SRC TR 87-178

High Performance Engineering
Information Systems

by

N. Roussopoulos, L. Mark,
T. Sellis and C. Faloutsos

HIGH PERFORMANCE ENGINEERING INFORMATION SYSTEMS?
N. Roussopoulos, L. Mark, T. Sellis, and C. Faloutsos
Department of Computer Science
and Systems Research Center

University of Maryland
College Park, MD 20742

Abstract

We present a framework for developing High Performance Engineering Information Sys-
tems (EIS) based on Incremental Computation Models. These models utilize results
of previous computations stored in persistent cache structures by merging them with
new results obtained from computations performed on the incremental changes of the
database. Because computation is performed on small increments rather than the whole
database, incremental computation models achieve performances that are far beyond the
reach of ordinary models. High performance EIS will be able to support engineering
knowledge bases of significant size, explicit models of interdependent knowledge, optimi-
zation techniques for deductive queries, and efficient methods for organizing and access-
ing large numbers of engineering facts and rules. The persistent cache structures of the
incremental models provide an innovative self-improving performance capability for com-
putation intensive EIS.

¥ This research was sponsored partially by the National Sciencé Foundation under the grant CDR-85-00108 and by UMIACS.

1. Introduction

Traditionally Database Management Systems (DBMS) have been used in business
applications to efficiently organize and store large amounts of data. The main thrust of data-
base research has focused on designing data structures and algorithms so that operations, com-

mon in this environment, can be processed efficiently.

' Recently, there has been considerable interest in providing a framework for information
sharing and exchange in engineering environments:.‘ Engineering Information Systems (EIS) '
are the current focus of 'séveral government sponéored research projects [LINN86]. These efforts
are trying to consolidate and integrate the engineering support environments that have been and
are being developed to support planning, design automation, manufacturing, resource manage-
ment, etc. Along this direction, there has already been some work in extending existing database
management systems to accommodate engineering applications. In particular, relational DBMS’s
have been used in support of Computer Aided Design (CAD)
[KATZ82,LORI83,GUTT84,CAMMS84,BATO85], Computer Integrated Manufacturing (CIM)
[KIMU82,KOCH84, MELK84 HARH87], and Artificial Intelligence and Expert Systems
[KERS84,KERS86]. The main difference between the business applications and the ones men-
tioned above lies in the kind of information that the two types of applications are using. Busi-
ness applications are mainly concerned with large volumes of structured data with well under-
stood access patterns, while engineering applications usually involve a sophisticated conirol
mechanism that handles structured and unstructured data with rather unpredictable access pat-

terns. Therefore, a system of the second type should be able to support explicit representations

of control information in addition to factual information.

Using a data manager with full capabilities offers the advantages of better data organiza-
tion, simple user interface, integrity of data in multi-user environments and recovery from
hardware or software crashes. Given these advantages, there have been various attempts to
build systems that support non-traditional database applications over large volumes of data. In

general, there are three different approaches that can be taken

. One can enhance a specific application system with a specialized data manager.

e Onecan interface a specific application to a general purpose DBMS.

e Finally, one can extend a general purpose data manager by enhancing it with more sophisti-

cated capabilities.

The first approach suffers from two major dis.advantages. First, considérable effort must be
put into designing and building several modules: that DBMS’s already include (data definition
and manipulation facilities, query processing algprithms, etc). Second, such specialized data
managers are very narrow, in the sense that they cannot be easily modified to support‘api)lica-

tions other than the ones they were originally written for.

In the second approach there is a clean interface between a specialized application program
and a general purpose DBMS. The DBMS acts as a server to the application program by supply-
ing on demand the data that the latter requires. However, the major disadvantage of this
approach lies in the difficulty to define exactly where the two systems must be interfaced.

[ZANI84,SCIO84| provide good criticisms of this approach.

The most promising approach is the third one. In this one, data manipulation and control
functions are integrated into a single system in a homogenéous way. The work of
[MYLOB80,SHIP81,ZANI83| in semantic data models, of [COPE84,DERRS86| in the design of sys-
tems based on the object oriented data model and of [STON86,STON87| in the extension of
INGRES to support expert systems applications are representative of this approach. The basic
idea has been to create a simple system that gives the user the capability to build on fop of a
basic set of functions whatever constructs are required by his applications. Moreover, it has
been assumed that minimal extensions to the relational model should be attempted. An example
of such efforts have been Engineering Databases [LORI85BATO85]. The assumption here is
that complex engineering objects can be supported by normalizing them into relational structures
connected via the concept of surrogates, and‘engineering rules for change propagation can be
handled by a deductive mechanism. Another example is the work on Deductive Databases
[GALL78] which provide basic support for expert systems applications. In a deductive database
system both rules and facts are stored in the same system. In
[IOAN84,DAYA85 ULLM85,ZANI85| several database systems enhanced with inference capabili-

“ties are proposed, each being.a specific. implementation of the above model of rules and facts, .

None of above proposals however explores in detail all basic‘Engi.neelring Informatioﬁ Sys-
tems requirements that need be supported by database systems. Moreover, engineering and
deductive databases are severely handicapped by their performance. Little work has been done
to improve the storing of and efficient access to large and complex engineering objects and rule

bases. This specific issue of performance is the focus of our paper.

Section 2 briefly presents the basic Engineering Information Systems requirements. In Sec-
tion 3 we show how these requirements can be handled by minimally extended relational data-
base systems. In the same section wé also discuss the various -performance and 6ptimization
issues and suggest various solutions. Section 4 presents the implementation status of the project

and, finally, we conclude in Section 5 with a summary.

2. Engineering Information Systems Requirements

The primary goal of an Engineering Information System (EIS) is to provide integrated
support for the management and the engineering processes. The management processes are plan-
ning, monitoring, and evaluation. The engineering processes are design, development, testing,
fabrication, and maintenance of engineering products foryvhich form, fit and function is con-
trolled. The management of the complex and continuously-evolving databases consisting of data
objects associated with management and engineering processes is the key concept in this frame-
work and the integration of special purpose management and engineering tools with databaée

technology will be the foundation of it.

An EIS must support reuse, evolution and trace of information. These are the most
common practices in any engineering process and they constitute the foundation of technology

evolution.

