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Understanding image and video is one of the fundamental problems in the field

of computer vision. Traditionally, the research in this area focused on extracting

low level features from images and videos and learning classifiers to categorize these

features to pre-defined classes of objects, scenes or activities. However, it is well

known that there exists a “semantic gap” between low level features and high level

semantic concepts, which greatly obstructs the progress of research on image and

video understanding.

Our work departs from the traditional view of image and video understanding

in that we add a middle layer between high level concepts and low level features,

which is called as attribute, and use this layer to facilitate the description of con-

cepts and detection of entities from images and videos. On one hand, attributes

are relatively simple and thus can be more reliably detected from the low level fea-

tures; on the other hand, we can exploit high level knowledge about the relationship

between the attributes and the high level concepts and the relationship among at-



tributes, and therefore reduce the semantic gap. Our ideas are demonstrates in three

applications as follows:

First, we presented an attribute-based learning approach for object recogni-

tion, where attributes are used to transfer knowledge on object properties from

known classes to unknown classes and consequently reduce the number of training

examples needed to learn the new object classes.

Next, we illustrate an active framework to recognize scenes based on the ob-

jects therein, which are considered as the attributes of the scenes. The active frame-

work utilizes the correlation among objects in a scene and thus significantly reduces

the number of objects to be detected in order to recognize the scene.

Finally, we propose a novel approach to detect the activity attributes from

sports videos, where the contextual constraints are explored to decrease the ambi-

guity in attribute detection. The activity attributes enable us to go beyond naming

the activity categories and achieve a fine-grained description of the activities in the

videos.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

The problem studied in this thesis is image and video understanding. The

goal of this research area is to produce descriptions for both the images/videos and

the world scenes where the images/videos represent from the given images/videos

[1]. Traditionally, research works in this area focus on feature extraction and ob-

ject/scene/action classification and detection. Over the past decades, enormous

research efforts have been directed at this field, and numerous approaches and sys-

tems have been proposed in literature. However, the state-of-the-art is still far from

real image and video understanding. The most significant obstacle in this area is

the so-called semantic gap. In literature [2], the semantic gap is defined as

... the lack of coincidence between the information that one can extract

from the visual data and the interpretation that the same data have for

a user in a given situation.

To fill this semantic gap, the machine must interpret the visual contents from

many different aspects and on multiple granularity levels just as a human being

does. Obviously, it will be very difficult, if not impossible, for traditional classifi-

cation/detection paradigm to achieve this goal. In this thesis, we proposed a new
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paradigm of understanding image and video towards filling the semantic gap. Com-

paring the the proposed paradigm in Figure 1.2 and the traditional paradigm in Fig-

ure 1.1, we can see a new layer is added between the high level entities and low level

features, which is called attributes in this thesis. Instead of detecting/classifying ob-

jects/scenes/actions directly from low level features, we first detect attributes from

the low level features and then use them to infer high level entities. Using attributes

as a middle layer results the following key advantages:

The first advantage is that automatic learning and detection of attributes

algorithms enables us to describe the entity beyond the basic category level [3] and

to produce much richer perception. This fine-grained description is very important

to understand the appearance of the interested entity and describe it to other people.

Thus attributes complement traditional category-level recognition and improve the

degree to which machines perceive visual world.

Figure 1.3 is a picture of a Rocky Mountain horse, which is downloaded from

wikipedia 1 and credit to [4]. The authors’ description of this picture is as follows:

“A silver colored Rocky Mountain Horse. The typical shiny white mane and

tail as well as a slightly diluted body color with dapples is seen in this genetically

black silver colored horse. The phenotype is caused by dilution of eumelanin in the

hair to white or grey. The dilution is most visible in the long hairs of the mane and

tail. The horse has also been diagnosed with MCOA.”

With traditional paradigm, the machine can only say that there is a horse in

the picture; while using the proposed approach, the machine can produce a more

1http://en.wikipedia.org/wiki/Rocky_Mountain_Horse
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desirable description as follows:

“a horse with black color and white dots, white mane and white tail, running

on grassland and in woods”.

Obviously, the later description is much closer to what a human being can

perceive from that image.

This advantage can be further illustrated in the language domain. In the

traditional paradigm (Figure 1.1), the high level entities can only be represented

with nouns and verbs; while in the proposed paradigm (Figure 1.2), the middle level

attributes can be represented as nouns, verbs, adjectives, adverbs, prepositions and

conjunctions. This leads to much richer descriptions of the visual world and thus

greatly reduces the semantic gap.

The second advantage is that we can achieve considerable economy of represen-

tation, because complex high level entities (objects, scenes, actions) can be described

by a relatively small set of attributes. Suppose a basic level object category with

20 attributes, there are ( 20
5 ) = 15504 possible combinations of 5 attributes. If we

consider each combination of 5 attributes as an object subcategory, in traditional

paradigm, we need to train 15504 object classifiers; while in the proposed paradigm,

we only need to train 20 attribute classifiers. The attribute layer provides an infor-

mation bottleneck between the low level features and the high level concepts, and

thus greatly reduce the computational complexity.

The third advantage is that attributes are considerably general across entity

categories. Therefore, we can transfer our knowledge of attribute across different

basic level entity categories. This advantage greatly extend the generality of the

3



Figure 1.1: The traditional paradigm for image and and video understanding.

state-of-the-art approaches for image and video understanding, which can never be

achieved by the traditional paradigm.

1.2 Related Work

1.2.1 Attributes for Objects, Scenes and Activities

Object attributes have been studied from multiple perspectives in the last

decade: [5, 6, 7] described objects and human with various attributes; [8] used

attributes to report unusual aspects of a familiar objects, or say something about

unfamiliar objects; [9, 10, 11, 12, 13] used attribute detection as a component in

object detection and recognition, and showed improved performance on both tasks;

[14] presented methods to transfer knowledge via object attribute and facilitate

the task of zero-shot learning. In this thesis, we will propose a new approach of

transfer learning via object attributes for both the tasks of zero-shot learning and

4



Figure 1.2: The proposed paradigm for image and and video understanding.

Figure 1.3: A picture of Rocky Mountain horse.
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one-shot learning. Our main contribution is in two new methods for combining prior

knowledge in object attributes and the observations of the new object class to learn

a new object classifier.

Oliva and Torralba[15] first proposed a computational model for scene recog-

nition based on some high-level property of the scene, such as openness, naturalness,

etc, which is called the spatial envelope, a special set of scene attributes. Recently,

Li et al proposed to use objects as scene attributes and recognize scene categories

by the outputs of a set of object classifiers. The idea of treating objects as scene

attributes have been also explored in [16, 17]. A more comprehensive study on

scene attributes are described in [18] with a large-scale dataset. In this thesis, we

will study an active approach to recognize scenes by its attributes so that we can

achieve great efficiency compared to the traditional passive approaches.

Action attributes share lots of properties with object and scene attributes. In

literature, [19] first introduce the idea of activity attributes. But their approach has

fundamental limitations, which restrict its application in real world problems. In

this thesis, we will address these limitations by introducing a new graphical model

to model the temporal and semantic correlation among activity attributes.

1.2.2 Comparison to Biederman’s Recognition-by-Components The-

ory

The recognition-by-components theory by Biederman [20] was proposed to

recognize object by detecting objects main component parts, which is called geons.

6



Biederman suggested that geons are based on basic 3-dimensional shapes (cylinders,

cones, etc.) that can be assembled in various arrangements to form a virtually un-

limited amount of objects. Indeed, geons and attributes share similarities in many

aspects: they are all middle layer between high level entity and low level features;

they are all general across different entities. However, there exists significant differ-

ence between geons and attributes. While geons only represent the shape properties

of an object, attributes represent much broader properties of objects, scenes and ac-

tivities. For objects, attributes can be color, shape, textures, parts, environments,

etc. More important, all attributes contain semantic meanings and can be presented

by language. Thus, not only attributes can be used to facilitate recognizing entities,

but also they can be used to describe entities. Finally, the prior knowledge stored

in language domain can be used to simplify the recognition tasks in vision domain,

which is not available in Biederman’s approach.

1.3 Assumptions in the Approaches

In this thesis, we assume the relationship between the entities (object, scenes,

activities) and their attributes are known in prior. This prior knowledge can be

either obtained from annotations in the datasets or the knowledge database con-

structed by experts. Our focus is to show how these prior knowledge can be exploited

in facilitating to solve various challenging vision problems.

7



1.4 Contributions of This Thesis

In this thesis, we study three applications of attributes, namely, describing

entities, recognizing entities, and transfer learning, in three domains: objects, scene,

and activities. We specially consider the following three problems:

• transfer learning by object attributes for one/zero-shot learning;

• recognize scenes by actively detecting scene attributes; and

• detecting activity attributes for describing sports videos.

For each of these problems, we provide both background on the problem and a

discussion of previous work in the respective domain and other related research.

We then describe our solution, detailing the novel characteristics of our proposed

approach and validating with experimental evaluations.

1.4.1 Transfer Learning by Object Attributes

We first consider the problem of transfer learning by object attributes. In tra-

ditional learning paradigm, we need to train classifiers for each category separately;

while in transfer learning paradigm, we can use knowledge learned from some cat-

egories to facilitate learning in another category. Thus we can learn classifiers for

new categories with much fewer training examples or even no training examples.

Due to the generality of attributes across different categories, attributes are

especially suitable for transfer learning problems. For example, after training an

attribute detector for “furry” from images of bear, we can use it to filter out images

8



that do not contain “furry” attributes to facilitate the detection of cheetah, as we

know both animals have attribute of “furry”.

In this work, we designed a generative attribute model that offer flexible rep-

resentations for attribute knowledge transfer. Also we proposed two methods that

effectively employ attribute prior in the learning of target classifiers and combine the

training examples of target categories when they are available. Thus the attribute

prior can help improving performance in both zero-shot and one-shot learning task.

At the end, we evaluated the performance of our transfer learning system on the

popular Animal with Attributes [14] data set.

1.4.2 Recognize Scenes by Detecting Scene Attributes

The second problem we considered in this thesis is to recognize scene by ac-

tively detect scene attributes. In this problem, we consider objects as scene at-

tributes. But the proposed approach can be easily extend to many other scene

attributes, such as the spatial structure of the scene [15]. Similar to the idea of

recognizing object by components, many people have studied the problem of rec-

ognizing scene by attributes, e.g., objects in the scene. However, most of existing

approaches are passive and need to run through all object/attribute detectors over

the testing images before making the final conclusion. In this work we explore an

active approach, which aims at greatly reducing the number of object/attribute

detectors needed for recognition of scenes.

Human beings are active explorers. We continuously shift our gaze to different

9



locations in the scene and focus our attention on the objects that are most important

to the current situation and tasks. After recognizing objects, we will fixate again

at a new location, and so on. By optimizing the locations and objects to recognize,

we can quickly understand the scene and make prompt reactions. It is clear that

when we analyze a complex scene, visual processes continuously interact with our

high-level knowledge, some of which is represented in the form of language. In some

sense, perception and language are engaged in an interaction, as they exchange

information that leads to meaning and understanding.

In this work, we proposed an active vision for scene recognition, which consists

of a reasoning module and a sensory module. The sensory module is object detector,

which extracts features from images, detect and localize objects. The reasoning

module obtains higher level knowledge about scene and object relations, proposes

attentional instructions to the sensory module and draws conclusions about the

contents of the scene. The key difference between the proposed active approach and

the traditional passive approaches is that the sensory module does not passively

process the image; instead, it is guided by the reasoning module, which decides

what and where the sensory module should process next. Thus the sensory module

shifts the focus of attention to a small number of objects at selected locations of

the scene. Thus the machine can recognize the scene with faster speed and higher

accuracy. This approach is also extended to a hierarchical active scheme to recognize

dynamic scenes.
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1.4.3 Detecting Activity Attributes for Describing Sports Videos

In the last problem, we study how to detect activity attributes from videos; in

particular, we focus on the action attributes related to motion patterns of human

body; nevertheless, our model can be easily extended to detect the other types of

action attributes as well.

