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The current study introduced a general modeling framework, multilevel 

mixture IRT (MMIRT) which detects and describes characteristics of population 

heterogeneity, while accommodating the hierarchical data structure. In addition to 

introducing both continuous and discrete approaches to MMIRT, the main focus of 

the current study was to distinguish continuous and discrete MMIRT models from a 

model comparison perspective. A simulation study was conducted to evaluate the 

impact of class separation, cluster size, proportion of mixture, and between-group 

ability variance on the model performance of a set of MMIRT models. The behavior 

of information-based fit criteria in distinguishing between discrete and continuous 

MMIRT models was also investigated. An empirical analysis was presented to 

illustrate the application of MMIRT models.  



  

Results suggested that class separation, and between-group ability variance 

had significant impact on MMIRT model performance. Discrete MMIRT models with 

fewer group-level latent classes performed consistently better on parameter and 

classification recovery than the continuous MMIRT model and the discrete models 

with more latent classes at the group level. Despite the poor performance of the 

continuous MMIRT model, it was favored over the discrete models by most fit 

indices. The AIC, AIC3, AICC, and the modifications of AIC and ssBIC were more 

sensitive to the discreteness in random effect distribution, compared to the CAIC, 

BIC, their modifications, and ssBIC. The latter ones had a higher tendency to select 

continuous MMIRT model as the best fitting model, regardless of the true distribution 

of random effects.  
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Chapter 1: Introduction 

The No Child Left Behind (NCLB, 2001) Act and Race to the Top (2009) 

both require psychometricians to help educators evaluate schools and teachers 

(Lissitz, 2012). Since their enactment, complex psychometric models have been 

developed to connect student academic achievement with their teachers and their 

schools. The hierarchical nature of educational data can be represented appropriately 

in multilevel models (Bryk & Raudenbush, 1992; Goldstein, 2010) with students 

nested within group level units such as teachers and schools. The development of 

multilevel analyses is driving interest in identifying the characteristics of effective 

schools and teachers and the criteria for measuring effectiveness (Fox, 2005).  

Two general trends exist to evaluate school and teacher effectiveness, either 

taking a longitudinal approach or focusing on measures at a single time point. While 

value-added models (VAMs; Ballou, Sanders, & Wright, 2004; Kane, Rockoff, & 

Staiger, 2006; Lissitz, 2005; McCaffrey, Lockwood, Koretz, & Hamilton, 2003; 

Sanders, Saxton, & Horn, 1997) estimate the contribution of teachers or schools to the 

achievement growth of students as they progress through grades, other multilevel 

models concentrate on investigating the impact of context effects (e.g., school and 

teacher effects) of student performance on achievement assessment. The models 

proposed in the current study are of the latter type.  

1.1 Statement of Problem 

An implicit assumption underlying the study of context effect is that teacher 

and school differences on effectiveness cause between-group variation of student 
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academic performance. When context effects are modeled as latent variables, one 

issue that draws great interest is whether such variables are better described as 

continuous or categorical.  

Context effects have been modeled as either continuous or categorical latent 

variables in the existing literature. The contribution of context effect on student 

achievement is often judged in terms of the percentage of variance accounted for by 

the teacher and school levels (Rowan, Correnti, & Miller, 2002). Hierarchical linear 

models (HLMs) have been widely implemented to decompose the variance in student 

achievement into within- and between-group components. While conventional HLMs 

describe the overall contribution of school and teacher effectiveness, some later 

extensions of multilevel models such as cross-classified models (CCM, Raudenbush 

& Bryk, 2002) and layered models (Ballou et al., 2004; Sanders et al., 1997) separate 

the persistent contributions of past teachers to current test scores. In those models, the 

context effect is assumed to be a continuous variable. Meanwhile, context effect is 

modeled as a set of latent classes in other multilevel models to capture population 

heterogeneity at the group level. The presence of unobserved group-level 

subpopulations can partly explain student difference on academic performance. For 

example, the multilevel growth mixture model with between-group mixtures (Palardy 

& Vermunt, 2010) provides a means of classifying schools into homogeneous classes 

in terms of the properties of their student mean achievement growth trajectories.  

The current study focuses on examining context effect reflected on item-level 

responses. More precisely, the question of interest is whether teaching practice affects 

the probability of students being clustered into a particular latent class that is 
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characterized by differential item functioning (DIF). DIF arises when the property of 

a particular item differs among examinees conditioning on their ability level. Recent 

studies have revealed that the differences in unobserved attributes, such as curricular 

experience may, in part, cause the DIF (Cohen, Gregg, & Deng, 2005). From a 

teaching practice perspective, this difference may reflect distinctive school and 

teacher effects on student learning. However, to assume that students are equally 

affected by their teachers and schools is unrealistic. It is widely accepted that a 

certain teaching practice will be effective with one type of students but not with 

others. Even given the same curricular practice, the perceived curricular experience 

can differ. Reflecting on item responses, DIF can exist among students from the same 

class or school. Thus, the investigation of context effect on DIF can provide valuable 

information regarding school or teacher effect.  

Mixture modeling is a statistical tool for identifying latent groups of 

individuals (McLachlan & Peel, 2000). As applied to measurement models, mixture 

IRT models are gaining in popularity in investigating possible latent causes of DIF 

(Cohen & Bolt, 2005; Samuelsen, 2005). To investigate context effect on DIF, 

multilevel extensions of conventional mixture IRT models are developed to 

appropriately accommodate the hierarchical structure. Multilevel mixture IRT 

(MMIRT) models are of this kind, and can be derived from multilevel mixture 

generalized models proposed by Vermunt (2008a). Compared to conventional 

mixture models, multilevel mixture models utilize either continuous random effects (a 

continuous approach) or a set of latent classes (a discrete approach) at the group level 

to assess variation in model parameters across group units.  
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It should be noted that Vermunt (2003) called the discrete approach 

"nonparametric" as opposed to the "parametric" approach that makes strong 

assumptions about the distribution of random effects. However, the term 

"nonparametric" does not imply "distribution free" in that the normal distribution 

assumption in the "parametric" approach is replaced by the assumption of a 

multinomial distribution. To avoid confusion, the current study uses "continuous" and 

"discrete", instead of "parametric" and "nonparametric", to describe the two 

approaches. 

Whereas latent classes can suggest substantive group heterogeneity; an 

alternative hypothesis is that the identified classes represent simple variation on a 

continuum of a latent structure (Van Horn, et al., 2008). In other words, latent classes 

not only capture multidimensionality in latent structure, but also represent 

discreteness in a latent distribution (Markon & Krueger, 2006). Under certain 

circumstance, the distinction between continuous and discrete specifications of 

multilevel mixture models pertains to the presumption of latent distribution. For some 

studies that have vague theoretical hypotheses regarding distribution of group-level 

variation, it is rather reasonable to compare the continuous and discrete approaches in 

an exploratory manner. A model comparison perspective, thus, can be utilized to 

accomplish this goal.  

1.2 Significance of the Study 

The MMIRT framework offers practitioners an alternative solution to 

investigating context effects on item-level responses where both population 

heterogeneity and hierarchical structure are acknowledged. Models within the 
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MMIRT framework can be divided into two general categories depending on whether 

variation at the group-level is modeled as a continuous random variable or a set of 

discrete latent classes.  

Discrete specifications of MMIRT models are not new. Cho (2007) and 

Vermunt (2008b) individually proposed two MMIRT models that are particularly 

utilized to identify school-level differences on item functioning while accommodating 

the hierarchical structure. Up to date, the continuous approach to MMIRT models is 

only a theoretical possibility. Instead, a similar modeling approach, the multilevel 

latent class analyses (MLCA) with continuous group-level random effects, has shown 

its potential to study the intervention effects in group randomized trials (Van Horn et 

al., 2008) and adolescent smoking typologies across communities (Henry & Muthén, 

2010). An empirical study, then, is necessary to illustrate the specification of 

continuous MMIRT models and their implementation in practice.  

Due to the complexity and large number of parameters, more often constraints 

are imposed on multilevel mixture models so that some parameters are not 

conditional on latent class membership. The decision with respect to constraints 

becomes even more complicated for models that introduce mixtures at both lower and 

higher levels. For instance, Asparouhov and Muthén (2008) described a multilevel 

mixture model where the model parameters differ across person-level latent classes 

but do not vary across group-level classes. Vermunt (2008b), in contrast, illustrated a 

similar model but with item parameters invariant among person-level classes. What 

constraints should be placed on the unrestricted model depends on the specific study 

purposes. In particular, if the main focus is to identify meaningful group 
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heterogeneity at lower-level while taking multilevel structure into account, model 

parameters may vary only between lower-level latent classes but remain constant 

across higher-level units. Even when latent classes are specified at higher level, they 

essentially represent variation among higher-level units instead of suggesting 

qualitative differences. In this scenario, the models with higher-level latent classes 

can be compared with the models using continuous random effects at the group level, 

leading to a test of discreteness versus continuousness. 

Both the continuous and discrete approaches can be used to model the context 

effect as group-level random effects. The comparison between the two approaches 

shares a similar challenge with other latent variable models on how to use substantial 

evidence such as model fit criteria to support whether a continuous or a discrete 

specification more properly describes higher-level distributions. 

Interest in methods of distinguishing between discrete and continuous latent 

distributions has grown in popularity in areas of clinical psychology and behavioral 

science. Such methods can also be applied to the comparison of the two approaches 

within the MMIRT framework. The key distinction between discrete and continuous 

latent variables is the number of values of latent distribution that further leads to non-

negligible differences in fit and parameter estimates. The difference in fit provides 

important means for decision making about which latent structure, continuous or 

discrete, should be selected for a particular set of data. Previous studies limited their 

discussion to conventional latent variable models such as structural equation mixture 

modeling (Bauer & Curran, 2004), latent profile models (Lubke & Neale, 2006) and 

latent trait model (Markon & Krueger, 2006). As far as multilevel mixture models are 
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concerned, only one study (i.e., Henry & Muthén, 2010) has applied information-

based model fit criteria to compare the continuous approach and the discrete 

approaches to MLCA. The BIC functioned so unstably that Henry and Muthén (2010) 

suggested more research to understand the performance of fit criteria in MLCA. 

Although information criteria have been widely used to select models with two 

distinctive types of latent variables, empirical studies are still required to fill in the 

blanks about the function of fit indices in multilevel mixture models.  

1.3 The Purpose of the Study 

The MMIRT framework is promising in that it allows the possibility to 

specify a variety of models with mixtures when data are hierarchical. Both continuous 

and discrete approaches to MMIRT are introduced, and special attention is given to 

MMIRT models with continuous random effects at the group level. In particular, the 

current study presents the connection between two possible ways of specifying group-

level variation. The models illustrated in the current study are Rasch-model based and 

for dichotomously scored responses only.  

The concern is to model the variation on probability of lower-level latent 

classes across higher-level units, hence, two restrictive MMIRT models are further 

proposed. These two types of models differ only with respect to the specifications of 

higher-level variation. Moreover, the question of whether model comparisons lead to 

correct model selection regarding the nature of group-level latent distributions, 

continuous or discrete, is explored with a simulation and an empirical application. 

Although the framework is complex, few studies have been conducted to 

evaluate performance of MMIRT models in preparation for or in conjunction with 
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empirical analyses. The current study is the first attempt in the literature to use model 

fit criteria to distinguish between discrete and continuous MMIRT models. The 

purposes of this study are threefold: (1) to introduce two approaches to specify 

higher-level random effects in MMIRT, especially the continuous specification; (2) to 

investigate among various information criteria, which criterion works most 

effectively in identifying whether the latent distribution of random effects is 

continuous or discrete at higher level; and (3) to qualify the effect of class separation 

cluster size, proportion of mixture, and between-group ability variance on making this 

distinction.   

1.4 Overview of Chapters 

In the following chapter, the MMIRT framework is proposed after the 

introduction of a general latent variable modeling framework. Traditional mixture 

modeling approaches are extended to account for multilevel data structure. MMIRT 

models are special cases of the resultant multilevel mixture models.  

In Chapter 2, the mixture IRT model, multilevel IRT models and multilevel 

latent class models, and how each of the model components is integrated into the 

MMIRT framework are discussed in detail. In particular, the mixture IRT model 

specifies the mixture proportion on person ability and item difficulty structure; the 

multilevel IRT model is included to identify ability variation at the group-level; and 

the multilevel latent class models contribute to the probability structure in MMIRT. 

The description focuses on why MMIRT models are promising approaches to 

represent complex data structure and identify heterogeneity at both lower and upper 
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levels. The incorporation of covariates from two levels in MMIRT is also addressed 

in this chapter.  

Chapter 3 describes the technical issues with respect to the estimation 

methods and model selection. The latter part of Chapter 3 presents a simulation study 

designed to assess the power of model fit indices in distinguishing between the 

continuous and discrete specifications of MMIRT models.  

The results of the simulation study are presented in Chapter 4, where the 

influence of manipulated factors on the recovery of model parameters and 

classification is presented first, followed by the discussion of how frequently the true 

models are selected using various model fit indices. In addition, the restrictive models 

are compared when applied to an empirical dataset sampled from the Maryland 

School Assessment (MSA). Chapter 5 summarizes the findings, and discusses 

potential limitations and future directions in the development of MMIRT models.  
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Chapter 2: Theoretical Background 

MMIRT models proposed in this study are used explicitly for the detection of 

DIF while acknowledging the multilevel structure. In particular, the focus of the 

discussion of MMIRT is on how to model variation at the group-level. MMIRT 

models are special cases of multilevel mixture models (Vermunt, 2008a). Depending 

on the specification of latent variables, MMIRT models have two subtypes, a 

continuous approach with random effects following a continuous normal distribution 

and a discrete approach with a set of discrete latent classes. Both approaches are built 

upon the combination of mixture IRT models, multilevel IRT models as well as 

multilevel latent class models.  

In this chapter, the general latent variable modeling framework is discussed 

first, followed by the introduction of three fundamental models of MMIRT.  

2.1 Latent Variable Modeling Framework 

Latent variables are defined as hypothetical constructs that can only be 

inferred from observed variables and are often differentiated in terms of their 

underlying distribution as continuous or categorical.  

The nature of observed variables depends on the response format of the data, 

but the distinction between categorical and continuous latent variables is of 

considerable importance on a theoretical level (Lubke & Neale, 2006). A more 

common distinction between a categorical and continuous latent variable is the 

difference between a nominal (i.e., class, qualitative) latent variable that is necessarily 

categorical and discrete, and a metric (i.e., real numbers or interval) latent variable 
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that can be discrete or continuous. In this study, metric variables are assumed to be 

continuous, and the terms categorical and discrete are used interchangeably. 

Conventional latent variable models with one type of latent variable can be 

classified into four general categories based on the types of observed and latent 

variables (Bartholomew & Knott, 1999), as shown in Table 2.1. Classical factor 

analysis (FA) is a general term for models characterized by continuous observed 

variables and continuous latent variables. When the observed variables are 

categorical, IRT models are obtained with continuous latent variables. The latent 

class analysis (LCA) deals with the situations when both observed and latent 

variables are categorical. This term and finite mixture model are used interchangeably 

in practice. If the categorical latent variables are inferred from continuous observed 

variables, a latent profile analysis (LPA) is obtained. All four analyses have been 

widely used in social and behavioral research.  

Table 2.1 Classification of latent variable modeling 

 Observed Variables 

Latent Variables Continuous Categorical 

Continuous Factor analysis Item Response Theory 

Categorical Latent Profile analysis Latent Class analysis 

 

For the purpose of accommodating context effects, traditional latent variable 

models can be extended to include a higher level. Those models can be applied to the 

situations in which either a three-level univariate response or a two-level multivariate 

response data set are considered, where the former has an item or measurement level 

in addition to the person and group levels. Latent variables at the person level and 
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group level could be continuous (or random effects), discrete or a combination of 

these two. Thus, depending on the scale types of latent variable at the two levels, 

Vermunt (2007) proposed a nine-fold classification of latent variable models for 

multilevel data sets as shown in Table 2.2.  

This classification is an expansion of the latent variable modeling framework 

introduced by Skrondal and Rabe-Hesketh (2004). This flexible framework provides 

a unifying theme of latent variables which can embrace various traditions such as 

growth modeling, multilevel modeling and finite mixture modeling. All categories 

except Category A1 (see Table 2.2) fall into a more general type labeled as multilevel 

mixture models; that is, models with latent classes at either one or at two levels 

(Vermunt, 2003, 2007). Compared with the traditional latent variable models, a 

multilevel mixture model contains either continuous random effects or a discrete 

latent variable at the group level to account for heterogeneity in model parameters 

across group units.  

Table 2.2 Nine-fold classification of latent variable models for multilevel data sets 

Person-level latent 

variables  

Group-level latent variables 

Continuous Categorical Combination 

Continuous A1 A2 A3 

Categorical B1 B2 B3 

Combination C1 C2 C3 

 

Category A1 includes two-level HLMs as well as multilevel factor and IRT 

models (Fox & Glas, 2001; Goldstein & Brown, 2002; Grilli & Rampichini, 2007). 

The previously discussed multilevel mixture IRT models proposed by Cho and Cohen 

(2010) and Vermunt (2008b), along with the two multilevel mixture factor models 
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proposed by Vermunt (2007) and Varriale and Vermunt (2012) are all from Category 

A2. These models assume a continuous latent trait at the person level, while 

introducing latent classes at the group level to cluster groups in terms of model 

parameters for the lower-level units. The idea of classifying groups is also applied to 

growth mixture models (Muthén, 2004), and its multilevel extension, MGMM-B, 

discussed by Palardy and Vermunt (2010), is a special case from Category A3. The 

multilevel mixture growth models classify both person and group units into 

homogeneous classes in terms of their mean growth trajectories. One type of 

multilevel latent class analysis (MLCA) from Category B2 introduces categorical 

latent variables at both the lower and higher levels (Asparouhov & Muthén, 2008; 

Vermunt, 2003). The higher level units are clustered based on the lower-level class 

membership probabilities. Vermunt (2003) and Van Horn et al. (2008) propose 

another type of MLCA from Category B1 with continuous random effects at the 

group level. These two approaches to specifying multilevel latent class are discussed 

in details in a later section of this dissertation.  

The specification is complex for models in the C categories since those 

models introduce both continuous and categorical latent variables at the person level 

while considering latent variables at the group level. Allua (2007) proposed a 

multilevel variant of the factor mixture model of Category C1. The MMIRT models 

focusing on the possible procedure to identify school level DIF effect (Cho & Cohen, 

2010; Vermunt, 2008b) are from Category C2 in which school units are clustered into 

group-level latent classes.  



 

14 

 

 

Figure 2.1. The conceptual relation between latent variable models (Cho, 2007) 

As far as IRT models are concerned, many that belong to Category A2, A3, 

and C can be seen as special cases of the general MMIRT modeling framework 

proposed in the current study. As discussed in Cho (2007), the MMIRT integrates 

mixture IRT, multilevel IRT and multilevel latent class models. The Venn diagrams 

in Figure 2.1 depict the relations between these modeling approaches.  

To date, the primary focus of MMIRT models introduced previously is to 

detect school-level DIF effect, and latent classes are introduced at the school-level. 

For instance, a discrete MMIRT model described by Cho and her colleague (Cho, 

2007; Cho & Cohen, 2010) aims to identify school-level latent classes which present 

difference on item functioning. The authors claimed that the school-level DIF was a 

result of curricular or pedagogical differences (Cho & Cohen, 2010). While Cho’s 

Latent Class Model Multilevel Model 

IRT Model 

Mixture 

IRT 
Multilevel 

IRT 

Multilevel 

Latent Class 

Multilevel 

Mixture IRT 



 

15 

 

model specified DIF effect on both student-level and school-level, Vermunt (2008b) 

proposed a variation of Cho's model in which only school-level DIF was considered.  

Unlike the models proposed by Cho (2007) and Vermunt (2008b) which both 

focus on the possible procedure to identify school-level difference on item 

functioning, the current study emphasizes distinguishing between continuous and 

discrete distributions of variation at the group level in MMIRT. Two restrictive 

MMIRT models are introduced where the group-level random effects are modeled as 

either continuous or discrete. The two new models can be utilized to detect DIF when 

data are hierarchical. The method of distinguishing between the two modeling 

approaches may find support from the general discussion of the relation between the 

categorical and continuous latent variables.  

In the following sections, a brief review of the three fundamental models is 

provided first, followed by the discussion of how MMIRT models are derived by 

combing these three models. 

2.2 Mixture IRT Models 

Mixture IRT models represent the integration of finite mixture models with 

conventional IRT models. Compared to conventional IRT models which use only 

continuous latent traits to represent the common content of observed responses, 

mixture models include a categorical latent variable to indicate the class membership 

of each examinee. These models assume that data arise from possibly heterogeneous 

populations consisting of several latent classes and a continuous latent trait can be 

incorporated to model the observed responses within each class. The discrete nature 
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of classes in finite mixture models facilitates interpretations of response differences in 

terms of latent class membership rather than manifest variables measured a priori.  

Mixture IRT models provide sound solutions for detecting latent 

subpopulations that differ systematically on item responses. The early development of 

mixture IRT model started with the mixed Rasch model (Rost, 1990; 1997) that can 

identify items with different parameters across latent classes. Other variations such as 

the mixture linear logistic test model and mixture nominal model were utilized to 

identify examinees with random guessing behavior (Mislevy & Verhelst, 1990), or to 

detect differences in selecting response categories (Bolt, Cohen, & Wollack, 2001). 

Test speededness can be modeled using the mixture Rasch model with ordinal 

constraints (Bolt, Cohen, & Wollack, 2002). 

The presence of DIF implies existing nuisance dimension(s) that cannot be 

captured by conventional latent variable models which assume a single latent trait. 

Therefore, Kelderman & Macready (1990) combined the ideas of latent class models 

and latent trait models, and suggested the use of loglinear latent class model to detect 

DIF by investigating interaction effect between grouping variables (either manifest or 

latent) and item parameters. Later development employed mixture IRT models to 

identify differential functioning of items (Cohen & Bolt, 2005; Cohen, Gregg & 

Deng, 2005; Samuelsen, 2005). Mixture IRT models can help researchers understand 

the causes of DIF by classifying examinees into latent classes. The new method also 

allows researchers to investigate the association between manifest variables and latent 

class membership. This is done by incorporating manifest variables as covariates.  
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The MMIRT models proposed in the current study are extensions of the 

mixture Rasch model (MRM). The assumption underlying the MRM is that a 

population consists of a fixed number of latent classes within which a Rasch model 

holds. Item difficulty parameters are allowed to vary across latent classes, but for 

members of one particular class all items function exactly the same. This mixture 

model not only quantifies latent ability but also accounts for qualitative differences 

among examinees. In the MRM, both item difficulty parameters and ability 

parameters get an extra subscript to indicate the latent classes they belong to.  

2.3 Multilevel IRT Models 

Traditional IRT models have been expanded in many ways to address 

methodological and empirical problems. One example is to specify an IRT model as a 

two-level model with items nested within examinees. Adams, Wilson, and Wu (1997) 

and Raudenbush and Sampson (1999) formulated a Rasch model within a hierarchical 

structure as a two- and three-level hierarchical logistic regression model. In this 

model, the first level specifies the relation between observed responses and latent 

ability. Within a hierarchical generalized linear model framework, Kamata (2001) 

proposed multilevel formulation of the Rasch model. Maier (2001) also described a 

Rasch model with a hierarchical model imposed on person parameters. Fox and Glas 

(2001, 2003) and Fox (2005) not only imposed a multilevel model on the two-

parameter normal ogive model, they also included covariates at both levels as 

predictors of latent abilities. This type of reformulation is capable of modeling 

measurement error within and between item and examinee levels (Adams, Wilson, & 

Wu, 1997; Kamata, 1998). In addition, such modeling approach also provides more 
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accurate estimation of the standard errors of the parameters (Adams et al., 1997; Fox, 

2005; Maier, 2001, 2002). More importantly, the combination of multilevel models 

with IRT leads to the increasing development of psychometric models for data with a 

hierarchical structure.  

