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The Finite-Difference Time-Domain (FDTD) is a dependable method to 

simulate a wide range of problems from acoustics, to electromagnetics, and to 

photonics, amongst others. The execution time of an FDTD simulation is inversely 

proportional to the time-step size. Since the FDTD method is explicit, its time-step 

size is limited by the well-known Courant-Friedrich-Levy (CFL) stability limit.  The 

CFL stability limit can render the simulation inefficient for very fine structures. The 

Alternating Direction Implicit FDTD (ADI-FDTD) method has been introduced as an 

unconditionally stable implicit method. Numerous works have shown that the ADI-

FDTD method is stable even when the CFL stability limit is exceeded. Therefore, the 



 

ADI-FDTD method can be considered an efficient method for special classes of 

problems with very fine structures or high gradient fields. 

Whenever the ADI-FDTD method is used to simulate open-region radiation or 

scattering problems, the implementation of a mesh-truncation scheme or absorbing 

boundary condition becomes an integral part of the simulation. These truncation 

techniques represent, in essence, differential operators that are discretized using a 

distinct differencing scheme which can potentially affect the stability of the scheme 

used for the interior region. In this work, we show that the ADI-FDTD method can be 

rendered unstable when higher-order mesh truncation techniques such as Higdon’s 

Absorbing Boundary Condition (ABC) or Complementary Derivatives Method 

(COM) are used. 

When having large field gradients within a limited volume, a non-uniform 

grid can reduce the computational domain and, therefore, it decreases the 

computational cost of the FDTD method. However, for high-accuracy problems, 

different grid sizes increase the truncation error at the boundary of domains having 

different grid sizes. To address this problem, we introduce the Complementary 

Derivatives Method (CDM), a second-order accurate interpolation scheme. The CDM 

theory is discussed and applied to numerical examples employing the FDTD and 

ADI-FDTD methods. 
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Chapter 1 Introduction 

The scientific community has become dependent on the Finite-Difference 

Time-Domain (FDTD) method to simulate a wide range of problems form acoustics, 

to electromagnetics, and to photonics, amongst others [1-1], [1-2]. The FDTD method 

has some good features which make it superior to the other methods. The FDTD 

method is simple to understand and straightforward to implement in software. The 

time-stepping nature of the FDTD method enables the visualization of the 

electromagnetic fields inside the model under investigation. Calculating a wide-band 

transfer function by performing a single simulation is the other important feature of 

the FDTD method. This is in sharp contrast to the frequency-domain methods which 

the transfer function of each frequency is calculated using one single simulation. 

In the FDTD method, a uniform grid is utilized to mesh the structure. The 

central-difference scheme is used to approximate the first-order derivatives in the 

Maxwell’s equations. Implementing the central-difference approximation on a 

uniform grid leads to a second-order accurate solution in both time and space and 

provides sufficient accuracy for a wide variety of applications.  

The FDTD simulation usually needs to be run up to the time instant at which 

the time-domain signal reaches its steady state. The execution time of an FDTD 

simulation is inversely proportional to the time-step size. Since the FDTD is an 

explicit method, its time-step size is limited by the well-known Courant-Friedrichs-

Lewy (CFL) stability limit, which is a function of minimum grid sizes in the x-, y-, 

and z-directions (in Cartesian co-ordinates). Therefore, the maximum time-step is 

limited by the minimum grid sizes in the x-, y-, and z-directions.  
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Grid sizes are governed by two requirements. First, a grid should resolve the 

highest frequency of interest, which is usually accomplished by using at least 10 

points per wavelength at this frequency [1-2]. Second, the grid size should be small 

enough to ensure that all objects in the computational domain are spatially resolved 

by the cells. For objects with the fine scale dimensions compared to wavelength (e.g. 

thin material coatings, transmission lines with conductors of small dimensions), the 

second requirement is the most restrictive on the spatial grid size. 

Increasing the time-step size beyond the CFL stability limit decreases the 

simulation time. Using an implicit scheme, the differential equations can be solved 

unconditionally stably and free of the CFL stability limit. Unfortunately, a fully 

implicit scheme requires the solution of a large linear system of equations 

representing the full volume discretization at each time-step. This becomes 

prohibitive for large practical problems.  

A more efficient scheme is to split the operators such that the time-integration 

is implicit only along a single coordinate axis. This scheme is commonly referred to 

as Alternating Direction Implicit (ADI). The alternating direction implicit finite-

difference time-domain (ADI-FDTD) method for solving electromagnetic radiation 

and scattering problems was introduced in [1-3] and [1-4]. It has been demonstrated 

that the ADI-FDTD method is unconditionally stable [1-3], [1-4]. The ADI-FDTD 

method allows for increasing the time-step size beyond the CFL stability limit, which 

results in a substantial reduction in the total execution time of numerical problems. 

Whenever the ADI-FDTD method is used to simulate the open-region 

radiation or scattering problems, the implementation of a mesh-truncation scheme or 
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absorbing boundary condition [1-5]-[1-8] becomes an integral part of the simulation. 

For many applications of the ADI-FDTD method, the required duration of simulation 

needs only to extend over enough time steps to capture the bulk of the output energy 

or pulse at a desired point of observation. For such problems, the stability behavior of 

the mesh-truncation techniques does not pose a serious challenge. However, there is a 

wide class of problems where the output time signature needs to be obtained for a 

very long duration in order to reproduce the response of the system over a wide 

frequency band (via the Fourier transformation). For this important class of problems, 

care must be taken to ensure that the evolution of the field in time does not exhibit 

any unstable behavior. Therefore, we need to insure that the implementation of 

absorbing boundary condition does not introduce any instability. 

The Higdon’s absorbing boundary condition [1-6], [1-7] is very versatile and 

simple to implement. The other useful mesh truncation technique is the 

Complementary Operators Method (COM) [1-9]-[1-11]. The basic premise of the 

COM is the cancellation of the first-order reflection that arises when the 

computational domain is terminated with an ABC. This cancellation is made by 

averaging two independent solutions to the problem. These two solutions are obtained 

by imposing boundary operators that are complementary to each other. Therefore, 

two solutions that are generated from applying each of the two operators separately, 

when averaged, result in a solution that does not contain any of the first-order 

reflections. In this work, we apply the Higdon’s ABC and COM on the outer surfaces 

of simulation domains and study the stability of these boundary conditions. 
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Nowadays, there is a widespread demand for very high accurate simulations. 

These very high accurate simulations are needed to provide results which can parallel 

the accuracy of recent measurement equipments (136dB accuracy is becoming 

standard on a variety of commercial test instruments), or can measure the shielding 

effectiveness up to 120dB, or can measure the reflections from the absorbers that goes 

down to -55dB. High-order interpolation schemes can provide higher accuracy at the 

expense of losing the solution efficiency. However, even the high-order interpolation 

schemes suffer from flexibility when electric or magnetic fields (or both) have large 

gradients within a limited volume. For example, Microwave Integrated Circuits 

(MIC), Monolithic Microwave Integrated Circuits (MMIC), in the vicinity of current 

sources, sharp edges and corners of conductive and dielectric objects, simulation of 

vias and bond wires in high-frequency electronic packages, and detailed simulations 

for biomedical applications, need a very fine mesh to resolve the abrupt changes of 

fields in a very small volume. Considering the limitation of the computer memory and 

speed, a very fine mesh for the whole domain renders this method not very attractive 

for this large class of electromagnetic problems. 

Using a refined mesh in a sub-region is a solution to this problem. Several 

methods of obtaining a more refined mesh in a sub-region have previously been 

reported. They can be divided into two main categories, namely: 1) non-uniform 

grids; and 2) sub-gridding. In the first method where non-uniform grid is used, the 

gridding extends throughout the entire cross section of the domain. In the sub-

gridding methods, a local grid with smaller size than the main grid is placed within a 

part of domain to resolve the finer geometry features or electromagnetic fields.   
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Using different grid sizes, however, increases the truncation error at the 

interface of two domains with different grid sizes. Such errors are typically 

manifested as reflections from the grid boundary. The reflection from a grid boundary 

is unacceptable in many applications ([1-20]-[1-22], simulations that can parallel high 

accurate measurements, calculating shielding effectiveness, calculating reflection 

from absorbers).  

Several papers have introduced different methods to reduce the truncation 

error at grid boundaries. In [1-12], the grid size is reduced by one-third of the main 

grid size and the spatial derivatives of the fields at the interface are expressed by 

central-difference approximations to achieve the second-order accuracy. However, in 

this method, the reduced grid size is limited to specific numbers which limits its 

applicability to specific geometries that conform to specialized grid. In [1-13] and [1-

14], the derivative of magnetic field at electric field position is approximated by 

fitting a second-degree polynomial to the magnetic fields at three points. The 

coefficient in the error term of this approximation, however, is large, which limits the 

grid size reduction factor. In [1-15], two methods were introduced to maintain the 

second-order accuracy. One method uses an appropriate mesh ratio between two 

regions to obtain the central finite differences. The other method uses a universal 

gridding scheme with continuously variable lattice size; but a demonstration of the 

performance of this method was not reported. In [1-16], the computational accuracy 

was improved by interpolating the magnetic field components between the fine mesh 

and coarse mesh, which cannot guarantee the second-order accuracy. In [1-17], a 

high-order implicit scheme was enforced at the boundary to reduce the truncation 
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error. In [1-18], a numerically-derived three-dimensional sub-gridding scheme was 

introduced but without theoretical limits on its potential. In [1-19], the characteristic 

impedances of two waveguides with infinitely thin and square center conductors are 

calculated using the accurate methods of conformal mapping and mode matching, 

respectively. Then, the values of minimum grid size and amplification factor have 

been optimized to obtain good approximations of the characteristic impedances using 

the FDTD method. But there is no explanation whether these values can also be used 

for other experiments or each experiment needs different optimized values, which is 

not practical. 

The Complementary Derivatives Method (CDM) is introduced as a second-

order accurate interpolation scheme applicable to Finite-Difference methods. Using 

several experiments, we demonstrate the performance of CDM in reducing the 

reflection from the boundary of two domains having different grid sizes. We derive 

the fundamental modes of propagation in a numerical solution of wave equation using 

a leap-frog scheme. Also, we calculate the reflection coefficients of advection and 

wave equations at the grid boundary when the CDM is applied and compare them 

with the reflection coefficients of a standard treatment of the grid boundary.  

Also, we apply the CDM to the ADI-FDTD method. By employing the 

Sherman-Morrison formula, we retain the numerical efficiency of conventional ADI-

FDTD method when the CDM treatment is applied at the grid boundary.  

The reminder of this dissertation is organized as follows. In Chapter 2 we 

review the published works on the ADI-FDTD method including the theory, 

numerical dispersion error, dispersion error reduction, splitting error, accurate source 
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implementation, perfectly matched layer, higher-order schemes, non-Cartesian co-

ordinates, practical applications, envelope scheme, and other unconditionally stable 

methods. 

Chapter 3 covers the theory of ADI-FDTD method. Also, its unconditional 

stability and numerical dispersion relation are studied in this chapter. The numerical 

implementation of the ADI-FDTD method is demonstrated in chapter 4. Two 

numerical experiments are used to verify the accuracy of our developed code and one 

other experiment shows the practical application of the ADI-FDTD method. 

In chapter 5 the theory of absorbing boundary conditions is discussed and 

specifically explains the Higdon’s ABC. Implementation and stability of higher-order 

Higdon’s ABCs in the ADI-FDTD method are studied in this chapter. The COM and 

its stability are also investigated in this chapter. 

Chapter 6 provides the theory, performance, and analytical investigation of 

CDM. Also, implementing of the CDM in the ADI-FDTD method is introduced in 

this chapter. The conclusions and future work are provided in chapter 7.  
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Chapter 2 Literature Review of the ADI-FDTD 

Method  

Theory of the ADI-FDTD Method 

The Alternating Direction Implicit (ADI) scheme for Finite-Difference Time-

Domain (FDTD) method was first proposed in [2-1], and [2-2]. It was shown that this 

method is unconditionally stable both analytically and numerically even if the 

Courant-Friedrichs-Lewy (CFL) stability limit is violated. Therefore, this method is 

not restricted by the minimum cell size in the simulation domain. The Alternating 

Direction Implicit Finite-Difference Time-Domain (ADI-FDTD) method was 

extended to a full three-dimensional ADI-FDTD method in [2-3], and [2-4]. They 

showed the unconditional stability analytically and also verified it numerically for the 

three-dimensional domains. Also they compared the results with the conventional 

three-dimensional FDTD method and its accuracy was verified.  

In [2-11], a generalized derivation of the ADI-FDTD method based on the 

operator splitting is proposed and its stability is proven. [2-6] investigates some 

fundamental characteristics of the ADI-FDTD method in one-dimensional cases. 

They have found that two sub-step methods alternates the dissipation and growth that 

exactly compensate each other. 

Although it is always said that by using the ADI-FDTD method we can save 

time in comparison with the FDTD method for cases that have very fine structures, 

[2-5] discusses the true time saving of applying the ADI-FDTD method.  
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[2-5], [2-7], and [2-8] show how to apply dispersive materials (frequency 

dependent materials) into the ADI-FDTD method. In [2-32] the concept of DSP 

algorithms for digital filter design is used to introduce the frequency dependent 

property of media into the ADI-FDTD method. 

Numerical Dispersion Error of the ADI-FDTD Method 

Increasing the time-step size of the ADI-FDTD method over the CFL stability 

limit is the main feature of this method. Now the other question rises is how large the 

time-step can be made. The large numerical dispersion error created by the ADI-

FDTD method is a drawback of the ADI-FDTD method and is a function of the time-

step size. In [2-9]-[2-12], the numerical dispersion of the ADI-FDTD method is 

investigated and the dispersion relation is derived analytically. The effects of spatial 

and temporal steps on the numerical dispersion are also studied. They have found that 

the large time-step size results in high numerical dispersion. They have concluded 

that the time-step size of the ADI-FDTD method is limited by the required accuracy 

not by stability..  

The inconsistency of different numerical dispersion relations of the ADI-

FDTD method presented in different works is studied in [2-13]. They have re-derived 

the numerical dispersion relation by analysis of the amplification factor and verified it 

with numerical experiments. 

Also an analytical relation of numerical dispersion for the two-dimensional 

ADI-FDTD method is proposed in [2-14]. By comparison with numerical 

experiments, they claim that their dispersion relation is the correct calculated relation 

for the two-dimensional ADI-FDTD method. 
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Dispersion Error Reduction in the ADI-FDTD Method 

The previous section reviewed different papers that showed the numerical 

dispersion error is a drawback in the ADI-FDTD method. In this section we review 

different papers that introduce different methods to reduce the dispersion error. 