The concept of action attribute was first introduced in [19]. However, the ap-

proach proposed in [19] has several severe limitations that restrict the applicability

of action attributes. One of the most noticeable problems is that action attributes

are labeled at the level of an action class, instead of being labeled at the level of a

frame or at the level of a video. As a result, all videos from the same action class are

assumed to have the same set of action attributes, regardless of the exact content

of a specific video, and the temporal structure of the action attributes is totally

discarded. But in reality, not every video belonging to the same action class have

the same set of action attributes; more often than not, real-world videos would have

some exceptions. For example, in a video of the snatch activity, the athlete may

not be able to completely lift the barbell above his head at the end so we cannot say

this video has an action attribute two arms raise pose. Furthermore, the temporal

structure is a unique property of action attributes and we lose lots of descriptive

capacity if we ignore it. For example, given a video of basketball layup, a de-

scription “the athlete starts with a slow run and lasts for half a second, then jumps

forward with single leg in the next second, finally jumps up and throws the ball (into

the basket), and maintains a slow run at the end of the video” will be more useful

11



than simply saying “there are slow running, jumping forward, jumping up, throwing

in this video”. The goal of this work is thus to detect the key action attributes at

each frame from a given video so that we can generate video descriptions at a much

finer granularity than those from previous work.

1.5 Organization of Thesis

The rest of this thesis is organized as follows: in the next chapter, we introduce

the approach of transfer learning by object attributes; then we describe the idea

of active scene recognition with scene attributes in Chapter 3; our approach for

detecting activity attributes is presented in Chapter 4; Chapter 5, the conclusion,

both provides a summary of the contributions contained in this work and suggests

some research directions for future investigation.
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Chapter 2

Attribute-Based Transfer Learning for Object Recognition

2.1 Introduction

In this chapter we present an attribute-based transfer learning approach for

object recognition with zero or one training examples. Object attributes are high-

level descriptions about properties of object categories such as color, texture, shape,

parts, context, etc. Human beings have a remarkable capability in recognizing

unseen objects purely based on object attributes. For example, people who have

never seen a zebra still could reliably identify an image of zebra if we tell them that “a

zebra is a wild quadrupedal with distinctive white and black strips living on African

savannas”. As long as they have prior knowledge about the related object attributes,

e.g., quadrupedal, white and black strips, African savannas, they can transfer these

knowledge to facilitate prediction of unseen categories. The attribute-based transfer

learning framework is motivated by this insight.

Figure 2.1 compares the different learning processes of conventional learning

approaches and attribute-based transfer learning approaches: while conventional

learning approaches treat each category individually and train each classifier from

scratch, the attribute-based transfer learning approaches can help improve the learn-

ing of classifiers for the target categories (unknown categories) using the attribute

prior knowledge learned from source categories (i.e., known categories). Therefore,

13



(a) (b)

Figure 2.1: Diagrams of the learning process between conventional learning ap-

proaches (a) and attribute-based transfer learning approaches (b).

we are able to learn target classifiers with much fewer training examples, or even

no examples. This is the major obstacles that we need to address in the problem

of one-shot learning [21] and zero-shot learning [14]. Under these circumstances,

conventional learning methods can not function due to the lack of training exam-

ples. To solve this problem, knowledge transfer becomes extremely important [22]:

by transferring prior knowledge obtained from source categories (i.e. known cate-

gories) to target categories (i.e. unknown categories), we equivalently increase the

number of training examples of the target categories. Thus, the difficulties raised

by the scarcity of training examples can be greatly alleviated. In the proposed ap-

proach, object attributes are used to transfer knowledge from known categories to

unseen categories.
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2.2 Related Work

Roughly, the methods of knowledge transfer for object categorization can be

divided into three groups [22]: knowledge transfer by sharing either features [23, 24],

model parameters [21, 25] or context information [26]. Most of the early work

relies on bootstrap approaches to select features or parameters to be transferred

[23, 24, 21]. A very recent study [25] suggests that an explicit and controllable

transfer of prior knowledge can be achieved by considering the ontological knowledge

of object similarity. For example, horse and giraffe are both quadrupeds and share

common topologies, so a full model can be transferred from horse to giraffe. The

work presented in this paper integrates a broader ontological knowledge, i.e., object

attributes, which can transfer knowledge either among similar categories (e.g., horse

and giraffe), or among different categories that share common attributes(e.g., both

German shepherd and seal have the attribute black).

Several recent studies have investigated the approach employing the object

attributes in recognition problems [14, 8, 10, 27]. Among them, our work is most

related to [14, 27]. However, as both studies focused on attribute prediction for

zero-shot learning task, they did not attempt to combine attribute priors with the

training examples of target categories. Thus, although useful, their applications in

one-shot learning task are still limited. Since the framework presented in this paper

includes the routes for both attribute priors and the training examples of target

categories, we can benefit from these two domains whichever is available in learning

a new target category. Compared to the existing work in [14, 27], our contribution is
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a more complete framework for attribute-based transfer learning, which enables us

to handle both zero-shot learning and one-shot learning problems. The approaches

in [8, 10] are also related to ours. However, their methods need attributes annotated

for each image. Although the image-level attribute annotation will facilitate intra-

class feature selection [8] and object localization [10], it requires substantially more

human efforts to label each image. Thus their scalability to a large number of

categories is greatly restricted compared to the category-level attribute annotations

advocated in [14, 27] and this paper.

2.3 Algorithms

2.3.1 Background

In the proposed approaches, the category-attribute relationship is represented

by a category-attribute matrix M for a particular image data set, where the entry

at the m-th row and the `-th column is a binary value indicating whether category

m has the `-th attribute. Figure 2.2.a illustrates an example of M. Each object

category thus has a list of attributes whose corresponding values in M equal to

“yes”. This information is supposed to be available for both source categories and

target categories. Currently, this information is obtained from user labelled dataset.

In our approach, the attribute model and the target classifier belong to an

extension of topic models, which constitute an active research area in the machine

learning community in recent years [28, 29, 30]. Computer vision researchers have

extended them to deal with various vision problems [31, 32, 33, 34, 35, 36]. In a
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Figure 2.2: Examples of ontological knowledge represented by the binary category-

attribute values. Images and attributes are from the “Animals with Attributes”

data set [14].

topic model, a document w is modeled by a mixture of topics, z’s, and each topic

z is represented by a probability distribution of words, w’s. In the computer vision

domain, a quantized image feature is often analogous to a word (a.k.a “visual words”

[31]), a group of co-occurred image features to a topic (a.k.a “theme” [34]), and an

image to a document. In Section 2.4, we will visualize visual words and topics using

examples in the test data set.

2.3.2 The Intuition of Attribute-based Transfer Learning

The idea of transfer learning is to “transfer” some prior knowledge from the

learned classes (i.e., source categories) to a new class (target categories) to facilitate

the learning of the new class. Depending on the image model and application

domain, there are many types of prior knowledge and methods to transfer them
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(see [22] for a survey). In this work, we use the parameters in the image model to

transfer the knowledge about attributes. From source categories cow, zebra, deer,

cheetah, we learn the low-level feature distribution for attribute black, white, bush,

stripes, patches, Fa(w;φa), where φ1,...,k are parameters for distribution Fa(·). An

object class c can then be represented by a distribution of attributes, Gc(ac; θc),

where θc are parameters for distribution Gc(·) and ac are the positive attributes for

class c. Overall, the distribution of low-level features for class c can be written as∑
a∈ac

Gc(ac; θc)× Fa(w;φa).

Given the attributes, the task to train a classifier for class c is to learn the pa-

rameter θc and φa from the training images. Since we have to prior knowledge about

attributes, i.e., the distribution Fa(w;φa) is known, we only need to estimate θc from

the training images. Therefore, the training process is greatly simplified and we can

train the classifier for class c with less training examples or even just one example. If

there is no training images but we know the positive attributes for the target class,

we can treat Gc(·) as a uniform distribution among all positive attributes and the

the distribution of low-level features for class c becomes
∑

a∈ac

1
|ac|Fa(w;φa). Note

that this is a non-trivial distribution since Fa(w;φa) incorporate our prior knowl-

edge about the attributes learned from source categories. The knowledge transfer

is achieved with the help of known positive attributes for class c, ac. Otherwise,

the best we can do is to randomly select some attributes and we will show that this

strategy can only produce classification accuracy of chance level.
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2.3.3 Attribute Model and Object Classifier

The attribute-based transfer learning approach needs an attribute model and

an object classifier. The attribute model we employed is the Author-Topic (AT)

model [30]. The AT model is originally designed to model the interests of authors

in a given document corpus. In this paper, we extend the AT model to model the

distribution of image features related to attributes. To our best knowledge, this

is the first attempt of this kind. Indeed, authors of a document and attributes of

an object category have many similarities, which allow us to analogize the latter

to the former: a document can have multiple authors and an object category can

have multiple attributes; an author can write multiple documents and an attribute

can be presented in multiple object categories. Nevertheless, there is also noticeable

difference between them: each document can have a distinct list of authors, while

all images within an object category share a common list of attributes.

The graphic representation of AT model is illustrated in Figure 2.3.a. The

AT model is a generative model. In this model, an image j has a list of attributes,

denoted by aj. An attribute ` in aj is modeled by a discrete distribution of K topics,

which parameterized by a K-dim vector θ` = (θ`1, ..., θ`K) with topic k receiving

weight θ`k. The topic k is modeled by a discrete distribution of W codewords in

the lexicon, which is parameterized by a W -dim vector φk = (φk1, ..., φkW ) with

codeword v receiving weight φkv. Symmetric Dirichlet priors are placed on θ and φ,

with θ` ∼ Dirichlet(α), and φk ∼ Dirichlet(λ), where α and λ are hyperparameters

that affect the sparsity of these distributions. The generative process is outlined in
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Algorithm 1.

Algorithm 1 The generative process of the Author-Topic model

1: given the attribute list aj and the desired number of visual words in image j,

Nj

2: for i = 1 to Nj do

3: conditioning on aj, choose an attribute xji ∼ Uniform(aj)

4: conditioning on xji, choose a topic zji ∼ Discrete(θxji
)

5: conditioning on zji, choose a visual word wji ∼ Discrete(φzji)

6: end for

If there is only one attribute in each image and the attribute is the object

category label, the AT model can be used in object categorization problems [33]. In

our work, we call this approach Category-Topic (CT) model and use it as the target

classifier in the proposed transfer learning framework. The graphic representation

of CT model is illustrated in Figure 2.3.b and Figure 2.3.c. In Figure 2.3.b, the CT

model uses non-informative prior, which is employed in previous work [33]. The CT

model we employed in this work has informative prior, as illustrated in Figure 2.3.c.

We will show how to use this special structure to transfer the prior knowledge about

attributes later.

