize this

independence property to amplify random variations by adding extra inverters and

transistors to PUF designs. Note that since inverters are used in many silicon-based

PUFs (eg. RO-PUF, SRAM PUF, arbiter PUF), the inverter-based approach is quite

general. For the sake of illustration, we describe our approach for an RO-PUF.

Inverter Cell and RO Behavior: A standard inverter cell contains a single

PMOS transistor and single NMOS transistor (see Figure 5.3(a)). Let the thresh-

old voltages for these transistors be random variables represented by vtp and vtn

respectively. The delays measured during high-to-low and low-to-high transitions

at the inverter output (dHL and dLH) can be described as functions of the threshold

130

voltages and sizes of the transistors [105]:

dHL = Cout

∫ Vdd

Vdd

2

dVout

IDSn

(5.9)

dLH = Cout

∫ Vdd

2

0

dVout

IDSp

(5.10)

where

IDSn(vtn) =


g (Vdd − vtn)

α , Saturation

gVout

(
Vdd − vtn − Vout

2

)
, Linear

(5.11)

IDSp(vtp) =


g (Vdd − vtp)

α , Saturation

g (Vdd − Vout) (
Vdd

2
+ vtp − Vout

2
) , Linear

(5.12)

g = 1
2
µCox

Weff

Leff
(5.13)

Cout is the capacitance present at the inverter’s output. IDSn and IDSp denote the

drain-to-source currents (NMOS and PMOS respectively) with mobility µ, oxide

capacitance Cox, effective channel width Weff, effective channel length Leff, supply

voltage Vdd, and modeling parameter α. Intuitively, the above expressions model

delay as the time it takes to charge and discharge Vout at the inverter’s output

capacitance.

With the above delay models, the delay for N inverters in series (i.e. ring

oscillator RO delay d) can be approximated by summing the rise and fall delays

of each inverter [105] and the oscillation frequency of the RO can be computed as

f = 1
2d
. Note that since threshold voltages vtn and vtp are random variables, d, f ,

etc. are also random and will be different for ROs within and between chips. By

increasing the variance in d, there will be more variability in RO frequencies in each

131

Vout
Vin

Cout

M6

M7

Vdd

(a) standard inverter

Vout
Vin

C
out

Vctl

Vdd

M1

M2

M3

M4

M5

M6

M7

(b) current starved inverter

Figure 5.3: Standard and current starved inverters

chip. For a PUF, this should represent an increase in reliability since the ROs being

compared will be separated by larger ∆drand (as discussed in Section 5.2.2).

Extra Inverters: One way to increase variance in d is to increase the number

of inverters (N) in the RO. This works for two reasons:

1. The transistors in each inverter have independent and random threshold volt-

ages. Therefore, the contributions of each inverter to overall RO delay are also

independent and random.

2. The variance of a sum of independent variables is the sum of the variances of

the independent variables. Since the inverter delays are independent and the

RO delay is computed by summing them, ∆drand will increase as inverters are

added to the RO.

Using the above models for current, delay, etc. (Eqns. (5.9)-(5.13)), we de-

132

mean variance

µd normalized σd normalized

N=3 6.64 1.00 37.0 1.00

N=7 15.5 2.33 56.8 1.54

N=13 28.8 4.33 77.1 2.09

Table 5.1: Mean (psec) and standard deviation (fsec) in RO delay as number of inverters (N)

increase in the RO

termined the mean and standard deviation of d using Monte Carlo simulations.

Table 5.1 shows the mean and standard deviation with number of inverters N=3,

7, and 13 where the means and standard deviations have been normalized by a

base case (N=3). As N increases, there is an increase in both mean and variance

of d compared to the base case. We will investigate RO-PUF quality using extra

inverters in Section 5.4

Current Starved Inverter. An alternative way to increase the random variation

in the RO delay is to add transistors to the inverter circuits in such a way that IDS,

d, f , etc. are functions of more random variables. This is essentially what occurs

in the current starved inverter [62] shown in Figure 5.3(b). The inverter transistors

are denoted by M6 and M7 and the remaining transistors M1-M5 make up current

mirrors for M6 and M7.

The key concept of the current mirror in the pull-up network of the current

starved inverter is summarized as follows. The gate and source of M1 are wired

together so that the M1 transistor is always in saturated mode (when on). Vctl is a

control voltage that (along with the random threshold voltages, widths, lengths of

133

M1, M2, and M3) determines the gate voltages of M1 and M4 and the current Iref

through M1, M2, and M3. During the the low-to-high transitions at the inverter

output, the current Iout through M4 and M6 is a function of Iref (and the random

threshold voltages, widths, lengths of M4 and M6). Thus, the charging behavior at

Cout is a function of a greater number of random variables than the standard inverter

case. The current mirror for the pull-down network and discharging behavior at Cout

can be explained similarly.

Since the current starved inverter was shown to improve PUF quality in [62],

we shall only focus on our contribution (extra inverters) and will not experiment

with the current-starved inverter in the remainder of the chapter.

5.3.3 Combined Approach

We feel that there are three important benefits achieved by combining the

approaches from Sections 5.3.1 and 5.3.2:

1. In general, components in PUF circuits should possess high sensitivity to ran-

dom variations and low sensitivity to systematic variations. By combining the

two techniques we should effectively accomplish both of these goals.

2. In inter-cell self-compensation, each cell’s density is essentially an optimization

variable that can be used to tune and lower systematic variation due to defocus.

