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The Finite-Difference Time-Domain (FDTD) is a dependable method to
simulate a wide range of problems from acoustics, to electromagnetics, and to
photonics, amongst others. The execution time of an FDTD simulation is inversely
proportional to the time-step size. Since the FDTD method is explicit, its time-step
size is limited by the well-known Courant-Friedrich-Levy (CFL) stability limit. The
CFL stability limit can render the simulation inefficient for very fine structures. The
Alternating Direction Implicit FDTD (ADI-FDTD) method has been introduced as an
unconditionally stable implicit method. Numerous works have shown that the ADI-

FDTD method is stable even when the CFL stability limit is exceeded. Therefore, the



ADI-FDTD method can be considered an efficient method for special classes of
problems with very fine structures or high gradient fields.

Whenever the ADI-FDTD method is used to simulate open-region radiation or
scattering problems, the implementation of a mesh-truncation scheme or absorbing
boundary condition becomes an integral part of the simulation. These truncation
techniques represent, in essence, differential operators that are discretized using a
distinct differencing scheme which can potentially affect the stability of the scheme
used for the interior region. In this work, we show that the ADI-FDTD method can be
rendered unstable when higher-order mesh truncation techniques such as Higdon’s
Absorbing Boundary Condition (ABC) or Complementary Derivatives Method
(COM) are used.

When having large field gradients within a limited volume, a non-uniform
grid can reduce the computational domain and, therefore, it decreases the
computational cost of the FDTD method. However, for high-accuracy problems,
different grid sizes increase the truncation error at the boundary of domains having
different grid sizes. To address this problem, we introduce the Complementary
Derivatives Method (CDM), a second-order accurate interpolation scheme. The CDM
theory is discussed and applied to numerical examples employing the FDTD and

ADI-FDTD methods.
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Chapter 1 Introduction

The scientific community has become dependent on the Finite-Difference
Time-Domain (FDTD) method to simulate a wide range of problems form acoustics,
to electromagnetics, and to photonics, amongst others [1-1], [1-2]. The FDTD method
has some good features which make it superior to the other methods. The FDTD
method is simple to understand and straightforward to implement in software. The
time-stepping nature of the FDTD method enables the visualization of the
electromagnetic fields inside the model under investigation. Calculating a wide-band
transfer function by performing a single simulation is the other important feature of
the FDTD method. This is in sharp contrast to the frequency-domain methods which
the transfer function of each frequency is calculated using one single simulation.

In the FDTD method, a uniform grid is utilized to mesh the structure. The
central-difference scheme is used to approximate the first-order derivatives in the
Maxwell’s equations. Implementing the central-difference approximation on a
uniform grid leads to a second-order accurate solution in both time and space and
provides sufficient accuracy for a wide variety of applications.

The FDTD simulation usually needs to be run up to the time instant at which
the time-domain signal reaches its steady state. The execution time of an FDTD
simulation is inversely proportional to the time-step size. Since the FDTD is an
explicit method, its time-step size is limited by the well-known Courant-Friedrichs-
Lewy (CFL) stability limit, which is a function of minimum grid sizes in the x-, y-,
and z-directions (in Cartesian co-ordinates). Therefore, the maximum time-step is
limited by the minimum grid sizes in the x-, y-, and z-directions.

1



Grid sizes are governed by two requirements. First, a grid should resolve the
highest frequency of interest, which is usually accomplished by using at least 10
points per wavelength at this frequency [1-2]. Second, the grid size should be small
enough to ensure that all objects in the computational domain are spatially resolved
by the cells. For objects with the fine scale dimensions compared to wavelength (e.g.
thin material coatings, transmission lines with conductors of small dimensions), the
second requirement is the most restrictive on the spatial grid size.

Increasing the time-step size beyond the CFL stability limit decreases the
simulation time. Using an implicit scheme, the differential equations can be solved
unconditionally stably and free of the CFL stability limit. Unfortunately, a fully
implicit scheme requires the solution of a large linear system of equations
representing the full volume discretization at each time-step. This becomes
prohibitive for large practical problems.

A more efficient scheme is to split the operators such that the time-integration
is implicit only along a single coordinate axis. This scheme is commonly referred to
as Alternating Direction Implicit (ADI). The alternating direction implicit finite-
difference time-domain (ADI-FDTD) method for solving electromagnetic radiation
and scattering problems was introduced in [1-3] and [1-4]. It has been demonstrated
that the ADI-FDTD method is unconditionally stable [1-3], [1-4]. The ADI-FDTD
method allows for increasing the time-step size beyond the CFL stability limit, which
results in a substantial reduction in the total execution time of numerical problems.

Whenever the ADI-FDTD method is used to simulate the open-region

radiation or scattering problems, the implementation of a mesh-truncation scheme or



absorbing boundary condition [1-5]-[1-8] becomes an integral part of the simulation.
For many applications of the ADI-FDTD method, the required duration of simulation
needs only to extend over enough time steps to capture the bulk of the output energy
or pulse at a desired point of observation. For such problems, the stability behavior of
the mesh-truncation techniques does not pose a serious challenge. However, there is a
wide class of problems where the output time signature needs to be obtained for a
very long duration in order to reproduce the response of the system over a wide
frequency band (via the Fourier transformation). For this important class of problems,
care must be taken to ensure that the evolution of the field in time does not exhibit
any unstable behavior. Therefore, we need to insure that the implementation of
absorbing boundary condition does not introduce any instability.

The Higdon’s absorbing boundary condition [1-6], [1-7] is very versatile and
simple to implement. The other useful mesh truncation technique is the
Complementary Operators Method (COM) [1-9]-[1-11]. The basic premise of the
COM is the cancellation of the first-order reflection that arises when the
computational domain is terminated with an ABC. This cancellation is made by
averaging two independent solutions to the problem. These two solutions are obtained
by imposing boundary operators that are complementary to each other. Therefore,
two solutions that are generated from applying each of the two operators separately,
when averaged, result in a solution that does not contain any of the first-order
reflections. In this work, we apply the Higdon’s ABC and COM on the outer surfaces

of simulation domains and study the stability of these boundary conditions.



Nowadays, there is a widespread demand for very high accurate simulations.
These very high accurate simulations are needed to provide results which can parallel
the accuracy of recent measurement equipments (136dB accuracy is becoming
standard on a variety of commercial test instruments), or can measure the shielding
effectiveness up to 120dB, or can measure the reflections from the absorbers that goes
down to -55dB. High-order interpolation schemes can provide higher accuracy at the
expense of losing the solution efficiency. However, even the high-order interpolation
schemes suffer from flexibility when electric or magnetic fields (or both) have large
gradients within a limited volume. For example, Microwave Integrated Circuits
(MIC), Monolithic Microwave Integrated Circuits (MMIC), in the vicinity of current
sources, sharp edges and corners of conductive and dielectric objects, simulation of
vias and bond wires in high-frequency electronic packages, and detailed simulations
for biomedical applications, need a very fine mesh to resolve the abrupt changes of
fields in a very small volume. Considering the limitation of the computer memory and
speed, a very fine mesh for the whole domain renders this method not very attractive
for this large class of electromagnetic problems.

Using a refined mesh in a sub-region is a solution to this problem. Several
methods of obtaining a more refined mesh in a sub-region have previously been
reported. They can be divided into two main categories, namely: 1) non-uniform
grids; and 2) sub-gridding. In the first method where non-uniform grid is used, the
gridding extends throughout the entire cross section of the domain. In the sub-
gridding methods, a local grid with smaller size than the main grid is placed within a

part of domain to resolve the finer geometry features or electromagnetic fields.



Using different grid sizes, however, increases the truncation error at the
interface of two domains with different grid sizes. Such errors are typically
manifested as reflections from the grid boundary. The reflection from a grid boundary
is unacceptable in many applications ([1-20]-[1-22], simulations that can parallel high
accurate measurements, calculating shielding effectiveness, calculating reflection
from absorbers).

Several papers have introduced different methods to reduce the truncation
error at grid boundaries. In [1-12], the grid size is reduced by one-third of the main
grid size and the spatial derivatives of the fields at the interface are expressed by
central-difference approximations to achieve the second-order accuracy. However, in
this method, the reduced grid size is limited to specific numbers which limits its
applicability to specific geometries that conform to specialized grid. In [1-13] and [1-
14], the derivative of magnetic field at electric field position is approximated by
fitting a second-degree polynomial to the magnetic fields at three points. The
coefficient in the error term of this approximation, however, is large, which limits the
grid size reduction factor. In [1-15], two methods were introduced to maintain the
second-order accuracy. One method uses an appropriate mesh ratio between two
regions to obtain the central finite differences. The other method uses a universal
gridding scheme with continuously variable lattice size; but a demonstration of the
performance of this method was not reported. In [1-16], the computational accuracy
was improved by interpolating the magnetic field components between the fine mesh
and coarse mesh, which cannot guarantee the second-order accuracy. In [1-17], a

high-order implicit scheme was enforced at the boundary to reduce the truncation



error. In [1-18], a numerically-derived three-dimensional sub-gridding scheme was
introduced but without theoretical limits on its potential. In [1-19], the characteristic
impedances of two waveguides with infinitely thin and square center conductors are
calculated using the accurate methods of conformal mapping and mode matching,
respectively. Then, the values of minimum grid size and amplification factor have
been optimized to obtain good approximations of the characteristic impedances using
the FDTD method. But there is no explanation whether these values can also be used
for other experiments or each experiment needs different optimized values, which is
not practical.

The Complementary Derivatives Method (CDM) is introduced as a second-
order accurate interpolation scheme applicable to Finite-Difference methods. Using
several experiments, we demonstrate the performance of CDM in reducing the
reflection from the boundary of two domains having different grid sizes. We derive
the fundamental modes of propagation in a numerical solution of wave equation using
a leap-frog scheme. Also, we calculate the reflection coefficients of advection and
wave equations at the grid boundary when the CDM is applied and compare them
with the reflection coefficients of a standard treatment of the grid boundary.

Also, we apply the CDM to the ADI-FDTD method. By employing the
Sherman-Morrison formula, we retain the numerical efficiency of conventional ADI-
FDTD method when the CDM treatment is applied at the grid boundary.

The reminder of this dissertation is organized as follows. In Chapter 2 we
review the published works on the ADI-FDTD method including the theory,

numerical dispersion error, dispersion error reduction, splitting error, accurate source



implementation, perfectly matched layer, higher-order schemes, non-Cartesian co-
ordinates, practical applications, envelope scheme, and other unconditionally stable
methods.

Chapter 3 covers the theory of ADI-FDTD method. Also, its unconditional
stability and numerical dispersion relation are studied in this chapter. The numerical
implementation of the ADI-FDTD method is demonstrated in chapter 4. Two
numerical experiments are used to verify the accuracy of our developed code and one
other experiment shows the practical application of the ADI-FDTD method.

In chapter 5 the theory of absorbing boundary conditions is discussed and
specifically explains the Higdon’s ABC. Implementation and stability of higher-order
Higdon’s ABCs in the ADI-FDTD method are studied in this chapter. The COM and
its stability are also investigated in this chapter.

Chapter 6 provides the theory, performance, and analytical investigation of
CDM. Also, implementing of the CDM in the ADI-FDTD method is introduced in

this chapter. The conclusions and future work are provided in chapter 7.



Chapter 2 Literature Review of the ADI-FDTD
Method

Theory of the ADI-FDTD Method

The Alternating Direction Implicit (ADI) scheme for Finite-Difference Time-
Domain (FDTD) method was first proposed in [2-1], and [2-2]. It was shown that this
method is unconditionally stable both analytically and numerically even if the
Courant-Friedrichs-Lewy (CFL) stability limit is violated. Therefore, this method is
not restricted by the minimum cell size in the simulation domain. The Alternating
Direction Implicit Finite-Difference Time-Domain (ADI-FDTD) method was
extended to a full three-dimensional ADI-FDTD method in [2-3], and [2-4]. They
showed the unconditional stability analytically and also verified it numerically for the
three-dimensional domains. Also they compared the results with the conventional
three-dimensional FDTD method and its accuracy was verified.

In [2-11], a generalized derivation of the ADI-FDTD method based on the
operator splitting is proposed and its stability is proven. [2-6] investigates some
fundamental characteristics of the ADI-FDTD method in one-dimensional cases.
They have found that two sub-step methods alternates the dissipation and growth that
exactly compensate each other.

Although it is always said that by using the ADI-FDTD method we can save
time in comparison with the FDTD method for cases that have very fine structures,

[2-5] discusses the true time saving of applying the ADI-FDTD method.



[2-5], [2-7], and [2-8] show how to apply dispersive materials (frequency
dependent materials) into the ADI-FDTD method. In [2-32] the concept of DSP
algorithms for digital filter design is used to introduce the frequency dependent
property of media into the ADI-FDTD method.

Numerical Dispersion Error of the ADI-FDTD Method

Increasing the time-step size of the ADI-FDTD method over the CFL stability
limit is the main feature of this method. Now the other question rises is how large the
time-step can be made. The large numerical dispersion error created by the ADI-
FDTD method is a drawback of the ADI-FDTD method and is a function of the time-
step size. In [2-9]-[2-12], the numerical dispersion of the ADI-FDTD method is
investigated and the dispersion relation is derived analytically. The effects of spatial
and temporal steps on the numerical dispersion are also studied. They have found that
the large time-step size results in high numerical dispersion. They have concluded
that the time-step size of the ADI-FDTD method is limited by the required accuracy
not by stability..

The inconsistency of different numerical dispersion relations of the ADI-
FDTD method presented in different works is studied in [2-13]. They have re-derived
the numerical dispersion relation by analysis of the amplification factor and verified it
with numerical experiments.

Also an analytical relation of numerical dispersion for the two-dimensional
ADI-FDTD method is proposed in [2-14]. By comparison with numerical
experiments, they claim that their dispersion relation is the correct calculated relation

for the two-dimensional ADI-FDTD method.



Dispersion Error Reduction in the ADI-FDTD Method

The previous section reviewed different papers that showed the numerical
dispersion error is a drawback in the ADI-FDTD method. In this section we review
different papers that introduce different methods to reduce the dispersion error.

In [2-15] a parameter optimized ADI-FDTD method is introduced to minimize
the dispersion error for arbitrary incident angles and for different time-step sizes. It is
also shown that this method is unconditionally stable if proper parameter values are
chosen.

In [2-16] and [2-17] the dispersion error has been reduced by adding
anisotropic parameters into the ADI-FDTD formulas. This idea is based on another
work on the conventional FDTD method in which artificial anisotropy was introduced
to reduce the numerical dispersion. The results show the improvement in dispersion
error and for this method the computational overhead is also small.

A class of three-dimensional spatial/temporal operators to reduce the
dispersion error for complex electromagnetic structures, e.g. circularly polarized slot-
coupled microstrip and dielectric resonator antennas, is introduced in [2-18]. Their
results show the reduction in dispersion error even when the time-step size surpasses
the CFL stability limit.