The multilevel IRT model has received more attention than the traditional 

multilevel models to investigate contextual effects (Fox, 2005). Rather than assuming 

a two-level structure, the multilevel IRT models impose a hierarchical linear model 

on the ability parameter. The models proposed by Kamata (2001) and Maier (2001) 

are both flexible to accommodate a third level (e.g., schools) and to further study its 

impact on the lower level (e.g., students) (Adams et al., 1997; Fox & Glas, 2001; 

Kamata, 2001; Maier, 2001, 2002). Cheong and Raudenbush (2000) specified a three-

level multilevel IRT model to investigate school level impact on examinees’ 

responses. The multilevel modeling framework can be utilized to detect DIF. The 

general procedure is to include covariates to account for the likelihood of a correct 

response that cannot be fully explained by latent ability (Wu, Adams, & Wilson, 

1997). Cheong (2006) further extended the work of Wu et al. (1997) to a three-level 

model and investigated influences of school contexts on item performance differences 

across schools. DIF, thus, is interpreted as a significant cross-level interaction 

between item difficulty and individual and group characteristics (Cheong, 2006).  

The Rasch hierarchical measurement model (HMM) proposed by Maier 

(2001) provides a foundation for modeling dichotomous responses within a nested 

structure. More specifically, the Rasch HMM incorporates a Rasch model and a two-
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level hierarchical linear model and specifies intercepts as random effects at the first 

level. No additional covariates, however, are included at either level in this model.  

2.4 Multilevel Latent Class Analysis 

The latent class model is a statistical method for identifying unobservable 

groups of individuals (McLachlan & Peel, 2000; Muthén & Shedden, 1999). The 

main goal of using a latent class model is to construct meaningful clusters inferred 

from multiple observations. Traditionally, latent class models were developed for 

analyzing multivariate response data sets (Goodman, 1974; Lazarsfeld & Henry, 

1968). Those models can be, however, conceptualized as a two-level model where the 

single-level multivariate responses are treated as two-level univariate responses with 

item responses nested within individuals (Vermunt, 2010).  

As described by Vermunt (2008a) and Muthén and Asparouhov (2009), 

MLCA is akin to a mixed-effects regression model for categorical outcomes 

(Hedeker, 2003, 2008; Wong & Mason, 1985) which is latent rather than observed. 

Traditionally, a logistic regression model is used for a binary outcome. In MLCA, this 

outcome represents latent class membership. Conventional latent class models assume 

that the observations are independent of one another. This assumption, however, is 

often violated in many data such as when students are nested within schools or 

classrooms, or employees nested within companies. Thus, multilevel extensions of 

latent class models are proposed in response to the violation of independence 

assumption. If the traditional latent class analysis is conceptualized as a two-level 

model, a MLCA model has three levels where the nested structure is acknowledged 

by specifying intercepts of level-2 latent class as random effects. These random 
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intercepts allow the probability of membership in a particular level-2 latent class to 

vary across level-3 units and thereby to assess the influence of level-3 units on 

indicators that define level-2 latent class membership (Henry & Muthén, 2010).  

Two approaches have been proposed to capture variation of latent class model 

parameters across group-level units. One variant of MLCA yields a clustering of 

higher-level units with regard to differences on lower-level responses or class 

membership probabilities. Another variant makes use of random effects as in 

conventional hierarchical linear models. Compared to the two-level latent class 

models, a MLCA includes either a discrete latent variable or continuous random 

effects at level 3 (Vermunt, 2010). The selection of discrete or continuous 

specification for the latent variables at level 3 depends on specific research purposes. 

However, Vermunt (2008a) advocated that the discrete approach shows more 

substantive benefit than the continuous approach. In the following sections, the 

situations where level-3 heterogeneity is modeled using continuous random effects or 

discrete latent variables are discussed first. The incorporation of covariates is also 

addressed in the later section.  

2.4.1 Continuous Approach to MLCA.  

The use of continuous random effects representing between-unit variation has 

been commonly adopted in a regression context (Raudenbush & Bryk, 2002; Snijders 

& Bosker, 1999). However, the inclusion of random effects in the estimation of 

mixture models remains understudied. Vermunt (2003, 2008a) and Asparouhov and 

Muthén (2008) have described mixture models with random effects in which the 
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groups are assumed to be drawn from a population of groups, and the probabilities of 

latent class membership are treated as random variables (Snijders & Bosker, 1999). 

Taking multilevel structure into account, the most general multilevel latent 

class model assumes that all model parameters can be group-specific. The resultant 

model is equivalent to an unrestricted multiple-group latent class model (Clogg & 

Goodman, 1984). A more practical approach is to place restrictions on the general 

model by assuming that the item conditional probabilities are invariant across groups. 

This specification has been widely adopted in practice and is also employed here. 

2.4.2 Discrete Approach to MLCA.  

Rather than using continuous random effects, it is also possible to cluster 

higher-level units into one of several higher-level latent classes. Put differently, a 

second latent class model is imposed at the group level in addition to a person-level 

latent class model. This discrete approach to MLCA has been proposed by Vermunt 

(2003, 2008a) and Asparouhov and Muthén (2008).  

Because the probabilities of person-level latent class membership are allowed 

to vary across groups, it is this variation that defines the between-group latent classes 

(Henry & Muthén, 2010). Instead of assuming a normal distribution of random 

effects, this assumption is replaced by a multinomial distribution (Vermunt, 2008a) 

with discrete latent values in the discrete approach. This is akin to using a discrete 

distribution in the form of a histogram to approximate a continuous distribution. 

Essentially, this approach relaxes the strong assumption pertaining to the form of the 

random effect distribution. This is advantageous to allow the presence of non-

normality and to be less computationally demanding (Muthén & Asparouhov, 2008). 
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The discrete MLCA models use finite numbers of group-level latent classes to capture 

the group-level variability in the distribution of person-level latent class membership 

probabilities (Henry & Muthén, 2010). The identified higher-level latent classes are 

assumed to differ with respect to the probabilities of lower-level latent class 

membership. Consequently, a particular group-level latent class consists of groups 

with similar distribution of person-level typologies. 

2.5 Multilevel Mixture IRT Models and Two Restrictive Cases 

A general MMIRT model can be seen as a three-level model, where items are 

nested within examinees that are further nested within classrooms or schools. The 

level-1 model is concerned with item-level. The latent ability and latent class 

membership are modeled at level-2, the person-level. The level-3 model defines the 

variation of ability and probability of class membership across group units. MMIRT 

models enable researchers to investigate heterogeneity in individual response patterns 

while taking the multilevel data structure into account. Thus, individual responses on 

items are directly modeled as a function of not only individual characteristics but also 

the features of groups which the individuals belong to. In particular, other than using 

a set of latent classes combined with a continuous latent variable at the person-level, 

MMIRT allows probabilities of individual latent class to vary across higher-level 

units. That is, the probability that an individual will belong to a certain latent class is 

large in some groups while small in others. The specification of multilevel latent class 

models thus can be readily incorporated into MMIRT. More specifically, the random 

effects at the higher level are treated as either continuous or discrete in the same way 

as in MLCA.  
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Although two comparative approaches exist to modeling group-level random 

effects, the association between responses at the person-level is specified similar to a 

combination of mixture IRT and multilevel IRT. Mixture IRT models can capture 

heterogeneity of individual response patterns and help to infer the unobservable cause 

of DIF. The item difficulty portion of MMIRT together with the ability portion is 

built upon the conventional MRM (Rost, 1990). The conventional mixture IRT model 

is deficient in accounting for the nested structure as found in most educational data. 

Describing a latent trait in a multilevel IRT fashion is therefore adopted in the current 

MMIRT models. However, the decomposition of total ability variance into person-

level and group-level components may not be practical in MMIRT. This is due to the 

fact that the distribution of ability is class-specific but the proportions of person-level 

latent classes are allowed to vary across group-level units.  

In the following two sections, the integration of the MRM, multilevel IRT 

model and MLCA into the two approaches to MMIRT models is described first. In 

addition, covariates can be incorporated in the probability portion of the model to 

predict latent class membership at the person and group levels. How covariates from 

different levels are incorporated in MMIRT is illustrated in the third section. The 

exploration of covariate effects in MMIRT is beyond the scope of the current study. 

However, given the importance of covariates in the study of context effects, it is still 

worthwhile to briefly introduce the idea of modeling covariate effects in MMIRT. 

Two restrictive MMIRT models are proposed in the last section to answer one 

particular question, whether context effect affects the probability of individuals being 

clustered into a particular latent class. 
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2.5.1 Continuous Approach to MMIRT Model.  

One substantial difference between continuous MMIRT and discrete MMIRT 

models is the specification of variation at the group level. The continuous MMIRT 

assumes that the groups are drawn from a population of groups. The model 

parameters are conditional on the particular group.  

Let g denote a person-level latent class, 1,...,g G , 
jtC  denote latent class 

membership for examinee j ( 1,...,j J ) from group t ( 1,...,t T ), and the probability 

that the examinee j belongs to the particular latent class g conditional on group t is 

denoted by 
|( | )jt g tP C g T t    . Note that the group here refers to a class or 

school, rather than a manifest grouping variable such as gender and ethnicity. In a 

continuous MMIRT model, the unconditional probability of a correct response on 

item i ( 1,...,i I ) is defined as 

1

|

1

( ) ( | ) ( | , )

           ( | , , , )

G

ijgt jt ijgt jt

g
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g t ijtg jtg ig
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f Y P C g T t f Y C g T t

P Y g t b 


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, 

(2.1) 

where 
ijgtY  is the response to item i for examinee j from group t within latent class g, 

jtg  is the latent ability and 
igb  is the item difficulty parameter for item i in latent 

class g. The conditional probability is written in the similar form as in a traditional 

Rasch model as 
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 
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 Item Difficulty Structure. The item difficulty parameters 
igb  have no group 

subscript, indicating items function constantly across groups but differ across person-

level latent classes.  

 Ability Structure. The latent ability 
jtg  is assumed to follow a normal 

distribution that is conditional on the person-level latent classes 

2~ ( , )jtg g gN   , (2.3) 

where
g  and 

2

g  are the class-specific mean and variance, respectively. Given 

varying proportions of person-level latent classes in each group, to decompose the 

ability variation as specified in multilevel IRT models is not further carried out.  

 Probability Structure. The probability of class membership is defined as 

0

|
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exp( )
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(2.4) 

with 

|

1
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G
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p




 . (2.5) 

Since the latent class probability cannot be specified independently, knowing the 

probabilities of G-1classes automatically determines the probability of the last class. 

As a result, the model is nonidentifiable. For identifiability purpose, the first latent 

class is selected as reference group, and 
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(2.6) 

where
0tg  is the group-specific log odds of examinees belonging to latent class g 

instead of the first latent class conditional on group t, and for the first latent class 

01 logit(1) 0t   . The intercept parameter implies that the probability of individual 
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class membership is constant within each group. It is a random effect that captures the 

variability in the log-odds across groups. 

The random intercepts can be divided into two components at the group level 

0 00 0tg g tgU   , (2.7) 

where
00g  is the population average of the log odds for latent class g and 

0tgU  is the 

group-specific random deviation from the average of latent class g. Again, constraints 

such as 001 01 0tU    have been placed for identifiability. These random deviations 

are assumed to be normally distributed. The magnitude of the 
0tU variance indicates 

the strength of the influence of the group level (Henry & Muthén, 2010). A larger 

variance indicates greater group effect.  

For a total of G latent classes at the person level, G-1 random intercepts are 

specified with one class being selected as reference group. Each random intercept 

then requires a class-specific random variable to indicate the variability across 

groups. Unfortunately, this model becomes increasingly computational burden with 

growing number of level-2 latent classes (Van Horn et al., 2008; Vermunt & Van 

Dijk, 2001). Following the work of Bock (1972) and Hedeker (1999), Vermunt 

(2003) suggested modeling the means and covariances associated with the random 

variables using a common factor. Equation 2.7 can then be reformulated as  

0 00 00 00tg g g tr     , (2.8) 

for 2,...,g G , where 
00g  are factor loadings and 

00tr  is a normally distributed 

random effects with mean of 0 and variance of 1. For identifiability, 001 001 0   . 

The implicit assumption underlying this formulation is that the random means are 
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highly correlated and can be well represented by a single factor with different factor 

loadings for different random means (Asparouhov & Muthén, 2008; Vermunt, 2003). 

This factor model reduces the dimensionality of random means from (G-1) to 1 by 

specifying zero residual variance, and saves substantial amount of computation time. 

Van Horn et al. (2008) further suggested using a covariance structure with a (G-1)-

dimensional multivariate normal distribution to relax this rather restrictive 

assumption.  

Notice that this specification of MMIRT operates under the assumption of 

measurement equivalence, meaning that the model parameters for the response 

variables do not vary across groups (Vermunt, 2010). Groups differ only with respect 

to the probabilities of person-level latent class membership rather than their 

difference on item functioning.  

2.5.2 Discrete Approach to MMIRT Model.  

In discrete MMIRT models, rather than employing continuous random effects, 

mixtures are introduced at both the person level and the group level, each of which 

could capture a different type of unobserved heterogeneity (Vermunt, 2008a). Model 

parameters get one extra subscript to indicate the latent class that a group belongs to. 

Following the subscripts used previously, let 
ijtgkY  denote a specific item 

response. Notice that there are two types of identification, manifest (such as item i, 

examinee j and group t) and latent (such as person-level latent class g and group-level 

latent class k). Let k denote a particular group-level latent class, 1,...,k K , 
tC  

denote the latent class membership for group t, the probability that the group belongs 

to the particular latent class k is denoted by ( )t kP C k   . Unlike the continuous 
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approach, the lower-level latent class membership of examinee j in group t, 
jtC , is 

conditional on the higher-level latent class k rather than the group t as specified in the 

continuous approach, and the probability is then defined as 
|( | )jt t g kP C g C k    . 

The unconditional probability of a correct response on item i ( 1,...,i I ) is  
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(2.9) 

where the product of 
k  and 

|g k  replaces 
|g t  as specified in the continuous model. 

The conditional probability is  
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(2.10) 

 Item Difficulty Structure. The item difficulty parameter 
igkb  in Equation 2.10 

is conditional on person-level latent class g and group-level latent class k. This is a 

more general specification.  

 Ability Structure. Similar with the mixture Rasch model, the latent ability 

level 
jtgk  is also assumed to follow a normal distribution, 

2~ ( , )jtgk gk gkN   , (2.11) 

where 
gk  and 

2

gk  are the class-specific mean and variance, respectively. The 

subscripts for the means and variances indicate that they are allowed to differ across 

person-level latent classes conditional on the group-level latent classes. That is, for 

two group-level latent classes each of which has two person-level latent classes, 
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2×2=4 distinctive normal distributions can be obtained for latent ability. As discussed 

previously, the class-specific ability variance cannot be simply decomposed into 

individual- and group-level components, given varying proportion latent classes 

across groups. 

 Probability Structure. The conditional probability of latent class membership 

is specified in a way similar to continuous MMIRT with the only difference that the 

model parameter is conditional on the group-level latent class. The group-specific log 

odds of examinees belonging to latent class g instead of the first latent class 

conditional on group t, 0 gk is  

|

0

1|
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(2.12) 

and 
01 0k  . The intercepts are allowed to differ across latent classes of groups and 

is the random-effects portion of the model. 

The probability of latent class membership at the group-level is specified as 
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with  
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(2.15) 

where
00k  is the log odds of group t belonging to the higher-level latent class k 

instead of the first class, and for identifiability, 
001 logit(1) 0   . 
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2.5.3 Covariate Effect in MMIRT.  

Mixture models benefit from incorporating covariates. First, covariates can 

help identify and describe characteristics of class membership. Several studies have 

shown that the use of covariates can improve detection of latent classes (e.g., Smit, 

Kelderman, & van der Flier, 1999; Cho, Cohen, & Kim, 2006). The use of covariates 

also helps to relieve the rigid requirement of latent class structure. In order to separate 

latent classes, mixture models require either substantial differences between latent 

groups or relatively large sample size. A simulation conducted by Smit et al. (1999) 

indicated that incorporating collateral information in MRM can substantially improve 

the estimation of standard errors and the assignments of latent classes. Recent studies 

employed covariates to formulate plausible explanations of the differences across 

latent classes on DIF items. For instance, Dai (2009) modeled a covariate effect 

directly in the mixing proportions in a mixture IRT model. The results indicated that 

the inclusion of covariates provided extra context information and achieved better 

recovery of the underlying structure.  

In MMIRT models, the specification of covariates can be on both person-level 

and group-level. Covariate effects can differ across group units. As such, persons 

with same person-level covariate values can have different probabilities of being in a 

particular latent class due to contextual or environmental differences.  

Person-level covariates are included to predict membership in person-level 

latent classes through multinomial logistic regression in both the continuous approach 

and discrete approach. Group-level covariates, in contrast, are specified differently 

between the two. For the continuous approach the group-level covariates are specified 
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using a linear regression function and are used to predict a group-specific probability 

that an individual belongs to a particular person-level latent class. The function of 

group-level covariates in the discrete approach can be either to predict the group-level 

latent class membership, or to predict person-level latent class membership. Both 

require the specification via a multinomial logistic regression.  

 Covariate Effects in Continuous Approach. Suppose a set of person-level 

covariates 
rjX  ( 1,...,r R ), the class probability proportion of examinees, 

|g t  in the 

continuous approach is formulated as 

|
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11|
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 
 
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 
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where
rtg  refers to the group-specific regression parameter and it can be treated as 

fixed effect as well as random effects across groups, and 1 0rt  . 

Given a set of group-level covariates 
stW  ( 1,...,s S ), the group-level 

covariates are specified using a linear regression function as 

0 00 0 0

1

S

tg g sg st tg

s

W U  


   , (2.17) 

where 
0sg  is the class-specific regression parameter for covariate 

stW  and 0 1 0s  .  

A graphic representation of continuous MMIRT is shown in Figure 2.2 

modified from Henry and Muthén (2010, p.197). In this example, there are a total 

number of G person-level latent classes (
gC ). The two black dots represent the 

random means for the person-level latent classes. As explained above, there are G-1 

random means (therefore, G-1 filled circles) for G person-level latent classes. In 

addition, these random means are allowed to correlate with one another.  
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Figure 2.2. Multilevel mixture IRT model -- continuous approach 

 Covariate Effect in Discrete MMIRT. Similar to the continuous approach, the 

person-level covariates are included to predict the probability 
|g k in the discrete 

approach. The group-level covariates can directly predict the person-level latent class 

membership. In addition, another set of group-level covariates indirectly impact 

person-level class by directly predicting the group-level latent class membership.  

Suppose R person-level covariates 
jtX  and L group-level covariates 

tW , the 

equation for
|g k  is written as 

|

0 0

1 11|

logit
R L

g k

gk rgk rjt lg lt

r lk

X W


  
  

 
    

 
  , (2.18) 

where
rgk  refers to the class-specific regression parameter for person-level covariates 

and can vary between the group-level latent classes, 
0lg  is the class-specific 
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parameter for group-level covariates and is considered fixed. Again, additional 

constraints are placed, 1 0 1 0r k l   . 

Covariate effects at the group-level are specified via a multinomial logistic 

regression. For another set of S group-level covariates '

tW  

'

00 0

11

logit
S

k
k sk st

s

W


 
 

 
  

 
 , (2.19) 

where
0sk  is the class-specific regression parameter of a covariate '

tW  for the group-

level latent class k, with the constraint 0 1 0s  .  

 

Figure 2.3. Multilevel mixture IRT model -- discrete approach 

A graphic representation of discrete MMIRT is shown in Figure 2.3. Assume 

that G person-level latent classes (
gkC ) and K group-level latent classes (

kC ) exist in 

the sample. Again, two black dots are used to represent the G-1 random means for the 
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person-level latent classes. Those random means are conditional on the k
th

 group-

level latent class. In addition, the effect of group-level covariates on the person-level 

latent classes is not presented in the graph below. 

2.5.4 Two Restrictive MMIRT models.  

More often, restrictions are placed on the general model for specific research 

purposes. In the current study, modeling the variation in probabilities of person-level 

class membership is the main focus in the models proposed below. In this section, 

two restrictive MMIRT models, which differ only at the specification of group-level 

variation, are further described.  

MMIRT models proposed by Cho and her colleague (Cho, 2007; Cho & 

Cohen, 2010) used discrete latent classes at the group level to capture between-group 

differences on item difficulties. A more restrictive model is obtained by assuming that 

the item parameters do not depend on the group-level unit. Following the notation 

used before, this means 'igk igkb b for 'k k . This notation indicates that the item 

difficulty parameters differ only across the person-level latent classes. Latent classes 

at the person level capture the heterogeneity in response patterns, whereas latent 

classes at the group level differ in terms of the probability of individuals being 

classified in a particular person-level latent class. Put differently, the group-level 

latent classes have different distributions of random probabilities of person-level 

classification. An assumption of multinomial distribution replaces the normal 

distribution assumed in the continuous approach (Vermunt, 2008). Group-level latent 

classes represent a discrete distribution in the form of a histogram, where 
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nonnormality is allowed (Henry & Muthén, 2010). Thus, two MMIRT models differ 

merely on whether the group-level variation is specified as continuous or discrete.  

In addition, although latent ability is allowed to follow distinctive 

distributions within latent classes, the current restrictive models define the ability 

distribution in the form of Rasch HMM. Such model constraints provide a practical 

benefit for the current study for it allows further to decompose the variation of latent 

ability into between-group and within-group components. More specifically, a two-

level hierarchical linear model is further imposed to model variation of the latent 

ability within and between group units. The examinee’s ability is specified as the sum 

of a fixed effect and a random effect 

0jt t jtu    (2.20) 

where
0t  is the mean ability of group t, and 

jtu  is the ability variation within groups.  

Rasch HMM is a special case of random-effects logit models, the individual 

random effects 
jtu  are assumed to follow a logistic rather than a normal distribution 

as commonly seen in linear multilevel models (Rodríguez & Elo, 2003). To be 

precise, the logistic regression is assumed to have mean 0 and variance 
2

2 2

0
3

t s


   

where s is the location parameter. The group-level model for ability is specified as 

0 00 0t t    , (2.21) 

where
00  is the grand mean ability, and 0t  is the between-group ability variation and 

follows a normal distribution with mean of 0 and variance of 2

00  (i.e., 2

0 00~ (0, )tv N 

). Similar to conventional linear multilevel models, the intra-class correlation (ICC) is 
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utilized to indicate the proportion of variance explained by group units (Rodríguez & 

Elo, 2003). Thus, the ICC in Rasch HMM is  

2

00

2 2 2

00 / 3
ICC

s



 



. (2.22) 

 

In brief, both MMIRT approaches are capable of detecting and describing 

characteristics of group heterogeneity, while accommodating the hierarchical data 

structure. In addition to explore potential DIF, the MMIRT methods facilitate 

simultaneous description of mixtures at the group level. The continuous approach 

captures the variation between groups using normally distributed random effects. In 

contrast, the discrete approach seems to offer substantive benefits as it does not 

require making as strong assumptions about the distributions of random effects as 

does the continuous approach and is less computational demanding (Muthén & 

Asparouhov, 2008; Vermunt, 2008a). If substantial difference is assumed among 

groups, to identify group-level latent classes by specifying relevant model parameters 

to be class dependent is a proper solution. However, such specification requires a 

strong theoretical rationale to support.  

After imposing certain constraints, the two restrictive MMIRT models 

proposed above differ only in terms of the distributions of group-level variation. In 

that sense, a model comparison perspective can be adopted to decide which of the two 

approaches is better at describing the underlying distribution. Given the absence of 

evidence in existing literature, model comparison between two MMIRT approaches is 

based on the discussion on how to distinguish between categorical and continuous 

latent variables. 
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2.6 Distinguishing between Categorical and Continuous Latent Variables 

A number of researchers (e.g., Bauer & Curran, 2004; Haertel, 1990; Heinen, 

1996; Molenaar & von Eye, 1994; Reise & Gomel, 1995; Vermunt, 2001) have 

discussed extensively the relation between categorical and continuous latent variable 

models. Existing latent variable modeling framework provides a compelling approach 

to distinguish between nominal (i.e., class, qualitative) latent variables and metrical 

(i.e., real valued or interval) variables (Markon & Krueger, 2006). Nominal latent 

variable models are equivalent to the metrical latent variable model because nominal 

latent variable models can be accommodated by metrical latent variable models 

(Haertel, 1990; Molenaar & von Eye, 1994). This is similar to the use of dummy 

coding to accommodate analysis of variance models, which are nominal, and in 

regression models, which are metrical. Nominal latent variable models are not simple 

discrete metrical latent variable models in that they capture multidimensionality in 

latent structure. More precisely, nominal latent variable models are multidimensional 

discrete metric latent variable models and these two models fit the same datasets 

equally well (Haertel, 1990; Molenaar & von Eye, 1994).  