In [2-15] a parameter optimized ADI-FDTD method is introduced to minimize 

the dispersion error for arbitrary incident angles and for different time-step sizes. It is 

also shown that this method is unconditionally stable if proper parameter values are 

chosen. 

In [2-16] and [2-17] the dispersion error has been reduced by adding 

anisotropic parameters into the ADI-FDTD formulas. This idea is based on another 

work on the conventional FDTD method in which artificial anisotropy was introduced 

to reduce the numerical dispersion. The results show the improvement in dispersion 

error and for this method the computational overhead is also small. 

A class of three-dimensional spatial/temporal operators to reduce the 

dispersion error for complex electromagnetic structures, e.g. circularly polarized slot-

coupled microstrip and dielectric resonator antennas, is introduced in [2-18]. Their 

results show the reduction in dispersion error even when the time-step size surpasses 

the CFL stability limit.  

Splitting Error, and Reducing Splitting Error in the ADI-FDTD Method 

The ADI-FDTD method can be considered as the first iteration to solve the 

approximate Crank-Nicolson equations. Using this fact, different researchers have 

tried to decrease the splitting error in the ADI-FDTD method.  
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The closed form of the truncation error for the two-, and three-dimensional 

ADI-FDTD method is obtained in [2-19]. The dependence of the truncation error on 

the square of the time-step multiplied by the spatial derivatives of the field is found to 

be a unique feature of the ADI-FDTD method. As the time-step size increases, the 

truncation error term increases and the total accuracy decrease. For the time-step 

greatly exceeding the CFL stability limit, the Crank-Nicolson scheme shows excellent 

agreement with FDTD method results in case the ADI-FDTD method does not. 

In [2-20] they have tried to use the computational efficiency of the ADI-

FDTD method along with the accuracy of Crank-Nicolson FDTD method. Therefore, 

they have proposed the ADI-FDTD methods that are based on the CN-FDTD 

formulation but the computational efficiency is the same as the conventional ADI-

FDTD method. 

In [2-21]-[2-23] they have decreased the splitting error in the ADI-FDTD 

method by employing higher-order iterations. [2-22] also shows that the iterative 

ADI-FDTD method is convergent and the convergence rate depends on the CFL 

stability limit. In [2-23] as a way to save computational resources along with reducing 

the splitting error, they have only applied the iterative ADI-FDTD method to 

locations where there are large field variation, e.g. close to conductors, metallic tips, 

edges, corners, and near-field sources. 

Accurate Source Implementation in the ADI-FDTD Method 

The other issue of the ADI-FDTD method is source implementation. There 

may be small asymmetries in the field distribution if the source is not implemented 

correctly [2-24]-[2-26]. In [2-24] by considering the ADI-FDTD method as an 
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approximate factorization of the Crank-Nicolson scheme, they have proposed a new 

method to implement the current source that eliminates the asymmetry and makes the 

ADI-FDTD method more useful. 

The current source condition is derived by starting with the Crank-Nicolson 

FDTD method and developing to the ADI-FDTD method in [2-16] and [2-17]. They 

have also illustrated that this new source implementation method is more accurate 

than the previous source implementation methods. 

A new source implementation for the ADI-FDTD method which has no 

asymmetry up to the numerical noise level is presented in [2-26]. They have 

concluded that the source can be implemented most accurately if the excitation is 

directly incorporated within the tri-diagonal matrix and if the time discretization of 

source is done appropriately within each full time step. 

Perfectly Matched Layer (PML) Implementation in the ADI-FDTD Method 

PML is a versatile ABC which effectively absorbs any outgoing waves, from 

any direction and any frequency. Different methods are proposed in [2-27]-[2-32] to 

implement PML in the ADI-FDTD method. A split field PML medium is introduced 

in [2-27]. It is also demonstrated that the ADI-FDTD method remains unconditionally 

stable with the inclusion of PML. 

A PML medium with complex frequency shifted constitutive parameters is 

introduced in [2-28]. The absorbing boundary is implemented using the convolutional 

PML (CPML). It is demonstrated that the resulting ADI-CPML method is 

unconditionally stable. The effectiveness of the absorbing medium as a function of 

the time-step is also demonstrated. 
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A novel implementation of the PML absorber for the ADI-FDTD method is 

proposed and implemented in [2-29]. They claim that compared to the conventional 

PML implementation, the performance of the proposed PML is more efficient for 

large Courant numbers. 

In [2-30] the unconditionally stable formulations of the anisotropic PML 

(APML) are presented for truncating frequency-dependent media. The formulations 

are based on the auxiliary differential equation and ADI-FDTD methods. 

Unsplit-field and unconditional stable formulations of the PML as truncating 

media for frequency dispersive first-order Debye media is presented in [2-31]. [2-32] 

presents the ADI formulations of the nearly perfectly matched layer (NPML) to be 

applied as absorbing boundary conditions.   

High-Order ADI-FDTD Methods 

The order of a method is defined based on the order of spatial difference. In 

[2-33], a fourth-order two-dimensional ADI-FDTD method is developed. The 

dispersion relation is derived and compared with the conventional two-dimensional 

ADI-FDTD method.  They found that the higher-order two-dimensional ADI-FDTD 

method has a better accuracy compared to the conventional two-dimensional ADI-

FDTD method. In [2-5] the same high-order spatial scheme is also proposed for the 

three-dimensional ADI-FDTD method and they showed that it slightly improves the 

associated dispersion error. Considering the complexity and required time for each 

updating procedure, they concluded that there is no benefit to overall performance 

compared with the conventional ADI-FDTD method. 
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In [2-34] an unconditionally stable higher-order ADI-FDTD method for 

analysis of curvilinear electromagnetic compatibility (EMC) applications is 

introduced. This method is based on a class of precise spatial/temporal nonstandard 

forms. They claim that this method suppresses the dispersion errors of the ordinary 

approach as the time-step increases and therefore can have very accurate results even 

far beyond the Courant limit. 

A complete investigation of the dispersion error of higher-order three-

dimensional ADI-FDTD method is provided in [2-35]. They derived the generalized 

form of the dispersion relations and showed as the higher-order ADI-FDTD method is 

used the results become more accurate. They also showed that all the higher-order 

ADI-FDTD methods that use center finite difference scheme are unconditionally 

stable. 

ADI-FDTD Method in Non-Cartesian Co-ordinates 

The ADI-FDTD method is modified to be applied in non-Cartesian co-

ordinates in [2-36], [2-37], and [2-34]. It is also shown that the ADI-FDTD method in 

non-Cartesian co-ordinates is unconditionally stable and the time-step size is again 

restricted by accuracy rather than stability. There is an additional special treatment in 

[2-36] to overcome the singularity along the vertical axis of cylindrical co-ordinates. 

ADI-FDTD Method Practical Applications 

Employing the ADI-FDTD method for numerical  experiments with very fine 

structures, e.g. structures with conducting strips, is efficient. The ADI-FDTD method 

is used to calculate the shielding effectiveness of various enclosures in [2-38]. The 

enclosures are composed of very thin conductive sheets, which are generally 
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fabricated using conductive paints or electro-less plating techniques on plastic 

surfaces. The ADI-FDTD method is used to derive the characteristics of typical and 

practical microstrip components such as microstrip linear resonators and microstrip 

low-pass filters [2-39]. These resonators and filters include very narrow gaps and 

strips which defend the usage of ADI-FDTD method. [2-40] also applies the ADI-

FDTD method to conductive materials. 

The ADI-FDTD method will be more practical if active and non-linear 

lumped devices can be included. In [2-41], an algorithm is introduced that could 

include active and non-linear lumped devices in the ADI-FDTD method. Also some 

corrections are made to the algorithm to eliminate the instability that occurs in this 

new algorithm. 

The other useful application of ADI-FDTD method can be in periodic 

boundary conditions [2-42]. However, implementing the ADI-FDTD method in 

periodic boundary conditions results in a cyclic matrix that removes the simplicity of 

the tri-diagonal matrix solution. To avoid the complexity of inverting the cyclic 

matrix directly, the problem is divided into two auxiliary linear systems that can be 

solved by a tri-diagonal matrix solver. The number of required arithmetic operations 

will be of the same order as the conventional ADI-FDTD method and this new 

method keeps the computational efficiency of the ADI-FDTD method. 

Envelope ADI-FDTD Method 

The ADI-FDTD method can be modified to calculate the envelope rather than 

the fast-varying fields and as a result, errors can be minimized. This new method is 

called envelope ADI-FDTD method. The envelope ADI-FDTD method and 
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conventional ADI-FDTD methods use a cell size limited by the carrier wavelength, in 

case we are modeling a wave with a high carrier frequency and narrow bandwidth. 

But the time-step for the envelope ADI-FDTD method can be much larger than the 

time-step for the conventional ADI-FDTD method because it is simulating the wave 

envelope, which has a lower frequency. 

The envelope ADI-FDTD method is applied in [2-43] because the 

conventional ADI-FDTD method can not be applied to simulating photonic devices if 

reasonable accuracy is to be kept. Using the envelope ADI-FDTD method, the 

simulation time was decreased by retaining the same level of accuracy compared with 

the conventional FDTD method. 

The numerical characteristics of envelope ADI-FDTD method are studied in 

[2-44]. It is shown that the envelope ADI-FDTD method is unconditionally stable, 

and dispersion accuracy is better than the conventional ADI-FDTD method. 

Therefore, it can be used as an efficient electromagnetic analysis tool especially in 

single frequency or band limited systems. 

The problem of instability in implementing the PML in the envelope ADI-

FDTD method is studied in [2-45] and is improved by making changes to the 

Berenger’s original split-field perfectly-matched layer equations. As the ADI scheme 

in time, the alternating characteristic was applied in the split-field PML formulation 

for the envelope ADI-FDTD method. 

Numerical properties of three-dimensional envelope ADI-FDTD method are 

investigated in [2-46]. The variations of dispersion errors with the propagation 

direction, ratio of carrier to envelope frequencies, and spatial and temporal steps are 
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studied. They have found that the envelope ADI-FDTD method has a better accuracy 

than the conventional ADI-FDTD method for simulations with a high ratio of carrier 

to envelope frequencies. 

In [2-47], they have studied the phase velocity error of a propagating Gaussian 

pulse for the envelope ADI-FDTD and conventional ADI-FDTD methods. The 

simulation results show the better performance of the envelope ADI-FDTD method 

over the ADI-FDTD method in numerical accuracy. 

Other Unconditionally Stable Methods  

[2-48] presentes an unconditionally stable FDTD method based on a D-H 

formulation and the recently proposed ADI marching scheme. The advantage of the 

D-H algorithm over the conventional E-H is the possibility to easily implement an 

unsplit filed components formulation of the PML ABC that is independent from the 

background material used in the FDTD grid. The method, therefore, allows 

immersing any dielectric in the PML layers without any special consideration, and is 

amenable for model truncation often used in biomedical simulations. Furthermore, the 

proposed scheme can be extended to account for frequency dispersive dielectrics. 

In [2-49], an ADI technique is applied to the recently developed 

multiresolution time-domain (MRTD) method, resulting in an unconditionally stable 

ADI-MRTD method free of the CFL stability limit. The unconditional stability is 

theoretically proved. Its time-step is determined only by modeling accuracy. The 

price for having unconditional stability is, however, that the required computation 

memory becomes almost twice of that for the original MRTD. 
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A hybrid two-dimensional subgridding scheme, based on a combination of the 

FDTD and ADI-FDTD methods, is utilized in [2-50]. The ADI-FDTD method is used 

for a fine grid in the vicinity of metallic etches, while the coarse FDTD grid is used 

outside this region. The advantage of the ADI-FDTD method is that it can be 

synchronized with the time marching step employed in the coarse FDTD method, 

obviating the need for the temporal interpolation of the fields in the process. This 

helps to render the hybrid ADI-FDTD subgridding scheme more efficient than the 

conventional FDTD subgridding algorithm in terms of the run time. 

Another accurate and efficient unconditionally stable FDTD (US-FDTD) 

method is proposed in [2-50]. The two key points of the proposed US-FDTD method 

are: defining the field components at only n and (n+1) time-steps; and arranging the 

left and right hands of the original updating equations to be as accurate (in respect of 

time) as possible.  

In [2-52], the two unconditionally stable techniques, the ADI and the split-

step (SS) schemes, are developed for the pseudo-spectral time-domain (PSTD) 

algorithm to maintain stability while achieving higher accuracy and efficiency over 

the FDTD method. The multi-domain strategy is employed to allow for a flexible 

treatment of internal inhomogeneities.  

Two implicit FDTD methods for two-dimensional TEz wave are proposed in 

[2-50]. The Approximate-Decoupling Method solves two tri-diagonal matrices and 

computes only one explicit equation for a full update cycle. The numerical dispersion 

relation is the same as the conventional ADI-FDTD method. The Cycle-Sweep 

Method solves two tri-diagonal matrices, and computes two equations explicitly for a 
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full update cycle. To compare these two methods the cycle-sweep method has much 

smaller numerical anisotropy than the approximate-decoupling method. The 

dispersion error is the same along the axes, and larger along the 45° diagonal than the 

conventional ADI-FDTD method. These methods are strictly non-dissipative and 

unconditionally stable. 

The Crank-Nicolson Approximate-Factorization-Splitting (CNAFS) method, 

which can be used as an efficient implementation of the Crank-Nicolson method for 

solving the three-dimensional Maxwell’s equations in the time-domain, is presented 

in [2-54]. This method is unconditionally stable and solves tri-diagonal matrices 

instead of solving a huge sparse matrix. 

[2-55] presents a split-step FDTD method with high-order spatial accuracy. 

This method is unconditionally stable.  

By using piecewise linear JE recursive convolution (PLJERC), the ADI-

FDTD method is extended for dispersive media-isotropic plasma in [2-56] 

In [2-57], they have proposed a two-dimensional LOD (locally one 

dimensional)-FDTD which is unconditionally stable. Its solution needs two implicit 

and two explicit equations in comparison with the conventional ADI-FDTD method 

which needs two implicit and four explicit equations. 

In [2-58], they have modified the recently proposed unconditionally stable D-

H ADI-FDTD method which considerably reduces the late-time error induced by the 

corner cells. An optimal choice of the PML conductivity profile coefficients is also 

proposed in this work. 
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Chapter 3 Theory of ADI-FDTD Method 

The Maxwell’s curl equations for an isotropic medium with permittivity of ε 

and permeability of µ are 

t
EH

∂
∂

=×∇ ε  (3-1) 

t
HE
∂

∂
−=×∇ µ  (3-2) 

Each of these two equations can be cast into three scalar partial differential equations 

in the Cartesian coordinates. 
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Each field component Fα(t,x,y,z) can be denoted as  Fα|n
i,j,k=Fα (n∆t,i∆x,j∆y,k∆z) in 

discrete space and time, where α = x, y, or z; n is the time index; i, j, and k are space 

indexes; ∆t is the time-step; and ∆x, ∆y, and ∆z are spatial steps along the x-, y-, and 

z-directions, respectively.   