Splitting Error, and Reducing Splitting Error in the ADI-FDTD Method

The ADI-FDTD method can be considered as the first iteration to solve the

approximate Crank-Nicolson equations. Using this fact, different researchers have

tried to decrease the splitting error in the ADI-FDTD method.
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The closed form of the truncation error for the two-, and three-dimensional
ADI-FDTD method is obtained in [2-19]. The dependence of the truncation error on
the square of the time-step multiplied by the spatial derivatives of the field is found to
be a unique feature of the ADI-FDTD method. As the time-step size increases, the
truncation error term increases and the total accuracy decrease. For the time-step
greatly exceeding the CFL stability limit, the Crank-Nicolson scheme shows excellent
agreement with FDTD method results in case the ADI-FDTD method does not.

In [2-20] they have tried to use the computational efficiency of the ADI-
FDTD method along with the accuracy of Crank-Nicolson FDTD method. Therefore,
they have proposed the ADI-FDTD methods that are based on the CN-FDTD
formulation but the computational efficiency is the same as the conventional ADI-
FDTD method.

In [2-21]-[2-23] they have decreased the splitting error in the ADI-FDTD
method by employing higher-order iterations. [2-22] also shows that the iterative
ADI-FDTD method is convergent and the convergence rate depends on the CFL
stability limit. In [2-23] as a way to save computational resources along with reducing
the splitting error, they have only applied the iterative ADI-FDTD method to
locations where there are large field variation, e.g. close to conductors, metallic tips,
edges, corners, and near-field sources.

Accurate Source Implementation in the ADI-FDTD Method

The other issue of the ADI-FDTD method is source implementation. There

may be small asymmetries in the field distribution if the source is not implemented

correctly [2-24]-[2-26]. In [2-24] by considering the ADI-FDTD method as an
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approximate factorization of the Crank-Nicolson scheme, they have proposed a new
method to implement the current source that eliminates the asymmetry and makes the
ADI-FDTD method more useful.

The current source condition is derived by starting with the Crank-Nicolson
FDTD method and developing to the ADI-FDTD method in [2-16] and [2-17]. They
have also illustrated that this new source implementation method is more accurate
than the previous source implementation methods.

A new source implementation for the ADI-FDTD method which has no
asymmetry up to the numerical noise level is presented in [2-26]. They have
concluded that the source can be implemented most accurately if the excitation is
directly incorporated within the tri-diagonal matrix and if the time discretization of
source is done appropriately within each full time step.

Perfectly Matched Layer (PML) Implementation in the ADI-FDTD Method

PML is a versatile ABC which effectively absorbs any outgoing waves, from
any direction and any frequency. Different methods are proposed in [2-27]-[2-32] to
implement PML in the ADI-FDTD method. A split field PML medium is introduced
in [2-27]. It is also demonstrated that the ADI-FDTD method remains unconditionally
stable with the inclusion of PML.

A PML medium with complex frequency shifted constitutive parameters is
introduced in [2-28]. The absorbing boundary is implemented using the convolutional
PML (CPML). It is demonstrated that the resulting ADI-CPML method is
unconditionally stable. The effectiveness of the absorbing medium as a function of

the time-step is also demonstrated.
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A novel implementation of the PML absorber for the ADI-FDTD method is
proposed and implemented in [2-29]. They claim that compared to the conventional
PML implementation, the performance of the proposed PML is more efficient for
large Courant numbers.

In [2-30] the unconditionally stable formulations of the anisotropic PML
(APML) are presented for truncating frequency-dependent media. The formulations
are based on the auxiliary differential equation and ADI-FDTD methods.

Unsplit-field and unconditional stable formulations of the PML as truncating
media for frequency dispersive first-order Debye media is presented in [2-31]. [2-32]
presents the ADI formulations of the nearly perfectly matched layer (NPML) to be
applied as absorbing boundary conditions.

High-Order ADI-FDTD Methods

The order of a method is defined based on the order of spatial difference. In
[2-33], a fourth-order two-dimensional ADI-FDTD method is developed. The
dispersion relation is derived and compared with the conventional two-dimensional
ADI-FDTD method. They found that the higher-order two-dimensional ADI-FDTD
method has a better accuracy compared to the conventional two-dimensional ADI-
FDTD method. In [2-5] the same high-order spatial scheme is also proposed for the
three-dimensional ADI-FDTD method and they showed that it slightly improves the
associated dispersion error. Considering the complexity and required time for each
updating procedure, they concluded that there is no benefit to overall performance

compared with the conventional ADI-FDTD method.
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In [2-34] an unconditionally stable higher-order ADI-FDTD method for
analysis of curvilinear electromagnetic compatibility (EMC) applications is
introduced. This method is based on a class of precise spatial/temporal nonstandard
forms. They claim that this method suppresses the dispersion errors of the ordinary
approach as the time-step increases and therefore can have very accurate results even
far beyond the Courant limit.

A complete investigation of the dispersion error of higher-order three-
dimensional ADI-FDTD method is provided in [2-35]. They derived the generalized
form of the dispersion relations and showed as the higher-order ADI-FDTD method is
used the results become more accurate. They also showed that all the higher-order
ADI-FDTD methods that use center finite difference scheme are unconditionally
stable.

ADI-FDTD Method in Non-Cartesian Co-ordinates

The ADI-FDTD method is modified to be applied in non-Cartesian co-
ordinates in [2-36], [2-37], and [2-34]. It is also shown that the ADI-FDTD method in
non-Cartesian co-ordinates is unconditionally stable and the time-step size is again
restricted by accuracy rather than stability. There is an additional special treatment in
[2-36] to overcome the singularity along the vertical axis of cylindrical co-ordinates.
ADI-FDTD Method Practical Applications

Employing the ADI-FDTD method for numerical experiments with very fine
structures, e.g. structures with conducting strips, is efficient. The ADI-FDTD method
is used to calculate the shielding effectiveness of various enclosures in [2-38]. The

enclosures are composed of very thin conductive sheets, which are generally
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fabricated using conductive paints or electro-less plating techniques on plastic
surfaces. The ADI-FDTD method is used to derive the characteristics of typical and
practical microstrip components such as microstrip linear resonators and microstrip
low-pass filters [2-39]. These resonators and filters include very narrow gaps and
strips which defend the usage of ADI-FDTD method. [2-40] also applies the ADI-
FDTD method to conductive materials.

The ADI-FDTD method will be more practical if active and non-linear
lumped devices can be included. In [2-41], an algorithm is introduced that could
include active and non-linear lumped devices in the ADI-FDTD method. Also some
corrections are made to the algorithm to eliminate the instability that occurs in this
new algorithm.

The other useful application of ADI-FDTD method can be in periodic
boundary conditions [2-42]. However, implementing the ADI-FDTD method in
periodic boundary conditions results in a cyclic matrix that removes the simplicity of
the tri-diagonal matrix solution. To avoid the complexity of inverting the cyclic
matrix directly, the problem is divided into two auxiliary linear systems that can be
solved by a tri-diagonal matrix solver. The number of required arithmetic operations
will be of the same order as the conventional ADI-FDTD method and this new
method keeps the computational efficiency of the ADI-FDTD method.

Envelope ADI-FDTD Method

The ADI-FDTD method can be modified to calculate the envelope rather than

the fast-varying fields and as a result, errors can be minimized. This new method is

called envelope ADI-FDTD method. The envelope ADI-FDTD method and
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conventional ADI-FDTD methods use a cell size limited by the carrier wavelength, in
case we are modeling a wave with a high carrier frequency and narrow bandwidth.
But the time-step for the envelope ADI-FDTD method can be much larger than the
time-step for the conventional ADI-FDTD method because it is simulating the wave
envelope, which has a lower frequency.

The envelope ADI-FDTD method is applied in [2-43] because the
conventional ADI-FDTD method can not be applied to simulating photonic devices if
reasonable accuracy is to be kept. Using the envelope ADI-FDTD method, the
simulation time was decreased by retaining the same level of accuracy compared with
the conventional FDTD method.

The numerical characteristics of envelope ADI-FDTD method are studied in
[2-44]. It is shown that the envelope ADI-FDTD method is unconditionally stable,
and dispersion accuracy is better than the conventional ADI-FDTD method.
Therefore, it can be used as an efficient electromagnetic analysis tool especially in
single frequency or band limited systems.

The problem of instability in implementing the PML in the envelope ADI-
FDTD method is studied in [2-45] and is improved by making changes to the
Berenger’s original split-field perfectly-matched layer equations. As the ADI scheme
in time, the alternating characteristic was applied in the split-field PML formulation
for the envelope ADI-FDTD method.

Numerical properties of three-dimensional envelope ADI-FDTD method are
investigated in [2-46]. The variations of dispersion errors with the propagation

direction, ratio of carrier to envelope frequencies, and spatial and temporal steps are
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studied. They have found that the envelope ADI-FDTD method has a better accuracy
than the conventional ADI-FDTD method for simulations with a high ratio of carrier
to envelope frequencies.

In [2-47], they have studied the phase velocity error of a propagating Gaussian
pulse for the envelope ADI-FDTD and conventional ADI-FDTD methods. The
simulation results show the better performance of the envelope ADI-FDTD method
over the ADI-FDTD method in numerical accuracy.

Other Unconditionally Stable Methods

[2-48] presentes an unconditionally stable FDTD method based on a D-H
formulation and the recently proposed ADI marching scheme. The advantage of the
D-H algorithm over the conventional E-H is the possibility to easily implement an
unsplit filed components formulation of the PML ABC that is independent from the
background material used in the FDTD grid. The method, therefore, allows
immersing any dielectric in the PML layers without any special consideration, and is
amenable for model truncation often used in biomedical simulations. Furthermore, the
proposed scheme can be extended to account for frequency dispersive dielectrics.

In [2-49], an ADI technique is applied to the recently developed
multiresolution time-domain (MRTD) method, resulting in an unconditionally stable
ADI-MRTD method free of the CFL stability limit. The unconditional stability is
theoretically proved. Its time-step is determined only by modeling accuracy. The
price for having unconditional stability is, however, that the required computation

memory becomes almost twice of that for the original MRTD.
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A hybrid two-dimensional subgridding scheme, based on a combination of the
FDTD and ADI-FDTD methods, is utilized in [2-50]. The ADI-FDTD method is used
for a fine grid in the vicinity of metallic etches, while the coarse FDTD grid is used
outside this region. The advantage of the ADI-FDTD method is that it can be
synchronized with the time marching step employed in the coarse FDTD method,
obviating the need for the temporal interpolation of the fields in the process. This
helps to render the hybrid ADI-FDTD subgridding scheme more efficient than the
conventional FDTD subgridding algorithm in terms of the run time.

Another accurate and efficient unconditionally stable FDTD (US-FDTD)
method is proposed in [2-50]. The two key points of the proposed US-FDTD method
are: defining the field components at only n and (n+1) time-steps; and arranging the
left and right hands of the original updating equations to be as accurate (in respect of
time) as possible.

In [2-52], the two unconditionally stable techniques, the ADI and the split-
step (SS) schemes, are developed for the pseudo-spectral time-domain (PSTD)
algorithm to maintain stability while achieving higher accuracy and efficiency over
the FDTD method. The multi-domain strategy is employed to allow for a flexible
treatment of internal inhomogeneities.

Two implicit FDTD methods for two-dimensional TE, wave are proposed in
[2-50]. The Approximate-Decoupling Method solves two tri-diagonal matrices and
computes only one explicit equation for a full update cycle. The numerical dispersion
relation is the same as the conventional ADI-FDTD method. The Cycle-Sweep

Method solves two tri-diagonal matrices, and computes two equations explicitly for a
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full update cycle. To compare these two methods the cycle-sweep method has much
smaller numerical anisotropy than the approximate-decoupling method. The
dispersion error is the same along the axes, and larger along the 45 °diagonal than the
conventional ADI-FDTD method. These methods are strictly non-dissipative and
unconditionally stable.

The Crank-Nicolson Approximate-Factorization-Splitting (CNAFS) method,
which can be used as an efficient implementation of the Crank-Nicolson method for
solving the three-dimensional Maxwell’s equations in the time-domain, is presented
in [2-54]. This method is unconditionally stable and solves tri-diagonal matrices
instead of solving a huge sparse matrix.

[2-55] presents a split-step FDTD method with high-order spatial accuracy.
This method is unconditionally stable.

By using piecewise linear JE recursive convolution (PLJERC), the ADI-
FDTD method is extended for dispersive media-isotropic plasma in [2-56]

In [2-57], they have proposed a two-dimensional LOD (locally one
dimensional)-FDTD which is unconditionally stable. Its solution needs two implicit
and two explicit equations in comparison with the conventional ADI-FDTD method
which needs two implicit and four explicit equations.

In [2-58], they have modified the recently proposed unconditionally stable D-
H ADI-FDTD method which considerably reduces the late-time error induced by the
corner cells. An optimal choice of the PML conductivity profile coefficients is also

proposed in this work.
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Chapter 3 Theory of ADI-FDTD Method

The Maxwell’s curl equations for an isotropic medium with permittivity of ¢

and permeability of z are

WH:gﬁ (3-1)
ot
oH

VxE=-pu—— 3-2
ﬂat (3-2)

Each of these two equations can be cast into three scalar partial differential equations

in the Cartesian coordinates.