Models representing either continuous or discrete distributions are not directly 

compared to each other to infer the discreteness versus continuousness of the data 

(Markon & Krueger, 2006). Among the metrical latent variable models, it is generally 

recognized that a continuous distribution can exactly reproduce discrete latent 

variable models (Haertel, 1990). A continuous latent distribution can conceptually 

reproduce discrete latent distribution because the possible latent values contained by a 

discrete latent distribution are subsumed by the latent values contained in a 
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continuous latent distribution (Markon & Krueger, 2006). The restrictive distribution 

assumption underlying the continuous approach, however, prevents its application in 

more general scenarios where non-normality may occur. In contrast, a discrete latent 

distribution is more flexible in its’ distributional assumptions and is capable of 

approximating a continuous distribution with arbitrary precision (Heinen, 1996; 

Vermunt, 2001). For example, researchers (e.g., Aitkin, 1997; Vermunt & Van Dijk, 

2001) have indicated that a finite mixture distribution can be obtained from the 

discretization of a continuous latent variable distribution. The approximation of 

continuous distributions gets better with increasing numbers of discrete values, 

suggesting a less fundamental distinction between continuous and discrete latent 

variables (Vermunt & Magidson, 2005). As Molenaar and von Eye (1994) remarked, 

the choice of continuous versus discrete scaling for the latent variables is essentially 

arbitrary as long as the analysis is confined to model means and covariances. The 

central question to ask is whether a limited number of latent values or a large number 

of latent values is required to account for an observed distribution. 

In practice, the number of discrete latent values is relatively small, therefore 

model fit and parameter estimates can differ appreciably between a discrete variable 

model and its continuous counterpart (Haertel, 1990). This difference in fit essentially 

provides important information for decision making about which latent structure, 

continuous or discrete, should be selected for a particular set of data (Markon & 

Krueger, 2006). Lubke and Neale (2006) advocated the use of model fit to decide an 

underlying latent variable is continuous or categorical. Although the overextraction 

problem may occur when either fitting a continuous latent variable model to data 
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stemming from a heterogeneous population or fitting latent class models to data with 

continuous factors. Comparing the fit of different exploratory models usually leads 

one to correctly select between categorical and/or continuous latent variables. Class 

separation is found to have profound impact on model fit indices. In addition, within-

class parameterization is better recovered with increasing within-class sample size, 

which leads to correct model selection (Lubke & Neale, 2006). 

Model misspecification is one of the most important issues that arise in 

distinguishing between discrete and continuous latent structure. Most often, this 

problem is discussed with respect to normal and non-normal distributions, but it can 

certainly apply to a more general scenario where a continuous latent distribution 

model is severely misspecified (Markon & Krueger, 2006). A variety of methods 

have been proposed to resolve this issue (see e.g., Bauer & Curran, 2004; Maraun, 

Slaney, & Goddyn, 2003; Miller, 1996). Continuous latent variables are commonly 

assumed to follow a normal distribution. When a set of data is non-normally 

distributed, a discrete latent variable can capture the non-normality. Bauer and Curran 

(2004) illustrated the effect of non-normality on latent class estimation using 

simulated data. Their findings show that the presence of two latent classes better 

approximate a non-normal multivariate distribution, even when only one group truly 

exists in the population. In other words, for a sample from a non-normal population, 

model comparison may favor a discrete model with multiple values over a normal 

continuous model. The use of model fit to infer the correct number of classes may be 

misleading as the additional populations capture features of the non-normality (Bauer 

& Curran, 2004; Markon & Krueger, 2006).  
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Given the fundamental relation between discrete and continuous latent 

variables, the only advantage of the discrete specification is that this approach does 

not introduce possible inappropriate and unverifiable assumptions about the 

distributions of latent variables (Bauer & Curran, 2004; Vermunt, 2008a). However, 

it is also not necessarily true that a discrete model generally gives better 

approximations than a continuous non-normal distribution or normal distribution. 

Under certain conditions, a normal distribution itself might be preferred over a 

discrete latent distribution for a latent non-normal distribution because the normal 

distribution is associated with loss of less statistical information about the observed 

sample (Markon & Krueger, 2006). Moreover, the efficiency of approximation to the 

population model varies among different discrete latent variable models. Information-

based fit criteria assess the amount of information lost in approximating an observed 

distribution by a model-generated distribution. Those fit indices would suit the 

purpose of distinguish between continuous and discrete latent variables.  

To evaluate the performance of model fit indices in distinguishing continuous 

and discrete MMIRT models, a simulation study is conducted and detailed description 

is given in Chapter 3. Before the simulation design is described, technical issues with 

respect to estimation methods and information-based model fit indices are discussed.  
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Chapter 3: Methods 

The first chapter described the motivation for adopting a multilevel mixture 

modeling framework and the connection between the two approaches. The second 

chapter provided the theoretical background and mathematic expression of two 

restrictive MMIRT models. This chapter addresses two issues of model estimation for 

MMIRT first, and later a simulation study is introduced to investigate the model 

selection between the continuous and discrete MMIRT models.  

3.1 Estimation and Model Selection 

3.1.1 Maximum Likelihood Estimation.  

The unknown parameters of the MMIRT models described previously can be 

estimated by means of maximum likelihood (ML). ML estimates are consistent and 

can be developed for various estimation situations. ML methods also offer desirable 

mathematical and optimality properties, such as estimators are asymptotically 

unbiased with minimum variance as sample size increases and they approximate 

normal distributions and sample variances for hypothesis testing of the parameters. 

ML has been widely utilized to estimate the parameters that define statistical models, 

and in fact, is the gold standard to which other estimation methods are often 

compared. 

The implementation of ML estimation in multilevel factor mixture models has 

been demonstrated by Vermunt and his colleagues (Varriale & Vermunt, 2012; 

Vermunt, 2003). The likelihood function described below extends Vermunt's 

equations to accommodate mixture IRT at the lower-level.  
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ML estimation is a process of finding the estimates for latent variables to 

maximize the likelihood function for observed responses. In a three-level model, 

suppose 
tY  is the vector of observed responses of group t and η  is the complete set 

of unknown parameters which are treated as fixed, the likelihood of the observed data 

marginal to all latent variables is 

(3)

1

( )
T

t

t

L f


 Y , (3.1) 

where (3)( )tf Y is the probability density of the observations of group t. The groups are 

assumed to be independent, and the product is over all group units.  

For continuous latent variables at the group level, (3)( )tf Y  is given by 

(3)

(3) (3) (3) (3)
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( ) ( | ) ( )
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t jt t t t

j

f f f d


 
  

 
ηY Y η η η , (3.2) 

where (3)

tη  is the continuous latent variables at group level and 
(3)( | )jt tf Y η  is the 

conditional density of each person. The persons within group t are assumed to be 

independent given the random variables, (3)

tη .  

When latent variables are discrete, the integration over (3)

tη  in Equation 3.2 is 

replaced by a summation over K group-level latent classes. The likelihood for group t 

is then defined by 

(3) (3)

1 1

( ) ( | 1)
JK

t k jt kt

k j

f f
 

 
  

 
 Y Y η . (3.3) 

where k is the class weight, and (3)( | 1)jt ktf Y η  is the density of one person 

conditional on the kth group-level latent class.  
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Under the current specification, 
(3)( | )jt tf Y η  and (3)( | 1)jt ktf Y η  are 

expressed by the similar form as in MRM. A detailed review of ML in MRM is 

presented by Formann (2007).  

In solving the integrals involved in the computation of likelihood function, a 

closed form expression is available when responses and latent variables are normally 

distributed (Vermunt & Magidson, 2005). In other cases, numerical integration 

approximates an integral by a weighted sum of the integrand function. This function 

is evaluated by a set of quadrature points of the variable being integrated out. 

Skrondal and Rabe-Hesketh (2004) provided a comprehensive discussion about 

alternative approaches such as Laplace approximation and Monte Carlo integration to 

approximate the integrals.  

To maximize the likelihood function, the Expectation-Maximization (EM) 

algorithm, Newton-Raphson (NR) algorithms and Fisher scoring algorithms are 

commonly implemented. The EM approach includes two steps: the E-step to evaluate 

the posterior expectation function, and the M-step to maximize this expectation 

function and update estimates of parameters. For ML estimation of discrete multilevel 

models with more than two levels, a new algorithm, which makes use of the 

conditional independence assumption, updates the expectation function upward and 

downward through the hierarchical structure (Vermunt, 2003). Compared to the EM 

algorithm, NR and Fisher scoring algorithms can produce estimates of standard errors 

for the maximum likelihood estimate. Both methods work in a very similar way, 

using the first-order derivatives and the second-order derivatives of the log-likelihood 

function. One difference is that NR uses the Hessian matrix in the place of Fisher's 
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information matrix. To overcome the problem encountered in computing the 

derivatives either analytically or numerically, other algorithms such as Quasi-Newton 

(QN) algorithms have been proposed. 

Most multilevel mixture models introduced previously can be fitted using 

either of the two popular software packages - Mplus (Muthén & Muthén, 1998-2010) 

and Latent GOLD (Vermunt & Magidson, 2005, 2008), which implement slightly 

different combinations of the integration and maximization methods. Latent GOLD 

solves the integrals using Gauss-Hermite integration, and uses the EM algorithm 

coupled with NR algorithm to find the ML estimates (Vermunt, 2010). Specifically, 

the estimation process starts with the upward-downward algorithm, and the NR 

algorithm takes over when the estimates approach the final solution (Vermunt & 

Magidson, 2005). Mplus employs a similar procedure but using rectangular, Gauss-

Hermite, or Monte Carlo integration for numerical integration and the optimization is 

achieved using a combination of EM and QN method (Muthén & Muthén, 2006). In 

particular, the Mplus software allows using multiple random starting values to avoid 

local maximum problems and only the starting values with the highest log-likelihood 

among these runs are used as the starting values in the final stage of optimization. 

Both packages have options for obtaining robust standard errors as well as for dealing 

with missing values and complex sampling designs. The current study used Mplus for 

MMIRT model estimation.  

3.1.2 Information-based Model Fit Statistics.  

Given the non-nested relation between a model of continuous latent 

distribution and a model of discrete latent distribution, the standard likelihood ratio 
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test is not suitable to assess relative model fit (McLachlan & Peel, 2000). Instead, the 

distribution-free information criterion statistics, which are based on the log-

likelihood, are commonly used to compare these two types of latent distributions and 

to make inferences about population structure.  

Although numerous information criteria exist, many can be seen as special 

cases of minimum complexity criteria (Barron & Cover, 1991; Sclove, 1987) that 

adjusts the log-likelihood for model complexity. Minimum complexity criteria have 

the general form written as 

-2log[ ( )] ( )IC L M C M  , (3.4) 

where IC  the value of a certain information criterion is a combination of 

-2log[ ( )]L M , -2 times the log-likelihood of the model M, and ( )C M , a quantity 

presenting the complexity of model M (Barron & Cover, 1991). The quantity, ( )C M , 

reflects the amount of information required to describe model M and can be further 

presented as a product of ( )a n p  (Sclove, 1987), where n  is sample size, and p  is 

the number of estimated parameters. In general, more parsimonious models, which 

are usually preferable, produce smaller values of minimum complexity criteria, ( )a n

therefore is a penalty term added to the -2 log-likelihood for each additional estimated 

model parameter (Henson, Reise & Kim, 2007). However, models with more 

parameters are always found to fit the data at least well or even better, meaning a 

greater log-likelihood. As such the impact of the penalty could be cancelled out, 

resulting in the more complex model being favored.  

Some important examples of minimum complexity criteria include the Akaike 

information criterion (AIC; Akaike, 1974, 1987), the Bayesian information criterion 
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(BIC; Schwarz, 1978), the sample size adjusted BIC (ssBIC; Sclove, 1987), the 

consistent AIC (CAIC; Bozdogan, 1993). These information criteria differ in the way 

they specify model complexity in terms of sample size and the number of free 

parameters of the fitted model. More specifically, the AIC does not depend on sample 

size and the penalty is ( ) 2a n  . The BIC, CAIC, and ssBIC criteria integrate sample 

size in different ways. Each additional parameter is penalized identically in the BIC 

and CAIC as for the BIC the penalty term is ( ) log( )a n n  and for the CAIC is 

( ) log( ) 1a n n  . Unlike in BIC and CAIC, the ssBIC penalizes complexity based on 

the Rissanen Information Criteria (Rissanen, 1978) for autoregressions, and the 

penalty term is
2

( ) log
24

n
a n

 
  

 
. Bozdogan (1993) suggested a modified AIC 

(AIC3) criterion using 3 instead of 2 as penalizing factor to avoid negatively biased 

estimate of the expected Kullback-Leibler information in the fitted model (Hurvich & 

Tsai, 1989) as existing in the standard AIC. The same reasoning applies, another 

modification of AIC, the AICC proposed by Burnham and Anderson (2002) takes the 

ratio of sample size to model parameters into consideration.  

2log[ ( )] 2AIC L M p         (3.5) 

3 2log[ ( )] 3AIC L M p        (3.6) 

2
2log[ ( )]
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 
     (3.7) 

2log[ ( )] (log( ) 1)CAIC L M n p        (3.8) 

2log[ ( )] log( )BIC L M n p       (3.9) 
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    

 
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The BIC has been recommended for its consistency across a variety of 

modeling settings. This index tends to select the correct model more frequently as 

sample size increases (Haughton, 1988; Leroux, 1992). The BIC is more conservative 

than the AIC for selecting models with more parameters, and the CAIC is the most 

conservative. The difference in the CAIC compared to the BIC results in a preference 

for smaller models slightly more often than does the BIC. However, with sufficiently 

large sample size, the BIC and CAIC never lead to diverging results (Markon & 

Krueger, 2006).The penalty of additional parameters in the ssBIC is not as harsh as in 

the BIC, and only when sample size exceeds 176 will the ssBIC become larger than 

AIC (Henson, Reise & Kim, 2007). The ssBIC is advocated for better performance 

when the model has either a large number of parameters or a small sample size 

(Yang, 2006).  

To distinguish continuous and the discrete latent variable models, AIC, BIC, 

CAIC and ssBIC are the four criteria most often used (e.g., Bauer & Curran, 2004; 

Lubke & Neale, 2006; Markon & Krueger, 2006). Lubke and Neale (2006), for 

example, found that when models with categorical, continuous, or both types of latent 

variables are fitted to the data generated under different types of latent variable 

models, correct model selection is more often made by the AIC and ssBIC. These two 

criteria outperform the BIC and CAIC. 

In the context of mixture modeling, no conclusive results have been reached 

regarding the function of various information criteria. McLachlan and Peel (2000) 

noted that the AIC tends to overestimate the number of classes present, whereas the 

BIC (and by extension the CAIC) may underestimate the number of classes present, 
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particularly in small samples. Compared to the wide use of AIC and BIC, only one 

study (Dias, 2006) supported the use of AIC3 in finite mixture models for selecting 

the number of latent classes. The model comparison between continuous and discrete 

MLCA models suggested that the BIC might not function properly in multilevel 

mixture models (Henry & Muthén, 2010). 

The information criteria used in the standard mixture analysis can also be 

utilized as model selection measures in multilevel mixture models. However, model 

selection becomes an even more complex issue for this type of model, especially 

when group-level heterogeneity is modeled using group-level latent classes (Vermunt, 

2010), because the decision on the required number of latent classes not only has to 

be made at the person level, but also at the group level.  

The use of criteria that contain sample size in their formula is particularly 

problematic, because the sample size can be measured in various ways. The sample 

size can refer to the number of observations both within- and between-levels. Palardy 

and Vermunt (2010) suggested using group-level instead of person-level sample size 

in BIC when comparing models that differ only at the group-level. A recent 

simulation study by Lukociene and Vermunt (2010) supported the use of the modified 

version of BIC. To evaluate the impact of change of sample size, the current study 

includes the modified BIC, as well as the other three fit indices with sample size 

information. The total person-level sample size is replaced by the number of groups 

for those indices. To differentiate them from the original indices with total person-

level sample size, the letter "n" is added before the abbreviations of the modified 

indices, for instance nAICC, nCAIC, nBIC and nssBIC. The four modified fit indices, 
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combined with the six fit indices mentioned above are included in the current study to 

select best fitting models.  

3.2 Simulation Design 

The findings from previous studies on mixture IRT, MLCA, as well as 

comparison between continuous and discrete latent variable models can be utilized as 

foundations for the investigation of MMIRT models. MMIRT models can be seen as 

multilevel extensions of finite mixture models. As in most mixture models, the 

primary goal is to assign individuals to their most likely classes. The quality of class 

assignment at the person level plays an even more important role in MMIRT as it 

determines whether the group-level random effects can be identified successfully.  

It is well established that the characteristics of measurement can impact the 

class assignment in mixture models. Effects of class separation that are due to the 

property of measurement instrument such as test length, magnitude of DIF effect, 

proportion of DIF items are frequently investigated in mixture IRT models. In 

general, clearer class separation can be achieved using a longer test containing a 

larger proportion of items with greater size of DIF effect. With respect to person 

features, one factor often assessed is the difference of latent ability distributions 

between classes (e.g., Cho & Cohen, 2010; Dai, 2009). Other than that, however, few 

studies in the literature have addressed the factors that are relevant to persons, groups 

and the interaction between these two levels of units, especially sample size at the 

two levels, ability variation within and between groups. Therefore, in the current 

study the characteristics of test and distribution of ability are held constant, while the 

other factors related to personal-level features were manipulated.  
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3.2.1 Fixed Factors.  

A simulated measurement scenario was constructed with a test of 40 items. 

The number of items reflected a length commonly seen in educational tests. Item 

difficulty parameters in IRT were generated from a uniform distribution of

( 1.5,1.5)U  . To introduce DIF effect, a selected proportion of items were associated 

with difference on item difficulties between person-level latent classes.  

In the context of DIF, two types of qualitative differences are identified (De 

Boeck, Wilson, & Acton, 2005). Simple qualitative differences refer to the condition 

where the location of item difficulties has a discernible pattern among the latent 

classes. In contrast, there is no such apparent pattern in the location of item 

difficulties in the case of complex qualitative differences. In the current study, the 

magnitude of DIF effect was fixed at 1 to reflect a simple qualitative difference.  

In addition, a data set with a sample of 6000 individuals with a total variance 

of latent ability of 1 was simulated. The sample size reflects a grade size typically 

seen in a county. Two latent classes were assumed to exist at the person level. A 

summary of fixed factors was provided in Table 3.1. 

Table 3.1 A summary of fixed factors  

Factors Model Level Fixed Values 

Test length Item-level 40 

Item difficulty range Item-level ( 1.5,1.5)U   

Total sample size Person-level 6,000 

Person-level mixtures Person-level Two 

Total ability variance 

Group- and 

Person-level 1 
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3.2.2 Manipulated Factors.  

The primary goal of this simulation study is to assess the performance of 

information-based fit criteria in distinguishing between the continuous and discrete 

MMIRT models and establish the conditions under which practitioners can properly 

apply the two approaches. Both continuous and discrete distributions were used to 

generate random effects at the group-level. Special interest was to what extent the 

four factors: person-level class separation, within-group sample size, proportion of 

mixtures as well as group-level ability variance can affect the model identification. A 

summary of manipulated factors was provided in Table 3.2.  

Table 3.2 A summary of manipulated factors  

Factors Model Level Corresponding Values 

Percentage of DIF items Item-level 15% 30% 

Group sizes Person-level 25 150 

Proportion of mixtures Person-level 50% : 50% 30% : 70% 

Group-level ability variance Group-level 0.1 0.3 

Discrete Distribution 

    Number of discrete values Group-level Two Four 

Continuous Distribution 

    Distribution forms Group-level Normal 

 

 Class separation. Whether it is easy or difficult to classify individuals to 

latent classes, this is a question concerning class separation. The current study 

investigated the effect of class separation due to various percentages of DIF items 

within a test. More precisely, a small proportion of items, such as 15%, is specified to 

function differentially across the two latent classes and is expected to result in weak 

class separation. In contrast, when 30% of items are assumed to have DIF effect, this 



 

52 

 

condition is considered to reflect large class separation. These two percentages are 

typically observed in educational assessments (Hambleton & Rogers, 1989; Raju, 

Bode, & Larsen, 1989). It was expected that a larger percentage of DIF items would 

lead to a better separation of classes at the person level.  

Note that class separation interacts with sample size. For more dissimilar 

classes, smaller samples are required for class separation. In MMIRT, the separation 

between person-level latent classes may interact with the sample size both at the 

person- and group-level. It is unclear how the group-level sample size may affect the 

separation of person-level classes, if at all.  

 Person-level and group-level sample size. It was of interest to investigate 

MMIRT behavior with respect to the sample size requirement at person-level and 

group-level. Proper application of multilevel mixture models requires sufficient 

sample sizes at each of the three levels. Vermunt (2010) provided some general 

guidelines on the sample size requirement in MLCA. A simple cut-off value is 

impractical in these types of models because the sample size at one particular level 

affects not only sampling fluctuation but also the separation of latent classes at higher 

levels. When group-level latent classes are introduced in the model, the required 

person-level and group-level sample sizes depend heavily on the separation of the 

person-level and group-level classes, respectively.  

To mimic the scenario regularly seen in statewide tests, two group sizes, 25 

and 150 are selected to reflect the number commonly seen for a classroom and a 

grade within school. Given the fixed total sample size, the selection of group sizes 
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also determined the number of groups to be 240 and 40 accordingly, which reflect a 

large and small number of groups. 

 Proportion of person-level mixtures. Another factor that is often addressed in 

mixture modeling is the proportion of latent classes in the population. In the current 

study, this factor was only manipulated at the person level. Other relevant studies 

often used equally split latent classes (Smit et al., 1999; Cho, et al., 2007). It should 

be noted that since the person-level latent classes are indicators of group-level latent 

classes, varying proportion of mixtures at the person level could potentially impact 

the identification of group-level random effects. Therefore, other than the condition 

with 50%:50%, an additional 30%:70% proportion was included to reflect the 

condition with uneven proportion of classes. It was expected that the uneven 

proportion condition would lead to smaller variation at the group level, which further 

increased the difficulty to detect group heterogeneity.  

 Between-group ability variance. The simulation studies of conventional 

mixture IRT models have revealed that the recovery of class membership improves 

with more distinct latent groups. This is usually done by assuming that the mixtures 

are sampled from distributions with different population means. Instead, how the 

within- and between-group variation of latent ability can interact with the 

identification of random mixtures is of interest in the current study.  

A between-group variance of 0.3 is selected to reflect that the group level 

variance accounts for 30% of total variance as commonly found in multilevel studies 

(Cheong, 2006; Palardy & Rumberger, 2008). As random-effects logit models, the 
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within-group variation of latent ability in MMIRT models is assumed to be 

2 21
0.7

3
s  , and the scale parameter is approximately 0.21.  

Another variance of 0.1 is selected to reflect a more homogeneous condition 

where the group-level accounts for only 10% of total variation. Accordingly, the scale 

parameter for the within-group variation is around 0.27. The consequence of groups 

with homogeneous ability distributions is to force the identification of person-level 

latent classes to rely more on the difference in item functioning rather than on ability 

distribution within groups.  

 Random effect distributions. Both discrete and continuous MMIRT models 

are used to generate data. The ability of information-based model fit indices to 

identify population distribution of MMIRT models under different distributions of 

random effects is examined. 

Equation 2.1 is used to generate the continuous distributions. When the 

population distribution is continuous, data sets are sampled from a normal distribution 

with mean 0 and variance 0.5, coupled with various sample sizes and levels of class 

separation. Each simulated data set is analyzed using four different models: the data-

generation model and three discrete models with two, three and four discrete latent 

values.  

Equation 2.9 is used to generate the discrete distributions. Distributions 

associated with few discrete values should be easily distinguished from continuous 

distributions. With increasing number of latent values, a discrete distribution and a 

continuous distribution become more indistinguishable (Markon & Krueger, 2006). 

Populations with two or four discrete values are employed for this condition. The 
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marginal probabilities of each group-level latent class are assumed to be equal, and 

the detailed specifications of mixture proportions are specified in Table 3.3. The 

selection of relative proportions within each cell must meet two criteria: first, to 

maintain the marginal probabilities of person-level and group-level latent classes, 

simultaneously; second, to introduce a moderate level of variation over conditional 

probabilities. Note that the relative frequencies within each cell indicate that the 

person-level latent classes and group-level latent classes are dependent. This is a 

result of identification of the group-level latent classes in discrete MMIRT models. 

The group-level latent classes describe the probability of membership in each person-

level latent class (Henry & Muthén, 2010).  