2.3.4 Inference and Parameter Estimation

Given a training corpus, the goal of inference in an AT model is to identify

the values of φ and θ. In [30], Rosen-Zvi et al. presented a collapsed block Gibbs

sampling method. The term “collapse” means that the parameters φ and θ are
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(a) (b) (c)

Figure 2.3: Graphical representations of the Author-Topic (AT) model (a), the

Category-Topic (CT) model (b) and the CT model with informative Dirichlet priors

over π and φ (c). See text for detailed discussions of these models.

analytically integrated out, and the term “block” means that we draw the pair of

(xji, zji) together. The pair of (xji, zji) is drawn according to the following condi-

tional distribution

p(xji = `, zji = k|wji = v,Ω) ∝
α/K +Nk

`,\ji

α +
∑K

k′=1N
k′
`,\ji

λ/W + Cv
k,\ji

λ+
∑W

v′=1C
v′
k,\ji

, (2.1)

where Ω ≡ {aj, z\ji,x\ji,w\ji, α, λ}, the subscript ji represents the i-th visual word

in image j, xji = ` and zji = k represent the assignments of current visual word

to attribute ` and topic k respectively, wji = v represents the observation that the

current visual word is the v-th codeword in the lexicon, z\ji and x\ji represent all

topic and attribute assignments in the training corpus excluding the current visual

word, Nk
`,\ji is the total number of visual words that are assigned to attribute ` and

topic k, excluding wji, and Cv
k,\ji is the total number of visual words with value v
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that are assigned to topic k, excluding wji.

To run the Gibbs sampling algorithm, we first initialize x and z with random

assignments. In each Gibbs sampling iteration, we draw samples of xji and zji for all

visual words in the training corpus according to the distribution in Equation (2.1)

in a randomly permuted order of i and j. The samples of x and z are recorded after

the burn-in period. In experiments, we observe 200 iterations are sufficient for the

sampler to be stable. The posterior means of θ and φ can then be estimated using

the recorded samples as follows:

θ̂`k =
α/K +Nk

`

α +
∑K

k′=1N
k′
`

, φ̂kv =
λ/W + Cv

k

λ+
∑W

v′=1C
v′
k

, (2.2)

where Nk
` and Cv

k are defined in a similar fashion as in Equation (2.1), but without

excluding the instance indexed by ji.

The inference of a CT model can be performed in a similar way to the AT

model. In the Gibbs sampling, we draw samples zji according to the following

conditional distribution

p(zji = k|wji = v, cj = m,Ω) ∝
β/K +Mk

m,\ji

β +
∑K

k′=1M
k′
m,\ji

λ/W + Cv
k,\ji

λ+
∑W

v′=1C
v′
k,\ji

, (2.3)

where Ω ≡ {z\ji,w\ji, β, λ}, Mk
m,\ji is the number of visual words in images of

category m assigned to topic k, excluding the current instance. The posterior mean

of π can be estimated as follows:

π̂mk =
β/K +Mk

m

β +
∑K

k′=1M
k′
m

, (2.4)

and the posterior mean of φ is the same as in Equation (2.2).
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After learning a CT model, we can use it to classify a test image wt =

{wt1, ..., wtNt} by choosing the target classifier that yields the highest likelihood,

where the likelihood for category c = m is estimated as

p(wt|c = m,Dtrain) ≈
Nt∏
i=1

K∑
k=1

φ̂kwti
π̂mk. (2.5)

If the attribute list is unique in each category, an AT model can also be used

to classify a new image by the maximum likelihood criterion. Suppose we have

learned θ` for every ` = 1, ..., A from the source categories, we can then use them in

classifying an image of a target category using the approximate likelihood

p(wt|c = m, am,Dtrain) ≈
Nt∏
i=1

K∑
k=1

φ̂kwti

(
1

Am

∑
`∈am

θ̂`k

)
≡

Nt∏
i=1

K∑
k=1

φ̂kwti
π̃mk, (2.6)

where am is the attribute list associated to a target category c = m, Am the length of

am. In the above equations, we have constructed a pseudo weight for the category-

specified topic distribution of a new category from θ̂`, i.e., π̃mk ≡
(

1
Am

∑
`∈am θ̂`k

)
.

This pseudo weight can be viewed as the prior of πm before we see the real train-

ing examples of the new category. Although the unique-attribute-list assumption

does not hold in general, it is necessary for attribute-only classifiers, including the

AT model discussed in this paper and the approaches in [14, 8], to predict unseen

categories. The data set tested in this paper satisfies this assumption.

While the AT model can be used to deal with the zero-shot learning problem,

it is ineffective for the one-shot learning problem. One may conjecture to add the

training examples of target categories to those of source categories and then re-

train the AT model. However, this naive approach will not work well in practice

because the number of training examples of source categories is usually higher than
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that of target categories by several orders. Consequently the AT model can not

well represent the new observations of target categories in the training examples.

Thus we need approaches to control the balance between the prior information from

source categories and the new information in target categories. We will propose two

approaches to achieve this goal in the rest of this section.

2.3.5 Methods for Knowledge Transfer

2.3.5.1 Knowledge Transfer by Informative Parameter Prior

The first knowledge transfer approach is to synthesize training examples for

target categories. The idea is as follows: first, we learn the attribute model from the

training examples of the source categories; second, for each target category, we run

the generative process in Algorithm 1 to produce S synthesized training examples

using the estimated θ̂ and φ̂ as well as the attribute list associated to this target

category. Each synthesized training example contains N̄ visual words, where N̄

is the mean number of visual words per image in the source categories. In this

procedure, S represents our confidence about the attribute priors. We can use it

to adjust the balance between the attribute priors and new observations from the

training images of target categories.

Since we adopt the bag-of-features representation, the synthesized example is

actually composed of a set of image features without spatial information. So they

are indeed “artificial” examples in that we can not visualize them like a real image.

This is different from the image synthesis approaches in the literature [37, 38], which
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output viewable images. Nevertheless, since our goal is to generate training examples

for the target categories to assist the learning process, this is not an issue providing

the classifiers take these bag-of-features as inputs.

2.3.5.2 Knowledge Transfer by Synthesis of Training Examples

The second knowledge transfer approach is to give parameters of the CT model

in the target classifiers informative priors. Figure 2.3.c illustrates the complete

CT model, where π and φ are given Dirichlet distributions as priors. In these

Dirichlet distributions, µ and η are base measurements that represent the mean

of φ and π, and λ and β are scaling parameters that control the sparsity of the

samples drawn from the Dirichlet distribution. When we have no clue about the

prior of φ and π, we usually give symmetric Dirichelt priors, whose base measures

are uniform distributions. The graphical representations of CT models often neglect

such uniform distributed base measures and only retain the scaling parameters λ

and β, as shown in Figure 2.3.b. This rule also applies to the AT model. In this

paper, these scaling parameters are given vague values when performaning Gibbs

sampling, λ = W , α = β = K.

However, after we learn the attribute model from source categories, our uncer-

tainty about the φ and π of target categories will be greatly reduced. Our knowledge

on these parameters are represented by the estimated φ̂ in Equation (2.2) and π̃ in

Equation (2.6). Since E(φk) = µk and E(πm) = ηm, now we can give informative

priors to φ and π by setting µk = φ̂k and ηm = π̃m. The basic equation of Gibbs
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sampling of the CT model with informative prior the becomes

p(zji = k|wji = v,Ω) ∝
βπ̃mk +Mk

m,\ji

β +
∑K

k′=1M
k′
m,\ji

λφ̂kv + Cv
k,\ji

λ+
∑W

v′=1C
v′
k,\ji

, (2.7)

where Ω ≡ {cj = m, z\ji,w\ji, βη, λµ}. The posterior means of π and φ in Equation

(2.4) and (2.2) are updated accordingly. The values of λ and β represent our confi-

dence on these priors, which can be used to control the balance between attribute

priors and the new observations of target categories. In the experiments, we set

λ = β = N̄S, where N̄ and S are defined as in Section 2.3.5.2.

By comparing Equation (2.7) and Equation (2.3), we can appreciate the impor-

tance of informative priors for the zero-shot learning task. If we have no prior knowl-

edge about π, we can only give it a symmetric Dirichlet prior where ηmk = 1/K. In

this scenario, the CT model have to see some training examples of target categories;

otherwise, πmk will be assigned to vague value 1/K, which is useless for categoriza-

tion tasks. Thus the CT model can not be used in zero-shot learning task. With

the attribute knowledge, we can give π informative priors ηmk = π̃mk, which permits

us to perform zero-shot learning task using the CT model. Similar impact of the

informative priors can be observed in the one-shot learning task.

2.4 Experiments

2.4.1 Data Set and Image Features

In the experiments, we use the “Animals with Attributes” (AwA) data set

described in [14]. This data set includes 30475 images from 50 animal categories,
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and 85 attributes to describe these categories. The category-attribute relationship

is labeled by human subjects and presented in a 50 × 85 matrix M. Figure 2.4.a

illustrates a subset of this matrix. 40 categories are selected as source categories

and the rest 10 categories are used as target categories. The division of source

and target categories is the same as in [14]. The 85 attributes can be informally

divided into two groups: visual attributes such as black, furry, big, arctic, etc., and

non-visual attributes such as fast, weak, fierce, domestic, etc. Totally there are 38

non-visual attributes (attribute No.34 to No.64 and attribute No.79 to No.85) and

47 visual attributes. While non-visual attributes are not directly linked to visual

features, it turns out that the non-visual attributes have strong correlation to the

visual attributes, as shown in Figure 2.4.b. Take the attribute fast as an example,

the top three most related visual attributes are furry (P (furry|fast) = 0.833), tail

(P (tail|fast) = 0.833) and ground (P (ground|fast) = 0.786).

All images are resized such that the longest side has 300 pixels. From each

image, we extract four types of image features: SIFT [39], rgSIFT [40], local color

histogram and local self-similarity histogram (LSS) [41] at regular grids on two

scales. Then for each type of feature, we build a visual lexicon of size 1000 by

applying K-means clustering algorithms over features from 250 images randomly

selected from source categories. Codewords from four type of features are combined

into a single lexicon with 4000 codewords. Features in all images are quantized into

one of the codewords in this lexicon. On average, there are about 5000 features in

each image. So we set N̄ = 5000 in the approaches of attribute knowledge transfer

in Section 2.3.5.2 and Section 2.3.5.1.
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(a) (b)

Figure 2.4: (a): examples of ontological knowledge represented by the binary

category-attribute values; (b): the empirical probability of nonvisual attributes con-

ditioned on visual attributes measured by P (visual|non−visual) ≡ N(visual, non−

visual)/N(non−visual), where N(·) denote the number of categories that have the

particular attributes in the given data set. Images and attributes are from the

“Animals with Attributes” data set [14].

2.4.2 Experiment Setup and Implementation Details

Baseline Algorithms. In the experiments, we use Direct Attribute Predic-

tion (DAP) [14] and SVM as baselines in the zero/one-shot learning tasks.

The DAP is selected as a baseline because it is the state-of-the-art approach for

zero-shot learning on the AwA data set. DAP uses a SVM classifier that is trained

from source categories to predict the presence of each attribute in the images of

target categories. Then the attribute predictions are combined into a category label

prediction in an MAP formulation. The original DAP can only perform zero-shot
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learning. For one-shot learning, we use predicted attributes as features and choose

a 1NN classifier following the idea in [8]. We call this classifier as “DAP+NN” in

this paper.

When we use the synthesized training examples to transfer attribute knowl-

edge, many existing classifiers can be used as the target classifier. We choose SVM as

a baseline in this case, mainly because SVM is one of the state-of-the-art classifiers

with bag-of-features image representation [42].

Implementation Details. The AT model has K0 = 10 unshared topics per

attribute in all tests. When using synthesized training examples, the CT model has

100 topics; when using informative priors, the number of topics in the CT model is

the same as the total number of topics in the AT model. The SVM in the target

classifiers is implemented using the C-SVC in LIBSVM with a χ2 kernel. The kernel

bandwidth and the parameter C are obtained by cross-validation on a subset of the

source categories.