 21

In the Alternating Direction Implicit Finite-Difference Time-Domain (ADI-

FDTD) method, electromagnetic-field components are arranged on the grid in the 

same way as the conventional FDTD method. Applying the ADI scheme requires 

updating the electric and magnetic fields from time step n to n+1 through two 

procedures. In the first procedure the fields advance from the nth time step to 

(n+1/2)th time step; in the second procedure the fields advance from the (n+1/2)th 

time step to (n+1)th time step. The second requirement of the ADI scheme is applying 

the alternating direction implicit concept in implementation of finite difference 

approximations. In the first procedure, the first derivatives on the right hand side of 

equations (3-3) and (3-4) are replaced with the implicit finite difference 

approximations and the second derivatives are replaced with the explicit finite 

difference approximations. Therefore, the updating equations will be 
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Calculating the electric fields at time step n+1/2 needs the values of magnetic 

fields, which are not computed yet. To address this problem, the equation for 

calculating Ex|n+1/2 is modified by replacing (3-6c) in (3-5a) which results in 
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The same procedure should be used to obtain the updating equations of other 

components of the electric field. 

In the second procedure, the first derivatives on the right hand side of 

equations (3-3) and (3-4) are replaced with the explicit finite difference 

approximations and the second derivatives are replaced with the implicit finite 

difference approximations. Therefore, the updating equations will be 

Second procedure: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆

−
−

∆

−

=
∆

−

+

−+

+

++
+

−+
+

++

+
+

+
+

z

HH

y

HH

t

EE

n

kjiy
n

kjiy
n

kjiz
n

kjiz

n
kjix

n
kjix

1

21,,21

1

21,,21
21

,21,21
21

,21,21

21
,,21

1
,,21

1

2

ε

 (3-8a) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆

−
−

∆

−

=
∆

−

+
+−

+
++

+
−+

+
++

+

+

+

+

x

HH

z

HH

t

EE

n
kjiz

n
kjiz

n
kjix

n
kjix

n

kjiy
n

kjiy

1
,21,21

1
,21,21

21
21,21,

21
21,21,

21

,21,

1

,21,

1

2

ε

 (3-8b) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆

−
−

∆

−

=
∆

−

+
+−

+
++

+

+−

+

++

+
+

+
+

y

HH

x

HH

t

EE

n
kjix

n
kjix

n

kjiy
n

kjiy

n
kjiz

n
kjiz

1
21,21,

1
21,21,

21

21,,21

21

21,,21

21
21,,

1
21,,

1

2

ε

 (3-8c) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆

−
−

∆

−

=
∆

−

+
+

+
++

+

+

+

++

+
++

+
++

y

EE

z

EE

t

HH

n
kjiz

n
kjiz

n

kjiy
n

kjiy

n
kjix

n
kjix

1
21,,

1
21,1,

21

,21,

21

1,21,

21
21,21,

1
21,21,

1

2

µ

 (3-9a) 



 24

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∆

−
−

∆

−

=
∆

−

+
+

+
++

+
+

+
++

+

++

+

++

z

EE

x

EE

t

HH

n
kjix

n
kjix

n
kjiz

n
kjiz

n

kjiy
n

kjiy

1
,,21

1
1,,21

21
21,,

21
21,,1

21

21,,21

1

21,,21

1

2

µ

 (3-9b) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆

−
−

∆

−

=
∆

−

+

+

+

++
+
+

+
++

+
++

+
++

x

EE

y

EE

t

HH

n

kjiy
n

kjiy
n

kjix
n

kjix

n
kjiz

n
kjiz

1

,21,

1

,21,1
21

,,21
21

,1,21

21
,21,21

1
,21,21

1

2

µ

 (3-9c) 

Similar to the first procedure, the updating equations of the electric fields of the 

second procedure must be modified. The updating equations of the magnetic fields 

are not modified because the required electric fields are already calculated. 

3.1 Stability of the ADI-FDTD Method 

For a recursive system of form 

nn XX Λ=+1  (3.1-1) 

the Fourier method can be used to determine its numerical stability [3-1]. In this 

method, instantaneous values of the electric and magnetic fields are first Fourier-

transformed into spatial spectral domain waves, representing a spectrum of spatial 

sinusoidal modes. Second, the location of eigenvalues of Λ are checked; if all of them 

lie inside or on the perimeter of the unit circle, the system is defined as stable, 

otherwise the system is unstable. 

Assuming the spatial frequencies to be kx, ky, and kz along the x, y, and z 

directions, the field components in the spatial spectral domain can be written as 
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21,,21
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 We denote the field vector in the spatial spectral domain as 
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(3.1-3) 

Substituting of (3.1-2) in (3-5)-(3-6) and (3-8)-(3-9), after some manipulation, 

Λ in (3.1-1) can be written as [3-2] 
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(3.1-4) 

where  

zyxktW ,,,
2
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⎠
⎞

⎜
⎝
⎛ ∆

∆
∆

= αα
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α
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( ) 2222222233
1 zyxzyx WWWWWWA +−−+= εµεµ  

( ) 2222222233
2 zyxxzy WWWWWWA +−−+= εµεµ  

( ) 2222222233
3 zyxyxz WWWWWWA +−−+= εµεµ  

( )222222
1 xzzyyx WWWWWWB −−= µε  

( )222222
2 yxxzzy WWWWWWB −−= µε  

( )222222
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( )2222
3 εµ−= yzx WWWD  

The eigenvalues of Λ can be found [3-2] 

121 == λλ  

R
jSSR +−

==
22

53 λλ  

R
jSSR −−

=== ∗
22

364 λλλ  

(3.1-5) 

where 

( ) ( ) ( )222
zyx WWWR +++= µεµεµε  

( ) ( )222332222222224 zyxxzzyyxzyx WWWWWWWWWWWWS ++++++= εµεµεµεµµε  
 

The first two eigenvalues obviously have a magnitude of unity. The other four 

eigenvalues also have magnitudes of unity. This is because R≥ S and the square roots 

in the numerator of the expressions for λ3, λ4, λ5, and λ6 become real numbers. 

Therefore, the ADI-FDTD method is unconditionally stable regardless of the time-

step size ∆t. 

3.2 Numerical Dispersion Relation of the ADI-FDTD Method 

To calculate the numerical dispersion relation of the ADI-FDTD method, we 

assume the fields to be monochromatic waves with an angular frequency of ω 

zyxeEE tnjn ,,, == ∆ αω
αα  (3.2-1a) 

zyxeHH tnjn ,,, == ∆ αω
αα  (3.2-1b) 

Replacing (3.2-1) in (3.1-1) results in 

( ) 0=Λ−∆ XIe tjω  (3.2-2) 
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To find a nontrivial solution of (3.2-2), the determinant of the coefficient 

matrix should be zero 

( ) 0det =Λ−∆ Ie tjω  (3.2-3) 

which by substituting (3.1-4) in (3.2-3) the numerical dispersion relation of ADI-

FDTD method is [3-3] 
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(3.2-4) 
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Chapter 4 Numerical Implementation of the ADI-

FDTD Method 

In order to verify the accuracy of our Alternating Direction Implicit Finite-

Difference Time-Domain (ADI-FDTD) code, we perform two numerical experiments 

and compare the simulation results to the analytical results and simulation results of 

other established methods or commercial codes. The third numerical experiment 

demonstrates a practical application of our code. 

4.1 Code Verification: Resonant Frequency of Cavity 

The first experiment calculates the resonant frequencies of a cavity. The 

cavity has dimensions of 9mm×6mm×15mm [4-1]. A uniform grid with grid size of 

∆ = 0.6mm is used to discretize the domain (Fig. 4.1-1). The maximum time-step size 

of the FDTD method is ∆ tFDTD=1.15ps and we use the same time-step size for the 

ADI-FDTD method (∆ tADI-FDTD = ∆ tFDTD). 

x
y

z

9mm
∆ = 0.6mm

6mm
∆ = 0.6mm

15mm, ∆ = 0.6mm

x
y

z

9mm
∆ = 0.6mm

6mm
∆ = 0.6mm

15mm, ∆ = 0.6mm
 

Fig. 4.1-1   Dimensions and grid size of cavity.  
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The calculated resonant frequencies of the first five modes are shown in Table 

4.1-1. The results have been compared with the calculated resonant frequencies using 

the theory, HFSS software, and the FDTD method. As we see, the ADI-FDTD 

method gives the same order of errors as the HFSS and FDTD method. 

 

Table 4.1-1   Comparing the calculated resonant frequencies of cavity using 

HFSS, FDTD, ADI-FDTD, and theory.  

Theory 
(GHz) 

HFSS 
(GHz) 

Error 
(%) 

FDTD
(GHz)

Error
(%) 

ADI-FDTD 
(GHz) 

Error 
(%) 

19.433 19.42 0.06 19.44 0.03 19.44 0.03 
26.034 26.00 0.13 25.99 0.17 25.99 0.17 
26.926 26.89 0.13 26.83 0.35 26.83 0.35 
30.046 30.00 0.15 30.10 0.18 29.79 0.85 
31.667 31.60 0.21 31.90 0.74 31.69 0.07  

 

Fig. 4.1-2 demonstrates the errors of the first resonant frequency calculated 

using different time–step sizes which exceed the Courant stability limit. 
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Fig. 4.1-2   Relative errors of the calculated resonant frequencies vs. time-step 

size. 

 



 31

4.2 Code Verification: Free Space Wave Propagation 

This experiment demonstrates the wave propagation in the three-dimensional 

free space. The simulation domain is a box with dimensions of 

12.5mm×12.5mm×12.5mm with grid size of ∆ =0.25mm. The source is positioned at 

(6.25mm, 6.25mm, 6.25mm) and the monitor point is selected at (6.25mm, 7.5mm, 

6.25mm) (Fig. 4.1-2). The excitation is a Gaussian pulse 

 ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= 2

2
exp

τ
dtttf   

with td = 80ps and τ = 20ps. The 3dB bandwidth of a Gaussian pulse is f-3dB=1/πτ, 

which for τ =20ps results in f-3dB=15.9GHz with the wavelength of λ-3dB=18.84mm. 

Therefore, the grid size of ∆=0.25mm results in 75 points per wavelength which is 

much more than the proposed 10 points per wavelength for acceptable dispersion 

error [4-2]. 
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Fig. 4.2-1   Structure of the three-dimensional open-region simulation and the 

locations of source and monitor points. 
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A comparison of the recorded values of ex at monitor points is shown in Fig. 

4.2-2. As we see in the Fig. 4.2-2, the simulated electric fields using the ADI-FDTD 

and FDTD methods are exactly the same. 
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Fig. 4.2-2   Values of ex calculated using the ADI-FDTD (solid line) and FDTD 

methods (solid line with squares). 

 

4.3 Antenna Application 

In this section, the ADI-FDTD method is applied for a practical application. 

The application considered is a microstrip-fed rectangular patch antenna similar to [4-
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3]. The frequency range of interest is from DC to 20 GHz and the scattering 

parameters are also measured up to 20 GHz [4-3].  

The dimensions of patch antenna are shown in Fig. 4.3-1. The approximate 

resonant frequency can be calculated using the fact λ/2≅12.45mm. This antenna is 

built on Duroid substrate with εr=2.2 and thickness of 1/32″ (0.794mm).  
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Fig. 4.3-1   Dimensions of patch antenna. 

 

The source plane is a rectangle in the yz plane with the same width as the trace 

and the same height as the substrate (Fig. 4.3-2). The excitation is a Gaussian pulse 

( )
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⎛ −
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2
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where t0=45 ps and τ =15 ps.  

The simulation domain is terminated by the first order Mur’s Absorbing 

Boundary Conditions (ABC) on 5 sides and only the plane z=0 is defined as perfect 

electric conductor (ground plane of the antenna). The ABC surfaces are several cells 
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away from the perimeters of antenna and we have considered a greater number of 

cells in the z-direction above the antenna plane to model the free space above the 

antenna. Notice that the ABC in the yz plane has been implemented several nodes 

away from the source plane to eliminate any undesirable effects. 

The grid sizes in the x, y, and z directions are ∆ x = 0.389mm, ∆ y = 0.4mm, 

and ∆ z = 0.265mm. The total number of cells in the x-, y-, and z-directions are 60, 

100, and 16, respectively, and the rectangular patch is 32∆ x × 40∆ y (Fig. 4.3-2). The 

cell arrangement in the z-direction is shown in Fig. 4.3-3 (a).  
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Fig. 4.3-2   Structure simulated by the ADI-FDTD method. 

The time-step size is set at the CFL stability limit which is ∆t = 0.6403ps. The 

reference plane, where the voltage is calculated, is set 10 cells away from the patch 

antenna. The length of microstrip line from the source to the antenna is 40∆ y. To 

calculate S11, first we consider a long microstrip line, apply the excitation and record 

the voltage at the reference plane (Vin). Next, we excite the microstrip line connected 
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to antenna and record the voltage (Vtotal). S11, which is defined as the reflected voltage 

to the incident voltage, is S11 = Vref / Vin = (Vtotal - Vin) / Vin (Vtotal=Vin+Vref). 
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Fig. 4.3-3   Structure of grids in the z-direction. 

 

The calculated scattering parameters are shown in Fig. 4.3-4. The first 

resonant frequency is fc = 7.4624 GHz and is shown in Table 4.3-1. 
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Fig. 4.3-4   S11 in dB for fine grid (Fig. 4.3-3 a). 

 

In next simulation we only increase the grid size in the z-direction to ∆ z = 

0.397mm and the other parameters are left unchanged (Fig. 4.3-3 b). The time-step 

size is set at the CFL stability limit which is ∆t=0.7606ps. The scattering parameters 

are calculated and shown in Fig. 4.3-5. The first calculated resonant frequency is fc = 

7.5484 GHz and is shown in Table 4.3-1. 
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Fig. 4.3-5   S11 in dB for coarse grid (Fig. 4.3-3 b). 

 

In this simulation, we refine the grid around the antenna plane in the z-

direction as shown in Fig. 4.3-3 c. The two cells adjacent to antenna plane have a grid 

size of ∆ z′ = ∆ z / 2 = 0.1985mm and for the rest of the cells the grid size is ∆ z = 

0.397mm. The time-step is the same as the coarse grid time-step, which is 

∆t=0.7606ps. The calculated scattering parameters are shown in Fig. 4.3-6. The first 

calculated resonant frequency is fc = 7.489 GHz and is shown in Table 4.3-1. 
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Fig. 4.3-6   S11 in dB for a coarse grid in the z-direction which is refined around 

the antenna plane (Fig. 4.3-3 c). 

