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It is well known that cognitive functions exert task-specific modulation of the
response properties of human auditory cortex. However, the underlying neuronal
mechanisms are not well understood yet. In this dissertation | present a novel
approach for integrating ‘bottom-up’ (neural network modeling) and ‘top-down’
(experiment) methods to study the dynamics of cortical circuits correlated to short-
term memory (STM) processing that underlie the task-specific modulation of human
auditory perception during performance of the delayed-match-to-sample (DMS) task.
The experimental approach measures high-density magnetoencephalography (MEG)

signals from human participants to investigate the modulation of human auditory

evoked responses (AER) induced by the overt processing of auditory STM during



task performance. To accomplish this goal, a new signal processing method based on
independent component analysis (ICA) was developed for removing artifact
contamination in the MEG recordings and investigating the functional neural circuits
underlying the task-specific modulation of human AER. The computational approach
uses a large-scale neural network model based on the electrophysiological knowledge
of the involved brain regions to simulate system-level neural dynamics related to
auditory object processing and performance of the corresponding tasks. Moreover,
synthetic MEG and functional magnetic resonance imaging (fMRI) signals were
simulated with forward models and compared to current and previous experimental
findings. Consistently, both simulation and experimental results demonstrate a DMS-
specific suppressive modulation of the AER and corresponding increased
connectivity between the temporal auditory and frontal cognitive regions. Overall, the
integrated approach illustrates how biologically-plausible neural network models of
the brain can increase our understanding of brain mechanisms and their computations
at multiple levels from sensory input to behavioral output with the intermediate steps

defined.
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CHAPTER 1. GENERAL INTRODUCTION AND BACKGROUND
STUDIES

Traditionally, the auditory cortex has been viewed as a refinement along a
continuum of information processing beginning at the thalamocortical afferent
pathways to represent the temporal, spectral and spatial properties of sounds
(Rauschecker 1998; Kaas et al. 1999). However, recent studies have revealed task
specificity of auditory cortical responses to the acoustic stimuli that reflect complex
top-down guidance in these refinements (Fritz et al. 2005, 2007; Scheich et al. 2007).
While the observed phenomena have been interpreted as consequences of interactions
between the feedforward afferent and feedback modulation pathways, exactly when
and where the modulations are exerted during the task performance remain illusive
and still beg for further investigations to understand the underlying neuronal
mechanisms. In this dissertation, 1 combined the ‘bottom-up’ modeling and ‘top-
down’ brain imaging methods with a specific auditory task to study cortical dynamics

underlying the task-specific modulation of human auditory perception.

1.1 Task-specific modulation of auditory object perception

1.1.1 Hierarchical pathway of auditory object perception

Auditory object refers to the acoustic events that can be perceived as one unit
(Kubovy & Van Valkenburg 2001). For example, melodic segments, words, animal
communication sounds, and environmental sounds are all well-known auditory

objects. A plausible approximation of these objects is that they can be described by



compositions of frequency modulated (FM) sweeps and tones, and perception of them
requires not only the processing of the temporal and spectral features, but also the
direction of the sweeps and their transitions. Cortical processing of auditory objects
involves multiple brain regions, such as the primary (Al) and secondary (A2)
auditory cortex, anterior and posterior regions in superior temporal gyrus and/or
sulcus (STG/STS), and prefrontal cortex (PFC). The primary auditory cortex locates
at the anterior part of the transverse temporal gyrus (Heschl’s gyrus, HG) within the
Sylvian fissure, receives tonotopically organized inputs from the medial geniculate
nucleus (MGN) in thalamus (Hall et al. 2002). In human EEG/MEG studies, the peak
of the evoked responses in Al can be observed as early as 20 ms after stimulus onset
(Lutkenhoner et al. 2003). There are two secondary regions located lateral to Al --
planum polare (PP, anterior to HG) and planum temporale (PT, posterior to HG).
Although borders between these regions are not clearly defined (Westbury et al.
1999), studies have shown that PP has finer tonotopic organization (Zattorre & Berlin
2001) and PT has broader tuning of frequencies but higher sensitivity to sound
motion (Warren et al. 2002), which suggests that PP may play a more important role
in processing the basic features of auditory objects. STG/STS refer to the regions
either anterior or posterior to the secondary auditory cortex in the superior temporal
gyrus/sulcus, which integrate the inputs from A2 to construct an abstract “percept’ of
the sound stimulus and can retain it for a short period (Colombo et al. 1990; Zatorre
& Samson 1991). In the auditory cortices, sensitivity to FM sweeps has been
observed in both nonhuman primate (Rauschecker et al. 1997; Rauschecker 1998; in

belt area) and human studies (Binder et al. 2000; Hall et al. 2002; in primary auditory



areas and STG/STS). Furthermore, lesion of bilateral ST has shown impairment of the
monkeys’ ability to perform a pattern discrimination task (Colombo et al. 1996). For
the frontal regions, neurons in the ventrolateral prefrontal cortex (VIPFC) have shown
activity correlated to representation and short-term storage of the stimuli’s acoustic
features (Romanski et al. 1999; Romanski & Goldman-Rakic 2002; Romanski 2004).
In addition, anatomical studies have shown both feedforward (Romanski et al. 1999)
and feedback (Budinger et al. 2000a, 2000b, 2006) connections between the auditory
and frontal regions. These experimental evidences point to the crucial roles of these

cortices in the perception of auditory objects.

1.1.2 Task-specific cognitive modulation of auditory cortex

Classical theory views the physiological function of the auditory cortices as
intermediate stations that relay information from subcortical regions to higher
cognitive centers. However, both animal and human studies have shown active
modulation of the auditory cortical activities. In animal studies, modulations have
been demonstrated by changes in the representational properties of A1l neurons, such
as shift of the firing pattern among neurons by the context of previously presented
stimuli (Condon & Weinberger 1991; Malone et al. 2002; Ulanovsky et al. 2003;
Bartlett & Wang 2005) and changes in properties of receptive fields as a function of
behavioral states (Gottlieb et al. 1989; Fritz et al. 2005). In human beings, both
hemodynamic and electromagnetic studies have shown modulations of the auditory
response patterns by attention (Hillyard et al. 1973; Woldorff et al. 1993; Fujiwara et
al. 1998; Hughes & Jones 2003; Sabri et al. 2006; Ahveninen et al. 2006), memory

(Stanny & Elfner 1980; Lu et al. 1992; Luo et al. 2005), task requirement (Chait et al.



2004) and perceptual decision (Pollmann et al. 2006). An important aspect of the
modulation effects demonstrated by EEG/MEG studies is the suppression of the
N1/M100 response, which has been observed in both passive tasks such as listening
to repeated stimuli (May et al. 1999), and active tasks such as rare sound detection
(Haenschel et al. 2005), dichotic listening (Hillyard et al. 1973; Woldorff et al. 1993;
Fujiwara et al. 1998; Brancucci et al. 2004), discrimination (Melara et al. 2005) and
working memory paradigms (May & Tiitinen 2004; Luo et al. 2005; Lu et al. 1992).
It has been proposed that the suppression effect results from *neuronal adaptation’ in
response to the repeated presentations of the same sounds (for review, see Baldeweg
2006). However, since the suppression effects also have been found in other tasks
which do not involve repetitive presentation of the same stimuli (Luo et al. 2005, Lu
et al. 1992), it is suggested that task-specific active modulation mechanisms, other
than neuronal adaptation, might also be underlying the suppression effect observed
during performing the tasks.

The underlying mechanism of the cognitive modulation has been
hypothesized as either by intrinsic dynamics (Wehr & Zador 2005) or feedback
modulation from downstream cognitive processes. The hypotheses of feedback
modulation include biasing the competition to favor the relevant information
processing (Miller & Cohen 2001; Deco & Rolls 2005), or by predicting upcoming
sensory events (Friston 2005). In these hypothesized mechanisms, frontal regions
have drawn much more attention: They’re proposed to provide biasing signals to
preferentially strengthen the task-relevant processing (Miller & Cohen 2001) and

specifically inhibit the task-irrelevant or unwanted stimuli (Aron et al. 2004; Aron



2007). They may also be involved in holding a short-term storage of the stimuli and
use them for perceptual decision (for a recent review, see Funahashi et al. 2006);
They may even be important for predicting the upcoming stimuli based on either a
statistical estimation by experience (Friston 2005) or by estimation of the sensory
outcome (or reafference) through the use of the efference copy of the prepared motor
behavior and an internal model of the interaction between the body and the
environment (Wolper & Kawato 1998, Martikainen et al. 2005, Chen et al. 2006).
Therefore, investigation of the functional connectivity between the frontal and
sensory regions will help us to further our understanding of the top-down modulation

mechanisms and the neural circuits underlying auditory information processing.

1.1.3 Delayed-match-to-sample (DMS) task and DMS-specific neuronal activity

This dissertation uses an auditory delayed-match-to-sample (DMS) task to
investigate the task-specific modulation of human auditory cortex. Auditory DMS
task requires the participants to discriminate given features between a pair of sounds
interleaved by a delay period (Posner 1967). Performing the DMS task involves the
formation, maintenance, and manipulation of the short-term memory (STM) for the
specified features of the first sound in the pair during the delay period, thus the
participant could make judgment based on the comparison between the memorized
features of the first sound and the perceived features of the second one (Postle et al.
1999). Neurons in both prefrontal (Romanski et al. 1999; Romanski 2004; Romanski
& Goldman-Rakic 2002) and auditory (Gottlieb et al. 1989; Zatorre et al. 1994)
cortices have been demonstrated to show response patterns reflecting the memorized

features of the stimulus, and lesion studies have shown both regions (Zatorre &



Samson 1991; Knight et al. 1999) are necessary for successful performance of the
task. While participants are performing the task, the involved cortical regions display
a complicated activity pattern: increase of the beta band activity is observed in the
frontal regions during the first half of the delay period while increase of the alpha
band activity in the temporal region kicks in later during the late delay period
(Klimesch 1997; Luo et al. 2005). In addtion, in frontal regions, increased activity in
theta band (Klimesch et al. 1999, 2007) and gamma band (Leiberg et al. 2006a, b)
have also been observed during the delay period. There are two major modulation
effects that have been shown in the auditory cortex while performing the auditory
DMS task: (1) suppression of the evoked responses to the second sound (Luo et al.
2005), and the suppression becomes weaker with longer delay period (Lu et al. 1992);
(2) The auditory neuronal responses to the second sound depend on whether it
matches the first one. For instances, studies of the nonhuman primate’s auditory
neuronal activity during performance of a DMS task showed both neurons that
increased response to the nonmatched sounds while similar activity level to the
matched sounds and neurons with decreased response to the matched sounds while
similar response level to the nonmatched sounds (Goettlieb et al. 1989). These
experimental findings indicate that, while performing the auditory DMS task, both
temporal and frontal cortical regions show task-related dynamics which are reflected
by various spectral components. And the modulation of the evoked response to the
second sound is influenced by the stimuli context in each pair and possibly the
memory trace formed during the delay period. However, it is unclear whether this

modulation effect is due to adaptation to the repeatedly-presented sound stimuli or is



specifically related to the task. Therefore, it is important to assess the task-specificity
of the modulation effect and examine the functional connectivity patterns between
temporal and frontal regions during task performance in order to understand the
underlying neural mechanisms of the modulation effect.

Both regional (Tagamets et al. 1998; Husain et al. 2004) and neural mass
models (Moody & Wise 2000; Gisiger et al. 2005) of DMS task have been proposed
to simulate the neuronal dynamics during task performance. There are also models
focusing on the influence of attention (Deco & Rolls 2005) and neuromodulation
(Chadderdon & Sporns 2006) to neuronal activities. One of these models simulates
the regional dynamics during performance of auditory DMS task (Husain et al. 2004).
This model is composed of modules representing the MGN, Ai, Aii, ST, PFC regions,
where each region consists of basic units that represent local populations of neurons
firing consistently during the task performance. The PFC region contains memory-
processing units and response units, where the manipulation of the gain value to the
memory unit can simulate the task conditions such as DMS and rest. DMS correlated
fMRI signal also was simulated using the forward model in this study. In this
dissertation, | expanded this model to simulate the DMS-specific modulation of AER

in MEG measurements and corresponding dynamics in fMRI signals.



1.2 Exploring human cognitive function — integration of ‘top-down’

and ‘bottom-up’ approaches

1.2.1 ‘Top-down’ approaches: brain imaging methods

Non-invasive brain imaging techniques have provided powerful tools for
simultaneously investigating the neural dynamics, interactions between neural
substrates of multiple brain regions by measuring brain activity correlated with
external signals using appropriate psychophysiological paradigms. Among these
techniques, Magnetoencephalography (MEG) and Electroencephalography (EEG)
detect the weak electric or magnetic fields generated by the synchronized intracellular
synaptic currents (Baillet et al. 2001; Hamaldinen et al. 1993); while functional
magnetic resonance imaging (fMRI) and Positron Emission Tomography (PET)
signals reflect the metabolic related hemodynamic changes related to changes of
regional blood flow, blood volume and blood oxygen level in the brain (Ogawa et al.
1992). Besides measurements of different types of brain activity related signals, these
types of techniques show differences in their sensitivities to brain dynamics in
different spatial or temporal scales: MEG/EEG have temporal resolution in the
millisecond order but relatively poor spatial resolution (in the order of centimeters)
due to signal smearing by the low conductive skull (Nunez & Srinivasan 2006),
limitation of the spatial measurement (up to several hundred of sensors) and inherent
static electromagnetic inverse problem (Baillet et al. 2001). In contrast, fMRI/PET
have spatial resolution in the millimeter range but poor temporal resolution (in the
order of seconds or tens of seconds) given the relatively slower changes of the

hemodynamic response (Ogawa et al. 1992).

8



1.2.1.1 Instrumentation of MEG

MEG measures the weak extracranial magnetic fields from living human
beings. It is based on the sensitive detector called the superconducting quantum
interference device (SQUID). Immersed in a dewar cooled by liquid helium, SQUID

can detect the very weak changes of magnetic flux generated by brain activity at the

femto (1x107"°)-Tesla levels, which is around 10 to 11 orders of magnitude smaller
than the strength of the earth’s magnetic field. Modern MEG scanners usually have
multisensor arrays that contain up to 300+ SQUID magnetometers, which can cover
the whole head of the subject and record the magnetic flux across multiple sites
simultaneously. The signals are commonly recorded inside a magnetic-shielded room
to reduce the influence of environmental magnetic fields. In addition to the magnetic-
shielded room, the gradiometer coil configurations (e.g. The third-order gradiometer
used in CTF 275 system) are used to reduce other instrumental noises (for review, see

Héamalainen et al. 1993).

1.2.1.2 Neural basis of MEG signals

Two major sources of electric signals in neural systems are action potentials
(AP) and post-synaptic potentials (PSP). The detectable extracranial magnetic flux
recorded by MEG is believed to be generated by the synchronized PSP of pyramidal
cells (Hamaldinen et al. 1993). Constituting 75~80% of the neuronal population in
neocortex (Buxhoeveden & Casanova 2002), the pyramidal cells have asymmetrically
morphological and roughly parallel oriented apical dendritic trees (Mountcastle
1979). Arrival of impulses through the pre-synaptic axons at the synapses along the
apical dendrite of the post-synaptic neuron changes the permeability of ion channels

9



near the synaptic site, which in turn either increases or decreases the intracellular
potential. Therefore, the potential difference between the synaptic site and the soma
generates the current flow along the dendrite. Each PSP can be represented by an
equivalent current dipole (ECD) with the strength of 20 fA-m, but the detectable
strength of source current with MEG is in the order of 10 nA-m, thus the detectable
current source measured by MEG is generated by synchronous flow of post-synaptic
current in the same direction among thousands of pyramidal cells (Baillet et al. 2001).

Current sources underlying the MEG signals are composed of two
components: the primary current is the intracellular current flow along the dendritic
tree due to the depolarization (excitatory postsynaptic potential, EPSP) or
hyperpolarization (inhibitory postsynaptic potential, IPSP) of the membrane potential
near the synaptic site. The induced extracellular passive ohmic current closes the loop
of current flow with flow in the opposite direction through the surrounding medium,
which is called the volume current or return current. The magnetic field is generated
by both primary and volume current. Spreading in all directions through brain tissue,
cerebro-spinal fluid, skull and scalp to the sensors, the magnetic field recorded by
each sensor of the MEG scanner contains information of all functional sources in the
brain, which contributes to the ill-posed inverse problem of MEG for estimation of

the sources from measurements at the sensors.

1.2.1.3 Forward and inverse solutions of MEG

The forward solution of MEG is to calculate the extracranial magnetic field at
the location of the MEG sensors given the putative primary current inside the brain.

As showed in Appendix A, given a selected head model and known location of the

10



sensors, estimation of the magnetic field is linearly correlated to source dipole current
and depends on the geometric properties of the head models with consideration of the
return currents, the remaining variables for estimating the magnetic field with the
simulated dipole current include the location of the dipole and the orientation and
magnitude of the dipole moment. Numerous head models for either analytical or
numerical forward solutions have been developed for MEG, across a wide spectrum
from the simplest one-layer semi-infinite volume sphere model (Cuffin & Cohen
1977) to the complicated three-layer real-shape head model based on boundary
element method (Hamél&inen & Sarvas 1989). In this dissertation, a sensor weighted
overlapping sphere head model (Huang et al. 1999) is used to take advantage of both
the real head shape and relatively lower computational cost provided by this model.
The inverse solution provides an estimate of the source current with the sensor
measurement, and usually requires the lead field computed from the forward solution.
Due to the ill-posed inverse problem, the estimation of the sources is usually based on
certain constraints or assumptions, such as the approximation of minimized variance
for each source used in beamformer techniques (van Veen et al. 1997). In this spatial
filter beamformer, a three dimensional grid of sources covering the whole head of the
subject is constructed. Each voxel in the grid contains one equivalent current dipole
(ECD) with its base at the center of that voxel. The lead field is built upon the
selected head model, and is computed with a unit virtue dipole in each voxel.
Computation of the transform matrix to calculate the ECD for each source with a

spatial filter beamformer is illustrated in detail in Appendix B.
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1.2.1.4 Analysis and interpretation of MEG signal

Analysis of measured MEG signals usually takes pre-processing steps first to
reduce the noise and remove the artifacts from the signal. Further analysis is then
taken either in the manner of event-related analysis by averaging across the epochs
aligned to time markers of certain events, such as onset of sound stimuli, or in the
manner of induced response analysis by measuring the phase change of the
spontaneous activity correlated to certain sensory, cognitive or behavioral paradigm.
Interpretation of the experimental results obtained from analysis of the MEG
measurements usually takes into account changes of magnetic field patterns across
the sensors or activity patterns across estimated sources, as well as the changes of the
connectivity pattern among the sensors or sources, correlated to the experimental
behavioral paradigm (Hari 1990; Hamaldinen et al. 1993; Baillet et al. 2001). This
work focuses on the dynamics of the auditory evoked field (AEF) in sensor space and
corresponding auditory evoked responses (AER) in source space, as well as the
dynamics of the functional connectivity between cortical regions during performance

of the DMS task.

1.2.15 Isolate artifact and function-related signals in MEG: independent

component analysis (ICA) and categorization of independent components

One of the essential problems in MEG data analysis is that the measurement
on each sensor is a mixture of magnetic fields generated by multiple sources,
including both the artifact-related non-brain sources and the functioning neural
activities inside the brain. Thus how to isolate/sort out the signal of interest and

remove the irrelevant artifacts becomes the first obstacle in analyzing the MEG data.
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By blindly decomposing the multi-channel recordings into spatially fixed and
temporally independent components (Bell and Sejnowski, 1995), independent
component analysis (ICA) has proven to be an efficient tool in reducing the
complexity of MEG signal processing (Vigario et. al. 2000). For each independent
component (IC), the fixed projection on the sensors (which is called a ‘scalp map’)
provides spatial information of the biological sources, irregardless of their activation
source size and whether they are locally activated or broadly distributed, at the same
time the maximally independent activation denotes the accurate timing of the events,
which is extremely useful in identifying the sources of the evoked-responses (Makeig
et al. 1997). Compared to direct application of source localization methods on raw
MEG data, ICA carries two main advantages: (1) It can identify and remove signal
artifacts such as eye movements, heart beat and muscle activity produced during the
experimental measurements (Vigario et. al. 2000, Tang et. al. 2002, James et. al.
2003, Barbati et. al. 2004); and (2) it can provide accurate temporal information on
the dynamics of much fewer functioning neural circuits as compared to the raw MEG
signal (Contreras-Vidal & Kerick 2004; Makeig et. al. 1999; Makeig et. al. 2001; for
review, see Delorme et. al. 2004), which in turn will help to improve the analysis of
the correlated activities among co-activated brain regions with greatly reduced
dimensionality.

The advantage of applying ICA in artifact rejection is mainly manifested in
comparison to the segment-rejection method, which is based on signal thresholds for
the detection of large artifacts such as eye blinks. The segment-rejection method

requires an arbitrarily-set magnitude threshold, which makes the identification and
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rejection of artifacts with smaller magnetic fields such as heart beat difficult
(Hamal&inen et al, 1993). Moreover, as this approach also requires rejection of data
segments that are identified to have artifacts, valuable brain activity information
contained in the rejected segment is lost with the artifacts. In contrast, by applying IC
to identification and rejection of the artifacts, it is possible to recover the functional
brain activities masked by artifactual signals thus save the useful information from
mass data loss.

While patterns of scalp maps and activities of the ICs can be identified and
correlated to both artifacts and functional signals, it has been shown that the ICs
computed from different trials and different individuals vary in both spatial and
temporal patterns, despite the fact that they are correlated to the similar biological
events. Visual examination across the trials for artifact rejection is not only
inefficient, but also arbitrarily dependent on the person doing the analysis. Thus, to
develop an automatic artifact identification method based on the features of the ICs
for MEG data analysis becomes necessary in concerns of time and labor efficiency, as
well as accuracy and reliability of data analysis. This dissertation presents an
automatic IC identification tool with iterative clustering methods based on the spatial,
spectral and informational features of the ICs to categorize both artifacts and evoked

response related ICs.

1.2.2 ‘Bottom-up’ approaches: Large-scale neural network modeling

As discussed in the sections above, MEG is capable of providing insightful
data to infer the evoked and ongoing neuronal activities related to sensory, motor and

cognitive functions in human brain. However, congruent interpretation of these
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findings with other functional brain imaging studies and correlating them with the
understanding of neural dynamics obtained from microscopic electrophysiological
recordings in either non human animals or neurosurgical patients have proven to be
difficult tasks due to the different spatial and temporal resolution and the different
methods of measurement (e.g. invasive vs. non-invasive) among the techniques. In
the effort to bridge the gaps between multiple levels of knowledge acquired, ‘bottom-
up’ approaches, which simulates either hemo-metabolic or electromagnetic dynamic
signals based on a general biophysical realistic neural network model, have been
proposed in various studies (Tagamets & Horwitz 1998, Husain et al. 2004, Horwitz
& Poeppel 2002, David & Friston 2003). Furthermore, the modeling approach, by
taking the assumptions and constraints inferred from other anatomical, physiological
and behavioral studies, can provide common substrates for simulation of the system
dynamics under different cognitive, behavior, and pathological conditions, which, in
combine with more experimental studies, can help to corroborate the conclusions
from experimental data as well as revealing possible directions for further
experiments. Here, | explore the combination of these two approaches -- a ‘bottom-
up’ simulation supported by a ‘top-down’ analysis and show that it provides much
deeper understanding of the neuronal activity involved in certain cognitive function

that either approach could do by itself.

1.2.2.1 Modeling the evoked responses in EEG/MEG

Although it is known that synchronized intracellular synaptic current of the
pyramidal cells and correlated volume currents are the main contributor of the

EEG/MEG signal, and using equivalent current dipole and forward models can
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simulate the evoked responses observed in EEG/MEG studies (Nunez & Silberstein
2000), only recently a few models have been developed to simulate the network
dynamics of the evoked responses during task performance. David and Friston (2003)
postulated the method of simulating the evoked responses with dynamic causal
modeling (DCM) and addressed the modulation of AER in an oddball paradigm
(Kiebel et al. 2006). A recent layer-specific model of somatosensory evoked fields
(SEF) also simulated task-related local neuronal activities and their contributions to
the observed changes in SEF in a tactile detection paradigm (Jones et al. 2007). Here
| take a similar approach by estimating the simulated integrated synaptic activity from
a biophysically realistic network model, and using this estimation to obtain the
forward solution with specified source location, orientation and source-sensory
relationship to simulate the auditory evoked responses and the corresponding

modulation during task performance.

1.2.2.2 Modeling the BOLD signal

In contrast to MEG, many more approaches have been taken to correlate the
multiple regional neuronal electrophysiological dynamics to the fMRI signal
(Tagamets & Horwitz 2000, 2001; Corchs & Deco 2002; Husain et al. 2004; Riera et
al. 2004; Marreiros et al. 2008). Particularly, the neuronal activity, integrated synaptic
activity (ISA) and corresponding fMRI signals of the regions involved in performing
the auditory DMS task have been simulated and compared with the experimental
results (Husain et al. 2004), in which most of the regions except the primary auditory
cortex showed comparable BOLD signal changes to the experimental results. The

similarity across these approaches is that hemodynamic response functions (HRF)
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were used as the mediator between the regional ISA and synthetic BOLD signal, as
experimentally proved (Logothetis 2001, 2002, 2003). However, it is worthy to note
that the excitatory and inhibitory PSP (EPSP and IPSP) are assumed to contribute
cumulatively to the BOLD signal (Logothetis 2003; Tagamets & Horwitz 2001),
which is different from their contributions to the EEG/MEG signals, in which IPSPs
are canceled from EPSPs to generate the moment strength of ECDs for forward
simulation. This leads to fundamental problem when one tries to correlate results
obtained from EEG/MEG and fMRI experiments, as | will mention in the following

part.

1.2.2.3 Integrated models of MEG and fMRI

Since it has been proven that postsynaptic currents are the common source of
forward solution for both MEG and fMRI, it seems quite obvious that we should try
to combine and reconcile results obtained by both techniques to take advantage of
their complementary features of superb temporal and spatial resolution. However, this
turns out to be a rather difficult problem. Nunez and Silberstein (2000) have listed the
difficulties of coupling the understanding from the analysis of MEG and fMRI
signals: (1) for a detectable BOLD signal, the underlying EPSP and IPSP can cancel
each other and produce no MEG signal; whereas (2) a small amount of synchronized
PSP (although still in the order of thousands) can generate large MEG signal but the
corresponding BOLD signal will be weak. In recent years, several computational
models have emerged to address these problems and integrate the modeling of
EEG/MEG and fMRI (Babajani et al. 2005, 2006, Riera et al. 2005, Liu et al. 2006,

Sotero et al. 2008) to achieve both high spatial and temporal resolution. A common
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feature of these models is that the postsynaptic currents for simulation of EEG/MEG
and fMRI signals are integrated separately to address the difficulties mentioned
above.