Reuse of designs and the acquired know-how is currently limited to small groups of people.
Technology transfer among these groups is often so time consuming that it cannot catch—up with
its own evolution. Dynamic models which can acquire new information and/or trace back to the
development of the technology are needed. The increasing complexity and size of the informa-
tion that needs be managed ‘by current and future EIS’s mandates the use of both expert system

and database technology.

Control of evolving engineering information bases can use the deductive capabilities of
expert systems. Systems like INTERNIST-1 [MILL82], R1 [McDE82], PROSPECTOR
[DUDA78] and DENDRAL [LIND80] manipulate information in the order of a few hundred facts
and rules. Scaling this up to accommodate an EIS with tens of thousands of rules and hundreds
of thousands of facts is a non-trivial task. Organizing the information using the well defined

principles of database systems is clearly not only an advantage, but a necessity.

However, one must first look in a systematic way at all the basic EIS requirements in order
to get a good understanding of the kind of extensions that need be made to current database sys-

tems. This section provides such a discussion.

EIS’s are different from other information systems in that they manage and control vast

amounts of redundant- and interdependent information and knowledge. Therefore, they.need spe-

-5 -

cialized management techniques. We have classified them into five main categories: representa-
tion of information, management of highly redundant information, management and control of
dependent information, design-reuse and control methodologies, and management of interoper-

able environments.

2.1. Example of an Integrated EIS

We shall first introduce a simple example and use this as a medium for the subsequent dis-

cussion. The system is shown in Figure 1.

—> MRP <& > CAD <~

DRAWING _

B.O.M. @]

PART MASTE WING
DEDUCTIVE RULES DEDUCTIVE RULES
UPDATE UPDATE
DEPENDENCIES DEPENDENCIES

Figure 1: An Example EIS

The example illustrates a simplified model of an information system for Manufacturing and
Resource Planning (MRP) integrated with an information system for Computer Aided Design
(CAD). The MRP system contains a variety of information, in particular the Bill of Material
(B.O.M.) describing part explosion and the Part Master record containing the individual part
descriptions and versions. The CAD system contains designs and drawings in various versions.
As we shall see later, there is a number of situations where deductive rules are needed for com-
plex data and information retrieval from the twd systems. There is a considerable amount of
overlap and redundaucy between the data stored and used by the two systems. The update
dependencies of such redundant ddta systems require explicit representabions to be used by the
redundancy controller in maintaining consistency, in supporting data exchange and change pro-

pagation between the two systems.

2.2. Representation of Information

The information in an EIS can be classified with respect to the following three orthogonal

dimensions:
e management or engineering related,
e process or product related, and
e description or instance related.

Management processes are activities like planning, monitoring, and control. Management
products include plans, schedules, resource allocations, and results from the monitoring and con-
trol processes. Engineering processes are activities like design, manufacturing, and testing.
Engineering products are designs, manufactured products, test results, etc. Knowledge related to
both the description and actual executions of processes must be represented in an EIS, e.g. infor-
mation about the planning strategy used by mauagement must be represented in and enforced by
the EIS, and information about each individual planning activity following this strategy must be
recorded. Likewise, information related to both the description and the actual instances of pro-
ducts must be represented in the EIS, e.g. both the description of a manufactured product and
the number of instances produced are relevant to engineers. There are several relationships
between these classes of 1nformat10n One example of such a relatlonshlp is that a spemﬁc

manufacturmg process consumes component products and produces manufactured products

Another example of a relationship is that the result of a planning process may be used as the
description of a manufacturing process. A unifying model of the information needed in an EIS is

essential. We believe that such a model can be based on the above classification.

Only part of the information in an EIS can be represented and used by means of traditional
database maflagement system. Several fnanagement and engineering processes, such as planning,
decision making, monitoring, and control are based on summarized and aggregated information
deduced from the database. To represent and use Deductive Engineering Rules rules in an EIS,

we have to extend database management systems with Expert System capabilities.
Capabilities are needed for

e representation of deductive engineering rules

e efficient retrieval of the rules by an inference engine

e learning based on previously made deductions.

2.3. Management of Highly Redundant Information

A variety of new data types are needed for representing descriptions of management and
engineering processes and products. Many of these data typés require specialized software for
storage, display, and processing. Redundant multiple representations of the same information is
necessary to support the multiplicity of tools and users. Another factor that significantly contri-
butes to the redundancy of an EIS is the maintenance of large number of versions. Managing
collections of complex objects i1s different than managing a no-redundant snapshot database.

Meta—information is needed to describe and control the redundancy.

Maintenance of highly redundant information requires techniques that are based on dif-
ferential files. These are logs of the changes made after a consistent state of the database and
maintained separately from the main files. Differential files save storage but, most importantly,

make version control and regeneration of previous versions very efficient.

2.4. Management and Control of Dependent Information

Update propagation of dependent information, library like check—in/out control and long
_transactions are distinct characteristics of engineering databases. Techniques for dealing with

long lasting processes are different than those dealing with rapid transactions found in today’s

8 _

data processing applications..The required concurrency and consistency protocols must account
for and control engineering changes. Declarative and executable models are needed to capture
Update Dependencies of objects. Update dependencies can be thought of as the information

“and control needed to maintain the integrity and the consistency of an evolving database.

2.5. Design Reuse and Control Methodologies

Unlike data processing environments which anly capture a snapshot of the world, EIS data-
bases must capture the whole history of the information from fhe design of engineering products
to mainten‘émce. The database is developed incrementally and is maintained for trace of infor-
mation. It must support cooperative design based on the fundamental practice of reuse of exist-
ing designs and previously obtained know-how. To reuse a piece of design, a designer must be

made aware of its existence and browse through its associated information.

In order to control new designs and other derived information, the EIS must support
methodologies tailored to the application. EIS designers have to provide the EIS users with
methodologies and guidelines for interacting with the EIS. Having explicit models for represent-
ing information and its interactions, is like having a programming language. One can write
correct or erroneous programs. Existing engineering support methodologies must be extended to

account for the large complexity of the future systems.