 

Table 4.3-1   The first calculated resonant frequency for different grid 

structures in the z-direction. 

Mesh Type Fine Mesh 
(Fig. 7-3 a) 

Coarse Mesh 
(Fig. 7-3 b) 

Coarse Mesh and 
Refined Mesh 
(Fig. 7-3 c) 

Resonant Freq. 
(GHz) 

7.4624 7.5484 7.489 

Relative 
Simulation Time 

1 0.55 0.62 
 

 

As we see in Table 4.3-1, by coarsening the grid, the resonant frequency is not 

very accurate. To get more accurate results, we only refined the grid around the 

antenna plane which gives more accurate results without increasing the computational 

cost. 
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Chapter 5 Absorbing Boundary Condition (ABC) 

5.1 Theory 

Due to the limitations of memory resources, when using finite difference 

methods to solve for the fields in open regions, the infinite domain is truncated to a 

finite one by artificial boundaries that enclose the source of radiation and the objects 

that interact with the source. On the outer boundaries, an absorbing boundary 

condition (ABC) is enforced to simulate its extension to infinity. The ABC is not 

expected to provide the complete annihilation of the outgoing waves; rather it 

suppresses the spurious reflections of the outgoing numerical waves to an acceptable 

level. 

Based on the theory of one-way wave equations developed by Engquista-

Majda [5-1], the two-dimensional wave equation             
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2
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∂
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t
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U  (5.1-1) 

can be written as               

0=GU  (5.1-2) 

and the partial-differential operator G is defined as       
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2 11
tyx D
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≡  (5.1-3) 

The operator G can be factored in the following manner 

0=−+ UGG  (5.1-4) 

where     
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21 S
c

DDG t
x −−≡−  (5.1-5) 

and       

21 S
c

DDG t
x −+≡+  (5.1-6) 

with           

( )cD
D

S
t

y≡  (5.1-7) 

Engquist and Majda demonstrated that the application of G- to the wave 

function U, absorbs a plane wave propagating at any angle toward the left boundary. 

Thus,               

0=−UG  (5.1-8) 

completely absorbs the plane wave propagating at any arbitrary angle toward the left 

grid boundary and               

0=+UG  (5.1-9) 

completely absorbs the plane wave propagating at any arbitrary angle toward the right 

grid boundary. 

The square roots in (5.1-5) and (5.1-6) prohibit the exact numerical 

implementation of (5.1-8) and (5.1-9). Therefore, we need to approximate the square 

roots to produce the partial-differential equations that can be implemented 

numerically. Using the first term of the Taylor’s series expansion gives          

11 2 ≅− S  (5.1-10) 

which, when substituted in (5.1-5) and (5.1-6) gives the corresponding partial-

differential equations that can be numerically implemented as a first-order accurate 
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ABC at the grid boundary. Using the same procedure, 21 S−  can be written as a 

two-term Taylor series, with the result being the second-order accurate ABC. 

5.2 Higdon’s ABC 

Higdon proposed ([5-2], and [5-3]) a differential annihilator of the plane 

waves of the form                   
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This operator absorbs all 2L waves coming toward ABC with angles of ±α1, ±α2, …, 

±αL.  

The generalized form of the Nth order Higdon’s ABC is  
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 (5.2-2) 

where c is the speed of light, φi is the incident angle for which the boundary condition 

is perfectly absorptive, and iα  is the damping factor. He showed that the ABCs 

proposed by Engquist-Majda are special cases of the generalized Higdon’s ABC. To 

discretize (5.2-2) into a difference equation, we use the following operators    
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→∂ bSIb
t
TI

t  (5.2-4) 

where I is the identity operator, S -1 is the space shift operator, and T-1 is the time 

shift operator. The choices of the weighting coefficients a and b give different 

difference schemes including the forward Euler (a=0, b=1), backward Euler 
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(a=b=0), and box scheme (a=b=0.5), etc. In general, the weighting coefficients are 

positive real numbers bounded by unity. The shift operators are explicitly expressed 

as 

( ) ( ) n
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Substituting the operators (5.2-3) and (5.2-4) into (5.2-2), we have   

( )∏
=

−−−− =+++=
N

i
iiiN UTScSbTaIUB

1

1111 0  (5.2-9) 

where 

( )( )
( ) xbha

bhaa
i
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α11

1
 (5.2-10) 

( )
( ) xbha
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i

i ∆−−−−
+−−

=
α11

1
 (5.2-11) 

( )
( ) xbha

hbac
i

i ∆−−−−
−−−

=
α11  

(5.2-12) 

t
x

c
h i

∆
∆

=
φcos

 
(5.2-13) 

From (5.2-9), the difference formula of the first-order Higdon’s ABC (i.e., N=1), is a 

linear and constant coefficient scheme. Furthermore, the difference scheme of the 

higher-order Higdon’s ABC (i.e., N≥2) is also a linear and constant coefficient 

formula since it is derived from cascading the first-order formulas. 
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5.2.1 Implementation of the Higdon’s ABC in the ADI-FDTD 

Method 

In this experiment we apply the first-, and third-order Higdon’s ABC in the 

ADI-FDTD method. The simulated structure has dimensions of 5mm×5mm×5mm and 

grid size of ∆=0.25mm (Fig. 5.2-1). The source is located at (2.5mm, 2.5mm, 2.5mm) 

and monitor point is selected at (2.5mm, 3.75mm, 2.5mm) (Fig. 5.2-1). The excitation 

is a Gaussian pulse 

 ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= 2

2
exp

τ
dtttf   

with td = 80ps and τ = 20ps. The results of the first-, and third-order Higdon’s ABC 

simulations are shown in Fig. 5.2-2. As we see in Fig. 5.2-2, and more clearly in Fig. 

5.2-3, the third-order Higdon’s ABC is unstable. 
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Fig. 5.2-1   Structure of three-dimensional open-region simulation and the 

locations of source and monitor points. 
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Fig. 5.2-2   Simulation results of the first-, and third-order Higdon’s ABCs 

implemented in the ADI-FDTD method.  
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Fig. 5.2-3   Scaled simulation results of the first, and third-order Higdon’s 

ABCs implemented in the ADI-FDTD method.  

 

In [5-4] they have demonstrated that the third-order Higdon’s ABC is 

unconditionally unstable and our simulation results confirm their conclusion. 

5.3 Complementary Operators Method (COM) 

The ABC is not expected to provide complete annihilation of the outgoing 

waves and, consequently, an error is introduced in the solution. Since the 

performance of a particular ABC depends on the location of the mesh-terminating 

wall, we can measure the error caused by the application of the ABC by expressing 

the total time-harmonic field as a summation of the outgoing and incoming waves at 

the artificial boundary. Suppose we have a computational boundary at x=a, where the 
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interior of the domain is the region to the left of the boundary (Fig. 5.3-1). We can 

express the field at any point to the left of the boundary as                  

tjzzjkyyjkxxjktjzzjkyyjkxxjk eReU ωω +−−+−−−
+=  (5.3-1) 

Ideally, we would like to have zero reflection from computational boundaries. 

Therefore, the spurious reflection that is caused by the imperfect absorption of the 

computational wall is given by the second term in (5.3-1)                    

tjzzjkyyjkxxjkeR ω+−−  (5.3-2) 

 

Computational 
Boundary, x = a
Computational 
Boundary, x = a

 

Fig. 5.3-1   Outgoing and incoming waves at the computational boundary. 

 

In [5-5]-[5-7], they define a complementary ABC, which if applied to the 

same problem results in an error of similar magnitude but opposite in phase to what 

was obtained with the original ABC (Fig. 5.3-2). Denoting the new solution as Uc, we 

have 

tjzzjkyyjkxxjktjzzjkyyjkxxjkc eReU ωω +−−+−−−
−=  (5.3-3) 
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Fig. 5.3-2   Outgoing and complementary incoming waves at the computational 

boundary.  

 

It follows that the reflection-free solution, or the numerically exact solution, 

denoted as Uexact is the average of the two solutions in (5.3-1) and (5.3-3) (Fig. 5.3-3)      

2

c
exact UUU +

=  (5.3-4) 
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Fig. 5.3-3   Complementary reflections and average of them that cancels the 

first-order reflection. 

 

Unfortunately, in practical applications, this ideal scenario does not take place 

because of the presence of the radiating structure, the finiteness of the terminating 

wall and the remaining mesh-terminating boundaries. All these result in multiple 
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spurious reflections of higher orders, which all do not cancel when averaging the two 

solutions as in (5.3-4). 

As introduced in (5.2), the generalized form of the Nth-order Higdon’s ABC is                                

∏
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=⎟
⎠

⎞
⎜
⎝

⎛ +∂+∂=
N

i
it

i
xN U

c
UB

1
0cos αφ

 (5.3-5) 

The corresponding reflection coefficient R for time-harmonic fields is found by 

substituting (5.3-1) into (5.3-5)                           

[ ] ( )∏
= ++

++−
−=

N

i iix

iix
N kjjk

kjjk
BR

1 cos
cos

1
αφ
αφ

 (5.3-6) 

Aside from the added flexibility that cosφi and αi introduce, these constants 

can also be manipulated to lead to complementary pairs. By observation, if we set 

cosφN = αN = 0  in (5.3-6), we arrive at the reflection coefficient                       
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= ++
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i iix

iix
N

c

kjjk
kjjk

BR
αφ
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 (5.3-7) 

The corresponding ABC, denoted by Bc
N is readily found to be                                

∏
−

=

=⎟
⎠

⎞
⎜
⎝

⎛ +∂+∂∂=
1

1
0cosN

i
it

i
xxN

c U
c

B αφ
 (5.3-8) 

The new boundary condition in (5.3-8) is precisely the complementary version 

of the ABC in (5.3-5) of order N-1. By observation, we can express the new ABC as 

∂x operation on the original ABC of order N-1                               

1−∂= NxN
c BB  (5.3-9) 

While the non-optimality of the complementary operator is clearly evident, since the 

magnitude of the reflection coefficient of both operators is equivalent, the new 

operator, nevertheless, provides us with the 180°  phase shift that we are seeking. 
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5.3.1 Implementation of COM in the ADI-FDTD Method 

In this experiment we investigate the stability of the second-order COM. We 

apply the second-order COM on the same structure as Fig. 5.2-1. The excitation is a 

Gaussian pulse 

 ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= 2

2
exp

τ
dtttf   

with td = 80ps and τ = 20ps. Fig. 5.3-4 shows the simulation results of two operators 

of the second-order COM. As we see in Fig. 5.3-4, and more clearly in Fig. 5.3-5, the 

Higdon’s operator is stable but the complementary operator is unstable.  
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Fig. 5.3-4   Simulation results of the second-order COM implemented in the 

ADI-FDTD method.  
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Fig. 5.3-5   Scaled simulation results of the second-order COM implemented in 

the  ADI–FDTD method.  

 

5.3.2 Analytical Investigation of Instability of the COM Using the Z-

transform 

Here, we use the Z-transform method to analytically investigate the stability of 

ABCs [5-4]. Consider a linear time-invariant (LTI) system given by the transfer 

function                

( ) ( )
( )( ) ( )npzpzpz

zNzH
−−−

=
...21

 (5.3.2-1) 

where p1, p2,…, pn denote the poles of H(z), and N(z) is a polynomial. The system 

H(z) is asymptotically stable if and only if |pi|<1 for i=1,2,…,n. Based on the LTI 

system theory, the system is marginally stable if and only if |pi|≤1 for all non-

repeated poles, and |pi|<1 for all repeated poles. 
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The Higdon’s ABC is a linear combination of the interior nodes’ values at the 

current and previous time steps. We define a system in which the output is the ABC 

value and inputs are the values of the interior nodes. It is clear that this system is an 

LTI system. 

Suppose that um
n (m is the spatial index and n is the time index) is the ABC 

value or output of the system and um-i
n-k i=1,2,.. and k=1,2,… are the interior nodes’ 

values or the inputs of the system. Denoting the Z-transform operation by Z, we apply 

the Z-transform on the ABC value. We have      

( ) ( )n
muZzY ≡  (5.3.2-2) 

Next, we apply the Z-transform on the ABC values, but at the previous time 

steps. Using the Z-transform properties, we have        

( ) ( )zYzuZ n
m

11 −− =  

( ) ( )zYzuZ n
m

22 −− =  

… 

( ) ( )zYzuZ LLn
m

−− =  

(5.3.2-3) 

Applying the Z-transform on the internal nodes’ values of time step n, we have          

( ) ( )n
muZzX 11 −=  

( ) ( )n
muZzX 22 −=  

… 

( ) ( )n
NmN uZzX −=  

(5.3.2-4) 

Note that L is the number of previous time steps and N is the number of internal 

nodes used to calculate the value of absorbing boundary condition.  
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The value of each node represents the numerical solution of the wave equation 

at that node. Also, we know that the ABCs are not perfect and there is some reflection 

from the ABC. Therefore, the values of different interior nodes can be written as            

( )xmxjktnjxmxjktnjn
m eeeeu ∆+∆∆−∆ += ωω ρ  

( ) ( )( )xmxjktnjxmxjktnjn
m eeeeu ∆−+∆∆−−∆

− += 11
1

ωω ρ  

( ) ( )( )xmxjktnjxmxjktnjn
m eeeeu ∆−+∆∆−−∆

− += 22
2

ωω ρ  

… 

( ) ( )( )xNmxjktnjxNmxjktnjn
Nm eeeeu ∆−+∆∆−−∆

− += ωω ρ  

(5.3.2-5) 

where kx is the wave number in the x-direction (ABC for propagating waves along the 

x-direction), and ρ is the reflection coefficient.  

Using the linearity property of the Z-transform, equations (5.3.2-2) to (5.3.2-

5), and after some algebraic manipulation, the Z-transform of interior nodes values 

can be expressed as a combination of X1(z) and Y(z) [5-4].   

( ) ( ) ( ) ( )zYzXxkzX x −∆= 12 cos2  

( ) ( )[ ] ( ) ( ) ( )zYxkzXxkzX xx ∆−∆+= cos22cos21 13  

( ) ( ) ( ) ( ) ( )[ ] ( )zYxkzXxkxkzX xxx ∆+−∆∆= 2cos212cos2cos4 14  

(5.3.2-6) 

The ABC can be expressed as a weighted polynomial of the space- and time-

shift operators          

0
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ki
ki uuUTSIBU ββ  (5.3.2-7) 

By applying the Z-transform on (5.3.2-7) and using (5.3.2-2)-(5.3.2-6), we can 

calculate the transfer function of the system.               