In this dissertation | choose to simulate both MEG and fMRI signals relevant
to the performance of the auditory delayed-match-to-sample (DMS) task. In contrast,
for the experimental approach | focus on MEG measurements with exquisite temporal
resolution (~1.6 ms), since the fMRI correlates of the auditory DMS task have been
investigated in a prior study (Husain et al. 2004). With this integrated approach, |
investigate the task-specificity of the cognitive modulation of human auditory cortex
and the neural mechanisms underlie the observed dynamics in evoked responses and

BOLD signals.
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CHAPTER 2. ISOLATING ARTIFACT AND FUNCTION
SIGNALS IN MEG - AN AUTOMATIC CATEGORIZATION

METHOD FOR INDEPENDENT COMPONENT ANALYSIS

This chapter illustrates a method for combining independent component
analysis (ICA) and clustering algorithms to isolate the artifact and function-related
signals from experimental MEG measurements. The method and its application in
categorization of artifact-related independent components (IC) were described in the
Journal of Neuroscience Method (Rong & Contreras-Vidal, 2006), and it is attached
to this dissertation for completeness. As the first author, | had following contributions
to this paper:

(1) Participated in experimental design and MEG data collection.

(2) Participated in developing the categorization method.

(3) Analyzed the data and produced the figures and tables in the paper.

(4) Participated in writing and revising the manuscripts.
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Abstract

Artifact signals from eye movements, heart beat and muscle activity contaminate magne toencephalographic (MEG) signals generated from the
neural activities inside the brain. Rejection of contaminated trials not only causes data loss, but can also significantly increase the experimental
time or even prevent the analysis of highly contaminated or noisy data. We combined the vse of independent component analysis (ICA) and
clustering methods to isolate the artifacts from MEG signals. Threshold-based clustering analyses based on the topographic pattern, statistical
aspects and power spectral patterns of independent components (1Cs) successfully identified 1Cs related to certain types of artifacts. Unsupervised
neural network based on the Adaptive Resonance Theory (ART) also categorized the artifact ICs, albeit with lower accuracy. Performance of the
identification methods were evaluated with measurements of underestimation and overestimation of the target artifactual 1Cs. The combination
of threshold-based clustering and ART-2 neural network categorization methods demonstrated the best identification performance. Comparison
between contaminated and artifact-cleaned MEG signal waveforms showed the efficiency of the proposed methods of artifacts rejection. The
analysis of the artifact components suggested the possibility of automatic artifact removal based on general templates.

@ 2006 Elsevier B.V. All rights reserved.

Keywords: Antifacts, Magnetoencephalography, ART-2; Categorization, Clustering; ICA

1. Introduction trodes in MEG recording makes it difficult to remove artifacts
in MEG signals with these methods. Other methods based

The analysis of magnetoencephalography (MEG) signals  on signal thresholds for the detection of large artifacts such
always requires the identification and removal of artifacts such ~ as eye blinks, need an arbitrarily set magnitude threshold,
as eve movements, heart beat and muscle activity due to head and which makes the identification and rejection of artifacts with
hand/arm movements produced during the experimental session. smaller magnetic field magnitude such as heart beat difficult
These biological events contaminate the MEG signals generated (Himildinen et al., 1993}, Moreover, as this approach requires
by task-relevant brain activities and thus make direct analysis rejection of data segments with artifacts, valuable brain infor-
of the MEG signal with artifacts difficult (Himildinen et al., mation contained in the rejecled segmenlt represenls an unac-
1993). Regression methods in the time domain (Hillyard and ceptable data loss. Thus, the development of methods to iden-
Galambos, 1970) and the frequency domain (Woestenburg et tity the artifacts and remove them without loss of information

al., 1983) have been proposed for the removal of eye move- related to the cerebral activity is of the utmost importance for
ments and other artifacts in electroencephalographic (EEG)  MEG stdies involving eye movements and/or subject motor
signals. However, the lack of eye-movement reference elec-  responses.

Independent component analysis (ICA, Bell and Sejnowski,

—_— 1995) has been successfully applied to the processing of elec-
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MEG (Vigario et al., 2000, Tang et al., 2002; James and Gibson,
2003; Barbati et al., 2004). The criteria used by most of these
methods focus on a single feature of the artifactual components
related to topographic patterns, statistical patterns, or spectral
properties. One recent study claimed automatic detection of the
artifactual components in MEG signal based on the analysis of
the statistical and spectral aspects of the components (Barbali
et al.,, 2004). However, this study did not take into account the
scalp map of the components, which represents the fixed spa-
tial feature of the components and has been used successlully in
identification of the artifacts in former EEG studies (Delorme
and Makeig, 2004).

Here we propose an approach for efficient artifact identifica-
tion and automatic removal of MEG signals based on iterative
clustering of independent components (ICs) features includ-
ing the scalp map, the statistical and the spectral properties.
Both threshold-based clustering in feature space and automatic
neural network-based categorization were implemented for dis-
crimination of certain types of artifacts in MEG signals. We
report that both approaches can detect and remove artifacts for
single-trial and multiple-trials (concatenated) MEG signals from
datasets within subject and across subjects. Evaluations of per-
formance showed that threshold-based clustering could identify
the artifacts with higher accuracy, whereas the neural network
categorization performed with minimal intervention from the
researchers. The performance gain obtained by combining these
two methods is also demonstrated, namely the improvement in
alleviating overestimation andfor underestimation of target arti-
factual ICs.

We have applied our proposed methods for ICA-based
artifactual IC identification and removal on both single-trial
based epochs and the concatenated MEG signals (Delorme and
Makeig, 2004). The iterative template updating used for the cal-
egorization and clustering of the identified components suggests
that the same type of independent components with slightly
different features can be clustered together. The statistical anal-
ysis of the feature values also showed that the components
related to artifacts can be significantly discriminated with com-
bination of two or more features. Since the proposed methods
are not specific or restricted to any biological event, they may
also be useful in the identification and categorization of ICs
related to brain signals generated by similar functional brain
networks.

MEG dewar, display and
fiber optic-guided pen

Fig. 1. Experimental setup. The subjects’ view of their hands and arms has been occluded during the

Vision of the hand/arm
was occluded

2. Methods
2.1, MEG signal collection and pre-whitening

2.1.1. Participants

Five healthy right-handed adults volunteered to participate in
the study after giving informed consent. All subjects had normal
or corrected-to-normal vision. All procedures were approved by
the Institutional Review Board at the University of Maryland,
College Park.

2.1.2. Apparatus

Subjects lay supine on a table with their heads inside the
recording dewar of the MEG device, which was located in
a magnetic-shielded room in the KIT-MEG laboratory at the
University of Maryland, College Park. The subjects performed
center-out drawing movements with an optic pen on a glass
panel in front of them (Fig. 1). During the experiment, the sub-
jects’ vision of the pen and their hands was occluded by a black
curtain. A video camera placed over the glass panel caplured the
movement of the pen tip with a 60 Hz sampling frequency. The
signal of the movement was transformed onto a screen cursor
moving on a moenitor screen outside the room and another glass
panel over the subject’s head, providing the subjects with visual
information of the pen tip movement. The subjecls’ task was to
draw a line from a home circle centered on the screen to one of
the targets at the four comers of the screen. MEG signals were
recorded with the 192-neurc-magnetometer-channel system
(Kado et al., 1999). This system uses coaxial type first-order gra-
diometers which have a magnetic field resolution of 4 ft/Hz!/2
or 0.8(f/cm)/Hz'? at the white noise region. One hundred
and fifty seven channels (channel index 0-156) out of the 192
channels were used to record magnetic signals related to brain
activity. The remaining 35 channels are commonly reserved for
triggering or other purposes. In this experiment, four of these
channels were used for temporal markers of behavioral events
(160 target onset; 161: go signal; 162: movement onset; 163:
target acquisition), and three channels (channel index 157-159)
served as references for noise reduction (Adachi et al., 2001).
The continuous MEG signals were sampled at 1kHz and
on-line filtered in the SQUID electric circuit units using three
kinds of analog filters: high-pass filter (1st order Butterworth,
f1=1Hz, attenuation step: 6dB/octave), low-pass filter (2nd

Project display
(home/cursor/target)

.

were asked to move an optic pen

on a plexiglass panel in front of them. A camera captured the movement of the pen tip and transformed it into cursor movement on a screen over the subjects” heads.
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order Butterworth, fh=100 Hz, attenuation step: 12 dB/octave),
and a notch filter (1st order paired band elimination filter,
center frequency =60Hz, aftenuation rate: >30dB at center
frequency).

2.1.3. MEG signal pre-whitening

The non-periodical low-frequency environmental noises
(e.g., noise from urban traffic surrounding the MEG facility)
recorded by three reference sensors during MEG measurements
were pre-whitened using the continuously adjusted least square
method (CALM, Adachi et al., 2001), which is implemented in
MEG160 software (MEG Laboratory 2.001 M, Yokogawa Cor-
poration, Eagle Technology Corporation, Kanazawa Institute of
Technology). The pre-whitened MEG signal was epoched with
10.2s time length, which corresponded to 10,201 samples per
sensor per epoch. Bach epoch was viewed as a single trial. Four
datasets were constructed with the pre-whitened MEG signal to
test the methods of TCA and artifactual IC identification: dataset
one was from one randomly picked trial; dataset two consisted
of 95 trials from one subject; dataset three contained 123 tri-

Pick out one artifact
template from database

339

als randomly selected across all five subjects, and dataset four
contained 21 trials from one subject. Dataset four was used to
compare the performance of artifactual IC identification meth-
ods when applying ICA on the concatenated continuous MEG
signal and on single-trial based epochs. The proposed methodol-
ogy for artifact identification and removal is illustrated in Fig. 2.

2.2, Independent component analysis

First, we applied Infomax ICA (EEGLAB v4.512, which was
downloaded from http:/fwww.scen.uesd.edu/eeglab/index. html)
on the pre-whitened MEG signals. We did not use the extended
ICA algorithm because the main target sources (artifactual
sources) of this study were mainly supra-Gaussian distributed
(kurtosis =) (Delorme and Makeig, 2004). For the first tlree
datasets, ICA was applied on single-trial based epochs. For
dataset four, ICA was applied on both a concatenated dataset
and in single-trial based epochs.

For the application of ICA, we assumed that the MEG sig-
nal x{r) was generated from sources ¢(f) with a linear mixing

MEG signal

| Blind Source Separation with ICA ‘

!

Independent Components ‘
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Caleulation of features ‘

] |
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Fig. 2. The illustration of the procedure for indep comp
of cleaned MEG signal.
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procedure
x(r) = A s(r) (1)

where f was a vector of the sampling time with length T,
X =[x (0. . .6, (0] was a n o< T matrix of noise reduced MEG

signal recorded from n sensors; s(t) =[5, (1). . .50 wasam = T’

matrix of m sources” activations; A was an unknown n » m full-
rank mixing matrix. The applicationof ICA involved processing
the MEG signals following the demixing procedure:
)= Wxin (2
where §(r) = [5(r). .. §,,(1)] 15 an m-dimensional matrix of the
independent components, which represents the estimation of the
sources #(1); Wis a demixing matrix
w=Aat (3)
where A denotes an estimate of the pseudo-inverse of the mix-
ing matrix A.

After the artifacts had been identified, the MEG signals were
reconstructed with the components which have not been labeled
as artifacts. Thus, in the remixing matrix, the weight vectors of
the identified artifactual 1Cs have been set to zeros, such that
u!-i—

() = Wi, 50 (4)
where x'(1) is the reconstructed artifacts-free MEG signal for n
sensors, W' is the pseudo-inverse of the demixing matrix W,
and W‘__"lca“ 18 the # « mremixing matrix with its columns corre-
sponding Lo the artifactual ICs set to zeros, ¥(r) is the activation
matrix of ICs as mentioned above.

It is important to note that the application of Infomax ICA on
EEG/MHEG signals makes at least the following four assumptions
(Vigario et al,, 2000): (1) the underlying sources are statisti-
cally indcpcndenil and spatially stationary, however, if the total
temporal independence cannot be reached, the sources are nev-
ertheless computed with maximal independence to each other;
(2) the sources do not have a Gaussian distribution?; (3)the com-
ponents are characterized by a fixed, but possibly overlapping,
spatial topography; and (4) the mixing process is instantaneous
and stationary. The instantaneous mixing assumption can be met
if we accept the quasi-static approximation of Maxwell equation
(Jackson, 1999). The widely accepted current dipole model of
the brain sources of MEG signals is congruent with the assumed
stationarity of the ICs (Hiamiildinen et al., 1993).

! Independence is not a strong constraint of ICA as ICA can be viewed as a
nEximum projection algonthm so it will find the sources which are maxinally
independent. This makes sense when studying brain processes as it 1s unreason
able to assume that the activily in one part of the brain is completely independent
of the activity in another part of the brain.

* Strictly speaking, il is not necessary o assume for the information maxi
mization in ICA that the sources not have a Gaussian distribution. In the case of
Gaussian distributed signals, ICA merely degenerates to regular old PCA with
summarized varance equivalent to information and uncorelated components
also being independent (Vigado et al., 2000).
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2.3, Component feature caleulation and clustering
fdentification

Four feature values were caleulated for identification of the
artifactual ICs: the pairwise distance between topographic pat-
terns (dtopo); the entropy of the component activations (I7); the
pairwise distance between the power spectral density patterns of
the component activations (dPxx), and the global kurlosis coefli-
cient of the component activations (K). The ICs were visualized
as scatter points in feature space for threshold-based clustering
of the artifactual ICs. For dataset one, the EKG-related artifac-
tual ICs were clustered with criteria of dtopo < 0.2, dPxx < (1.5,
H < 278 and K >0, the ocular movement-related artifactual ICs
were clustered with criteria of dtopo = (1.2, dPxx = 0.5, H = 3.0
and K> 20. For dataset two and three, the EKG related artifac-
tual ICs were clustered with criteria of dtopo = 0.2, dPxx < 0.5,
H < 2.8 and K =0, the EOG1-related artifactual ICs were clus-
tered with criteria of dlopo<0.2, dPxx =05, H=3.0 and
K =10. The EOG2-related 1Cs were clustered with criteria of
dtopo = 0.2, dPxx < 0.5, H < 3.0 and K> 10. For dataset four,
the threshold-based clustering methods used two sets of thresh-
olds for each type of artifactual ICs, which are provided in
Table 3.

2.3.1. Distance berween IC topographic patterns

The ICs are commonly viewed as related to field activity with
fixed spatially distributed sources (Makeig et al., 2002, 2004). In
applications of ICA, the spatial distribution of sources is usually
represented as scalp maps (Makeig et al., 2002, 2004) or field
maps (Tang et al., 2002), which are represented mathematically
as projection of the ICs on sensor space. This measurement rep-
resents the estimate of the mixing matrix A, which is denoted
as the pseudo-inverse of the demixing matrix (that is, W*). The
pairwise distance of these topographic palterns can give us infor-
mation how close the spatial distributions of these sources are.
In our study we used the correlation method to calculate this

distance,

where Topo, was the topographic pattern of the compared 1C
and Topoy, was the topographic pattern of the template IC. If
this value is close to zero then the topographic pattern of the
current IC is a close match to that of the template IC, which
represents a certain type of artifacts. In this study we used the
built-in pdist.m function in statistical toolbox v4.0 and MAT-
LAB 6.5 (The Math Works Inc., MA, USA) to compute dtopo.
Note that because the exact polarity of the components sepa-
rated by ICA is unknown, and because eye movement-related
IC’s of oppesite polarity had slightly different reversing pro-
jection patterns to each other, we allowed for two different
templates rather than use the absolute value of the fraction
above (Hg. (5)) to increase the sensitivity of the proposed
method.

(Topoe — Topog)(Topoy — Topoy)'

dtopo = 1 — (5)

(Topo, — Topoc)(Topo, — Topo.)'
» (Topog — Topog)(Topo, — Topoy)'
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2.3.2. Entropy of the IC activation
The entropy of the IC was defined as:

T
H =3 pG() = y)log(p@) = y) (©)
=1
where p(#(r) = y) was the probability density of observing the
activity value y in IC activation §(r). Higher entropy values cor-
responded to more ‘random’ source activities. 1Cs with lower
entropy than other ICs can be viewed as artifactual ICs with
characteristic probability densities (Barbati et al., 2004).

2.3.3. Kurtosis of the activation
The global kurtosis coefficient of one IC was calculated as

K=di—3%(d} M

where d, = E{(3(1) — )"} was the nth central moment of the
IC component activity, and E, or the mean, was the expectancy
function. With this equation, ICs with K =0 represented com-
ponents with Gaussian distributed activations. 1Cs with much
higher kurtosis values than the average were viewed as artifacts
which have supra-Gaussian distributed activities. Here we used
the built-in kurt.m function provided by the EEGLAB software
package (Delorme and Makeig, 2004).

2.34. Correlation between power speciral densities

We used the built-in pmtse.m function of signal processing
toolbox v6.0 and MATLAB 6.5 to compute the power spectral
density (PSD) of the IC activities with multi-taper spheroidal
methods (nw=3.5, which corresponded to the use of seven
discrete prolate spheroidal sequences as datatapers for the multi-
taper estimation method). The sampling frequency was 1000 Hz,
and the window size of the [ast Fourier transform (1) was 512.
Their distances to the chosen template PSD were computed with
the same equation used in the computation of topographic pat-
tern distances with substitution of topographic pattern vectors
with power spectral pattern vectors, The higher the correlation
between IC power spectrums the lower their pairwise distance,
which means the 1C"s PSD represents a close match to the tem-
plate.

2.4. Categorization of ICs with ART-2 network

Another methad we used to identify artifactual 1Cs consisted
of applying the analog adaptive resonance theory (so-called
ART-2) neural network to categorize IC features. ART networks
are sell-organizing, dynamic neural networks that recognize pat-
terns with stable structures (Carpenter and Grossberg, 1987a).
The two-layer ART-2 network architecture and equations, as
originally proposed by Carpenter and Grossberg (1987b), are
reproduced with permission in Appendix A for the convenience
of the reader. The inputs to the network were vectors composed
of four normalized feature values of each IC in the order of
[dtopo dPxx H K]. dtopo and dPxx values ranged from O to 2 and
represented the outcome of the correlation-based distance met-
ric deseribed above. H values were normalized between 0 and 1
based on the minimum and maximum H values in each dataset.

Normalized K values were obtained by dividing the computed
global kurtosis coefficient by 50, which was arbitrarily selected
hased on experience. The ART-2 output consisted of two nodes
or categories [target IC artifact, IC non-artifact]. Categorization
results were analyzed after the ART-2 system had stabilized for
a given pattern mismatch threshold g (so-called the “vigilance’
parameter by Carpenter & Grossberg). All other parameters in
the ART-2 network were set as in the original publication and
no parameter optimization was performed (see Appendix A for
the model parameters).

2.5. Arfifact identification and updating of the templates

All datasets were processed with the proposed artifact iden-
tification and removal procedures. As illustrated in Fig. 2, four
feature attributes {dtopo, dPxx, H, K} were extracted from the
ICs. The initial artifact template was chosen based on topo-
graphic and/or activation patterns previously characterized as
certain type of artifacts (e.g., eye movement) in former studies
(Tang et al., 2002, Vigario et al,, 2000). Artifactual I1Cs have
been identified through iterations with threshold-based cluster-
ing, neural network categorization or the combination of these
two methods. After each iteration the template was updated with
the average of the target artifactual ICs among the identified
ICs.

2.6. Independent component datasets

We set the 1C number of each trial to 157, then dataset
one contained 157 ICs, dataset two contained 14,915 ICs (95
Irials = 157 ICsfinal = 14,915 ICs) and dataset three contained
19,311 ICs (123 trials = 157 ICs/trial = 19,311 ICs). For dataset
four, there were 157 ICs for the concatenated ICA analysis, and
3297 ICs (21 trials « 157 ICs#rial =3297 ICs) for the ICA analy-
sis on single-trial based epochs. Artifactual IC templates related
to two types of ocular movements (EOG1 and EOG2), heart beat
(EKG) and muscle activity were found in the datasets (Fig. 7).

Three types of components related to muscle activity were dis-

played. EKG, EOG1 and EOG2 IC templates were applied in
artifactual IC identification. Both identification procedures were
employed for all four datasets. For dataset one and four, the
results were caleulated with one repetition of the identification
loop, whereas for datasets two and three, this loop was iterated
three times with femplate updating after each round. Further
steps of removing the artifacts and reconstructing the cleaned
MEG signal were performed on single trial basis for all four
datasels.

2.7. Evaluation of performance

2.7.4. Comparison of performance between
threshold-based clustering methods and ART-2
categorization neural network

We then compared the performance of the two methods in
identifying the artifactual ICs, We picked dataset three for this
purpose since dataset three contained MEG signal from all
subjects, which was closer to most of the empirical conditions
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than dataset one and dataset two. The artifactual ICs were iden- 0.98 and 0.99). The criteria for the threshold-based clustering
tified with template EKG and EOG1 since they were the most  method were the same as described in Section 2.3 for the
prominent artifactual ICs found in the datasets. We appliedboth  corresponding type of artifactual ICs. The target artifactual 1Cs
methods with three iterations. For the ARIT-2 categorization  among the identified ICs were selected via visual inspection. The
neural network, we used five vigilance levels (0.95, 0.96,0.97,  number of identified ICs and selected target artifactual ICs were
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Fig. 3. Threshold-based clustering of ICs for anifactual 1C identification of single trial MEG signals. (a) The identification of the 1C related to EOG1 anifact with
threshold-based clustering method (indicated by amowhead), feature values of dtopo and K were displayed. (b) The identification of the IC related to EKG artifact
with threshold-based clustering method (indicated by arrowhead), feature values of dtopo and H were displayed. The threshold criteria for clustering were indicated
with gray dash lines, (¢) The categorization of the 1Cs with ART-2 network, The inputs to the network were the vectors composed of four normalized feature values
of each IC. The IC feature values of dtopo and dPxx (see text for the description of the calculation) were calculated from template related to EOG | artifactual 1Cs.
The ICs were categorized into ‘yes' and ‘no’ groups. *Yes' group contained 1Cs identified as EQG antifacts, “no’ group contained ICs identified as non-EOG 1. Two
ICs were identified as EOG 1 artifactual ICs with the network method, while only one was target EOG 1 antifactual IC. The target IC was selected via visual inspection
and was labeled with (*).
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counted. The correctness of the identification was calculated as
the proportion of target artifactual ICs in the identified ICs.

Number of target ICs
Number of identified [Cs

Correcmess — % 100% (8)
The number of identified 1Cs and the correctness of identifica-

tion are plotted in Fig. 9 to compare the performance between

the methods. The performance of ART-2 categorization neural
network was displayed with five vigilance levels.

2.7.2. Comparison of performance on confinuous data and
single-trial based epochs

We applied ICA and artifactual 1C identification methods
on dataset four to compare the performance between the ICA
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Fig. 4. Single trial artifactnal component identification and rejection. (a) Whole channel noise-reduced raw MEG signal (left); 2D top view of channel position

(center), and whole channel artifact-cleaned MEG signal (right). (b) Bilateral frontal channel di

before

ing artifactual ts (left panel), and

MEG signals on same channels after rejection of aifactual components (right panel). The scales are the same as in (a). (c) The components found in this trial.
(Upper) topographic pattern, activity and power spectrum of the component identified as EOG1; (lower) component identified related to heart beat (EKG).
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analysis of the continuous (concatenated) MEG signals and the
single-trial based epochs. The concatenated dataset contained
21 trials of MEG signals since it was the highest amount of con-
tinuous data our data analysis workstation (Gateway 6100 series
with 3.20 GHz CPU and 1.0 GB RAM) could process using [CA
without memory problems. Percentage of variance accounted for
(pvaf) of the ICs for each sensor were caleulated for each trial.

_ Var(x(t) — (1))

pvaf = ——
Var(x(r)

&)

where x({) and x'(f) had the same mathematical denotation to the
ones in Egs. (1) and (4). Var () operation was to compute the
sample variance of the signal.

The 10 sensors with the highest absolute values in the topo-
graphic component of the target artifactual IC templates were
selected as the most influenced sensors, while the 10 sensors
with lowest absolute values were selected as the least influ-
enced sensors, The pvaf values calculated on most influenced
sensors and least influenced sensors were statistically ana-
lyzed with repeated measures ANOVA. The mean pvafl values

Within Subject

between ICA on concatenated signal and single-trial epochs
were pair-wisely compared. Significant differences were the
comparisons with probability value p < 0.05. The statistical anal-
yses were performed with SAS v9.1 (SAS Institute Inc., Cary,
NC, USA.).

2.7.3. Evaluation of overestimation and underestimation of
fdentification methods

With dataset four, EKG, EOG1 and EOG2 artifactual 1Cs
were identified with the ART-2 categorization neural network,
higher threshold-based clustering, lower threshold-based clus-
tering, and the combined method involving the neural network
categorization on the ICs which have been identified with higher
threshold-based clustering method. These identification meth-
ods were applied on both concatenated data and single-trial
epochs, Numbers of target artifactual ICs in identified ICs were
visually examined. Underestimation was evaluated with a mea-
surement of coverage, which was computed as the ratio of the
number of target artifactual ICs within the identified ICs divided
by the number of target ICs in the dataset; if coverage value was
less than 100%, this type of artifactual ICs was underestimated

Across Subject
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Fig. 5. Threshold-based clustering of artifactual ICs across multiple trials, the threshold criterion for clustering was indicated with red dash lines, the clustered
ICs were labeled with arrowheads. (a) Clustering of EKG -related artifactual ICs in dataset two, dtopo and H values were displayed. (b) Clustenng of EKG-related
artifactual ICs in dataset three, dtopo and H values were displayed. (¢) Clustering of EOG1-related atifactual ICs in dataset two, dlopo and K values were displayed.
(d) Clustenng of EQOG1-related artifactual ICs in dataset three, dtopo and K values were displayed.
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with this method. Overestimation was evaluated with measure-
ment of correctness, which was computed using Eqg. (8). If the
percentage correctness value was less than 100%, then this type
of artifactual 1Cs was overestimated with this method.