2.6. Interoperability of Environments

The environment of an EIS is naturally distributed among a large number of tools and spe-
cial purpose workstations, such as schematic analyzers, graphics editors, simulators, database
management systems, etc. In a typical EIS environment, most of the interactions will originate
from a workstation or a tool tailored to some specific task. It is highly unlikely that all the
functionality of special purpose processors and toc;ls that currently exist in the market or those
that will be developed in the near future can be provided by a single host. Instead, special pur-
pose processing will continue to be done at tailored tools which will interact with an EIS. This
requires an EIS—tool architecture that is partially distributed between workstations and main-
frames but tightly controlled by an interface that explicitly manages their interactions: aown—

. loading of objects, bindings of downloaded objects, check-in and out, versions, etc.

_9 _

" The distribution lof data and'processing among workstations allov:vs parallelism. To guaran- |
tee data consistency, updates that affect the EIS database must be transmitted to the EIS tool
where they are validated for consistency. Special purpose protocols for derived and redundant
data are necessary. Furthermore, the interface should keep track of how information from the
» EIS disseminates to the various tools, how updates done after tﬁe dissemination affect processing
at the tools, and what updates must be propagated to them. Differential file techniques and

incremental updating must be used to minimize data transmission and processing time.

- 10 —

3. Performance Issues in Large Scale EIS’s

In this section we first suggest schemes whereby relational database systems can be used in
the implementation of various engineering information systems features. Then, we turn to dis-

cuss a number of performance issues that arise.

3.1. Expert Database Systems

As mentioned in the previous section, engineering information systems usually involve an
ekpert sub;system which is used to intelligently search over vast amounfs of data. However, up .
to now, this is done assuming the fact that main memory is sufficient to hold all the necessary
information. We exploit here an alternative that can be used in EIS, namely intelligent database
systems or Expert Database Systems (EDS). Although we focus on ideas mainly applicable
to production rule based systems, semantic networks and frames could also be supported. The
basic features discussed are data, rules, meta-knowledge and the inference mechanism (see
[SELL87b] for more details). Throughout the discussion we will illustrate our proposals through
the MRP /CAD system of section 2.

Engineering Information can be clearly stored using relations. For example, the realiza-
tion of a predicate bom(part,sub-part) is done through a relation BOM (we will use all-capital
names to distinguish DBMS entities) with two fields PART and SUBPART and specific domains for

these two fields.

Engineering Rules can also be mapped to database entities. First, consider simple infer-
ence rules such as those used in deductive databases. For example, a rule may be used to define
a contains predicate that describes a part hierarchy, i.e. which part contains another part, as

follows
contains(cover,part) « bom(cover,X) A bom(X,part)

The above rule can be expressed using relational views in the following way (we use SQL to

describe the view)

CREATE VIEW CONTAINS (COVER,PART)
AS SELECT FIRST.PART, SECOND.SUBPART
FROM BOM FIRST, BOM SECOND
WHERE FIRST.SUBPART = SECOND.PART

The semantics are exactly the same, that is, they both defirie the contains éntity in the same

11 —

way by examining the bom entity.
A different type of rules are general production rules of the form
IF <CONDITION> THEN <ACTION>

where ACTION is a general opergtion such as an insertion or deletion, not just a retrieval from
the knowledge base as deductive rules assume. Hence, this kind of rules incorporates procedural
semantics in EIS’s. Notice that this type of rules corresponds to the idea of triggers or alerters
[BUNE79] in database systems. They can be uséd to generally model such activities as well as.

protection and security mechanisms.

Rules can be modeled in a database system using the idea of Update Dependencies. The
update dependency formalism was originally suggested in [MARKS5| to support a wide variety of
applications, such as walk-through guidance control systems, cause-effect systems, statistical
information gathering, knowledge acquisition, database integrity enforcement, database view
updates, policy enforcement, and production control. An update dependency has the following

format

ON <OPERATION> PERFORM <ACTION,,ACTION,,...>

where OPERATION is an operation on the database that results to a series of actions ACTION,,
ACTION,, etc. Using update dependencies one can implement production rules by simply defining
the OPERATION and ACTION parts. As an example, we consider again the MRP/CAD system.
Suppose there are two databases, the CAD and the MRP database with the following format

respectively

CAD drawing id

part# |[description| u.o.m. | status [revision no

MRP part master

part# |description| lead time | cost | status |revision no

The followiﬁg example illustrates a rule that calls for implied operaﬁions'oﬁ the MRP database

—12 -

when a new design is completed in the CAD database.

ON [complete, (drawing_id. (P,D,U,S,R)) A -drawing id.,, (P, , ,S,R)]

PERFORM [create,,(part master,,(P,D, , ,S,R)),
assert(drawing id,, (P,D,U,S,R))]

ON - [completeg,,(drawing id, (P,D,U,S,R)) A drawing id,,(P, , ,S,R)]
PERFORM [write(“Drawing already exists for",P)] '

The rule checks if a given drawing already exists in the database, and if not it adds it to the

CAD database making the corresponding insertions in the MRP database as well.

Update dependencies are based on the logic programming formalism [KOWAT74]. It can,
therefore, be used to implement all known trigger mechanisms. However, because logic program-
ming is found difficult by a large class of programmers, we have extended the formalism to
include familiar control structures from ordinary programming languages such as while, case,

and repeat statements [MARKS86b).

A very significant part of a knowledge base lies in the Meta~Knowledge. This is an issue
that has received very little attention in previous proposals for the implementation of expert
database systems. Most of these proposals assume that meta~knowledge is hidden somehow in
the various operations or the search algorithm. In this proposal we look for better and more
complete means of describing meta-knowledge. Recent work in Self-Describing Databases and
Meta-Data Management [MARK85MARKS6] is applicable to the management of meta-
knowledge. A self~describing database system maintains a four level data description model.
Each level is the intension of the level that it describes below it. It is also the exztension of (or is
being described by) the level above. This intension-extension model provides an active and
integrated Data Dictionary System in which the meta-knowledge required to represent, change,
and retrieve engineering rule bases i-s’deﬁned. A key issue will be to find an’ abpropriate
representation of the meta—knowledge. This issue is discussed in more detail in the following

sub-sections.