Evaluation Methodology. In the zero-shot learning scenario, both AT

and DAP are trained using the first 100 images of each source category. Then

we use the AT model to generate S = {10, 20, 100} synthesized examples for each

target category. The CT and SVM classifiers will be trained using these synthesized

examples. We denote them as “CT+S” and “SVM+S” respectively in the reported

results. Also we use the learned φ̂ and π̃ in the AT model as informative priors

for the CT model as described in Section 2.3.5.1, where we set S = {2, 5, 10}. We

denote it as “CT+P” in the reported results.

In the one-shot learning scenario, CT and SVM classifiers are trained with the
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synthesized training examples/informative priors obtained in the zero-shot learning

test plus the first M = {1, 5, 10} images of each target category. The AT model is

trained with the first 100 images of each source category plus the first M images

of each target category. DAP+NN uses the attribute predictions of the first M

images of each target category as training data points to classify new images of

target categories based on the nearest neighbor criterion.

In both zero-shot and one-shot learning tests, all classifiers are tested over the

last 100 images of each target category and the mean of the diagonal of the confusion

matrix is reported as the measurement of performance.

2.4.3 Results

Test 1: Overall Performance of Zero/One-Shot Learning. The overall

performance of zero/one-shot learning are presented in the top row of Figure 2.5.

These results show that the proposed approach outperforms the baseline algorithms

in the following three aspects:

1. We have proposed a better attribute model for knowledge transfer. In both

zero/one-shot learning tests, the AT model surpasses DAP and DAP+NN by 5.9%

to 7.9%. Furthermore, all target classifiers that employ the prior knowledge from

the AT model (SVM+S, CT+S and CT+P) achieve higher accuracy than DAP

and DAP+NN. These results clearly show the advantages of the AT model in the

attribute-based transfer learning framework.

2. We have proposed better methods of knowledge transfer for one-shot learn-

30



ing. In the one-shot learning test, the performance of the AT model does not improve

compared to the zero-shot learning test. It is not a surprise: there are total 4000 im-

ages of source categories while only 10 images of target categories in training the AT

model, thus the learned AT model will be almost the same as the one trained only

with the 4000 source images. This result shows that the naive method of knowledge

transfer will not work for the one-shot learning task. CT+S and CT+P achieve

better balance between the prior attribute knowledge and the real example of target

categories, and the additional single training example improves their accuracies by

0.9%-3% (CT+S) and 0.4%-1.4% (CT+P) respectively compared to their zero-shot

learning results.

3. We have proposed a better target classifier. In both the zero-shot and

one-shot learning tasks, the CT models (CT+S and CT+P) consistently exceed the

baseline SVM classifier. Our experiments confirm the advantage of CT over the

baseline algorithm, SVM, in the zero/one-shot learning tasks.

In addition to the above conclusion, we also have the following observations.

4. CT+S generally outperforms CT+P. CT+P can be viewed as an online

version of CT+S, where the informative priors are equivalent to the initial values

estimated from the synthesized examples in the initialization stage. Thus, samples

drawn with CT+P are not distributed according to the true posterior distribution

P (zji|z\ji,w), which includes all the synthesized and real training examples. As a

result, the categorization performance is degraded.

5. With the increasing number of real training examples, the improvement on

classification due to the prior knowledge decreases accordingly. This suggests that
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the attributes do not contain all the information in target categories. Furthermore,

some attributes may be difficult to learn and some are less informative to the cat-

egories. Thus when we have sufficient number of real training examples, the prior

knowledge behaves more and more like noise and inevitably degrades the classifica-

tion performance. We can thus derive a practical guideline from this observation

to select an appropriate parameter S: when there is no or only one real training

example, we can set a large value of S, e.g., 100 in CT+S or 10 in CT+P; when

more and more real training examples are available, we then gradually reduce the

value of S to zero.

Illustrations of the Attribute Models. We show two attribute models

for black and fast in Figure 2.6. Though we employ the bag-of-features image

representation and discard the spatial information in the image representation, the

visual features related to the visual attributes black roughly localize the regions

of interest. As discussed in Section 2.4.1, the non-visual attribute, fast, is most

correlated to visual attributes furry, tail and ground. So the visual features related

to these visual attributes are implicitly linked to fast. Visual examples in Figure

2.6 support this assumption. The influence of the non-visual attributes on the

classification performance will be evaluated quantitatively in Test 2.

Test 2: The Influence of the Non-visual Attributes in the Transfer

Learning. In this experiment, we remove the non-visual attributes from the class-

attribute matrix and repeat the above tests. Results are illustrated in the middle row

of Figure 2.5. Clearly, the absence of non-visual attributes degrades the classification

performance enormously for all classifiers in both zero-shot and one-shot learning
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scenarios. This test illustrates the importance of the non-visual attributes in the

transfer learning approaches.

Test 3: The Effectiveness of the Knowledge of Attribute in the

Transfer Learning. In this experiment, we use the AT model learned from source

categories to generate synthesized training examples or compute informative priors

following randomly selected attributes for each target category, where the num-

ber of random attributes are the same as that of the true attributes in each target

category. The results show that the classification performance is at the chance level

in the zero-shot learning tasks. In the one-shot learning task, the prior knowledge

from the randomly selected attributes does not improve the classification perfor-

mance compared to those not using attribute priors. This experiment highlights the

effectiveness of the knowledge of the attribute.
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Figure 2.5: Results of zero-shot and one-shot learning in Test 1 (top row, using all

attributes), Test 2 (middle row, using visual attributes only) and Test 3 (bottom

row, using randomly selected attributes) for SVM+S (column 1), CT+S (column

2, CT model with synthesized training examples) and CT+P (column 3, CT model

with informative parameter prior) respectively. The x-axis represents the number

of real examples, M , and the y-axis represents the mean classification accuracy, i.e.,

the mean of the diagonal of the confusion matrix.
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Figure 2.6: Illustrations of two attribute models for black and fast from the top to

the bottom. Column 1: the distribution of the 10 topics assigned to a particular

attribute; Column 2: the distribution of codewords for a particular attribute, where

the codewords of SIFT, rgSIFT, local color histogram and LSS are presented from

left to right on the x-axis respectively, with 1000 codewords for each type of feature;

Column 3-6: examples of images from source categories (Column 3-5) and target

categories (Column 6), superposed with the top 100 most likely codewords (solid

red dots) for the attributes of the same row. Figures are best viewed in color.
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Chapter 3

Active Scene Recognition Based on Its Attributes

3.1 Introduction

The paradigm of Active Vision [43, 44, 45, 46, 47] had invigorated Computer

Vision research in the early 1990s. The ideas were inspired by the observation that

in nature vision is used by systems that are active and purposive. By studying

visual perception in isolation, we often end up with more complicated formulations

and under-constrained problems. Thus, the Active Vision paradigm proposed that

visual perception should be studied as a dynamic and purposive process for ac-

tive observers that can control their imaging mechanism. Most previous work in

this paradigm was concerned with low level robot vision problems, and applied the

ideas to shape reconstruction and navigational problems, such as motion estima-

tion, obstacle avoidance, surveillance and path planning. Higher level tasks of scene

understanding and recognition have not been sufficiently studied in this framework.

These problems require combining high level knowledge and reasoning procedures

with low-level image processing and a systematic mechanism for doing so.

This idea is applied to the simplest interpretation problem, scene recognition,

in this chapter. The proposed system consists of two modules: (1) the reasoning

module, which obtains higher level knowledge about scene and object relations,

proposes attentional instructions to the sensory module and draws conclusions about
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Figure 3.1: Overview of the active approach for scene recognition.

the contents of the scene; (2) the sensory module, which includes a set of visual

operators responsible for extracting features from images, detecting and localizing

objects and actions. The novelty of the proposed active paradigm is that the sensory

module does not passively process the image; instead, it is guided by the reasoning

module, which decides what and where the sensory module should process next.

Thus the sensory module shifts the focus of attention to a small number of objects

at selected locations of the scene. This leads to faster and more accurate scene

recognition.

Figure 3.1 illustrates the interaction between the two modules, which is mod-

eled as an iterative process. Within each iteration, the reasoning module decides on

what and where to detect next and expects the sensory module to reply with some

results after applying the visual operators. The reasoning module thus provides a

focus of attention for the sensory module, which can be an object to be detected
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and a place to be examined. For the problem of scene recognition, the interaction

between the two modules is simple. (See Figure 3.7 for examples of the interaction

over a given image.) However, our framework is more general. In Section 3.5 we

discuss the extension of the framework to dynamic scene understanding. In this case

the goal is to interpret the activity in the video. An activity is described by a set

of quantities: the human, the tools, the objects, the motion, and the scene involved

in the activity. Each of the quantities has many possible instances which can be

described by their attributes (e.g., adjectives of nouns and adverbs of verbs). Thus

the reasoning module at every iteration has to decide which quantity and which

attribute to compute next. This procedure can be implemented in a hierarchical

model of the proposed active scheme.

3.2 Related Work

3.2.1 Recognition by Components

: The methodology for object, scene and activity recognition in this paper

follows the idea of “recognition by components”, which can be traced back to early

work by Biederman [20]. In this methodology, scenes are recognized by detecting the

inside objects [48], objects are recognized by detecting their parts or attributes [14],

and activities are recognized by detecting the motions, objects and contexts involved

in the activities [49]. However, all previous works employ passive approaches. As

a result, they need to run through all object/attribute detectors over the testing

images and videos before making the final conclusion. In this paper we explore
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an active approach, which aims at greatly reducing the number of object/attribute

detectors needed for recognition of objects, scenes and activities.

3.2.2 Active Learning and Active Testing

: Our work is a type of active testing and is closely related to the visual

“20 question” game described in [50]. While the approach in [50] needs human

annotators to answer the questions posed by the computer, our approach is fully

automated without a human in the loop.

To select the optimal objects/attributes, we use the criterion of Maximum

Information Gain, which have been widely used for active learning of objects and

scenes [51, 52]. Information theory also have been used for object localization in

application of face detection [53].

3.2.3 Employing Ontological Knowledge in Computer Vision System

for Scene Interpretation

: Ontological knowledge plays an important role in the reasoning and learning

system of human. For example, in the problem of scene recognition, if we know that

coast is a type of outdoor scene and also know that it is unlikely to find bookshelves

therein. Hence, we do not need to apply the bookshelves detectors in the possible

coast scene image. The work in [54] takes advantage of this type of knowledge in

object detection. Similarly, the knowledge about objects and attributes is employed

in [14]. Extending the knowledge about object hierarchy is employed in [55]. In this

39



paper, we further explore the ontological knowledge about activities and attributes

and present a pilot study using a hand activity dataset.

3.3 The Approach

3.3.1 System Overview

The proposed active scene recognizer classifies a scene by iteratively detect-

ing the objects inside it. In the k-th iteration, the reasoning module provides an

attentional instruction to the sensory module to search for an object Ok within a

particular region Lk in the image. Then the sensory module runs the corresponding

object detector and returns a response, which is the highest detection score dk and

the object’s location lk. The reasoning module receives this response, analyses it

and starts a new iteration. This iteration continues until some terminating criteria

are satisfied. To implement such an active scene recognizer, we need to implement

the following components: (1)a sensory module for object detection; (2) a reasoning

module for predicting the scene class based on the sensory module’s responses; (3) a

strategy for deciding which object and where in the scene the sensory module should

process in the next iteration; and (4) a strategy for initializing and terminating the

iteration. We will describe these components in the rest of this section.