3. Results

3.1. Identification of artifacts and effect of removal in
single trials

In general, scalp map distances (dtopo) and global kurtosis
coefficients (K) were adequate for discriminating EOG artifacts,
whereas scalp map distances and entropy (H) values were suffi-
cient in identifying EKG artifacts. For dataset one, threshold-
based clustering methods successfully identified components
related to EKG and EOG1, as displayed in scatter plot of dtopo
versus /T and in scatter plot of dtopo versus K (Fig. 3(a) and
(b)), in which gray dash lines indicated the threshold used for
clustering. No EOG2 artifactual IC was identified in dataset one.

Fig. 3(c) shows the inputs to ART-2 network for identifica-
tion of type 1 EOG (EOG1) artifactual ICs and the identification
resulls. Two 1Cs were identified as EOG1 artifacts—one more
than EOG1 ICs identified through threshold-based clustering
process. The same IC identified through network method and
threshold-based clustering method were labeled with *. The vig-
ilance level of the reset system in the ART-2 network was set to
(.96,

Fig. 4(a) depicts the whole-channel pre-whitened MEG sig-
nals before and after artifact removal (left and right pan-
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els, respectively), and the 2D view of the sensor positions
(center panel). Fig. 4(b) shows the bilateral frontal channel
recordings with synchronous activity caused by eye move-
ment and heart beat related artifactual components. Compari-
son between the MEG signal before and after removal of the
artifactual components demonstrated successful decontamina-
tion of the MEG signals by removing the identified artifactual
ICs. The scalp map pattern, activity and power spectral den-
sity of the artifactual ICs identified in this trial are shown in
Fig. 4{c). These artifactual 1Cs are consistent with the arti-
factual components identified in former studies (Vigario et al.,
2000).

3.2, Hdentification of artifacts in multiple trials

Fig. 5 shows threshold-based clustering of the ICs for the
multiple trial datasets after three iterations. Red dash lines indi-
cate the threshold used for clustering. Fig. 5(a) and (¢) are scatter
plots of EKG and EOG]1 feature values for dataset two (within
subjects); Fig. 5(b) and (d) correspond to scatter plots for dataset
three (across subjects). For EKGs, the features displayed are
dtopo and H. For EOG1s, the features displayed are dtopo and
K. Clusters marked with arrows were selected, and correspond-
ing 1Cs were removed on a single trial basis. We also compared
mean values of the IC features between the identified ICs and
the un-identified ICs with Kruskal-Wallis non-parametric statis-
tical analyses. Both dtopo (3% =307.33, p<0.001), and K value
(x?' =251.23, p<0.001) between EOG1 and non-EOG1 ICs,
and diopo (x? =274.32, p<0.001), and H value (3> =277.24,
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Fig. 6. Comparison of feature values between artifactual ICs and non-artifactual ICs, i

EQGI ICs  non-EQGI ICs

depend ts were categorized from dataset three. (a) Comparison

of dtopo values between EKG-related ICs and non-EKG ICs. (b) Comparison of H values between EKG-related 1Cs and non-EKG ICs. (¢} Comparison of dtopo
values between EOG1-related ICs and non-EOG1 ICs, (d) Comparison of K values between EOG | -related ICs and non-EOG1 ICs,
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p<0.001) between EKG and non-EKG ICs showed statistically
significant differences (Fig. 0).

2.3, The artifactual IC templates and update

Fig. 7 depiets the initial templates for the artifactual IC scalp
maps (left panel), activations (center panel) and power spectral
density plots (right panel). The six templates represent the arti-
factual ICs related to EKG, EOG1, EOG2 and three instances
of muscle activities, respectively. EKG template IC showed the
characteristic activation pattern. EOG1 and EOG?2 template ICs
represented the types of eye movements with opposite direction
of electric sources. The three muscle activity-related IC tem-
plates were selected with the similar topographic patterns as the
ones showed in a former study (Vigario et al., 2000) and with
the characteristic bursting pattern in IC activations. Fig, § shows
the comparison between the initial template and the final identi-
fied IC features in the identification of EKG artifactual ICs with
dataset two. The similarity between the initial template topo-
graphic pattern and the mean topographic pattern of identified
1Cs indicated the closeness of the identified EKG 1Cs. The sim-
ilarity of the characteristics between same types of ICs also can
be seen in the power spectral patterns. The typical 4 and 8 Hz
peaks in EKG ICs are clearly seeninthe averaged EKG IC power

spectrum.
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34, Performance of identification methods

As shown in Fig. 9, the threshold-based clustering method
identified mere ICs and showed higher correctness than the ART-
2 network categorization method although the threshold-based
clustering method for EOG1 artifactual ICs did not reach 100%
correciness. As expected, different vigilance levels showed dif-
ferent performance levels, so that increasing the vigilance level
resulted in an increased number of identified ICs. However, the
correctness of identification decreased when p>0.97.

3.5, Confinuous signal versus single-trial based
identification

Table 1 and Fig. 10 illustrate the identification and clustering
of artifactual ICs in datasel 4, The scatter plots in Fig. 10 illus-
trate the ICs in [eature space constructed with the two features
with the highest discriminatory power for the target artifactual
ICs.

As shown in Table 1 and Fig. 10(a) and (¢), two EKG and
two BEOG] artifactual 1Cs were identified within 157 [Cs when
applying ICA on the concatenated MEG signal. EOG2 artifac-
tual ICs were not found in these 157 ICs (Fig. 10 (e)), so we
only compared pval (percentage variance accounted for) values
for the identified EKG and EOG1 artifactual ICs (Table 2).
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Fig. 8. The illustration of iterative identification processes of artifactual ICs. (a) The initial template of EKG-related 1C for identification of EKG in dataset two,
Topographic pattem, activation and power spectral pattem of the template IC were showed. (b) The identification results after three iterations. Left: mean topographic
pattern of identified ICs, center; mean activation and 95% confidence interval (light gray dash lines) of identified ICs, and; fight: mean power spectrum and 95%

confidence interval (light gray dash lines) of identified ICs.
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Fig. 11{a) and (b) shows the 2D projection (location) of the
least (denoted by the filled dots) and the most (denoted by the
white dots) influenced sensors. As shown in Fig. 11(c) and (d),
for the most influenced sensors, the mean pvaf values of the
identified artifactual ICs for the ICA processing of single-trial
based epochs were similar to the identified artifactual 1Cs using
ICA on the concatenated MEG signals (see Table 2). For the
least influenced sensors, the mean pvaf values of the identified
artifactual ICs from the single-trial based epochs were signifi-
cantly smaller statistically for the EKG ICs (p<.01; Table 2).
No statistically significant difference was found for EOG1 ICs
in the least influenced sensars.

3.6. Overestimation and underestimation in identification
of artifactual ICs.

Table 1 shows the evaluation of overestimation and underesti-
mation of the identification methods. The results were computed
from dataset four. For EKG ICs, the higher threshold-based
clustering method performed best for the concatenated ICA
procedure (coverage=100%, correctness=100%), whereas
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the lower threshold-based clustering method performed
best for the single-trial based epochs (coverage=100%,
correctness = 100%). Applying the ARI-2 neural network
categorization on ICs identified by the higher threshold-based
clustering method alleviated the overestimation caused by the
lower clustering threshold with slight underestimation of the
EKG-related ICs computed from single-trial based epochs.

For EOG1 and EOG2 ICs, both coverage and correctness per-
formance based on the neural network categorization were not
as good as those seen in the threshold-based clustering method.
The higher threshold-based methed captured all artifactual 1Cs
at expense of correctness because of the broader threshold cri-
teria used, whereas the lower threshold-based method achieved
1009 correctness, but the coverage was low. Applying the ART-
2 method on the ICs identified with the higher threshold-hased
method increased the correctness ratio.

No EOG?2 ICs were identified or visually found in ICs com-
puted from the concatenated MEG signal. However, for the
single-trial based epoch IC dataset, seven EOG2 ICs were identi-
fied. The lower threshold-based clustering method has identified
only one IC among the seven ICs, whereas the neural network
categorization identified six of them with very low correct-
ness. The higher threshold-based clustering method identified
all seven ICs with less than 50% correctness. Applying network
categorization on ICs identified with the higher threshold-based
clustering method increased correctness to 54%.

4. Discussion

In this paper we proposed a method for artifact identification
and removal in MEG signals based on independent compenent
analysis and clustering methods. The procedure consisted of four
iterated consecutive steps: (1) ICA compultation, (2) calculation
of IC features, (3) identification of artifact ICs with iterative
procedures and template updating, and (4) removal of artifactual
ICs and reconstruction of artifact-cleaned MEG signals.

In this study we tested two IC identification methods. Both
methods identified the artifactual ICs based on feature values
computed from the scalp map, power spectral density, kurto-
sis and entropy. The threshold-based clustering method showed
effective identification and higher accuracy, whereas the auto-
matic ART-2 network categorization method had the highest
identification rates and correciness al vigilance level of 0.97.
Combimation of these two methods increased the accuracy of
identification with no or very small decrease of coverage for tar-
get artifactual ICs. To our knowledge, this is the first attempt to
use an ART-2 categorization neural network in artifact identifi-
cation and automatic removal for MEG signals.

For artifactual 1C identification and removal, both overesti-
mation and underestimation should be avoided since overestima-
tion may cause data loss related to non-artifactual sources, where
underestimation may cause insufficient removal of artifacts in
the MEG signals. We evaluated the performance of each method
using measurements of coverage and correctness of identifica-
tion. The results showed that for EKG 1Cs, the threshold-based
method was better in avoiding both overestimation and under-
estimation. This may be because of the amount of information
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Table 1
Evaluation of performance—over estimation and underestirmation
ICAp Methods” P al Number of artifactual ~ Number of ICs ~ Number of target antifactual ~ Coverage  Correctness
ICs in dataset identified ICs among identified ICs (%) (%)
CAT nw 0497 2 2 1 50.00 50,00
Lib [0.40.502.84) 2 1 1 00.00 100.00
Hib [D80.502.84] 2 2 2 100,00 100,00
comb nw+ Htb 2 2 2 100.00 100,00
FRG ppocn nw 097 21 37 18 8571 4865
Lib [020.502.8] 21 21 21 100.00 100.00
Hib [0.40502.84] 21 35 1 100.00 60.00
comb nw+ Htb 21 21 18 85.71 8571
CAT nw 097 2 3 1 50.00 3333
Ltk [0.50.5102.84] & 2 2 100,00 100.00
Hib 080510284 2 2 2 100,00 100.00
comb nw+ Hib 2 2 2 100,00 100.00
EOGL  ppocy nw 097 19 48 16 8421 3333
Lib [0.20.5103.0] 19 7 36.84 100,00
Htb [0.50.5103.0] 19 23 19 100.00 8261
comb nw+ Hib 19 21 18 94.74 8571
CAT? nw 097 0 3 0 nfa nfa
Ltb [0.505103.0] 0 0 0 nfa nfa
Hib [0.80.5103.0] o 0 (1} nfa nia
: comb nw -+ Hth 0 nfa nfa nfa nfa
EOGZ  ppocu nw 0.97 7 51 6 $5.71 11.76
Lib [0.20.5103.0] 7 1 1 14.29 100,00
Hib [0.50.5103.0] 7 15 7 100.00 46.67
comb nw- Hib 7 13 W 100.00 5385
* Methods: nw, ART-2 categornization neural network; Lth, lower threshold-based cl ; Htb, higher threshold-based clustering; nw + Htb, ICs were identified

with Hib method first, the identified ICs were then processed again with neural network method,

¥ Parameters: the parameters for nw method were the vigilance levels. The parameters for threshold-based clustering methods were vectors composed of threshold
values, the values were [Tiope Tapss Tre Trr]. The identification eriteria wene diopo < Tuopo, dPxx < Typys, H < Ty and K> Ty,

“ ICA process: CAT, MEG signal was concatenated from 21 trals, 157 ICs were computed from whole dataset, EPOCH, ICs were computed on single trial basis,
cach trial has 157 ICs.

4 Since no EOG2 ICs were identified from CAT IC dataset, coverage and correctness values have not been computed. Hence, no evaluation of overestimation and
underestimation was performed on this dataset.

carried in EKG ICs, which can be separated from other 1Cs by
selecting an appropriate threshold. This effect has been demon-
strated in Fig. 3(b) and Fig. 5{a) and (b). For EOG1 and EOG2
ICs, the threshold-based methods performed better than the
neural network, albeit with imperfect performance—the higher
threshold-based method demonstrated overestimation of the arti-
factual ICs whereas the lower threshold-based method demon-

Table 2

strated underestimation of the artifactual ICs. Combination of
these two methods with the ART-2 method on ICs identified
by higher threshold-based method alleviated the overestimation
while keeping the benefit of coverage; the only exception was
the failure to identify one of the EOG1 ICs. As a conclusion,
the combined method appears to be the best approach showing
higher accuracy and automatization.

Evaluation of performance—ICA on continuous MEG signal (CAT) ve. ICA on single-tral epochs (EPOCH)

ICA process" Most influenced sensors” Least influenced sensors”
Mean pvaf SEM.® Fyalue Probability Mean pvaf SEM. Fvalue Probability
EKG CAT 18.6 398 0.1 p>0.05 29 0.64 842 p=<001
EPOCH 168 398 02 0.64
EOG1 CAT 10.1 226 087 p=0.05 11 035 1.53 p=005
T EPOCH 7.1 226 0.4 0.35

* ICA process: CAT, MEG signal was concatenated from 21 trials, 157 ICs were computed from whole dataset, EPOCH, ICs were computed on single trial basis,

each tdal has 157 ICs.

Sensors were grouped as most influenced sensors and least influenced sensors. Most influenced sensors were the sensors with highest absolute values in the
remixing vectors of the target artifactual IC templates. Least influenced sensors were the sensors with lowest absolute values in the remixing vectors of the target

artifactual IC templates.
“ S EM.: standard error of means.
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Fig. 10. Threshold-based clustering of artifactual ICs in dataset 4. The threshold criteria for clustering were indicated with red dash lines (lower threshold-based
clustering) and blue dash lines (higher threshold-based clustering), which corresponded to the values shown in Table 3, The target artifactual ICs within the clusters

were indicated with red dots. Subplots (a), (¢) and (e) were scatter plots of the 1Cs

1 from

1 d MEG signals: subplots (b, (d) and () were scatter

L

plots of the 1Cs computed from single trial based epochs. Subplots (a) and (b) illustrate the clustering of EKG-related artifactual I1Cs in dtopo-H space, subplots (¢)
and (d) llustrate the clustering of EOG 1-related adifactual [Cs, and subplots (¢) and (f) illustrate the clustering of EOG2-related artifactual ICs in dtopo-K space.

One issue regarding the application of ICA to blindly separate
sources is whether it is appropriate to apply ICA on continu-
ous (concatenated) data rather than on single-trial based epochs.
To address this issue, we tested the percentage of variance
accounted for (pvaf) by the identified ICs using concatenated
data or epochs with 10,201 samples per sensor per trial. The
significantly higher pvaf values of the least influenced sensors
of EKG ICs indicated that the ICs computed with concate-

nated ICA contained information from other events which had
been mixed with the heart beats since only 157 ICs had been
computed with this dataset. As a comparison, applying ICA
on single-trial based epochs produced 157 ICs for each epoch,
which made separation of the sources relatively easier. More-
over, no EOG2 ICs was identified from the ICs extracted from
the concatenated ICA processing, though seven EOG2 [Cs have
been identified with single-trial based epochs (as demonstrated
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Fig. 11. Comparison of artifactual IC identificalion and rejection between concatenated vs, single-trial epochs ICA processing, (a) Topographic patterns of EKG

related 1Cs puted from

d MEG signal (CAT) and single-trial based epochs (EPOCH). In EPOCH pattem, sensors selected to compare pvaf values

were labeled, with white circles indicating the most influenced sensors, and black circles representing the least influenced sensors. (b) Topographic pattems of
EOQG1-related ICs and demonstration of the sensors selected to compare pvaf values. (¢) Pair-wise comparison of pvaf values on most influenced sensors (most).
Height of bars indicated the mean pvaf values of identified target artifactual 1Cs. Error bars are standand emor of means (S.EM.). (d) Pair-wise companson of pvaf
wvalues on least influenced sensors. (*) Indicates a statistically significant difference with p <0.05.

in Table 2). Thus, we would like to argue that this epoch-
based IC identification method works better than the conecate-
nated approach provided there is enough number of data points
{samples).

TCA has been shown to be an efficient tool for separating arti-
factual sources from functional brain signals (Jung et al., 2000}
as well as to identify functional sources underlying similar neu-
ronal mechanisms (Contreras-Vidal and Kerick, 2004; Makeig
et al,, 1999, Makeig et al., 2002, for review, see Delorme and

Makeig, 2004) in EEGMEG signal processing. As compared
to segment-rejection methods, artifactual IC identification and
rejection can save [unctional information from mass data loss as
well as discover the functional brain activities masked by arti-
factual signals. Artifactual TC identification and rejection with
computation of the features has been proved in this study to
be less time and labor consuming for analysis of MEG signals,
especially for datasets contained multiple subjects and multiple
trials.

34



352

In this paper, we have combined typical components fea-
tures to describe each IC, which have been used separately and
emphasized individually in prior studies (Barbati et al., 2004,
Delorme and Makeig, 2004). We also used data-driven cluster-
ing and categorization methods to identify the artifactual ICs.
The results for single trial and multiple trials datasets con-
firmed that this approach can correctly identify the artifactual
ICs efficiently while the best performance was obtained from
combination of these two methods. However, the use of inde-
pendent components rises the question of what their functional
significance may be, that is, what is their functional relationship
to the brain activities, Although prior ICA studies have shown
ICs related to certain types of artifacts or event-related brain
dynamics (Vigario et al,, 2000), it is still a matter of debate
whether independent components with small differences {(e.g.,
from trial to trial or across subjects) in spatial and spectral fea-
tures represen! the same type of biological events. An important
finding in the present study is that artifactual ICs have feature
values close to each other albeit the variability displayed across
subjects and trials (Fig. 6(b) and (d); see Fig. 7 for statistical
analysis). The successful identification with template updal-
ing also proves that it is possible to describe artifactual ICs
using template features with small distributions. As these tem-
plates can be used as initial templates for forthcoming MEG
studies, it should be possible to create and update a general
database of artifact and non-artifactual component templates.
Thus, this method is applicable to ICs related to functional brain
activities.
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Appendix A. Categorization of ICs with ART-2 neural
networks

Based on the Adaptive Resonance Theory developed by
Carpenter and Grossberg (1987a), ART nelworks categorize
arbitrary sequences of input patterns with self-organized stable
pattern recognition architectures. Implementations have been
reported including a digital (binary) system (AR1-1; Carpenter
and Grossherg, 1987a), a system based on fuzzy logic (fuzzy
ART; Carpenter et al., 1991), a system for categorization of
analog inputs (ART-2; Carpenter and Grossberg, 1987h), an
implementation based on a system of ordinary differential equa-
tions capable of stand-alone running in real time (Molenaar and
Raijmakers, 1997), and a fast VLST asynchronous system (ART-
1m; Serrano-Gotarredona and Linares-Barranco, 1990). In the
present study, we employed the analog implementation of the
ART (that is, ART-2) network to categorize the IC features (see
Fig. 12). The following description of the architecture and the
equations defining the ART-2 network implemented in this paper
is based on the original mathematical description (their Egs.
(1)=(200) in Carpenter and Grossberg (1987a), which are repro-
duced (with the author’s permission) herein as an Appendix A
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F2 Layer

F2j

F1 Layer

Ay

Wi

Fig. 12, A typical ART 2 architecture, Open arrows indicate specific pattemed
inputs totarget nodes, Filled arrows indicate nonspecific gain control inputs, The
gain control nuclei (large filled circles) nonspecifically inhibit target nodes in
proportion to the L;-narm of STM activity in theirsource fields (Eqs. (13), (14),
(17), (23) and (24)). When F2 makes a choice, g(F2;) =4 if the jth F2 node is
active and g(F2;) =0 otherwise. (Figure and caption are adapted and reproduced
with permission from Fig. 6 of Carpenter & Grossberg (1987h, p. 406).)

for the convenience of the reader. The network contains two
competitive, short-term memory (STM) layers F1 and F2, and
two long-term memory (LTM) traces Zif and Zjia which denote
the synaptic strength from F1 layer to F2 layer and synaptic
strength from F2 layer to F1 layer, respectively. These bottom-
up and top-down pathways can be seen as adaptive filters.

The F1 layer consists of six processing stages. Eachstage has
the same dimensionality as the input vector (I;), which herein is
composed of four feature values computed from each [C. The
potential Vi, or the STM activity, of the ith node in each of the
F1 layer processing stages obeys the membrane equation

d

&

y Vi = —avi+ (1= BV) — (€ + DV,
[8

(10
where ..ﬂ-+ denotes the total excitatory input, and J; denotes
the total inhibitory input to the ith node. £ represents the ratio
between the STM membrane time constant and the TTM mem-
brane time constant. With the constraints O<g< 1, B=0 and
C =0, Eq. (10) reduced to (at steady state)

I
o+ DJ;

i

(11)

in the singular form as & — 0. With Eq. (11), the STM activity
of the ith node in each stage in F1 layer, represented as oy, g, #;,
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v;, £; and w;, becomes:

oi =ui+ Y g2z 12)
I
@
— (13)
%= e el :
W
j=— 14
B el el
v = fU) + bfg) (15)
w; = I; + au; (16)
=it an
e+ [|w|

where the expression ||¥|| denotes the L2-norm of a vector x;
F2; is the STM activity of the jth F2 node. Thus, zj; is the weight
of the projection from the jth F2 node to the ith node of the
output stage O in the F1 layer. Function fis the piecewise linear
function

ju if D<y=<@
|y if y=8

where @ is the threshold.

The STM activity pattern in F2 layer represents the cate-
gorization output, which is computed in accordance with the
‘winner-take-all’ law based on the filtered inpul from the F1
layer. The total input to jth F2 node is calculated by

fiy)= (18)

F2; = o; % zj; (19)

where o; is the ith output STM activity of F1 layer, and z;; is
the weight of the projection from the ith output node of F1 layer
to the jth node in F2 layer. The winner node m F2 layer is then
identified as the node that receives the maximal input, and the
other nodes are inhibited. The selection is performed through
the function g(F2;):

d activenode

F2;) = 20
&(t2)) 0 inactive node e

‘The top-down and hottom-up LI'M trace equations defining the
adaptive filters are given by

1
(‘j{z,; = g(F2)lo; — 2] @n
d
G = g(F2j)lo; — zj] (22)

The F2 layer will be resel when a mismatch is detected (for a
given vigilance parameter value) between the F1 STM pattern
and an active UT'M pattern. The degree of match is determined
by the activity pattern in node R as a vector r, in which the ith
element rj is determined by

Wi + ooy

St (23)
e+ |lu]| + |lcol|

‘Table 3

Parameter values used in the ART 2 network simulations

a 10
b 10

¢ 0.1
d 0.9
e 0
[ 0.2

A mismatch will be detected when
e

=1 (24)
e+ ||r]|
and the F2 layer will be reset. The vigilance parameter p is sel
between O and 1, and this is the only parameter that was para-
metrically varied in the present study. A categorization result
will be accepted when both layers are stable and no mismatch
has been detected. Table 3 shows the parameters of the network
used in the present study.
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CHAPTER 3. MODULATION OF HUMAN AUDITORY EVOKED
RESPONSES INDUCED BY PERFORMING A SHORT-TERM
MEMORY (STM) TASK: A MAGNETOENCEPHALOGRAPHIC

(MEG) STUDY

It is well acknowledged that both bottom-up and top-down procedures exert
influences on information processing in the auditory cortices (Scheich et al. 2007).
Compared to the relatively stereotype bottom-up hierarchical pathways, top-down
modulation by cognitive functions on the early auditory cortices show a highly
dynamic and task specific pattern whose underlying neuronal mechanisms have yet to
be well understood. In this study we applied a short-term memory (STM) behavioral
paradigm - the delayed-match-to-sample (DMS) task — to investigate the task-
specificity of the cognitive modulation of human auditory activity with the
measurement of whole-head Magnetoencephalography (MEG). By comparing to the
control tasks such as passive listening (PSL) and counting (CNT), we observed a
significant DMS-specific suppression of the auditory evoked response (AER) to the
second stimulus in a sound pair, where the peak latency of the corresponding AER
was around one hundred milliseconds after stimulus onset. Analysis of the cortical
sources revealed the spatial center of this effect in the vicinity of the left auditory
cortex. In addition to the demonstration of this DMS-specific top-down modulation
effect, analysis of coherence between current sources showed correlated enhancement
of the interareal functional interactions between the auditory cortex and frontal
regions in various frequency bands, which indicated involvement of multiple
cognitive functions in the observed modulation effect. Therefore, our findings
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suggested that in contrast to automatic adaptation to repeated sound stimuli, the STM
related neural dynamics during performance of the DMS tasks modulated the
perception of incoming acoustic stimuli by suppressing the task-irrelevant procedures
through the functional fronto-temporal feedback pathways based upon the memorized

features of the auditory objects.
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3.1 Introduction

Auditory cortical responses evoked by sound stimuli are highly modulated by
acoustic context (Malone et al. 2002; Barlett & Wang 2005), attention (Hillyard et al.
1973; Woldorff et al. 1993; Hughes & Jones 2003; Sabri et al. 2006) and behavioral
states (Stanny & Elfner 1980; Gottlieb et al. 1989; Fritz et al. 2005). It has been
shown in both anesthetized (Condon & Weinberger 1991; Ulanovsky et al. 2003) and
awake (Fritz et al. 2003; Barlett & Wang 2005) animals that previous events could
induce representational changes in primary auditory cortical neurons, which might be
caused by either intrinsic dynamics (Fritz et al. 2003; Wehr & Zador 2005) or
feedback modulation from downstream cognitive processes (Miller & Cohen 2001;
Friston 2005). In human beings, the modulation effect has been shown to occur early
in the evoked cortical responses, such as modulation of the N1 component in
electroencephalographic (EEG) and the corresponding M100 component in
magnetoencephalographic (MEG) studies (N&atdnen & Picton 1987; Hillyard et al.
1973; Woldorff et al. 1993; Jaéskeldinen et al. 2004; Ahveninen et al. 2006).