 53

( ) ( )
( )zX
zYzH

1

=  (5.3.2-8) 

Here, we use the Z-transform to investigate the instability of the second-order 

COM. The second-order Higdon’s ABC is given by        

∏
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 (5.3.2-9) 

or in difference form can be written as           

( )∏
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−−−− =+++=
2

1

1111
2 0

i
iii UTScSbTaIUB  (5.3.2-10) 

which after some manipulation is        
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The second-order complementary operator is given by 
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 (5.3.2-12) 

By observation, the complementary operator is equal to the second-order Higdon’s 

ABC when a2 = -1, b2 = 1, c2 = -1. Therefore, its difference form is    
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Expressed as nodal fields, the complementary operator becomes             
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 (5.3.2-14) 

Applying the Z-transform to (5.3.2-14), and using the properties of (5.3.2-2)-(5.3.2-

6), the transfer function of the complementary operator is 
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 (5.3.2-15) 

The poles of (5.3.2-15) are obtained by solving for the roots of the equation 

( ) ( ) ( ) 011 2
11

1
1111 =−+−+−+− −− zaczcbab  (5.3.2-16) 

giving the two roots 

11 =z   

1

11
2 1 b

acz
−
−

=   

From the system theory we know that an input with a DC term causes instability in a 

system having a pole at z=1.  Therefore, the second-order COM excited with a 

Gaussian pulse, which has a DC term, is unstable. 
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Chapter 6 Complementary Derivatives Method 

6.1 CDM Theory 

In this section, and without loss of generality, we introduce the 

Complementary Derivatives Method (CDM) on the classical Finite-Difference Time-

Domain (FDTD) method based on the Yee scheme [6-1], [6-2]. The arrangement of 

electric and magnetic fields along the x-axis is shown in Fig. 6.1-1. The updating 

equations are based on discretizing the derivative operators in time and space. The 

first-order time derivative is discretized using the central difference scheme, 

achieving second-order accuracy. The same procedure is used for space derivatives, 

similarly achieving second-order accuracy if the grid size remains unchanged. To this 

end, let us construct a computational domain composed of two regions with boundary 

x0 as the interface between the regions (shown by dashed line in Fig. 6.1-1). In this 

case we assume that the cell size changes from ∆ to ∆R = ∆′ at the interface. Using 

Taylor series expansion, we express the magnetic fields on both sides of the interface 

as 

( ) ( ) ( ) ( ) ( ) ( )3
2
22

2 0

2

000 OxHxHxHxH +′′∆′
+′∆′+=⎟

⎠
⎞

⎜
⎝
⎛ ∆′

+  (6.1-1) 

( ) ( ) ( ) ( ) ( ) ( )3
2
22

2 0

2

000 OxHxHxHxH −′′∆
+′∆−=⎟

⎠
⎞

⎜
⎝
⎛ ∆

−  (6.1-2) 

By subtracting (6.1-1) from (6.1-2), and after several algebraic manipulations 

we can write the derivative of H′(x0) as      

( ) ( ) ( )
( ) ( ) ( )2

42
2/2/

0
00

0 OxH
xHxH

xH +′′∆−∆′
−

∆+∆′
∆−−∆′+

=′  (6.1-3) 
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Fig. 6.1-1   Arrangement of E-fields and H-fields along the x-axis in the FDTD 

domain based on the Yee scheme. The grid size changes from ∆ to ∆R at the 

grid boundary. 

 

Next, we construct a second domain in which the grid size changes from ∆ to 

∆R = ∆″. Using identical procedure, the derivative of the magnetic field, H′(x0), for 

the new cell size can be written as 

( ) ( ) ( )
( ) ( ) ( )2

42
2/2/

0
00

0 OxH
xHxH

xH +′′∆−∆ ′′
−

∆+∆ ′′
∆−−∆ ′′+

=′  (6.1-4) 

As we see in (6.1-3) and (6.1-4), the truncation error is first order. The 

arithmetic average of (6.1-3) and (6.1-4) gives 
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 (6.1-5) 

As a sufficient condition for canceling the first-order truncation error, the third 

term on the right-hand side of (6.1-5) should be zero. This results in the following 

identity                                                                                                
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2
∆′′+∆′

=∆
 

(6.1-6) 

We define complementary derivatives as the two derivatives defined at the 

interface of two different computational domains of the same structure. Both domains 

have identical grid size, henceforth referred to as the common grid size, on one side 

of the interface (to the left when considering Fig. 6.1-1). On the other side of the 

interface, the grid sizes are different subject to the condition that their arithmetic 

mean is equal to the common grid size. Averaging the two complementary derivatives 

at the interface achieves second-order accuracy. 

The above procedure requires two separate simulations. For obvious reasons, 

this can be computationally unattractive. A single simulation implementation of CDM 

is possible as explained next. 

Let us consider a computational domain with two different grid sizes 

separated by an interface as shown in Fig. 6.1-2. A second-order accurate E-field 

interpolation at the interface (x=x0) is obtained using the symmetric H-fields at x=x0-

∆/2 and x=x0+∆/2 as                                          

( ) ( ) ( ) ( )2
2/2/ 00

0 O
xHxH

xH +
∆

∆−−∆+
=′  (6.1-7) 

Here, we assumed that there is an H-field node at x=x0+∆/2. In the case where 

an H-field node does not coincide with the location x=x0+∆/2, we make use of the H-

fields at two nodes that exist, at x=x0+(∆/2−δL) and x=x0+(∆/2+δR). To see how this 

is accomplished, we express the derivative at x0 using two different differencing 

schemes. The first expression for the derivative uses the points x=x0-∆/2 and 

x=x0+(∆/2−δL), resulting in         
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The second expression for the H-field derivatives uses the points x=x0-∆/2 and 

x=x0+(∆/2+δR), resulting in 
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The arithmetic mean of (6.1-8) and (6.1-9) gives  
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 (6.1-10) 

To cancel the first-order truncation error, the third term of the right-hand side of (6.1-

10) should be zero. To achieve this, we require that 

RL δδ =  (6.1-11) 

Numerical implementation of the CDM can be achieved by simply 

determining the number of the two FDTD cells that are used to calculate the 

complementary derivatives. If we assume that one of the H-fields is in cell k1 and the 

other one is in cell k2 (as measured from the interface), δL and δR, as defined in Fig. 

6.1-2, can be written as 

( )
2

12
2 1

∆′
+−

∆
= kLδ

 
(6.1-12) 

( )
22

12 2
∆

−
∆′

+= kRδ
 

(6.1-13) 

Note that k1 and k2 do not necessarily represent adjacent cells. Enforcing (6.1-

11), we have  
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(6.1-14) 

If we set ∆′=α∆, where α is defined as the grid size reduction factor, and after 

some manipulation, we have 

1
1

21 ++
=

kk
α

 
(6.1-15) 

which gives the possible choices for cell size reduction factors. In other words, the H-

fields of (k1+1)th and (k2+1)th cells from the grid boundary are complementary 

derivatives for the grid size reduction factor of α. 
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Fig. 6.1-2   FDTD E- and H-field nodes used for the implementation of CDM in 

the one-dimensional simulation. 

 

To implement the CDM in the two-, and three-dimensional FDTD 

formulations when the grid sizes only change in two directions, we use a similar 

procedure to the one-dimensional case. Consider the following partial differential 

equation 

),,,( ),,,( ),,,( 000000000 tzyxftzyxftzyxf yxt βα +=  (6.1-16) 



 60

Suppose that the grid size in the x-direction changes from ∆x to ∆R
x = ∆x′  at x0 

and the grid size in the y-direction changes from ∆y to ∆R
y = ∆y′  at y0 (Fig. 6.1-3). 

Discretizing (6.1-16) at (x0, y0) using the central difference scheme results in  
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Similar to the one-dimensional case, we assume there is another domain in 

which the grid size in the x-direction changes from ∆x to ∆R
x = ∆x″  at x0 and the grid 

size in the y-direction changes from ∆y to ∆R
y = ∆y″  at y0 (Fig. 6.1-3). Discretization 

of (6.1-16) at (x0, y0) gives    
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Arithmetic average of (6.1-17) and (6.1-18) gives 
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(6.1-19) 

The truncation error can be improved to the second-order if the relation 

between grid sizes in the x-direction is  
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(6.1-20) 

and the relation between grid sizes in the y-direction is 

2
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(6.1-21) 

We can use the same procedure to implement the CDM even if the grid sizes 

are changing in the three directions. But in Maxwell’s equations, each updating 

equation of the electric-field (magnetic-field) components uses the magnetic-field 

(electric-field) components that lie on a plane. In other words, a two-dimensional grid 

is needed to update each electric-, or magnetic-field components. Therefore, 

implementing CDM is required for at most two directions in the Maxwell’s equations.  
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Fig. 6.1-3   Two-dimensional discretized structure. The grid size in the x-

direction changes from ∆x to ∆R
x at x0 and in the y-direction changes from ∆y to 

∆R
y at y0. 

 

6.2 Numerical Experiments 

6.2.1 One-dimensional Experiments  

To explain the concept of CDM, two simple one-dimensional experiments are 

presented in this section. First, we consider a one-dimensional domain of length 

750mm with a uniform grid size of ∆=125µm. This case will be considered as the 

reference. The second-order Higdon’s absorbing boundary condition [6-3] is applied 

at both ends of the computational domain to isolate any terminal reflections. The 

source is positioned 250mm from the left domain boundary; the monitor point is at 
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375mm from the left domain boundary, 125mm from the source (Fig. 6.2.1-1). The 

excitation is a differentiated Gaussian pulse, given by  
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where td=100ps and τ=20ps. The simulation results of the relative amplitude of Ez for 

this reference case are shown in Fig. 6.2.1-3 by a solid line. 
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Fig. 6.2.1-1   One-dimensional reference structure. The grid size is uniform 

(∆=125µm) throughout the domain. 

 

In the next step, we increase the grid size only on the left side of grid 

boundary to ∆ = 250µm (left domain boundary to source is 250mm, source to monitor 

point is 125mm, monitor point to grid boundary is 125mm. See Fig. 6.2.1-2). The grid 

size on the right side of the grid boundary is the same as before ∆′ = 125µm and the 

domain size is left unchanged (grid boundary to left domain boundary is 250mm. See 

Fig. 6.2.1-2).  
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Fig. 6.2.1-2   Simulated structure with different grid sizes. The grid size on the 

left side of the grid boundary is ∆=250µm and on the right side of the grid 

boundary is ∆′ = 125µm. 

 

The simulation results of the structure depicted in Fig. 6.2.1-2 are shown in 

Fig. 6.2.1-3. The line with diamonds shows the results with the different grid size; 

and the line with circles illustrates the results when CDM is applied to cancel the 

first-order truncation errors. Since the grid size reduction factor is 1/2, the H-fields of 

the first and second cells have been used as complementary derivatives. As we see in 

Fig. 6.2.1-3, the application of CDM significantly reduces reflection from the grid 

boundary. 
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Fig. 6.2.1-3   One-Dimensional FDTD simulation results using different grid size 

scenarios; Reference: Standard Yee scheme applied to a domain with a 

uniform cell size of ∆ = 125µm. Case 1: Standard Yee scheme applied to two 

domains with different grid sizes of ∆ = 250µm and ∆′ = 125µm. Case 2: CDM 

applied to two domains with different grid sizes of ∆ = 250µm and ∆′ = 125µm. 

 

In the second numerical experiment of this section we examine the case, in 

which there are different sets of complementary derivatives. Here, the one-

dimensional FDTD domain is 340mm long with the grid size of ∆=50µm, and the 

second-order Higdon’s absorbing boundary condition [6-3] is applied at both ends of 

the computational domain to isolate any terminal reflections. The source is positioned 

120mm from the left domain boundary and a monitor point is selected 50mm away 

from the source (Fig. 6.2.1-4). The same excitation as the previous experiment is 
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used. The simulation results for this reference case are shown in Fig. 6.2.1-7 by a 

solid line. 
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Fig. 6.2.1-4   Simulated structure as reference. The grid size is ∆=50µm on the 

entire domain. 

 

Next, we increase the grid size on the left side of the grid boundary to ∆ = 

200µm (Fig. 6.2.1-5). The grid size on the right side of the grid boundary remains the 

same ∆′ = 50µm and the domain size is left unchanged (grid boundary to left domain 

boundary is 120mm. See Fig. 6.2.1-5).  
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Fig. 6.2.1-5   Simulated structure with different grid sizes. The grid size on the 

left side of the grid boundary is ∆ = 200µm and on the right side of the  grid 

boundary is ∆′ = 50µm. 
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In this experiment, the grid size reduction factor is α=1/4. Figs. 6.2.1-6 (a) 

and 6.2.1-6 (b) show the two different sets of points that can be used as 

complementary derivatives for a grid size reduction factor of α=1/4. 

The simulation results of the structure depicted in Fig. 6.2.1-5 are shown in 

Fig. 6.2.1-7. The dotted line with squares shows the results of different grid sizes. The 

line with crosses illustrates the simulation results of different grid sizes when CDM is 

applied (Fig. 6.2.1-6 (a)). The line with circles illustrates the simulation results of 

different grid sizes when CDM is applied (Fig. 6.2.1-6 (b)). As we see in Fig. 6.2.1-7, 

when CDM is applied a significant reduction in the grid boundary reflection is 

achieved. 
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Fig. 6.2.1-6   Two different sets of complementary derivatives for a grid size 

reduction factor of α=1/4. 
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Fig. 6.2.1-7   One-dimensional FDTD simulation results using different grid size 

scenarios. Reference: Standard Yee scheme applied to a domain with a 

uniform cell size of ∆ = 50µm. Different Grid size: Standard Yee scheme 

applied to two domains with different grid sizes of ∆ = 200µm and ∆′ = 50µm. 

CDM, Method 1: CDM (Method 1, Fig. 6.2.1-6 (a)) is applied to two domains with 

different grid sizes of ∆ = 200µm and ∆′ = 50µm. CDM, Method 2: CDM (Method 

2, Fig. 6.2.1-6 (b)) is applied to two domains with different grid sizes of ∆ = 

200µm and ∆′ = 50µm. 

 

6.2.2 Two-dimensional Experiments 

Here, the CDM is applied to the problem of a partially filled parallel plate 

waveguide of dimensions 420mm×30mm. First, we consider a uniform grid size in the 

entire computational domain of the guide with ∆x=∆y=1mm (Fig. 6.2.2-1). The 
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numerical results obtained from this case will be considered as the reference solution 

(Eref). The z-polarized source is positioned at (180mm, 15mm) and the monitor point 

is selected at (200mm, 15mm). The second-order Higdon’s absorbing boundary 

condition [6-3] is applied on boundaries at x=0 and x=420mm. The parallel plate 

waveguide is partially filled by a material of εr=10 and the width of 50mm (Fig. 