3.3.2 Scene Recognition by Object Detection

In the proposed framework, the reasoning module decides the scene class S

based on the responses X from the sensory module, which we call Scene Recognition
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by Object Detection (SROD). The optimal scene class of the given image belongs

to the one that maximizes the probability:

S∗ = argmaxS∈[1:M ]p(S|X), (3.1)

where M is the number of scene classes.

The responses from the sensory module are a detection score and a detection

bounding box. We only consider the objects’ vertical positions, since they are more

consistent within the images of the same scene class [54]. An object’s vertical posi-

tion is represented by a profile of the mask formed by the object’s bounding box (see

Figure 3.2 for an example). The object’s mask formed by the object’s bounding box

is normalized to 256 × 256 pixels, and the profile is the histogram of pixels within

the object’s mask along the vertical axis. By this compact representation, we not

only record the object’s vertical location, but also record the object’s scales along

the horizontal and vertical axes. In the following, we denote this representation of

an object’s location as lk.

As described above, in each iteration, the sensory module returns a detection

score di and a detected location li for the expected object Oi. Thus at step k, we

have accumulated a list of detected score d1:k and corresponding locations l1:k. Given

X = (d1:k, l1:k), the probability of a scene S is :

P (S|X) = p(S|d1:k, l1:k)

∝ p(d1:k, l1:k|S)

= p(d1:k|S)p(l1:k|S). (3.2)
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(a) (b) (c)

Figure 3.2: Representation of the object’s location: (a) an object’s bounding box;

(b) the binary mask formed by the bounding box; (c) the profile of the object’s

binary mask along the vertical direction.

In the above equation, we assume d1:k and l1:k are independent given S. We ap-

proximate p(d1:k|S) by the inner product of d1:k and d̃S1:k, where d̃S1:k is the mean d1:k

of training examples for scene class S. Similarly, p(l1:k|S) is approximated by the

inner product of l1:k and l̃S1:k. The advantage of this approximation is its simplicity

and flexibility. We need to update the list of selected object in each iteration. If

we adopt a parametric model for p(d1:k|S) and p(l1:k|S), we would need to learn the

parameters for all permutations of O1:k, k = 1, ..., N , where N is the total number

of object categories in the dataset. For large N1, such scheme would not work sim-

ply because of the computational constraints. Using a parameter-free approach, we

avoid this difficulty.

1In our dataset, N > 100
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3.3.3 Detecting Objects by The Sensory Module

The task of the sensory module is to detect the object required by the reasoning

module and return a response. In this chapter, we applied three object detectors:

a Spatial Pyramid Matching object detector [56], a latent SVM object detector [57]

and the texture classifier by Hoiem [58]. For each object class, we train all three

object detectors and then select the one with the highest detection accuracy on

a validation dataset to use in the test. Given a test image, the object detector

will find a few candidates with corresponding detection scores. The one with the

highest score is selected and sent to the reasoning module. The detection scores are

normalized by Platt scaling [59] to obtain probabilistic estimates.

3.3.4 Attentional Instructions by The Reasoning Module

The interaction between the reasoning and sensory modules at iteration k

starts from an attentional instruction issued by the reasoning module, based on

its observation history. In this chapter, the attentional instruction in iteration k

includes what to look for, i.e., the object to detect (denoted as Ok) and where to

look, i.e., the regions to detect (denoted as Lk). The criterion to select Ok and Lk

is to maximize the expected information gain about the scene in the test image due

to the response of this object detector:

{O∗k, L∗k} = arg max
Ok∈Ñk−1,
Lk∈Lk

I(S; dk, lk|d1:k−1, l1:k−1), (3.3)

where Ñk−1 denotes the set of indices of objects that have not been detected until

iteration k, Lk denotes the search space of Ok’s location. The global optimization
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procedure is approximated by two local optimization procedures. In the first step,

we select Ok based on the maximum expected information gain criterion:

O∗k = arg max
Ok∈Ñk−1

I(S; dk, lk|d1:k−1, l1:k−1). (3.4)

Then L∗k is selected by thresholding ES[l̃SO∗k ], the expected location of object O∗k

across all scene classes.

The expected information gain of Ok given the previous response d1:k−1 and

l1:k−1 is defined as:

I(S;dk, lk|d1:k−1, l1:k−1)

=
∑

dk∈D,lk∈Lk

p(dk, lk|d1:k−1, l1:k−1)

×KL[p(S|d1:k, l1:k), p(S|d1:k−1, l1:k−1)]. (3.5)

The KL divergence on the right side of Equation 3.5 can easily be computed after

applying Equation 3.2. To compute the first term on the right side of Equation 3.5,

we factorize it as follows:

p(dk, lk|d1:k−1, l1:k−1)

= p(dk|d1:k−1, l1:k−1)p(lk|d1:k, l1:k−1). (3.6)

The two terms on the right side of the above equation can be efficiently computed

by their conditional probability with respect to S:

p(dk|d1:k−1, l1:k−1)

=
M∑
S=1

p(dk|S, d1:k−1, l1:k−1)p(S|d1:k−1, l1:k−1)

=
M∑
S=1

p(dk|S)p(S|d1:k−1, l1:k−1), (3.7)
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where we assume dk is independent of d1:k−1 and l1:k−1 given S. p(dk|S) can be

computed by introducing the binary variable ek, which indicates whether object Ok

appears in the scene or not:

p(dk|S) =
∑

ek∈{0,1}

p(dk|ek, S)p(ek|S) (3.8)

=
∑

ek∈{0,1}

p(dk|ek)p(ek|S). (3.9)

p(ek|S) encodes the high-level knowledge about the relationship between scene S and

objectOk. One way to obtain it is to count the object labels in the training image set.

Otherwise, we can obtain it from textual corpus. p(dk|ek) encodes the information

about the accuracy of different object detectors. The method to estimate its value

is discussed in Section 3.4.1. The procedures described above are also employed to

compute p(lk|d1:k, l1:k−1) in a similar fashion.

Finally, we note that the expectation in Equation (3.5) needs to be computed

at a set of sampling points of dk (denoted as D) and a set of sampling points of lk

(denoted as Lk). D is within a one dimensional space between 0 and 1 and we draw

samples of dk uniformly. Lk can be parameterized by three parameters: the center

position of Ok, yk; the horizontal extent of Ok, wk; and the vertical extent of Ok,

hk. We model these parameters by Gaussian distributions

yk ∼N (µyk , σ
2
yk

), (3.10)

hk ∼N (µhk
, σ2

hk
), (3.11)

wk ∼N (µwk
, σ2

wk
). (3.12)

The means and variances of these Gaussian distributions are estimated from the
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training set. Thus the problem of drawing a sample of lk becomes the problem of

drawing a sample of yk, hk, wk from three Gaussian distributions.

After drawing samples of dk and lk, we substitute them into Equation 3.5

to compute the expected information gain for Ok. Then among all possible Ok’s,

we select the object that yields the maximum expected information gain, O∗k. The

distribution of O∗k’s location in a particular scene S is approximated by l̃SO∗k , which

is computed as follows: first, we aggregate lO∗k in all training samples of scene class

S in the training stage; then we normalize the accumulated values into [0, 1]. Thus

the expectation of l̃SO∗k across all scene classes, ES[l̃SO∗k ], represents the distribution

of O∗k’s location in an image of any scene class. Finally, we threshold this value by

0.5 and obtain a binary L∗k, which provides the focus of attention for the sensory

module in the next iteration.

3.3.5 Initializing and Terminating the Iteration

The interaction between two modules starts from the first object and its ex-

pected location, which are provided by the reasoning module. We select the object

O1 that maximizes the mutual information

O∗1 = arg max
O1∈[1:N ]

I(S; d1, l1). (3.13)

To terminate the iteration, we can either stop after a fixed number of iterations (e.g.,

the 20 question game), or stop when the expected information gain at each iteration

is below a threshold. In our experiments, we followed the former approach and

found that 30 iterations are sufficient to produce competitive recognition results.
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3.4 Experiments

3.4.1 Image Datasets

We evaluate the proposed approach using a subset of the SUN image set from

[60]. Overall, the SUN dataset[60] contains 12K images, 1K scene classes and more

than 200 object classes. We sort the scene classes by the number of examples and

select the top 20 that have more than 50 examples per scene class. The remaining

scene classes are discarded since they do not have sufficient number of examples

to evaluate our algorithms. For each of the 20 selected scene classes, we randomly

select 50 examples, where 30 of them are used for training and the rest 20 for testing.

At the end, there are 127 object classes within our subset of SUN image set but

only a handful of object classes appear in a particular scene class. As discussed

in [60], a typical scene image contains seven object classes. The object detectors

are trained using an additional dataset of 26,000 objects that is disjoint from the

training/testing scene images as described in [60]. The obtained object detectors

are then evaluated in the 600 scene training examples. The detection score, dk, is

normalized into [0, 1] and evenly quantized into 10 discrete values. For each ek (0

or 1), we accumulate the counts of dk for each of its 10 values. Due to its discrete

nature, p(dk|ek) can be modeled as a multinomial distribution. Since Dirichlet is

the conjugate prior for multinomial, we use a Dirichlet distribution Dir(α) as the

prior for p(dk|ek), where α represents the number of prior observations of dk given a

particular ek. Through all experiments in this chapter, we set the parameter α = 1.

We also tried other values of α and found no significant performance impact.

47



Figure 3.3: Co-occurrence of the 20 scene and 30 objects in the scene dataset,

measured by p(e = 1|S). The brighter the boxes, the more is the object associated

with the scene.

Figure 3.3 visualizes the scene-object co-occurrence relationship between the

20 scenes and the most frequent 30 objects.

3.4.2 Performance of the Scene Recognizer

In the first experiment, we evaluate the scene recognizer (SROD) as described

in Equation 3.2 while all objects are detected. The “ideal” SROD, where we use

the object ground truths as the outputs of object detectors, is also evaluated to

illustrate the upper limit of the performance of SROD. Three baseline algorithms

are evaluated as listed below:

• SVM using GIST [15] features.

• SVM using Bag-of-Words (BoW). We used two types of local features, SIFT
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[39] and opponent SIFT [61], and the size of visual word dictionary is set as

500 for each of them.

• Classification and Regression Tree (CART) [62] that uses the object detection

scores as attributes to predict the scene classes of a given image. The “ideal”

CART, where the object ground truth is used as attributes, is also evaluated

to illustrate the upper limit of the performance of CART.

Figure 3.4 compares the scene classification accuracy of these baseline algo-

rithms and the SROD approach. The SROD approach significantly outperforms all

the baseline algorithms. This result confirms the effectiveness of object-based ap-

proaches in interpreting complex scenes and the robustness of the SROD approach

to the errors in object detection. It is worth to emphasize that there is still a lot

of room to improve the current object-based scene recognizer, as suggested by the

performance of the ideal SROD.

In addition, we evaluate the robustness of these scene recognition approaches

with respect to the size of training samples. We randomly select a number of training

examples from the training image set for each scene class and repeat the experiments

three times. The mean and standard deviation of the average accuracy when us-

ing 5, 10, 15, 20, 25 and 30 training examples are reported in Figure 3.5. The

proposed SROD method achieves substantially better performance than all baseline

algorithms, including the CART algorithm that uses the same outputs of object

detectors.
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Figure 3.4: Comparison of scene classification accuracy of different approaches

(GIST+SVM vs. BoW+SVM vs. CART vs. SROD). We also illustrate the “ideal”

performance of CART and SROD, where we use the object ground truths as the

outputs of object detectors. They are represented as “(CART)” and “(SROD)” in

the figure respectively.
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Figure 3.5: Classification accuracies of different approaches (GIST+SVM vs.

BoW+SVM vs. CART vs. SROD) with respect to the number of training images.