As one of the early EEG/MEG evoked responses with a latency of around one
hundred milliseconds after stimulus onset, N1/M100 is correlated with the detection
of changes in the acoustic environment (Nditdnen & Picton 1987; Hari 1990). Both
magnitude enhancement and suppression have been shown for the modulation effect
by different studies. While the enhancement effects were mainly observed in
behavioral paradigms with active manipulation of the attention to the task-related
auditory domain by comparing to the conditions that directed the attention away

(Hillyard et al. 1973; Woldorff et al. 1993), the suppressive modulation effect has
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been observed in both passive tasks such as listening to repeated stimuli (May et al.
1999), and active tasks such as dichotic listening (Fujiwara et al. 1998; Brancucci et
al. 2004), discrimination (Melara et al. 2005) and working memory paradigms (May
& Tiitinen 2004; Luo et al. 2005; Lu et al. 1992). It has been proposed that the
observed suppression effects result from ‘repetitive suppression’ as an automatic
adaptation to the repeated stimuli presentations (for review, see Baldeweg 2006).
However, the experimental evidence with active task performance also has shown the
effect without reliance of repetitively presentation of sounds. Therefore it remains
unclear whether the task-specific cognitive functions, which involve active
modulation mechanisms, might also underlie some of the observed suppression
effects.

Here, we used MEG to investigate the active top-down modulation of the
evoked responses in human auditory cortex during performing a delayed-match-to-
sample (DMS) task by comparison to control tasks such as passive listening (PSL)
and the simple counting (CNT). Performing the DMS task involves formation,
maintenance, and manipulation of the short-term memory (STM) of the first sound in
a pair of acoustic stimuli during the delay period (Gottlieb et al. 1989; Lu et al. 1992;
Zatorre & Samson 1991; Zatorre et al. 1994), as well as decision making and motor
responses based on the comparison to the perceived second one (Postle et al. 1999).
By contrast, the PSL task does not require the active maintenance of the STM trace,
although participants still need to listen to the sounds. Moreover, during performing
the CNT task, the participants need not maintain the memory of the acoustic features,

while it was required during performance of the DMS task. A task-specific
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modulation of the auditory evoked responses to the second sound in the sound pair,
which should be correlated with maintenance/retrieval of the STM of the first sound
(Kaiser et al. 2003; Lutzenberger et al. 2002), was expected during performance of
the DMS task but not in the control tasks. Additionally, it has been suggested that
fronto-posterior oscillations during the delay period in frequency bands from theta to
gamma were involved in memory processing and top-down inhibitory control
(Klimesch 1999; Klimesch et al. 2007; Palva & Palva 2007). Here we investigated the
DMS-specific functional interactions between cortical regions with the measurement
of the coherence values between the current sources in three frequency bands (2~20
Hz, 20~30 Hz, and 30~50 Hz) to explore these top-down neural mechanisms involved

in the DMS-specific modulation of the human auditory cortex.
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3.2 Materials and Methods

Participants

Healthy right-handed adults (n=12; age, 23-35 years; six females) with normal
or corrected-to-normal vision and normal hearing participated in the experiments. For
each participant, the MEG and structural MRI signal were recorded in separate
sessions. The participants gave the informed consents to the study, which were
approved by the NIDCD-NINDS IRB (protocol NIH 92-DC-0178) and University of

Maryland, College Park IRB (IRB#01566), before the scanning sessions.

Tasks and Stimuli

Ongoing MEG signals were recorded in three types of task conditions:
passive listening (PSL), counting (CNT), and a delayed-match-to-sample (DMS) task.
The stimuli (Fig. 3-1A) included pure tones (Tone, 350 ms acoustic stimuli with one
frequency component) and tonal contours (TC, each TC stimulus consisted of two
125 ms up or down frequency modulated sweeps interspersed by a 100 ms tone).
Each recording session was composed of 100 trials with the same type of sound
stimuli and the same task. Each trial contained a 500 ms baseline period, followed by
a pair of stimuli (S1 and S2, respectively) interspersed with a one-second silent period
(delay period). Each stimulus was a sound with 350 ms duration and 65 ~ 75 dBA
sound level. After presentation of S2, there was a 1.5 second inter-trial interval (ITI)
before the baseline period of the next trial, which also served as the response interval

in the DMS sessions (Fig. 3-1B). Within each session, match (identical sounds in the
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pair) and non-match (different sounds in the pair) trials were randomly mixed and
counter-balanced.

Each recording session began with visual instructions presented on a screen
that informed the participants about the task condition, response requirement, and
type of stimuli. The participants were also required to fixate on a cross mark at the
center of the screen during each trial. During the PSL sessions, participants were
instructed to relax, stay still and listen to the sounds without any response; during the
CNT sessions, participants were instructed to count the number of sounds and report
how many they heard; during the DMS sessions, participants were instructed to
compare the two sounds in each trial, and press the left button with the left thumb for
a match and press the right button with the right thumb for a non-match. The button
box was held in both hands in all sessions. In addition to these task sessions,
participants also had two training sessions before performing the DMS tasks (one
type of stimulus for each, each session consisted of 40 trials) to become familiar with
the task, and a click counting session, in which they were instructed to count the
number of 50 ms 1kHz clicks they had heard, for the purpose of locating the

representative sensors of the M100 response.

Data Acquisition

Participants lay in supine position during the MEG recording. MEG signals
were recorded with the CTF Omega2000 275-channel whole-head MEG System
(CTF Systems, Inc., Coquitlam, Canada) placed in a magnetically-shielded room
(Vacuumschmelze, Germany) inside the MEG Laboratory of the National Institute of

Mental Health (Bethesda, Maryland, USA). The ongoing MEG signals were sampled
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at 600 Hz, filtered with 0-150 Hz bandpass analog filter, and balanced with 3rd
gradient coils for noise reduction. The raw MEG signals were then stored for off-line
analysis. The temporal events, such as stimulus onset and button presses (DMS
sessions only) in each trial were on-line marked. In a separate session, the anatomical
structure of the brain was obtained on a 3 Tesla Signa MR scanner (General Electric,
Waukesha, WI), with a T1-weighted 3D MRI protocol (3-T MPRAGE; 24 cm FOV;
128 axial slices; 1 x 1 x 1.2 mm3 per voxel). Three head coils fixed at the nasion and
the bilateral preauricular points were used for head motion detection during the MEG
recording and in MRI scanning sessions the same points were marked with Vitamin E
capsules for spatial alignment between the MEG sensors and the anatomical
structures. During measurement of the MEG, the head coils were localized at the
beginning and the end of each session to ensure that head movements did not exceed

0.5 cm.

Data Analysis

Preprocessing

Several steps were taken to reduce the noise and artifact contamination in the
raw MEG signals: (1) the DC offset was removed based on the whole trial trend; (2)
the power line noise plus harmonics were removed with notch filters at 60, 120, 180,
and 240 Hz; (3) the MEG signal from each recording session was high-pass filtered
with stop frequency at 0.5 Hz to remove the low-frequency fluctuations; and (4)
artifacts (EKG, EOG and motion related signals) were identified and removed with an
automatic clustering method based on independent component analysis (ICA) (Rong

& Contreras-Vidal 2006, also see the chapter 2 of this dissertation). MEG signals
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from three subjects (one male, two females) were removed from further analysis due
to excessive artifact contamination. The noise reduced and artifacts cleaned datasets
of the other nine subjects (four females) were then partitioned on a single-trial basis
for further analysis. For each task trial, a 3.7 seconds epoch time-locked to the onset
of S1 was extracted along with a 0.5 second baseline period (Fig. 3-1B). For each of
the click counting trials, the epoch was 1.05 seconds time-locked to the stimulus

onset with a 0.5 second baseline.

Quantification of the modulation effect

In this study, we were particularly interested in modulation of the auditory
evoked responses (AERS) to the presentation of sound stimuli related to different task
performance. For this purpose, we measured the AERs in both sensor and source
spaces, and quantified the modulation effect by computing the values of a modulation
index (MI). The MI values were then statistically analyzed to assess the task-
specificity.

In sensor space, the measurements of the AERs were derived from a subset of
representative sensors for each subject. These sensors were determined by
examination of the M100 responses in the averaged epochs of the click counting
session. The M100 response is usually seen as a deflection in the epochs of the
averaged field strength at ~100 ms after sound stimulus onset, which has a bilateral
dipole-like contour pattern of the magnetic field at the peak latency with a *source’
and a ‘sink’ located at fronto-temporal and parieto-temporal regions. For each subject,
twenty sensors (ten per hemisphere) surrounding the centers of the sources and sinks

of the M100 response in the click counting session were selected as the representative
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sensors (Luo et al. 2005). The magnitudes of the M100 responses to the sound stimuli
were then measured as the root mean square (RMS) value of the peak field strength
averaged across the representative sensors for each hemisphere. After the magnitudes
of the M100 responses to S1 and S2 for each experimental condition was determined,
the M1 value in sensor space was then computed as

Ml = [(pl—baseline) — (p2 —baseline)]
~ [(p1—baseline) + (p2 — baseline)]

x100% (3-1)

where PL and P2 were the magnitudes of the M100 responses to S1 and S2 in the

averaged epoch, respectively, and Paseline was the averaged RMS value of the field
strength during the baseline period. Therefore, if the mean MI value from one
condition was significantly greater than zero, it was considered to present a
significant suppressive modulation effect, and vice versa.

In addition to the analysis in sensor space, we also investigated the
modulation of AER in source space, where the evoked responses were computed
from the moment strength of the equivalent current dipoles (ECDs). The ECDs were
estimated using an event-related beamformer algorithm (Cheyne et al. 2006) based on
the linearly constrained minimum variance (LCMV) method (Van Veen et al. 1997),
for which the forward source-sensor relationship was determined by a multiple local-
sphere head model (Huang et al. 1999; For a detail description of the forward and
inverse solution, see Appendices A and B, respectively). For each participant, a 20 x
20 x 17 cm spatial grid covering the participant’s head was used for the inverse
estimation, where the grid was composed of 5x5x5 mma3 cubic voxels, and the

integrated intracellular synaptic currents of the neuronal population in each voxel was
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represented by an ECD whose basis was located at the center of the voxel. For each
ECD, the normalized power (neural activity index) of the moment strength was
computed as a measurement of the corresponding source activity (Van Veen et al.
1997). We then took following procedures to determine the auditory representative
ECDs for each participant and quantify the modulation effect based upon analysis of
the source activity of the representative ECDs: (1) the neural activity index for each
ECD was computed on a single trial basis; (2) for each ECD in each trial, the evoked
responses to S1 and S2 were computed by summing up the power of the source
activity across a 50 ms time window with the center at the peak latency of the M100
response to corresponding stimulus, and normalized by the averaged power during the
baseline period. Therefore, within each participant, we obtained one set of evoked
response values for each stimulus under one task x trial type x sound type
experimental condition; (3) we then applied paired t-test to compare the evoked
responses to S1 and S2 for each ECD within each experimental condition. The ECDs
showed significant difference (corrected p<0.05) were considered demonstrating
within-participant significant modulation of the evoked response for the
corresponding condition. Hence the significant ECDs located in the temporal regions
obtained from the comparison within the DMS conditions were considered as the
ECDs that showed DMS-related modulation effect of the AER; (4) for each
participant, among the ECDs demonstrated DMS-related modulation of AER, the one
with the maximal absolute t value was selected as the representative ECD for further
analysis, and one representative ECD was selected for each hemisphere; (5) a Ml

value was then calculated for each experimental condition using equation (3-1) by
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replacing the RMS values of the field strength by the source activity of the
representative ECDs.

The MI values obtained from all subjects in both sensor and source spaces
were then statistically analyzed with repeated measures ANOVA with three factors:
task (PSL, CNT, DMS), sound type (Tone, TC), and trial type (match, non-match), to
test the hypothesis that the modulation of the evoked responses in auditory cortex was
significantly different in the DMS tasks than in the control tasks. The post-hoc
multiple comparisons of means were applied using the Tukey-Kramer method. The
statistical analyses of the MI values were performed with SAS v9.1 (SAS Institute
Inc., Cary, NC, USA.).

In the source space, in addition to assessment of the modulation effect by
selecting a few ECDs to represent the cluster within the auditory cortex that showed
significant difference, we took another approach to confirm the DMS-specific
modulation effect within the auditory cortices: In stead of computing the MI values
with only the selected representative ECDs, we calculated the M1 values for all ECDs,
and input the MI values obtained from all subjects into a two-way three-dimensional
ANOVA method to determine the cortical regions that showed DMS-specific
modulation of the AER as compared to the passive listening control conditions. The
variance analysis was done by using the type 4 3dANOVA3 AFNI script (Cox 1996;
NIMH, Bethesda, MD, USA; also refer to http://afni.nimh.nih.gov/) with two factors:
tasks (PSL and DMS) and sound types (Tone and TC). To avoid inflation of the
significance by comparison with multiple ECDs, Monte Carlo simulation with

estimation of the between-ECD spatial correlation (Forman et al. 1995; Xiong et al.
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1995) was used to determine the criteria (the threshold cluster size and uncorrected
probability value for each ECD within the cluster) of statistical significance.
Therefore, if there is a cluster of ECDs located in auditory cortex showed significant
difference between the MI values in DMS and PSL task conditions, we could draw
the conclusion that there is a DMS-specific modulation effect to the auditory evoked

responses as compared to the PSL conditions.

Analysis of the functional interaction among brain regions

After analysis of the AER modulations, the correlated dynamics of functional
interactions were then investigated with the measurements of coherences between
ECDs. For each participant, the representative ECD that demonstrated the DMS-
specific modulation effect was selected as a reference, and the coherence between the
source activities of this reference ECD and ECDs in other brain regions were
computed in frequency bands of 2~20 Hz, 20~30 Hz and 30~50 Hz using the
dynamic imaging of coherent sources (DICS) method (Gross et al. 2001). For each
frequency band, the modulation related functional interactions were quantified as the
ratio of coherence change (RCC) values, which were computed as normalized
differences between the coherence values obtained from the late delay period (0.5 ~ 1
sec after offset of S1, which denoted a 500 ms window before onset of S2) and the
coherence values obtained from the baseline period (-0.5 ~ 0 sec before onset of S1)

_ (Ldelay —baseline)

. RCC = .
(Ldelay + baseline)

(3-2)

where LU€1ay anq baseline represented the coherence values in late delay and

baseline periods, respectively. We then used the two-way three-dimensional ANOVA
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method described in above section to analyze the RCC values and to test the
hypothesis that during the late delay period of the DMS task, the auditory cortical
regions that displayed DMS-specific modulation effects had increased functional
interactions with the other brain regions that were specifically recruited for
performance of the DMS tasks. The factors included task (PSL and DMS) and sound
type (Tone and TC), and Monte Carlo simulation was also used to estimate the
criteria (the threshold cluster size and uncorrected probability value for each ECD

within the cluster) of statistical significance.
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Baseline 51 Delay 52 To Next Trial
- o e -t — -

300 350 1000 330 msec

Fig 3-1 (A) The spectrogram of the representative stimuli. The gray scale represents the
power spectral density (dB/Hz) of the sound stimuli. (B) The timeline of each trial. S1 and S2
denotes the time window of the stimuli presentation. The inter-trial-interval (ITI) was 1.5

second.
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3.3 Results

3.3.1 Behavioral data

In the CNT task, all subjects recalled the number of sounds they heard with
counting error within + 2 sounds in each session.

In the DMS task, all subjects showed accuracy above 84% across the
combinations of different sound types (Tone or TC) and trial types (match or non-
match). However, a significant sound type * trial type interaction was observed (F1 24
=12.9, p<0.01), which was correlated to the lower performance level of the TC non-
match trials (91.1 £ 0.95%, mean = SEM) than the other three conditions (Tone
match: 99.8 £ 0.95%, Tone non-match: 98.7 + 0.95%, TC Match: 98.9 + 0.95%).

Response time (RT) in each trial was measured as the time elapsed from the
onset of S2 to the button press. ANOVA revealed a significant sound type effect on
RT (Fig. 3-2; F1 §=6.1, p<0.05), which showed that the RT to TC (812.4 + 36.35 ms,
mean = SEM) is significantly longer than the RT to Tones (754.1 + 36.32 ms). No
significant effect of trial type or sound type * trial type interaction was observed. The
longer RT for TC was consistent with the results in an fMRI study with same set of
stimuli (Husain et al. 2004), and might be due to the longer temporal integration

required for the recognition of tonal contours than tones.

3.3.2 Modulation effect in the sensor space

Ten frontal-temporal and parietal-temporal sensors in each hemisphere

surrounding the local maxima of ‘sources’ and ‘sinks’ of the magnetic field at the
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peak latency of M100 responses in the click-counting session were selected as
representative sensors for each subject (see Fig 3-3 A, D).

In the left hemisphere, the grand mean RMS of the field strength obtained
from the representative sensors across all participants showed a pattern of decreased
M100 responses to S2 as compared to responses to S1 in all experimental conditions
except the non-match pure-tone trials (Tone_M), where The DMS_TC_M condition
showed the greatest reduction (Fig 3-3 B). A greater than zero mean MI value was
demonstrated in the DMS_TC_M condition (tg 905 = 5.61, p<0.05) but not in other
experimental conditions. Furthermore, ANOVA of the MI values demonstrated
significant sound type (Fi, 24 = 12.18, p<0.01) and trial type (F1 24 = 7.74, p<0.05)
main effects and a significant task * sound type * trial type interaction (F;, 24 = 8.93,
p<0.01). However, no significant task effect was demonstrated by either ANOVA (F;,
16 = 0.18, p>0.05) or comparison between conditions.

In the right hemisphere, the averaged RMS waveforms showed a suppressive
pattern of the M100 responses to S2 in all conditions except DMS_Tone_N (Fig 3-3
E). ANOVA of the Ml values demonstrated a trial type effect (F1, g = 10.88, p<0.05),
where suppression of the M100 response to S2 for the match trials was greater than
the nonmatch trials. No task or sound type main effect or any of the interaction effects
was revealed by the statistical analysis. No mean MI value was significant different
from zero across the experimental conditions.

To summarize the results in sensor space, a significant suppression of the
M100 response to S2 as compared to the response to S1 was revealed by the left

representative sensors in the DMS _TC_M condition. However, no significant
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difference between tasks was observed by statistical analysis of the MI values for
both hemispheres. However, the lack of task-related difference of the MI values in
sensor space among conditions may due to the different task-related dynamics of the
multiple cortical sources that contributed to the M100 response (N&atdnen & Picton
1987; Hari 1990), whose locations were found not only in the auditory cortex, but
also in other anterior and posterior regions. Thus, further analysis of the MI values
obtained from the measurement of the neuronal activity in the bilateral superior
temporal cortices is necessary to assess the task-specificity of the modulation to AER

in a more focused manner.

3.3.3 Task-specific modulation effect revealed in left auditory cortex

For each experimental condition, within participant comparison in source
space revealed clusters of ECDs that showed significant difference between the
evoked responses to S1 and S2, and the locations and compositions of the clusters
were different from each other among the conditions and participants. For instances,
in figure 3-4 (A), the three subplots illustrates the probability maps of the left
hemisphere ECDs obtained from the paired t-test in PSL, CNT and DMS tasks with
TC stimuli for participant #4, respectively, where each map were plotted over a
standard anatomical atlas (Talairach & Tournoux, 1988). Each subplot depicted
several clusters that composed of the voxels with the corresponding ECD showed
significant difference between the evoked responses to S1 and S2. The cluster in the
superior temporal region (where auditory cortex is located) was larger for the DMS
task than the control tasks, which indicated a larger suppressive modulation effect

during performance of the DMS task for this participant. In contrast, in the cluster
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anterior to the auditory cortex, fewer ECDs showed a significant difference during
performing the DMS task, indicating a weaker modulation effect for the frontal
sources. Furthermore, in the cluster posterior to the auditory cortex, an opposite sign
of the modulation effect was demonstrated during performance of the DMS task (a
greater response to S2 than the response to S1), which suggested enhancement rather
than suppression for these current sources. A similar pattern of the task-specific
modulation of the left auditory cortex was seen in eight out of nine subjects.

Figure 3-4 B displays the grand mean AER waveforms of the left
representative ECDs averaged across the participants. A suppressed AER to S2 was
demonstrated with performance of the DMS task but was not observed in the control
tasks. The locations of these ECDs (Talairach coordinates: [-52.1 £ 9.33, -24.3 +
7.83, 7.6 = 4.67], mean £ SD) were within the vicinity of the left primary auditory
cortex (Heschl’s gyrus) and adjacent planum temporal region (Hall et al. 2002),
which is consistent with the distribution of the superior temporal sources for M100
responses that have been described in previous studies (Herdman et al. 2003;
Néatanen & Picton 1987; Hari 1990). Across subject analysis of the MI values
demonstrated significant effects of task (ANOVA, F, 15 = 9.64, p<0.01), sound type
(F1, 24 = 5.06, p<0.05), and task * sound type interaction (F,, 24 = 3.43, p<0.05). No
trial type effect or other interaction effects were observed. There was a significant
suppressive modulation of the evoked responses to S2 as compared by the responses
to S1 for both DMS_Tone (t17, 005 = 4.48, p<0.05) and DMS_TC (t17, 005 = 7.80,
p<0.05) as shown by the mean MI values (Fig 3.4c), where none of the mean Ml

values from the control tasks was significantly different from zero. Comparison
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between conditions demonstrated that the mean Ml value of DMS_TC condition was
significantly greater than both PSL_TC (p<0.01, Tukey-Kramer method) and
CNT_TC (p<0.01) conditions, which indicated a greater suppression of the left
auditory AER to S2 during performing the DMS task with TC stimuli. For the Ml
Values with Tones stimuli, no significant difference was observed between tasks,
although DMS_Tone displayed a greater mean Ml value than the control tasks (Fig 3-
4 C). Furthermore, the significantly greater mean MI value for DMS_TC than
DMS_Tone (p<0.05, Tukey-Kramer method) could account for the task * sound type
interaction effect, and also suggests a greater suppression effect for TC than for Tones
in performing the DMS task. Individual data showed seven out of nine participants
(except participants #1 and #2) with greater MI values (Fig. 3-4 D) for DMS_TC as
compared to the PSL_TC condition, indicating a consistency of the modulation effect
to the left auditory cortex among individuals.

Figure 3-5 (A) illustrates the clusters of ECDs in the right hemisphere of
participant #4 showing a significant difference between AERs to S1 and S2 during
performance of the tasks with TC stimuli. In contrast to the left hemisphere, the
cluster in the right temporal region displayed a similar modulation pattern across all
three tasks for this participant. The locations of the right representative ECDs were
almost symmetric to the left representative ECDs (Talairach coordinates: [-56.8 +
6.50, -24.3 £ 6.06, 9.1 + 7.91], mean = SD), where the center coordinates falling in
the vicinity of the right auditory cortex. However, the averaged AER waveforms
from the right representative ECDs showed a pattern different from what is seen on

the left side: Suppression of the AERs to S2 was seen in all three tasks, although for
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the Tone stimulus, the CNT and DMS tasks showed a reduced suppressive
modulation effect (Fig 3-5 B). There was no difference in the mean MI values across
all three tasks (Fig 3-5 C; ANOVA, F;, 15 = 2.44, p=0.12). Consistent with the mean
MI values across the subjects, individual data showed smaller differences in the Ml
values between the DMS_TC and PSL_TC conditions for the right representative
ECDs as compared to the left hemisphere (Figure 3-5 D).

Furthermore, the analysis of the MI values across all ECDs in source space
confirmed the findings with the representative ECDs by showing a cluster of ECDs in
the left auditory cortex with significant suppression of the AER to S2 in DMS tasks
as compared to the PSL condition (Figure 3-6 A), where the cluster extended from the
left superior temporal regions to the left insula. Two other clusters also showed up
with greater suppressive modulation effect during performance of DMS task than
during the PSL conditions. One was located at the left orbital frontal region (Figure 3-
6 B) and another one was in the premotor area of the right middle frontal cortex

(Figure 3-6 C), suggesting their involvement of performing the auditory DMS tasks.

3.3.4 Functional interactions underlying the task-specific modulation effect

Analysis of the modulation effect in cortical source activities demonstrated a
DMS-specific suppressive modulation of the AER in response to S2 in the left
auditory cortex. We then asked if there were correlated task-specific dynamics of the
functional interactions between the left auditory cortex and other brain regions. To
answer this question, we used the left representative ECDs as the reference dipoles
and used the DICS method (Gross et al. 2001) to evaluate the coherence values

between ECDs, and computed a RCC value from the coherence values to represent
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the changes of the functional interaction. Three dimensional two-way ANOVA of the
RCC values revealed five cortical regions that showed significant task-related
changes of their interregional functional interactions with the reference dipole in left
auditory cortex: For the frequency band of 2~20 Hz, two clusters of ECDs
demonstrated significant task * sound type interaction and significant or close to
significant differences between the PSL_TC and DMS_TC conditions. One cluster
consisted of 24 ECDs located in left anterior cingulate cortex (ACC, BA32, Fig 3-7
A), and another cluster with 11 ECDs located in the left precentral gyrus (BA4/6), in
which the center ECD was located in the pre-motor area (Fig 3-7 B). The mean RCC
values of the center ECDs of these two clusters demonstrated increased coherence
values during the delay period of the DMS_TC condition as being compared to the
PSL_TC trials. Moreover, in the same frequency band, another cluster of 18 ECDs
located in the right middle frontal gyrus (BA6/9) showed a significant task effect, in
which the center ECD located in the pre-motor area and demonstrated increased
coherence values for both tones and TC during the delay period of the DMS task (Fig
3-7 C). For the frequency band of 20~30 Hz, one cluster of 10 ECDs located in the
right ventral-lateral prefrontal cortex in inferior frontal gyrus (Fig 3-7 D)
demonstrated a significant task effect with the center ECD showed increased
coherence values during the delay period of the DMS task as compared to PSL
condition. For the frequency band of 30~50 Hz, another cluster of 14 ECDs located in
the right superior temporal gyrus (BA42/22) showed a significant task * sound type
interaction and close to significant PSL_TC vs. DMS_TC difference. The center ECD

demonstrated an increased coherence for DMS task with TC stimuli, and decrease
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coherence for DMS task with Tone stimuli as compared to PSL conditions (Fig 3-7
F).