By adding inverter cells, we are actually adding more tuning variables and can

thereby expect more opportunities to reduce systematic variation in the PUFs.

3. Since reducing systematic variation might actually harm PUF reliability (see

134

Section 5.2.2), adding additional inverters can compensate for this trend by

increasing randomness in the PUF.

We shall evaluate the proposed approaches and combined approach in Sec-

tion 5.4

5.4 Simulation Experiments

5.4.1 Experimental Setup

In this section, we simulate RO-PUFs using several standard and proposed

schemes. In each scheme, we simulate a population of 100 PUF instances. Each

PUF contains 512 ROs and each RO contains a fixed number of inverters denoted

as N . One PUF response bit is computed by comparing the oscillation frequencies

of 2 out of the 512 ROs. Each RO is only used in one comparison so there are 256

response bits per PUF. The RO pairs are selected randomly and the same pairs are

used for each RO-PUF in the population.

of Inverters. As discussed in Section 5.3.2, random variation should increase

with the number of inverters N in an RO. We vary N from 3 to 13 in our experiments

and examine the effects on RO-PUF quality.

Cell Density Types. To analyze self-compensation (Section 5.3.1), we utilize

five types of inverter cells:

1. Very Dense (VD) contains features which are as close as permitted by the

lithography process.

135

−0.4 −0.2 0 0.2 0.4

120

130

140

150

Defocus (um)

C
ha

nn
el

 L
en

gt
h

(n
m

)

VD: very dense
D: dense
I:iso
VI: very iso
S: self−comp

Figure 5.4: Channel length vs. Defocus for cell layout types: (1) Very Dense VD; (2) Dense D;

(3) Isolated I; (4) Very Isolated VI; (5) Self-Compensated S

2. Dense (D) contains features which are close together, but less so than VD.

3. Very Isolated (VI) contains features which are as far as possible.

4. Isolated (I) contains features which are spaced far apart, but not as much as

the Very Isolated (VI) case.

5. Self-compensated (S) utilize intra-cell self-compensation so that features are

spaced in such a way that channel length varies little with defocus.

The channel lengths of each cell type versus defocus condition are shown in

Figure 5.4 (data from [103]). As one can see, the dense cells “smile” and the isolated

cells “frown” while the self-compensated cell is more flat w.r.t. defocus.

Cell Combination Types. We generate several PUF populations with ROs

that use different combinations of these cell types. We refer to a combination as

“standard” if there is no intra-cell or inter-cell self-compensation in the layout/cells

(eg. all three inverter cells in the ROs are VD type). We also examine two “self-

compensated” cell combinations which were obtained by solving the objective shown

136

RO Inverter #

Case 1 2 3 4 5 6 7 8 9 10 11 12 13

N = 3
1 D VI S - - - - - - - - - -

2 VI S S - - - - - - - - - -

N = 7
1 VD D VI VI VI S S - - - - - -

2 D D D VI VI VI S - - - - - -

N = 13
1 VD D D D D VI VI VI VI VI VI S S

2 VD VD D D VI VI VI VI VI VI S S S

Table 5.2: Inter-cell self-compensation combinations for N = 3, 7, 13 inverter ROs.

in Eqn. (5.6). The two combinations (lowest variation) are shown in Table 5.2 for

each N . One can see that each combination contain a similar number of dense and

isolated cells with one or more self-compensated cells.

Fabrication Simulations. To simulate fabrication variation of each PUF in-

stance, we choose (1) random defocus values for each RO and (2) random threshold

voltages for every transistor (within each inverter).

Random defocus values are chosen using the quad tree model discussed in [49]

which models inter-chip and intra-chip correlations. In the quadtree modeling ap-

proach [49], the area of a chip is recursively partitioned into four equally sized re-

gions. This is illustrated in Figure 5.5. The first partition is “0-1” and corresponds

to the root of the quadtree. “0-1” is divided into four partitions “1-1”, “1-2”, “1-3”,

and “1-4” which form the next level of the tree. The four partitions are subdivided

into another four partitions and so forth. Each partition in every level of the tree is

assigned a random variable (RV) with its own probability distribution. The spatially

137

2-1
2-2

2-3
2-4

2-5
2-6

2-7
2-8

2-9
2-10

2-11
2-12

2-13
2-14

2-15
2-16

Figure 5.5: Quadtree partitioning for a chip. The depth of the tree shown is 3 levels.

correlated variation associated with a gate in the IC is then defined as the sum of the

RV at the lowest partition containing the gate and the RVs of the higher partitions

that overlap with the gate’s position. Correlation exists between gates on a single

chip due to the sharing of RVs at higher levels of the quadtree. Correlation between

chips exists because the probability distributions associated with each partition are

the same for all chips.

In our case, the random variables (RVs) and associated probability distribu-

tions correspond to defocus across the chip. The gates in our case are inverters in

the ring oscillators (ROs). We generate RVs for all partitions and levels in each

chip/PUF according to some knowns distributions and then compute defocus values

as follows. Suppose we want to generate the defocus value F for an RO located in

partition “2-13” of chip x (see Figure 5.5). F is computed by summing the RVs

associated with partitions “2-13”, “1-4”, and “0-1” of chip x. In our experiments,

we do this for 512 ROs and 100 chips totaling 51200 random samples. The channel

138

length is determined by the cell type (VD, D, etc.) and the RO’s defocus value

using the relationships shown in Figure 5.4.