3.4.3 Comparison of the Active Scene Recognizer vs. the Passive

Scene Recognizer

In this experiment, we compare the proposed active scene recognizer with

two baseline algorithms and the results are presented in Figure 3.6. Both baseline

algorithms recognize scene class by iterative object detection, which is similar to the

proposed SROD method. But they employ different strategies to select the to-be-

detected object in each iteration. The first baseline (denoted as “DT” in Figure 3.6)

follows a fixed object order, which is provided by the CART algorithm; while the

second baseline (denoted as “Rand” in Figure 3.6) just randomly selects an object

from the remaining object pool. Object selection obviously has a big impact on

the performance of scene recognition, since both the proposed active approach and

the “DT” approach significantly outperform the “Rand” approach. The result also
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Figure 3.6: Comparison of classification accuracy among different object selection

strategies (active vs. passive vs. random) in the object-based scene recognizers,

with respect to the number of training images.

shows that the active approach is superior to the “DT” approach that is passive:

the active approach can achieve stable performance after selecting 30 objects while

the passive “DT” approach needs 60 objects. Furthermore, the object’s expected

location provided by the reasoning module in the active approach not only reduces

the spatial search space to be about 1/3 to 1/2 of the whole image but also reduces

the false positives in the sensory module’s response. As a result, the proposed active

approach achieves 3% to 4% performance gain compared to the passive approaches.
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3.4.4 Visualization of the Interaction between the Sensory Module

and the Reasoning Module

Figure 3.7 illustrates a few iterations of the active scene recognizer performed

on a test image. The iteration starts from the most discriminative object wall. The

sensory module gives a pretty confident answer, d1 = 0.744. But this answer does

not give us much information, since we can see from Figure 3.3, sky is widely shared

among these scenes and p(S|e) for esky = 1 is almost a uniform distribution among

8 scenes. So the belief of the language agent about the scene is still very ambiguous.

The second question asked by the language agent is bus. If the answer is

positive, then the scene is likely to be street. But the vision agent gives a very low

detection score, which means that the scene can equally belong to one of the seven

scenes except the street. So the belief of the language agent is still ambiguous.

The third question is sand and the answer is positive. Immediately, the lan-

guage agent can conclude that the scene is very likely to be coast, since only the

coast scene contains sand. The next three questions are all objects that can not ap-

pear in the coast scene and their low detection scores confirm the language’s belief

that this is a coast scene. So the language agent can stop asking questions at this

moment.

3.5 Dynamic Scene Recognition

There are two key premises in the proposed active scheme: (1) a quantity can

be recognized by accumulating evidences from its components; (2) the components
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Figure 3.7: Visualization of the iterations between the reasoning module and the

sensory module in an active scene recognition process. The detected regions with

detection score greater than 0.5 are highlighted with a red bounding box.
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Figure 3.8: Hierarchical active scheme for dynamic scene recognition, where each

iteration invokes four steps. Section 3.5 discusses the details.

can be assumed to be independent given the quantity. Given these two premises, the

active scheme can be applied to select a small number of components to recognize

the quantity without impairing the performance. In the previous section, we have

applied this active scheme to recognize static scenes. However, this active scheme

can also be applied to recognize objects by their parts and recognize activities by

their motion and object properties.

In this section, we will demonstrate the application of the active scheme in

an activity recognition problem. A big challenge in this problem is that the com-

ponents are heterogeneous. While static scenes only involve a single quantity, i.e.,

objects, activities are described by different quantities, including motion, objects

and tools, scenes, temporal properties, etc. To alleviate this problem, we propose a

hierarchical active scheme for dynamic scene recognition. Figure 3.8 presents this

method. In this scheme, each iteration performs the following four steps: (1) using

the maximum information gain criterion, the activity-level reasoning module sends

an attentional instruction to the quantity-level reasoning module that indicates the

desired quantity (e.g., motion or objects); (2) the quantity-level reasoning mod-

ule then sends an attentional instruction to the sensory module that indicates the
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desired attributes (e.g., object color/texture, motion properties); (3) the sensory

module applies the corresponding detectors and returns the detector’s response to

the quantity-level reasoning module; (4) finally, the quantity-level reasoning module

returns the likelihood of the desired quantity to the activity-level reasoning module.

To demonstrate this idea, we used 30 short video sequences of 5 hand actions

from a dataset collected from the commercially available PBS Sprouts craft show

for kids (the hand activity data set). The activities are coloring, drawing, cutting,

painting, and gluing. 20 sequences were used for training and the rest for testing.

Two quantities are considered in recognizing an activity: the characteristics of tools

and the characteristics of motion. Four attributes are defined for the characteristics

of tools, including color, texture, elongation, and convexity ; and four attributes

are defined for the characteristics of motion, including frequency, motion variation,

motion spectrum, and duration. The details of these quantities and attributes are

described in Table 3.1.

The interaction between language and vision is as follows: First the hands and

the objects in the hands (the tools) are visually segmented. Using the knowledge

about action-attribute co-occurences, the dialogue then consists of the reasoning

module asking repeatedly: “Which attribute should I compute next?” such that

there is maximum information gain.

The sensory module includes detectors for the 8 attributes of tools/motion.

To detect these attributes, we need to segment the hand and tools from the videos.

Figure 3.10 illustrates these procedures, which are described as follows:
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Quantity Attribute e = 1 e = 0

Tools

Color silver other colors

Texture bristle non-bristle

Elongation yes no

Convexity yes no

Motion

Frequency high low

Motion variation large small

Motion spectrum sparse non-sparse

Duration long short

Table 3.1: Activity attributes in the hand activity dataset.

Figure 3.9: Co-occurrence of the 5 actions and 8 attributes in the hand action

dataset, measured by p(S|e = 1). See Figure 3.3 for more information about color

codes in this figure.
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Figure 3.10: Procedures to extract hands and tools from the hand activity video

sequence. Please refer to the text for details.

1. Hand regions Sh are segmented by applying a variant of the color segmentation

approach based on Conditional Random Fields (CRF) [63] using a trained skin

color model. Similarly, moving regions of hands and tools, Sf , are segmented

by applying another CRF over the optical flow fields.

2. A binary XOR operation is applied on Sh and Sf to remove the moving hand

regions and produce a segmentation of tools, ST .

3. Apply a threshold tf to remove regions with flows that are different from the

hand regions and obtain a candidate region for tool, Ŝr.

4. Detect edges in Ŝr.

5. Fitting a minimum volume ellipse over the edge map of Ŝr, which estimates

the region of the detected tool.

Figure 3.11 shows the estimated ellipse enclosing the detected tool over some
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Figure 3.11: Sample frames for 10 testing videos in the hand action dataset: (from

left to right) coloring, cutting, drawing, gluing, painting. The detected tool is fit

with an ellipse.

sample image frames from the dataset. This ellipse, together with Ŝr, is then used

as a mask to compute object-related attributes. The color and texture attributes

were computed from histograms of color and wavelet-filter outputs, and the shape

attributes were derived from region properties of the convex hull of the object and

the fitted ellipse. The motion attributes were computed from the spectrum of the

average optical flow over the sequence and the variation of the flow.

Table 3.2 shows the interactions between the reasoning modules and the sen-

sory modules for one of the testing videos. Here the sensory module only needed to

detect two attributes before the reasoning module arrived at the correct conclusion.

Overall, 8 out of 10 testing videos were recognized correctly after detecting two to

three attributes, while the remaining two testing videos could not be recognized

correctly even after detecting all the attributes. This is because of errors in the

segmentation, the choice of attributes and the small set of training samples.

Note that the active approach needed to detect only two to three attributes

while a passive Nearest Neighbor classifier needs all 8 attributes. This is theoretically
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Iteration 1 2 3 4

Expected quantity Tools Tools Tools Motion

Expected attribute Elongation Color Texture Duration

Sensory module’s re-

sponse

0.770 1.000 0.656 0.813

Reasoning module’s con-

clusion

Coloring Painting Painting Painting

Reasoning module’s confi-

dence

0.257 0.770 0.865 0.838

Table 3.2: An example of interactions between the reasoning module and the sensory

module for hand activity recognition, where the ground truth of the activity class

is painting.

the minimum number of attributes we can detect in the ideal case since 3 = log(8).

We observe that this excellent performance is largely due to two reasons: first,

the attributes we selected are very discriminative; second and more importantly,

the assumption made in Equation 3.7 that the an attributes are action class is

independent of attribute location is satisfied very well in the action domain.

60



Chapter 4

Action Attribute Detection from Sports Videos with Contextual

Constraints

4.1 Introduction

In this chapter, we study the problem of detecting action attributes from sport

videos. Action attributes include atomic components of action classes (such as the

motion patterns of human limbs and body), contextual components of action classes

(such as the objects and scenes involved in the action), and non-semantic attributes,

a.k.a data-driven attributes [19]. A common property of action attributes is that

they can be generalized into different action classes. This is especially true in sports

videos. For example, bend, as an action attribute that describes the motion of

human body, is present in the action tennis serve, bowling, snatch, etc. That is

why they can be learned even from training sets that contain only a few examples

for each action class (one-shot learning) or even no example for some action classes

(zero-shot learning). We focus on the action attributes related to motion patterns

of human body in this chapter; however, our model can be easily extended to detect

the other types of action attributes as well.

Though in literature the concept of action attribute has been introduced in

[19], our goal of this work is much beyond the previous work. First, we want to
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Figure 4.1: Overview of the proposed system including the key components (left)

and example inputs/outputs (right): row (a) shows example video frames along

the timeline; row (b) shows the detected STIP interest points; row (c) shows the

probability output from the elementary attribute detector (the brighter the color,

the higher the probability that corresponding attribute presents in that frame); row

(d) shows the final attribute label after applying context constraints (bright color

represents positive label and black represent negative). The frame numbers are

illustrated on the bottom of row (c) and (d).
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label the action attributes at each video frame rather than the whole video of the

same activity class, as did in the previous work [19]. In reality, each video could

have different attributes and this is even true for videos of the same activity class.

For example, in a video of the snatch activity, the athlete may not be able to

completely lift the barbell above his head at the end so we cannot say this video

has an action attribute two arms raise pose. Next, we believe that the temporal

structure of the action attributes are very important and should be preserved in the

detection results. This aspect has been totally ignored in the previous work. For

example, given a video of basketball layup, a description “the athlete starts with

a slow run and lasts for half a second, then jumps forward with single leg in the next

second, finally jumps up and throws the ball (into the basket), and maintains a slow

run at the end of the video” will be more useful than simply saying “there are slow

running, jumping forward, jumping up, throwing in this video”.

While having great advantages as discussed above, it is obviously a much more

challenging task to locate the temporal occurrences of every action attributes in a

given video. As a high-level semantic concept, a particular action attribute may

exhibit significant variability due to viewpoint changes, photometric measurements,

intra-class variability (e.g. attribute two arms open can have different opening

angles between two arms, jump up can have different height and velocity, etc).

Naive detectors that rely entirely on local features will easily be overwhelmed by a

large number of false positives and/or false negatives. So we must take into account

the contextual constraints in both the temporal and semantic domains, thereby

reducing the noise in the local feature space to produce more reliable results. This
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is exactly the theme of this chapter.

4.1.1 Related Work

Recognizing action classes in videos is a basic component towards understand-

ing and describing videos. Recent progress in this field is achieved by introducing

various type of descriptive features, e.g., HOG (Histograms of Oriented Gradients)

and HOF (Histograms of Optical Flow) around 3D video patches using Spatial-

Temporal Interest Points (STIP) [64], or optical flow [65]. Based on these low-level

features, actions in videos can be represented by bag-of-words [66] or ballistic dynam-

ics [67]. Such features and video representations can also be used in detecting other

motion patterns in videos. For example, in this chapter, we use the bag-of-words

video representation to detect action attributes from video, which are computed

from HOG and HOF features around detected STIPs.