6.2.2-1). The rest of waveguide is empty (εr=1). The excitation is a modulated 

Gaussian pulse 
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with td = 480ps, τ = 160ps, and fm = 10GHz. 
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Fig. 6.2.2-1   Simulated structure as reference. The grid size is uniform 

(∆x=∆y=1mm) throughout the computational domain. 

     

Next, we solve the same problem, but decrease the cell size to the right of the 

interface positioned at x=220mm (Fig. 6.2.2-2) to ∆x′ = 0.5, 0.25 and 0.125mm, 

corresponding to reduction ratios of 1:2, 1:4 and 1:8, respectively. The cell size in the 
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y-direction, locations of the source and monitor point, and excitation pulse are 

unchanged.  

 

370mm, εr=1

30mm

ABC ABCPEC

Source

Monitor 
Point 

x
y

Grid Boundary

50mm, εr=10

200mm, ∆x′=0.5, 
0.25, 0.125mm 220mm, ∆x=1mm

370mm, εr=1

30mm

ABC ABCPEC

Source

Monitor 
Point 

x
y

Grid Boundary

50mm, εr=10

200mm, ∆x′=0.5, 
0.25, 0.125mm 220mm, ∆x=1mm

 

Fig. 6.2.2-2   Simulated structure with different grid sizes. The grid size in the y-

direction is uniform (∆y=1mm) on the entire domain. The grid size in the x-

direction changes from ∆x = 1mm to ∆x′ = 0.5, 0.25, and 0.125mm. 

 

We define the normalized error as  

( )ref
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E
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(6.2.2-1) 

In Fig. 6.2.2-3, we show the Normalized Error as a function of time for the 

cases with and without the application of CDM. A significant reduction of error in the 

E-field is observed when CDM is applied. Most importantly, it is observed that the 

error resulting from the application of CDM is practically independent of the mesh 

reduction ratio. 
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Fig. 6.2.2-3   Normalized error in the E-field as obtained using the standard 

FDTD interpolation scheme with and without CDM. 

 

In the next experiment we simulate a dielectric slab-loaded rectangular 

waveguide [6-4]. A dielectric slab-loaded waveguide is a rectangular waveguide 

which is partially loaded with a slab of dielectric material. The dielectric slab is 

located vertically on the right side of the rectangular waveguide as shown in Fig. 

6.2.2-4. The relative permittivity and permeability of the dielectric slab are εr = 11.7 

and µr = 1, respectively. The side lengths for the rectangular waveguide along the x- 

and y-coordinates are b = 10.29mm and a = 20mm, and the unfilled empty 

rectangular region is of width d = 13.98mm. 
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Fig. 6.2.2-4   Dielectric slab-loaded rectangular waveguide. 

 

First, we consider a uniform grid size in the interior region of the rectangular 

waveguide with ∆x = ∆y = 0.1942mm which results in 54 cells in the x-direction and 

104 cells in the y-direction (Fig. 6.2.2-5). The perfect electric conductor boundary 

condition at the waveguide walls is simulated by appropriately truncating cells at the 

axial components of the electric field, Ez.  

Initially, there is no excitation inside the waveguide region; all spatial 

magnetic and electric field components are assumed to be zero. A Gaussian pulse is 

then used to excite the axial z components of the electric field. The peak is placed at 

the center cell of the waveguide at (xc, yc). The excitation pulse is given by 
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(6.2.2-2) 

Although any arbitrary field can be assigned to the cells inside the waveguide region, 

the Gaussian pulse is used as the initial assigned field because of its capability to 

excite all possible spatial frequency harmonics inside the rectangular waveguide. 
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The cutoff frequencies are obtained by first recording the temporal variation 

of the fields at the (i=5, j=5) for N=16384 time steps, and then applying the FFT 

algorithm to convert the time domain data to the frequency domain. The first 

calculated cutoff frequency is fc = 17.47 GHz (Table 6.2.2-1). 
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Fig. 6.2.2-5   Discretized structure using a uniform grid size of ∆x = ∆y = ∆ = 

0.1942mm. 

 

Next, we increase the spatial grid size to ∆x=∆y=∆ = 0.6657mm which results 

in 17 cells in the x-direction and 31 cells in the y-direction (Fig. 6.2.2-6). The 

boundary condition at waveguide walls is simulated the same manner as the first 

experiment, i.e. by appropriately truncating cells at the axial components of the 

electric field, Ez. 

Again, one-fourth of a Gaussian pulse with its peak placed at center is injected 

on the waveguide cross section to excite the waveguide. Using the same procedure to 

calculate the cutoff frequency results at fc = 16.82GHz (Table 6.2.2-1). 
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Fig. 6.2.2-6   Discretized structure using a uniform grid size of ∆x = ∆y = ∆ = 

0.6657mm. 

 

The structure of Fig. 6.2.2-6 is then refined at the vicinity of boundary 

between air and dielectric to improve the simulation results (Fig. 6.2.2-7).  In the 

refined structure we reduce the grid size to half of the original grid size in the y-

direction (∆y=0.6657mm, ∆y'=0.33285mm) for 6 cells adjacent to the grid boundary 

in the y and –y-directions. Using the same excitation and procedure to calculate the 

cutoff frequency results at fc = 16.91GHz (Table 6.2.2-1). In the next simulation we 

apply the CDM and the calculated cutoff frequency is fc = 17.13GHz (Table 6.2.2-1). 

 



 75

x

y

a=6.02mm

b=10.29mm

d=13.98mm

air
εr=1

∆y=0.6657mm ∆y=0.6657mm

∆y′=0.33285mm

dielectric
εr=11.7

∆x=0.6657mm

PEC

PEC

x

y

a=6.02mm

b=10.29mm

d=13.98mm

air
εr=1

∆y=0.6657mm ∆y=0.6657mm

∆y′=0.33285mm

dielectric
εr=11.7

∆x=0.6657mm

PEC

PEC

 

Fig. 6.2.2-7   Structure is discretized uniformly in the x-direction with ∆x = 

0.6657mm. In the y-direction, the original grid size of ∆y = 0.6657mm is refined 

to ∆y' = 0.33285mm in the vicinity of the grid boundary. 

 

To verify the results of the first cutoff frequency and accuracy of different 

experiments, analytical expressions are utilized. The partially loaded dielectric slab 

rectangular waveguide can be analyzed in terms of normal modes of propagation 

based on the longitudinal-section magnetic (LSM) and longitudinal-section electric 

(LSE) modes. The axial and transverse components of the electric and magnetic field 

distribution are expressed in terms of either a magnetic-type or an electric-type vector 

potential. The vector potentials are selected in the transverse plane normal to the air 

and dielectric interface. The potentials are expanded in terms of a set of rectangular 

orthogonal functions. Enforcing the perfectly conducting and the air/dielectric media 

interface boundary conditions, the following analytical expressions for the cutoff 

frequencies for the two types of normal modes can be obtained. For LSE modes, the 

magnetic-type vector potential, Πh, is given by 
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where m is an integer, and the parameters p and h are obtained from the following of 

transcendental equations 
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Similarly for LSM modes, the electric-type vector potential, Πe is given by 
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where m is an integer, and the parameters p and h are obtained from the following of 

transcendental equations 

( )[ ] ( )hdhdapp r tantan ε=−−  (6.2.2-11) 

( ) 222 1 khp r −+= ε  
(6.2.2-12) 

The LSE mode and LSM mode cutoff frequencies are given by 
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(6.2.2-13) 
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The first cutoff frequency for the TM polarization obtained from this 

analytical solution is compared with the cutoff frequencies calculated from previous 

experiments (Table 6.2.2-1). As we see, a non-uniform grid decreases the simulation 

time significantly and the CDM, which has the slight computational cost, improves 

the accuracy. 

Table 6.2.2-1   Simulated cutoff frequencies and the analytical result. 

Gridding Type CDM Grid Size 
(mm) 

Total 
Simulation 
Time (sec.) 

Cutoff 
Frequency 

(GHz) 

Error 
Percentage 

(%) 
Theory N/A N/A N/A 17.68 N/A 
Fine Mesh N/A 0.1942 118 17.47 1.1878 
Coarse Mesh N/A 0.6657 3 16.82 4.8643 
Coarse Mesh + 
Refined Mesh 

No 0.6657 11 16.91 4.3552 

Coarse Mesh + 
Refined Mesh 

Yes 0.6657 12 17.13 3.1109 
 

 

6.2.3 Three-dimensional Experiments 

In this experiment we demonstrate the performance of CDM in a three-

dimensional simulation domain. The simulation domain is a box with dimensions of 

140mm×390mm×140mm (Fig. 6.2.3-1). We set the second order Higdon’s absorbing 

boundary condition on the outer surfaces of our domain. The source is located at 

(70mm, 50mm, 70mm); the monitor point is at (70mm, 55mm, 70mm). The excitation 

is a Gaussian pulse 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= 2

2

exp
τ

dtt
tf   

with td = 80ps and τ = 20ps. The grid size is ∆=0.5mm and the simulation result is 

called reference. 
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In the next step, we increase the grid size on the left side of grid boundary (in 

the y-direction) to 1mm. The grid size on the right side of the grid boundary and all 

measurements are unchanged.  

In Fig. 6.2.3-2, we show the Normalized Error (6.2.2-1) as a function of time 

for cases with and without the application of CDM. A significant reduction of 

reflection is observed. 

 

x y

z

140mm
∆=0.5mm

140mm
∆=0.5mm

300mm, ∆=1, 0.5mm

Grid Boundary

90mm, ∆=0.5mm

Source Point

Monitor Point

x y

z

140mm
∆=0.5mm

140mm
∆=0.5mm

300mm, ∆=1, 0.5mm

Grid Boundary

90mm, ∆=0.5mm

Source Point

Monitor Point

Fig. 6.2.3-1   Structure of the three-dimensional simulation domain. 
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Fig. 6.2.3-2   Normalized error in the E-field as obtained using the standard 

FDTD interpolation scheme with and without CDM. 

 

The next simulation compares the performance of CDM in the three-

dimensional structures to analytical solutions. The simulated structure is a waveguide 

with an infinitely thin slot-line as center conductor (Fig. 6.2.3-3) [6-5]. This structure 

gives rise to the field singularities at the edges of the center conductor. The fields 

very close to the center conductor change rapidly and, therefore, a fine grid should be 

used to resolve these variations. This structure supports a TEM mode, therefore the 

impedance is well defined and can be used as an indicator of accuracy. As mentioned 

in [6-5], the dimensions are chosen such that the slot geometry corresponds to 

measurements typically used with Monolithic Millimeter-wave Integrated Circuits 

(MMIC’s). For this structure, the characteristic impedance of the TEM mode can be 

derived analytically by conformal mapping and is Zc=94.2Ω [6-5]. 
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Fig. 6.2.3-3   Cross section of the waveguide with an infinitely thin slot-line as 

the center conductor. The exact impedance is Zc = 94.2Ω. 

 

The cross section of the waveguide is 32µm×128µm. The infinitely thin 

conducting slot has a height of 16µm and is located exactly in the center of the 

waveguide (Fig. 6.2.3-3). The structure is discretized uniformly in all directions with 

∆x = ∆y = ∆z = 8µm (Fig. 6.2.3-4). The Perfect Electric Conductor (PEC) boundary 

condition is applied on waveguide’s walls.  The excitation is a Gaussian pulse  

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= 2

2

exp
τ

dtttf  

where td = 3ps, τ = 1ps and is injected between the strip-line and the short face of the 

waveguide during simulation. Results are obtained by recording the temporal 

variations of voltage and current. Using the relation  

( ) ∫ ⋅−= ldEtV
rr

 (6.2.3-1) 

the voltage between the waveguide and the center conductor is calculated by using 

the calculated electric fields in the y-direction (Fig. 6.2.3-4). The Ampere’s law 

∫ ⋅= ldHI
rr

 (6.2.3-2) 

is used to calculate the current in the center conductor from the magnetic fields in the 

x- and y-directions. The FFT is then applied to convert the time domain data to the 
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frequency domain. The calculated characteristic impedance is Zc=72.35Ω (Table 

6.2.3-1). 
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Fig. 6.2.3-4   Discretized structure of the waveguide with infinitely thin slot-line 

as center conductor. 

 

In the next simulations, the grid sizes in the x- and y-directions are reduced to 

4µm, 2µm, and 1µm but the grid size in the z-direction is kept unchanged at ∆z = 

8µm. The calculated characteristic impedances and the percentage of errors for each 

case are shown in Table 6.2.3-1.  

Next, a non-uniform grid is used to resolve the structure more precisely. The 

coarse grid size of ∆x = ∆y = 4µm is reduced to ∆x' = ∆y' = 1µm around the strip-line 

conductor; ∆z = 8µm is unchanged (Fig. 6.2.3-5). The calculated characteristic 

impedance for the non-uniform grid is Zc=90.18 Ω (Table 6.2.3-1). As we compare it 

with uniform grid size of ∆x = ∆y = 4µm, the error percentage is reduced by 

approximately 7.75%. If we apply the CDM in the FDTD simulation of this structure, 

the calculated characteristic impedance is Zc=90.62 Ω (Table 6.2.3-1), which is an 
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improvement over the case without CDM. The calculated characteristic impedances 

are summarized in Table 6.2.3-1.  
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Fig. 6.2.3-5   Discretized structure of slot-line waveguide. 

 

Table 6.2.3-1   Error in the calculated characteristic impedance using the 

uniform and non-uniform grids with and without CDM. 

Method, Gridding Type CDM Main Grid 
Size (µm) 

Characteristic 
Impedance  

(Ω) 

Error 
Percentage 

(%) 
Mode Matching, N/A N/A N/A 94.2 N/A 
FDTD, Uniform N/A 8 72.35 23.20 
FDTD, Uniform N/A 4 82.88 12.02 
FDTD, Uniform N/A 2 88.40 6.16 
FDTD, Uniform N/A 1 91.92 2.42 
FDTD, Non-uniform No 4 90.18 4.27 
FDTD, Non-uniform Yes 4 90.62 3.80  
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6.3 Analytical Investigation of CDM 

6.3.1 Fundamental Modes of Propagation in the Numerical 

Solution: Advection Equation 

In this section, using the same procedure as [6-7], we find the fundamental 

modes of propagation in numerical solution of the advection equation. Consider the 

one-dimensional advection equation                  

0=
∂
∂

+
∂

∂
x
Uc

t
U

 
(6.3.1-1) 

If we use the finite-difference semi-discretization scheme, in which only the spatial 

derivative is approximated with a central difference, we have          

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
−

−= −+

2
11 nnn uu

c
dt

du

 
(6.3.1-2) 

where the grid in the x-direction is uniform (Fig. 6.3.1-1) and                     

( ){ } ( ){ }txUtu nn ,≅
 (6.3.1-3) 

 

∆ ∆ ∆ ∆

X0=0X-1X-2 X1 X2

U0U-1U-2 U1 U2

∆ ∆ ∆ ∆

X0=0X-1X-2 X1 X2

U0U-1U-2 U1 U2

 

Fig. 6.3.1-1   Uniform grid. 