All threshold voltages are selected from a Gaussian distribution with mean .3V

and standard deviation of 20mV. With the assigned threshold voltages and channel

lengths, we compute RO delay and PUF responses for each chip using Eqns (5.9)-

(5.13) and Eqn. (5.4) respectively.

5.4.2 Results and Discussion

For the PUF populations generated above, we estimate the quality (unique-

ness, reliability, and unpredictability) of each population as follows. Uniqueness is

computed using responses from the PUF population and calculating inter-distance

(Eqn. (2.1)). For reliability, we compute PUF responses corresponding to a nom-

inal voltage supply of 1.3 volts. Then, we compute 100 sample responses where a

different supply voltage is chosen for each inverter in the RO-PUF from a normal

distribution with mean 1.3V and standard deviation 4.4mV. Unpredictabilty is mea-

sured using the NIST test suite [73]. We use the same NIST tests as the previous

chapter.

Uniqueness (Inter-distance). Mean inter-distance is shown on the left-hand

side of Table 5.3. The “standard” rows correspond to the conventional RO-PUF

design with non-compensated cell layout and fixed cell type per RO. The “self-

compensated” rows are for RO-PUFs using the intra-cell and inter-cell self-compensation

approach (cases shown in Table 5.2). The columns correspond to the number of in-

139

verters N used for all ROs in the PUFs.

For standard layout, the uniqueness measure is much lower than the ideal 50%.

The best performing combination among them is “all I” (all iso cells) which in our

experiments had the lowest systematic variation in RO frequency (not shown). Self-

compensated layout improves on mean inter-distance with case 1 having the largest

mean 49.69%. This outcome is not surprising because self-compensation removes

systematic variation in chips and bias in PUF responses.

As the number of inverters (N) increases, one would expect that the increase

in random variation of the ROs would result in greater uniqueness. However, we

found different results for the two approaches. Uniqueness obtained by the stan-

dard layout approach worsened with greater N while uniqueness obtained by self-

compensated approaches slightly increased. We explain this phenomena as follows.

In the standard approach, more “alike” inverters are added into the RO. While this

does increase the overall random variation, systematic variation will also increase

because the inverters are similarly biased with defocus. This lowers uniqueness.

In the self-compensated approach, uniqueness is improved in two ways. First, we

increase random variation by adding additional inverters. Second, we have more

inverters to compensate with (more tuning variables) and therefore can obtain even

lower systematic variation.

Reliability (Intra-distance). The right-hand side of Table 5.3 shows mean

intra-distance with random voltage supply variation over the PUF population. The

columns and rows are organized as discussed for uniqueness. The ideal reliability

occurs when intra-distance is 0% meaning no deviation in PUF responses from the

140

Uniqueness Reliability

Case N=3 N=7 N=13 N=3 N=7 N=13

all VD 43.91 43.86 43.14 4.05 3.31 3.38

standard all D 42.25 41.31 39.82 3.98 3.22 3.18

layout all VI 42.71 41.42 39.68 3.83 2.82 2.58

all I 48.07 47.73 47.03 4.64 3.97 3.43

self- 1 49.34 49.55 49.69 5.28 5.01 4.56

compensated 2 49.11 49.36 49.59 5.27 4.99 4.51

Table 5.3: PUF uniqueness and reliability (mean inter- and intra-distance)

response at nominal voltage supply.

For N = 3, the standard layout approaches yield better average reliability

compared to the self-compensated approaches. We assume this occurs because sys-

tematic variation is high for the standard layouts thereby creating a larger gap

between RO frequencies/delays that are compared. Intuitively, this means there

is a smaller chance of the PUF response bits flipping as a result of environmental

variations. The self-compensated layouts have lower systematic variation and are

therefore more prone to changes in response.

As N increases, the increase in random variation of the ROs results in better

reliability for both standard and self-compensated layouts. On average, from N

= 3 to 13, there is an average improvement of 25% for the standard layouts and

14% for the self-compensated layouts. The reason that reliability improvements are

greater for the standard layouts is as follows. As inverters are added to ROs in the

standard layouts, there is an increase in systematic variation (as discussed above for

141

uniqueness) and with more variation comes greater reliability.

Unpredictability (NIST tests). We found that all test cases passed nearly all

the NIST tests for randomness in PUFs. We found that standard layout approaches

failed 1 to 3 out of 18 tests while the self-compensated layout approaches only failed

1 out of 18 tests at most. Neither approach seemed to be noticeably affected by

extra inverters.

Summary of Results. The results of this section are summarized as follows:

• The proposed self-compensated layout reduces systematic variation and im-

proves PUF uniqueness. Compared to the worst (best) standard layout, self-

compensated layouts resulted in 14% (2.6%) better uniqueness.

• Extra inverters have an interesting impact on uniqueness. Adding more “alike”

inverters increases systematic variation in the standard layout PUFs (lowering

uniqueness). However, the uniqueness improves with additional inverters in

the self-compensated PUFs.

• Extra inverters increase random variation in both the standard and self-compensated

layout PUFs and improve their reliability by 25% and 14% respectively.

• The NIST tests show that the proposed self-compensated approaches are

marginally less predictable than the standard approaches. Unpredictability

neither improves nor degrades with extra inverters.

142

5.5 Summary

In this chapter, we manipulated manufacturing variations in PUFs to simul-

taneously reduce the impact of systematic variations while enhancing the random

variations. The merits of the overall approach in this chapter are as follows:

• PUF Quality Improvements at Physical Layout Step. Our self-compensation-

based approach is one of the first to improve PUFs at the physical layout level.