%, _1fH, H, (3-3a)
ot el oy oz
OBy 1(oH, aHZj (3-3b)
ot &g\ oz OX
0E, _1(9Hy oH, (3.30)
ot &l oOx oy
oH, 1(0Ey ¢E,
== - 3-4
ot ul oz oy (3-42)
oHy 1(0E, aEXj (3.4b)
ot u\ ox 0z
oH, _1(0E, OE, (3-40)
ot ul oy Ox

Each field component F(t,x,y,z) can be denoted as F,|"ijx=F, (NAt,iAX,jAy,kAz) in
discrete space and time, where « = X, Y, or z; n is the time index; i, j, and k are space
indexes; At is the time-step; and Ax, Ay, and Az are spatial steps along the x-, y-, and

z-directions, respectively.
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In the Alternating Direction Implicit Finite-Difference Time-Domain (ADI-
FDTD) method, electromagnetic-field components are arranged on the grid in the
same way as the conventional FDTD method. Applying the ADI scheme requires
updating the electric and magnetic fields from time step n to n+1 through two
procedures. In the first procedure the fields advance from the n™ time step to
(n+1/2)" time step; in the second procedure the fields advance from the (n+1/2)"
time step to (n+1)th time step. The second requirement of the ADI scheme is applying
the alternating direction implicit concept in implementation of finite difference
approximations. In the first procedure, the first derivatives on the right hand side of
equations (3-3) and (3-4) are replaced with the implicit finite difference
approximations and the second derivatives are replaced with the explicit finite
difference approximations. Therefore, the updating equations will be

First procedure:

EX‘?:ll//Zz,j,k ~Exliya ik _
At/2 -
. Hz‘_n+1/2_ _H ‘_n+1/2. ” _ “H ” . (3-5a)
1 i+1/2, j+1/2 k 2li+l/2,j-y2k Yliv1/2, j k+1/2 Yliv1/2,jk-1/2
& Ay Az
n+1/2 n
y‘i,j+1/2,k B y‘i,j+]/2,k B
At/2 -
N T T L TR O (3:50)
4 i, j+12,k+1/2 Xli, j+1/2,k-1/2 Zli+1/2, j+1/2,k Z1i-1/2, j+1/2,k
& Az - AX

21



n+1/2 n

Ez‘i,j,k+1/2 _Ez‘i,j,k+1/2 _
At/2
n+1/2 B n+1/2 n n (3-5¢)
1 Hy‘i+1/2,j,k+1/2 Hy‘i—l/z,j,k+1/2 B HX‘i,j+1/2,k+1/2 - HX‘i,j—l/Z,k+1/2
£ AX Ay
n+1/2 n
HX‘i,j+1/2,k+1/2 _Hx‘i,j+1/2,k+1/2 _
At/2
‘n+1/2 E ‘n+1/2 n n (3-63_)
1) Yl jey2ker Yl ek EZ‘i,j+1,k+1/2 _EZ‘i,j,k+1/2
u Az Ay
n+1/2 n
Hy‘i+1/2,j,k+1/2 _Hy‘i+1/2,j,k+1/2 _
At/2
E n+1/2 E n+1/2 EN EN (3-6D)
1 Z‘i+1,j,k+1/2 - Z‘i,j,k+1/2 3 X‘i+1/2,j,k+1_ X‘i+1/2,j,k
7] AX Az
n+1/2 n
Hz‘i+1/2,j+1/2,k _Hz‘i+1/2,j+1/2,k _
At/2
n+1/2 n+1/2 n e " (3-6¢)
1 Ex‘i+1/2,j+1,k _Ex‘i+1/2,j,k 3 Ey i+1, j+1/2,k Ey i, j+1/2.k
i Ay AX

Calculating the electric fields at time step n+1/2 needs the values of magnetic

fields, which are not computed yet. To address this problem, the equation for

calculating E,|"Y2

B At? E ‘n+1/2 14 At? E ‘n+1/2 B At? E ‘n+1/2 _
4,u€Ay2 Xli+1/2, j+1,k ZyEAyz Xli+1/2, j,k 4#6‘Ay2 Xli+1/2,j-1k —

At n n )

2eAy (H Z‘i+1/2, j+y2,k H Z‘i+]/2,j—1/2,k

is modified by replacing (3-6c) in (3-5a) which results in

n
EX‘i+1/2,j,k +

At (3-7)

n n
_Z&‘AZ(HyiJrl/Z,,j,kﬂ/z _HZi+1/2,j,k—1/2j
Atz n n n n
_MEAMX(EYHLHJ/M - Ey‘i,j+1/2,k - Ey‘iﬂ,j—l/z,k * Eyi,i—1/2,k)
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The same procedure should be used to obtain the updating equations of other
components of the electric field.

In the second procedure, the first derivatives on the right hand side of
equations (3-3) and (3-4) are replaced with the explicit finite difference
approximations and the second derivatives are replaced with the implicit finite
difference approximations. Therefore, the updating equations will be

Second procedure:

n+1 n+1/2
Ex‘i+1/2,j,k _Ex‘i+1/2,j,k _
At/2
n+1/2 n+1/2 n+l _H n+1 (3-8a)
1 Z‘i+1/2,j+1/2,k_ Z‘i+]/2,j—1/2,k_ Y1i+1/2,j,k+1/2 Yli+y/2, jk-1/2
£ Ay Az
n+1 n+1/2
y‘i,j+1/2,k B y‘i,j+1/2,k _
At/2
H n+1/2 n+1/2 H n+1 H n+1 (3-8b)
1 X‘i,j+1/2,k+1/2_ X‘i,j+1/2,k—]/2_ Z‘i+]/2,j+1/2,k_ Z‘i—l/z,j+1/2,k
£ Az AX
n+l1 n+12
Ez‘i,j,k+1/2 _Ez‘i,j,k+1/2 _
At/2
H ‘n+1/2 _H ‘n+1/2 n+1 n+1 (3-8¢)
11 Ylivy2, jk+1y2 Yli-w2,jk+12 X‘i,j+1/2,k+]/2_ X‘i,j—]/Z,k+]/2
£ AX Ay
n+1 n+1/2
X‘i,j+1/2,k+1/2_ X‘i,j+1/2,k+1/2 _
At/2
‘n+1/2 _ ‘n+1/2 E |1+ n+1 (3-9a)
1) Vi jey2ker Yl jey2k Z‘i,j+1,k+1/2_ Z‘i,j,k+1/2
i Az Ay
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H n+1 H n+12
y‘i+1/2,j,k+1/2 B y‘i+1/2,j,k+l/2 _
At/2
E n+1/2 n+1/2 E n+1 E n+1 (3-9Db)
1 Z‘i+1,j,k+1/2_ Z‘i,j,k+1/2_ X‘i+1/2,j,k+1_ X‘i+1/2,j,k
7] AX Az
n+1 n+12
Hz‘i+1/2,j+1/2,k _Hz‘i+1/2,j+1/2,k _
At/2
E[M+12 £ [1+Y2 n+l g |l (3-9¢)
1 X‘i+1/2,j+1,k_ X‘i+1/2,j,k_ Yli+1, j+1/2,k Yli, j+1/2,k
i Ay AX

Similar to the first procedure, the updating equations of the electric fields of the
second procedure must be modified. The updating equations of the magnetic fields

are not modified because the required electric fields are already calculated.

3.1 Stability of the ADI-FDTD Method

For a recursive system of form
XM= A XD (3.1-1)
the Fourier method can be used to determine its numerical stability [3-1]. In this
method, instantaneous values of the electric and magnetic fields are first Fourier-
transformed into spatial spectral domain waves, representing a spectrum of spatial
sinusoidal modes. Second, the location of eigenvalues of A are checked; if all of them
lie inside or on the perimeter of the unit circle, the system is defined as stable,
otherwise the system is unstable.

Assuming the spatial frequencies to be ky, ky, and k, along the x, y, and z

directions, the field components in the spatial spectral domain can be written as
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Ex‘in+1/2,j,k _ E)Tefj(kx(i+1/2)Ax+kyjAy+kaAz) (3.1-2)
n n_ - i(kyiax+ky (j+12)Ay+k, kaz)

Ey‘i,j+1/2,k — 5y (3.1-2b)

Ez‘in, e E?e—j(kXiAx+kyjAy+kZ(k+1/2)Az) (3.1-20)

Hx‘in,j+]/2,k+1/2 _ HQe—j(kXiAx+ky(j+1/2)Ay+kZ(k+:|/2)Az) (3.1-2d)

n - ik (i+12)Ax+ky jay+k, (k+Y2)Az)
Hy‘i+]/2,j,k+]/2 B Hye (3.1-2¢)

iky (i+1/2)Ax+ky (j+1/2)Ay+k, kAz)

n _gh,a)
Hz‘i+1/2,j+1/2,k =Hje (3.1-2f)

We denote the field vector in the spatial spectral domain as

XM=l "2 (3.1-3)

Substituting of (3.1-2) in (3-5)-(3-6) and (3-8)-(3-9), after some manipulation,

A'in (3.1-1) can be written as [3-2]
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| A+By 2uWWy 2uANW, -2 2juPAN,  2juD,
QQ,Q, QQ Q,Q, Q.Q, Q,Q  Q0Q,Q
2uN Wy Ay +B,  2u8NW, 2D,  —2juN 2julaW,
Q,Qx QxQyQ; Q,Q; Q,Q; Q,Q, Q,Qy
2uAN W, 24 Wy A By 2jutANy  2juDy - 2juW
Ao u%Q, QQQ,  QQ  QQQ,  QQ
—2jeW  2jeD,  2ue™W, A +By  2uEW,W,  248W,W,
QQ; QQyQ;, Q,Q, QQyQ, Q,Q, Q,Qy
2jus®W,  -2jeW  2jeD;  2uWWy A, 4B 2uV W,
Q,Q« QyQx QxQyQ; QxQy QxQ,Q, Q,Qy
2jeD;  2jus®W,  —2jeW  2udW,W, 2uW W, A 4B,
| QQ,Q, QQ Q,Qy Q,Qy QQ,  QQQ; |
where
W, :AA;sin(k“ZAaj, a=XxY,2
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D, ZWX(WnyZ _ﬂzgz)

The eigenvalues of A can be found [3-2]

h=4=1

JR?=S? 4 S
Ay =5 = 2 )

. VJR?-S8%2_js
R
where

R= (,u5+Wx2)£u€ +Wy2 ) (,ug +W22)

S = Jaus(ueW2 + usW2 + peWZ +W2WZ +W2W2 +W2W2) (126 rw 2w 2w?)

The first two eigenvalues obviously have a magnitude of unity. The other four
eigenvalues also have magnitudes of unity. This is because R>S and the square roots
in the numerator of the expressions for As, A4, As, and As become real numbers.

Therefore, the ADI-FDTD method is unconditionally stable regardless of the time-

step size At.

(3.1-5)

3.2 Numerical Dispersion Relation of the ADI-FDTD Method

To calculate the numerical dispersion relation of the ADI-FDTD method, we

assume the fields to be monochromatic waves with an angular frequency of o

EN=E_ el a=xy,z

HY =H_ el a=xy,z

Replacing (3.2-1) in (3.1-1) results in

i1 —A)x =0

27

(3.2-1a)

(3.2-1b)

(3.2-2)



To find a nontrivial solution of (3.2-2), the determinant of the coefficient
matrix should be zero
detle* — A)=0 (3.2-3)
which by substituting (3.1-4) in (3.2-3) the numerical dispersion relation of ADI-
FDTD method is [3-3]

due (ygwf + usWl + peW7 +W2W2 +W2ZW72 + W7 Wf) (u3£3 +WX2Wy2W22)

. 9 _
sin (WAt) (/15+Wx2 )2 (ﬂ&‘ +Wy2 )2 (ﬂ5+W22 )2

(3.2-4)
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Chapter 4 Numerical Implementation of the ADI-
FDTD Method

In order to verify the accuracy of our Alternating Direction Implicit Finite-
Difference Time-Domain (ADI-FDTD) code, we perform two numerical experiments
and compare the simulation results to the analytical results and simulation results of
other established methods or commercial codes. The third numerical experiment

demonstrates a practical application of our code.

4.1 Code Verification: Resonant Frequency of Cavity

The first experiment calculates the resonant frequencies of a cavity. The
cavity has dimensions of 9mmx6mmx15mm [4-1]. A uniform grid with grid size of
A=0.6mm is used to discretize the domain (Fig. 4.1-1). The maximum time-step size
of the FDTD method is A trprp=1.15ps and we use the same time-step size for the
ADI-FDTD method (A tapi-roto = 4 troTd)-

z

z y
X A

omm
A=0.6mm

A=0.6mm

15mm, A=0.6mm

Fig. 4.1-1 Dimensions and grid size of cavity.
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The calculated resonant frequencies of the first five modes are shown in Table
4.1-1. The results have been compared with the calculated resonant frequencies using
the theory, HFSS software, and the FDTD method. As we see, the ADI-FDTD

method gives the same order of errors as the HFSS and FDTD method.

Table 4.1-1 Comparing the calculated resonant frequencies of cavity using

HFSS, FDTD, ADI-FDTD, and theory.

Theory | HFSS | Error | FDTD | Error | ADI-FDTD | Error
(GHz) | (GHz) | (%) | (GHZz) | (%) (GHz) (%)

19.433 | 19.42 | 0.06 | 19.44 | 0.03 19.44 0.03
26.034 | 26.00 | 0.13 | 25.99 | 0.17 25.99 0.17
26.926 | 26.89 | 0.13 | 26.83 | 0.35 26.83 0.35
30.046 | 30.00 | 0.15 | 30.10 | 0.18 29.79 0.85
31.667 | 31.60 | 0.21 | 31.90 | 0.74 31.69 0.07

Fig. 4.1-2 demonstrates the errors of the first resonant frequency calculated

using different time—step sizes which exceed the Courant stability limit.

104

Relative Error (%)

ol 777

Fig. 4.1-2 Relative errors of the calculated resonant frequencies vs. time-step

size.
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4.2 Code Verification: Free Space Wave Propagation

This experiment demonstrates the wave propagation in the three-dimensional
free space. The simulation domain is a box with dimensions of
12.5mmx12.5mmx12.5mm with grid size of A4 =0.25mm. The source is positioned at
(6.25mm, 6.25mm, 6.25mm) and the monitor point is selected at (6.25mm, 7.5mm,

6.25mm) (Fig. 4.1-2). The excitation is a Gaussian pulse

f(t):exp[—(t“;* )2]

T

with ty = 80ps and 7= 20ps. The 3dB bandwidth of a Gaussian pulse is f.3gs=1/nt,
which for =20ps results in f.335=15.9GHz with the wavelength of A.3;5=18.84mm.
Therefore, the grid size of A=0.25mm results in 75 points per wavelength which is

much more than the proposed 10 points per wavelength for acceptable dispersion

error [4-2].

12.5mm,
A=0.25mm

Source k

Monitor
Poipt
12.5mm,
A=0.25mm

Fig. 4.2-1 Structure of the three-dimensional open-region simulation and the

12.5mm,
A=0.25mm

locations of source and monitor points.
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A comparison of the recorded values of e, at monitor points is shown in Fig.
4.2-2. As we see in the Fig. 4.2-2, the simulated electric fields using the ADI-FDTD

and FDTD methods are exactly the same.

1.0 — ADI: e, at Monitor Point
—— FDTD: e _at Monitor Point
0.8
[}
©
=)
£ 06+
o
=
<
k)
Q
X 02
0.0
T T T T T T T T T T
0.0 100.0p 200.0p 300.0p 400.0p 500.0p

Time (Seconds)

Fig. 4.2-2 Values of e, calculated using the ADI-FDTD (solid line) and FDTD

methods (solid line with squares).

4.3 Antenna Application

In this section, the ADI-FDTD method is applied for a practical application.

The application considered is a microstrip-fed rectangular patch antenna similar to [4-
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3]. The frequency range of interest is from DC to 20 GHz and the scattering
parameters are also measured up to 20 GHz [4-3].
The dimensions of patch antenna are shown in Fig. 4.3-1. The approximate

resonant frequency can be calculated using the fact 4/2212.45mm. This antenna is

built on Duroid substrate with &=2.2 and thickness of 1/32"” (0.794mm).

Patch

12.45mm S

16.00mm

I 0.794mm

'\ Ground Plane

Fig. 4.3-1 Dimensions of patch antenna.

The source plane is a rectangle in the yz plane with the same width as the trace

and the same height as the substrate (Fig. 4.3-2). The excitation is a Gaussian pulse

f(t)= exp(— (t;tojz]

where tp=45 ps and =15 ps.
The simulation domain is terminated by the first order Mur’s Absorbing
Boundary Conditions (ABC) on 5 sides and only the plane z=0 is defined as perfect

electric conductor (ground plane of the antenna). The ABC surfaces are several cells
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away from the perimeters of antenna and we have considered a greater number of
cells in the z-direction above the antenna plane to model the free space above the
antenna. Notice that the ABC in the yz plane has been implemented several nodes
away from the source plane to eliminate any undesirable effects.