 

Throughout this chapter we suppose that {un(t)} are in L2 space or square integrable, 

which means that L2 norms                        



 84

21
2

⎟
⎠
⎞⎜

⎝
⎛ ∫

∞

∞−
dtun

 
(6.3.1-4) 

are finite. Therefore, the Fourier transforms ( ){ }Ωnû  of the semi-discrete numerical 

solutions {un(t)} exist and are defined as            

( ) ( )∫
∞

∞−

Ω−=Ω dtetuu ti
nnˆ

 
(6.3.1-5) 

Using the Fourier transform makes the investigation of properties of  ( ){ }nû  easier. 

The Fourier-transform of (6.3.1-2) is     

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆
−

−=Ω −+

2
ˆˆ

ˆ 11 nn
n

uu
cui

 
(6.3.1-6) 

or  

0ˆˆ2ˆ 11 =−⎟
⎠
⎞

⎜
⎝
⎛ Ω∆

+ −+ nnn uu
c

iu
          

(6.3.1-7) 

The solution of this recurrence equation can be achieved by seeking 

‘fundamental’ solutions. Fundamental solutions are defined as the solutions that have 

a ratio                        

( )Ω≡+ E
u

u

n

n ˆ
ˆ

ˆ 1

 
(6.3.1-8) 

that is independent of n. It is worthy to note that ( )ΩÊ  is a frequency domain 

representation of the standard space-shift operator E defined by the identity              

nn uu Ε≡+1  (6.3.1-9) 

in the time domain. Substituting (6.3.1-8) into (6.3.1-7) results in 

0ˆˆ2ˆ 1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ Ω∆

+ −
nuE

c
iE

 
(6.3.1-10) 
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Therefore, ( )ΩÊ  must satisfy the characteristic equation                

01ˆ2ˆ 2 =−⎟
⎠
⎞

⎜
⎝
⎛ Ω∆

+ E
c

iE
 

(6.3.1-11) 

The roots of (6.3.1-11) are        

( )
2

1 1ˆ ⎟
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⎞
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⎛ Ω∆

−+⎟
⎠
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⎛ Ω∆

−=Ω
cc

iE
 

(6.3.1-12) 
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cc

iE
 

(6.3.1-13) 

which are called the ‘characteristic ratios’. 

Therefore, the numerical solution of (6.3.1-2) can be expressed as            

( ){ } ( ){ } ( ){ }tqtptu nnn +=  (6.3.1-14) 

which has two fundamental solutions. These two different fundamental solutions 

describe different propagation properties. One solution has the characteristic ratio of        

( )
( ) ( )

2

1
1 1ˆ

ˆ
ˆ

⎟
⎠
⎞

⎜
⎝
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⎛ Ω∆
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cc
iE

p
p

n

n

 
(6.3.1-15) 

and describes the rightward propagating wave. It has a positive phase velocity [6-5] 

of          

( ) ( )c
c

Ω∆
Ω∆

=Ω
arcsin1

 
(6.3.1-16) 

and positive group velocity [6-5] of                          

( )
2

1 1 ⎟
⎠
⎞

⎜
⎝
⎛ Ω∆

−=Ω
c

cv
. 

(6.3.1-17) 

The other solution has the characteristic ratio of 
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(6.3.1-18) 

and describes the leftward propagating wave. It has a positive phase velocity [6-5] of          

( ) ( )c
c

Ω∆−
Ω∆

=Ω
arcsin2 π  

(6.3.1-19) 

and negative group velocity [6-5] of 

( )
2

2 1 ⎟
⎠
⎞

⎜
⎝
⎛ Ω∆

−−=Ω
c

cv
. 

(6.3.1-20) 

 

6.3.2 Reflection from Grid Boundary: Standard Treatment of the 

Grid Boundary in Advection Equation 

The reflection coefficient from the interface of two grids with different sizes is 

calculated in [6-5]. Since the same procedure is used to calculate the reflection 

coefficient from grid boundary when the CDM is applied, we briefly review the 

procedure discussed in [6-5]. 

Suppose that a non-uniform grid is used for discretizing the domain (Fig. 

6.3.2-1) and the grid size changes from ∆ to ∆′ at interface X0=0. 

 



 87

∆ ∆ ∆′ ∆′

X0=0X-1X-2 X1 X2

Xn=n∆, n = -1, -2, …

Xn=n∆′, n = 1, 2, …

U0U-1U-2 U1 U2

∆ ∆ ∆′ ∆′

X0=0X-1X-2 X1 X2

Xn=n∆, n = -1, -2, …

Xn=n∆′, n = 1, 2, …

U0U-1U-2 U1 U2

 

Fig. 6.3.2-1   Non-uniform grid. 

 

Again, the finite-difference semi-discretization is used to approximate equation 

(6.3.1-2). 
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(6.3.2-1) 
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(6.3.2-2) 

At the interface X0=0, the spatial derivative can be approximated as                               

⎟
⎠

⎞
⎜
⎝

⎛
∆′+∆

−
−= −110 uu

c
dt

du

 
(6.3.2-3) 

We refer to (6.3.2-3) as the standard treatment of grid boundary. The CDM, which is 

a modified treatment of grid boundary, is described in section 6.3.3. 

The numerical solution of the non-uniform grid in Fig. 6.3.2-1 can potentially 

have four fundamental solutions, which are the forward and backward solutions in 

X<0, and forward and backward solutions in X>0. If there is a wave propagating 

from left to right, reflection can only occur at the interface and only three 

fundamental solutions will exist (Fig. 6.3.2-2). 
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Fig. 6.3.2-2   Wave is propagating from left to right. In addition to the rightward 

waves in X<0 and X>0, there is a reflection from the interface in X<0. 

 

Let 0p̂ , 0q̂ , and 0̂r  denote the fundamental solutions at the interface. The 

continuity at the interface X0=0 gives           

( ) ( ) ( ) ( )Ω=Ω=Ω+Ω 0000 ˆˆˆˆ ruqp  (6.3.2-4) 

Also, we suppose that 1Ê , and 2Ê  are the characteristic ratios corresponding to the 

solutions of { }np̂ , { }nq̂  to the left of origin defined by (6.3.1-15) and (6.3.1-18), 

respectively, and F̂  is the characteristic ratio of the solution of { }nr̂  to the right of 

origin given by 
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(6.3.2-5) 

The reflection coefficient is defined as                                

( ) ( )
( )Ω
Ω

=Ω
0

0

ˆ
ˆ
p
q

ρ
 

(6.3.2-6) 

Using (6.3.2-4) and (6.3.2-6), the transmitted wave can be calculated as            

( ) ( ) ( )( ) ( )ΩΩ+=Ω=Ω 000 ˆ1ˆˆ pur ρ  (6.3.2-7) 
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To calculate the reflection coefficient, we express 1û  and 1ˆ−u  in terms of 0p̂  

and 0q̂  as 

( )0001 ˆˆˆˆˆˆ qpFuFu +==  
(6.3.2-8) 

( )01020
1

20
1

11 ˆˆˆˆˆˆˆˆˆ qEpEqEpEu +−=+= −−
−  (6.3.2-9) 

The Fourier-transform of the semi-discretization equation at the interface X0=0 

(6.3.2-3) can be written as 
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⎞
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−=Ω −11

0
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(6.3.2-10) 

By substituting (6.3.2-4), (6.3.2-8) and (6.3.2-9) into (6.3.2-10), we have 
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(6.3.2-11) 

which results in 
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(6.3.2-12) 

The reflection coefficient becomes particularly interesting if we apply group 

velocities. If (Ω∆/c)≤1 and (Ω∆′/c)≤1, the reflection coefficient can be written as 

RL

RL

vv
vv

+
−

=ρ
 

(6.3.2-13) 

where vL and vR are the group velocities of waves propagating rightward in the left-

side and right-side of the origin, respectively, which are 
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(6.3.2-15) 

6.3.3 Reflection from Grid Boundary: CDM Treatment of the Grid 

Boundary in Advection Equation 

In this section, we calculate the reflection coefficient when the CDM is 

implemented at the interface. When the CDM is applied to the interface of two grids 

with different sizes, the semi-discretization approximation at the interface is modified 

from (6.3.2-3) to 
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−= −− 11110

2
1

2
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dt
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(6.3.3-1) 

 (Fig. 6.3.3-1). 

 

∆′

∆″

∆ ∆

X-1X-2 X0=0 X′1 X′2

U-1U-2

U0 U′1 U′2

∆′

∆″

∆ ∆

X-1X-2 X0=0 X′1 X′2

U-1U-2

U0 U′1 U′2

 

Fig. 6.3.3-1   Implementing the CDM on a non-uniform grid. 

 

Using the same argument as in section 6.3.2, only three fundamental solutions 

exist (Fig. 6.3.2-2). The same procedure as in section 6.3.2 is used to calculate the 
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reflection coefficient. First, suppose that 0p̂ , 0q̂ , and 0̂r  denote the fundamental 

solutions at the interface. The continuity at the interface X0=0 gives                        

( ) ( ) ( ) ( )Ω=Ω=Ω+Ω 0000 ˆˆˆˆ ruqp  (6.3.3-2) 

We assume that 1Ê , and 2Ê   are the characteristic ratios corresponding to the 

solutions of { }np̂ , { }nq̂  to the left of the origin as defined by (6.3.1-15) and (6.3.1-

18), respectively. Also, suppose that ∆′F̂  and ∆ ′′F̂  are the characteristic ratios of 

rightward propagating solutions to the right of the origin with grid sizes of ∆′ and ∆″, 

respectively, given by 
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The reflection coefficient is defined as before 
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(6.3.3-5) 

To calculate the reflection coefficient, we express 1û′ , 1û ′′  and 1ˆ−u  in terms of 0p̂ , 0q̂  

as 

( )0001 ˆˆˆˆˆˆ qpFuFu +==′ ∆′∆′  (6.3.3-6) 

( )0001 ˆˆˆˆˆˆ qpFuFu +==′′ ∆ ′′∆ ′′  (6.3.3-7) 

( )01020
1

20
1

11 ˆˆˆˆˆˆˆˆˆ qEpEqEpEu +−=+= −−
−  (6.3.3-8) 

The Fourier-transform of the modified semi-discretization equation at the 

interface X0=0 using the CDM (6.3.3-1) can be written as 
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By substituting (6.3.3-2), (6.3.3-6), (6.3.3-7) and (6.3.3-8) into (6.3.3-9), we have 
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(6.3.3-11) 

The reflection coefficient becomes particularly interesting if we, again, apply 

group velocities. If (Ω∆/c)≤1, (Ω∆′/c)≤1 and (Ω∆″/c)≤1, the reflection coefficient can 

be written as 
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(6.3.3-12) 

where vL, v′R, and v″R are the group velocities of waves propagating rightward in the 

left-side of the origin, in the right-side of the origin with grid size of ∆′, and in the 

right-side of the origin with grid size of ∆″, respectively, which are 

2

1 ⎟
⎠
⎞

⎜
⎝
⎛ Ω∆

−=
c

cvL

 
(6.3.3-13) 
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(6.3.3-15) 

 

6.3.4 Fundamental Modes of Propagation in the Numerical 

Solution: Leap-Frog Scheme of the Wave Equation 

In this section, we investigate the fundamental modes of propagation of 

numerical solution of the wave equation using the leap-frog scheme. Consider the 

one-dimensional wave equation 
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(6.3.4-1) 

The following equations are solved when the leap-frog scheme is used to solve the 

wave equation 

x
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(6.3.4-2) 
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∂
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(6.3.4-3) 

If we use the finite-difference semi-discretization to approximate these 

equations, we have 
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(6.3.4-4) 
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(6.3.4-5) 

where 

jjj XXh −= +1  (6.3.4-6) 

2
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= jj
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(6.3.4-7) 

{uj(t)}≅{U(xj,t)}, and  {vj+1/2(t)}≅{V(xj+1/2,t)} (Fig. 6.3.4-1). 
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Fig. 6.3.4-1   Leap-frog scheme to solve the wave equation. 

 

We suppose that {uj(t)} and {vj+1/2(t)} are in L2 space, which means that L2 

norms 
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(6.3.4-9) 
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are finite. Therefore, the Fourier transforms ( )Ωjû  and ( )Ω+ 2/1ˆ jv  of the semi-discrete 

numerical solutions {uj(t)} and {vj+1/2(t)} exist and are defined as 
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(6.3.4-11) 

The Fourier-transforms of (6.3.4-4) and (6.3.4-5) are 
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Use (6.3.4-15) to calculate 2/1ˆ +jv  and 2/1ˆ −jv , and substitute them into (6.3.4-14). 

After some manipulation, we have 
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(6.3.4-16) 

First, we suppose that the grid is uniform, sjallforhh jj ',∆==  (Fig. 

6.3.4-2). Therefore (6.3.4-16) can be written as  
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Fig. 6.3.4-2   Leap-frog scheme to solve the wave equation. A uniform grid is 

used. 

 

The fundamental solutions of this recurrence equation can be found by substituting 
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in (6.3.4-18). The characteristic equation is 
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and its characteristic ratios are 
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(6.3.4-21) 

Therefore, we can conclude that the numerical solution of (6-3-4.1) can be 

expressed as 

( ){ } ( ){ } ( ){ }tqtptu jjj +=
 

(6.3.4-22) 

which has two fundamental solutions. These two different fundamental solutions 

describe different propagation properties. One solution, which has the characteristic 

ratio of 

( )
( ) ( ) 2

2

2
4

4

4
2

2

2

1
1

4
1

2
11ˆ

ˆ
ˆ

∆
Ω

−∆
Ω

+∆
Ω

−=Ω=
Ω

Ω+

ccc
E

p
p

j

j

 
(6.3.4-23) 

describes the rightward propagating wave. The other solution has the characteristic 

ratio of 
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(6.3.4-24) 

describes the leftward propagating wave.  

6.3.5 Reflection from Grid Boundary: Standard Treatment of Grid 

Boundary in the Wave Equation 

Here, we calculate the reflection coefficient from the interface of two grids 

with different sizes. Suppose the grid size changes from ∆ to ∆′ at interface X0=0 (Fig. 