Specifically, we proposed an optimization framework that creates custom cell

layouts for reducing the impact of systematic variations on PUF signatures.

Furthermore, since our approach works on the physical layout, it can easily be

combined with existing PUF enhancement approaches, such as better circuit

designs and post-fabrication processing.

• Interaction of Layout and Design Approaches. We showed that by combining

our custom cells with naive random variation enhancement solution (extra

inverters), it was possible to obtain improvements to PUF uniqueness and

reliability. Our work highlights the need to investigate the interaction of PUF

circuit layout and design.

143

Chapter 6

Conclusion and Future Research Directions

In Chapter 1, we highlighted many of the key issues and challenges in hardware

security. The IC design/fabrication flow itself is highly susceptible to malicious

attacks that threaten to subvert the security and reliability of all systems dependent

on ICs. Recent advances in tampering, reverse engineering, etc. also compound the

trust issues in computing systems after they are deployed. The main theme of

our work has been to address the diversity of such hardware-based attacks through

comprehensive strategies that secure hardware platforms during design, fabrication,

and post-deployment. Our overall strategy (discussed in Section 1.4) consisted of

three phases: Bootstrap, Validate, Monitor and React. In Chapter 2, we discussed

two key areas of research in hardware security which could benefit from steps in this

strategy: hardware Trojan detection and Physically Unclonable Functions (PUFs).

In Chapter 3, we proposed novel run-time Trojan detection approaches which

were basic instances of our comprehensive strategy. Our approaches exploited on-

chip thermal sensors which already exist in many modern systems for dynamic ther-

mal management. We statistically characterized IC’s power/thermal dynamics to

create “golden models” and placed optimally thermal sensors based on these statis-

tics. After fabrication, we gathered information from ICs that pass logic-based and

side channel-based detection approaches in order to calibrate each IC for fabrication

144

variation. The run-time phase integrated the information from the previous phases

with thermal sensor measurements to detect Trojan activation. Simulation results

using state-of-the-art tools on publicly available Trojan benchmarks verified that

our approaches could detect Trojans quickly and with few false positives.

Physically Unclonable Functions (PUFs) rely on IC fabrication variations to

generate unique signatures for various hardware security applications. In this disser-

tation, we highlighted the fact that there has been limited focus on PUF fabrication

(source of PUF quality) in prior work and explored ‘Bootstrapping’ opportunities

at mask generation and physical layout levels to overcome this flaw. In Chapter 4,

we showed that our SVC-OPC and P-OPC masks outperformed the conventional

approach (C-OPC) in at least one of the PUF quality metrics (uniqueness, reliabil-

ity, unpredictability) without significant loss in others. Being mask-based, neither

approach had significant overheads with respect to IC area, power, etc. In Chapter

5, we also discussed a designer-friendly approach for improving PUFs that utilized

self-compensated custom cell layouts. This approach resulted in better PUF unique-

ness compared to conventional cell layouts and obtained even better results when

combined with random variation-enhancing PUF designs.

6.1 Future Research

The approaches presented in this dissertation are very innovative and uncon-

ventional compared to existing work. Being among the first to investigate these

approaches, there are still opportunities for further improvements as well as some

145

open issues that exist in defense against hardware Trojan and for improving PUFs.

6.1.1 Defense Against Trojans

The fundamental limits of Trojan detection as well as the overheads of test-

time and run-time approaches are still being actively investigated. In this disser-

tation, we discussed novel run-time approaches that exploited temperature and a

comprehensive Trojan detection framework. This research shall act as an important

building block for many other directions we plan to pursue in future work:

1. Further Application of Theoretical Foundations. The temperature-based tech-

nique we proposed relies heavily upon the fundamental foundations provided

by state estimation theory and detection theory. There are many open prob-

lems in hardware Trojan research that should be able to exploit the same gen-

eral theory. For instance, existing test-time approaches tend to be ad-hoc and

less rigorous in nature. Our Kalman Filter-based approach should naturally

extend to various test-time detection schemes that rely on side channels. Fur-

thermore, the KF framework is robust enough to handle multiple side channel

modalities for even better results. For example, by combining thermal sensor

measurements with current monitors, one can reduce the uncertainty in the

power statistics in time, thereby enabling even better thermal state estimation

and Trojan detection.

2. Reaction Mechanisms to Trojan Attacks. Our work has only focused on the

first step of ’Monitor and React.’ We showed that it was possible to monitor

146

temperature to detect Trojans at run-time. However, once a Trojan attack has

been detected, one needs to prevent it from doing damage with appropriate

defense mechanisms. For instance, one interesting way to respond to attacks is

with self-correcting designs that automatically bypass Trojan logic. With the

overheads involved with adding such mechanisms and the fact that Trojans

may attack the mechanisms themselves, this is a very challenging area of

research.

3. On-chip Tampering of Measurements. The effectiveness of run-time approaches

for Trojan detection depends heavily on the accuracy of on-chip measurements.

One way an attacker might circumvent detection is to insert a Trojan in the

sensing infrastructure. For example, the Trojan could bypass the real mea-

surements with fake measurements that comply with the expected side-channel

behavior. Formal methods that not only detect tampering of sensor measure-

ments, but overcome it are critical for future run-time approaches.