The grid sizes in the x, y, and z directions are 4 x = 0.389mm, A4y = 0.4mm,
and Az = 0.265mm. The total number of cells in the x-, y-, and z-directions are 60,
100, and 16, respectively, and the rectangular patch is 324 x x 404y (Fig. 4.3-2). The

cell arrangement in the z-direction is shown in Fig. 4.3-3 (a).

ABC

A~ ABC

Source -
plane
‘ e=22 .
/
z '\ Ground Plane
X
y

Fig. 4.3-2 Structure simulated by the ADI-FDTD method.

The time-step size is set at the CFL stability limit which is At = 0.6403ps. The
reference plane, where the voltage is calculated, is set 10 cells away from the patch
antenna. The length of microstrip line from the source to the antenna is 404y. To
calculate S;3, first we consider a long microstrip line, apply the excitation and record

the voltage at the reference plane (Vi,). Next, we excite the microstrip line connected
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to antenna and record the voltage (Viota1). S11, Which is defined as the reflected voltage

tO the inCident V0|tage, iS S]_]_ = Vref/ Vin = (Vtota| - Vm) / Vin (Vtota|:Vin+Vref).

ABC A A A
Z | | |
13 9 10
Patch 7 2 ¥
P|ane A A A
3 412 413
Ground v v v
Plane . . . . .
Fine Grid Coarse Grid Coarse and Fine Grid
Az=0.265mm  Az=0.397mm  Az=0.397mm, Az'=0.1985mm
a b C

Fig. 4.3-3 Structure of grids in the z-direction.

The calculated scattering parameters are shown in Fig. 4.3-4. The first

resonant frequency is f, = 7.4624 GHz and is shown in Table 4.3-1.
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S, in dB

-10 -

-15

— T T
0.0 20G 4.0G 6.0G 80G 10.0G 12.0G 14.0G 16.0G 18.0G 20.0G
Frequency

Fig. 4.3-4 Si;in dB for fine grid (Fig. 4.3-3 a).

In next simulation we only increase the grid size in the z-direction to Az =
0.397mm and the other parameters are left unchanged (Fig. 4.3-3 b). The time-step
size is set at the CFL stability limit which is At=0.7606ps. The scattering parameters

are calculated and shown in Fig. 4.3-5. The first calculated resonant frequency is f. =

7.5484 GHz and is shown in Table 4.3-1.
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S, in dB

410 -

-15

— T
0.0 20G 4.0G 6.0G 80G 10.0G 12.0G 14.0G 16.0G 18.0G 20.0G
Frequency

Fig. 4.3-5 S;;in dB for coarse grid (Fig. 4.3-3 b).

In this simulation, we refine the grid around the antenna plane in the z-
direction as shown in Fig. 4.3-3 c. The two cells adjacent to antenna plane have a grid
size of Az’= Az /2 = 0.1985mm and for the rest of the cells the grid size is Az =
0.397mm. The time-step is the same as the coarse grid time-step, which is
At=0.7606ps. The calculated scattering parameters are shown in Fig. 4.3-6. The first

calculated resonant frequency is f. = 7.489 GHz and is shown in Table 4.3-1.
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S, indB

-10 4

-15

Fig. 4.3-6 S;; in dB for a coarse grid in the z-direction which is refined around

—T
0.0 20G 4.

the antenna plane (Fig. 4.3-3 ¢).

Table 4.3-1 The first

calculated

structures in the z-direction.

0G 6.0G 8.0

resonant

Frequency

T T T T T T 7
G 10.0G 12.0G 14.0G 16.0G 18.0G 20.0G

frequency for

different

Mesh Type Fine Mesh Coarse Mesh | Coarse Mesh and
(Fig. 7-3 a) (Fig. 7-3 b) Refined Mesh
(Fig. 7-3 ¢)
Resonant Freq. 7.4624 7.5484 7.489
(GHz)
Relative 1 0.55 0.62
Simulation Time

As we see in Table 4.3-1, by coarsening the grid, the resonant frequency is not
very accurate. To get more accurate results, we only refined the grid around the

antenna plane which gives more accurate results without increasing the computational

cost.
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Chapter 5 Absorbing Boundary Condition (ABC)

5.1 Theory

Due to the limitations of memory resources, when using finite difference
methods to solve for the fields in open regions, the infinite domain is truncated to a
finite one by artificial boundaries that enclose the source of radiation and the objects
that interact with the source. On the outer boundaries, an absorbing boundary
condition (ABC) is enforced to simulate its extension to infinity. The ABC is not
expected to provide the complete annihilation of the outgoing waves; rather it
suppresses the spurious reflections of the outgoing numerical waves to an acceptable
level.

Based on the theory of one-way wave equations developed by Engquista-
Majda [5-1], the two-dimensional wave equation

o°U U 14U

X oy 2o (5.1-1)
can be written as

GU =0 (5.1-2)
and the partial-differential operator G is defined as

2 2 2
Gz;(—2+%—ci2§t—2=Df D} CiZDE (5.1-3)
The operator G can be factored in the following manner
G'GU=0 (5.1-4)

where
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G =D, —th\/l—? (5.1-5)

and

G* =D, +[2‘\/1—7 (5.1-6)

with

s= 8 1-7
~ (Do) 547)

Engquist and Majda demonstrated that the application of G™ to the wave
function U, absorbs a plane wave propagating at any angle toward the left boundary.
Thus,

GU=0 (5.1-8)
completely absorbs the plane wave propagating at any arbitrary angle toward the left
grid boundary and

G'U=0 (5.1-9)
completely absorbs the plane wave propagating at any arbitrary angle toward the right
grid boundary.

The square roots in (5.1-5) and (5.1-6) prohibit the exact numerical
implementation of (5.1-8) and (5.1-9). Therefore, we need to approximate the square
roots to produce the partial-differential equations that can be implemented

numerically. Using the first term of the Taylor’s series expansion gives
1-5%=1 (5.1-10)
which, when substituted in (5.1-5) and (5.1-6) gives the corresponding partial-

differential equations that can be numerically implemented as a first-order accurate
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ABC at the grid boundary. Using the same procedure, v/1—S? can be written as a

two-term Taylor series, with the result being the second-order accurate ABC.

5.2 Higdon’s ABC

Higdon proposed ([5-2], and [5-3]) a differential annihilator of the plane

waves of the form

L 0 0
{H(cosm i C@xﬂu =0 (5.2-1)

1=1

This operator absorbs all 2L waves coming toward ABC with angles of #ay, 7, ..

1‘0(|_.
The generalized form of the N order Higdon’s ABC is
N

B, U =H(ax 0054 5 +ai}) -0 (5.2-2)
i1 c

where c is the speed of light, ¢ is the incident angle for which the boundary condition
is perfectly absorptive, and ¢; is the damping factor. He showed that the ABCs

proposed by Engquist-Majda are special cases of the generalized Higdon’s ABC. To

discretize (5.2-2) into a difference equation, we use the following operators

8, —{ ! _AilJ((l—a)l +aT™) (5.2-3)
0, - (' L J((l—b)l +bs?) (5.2-4)
At

where | is the identity operator, S -1 is the space shift operator, and T-1 is the time
shift operator. The choices of the weighting coefficients a and b give different

difference schemes including the forward Euler (a=0, b=1), backward Euler
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(a=b=0), and box scheme (a=b=0.5), etc. In general, the weighting coefficients are

positive real numbers bounded by unity. The shift operators are explicitly expressed

as
IU(t=nAt,x = mAx, y = 1Ay)=U (t = nAt, x = mAx, y = 1Ay) =uy} | (5.2-5)
T7U(t = nAt, x = mAX, y = IAy) = U (t = (n - i)At, x = mAx, y = IAy) = u! (5.2-6)
SyU(t=nAt,x =mAx, y = IAy) =U (t = nAt, x = (m—i)Ax, y = IAy) = ul (5.2-7)
S,'U(t=nAt, x =mAx,y =IAy) =U (t = nAt,x = mAX, y = (I —i)Ay) =ufy ; (5.2-8)
i=123,..
Substituting the operators (5.2-3) and (5.2-4) into (5.2-2), we have
N
ByU = H(I +a,Tt+ps™t +ciS‘1T‘1)U =0 (5.2-9)
i-1
where
. —(a—h(1-b)) 5 210
' a-1-h(1-b)- gAx (5.2-10)
- —(a—1+hb) 6 211
' a-1-h(l-b)-a;Ax (211
¢ - ——tca=hh) 5.2-12
' a-1-h(l-b)-gAx (5:2-12)
h = 2054 AX (5.2-13)
c At

From (5.2-9), the difference formula of the first-order Higdon’s ABC (i.e., N=1), is a
linear and constant coefficient scheme. Furthermore, the difference scheme of the
higher-order Higdon’s ABC (i.e., N>2) is also a linear and constant coefficient

formula since it is derived from cascading the first-order formulas.
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5.2.1 Implementation of the Higdon’s ABC in the ADI-FDTD
Method

In this experiment we apply the first-, and third-order Higdon’s ABC in the
ADI-FDTD method. The simulated structure has dimensions of 5mmx5mmx5mm and
grid size of 4=0.25mm (Fig. 5.2-1). The source is located at (2.5mm, 2.5mm, 2.5mm)

and monitor point is selected at (2.5mm, 3.75mm, 2.5mm) (Fig. 5.2-1). The excitation

is a Gaussian pulse
t—ty)?
f(t)= exp(— (Tzd)j

with ty = 80ps and z= 20ps. The results of the first-, and third-order Higdon’s ABC
simulations are shown in Fig. 5.2-2. As we see in Fig. 5.2-2, and more clearly in Fig.

5.2-3, the third-order Higdon’s ABC is unstable.

z

y A
X
5mm,
A=0.25mm
Source}
z Monitor
Point \
5mm,
A=0.25mm
5mm,
A=0.25mm

Fig. 5.2-1 Structure of three-dimensional open-region simulation and the

locations of source and monitor points.
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0.0

-2.0x10"" -
(O] . .
o e_at Monitor point,
=] z
S 40x107 1% order Higdon's ABC
E | - e, at Monitor point,
(3] d . .
= 3" order Higdon's ABC
= -6.0x10""
o
(O]
x
-8.0x10""
-1.0x10'* T T T T T T T T T T
0.0 5.0n 10.0n 15.0n 20.0n 25.0n

Time (Seconds)

Fig. 5.2-2 Simulation results of the first-, and third-order Higdon’s ABCs

implemented in the ADI-FDTD method.
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0.0 -

-2.0x10”

: e, at Monitor point,
4.0x10° i 1% order Higdon's ABC
| - e_at Monitor point,
3" order Higdon's ABC

-6.0x10%

Relative Amplitude

-8.0x10”
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0.0 100.0p 200.0p 300.0p 400.0p 500.0p
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Fig. 5.2-3 Scaled simulation results of the first, and third-order Higdon’s

ABCs implemented in the ADI-FDTD method.

In [5-4] they have demonstrated that the third-order Higdon’s ABC is

unconditionally unstable and our simulation results confirm their conclusion.

5.3 Complementary Operators Method (COM)

The ABC is not expected to provide complete annihilation of the outgoing
waves and, consequently, an error is introduced in the solution. Since the
performance of a particular ABC depends on the location of the mesh-terminating
wall, we can measure the error caused by the application of the ABC by expressing
the total time-harmonic field as a summation of the outgoing and incoming waves at

the artificial boundary. Suppose we have a computational boundary at x=a, where the
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interior of the domain is the region to the left of the boundary (Fig. 5.3-1). We can

express the field at any point to the left of the boundary as

U = o oo ikyy=kgzjet o dkx= ikyy—jkgz+ ot (5.3-1)
Ideally, we would like to have zero reflection from computational boundaries.

Therefore, the spurious reflection that is caused by the imperfect absorption of the

computational wall is given by the second term in (5.3-1)

R o Jkxx= Jkyy=jkzz+ jot (5.3-2)

— \
Computational
Boundary,x =a

Fig. 5.3-1 Outgoing and incoming waves at the computational boundary.

In [5-5]-[5-7], they define a complementary ABC, which if applied to the
same problem results in an error of similar magnitude but opposite in phase to what
was obtained with the original ABC (Fig. 5.3-2). Denoting the new solution as U°, we
have

UC = txXmikyy—lkzzejet o o Jkxx=Jkyy= jkgzjet (5.3-3)
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) W

Computational
Boundary,x =a

Fig. 5.3-2 Outgoing and complementary incoming waves at the computational

boundary.

It follows that the reflection-free solution, or the numerically exact solution,

denoted as U®*' is the average of the two solutions in (5.3-1) and (5.3-3) (Fig. 5.3-3)

Uexact :U +UC

5.3-4
5 (5.3-4)

I

@ | Computational

Boundary | > \

Computational

- Average two solutions Boundary
\ - The reflected waves
are out of phase
— Computational P
Boundary

Fig. 5.3-3 Complementary reflections and average of them that cancels the

first-order reflection.

Unfortunately, in practical applications, this ideal scenario does not take place
because of the presence of the radiating structure, the finiteness of the terminating

wall and the remaining mesh-terminating boundaries. All these result in multiple
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spurious reflections of higher orders, which all do not cancel when averaging the two
solutions as in (5.3-4).

As introduced in (5.2), the generalized form of the N™-order Higdon’s ABC is

B U = H(a + C°S¢' o, +a )U 0 (5.3-5)

The corresponding reflection coefficient R for time-harmonic fields is found by

substituting (5.3-1) into (5.3-5)

N-—jk, + jecosgk + g
RIB, |=(-1 _
[ N] ( )1,:1[ jk, + jcosgk + ¢ (5.3-6)

Aside from the added flexibility that cos¢ and «; introduce, these constants
can also be manipulated to lead to complementary pairs. By observation, if we set

cosgny = an =0 in (5.3-6), we arrive at the reflection coefficient

. N1k, + jeosgk + ¢
R|B 1 -
[ ] (+ )g ik, + jeosgk + o (5:3-7)
The corresponding ABC, denoted by By is readily found to be
cos¢
‘n=0 H( aiju =0 (5.3-8)

The new boundary condition in (5.3-8) is precisely the complementary version
of the ABC in (5.3-5) of order N-1. By observation, we can express the new ABC as
Ox operation on the original ABC of order N-1
B°N =0,By. (5.3-9)
While the non-optimality of the complementary operator is clearly evident, since the
magnitude of the reflection coefficient of both operators is equivalent, the new

operator, nevertheless, provides us with the 180 ° phase shift that we are seeking.
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5.3.1 Implementation of COM in the ADI-FDTD Method

In this experiment we investigate the stability of the second-order COM. We
apply the second-order COM on the same structure as Fig. 5.2-1. The excitation is a

Gaussian pulse

f(t)= exp(— (t_tzd )ZJ

T

with ty = 80ps and 7= 20ps. Fig. 5.3-4 shows the simulation results of two operators
of the second-order COM. As we see in Fig. 5.3-4, and more clearly in Fig. 5.3-5, the

Higdon’s operator is stable but the complementary operator is unstable.