A similar analysis of the functional interaction between the left reference ECD
and other brain regions was also undertaken with seven participants (without
participants #1 and #2) considering the consistent modulation pattern of the left
auditory cortex among these subjects. Except the clusters described above, a cluster
of 35 ECDs extending from the ventral-lateral prefrontal cortex in the left inferior
frontal gyrus (BA 47) to the anterior superior temporal gyrus (BA 42) and left Insula
(BA 13) showed a significant task effect, where the center ECD showed increased
coherence during the late delay period of the DMS task, whereas during the PSL task
a reduction of inter-regional coherence between these ECDs and the reference dipole

during the late delay period was observed (Fig 3-7 E).
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Fig 3-2 Mean + SEM of the response times (RT) in DMS task (n=9). Response times were

calculated as the duration elapsed from the onset of S2 to participants pressing the button for

each trial.
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Fig 3-3 Modulation effects in sensor space. (A) The alignment of the 10 representative
sensors at left hemisphere. The view is from the left side. Blue sensors locate around the local
maxima of ‘sink’ and red sensors locate around the local maxima of ‘source’ of the magnetic
field at peak latency of the M100 response. Data were from the click counting session of
participant #4. (B) The mean RMS waveforms of the field strength for the representative
sensors at left hemisphere averaged across all participants. Each column represents one sound
type * trial type combination and each row consists of the conditions within one task. In each
subplot, RMS with the epoch of 50~250 ms aligned to the onset of S1 and S2 are plotted
together, in which the blue trace is the averaged RMS aligned to the onset of S1, and red trace
is the averaged RMS aligned to the onset of S2, respectively. (C). Mean + SEM of the Ml
values computed from magnitude of the M100 responses across all participants. (E), (F) and

(G) are plots for right hemisphere similar to (A), (B) and (C), respectively.
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Fig 3-4 Task-specific modulation of the left auditory cortex. (A) The probability maps
indicates the clusters of ECDs in left hemisphere that showed significant difference between
the evoked responses to S1 and S2 by paired t-test with the experimental conditions of
PSL_TC, CNT_TC and DMS_TC, respectively. The colors represents the negative
logarithmic values of the probabilities for each ECD, which are plotted over the axial slices
(z=6) of the Talairach anatomical atlas (Talairach & Tournoux, 1988). The cut off threshold
of the displayed color values equals 8. Data were from participant #4. The location of the
representative ECD in left auditory cortex for this participant is marked by a “*’. (B)
Averaged neural activity index of the left representative ECDs time-locked to the onset of
stimuli. Data were obtained by averaging across all participants. Mean + SD Talairach
coordinates of the representative ECDs are illustrated above the waveforms. Dash line box
highlights the AER peak with the latency ~ 100 ms after the stimuli onset. (C) Mean MI
values computed from the source activity of the left representative ECDs averaged across all
participants. Error bars denote the standard error of means (SEM). (D) The mean and
standard deviation of the MI values for each individual subject obtained from single trials

during performing the PSL and DMS tasks with TC stimuli.
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Fig 3-5 Task-invariant modulation of the right auditory cortex. (A) The probability
maps show the clusters of ECDs in right hemisphere that showed significant
difference between the evoked responses to S1 and S2 in PSL_TC, CNT_TC and
DMS_TC experimental conditions. Data were from participant #4. The statistical
criteria were the same to the left hemisphere. Anatomical axial slice was obtained
from z=20. The representative ECD in right auditory cortex of this participant is
marked by a “*’. (B) Averaged neural activity index of the right representative ECDs
time-locked to the onset of stimuli. (C) Means and SEMs of The MI values computed
from the neural activity index of the right representative ECDs. D) The mean + SD of
the MI values for each individual participant obtained from single trials during
performing the PSL and DMS tasks with TC stimuli. The order of participants is the

same to fig 3-4 (D).
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Fig 3-6 Grand-analysis of the Ml values across all ECDs. 3dANOVA was applied to the Ml
values obtained from PSL and DMS tasks, Monte Carlo simulation was used to determine the
threshold cluster size of significance (n=9, threshold cluster size for F-test is 17, with each
ECD showed uncorrected p<0.01). Axial, sagittal, and Coronal views of the clusters showed
significant task-related effect on the MI values were displayed, where the color represents the
F-values. (A) The cluster in left auditory cortex, which included the ECDs in both superior
temporal gyrus (BA41/22) and insula (BA13). (B) The cluster in left medial frontal gyrus

(BA10) and. (C) The cluster in right middle frontal gyrus (BAG).
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Fig 3-7 Task-specific changes of functional interaction between the left auditory
cortex and other brain regions, which were obtained from analyses of the ratio of
coherence change (RCC) values between PSL and DMS tasks with both Tone and TC
stimuli. Subplots (A), (B) and (C) were from analysis with frequency range of 2~20
Hz. Subplots (D) and (E) were from analysis with frequency range of 20~30 Hz.
Subplot (F) were from analysis with frequency range of 30~50 Hz. All results were
derived from analysis with nine participants except (E), which was obtained from
analysis with seven participants (without participants #1 and #2). In each subplot, the
left inset maps the statistics of each ECD within the cluster (t or F values) with
smoothed color values overlapped on a standard Talairach anatomical atlas
(TT_N27), where the right insets depicts the Mean + SD of RCC values obtained
from the center ECD of the cluster. (A) and (B) depict the clusters showed significant
task * sound type interaction and close to significant difference between PSL_TC and
DMS_TC conditions. In both figures the color values represented the t values from
the contrast between PSL_TC and DMS_TC conditions, which are mapped over a
sagittal slice (x = -7) for (A) and an axial slice (z=55) for (B). In (A) the center ECD
with the maximal t value in the cluster located in left ACC, whose Talairach
coordinates were [-7 -20 -8]. In (B) the center ECD of the cluster located in left
middle frontal gyrus, and whose Talairach coordinates were [-45 -15 55]. C) The
cluster of ECDs showed significant task effect. The color values represent the F
values of the task effect and are mapped over an axial slice (x = 34). The center ECD
of the cluster located in right middle frontal gyrus, whose Talairach coordinates were

[49 -6 34]. D) The cluster of ECDs showed significant task effect. The color values
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represent the F values and are mapped over a sagittal slice (x = 42). The center ECD
of the cluster located in right inferior frontal gyrus, whose Talairach coordinates were
[42 -41 -1]. E) The cluster of voxels showed significant task effect. The color values
represented the F values plotted over an axial slice (z = 0). The center ECD of the
cluster located in left inferior frontal gyrus, whose Talairach coordinates were [-35 -1
-1]. F) The cluster of voxels showed significant task * sound type interaction and
close to significant difference between PSL_TC and DMS_TC conditions. The color
values represent the t values obtained from the PSL_TC vs. DMS_TC contrast and
are mapped over an axial slice (z = 6). The center ECD in this cluster located in right

superior temporal gyrus, whose Talairach coordinates were [63 -29 6].
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3.4 Discussion

3.4.1 Summary of results

The current experiment aimed at investigating the top-down modulation of
human auditory cortex by task-specific cognitive functions recruited during
performance of the auditory delayed-match-to-sample (DMS) task, which specifically
emphasizes the maintenance of the short-term memory (STM) during the delay period
and decision-making based on comparison between the STM trace and perception of
the acoustic stimulus (Posner 1967). This DMS specific modulation effect was
demonstrated as a suppression of the auditory evoked response (AER) with latency
around 100 ms by comparison with control tasks such as passive listening (PSL) and
counting (CNT). The auditory current sources showing this effect were lateralized to
the left hemisphere, where the cluster of the significant equivalent current dipoles
(ECD) covered both primary and association auditory cortices (Fig. 3-4a, Fig. 3-6a)
with the center located in the superior temporal gyrus (STG). Furthermore, the
modulation effect was greater for tonal contours (TC) than for tones in DMS task,
which indicated a stimulus specificity of this effect. Furthermore, corresponding
enhancement of the functional interactions between the left auditory cortex and
frontal regions during the delay period of the DMS task were observed in the
frequency bands of 2~20 Hz and 20~30 Hz. These regions included the lateral and
orbital prefrontal regions in the inferior frontal gyrus (IFG) and the left anterior
superior temporal region, premotor areas in the middle frontal gyri, and the anterior
cingulate cortex (ACC). In the frequency range of the gamma band (30~50 Hz), it

was right auditory cortex that demonstrated a DMS specific enhanced functional
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interaction with left auditory cortex during the late delay period, suggesting the task-
specificity of the interhemispheric inhibition between the bilateral auditory cortices.
These results are consistent with previous findings suggesting the involvement of top-
down modulation in the early phase of the auditory information processing and the
task specificity of this modulation (for a review, see Scheich et al. 2007).
Furthermore, our findings of DMS-specific enhancement of functional interactions
between auditory cortex and multiple frontal regions suggest participation of multiple
cognitive functions in the observed modulation effect. According to the location of
the corresponding regions, these cognitive functions may include short-term memory,

inhibitory control, and motor response preparation.

3.4.2 Task-specific cognitive modulation of auditory evoked responses

Measured by MEG/EEG, with peak latency around 100 ms after the stimulus
onset, the M100/N1 response was believed to be involved in detection of changes in
the acoustic environment (Rinne et al. 2006), and to which influences from both
upstream and downstream auditory cortical regions have been demonstrated (Hari
1990, Naidtanen & Picton 1987). With a variety of experimental paradigms,
suppression of this response has been observed by passive listening to repetitively
presented stimuli (N&atanen & Picton 1987) and by the active auditory perception
during task performance (Hillyard et al. 1973; Worldorff et al. 1993; Luo et al. 2005;
Martikainen et al. 2005). To account for these observations, a broad spectrum of
interpretations from pre-attentive habituation (Baldeweg 2006) to cognition related

top-down modulation (Scheich et al. 2007; Fritz et al. 2007) have been proposed.
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With supportive experimental results mainly obtained from mismatch
negativity (MMN) studies (Naatdnen 1990), the habituation hypothesis postulated that
the stimulus-specific adaptation to repetitively presented sounds suppresses the
evoked response to an upcoming stimulus, given the upcoming one has similar salient
features. According to this hypothesis, the sound stimuli are perceived through a
series of hierarchical adaptive filters up to the frontal cognitive centers. During this
procedure an implicit memory trace of the salient features is built up gradually, which
in turn provides a prediction of the upcoming stimulus. It is the deviation between the
prediction and the actual perception that determines the magnitude of the M100/N1
response. Therefore the magnitude of the M100/N1 response will be suppressed if the
upcoming stimulus has similar salient features to the repetitively presented preceding
ones (Tiitinen et al. 1994; N&atanen et al. 2001). Thus, according to the hypothesized
hierarchical, gradual and implicit procedures of memory establishment, maintenance
and retrieval, the suppressive modulation effect should be greater and earlier with
increased repetition, to which the supportive evidence has been revealed by a recent
study manipulating the number of ‘standard’ stimuli before presenting the ‘deviant’
sound (Haenschel et al. 2005).

By contrast, active performance of cognitive tasks has also demonstrated
suppression of AER without reliance on repetitively presenting the identical sounds.
For instances, with a dichotic listening paradigm, modulations of the M100/N1
response have been demonstrated with relatively suppressed magnitude to the
unattended stimuli and enhanced magnitude to the attended stimuli (Hillyard et al.

1973, Woldorff et al. 1993). This intramodal attentional modulation effect was also
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found for the anterior and posterior pathways depend on the feature (spatial or
temporal-spectral) to be attended or ignored (Ahveninen et al. 2006). Moreover,
intermoal selective attention studies also showed modulation effects on AERs , where
suppression to the unattended modality was observed in both animals (Oatman 1971,
1976) and human beings (Alho et al. 1994; Eimer et al. 2004). In another type of
behavioral paradigm, self-initiation of tones (Schafer et al. 1973; Martikainen et al.
2005) or speech (Houde et al. 2002) suppressed the M100/N1 response compared to
the responses to externally generated sounds; the prediction of the upcoming sensory
feedback by the efference copy of the motor command (Blakemore et al. 1998) was
believed to be involved in the observed inhibitory modulation effect.

For the behavioral paradigms employing the DMS task, suppression of the
M100 response to the second sound of the pair was observed for both simple sounds
such as tones and tonal contours and complex speech sounds such as vowels and
consonant-vowel syllables (Luo et al. 2005). In addition, experiments manipulating
the duration of the delay period has demonstrated the correlation between the STM
trace and the magnitude of the M100 response (Lu et al. 1992). This evidence
suggested that task performance activated the involved cortical regions with a
temporal order opposite to the habituation procedures. Task demands enter the
network earlier than the stimulus perception: the expectation of the upcoming
stimulus is actively selected from either STM or long-term memory (LTM) trace by
corresponding task-specific cognitive functions. Thus, modulation of the evoked
response can be highly dependent on the task demands, and can be observed

independently from repetitive presentation of the same stimuli (Fritz et al. 2007).
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Nevertheless, direct evidence was still absent to support the notion that the
suppressive modulation of M100 found in DMS tasks has a specific correlation with
the explicit memory processing other than the passive habituation effect.

In this study, by controlling the habituation effect with same timeline for each
trial (a sound pair separated by a one-second silent delay period) and the attention
effect by instructing subjects to listen to the sounds during both control and DMS
conditions, we have demonstrated a suppressive modulation effect of the AER
specifically correlated to performance of the DMS task, which involves overt STM
processing and decision making based upon manipulation of the STM. Furthermore,
the relatively greater suppression effect in the DMS task than the counting task not
only strengthened the task-specificity of this effect, but also suggested that this effect
is specifically related to the STM processing of the acoustic features of the sound
stimuli, given that performing the counting task required the subject to hold a
numbering format of the STM trace of the sound stimuli (Neider 2004, 2005).

In addition to the task-specificity, we also observed left lateralization and
selectivity to TC stimuli of this modulation effect. Consistent to our findings,
previous MEG studies have showed task-specific hemispheric asymmetry of the
M100 response (Poeppel et al. 1996; Chait et al. 2004). Furthermore, a recent fMRI
study also demonstrated that BOLD activation related to WM of frequency modulated
(FM) tones was lateralized to the left auditory cortex (Brechmann et al. 2007), which
was overlapped with the location of the significant ECDs observed in our study. For
interpretation of this phenomenon, both hemispheric functional specificity (Grimm et

al. 2006; Brechmann et al. 2005; Zatorre et al. 2002) and temporal scale sensitivity
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(Poeppel et al. 2004; Boemio et al. 2005) were proposed. No matter whether it was
due to the right auditory cortex’s selectivity for the direction of frequency modulation
(Brechmann et al. 2005), or its temporal sensitivity of the acoustic changes falling
into the range of the stimuli used in this study, our finding of the asymmetric
modulation to the auditory cortex is compatible with the hypothesis that the STM
processing of the task-related stimuli suppressed the irrelevant processing in the left

auditory cortex.

3.4.3 Functional interactions between brain regions underlie the task-specific

modulation.

Consistent to our findings of the close relationship between the suppression of
AER and performance of the DMS task, studies with impaired frontal patients
showed correlated increasing of the AER magnitude and their behavioral deficit
during performance of auditory DMS tasks (Chao & Knight 1998, Knight & Chao
1999), which also suggested the involvement of frontal regions as the sources of the
observed suppression to AER. Furthermore, the DMS-specific suppression was to the
AER of the second stimulus in the sound pair (Fig 3-4 b), which indicates that the
neural dynamics during the delay period and the first 100 ms during presentation of
the second sound were most likely behind this modulation effect. For the regions
involved in STM processing during the delay period, previous studies have found
both temporal lobe auditory (Gottlieb et al. 1989; Zatorre et al. 1991, 1994) and
frontal lobe cognitive cortices (Fuster et al. 1971; Bodner et al. 1996; Levy et al.
2000; Kikuchi-Yorioka & Sawaguchi 2000), where the frontal regions, especially the

prefrontal cortex (PFC), are believed to exert top-down influences to the sensory
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cortices (Miller & Cohen 2001). Thus, analysis of the functional interaction between
auditory cortex and frontal regions during the delay period should be able to provide
information about the neural mechanism underlies the DMS-specific suppressive
modulation of the AER.

As a measurement of the enhanced functional interaction, increased coherence
values during the late delay period of the DMS task in various frequency bands was
observed between several frontal regions and the left auditory cortex in this study.
Among these regions, right inferior frontal gyrus (rIFG, Fig 3-4 D), left ventrolateral
prefrontal cortex (VIPFC) and anterior superior temporal gyrus (aSTG, Fig 3-4 E)
were showed in the frequency band of 20~30 Hz. In previous studies, multiple
cognitive functions have been attributed to these regions. For instances, both vIPFC
(Romanski & Goldman-Rakic 2002) and STG (Gottlieb et al. 1989) have been found
involve in the memory maintenance of the object related information, where the
corresponding oscillation during the delay period were found mainly in beta band
around 20 Hz (Peterson et al. 2002; Leiberg et al. 2006b). In addition, VIPFC was
believed to be correlated with selection of ‘match’ or ‘non-match’ rules (Roberts &
Wallis 2000) for response. Furthermore, other cognitive functions such as inhibition
of irrelevant memory retrieval (Aron et al. 2004) and interference information
processing during performance of the working memory tasks (D’Esposito et al. 1999;
Jonides et al. 1998) have also been correlated to regions in rIFG. Therefore, the
cognitive functions such as STM maintenance and inhibitory control of memory
retrieval should be involved in the observed DMS-specific suppression of the AER to

upcoming stimuli.
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The theoretical framework by Klimesch (Klimesch et al. 2007) postulated that
EEG/MEG oscillation in lower frequency bands such as theta (4~8 Hz), and alpha
(8~13 Hz) are correlated to STM demands, top-down inhibitory control processes,
and STM/LTM interaction. Particularly, the interareal coherence in these frequency
bands demonstrated patterns of frontal-posterior projection, and was believed to be
correlated to inhibitory top-down control of the task-irrelevant processing (Schack et
al. 2005; Von Stein et al. 2000). Consistent to this framework, in the frequency range
of 2~20 Hz, our results demonstrated increased coherences between the left auditory
cortex and frontal regions including ACC and bilateral premotor areas. Among these
regions, ACC has been shown to be related to control of execution, particularly the
competitive inhibition during selection of task appropriate responses (Pardo et al.
1990), while the motor regions were believed to involve in preparation of the
correlated motor response. Previous supportive evidences of the correlation between
these regions/functions and the modulation of AER included the studies that showed
suppression of the M100 responses by listening to self-generated sounds as compared
to passive listening to the external sounds (Martikainen et al. 2005; Houde et al.
2002), and a recent finding that rhythm-directed tapping increased the functional
connectivity between premotor and auditory cortex (Chen et al. 2006). As to the
underlying mechanism, the model of network memory postulated that the specific
motor responses modulates the perception of the upcoming stimuli through the
established associative motor-sensory efferent pathway in a competitive manner,
where the associative selection of the information processing for the perceived

stimulus and the motor responses was established through performance of the tasks
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(Fuster 1997). Hereby, the results of the modulation of AER by ACC and pre-motor
cortices should include inhibition of the irrelevant information processing pathway,
which is consistent to our findings about the task-specificity of the suppressive
modulation effect.

Interhemispheric inhibition between bilateral auditory cortices was found
mainly in behavioral paradigms such as dichotic listening tasks (Brancucci et al.
2004) and sound localization paradigms (Marsat & Pollack 2005), to which the
explicit competition of the attention resource between two ears was postulated. Our
results demonstrated the increased functional interaction between the bilateral
auditory cortex in the gamma band (30~50 Hz) in DMS task, which suggests that not
only the explicit interhemispheric competition, but also the task-related implicit
competition during auditory perception underlies the observed DMS-specific
suppressive modulation effect. Moreover, this result further supports the notion of the
hemispheric selectivity of sound features and suppression of task-irrelevant

processing.

3.4.4 Neural network of the task-specific modulation effect

More experimental evidence supporting top-down modulation of auditory
cortical activities and their task specificity were from studies using invasive
recordings in animals (Fritz et al. 2005, Ohl et al. 2005), where more intricate patterns
of the modulation effects were revealed. The modulation effects were mainly
demonstrated by changes of the representational properties in both primary and
secondary auditory cortical neurons after training the animals to perform certain

tasks. For instance, the ferret primary auditory cortex showed different plasticity of its
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receptive fields in detection and discrimination tasks (Fritz et al. 2002, 2005), to
which recent experimental results suggested an important role of the top-down
modulations from frontal regions (Fritz et al. 2007). Similarly, greater plasticity of the
auditory space map in adult barn owl’s optic tectum was observed when the animals
were trained for actively hunting live mice as compared to being passively fed dead
mice (Bergan et al. 2005); the top-down modulation from the forebrain was crucial to
this behaviorally specific effect (Winkowski et al. 2006, 2007). Furthermore, primary
auditory cortical neurons of Mongolian gerbils trained to perform a categorical
discrimination task also displayed a performance related training effect with latency
as early as 100 ms after stimulus onset (Ohl et al. 2005).

On the other hand, supporting evidence comes not only from auditory
studies, but also from investigations of other sensory modalities. Stimulating the
frontal eye fields (FEF) leads to modulation of V4, V2, and even the primary visual
cortex in both animals (Armstrong et al. 2006) and humans (Ruff et al. 2006), where
the modulation effects were similar to experimental results obtained from the studies
manipulating spatial attention (Moran & Desimone 1985). Similar to the auditory
domain, involvement of both ascending filtering based on saliency of the stimuli and
descending modulation by task demands were observed in visual cortices, and the
temporal sequence of recruiting the cortical regions depended on the experimental
paradigm (Buschman & Miller 2007), where the task-specific frontal-posterior
interactions were found in the frequency bands compatible to the findings of our
study. Additionally, observations of the top-down modulation of evoked responses in

primary and secondary somatosensory cortices were also obtained in studies using a
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delayed discrimination paradigm (Hlushchuk & Hari 2006). Inhibitory feedback from
frontal regions to primary and secondary somatosensory cortices was believed to play
an important role for successful task performance (Miller & Wang 2006). Similar to
our interpretation of the observed modulation in auditory domain, mutual inhibition
between competitive processing of tactile information was modeled as the mechanism
for discrimination (Machens et al. 2005).

It is believed that the top-down inhibitory modulation involves in the
functions such as suppressing the task-irrelevant processing (Pfurtscheller & Neuper
1994), or synchronizing the functional neural network with phase reset among the
involved regions (Klimesch et al. 1999, 2007). Multiple models have been proposed
to interpret the top-down modulation of sensory processing and their correlation with
the cognitive functions, such as executive control (Miller & Cohen 2001), predictive
coding (Friston 2005), or the network of associative memory (Fuster 1997). Our
findings of an increased functional interaction during the late delay period between
the auditory cortex and frontal regions such as ACC and IFG supports the theory of
executive control, whereas the involvement of VIPFC, aSTG, pre-motor regions, and
the contralateral auditory cortex suggests more cognitive functions, such as the STM
establishment, maintenance and retrieval, association of the established perception-
action link, and interhemispheric competition also should be involved in the observed
task-specific modulation effect. None the less, we would like to adapt the frame work
of the ‘predictive coding’ theory (Friston 2005) to postulate the detail procedures of
the modulation effect: Integration between the top-down prediction and bottom-up

perception of upcoming acoustic events produces a code of ‘prediction error’ in
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auditory cortex, which in turn determines the magnitude of AER. Most importantly,
the prediction comes from the actively maintained STM trace within the task-specific
memory network, rather than the automatic memory trace as postulated in the
adaptation theory.

Generally, both enhancement of the task-relevant processing and suppression
of the task-irrelevant responses have been found for the top-down modulation across
sensory modalities (Frith & Dolan 1996). However, in this study, only a suppressive
modulation effect was observed. This might due to the limit of the spatial resolution
of the MEG method we applied, where the net effect integrated across multiple
sources of modulation demonstrates a suppression effect at the spatial scale which can
be detected by MEG. Therefore, further studies with control of either memory load or
motor response can provide more knowledge concerning the aspects of the top-down

modulation by each individual cognitive function.

3.4.5 Conclusion

The current study used the auditory DMS task to investigate the task-
specificity of top-down modulation in human auditory cortex and the neural
mechanisms underlying the observed modulation effects. Besides the demonstration
of a DMS-specific suppressive modulation of the early phase auditory evoked
responses, increased functional interaction between the modulated auditory cortex
and frontal regions were also observed, which indicated the involvement of multiple
cognitive functions such as STM processing, executive control and response
preparation. Our results indicate that a task-specific interactive network including

both auditory and frontal cortical regions is necessary for successful performance of
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the auditory DMS task, where the frontal regions exert influences on the early phase
of the primary and association auditory cortical processing, and the latency could be
as early as tens of milliseconds after stimulus onset. Therefore, the findings from this
study and previous studies suggest that the auditory perception in a noisy acoustic
environment is accomplished by a task-specific and interwoven network, in which
processing of the relevant auditory stimuli is usually enhanced and retained, and
processing of the irrelevant stimuli is suppressed, where the relatively more broadly

tuned suppression might cause the net effect as suppression of AER.

3.5 Isolating the functional signal in MEG measurements —

categorization of M100 related independent components

In addition to the artifact rejection (section 3.2), | also used the method
described in chapter 2 (Rong & Contreras-Vidal 2006), to isolate the M100 related
MEG signals for analysis of the modulation effect in sensor space.

The noise-reduced MEG data were truncated into epochs that each one
contained four trials for the task sessions and ten trials for the click counting session
(see section 3.2 for detail description of the single trial epoch). Thus, there were 25
epochs for each task session (100 trials) and 20 epochs for each click-counting
session (200 trials). In the task sessions, each epoch was a 273 x 8884 matrix of the
noise-reduced MEG data; while in the click counting sessions, each epoch was a 273
x 6310 matrix of the noise-reduced MEG data. For each epoch, ICA was applied to
compute the corresponding independent components (IC). Thus, for each task

session, there were 6825 ICs (273 * 25 = 6825).

84



The M100 related ICs were then categorized in passive listening (PSL) and
delayed-match-to-sample (DMS) datasets from a representative participant
(participant #4): First, by taking the normalized magnetic field strength across the
sensors at the peak latency of the M100 response observed in the averaged epoch of
the click counting session (Fig. 3-8 A), two types of templates were determined by
selecting the magnetic field at the peak latency of the M100 response as the scalp
map for the template of ‘AEP1’ and its inversion as the scalp map for the template of
‘AEP2’. Second, using each AEP template, the M100 related 1Cs were categorized in
the click-counting dataset using the threshold-based categorization method without
taking into account the dPxx features (thresholds for the features: dtopo = 0.4; H =
2.8; K = 30). The scalp and spectral maps of categorized ICs were then averaged to
obtain the scalp map and spectral map of the template for each type of M100 related
IC (Fig. 3-8 B). Third, using these templates, the M100 related ICs in PSL and DMS
datasets were categorized and clustered using the threshold-based method (threshold
for the features: dtopo = 0.4; dPxx=0.4; H = 2.8; K = 30). Fourth, using the
categorized M100 related ICs, one MEG dataset was remapped for each task session
(PSL_Tone: passive listening to Tones; PSL_TC: passive listening to TC stimuli;
DMS _Tone: DMS task with Tones; DMS_TC: DMS task with TC stimuli). The
auditory evoked field (AEF) and corresponding modulation index (MI) values were
then calculated and analyzed using the methods described in section 3.2.