4. Temperature-based Trojan Detection Prototypes. We have emphasized that

our temperature-based detection approach is effective and low-overhead. How-

ever, to our knowledge, the Kalman Filtering framework for temperature track-

ing has not been physically realized in a prototype as of yet. We feel that a

prototype/testbed implementation is an important final step in evaluating our

approach. First, since the complicated interaction of hardware, software, and

environmental conditions is hard to emulate in simulations, experiments per-

formed with a real-time testbed could provide more accurate results and high-

147

light impracticalities unforeseen by the applied theory. Second, the implemen-

tation would yield a better estimate of the software and hardware overheads

involved in our approach.

6.1.2 Opportunities and Challenges in PUF Manufacturing

Our work has been the first to shift the focus of DFM towards improving

PUF quality during fabrication. In future, we shall continue to investigate how

randomness in PUFs can be improved while still maintaining the spirit of DFM (i.e.

manufacturability/yield):

1. Ways to Manipulate Dose Variation. While there are two types of variation in

IC fabrication (defocus and dose), we have only looked closely at the opportu-

nities for improving sensitivity to defocus variation. However, techniques that

manipulate dose variation might provide further enhancements to PUF quality

either on their own or combined with our previous techniques. For example,

the ASM DoseMapper technology [106] controls exposure dose during IC fab-

rication and has been successfully used in prior work [107] for better timing

and leakage power in the face of process variations. Naturally, it should be

possible to combine our objective functions/framework with the DoseMapper

technology to improve PUF sensitivity to either systematic or random dose

variations.

2. Transistors With Greater Sensitivity to Random Variations. Our custom cell

layouts reduced the impact of systematic variation on PUFs. Such layout-

148

based approaches are not only applicable to all different types of PUFs, but

they can also be effectively combined with random variation enhancing circuit

designs. As an alternative approach, we could go one step further and develop

transistor gate, drain, source terminals explicitly for PUFs. New fabrication

materials, doping techniques, topologies, etc. that make the underlying tran-

sistors more sensitive to independent random variations would be particularly

useful since they would effectively compliment our layout and mask-based ap-

proaches that reduce systematic variations.

3. Investigate Manufacturing/Yield Issues. While the mask-based approaches

should not affect the manufacturability of non-PUF portions of ICs, there’s

still a chance that some of the PUF components will be non-functional. In

future work, we would like to investigate the manufacturing/yield issues caused

by our approach either by using our masks to fabricate real silicon chips or

using more advanced software simulations. If there does happen to be yield

issues, we shall investigate ways to overcome them, such as with self-correcting

designs [102].

149

Bibliography

[1] V. Yeo. Hardware-assisted security kills drive to create malware, March
2011. http://www.zdnet.com/hardware-assisted-security-kills-drive-to-create-
malware-2062207902/.

[2] S. Skorobogatov. Tamper resistance and physical attacks. at Summer School
on Cryptographic Hardware, Side-Channel and Fault Attacks, 2006.

[3] ISO/IEC 7816-1:2011 Integrated circuit cards, 2011.

[4] ISO/IEC 11889-1:2009 Trusted Platform Module (TPM), 2009.

[5] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon physical random
functions. In Proc. CCS, pages 148–160. ACM, 2002.

[6] M. Beaumont, B. Hopkins, and T. Newby. Hardware trojans-prevention, de-
tection, countermeasures (a literature review). Technical report, DTIC Docu-
ment, 2011.

[7] R. Torrance and D. James. The state-of-the-art in ic reverse engineering. Proc.
CHES, pages 363–381, 2009.

[8] S. Skorobogatov. Semi-invasive attacks-a new approach to hardware security
analysis. Technical report, University of Cambridge, Computer Laboratory,
2005.

[9] H. Bar-El. Introduction to side channel attacks. Discretix Technologies Ltd,
43, 2003.

[10] I. Verbauwhede and R. Maes. Physically Unclonable Functions: Manufactur-
ing variability as an unclonable device identifier. In Proc. GLSVLSI, pages
455–460, 2011.

[11] J. Villasenor. The hacker in your hardware. Scientific American, 303(2):82–88,
2010.

[12] D. Forte, C. Bao, and A. Srivastava. Temperature tracking: An innovative
run-time approach for hardware trojan detection. 2013.

[13] R. Maes and I. Verbauwhede. Physically Unclonable Functions: A study on
the state of the art and future research directions. Towards Hardware-Intrinsic
Security, pages 3–37, 2010.

[14] M. Tehranipoor and F. Koushanfar. A survey of hardware trojan taxonomy
and detection. IEEE Des. Test, 27(1):10–25, 2010.

150

[15] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic. Hardware trojan
detection and isolation using current integration and localized current analysis.
In Proc. DFTVS, pages 87–95. IEEE, 2008.

[16] S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou. Designing
and implementing malicious hardware. In Proc. LEET, pages 1–8. USENIX
Association, 2008.

[17] Cyber Security Awareness Week (CSAW) Embedded Systems Challenge.
http://www.poly.edu/csaw2012.

[18] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno. A case study in
hardware trojan design and implementation. Int. J. of Information Security,
10(1):1–14, 2011.

[19] L. Lin, W. Burleson, and C. Paar. Moles: malicious off-chip leakage enabled
by side-channels. In Proc. ICCAD, pages 117–122. ACM, 2009.

[20] Y Shiyanovskii, F Wolff, C Papachristou, D Weyer, and W Clay. Exploiting
semiconductor properties for hardware trojans. CoRR, 2009.

[21] trust HUB.org. http://trust-hub.org/resources/benchmarks.