5.0x10%

0.0

-5.0x10% |

e, at Montor Point,

. Higdon's ABC
1.5x10% -~ @_at Montor Point,
B z

-1.0x10% |

Complementary Operator
-2.0x10%

-2.5x10%

Relative Amplitude

-3.0x10% |

-3.5x10% |

T T T T T T T T T T
0.0 100.0p 200.0p 300.0p 400.0p 500.0p
Time (Seconds)

Fig. 5.3-4 Simulation results of the second-order COM implemented in the

ADI-FDTD method.
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2 20x0°
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I 0.0
< ]
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T
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04 |
-6.0x10° |
-8.0x10° -
-1.0x10° T - T T
0.0 100.0p 200.0p
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Fig. 5.3-5 Scaled simulation results of the second-order COM implemented in

the ADI-FDTD method.

5.3.2 Analytical Investigation of Instability of the COM Using the Z-

transform

Here, we use the Z-transform method to analytically investigate the stability of
ABCs [5-4]. Consider a linear time-invariant (LTI) system given by the transfer

function

N N
M) = o= po )=o)

(5.3.2-1)

where p1, p2,..., Pn denote the poles of H(z), and N(z) is a polynomial. The system
H(z) is asymptotically stable if and only if |pi|<1 for i=1,2,...,n. Based on the LTI
system theory, the system is marginally stable if and only if |pj|<1 for all non-

repeated poles, and |pi|<1 for all repeated poles.
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The Higdon’s ABC is a linear combination of the interior nodes’ values at the
current and previous time steps. We define a system in which the output is the ABC
value and inputs are the values of the interior nodes. It is clear that this system is an
LTI system.

Suppose that u," (m is the spatial index and n is the time index) is the ABC
value or output of the system and un"* i=1,2,.. and k=1,2,... are the interior nodes’
values or the inputs of the system. Denoting the Z-transform operation by Z, we apply
the Z-transform on the ABC value. We have
Y(z)=z(un) (5.3.2-2)

Next, we apply the Z-transform on the ABC values, but at the previous time

steps. Using the Z-transform properties, we have
Z(ur’;‘l)z 7Y (2)

Z(u,?{z): 272Y(2) 5323

Z(u,?]‘L): 27 (2)

Applying the Z-transform on the internal nodes’ values of time step n, we have

(5.3.2-4)

Note that L is the number of previous time steps and N is the number of internal

nodes used to calculate the value of absorbing boundary condition.
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The value of each node represents the numerical solution of the wave equation
at that node. Also, we know that the ABCs are not perfect and there is some reflection
from the ABC. Therefore, the values of different interior nodes can be written as

Urr:1 _ (eja)nAte—ijmAx +peja)nAte

+ijmAx)

urrr11—1 — (ejamte—JkX(m—l)Ax 4 peja)nAte+ij(m—1)Ax)
urr:1—2 :(ela)nAte—ka(m—Z)Ax+peJmAte+JkX(m—2)Ax) (5.3.2-5)
urrT]1—N :(ernAte—ka(m—N)Ax+pejcmAte+ka(m—N)Ax)

where ky is the wave number in the x-direction (ABC for propagating waves along the
x-direction), and p is the reflection coefficient.

Using the linearity property of the Z-transform, equations (5.3.2-2) to (5.3.2-
5), and after some algebraic manipulation, the Z-transform of interior nodes values
can be expressed as a combination of Xy(z) and Y(z) [5-4].
Xz(z): Zcos(kXAx)Xl(z)—Y (z)
X,(z) =1+ 2cos(2k, Ax)]X, (z) - 2cos(k,Ax)Y (z) (5.3.2-6)
X, (z)=4cos(k,Ax)2cos(2k, Ax)X, (z)-[L + 2cos(2k Ax)} (2)

The ABC can be expressed as a weighted polynomial of the space- and time-

shift operators

| K _ | K
BU = (— [+ Zﬂi’ks_'T_k]U =-ul + > Zﬂi,kur?w_—li( =0 (5.3.2-7)
i=0k=0 i=0k=0

By applying the Z-transform on (5.3.2-7) and using (5.3.2-2)-(5.3.2-6), we can

calculate the transfer function of the system.
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H(z)= X,() (5.3.2-8)

Here, we use the Z-transform to investigate the instability of the second-order

COM. The second-order Higdon’s ABC is given by
cos¢
B,U = H( +a, ju =0 (5.3.2-9)

or in difference form can be written as

2
B,U = H(l +aT1+bSt+¢SIT *1)\1 =0 (5.3.2-10)
i=1l

which after some manipulation is

[I +(a,+a, )T+ (b +b,)S ™ +(c, +c, +ab, +ah )S T + (a2, )T 2 +

U=0 5.3.2-11
(ble )872 + (ach + azcl)silT 4t (blcz + bzcl)sizT 4+ (Clcz )szT . J ( )

The second-order complementary operator is given by
¢ cos¢,
BU=0,|0,+—0;+¢; U =0 (5.3.2-12)

By observation, the complementary operator is equal to the second-order Higdon’s

ABC when a, = -1, b, =1, ¢, = -1. Therefore, its difference form is

I +(a_l “T 4 (b, +_1)s_ +(c,—1+a,-b,)s )_ ST 2al)'z -0 (5.3.2-13)
(b,)S2+(-a,—¢,)S T2 +(=b, +¢,)S T  +(-c,)S*T
Expressed as nodal fields, the complementary operator becomes
u? +n(al 1t 4+ (b, + 2, +(c, — 1:511 —b, " E_-:( a, U2+ (5.3.2:14)
(bl)um—Z +(_ 4 _Cl)um—l + (_ b, + Cl)um—Z +(_ Cl)um 2=0

Applying the Z-transform to (5.3.2-14), and using the properties of (5.3.2-2)-(5.3.2-

6), the transfer function of the complementary operator is
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Y. (2)
H = C =
¢(2) %)
by +1+ 2bcos(k,Ax)+ (— by —1+2(—b; +¢; )cos(k, Ax))z ™ —2¢; cos(k, Ax)z

1-by)+(a; —1+b;—cy )zt +(c; —a, )z 2
1)+ (g 1—C1 18

(5.3.2-15)

The poles of (5.3.2-15) are obtained by solving for the roots of the equation
(1-b)+(a,—1+b,—c )z +(c,—a,)z2 =0 (5.3.2-16)

giving the two roots

=1
22201—31
1-b

From the system theory we know that an input with a DC term causes instability in a
system having a pole at z=1. Therefore, the second-order COM excited with a

Gaussian pulse, which has a DC term, is unstable.
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Chapter 6 Complementary Derivatives Method

6.1 CDM Theory

In this section, and without loss of generality, we introduce the
Complementary Derivatives Method (CDM) on the classical Finite-Difference Time-
Domain (FDTD) method based on the Yee scheme [6-1], [6-2]. The arrangement of
electric and magnetic fields along the x-axis is shown in Fig. 6.1-1. The updating
equations are based on discretizing the derivative operators in time and space. The
first-order time derivative is discretized using the central difference scheme,
achieving second-order accuracy. The same procedure is used for space derivatives,
similarly achieving second-order accuracy if the grid size remains unchanged. To this
end, let us construct a computational domain composed of two regions with boundary
Xo as the interface between the regions (shown by dashed line in Fig. 6.1-1). In this
case we assume that the cell size changes from A4 to A° = A’at the interface. Using

Taylor series expansion, we express the magnetic fields on both sides of the interface

as
H(x+ &)= M ) (3720 )+ Y22 ) 0f) (6.1-1)
{1, -2 )= Hl)- /21 1)+ A2 (e - 0() (6.1-2)

By subtracting (6.1-1) from (6.1-2), and after several algebraic manipulations
we can write the derivative of H (Xo) as

H(x, +A"/2)=H(x, —A/2) A=A

& +a)2 7 H'()+0(2) (6.1-3)

H '(Xo):
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Fig. 6.1-1 Arrangement of E-fields and H-fields along the x-axis in the FDTD
domain based on the Yee scheme. The grid size changes from A to A at the

grid boundary.

Next, we construct a second domain in which the grid size changes from 4 to
AR = A7 Using identical procedure, the derivative of the magnetic field, H 1(xo), for

the new cell size can be written as

H(x, +A"12)=H(x, —A/2) A"-A

(A" + A)/Z 4 H ”(XO)’I' 0(2) (6.1-4)

H ,(Xo ) =

As we see in (6.1-3) and (6.1-4), the truncation error is first order. The

arithmetic average of (6.1-3) and (6.1-4) gives

H(xo +A72)—H(x - 4/2)  H(x, +4%2)-H(x, - 4/2)
A"+ A A"+ A

1(A—=A A"—A). .,
‘E[T* : )H (x)+0(2)

H '(Xo) =
(6.1-5)

As a sufficient condition for canceling the first-order truncation error, the third
term on the right-hand side of (6.1-5) should be zero. This results in the following

identity
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(6.1-6)

We define complementary derivatives as the two derivatives defined at the
interface of two different computational domains of the same structure. Both domains
have identical grid size, henceforth referred to as the common grid size, on one side
of the interface (to the left when considering Fig. 6.1-1). On the other side of the
interface, the grid sizes are different subject to the condition that their arithmetic
mean is equal to the common grid size. Averaging the two complementary derivatives
at the interface achieves second-order accuracy.

The above procedure requires two separate simulations. For obvious reasons,
this can be computationally unattractive. A single simulation implementation of CDM
is possible as explained next.

Let us consider a computational domain with two different grid sizes
separated by an interface as shown in Fig. 6.1-2. A second-order accurate E-field
interpolation at the interface (x=Xp) is obtained using the symmetric H-fields at x=xo-

A2 and x=xo+A/2 as

H(x, +A/2)—H(x, —Alz)+

X 0(2) (6.1-7)

H'(x,)=

Here, we assumed that there is an H-field node at x=xo+A/2. In the case where
an H-field node does not coincide with the location x=xo+A/2, we make use of the H-
fields at two nodes that exist, at x=xo+(A/2—5.) and x=x0+(A/2+3g). To see how this
is accomplished, we express the derivative at X, using two different differencing
schemes. The first expression for the derivative uses the points x=xo-A/2 and

X=Xo+(A/2-3.), resulting in
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, Hix,+A/2-6,)-H(x,-Al2) &, ..,
H ()= 0 FATZZ0)ZREG ZAT2) 0y ) o) 6.1
L

The second expression for the H-field derivatives uses the points x=x,-A/2 and

X=Xo+(A/2+3R), resulting in

, H(x, +Al2+6,)—-H(x,-Al2) 6, ,,,
(1) = 0 P22 00T H00 ZAT2) Gy o) 6.1:9
R

The arithmetic mean of (6.1-8) and (6.1-9) gives

H(x, +A/2-35,)-H(x, _A/2)+ H(x, +A/2+3,)—H(x, —A/2)

H(x) = 2(A-5,) 2(A+5,)

(6.1-10)
+4 0= 3,)H"(4;)+0(2)

To cancel the first-order truncation error, the third term of the right-hand side of (6.1-

10) should be zero. To achieve this, we require that

5, =6 (6.1-11)
Numerical implementation of the CDM can be achieved by simply

determining the number of the two FDTD cells that are used to calculate the

complementary derivatives. If we assume that one of the H-fields is in cell k; and the

other one is in cell k, (as measured from the interface), & and ¢g, as defined in Fig.

6.1-2, can be written as

A A
5, =E_(2kl +1)? (6.1-12)
5. = (2K, +1)A7'—% (6.1-13)

Note that k; and k, do not necessarily represent adjacent cells. Enforcing (6.1-

11), we have
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A A’ A A
> (2k, +1)7 = (2k, +1)?_? (6.1-14)

If we set A'=aA, where o is defined as the grid size reduction factor, and after
some manipulation, we have

1
o= m (6.1-15)
which gives the possible choices for cell size reduction factors. In other words, the H-
fields of (ki+1)" and (k,+1)™ cells from the grid boundary are complementary

derivatives for the grid size reduction factor of «.

1 3 3
1
- . B EO BSOS WO X
; Al | AN A

1

1
Xo—A Xo— A2 Xo  Xo+QkHL)A2  Xo+ A2 Xg+ (2ky+1) A2
A2 A2 A2

‘ Magnetic Field . Electric Field

Fig. 6.1-2 FDTD E- and H-field nodes used for the implementation of CDM in

the one-dimensional simulation.

To implement the CDM in the two-, and three-dimensional FDTD
formulations when the grid sizes only change in two directions, we use a similar
procedure to the one-dimensional case. Consider the following partial differential

equation

fe (X0, Vo1 Zo:t) = (X5, Yo, 20, 1) + B 1, (X5, Vo, 2, 1) (6.1-16)
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Suppose that the grid size in the x-direction changes from 4, to A% = A,” at Xo
and the grid size in the y-direction changes from 4, to ARy = 4, atyo (Fig. 6.1-3).

Discretizing (6.1-16) at (Xo, Yo) using the central difference scheme results in

ro_ 2
f[(XO,yO,ZO,t)ZOI(f(XO+A /2 Yo: 2o, ) f(X Ax/2’y0120’t)_Ax Ax o°f

(A, +4,)/2 4 ¢ J
(X, Yo + A} /2,2,,t ) f(Xo, Yo — Ay/z,zo,t) A=A, 9% f (6.1-17)
ﬁ( (a7 +4,)2 4y y]
+0(2)

Similar to the one-dimensional case, we assume there is another domain in
which the grid size in the x-direction changes from 4, to A%, = A,” at xo and the grid

size in the y-direction changes from 4 to ARy = Ay” atyo (Fig. 6.1-3). Discretization

of (6.1-16) at (o, Yo) gives

" " 2
ftc(xovyo’ZO!t):a( f(XO +Ax/2!y0120’t)_ f(XO _Ax/z’yOYZO’t)_ Ax _Ax 0 f

(A" +A,)/2 4 o ]

5 f(xo,y0+A;/2,zo,t)—f(xO,yO—Ay/Z,zo,t)_A’;—Ayazif (6.1-18)
(ar+a,)2 4 py? v

+0(2)

Arithmetic average of (6.1-17) and (6.1-18) gives
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fo+f°

2

f(X0+A’x/2’y01201t)_f(xo_Ax/z’YOvZo’t)
AL +A,

+ f(XO+A’;/2’y0’ZO’t)_ f(XO _Ax/ziyO’ZO’t)
Al +A,

_1(A’X—AX+A;’—AX)62f

2 4 4 ox? 1% (6.1-19)

f(xo,yo+A’y/2,zo,t)—f(xo,yo—Ay/Z,zo,t)
AL +A,

. f(xo,y0+A';/2,zo,t)— f(xo,y0 —Ay/2,zo,t)
AT +A,

1 A’y—AerA’;—Ay o%f

2\ 4 4 oy

Yo

+0(2)
The truncation error can be improved to the second-order if the relation
between grid sizes in the x-direction is

A "
_ AL+ A

A 6.1-20
= (6.1-20)
and the relation between grid sizes in the y-direction is
Ay +AT
A, = > (6.1-21)

We can use the same procedure to implement the CDM even if the grid sizes
are changing in the three directions. But in Maxwell’s equations, each updating
equation of the electric-field (magnetic-field) components uses the magnetic-field
(electric-field) components that lie on a plane. In other words, a two-dimensional grid
is needed to update each electric-, or magnetic-field components. Therefore,

implementing CDM is required for at most two directions in the Maxwell’s equations.
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v

Fig. 6.1-3 Two-dimensional discretized structure. The grid size in the x-

direction changes from 4, to A%, at x, and in the y-direction changes from 4, to

6.2 Numerical Experiments

6.2.1 One-dimensional Experiments

To explain the concept of CDM, two simple one-dimensional experiments are
presented in this section. First, we consider a one-dimensional domain of length
750mm with a uniform grid size of A=125um. This case will be considered as the
reference. The second-order Higdon’s absorbing boundary condition [6-3] is applied
at both ends of the computational domain to isolate any terminal reflections. The

source is positioned 250mm from the left domain boundary; the monitor point is at
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375mm from the left domain boundary, 125mm from the source (Fig. 6.2.1-1). The

excitation is a differentiated Gaussian pulse, given by

T T

Ht)=—2(t—t, )exp(—wj (6.2.1-1)

where t4=100ps and 7=20ps. The simulation results of the relative amplitude of E, for

this reference case are shown in Fig. 6.2.1-3 by a solid line.