Four models are fitted to the same generated dataset: three discrete models 

including the data-generation model and a continuous model that assumed the random 

effect distribution to be standard normal (i.e., N(0,1)). Specifically, for the two-class 

condition the three discrete models have two to four group-level latent classes, and 

for the four-class condition the numbers are 3, 4 and 5. 

Table 3.3 True probabilities of latent classes at person level and group level 

Group-level Latent 

Classes 

Person-level Latent Classes 

Condition 1  Condition 2 

P(G=1) 

=0.50 

P(G=2) 

=0.50 

 P(G=1) 

=0.30 

P(G=2) 

=0.70 

Two 

Classes 

P(K=1)=0.50 0.40 0.10  0.20 0.30 

P(K=2)=0.50 0.10 0.40  0.10 0.40 

       

Four 

Classes 

P(K=1)=0.25 0.05 0.20  0.025 0.225 

P(K=2)=0.25 0.10 0.15  0.050 0.200 

P(K=3)=0.25 0.15 0.10  0.100 0.150 

P(K=4)=0.25 0.20 0.05  0.125 0.125 
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The estimation of MMIRT models can be time consuming. A typical 

continuous MMIRT model may take 2 to 3 hours on average to converge, and a 

simple discrete MMIRT model with only two group-level latent classes requires 

approximately 30 minutes, on a 3.0 GHz computer with 1GB of RAM. Only 50 

replications were conducted to implement the simulation within a manageable time 

period, while obtaining reasonable stability in the results. In addition, to reduce 

computing time, the true item difficulty values of all items in one latent class and 

non-DIF items in another latent class were provided as starting values. Meanwhile, 

three sets of random starting values were generated for the rest of model parameters. 

Only the one with the highest log-likelihood value was used for the final stage 

estimation. The selection of starting values may lead to potential problem of local 

maximum and reduce the generality of the results somewhat. Furthermore from the 

pilot study, a continuous model that was unable to converge after 200 iterations could 

be considered as non-converged. Therefore, the maximum number of iterations for 

the continuous MMIRT models was limited to 200, which could raise the possibility 

of non-convergence. Those issues were incorporated in the interpretation and 

discussion of the simulation findings.  

The manipulated factors were fully-crossed, resulting in 48 distinct 

conditions. Under each condition, true ability levels and class memberships were first 

sampled from the population distributions specified above. Item-level responses were 

simulated next with 50 replications. Four estimation models were fitted to the 

generated dataset, yielding a total of 196×50 distinct model estimations (3200 for the 

continuous distributions and 6400 for the discrete distributions). Data generation and 
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model estimation were conducted in R 2.14.1 (R Development Core Team, 2011) 

interfacing with Mplus 6.12 (Muthén & Muthén, 2010). The item difficulty 

parameters used for data generation were provided in Table 1 in Appendix A, and the 

sample Mplus codes for estimating continuous and discrete MMIRT models were 

included in Appendix C and Appendix D, respectively. 

3.2.3 Evaluation Criteria. 

 Convergence rate. Given model complexity, non-convergence was expected 

for some MMIRT models under certain simulated conditions. The convergence-rate 

within the number of replications was recorded and utilized as an indicator of model 

performance. The results can be used as empirical guidance for practitioners to 

properly implement MMIRT methods to data with varying characteristics.  

 Item parameter recovery. The accuracy of item difficulty recovery was 

evaluated in terms of average item bias and root mean squared error (RMSE). The 

item difficulty scale was identified by fixing the distribution of latent ability to a 

standard normal distribution within each person-level latent class.  

Instead of item parameter, the terms of interest was item difficulty difference (

b ) between the two person-level latent classes. Let trb denote the true difficulty 

difference and ˆ
rb  the estimated difficulty difference for the rth

 
( 1...r R ) 

replication, they are expressed by 

, ,tr tr focal tr referenceb b b   , (3.11) 

, 1 , 2
ˆ ˆ ˆ
r r LC r LCb b b   . (3.12) 

Bias and RMSE, therefore are defined with respect to difficulty difference using the 

following equations, respectively, 
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1

1ˆ ˆ( ) ( )
R

r tr

r

Bias b b b
R 

    , (3.13) 

2

1

1ˆ ˆ( ) ( )
R

r tr

r

RMSE b b b
R 

    .

 

(3.14) 

Calculating bias and RMSE of item difficulty difference in the above does not require 

the true and estimated item parameters to be placed on the same scale. These two 

criteria are averaged across items to provide global recovery of item parameters. To 

differentiate the influence on different item types, separate analyses were also 

conducted to DIF items and non-DIF items.  

 Classification recovery at the person level. Class memberships at the person-

level are indicators of group-level latent classes. Whether population distribution at 

the group-level can be correctly modeled depends on the success in recovery of 

classification at the person level.  

Classification recovery at the person level was evaluated by classification 

agreement between the true and estimated class memberships. The criterion used is 

the Cohen’s kappa ( ; Cohen, 1960). The Cohen’s kappa is a proper measure of 

agreement between two procedures that measure the same thing. The percentage is 

computed using a 2×2 class assignment matrix as shown below, in which an 

individual is assigned to one of the four cells.  

  Simulation 

E
st

im
at

io
n
 

 1 2 Total 

1 11P  12P  
1.P  

2 21P  
22P  

2.P  

Total .1P  
.2P  1 
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To compute kappa, the observed level of agreement (
11 22oP P P  ) and the 

expected level of agreement if the two procedures are totally independent (

.1 1. .2 2.eP P P P P  ) are defined. The corrected kappa is calculated via 

1

o e

e

P P

P






. (3.15) 

Arbitrary guidelines characterize a kappa value below 0.20 as slight, 0.21–0.40 as 

fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and over 0.80 as almost perfect 

agreement between the two procedures (Landis & Koch, 1977). 

Simulation studies with regard to mixture models frequently encounter the 

problem of switched class labels. Label switching happens when identified latent 

classes change meaning during the estimation. Given the fact that class labels are 

arbitrary, if labels are potentially switched across data sets, aggregating parameter 

estimates over potential mislabeled classes is undesirable (Tueller, Drotar & Lubke, 

2011). Tueller, Drotar and Lubke (2011) further proposed a switched label detection 

algorithm, where the largest assignment percentage should be achieved on the 

diagonal of the class assignment matrix. Followed the same logic of the proposed 

algorithm, an observed level of agreement less than .50 indicates the occurrence of 

label switching for two person-level mixtures. The computation of oP  and eP was 

adjusted according to the value of observed agreement level as shown below, 

.1 1. .2 2. 11 2211 22

.1 2. .2 1. 11 2211 22

      if ( ) 0.5 
 and   

      if ( ) 0.51 ( )
o e

P P P P P PP P
P P

P P P P P PP P

   
  

    
.

 

(3.16) 

 Recovery of random effects at the group level. The recovery of random 

effects at the group level was evaluated by the consistency of person level latent class 

proportion within group units.  
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Since random effects at the group level can be specified as continuous random 

variable or discrete latent classes, it is not feasible to compare directly the true and 

estimated group level random effects under various model specifications. Due to two 

person-level mixtures, the proportion of one person-level latent class within groups is 

sufficient to reflect the change of class probability across groups. The correlation 

between the true and estimated proportions was utilized to indicate random effect 

recover at the group level. The group-level latent classes are essentially composed of 

groups with similar proportions of person-level latent classes, using the correlation 

also provides a unified criterion for the comparison between the continuous and the 

discrete approaches. Note that only the absolute values of correlation were kept for 

analysis to avoid potential label switching problem.  

Model selection. The percentage of replications in which the population 

distribution was correctly identified was used to indicate the power of model fit 

indices. Both the original indices and the modified versions were compared in terms 

of how often they selected the true models as the first or the second choice under each 

simulated condition.  

The frequency of correct selection, however, does not provide information on 

how close the competing models are in terms of fit indices. In the current study, the 

two models with smallest fit values within each replication were considered as a 

comparison pair. The two comparison pairs with the highest occurrence probabilities 

over all simulated conditions were reported. To facilitate the interpretation of 

difference size, the current study adopted the likelihood ratio approach to compare the 
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two competing models (Hamaker, et al., 2011). For any information criterion, the 

value is transformed as 

* 1
exp

2
IC IC

 
  

 
, (3.17) 

and the ratio of the transformed values is computed in the form of 

*

1

* 1 2

2

1
exp ( )

2

st

st nd

nd

IC
IC IC

IC

 
   

 
, (3.18) 

where 
1stIC  is fit result for the model with the smallest value and 

2ndIC is the one with 

the second smallest value. The interpretation of the ratio is in a similar manner as 

likelihood ratios (Burnham & Anderson, 2002), such that the first model is said to be 

" ratio" times more likely to be the population model than the second one.  

No consensus has been reached on how large the ratio should be so that a 

model can be considered as the best fitting model with confidence. The current study 

selected two levels of ratio arbitrarily: 10 and 100, which correspond to an IC

difference ( IC ) of 4.62 and 9.21, respectively, as cutoff values of small and 

medium ratio size.  

 

The Mplus output files were read back into R, where the evaluation criteria 

were computed next. Once evaluation criteria were collected, factorial ANOVA was 

performed to compare model performance on item and classification recovery using 

PROC GLM (SAS 9.2, SAS Institute, 2009). The four estimation models were 

dummy coded with the true model specified as the reference model. Only the main 

effect of estimation models, its two-way and three-way interactions with the four 

manipulated factors were included in ANOVAs. In addition, eta-squared ( 2 ) was 
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employed to present the percentage of variance explained by the main effects and 

interactions. Only 2 0.05  was reported, that was an effect explained more than 5% 

of variance in the outcome variable. Cohen's 2f , defined as 
2

2

21
f







was further 

calculated as a measure of effect size. Cohen suggested that 2 0.15f   is a medium 

effect size and 2 0.35f  is a large effect size (Cohen, 1988).  
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Chapter 4: Results 

The framework of MMIRT modeling is not new, but the exploration of model 

function under various conditions still requires extensive research. The current study 

concentrated on distinguishing between the two MMIRT approaches, continuous and 

discrete, from a model comparison perspective. The simulation study described in the 

third chapter intentionally selected four manipulated factors to investigate the 

performance of six information criteria plus four modified versions in identifying the 

latent distribution of random effects at the group level. An empirical data analysis 

was conducted next to determine and illustrate MMIRT model function with regard to 

model fit criteria.  

4.1 Results of Simulation Study 

Table 4.1 Variable names of simulation factors in results 

Description Variable 

Latent class  

Person-level latent class PLC 

Group-level latent class GLC 

  

MMIRT models  

Continuous MMIRT model Cont 

Discrete MMIRT model with two group-level latent classes GLC2 

Discrete MMIRT model with three group-level latent classes GLC3 

Discrete MMIRT model with four group-level latent classes GLC4 

Discrete MMIRT model with five group-level latent classes GLC5 

  

Manipulated factors  

Percentage of DIF items DIF 

Group size Size 

Proportion of person-level latent class  Prop 

Ability variance at the group level Var 
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For the purpose of clear presentation, model names and manipulated factors 

were given short abbreviations (listed in Table 4.1) in the following tables and figures. 

4.1.1 Non-Convergence Rate. 

For every generated dataset, four different MMIRT models, one continuous 

plus three discrete, were fitted and compared with regard to model parameter 

recovery, latent class classification recovery as well as model fit statistics. A valid 

replication should have the four estimation models converged when fitted to the same 

dataset. Non-convergence occurring with any estimation model would lead to an 

invalid run. For all simulated conditions, additional iterations were conducted until 

the number of valid replications reached 50. The detailed non-convergence rates were 

shown in Appendix B. 

Altogether, 18 out of 48 simulated conditions never encountered convergence 

problems requiring additional iterations, and another 6 conditions were associated 

with a convergence rate higher than 95%. 11 conditions were found to have a 

frequency of non-convergence larger than 10, corresponding to a convergence rate 

less than 80%.  

Non-convergence often occurred in discrete MMIRT models, especially when 

the data-generation model was discrete and more latent classes were extracted at the 

group level. In contrast to the GLC2 that performed stably throughout all simulated 

conditions, the GLC4 was often unable to converge even when it was the data-

generation model. A close examination revealed that uneven proportion of PLC raised 

the probability of non-convergence, particularly when coupled with a small 

percentage of DIF items and small group size.  
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Similar with the GLC2, the continuous MMIRT model seldom encountered 

convergence issues with only one exception when the true generation model was 

GLC2 along with 30% DIF items, group size of 150, uneven PLC proportion and 

large group-level ability variance. This condition was particularly problematic. 

Except the true generation model (GLC2), the other three models all had a high non-

convergence rate. Consequently, a new set of ability and class parameters were 

generated for this condition and another 50 fully-converged iterations were conducted.  

Table 4.2 Number of free parameters for all fitted models 

 Cont GLC2 GLC3 GLC4 GLC5 

Number of 

Parameters 83 84 86 88 90 

 

4.1.2 Main Effect of Estimation Model. 

Model performance was evaluated with respect to two main parts: 1) bias and 

RMSE for item parameter recovery, and 2) Cohen's corrected kappa and correlation 

of PLC proportion within groups for classification recovery.  

Table 4.3 presented performance of estimation models on the four evaluation 

criteria. The results showed similar pattern over the three data-generation conditions: 

larger bias and RMSE between the true and estimated item difficulty difference leads 

to lower agreement on latent class membership at the person level, which further 

reduces the recovery of random effects at the group level. It was surprising that 

among the three data-generation models, only the GLC2 better recovered item 

parameters and latent class membership. The continuous MMIRT model performed 

consistently poorly on recovering item parameters and identifying person-level latent 
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classes, regardless of whether it was used to generate data or not. With increasing 

number of GLC extracted, however, model performance of discrete MMIRT models 

became identical with the continuous MMIRT models in terms of item and 

classification recovery. For instance, the GLC4 model was found to have similar 

although still slightly better results than the Cont model over the four evaluation 

criteria. The descriptive statistics of the evaluation criteria for each of the three data-

generation models were fully presented in Tables 2a to Table 5c in Appendix A.  

Table 4.3 Model performance on evaluation criteria 

True 

Model 
 

Estimation Model 

  Cont  GLC2  GLC3  GLC4 

Cont  M SD  M SD  M SD  M SD 

Bias  0.46 0.53  0.20 0.24  0.28 0.37  0.36 0.45 

RMSE  0.50 0.54  0.28 0.30  0.35 0.40  0.42 0.46 

Kappa  0.46 0.24  0.52 0.18  0.50 0.20  0.47 0.23 

Correlation  0.65 0.31  0.74 0.21  0.70 0.26  0.66 0.30 

             

  Cont  GLC2  GLC3  GLC4 

GLC2  M SD  M SD  M SD  M SD 

Bias  0.31 0.35  0.15 0.18  0.22 0.30  0.24 0.32 

RMSE  0.35 0.36  0.21 0.21  0.27 0.31  0.28 0.33 

Kappa  0.56 0.20  0.60 0.17  0.58 0.20  0.57 0.20 

Correlation  0.77 0.27  0.82 0.23  0.80 0.26  0.79 0.27 

             

  Cont  GLC3  GLC4  GLC5 

GLC4  M SD  M SD  M SD  M SD 

Bias  0.44 0.53  0.32 0.42  0.35 0.47  0.38 0.51 

RMSE  0.48 0.53  0.37 0.41  0.40 0.46  0.43 0.50 

Kappa  0.49 0.23  0.51 0.21  0.50 0.22  0.49 0.23 

Correlation  0.73 0.29  0.77 0.24  0.76 0.26  0.74 0.28 
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Table 4.4a ANOVA of manipulated factors on the four evaluation criteria (True model: Continuous) 

 

Item Parameter Bias  Item Parameter RMSE  

PLC Classification 

Recovery  

Correlation of PLC 

Proportion 

Source F test 
2   

F test 
2   

F test 
2   

F test 
2  

Model 9.97
***

   8.98
***

  
 

3.99
*
   4.11

*
  

DIF*Model 33.47
***

 0.26
††

  48.13
***

 0.28
††

  111.83
***

 0.52
††

  63.30
***

 0.36
††

 

Size*Model 5.23
**

   5.50
**

   2.34   0.50  

Prop*Model 2.14   1.62  
 

2.76   3.00
*
  

Var*Model 45.34
***

 0.36
††

  67.73
***

 0.39
††

 
 

45.09
***

 0.21
†
  60.83

***
 0.35

††
 

DIF*Size*Model 0.86   0.60   2.02   1.38  

DIF*Prop*Model 1.21   1.06   1.00   0.97  

DIF*Var*Model 20.77
***

 0.16
†
  30.57

***
 0.18

†
 

 
35.46

***
 0.17

†
  28.37

***
 0.16

†
 

Size*Prop*Model 0.72   0.52  
 

0.80   0.83  

Size*Var*Model 3.21
*
   2.79   3.17

*
   5.03

**
  

Prop*Var*Model 1.66   1.35   1.43   2.35  

Note: *, p < .05; **, p < .01; ***, p < .001; 

  †, medium effect size; ††, large effect size. 
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Table 4.4b ANOVA of manipulated factors on the four evaluation criteria (True model: GLC2) 

 

Item Parameter Bias  Item Parameter RMSE  

PLC Classification 

Recovery  

Correlation of PLC 

Proportion 

Source F test 
2   

F test 
2   

F test 
2   

F test 
2  

Model 4.47
*
   3.19

*
  

 
0.58   0.86  

DIF*Model 8.77
***

 0.11  8.97
***

 0.11 
 

26.54
***

 0.27
††

  12.74
***

 0.11 

Size*Model 1.46   0.67  
 

0.17   3.32
*
  

Prop*Model 11.37
***

 0.14
†
  12.86

***
 0.15

†
 

 
38.18

***
 0.39

††
  51.23

***
 0.46

††
 

Var*Model 23.26
***

 0.28
††

  24.94
***

 0.29
††

 
 

8.27
***

 0.08  13.92
***

 0.13 

DIF*Size*Model 0.90   0.66  
 

0.08   0.23  

DIF*Prop*Model 3.39
*
   4.57

**
   7.26

***
 0.07  7.78

***
 0.07 

DIF*Var*Model 10.00
***

 0.12  10.18
***

 0.12 
 

5.66
**

   5.13
**

  

Size*Prop*Model 0.82   0.83  
 

0.48   0.27  

Size*Var*Model 0.41   0.15  
 

0.15   0.68  

Prop*Var*Model 13.17
***

 0.16
†
  13.96

***
 0.16

†
 

 
5.59

**
   10.19

***
 0.09 

Note: *, p < .05; **, p < .01; ***, p < .001; 

  †, medium effect size; ††, large effect size. 
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Table 4.4c ANOVA of manipulated factors on the four evaluation criteria (True model: GLC4) 

 

Item Parameter Bias  Item Parameter RMSE  

PLC Classification 

Recovery  

Correlation of PLC 

Proportion 

Source F test 
2   

F test 
2   

F test 
2   

F test 
2  

Model 0.75   0.78  
 

0.13   0.16  

DIF*Model 5.39
**

 0.11  6.77
**

 0.10  10.67
***

 0.28
††

  3.66
*
 0.13 

Size*Model 2.64   4.44
**

 0.06  0.31   0.16  

Prop*Model 4.67
**

 0.09  5.65
**

 0.08 
 

5.26
**

 0.14
†
  3.90

*
 0.14

†
 

Var*Model 21.55
***

 0.42
††

  34.23
***

 0.48
††

 
 

9.73
***

 0.26
††

  10.13
***

 0.35
††

 

DIF*Size*Model 0.08   0.05   0.55   0.55  

DIF*Prop*Model 0.18   0.17   0.25   0.12  

DIF*Var*Model 3.73
*
 0.07  4.51

**
 0.06 

 
1.97   1.47  

Size*Prop*Model 0.02   0.02  
 

0.03   0.06  

Size*Var*Model 2.65   4.26
*
 0.06  0.80   1.08  

Prop*Var*Model 4.64
**

 0.09  5.12
**

 0.07  3.23
*
 0.09  2.60 0.09 

Note: *, p < .05; **, p < .01; ***, p < .001; 

  †, medium effect size; ††, large effect size. 
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Figure 4.1a. Two-way interactions of manipulated factors and estimation models 

(True model: Continuous)  
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Figure 4.1b. Two-way interactions of manipulated factors and estimation models 

(True model: GLC2)  
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Figure 4.1c. Two-way interactions of manipulated factors and estimation models 

(True model: GLC4)  
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The ANOVA results of the evaluation criteria were presented in Tables 4.5a 

to 4.5c. The main effects of estimation models indicated that significant difference of 

estimation models only occurred when the data-generation model was the Cont or 

GLC2. In particular, models differed significantly at p<.001 on item parameter 

recovery for the Cont data. But such effect was less significant under the GLC2. The 

same pattern was also observed on the classification recovery, where no significant 

model difference was found under the GLC2. Although F-test was significant, none 

of the main effect was found to associate with 2  larger than 5%. For GLC4, 

estimation models performed identically on both item and classification recovery. 

In the following section, the ANOVA results of interactions between the 

estimation models and manipulated factors on the four evaluation criteria were 

presented separately. The two-way interactions were depicted by Figures 4.1a to 4.1c 

to show the trends of performance across the estimation models.  

4.1.3 Item Parameter Recovery. 

Item parameter recovery is evaluated in terms of item bias and RMSE. Both 

criteria are defined based on the discrepancy between the estimated and the true item 

difficulty difference between the two person-level latent classes. According to 

Equation 3.16, positive bias indicates overestimation of item difficulty difference and 

negative bias indicates underestimation of difference.  

It is noticeable that the pattern of ANOVA results on bias and RMSE are 

fairly similar over simulation conditions, suggesting a strong relation between these 

two criteria which is discussed in details in Chapter 5.  
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True model: Continuous MMIRT model. All two-way interactions except 

Prop*Model were significant at the p<.01 level, but only DIF*Model and Var*Model 

showed large effect size when interacting with the estimation models. The percentage 

of DIF items accounted for more than 25% of the variance in bias and RMSE, while 

the between-group ability variance explained more than 35% of the total variance.  

In Figure 4.1a, model performance on item parameter recovery was worse 

with smaller percentage of DIF items, particularly for the Cont and GLC4 models. 

Discrete MMIRT models with fewer GLCs (i.e., GLC2 and GLC3) yielded much less 

bias than the Cont and GLC4 models, when only 15% of items had DIF effect. With 

increasing number of DIF items introduced in the sample, the four models performed 

equally well in terms of bias and RMSE. A similar pattern was also observed in the 

effect of between-group ability variance. Models performed better when between-

group ability variance was small (Var=0.1). A large proportion of between-group 

variance substantially increased estimation bias, and the magnitude of the increment 

was especially striking in the Cont and GLC4 models. Although group size was found 

to have some impact on bias and RMSE, with a smaller group size (corresponding to 

a greater number of groups) leading to a better recovery, the magnitude of difference 

was not as much as that in DIF item percentage and ability variance. The proportion 

of PLCs had minimal impact on item recovery.  

The only significant three-way interaction, DIF*Var*Model had a medium 

effect size on item parameter recovery. This interaction accounted for more than 15% 

of total variance. The trend of this effect on bias was displayed in Figure 4.2. The 

distinct model difference was only observed under the condition with a small 
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percentage of DIF items combined with large between-group ability variance. There 

was minor difference in bias across the four estimation models under the other three 

conditions. The same pattern was also found on RMSE and is not discussed further. 

 
Figure 4.2. Three-way interaction of DIF*Var*Model on item bias 

True model: GLC2 MMIRT model. Unlike the Cont model condition, when 

the GLC2 was the data-generation model, only the interaction between group size and 

estimation model was found to have no significant effect on item parameter recovery. 

Among the other three two-way interactions, the Var*Model was still the most 

important effect, explaining almost 30% of total variance in both bias and RMSE. 

DIF*Model was still significant at p<.001, but its effect size was not as large as in the 

Cont model. Instead, proportion of PLCs explained around 15% of variance in bias 

and RMSE, which were medium effect sizes.  

Figure 4.1b showed that the effect of between-group variance was similar to 

what was observed in the Cont condition. A between-group variance of 0.1 yielded 

much less bias and the difference of bias between the estimation models increased as 

the variance increased. However, the magnitude of increment in bias was much 

smaller over the two variance levels than that in the Cont data. For instance, under the 

condition of Var=0.3 all models had a bias value over 0.5 except the GLC2 when the 
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true model was the Cont, while no model was associated with a bias value larger than 

0.5 in the GLC2 data.  