Visualization of the templates of AEP1 and AEP2 showed roughly opposite
scalp maps and activation patterns at the latency of M100 response (the middle insets

of Fig. 2-1 B), which suggested similar influences to the sensors by these two types of

85



ICs. In this dissertation they were treated as being correlated to same type of neuronal
dynamics. The averaged scalp maps of the categorized M100 related ICs showed
similar patterns to the templates (First column in Fig 3-9). In contrast, the averaged
IC activation showed clearer peaks of the auditory evoked responses (Second column
in Fig 3-9) than the templates (Second column in Fig 3-8 B), which confirmed the
relationship between these categorized ICs and the neural dynamics underlies the
M100 response. Comparison between the tasks showed that more 1Cs were clustered
in the DMS conditions than the PSL conditions for TC stimuli but not for Tones
(Table 3-1). Furthermore, the averaged IC activation showed that the categorized
M100 related ICs in DMS task had weaker AER to S2 than PSL conditions (Fig 3-9
B). Further analysis of the remapped MEG using the M100 related ICs showed
stronger suppressive modulation of the AEF to S2 in DMS task than in PSL
conditions (Table 3-2).

The results showed that (1) In addition to the MEG dataset in the published
results (attached paper, Rong & Contreras-Vidal 2006), this method also categorized
and removed the artifactual ICs in a new MEG dataset collected from the experiment
described in this chapter. Therefore, this method is applicable to MEG dataset
collected from different scanners and different experiments; (2) the categorized M100
related 1Cs showed the M100 responses to the stimuli, similar averaged contour map
to the templates, and differences in the averaged IC activation corresponding to task
conditions. These results confirmed our prediction in the paper that this method can
be also used in analysis of function-related ICs; and (3) The remapped MEG signals

with the categorized M100 related 1Cs showed task-specific dynamics, which agrees
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with the results from the auditory cortex. These results suggested that the categorized

ICs are appropriate substrates for investigation of the task-related cognitive functions.
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Table 3-1. Number of M100 related ICs that were categorized in each task session.

PSL_Tone PSL TC DMS_Tone DMS TC
AEP1 308 302 320 457
AEP2 116 144 106 157
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Table 3-2. Modulation index values (%) computed from the remapped MEG signals

using the M100 related ICs

PSL_M * PSL_N DMS_M DMS_N
Tone 9.72 -6.04 21.10 -1.96
TC 231 4.54 16.08 12.80

* The abbreviations are: PSL_M: Matched trials in passive listening task; PSL_N: non-

matched trials in passive listening task; DMS_M: Matched trials in DMS task; DMS_N: non-

matched trials in DMS task;
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Fig. 3-8 Templates for identification of the M100 related independent components (IC). Data
were collected in the click counting session performed by the participant #4 during the MEG
recording (Chapter 3). (A) Left inset shows the averaged epoch of the auditory evoked field
(AEF) across all sensors time-locked to stimulus onset. Black arrow indicates the peak of the
M100 response. The right inset depicts the contour map of the AEF at the peak latency. (B)
The templates of the M100 related 1Cs (as denoted by AEP1 and AEP2). The three columns

are the scalp maps, the activations, and the spectral maps of the templates.
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Fig 3-9 Identification results of the M100 related ICs. Data were from participant #4 in the

MEG experiment (Chapter 3). (A) Averaged scalp maps, IC activations and spectral maps of

the identified M100 related ICs in PSL_TC conditions. The upper row and lower row depict

the identified ICs with template AEP1 and AEP2, respectively. (B) Averaged scalp maps, IC

activations and spectral maps of the identified M100 related ICs in DMS_TC conditions.
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CHAPTER 4: SIMULATING THE TASK-SPECIFIC COGNITIVE
MODULATION OF HUMAN AUDITORY CORTICAL ACTIVITY

USING A NEUROBIOLOGICALLY REALISTIC MODEL

A large-scale neurobiologically realistic neural network model of auditory
object processing (Husain et al. 2004) is expanded to simulate the task-specific
spatial-temporal neural dynamics correlated to performance of an auditory delayed-
match-to-sample (DMS) task comparing to passive listening (PSL) conditions. The
expanded model has two parallel subsystems to simulate the cortical networks
processing the task-related sound stimuli and task-irrelevant background noise,
respectively. Each subsystem is composed of the same temporal auditory and frontal
cognitive regions, as well as the feedforward and feedback connections between the
regions that link them together for successful task performance. Important to our
purpose in this study, the cross subsystem top-down inhibitory connections between
the specific memory processing units and the non-specific auditory units simulate
suppression of the task-irrelevant processing. Furthermore, using the synthetic
integrated synaptic activity (ISA) in each region as inputs, we simulate the
corresponding MEG and fMRI signals with our forward models. Our results show
DMS-specific suppression of the auditory evoked responses (AER) obtained from
both ISA in auditory regions and MEG signals on sensors that agreed with the
experimental findings in chapter 3. In addition, forward simulation of fMRI produced
DMS-related signal change of the BOLD signal comparable to the experimental

results. Therefore, these results support our hypothesis that the proposed modeling
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approach is capable of bridging the knowledge about the task-related neural dynamics
obtained with techniques that are sensitive to different types of signals and different

temporal and spatial scales.

4.1 Introduction

Previous empirical observations have shown both task-specific enhancement
and suppression of the auditory cortical activity during performance of the auditory
DMS task and other similar short-term memory (STM) tasks. In animal studies, co-
existing enhancement of task-relevant and suppression of the task-irrelevant auditory
responses were observed correlated to corresponding behavioral rules and context of
perceived stimulus (Goettlieb et al. 1989, Ohl et al. 2001, Fritz et al. 2005). In
humans, fMRI and MEG experiments demonstrated opposite patterns regarding the
DMS-specific auditory cortical activity. In fMRI studies, performing the DMS task
related to increases in BOLD signal in the auditory cortices (Grady et al. 1997,
Husain et al. 2004) compared to the passive conditions. In MEG/EEG studies,
performing the auditory DMS task demonstrated suppression of the evoked responses
in auditory cortex (Ramé et al. 2000, Lu et al. 1992, Luo et al. 2005; also see our
results in Chapter 3). Furthermore, the extent of the BOLD signal enhancement
(Brechmann et al. 2007) or evoked response suppression (Lu et al. 1992) was
positively correlated with the performance level and memory manipulation. Because
of these, it is necessary to find an approach which combines these seemingly
discrepant experimental results obtained by different methods, in order to find a

consistent understanding of the underlying physiological process.
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Modeling has been proposed as one of the approaches for integrating MEG
and fMRI data (Horwitz & Poeppel 2002), where the postsynaptic potential (PSP) can
serve as the common link since the relationship of PSPs with MEG (Hamaldinen et al.
1993, Baillet et al. 2001) and BOLD (Logothetis et al. 2000, Logothetis 2001, 2002,
2003) signals has been intensively investigated. Recent studies have introduced
multiple models to simulate the ERP/ERF (David et al. 2006), fMRI (Tagamet &
Horwitz 1998, Husain et al. 2004) or both (Babajani et al. 2005, Riera et al. 2004,
2005) to incorporate the activity in multiple regions. Specifically, models have been
developed to simulate correlated regional neuronal activities and fMRI signals during
performance of the DMS task (Tagamet & Horwitz 1998, Husain et al. 2004, Deco &
Rolls 2005, Chadderdon & Sporns 2006).

In this chapter, we combine an expanded version of a large-scale neural
network model of auditory object processing (Husain et al. 2004) with MEG and
fMRI forward models to simulate the DMS-specific event-related responses and
BOLD signals. In this model, two parallel subsystems are included to simulate the
neuronal groups that involve in performance of the auditory DMS task (specific part)
and the neuronal groups that correlate to task-irrelevant processing (non-specific
part), respectively (Horwitz et al. 2005). For each subsystem, both temporal auditory
and frontal cognitive regions are simulated, where the different tasks are determined
by different gain values (‘attention’) to the frontal memory units during the
presentation of the stimuli and delay period. Furthermore, the connections from the
frontal memory processing units to the superior temporal region and secondary

auditory cortices in the specific part simulate the distributed network of the STM
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maintenance and top-down enhancement of the task-relevant auditory activity
correlated to task-performance; whereas the top-down inhibitory projections from the
specific memory processing units to the non-specific auditory regions simulate the
top-down suppression of the task-irrelevant auditory pathways. Simulation with this
model provides synthetic neuronal activity and integrated synaptic activity (ISA) in
each region. We then use the synthetic regional ISA for further simulation of the
MEG and fMRI signals with forward models, where the inhibitory PSP (IPSP) were
integrated separately to the excitatory PSP (EPSP) between the MEG and fMRI
simulations. Calculation of the regional ISA for MEG simulation uses the vector sum
of the PSPs, where the IPSP magnitudes were subtracted from the EPSP magnitudes.
Computation of the regional ISA activity for simulation of fMRI signal integrates the
magnitudes of IPSP and EPSP; hence the IPSP contributes to the instantaneous

increase of BOLD signal in fMRI simulation (Tagamets et al. 2001; Logothetis 2003).

We hypothesize that with the proposed modeling approach, we can simulate
the DMS-specific suppression of AER and BOLD signal changes simultaneously,
where the relative greater inhibition of the specific memory units to the non-specific
auditory regions during the DMS task can account for the patterns of neural activity

that have been observed in neuroimaging experiments.
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4.2 Materials and Methods

4.2.1 The neurobiologically realistic large-scale neural network model

Computational neural model

Simulation of the neuronal activity in human cortical regions related to the
task performances in this study is based on an expansion of a large-scale
neurobiologically realistic network model for auditory object processing (Husain et
al. 2004). The expanded model (Horwitz et al. 2005) includes duplicated “specific’
and “non-specific’ subsystems (Fig. 4-1A). The specific subsystem is correlated to the
task-relevant processing of the tested acoustic stimuli (Tones and Tonal contours),
whereas its non-specific counterpart processes background noise. The structure of
each subsystem is adapted from the original model, which consists of five regions that
roughly simulates the medial geniculate nucleus (MGN), the primary (Ai) and
secondary (Aii) auditory cortices, the superior temporal (ST) regions, and the
prefrontal cortex (PFC), respectively. Following the architecture in the original
model, each region is composed of sub-modules that reflect a characteristic
physiological function, and each sub-module consists of 81 basic units that have same
parameters of neuronal activity and internal connection strengths (see detailed
description in Husain et al. 2004 and Tagamet and Horwitz 1998). For each
subsystem, MGN is the input stage with one sub-module, within which each unit
represents a filter with a characteristic frequency (CF). Ai contains two sub-modules
with selectivity of either the upward frequency modulated (FM) sweeps (Aiu) or the

downward FM sweeps (Aid), within each sub-module the units receive tonotopic
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inputs from the corresponding MGN units. Moreover, in each of the Ai sub-modules
the selectivity of FM sweeps are obtained by lateral inhibitory connections between
the units such as that the upward selection is materialized by stronger inhibition to the
units with lower CF, and the downward selection is obtained by stronger inhibition to
the units with higher CF. Therefore, the Ai region simulates two functions of the core
and belt auditory cortices: the response to the CF by each unit and the selectivity to
the FM sweep by the sub-modules. Aii is composed of three functional sub-modules
with longer integration time window than the units in Ai, two of them have the same
architectures and FM sweep selectivity to Aid and Aiu (Aiiu and Aiid, respectively)
and receive tonotopic inputs from the corresponding Ai units. The other one has
contour-selectivity — the selectivity to direction change of the sweeps (Aiic) -- and
integrates the inputs from both Aid and Aiu. ST has one sub-module that integrates
the inputs from all three sub-modules in the Aii region, which models the abstract
representation of sound stimuli. The PFC region consists of four sub-modules (C, D1,
D2, and R) that simulate the short-term memory (STM) and decision making related
functional neuronal groups in the frontal cortical areas, in which the ‘cue-sensitive’
units (marked as ‘C’ in the figure 4-1 A) responds to the inputs from ST, the ‘D1’
delayed response units correspond to the neurons displayed increased activity during
the delay period of the DMS task (Romanski et al. 1999), the ‘D2’ delayed response
units simulate the neurons that showed increased activity in both delay period and the
time windows of stimuli presentation, and the ‘response’ units demonstrate increased
activity for the “match’ condition in the DMS task and represent the frontal decision

making regions during the corresponding task performance. Additionally, each
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subsystem also contains an ‘attention’ unit, which provides a gain control to each of
the ‘D2’ units to simulate the modulation of the STM processing within each task
condition.

As the basic functional processing ensemble in this modeling structure, each
unit (Fig. 4-1B) is composed of an excitatory element and an inhibitory element. First
introduced by Wilson & Cowan (1976), this type of configuration models a simplified
cortical column, in which the excitatory element represents integrated activity of the
excitatory pyramidal neurons and the inhibitory element represents activity of the
inhibitory interneurons in the column. Principally, the excitatory and inhibitory
activity in each basic unit follows the sigmoidal rule (Husain et al. 2004; Tagamet &

Horwitz 1998):

O _, L )-EO @D
dt L+exp(-Keg[wege B (t) + wie 1 (1) +inic (t) — 7 + N(1)])
L _, L )=, (1) 4-2)
dt 1+exp(—K,[wg E; (t) +in, (t) — 7, + N(t)])

Where E, (t)/1,(t) and 7. /7, denote the electrical activities at time t and the input
thresholds of the excitatory and inhibitory elements in the ith basic unit, respectively;
Kcand K, represent the steepness of the corresponding sigmoidal functions; Ais the
rate of change; & is the decay rate; N(t) simulates the spontaneous Gaussian
distributed background activity; and wg., wg, and w,.are the recurrent excitatory-
excitatory, excitatory-inhibitory, and inhibitory-excitatory connection weights within
a unit, respectively. In addition, in,c (t) and in, (t) are the total external inputs to the

excitatory and inhibitory elements at time t:
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iniE (t) = ZWF. Ej (t) + Zw;i I j (t) (4'3)
iny (1) =D WGE, (1) + > w1, (t) (4-4)

in which w/wj or wg/wy are the weights of the excitatory and inhibitory inputs

from an external source j or k to the excitatory or inhibitory element in the ith unit,
respectively. The electrical activities of the elements are set between 0 and 1 and can
be viewed as the proportion of activated neurons in the local population represented
by this unit. The parameters of the basic unit elements in each region are from the
original model and are identical for both subsystems. Table 4-1 lists these values
(replicated from table 1 of Husain et al. 2004).

Besides the simulation parameters of the basic units, the response properties
of each region were also determined by the intraregional and interregional
connections. For example, alignment of the intraregional lateral inhibitions between
the units in Ai and Aii regions determines the selectivity of upward, downward and
contour-pattern sweeps of the sub-modules. The upward selective units have
inhibitory connections to the adjacent lower frequency counterparts, while the
downward selective units have inhibitory connections to the higher frequency units.
The intraregional inhibitory connections in the contour-selective units are bilateral.
Being simulated in the same way across the whole model, the lateral inhibitions
between the units are represented by excitatory projection from the excitatory
elements in the source units to the inhibitory elements in the target units. In this
method, the connection weights are aligned in a Gaussian manner with weaker

connections to distant ones in Ai and Aii regions (Fig. 4-1 C). In addition to the
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intraregional connections, interregional connections simulate the feedforward and
feedback connectivity between the corresponding cortical areas. Among them, all
feedforward connections are excitatory, whereas the recurrent and feedback
connections are either excitatory or inhibitory (Fig 4-1 A). Particularly, the D2 - ST,
D2 - Aii and ST > Aii excitatory feedback connections within the specific
subsystem simulate their involvement in the maintenance of the STM trace (Pasternak
& Greenlee 2005). In contrast, the feedback inhibitory projections from the specific
D2 units to the non-specific Ai and Aii regions simulate the top-down inhibitory
modulation of the task-irrelevant auditory information processing. In this manner, the
interregional feedback connections simulate both the strengthening of the task-
specific processing of the relevant acoustic stimuli and the suppression of the back-
ground noise processing in the task-irrelevant pathway. Similar to the intraregional
inhibition, the inter-regional inhibition is accomplished by excitatory projections from
the source excitatory elements to the target inhibitory elements. In addition to the
within system connections and those cross-system inhibitory connections depicted in
figure 4-1 A, potential connections were pooled between every unit in the specific
and non-specific subsystems. In each simulated trials, 50% of these potential
connections were randomly activated to simulate the noisy communication between
the neuronal groups. Table 4-2 listed the weights of the intraregional and
interregional connections within each subsystem (Values are replicated from table Al
and A2 in Husain et al. 2004). Table 4-3 listed the weights of the cross-subsystem

connections between the units.

Simulation protocol
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In this study, we use different protocols for simulations of MEG and fMRI
signals to make them compatible to the experimental measurements. Consistent with
the MEG experiment illustrated in chapter 3, modeling of the MEG signal applies an
event-related design. In this design, two types of tasks are simulated in two separate
sessions, where the task type is determined by the ‘attention’ gain value to specific
D2 units there is a corresponding attention gain value during stimuli presentation and
the delay period. The passive listening (PSL) task uses a lower value (0.05), whereas
a higher value (0.15 for tones, 0.30 for tonal contours) is set for the delayed-match-to-
sample (DMS) task. The stimuli (Fig. 4.2A) included pure tones (Tone, 70 time steps
in duration, represented by activation of two MGN units throughout) and tonal
contours (TC, 70 time steps in duration, represented by two 25 time steps FM sweeps
interleaved by a 20 time steps tone). Each simulation session consists of 20
consecutive trials (10 for each type of stimuli) with the same task condition (PSL or
DMS). Each trial contains a baseline period of 100 time steps, followed by a pair of
stimuli (S1 and S2, respectively) separated by a 200 time steps delay period, and a
300 time steps inter-trial-interval (ITI) (Fig. 4.2B). Each time step corresponds to 5
ms in the experimental condition. For the baseline, delay and ITI periods, input to the
system includes only random noise to the non-specific part, whereas during the time
windows of stimuli presentation, both tested stimuli and noise were input to the
specific and non-specific parts, respectively. Within each simulation, match (identical
sounds in the pair) and non-match (different sounds in the pair) trials with either Tone

or TC stimuli were randomly mixed and counter-balanced. Therefore, each simulation
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session has 5 trials for each trial type (match or non-match) by sound type (Tone or
TC) combination.

For the simulation of fMRI signal, each simulation session is composed of a
‘task’ block and a “control’ block for one type of sound stimuli (Tones or TC). These
conditions correspond to the blocks of the DMS and Rest conditions in the
experiment (Husain et al. 2004), respectively. Each block contains three trials, and
each trial had the same timeline to the ones used in simulation of the MEG signal.
The three trials in each block followed the order of ‘match’ - *‘non-match’
—->’match’. Also similar to the MEG simulation, during the ‘task’ trials, inputs to the
specific part were test stimuli with a certain pattern resembling either Tones or TC
during the time window of stimuli presentation, while inputs to the non-specific part
resemble the background noise. In contrast, for the “control’ trials, the inputs to both
specific and non-specific parts were random noise. In addition, the attention gain
values to the D2 units in the specific pLirt were set to either higher (0.30, 0.29, 0.28,
0.27, 0.26) values during the stimulus presentation and delay period of the ‘task’ trials
to simulate the virtual DMS task or lower (0.05) values in the ‘control’ tasks to
simulate the Rest condition, respectively. For the non-specific part D2 units, the gain
value is 0.20 during presentation of stimuli, and 0.10 during the baseline, delay period

and ITI.

4.2.2 Simulation of ECD, MEG and BOLD signals

Further simulation of brain imaging signals depends on integration of the
simulated post-synaptic activity across the basic units for each region, where the

algorithms and time windows of integration are different from MEG to fMRI. For

102



each unit, the post-synaptic activity is represented by summation of the weighted
inputs, and integration of the post-synaptic activity across the units in each region
produces the integrated synaptic activity (ISA). The ISA of the simulated regions are

then applied to the forward models to simulate either MEG or fMRI signals.

Simulation of the source activity and sensor space MEG signal

For simulation of MEG, the integrated synaptic activity (ISA) of each unit is
computed by summing up the weighted inputs to the excitatory element, where the
summation is taken for every time step:

ISA s ;i (1) = Wi E; (1) + w, E; () + w1 (T) (4-5)
It should be noted that in above equation the weighted inhibitory input is integrated
with a negative sign to the excitatory counterparts (David & Friston 2003). The
computed ISA values are then integrated across the specific and non-specific sub-
modules for each region to represent the moment strength of the equivalent current
dipole (ECD) that locates in this region. These simulated ECD moment values are
then input into the MEG forward model (Appendix A, Huang et al. 1999) for further
simulation of the sensor space MEG signals, where other parameters for the forward
simulation are obtained from the experimental study described in Chapter 3: The
orientation of the ECDs and source-sensor relationship denoted as the lead fields are
determined by the experimental measurements from a representative participant
(participant #4), and the location of the ECDs are adapted from the original model for
each corresponding region (Table 4.4, adapted from the table 2 in Husain et al. 2004).
Four ECDs are used for forward simulation of the sensor space MEG signal while the
activity of each ECD are from the corresponding simulated region: the ECD locates at
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primary auditory cortex is simulated by Ai, the ECD locates at secondary auditory
cortex is modeled by Aii, the ECD locates at anterior superior temporal gyrus is
simulated by ST, and the ECD locates at prefrontal cortex is simulated by integrated

ISA across the four regions in PFC.

Simulation of the BOLD signal

In contrast to simulation of MEG signal, by assuming that the increases of
both excitatory and inhibitory activity contribute to the instantaneous increase of
regional cerebral blood flow (rCBF) and BOLD signals (Tagamets and Horwitz,
1998; Horwitz and Tagamets, 1999; Logothetis 2003), the ith unit’s ISA for
simulation of BOLD signals is computed by integrating the weighted inputs to both
excitatory and inhibitory elements. The integration is computed by every 10 time
steps to accommodate the experimental temporal resolution of the fMRI

measurements.

ISAw ;i () = Wee E; (t) + W, E; (1) + |WIE l; (t)| + Z W, E, () + Z|Wmi I (t)| (4-6)

The simulated BOLD signal for each region is then computed by convolving the

integrated ISA with a Poisson distribution function h(t) , which represented the

hemodynamic response function mediating the integrated synaptic activity and the

fMRI signals (Logothetis et al. 2001, Friston et al. 1994, Horwitz & Tagamets1999).

fMRI (t) = jz ISA (t—7)h(r)d7 (4-7)

in which the integrated time interval for each simulated fMRI signal was 3 sec, which
equals to the scan time (TR) in the fMRI experiment (Husain et al. 2004).

Futhermore, the hemodynamic response function h(r) is
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==

(4-8)

where r was the delay time, and the parameter A characterized the width and height of

h(z).

4.2.3 Analysis of the simulation results

The simulated source ECD activity, sensor space MEG signal, and fMRI
signals were analyzed in similar ways to the corresponding experimental
measurements to test the hypothesis that with the same modeling architecture and
parameters for simulation of neuronal activity and functional connectivity, we can
simultaneously replicate the findings in experimental MEG and fMRI studies

correlated to task-specific cognitive modulation of the human auditory cortex.

Analysis of the simulated MEG signal in both source and sensor spaces

The integrated ISA of Ai and Aii regions were summed up for each time step
to simulate the corresponding neuronal activity index of the representative ECD in
auditory cortex. Since during the simulation, each time step corresponds to 5 ms in
experimental condition, the simulated single-trial auditory ISA was interpolated to fit
the timeline of the trials in the experiment. Therefore, for each trial, the simulated
auditory source activity was a 1x2220 vector, which corresponded to a 3.7 second
epoch with the sampling frequency of 600 Hz. Consistent with the experimental
results, this epoch includes a 0.5 second baseline, two 0.35 second time windows
corresponding to the presentation of S1 and S2, a one second delay period between
two stimuli, and a 1.5 second inter-trial interval (IT1). For each task * trial type *

sound type condition, an averaged epoch was obtained by taking the means across the
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interpolated simulated auditory activity of the five corresponding trials. The
magnitude of the auditory evoked response (AER) to each stimulus was computed as
the peak simulated auditory activity value with latency ~100 ms after the stimulus
onset. Modulation index (MI) values were calculated in the same way that |
calculated the MI values from the representative source ECDs in experiment (see
section 3.2 for detail) using the simulated AER values and simulated auditory ISA
during the baseline period.

Similarly, in sensor space, computation of the evoked responses and the
modulation index (MI) values with the simulated MEG signal follows the same
methods used in analysis of the experimental MEG signals. Only the left
representative sensors from participant #4 are used to calculate the Ml values taking
into account the task-related hemispheric asymmetry found in experimental data. Two
types of simulation for the sensor space MEG signal were conducted. First, only the
ECDs in Ai and Aii regions are used as inputs to the forward model to simulate the
constrained influence of the auditory cortical activity to the magnetic field, which is
correspondent to the remapped MEG signal using the M100 related 1Cs (see chapter 2
for the detail method of categorizing the ICs and remapping of the MEG signal).
Second, all four ECDs are used as inputs to the forward model, which is used to
simulate the integrated influence by all the sources to the magnetic field and
corresponds to the RMS values computed from the raw MEG signals in experimental

condition;

Analysis of the simulated BOLD signal
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Using the simulated fMRI signals, the percent signal change (PSC) values are
computed using the same methods from the experimental analysis (Husain et al.
2004) to assess the DMS-specific BOLD changes. (1) the averaged BOLD signal
across the simulations are first calculated for the two task conditions (PSL and DMS),
the stimuli (Tones and TC), and the rest condition, so one averaged value is obtained
by taking the means across the block for each task * sound type condition to match
the experimental analysis; (2) the averaged BOLD signal for each region is
normalized by the Rest condition to obtain the values of nTC [nTC = (TC
_Rest)/Rest] and nTones [nTones = (Tones _ Rest)/Rest)]; and (3) the PSC value is
computed by calculating the signal change of nTC relative to nTones [PSC = (nTC
_nTones)/nTones]. In this study, we compared the simulated PSC values to
experimental findings, in which the signal change is greater for TC than for Tones in

DMS task (Husian et al. 2004).
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Table 4-1 Parameters for the sigmoidal functions that determine the neuronal activity

of the excitatory and inhibitory elements in the basic units of each sub-

module .
Units A o K T N (t)
Aiu, Aid 0.7 0.7 8.0 0.30 0.05
Aiiu, Aiid 1.7 1.7 9.0 0.35 0.10
Aliic 1.3 1.3 8.0 0.34 0.10
Excitatory ST 0.8 1.2 7.5 0.35 0.10
elements PFC-C 0.5 0.5 9.0 0.30 0.05
PFC-D1 0.5 0.5 9.0 0.30 0.05
PFC-D2 0.5 0.5 9.0 0.30 0.05
PFC-R 0.89 1.0 9.0 0.30 0.05
Aiu, Aid 2.0 1.0 17.0 0.20 0.05
Aiiu, Aiid 0.2 1.6 18.0 0.35 0.10
Aliic 0.2 0.8 17.0 0.30 0.10
Inhibitory ST 1.0 1.0 19.0 0.30 0.10
elements PFC-C 0.5 0.5 20.0 0.10 0.05
PFC-D1 0.5 0.5 20.0 0.10 0.05
PFC-D2 0.5 0.5 20.0 0.10 0.05
PFC-R 0.5 0.5 20.0 0.10 0.05

(1). the table was replicated from table 1 in Husain et al. 2004 for the reader’s convenience.
(2). the parameters are applied to equations (4-1) and (4-2).