[22] S. Bhunia, M. Abramovici, D. Agrawal, P. Bradley, M. Hsiao, J. Plusquellic,
and M. Tehranipoor. Protection against hardware trojan attacks: Towards a
comprehensive solution. IEEE Des. Test, PP(99), 2012.

[23] Inc. Chipworks. http://www.chipworks.com.

[24] S. Narasimhan and S. Bhunia. Hardware trojan detection. In Mohammad
Tehranipoor and Cliff Wang, editors, Introduction to Hardware Security and
Trust, pages 339–364. Springer New York, 2012.

[25] Susmit Jha and Sumit Kumar Jha. Randomization based probabilistic ap-
proach to detect trojan circuits. In High Assurance Systems Engineering Sym-
posium, 2008. HASE 2008. 11th IEEE, pages 117–124. IEEE, 2008.

[26] Rajat Subhra Chakraborty, Somnath Paul, and Swarup Bhunia. On-demand
transparency for improving hardware trojan detectability. In Hardware-
Oriented Security and Trust, 2008. HOST 2008. IEEE International Work-
shop on, pages 48–50. IEEE, 2008.

[27] Rajat Subhra Chakraborty, Francis Wolff, Somnath Paul, Christos Papachris-
tou, and Swarup Bhunia. Mero: A statistical approach for hardware trojan
detection. In Cryptographic Hardware and Embedded Systems-CHES 2009,
pages 396–410. Springer, 2009.

[28] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and Berk
Sunar. Trojan detection using ic fingerprinting. In Security and Privacy, 2007.
SP’07. IEEE Symposium on, pages 296–310. IEEE, 2007.

151

[29] Y. Jin and Y. Makris. Hardware trojan detection using path delay fingerprint.
In Proc. HOST, pages 51–57. IEEE, 2008.

[30] D. Du, S. Narasimhan, R. Chakraborty, and S. Bhunia. Self-referencing: a
scalable side-channel approach for hardware trojan detection. Proc. CHES,
pages 173–187, 2010.

[31] F. Koushanfar and A. Mirhoseini. A unified framework for multimodal sub-
modular integrated circuits trojan detection. IEEE Trans. Inf. Forensics Se-
curity, 6(1):162–174, 2011.

[32] J. Li and J. Lach. At-speed delay characterization for ic authentication and
trojan horse detection. In Proc. HOST, pages 8–14. IEEE, 2008.

[33] S. Narasimhan, W. Yueh, X. Wang, S. Mukhopadhyay, and S. Bhunia. Improv-
ing ic security against trojan attacks through integration of security monitors.
IEEE Des. Test, 2012.

[34] T. Bilzor, M.and Huffmire, C. Irvine, and T. Levin. Evaluating security re-
quirements in a general-purpose processor by combining assertion checkers
with code coverage. In Proc. HOST, pages 49–54. IEEE, 2012.

[35] M. Abramovici and P. Bradley. Integrated circuit security: new threats and
solutions. In Proc. Annual CSIIR Workshop, page 55. ACM, 2009.

[36] M. Hicks, M. Finnicum, S.T. King, M.M.K. Martin, and J.M. Smith. Overcom-
ing an untrusted computing base: Detecting and removing malicious hardware
automatically. In IEEE Symp. Security and Privacy, pages 159–172, 2010.

[37] C. Sturton, M. Hicks, D. Wagner, and S.T. King. Defeating uci: Building
stealthy and malicious hardware. In Proc. SP, pages 64–77. IEEE, 2011.

[38] Y. Jin and Y. Makris. Proof carrying-based information flow tracking for data
secrecy protection and hardware trust. In Proc. IEEE VTS, pages 252–257,
2012.

[39] H. Salmani, M. Tehranipoor, and J. Plusquellic. A novel technique for im-
proving hardware trojan detection and reducing trojan activation time. IEEE
TVLSI, 20(1):112–125, jan. 2012.

[40] H. Salmani, M. Tehranipoor, and J. Plusquellic. A layout-aware approach for
improving localized switching to detect hardware trojans in integrated circuits.
In Proc. WIFS, pages 1–6, 2010.

[41] G.E. Suh and S. Devadas. Physical Unclonable Functions for device authen-
tication and secret key generation. In Proc. DAC, pages 9–14, 2007.

[42] J. Guajardo, S. Kumar, G.J. Schrijen, and P. Tuyls. FPGA intrinsic PUFs
and their use for IP protection. In Proc. CHES, pages 63–80, 2007.

152

[43] S. Morozov, A. Maiti, and P. Schaumont. An analysis of delay based puf
implementations on fpga. Reconfigurable Computing: Architectures, Tools and
Applications, pages 382–387, 2010.

[44] X. Zhang, N. Tuzzio, and M Tehranipoor. Identification of recovered ics using
fingerprints from a light-weight on-chip sensor. In Proc. DAC, pages 703–708,
June.

[45] B. Moyer. A puf piece: Revealing secrets buried deep within your silicon, Jan-
uary 2011. http://www.techfocusmedia.net/archives/articles/20110124- puf/.

[46] A. Maiti and P. Schaumont. Improved Ring Oscillator PUF: An FPGA-
friendly secure primitive. J. Cryptology, pages 1–23, 2011.

[47] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.R. Sadeghi, I. Verbauwhede, and
C. Wachsmann. PUFs: Myth, fact or busted? A security evaluation of Physi-
cally Unclonable Functions (PUFs) cast in silicon. Proc. CHES, pages 283–301,
2012.