The effect pattern of proportion of PLCs interacting with the estimation 

models was similar with the ability variance. An even proportion of the two PLCs 

reduced the estimation bias and RMSE across models. When this proportion became 

uneven (i.e., 30%:70%), both bias and RMSE increased particularly in the Cont and 

GLC4 models.  

The two proportions of DIF item showed a similar pattern across models 

where even with 15% of DIF item the bias difference across models was much 

smaller than that in the Cont data. Furthermore, no group size effect was found on 

either bias or RMSE.  

 
Figure 4.3. Three-way interaction of Prop*Var*Model on item bias 

In addition to the significant three-way interaction DIF*Var*Model, 

Prop*Var*Model was also significant at p<.001, and accounted for approximately 

16% of the total variance in bias and RMSE, simultaneously. Figure 4.3 showed that 

when uneven proportion of PLC was coupled with large between-group variance, the 

bias of GLC2 was much smaller than the other three models. No distinctive difference 

was observed in bias under the other three simulated conditions. Although 
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DIF*Prop*Model was significant at p<.001, this interaction did not account for more 

than 5% of variance and was considered to have minor effect on item parameter 

recovery. The same findings applied to RMSE. 

True model: GLC4 MMIRT model. Distinct pattern was found under the 

GLC4 condition. Although all two-way interactions except Size*Model were 

significant at p<.01 on both bias and RMSE, only Var*Model accounted for larger 

than 40% of variance.  

Again, by looking at Figure 4.1c, the pattern of estimation bias and RMSE 

was similar to what was found in the Cont data. Consistent with the previous findings, 

larger between-level variance increased estimation bias and the difference across four 

estimation models. This time, GLC3 better recovered item parameters. But the 

average bias of GLC3 under Var=0.3 was over 0.5, larger than that of GLC2 in the 

Cont data. The performance trend on the other manipulated factors had the same 

patterns as in the GLC2. One exception was that the group size had significant effect 

on RMSE, but not on bias. Figure 4.1c showed that with fixed total sample size, more 

individuals within group (i.e., larger group size and smaller number of groups) 

increased estimation bias and RMSE.  

With regard to three-way interactions, although DIF*Var*Model and 

Prop*Var*Model were found significant at p<.05 on both bias and RMSE, and even 

Size*Var*Model was significant at p<.05 on RMSE, none of them accounted for 

more than 10% of variance. All three-way interactions had minor impact on item 

parameter recovery under the GLC4 condition.  



 

78 

 

Item Type Difference. It is of interest to see how different types of items 

respond to the manipulated factors. Additional ANOVAs were conducted on both 

non-DIF and DIF items. Table 4.5 summarized the 2  and effect size of manipulated 

factors on item parameter recovery across item types.  

Table 4.5 Effect size of manipulated factors on parameter recovery across item types 

 Data-generation Models 

 Continuous  GLC2  GLC4 

Source Non-DIF DIF  Non-DIF DIF   Non-DIF DIF 

Bias         

Model  0.13
†
   0.09    

DIF*Model 0.26
††

   0.10   0.08  

Size*Model  0.12     0.07  

Prop*Model    0.14
†
   0.10  

Var*Model 0.36
††

 0.13  0.27
††

 0.23
†
  0.43

††
 0.16

†
 

DIF*Size*Model     0.10    

DIF*Prop*Model        0.19
†
 

DIF*Var*Model 0.18
†
   0.12   0.06  

Size*Prop*Model  0.11       

Size*Var*Model       0.07  

Prop*Var*Model    0.16
†
   0.09  

RMSE         

Model  0.10   0.08    

DIF*Model 0.28
††

   0.11   0.08  

Size*Model  0.14
†
     0.07  

Prop*Model    0.16
†
   0.09  

Var*Model 0.39
††

 0.19
†
  0.27

††
 0.33

††
  0.46

††
 0.43

††
 

DIF*Size*Model         

DIF*Prop*Model    0.06    0.12 

DIF*Var*Model 0.19
†
 0.08  0.12     

Size*Prop*Model         

Size*Var*Model       0.06  

Prop*Var*Model    0.17
†
   0.08  

Note: †, medium effect size; ††, large effect size. 

 

When items were clustered into two groups, most two-way interactions only 

impacted the non-DIF items significantly. For instance, the effect of Var*Model was 
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larger on the non-DIF items than on the DIF items across the three distribution 

conditions. Interestingly, DIF*Model had large effect size only on non-DIF items 

under the Cont data.  

Among all three-way interactions, DIF*Var*Model and Prop*Var*Model 

accounted for more than 15% of variance in bias and RMSE on non-DIF items under 

the Cont and GLC2 conditions. For DIF items, the only interaction with medium 

effect size was DIF*Prop*Model in bias.  

4.1.4 Classification recovery. 

Classification recovery was evaluated in terms of classification agreement 

(Cohen's kappa) and correlation of the true and estimated PLC proportions. The 

ANOVA results of classification recovery were similar to what was observed in item 

parameter recovery but with several differences.  

True model: Continuous MMIRT model. DIF*Model and Var*Model were 

consistently found to have strong impact on classification recovery. Especially 

DIF*Model interaction accounted for more than half of variance in kappa, and 36% 

of variance in correlation. Var*Model had greater influence on correlation with 35% 

of variance explained, compared to 21% in kappa. The three-way interaction 

involving DIF and Var was also found significant on both kappa and correlation with 

a medium effect size. The other two factors, group size and proportion of PLCs were 

found to have no significant impact on classification recovery though.  

The last two rows in Figure 4.1a demonstrated that introducing more DIF 

items helped increase correct identification of latent class membership. With 30% 

DIF items, all models were able to get a kappa value over 0.60 and a correlation 
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larger than 0.80 on average. When the percentage of DIF items reduced to 15% the 

range of kappa values became 0.20 to 0.40, and the correlation dropped below 0.60. 

The GLC2 model was the least affected by the change of DIF item proportion, 

whereas the Cont and GLC4 were the most. The effect of Var*Model shared the same 

pattern on classification recovery. The estimation models performed equally well 

with small between-group ability variance. The increase in group-level variance led to 

dramatic decrease in classification agreement and proportion correlation especially in 

the Cont and GLC4 models.  

Consistent with the results found in item parameter recovery, DIF*Var*Model 

was the only significant three-way interaction, accounting for more than 15% of total 

variance in both kappa and correlation. As displayed in Figure 4.4, large model 

difference was only observed when small percentage of DIF items combined with 

large between-group variance.  

 
Figure 4.4. Three-way interaction of DIF*Var*Model on kappa 

True model: GLC2 MMIRT model. Compared to the large effect on item 

parameter recovery, Var*Model was found to have small effect size on classification 

recovery, accounting for 8% and 13% of variance in kappa and correlation, 

respectively. In contrast, Prop*Model became the most significant effect which 
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explained around 40% of variance in classification measures. DIF*Model was found 

to have greater impact on classification agreement (explaining 27% of variance) than 

on correlation of PLC proportions (explaining only 11% of variance). Two three-way 

interactions were significant at p<.001, including DIF*Prop*Model and 

Prop*Var*Model. But none of them had medium to large effect size on either kappa 

or correlation.  

In Figure 4.1b, when the data-generation model was the GLC2, an even 

proportion of PLC in the population tended to greatly improve identification of 

person-level latent classes, which in turn increased the recovery of random effects at 

group-level. Such effect was not unique to a particular data-generation model. When 

this proportion became uneven all the estimation models were affected, although the 

GLC2 still performed slightly better than the other three models. The trend in 

DIF*Model and Var*Model was similar with the results found in the Cont data. 

True model: GLC4 MMIRT model. When the data-generation model was the 

GLC4, Var*Model once again was found to be significant at p<.001with large effect 

size on classification recovery. This interaction accounted for 26% and 35% of 

variance in kappa and correlation, respectively. Prop*Model also had significant 

effect on classification recovery at p<.05, accounting for 14% variance in both 

criteria. Another important effect, DIF*Model only significantly affected the 

classification agreement and explained 26% of variance in kappa. But its effect on 

correlation was much smaller. Even though three out of four two-way interactions 

were significant, none of the three-way interactions accounted for larger than 10% of 

the variance in either of the two classification criteria. 
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Figure 4.1c showed a similar performance pattern as seen in the GLC2 data 

across the four two-way interactions. One noticeable dissimilarity was on DIF*Model 

effect, where the GLC2 performed slightly better than the other models even under 

30% DIF item condition.  

4.1.5 Model Selection. 

The frequency of times the data-generation model being selected as the first or 

the second choice with respect to various information criteria are summarized in 

Tables 4.7a to 4.7c. The decision to provide frequency instead of percentage was due 

to the fact that only 50 replications were conducted within each condition. Percentage 

results can be easily obtained by multiplying the frequency by 2.  

The fit indices had no difficulty identifying the correct population model 

when it was the Cont (as shown in Table 4.6a). Only two simulated conditions were 

found to cause some problem for the AIC, AICC, nAICC and nssBIC to choose the 

Cont as the best fitting model. Especially for the condition with 30% DIF item, 

coupled with the group size of 150, uneven proportion of PLC and small between-

group variance, the four indices mentioned above preferred the GLC3 or GLC4 over 

the Cont, while the other indices still chose the Cont most frequently.  

When uneven proportion of PLC was combined with large between-group 

variance, this condition can reduce the chance of the GLC2 being identified correctly 

(as shown in Table 4.6b). This effect can be worse when the group size was small, all 

fit indices pointed to the Cont instead of GLC2 as the best fitting model. 
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Table 4.6a Frequency of correct model selection (True model: Continuous) 

DIF Size Prop Var 

n = Total Sample Size  n = Group Size 

AIC AIC3 AICC CAIC BIC ssBIC  nAICC nCAIC nBIC nssBIC 

1
st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
  1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 

15% 25 50/50 0.1 49 1 49 1 49 1 50 0 50 0 50 0  50 0 50 0 50 0 49 1 

   0.3 48 2 49 1 48 2 49 1 49 1 49 1  49 1 49 1 49 1 49 1 

  30/70 0.1 47 2 47 3 47 2 50 0 50 0 48 2  48 2 49 1 48 2 47 3 

   0.3 15 17 23 14 15 18 37 9 37 9 32 12  30 14 35 10 32 12 16 17 

 150 50/50 0.1 39 9 44 4 42 6 48 1 48 1 47 2  36 10 45 4 44 5 24 16 

   0.3 48 0 48 0 48 0 48 0 48 0 48 0  48 0 48 0 48 0 48 0 

  30/70 0.1 48 1 49 0 48 1 49 0 49 0 49 0  39 9 49 0 49 0 24 20 

   0.3 48 2 50 0 48 2 50 0 50 0 50 0  47 2 50 0 50 0 44 5 

                         

30% 25 50/50 0.1 47 2 49 0 48 1 50 0 50 0 50 0  49 1 50 0 50 0 48 1 

   0.3 43 5 48 1 44 4 50 0 50 0 49 1  49 1 50 0 49 1 47 1 

  30/70 0.1 49 1 50 0 49 1 50 0 50 0 50 0  50 0 50 0 50 0 50 0 

   0.3 47 2 49 0 47 2 50 0 50 0 50 0  50 0 50 0 50 0 47 2 

 150 50/50 0.1 45 5 50 0 46 4 50 0 50 0 50 0  41 4 50 0 50 0 15 25 

   0.3 48 2 49 1 48 2 50 0 50 0 50 0  43 5 50 0 50 0 30 19 

  30/70 0.1 5 12 16 14 5 13 49 1 48 2 39 10  7 7 34 12 21 20 1 5 

   0.3 36 11 47 2 36 11 50 0 50 0 50 0  29 17 50 0 50 0 26 18 
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Table 4.6b Frequency of correct model selection (True model: GLC2) 

DIF Size Prop Var 

n = Total Sample Size  n = Group Size 

AIC AIC3 AICC CAIC BIC ssBIC  nAICC nCAIC nBIC nssBIC 

1
st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
  1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 

15% 25 50/50 0.1 38 1 39 0 38 1 39 0 39 0 39 0  39 0 39 0 39 0 38 1 

   0.3 24 4 27 3 24 4 22 21 24 16 25 10  26 9 25 11 25 10 24 4 

  30/70 0.1 10 39 6 43 10 39 0 50 0 50 2 47  2 47 2 48 2 47 10 39 

   0.3 2 8 2 8 2 8 0 10 0 10 1 10  1 9 1 9 1 10 2 8 

 150 50/50 0.1 47 2 48 1 47 2 50 0 50 0 49 1  46 1 49 1 49 1 42 5 

   0.3 17 10 20 11 17 10 21 28 21 28 22 15  16 7 23 11 21 10 13 5 

  30/70 0.1 37 7 33 12 37 7 6 41 8 39 22 23  38 4 24 21 31 14 40 2 

   0.3 0 3 0 3 0 3 0 3 0 3 0 3  0 3 0 3 0 3 0 3 

                         

30% 25 50/50 0.1 44 5 47 2 44 5 50 0 50 0 49 1  49 1 50 0 49 1 46 3 

   0.3 47 3 49 1 47 3 50 0 50 0 50 0  50 0 50 0 50 0 48 2 

  30/70 0.1 1 47 0 48 1 47 0 48 0 48 0 48  0 48 0 48 0 48 0 48 

   0.3 0 48 0 48 0 48 0 50 0 50 0 49  0 48 0 49 0 49 0 48 

 150 50/50 0.1 4 21 9 31 4 22 47 3 45 4 32 16  3 14 23 25 15 29 2 7 

   0.3 22 16 31 12 22 16 45 5 45 5 45 3  15 15 43 4 38 7 9 8 

  30/70 0.1 26 0 26 0 26 0 21 5 23 3 26 0  25 1 26 0 26 0 23 2 

   0.3 0 0 0 0 0 0 0 1 0 1 0 0  0 0 0 0 0 0 0 0 
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Table 4.6c Frequency of correct model selection (True model: GLC4) 

DIF Size Prop Var 

n = Total Sample Size  n = Group Size 

AIC AIC3 AICC CAIC BIC ssBIC  nAICC nCAIC nBIC nssBIC 

1
st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
  1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 1

st
 2

nd
 

15% 25 50/50 0.1 0 4 0 4 0 4 0 4 0 4 0 4  0 4 0 4 0 4 0 4 

   0.3 1 1 1 1 1 1 0 2 0 2 0 2  0 2 0 2 0 2 1 1 

  30/70 0.1 1 2 0 1 1 2 0 1 0 1 0 1  0 1 0 1 0 1 1 1 

   0.3 2 11 0 4 2 11 0 1 0 1 0 1  0 1 0 1 0 1 0 11 

 150 50/50 0.1 1 20 0 17 1 20 0 5 1 4 0 9  6 15 0 14 0 18 13 7 

   0.3 0 9 0 8 0 9 0 7 0 10 0 11  1 5 0 10 0 8 2 5 

  30/70 0.1 10 30 4 23 10 30 0 4 0 5 0 6  12 32 0 11 0 20 20 27 

   0.3 0 9 1 10 0 9 2 31 2 24 2 14  0 10 2 11 1 11 0 10 

                         

30% 25 50/50 0.1 2 21 1 4 2 20 0 0 0 0 0 0  0 0 0 0 0 0 2 14 

   0.3 1 14 0 3 1 13 0 0 0 0 0 0  0 0 0 0 0 0 1 9 

  30/70 0.1 16 25 7 26 15 25 0 20 0 20 0 20  0 21 0 20 0 20 13 23 

   0.3 12 21 4 17 11 22 0 12 0 12 0 14  0 15 0 14 0 14 9 19 

 150 50/50 0.1 34 11 17 32 33 13 0 30 0 36 2 45  38 6 2 47 6 43 39 10 

   0.3 29 11 19 23 29 11 1 21 1 23 2 35  31 10 2 37 5 36 32 11 

  30/70 0.1 14 29 8 20 13 30 0 4 1 3 1 8  17 25 1 14 5 14 20 24 

   0.3 1 15 1 16 1 15 1 20 2 19 2 17  3 12 2 15 1 16 3 11 
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The fairly low selection rate in the GLC4 supported the earlier argument that 

when more GLCs were introduced in the discrete model, to discriminate it from a 

continuous model became increasingly difficult. The selection pattern suggested that 

with 30% of DIF items, the AIC, AIC3, AICC, nAICC and nssBIC still had a better 

chance to correctly identify the population model. However, when percentage of DIF 

items interacted with the other mixture features, it became harder to identify the 

GLC4 even for those five indices. 

Figure 4.5 summarized the overall percentage of model selection for the four 

estimation models across a total of 16×50=800 replications under each of the three 

data-generation models. The four adjacent histogram bars present the results for the 

four estimation models. In line with the order used previously, when the population 

model was the Cont or GLC2, the four models from left to right were Cont, GLC2, 

GLC3 and GLC4; when it was GLC4, the four models were Cont, GLC3, GLC4 and 

GLC5. The bars with darker color represent the model was chosen as the best fitting 

model; lighter color bars represent that it was the second best fitting model.  

The selection pattern in Figure 4.5 indicated that the Cont model always had 

the highest chance to be selected as the best fitting model when the decision was 

made based on the CAIC, BIC and ssBIC, nCAIC as well as nBIC. Comparing to the 

fairly low selection rate of discrete MMIRT models under the Cont data, this rate 

increased based on the AIC, AIC3, AICC, nAICC and nssBIC when the data-

generation model was GLC4. For severely discrete distribution, such as GLC2, the 

AIC, AIC3, AICC, and nssBIC favored the GLC2 over the Cont model, although the 

selection rate of the Cont was only slightly lower.  
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Figure 4.5. Overall percentage of model selection across simulated conditions 

(a) 

(b) 

(c) 
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Model Comparison. To examine differences of competing models, Tables 

4.8a to 4.8c summarized the two comparison pairs with the highest occurrence 

probabilities over all simulated conditions. The IC differences between the first and 

second selections were provided as a measure of ratio size. 

For the Cont data, all fit indices except AIC most often selected the Cont as 

the best fitting model and the GLC2 as the second best model (as shown in Table 

4.7a). More than 80% of comparisons between the two model were associated with a 

IC larger than 9, indicating that the support in the data was about 100 times larger 

for the Cont than for the GLC2. In contrast, the AIC made decision between the Cont 

and GLC4 more often, but only 38% of the comparisons had a IC larger than 9.  

The comparison pair with second highest occurrence probability differed 

across criteria. More precisely, the AIC3, AICC, nAICC and nssBIC chose the Cont 

and GLC4 as the second most frequent pair, while the CAIC, BIC, ssBIC, nCAIC and 

nBIC chose the Cont and GLC3. It can be seen from Table 4.7a that when the 

decision was made between Cont and GLC2 or GLC3 the magnitude of IC was on 

average larger than that between Cont and GLC4. Alternatively stated, it is easier to 

discriminate between Cont and the discrete MMIRT models with fewer GLCs.  

The similar pattern can also be found under the GLC4 condition (as shown in 

Table 4.7c). The comparison pair with highest percentage was between Cont and 

GLC3. The AIC, AICC and nAICC reached the same selection on the second 

comparison pair, Cont and GLC5; whereas the rest indices except nssBIC chose 

between Cont and GLC4. The selection of nssBIC was different from the others. For 

the nssBIC, GLC4 and GLC5 were compared in 15% of the total iterations with the 
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IC smaller than 4.21, 94% of times. The fact that all information criteria favored the 

Cont over GLC4 when the latter was the data-generation model highlights the 

difficulty in discriminating between the continuous MMIRT model and the discrete 

models with large number of GLCs. 

When the discrete distribution was the GLC2, most fit indices can 

differentiate between the Cont and the discrete models. It can be seen in Table 4.7b 

that the decision was made most often between the GLC2 and GLC3 by all fit indices. 

The size of IC , however differed across indices. The CAIC, BIC, ssBIC, nCAIC 

and nBIC frequently showed a medium size of IC , compared to the small IC in the 

AIC, AIC3, AICC and nssBIC. Moreover, the comparison pair, the Cont and GLC2, 

had the second highest percentage across fit indices.  

To better describe the index function, the ten information criteria were 

categorized into three groups characterized by consistent selection patterns over the 

three data-generation models. The AIC, AICC and AIC3 often reached converging 

results with regard to competing models and IC size. Those three indices are called 

Type-A indices. The CAIC, BIC, their modified versions and ssBIC performed 

similarly, and are grouped into Type-B indices. The function of the nAICC and 

nssBIC was unlike the previous two types, and they are called Type-C indices. 

 

 



 

90 

 

Table 4.7a Model comparison between the first and second choice (True model: Continuous) 

 First Pair  Second Pair 

 Selection  IC   Selection  IC  

Index Pair %  Range 

>4.61 

% 

>9.21 

%  Pair %  Range 

>4.61 

% 

>9.21 

% 

AIC CONT-GLC4 30  (0.22,  258.16) 72 38  CONT-GLC2 30  (0.02,1044.72) 87 77 

AIC3 CONT-GLC2 32  (0.08,1045.72) 88 75  CONT-GLC4 30  (0.26,  263.16) 89 67 

AICC CONT-GLC2 30  (0.08,1044.78) 87 76  CONT-GLC4 30  (0.05,  258.45) 76 40 

CAIC CONT-GLC2 46  (2.68,1052.42) 99 94  CONT-GLC3 37  (2.50,  689.74) 99 99 

BIC CONT-GLC2 44  (1.68,1051.42) 97 91  CONT-GLC3 37  (1.28,  686.74) 99 96 

ssBIC CONT-GLC2 38  (0.52,1048.24) 95 82  CONT-GLC3 33  (0.15,  677.21) 93 84 

nAICC CONT-GLC2 35  (0.06,1044.30) 93 80  CONT-GLC4 28  (0.08,  255.40) 70 52 

nCAIC CONT-GLC2 39  (0.17,1047.41) 96 84  CONT-GLC3 31  (0.15,  680.08) 91 79 

nBIC CONT-GLC2 37  (0.80,1046.41) 95 82  CONT-GLC3 28  (0.19,  677.08) 90 77 

nssBIC CONT-GLC2 29  (0.13,1043.28) 88 78  CONT-GLC4 21  (0.14,  250.96) 65 43 
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Table 4.7b Model comparison between the first and second choice (True model: GLC2) 

 First Pair  Second Pair 

 Selection 
 

IC   Selection 
 

IC  

Index Pair % 

 

Range 

>4.61 

% 

>9.21 

%  Pair % 

 

Range 

>4.61 

% 

>9.21 

% 

AIC GLC2-GLC3 34  (0.04,    4.64) 0 0  CONT-GLC2 19  (0.04,596.48) 71 66 

AIC3 GLC2-GLC3 36  (0.40,    6.64) 77 0  CONT-GLC2 21  (0.12,597.48) 68 63 

AICC GLC2-GLC3 34  (0.12,    4.76) 1 0  CONT-GLC2 19  (0.10,596.54) 71 66 

CAIC CONT-GLC2 33  (0.22,604.18) 87 66  GLC2-GLC3 33  (0.18,  19.88) 98 91 

BIC GLC2-GLC3 34  (0.02,  17.88) 97 88  CONT-GLC2 32  (0.02,603.18) 86 61 

ssBIC GLC2-GLC3 38  (0.20,  11.60) 87 67  CONT-GLC2 26  (0.06,600.00) 75 57 

nAICC GLC2-GLC3 35  (0.71,  10.31) 53 35  CONT-GLC2 21  (0.06,596.06) 72 63 

nCAIC GLC2-GLC3 36  (0.20,  13.50) 87 68  CONT-GLC2 25  (0.07,599.17) 83 60 

nBIC GLC2-GLC3 36  (0.02,  11.52) 86 41  CONT-GLC2 24  (0.01,598.17) 78 60 

nssBIC GLC2-GLC3 34  (0.04,    5.26) 27 0  CONT-GLC2 19  (0.10,595.04) 72 68 
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Table 4.7c Model comparison between the first and second choice (True model: GLC4) 

 First Pair  Second Pair 

 Selection 
 

IC   Selection 
 

IC  

Index Pair % 

 

Range 

>4.61 

% 

>9.21 

%  Pair % 

 

Range 

>4.61 

% 

>9.21 

% 

AIC CONT-GLC3 24  (0.08,716.78) 58 38  CONT-GLC5 15  (0.52,663.98) 70 42 

AIC3 CONT-GLC3 36  (0.06,719.78) 67 33  CONT-GLC4 18  (0.01,670.34) 66 35 

AICC CONT-GLC3 25  (0.01,716.95) 57 37  CONT-GLC5 15  (0.26,664.40) 72 44 

CAIC CONT-GLC3 69  (2.18,739.88) 100 96  CONT-GLC4 19  (2.10,703.84) 99 98 

BIC CONT-GLC3 67  (1.66,736.88) 98 95  CONT-GLC4 19  (1.36,698.84) 99 98 

ssBIC CONT-GLC3 58  (0.25,727.35) 88 66  CONT-GLC4 22  (4.69,682.95) 100 92 

nAICC CONT-GLC3 43  (0.08,715.31) 85 57  CONT-GLC5 12  (0.21,659.71) 59 38 

nCAIC CONT-GLC3 55  (0.27,724.85) 90 76  CONT-GLC4 23  (0.52,678.78) 94 74 

nBIC CONT-GLC3 50  (0.01,721.85) 87 65  CONT-GLC4 22  (0.46,673.78) 77 57 

nssBIC CONT-GLC3 27  (0.01,712.46) 58 36  GLC4-GLC5 15  (0.08,    6.46) 6 0 
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Percentage of DIF Items Group Size 

  
Proportion of PLC Between-Group Variance 

  
Figure 4.6a. Main effects of manipulated factors on model selection (True model: Continuous) 
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Percentage of DIF Items Group Size 

  
Proportion of PLC Between-Group Variance 

  
Figure 4.6b. Main effects of manipulated factors on model selection (True model: GLC2) 
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Percentage of DIF Items Group Size 

  
Proportion of PLC Between-Group Variance 

  
Figure 4.6c. Main effects of manipulated factors on model selection (True model: GLC4) 



 

96 

 

Effect of Manipulated Factors. Model identification was not only affected by 

the population distribution, but also by the other properties of the datasets. The main 

effects of the four manipulated factors on model selection were presented in Figures 

4.6a to 4.6c.  