Finally, we discuss briefly the irﬁplementation of an inference engine in an EDS. As illus-
trated above, both simple deductive rules and more general procedural rules can be supported;
hence, the inference engi_ne really maps to the query processing and data manipulation engines of

the database system. Backward chaining is handled already through query modification for view

—~ 13 —

processing. For example, if one asks for the part containing bolt1, the database query will be

SELECT COVER
FROM CONTAINS
WHERE PART = "bolti"

which is in turn changed using query modification to

- SELECT FIRST.PART
FROM BOM FIRST, BOM SECOND
WHERE FIRST.SUBPART = SECOND.PART
AND SECOND.SUBPART = “bolti"

The query modification mbduie needs to be extended to handle recursive \}iew definitions
[ULLMS85,I0ANS6] as well as multiple view definitions (to accommodate multiple definitions for
the same rule), but conceptually the mechanism exists already in database systems. Forward
chaining can be implemented based on the triggering mechanism realized by update dependen-
cies. Hence, appropriate design and implementation of an EDS can take advantage of all exist-
ing database technology to support expert systems. However, the major question arising in such

an environment will be performance. This issue is addressed in the rest of this section.

3.2. Incremental Computation Models

Expert Database Systems and Object Oriented Databases are severely handicapped by the
performance of existing DBMS’s. The database access and the real time response requirements
are well beyond the capabilities of classical query optimization and buffer management tech-
niques. Classical methods were based on static compilation of data processing access patterns.
These patterns are very different from the very dynamic and specialized ones necessary to sup-
port a general inference mechanism that an EIS may employ. Adaptive access mechanisms for

improving performance are necessary.

We propose the idea of Incremental Learm‘ng. as a solution to the high cost of repetitive but
unpredictable access patterns observed in Engineering Information Systems. Incremental le#rn—
ing 1s a concept that enables a system to avoid unnecessary search by remembering some of the
computation search it did before. It allows the generation of ever improving systems. The foun-
dation of Incremental Learning is a new class of Incremental Computation Models (ICM)

[ROUSSTD).

_ 14 —

Let C be a computation performed at time ¢; in rnput I,. An incremental computstion
model (ICM) performs C at time £, by merging the result obtained at time ¢; with the result
obtained by performing C on the differential of the inputs (d/=IL—I). An ICM can be
employed in any distributive computation. The advantage of an ICM is clearly in performance
because, at any time, the computation is only performed on the increments which are typically

very small compared to the whole databﬁse, and get emptied after each use.

Previously obtained results are stored in pé}sistent cache structures that become part
of the database. These structures can be made very compact using the view indexing techniques
proposed in [ROUS82a,b]. These structures contain simple pointers to the data records obtained
by the ICM. The compactness of the cache structures allows them not only to be loaded in main
memory quickly, but also to be maintained sorted for optimal caching. An access method

based on the incremental approach and its corresponding algorithms are analyzed in [ROUSS87al.

The incremental approach can be extended not only to identical computations but to those
that are derivable from others. We can perform a derivable computation using the differential
between the two computations dC=C'—C. Incrementally derivable computations are applicable
to any monotonic computation. For example, extracting from the database only the parts
including boltl, can be done using the set CONTAINS produced before, i.e. the parts containing
other parts, appropriately updated to reflect all the new containments introduced due to addi-

tions of new parts.

A wide class of computations performed by real-time systems can be accommodated by
incremental computation models. Dramatic performance improvement is obtained when the
increments are small. Expert systems doing deductive search are the most representative ones
because of the tiny increments between the huge number of one-fact—at—a—time access requests.
ICM’s also facilitate the dynamic establishment of learned search patterns pertinent to the appli-
cation. Other classes of systems that will be greatly improved by ICM’s include surveillance sys-
tems, control and command systems, air-traffic control systems, control of manufacturing
" processes, etc. Such systems receive data arriving in real time from simultaneous sensor and
human observations and require rapid and intelligent assimilation of them with the help of fac-
tual mformatlon stored in the database Most of these systems have very hlgh 1nput frequency

hat results in extremely Small mput mcrements Therefore ICM’s are very approprlate for

- 15 —

these systems.

3.3. Rule processing and optimization

Currently, most expert systems and simple solutions to building EDS’s, such as interfacing
PROLOG with a DBMS, are characterized by one—fact-at-a~time access which drives the deduc-
tive search. Very often, access to a single fact requires a long database search. Consider the
example of the previous section, where the join of the BOM relation with itself is performed to
_determine whether or not CONTAINS(parti,bolti) is true. Imagine a search whére a large list
‘of CONTAINS péirs had to be checked using an ordinary system. For each pair, the join is to be
constructed, accessed, and thrown away, only to be repeated again and again. The solution to
this problem is to utilize existing database access paths to avoid such high searching costs. Since
the join will be the most used operation in such a system, efficient support for its computation is

needed.

We can again exploit the idea of Incremental Learning for avoiding the high cost of repeat-
ing the same relational operators over and over. This can be done by storing a view as a per-
sistent cache structure after it is requested for the first time. In our part hierarchy example, a
system could learn which of the part-subpart pairs are joinable with other part-subpart ones
during the processing of the first query on CONTAINS, and short-cut the joins during subsequent
queries involving CONTAINS. This incremental learning avoids all the database search needed to

reconstruct the join.

Incremental models and their learning capability generalize the utilization of common
access paths, and permit a framework for the reuse of the optimization performed by the query
optimizer. The optimization techniques will be transformed into inter—query incremental algo-

rithms that will amortize their cost over a series of queries.

Another expensive computation is performed in Expert Systerﬁs because queries involve
rules with more than one definition (more than one rule with the same "head" in deductive
definitions). This expands the initial query to a set of queries to be processed by the system. In
this case, support for multiple-query processing is needed. It is often advantageous to process a
collection of queries differently than at the query—at—a-time manner. The reason is that queries

‘may share data and therefore -elimination of redundant accesses may 'be "possible, In "

—~ 16 —

[SELL85,SELL86a] we study this problem and suggest several multiple-query processing algb—
rithms. Performance improvements can be achieved at a very high degree depending on the
extent these queries access common data. Since many EIS applications have a lot of rules
defining the same entity, support for multiple-query processing will be an important component
of.the query optimizer. |

For production rules that contain database updates, as is the case for update dependencies,
we must consider not only -processing efficiency, but also concurrency, locking, etc. However, a
generalization of the techniques-that apply to transaction managemenf in traditional database
systems can also be applied to update dependencies. Compile-time analysis of the conditions in
update dependencies can help identify the relations that may be updated and therefore need to
be locked when an update dependency is instantiated. After instantiation, an evaluation of the
conditions may help pre-release some of the locked relations before the actual updates of the
remaining relations are performed. As in traditional database applications, updates always con-
sist of retrieval followed by modification of data. The aspect of retrieving data efficiently has
already been addressed above and we shall therefore concentrate on modifications. The efficiency
of processing update dependencies and propagating changes can be facilitated by a deferred
update strategy (see section 3.7). This is combined with the incremental approach which allows

very concurrent protocols for interdependent data.