(3). see text for the detail description of the abbreviations.
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Table 4-2 Intraregional and interregional connections among the units for each

subsystem (E->E connections unless specified) ®.

Fan  Meanvalueand Percentto Net total
From To o ) Comments
out variability create @  afferents
1@ 0.05 £ 0.003 100 Highest value in the center,
MGN Al 1-3 1@0.10+0.002 1D > 1D 0.06 values oriented either
1@ 0.0 £0.002 descending or ascending
4@0.0+0.0 Inhibitory connections that
2@ 0.05+0.0 100 oriented either descending
Ai Ai 1->9 1@015+£0.0 1D > 1D 0.8 (Aiu) or ascending (Aid),
1@0.25+0.0 see text and Fig. 4.1 C for
1@0.35+0.0 detail
1@ 0.05+0.01 . . .
Al Al 123 1@01+001 1DlgolD 0.15 Xgi'cgeﬂtds.r? ”fﬁtﬁfcﬁ:fﬂﬁf
1@0.0+0.0 g g
. .. 2@ 0.05+0.01 100 . .
Al Aliic 123 1@0.1+001 1D > 1D 0.15 Highest value in the center
.. 100
Aili ST 1=>5 5@ 0.08+0.002 1D S 2D 0.4
100
ST PFC-C 1->1 1@ 0.02+0.002 2D = 2D 0.2
. 5@ 0.0014 + 100
PFC-D2 Ali 1->5 0.0007 2D > 1D 0.007
100 - .
PFC-D1 ST 1->1 1@0.03+£0.001 2D = 2D 0.03 Inhibitory connections
100
PFC-D2 ST 1->1 1@ 0.01+£0.002 2D = 2D 0.01
.. 4 @ 0.00125 + 100
ST Ali 124 0.0006 2D > 1D 0.005
PFC-C PFC-D2 121 1@0.07+£0.0 0.07
PFC-C PFC-R 1->1 1@0.05+0.0 0.05
PFC-D1 PFC-R 1->1 1@0.06+£0.0 0.06
PFC-D1 PFC-D2 121 1@0.105+0.0 0.105
PFC-D2 PFC-D1 1->1 1@0.10+£0.0 0.10
PFC-D1 PFC-C 1->1 1@ 0.02+0.0 0.02 Inhibitory connections
PFC-C PFC-D1 1->1 1@ 0.05+0.0 0.05 Inhibitory connections
PFC-R PFC-D1 1->1 1@0.03+£0.0 0.03 Inhibitory connections
PFC-R PFC-D2 1->1 1@ 0.065+0.0 0.065 Inhibitory connections

(1). the values are adapted from table Al and A2 in Husain et al. 2004.

(2). this parameter indicates the percentage of the connections that has been activated, and the

connection pattern between the sub-modules (1D:

dimensional).

(3). See text and Fig. 4-1 A for the detail illustration.
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Table 4-3 Cross subsystem connections.

Fan Mean value Net total
From To™* o Comments
out and variability  afferents
Specific . 81 @ 0.0005 + Inhibitory
PEC.D2  NON-SPecAl 1281 T4 50025 00405 connections
Specific i . 81 @ 0.0005 + Inhibitory
prCc.D2  NON-SpecAil 1281 T4 5005 0.0405  connections
All other potential cross 1>5 5@ 0.0002 = 0.001 Excitatory or

subsystem connections 0.0001

* The connections are to all sub-modules in the target region.
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Table 4-4 Location of source ECD in forward simulation of sensor space MEG

signals @.
Region @ Tx® Ty Tz
Al -45 -31 15
Aili -59 -26 10
aSTG -59 -17 4
PFC -54 9 8

(1). the values are adapted from table 2 in Husain et al. 2004.

(2). only regions in left hemisphere were simulated to accommodate the left

hemisphere specificity of the observed DMS-specific effect in experiment.

(3). locations are in Talairach (Talairach & Tournoux 1988) coordinates with the unit

of millimeter (mm).
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Fig 4-1. (A) Diagram of the network model. The model is composed of two duplicated
subsystems (parts). Each part consists of same regions (MGN, Ai, Aii, ST, and PFC). Region
MGN has one sub-module; region Ai consists of one upward-sweep selective (Aiu)
submodule and one downward-sweep selective (Aid) sub-module; in region Aii, besides the
upward-sweep (Aiiu) and downward-sweep (Aiid) selective sub-modules, there is also a
contour-selective sub-module (Aiic); region ST has one sub-module and; region PFC consists
of one cue-sensitive (C), two delay (D1 and D2), and one response (D) sub-modules. Each
sub-module is composed of 81 basic units. For both parts, the MGN region represents the
input stage of the model, in which the basic units are aligned tonotopically and each unit is
sensitive to one simulated characteristic frequency. In specific part, the MGN activity
simulates patterned sound stimuli (Tones or tonal contours), whereas in non-specific part, the
MGN activity simulates the environmental noise. The arrows depict connections between
regions, in which the blue arrows indicate the excitatory connections (excitatory elements to
excitatory elements) and the red arrows indicate the inhibitory connections (excitatory
elements to inhibitory elements) within each part, respectively. The fixed inhibitory
connection from the specific D2 units to the non-specific Ai and Aii units are represented by
green arrows (potential cross-subsystem connections are not illustrated here). See text for
detail description of the model. (B) A basic unit in the model. Each basic unit consists of one
excitatory and one inhibitory element. The arrows depict the external and internal
connections with the same color codes in (A). The percentile value on each arrow denotes the
weight strength of the connection, which reflects the proportion of synaptic connections made
between these elements. (C) Alignment of the basic units and intraregional lateral
connections in the Aid sub-module. The units were aligned from left to right with increase of
characteristic frequency (CF), where the excitatory and inhibitory elements are represented
by blue and red ellipses, respectively. The arrows denote the connections between elements
with the same excitatory/inhibitory color codes. Each Aid unit inhibits the higher CF
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neighbors via excitatory connections from its excitatory element to the neighbor’s inhibitory
elements. The weights of these intraregional inhibitory connections decayed in a Gaussian
manner with longer distance. In contrast, no inhibition is placed onto the neighbor units with
lower CF. Similar alignment and connections were used in the Aiu sub-module with a
reversed pattern of the lateral inhibitory connections. Both (B) and (C) were replicated from

Husain et al. 2004 (Fig 1 b and Fig A1, respectively).
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Fig 4-2. (A) Simulated sound stimuli. Each inset represents a spectrogram that depicts the
simulated sound stimuli (tones and tonal contours). (B) Timeline of a single trial in the

simulation. Each time step reflects 5 ms in the experimental condition.
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4.3 Results

In this section, we illustrate the simulated integrated synaptic activity (ISA)
and correlated DMS-specific cognitive modulation in auditory regions using a
distributed network simulating the neuronal dynamics in both temporal auditory and
frontal cognitive regions. We also used the regional ISA for further simultaneous
simulation of the synthetic MEG and fMRI signals by forward models. For the
simulated ISA and MEG signal, the modulation effect was measured by the
modulation index (MI) values by comparing the magnitudes of the AERS/AEFs. For
the simulated fMRI data, percentage signal change (PSC) values were compared
between conditions to investigate the task-related changes of the BOLD signal.
Furthermore, we compare the simulation results to the experimental results of the
task-specific modulation of AER (Chapter 3) and BOLD signal change (Husain et al.
2004) to show that (1) this modeling approach can produce the task-related cognitive
modulation of the auditory cortices observed in both MEG and fMRI studies; and (2)
taking into account co-existence of the top-down enhancement and suppression of the
auditory cortex being demonstrated by animal studies (Fritz et al. 2003, 2005, Bartlett
et al. 2005) and involve them in the model simulation, we still can observe the DMS-
specific suppression of AER, which is mainly caused by the broadly tuned top-down
inhibition of the task-irrelevant auditory pathway from the memory processing units

in frontal cortices of the specific part.
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4.3.1 Simulation of the auditory evoked responses and the DMS-specific

modulation

Fig. 4-3 illustrates the integrated auditory ISA (Fig 4-3 A) and auditory
evoked responses (Fig 4-3 B) averaged across the matched trials with TC stimuli
(TC_M) in both tasks and the simulated ISA (Ai + Aii across the subsystems) in each
of the auditory regions (Ai, Aii, in specific and nonspecific subsystems, Fig 4-3
CDEF, respectively), where the integrated auditory ISA corresponds to the auditory
source activity observed in the MEG experiment (Chapter 3, see analysis in source
space). DMS-specific suppression of the AER to S2 is displayed (Fig. 4-3 A and B):
AER magnitudes to S1 are similar between the PSL and DMS tasks, whereas the
AER magnitude to S2 is smaller in DMS task than in PSL task. Furthermore,
suppression of auditory ISA in DMS task comparing to the PSL condition can be seen
as early as the late phase of S1 presentation and lasts through the delay period and
early phase of S2 presentation (Fig 4-3 A). In depth examination of the ISA in each
auditory region showed that AERs to S1 and S2 are similar in specific Ai (Fig 4-3 C),
whereas in specific Aii region the ISA increases after presentation of S1 and the
increase keeps through the delay period (Fig 4-3 D). Furthermore, slightly suppressed
ISA in nonspecific Ai (Fig 4-3 E), and stronger suppression in nonspecific Aii (Fig 4-
3 F) regions during the delay period and early phase of S2 presentation in DMS task
was depicted. Therefore, the observed DMS-specific suppression of AER in auditory
ISA was mainly contributed by the non-specific Ai and Aii regions, where the
specific Aii region exerted an opposite influence. Besides the TC_M conditions, Ml

values also demonstrated similar DMS-specific suppression of AER and contributions
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among the simulated auditory regions in TC_N conditions (Table 4-5, the values
listed with bold font). Furthermore, comparing to the experimental results showed by
the left representative ECD in the representative participant (participant #4), the Ml
values computed from the integrated auditory ISA in TC conditions (TC_M and
TC_N) displayed consistent, yet weaker DMS-specific suppression to AER, whereas
the simulated MI values with Tone stimuli were not different between the PSL and
DMS tasks. This simulation result does not consist with the experimental findings in
this participant, in which DMS-specific suppression of AER was also observed in

Tone conditions (Table 4-3 and Fig 4-4).

4.3.2 Simulation of MEG signal and task-related modulation of the M100

response

Fig. 4-5 illustrates the RMS waveforms of the simulated auditory evoked field
(AEF) averaged across the left representative sensors from experimental
measurements of the representative participant. The data are from the matched trials
of TC stimuli (TC_M) for PSL and DMS tasks. Subplots (A), (C) and (E) depict the
simulated AEF aligned to the stimulus onset for PSL (upper inset) and DMS (lower
inset) tasks, where the simulated MEG signal were obtained with auditory ECDs
(ECDs in Ai and Aii regions), all ECDs (ECDs in Ai, Aii, ST, and PFC regions), and
PFC ECD (only the ECD in PFC region), respectively. Simulation with auditory
ECDs showed greater suppression of the AEF to S2 in the DMS task (MI=11.1%)
than the PSL condition (M1=2.3%), which was comparable to the experimental results
from this participant (DMS: MI=16.08%; PSL: MI=2.31%) computed from remapped

MEG signal using the clustered M100 related ICs (Fig. 4.5 B, see chapter 2 for detail

118



description of the IC clustering and remapping of MEG signal), while the modulation
effect computed using the noise-reduced and artifact-cleaned raw MEG signal
showed similar pattern but greater suppression effect of AEF in both PSL and DMS
tasks (Fig 4-5 D; DMS: MI1=23.99%; PSL: M1=6.59%) In contrast, simulated AEF to
S2 with all ECDs showed little difference between the task conditions (Fig. 4-5 C).
This simulation result is consistent with the experimental results obtained across all
subjects, where no task effect was observed, but not with the pattern showed by the
representative participant, whose results showed stronger suppression of the AEF to
S2 in DMS task than in PSL task (Fig 4-5 D). By listing out the contribution of each
ECD to the simulated AEF, we showed that it is the contribution of the ECD in PFC
region caused the lack of difference between tasks in the simulation results with all
ECDs by generating stronger MEG signal during the delay period and presentation of
S2 in DMS task than PSL task (Fig 4-5 F), which exerted an opposite influence to the
AEF comparing to the contribution of auditory ECDs.

Similarly, in other conditions, simulation with auditory ECDs also showed
greater suppression of the AEF to S2 (correspondently, greater MI values) in DMS
tasks than PSL conditions (Table 4-6 A), which were comparable to the experimental
results computed from the remapped MEG signal with the identified M100-related
ICs (Table 4-6 B). On the other hand, the DMS-specific modulation of AEF was not
observed in the simulated results with all ECDs, which was inconsistent to the
experimental findings (Fig 4-6 B), and the PFC ECDs consistently generate enhanced
MEG signals in DMS conditions (Table 4-6 A), which we believe is the cause for the

lack of suppression of the AEF to S2 in the simulation results with all ECDs.
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4.3.3 Simulation of BOLD signal

As mentioned in section 4.2, the regional ISA values used for BOLD
simulation is computed differently from the simulation of MEG signal — the increase
of excitatory and inhibitory synaptic activity both contribute to increase of the
simulated ISA for fMRI simulation. As illustrated in Fig 4-7, the PSC from the
simulated BOLD signal showed comparable values to the ones found experimentally
(Husain et al. 2004) in both auditory and frontal regions except ST, in which the
simulation result showed higher PSC (94.3%) value than the experimental results
(Left: 28.8%; Right: 45.4%; also see table 4-7). Furthermore, the signal change in
each region is also comparable to the experimental results (Table 4-7). In contrast to
the MEG simulation results that being comparable to the experimental results in left
auditory cortex, the simulated BOLD signal changes fit better to the experimental

results in the right hemisphere than the left hemisphere (Fig. 4-7).
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Table 4-5 Modulation index values Y) computed by the simulated auditory ISA.

PSL DMS
Tone_ | Tone_ | TC_M | TC_N | Tone_ | Tone_ | TC_M | TC_N
M%) [ N©®%) | D %) | (%) | M%) |N®) | () | (%)
specific || 0.08 [ -058 | 041 [ -820 [ 035 [-1620 | 679 [ 366
Pt AWl | -1710 | -13.25 [ -16.25 | -18.68 | -164 | -16.02 | -19.21 | -14.64
Ai + Aii | -35.24 | -15.92 | -31.93 | -32.4 | -32.03 | -15.52 | -50.90 | -40.10
non- Al | 163 | 444 | 7.02 | 1393 | -1.91 | -1.73 | 1506 | 28.30
Specific | _Aii__| -7.91 | 503 | 248 | 7.37 | 6.36 | -352 | 839 | 9.71
Part [ Ai+Aii | -552 | 3.79 | 380 | 881 | -1.12 | -405 | 957 | 1410
Ai (Total) 0.65 | 8.09 | 21.1 | 549 | 1046 | -1.84 | 29.72 | 41.02
Aii (Total) 639 | 303 | 016 | 1.98 | -478 | -476 | 396 | 591
Ai+Aii (Total) | 459 | 270 | 359 | 294 | 273 | 438 | 827 | 9.74
Left ”E‘ggs%f}ta“"e -1.82 | -451 | 00 | -0.60 | 27.09 | 2000 | 23.81 | 24.42

(1) The MI values were computed following the equation (3-1) in chapter 3. The AER and

simulated region.

baseline values were replaced by the corresponding auditory ISA values in each

(2) The abbreviations for simulated conditions are: Tone_M: Match trials with pure tone

stimuli; Tone_N: non-match trials with tone stimuli; TC_M: match trials with TC stimuli;

TC_N: non-match trials with TC stimuli.

(3) The experimental MI values were from participant #4 (Chapter 3), each was computed

using the source activity of the left representative ECD in corresponding condition.
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Table 4-6 A. Modulation index values (%)  computed by the simulated MEG signals

. @ T PSL DMS
Simulation Stimuli Match nonMatch Match nonMatch

. Tone -4.9 -1.5 -6.1 -6.8
With all ECD ¢ 13 2.7 6.1 6.1
With AUD Tone -4.0 0.2 1.0 8.6
ECDs TC 2.3 -1.3 11.1 6.9
With PFC Tone -43.0 -35.7 -9.0 -13.5
ECD TC -42.0 -37.4 -17.3 -14.4

(1) The MI values were computed following the equation (3-1) in chapter 3. The auditory

evoked field (AEF) and baseline values were replaced by the corresponding RMS

values of the simulated magnetic field averaged across the left representative sensors.

(2) The MEG signals in sensor space were obtained with three different simulations: (i) All

4 ECDs were used to simulate the magnetic field to model the influence of multiple

sources to the MEG signal and the AEF; (ii) Only the ECDs in simulated regions Ai

and Aii were used to simulate the magnetic field to model the influence of the auditory

activity to the MEG signal and the AEF; and (iii) Only the PFC ECD was used in

simulation to investigate the influence of the frontal sources to the MEG signal and the

AEF.
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Table 4-6 B. Experimental modulation index (MI) values (%) * in sensor space.

Datasets Stimuli PSL DMS
Match nonMatch Match nonMatch
Tone 6.95 -3.22 22.88 3.79
Raw MEG TC 6.59 6.03 23.99 18.94
Remapped MEG Tone 9.72 -6.04 21.10 -1.96
with AEF ICs TC 2.31 4.54 16.08 12.80

* The MI values were computed using the sensor space MEG data from participant #4 in the
MEG experiment (see detail in chapter 3). Two dataset were used to compute the Ml values:
(i) The noised-reduced and artifact-cleaned raw MEG signal; and (ii) The remapped MEG
signal by the M100 related 1Cs (for detail description of the method, see Chapter 2). The
auditory evoked field (AEF) and baseline values were replaced by the corresponding RMS

values of the magnetic field averaged across the left representative sensors.

123




Table 4-7 Percentage signal change (PSC) of the simulated (1) and experimental (2)
BOLD values for DMS task with two types of sound stimuli (Tones and

TC), relative to Rest condition.

Experimental BOLD Experimental BOLD .
(Left Hemisphere) (Right Hemisphere) Simulated BOLD

Region TC- Tone- nTC- TC- Tone- nTC- TC- Tone- nTC-
Rest Rest nTone Rest Rest nTone Rest Rest nTone
(%) (%) (%) (%) (%) (%) () (%) (%)

Ai 032 0.27 185 026 0.20 300 036 0.27 33.3
Alii 052 0.37 405 048 034 412 041 0.27 51.9
ST 0.67 0.52 288 061 042 452 237 122 94.3

PFC 0.28 0.24 16.7 024 0.13 846 120 6.11 96.4

(1) See the method part of this chapter for detail description of the simulation setup and the
definition of PSC.

(2) The experimental results were from Husian et al. (2004) table 4a.
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Fig. 4-3 Simulated auditory ISA and modulation of AER. Data are from the matched trials
with TC stimuli (TC_M). In (A), (C), (D), (E) and (F), each waveform represents a 3.7 sec
averaged epoch with time zero at the onset of S1. The blue waveforms represent the averaged
epoch obtained from the simulated PSL task, and the red waveforms represent the averaged
epoch obtained from the simulated DMS task. (A) Averaged epochs of the auditory ISA,
which is computed by integrating the ISA across the Ai and Aii regions in both subsystems.
The time windows of stimuli presentation (S1 and S2) are illustrated by the black bars. (B)
Auditory evoked responses (AERS) to S1 and S2. The upper inset illustrates the AERs to S1
and S2 in simulated PSL task, and the lower inset illustrates the AERs in DMS task. Each
waveform represents a 300 ms epoch (-50 ms ~ 250 ms) timelocked to the stimulus onsets,
where the blue traces depict the AERs to S1 and the red traces depict the AERs to S2. The
epochs were extracted from the dataset depicts in (A). (C) The ISA of specific Ai region. (D)
The ISA of specific Aii region. (E) The ISA of non-specific Ai region. (F) The ISA of non-
specific Aii region. Integration of the ISA depicted in (C), (D), (E) and (F) produces the

dataset depicted in (A).
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Fig. 4-4 Simulated and experimental modulation index (MI) values in source space. The
simulated MI values were computed with the integrated auditory ISA (Ai+Aii). The
experimental values were from the source activity of the left representative ECD of

participant #4 in the MEG experiment (see Chapter 3 for detail of the experimental analysis).
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Fig. 4-5 Root mean square (RMS) values of the simulated auditory evoked field (AEF) and
corresponding experimental AEF averaged across the left representative sensors. All data
came from the matched trials with TC stimuli (TC_M). For each plot, the upper inset(s)
depict the PSL task, and the lower inset(s) depict the DMS task. The experimental data were
obtained from participant #4 (see chapter 3 for detail). For all plots, each waveform
represents a 300 ms epoch with time zero at the stimuli onset. The red waveforms represent
the AEF to S1 and the blue waveforms represent the AEF to S2. (A) Insets in left column
depict the simulated AEF waveforms obtained from forward simulation based upon the ECDs
in Ai and Aii. Insets in the right column are the corresponding field contour maps at the peak
latency of the AEFs (~100 ms). (B) The experimental results corresponding to the conditions
showed in (A). The data were from the remapped MEG signals using the M100-related
independent components (AEF ICs; see text in chapter 2 and this chapter for detail
description). (C) The RMS waveforms of the simulated AEFs obtained from forward
simulation using all ECDs. (D) The RMS waveforms of the experimental AEFs obtained
from the noise-reduced and artifacts-removed raw MEG signal. (F) The RMS waveforms of

the simulated AEFs obtained from forward simulation using PFC ECDs.
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Fig 4-6 Simulated and experimental modulation index (MI) values in sensor space. All Ml
values were computed using the RMS values of the magnetic fields averaged across the left
representative sensors. The experimental data were from the participant #4 in MEG
experiment (Chapter 3). (A) The simulated MEG signals were computed by using the
auditory sources (ECDs in Ai and Aii regions) in the forward model. The experimental values
were from the RMS of the remapped magnetic field averaged across the left representative
sensors, where the remapping was taken with clustered AEF-related ICs (Chapter 2). (B) The
MEG signals simulated with all source ECDs (Ai, Aii, ST and PFC), where the experimental

values were computed from the noise-reduced and artifact-cleaned raw MEG signal.
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Fig. 4-7 Percentage signal change (PSC) of the simulated and experimental BOLD signals in
the regions of interest (ROIs). The experimental PSC values of the ROIs in left (blue) and
right (purple) hemispheres and the simulated PSC values in corresponding regions (red) were

plotted. The values are listed in table 4.7
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4.4 Discussion

This chapter presents a methodological approach to simultaneously simulate
the system-level neuronal activity, MEG and fMRI signals correlated to performing
the DMS task. The simulation results are integrated with the experimental findings to
investigate the DMS-specific modulation of human auditory cortex and underlying
neural dynamics. Incorporating the knowledge of the electrophysiological and the
hemodynamic activities in auditory cortex from studies employing the delayed
response paradigms, a large-scale network model including temporal auditory and
frontal cognitive regions is used to simulate the neuronal activity and integrated
synaptic activity (ISA) in each region during task performance, where the further
simulation of MEG and fMRI signals were taken by using the regional ISA as inputs
to the corresponding forward models. Both simulated MEG and fMRI signals
demonstrated DMS-specific dynamics comparable to the experimental observations,
where the increased inhibitory influence by the specific frontal memory processing
unit to the non-specific auditory regions could account for the demonstrated DMS-
specific suppression of AER. These findings support our hypothesis that the task-
specific dynamics observed in MEG and fMRI experiments during performance of
the DMS task can be interpreted by a united underlying network and corresponding

physiological processes.

4.4.1 Task-specific top-down modulation of the auditory cortex

Task-specific feedback modulation to the sensory cortices has been found play

multiple roles in human cognitive function, such as executive control (Miller &
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Cohen 2001), memory maintenance and manipulation (Pasternak & Greenlee 2005),
and inhibitory filter of the task-irrelevant information (Fritz et al. 2007). One well
accepted hypothesis about the top-down control is facilitating the sensitivity of the
goal-relevant stimuli by enhancing the processes of relevant information and at the
same time suppress the irrelevant circuits (Fritz et al. 2007). Supportive evidences
about the suppression part have been observed in gaze-control network in barn owls
(Winkowski & Knudsen, 2007) and the tactile discrimination network in human being
(Machens et al. 2005). Furthermore, a recent computational model successfully
simulated the inhibitory top-down modulation from the frontal regions to the
somatosensory cortex instantiated by the memorized component during performance
of a tactile DMS task (Miller & Wang, 2006). In this model, two parallel subsystems
were included to simulate the neuronal groups that involves in performance of the
auditory DMS task: the subsystem correlated to perception of tested pattern stimuli
(specific part) and the groups that correlate to task-irrelevant processing (non-specific
part), respectively. For each part, both temporal auditory and frontal cognitive regions
were simulated, where the fronto-temporal connections modeled the top-down
cognitive control: The connections between the frontal memory processing units to
the superior temporal region and secondary auditory cortices in the specific part
simulated the distributed network of the STM maintenance and top-down
enhancement of the processing correlated to task-performance; whereas the top-down
suppression of the task-irrelevant processing was simulated by the cross-subsystem
fronto-auditory inhibitory projections. Furthermore, we simulated the enhanced top-

down modulation in a narrowly-tuned manner (1:5 fan out) and the inhibitory top-
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down modulation in a broadly-tuned manner (1:81 fan out) to accommodate the
experimental findings that 2/3 of the primary auditory neurons showed decreased
response when there was a similar sound stimuli presented at one second before
(Bartlett et al. 2005). Therefore, increased memory unit activity during DMS task
should correlate to both enhancement of the Aii region activity in the specific
subsystem and suppression of the non-specific Ai and Aii regions, and the net DMS-
related effect could be simulated as suppression of AER to S2 with appropriate
parameter set. As predicted, the simulation results demonstrated stronger suppression
of the auditory evoked responses (AER) in the DMS tasks than PSL tasks with TC
stimuli, which is consistent with the findings in MEG experiment (Lu et al. 1992, Luo
et al. 2005; also see chapter 3 of this dissertation). Examination of ISA in each region
do showed increased activity to the specific Aii region and decreased ISA in the non-

specific Ai and Aii regions.