A recent advancement in this field is the emerging importance of contextual in-

formation. Due to the noise and intra-class variance in videos, approaches that rely

solely on low-level features are often prone to false alarms. Instead, exploiting con-

textual information provides us with additional constraints so that we can produce

more reliable results. In the literature, various types of contextual constraints have

been explored, such as action-object context [68, 69, 70, 71], action-scene context

[72], action-action context [73], etc.
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4.1.2 Our Contribution

The contribution of this work is three-fold. First, we propose to detect action

attributes at a finer granularity. Our work and the previous work in [19] is only

comparable at the level of localizing an object in an image (e.g., with a bounding

box or segmentation) and then detecting the presence of an object class in an im-

age. Our proposed action attributes can enable a machine to understand videos at

a higher level and thus provide more sensible video descriptions to humans. Sec-

ond, we address the challenges in action attribute detection by utilizing contextual

information in which a factorial conditional random field is used to model the rich re-

lationships between attributes in both the temporal and semantic domains. Finally,

we labeled a fully annotated action attribute dataset to evaluate our algorithms.

This dataset will be made publicly available and we believe it serves to help other

researchers study action attributes and many other interesting problems, such as

automatic subscripting, transfer learning, human tracking and pose estimation in

difficult conditions, etc.

4.2 Detecting Action Attributes using Contextual Constraints

4.2.1 Systematic Overview

A systematic overview of our approach is shown in Figure 4.1. It is composed

of three parts: feature extractor, which extracts low-level features from a video;

elementary attribute detector, which detects attributes in a video using local cues
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only; and context constraints, which combine outputs from the elementary detectors

of all attributes so as to determine a set of globally optimized attribute labels. We

use off-the-shelf algorithms in the first two parts and a factorial conditional random

field to incorporate the contextual constraints in the last part. The details are

presented in the rest of this section.

4.2.2 Low-level feature extraction

Since our goal is to detect human action attributes, we need a module to

detect human and extract motion features within the human bounding box. This

problem has been thoroughly studied and numerous algorithms have been proposed

in the last few decades. Interested readers can refer to [74, 75, 57, 76, 77] for a few

exemplar implementations. Since this is beyond the scope of this thesis, we assume

that this step has been done and simply use the annotated bounding box as the one

produced by any algorithm that does human detection and tracking. In this way,

we can measure the upper bound on the performance of various attribute detectors

described in the next section.

The low-level features for representing motions in a video are HOG and HOF,

which are extracted at the detected interest points using the author’s latest im-

plementation of STIP [78] with a default noise threshold and video resolution of

320×240. All descriptors within the human bounding box are quantized into one

of the 400 visual words, which are computed using k-means from 40,000 randomly

selected descriptors. At the end, each frame is represented by a histogram of vi-
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sual words, x ∈ Xd, which counts the number of quantized descriptors within the

bounding box of the human in a frame and its two closest neighbours.

4.2.3 Elementary attribute detectors

Our elementary attribute detector is an SVM with a χ2 kernel, which takes

the histogram of visual words as inputs and predicts the probability of a particular

action attribute occurring in each frame of an unseen video. The kernel function

K(hi,hj) is given as in Section 3.4 of [42]:

K(hi,hj) = exp

{
− 1

S

D∑
k=1

(hik − hjk)2

hik + hjk

}
, (4.1)

where S is scaling factor that is set as the mean distance among all training samples

as suggested in [42], and D is the histogram dimensionality.

During training, we have training videos with attributes labelled at each frame.

For each attribute, we select features from all positive frames as positive examples

and randomly select an equal number of negative examples to train the SVM. For

testing, we first extract histogram of visual words from each frame t in an unseen

video, denoted as xt. Then the SVM for attribute a predicts the presence of this

attribute in frame t, and the output probability value is denoted as Na(xt). This

value will be used as the node feature of the conditional random field described in the

next section. The SVM also predicts a binary value to indicate the presence/absence

of attribute a at frame t by applying a threshold of 0.5 over Na(xt). This will be

used as a baseline in our evaluation. See Section 4.3.2 for more details.
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4.2.4 Incorporating Contextual Constraints

4.2.4.1 Factorial Conditional Random Field Model

We take into account two types of contextual constraints in this chapter: the

temporal context and the semantic context. To promote agreement between the

different attribute labels at different frames, we model the contextual constraints

with a conditional random field (CRF) as shown in Figure 4.3. The features ex-

tracted from T frames in a video are denoted as a vector of T local observations,

X = {x1, x2, ..., xT}; and at each local observation at frame t, by xt, the histogram

of visual words as discussed in the preceding section. At each frame t, we wish to

detect the presence of A action attributes yt = {y1t , y2t , ..., yAt }, which are the states

in the CRF model. In the literature, this is also known as a factorial CRF [79].

To better understand this CRF model, we can compare it with a linear chain CRF

[80] as shown in Figure 4.2, which has been used in action class recognition from

video streams [81]. In a linear chain CRF, the state of each time point is dependent

on its immediate neighbors only (Markovian assumption) and we enforce agreement

between states in adjacent time points after accounting for the correlation between

the neighboring temporal states. In a factorial CRF, we have multiple states at

each time point, yt = {y1t , y2t , ..., yAt }, and there are edges between every pair of yit

and yjt , (i, j) ∈ {1, 2, ..., A}1. To avoid clutter, we only show two attributes at each

1For clarity, we call the edges between states of the same time points as between-chain edges

and the edges between states of adjacent time points as within-chain edges. In Figure 4.3, the

former are colored in red and the latter in black
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time point in Figure 4.3. In the experimental dataset used, there are 24 attributes

at each time point. The between-chain edges are designed to promote agreement

between different attributes at the same time point. The intuition is that some

attributes tend to occur together, e.g.two arms oscillate and fast run while others

don’t, e.g. slow run and fast run. Thus the between-chain edges take into account

the co-temporal correlation among attributes.

The factorial CRF is defined as follows

P (Y|X) =
1

Z(X)

(
T∑
t=1

A∑
a=1

Υt(yt,a,X)

)
(

T−1∑
t=1

A∑
a=1

Ψt(yt,a, yt+1,a,X)

)
 T∑

t=1

∑
a,b∈{1,...,A},a6=b

Φt(yt,a, yt,b,X)

 , (4.2)

where Z(X) is the partition function, {Υt} the local (node) potential functions,

{Ψt} the within-chain potential functions, and {Φt} the between-chain potential

functions. The potential functions are defined by a set of feature functions {fk}

together with corresponding weights {λk} as:

Υt(yt,a,X) = exp

(∑
k

λkfk(yt,a,X)

)

Ψt(yt,a, yt+1,a,X) = exp

(∑
k

λkfk(yt,a, yt+1,a,X)

)

Φt(yt,a, yt,b,X) = exp

(∑
k

λkfk(yt,a, yt,b,X)

)
. (4.3)
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Figure 4.2: A linear chain CRF model.

The feature functions for the above potential functions are defined as follows:

fk(yt,a,X) = I[yt,a = m] logNa(xt−j)

fk(yt,a, yt+1,a,X) = I[yt,a = m ∧ yt+1,a = n]

fk(yt,a, yt,b,X) = I[yt,a = m ∧ yt,b = n]φ(a, b) (4.4)

where j ∈ [−W,W ]2, m,n ∈ {0, 1}, a, b ∈ {1, ..., A}, I[x = A] is an indicator function

so that I[x = A] = 1 if x = A, or 0 otherwise. Intuitively, the node feature functions

encode correlations from the presence of attribute a and the observation confidence

forward or backward within a time window; the within-chain edge feature functions

encode the transition probability between adjacent time point for attribute a; the

between-chain edge feature functions encode the compatibility of two attributes,

a and b, measured by φ(a, b) and is obtained by normalizing the co-occurrence

frequency between these two attributes. Figure 4.3.1 illustrates the normalized co-

occurrence matrix that is computed from the training set in our experiments.

2where W = 1 is the size of the sliding window around a video frame
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Figure 4.3: A factorial CRF model. To avoid clutter, we only show two attributes at

each time points. In reality, we can have as many as attributes at each time points

and they are fully connected to each other.

4.2.4.2 Learning Model Parameters

In general, given a training set consisting of N sequences D = {Xn, Yn}Ni=1,

we want to find the optimal parameter Λ∗ = {λ∗k} that maximizes the following

objective function, as discussed in [80],

L(Λ) =
N∑

n=1

logP (Yn|Xn,Λ), (4.5)

where the right hand side is the conditional log-likelihood of the training data. The

partial derivative of the log-likelihood w.r.t λk associated with clique index c is [79]

∂L

∂λk
=
∑
n

∑
t

fk(Yn
t,c,X

n)

−
∑
n

∑
t

∑
Yt,c

p(Yt,c|Xn)fk(Yn
t,c,X

n) (4.6)

where Yn
t,c is the assignment to Yt,c in Yn, and Yt,c ranges over assignments to the

clique c at time point t. The first term in the right hand side is easy to compute. The
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second term computes marginal probabilities p(Yt,c|Xn), which will be discussed in

Section 4.2.4.3.

To reduce overfitting, we define a spherical Gaussian prior [79] to the param-

eter, which has zero mean and covariance matrix Σ = σ2I, i.e.,

Λ ∼ N (0, σ2I), (4.7)

and this is equivalent to optimizing L(Λ) using `2 regularization:

Lr(Λ) =
N∑

n=1

logP (Yn|Xn,Λ)− 1

2σ2
‖ Λ ‖2, (4.8)

and the gradient becomes

∂Lr(Λ)

∂λk
=

∂L

∂λk
− λk
σ2

(4.9)

To speed up the training process, we use stochastic gradient ascent to search

for the optimal parameters [82]. At each iteration, we randomly pick a training

sequence, evaluate the gradient w.r.t λk on that training sequence, and update λk

by taking a small step in the direction of the negative gradient

λk ← λk + α
(∑

t

fk(Yn
t,c,X

n)−

∑
t

∑
Yt,c

p(Yt,c|Xn)fk(Yn
t,c,X

n)− λk
σ2

)
, (4.10)

where α is a learning rate parameter, which is set to a small value. The iteration

continues until we reach the maximum iteration or the change of objective function is

below a threshold for 10 iterations. In our experiments, the optimization procedure

usually completes within 10N iterations.
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4.2.4.3 Inference

Two types of inference tasks are addressed during training and testing. In

training, we need to compute the marginal probability of each clique p(Yt,c|Xn).

In testing, we need to perform Viterbi decoding, i.e. estimate the most probable

attribute sequence Y∗ for an unseen sequence X that maximizes the conditional

probability

Y∗ = argmax
Y

P (Y|X,Λ∗) (4.11)

where the parameter Λ∗ = {λk} are learned from training examples. Both tasks

can be achieved by Loopy Belief Propagation (LBP) [79]. In this section, we briefly

discuss the LBP procedure for computing the marginal probability. The Viterbi de-

coding can be performed in a similar fashion by replacing the summation in Equation

(4.12) with a maximization.