As indicated in the previous section, percentage of DIF items and between-

group variance were the two most important factors that impacted model 

performance. Pertaining to model select, larger number of DIF items seemed to 

increase the probability of the true model being selected as either the first or the 

second choice. This trend was also observed in the Type-B indices under the GLC2 

data. Increasing between-group variance consistently reduced the chance of selecting 

the GLC2 or GLC3 models as the best or second best model, regardless of the 

population model. In contrast, the GLC4 or GLC5 models were more likely to be 

selected with large between-group variance. Such a tendency was not unique to any 

type of indices, and can be a problem especially when the data-generation model was 

the GLC2.  

With a small group size of 25 in the sample, corresponding to a number of 240 

groups, the ten indices showed identical selection patterns. Once the number of 

groups dropped to 40, the three groups of indices responded dissimilarly to this 

change. Discrete MMIRT models with more than three GLCs were generally favored 

over the GLC2. In particular, the Type-A and Type-C indices chose GLC4 more often 

when the data-generation model was the Cont or GLC4, while the Type-B indices 

chose the GLC3. The change of group size was expected to substantially affect 

indices with sample size in their equations. The results partially supported this 
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statement. For instance, although the nCAIC and nBIC usually showed identical 

pattern with the CAIC and BIC, the decrease of number of groups caused these two 

indices to favor the GLC3 and GLC4, rather than the GLC3 as with the application of 

the CAIC and BIC.  

The proportion of PLC was found to have no substantial effect on model 

selection under the Cont or GLC4 conditions. But it can significantly impact 

performance of fit indices under the GLC2 condition. As shown in Figure 4.6b, when 

the proportion of two PLCs changed from even to uneven, the best fitting model 

switched from the GLC2, the data-generation model, to the Cont. This trend was 

shared by the ten indices.  

 

Taken together, the above results suggest that a discrete model with fewer 

than two or three GLCs can recover item parameter and classification fairly well even 

when it was not the population model. The Cont performed poorly on parameter 

recovery however, it has been selected more frequently as the best fitting model by 

the ten fit indices. These findings raise the concern of the application of MMIRT in a 

real dataset where the population parameters are unknown and fit indices are heavily 

relied on to make model selection decision.  

4.2 Empirical Illustration: MSA Math 

The performance of the proposed MMIRT models was further illustrated 

using an empirical data set. The sample was selected from the 2009-2010 academic 

year Maryland School Assessment (MSA) math achievement test for the 6
th

 grade. 

This test included 62 operational items, of which 7 were polytomously scored. For the 
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Rasch-based MMIRT models proposed in the current study, only the 55 

dichotomously scored items were kept for further analysis.  

The item-level responses of students from a large suburban county in 

Maryland were included along with the unique identification numbers of students, 

and their schools and teachers. To ensure sufficient variation within schools and 

teachers, teachers with fewer than 15 students were deleted from the sample. The 

final sample included 3,197 students, 93 teachers and 28 schools. The average 

classroom size was 34.38 ( 12.89SD , range = (15, 66)), and the average school size 

was 114.18 ( 48.93SD , range = (18, 241)).  

The empirical data analyses were composed of three parts: 1) a set of 

conventional mixture Rasch models were fitted to determine the number of latent 

classes at the student level (SLC); 2) once the number of SLC was determined, a 

continuous MMIRT model and a set of discrete MMIRT models with various number 

of GLCs were further fitted with the teachers as grouping variable; 3) the same 

MMIRT models were also fitted but with the schools as grouping variable.  

4.2.1 Mixture Rasch Models.  

The first step ignored the clustering of students in classrooms or schools. 

Table 4.8 presented the model fit indices for mixture Rasch models with two (SLC2) 

to seven (SLC7) latent classes. The AIC, AIC3, AICC all favored the most complex 

model (SLC7). The CAIC and BIC both agreed that SLC4 was the optimal solution, 

while the ssBIC had the smallest fit value on SLC5.  

Since there was no conclusive evidence to support the use of any of the six fit 

indices for traditional mixture models, other information such as entropy and factor 
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means within latent classes were also incorporated to make final decision. It was seen 

that entropy of the SLC4 was higher than the other models except the SLC2. A closer 

look at the classification results showed that the students were classified with regard 

to their latent ability level. For instance, a two-class solution divided the students into 

a high-ability and a low-ability group. All item difficulty parameters were 

significantly lower in the high-ability group than in the low-ability group. Adding 

more classes further separated the large ability classes into smaller ones. The decrease 

of entropy value indicated the difficulty to distinguish between those resulting 

classes. Also considering substantive interpretation of classes, as well as further 

characterizing group units, too many lower-level latent classes can raise potential 

problem. Therefore, the SLC4 with relatively large entropy was considered as the best 

fitting model. Since the SLC5 also showed fairly close results on the BIC and CAIC, 

this solution was included to compare with the SLC4.  

Table 4.8 Fit indices for mixture Rasch Models 

 SLC2 SLC3 SLC4 SLC5 SLC6 SLC7 

LL -90792 -90316 -89860 -89633 -89496 -89383 

p 113 170 227 284 341 398 

Entropy 0.85 0.76 0.79 0.76 0.77 0.75 

       

AIC 181810.89 180972.34 180173.32 179833.46 179673.85 179561.21 

AIC3 181923.89 181142.34 180400.32 180117.46 180014.85 179959.21 

AICC 181819.25 180991.55 180208.18 179889.05 179755.55 179674.72 

CAIC 182609.80 182174.23 181778.20 181841.33 182084.71 182375.05 

BIC 182496.80 182004.23 181551.20 181557.33 181743.71 181977.05 

ssBIC 182137.75 181464.07 180829.92 180654.94 180660.21 180712.44 

Note: LL is the log-likelihood value, p is the number of model parameters.  Results with 

the smallest value for a particular fit index are in bold. 
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Table 4.9a Fit indices for teacher-level MMIRT models 

 
Student-level Latent Classes 

 SLC4  SLC5 

Teacher-

Level LC Cont GLC2 GLC3 GLC4 GLC5  Cont GLC2 GLC3 GLC4 GLC5 

p 230 231 235 239 243  288 289 294 299 304 

Entropy 0.82 0.86 0.89 0.89 0.90  0.79 0.84 0.90 0.90 0.91 

            

Model Selection           

AIC 178732.95 179249.91 178880.48 178769.60 178688.77  178385.75 178890.90 178904.11 178859.52 178654.32 

AIC3 178962.95 179480.91 179115.48 179008.60 178931.77  178673.75 179179.90 179198.11 179158.52 178958.32 

AICC 178768.78 179286.06 178917.94 178808.39 178728.93  178442.99 178948.56 178963.88 178921.45 178718.44 

CAIC 180359.05 180883.07 180541.92 180459.32 180406.77  180421.90 180934.12 180982.68 180973.44 180803.59 

BIC 180129.05 180652.07 180306.92 180220.32 180163.77  180133.90 180645.12 180688.68 180674.44 180499.59 

ssBIC 179398.24 179918.08 179560.23 179460.91 179391.66  179218.80 179726.85 179754.51 179724.39 179533.65 

nAICC 177962.95 178478.80 178104.82 177989.19 177903.44  177536.44 178040.04 178045.39 177992.86 177779.60 

nCAIC 179545.45 180065.94 179710.64 179613.89 179547.19  179403.14 179911.82 179942.69 179915.77 179728.23 

nBIC 179315.45 179834.94 179475.64 179374.89 179304.19  179115.14 179622.82 179648.69 179616.77 179424.23 

nssBIC 178589.39 179105.72 178733.80 178620.42 178537.09  178205.99 178710.51 178720.60 178672.89 178464.57 

Note: p is the number of model parameters.  Results with the smallest value for a particular fit index are in bold. 
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Table 4.9b Fit indices for school-level MMIRT models 

 
Student-level Latent Classes 

 SLC = 4  SLC = 5 

School-

Level LC Cont GLC2 GLC3 GLC4 GLC5  Cont GLC2 GLC3 GLC4 GLC5 

p 230 231 235 239 243  288 289 294 299 304 

Entropy 0.80 0.87 0.89 0.90 0.91  0.80 0.84 0.90 0.91 0.88 

            

Model Selection           

AIC 179547.43 179627.26 179567.15 179559.81 179457.56  179352.27 179289.95 179652.33 179615.58 179225.02 

AIC3 179777.43 179858.26 179802.15 179798.81 179700.56  179640.27 179578.95 179946.33 179914.58 179529.02 

AICC 179583.25 179663.41 179604.61 179598.60 179497.71  179409.51 179347.61 179712.10 179677.50 179289.14 

CAIC 181173.52 181260.42 181228.59 181249.53 181175.56  181388.42 181333.17 181730.90 181729.50 181374.29 

BIC 180943.52 181029.42 180993.59 181010.53 180932.56  181100.42 181044.17 181436.90 181430.50 181070.29 

ssBIC 180212.71 180295.43 180246.89 180251.12 180160.44  180185.32 180125.89 180502.73 180480.45 180104.35 

nAICC 178994.09 179072.19 179005.12 178990.76 178881.44  178693.98 178629.80 178982.82 178936.69 178536.71 

nCAIC 180083.83 180166.00 180115.21 180117.20 180024.28  180023.94 179963.96 180338.00 180312.91 179934.01 

nBIC 179853.83 179935.00 179880.21 179878.20 179781.28  179735.94 179674.96 180044.00 180013.91 179630.01 

nssBIC 179138.75 179216.80 179149.58 179135.14 179025.78  178840.53 178776.44 179129.93 179084.30 178684.85 

Note: p is the number of model parameters.  Results with the smallest value for a particular fit index are in bold. 

 

 



 

102 

 

4.2.2 Teacher-level MMIRT Models. 

Five MMIRT models were fitted to the sample data with teachers as clustering 

units. Followed the abbreviations used previously, the five models included the Cont 

model and four discrete models with two to five GLCs.  

The results of fit indices for teacher-level models were summarized in Table 

4.9a. The large decline in the fit indices with the addition of group-level random 

effects provided substantial evidence to support the use of MMIRT models to account 

for the nested structure of the data. When choosing the SLC4 as the base-model at 

lower level, the GLC5 was chosen as the best fitting model by the Type-A and Type-

C indices. Although Type-B indices favored the Cont, the increase in fit values was 

small in the GLC5. Recalling the findings in the simulation study, such a response 

pattern among the fit indices was more likely to suggest a discrete distribution in the 

population. Therefore, the final decision was to select the GLC5 instead of Cont as 

the optimal solution for the teacher-level model.  

In contrast, if the SLC5 was chosen for the student level, the ten fit indices all 

pointed to the Cont as the best fitting model. Note that the fit value of most indices 

was smaller for the Cont combined with SLC5 than that for the GLC5 with SLC4. 

This result raised the question regarding comprehensive consideration of model 

selection at both lower and higher level in MMIRT models. For the final model, the 

GLC5 combined with SLC4, the classification results were shown in Table 4.10. 

Figure 4.6(a) presented the proportions of SLCs within the identified five teacher-

level latent classes (Tch_LC). SLCs were named based on their mean latent ability 

levels. The Tch_LCs were put in order to reflect the proportion of low-ability students 
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from high to low. The number in parenthesis indicated how many teachers had been 

classified into a particular Tch_LC. The Tch_LCs were characterized with distinctive 

distribution patterns of SLCs. For instance, Tch_LC1 was comprised of teachers with 

a large number of low-ability students (≥70%) and quite a few high-ability students 

(<5%), whereas Tch_LC5 was featured with the domination of high-ability students 

and the absence of low-ability students. 

Table 4.10 Classification results of empirical sample data 

  SLC 

 

n Low 

Moderate-

low 

Moderate-

high High 

Tch_LC1 27 367 14 107 12 

Tch_LC2 19 64 95 110 6 

Tch_LC3 8 129 33 545 167 

Tch_LC4 25 32 343 233 418 

Tch_LC5 14 1 46 45 430 

      

Sch_LC1 13 675 192 340 59 

Sch_LC2 2 61 83 22 0 

Sch_LC3 3 70 9 196 90 

Sch_LC4 7 182 181 407 348 

Sch_LC5 3 0 52 95 135 

 

4.2.3 School-level MMIRT Models. 

Although the number of schools was much smaller than the number of 

teachers in the sample data, the model selection showed similar results based on the 

ten fit indices (as shown in Table 4.9b). But this time, when combined with the SLC4, 

the ten fit indices consistently favored the GLC5 over Cont. The strong discreteness 

at higher level also was reflected in the selection with the SLC5 as the base model. 

None of the fit indices chose Cont as the best fitting model. Either the GLC2 or 
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GLC5 were of consideration. However, a careful check revealed that the GLC3, 

GLC4 and GLC5 all contained one GLC with zero cases. Therefore, if SLC5 was 

chosen as a lower level solution, the GLC2 model should be considered at the school 

level.  

The classification results of the GLC5 solution for school-level units were 

provided in Table 4.10, and the proportions of SLC within the identified five school-

level latent classes (Sch_LC) were depicted in Figure 4.7(b). Note that 13 out of 28 

schools were classified into one latent class with relatively large proportion of 

moderate to low ability students (nearly 70%), while this portion was less than20% 

for the three schools within the last Sch_LC.  

For comparison purposes, the solution of the GLC2 combined with SLC5 was 

also presented in Figure 4.7(c). A medium-ability SLC emerged from the five-SLC 

solution. The first Sch_LC was comprised of more moderate to low ability students, 

compared to the second GLC with relatively larger proportion of medium to high 

ability students. However, none of the five SLCs dominated either one of the GLCs. 

Further examination indicated that the combination of the first two GLCs under the 

GLC5 solution formed the first GLC under the GLC2 solution, while the last three 

comprised the second one. Only one school switched its class membership across the 

two solutions.  
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Figure 4.7. Discrete MMIRT solutions at the teacher and school level 

(a) 

(b) 

(c) 
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Chapter 5: Discussion 

Given the emphasis in education research to understand and qualify the effect 

of teachers and schools on student learning, the current study introduced the MMIRT 

framework. This framework is capable of capturing population heterogeneity at a 

contextual-level. As a new approach, the gap between the theoretical discussion of 

model properties and model performance in empirical analysis remains sizable. In 

addition to introducing the two MMIRT approaches, the main focus of the current 

study was to distinguish continuous and discrete MMIRT models under a variety of 

conditions using a model comparison perspective. A simulation study and an 

empirical analysis were conducted to evaluate model performance of a set of MMIRT 

models. The major results are summarized and discussed in this chapter.  

5.1 Discussion of Simulation Findings 

Model performance of MMIRT models was evaluated in terms of item 

parameter and classification recovery. The four evaluation criteria, bias and RMSE 

for item parameter recovery and Cohen's kappa and correlation of PLC proportion 

within groups for classification recovery, yielded coherent conclusions with respect to 

the model performance. A brief summary of findings is listed below: 

1) Discrete MMIRT models with smaller numbers of GLCs extracted 

performed consistently better on parameter and classification recovery 

than the Cont and discrete models with more than four GLCs, regardless 

of the data-generation models. 
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2) Four fitted models differed significantly over simulated conditions only 

when the data-generation model was the Cont. Marginal or insignificant 

model differences were observed for either parameter and classification 

recovery under the GLC2 or GLC4 conditions.  

3) Throughout the simulated conditions, the Cont model can be correctly 

identified by most fit indices. Most often, the Cont also was chosen as the 

best fitting model when the data-generation model was in fact the GLC4. 

The GLC2 was favored over the Cont by the AIC, AIC3, AICC, nAIC and 

nssBIC when the former one was used to generate data. The remaining 

indices still chose the Cont more frequently than the population model 

GLC2. 

4) Among the four manipulated factors, the percentage of DIF items and 

between-group ability variance were the two factors that had a determinant 

impact on model performance and model selection. Increasing the 

percentage of DIF items combined with smaller between-group variance 

resulted in better parameter and classification recovery and improved 

correct model identification.  

5) The proportion of the PLCs had a more significant effect when the data-

generation model was discrete. In particular, for the GLC2, an even 

proportion improved model parameter recovery which in turn increased 

correct model identification. 

6) Once the person-level sample size was fixed, the effect of group size was 

insignificant on model parameter recovery but moderate on model 
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selection. Large group size corresponded to a small number of groups. By 

reducing the number of groups, fit indices tended to favor complex 

discrete models with more GLCs, especially for the fit indices that 

incorporated sample size in their equations.  

In the following sections, the implication of item bias and RMSE is discussed 

first, followed by the insights on the comparison of model performance. The research 

question regarding model selection in MMIRT using information-based fit indices is 

address in the last section.  

5.1.1 Item Bias and RMSE. 

Bias captures the degree to which a model deviates from the population 

values, while RMSE combines the information of bias and random variation to reflect 

overall model performance on parameter recovery. It was observed in the current 

study that the ranges of bias and RMSE were fairly close and even identical on the 

effects of manipulated factors.  

Strong correlation between bias and RMSE. RMSE is the square root of 

mean squared error (MSE), which can be decomposed into squared bias and variance. 

The variance reflects sampling fluctuation. A large MSE can be a result of either bias 

in the estimation or just a result of variation in the sample. 

Based on Equation 3.13, a positive bias corresponds to overestimation and 

negative value to underestimation. The average bias was found positive across the 

simulated conditions. Further analysis indicated that the percentage of RMSE 

explained by bias was over 80% in the continuous model and 50% to 75% in the 

discrete models. Thus, overall the estimation models led to a systematic overestimate 
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of the difference between item difficulty parameters across latent classes, especially 

for the Cont model. The next question that should be asked is why all the models 

tended, on average, to overestimate the difference? The answer probably depends on 

whether or not the item has DIF effect.  

Item recovery on different item types. Rather than taking all items as a whole, 

the current study differentiates between the non-DIF and DIF items when assessing 

the large bias and RMSE found on parameter recovery. The descriptive statistics of 

bias and RMSE for the two item types were fully presented in Table 6a to 6c in 

Appendix A. 

 
Figure 5.1. Scatterplots of item bias and RMSE on item types 

A large discrepancy was frequently observed when a small percentage of DIF 

items were coupled with large between-group variance. To illustrate the relation 

between item bias and RMSE on different item types, two scatterplots between the 
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two criteria on the Cont and GLC2 were included in Figure 5.1. The scatterplots 

displayed almost a perfect correlation between bias and RMSE in non-DIF items 

across estimation models. Recalling the earlier results, the same conclusion can be 

reached in Figure 5.1 where the magnitude of bias and RMSE was the largest on non-

DIF item for the Cont model under the condition with 15% of DIF items and 

between-group variance of 0.3. Such discrepancy was smallest on DIF items for the 

GLC2.  

A plausible explanation for the consistent overestimation of difference on 

non-DIF items may be the insufficient information for separating the lower-level 

latent class. Put differently, a large between-group variance corresponds to small 

within-group variability, meaning individuals from the same group have a similar 

ability level. However, if those individuals show distinct response patterns on the 

same set of items, it is an indication of strong DIF effects. The problem is that such 

an effect is hard to achieve with only 15% of true DIF items. Thus, the item difficulty 

difference of the true non-DIF items is exaggerated in order to support the separation 

of latent classes.  

This false-positive DIF effect can be a potential problem for the interpretation 

of MMIRT results. Note that in the empirical analysis, the items from MSA were also 

found to have significant difference across student-level latent classes. Differentiation 

on item functioning can be a threat to test reliability (Mislevy & Verhelst, 1990) and 

construct validity (Cho, 2007), and should be controlled in conventional tests. When a 

majority of items are identified by MMIRT models to have DIF effect, practitioners 
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should be cautious and consider that as an indicator for the difficulty of separating 

latent classes.  

5.1.2 Comparison of Model Performance.  

One surprising but worrisome finding in the simulation study is that, except 

for the GLC2 model, the Cont and GLC4 performed poorly on parameter and 

classification recovery, even when they were used to generate data.  

A possible reason could be that the conditions simulated in the current study 

were not optimal for the performance of complex MMIRT models such as Cont and 

GLC4. As a complex modeling framework, most existing literature has only limited 

their discussion of multilevel mixture models on model introduction and empirical 

illustration (e.g., Asparouhov & Muthén, 2008; Palardy & Vermunt, 2010; Van Horn 

et al., 2008; Varriale & Vermunt, 2012; Vermunt, 2003, 2007, 2008b). A systematic 

evaluation using simulated data has been only conduced in one study so far. Cho 

(2007) examined the performance of discrete MMIRT models under practical DIF 

testing conditions. Three distinctive differences between Cho's study and this 

simulation study, however, prevented a comparison of her findings in discrete 

MMIRT models to the current study. First of all, in Cho's design, DIF items were not 

only introduced at the student level but also at the school level. Second, all items 

were generated to have DIF size ranging from 0.5 to 3 between student-level latent 

classes. Third, only two latent classes were considered at both the student level and 

the school level. Even with such a large difference in item difficulty across latent 

classes, the model can only well recover model parameters with 30% school-level 

DIF.  
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Compared to the Cho's study, the current study considered more realistic 

settings. This simulation design was based on a typical state assessment in which 

large DIF effect is expected to be eliminated for test reliability and validity reasons. 

Hence, only a percentage of the moderate DIF items across person-level latent classes 

are considered in the current simulation study. Apparently under such specifications, 

it is rather challenging to identify DIF items; further separate latent classes at the 

person level, and eventually recover random effects at the group level. For the Cont 

and GLC4, which are more complex models, the estimation can be even harder under 

the current simulation design.  

The high non-convergence rate commonly seen among the MMIRT models 

also is an indication of the difficulty for model estimation under varying simulated 

conditions. However, one interesting finding is that the Cont model can converge 

most of time, which supports the early argument that a continuous latent distribution 

can well reproduce discrete latent distribution (Haertel, 1990; Markon & Krueger, 

2006). Despite the potential violation of normality assumption, another appealing 

advantage of the continuous approach to approximating discrete distribution is that it 

can avoid the possible empty class as frequently encountered in discrete models.  

5.1.3 Model Selection in MMIRT. 

One main purpose of the current study was to find the information criterion or 

criteria that can successfully differentiate between the continuous and discrete 

MMIRT models which differ only with respect to the specification group-level 

random effects.  
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Markon and Krueger (2006) remarked previously that even for a non-normal 

latent distribution, a normal distribution might be preferred over a discrete 

distribution under certain conditions, since the loss of statistical information about the 

observed sample is less under the normal distribution. While the results from the 

simulation study indicated that if the comparison was made between the continuous 

model and the discrete model, the former one was generally preferred over the latter 

by the fit indices, regardless of the true distribution. On the other hand, if the 

distribution was severely discrete, although correct model selection increased in 

various fit indices, the selection rate was not as high as in the continuous model. 