Furthermore, the forward MEG simulation with the source equivalent current
dipoles (ECD) in auditory regions also showed stronger suppression of the M100
response in DMS task than PSL conditions, which agrees with the analysis of the
remapped MEG measurements using the clustered M100 related independent
components (Table 4-6 A B; Fig 4-6 A). In contrast, forward MEG simulation using
all ECDs didn’t show different modulation of the AEF between the tasks, which was
consistent with the experimental results averaged across all participants but not with
the data from the representative one, from whom the spatial information of the source
ECDs and source-sensor relationship for forward MEG modeling were obtained. In

depth examination showed that this discrepancy between the experimental
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observations and the simulation results with all ECDs might come from the
contribution of the frontal source ECD in the simulation, which causes increase of the
magnitude of the M100 response to S2 during the DMS task, and this effect canceled
the suppression by the auditory ECDs. Further simulation to address this problem can
include the mutual inhibition between the memory processing units of the two
subsystems, as being modeled in simulating the neuronal dynamics during
performance of the tactile discrimination task (Machens et al. 2003; Miller & Wang,

2006).

4.4.2 DMS-related increase of BOLD signal in auditory cortices originates

from the enhanced top-down inhibitory modulation

In addition, forward simulation of the BOLD signal demonstrated close to
experimental signal change (Husain et al. 2004) in the simulated regions, where TC
conditions showed increased BOLD signal than Tones during performance of the
DMS task. An improvement compared to the original model is that the Ai region also
showed increased BOLD signal for TC stimuli than Tones during performance of the
DMS task (PSC = 33.3%), which agreed with the experimental findings (Left PSC =
18.5%; Right PSC = 30.0%) but hasn’t been shown by the simulation with original
model. Furthermore, the signal changes for DMS task compared to the rest condition

showed values close to the experimental findings (table 4-7).

4.4.3 Conclusion

In summary, we used an integrated modeling approach to address the problem

of finding a common underlying physiological mechanism for the DMS-specific
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auditory dynamics observed in DMS and fMRI experiments, which was validated by
comparing the simulation results to the experimental findings. Moreover, this
approach provides a framework for linking the physiological, the hemodynamic and
the EEG/MEG studies of the auditory regions and allows further simulation of the
neuronal dynamics correlated to the auditory object processing and corresponding

cognitive functions.
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CHAPTER 5: GENERAL DISCUSSION AND CONCLUSION

In this dissertation | propose an integrated approach for combining neural
modeling and MEG methods, in order to investigate the task-specific cognitive
modulation of human auditory cortex during the performance of an auditory delayed-
match-to-sample (DMS) task. The results demonstrated that: (1) the suppressive
modulation of the evoked responses in auditory cortex observed in DMS task is task-
specific, and is due to increased top-down fronto-temporal inhibitory functional
connectivity during task performance; (2) the phenomenon can be replicated by a
biophysically realistic, large-scale neural network model for auditory object
perception, which specifies inhibitory connections between the frontal memory
processing units and the auditory regions; and (3) In addition to the suppressive effect
in modulation of auditory evoked responses (AERs), simulated task-related inhibition
from frontal memory processing units to the auditory regions can also account for the
increased BOLD signal in auditory cortex and the selectivity for tonal contour stimuli
that were reported in a previous fMRI study (Husain et al. 2004).

Furthermore, in this dissertation | present a novel signal processing method
using independent component analysis (ICA) to process and analyze MEG signals.
This method is proven to be very effective for both artifact removal and the analysis

of functional neural circuits.
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5.1 Integrated approach for investigation of human cognitive
function

The integrated approach taken in this dissertation was multidisciplinary, and
multilevel: First, system-level neural dynamics, including regional neuronal activity
and integrated synaptic activity (ISA) related to the processing of auditory objects,
were simulated by a large-scale neural network model based on the known
electrophysiological properties of the brain regions involved. The model included
both a “specific’ subsystem correlated to task-relative processing and a ‘non-specific’
subsystem that represented computations in (common) task-irrelevant pathways.
Second, the synthetic ISA was used as input to forward models to simulate both
magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI)
signals. Third, MEG signals were measured from human participants to investigate
the modulation of human auditory evoked responses (AER) induced by the overt
processing of auditory short-term memory (STM) using a delayed-match-to-sample
(DMS) task. The DMS task was compared to two control tasks - passive listening
(PSL) and counting (CNT). Finally, the experimental and simulation results were
integrated at both ‘mesoscopic’ (synaptic activity integrated over networks of
neurons) and ‘macroscopic’ (MEG and fMRI measurements) levels (Riera et al.
2005). This integration increased our understanding of the underlying neural
mechanism of the observed task-specific modulation effect: at the mesoscopic level,
the simulated auditory ISA was compared with the dynamics of neuronal populations
inferred by measurement of MEG. Simultaneously, at the macroscopic level, the

synthetic MEG signals produced by the forward models were compared with the
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measured MEG signals recorded in the experiments. The synthetic fMRI signals were
also compared with the experimental results from a previous study involving the
DMS task (Husain et al. 2004). With these independent approaches and the
integration of their results, 1 was able to infer a biologically-plausible yet hypothesis-
driven interpretation of the experimental findings on cognitive modulation of auditory
evoked responses in humans.

Comparison between simulated and experimental results showed that this
approach can bridge the gaps between the knowledge of the task-related neural
circuits obtained from brain imaging techniques and the knowledge from microscopic
electrophysiological recordings in either non human animals or neurosurgical
patients.  In addition this approach can also address the poorly understood
relationships between different brain imaging methods.

The first major finding supporting this approach is that simulated memory-
related frontal modulation of auditory units (including both excitatory feedback to the
specific regions and inhibitory modulation to the non-specific regions), can reproduce
the DMS-specific suppression of the AER observed in experimental results. The
MEG experimental results in Chapter 3 showed suppressive modulation to the AER
confined to the performance of the DMS. However, previous electrophysiological
recordings in ferret and marmoset monkey auditory cortex have reported both
enhancement and suppression modulation effects on auditory neuronal activity (Fritz
et al. 2003, Bartlett et al. 2005). Furthermore, in human studies manipulating
attention, enhanced evoked responses were also demonstrated (Hillyard et al. 1973;

Woldorff et al. 1993). This suggests that both excitatory and inhibitory modulation
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pathways should exist between the frontal cognitive and temporal auditory regions. In
an effort to account for these pathways, we applied both narrowly-tuned excitatory
feedback to the auditory regions in the specific subsystem and broadly-tuned
inhibitory modulation to the non-specific auditory regions. This method is consistent
with the experimental evidence indicating that the majority of auditory neurons
(~60%) showed reduction of activity in a similar behavior paradigm (Bartlett et al.
2005). With this methodology, the current study successfully simulated the
suppression of AER in the DMS task and the absence of this effect in the passive
listening condition, which is consistent with the experimental findings. Furthermore,
examination of the simulated ISA in each region of interest demonstrated increased
evoked response in specific Aii units and decreased ISA in non-specific auditory
regions. This finding is consistent with the broadly accepted view of top-down
cognitive control that posits that enhancement of the task-relevant pathway and the
suppression of the task-irrelevant pathway should be co-existing to increase the
sensitivity to task-relevant stimuli (Miller & Cohen 2001). This hypothesized
structure of task-related feedback modulation merits additional experimental
investigation.

Further evidence in support of this integrated approach can be found in the
simulated tonal contour specificity of the BOLD signal changes in the DMS task.
This tonal contour specificity is comparable to fMRI experimental findings (Husain et
al. 2004) but had not been successfully simulated to date. This modeling approach
can relate experimental findings from different types of brain imaging methods (MEG

and fMRI) on the task-related modulation of the human auditory cortex. This was
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achieved mainly through the top-down inhibition to the non-specific auditory regions
from the specific frontal memory processing units, which is consistent with the theory
of top-down control and empirical evidences.

While the feasibility of this approach has been successfully demonstrated,
discrepancies exist between the experimental and simulation results. First, in the
simulation, the top-down modulation was executed through the pre-frontal memory
units to the auditory cortices, while in the experimental results, more frontal regions
were found to have task-related increase of the functional connectivity with the
auditory region. In addition to the memory-related regions, regions related to other
cognitive functions --such as executive control (e.g., right inferior frontal gyrus and
anterior cingulated cortex) and motor response preparation (e.g. bilateral pre-motor
areas) were involved. These findings suggested the participation of multiple cognitive
functions in the observed modulation effect, rather than the memory processing units
alone. According to the ‘network memory’ theory (Fuster 1997), memory is stored in
a distributed network and the control is through the memorized representation of the
stimuli and ‘executive rules’, whereas the simplified top-down connections between
the frontal memory units and the auditory regions in this study were not complicated
enough to capture the multiple cognitive modulation observed in the experimental
results. More experimental studies with parametric manipulation of the involved
cognitive functions are required to determine the functional role of each neural region
in the observed modulation effect. Second, though the simulated DMS-specific
modulation of AER and tonal contour specificity is consistent with the experimental

findings in source space, only the simulated auditory ECDs of MEG signals showed
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similar task-specific dynamics comparable with the experimental MEG results (MEG
remapped with M100-related independent components —ICs). The simulated sensor
space MEG signals with all ECDs showed enhancement of AER to S2 rather than the
suppression observed in experiment. Examination of the contribution of each ECD to
the synthetic MEG data showed that the PFC ECD contributed to the increase. Thus,
further simulations which include gain control of the PFC influence over the MEG
signal on temporal sensors (or a constraint in the increase of PFC activity during the
delay period) might be helpful in solving this discrepancy. For the latter approach, a
potential solution would be to include mutual inhibition between the memorized
components (Machens et al. 2003). This approach would result in a more focal,
decreasing influence of PFC activity, as has been demonstrated in the modeling of a

somatosensory DMS task.

5.2 Task-specificity of the cognitive modulation of auditory evoked

responses

The suppressive modulation of the auditory evoked response (AER) during
performance of the auditory DMS task has also been observed in previous studies
(Luo et al. 2005, Lu et al. 1992). However, it has not been determined whether this
effect is specifically correlated to performance of DMS task, or it is due to the pre-
attentive adaptation to stimulus presentation (Naatanen et al. 2001). By comparing the
DMS task to two control tasks (passive listening and counting), the current study
demonstrated not only the DMS-specificity of the observed suppressive modulation
effect, but also the involvement of multiple cognitive functions (including memory,

executive control and motor response preparation). The increased memory storage
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during DMS task performance corresponded with an increase of the modulatory
influences to the task-irrelevant pathways exerted by correlated frontal regions to the
auditory cortex. This correspondence can account for the observed task-specificity.
This interpretation partially supports the ‘predictive coding’ theory (Friston et al.
2005) regarding the involvement of memory storage, but diverges from it in regards
to the mechanisms for memory formation and the targets of inhibitory modulation. In
the modeling the evoked responses of EEG/MEG in the oddball paradigm using
dynamic causal modeling (DCM), the ‘predictive coding’ theory suggests that the
memory trace is formed gradually, based on the statistical inference of the sensory
experience (Kiebel et al. 2006). Because of this, an intrinsic rather than extrinsic
mechanism should underlie the observed adaptation effect in the oddball paradigm
(David et al. 2003, 2006). According to this theory, the DMS and PSL tasks should
have shown similar modulation effect to AER, since both tasks employed sensory
experience of the same stimuli. In contrast, the experimental results in this
dissertation show that performing the DMS task induced significantly stronger
suppression to the AER than PSL condition. This indicates that the explicitly-formed
memory storage initiated during the delay period when performing DMS task has a
stronger influence than the implicitly-formed memory storage that occurs during
passive conditions (such as PSL). Furthermore, performing the DMS task requires
online refreshment of the short-term memory of the stimuli to avoid the interference
from other sensory events (Postle 1999). In the model, this online refreshment

procedure was incorporated by the manipulation of the attention gain to the memory
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processing unit, based on striatal and midbrain dopamine modulation (Chadderdon &
Sporns 2006).

In addition to task-specificity, the experimental results also demonstrated
lateralization to left hemisphere and tonal contour stimulus specificity of the
modulation effect. Similar task-specific hemispheric asymmetry and stimuli
selectivity have been shown in both MEG (Poeppel et al. 1996, Chait et al. 2004) and
fMRI (Brechmann et al. 2007) studies. Both hemispheric functional specificity
(Grimm et al. 2006, Brechmann et al. 2005, Zatorre, et al. 2002) and temporal scale
sensitivity (Poeppel 2003, Boemio et al. 2005) can be used to interpret these findings.
Whether the right auditory cortex’s selectivity for the direction of frequency
modulation (Brechmann et al. 2005), or its temporal sensitivity of the acoustic
changes drives the effect, our finding of the asymmetric modulation to the auditory
cortex is compatible with the hypothesis that the short-term memory (STM)
processing of the task-related stimuli suppressed the irrelevant processing in the left

auditory cortex.

5.3 Enhancing the ability to detect biological events in MEG signals
using a clustering method and independent component analysis

(ICA)

The current study also presents an automatic clustering method to categorize
the independent components (IC) derived from MEG measurements using ICA
decomposition. This method also correlates the ICs to certain biological events,

including artifacts and auditory evoked field (AEF). Validation of this method for

145



artifact removal has been successfully undertaken with two MEG datasets, which
suggested the feasibility of using this method in analyzing MEG data. Furthermore,
with categorized AEF related 1Cs, M100 response in the remapped MEG signal
showed clear DMS-specific modulation effect in a single participant. This indicates
that this method is useful in analyzing cognitive function not only among multiple
subjects, but also in individuals.

ICA decomposition has been proved to be a powerful method for isolating
both artifacts (Makeig et al. 1996, Vagario et al. 2000) and function-related signals
from the EEG/MEG measurements (Makeig et al. 1997, 2004). However, for multi-
channel systems (such as a MEG scanner), to analyze the hundreds or thousands of
ICs obtain by ICA decomposition poses a significant problem. Therefore, an
automatic I1C categorization method can greatly simplify the subsequent analyses. The
categorization method presented here takes into account not only the IC’s statistical
aspects (such as kurtosis and entropy used during the algorithm estimation), but also
the spatial and spectral characteristics of the ICs. This increases the method’s ability
to detect ICs that can not be identified using the statistical criteria alone. In this
method, two steps require user input: the selection of template and the selection of
criteria for each feature. During the analysis of AEF ICs, the template selection was
automated by taking the contour map at the peak latency of the M100 response,

which further improved the applicability of this method.

5.4 General Conclusion

This dissertation presents an integrated approach to investigating the task-

specificity of cognitive modulation to human auditory cortex. For this purpose, task-
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related brain activity was measured with whole-head MEG, and the task-specific
modulation effect to auditory evoked responses was investigated. This effect was also
simulated with a distributed neural network model that reproduced the neuronal
dynamics in the temporal, auditory and frontal regions. By integrating the
experimental and simulation results, this study demonstrated that this approach can
not only connect brain imaging measurements with underlying neuronal activities and
interregional connectivity patterns, but can also relate data from different types of
brain imaging techniques, in order to infer the neuronal dynamics correlated to human
cognitive functions. The results of this dissertation have demonstrated that this
approach is both feasible and applicable to the study of human cognitive
neuroscience. Because of the novelty of the current study’s methodology, additional
research will be needed to improve our understanding of the cognitive modulation of
human auditory cortex by performance of specific cognitive tasks, and its

mechanisms and computations.
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Appendices

Appendix A. The MEG forward solution

The forward solution of neuromagnetism follows the Maxwell equations:

v.E=L (A-1)
€
vxE=_B (A-2)
ot
V.-B=0 (A-3)
Vszde+%%§) (A-4)

where the equations (1), (2) and (3), (4) denote the divergence and curl of the electric

field E and the magnetic field B, respectively. J and p are the total current density
and charge density, and g, and g, are the electric permittivity and magnetic

permeability of free space, respectively (Jackson 1999). With the quasi-static
assumption in neuro-electromagnetism (Hamaldinen et al. 1993), the derivatives of
the electric and magnetic fields are close to zero, thus the equations (1) ~ (4) are

transformed to

v.E=FL (A-5)
&y

VxE=0 (A-6)

V-B=0 (A-7)

VxB = u,] (A-8)
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in which the total current density J(r)at location r can be separated linearly into
primary current J7(r') and volume currentJ" (r). J°(r") represents the intracellular

source current at the location r, and the volume current JV(r) =o(r)E(r) is
determined by the electric field and the electric conductivity o . With the quasi-static
assumption, the electric field can be expressed with scalar potential @ as
E=-V® (A-9)
where V is the operator of spatial gradient, thereby the volume current turns into
JY(r) = o(nE(r) =—o(r)Va(r) (A-10)
Thus, the current density at position r is
J(r)=J3"(NS(r-r)+3V(r)=J3°(r)-o(r)vao(r) (A-11)
where &(r-r') is the Dirac delta function.

According to the Biot-Savart law, B(r) is determined by

_ Mo (IOx(r=r) _
B(r)_Mj \r—r‘f dv (A-12)

where ‘r— r" is the norm of the spatial vector pointed from the source location r to

the observation point r . Substitute the spatial vector r—r with R=r—r . The
equation (A-12) becomes

J(NxR

R3

dv’ (A-13)

Ho

B(r) =—
(") 472"[
where R=|r—r| is the magnitude of the vector R . According to the vector

identities %:—vlzv'l and Jxvi: v ><‘J)—V'xi, equation (A-13) is
R R R R R R

transformed into

149



V' xJP? (r)OI jv'axv'cpdv.] (A-14)

Hy
B(r) =
(n=""1] -
in which V' means the operation is at location r and the integral is across the
volume v that contains the source current. The first term in the right side of equation

(A-14) denotes the magnetic field B (r) of the infinite homogeneous medium

B (r)_i‘;j%“)dv _th o fyr (r)x—dv (A-15)

Hereby the equation (A-14) is transformed to
VoxVd

B(r)=B_(r) —Z‘—; [ v (A-16)

Equation (A-16) suggests that generally, the magnetic field at the location r
generated by a single current source at the location r' is determined by linear
combination of the contributions from both primary and volume currents. The
contribution from the primary current determines the head geometric independent
itemB _(r) , whereas the volume current contributes to the head geometric dependent
second term. Thereby, to solve the forward problem of MEG, we need to have the
information of the primary current J° (r'), and the distribution of the scalar potential

@ across the space.

As a special case, human head can be modeled as a volume conductor
composed of a single compartment or multiple compartments separated by the
boundaries between them. The compartments include brain tissue, cerebro-spinal
fluid, skull and scalp with different conductivities. With the approximation of a

homogenous, isotropic medium with constant conductivity o(r) within each

compartment, distribution of the scalar potential ® on the surface of each boundary
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can be obtained by following steps if the geometric and conductivity information of
each compartment are available. First, take divergence for both sides of the equation
(A-11)

V-3(r)=V-3°(r')- V- (a(r)Va(r)) (A-17)
Since with quasi-static approximation, V-J =0, thereby the potential ®(r) at any
point in the electric field is determined by

V- (o(r)Va(r))=v-J3°(r) (A-18)

The solution of above equation comes from the second identity of the Green’s

theorem (Jackson 1999)

J @ty —pvig)dv = [V -y g (A-19)

where ¢ and y are arbitrary scalar fields. Substitute » and ¢ with % and o(r),

make use of the vector identity V2 % =—475(r —r'), the general solution of the scalar

potential on the surface of each boundary is

1 V) Lefteew) 0 1l .
q>(r)‘4ﬁ0(rl)j6l v e 2200y PO ey R S A0

where G’ is the volume compartment enclosed by the boundary S’, o(r) is the
conductivity within the compartment, and n(r') is the outward unit norm of the

surface S’. The single or multiple compartment model of human head suggests
homogeneity within each compartment and different medium on each side of the

boundary, thus if we model the head as a volume conductor with different inside and

outside conductivity o; and o;" (i=1..m) across the surface S, between the adjacent
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compartments, the surface distribution of the potential ®(r) can be obtained with

transforming the equation (A-20) into (Geselowitz 1970)

@(r) = 20y cpw(r)+izm: 9i

;“ﬂ? @i(r')ni(r')-%ds' (A-21)
o, S

o, +o; 27 5 o,

where @_ (r) is the electric potential in infinite homogenous medium

1 Vv-JI°(r) 1 R
D (= dv'=———| JI°(r') - —adv' A-22
-(1) 4ro, '[G R dro, '[G ) R3 ( )

Once the distribution of the potential ®(r)is obtained for each surface, the general

forward solution of magnetic field can be computed by (Geselowitz 1967, 1970)
_ Ho s i) Rods _
B(r)—Bm(r)+E§(o—i e )-jSSjoD(r I, (r)x—-ds (A-23)

Practically, the primary current was usually modeled by an equivalent current dipole
(ECD) as J°(r)=Qd&(r —r’), where Q is the moment of the dipole current denotes

both current strength and orientation.

As being demonstrated, the head model’s geometric properties are necessary
for MEG forward solution if the volume current is taking into account. Among the
well-accepted head models such as the single sphere model (Cuffin & Cohen 1977),
the concentric multiple sphere model (Mosher et al. 1999), and the realistic head
shape model (Hamélé&inen and Sarvas 1989) using the boundary element method
(BEM), the single sphere one is fastest to compute but least accurate, whereas the
BEM approach has the advantage of yielding accurate results with the limit of lengthy
computation time. In this dissertation, the forward solution of MEG was based on a

sensor-weighted multiple local spheres model (Huang et al. 1999). With computing
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over-lapped approximate single-shell spheres for the MEG sensors by minimizing the
deviant between the volume current contribution term from the local sphere and the
real head shape, this model has the advantages of relative high accuracy and less
computational load, where the anatomical map of the surfaces were obtained by
anatomical magnetic resonance scan.

Thereby, if the information of the source current (i.e., location and moment
for a dipole) is available, with the selected head model established based on the
information obtained from the anatomical magnetic resonance (MR) scan, the MEG
signal in sensor space can be simulated using the forward model. Furthermore, above
derivation suggests that the forward solution of the external magnetic field can be

written as a function linearly depends on the source current density
B(r)=L(r,r)-J°(r) (A-24)
where L(r,r)is called the lead field and denotes the sensitivity of the sensors

to source currents, which is determined by the geographic alignment of the sensors
and the sources from the selected head models with known conductivity across the
compartments in brain, also the contribution of individual source can be linearly

superimposed to generate a forward solution for multiple sources.
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Appendix B. The MEG inverse solution

In contrast to the forward solution of MEG, the inverse solution of MEG takes
the opposite approach, where the sources are estimated with a specific lead field from
the measurement of MEG sensors. The lead field is determined by the selected head
model. Take the noise into account, the MEG measurement on the sensors generated

by the sources inside the brain can be written as
B(r)=L(r,r)-s(r')+N (B-1)
where B(r)is the K xT matrix of the MEG signals recorded from K sensors

with T samples of each sensor, s(r') is the M xT matrix denotes the source activity

from M sources that generate the observed magnetic field, L(r,r) is the

K x M matrix denotes the lead field, and N is the Gaussian distributed noise matrix.
The inverse solution is to compute an approximate estimation of the source matrix
s(r').
S(r'y=WT(r,r)B(r) (B-2)
There isn’t a single solution of this equation since the ill-posed inverse
problem. Methods have been developed to estimate the source activities, such as the
least square methods with fixed number of sources, ‘Bayesian’ approaches with a
priori knowledge of the weights among sensors, and spatial filtering beamformer
methods, by which the source activity outside the spatial range of interest was
minimized (for a review, see Baillet et al. 2001). In this dissertation, a locally
constraint minimum variant (LCMV) beamformer approach was taken to estimate the

dipole sources (van Veen et al. 1997), where the approximation of the transform
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matrix W' (r,r’) is to minimize the variance of the spatially filtered output at the

location of interest given the constraint of unity gain. For instance, for a location of

interest r, within the volume of the brain, the constraint of the transform matrix

W (r,r) s to define a short distance &, where for all sources at the location r (also
within the volume of the brain), the contribution to the sensor at location r is gained

by a unity if the distance between r and r, is shorter than &', while the contribution

is null if the distance is out of range:

‘rq —r"£5

‘rq —r">5 (B-3)

W' (r,r )L(r,r'):{cl)

Thus with the MEG measurements B(r) across the sensors, the estimation of
each source S(r') can be obtained by equation (A-26) if the transform matrix

W (r,r) is obtained, note that §(r') can be either alx T vector to denote the power

of the sources or a3xT matrix to represent the moments of the dipoles. With the

approximation constraint of this method, the power [WT(r,r')B(r)]2 of each source
need to be minimized, with matrix transformation, it turns into minimization of the
cost function

W' (r,r )CW(r,r) (B-4)
subject to the constraint of the unity gain for the sources at the location of interest.

WT(r,r)L(r,r)=1 (B-5)
In equation (A-28), the matrix Cis the covariance matrix of MEG measurements.
Applying the method of Lagrange multiplier, (28) and (29) can be combined into the
cost function
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WT(r,r )CW(r,r)+ AW (r,r)L(r,r)-1 (B-6)
which needs to be minimized with respect toW' (r,r). It can be solved with the

partial differential equation

0 T ' ' T : N _ _
a\NT—(r,r')[W (r,r )CW(r,r )+ AW ' (r,r )L(r,r )—41]=0 (B-7)

which turns into solving the equation
2CW(r,r)+AL(r,r)=0 (B-8)
Combine equations (A-29) and (A-32), the solution is

C'L(r,r)
L"(r,r)C'L(r,r)

W(r,r) = (B-9)

where L(r,r) is the lead field determined by the head model.

In this dissertation, the LCMV algorithms were used to estimate the dipole
sources with experimentally measured MEG signal. The power of the source dipoles
were normalized by the estimation of the noise to generate the activity index value,
which was used as the measurement of the source activity for each dipole. Another
method applied similar spatial filtering approach called dynamic imaging of coherent
sources (DICS) was also used to estimate the functional interaction between sources,
in which the dipole activities were estimated with band passed MEG measurement
filtered by certain frequency, and the coherence between the localized sources were
used as the measurement of the functional interaction between the corresponding

regions (Gross et al. 2001).
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