3.4. Indexing large rule bases

Another subject of interest is how to search the intension of the knowledge efficiently. As
mentioned in the previous section, resolving a task can be done either with backward or with for-
ward chaining. The problem of quickly finding the rules that need be applied on a given situa-
tion constitutes the problem of indexing the rule base. In the case of backward chaining, the
index is defined on the head of each rule. Most methods up to now buil(i' an index on theﬂpredi-
cate name [FUTO78] or use superimposed coding techniques [RAMAS86], to take the arguments
into account. Thus, all the relevant rules for a query will be retrieved with few disk accesses,

avoiding the I/O bottleneck.

In the case of forward chaining, one is interested in finding quickly which rules satisfy a

- given condition. Fer examplé, given a collection of rules

— 17 —

IF <CONDITION> THEN <ACTION>

one has to index these rules based on their CONDITION part so that given a specific situation, all
rules that are applicable can be efficiently recovered. The situation is more complicated than
before, since conditions involve general expressions (such as selections or joins) instead of just
predicate names and attributes. Our proposal here lies in transforming conditions on relations to
objects in some high—dimensienality space [SELL86b| where relation attributes are thought of as
the coordinates. Then, a given state of the database can be modeled as an object in this space
(described by the values ofjthe various éttributes) and the problem of detecting applicable rules
reduces to an intersection problem. For example, for the MRP relation, a condition
30<cost<40 and 20<lead time<40 can be represented as a rectangle in a two-dimensional
space with coordinates cost and lead time. The lower left corner and the upper right corner
- of such a rectangle will have coordinates (30,20) and (40,40) respectively. A scheme based on
multi-attribute hashing [FALO87b,FALOS87¢| or mulfi—dimensional trees, such as RT-trees
[FALO87a,SELL87a], can then be used to limit the search by rejecting quickly many non-

applicable rules, thus improving the search performance and response time.

3.5. Complex objects

Complex objects may be represented using relations. We illustrate what needs to be done
for complex objects by showing a database of drawings from the CAD part of the CAD/MRP
system. Suppose that we have two relations DRAWING(DID,DESIGNER,DATE,COMPONEN‘I‘S) and
COMPONENTS (CNAME, TYPE,OTHER INFO), where in the former relation the field COMPONENTS is
further decomposed using the fields from the second relation. Figure 2 shows an instance of this
schema,; this is simply used to show the structure of the objects, not the way they are actually
implemented.

There are three rows in the DRAWING relation; the fourth column is itself the COMPONENTS
relation that corresponds to a particular drawing. Notice, that component c005 is found in both
drawings with id’s 001 and 002; therefore, the information regarding type and status is repli-
cated.

Clearly, one way to store complex objects is by simply storing the object hierarchy in a

“flattened" way. For examp'le, the most natural way would be to store the hie’rarchy"repfesent-' h

— 18 —

DRAWINGS
DID DESIGNER DATE COMPONENTS
CNAME TYPE OTHER_INFO
001 | Samuels 2/10/87 | c001 ALU working
c002 Adder working
€003 MUX working
c004 MUX testing
c005 BUS ' testing
002 | Lever 3/15/87 | c006 Adder working
c005 BUS testing
003 Simmons 4/20/87 | c007 Encoder problenms
c008 Decoder working

Figure 2: An Example Complex Object

ing an object in pre—order. That is, store the top—level component, then each one of its children
followed by their children, etc. This approach provides high clustering which enables the fast
retrieval of all the components of an object. However, it is very inefficient if some partial
retrieval is requested. For example, in the case of the DRAWING object, if only the information on
TYPE is requested, the whole hierarchy needs be traversed. Moreover, this approach suffers in
the case where the instance of an object does not fit in one physical page. In this case, multiple
page accesses are required, even in the case where the requested part of the object is really small
In size.

As a solution to this problem, Lorie et al. [LORI85| suggested that the hierarchy be stored
in a simple way using "logical" pointers to connect the various components. The reason that
physical addresses are not used for pointers is because reorganization of the database would
result in major reorganization of the data structures themselves. The solution suggested in
[LORI8S] is the Indirection Table which simply serves as a translation mechanism for logical
pointers. Of course, the use of the indirection table has the effect of more costly retrievals since

the various components of an object may be scattered to random places on the physical device.

However, updates are less costly compared to the first proposal because there is no need to move.

data around.

— 19 —

Although the Lorie et al. approach is very straightforward and ea.gy to implemeﬁt within
relational database systems, it is useful only for full object retrievals. If the retrieval of just a
sub-object is requested, still the hierarchy needs be traversed. To overcome this undesirable
effect, Valduriez et al [VALD86] suggested a different approach. Each instance of an object is
assigned a uhique object identifier (surrégate). All insfances of an object along wit;h.their associ-
ated surrogates are stored in a relation. Surrogates are used to link the various objects with
their components, in the same sense that pointers were used in the Lorie et al. proposal. How-

ever, no ordering is assumed in the way the various instances of an object are stored.

Retrieval of an object is achieved through relational joins. Joins are performed on surro-
gates only. Since the join is a very costly operation, special support is required to accelerate its
execution. Moreover, an intelligent caching mechanism based on incremental computation to
avoid costly maintenance of the objects is needed. On top of that, caching of the whole object
may be possible depending on the frequency with which such an object is requested as well as on
the frequency that such an object or its components are updated. In general the support for

complex objects can range from

1) none, in which case joins must be used to retrieve the various components, to

2) caching surrogate pairs (see section 4.1), in which case the surrogates provide direct access to
sub—objects, to

3) caching full object components, in which case no retrieval from the database is needed.