250mm 125mm 375mm
® @ @ ®
Absorbing Source  Monitor Absorbing
Boundary Point Boundary
Condition Condition

Fig. 6.2.1-1 One-dimensional reference structure. The grid size is uniform

(4=125pm) throughout the domain.

In the next step, we increase the grid size only on the left side of grid
boundary to 4 =250um (left domain boundary to source is 250mm, source to monitor
point is 125mm, monitor point to grid boundary is 125mm. See Fig. 6.2.1-2). The grid
size on the right side of the grid boundary is the same as before A”=125um and the
domain size is left unchanged (grid boundary to left domain boundary is 250mm. See

Fig. 6.2.1-2).
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250mm 125mm 125mm 250mm
® ® @ @ )
Absorbing Source  Monitor  Grid . Absorglng
Boundary Point Boundary (B:our(lj_gry
Condition ondition

Fig. 6.2.1-2 Simulated structure with different grid sizes. The grid size on the

left side of the grid boundary is 4=250um and on the right side of the grid

boundary is 4’=125um.

The simulation results of the structure depicted in Fig. 6.2.1-2 are shown in

Fig. 6.2.1-3. The line with diamonds shows the results with the different grid size;

and the line with circles illustrates the results when CDM is applied to cancel the

first-order truncation errors. Since the grid size reduction factor is 1/2, the H-fields of

the first and second cells have been used as complementary derivatives. As we see in

Fig. 6.2.1-3, the application of CDM significantly reduces reflection from the grid

boundary.
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Fig. 6.2.1-3 One-Dimensional FDTD simulation results using different grid size

scenarios; Reference: Standard Yee scheme applied to a domain with a
uniform cell size of A= 125um. Case 1: Standard Yee scheme applied to two
domains with different grid sizes of 4 = 250um and 4’ = 125um. Case 2: CDM

applied to two domains with different grid sizes of 4 =250um and A’= 125zm.

In the second numerical experiment of this section we examine the case, in
which there are different sets of complementary derivatives. Here, the one-
dimensional FDTD domain is 340mm long with the grid size of 4=50xm, and the
second-order Higdon’s absorbing boundary condition [6-3] is applied at both ends of
the computational domain to isolate any terminal reflections. The source is positioned
120mm from the left domain boundary and a monitor point is selected 50mm away

from the source (Fig. 6.2.1-4). The same excitation as the previous experiment is
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used. The simulation results for this reference case are shown in Fig. 6.2.1-7 by a

solid line.
120mm 50mm 170mm
® @ @ @
Absorbing Source  Monitor Absorbing
Boundary Point Boundary
Condition Condition

Fig. 6.2.1-4 Simulated structure as reference. The grid size is 4=50um on the

entire domain.

Next, we increase the grid size on the left side of the grid boundary to A=
200um (Fig. 6.2.1-5). The grid size on the right side of the grid boundary remains the
same A4”= 50um and the domain size is left unchanged (grid boundary to left domain

boundary is 120mm. See Fig. 6.2.1-5).

120mm 50mm 50mm 120mm
® @ @ @ @
Absorbing Source  Monitor Boundary of Absorbing
Boundary Point  Different Grid Size Boundary
Condition Condition

Fig. 6.2.1-5 Simulated structure with different grid sizes. The grid size on the

left side of the grid boundary is 4= 200um and on the right side of the grid

boundary is 4”= 50um.
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In this experiment, the grid size reduction factor is a=1/4. Figs. 6.2.1-6 (a)
and 6.2.1-6 (b) show the two different sets of points that can be used as
complementary derivatives for a grid size reduction factor of a=1/4.

The simulation results of the structure depicted in Fig. 6.2.1-5 are shown in
Fig. 6.2.1-7. The dotted line with squares shows the results of different grid sizes. The
line with crosses illustrates the simulation results of different grid sizes when CDM is
applied (Fig. 6.2.1-6 (a)). The line with circles illustrates the simulation results of
different grid sizes when CDM is applied (Fig. 6.2.1-6 (b)). As we see in Fig. 6.2.1-7,

when CDM is applied a significant reduction in the grid boundary reflection is

achieved.
Complementary
/ Derivatives \
—i ® o
A A' A A' A'
(@)
Complementary
Derivatives
— @ I—Q—I o—il—C——0—1—
A : A, A! A! AI
(b)

Fig. 6.2.1-6 Two different sets of complementary derivatives for a grid size

reduction factor of a=1/4.
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Fig. 6.2.1-7 One-dimensional FDTD simulation results using different grid size

scenarios. Reference: Standard Yee scheme applied to a domain with a

uniform cell size of A = 50um. Different Grid size: Standard Yee scheme

applied to two domains with different grid sizes of 4 = 200um and A”= 50um.
CDM, Method 1: CDM (Method 1, Fig. 6.2.1-6 (a)) is applied to two domains with

different grid sizes of 4 =200um and 4’=50xm. CDM, Method 2: CDM (Method
2, Fig. 6.2.1-6 (b)) is applied to two domains with different grid sizes of 4 =

200um and A4’=50um.

6.2.2 Two-dimensional Experiments

Here, the CDM is applied to the problem of a partially filled parallel plate
waveguide of dimensions 420mmx30mm. First, we consider a uniform grid size in the

entire computational domain of the guide with Ax=Ay=1mm (Fig. 6.2.2-1). The
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numerical results obtained from this case will be considered as the reference solution
(E™). The z-polarized source is positioned at (180mm, 15mm) and the monitor point
is selected at (200mm, 15mm). The second-order Higdon’s absorbing boundary
condition [6-3] is applied on boundaries at x=0 and x=420mm. The parallel plate
waveguide is partially filled by a material of &=10 and the width of 50mm (Fig.
6.2.2-1). The rest of waveguide is empty (&=1). The excitation is a modulated

Gaussian pulse

f(t)= Sin(27zfmt)exp[_ Mj

T

with ty = 480ps, = 160ps, and f,, = 10GHz.

PEC

Source K

e_0
Monitor
Point

ABC

370mm 50mm

Fig. 6.2.2-1 Simulated structure as reference. The grid size is uniform

(Ax=Ay=1mm) throughout the computational domain.

Next, we solve the same problem, but decrease the cell size to the right of the
interface positioned at x=220mm (Fig. 6.2.2-2) to Ax” = 0.5, 0.25 and 0.125mm,

corresponding to reduction ratios of 1:2, 1:4 and 1:8, respectively. The cell size in the
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y-direction, locations of the source and monitor point, and excitation pulse are

unchanged.
200mm, Ax'=0.5,
220mm, Ax=1mm 0.25, 0.125mm
> < >
ABC Sourcex \Grid Boundary
ABC

®_0
Monitor
Point

-« > <>

370mm, g=1 50mm, £=10
Fig. 6.2.2-2 Simulated structure with different grid sizes. The grid size in the y-
direction is uniform (4dy=1mm) on the entire domain. The grid size in the x-

direction changes from Ax = 1mm to Ax’= 0.5, 0.25, and 0.125mm.

We define the normalized error as

Eref _ E

max(E"™ )

In Fig. 6.2.2-3, we show the Normalized Error as a function of time for the

Normalized Error =100 x (6.2.2-1)

cases with and without the application of CDM. A significant reduction of error in the
E-field is observed when CDM is applied. Most importantly, it is observed that the
error resulting from the application of CDM is practically independent of the mesh

reduction ratio.
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Fig. 6.2.2-3 Normalized error in the E-field as obtained using the standard

FDTD interpolation scheme with and without CDM.

In the next experiment we simulate a dielectric slab-loaded rectangular
waveguide [6-4]. A dielectric slab-loaded waveguide is a rectangular waveguide
which is partially loaded with a slab of dielectric material. The dielectric slab is
located vertically on the right side of the rectangular waveguide as shown in Fig.
6.2.2-4. The relative permittivity and permeability of the dielectric slab are & = 11.7
and g = 1, respectively. The side lengths for the rectangular waveguide along the x-
and y-coordinates are b = 10.29mm and a = 20mm, and the unfilled empty

rectangular region is of width d = 13.98mm.
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l<PEC
L v |

y d=13.98mm

Fig. 6.2.2-4 Dielectric slab-loaded rectangular waveguide.

First, we consider a uniform grid size in the interior region of the rectangular
waveguide with Ax = Ay = 0.1942mm which results in 54 cells in the x-direction and
104 cells in the y-direction (Fig. 6.2.2-5). The perfect electric conductor boundary
condition at the waveguide walls is simulated by appropriately truncating cells at the
axial components of the electric field, E..

Initially, there is no excitation inside the waveguide region; all spatial
magnetic and electric field components are assumed to be zero. A Gaussian pulse is
then used to excite the axial z components of the electric field. The peak is placed at

the center cell of the waveguide at (X, Yc). The excitation pulse is given by

(xe P ely-ye )?
G(X, y,t = O): Ae 272 (622-2)

Although any arbitrary field can be assigned to the cells inside the waveguide region,
the Gaussian pulse is used as the initial assigned field because of its capability to

excite all possible spatial frequency harmonics inside the rectangular waveguide.
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The cutoff frequencies are obtained by first recording the temporal variation
of the fields at the (i=5, j=5) for N=16384 time steps, and then applying the FFT
algorithm to convert the time domain data to the frequency domain. The first

calculated cutoff frequency is f.=17.47 GHz (Table 6.2.2-1).

d=13.98mm a=6.02mm

S
>

e <

.
>

A 77 P * A
PEC >
air dielectric
AX=A=0.1942mm c=1 c+11.7 b=10.29mm

<PEC

XT N Y Y

y Ay=A=0.1942mm

N

Fig. 6.2.2-5 Discretized structure using a uniform grid size of Ax = Ay = A=

0.1942mm.

Next, we increase the spatial grid size to Ax=Ay=4 =0.6657mm which results
in 17 cells in the x-direction and 31 cells in the y-direction (Fig. 6.2.2-6). The
boundary condition at waveguide walls is simulated the same manner as the first
experiment, i.e. by appropriately truncating cells at the axial components of the
electric field, E..

Again, one-fourth of a Gaussian pulse with its peak placed at center is injected
on the waveguide cross section to excite the waveguide. Using the same procedure to

calculate the cutoff frequency results at f; = 16.82GHz (Table 6.2.2-1).
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Fig. 6.2.2-6 Discretized structure using a uniform grid size of Ax = 4y = A=

0.6657mm.

The structure of Fig. 6.2.2-6 is then refined at the vicinity of boundary
between air and dielectric to improve the simulation results (Fig. 6.2.2-7). In the
refined structure we reduce the grid size to half of the original grid size in the y-
direction (4y=0.6657mm, Ay'=0.33285mm) for 6 cells adjacent to the grid boundary
in the y and —y-directions. Using the same excitation and procedure to calculate the
cutoff frequency results at f; = 16.91GHz (Table 6.2.2-1). In the next simulation we

apply the CDM and the calculated cutoff frequency is f.=17.13GHz (Table 6.2.2-1).
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Fig. 6.2.2-7 Structure is discretized uniformly in the x-direction with Ax =
0.6657mm. In the y-direction, the original grid size of Ay = 0.6657mm is refined

to 4y' = 0.33285mm in the vicinity of the grid boundary.

To verify the results of the first cutoff frequency and accuracy of different
experiments, analytical expressions are utilized. The partially loaded dielectric slab
rectangular waveguide can be analyzed in terms of normal modes of propagation
based on the longitudinal-section magnetic (LSM) and longitudinal-section electric
(LSE) modes. The axial and transverse components of the electric and magnetic field
distribution are expressed in terms of either a magnetic-type or an electric-type vector
potential. The vector potentials are selected in the transverse plane normal to the air
and dielectric interface. The potentials are expanded in terms of a set of rectangular
orthogonal functions. Enforcing the perfectly conducting and the air/dielectric media
interface boundary conditions, the following analytical expressions for the cutoff
frequencies for the two types of normal modes can be obtained. For LSE modes, the

magnetic-type vector potential, 74, is given by
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M, =a,%,(x,ye " (6.2.2-3)

¥, (x,y)= Asin(hy)cos(mTﬂx) O<y<d (6.2.2-4)

¥, (x, y)=Bsin(p(a - y))cos(%j d<y<a (6.2.2-5)

where m is an integer, and the parameters p and h are obtained from the following of

transcendental equations
htan[p(a —d)]=—ptan(hd) (6.2.2-6)
p?2=h?+ (s, —1K> (6.2.2-7)

Similarly for LSM modes, the electric-type vector potential, /7 is given by

M, =a,%,(x,yle (6.2.2-8)
¥, (x,y)= Acos(hy)sin(%j O<y<d (6.2.2-9)
¥, (x, y)=Bcos(p(a - y))sin(mTﬂXj d<y<a (6.2.2-10)

where m is an integer, and the parameters p and h are obtained from the following of

transcendental equations
—ptan[p(a—-d)|=he, tan(hd) (6.2.2-11)
p?=h? + (s, —1kK> (6.2.2-12)

The LSE mode and LSM mode cutoff frequencies are given by

2 7Y2
f,=S0 2 [T (6.2.2-13)
27 b
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The first cutoff frequency for the TM polarization obtained from this
analytical solution is compared with the cutoff frequencies calculated from previous
experiments (Table 6.2.2-1). As we see, a non-uniform grid decreases the simulation
time significantly and the CDM, which has the slight computational cost, improves
the accuracy.

Table 6.2.2-1 Simulated cutoff frequencies and the analytical result.