[48] C.A. Mack. Fundamental principles of optical lithography: the science of mi-
crofabrication. Wiley-Interscience, 2007.

[49] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. Statistical timing
analysis: From basic principles to state of the art. IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., 27(4):589–607, 2008.

[50] C.E. Yin. A regression-based entropy distiller for RO PUFs. 2011.

[51] M. Orshansky, S.R. Nassif, and D.S. Boning. Design for manufacturability
and statistical design: a constructive approach. Springer Verlag, 2007.

[52] N. Weste and D. M. Harris. Principles of CMOS VLSI design: a systems
perspective, Fourth Edition. Addison-Wesley Publishing Company, 2011.

[53] D. Lorenz, G. Georgakos, and U. Schlichtmann. Aging analysis of circuit
timing considering nbti and hci. In Proc. IOLTS, pages 3–8. IEEE, 2009.

[54] A. Maiti, L. McDougall, and P. Schaumont. The impact of aging on an fpga-
based physical unclonable function. In Proc. FPL, pages 151–156. IEEE, 2011.

[55] D. Lim, J.W. Lee, B. Gassend, G.E. Suh, M. van Dijk, and S. Devadas.
Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., 13(10):1200–1205, Oct.

[56] A. Krishna, S. Narasimhan, X. Wang, and S. Bhunia. MECCA: a robust low-
overhead PUF using embedded memory array. In Proc. CHES, pages 407–420.
Springer, 2011.

153

[57] D. Yamamoto, K. Sakiyama, M. Iwamoto, K. Ohta, T. Ochiai, M. Takenaka,
and K. Itoh. Uniqueness enhancement of puf responses based on the locations
of random outputting rs latches. Proc. CHES, pages 390–406, 2011.

[58] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Ruhrmair. The Bistable
Ring PUF: A new architecture for strong Physical Unclonable Functions. In
Proc. HOST, pages 134–141, 2011.

[59] M. Majzoobi, G. Ghiaasi, F. Koushanfar, and S.R. Nassif. Ultra-low power
current-based PUF. In Proc. ISCAS, pages 2071–2074, 2011.

[60] S.S. Kumar, J. Guajardo, R. Maes, G.J. Schrijen, and P. Tuyls. Extended
abstract: The Butterfly PUF protecting IP on every FPGA. In Proc. HOST,
pages 67–70, 2008.

[61] L. Lin, D. Holcomb, D.K. Krishnappa, P. Shabadi, and W. Burleson. Low-
power sub-threshold design of secure Physical Unclonable Functions. In Proc.
ISLPED, pages 43–48, 2010.

[62] R. Kumar, V.C. Patil, and S. Kundu. Design of unique and reliable Physi-
cally Unclonable Functions based on current starved inverter chain. In Proc.
ISVLSI, pages 224–229, 2011.

[63] V. Vivekraja and L. Nazhandali. Feedback based supply voltage control for
temperature variation tolerant PUFs. In Proc. VLSI Design, pages 214–219,
2011.

[64] R. Kumar, H.K. Chandrikakutty, and S. Kundu. On improving reliability of
delay based Physically Unclonable Functions under temperature variations.
In Proc. HOST, pages 142 –147, 2011.

[65] C. Bösch, J. Guajardo, A. Sadeghi, J. Shokrollahi, and P. Tuyls. Efficient
helper data key extractor on fpgas. Proc. CHES, pages 181–197, 2008.

[66] M. Yu and S. Devadas. Secure and robust error correction for physical un-
clonable functions. IEEE Des. Test Comput., 27(1):48–65, 2010.

[67] M. Hiller, D. Merli, F. Stumpf, and G. Sigl. Complementary ibs: Application
specific error correction for pufs. In Proc. HOST, pages 1–6. IEEE, 2012.

[68] R. Maes, P. Tuyls, and I. Verbauwhede. Low-overhead implementation of a
soft decision helper data algorithm for sram pufs. Proc. CHES, pages 332–347,
2009.

[69] R. Maes, P. Tuyls, and I. Verbauwhede. In Proc. ISIT, title=A soft decision
helper data algorithm for SRAM PUFs, year=2009, pages=2101-2105,.

[70] M. Bhargava, C. Cakir, and K. Mai. Reliability enhancement of bi-stable pufs
in 65nm bulk cmos. In Proc. HOST, pages 25–30. IEEE, 2012.

154

[71] G. Qu and C.E. Yin. Temperature-aware cooperative ring oscillator puf. In
Proc. HOST, pages 36–42. IEEE, 2009.

[72] M. Majzoobi, F. Koushanfar, and S. Devadas. FPGA PUF using pro-
grammable delay lines. In Proc. WIFS, pages 1–6, 2010.

[73] A. Rukhin. A statistical test suite for random and pseudorandom number
generators for cryptographic applications. Technical report, 2001.

[74] D. Forte and A. Srivastava. On improving the uniqueness of silicon-based
Physically Unclonable Functions via Optical Proximity Correction. In Proc.
DAC, pages 96–105, 2012.

[75] D. Forte and A. Srivastava. Manipulating manufacturing variations for better
silicon-based physically unclonable functions. In Proc. ISVLSI), pages 171–
176. IEEE, 2012.

[76] S. Wei, K. Li, F. Koushanfar, and M. Potkonjak. Hardware trojan horse
benchmark via optimal creation and placement of malicious circuitry. In Proc.
DAC, pages 90–95. ACM, 2012.