Belief propagation algorithms iteratively update a vector m = (mi(vj)), which

are called messages between pair of vertices vi and vj. The message mi(vj) sent

from vertex vi to its neighbor vj is given by:

mi(vj)←
∑
i

(
Υ(vi)Ω(vi, vj)

∏
k 6=j

mk(vi)

)
, (4.12)

where Υ(vi) is the local potential, Ω(vi, vj) the edge potential between vi and vj,

mk(vi) is the message sent to vi from its neighbors except vj. A random schedule is

adopted and messages propagate through the CRF until convergence or a maximum

number of iterations is reached. Then the marginal probability of nodes vi and vj
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are computed as:

p(vi, vj) ∝ Υ(vi)Υ(vj)Ω(vi, vj)
∏
k 6=j

mk(vi)
∏
k 6=i

mk(vj). (4.13)

Note that we have omitted X in the above two equations for clarity, and we use

Ω(vi, vj) to refer either Ψt(yt,a, yt+1,a,X) or Φt(yt,a, yt,b,X), which can be determined

by the clique that involves vi and vj.

4.3 Experiments

4.3.1 Dataset and action attributes

We tested our approach on the Olympic Sports Dataset [83]. This dataset

includes 16 action classes and 783 videos. The original purpose of this dataset is

for recognizing action classes and thus there is no attribute labels available. Liu

et al [19] defined 39 attributes on this dataset on the action class level, i.e., each

action class has a list of fixed attributes across all videos of this class. As we argued

in Section 4.1, this level of action attribute labels is neither sufficient to describe

the dynamics in the action videos nor capture the unique characteristics within a

particular video. Thus we create a new dataset to evaluate the performance of action

attribute detection using the videos from the Olympic Sport Dataset. In particular,

we defined 24 action attributes, which include 9 leg motion patterns, 6 arm motion

patterns, 6 whole body motion patterns, and 3 human-object interactions. The full

list of attributes can be found in Figure 4.3.1 and Figure 4.3.1. For each action

class, we randomly select 20 videos from the Olympic Sports Dataset to create
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the Action with Attribute dataset with 320 videos. In each video, we labelled the

presence/absence of each action attribute as well as the bounding box of the athlete

in each frame. Figure 4.3.1 illustrates the action-attribute matrix in this dataset.

Figure 4.3.1 illustrates the co-occurrence matrix of action attributes. Both figures

show the fill list of attributes considered in the experiments.

To evaluate the performance of action attribute detector, we divide the Action

with Attribute dataset into two disjoint subsets, which include a training set with

240 videos and a testing set with 80 videos. Both sets include all 16 action classes.

4.3.2 Baseline algorithms

The first baseline algorithm is the elementary attribute detectors described in

Section 4.2.3. This algorithm treats each frame as an independent sample and does

not take into account any contextual constraints.

The second baseline algorithm is a linear CRF as illustrated in Figure 4.2. The

node feature functions and edge feature functions are defined in Equation (4.4). The

learning algorithm is the same as the one presented in Section 4.2.4.2, except that

there are no between-chain feature functions involved. Since this is a chain struc-

tured CRF, exact inference can be achieved by the forward-backward algorithm and

Viterbi algorithm [79]. This algorithm takes into account the temporal contextual

constraints but treats each attribute independently: the semantic context is still

ignored.
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Figure 4.4: Action-attribute matrix in our dataset. White entry in row a and column

b means action a has attribute b and vice versa. Notice that this figure only shows

the overall relationship between actions and attributes but does not imply that every

video of action a has (or does not have) attribute b. As discussed in Section 4.1, an

attribute b may not occur in a particular video of action a.
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Figure 4.5: Co-occurrence matrix of action attributes obtained from training set in

our dataset. The brighter an entry, the higher the probability that the corresponding

attributes will co-occur at the same time point.
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4.3.3 Experimental Results

We measure the performance of attribute detection by precision, recall and

F1-score at the frame level. Every frame is treated as an individual sample for

this purpose. A positive sample that is correctly (incorrectly) detected as positive

(negative) is counted as true positive, a.k.a., TP, (false negative, a.k.a., FN); A

negative sample that is correctly (incorrectly) detected as negative (positive) is

counted as true negative, a.k.a., TN, (false positive, a.k.a., FP). Then the precision,

recall and F1-score are defined as

precision =
#TP

#TP + #FP

recall =
#TP

#TP + #FN

F1-score =
2× precision× recall

precision + recall
(4.14)

We compute the three measurements for each attribute and their mean and

standard deviation for the baselines and the proposed factorial CRF (FCRF). Their

overall detection performances are summarized in Figure 4.6. This figure shows

that the proposed FCRF significantly outperforms the baseline algorithms SVM

and LCRF in precision and F1-score, while the recall of all three algorithms are

similar. To test the significance of these performance results, we did a t-test of the

null hypothesis that the mean performances of FCRF are the same as those of SVM

and LCRF, against the alternative that the mean performances of FCRF are higher

than those of SVM and LCRF, with significance α = 0.05. The result of t-test failed

to reject the null hypothesis for recall but rejected the null hypothesis for precision
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and F1-score, with p-value < 0.0005.

Figure 4.7 compares the precision scores across each attribute. It shows that

FCRF improves the detection precision for every attribute. In particular, the base-

line algorithms achieve very low precision for a few attributes, e.g. walk forward,

stand up, one arm open, put down and throw. FCRF removes a large number false

positives using contextual constraints which results in significantly better precision

scores.

Figure 4.8 illustrates the outputs of the three algorithms on a video of the ac-

tivity tennis serve. It shows that the decision values of SVM are quite noisy and

there are a large number of false positives for the attribute bend and false negatives

for the attribute one arm swing. The LCRF, which only considers temporal con-

straints, is only able to smooth out noisy detections that last for short periods but

is unable to deal with persistent false positives. On the other hand, FCRF corrects

many of such errors by using semantic contextual constraints: stand still and bend

are less likely to co-occur while bend and one arm swing are more likely to co-occur.

Figure 4.9 shows a case where the semantic constraints in FCRF over-constrains

the action attributes and results many artefacts. In the beginning of this video (un-

til frame 60), SVM detector shows strong local evidence for crouch and bend, and

they have strong semantic correlation (see Figure 4.3.1). As a result, FCRF labeled

them as positive and remove other attributes that are less likely to co-occur with

them, including stand still, which becomes false negative during this time frame.
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Figure 4.6: Overall performance of action attribute detection with three algorithms:

SVM, linear CRF (LCRF) and factorial CRF (FCRF).

Figure 4.7: Precision of action attribute detection with three algorithms: SVM,

linear CRF (LCRF) and factorial CRF (FCRF).
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Figure 4.8: Detailed detection results of the activity tennis serve, where impos-

ing contextual constraints in the FCRF improves the attribute detection precision

compared to the other two baseline approaches: SVM and LCRF.

Figure 4.9: Detailed detection results of the activity diving platform 10m, where

imposing contextual constraints in the FCRF introduces artefacts.
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Chapter 5

Concluding Remarks and Future Work

As outlined in the introduction, this thesis addresses three applications of

attributes, namely, describing entities, recognizing entities, transfer learning in three

domains including objects, scenes and activities. Table 5.1 summarizes the work in

thesis. We now provide some concluding remarks for each topic, together with

directions for future research.

5.1 Attribute Based Transfer Learning

We have presented a transfer learning framework that employs object at-

tributes to aid the learning of new categories with fewer training examples. We

explore a generative model to describe the attribute-specified distributions of image

features and two methods to transfer attribute prior from known categories to un-

known categories. Experimental results show that the proposed approaches achieve

Objects Scenes Activities

describing entities Chapter 4

recognizing entities Chapter 3

transferring knowledge Chapter 2

Table 5.1: Contributions of this thesis.
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state-of-the-art performance in both zero-shot and one-shot learning tests.

The current work has a few areas to be improved. In the Gibbs sampling

procedure, each local feature is independently sampled so that the complexity of

the whole system is linear with the number of local features in an image. This

drawback prevents us from using large number of features in images, as did in [14].

As we have seen in the preliminary results, the features within the same superpixel

tend to belong to the same topic, due to their similarity in appearance. So we can

group the features within an superpixel and assign the same topic and attribute

to them. By this way we reduce the complexity to be proportional to the number

of superpixels instead of the number of features. Thus we can apply large number

features to improve the current system.

Finally, the proposed generative model can be extended to other domain. For

example, an ongoing work is to study the affordance of tools and object attributes

from video streams. The affordance of tools are naturally correlated with object

attributes. For example, a sharp edge affords piecing or cutting, an handle affords

holding, etc. We propose to model the relationship between the affordance and the

shape attributes using the Author-Topic Model, where the affordance of tools in a

given video corresponds to the documents and the object attributes corresponds to

the authors. We can then automatically learn the weights of each object attributes

in a specific affordance from training data using this generative model. Furthermore,

the proposed transfer learning approach can also be extended to this domain.
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5.2 Attribute based Active Recognition

We proposed a new framework for scene recognition within the active vision

paradigm. In our framework, the sensory module is guided by attentional instruc-

tions from the reasoning module and employs detectors of a small set of objects

within selected regions. The attention mechanism is realized using an information

theoretic approach, with the idea that every detected object should maximize the

added information for scene recognition. Our framework is evaluated in a static scene

dataset and shows the advantage over the passive approach. Also we discussed how

it can be generalized to object recognition and dynamic scene analysis, and gave a

proof of concept by implementing it for attribute based activity recognition.

In the current implementation, we have assumed that objects are independent

given the scene class. Though this assumption simplifies the formulation, this is not

necessarily true in general. In the future, we plan to remove this assumption and

design a scene recognition model that better represents the complex scenes in the

real world. Also, we will perform a comprehensive study of the proposed approach

using larger image/video datasets to investigate the impact of the active paradigm.

5.3 Attribute Detection Using the Contextual Constraints

We has studied the problem of detecting action attributes from sport videos.

Our work not only answers the question “is there an action attribute a in this

video?”, but also addresses the question “when does this attribute occur?”. The

attribute annotation we propose at this granularity will benefit lots of interesting
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applications in video understanding and event detection. In this work, we proposed

an approach that uses contextual constraints as post-processing to an off-the-shelf

discriminative model for attribute detection. We observed that semantic context,

i.e. the co-occurrence of attributes is an important constraint that can compensates

for the ambiguity that arises from noisy video features. As a result, our approach

is able to produce attribute labels that maximizes the agreement among labels at

different time points and different attributes.

In our ongoing work, we are exploring more action attributes, such as the scene

(e.g. swimming pool, track) and objects (e.g. basketball/tennis ball, pole/javelin).

We will also incorporate more contextual constraints into our model. In particular,

we are interested in the absolute and relative temporal order of attributes. An

example for the absolute temporal order is in high jump: the athlete must first do

a slow run, then jump forward with one leg, followed by jumping up and moving up

in the air, and finally move down in the air ; an example for the relative temporal

order for high jump is that slow run must occur before the other attributes, moving

up in the air must occur before move down in the air, etc. We believe these two

types of temporal orders are both strong contextual cues that will facilitate the

detection of action attributes more accurately.

5.4 Final Remarks

Though the proposed approaches was presented in the context of objects,

scenes and activities respectively, they can be easily extended to other domains with
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little or even no modification. For example, the generative model in the transfer

learning approach for object recognition can be directly applied to scene recognition

and activity recognition as long as we assume the independence among scene and

activity attributes. The active scene/activity recognition approach can also be used

for active object recognition without modification. The idea of using contextual

constraints in detecting activity attributes can also be extended to object and scene

domain after applying corresponding contextual constraints.

In summary, the attribute is a general concept that can be widely applied

in the domain of objects, scenes and activities. Using attributes as a middle layer

between low level features and high level entities, we have demonstrated that the

proposed new paradigm has intrinsic advantages over traditional paradigm in the

problems of describing entities, transfer learning, active recognition, which are cru-

cial components towards filling the semantic gaps in image and video understanding.
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