Gridding Type CDM | Grid Size Total Cutoff Error
(mm) Simulation Frequency | Percentage
Time (sec.) (GH2) (%)
Theory N/A N/A N/A 17.68 N/A
Fine Mesh N/A 0.1942 118 17.47 1.1878
Coarse Mesh N/A 0.6657 3 16.82 4.8643
Coarse Mesh +| No 0.6657 11 16.91 4.3552
Refined Mesh
Coarse Mesh + | Yes 0.6657 12 17.13 3.1109
Refined Mesh

6.2.3 Three-dimensional Experiments

In this experiment we demonstrate the performance of CDM in a three-
dimensional simulation domain. The simulation domain is a box with dimensions of
140mmx390mmx140mm (Fig. 6.2.3-1). We set the second order Higdon’s absorbing
boundary condition on the outer surfaces of our domain. The source is located at
(70mm, 50mm, 70mm); the monitor point is at (7Omm, 55mm, 70mm). The excitation

is a Gaussian pulse
t—t,
f(t):exp[——( TZ") J

with ty = 80ps and 7= 20ps. The grid size is A=0.5mm and the simulation result is

called reference.
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In the next step, we increase the grid size on the left side of grid boundary (in
the y-direction) to 1mm. The grid size on the right side of the grid boundary and all
measurements are unchanged.

In Fig. 6.2.3-2, we show the Normalized Error (6.2.2-1) as a function of time
for cases with and without the application of CDM. A significant reduction of

reflection is observed.

140mm
A=0.5mm

Monitor Point

ps /

Source Point

. Grid Boundary

140mm /
A=0.5?

Fig. 6.2.3-1 Structure of the three-dimensional simulation domain.

300mm, A=1, 0.5mm 90mm, A=0.5mm
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Fig. 6.2.3-2 Normalized error in the E-field as obtained using the standard

FDTD interpolation scheme with and without CDM.

The next simulation compares the performance of CDM in the three-
dimensional structures to analytical solutions. The simulated structure is a waveguide
with an infinitely thin slot-line as center conductor (Fig. 6.2.3-3) [6-5]. This structure
gives rise to the field singularities at the edges of the center conductor. The fields
very close to the center conductor change rapidly and, therefore, a fine grid should be
used to resolve these variations. This structure supports a TEM mode, therefore the
impedance is well defined and can be used as an indicator of accuracy. As mentioned
in [6-5], the dimensions are chosen such that the slot geometry corresponds to
measurements typically used with Monolithic Millimeter-wave Integrated Circuits
(MMIC’s). For this structure, the characteristic impedance of the TEM mode can be

derived analytically by conformal mapping and is Z;=94.2.2[6-5].
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32um1 16pm ¢|

V ‘ 64um > 64um g

Fig. 6.2.3-3 Cross section of the waveguide with an infinitely thin slot-line as

the center conductor. The exact impedance is Z. = 94.20.

The cross section of the waveguide is 32umx128um. The infinitely thin
conducting slot has a height of 16xm and is located exactly in the center of the
waveguide (Fig. 6.2.3-3). The structure is discretized uniformly in all directions with
AX = Ay = Az = 8um (Fig. 6.2.3-4). The Perfect Electric Conductor (PEC) boundary

condition is applied on waveguide’s walls. The excitation is a Gaussian pulse
t—t, f
f (t) = exp[_ #J
T

where tqy = 3ps, 7= 1ps and is injected between the strip-line and the short face of the
waveguide during simulation. Results are obtained by recording the temporal

variations of voltage and current. Using the relation
V(t)=-[E-dl (6.2.3-1)
the voltage between the waveguide and the center conductor is calculated by using

the calculated electric fields in the y-direction (Fig. 6.2.3-4). The Ampere’s law
| :jlﬁ dl (6.2.3-2)
is used to calculate the current in the center conductor from the magnetic fields in the

x- and y-directions. The FFT is then applied to convert the time domain data to the
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frequency domain. The calculated characteristic impedance is Z.=72.35(2 (Table

6.2.3-1).

/

Ax1

V
U /

«—> H‘/'AZ
Y Ay Ay

Fig. 6.2.3-4 Discretized structure of the waveguide with infinitely thin slot-line

as center conductor.

In the next simulations, the grid sizes in the x- and y-directions are reduced to
4um, 2um, and 1um but the grid size in the z-direction is kept unchanged at 4z =
8um. The calculated characteristic impedances and the percentage of errors for each
case are shown in Table 6.2.3-1.

Next, a non-uniform grid is used to resolve the structure more precisely. The
coarse grid size of Ax = Ay = 4um is reduced to Ax' = Ay’ = 1um around the strip-line
conductor; Az = 8um is unchanged (Fig. 6.2.3-5). The calculated characteristic
impedance for the non-uniform grid is Z;=90.18 2 (Table 6.2.3-1). As we compare it
with uniform grid size of Ax = Ay = 4um, the error percentage is reduced by
approximately 7.75%. If we apply the CDM in the FDTD simulation of this structure,

the calculated characteristic impedance is Z;=90.62 (2 (Table 6.2.3-1), which is an
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improvement over the case without CDM. The

are summarized in Table 6.2.3-1.

Grid size = 4um

Grid size = 4pym

calculated characteristic impedances

X Length = 56pm Length = 56um
> >
v v
77 77
4pm I
Grid size = 1um[
4pm
4pm
Grid size = 1me
4pm 1
v v
«— /7 <« — /7 <« >
4um 4um 4um 4pm

«—>
Grid size = 1pm

Fig. 6.2.3-5 Discretized structure of slot-line waveguide.

Table 6.2.3-1 Error in the calculated characteristic impedance using the

uniform and non-uniform grids with and without CDM.

Method, Gridding Type CDM Main Grid | Characteristic Error
Size (um) Impedance Percentage
Q) (%)
Mode Matching, N/A N/A N/A 94.2 N/A
FDTD, Uniform N/A 8 72.35 23.20
FDTD, Uniform N/A 4 82.88 12.02
FDTD, Uniform N/A 2 88.40 6.16
FDTD, Uniform N/A 1 91.92 2.42
FDTD, Non-uniform No 4 90.18 4.27
FDTD, Non-uniform Yes 4 90.62 3.80
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6.3 Analytical Investigation of CDM

6.3.1 Fundamental Modes of Propagation in the Numerical

Solution: Advection Equation

In this section, using the same procedure as [6-7], we find the fundamental
modes of propagation in numerical solution of the advection equation. Consider the
one-dimensional advection equation

LN (6.3.1-1)
ot OX
If we use the finite-difference semi-discretization scheme, in which only the spatial

derivative is approximated with a central difference, we have

dun - —¢ un+1_un—1 6.3.1-2
dt 2A (6.3.1-2)

where the grid in the x-direction is uniform (Fig. 6.3.1-1) and

u, 0= U (x,. 1)} (6.3.1-3)

Fig. 6.3.1-1 Uniform grid.

Throughout this chapter we suppose that {u,(t)} are in L, space or square integrable,

which means that L, norms
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(f_ilunlzdtj]/2 (6.3.1-4)
are finite. Therefore, the Fourier transforms {d,(Q)} of the semi-discrete numerical
solutions {un(t)} exist and are defined as

6,(©Q)=[" u,(te""dt (6.3.1-5)

Using the Fourier transform makes the investigation of properties of {G(n)} easier.

The Fourier-transform of (6.3.1-2) is

iQd, = —c(%j (6.3.1-6)
or

A L OANA &

Ug,y + ZI(TJU” -u,, =0 (6.3.1-7)

The solution of this recurrence equation can be achieved by seeking
“fundamental’ solutions. Fundamental solutions are defined as the solutions that have

aratio
et E(Q) (6.3.1-8)

that is independent of n. It is worthy to note that E(Q) is a frequency domain

representation of the standard space-shift operator E defined by the identity
u,, =Eu, (6.3.1-9)

in the time domain. Substituting (6.3.1-8) into (6.3.1-7) results in

(é n 2{%) - él}jn 0 (6.3.1-10)
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Therefore, E(Q) must satisfy the characteristic equation

E? +2i(%]é—1=0 (6.3.1-11)

The roots of (6.3.1-11) are

E,(Q)= 4[%} 1-[%}2 (6.3.1-12)

E,(Q)= —i(%j - —(%jz (6.3.1-13)

which are called the ‘characteristic ratios’.

Therefore, the numerical solution of (6.3.1-2) can be expressed as

u, )= {p, ()} + {0, (1)} (6.3.1-14)
which has two fundamental solutions. These two different fundamental solutions

describe different propagation properties. One solution has the characteristic ratio of

Pra@) _ g () _-(%} 1_(%]2 (6.3.1-15)

and describes the rightward propagating wave. It has a positive phase velocity [6-5]

of
QA
Q)=——~ -
¢ (@) Zren(ATd) (6.3.1-16)
and positive group velocity [6-5] of
oA
v,(Q)=c 1—(Tj (6.3.1-17)

The other solution has the characteristic ratio of
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6@ g o) _i(%} _[%jz (6.3.1-18)

6,(Q)

and describes the leftward propagating wave. It has a positive phase velocity [6-5] of

QA
(€)= 7 —arcsin(QA/c) (6.3.1-19)

and negative group velocity [6-5] of

v,(Q)=—c,|1- (%j (6.3.1-20)

6.3.2 Reflection from Grid Boundary: Standard Treatment of the
Grid Boundary in Advection Equation

The reflection coefficient from the interface of two grids with different sizes is
calculated in [6-5]. Since the same procedure is used to calculate the reflection
coefficient from grid boundary when the CDM is applied, we briefly review the
procedure discussed in [6-5].

Suppose that a non-uniform grid is used for discretizing the domain (Fig.

6.3.2-1) and the grid size changes from 4 to A”at interface X,=0.
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Fig. 6.3.2-1 Non-uniform grid.

Again, the finite-difference semi-discretization is used to approximate equation

(6.3.1-2).

dup _of Unsg =Uny . for n=-1-2,.. (6.3.2-1)
dt 2A

du, =_¢C Unig ~ Uns , for n=12,... (6.3.2-2)
dt 2A'

At the interface Xy=0, the spatial derivative can be approximated as

du, u, —u,
:—C LT
dt (A+A’j (6:3.2:3)

We refer to (6.3.2-3) as the standard treatment of grid boundary. The CDM, which is
a modified treatment of grid boundary, is described in section 6.3.3.

The numerical solution of the non-uniform grid in Fig. 6.3.2-1 can potentially
have four fundamental solutions, which are the forward and backward solutions in
X<0, and forward and backward solutions in X>0. If there is a wave propagating
from left to right, reflection can only occur at the interface and only three

fundamental solutions will exist (Fig. 6.3.2-2).
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do
+
+
E I'-O
Po
X,=0

Fig. 6.3.2-2 Wave is propagating from left to right. In addition to the rightward

waves in X<0 and X>0, there is a reflection from the interface in X<0.

Let Py, Gy, and fy denote the fundamental solutions at the interface. The
continuity at the interface Xo=0 gives
Po(Q)+§,(Q)=4,(Q) =, (Q) (6.3.2-4)
Also, we suppose that El, and éz are the characteristic ratios corresponding to the

solutions of {P,}, {G,} to the left of origin defined by (6.3.1-15) and (6.3.1-18),

respectively, and F is the characteristic ratio of the solution of {f,} to the right of

origin given by

fa (@) _ £@)- _i(Q_A'j + e (Q_A'JZ (6.3.2-5)
C C

The reflection coefficient is defined as

p(Q)== @) (6.3.2-6)

Using (6.3.2-4) and (6.3.2-6), the transmitted wave can be calculated as

(@) =G, (@)= L+ p(@))f, (@) (6.3.2-7)
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To calculate the reflection coefficient, we express G, and U_; in terms of p,

and q, as
U, = IEl]o = 'E(f)o + do) (6.3.2-8)
U,=E"p+E'G = _(Ez Py + Elﬁo) (6.3.2-9)

The Fourier-transform of the semi-discretization equation at the interface Xy=0

(6.3.2-3) can be written as

. g, —a
iQu, = —c[ Z+A’lj (6.3.2-10)

By substituting (6.3.2-4), (6.3.2-8) and (6.3.2-9) into (6.3.2-10), we have

q ):_C[ﬁ(ﬁo +ao)+(é2 Po + é1ao)J

iQ(p, +d, Y (6.3.2-11)
which results in
2 N2
L (2] ()
p(@)=J - (6.3.2-12)

P 2 N
s ()

C c
The reflection coefficient becomes particularly interesting if we apply group

velocities. If (L24/c)<1 and (£247c)<1, the reflection coefficient can be written as

vV, =V
p=—" (6.3.2-13)
vV, +Vi

where v, and vg are the group velocities of waves propagating rightward in the left-

side and right-side of the origin, respectively, which are
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2
v =c 1—(QAJ (6.3.2-14)

N 2
— 1—(—Aj (6.3.2-15)

6.3.3 Reflection from Grid Boundary: CDM Treatment of the Grid

Boundary in Advection Equation

In this section, we calculate the reflection coefficient when the CDM s
implemented at the interface. When the CDM is applied to the interface of two grids
with different sizes, the semi-discretization approximation at the interface is modified

from (6.3.2-3) to

du, lu—u, 1u/—u,
—_—=—C| — + — -
dt [2 A'+A 2 A"+A (6.3.3-1)

(Fig. 6.3.3-1).

U, U} U5
u, U, 1 A" g
—>e——— Sl > i
I |
| | | |
X, X, X=0 X} X,

Fig. 6.3.3-1 Implementing the CDM on a non-uniform grid.