From a different aspect, the findings above indicate how difficult it is to distinguish 

between the continuous and discrete MMIRT models when the actual distribution is 

moderately to mildly discrete. For practitioners who want to use information-based fit 

indices to infer the discreteness versus continuousness of higher-level random effects, 

this finding provides strong evidence against doing that. In particular, the current 

simulation only included the discrete distributions that are relatively symmetric, 

similar to what occurs with a normal distribution. Therefore, the symmetry 

assumption was not severely violated. A greater violation of the symmetry 

assumption might lead to more distinctive model performance between the two types 

of MMIRT models.  

Information-based fit index. The simulation study was also cautioned to only 

rely on one fit index to make a selection decision. Three index groups have been 

identified, which are characterized by distinctive selection patterns across simulated 

conditions.  
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The AIC, AIC3, AICC are the three indices found to be most sensitive to 

discreteness. When the true distribution of random effects is discrete, such as the 

GLC2 and GLC4, these three indices tend to choose the optimal solution among the 

discrete models. If restricting the comparison to discrete models only, another 

interesting feature of these three indices is that they more frequently selected the true 

model than did the other indices. This finding contradicts to what is known about the 

AIC in traditional mixture models, where it always favors complex models (Lubke & 

Neale, 2006; McLachlan & Peel, 2000).  

The second type of indices includes the CAIC, BIC, ssBIC, nCAIC and nBIC. 

These indices consistently prefer the continuous models over the discrete ones. Even 

when the population model was the GLC2, only through a large percentage of DIF 

items and small between-group variance can these indices choose the GLC2 over the 

Cont. The findings here support the argument that the CAIC and the BIC always 

reach the same selection with large sample size (Lubke & Neale, 2006; Markon & 

Krueger, 2006). Replacing total sample size with number of groups in the BIC, this 

change seems to result in no improvement on model selection in the current 

simulation. In contrast, the new version of ssBIC functioned better than the original 

index in capturing discreteness in the distribution.  

It is not surprising that the performance of the modified versions of AICC and 

ssBIC depends on the sample size at a higher level. The nAICC, for example, 

functioned similarly with the BIC type indices when the number of groups was large. 

Once the group number became smaller sometimes even smaller than the number of 

parameters in the current simulation, the nAICC performance was close to the AIC 
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type indices. This finding indicates that the modified AICC should not be used given 

its unstable function under varying number of groups. The nssBIC, to the contrary, is 

less affected by the group number. Its model selection decision was similar with the 

AIC type indices under large group number. A smaller group number led to a higher 

preference of more complex discrete MMIRTs in the nssBIC than in the AIC.  

Comparison of competing models. Hamaker et al. (2011) commented on the 

model fit in multilevel models that "... it is not the size of the information criterion 

that matters. Rather, it is the difference between information criteria for competing 

models that is of interest" (p. 233). The current study adopted a likelihood ratio 

approach to show the size of fit difference between two competing models with the 

smallest fit values.  

The simulation results showed consistent patterns on the difference across the 

fit indices. When the comparison was between the continuous model and discrete 

model, the value of IC was often larger than 9 if the Cont was chosen as the best 

fitting model. On the other hand, if the discrete model was preferred over the Cont, 

the value of IC was fairly small. Restricting comparison to discrete models would 

always result in choosing the one with smallest number of GLCs, regardless of the 

population model. Both findings can be explained by at least two possible reasons. 

First, the model log-likelihood does not differ much across the estimation models; 

second, the number of parameters is larger in the discrete models than in the 

continuous model, when the same number of PLCs is specified at a lower-level. The 

way the information-based criteria are formulated leads to a consistent preference to 

the continuous models.  
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When discussing model fit indices in the context of mixture models, the 

existing literature focuses mainly on their performance in identifying correct number 

of latent class at a lower level. No study has looked at their function when the 

mixtures are at a higher level. The lack of systematic evaluation of fit indices from 

the previous research suggests that more studies are needed to address this problem.  

5.2 Application of MMIRT models 

The multilevel mixture models enable researchers to characterize group 

heterogeneity among higher-level units in terms of the latent attributes of their lower-

level units. Previously, MLCA was proved to allow for the assessment of latent class 

typologies in contextual studies (Henry & Muthén, 2010). The MMIRT models 

incorporate traditional IRT models into MLCA, and extend their applications to a 

broader scenario where both latent class and continuous latent ability can be utilized 

to describe the variation across higher-level units.  

The current simulation design is based on the findings of traditional mixture 

models and multilevel models. The influential factors examined previously do not 

provide optimal conditions under which the MMIRT models are able to well recover 

the population parameters. Of the four manipulated factors, three are characteristic of 

lower-level mixtures over which researchers have little control in a real setting. 

Fortunately, a large percentage of DIF items can help increase the identification of 

latent class membership and recover item parameters. What is more important, the 

negative impact of mixture characteristics, such as an uneven proportion of PLCs and 

large group heterogeneity on latent ability, can be counterbalanced by introducing 

more DIF items in the test. Hence, for the proper application of MMIRT models, a 
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well-designed measurement should be the most important requirement. If a test is not 

designed to differentiate potential latent groups, like the state assessment included in 

the empirical application, researchers should be cautious about the inference of results 

obtained from MMIRT models. For instance, the overestimated difficulty difference 

was pervasive in the non-DIF items, suggesting that a false-positive DIF effect would 

be expected on test items.  

With regard to model comparison in MMIRT, the fact that the continuous 

model performed so poorly on model parameter and classification recovery in the 

simulation provides compelling evidence against selecting this model as the best 

solution. However, since population values are unknown in empirical data, 

discriminating between a continuous MMIRT model and a discrete one with large 

number of GLCs can be tough. In particular, classifying higher-level units in a 

discrete model may result in an empty class, which further increases the challenge to 

identify the discreteness at the group level. A direct comparison between the two 

approaches to MMIRT modeling may reach misleading conclusions. Therefore, 

before the application of either approach to MMIRT models, practitioners should 

have a sound theoretical foundation to support the choice of random effect 

distribution.  

Which criteria should be used in distinguishing between MMIRT models can 

be an even tougher question. Because the decision of model selection is not purely a 

statistical issue, it also requires tremendous judgments about the research purposes 

and the nature of social reality (Weaklim, 2004). If the model comparison is to 

explore an unknown distribution with limited supportive evidence, the fit indices such 
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as the AIC, AIC3, AICC, and nssBIC can be a better indicator of discreteness in 

distribution. Meanwhile, if previous findings strongly support a continuous 

distribution, the BIC, CAIC, and ssBIC can successfully identify the true structure.  

5.3 Limitations and Future Direction 

The current study is the first to introduce continuous and discrete MMIRT 

models that differ only at the specifications of higher-level random effects. For this 

new modeling approach, existing literature rarely evaluated model performance under 

a variety of conditions using a simulation study.  

As discussed earlier, due to the absence of a systematic evaluation of 

multilevel mixture models, the conditions manipulated in the current simulation 

might be inadequate to differentiate the model performance of the continuous and 

discrete MMIRT models. Especially for the complex discrete models, the high non-

convergence rates commonly seen across simulated conditions did not support Heinen 

(1996) and Vermunt’s (2001) comments that more discrete latent classes can 

approximate continuous model. Although the DIF effect significantly impacts 

parameter recovery and model selection, more research is required to understand how 

large the DIF effect size should be for a stable separation of lower-level latent classes. 

Moreover, the total sample size is sufficiently large under the current model 

specification. The effect of reduced sample size on model performance is unclear. In 

particular, what are the minimum sample sizes between and within higher-level units 

for stable model estimation? Both the Cho study and the current study only discussed 

two latent classes at the lower-level. It is interesting to assess how the identification 
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of higher-level random effects is affected by increasing number of lower-level latent 

classes.  

Model selection is a complex process in MMIRT, especially in the discrete 

models. In the simulation study, the specification of a lower-level mixture model was 

the same as the data-generation model. Model misspecification only occurred at the 

group level. Therefore, the interaction of model misspecification between the lower 

and higher level is still of interest. This issue is relevant to the decision making 

process involved in MMIRT models. Henry and Muthén (2010) suggested ignoring 

hierarchical structure and deciding the number of lower-level latent classes first using 

a traditional mixture model. Additional group-level random effects are included 

afterwards. However, as observed in the empirical application with the same number 

of higher-level latent classes, the fit indices might change their preference on the 

number of lower-level latent classes. Apparently the specification of random effects 

at group-level can lead to a substantial change in the decision of model selection.  

Given the substantial computing time required for model estimation in 

MMIRT, the current study constrained the number of sets of random starting values 

and total replications in order to complete the simulation study within a manageable 

time period. Those changes can potentially threaten the generalizability of findings in 

the current study. Muthén and Muthén (1998-2010) recommended using more sets of 

starting values, such as 100 sets of initial stage starting values and 10 for final stage 

optimization, for complex mixture models. The corresponding numbers are only 3 

and 1 in the current study. On the other hand, the previous studies (e.g., Bauer & 

Curran, 2004; Lubke and Neale, 2006; Markon & Krueger, 2006), when using model 
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comparison to distinguish between the discrete and continuous latent variable models, 

usually generated hundreds of datasets in their simulation studies. The current study 

only used 50 replications, which is a relatively small number for this type of study. 

To better understand model function of MMIRT models, future study should consider 

including more replications in simulations and increasing the number of starting 

values at the initial and final stages in ML.  

The current study only discussed the performance of MMIRT models without 

covariates. In fact, an increasing number of studies advocated including covariates in 

model estimation for mixture models. For instance, the identified higher-level latent 

class in empirical application can be characterized by possible background 

information. Such a feature has an even more profound impact in educational setting. 

The use of MMIRT model can be promising for practitioners to identify and explain 

why some teachers or schools are associated with students with similar strengths or 

weaknesses on a particular subject area or a designated skill.  
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Appendix A 
 

Table 1  

Generated item difficulty parameter and DIF items 

  DIF Effect in 

Class 2 

   DIF Effect in 

Class 2 

 Class 1 15% 30%   Class 1 15% 30% 

Item 1 -1.448 0 0  Item 21 -0.042 0 0 

Item 2 -1.259 0 0  Item 22 -0.012 0 1.00 

Item 3 -1.182 0 0  Item 23 0.072 0 0 

Item 4 -1.150 0 0  Item 24 0.205 0 0 

Item 5 -1.140 0 0  Item 25 0.330 1.00 1.00 

Item 6 -1.095 0 0  Item 26 0.337 0 0 

Item 7 -1.034 0 0  Item 27 0.379 0 1.00 

Item 8 -1.003 0 1.00  Item 28 0.612 0 0 

Item 9 -0.981 0 0  Item 29 0.654 0 0 

Item 10 -0.819 1.00 1.00  Item 30 0.723 1.00 1.00 

Item 11 -0.682 0 0  Item 31 0.723 0 0 

Item 12 -0.664 0 1.00  Item 32 0.767 0 1.00 

Item 13 -0.642 0 0  Item 33 0.810 0 0 

Item 14 -0.633 0 0  Item 34 0.900 0 0 

Item 15 -0.467 1.00 1.00  Item 35 0.920 1.00 1.00 

Item 16 -0.459 0 0  Item 36 0.978 0 0 

Item 17 -0.286 0 1.00  Item 37 1.229 0 0 

Item 18 -0.250 0 0  Item 38 1.397 0 0 

Item 19 -0.215 0 0  Item 39 1.408 0 0 

Item 20 -0.050 1.00 1.00  Item 40 1.442 0 0 
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Table 2a  

Descriptive statistics of item parameter bias (True model: Continuous) 

DIF Size Prop Var 

Estimation Model 

Cont GLC2 GLC3 GLC4 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.13 0.01 0.08 0.01 0.07 0.01 0.07 0.01 

   0.3 1.38 0.43 0.22 0.06 0.14 0.05 0.68 0.22 

  30/70 0.1 0.14 0.01 0.12 0.01 0.12 0.01 0.11 0.01 

   0.3 0.93 0.32 0.60 0.22 0.75 0.26 1.12 0.41 

 150 50/50 0.1 0.30 0.02 0.13 0.01 0.15 0.01 0.16 0.01 

   0.3 1.39 0.45 0.71 0.25 0.89 0.31 1.08 0.38 

  30/70 0.1 0.27 0.02 0.13 0.01 0.17 0.01 0.20 0.01 

   0.3 1.35 0.44 0.60 0.18 1.19 0.40 1.22 0.42 

            

30% 25 50/50 0.1 0.10 0.01 0.07 0.01 0.08 0.01 0.08 0.01 

   0.3 0.15 0.01 0.13 0.01 0.14 0.01 0.14 0.01 

  30/70 0.1 0.09 0.01 0.06 0.01 0.05 0.02 0.05 0.02 

   0.3 0.10 0.04 0.04 0.05 0.05 0.04 0.06 0.05 

 150 50/50 0.1 0.05 0.02 0.04 0.05 0.05 0.06 0.05 0.07 

   0.3 0.24 0.02 0.07 0.04 0.11 0.04 0.18 0.03 

  30/70 0.1 0.09 0.01 0.08 0.01 0.06 0.01 0.06 0.01 

   0.3 0.64 0.03 0.20 0.01 0.51 0.02 0.55 0.02 
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Table 2b  

Descriptive statistics of item parameter bias (True model: GLC2) 

DIF Size Prop Var 

Estimation Model 

Cont GLC2 GLC3 GLC4 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.08 0.01 0.06 0.02 0.06 0.02 0.06 0.01 

   0.3 0.45 0.02 0.22 0.02 0.30 0.02 0.31 0.02 

  30/70 0.1 0.11 0.01 0.10 0.01 0.10 0.01 0.09 0.01 

   0.3 0.89 0.27 0.57 0.18 0.72 0.23 0.95 0.32 

 150 50/50 0.1 0.06 0.02 0.07 0.06 0.08 0.07 0.08 0.07 

   0.3 0.37 0.04 0.13 0.03 0.16 0.03 0.17 0.03 

  30/70 0.1 0.15 0.01 0.08 0.02 0.08 0.01 0.09 0.02 

   0.3 1.21 0.40 0.57 0.17 1.02 0.33 0.96 0.31 

            

30% 25 50/50 0.1 0.04 0.05 0.04 0.06 0.04 0.06 0.04 0.06 

   0.3 0.04 0.07 0.06 0.13 0.07 0.14 0.06 0.13 

  30/70 0.1 0.12 0.01 0.07 0.01 0.06 0.01 0.06 0.02 

   0.3 0.39 0.02 0.10 0.01 0.08 0.02 0.07 0.02 

 150 50/50 0.1 0.28 0.02 0.17 0.01 0.20 0.01 0.20 0.01 

   0.3 0.18 0.02 0.03 0.02 0.04 0.01 0.04 0.01 

  30/70 0.1 0.05 0.04 0.05 0.04 0.05 0.06 0.06 0.07 

   0.3 0.60 0.02 0.11 0.01 0.53 0.01 0.58 0.02 
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Table 2c  

Descriptive statistics of item parameter bias (True model: GLC4) 

15% 25 50/50 0.1 0.11 0.01 0.08 0.01 0.08 0.01 0.08 0.01 

   0.3 0.48 0.01 0.24 0.01 0.12 0.02 0.21 0.02 

  30/70 0.1 0.19 0.02 0.14 0.01 0.13 0.01 0.13 0.01 

   0.3 1.23 0.37 1.10 0.35 1.08 0.35 1.12 0.36 

 150 50/50 0.1 0.19 0.02 0.09 0.01 0.09 0.01 0.10 0.01 

   0.3 1.22 0.25 0.90 0.11 1.01 0.15 1.13 0.20 

  30/70 0.1 0.10 0.01 0.08 0.06 0.09 0.07 0.09 0.07 

   0.3 1.28 0.53 1.14 0.51 1.23 0.54 1.28 0.55 

            

30% 25 50/50 0.1 0.06 0.01 0.05 0.02 0.05 0.02 0.05 0.02 

   0.3 0.17 0.01 0.15 0.01 0.15 0.01 0.14 0.01 

  30/70 0.1 0.07 0.01 0.06 0.02 0.06 0.02 0.05 0.02 

   0.3 0.38 0.01 0.23 0.02 0.31 0.02 0.29 0.02 

 150 50/50 0.1 0.12 0.01 0.07 0.01 0.07 0.01 0.08 0.01 

   0.3 0.11 0.21 0.09 0.22 0.09 0.23 0.10 0.24 

  30/70 0.1 0.06 0.01 0.05 0.05 0.05 0.05 0.05 0.05 

   0.3 1.35 0.45 0.63 0.13 0.98 0.29 1.18 0.39 

 

 

  

DIF Size Prop Var 

Estimation Model 

Cont GLC2 GLC3 GLC4 

M SD M SD M SD M SD 
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Table 3a  

Descriptive statistics of item parameter RMSE (True model: Continuous) 

DIF Size Prop Var 

Estimation Model 

Cont GLC2 GLC3 GLC4 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.16 0.02 0.10 0.01 0.09 0.01 0.10 0.01 

   0.3 1.40 0.43 0.44 0.13 0.34 0.09 0.91 0.30 

  30/70 0.1 0.17 0.02 0.16 0.02 0.16 0.01 0.15 0.01 

   0.3 1.10 0.37 0.79 0.25 0.94 0.30 1.17 0.41 

 150 50/50 0.1 0.32 0.02 0.17 0.02 0.20 0.01 0.22 0.02 

   0.3 1.41 0.46 0.90 0.31 1.04 0.36 1.16 0.40 

  30/70 0.1 0.29 0.02 0.17 0.01 0.20 0.02 0.23 0.02 

   0.3 1.35 0.44 0.78 0.23 1.21 0.40 1.23 0.41 

            

30% 25 50/50 0.1 0.11 0.01 0.09 0.01 0.10 0.01 0.10 0.01 

   0.3 0.18 0.01 0.16 0.01 0.17 0.01 0.17 0.01 

  30/70 0.1 0.11 0.02 0.09 0.01 0.08 0.01 0.08 0.01 

   0.3 0.15 0.01 0.09 0.01 0.10 0.01 0.12 0.01 

 150 50/50 0.1 0.08 0.01 0.09 0.01 0.10 0.01 0.11 0.01 

   0.3 0.32 0.04 0.13 0.01 0.20 0.01 0.26 0.01 

  30/70 0.1 0.11 0.02 0.10 0.02 0.09 0.01 0.08 0.01 

   0.3 0.69 0.04 0.25 0.01 0.52 0.02 0.56 0.02 
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Table 3b  

Descriptive statistics of item parameter RMSE (True model: GLC2) 

DIF Size Prop Var 

Estimation Model 

Cont GLC2 GLC3 GLC4 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.10 0.01 0.09 0.01 0.09 0.01 0.08 0.01 

   0.3 0.46 0.02 0.25 0.02 0.34 0.02 0.35 0.02 

  30/70 0.1 0.14 0.02 0.14 0.02 0.13 0.01 0.13 0.01 

   0.3 1.04 0.30 0.72 0.20 0.89 0.27 1.04 0.34 

 150 50/50 0.1 0.08 0.01 0.11 0.01 0.12 0.01 0.12 0.01 

   0.3 0.38 0.04 0.15 0.03 0.17 0.03 0.19 0.03 

  30/70 0.1 0.18 0.02 0.12 0.01 0.12 0.01 0.12 0.01 

   0.3 1.21 0.40 0.73 0.21 1.07 0.34 1.04 0.33 

            

30% 25 50/50 0.1 0.08 0.01 0.09 0.01 0.09 0.01 0.09 0.01 

   0.3 0.10 0.01 0.16 0.01 0.16 0.01 0.16 0.01 

  30/70 0.1 0.14 0.01 0.09 0.01 0.08 0.01 0.09 0.01 

   0.3 0.41 0.02 0.18 0.01 0.15 0.01 0.14 0.01 

 150 50/50 0.1 0.29 0.02 0.18 0.01 0.21 0.01 0.21 0.01 

   0.3 0.20 0.02 0.06 0.01 0.06 0.01 0.06 0.01 

  30/70 0.1 0.09 0.01 0.09 0.01 0.10 0.01 0.12 0.01 

   0.3 0.61 0.02 0.16 0.01 0.55 0.02 0.60 0.02 
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Table 3c  

Descriptive statistics of item parameter RMSE (True model: GLC4) 

DIF Size Prop Var 

Estimation Model 

Cont GLC3 GLC4 GLC5 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.13 0.02 0.11 0.01 0.11 0.01 0.11 0.01 

   0.3 0.53 0.02 0.35 0.01 0.25 0.03 0.38 0.05 

  30/70 0.1 0.22 0.02 0.17 0.02 0.15 0.02 0.16 0.02 

   0.3 1.23 0.37 1.13 0.36 1.11 0.35 1.13 0.36 

 150 50/50 0.1 0.20 0.02 0.11 0.01 0.12 0.01 0.13 0.01 

   0.3 1.25 0.25 0.94 0.12 1.05 0.15 1.17 0.21 

  30/70 0.1 0.13 0.01 0.13 0.01 0.15 0.01 0.15 0.01 

   0.3 1.32 0.50 1.17 0.44 1.26 0.48 1.30 0.50 

            

30% 25 50/50 0.1 0.08 0.01 0.08 0.01 0.08 0.01 0.08 0.01 

   0.3 0.18 0.01 0.17 0.01 0.17 0.01 0.16 0.01 

  30/70 0.1 0.10 0.01 0.09 0.01 0.09 0.01 0.09 0.01 

   0.3 0.40 0.01 0.30 0.01 0.35 0.01 0.34 0.01 

 150 50/50 0.1 0.13 0.01 0.09 0.01 0.09 0.01 0.10 0.01 

   0.3 0.32 0.01 0.27 0.01 0.27 0.01 0.28 0.01 

  30/70 0.1 0.08 0.01 0.09 0.01 0.09 0.01 0.09 0.01 

   0.3 1.38 0.46 0.76 0.19 1.08 0.34 1.24 0.42 
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Table 4a  

Descriptive statistics of person-level latent class classification recovery (True model: 

Continuous) 

DIF Size Prop Var 

Estimation Model 

Cont* GLC2 GLC3 GLC4 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.52 0.01 0.51 0.01 0.51 0.01 0.51 0.01 

   0.3 0.02 0.07 0.45 0.17 0.48 0.12 0.25 0.25 

  30/70 0.1 0.51 0.02 0.50 0.02 0.50 0.02 0.50 0.02 

   0.3 0.21 0.21 0.28 0.22 0.25 0.22 0.09 0.14 

 150 50/50 0.1 0.51 0.02 0.51 0.02 0.52 0.01 0.52 0.01 

   0.3 0.08 0.08 0.24 0.23 0.19 0.21 0.12 0.16 

  30/70 0.1 0.51 0.02 0.51 0.02 0.51 0.02 0.51 0.02 

   0.3 -0.03 0.02 0.25 0.25 0.01 0.09 -0.01 0.01 

            

30% 25 50/50 0.1 0.65 0.01 0.64 0.01 0.64 0.01 0.64 0.01 

   0.3 0.64 0.01 0.64 0.01 0.64 0.01 0.64 0.01 

  30/70 0.1 0.63 0.01 0.62 0.01 0.62 0.01 0.62 0.01 

   0.3 0.62 0.01 0.62 0.01 0.62 0.01 0.62 0.01 

 150 50/50 0.1 0.66 0.01 0.65 0.01 0.65 0.01 0.65 0.01 

   0.3 0.62 0.09 0.64 0.01 0.64 0.03 0.63 0.04 

  30/70 0.1 0.64 0.01 0.62 0.01 0.64 0.01 0.64 0.01 

   0.3 0.55 0.12 0.62 0.02 0.59 0.03 0.59 0.03 
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Table 4b  

Descriptive statistics of person-level latent class classification recovery (True model: 

GLC2) 

DIF Size Prop Var 

Estimation Model 

Cont GLC2* GLC3 GLC4 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.64 0.01 0.63 0.06 0.66 0.02 0.65 0.02 

   0.3 0.57 0.03 0.61 0.04 0.60 0.04 0.60 0.04 

  30/70 0.1 0.49 0.02 0.49 0.02 0.49 0.02 0.49 0.02 

   0.3 0.17 0.23 0.26 0.24 0.21 0.24 0.11 0.20 

 150 50/50 0.1 0.67 0.01 0.68 0.01 0.68 0.01 0.68 0.01 

   0.3 0.64 0.02 0.68 0.01 0.68 0.01 0.68 0.01 

  30/70 0.1 0.50 0.02 0.51 0.01 0.51 0.01 0.51 0.01 

   0.3 0.02 0.01 0.26 0.25 0.08 0.16 0.11 0.19 

            