Clearly the cost of maintaining the above SChemes increases in going from strategy (1) to (2) to

(3). We choose to experiment with the second solution because it offers the advantages of

efficient update propagation and requires less space to store cached results. The specific storage

requirements, retrieval and update frequencies of the objects are used to decide an optimal cache

allocation.

3.6. Incremental/Decremental database version management

EIS databases consist of a large collection of objects that continuously evolve. As men-
tioned above, one can think of an object as a collection of relational views attached to a surro-
gate. A version of an object is a set of pointers that point to the logs of the changes to these

views comprising the obj‘ect. ‘This storage model reduces redundancy and allows

_ 90 —

incremental/decremental generation of versions using differential files.

Concurrent control protocols for derived and bound data objects are needed to maintain
multiple versions. Such a protocol has been proposed in [ROUSS86a,b|. Concurrent multiple
accesses of derived objects are not delayed by this protocol, but, to the contrary, it may speed
thel access of them. This surprising result can be simply explained by the way incremental ver-
sion update algorithms work. When a process, say A, locks a derived data object D to obtain a
version VD1 of it, any other process, say B, trying to access VD1 or another later version VD2 of.
the same object D, is locked out waiting. When A'vﬁnishés the derivation .of VD1, it releases it
for B and any other process blocked in the meantime. However, as soon as VD1 is released, B
and all the other waiting processes can use it (as is or to generate VD2) without having to repeat
the version regeneration. Since B requests VD1 after A, B will obtain VD1 sooner than if it had
to do the version generation alone by itself! For this reason it is called slow down for speed-

ing up protocol.

Decremental computation is useful for two reasons: first, database version regeneration (for
recovery or any other reason) becomes easier to manage compared to checkpoint techniques.
Reversing the database is done by undoing the changes stored in the differential files. Second, it
is very important in large and evolving EIS’s to be able to see information as of some specific
time point in the past without affecting the current state of the database. Other approaches to
answering historical queries degrade so much the queries to the current state that they make
them useless. The decremental approach can be used to efficiently construct views from the data-

base that reflect a past state of the database.

3.7. Bindings Between Objects in Tightly Coupled Interoperable Tools

In an EIS environment the basic assumption is that there is always a distinction between
special purpose workstations or tools and the mainframes housing one or more EIS’s. This calls
for a mainframe—workstation architecture of the EIS that tightly couples the workstations with
the mainframe and allows downloading of data and processing on the workstations. The down-
loaded data objects are bound to data objects on the mainframe. These bindings must be main-

tained incrementally to avoid massive data transmission and/or recomputation.

— 21 —

The proposed aréhitecture in [ROUS86a,b] consists of a mainframe database ménagement
system and a large number of workstations running a stripped version of the same DBMS doing
independent processing. FEach workstation has enough disk capacity which is used for data
buffering between the mainframe and the local processing. Data and processing is downloaded to

the workstation thus alleviating the mainframe’s load.

To guarantee database consistency, updates to base files (i.e. non—derivable from other files)
are done only on the mainframe while propagation of these updates to derived objects on the
workstation use the locking prptocol described in the previous section. Downloaded objects
bound fo mainframe ones are updated on demand incrementally. Incremental u;;date is done on
the workstation by transmitting the differential files on demand, that is when the the bound
objects are accessed. This deferred update strategy with no broadcasting was adopted in
[ROUS86a,b] because it drastically reduces the overhead caused by the message traffic to syn-
chronize the updates in an environment with hundreds of workstations. In an ordinary distri-
buted DBMS architecture the message traffic due to broadcasting for obtaining the appropriate

locks 1s extremely high, four times the number of workstations.

— 929

4. Implementation Status

We have implemented the access methods of a database system based on the principles of
Incremental Computation Models. Our just finished prototype, called ADMS
[ROUS84,ROUS85,ROUS87¢|, exhibits tremendous spe_eds in accessing learned access.paths based
on incremental computing. The improvement over conventional re-execution systems ranges -
from ten to eighty times faster, depending on the size of the increments of the utilized access
paths. Our expectations based on analytical results [ROUS87a| were topped by the implementa-

‘tion. Our main results show that
(a) the smaller the increments, and

(b) the higher the complexity of the computation,

the higher the improvement. The second characteristic is due to the fact that multi-level com-
putations observe a lot of access path locality that subsumes a lot of the computation that ordi-

nary re-execution models would have to repeat.

Another important characteristic of the ADMS incremental algorithms is that they are
one—pass and, thus, permit interleaving of the update and cache of the access paths. This allows
ADMS to produce results much earlier than any re—execution model. Therefore, the response
time is very close to zero simply because ADMS starts displaying records of the previous compu-
tations while updating. In simulations performed on a VAX 8600 and for complex queries, the
response to display the first record was below 2 seconds versus minutes response time using the
conventional re—execution téchnique of query modification. After the first record is displayed,
the flow of display is bounded by the speed of the terminal which is much slower than the rate of
production of the incremental algorithms. This is very important for real-time systems because
no existing system can come close to such response times in queries that involve, say, two or

three join operations.

Another advantage of using ADMS is that an extension of it to work in an integrated main-
frame and multi-workstation environment using incremental bindings of distributed data objects
has been already studied [ROUS86a,b]. This is important considering the fact that EIS’s are

mostly workstation oriented.

— 923 —

In summary, ADMS is a very powerful database system with a sophisticated view system
and access methods that are especially useful for an efficient implementation of large bodies of

engineering knowledge, rules, interoperability, and complex objects.

We are currently focusing on two major subjects. First, we study the theoretical founda-
tions, the algorithms, and the desién issues of the various components. Second, we have ipi—
tiated an efforts towards the implementation of our ideds on tbp of ADMS. Among others, we
study the design of knowledge base catalogs and fule and meta-rule definition languages. Simi-
| larly, definition and manipulation languages for update dependencies have been devised and are
under implementation. In terms of query processing algorithms we have implefnented relational
operators using cache techniques and have initiated an effort towards the implementation of
multiple-query optimization algorithms. We have currently a simple prototype for defining and
manipulating complex objects and are currently working on improving it with sophisticated data
structures. Finally, the protocols for workstation—mainframe communication have been worked

out in detail. We expect that a working version of our prototype will be available in 2 years.