[77] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar. High-sensitivity hardware
trojan detection using multimodal characterization. In Design, Automation &
Test in Europe (DATE), Grenoble, France, 03/2013 2013.

[78] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The impact of technology
scaling on lifetime reliability. In Proc. DSN, pages 177–186. IEEE, 2004.

[79] R. Rao, S. Vrudhula, and D.N. Rakhmatov. Battery modeling for energy
aware system design. Computer, 36(12):77–87, 2003.

[80] K. Skadron, M.R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and
D. Tarjan. Temperature-aware microarchitecture: Modeling and implementa-
tion. ACM TACO, 1(1):94–125, 2004.

[81] Y. Zhang and A. Srivastava. Accurate temperature estimation using noisy
thermal sensors. In Proc. DAC, pages 472–477. IEEE, 2009.

[82] Y. Zhang, B. Shi, and A. Srivastava. A statistical framework for designing
on-chip thermal sensing infrastructure in nano-scale systems. In Proc. ISPD,
pages 169–176. ACM, 2010.

[83] S. Sharifi, C. Liu, and T.S. Rosing. Accurate temperature estimation for
efficient thermal managemen. Proc. ISQED, pages 137–142, March 2008.

[84] Y. Zhang, A. Srivastava, and M. Zahran. On-chip sensor-driven efficient ther-
mal profile estimation algorithms. ACM Trans. Des. Automat. El., 15(3):25,
2010.

155

[85] Y. Zhang and A. Srivastava. Adaptive and autonomous thermal tracking for
high performance computing systems. In Proc. DAC, pages 68–73. ACM, 2010.

[86] Y. Zhang and A. Srivastava. Statistical characterization of chip power behavior
at post-fabrication stage. In Proc. IGCC, pages 1–6. IEEE, 2011.

[87] S.M. Kay. Fundamentals of Statistical Signal Processing: Detection theory.
Prentice Hall Signal Processing Series. Prentice-Hall PTR, 1998.

[88] D. Forte and A. Srivastava. Energy and thermal-aware video coding via en-
coder/decoder workload balancing. In Proc. ISLPED, pages 207 –212, aug.
2010.

[89] Y. Zhang and A. Srivastava. Leakage-aware kalman filter for accurate tem-
perature tracking. In Proc. IGCC, pages 1–7. IEEE, 2011.

[90] J. L. Crassidis and J. L. Junkins. Optimal Estimation of Dynamic Systems.
CRC Press, 2004.

[91] F. Sebastiano, L.J. Breems, K.A.A. Makinwa, S. Drago, D.M.W. Leenaerts,
and B. Nauta. A 1.2 v 10µw npn-based temperature sensor in 65nm cmos with
an inaccuracy of ±0.2oc from -70oc to 125oc. In Proc. ISSCC, pages 312–313.
IEEE, 2010.

[92] A. Sreedhar and S. Kundu. Physically Unclonable Functions for embeded
security based on lithographic variation. In Proc. DATE, pages 1–6, 2011.

[93] N.B. Cobb. Fast optical and process proximity correction algorithms for inte-
grated circuit manufacturing. PhD thesis, UC Berkeley, 1998.

[94] P. Yu, S.X. Shi, and D.Z. Pan. True process variation aware Optical Proximity
Correction with variational lithography modeling and model calibration. J.
Micro, 6(3), 2007.

[95] A. Poonawala and P. Milanfar. OPC and PSM design using inverse lithogra-
phy: A non-linear optimization approach. In Proc. SPIE, volume 6154, pages
1159–1172, 2006.

[96] N. Jia and E.Y. Lam. Machine learning for inverse lithography: Using stochas-
tic gradient descent for robust photomask synthesis. J. Optics, 12:045601,
2010.

[97] S.H. Teh, C.H. Heng, and A. Tay. Performance-based optical proximity correc-
tion methodology. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
29(1):51–64, 2010.

[98] K. Qian and C.J. Spanos. A comprehensive model of process variability for
statistical timing optimization. In Proc. SPIE, volume 6925, 2008.

156

[99] A.B. Kahng, S. Muddu, and P. Sharma. Defocus-aware leakage estimation and
control. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 27(2):230–
240, 2008.

[100] S.X. Shi, P. Yu, and D.Z. Pan. A unified non-rectangular device and circuit
simulation model for timing and power. In Proc. ICCAD, pages 423–428, 2006.

[101] A.S. Sedra and K.C. Smith. Microelectronic circuits. 5th Edition. Oxford
University Press, 2004.

[102] L. Jiang, Q. Xu, and B. Eklow. On effective tsv repair for 3d-stacked ics. In
Proc. DATE, pages 793–798. IEEE, 2012.

[103] P. Gupta, A.B. Kahng, Y. Kim, and D. Sylvester. Self-compensating de-
sign for reduction of timing and leakage sensitivity to systematic pattern-
dependent variation. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., 26(9):1614–1624, 2007.

[104] C.E. Yin. Kendall Syndrome Coding (KSC) for group-based Ring-Oscillator
Physical Unclonable Functions. 2011.

[105] M.K. Mandal and B.C. Sarkar. Ring Oscillators: Characteristics and applica-
tions. Indian J. Pure and Applied Physics, 48:136–145, 2010.

[106] ASML. http://www.asml.com.

[107] K. Jeong, A.B. Kahng, C.H. Park, and H. Yao. Dose map and placement
co-optimization for improved timing yield and leakage power. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., 29(7):1070–1082, 2010.

157