30% 25 50/50 0.1 0.73 0.01 0.74 0.01 0.74 0.01 0.73 0.01 

   0.3 0.72 0.01 0.73 0.01 0.73 0.01 0.73 0.01 

  30/70 0.1 0.62 0.01 0.61 0.01 0.61 0.01 0.61 0.01 

   0.3 0.59 0.02 0.61 0.02 0.61 0.02 0.61 0.02 

 150 50/50 0.1 0.73 0.01 0.75 0.01 0.74 0.01 0.74 0.01 

   0.3 0.72 0.01 0.75 0.01 0.75 0.01 0.74 0.01 

  30/70 0.1 0.63 0.01 0.63 0.01 0.63 0.01 0.63 0.01 

   0.3 0.57 0.03 0.62 0.01 0.58 0.03 0.57 0.03 
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Table 4c  

Descriptive statistics of person-level latent class classification recovery (True model: 

GLC4) 

DIF Size Prop Var 

Estimation Model 

Cont GLC3 GLC4* GLC5 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.56 0.01 0.53 0.03 0.52 0.02 0.52 0.02 

   0.3 0.50 0.10 0.50 0.07 0.50 0.07 0.49 0.12 

  30/70 0.1 0.51 0.01 0.51 0.02 0.51 0.02 0.51 0.02 

   0.3 -0.04 0.02 -0.02 0.11 -0.01 0.13 -0.03 0.08 

 150 50/50 0.1 0.59 0.01 0.58 0.01 0.59 0.01 0.59 0.01 

   0.3 0.22 0.14 0.37 0.15 0.32 0.15 0.27 0.16 

  30/70 0.1 0.53 0.02 0.53 0.02 0.53 0.02 0.53 0.02 

   0.3 0.18 0.07 0.16 0.04 0.18 0.04 0.18 0.04 

            

30% 25 50/50 0.1 0.68 0.01 0.67 0.01 0.67 0.01 0.67 0.01 

   0.3 0.66 0.01 0.66 0.01 0.66 0.01 0.66 0.01 

  30/70 0.1 0.65 0.01 0.63 0.02 0.65 0.02 0.65 0.02 

   0.3 0.61 0.02 0.61 0.02 0.61 0.02 0.61 0.02 

 150 50/50 0.1 0.69 0.01 0.69 0.01 0.69 0.01 0.69 0.01 

   0.3 0.67 0.03 0.67 0.02 0.68 0.02 0.68 0.02 

  30/70 0.1 0.66 0.01 0.66 0.01 0.66 0.01 0.66 0.01 

   0.3 0.11 0.16 0.47 0.22 0.28 0.25 0.18 0.21 
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Table 5a  

Descriptive statistics of correlations between the true and estimated proportion of 

person membership within groups (True model: Continuous) 

DIF Size Prop Var 

Estimation Model 

Cont* GLC2 GLC3 GLC4 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.76 0.03 0.73 0.03 0.73 0.03 0.73 0.03 

   0.3 0.03 0.10 0.61 0.22 0.65 0.16 0.35 0.34 

  30/70 0.1 0.75 0.03 0.72 0.03 0.72 0.03 0.72 0.03 

   0.3 0.33 0.29 0.43 0.26 0.37 0.29 0.16 0.18 

 150 50/50 0.1 0.80 0.05 0.82 0.05 0.82 0.05 0.82 0.05 

   0.3 0.22 0.06 0.42 0.26 0.36 0.27 0.26 0.20 

  30/70 0.1 0.85 0.04 0.83 0.04 0.84 0.04 0.84 0.04 

   0.3 0.07 0.02 0.46 0.36 0.04 0.14 0.02 0.02 

            

30% 25 50/50 0.1 0.86 0.02 0.83 0.02 0.84 0.02 0.84 0.02 

   0.3 0.82 0.03 0.81 0.02 0.81 0.03 0.81 0.03 

  30/70 0.1 0.84 0.02 0.82 0.02 0.82 0.02 0.82 0.02 

   0.3 0.77 0.05 0.76 0.03 0.76 0.03 0.77 0.04 

 150 50/50 0.1 0.95 0.01 0.93 0.01 0.94 0.01 0.95 0.01 

   0.3 0.80 0.13 0.87 0.06 0.87 0.10 0.83 0.11 

  30/70 0.1 0.92 0.02 0.90 0.02 0.91 0.02 0.92 0.02 

   0.3 0.67 0.13 0.83 0.06 0.74 0.06 0.73 0.05 
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Table 5b  

Descriptive statistics of correlations between the true and estimated proportion of 

person membership within groups (True model: GLC2) 

DIF Size Prop Var 

Estimation Model 

Cont GLC2* GLC3 GLC4 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.93 0.01 0.92 0.03 0.93 0.02 0.93 0.02 

   0.3 0.82 0.04 0.87 0.04 0.86 0.05 0.86 0.05 

  30/70 0.1 0.65 0.04 0.64 0.03 0.64 0.04 0.64 0.04 

   0.3 0.23 0.29 0.33 0.29 0.28 0.29 0.15 0.24 

 150 50/50 0.1 0.99 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

   0.3 0.95 0.02 0.99 0.01 0.99 0.01 0.99 0.01 

  30/70 0.1 0.80 0.06 0.84 0.07 0.83 0.07 0.84 0.07 

   0.3 0.11 0.02 0.44 0.35 0.21 0.24 0.24 0.28 

            

30% 25 50/50 0.1 0.96 0.00 0.96 0.01 0.96 0.01 0.96 0.01 

   0.3 0.95 0.01 0.96 0.01 0.96 0.01 0.96 0.01 

  30/70 0.1 0.77 0.02 0.75 0.02 0.75 0.02 0.75 0.02 

   0.3 0.67 0.05 0.72 0.03 0.72 0.03 0.72 0.03 

 150 50/50 0.1 0.98 0.00 1.00 0.00 0.99 0.00 0.99 0.00 

   0.3 0.97 0.01 1.00 0.00 0.99 0.00 0.99 0.00 

  30/70 0.1 0.92 0.02 0.91 0.03 0.94 0.02 0.93 0.02 

   0.3 0.68 0.06 0.83 0.05 0.70 0.07 0.68 0.06 
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Table 5c  

Descriptive statistics of correlations between the true and estimated proportion of 

person membership within groups (True model: GLC4) 

DIF Size Prop Var 

Estimation Model 

Cont GLC3 GLC4* GLC5 

M SD M SD M SD M SD 

15% 25 50/50 0.1 0.85 0.02 0.82 0.03 0.81 0.02 0.81 0.02 

   0.3 0.72 0.15 0.75 0.11 0.77 0.11 0.74 0.18 

  30/70 0.1 0.76 0.02 0.75 0.03 0.75 0.03 0.75 0.03 

   0.3 0.12 0.03 0.15 0.12 0.16 0.15 0.13 0.09 

 150 50/50 0.1 0.95 0.02 0.94 0.02 0.95 0.02 0.95 0.02 

   0.3 0.37 0.20 0.58 0.21 0.53 0.21 0.44 0.22 

  30/70 0.1 0.92 0.02 0.93 0.02 0.93 0.02 0.94 0.02 

   0.3 0.46 0.09 0.44 0.09 0.48 0.10 0.47 0.10 

            

30% 25 50/50 0.1 0.91 0.01 0.91 0.01 0.90 0.01 0.90 0.01 

   0.3 0.88 0.02 0.87 0.02 0.88 0.02 0.88 0.02 

  30/70 0.1 0.87 0.02 0.86 0.02 0.87 0.02 0.87 0.02 

   0.3 0.77 0.03 0.79 0.04 0.79 0.03 0.79 0.03 

 150 50/50 0.1 0.97 0.01 0.97 0.01 0.98 0.01 0.98 0.01 

   0.3 0.95 0.03 0.96 0.01 0.97 0.02 0.97 0.02 

  30/70 0.1 0.96 0.01 0.97 0.01 0.97 0.01 0.97 0.01 

   0.3 0.17 0.19 0.63 0.28 0.38 0.32 0.25 0.26 
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Table 6a  

Descriptive statistics of item parameter bias and RMSE on item types (True mode: 

Continuous) 
D

IF
 

S
iz

e 

P
ro

p
 

V
ar

 Non-DIF Items  DIF Items 

Cont GLC3 GLC4 GLC5  Cont GLC3 GLC4 GLC5 

Bias          

15

% 

25 50/

50 

0.1 0.13 0.08 0.07 0.07  0.15 0.08 0.06 0.05 

 0.3 1.56 0.24 0.16 0.78  0.38 0.07 0.04 0.16 

  30/

70 

0.1 0.14 0.12 0.12 0.11  0.15 0.13 0.11 0.10 

  0.3 1.07 0.69 0.86 1.29  0.18 0.07 0.14 0.17 

 150 50/

50 

0.1 0.30 0.13 0.15 0.16  0.34 0.15 0.16 0.17 

  0.3 1.58 0.82 1.01 1.23  0.33 0.11 0.16 0.18 

  30/

70 

0.1 0.26 0.13 0.17 0.20  0.29 0.11 0.17 0.21 

  0.3 1.53 0.67 1.35 1.40  0.31 0.17 0.26 0.24 

30

% 

25 50/

50 

0.1 0.09 0.07 0.08 0.08  0.11 0.07 0.08 0.08 

 0.3 0.15 0.13 0.14 0.14  0.17 0.14 0.15 0.15 

  30/

70 

0.1 0.08 0.07 0.06 0.06  0.10 0.05 0.03 0.03 

  0.3 0.12 0.07 0.07 0.09  0.04 -0.03 -0.02 -0.02 

 150 50/

50 

0.1 0.06 0.08 0.09 0.09  0.03 -0.04 -0.05 -0.05 

  0.3 0.25 0.10 0.13 0.20  0.22 0.02 0.05 0.14 

  30/

70 

0.1 0.08 0.07 0.07 0.06  0.09 0.09 0.06 0.06 

  0.3 0.66 0.20 0.50 0.54  0.61 0.21 0.52 0.56 

 

RMSE          

15

% 

25 50/

50 

0.1 0.16 0.10 0.09 0.09  0.19 0.12 0.11 0.11 

 0.3 1.58 0.49 0.37 1.03  0.39 0.13 0.13 0.21 

  30/

70 

0.1 0.17 0.15 0.15 0.15  0.19 0.18 0.17 0.17 

  0.3 1.25 0.89 1.07 1.34  0.24 0.20 0.24 0.20 

 150 50/

50 

0.1 0.31 0.16 0.19 0.21  0.36 0.19 0.22 0.24 

  0.3 1.60 1.03 1.19 1.33  0.34 0.16 0.19 0.21 

  30/

70 

0.1 0.28 0.17 0.20 0.23  0.31 0.18 0.22 0.25 

  0.3 1.54 0.88 1.37 1.40  0.32 0.25 0.28 0.25 

30

% 

25 50/

50 

0.1 0.11 0.09 0.10 0.10  0.13 0.10 0.11 0.12 

 0.3 0.17 0.15 0.17 0.17  0.19 0.17 0.19 0.19 

  30/

70 

0.1 0.10 0.08 0.08 0.08  0.13 0.10 0.09 0.09 

  0.3 0.15 0.08 0.10 0.12  0.15 0.09 0.11 0.13 

 150 50/

50 

0.1 0.08 0.09 0.11 0.11  0.09 0.09 0.10 0.10 

  0.3 0.34 0.13 0.21 0.26  0.26 0.13 0.20 0.26 

  30/

70 

0.1 0.10 0.09 0.08 0.08  0.13 0.12 0.10 0.09 

  0.3 0.71 0.25 0.52 0.56  0.62 0.26 0.53 0.57 
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Table 6b  

Descriptive statistics of item parameter bias and RMSE on item types (True mode: 

GLC2) 
D

IF
 

S
iz

e 

P
ro

p
 

V
ar

 Non-DIF Items  DIF Items 

Cont GLC3 GLC4 GLC5  Cont GLC3 GLC4 GLC5 

Bias          

15

% 

25 50/

50 

0.1 0.08 0.07 0.07 0.06  0.06 0.02 0.02 0.03 

 0.3 0.44 0.22 0.30 0.30  0.48 0.26 0.34 0.35 

  30/

70 

0.1 0.11 0.10 0.10 0.10  0.10 0.10 0.09 0.08 

  0.3 1.01 0.65 0.81 1.08  0.26 0.15 0.18 0.20 

 150 50/

50 

0.1 0.06 0.10 0.11 0.11  0.01 -0.07 -0.09 -0.08 

  0.3 0.35 0.12 0.15 0.16  0.45 0.20 0.23 0.25 

  30/

70 

0.1 0.15 0.09 0.09 0.09  0.16 0.05 0.06 0.05 

  0.3 1.38 0.64 1.16 1.09  0.27 0.17 0.23 0.23 

30

% 

25 50/

50 

0.1 0.07 0.08 0.08 0.08  -0.03 -0.05 -0.05 -0.05 

 0.3 0.08 0.15 0.15 0.15  -0.06 -0.14 -0.14 -0.14 

  30/

70 

0.1 0.12 0.07 0.06 0.06  0.12 0.05 0.04 0.03 

  0.3 0.39 0.11 0.09 0.08  0.39 0.09 0.05 0.05 

 150 50/

50 

0.1 0.28 0.17 0.20 0.20  0.30 0.19 0.22 0.22 

  0.3 0.17 0.05 0.05 0.05  0.21 0.00 0.02 0.03 

  30/

70 

0.1 0.08 0.07 0.09 0.11  0.00 0.00 -0.03 -0.05 

  0.3 0.60 0.12 0.53 0.58  0.59 0.11 0.52 0.57 

 

RMSE          

15

% 

25 50/

50 

0.1 0.10 0.09 0.09 0.08  0.11 0.09 0.10 0.09 

 0.3 0.46 0.24 0.33 0.34  0.50 0.29 0.37 0.38 

  30/

70 

0.1 0.14 0.13 0.12 0.12  0.17 0.16 0.15 0.15 

  0.3 1.16 0.80 1.00 1.18  0.33 0.26 0.25 0.25 

 150 50/

50 

0.1 0.08 0.11 0.13 0.12  0.09 0.10 0.11 0.11 

  0.3 0.36 0.13 0.16 0.17  0.46 0.21 0.25 0.26 

  30/

70 

0.1 0.18 0.12 0.12 0.12  0.21 0.13 0.13 0.14 

  0.3 1.38 0.82 1.21 1.18  0.28 0.25 0.26 0.27 

30

% 

25 50/

50 

0.1 0.08 0.10 0.10 0.10  0.07 0.08 0.08 0.08 

 0.3 0.10 0.16 0.17 0.16  0.10 0.15 0.16 0.15 

  30/

70 

0.1 0.14 0.09 0.08 0.08  0.15 0.09 0.09 0.09 

  0.3 0.41 0.18 0.15 0.15  0.41 0.18 0.15 0.14 

 150 50/

50 

0.1 0.28 0.18 0.21 0.21  0.31 0.20 0.23 0.23 

  0.3 0.18 0.06 0.06 0.06  0.22 0.06 0.06 0.07 

  30/

70 

0.1 0.09 0.09 0.11 0.13  0.08 0.08 0.09 0.11 

  0.3 0.62 0.16 0.55 0.60  0.60 0.16 0.54 0.59 

 



 

136 

 

Table 6c  

Descriptive statistics of item parameter bias and RMSE on item types (True mode: 

GLC4) 
D

IF
 

S
iz

e 

P
ro

p
 

V
ar

 Non-DIF Items  DIF Items 

Cont GLC3 GLC4 GLC5  Cont GLC3 GLC4 GLC5 

Bias          

15

% 

25 50/

50 

0.1 0.11 0.08 0.08 0.08  0.14 0.09 0.08 0.09 

 0.3 0.47 0.24 0.13 0.22  0.49 0.22 0.09 0.16 

  30/

70 

0.1 0.19 0.13 0.12 0.12  0.23 0.16 0.15 0.15 

  0.3 1.38 1.25 1.22 1.27  0.36 0.28 0.27 0.27 

 150 50/

50 

0.1 0.18 0.09 0.09 0.10  0.22 0.09 0.10 0.12 

  0.3 1.32 0.94 1.07 1.21  0.65 0.64 0.67 0.66 

  30/

70 

0.1 0.10 0.10 0.12 0.12  0.08 -0.05 -0.08 -0.08 

  0.3 1.50 1.35 1.46 1.50  0.05 -0.07 -0.03 0.00 

30

% 

25 50/

50 

0.1 0.06 0.06 0.07 0.07  0.06 0.03 0.02 0.02 

 0.3 0.16 0.14 0.14 0.13  0.18 0.16 0.16 0.15 

  30/

70 

0.1 0.08 0.07 0.07 0.07  0.07 0.04 0.03 0.03 

  0.3 0.38 0.24 0.32 0.30  0.37 0.21 0.30 0.28 

 150 50/

50 

0.1 0.11 0.07 0.07 0.08  0.13 0.06 0.07 0.08 

  0.3 0.25 0.23 0.24 0.25  -0.22 -0.24 -0.25 -0.26 

  30/

70 

0.1 0.06 0.08 0.08 0.08  0.06 -0.03 -0.03 -0.03 

  0.3 1.64 0.72 1.17 1.43  0.67 0.44 0.54 0.59 

 

RMSE          

15

% 

25 50/

50 

0.1 0.13 0.10 0.10 0.10  0.17 0.13 0.13 0.13 

 0.3 0.53 0.35 0.26 0.40  0.51 0.34 0.20 0.25 

  30/

70 

0.1 0.21 0.16 0.15 0.15  0.25 0.20 0.19 0.19 

  0.3 1.39 1.28 1.26 1.28  0.37 0.29 0.29 0.28 

 150 50/

50 

0.1 0.20 0.11 0.12 0.13  0.24 0.13 0.14 0.16 

  0.3 1.36 0.99 1.11 1.25  0.66 0.67 0.69 0.68 

  30/

70 

0.1 0.13 0.13 0.15 0.15  0.16 0.12 0.14 0.14 

  0.3 1.52 1.36 1.46 1.51  0.14 0.14 0.13 0.13 

30

% 

25 50/

50 

0.1 0.08 0.08 0.08 0.08  0.10 0.09 0.09 0.09 

 0.3 0.18 0.17 0.16 0.15  0.20 0.19 0.18 0.17 

  30/

70 

0.1 0.10 0.08 0.09 0.08  0.11 0.09 0.10 0.09 

  0.3 0.40 0.30 0.36 0.34  0.39 0.29 0.34 0.33 

 150 50/

50 

0.1 0.13 0.09 0.09 0.09  0.14 0.10 0.10 0.11 

  0.3 0.32 0.27 0.27 0.28  0.34 0.28 0.28 0.29 

  30/

70 

0.1 0.08 0.10 0.10 0.10  0.10 0.08 0.08 0.08 

  0.3 1.68 0.88 1.30 1.51  0.68 0.48 0.56 0.61 
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Appendix B 
Table 7a  

Non-convergence frequency in simulated conditions (True model: Continuous) 

    Estimation Model  

DIF Size Prop Var Cont GLC2 GLC3 GLC4 Total 

15% 25 50/50 0.1 0 0 0 0 0 

   0.3 1 0 0 0 1 

  30/70 0.1 0 0 11 12 20 

   0.3 0 0 10 0 10 

 150 50/50 0.1 0 0 0 0 0 

   0.3 0 4 4 2 8 

  30/70 0.1 0 0 0 0 0 

   0.3 0 1 1 0 2 

         

30% 25 50/50 0.1 0 0 1 1 2 

   0.3 0 0 0 2 2 

  30/70 0.1 0 0 0 1 1 

   0.3 0 0 0 2 2 

 150 50/50 0.1 0 0 0 0 0 

   0.3 0 0 1 1 2 

  30/70 0.1 0 0 0 0 0 

   0.3 0 0 0 0 0 
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Table 7b  

Non-convergence frequency in simulated conditions (True model: GLC2) 

    Estimation Model  

DIF Size Prop Var Cont GLC2 GLC3 GLC4 Total 

15% 25 50/50 0.1 0 0 1 25 26 

   0.3 0 0 3 6 7 

  30/70 0.1 0 0 8 12 18 

   0.3 0 0 7 5 11 

 150 50/50 0.1 0 0 0 0 0 

   0.3 0 0 0 0 0 

  30/70 0.1 1 0 0 0 1 

   0.3 0 6 4 2 10 

         

30% 25 50/50 0.1 0 0 1 5 6 

   0.3 0 0 0 0 0 

  30/70 0.1 0 0 0 0 0 

   0.3 0 0 0 1 1 

 150 50/50 0.1 0 0 0 0 0 

   0.3 0 0 0 0 0 

  30/70 0.1 0 0 0 0 0 

   0.3 28 0 8 15 32 
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Table 7c  

Non-convergence frequency in simulated conditions (True model: GLC4) 

    Estimation Model  

DIF Size Prop Var Cont GLC3 GLC4 GLC5 Total 

15% 25 50/50 0.1 0 0 4 5 7 

   0.3 0 0 1 4 5 

  30/70 0.1 0 5 10 10 16 

   0.3 0 1 0 0 1 

 150 50/50 0.1 0 0 0 0 0 

   0.3 0 1 2 5 7 

  30/70 0.1 0 0 0 0 0 

   0.3 1 0 0 0 1 

         

30% 25 50/50 0.1 0 0 2 22 23 

   0.3 0 0 1 21 22 

  30/70 0.1 0 1 3 10 14 

   0.3 0 0 1 2 3 

 150 50/50 0.1 0 0 0 0 0 

   0.3 0 0 0 0 0 

  30/70 0.1 0 0 0 0 0 

   0.3 1 0 1 5 7 
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Appendix C 
 

Sample Mplus Code for Continuous MMIRT Model 

 
TITLE: multilevel mixture IRT model -  Estimation: continuous 

 

DATA: FILE = data.dat; 

 

VARIABLE:  

    NAMES ARE GID GLC GTHETA PID PLC PTHETA I1-I40; 

    IDVARIABLE IS PID; 

    USEVARIABLES = I1-I40; 

    CATEGORICAL = I1-I40; 

             

    CLASSES = c(2); 

    WITHIN =I1-I40; 

    CLUSTER = GID; 

 

ANALYSIS:  

    TYPE = TWOLEVEL MIXTURE; 

    ALGORITHM = INTEGRATION; 

    STARTS = 3 1; 

    ITERATIONS = 250; 

    MIXU = ITERATIONS; 

    MIXC = ITERATIONS; 

 

MODEL: 

    %WITHIN% 

 

        %OVERALL% 

        f BY I1-I40* (1); 

        [f@0]; 

        f@1; 

 

        %c#1% 

       [I1$1-I40$1]; 

 

        %c#2% 

       [I1$1-I40$1]; 

 

    %BETWEEN%    

 

        %OVERALL% 

        m BY c#1;    

 

 

SAVEDATA:  

    RESULTS ARE C1_mfit.dat; 

 

    FILE is C1_output.dat;          

    SAVE = FSCORES; 

    SAVE = CPROBABILITIES;            
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Appendix D 
 

Sample Mplus Code for Discrete MMIRT Model 

 
TITLE: multilevel mixture IRT model -  Estimation: GLS3 

 

DATA: FILE = data.dat; 

 

VARIABLE:  

    NAMES ARE GID GLC GTHETA PID PLC PTHETA I1-I40; 

    IDVARIABLE IS PID; 

    USEVARIABLES = I1-I40; 

    CATEGORICAL = I1-I40; 

             

    CLASSES = cb(3) c(2); 

    BETWEEN = cb; 

    WITHIN = I1-I40; 

    CLUSTER = GID; 

 

ANALYSIS:  

    TYPE = TWOLEVEL MIXTURE; 

    ALGORITHM = INTEGRATION; 

    STARTS = 3 1; 

 

MODEL: 

    %WITHIN% 

        %OVERALL% 

        f BY I1-I40* (1); 

        [f@0]; 

        f@1; 

 

     %BETWEEN%    

        %OVERALL% 

 

        c ON cb; 

 

MODEL c: 

        %WITHIN% 

 

        %c#1% 

       [I1$1-I40$1]; 

 

        %c#2% 

       [I1$1-I40$1]; 

 

 

SAVEDATA:  

    RESULTS ARE C3_mfit.dat; 

 

    FILE is C3_output.dat;  

    SAVE = FSCORES; 

    SAVE = CPROBABILITIES;           
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