924 _

5. Conclusion

In this paper we have suggested efficient means for building high performance engineering

information systems. These systems will be able to support engineering knowledge bases of

significant size, innovative self-improving performance capabilities based on novel cache struc-

tures and access methods tuned for very sophisticated inference engines. Our design goals are

(1)
)

To support large Engineering knowledge bases in a workstation based environment

Il

To provide very_fast query processing

To provide very efficient mechanisms to support various kinds of inferencing in engineering

systems ranging from deductive retrieval rules to general purpose update propagation rules.

The innovations in our approach lie in:

(1)

The use of incremental computation models for reusing previous computations in conjunc-
tion with optimal persistent cache structures which speed up tremendously the access of
large knowledge bases. Preliminary simulation results on ADMS, the first incremental
database management system developed at the University of Maryland, show speed ups of

orders of magnitude.

Use of a novel model for specifying update dependencies of interdependent engineering
knowledge. Trigger mechanisms are programmed in this model for controlling the evolu-

tion of engineering changes, versions, and interoperable engineering tools.

Novel optimization techniques for deductive queries based on the incremental approach,
which recognize the similarities of deductive queries and reuse partial results generated dur-
ing processing a query.

Efficient methods for storing and searching engineering facts and rules based on clustering

and efficient optimization techniques for processing complex queries.

6. References

[BATOSS]

[BUNE79] .
[CAMMS4]

' [COPES4]

[DAYASS5]

[DERRS6]
[DUDATS]
[FALOS8Ta)
[FALOST7b)

[FALOSTc]

[FUTOT7S)

[GALL7S]
[GUTTS4]

[HARHS?7|

Batory, D.S. and Kim, W., "Modeling Concepts for VLSI CAD Objects", Proceed-
ings of the 1985 ACM-SIGMOD International Conference on the Management of
Data, Austin, TX, May 1985.

Buneman, O.P. and Clemons, EXK,, "'Efﬁciently Monitoring Relational Databases",
ACM Transactions on Database Systems, (4) 3, September 1979.

Cammarata, S. and Melkanoff, M;, “An Interactive Data Dictionary Facility for
CAD/CAM Data Bases", in [KERSS84].

Kopéland, G. and Maier, D., "Making Smalltalk a Database System", Proceedings of
the 1984 ACM-SIGMOD International Conference on the Management of Data,
Boston, MA, June 1984.

Dayal, U. and Smith, JM., "PROBE: A Knowledge-Oriented Database Management
System", Proceedings of the Islamorada Workshop on Large Scale Knowledge Base
and Reasoning Systems, February 1985.

Derrett, N.P. et al, "An Object-Oriented Approach to Data Management", Proceed-
ings of the 1986 IEEE Spring Compcon Conference, San Francisco, CA, March 1986.

Duda, R. et al.,, "Development of the Prospector Consultation System for Mineral
Exploration", SRI International, October 1978.

Faloutsos, C., Sellis, T. and Roussopoulos, N., " Object Oriented Access Methods for
Spatial Objects: Algorithms and Analysis", in preparation.

Faloutsos, C., "Gray Codes for Partial Match and Range Queries", IEEE Transac-
tions on Software Engineering, 1987. (to appear)

Faloutsos, C., "Design and Analysis of Integrated Access Methods for Text and
Attributes", Department of Computer Science, University of Maryland, College
Park, June 1987. (submitted for publication)

Futo, L. et al., " The Application of Prolog to the Development of QA and DBM Sys-
tems", in [GALL78].
Gallaire, H. and Minker, J., Logic and Data Bases, Plenum Press, New York, 1978.

Guttman, A., "R-Trees: A Dynamic Index Structure for Spatial Searchz'ng"n,
Proceedings of the 1984 ACM-SIGMOD International Conference on the Manage-
ment of Data, Boston, MA, June 1984.

Harhalakis, G., Mark, L., Bohse, M., and Cochrane,B., " An Integration of Manufac-
turing Resource Planning (MRP II) and Computer Aided Design (CAD) Based on
Update Dependencies*, Submitted to the Conference on Data and Knowledge Sys-
tems for Engineering and Manufacturing, Hartford, Connecticut, October 1987.

— 26 —

TOAN84]
[IOANSS]
[KATZ82] .
[KERS84]

[KERSSS)

[KIMUS2)

[KOCHS84]
[KOWA74|
[LINDS0]
[LINNSS)
[LORIS3]

[LORISS5)

IMARKS5]

[MARKS6a)]
IMARKS6b)

[MELKS84]

Ioannidis, Y. et al, "Enhancing INGRES with Deductive Power", Position Paper, in
[KERS84].

Ioannidis, Y., "Processing Recursion tn Deductive Database Systems", PhD Thesis,
University of California, Berkeley, July 1986.

Katz, R.H., "A Database Approach for Managing VLSI Design Data", Proceedings
of the 19th Design Automation Conference, June 1982.

Kerschberg, L., Editor, Proceedings of the First International Workshop on Ezpert
Database Systems, Kiawah Isl., SC, October 1984.

Kerschberg, L., Editor, Proceedings of the First International Conference on Ezpert
Database Systems, Charleston, SC, April, 1986. Database Engineering, (5) 3, Sep-
tember 1982.

Kimura, F. et al, " Construction and Uses of an Engineering Database in Design and

Manufacturing Environments", File Structures and Databases for CAD: Proceedings
of the IFIP WG 5.2 Working Conference, Seeheim, West Germany, 1982.

Kochan, D., "Integrated Information Processing for Manufacturing--From
CAD/CAM to CIM", Computers in Industry (5) 4, December 1984.

Kowalski, R., "Predicate Logic as a Programming Language", Information Process-
ing, North Holland, 1974.

Lindsay, R.K., et al., Applications of Artificial Intelligence for Organic Chemistry:
The DENDRAL Project, Mc-Graw Hill, Inc, New York, 1980.

Linn, J. and Winner, R., "Engineering Information Systems: Operational Concepts
and Requirements", Institute of Defense Analysis, Alexandria, Virginia, July 1986.

Lorie, R. and Plouffe, W., “Relational Databases for Engineering Data", IBM
Research, Technical Report RJ-3847, San Jose, CA, April 1983.