6.3.5-1). 
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Fig. 6.3.5-1   Non-uniform grid in leap-frog scheme. 

 

Using the same argument as in section 6.3.2, only three fundamental solutions 

exist (Fig. 6.3.2-2). The same procedure as section 6.3.2 is also used to calculate the 

reflection coefficient. First, suppose 0p̂ , 0q̂ , and 0̂r  denote the fundamental solutions 

at the interface. The continuity at the interface X0=0 gives 

( ) ( ) ( ) ( )Ω=Ω=Ω+Ω 0000 ˆˆˆˆ ruqp  (6.3.5-1) 

We assume that 1Ê , and 2Ê  are the characteristic ratios corresponding to 

solutions jp̂ , jq̂  to the left of the origin as defined by (6.3.4-23) and (6.3.4-24), 

respectively. Also, suppose ∆′F̂  is the characteristic ratio of the rightward 

propagating solution to the right of the origin with a grid size of ∆′, given by 
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The reflection coefficient, as defined before is 
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To calculate the reflection coefficient, we express 1û  and 1ˆ−u  in terms of 0p̂  and 0q̂  

as 

( )0001 ˆˆˆˆˆˆ qpFuFu +==  (6.3.5-4) 
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The Fourier-transform of the semi-discretization approximation (6.3.4-16) at the 

interface X0=0 can be written as 
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By substituting (6.3.5-1), (6.3.5-4) and (6.3.5-5) into (6.3.5-6), we have 
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which results in 
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6.3.6 Reflection from Grid Boundary: CDM Treatment of Grid 

Boundary in the Wave Equation 

In this section, we calculate the reflection coefficient when the CDM is 

implemented at the interface (Fig. 6.3.6-1). At the interface of two grids with 

different sizes, the semi-discretization approximation (6.3.4-4) is modified to 
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(6.3.6-1) 

If we take the Fourier-transform of (6.3.6-1), we have 
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(6.3.6-2) 

The Fourier-transforms of the following finite-difference semi-discretization 

approximations 
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Substituting (6.3.6-6), (6.3.6-7), and (6.3.6-8) into (6.3.6-2) results in   
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(6.3.6-9) 

which is the Fourier-transform of the CDM treatment of the interface. 
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Fig. 6.3.6-1   Implementing CDM on a non-uniform grid. 

 

Using the same argument as in section 6.3.2, only three fundamental solutions 

exist (Fig. 6.3.2-2). The same procedure as in section 6.3.2 is used to calculate the 

reflection coefficient. First, suppose 0p̂ , 0q̂ , and 0̂r  denote the fundamental solutions 

at the interface. The continuity at the interface X0=0 gives 
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We assume 1Ê , and 2Ê  are the characteristic ratios corresponding to solutions jp̂ , 

jq̂  to the left of the origin defined by (6.3.4-23) and (6.3.4-24), respectively. Also, 

suppose that ∆′F̂  and ∆ ′′F̂  are the characteristic ratios of the rightward propagating 

solutions to the right of the origin with grid sizes of ∆′ and ∆″, respectively, given by: 
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The reflection coefficient is defined as before 
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To calculate the reflection coefficient, we express 1û′ , 1û ′′  and 1ˆ−u  in terms of 0p̂  and 

0q̂  as 
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which results in 
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(6.3.6-18) 

 

6.3.7 Results 

To show the performance of CDM for the advection equation, we have 

compared the reflection coefficients from the interface of two grids with different 

sizes for the CDM and each individual complementary part of the CDM (Fig. 6.3.7-

1). The frequency of the propagating wave is 1GHz and the grid size to the left of 

origin (Fig. 6.3.3-1) is ∆=λ/20. The two complementary parts have grid sizes of 

∆′=∆−γ×∆ (refined grid) and ∆″=∆+γ×∆ (coarsened grid) for 0<γ<1, which satisfy the 

complementary condition of ∆=(∆′+∆″)/2. As we see in Fig. 6.3.7-1, the CDM has 

significantly reduced the reflection coefficient.  
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Fig. 6.3.7-1   Reflection coefficient of the advection equation at grid boundary; 

refined mesh, coarsened mesh, and the CDM treatment of grid boundary. 

 

The performance of CDM for the wave equation is also demonstrated by 

plotting the reflection coefficients from the interface of two grids with different sizes 

for the CDM and each individual complementary part of CDM (Fig. 6.3.7-2). The 

frequency of the propagating wave is 1GHz and the grid size to the left of the origin 

(Fig. 6.3.4-1) is ∆=λ/20. The two complementary parts have the grid sizes of 

∆′=∆−γ×∆ (refined grid) and ∆″=∆+γ×∆ (coarsened grid) for 0<γ<1, which satisfy the 

complementary condition of ∆=(∆′+∆″)/2. As we see in Fig. 6.3.7-2, the CDM 

significantly reduces the reflection coefficient.  
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Fig. 6.3.7-2   Reflection coefficient of the wave equation at grid boundary; 

refined mesh, coarsened mesh, and the CDM treatment of grid boundary. 

6.4 Implementing the CDM in the ADI-FDTD Method 

We consider a two-dimensional domain which is discretized uniformly in the 

x-direction with the grid size of ∆x and discretized non-uniformly in the y-direction, 

which the grid size changes from ∆y to ∆y′ at j=j0 (Fig. 6.4-1). Using the same field 

positioning of the Yee scheme [6-2], the ex lies on the interface of two domains with 

different grid sizes. The truncation error will be of the first order if the hz field values 

of domains with different grid sizes are used to calculate the ex. 
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Fig. 6.4-1   Two-dimensional discretized domain. The grid is uniform in the x-

direction with the grid size of ∆x. The grid size is non-uniform in the y-direction 

and changes from ∆y to ∆y′ at j=j0. 

 

The updating equations for the ADI-FDTD method when uniform grids are 

used in the both x- and y-direction are 

First Procedure (uniform grid in the x- and y- direction): 
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Second Procedure (uniform grid in the x- and y-direction) 
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As we see, equations (6.4-2) and (6.4-3) are implicit. We substitute (6.4-2) 

into (6.4-3) and it results in (6.4-3)′. Therefore, in the first procedure, Ex, Hz, and Ey 

are updated consecutively using (6.4-1), (6.4-3)′, and (6.4-2). 
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In the second procedure, (6.4-4) and (6.4-6) are implicit. We substitute (6.4-4) 

into (6.4-6) and it results (6.4-6)′. Therefore, in the second procedure, Ey, Hz, and Ex 

are updated consecutively using (6.4-5), (6.4-6)′, and (6.4-4). 
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Next, we suppose the grid size changes from ∆y to ∆y′ at j=j0 (Fig. 6.4-1). 

Except for the following equations, the same updating equations as uniform grids 

should be used. 
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First Procedure (uniform grid in the x-direction, non-uniform grid in the y-direction 

without CDM) 

1- Equation (6.4-1) at j=j0 should be modified to 
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Second Procedure (uniform grid in the x-direction, non-uniform grid in the y-direction 

without CDM) 

1- Equation (6.4-4) at j=j0 should be modified to 
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2- Equation (6.4-6)′ at j=j0-1 should be modified to 
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3- Equation (6.4-6)′ at j=j0 should be modified to 
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(6.4-10) 
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Next, we apply the CDM for updating the ex values. Except for the following 

equations, the same updating equations as uniform grids should be used. 

First Procedure (uniform grid in the x-direction, non-uniform grid in the y-direction 

with CDM) 

1- Equation (6.4-1) at j=j0 should be modified to 
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(6.4-11) 

 

Second Procedure (uniform grid in the x-direction, non-uniform grid in the y-direction 

with CDM) 

1- Equation (6.4-4) at j=j0 should be modified to 
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2- Equation (6.4-6)′ at j=j0-1 should be modified to 
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(6.4-13) 

3- Equation (6.4-6)′ at j=j0 should be modified to 
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The ex values in the first procedure are solved explicitly. Hence, implementing 

the CDM does not increase the computational load of the first procedure. In the 

second procedure of the ADI-FDTD method, when the CDM is not implemented, the 

hz values are updated implicitly using the inverse of a tri-diagonal matrix. However, 

when the CDM is applied in the second procedure, the linear system of equations of 

(6.4-6)′ can not be written in a tri-diagonal form and the computational efficiency of  

the ADI-FDTD method is not preserved. The Sherman-Morrison formula may be 

used to retain the computational efficiency of the ADI scheme [6-6]. 

The entire system of linear equations (6.4-6)′ when the CDM is applied can be 

written in the form of  

[ ] chA z
rr

=×  (6.4-17) 

where [A] is not a tri-diagonal matrix. [A] can be considered as a perturbed version of 

the tri-diagonal matrix [B], which we can express as 

[ ] [ ] TvvBA 21
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−=  (6.4-18) 

where [B] is a tri-diagonal matrix 
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and [A] is the perturbed matrix 



 112

[ ] ( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

( ) ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−−−−−

−+−++−

−+−−+−−−−−

nnnn

nnnnnn

kjjkjjjjjjjj

kjjkjjjjjj

aa
aaa

aaaaa
aaaa

aaa
aa

A

1

11121

1200110010000100

120101101010102010

232221

1211

......

......  (6.4-20) 

and v1 and v2 are two vectors of the form 
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Matrix [A] has four more entries than the tri-diagonal matrix [B], which lie on 

the j0
th, and j0-1th rows, and are associated with the complementary derivatives used in 

calculating the hz. 

Using the Sherman-Morrison formula, [A]-1 can be written in terms of [B]-1 as 
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(6.4-23) 

To solve the linear system in (6.4-23), we first solve for the following linear 

systems 

[ ] chB rr
=1  (6.4-24) 

[ ] 12 vhB rr
=  (6.4-25) 

When we obtain 1h
r

 and 2h
r

, the total h
r

 can be written as  
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Instead of solving (6.4-17), the auxiliary problems in (6.4-24) and (6.4-25) 

can be efficiently solved. Since 1vr  is a constant vector, we solve (6.4-25) once and 

store the solution for future usage. In each implicit update, only (6.4-24) needs to be 

solved and this requires (5n-4) operations. By noticing the form of 2vr , evaluating 

(6.4-27) requires eight arithmetic operations. The operation count, in addition to 

Gaussian elimination, which is introduced by (6.4-26) and (6.4-27), is (2n + 8). 

Therefore, for each implicit update the total operation count of the ADI-FDTD 

method with CDM is 7n+4. Therefore, the efficiency of the ADI-FDTD method is 

well preserved. 

6.4.1 Numerical Experiments 

Here, we apply the CDM in the ADI-FDTD method to simulate a two-

dimensional structure having dimensions of 60mm×60mm. First, we consider a 

uniform grid in the entire computational domain with the grid size of ∆x=∆y=1mm 

(Fig. 6.4.1-1). A z-polarized current source is positioned at (30mm,28mm) and the 

monitor point is selected at (30mm,30mm). Since we look at a very short time interval 

to extract the reflection from the interface and to remove the complexity of 

implementing of ABC, we used perfect electric conductor (PEC) as the terminating 

planes. The temporal excitation is a Gaussian pulse, given by 
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with t0=250ps and τ=50ps. The numerical results obtained for this case will be 

considered as the reference solution (Hz
ref). 
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Fig. 6.4.1-1   Simulated structure as reference. The grid size is uniform 

(∆x=∆y=1mm) throughout the computational domain. 

 

Next, we solve the same problem, but this time we decrease the grid size in 

the y-direction from ∆y = 1mm to ∆y′ = 0.5, 0.25 and 0.125mm corresponding to 

reduction ratios of 1:2, 1:4 and 1:8 as shown in Fig. 6.4.1-2. The grid size in the x-

direction, the locations of the source and monitor point, and the excitation pulse are 

left unchanged.  
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Fig. 6.4.1-2   Simulated structure with different grid sizes. The grid size in the y-

direction changes from ∆y=1mm to ∆y′=0.5, 0.25, 0.125mm at j0=32mm. 

 

In Fig. 6.4.1-3, we show the Normalized Error (6.2.2-1) as a function of time 

for cases with and without CDM. A significant reduction of error is observed. Most 

importantly, it is observed that the error resulting from the application of CDM is 

practically independent of the mesh reduction ratio. 
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Fig. 6.4.1-3   Normalized error in the H-field as obtained using the ADI-FDTD 

method with and without CDM. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

In this work, first, we studied the stability of high-order Absorbing Boundary 

Conditions (ABC) when applied in the Alternating Direction Implicit Finite-

Difference Time-Domain (ADI-FDTD) method. We demonstrated that the high-order 

Higdon’s ABCs are unstable. The high-order COM also became unstable when the 

Gaussian excitation was applied. Using the Z-transform, we demonstrated that an 

excitation with zero frequency content causes instability in the high-order COM. 

The Complementary Derivatives Method (CDM) was introduced as a second-

order accurate interpolation scheme applicable to Finite-Difference methods. Several 

experiments demonstrated the performance of CDM on reducing the reflection from 

boundary of two domains having different grid sizes. Consequently, more accurate 

results for resonant frequencies and characteristic impedances of different 

experiments were obtained using the CDM. The CDM was applied to calculation of 

the reflection coefficient of the advection and wave equations at the grid boundary. 

The CDM resulted in significant reduction in the reflection coefficients. 

Next, we derived the fundamental modes of propagation in the numerical 

solution of the wave equation using the leap-frog scheme. We calculated the 

reflection coefficient of the wave equation at the grid boundary when the CDM was 

applied and compared it with the reflection coefficient in a standard treatment of grid 

boundary. The CDM, again, reduced the reflection coefficient at the grid boundary 

considerably. 
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Finally, the CDM was applied to the ADI-FDTD method. By employing the 

Sherman-Morrison formula, we retained the numerical efficiency of the conventional 

ADI-FDTD method when the CDM treatment was applied at the grid boundary. 

Numerical experiments using the ADI-FDTD method showed that the CDM can be 

effective in reducing spurious reflections at the grid boundary.  

7.2 Future Work 

The COM is a versatile mesh truncation scheme and simple to implement. The 

COM has shown its performance in the absorption of evanescent waves in 

waveguides and annihilating artificial reflections arising from the truncation of the 

computational domain. The COM must be modified to be implemented as a stable 

high-order accurate ABC to terminate open-region problems. The Z-transform can be 

used as a practical tool to analyze and improve the stability of the COM. 

Also, we calculated the reflection coefficients of the advection and wave 

equations at the grid boundary with and without CDM and compared them 

numerically. The analytical comparison and demonstration of the better performance 

of the CDM treatment of the grid boundary to standard treatment can be the subject of 

further investigation. 
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