Lorie, R. et al., "Supporting Complez Objects in a Relational System for Engineer-
ing Databases", in Query Processing In Database Systems, Eds. W. Kim, D.S.
Reiner and D.S. Batory, Springer—Verlag, 1985.

Mark, L., “Self-Describing Database Systems — Formalization and Realization®,
Technical Report TR-1484, Department of Computer Science, University of Mary-
land, College Park, April 1985.

Mark, L. and Roussopoulos, N., "Meta-Data Management", IEEE Computer Maga-
zine, (19) 12, December 1986.

Mark, L. and Roussopoulos, N., " Operational Specification of Update Dependen-
cies", submitted to ACM Transactions on Database Systems, 1986.

Melkanoff, M., "The CIMS database: Goals, Problems, Case Studies and Proposed
Approaches Are Outlined", Industrial Engineering, 1984.

_ 97 _

[MILLS2]

[MYLOS80]
McDES82]

[RAMASS]

[ROUS82a)
[ROUSS2b]

[ROUSS4]
[ROUSSS|
[ROUSS62]
[ROUSSS6b)
[ROUSS7a)

[ROUSS7b]

[ROUS87¢|

[SCI084]
[SELLS5)

Miller, R.A., et al., "INTERNISTJ, An Experimental Computer-Based Diagnostic
Consultant for General Internal Medicine", The New England Journal of Medicine,
(307), 8, August 1982.

Mylopoulos, J. et al, *A Language Facility for Designing Database Intensive Appli-
cations", ACM Transactions on Database Systems, (5) 2, June 1980.

McDermott, D., "R1: A Rule Based Configurer of Computer Systems", Artificial

Intelligence, (19) 1, September 1982.

Ramamohanarao, K. and Shepherd, J., "A Superimposed Codeword Indexing
Scheme for Very Large Prolog Databases", Proceedings of the Third International
Conference on Logic Programming, London, England, 1986.

Roussopoulos, N., " View Indexing in Relational Databases", ACM Transactions on
Database Systems, (7) 2, June 1982.

Roussopoulos, N., * The Logical Access Path Schema of a Database", IEEE Transac-
tions on Software Engineering, (8) 6, November 1982.

Roussopoulos, N., Bader, C., and O’Connor, J., "ADMS: An Advanced Database
Management System: Design Document", Department of Computer Science, Univer-
sity of Maryland, College Park, January 1984.

Roussopoulos, N. and O’Connor, J., "ADMS: Query Language and Programmatic
Interface", Department of Computer Science, University of Maryland, College Park,
April 1985.

Roussopoulos, N. and H. Kang, "Preliminary Design of ADMS+: A Workstation-
Mainframe Integrated Architecture for Database Management Systems", Proceedings
of the 12th International Conference on Very Large Data Bases, Kyoto, Japan,
August 1986. '

Roussopoulos, N. and H. Kang, "Principles and Techniques in the Design of
ADMS+", JEEE Computer Magazine, (19) 12, December 1986.

Roussopoulos, N., " The Incremental Access Method of View Cache: Concept and
Cost Analysis", submitted for publication to the ACM Transactions on Database
Systems, March 1987.

Roussopoulos, N., "Incremental Computation Models", Department of Computer
Science, University of Maryland, College Park, March 1987.

Roussopoulos, N., " Overview of ADMS: A High Performance Database Management
System*, Invited Paper, Fall Joint Computer Conference, Dallas, TX, October 25—
29, 1987.

Sciore, E. et al, " Towards an Integrated Database-PROLOG System", in [KERS84].
Sellis, T. and Shapiro, L., "Optimization of FExtended Database Languages",
Proceedings of the 1985 ACM-SIGMOD International Conference on the

— 28 —

[SELL863)
[SELLS6b)]

[SELLS7a)
[SELLS7b]
[SHIPS1]

[STONSS|
[STONS?]
[ULLMS5)
[VALDSS)
(ZANIS3]

[ZANIS4]

[ZANIS5]

Management of Data, Austin, TX, May 1985.

Sellis, T., "Global Query Optimization", Proceedings of the 1986 ACM-SIGMOD
International Conference on the Management of Data, Washington, DC, May 1986.

Sellis, T., "Optimization of Extended Relational Database Systems", PhD Thesis,
University of California, Berkeley, July 1986.

Sellis, T., Roussopoulos, N. and Faloutsos, C., * The Rt -tree: A Dynamic Index for
Multi-Dimensional Objects", Proceedings of the 13th International Conference on
Very Large Data Bases, Brighton, England, September 1987 (to appear).

Sellis, T., Roussopoulos, N., Mark, L. and Faloutsos, C., "High Performance Expert
Database Systems: Efficient Support for Engineering Environments*, Submitted to
the Conference on Data and Knowledge Systems for Engineering and Manufactur-
ing, Hartford, Connecticut, October 1987.

Shipman, D., * The Functional Model and the Data Language Daplez", ACM Tran-
sactions on Database Systems, (6) 1, March 1981.

Stonebraker, M. and Rowe, L. " The Design of POSTGRES", Proceedings of the
1986 ACM-SIGMOD Conference on the Management of Data, Washington, DC,
May 1986, pp. 340-355.

Stonebraker, M., Hanson, E. and Hong, C., " The Design of the POSTGRES Rules
System", Proceedings of the Third International Conference on Data Engineering,
Los Angeles, CA, February 1987.

Ullman, J., "Implementation of Logical Query Languages for Data Bases", Proceed-
ings of the 1985 ACM-SIGMOD International Conference on the Management of
Data, Austin, TX, May 1985.

Valduriez, P., Khoshafian, S. and Copeland, G., "Implementation Techniques for
Complex Objects", Proceedings of the 12th International Conference on Very Large
Data Bases, Kyoto, Japan, August 1986.

Zaniolo, C., "The Database Language GEM", Proceedings of the 1983 ACM-
SIGMOD International Conference on the Management of Data, San Jose, CA, May
1983.

Zaniolo, C., "PROLOG : A Database Query Language for all Seasons", in
[KERS84].

Zaniolo, C., "The Representation and Deductive Retrieval of Complex Objects",
Proceedings of the 11th International Conference on Very Large Data Bases, Stock-
holm, Sweden, August 1985.

_ 99 _