Using the same argument as in section 6.3.2, only three fundamental solutions

exist (Fig. 6.3.2-2). The same procedure as in section 6.3.2 is used to calculate the
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reflection coefficient. First, suppose that p,, Gy, and fy denote the fundamental

solutions at the interface. The continuity at the interface Xo=0 gives

Po(Q)+ 6, (@) =G, (@) = 7, () (6.3.3-2)
We assume that I§1, and éz are the characteristic ratios corresponding to the

solutions of {p,}, {G,} to the left of the origin as defined by (6.3.1-15) and (6.3.1-

18), respectively. Also, suppose that IfA, and |fN are the characteristic ratios of

rightward propagating solutions to the right of the origin with grid sizes of 4”and 4,

respectively, given by

ﬁA,(Q)z_i(_QA’j+ 1_(_%'} (6.3.3-3)

C C

ﬁA"(Q)z—'(Q—N} 1—(Q—A”j2 (6.3.3-4)
C C

The reflection coefficient is defined as before

p(Q)== Q) (6.3.3-5)

as

07 = Fyli = Fu (B, + d5) (6.3.3-6)
(7 = F,.Gy = Fu (o + o) (6.3.3-7)
0., = E;Po + £ = ~(E.B, + E) (6.3.3-8)

The Fourier-transform of the modified semi-discretization equation at the

interface Xo=0 using the CDM (6.3.3-1) can be written as
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A 10 -0 100
-iQU,=—¢/ =+ 24—t 6.3.3-9
0 (2 A+A 2 A"+Aj (6.3.3-9)

By substituting (6.3.3-2), (6.3.3-6), (6.3.3-7) and (6.3.3-8) into (6.3.3-9), we have

oo (1 BB+ o)+ B+ Eido) | 1 Fu(Bo+ o)+ BBy + Eid)
1By + o) = ({2 A+A "2 A+A" (6.3.3-10)
which results in
1 ¢ (~ 2\ 1 ¢ [~ =
. = Fol+= F
ple)=Jo _ +2A+A’( 2t A)Jr2A+A”( 2t A)
Po iQ+1 ¢ (A1+I£A)+1 ¢ (A1+|5A)
2A+A 2A+A
or
] { [ _Jl_(mf} ] ”(Jl_(mf _Jl_(mﬂ
n A+ A C A+A c
(6.3.3-11)

The reflection coefficient becomes particularly interesting if we, again, apply
group velocities. If (£24/¢)<1, (£247¢)<1 and (£24c)<1, the reflection coefficient can

be written as

1 ,
(VL _VR)+

_A+A
(v +vi)+

At (6.3.3-12)

(VL "’Vg)

A+A' A+A"

where v, V&, and v’ are the group velocities of waves propagating rightward in the
left-side of the origin, in the right-side of the origin with grid size of 47 and in the

right-side of the origin with grid size of A" respectively, which are

2
v =¢ 1—(%j (6.3.3-13)
C
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N2
Vg =C 1—(QA j (6.3.3-14)

, (Q_A"Jz (6.3.3-15)

6.3.4 Fundamental Modes of Propagation in the Numerical
Solution: Leap-Frog Scheme of the Wave Equation

In this section, we investigate the fundamental modes of propagation of
numerical solution of the wave equation using the leap-frog scheme. Consider the

one-dimensional wave equation

2 2
é(;tlj —c? 2;2) =0 (6.3.4-1)

The following equations are solved when the leap-frog scheme is used to solve the

wave equation

N _ N (6.3.4-2)
ot OX
N _ N (6.3.4-3)
ot OX

If we use the finite-difference semi-discretization to approximate these

equations, we have

o1 o1
du; 25 (6.3.4-4)

93



1
" Mia Y (6.3.4-5)
dt h,
where
hj=Xp1-X; (6.3.4-6)
_ h.-+h.
h, =— > = (6.3.4-7)

I
X, X4 ' Xy X
Xo
I
Vap Vap v Viz  Vap
I
I
h, hy hy

X-3/2 X-1/2 X1/2 XSIZ

Fig. 6.3.4-1 Leap-frog scheme to solve the wave equation.

We suppose that {u;(t)} and {vj+12(t)} are in L, space, which means that L,

norms
0 2 Y2
(j uj| dt) (6.3.4-8)
2 V2
[Clv o ot (6.3.4-9)
S
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are finite. Therefore, the Fourier transforms 4,(Q) and V,,,,,(Q) of the semi-discrete

numerical solutions {u;(t)} and {vj+12(t)} exist and are defined as

6,(Q)=" uj(tle"dt (6.3.4-10)
0 a@)= v (et (6.3.4-11)

1 .1
iQu, —e—2_ 2 (6.3.4-12)
h;
. A~ G 1 _0
iV, =c———-L (6.3.4-13)
1+ h]
or
A Q=L .
v ,—i—hu;-v ;=0 (6.3.4-14)
i+~ C i—
2 2
J _ l]J'+1 _aj
TS (6.3.4-15)
2 |—hj
c

Use (6.3.4-15) to calculate Vj q1,, and Vj_y,,, and substitute them into (6.3.4-14).

After some manipulation, we have

1 . 1 Q= 1 N 1 .
Ujy — +i—h; + u; + u;, =0 (6.3.4-16)
. Q . c Q) . Q
e e ) e

First, we suppose that the grid is uniform, h; =ﬁj =A, for all j's (Fig.

6.3.4-2). Therefore (6.3.4-16) can be written as
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(6.3.4-17)

(6.3.4-18)

u, u, U, u, u,
3 A | A \:, A | A R
< e e e >
I
X, X4 y Xy X,
Xo
I
Vi Vag 1 Vip  Vap
I
I
A | AT AT
X3 Xip X1 X2

Fig. 6.3.4-2 Leap-frog scheme to solve the wave equation. A uniform grid is

used.

The fundamental solutions of this recurrence equation can be found by substituting

uj+1

- =EQ)

Uj

in (6.3.4-18). The characteristic equation is

~ 2 ~
E? —[2—Q—2AZJE +1=0
C

and its characteristic ratios are
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~ 2 4 2
£ —1-22 p +\/EQ—A4 S (6.3.4-20)

2 ¢ 4 c* c
~ 1 QZ 2 1 Q4 4 QZ 2

Therefore, we can conclude that the numerical solution of (6-3-4.1) can be

expressed as

{U j (t)} = {p j (t)}+ {q j (t)} (6.3.4-22)

which has two fundamental solutions. These two different fundamental solutions

describe different propagation properties. One solution, which has the characteristic

ratio of
p.@) - 10?7, \/1 o, o,
= E(Q)=1- A A =22 A 3.4-
5 (0) B G (6.3.4-23)

describes the rightward propagating wave. The other solution has the characteristic

ratio of
6..Q) - 102 , ‘/194 . O,
=E(Q)=1-25A~ - |- A - A _
§;(@) () 2 ¢ 4 c* 2 (6.3.4-24)

describes the leftward propagating wave.

6.3.5 Reflection from Grid Boundary: Standard Treatment of Grid
Boundary in the Wave Equation

Here, we calculate the reflection coefficient from the interface of two grids
with different sizes. Suppose the grid size changes from A to A’at interface Xo=0 (Fig.

6.3.5-1),
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Vi Vap

& >
<€ >

H 1 h0 hl
X—3/ 2 X—l/ 2 X1/2 X3/ 2

A
Y
A

Y

Fig. 6.3.5-1 Non-uniform grid in leap-frog scheme.

Using the same argument as in section 6.3.2, only three fundamental solutions
exist (Fig. 6.3.2-2). The same procedure as section 6.3.2 is also used to calculate the

reflection coefficient. First, suppose pg, Go, and ry denote the fundamental solutions

at the interface. The continuity at the interface Xo=0 gives

B0 (Q)+G(Q) =G, (Q) = () (6.3.5-1)
We assume that él, and éz are the characteristic ratios corresponding to

solutions p;, §; to the left of the origin as defined by (6.3.4-23) and (6.3.4-24),

respectively. Also, suppose IfA' is the characteristic ratio of the rightward

propagating solution to the right of the origin with a grid size of A4, given by

~ 2 4 2
Fo(0)=1-12 42 +\/%?—4A’4 —?—ZM (6.3.5-2)

The reflection coefficient, as defined before is

plQ) == (6.3.5-3)
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To calculate the reflection coefficient, we express G; and G_; in terms of p, and ¢

as
0, = Fliy = F(p, + o) (6.3.5-4)
U, = Eil Po + Egldo = _(Ez Po + Elqo) (6.3.5-5)

The Fourier-transform of the semi-discretization approximation (6.3.4-16) at the

interface Xo=0 can be written as

L g 1 +i—=h + ! a, + ! U,=0
T T U T P
c 0 c 0 c -1 c 1
or
1 . 1 Q- 1 ). 1 .
Eul —(E—C—Zho +h—1JU0 +h_lU71 = 0 (635'6)

By substituting (6.3.5-1), (6.3.5-4) and (6.3.5-5) into (6.3.5-6), we have

~ 2 _
hiF(ﬁo ‘Hio)_(hi_g_gho +LJ(60 +do)+i(E2f’o + Eldo)z 0 (6.3.5-7)
o C h

0 hfl -1

which results in

E,-1 Q'= F-1

W h e,
p)=S T ¢ o (6.3.5-8)
2
o E -1 0' - Fo1
+=hy +———=
h_, c h,
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6.3.6 Reflection from Grid Boundary: CDM Treatment of Grid

Boundary in the Wave Equation

In this section, we calculate the reflection coefficient when the CDM is
implemented at the interface (Fig. 6.3.6-1). At the interface of two grids with

different sizes, the semi-discretization approximation (6.3.4-4) is modified to

1 2 1 2 2
S P S T 6.3.6-1
2 hy 2 h ( )

! 14
ViV, ViV,
du, 5
dt

If we take the Fourier-transform of (6.3.6-1), we have

iQLiozci — 2 2
2 h, 2 ny

1 g +i\7”—igﬁ —LO _ 1 v, =0 6.3.6-2
2hy 3 2hy 5 ¢ 2h 5 2n) - (6:3.6:2)

N

The Fourier-transforms of the following finite-difference semi-discretization

approximations

dv} ,
2 _ Uil (6.3.6-3)
dt h,

—Uy (6.3.6-4)

2 _ YUy (6.3.6-5)
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Q) =c (6.3.6-6)
2 1
S _G

IQVE —c2 20 (6.3.6-7)
2 2
N

iV ; =¢ 2 - L (6.3.6-8)

Substituting (6.3.6-6), (6.3.6-7), and (6.3.6-8) into (6.3.6-2) results in

c 1 /(. - c 1 (+, - .~ Cc|1 1 1 0~y
WT(Ul_Uo)“LF_Q (U1_Uo)_'QUo_E[?+W}Q (uo_u—l)_o (6.3.6-9)
0i—h 0 i—h 0 0/i—h

c ! c ’ c

which is the Fourier-transform of the CDM treatment of the interface.

A!!,h/6
A A A',h7
D S T < SEE— )
| n, | hy
ll.l llJ u u, u”
2 1 0 1 1
Ho”
>
hy
h, <
| -1 | i
v| v| v, v
-3/2 -1/2 1/2 1/2

Fig. 6.3.6-1 Implementing CDM on a non-uniform grid.

Using the same argument as in section 6.3.2, only three fundamental solutions
exist (Fig. 6.3.2-2). The same procedure as in section 6.3.2 is used to calculate the

reflection coefficient. First, suppose Py, Gy, and fy denote the fundamental solutions

at the interface. The continuity at the interface Xo=0 gives
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(6.3.6-10)

We assume E;, and E, are the characteristic ratios corresponding to solutions p;,

d; to the left of the origin defined by (6.3.4-23) and (6.3.4-24), respectively. Also,

suppose that IfA, and IfN are the characteristic ratios of the rightward propagating

solutions to the right of the origin with grid sizes of A”and A, respectively, given by:

. 2 4 2
FA,(Q):]__EQ_A’Z +\/£Q_A'4 _Q_A’Z

2 ¢? 4 c* c?
~ 10 , 10 . QF ,
FolQ)=1-=-A" 4 =A™ - A7
A( ) 2 CZ \/4 C4 C2

The reflection coefficient is defined as before

(6.3.6-11)

(6.3.6-12)

(6.3.6-13)

(6.3.6-14)

(6.3.6-15)

(6.3.6-16)

By substituting (6.3.6-10), (6.3.6-14), (6.3.6-15) and (6.3.6-16) into (6.3.6-9),

we have

_ iQ(f)o 4 do): _({l IEA’(E)O + 610)"’ (éz ﬁo + é1ao)+% 'EA"(ﬁO + 6{0)"' (éz ﬁo + Iélao)

2 A+ A’

which results in
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N , =
~ > I1 + FA” I/l 2972 + E2 1 (_1/ + _:LIIJ
pl@)=D __ LS S R U (6.3.6-18)
Po  F,-1 ﬁN—1+2972 E, -1 1.1 -
hhy  h,h{ ¢ hy |h, hy
6.3.7 Results

To show the performance of CDM for the advection equation, we have
compared the reflection coefficients from the interface of two grids with different
sizes for the CDM and each individual complementary part of the CDM (Fig. 6.3.7-
1). The frequency of the propagating wave is 1GHz and the grid size to the left of
origin (Fig. 6.3.3-1) is 4=4/20. The two complementary parts have grid sizes of
A’=A—yxA (refined grid) and A”=A+yxA (coarsened grid) for 0<)<1, which satisfy the
complementary condition of A=A4+A")/2. As we see in Fig. 6.3.7-1, the CDM has

significantly reduced the reflection coefficient.
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0.11
0.10 Refined Grid

009d Coarsened Grid
1 —<— CDM Treatment
0.08 -
0.07
0.06 4
0.05
0.04
0.03

0.02]

Reflection Coefficient

0.01]

-0.01 4
-0.02 4

-0.03 . , . , . , . , .
0.0 02 04 0.6 08 1.0

Fig. 6.3.7-1 Reflection coefficient of the advection equation at grid boundary;

refined mesh, coarsened mesh, and the CDM treatment of grid boundary.

The performance of CDM for the wave equation is also demonstrated by
plotting the reflection coefficients from the interface of two grids with different sizes
for the CDM and each individual complementary part of CDM (Fig. 6.3.7-2). The
frequency of the propagating wave is 1GHz and the grid size to the left of the origin
(Fig. 6.3.4-1) is A=4/20. The two complementary parts have the grid sizes of
A=A—yxA (refined grid) and A”=A+yxA (coarsened grid) for 0<)<1, which satisfy the
complementary condition of A=A"+A4")2. As we see in Fig. 6.3.7-2, the CDM

significantly reduces the reflection coefficient.
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0.020

Refined Grid
0.015 —w— Coarsened Grid
—<— CDM Treatment

0.010 4

0.005 +

0.000 —

Relection Coefficient

-0.005 4

-0.010 . , . , . , . , .
0.0 02 04 06 0.8 1.0

Fig. 6.3.7-2 Reflection coefficient of the wave equation at grid boundary;

refined mesh, coarsened mesh, and the CDM treatment of grid boundary.

6.4 Implementing the CDM in the ADI-FDTD Method

We consider a two-dimensional domain which is discretized uniformly in the
x-direction with the grid size of Ax and discretized non-uniformly in the y-direction,
which the grid size changes from Ay to Ay’ at j=jo (Fig. 6.4-1). Using the same field
positioning of the Yee scheme [6-2], the e, lies on the interface of two domains with
different grid sizes. The truncation error will be of the first order if the h, field values

of domains with different grid sizes are used to calculate the e,.

105



\
Ay’
i+l
Ay'\(*.A.A.A.A
o A & & ¢ ¢
Ay * ©AGAOGAO A
il 1 e | & e e
Ay
/
y < >l< >l< >l< >
AX Ax | Ax, AX
X -1 i I+l

A Ey L 2 E, o H,
Fig. 6.4-1 Two-dimensional discretized domain. The grid is uniform in the x-
direction with the grid size of Ax. The grid size is non-uniform in the y-direction

and changes from 4y to 4y ’at j=jo.

The updating equations for the ADI-FDTD method when uniform grids are
used in the both x- and y-direction are

First Procedure (uniform grid in the x- and y- direction):

n+1/2 n At/2 ( n n )
v =Bl * g Miliase = Heliasve (6.4-1)
2 n At/Z( n+1/2 n+l/2 )
y ij+2 Ty i,j+1/2 - EAX Z|i+]/2,j+]/2 N Z|i—]/2,j+l/2 (64-2)
n+12 _ n At/Z( n n )
Hz‘i+1/2,j+1/2 = Hz‘i+1/2,j+1/2 + LAy Ex‘i+1/2,j+1_ EX‘i+1/2,j
(6.4-3)

At/2 £ n+1/2 E n+1/2
_NAX( y‘i+1,j+1/2_ yi,j+l/2)

Second Procedure (uniform grid in the x- and y-direction)
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n+#o n+1/2 At/2 ( n+l n+l )

xlisy2,j = Sxlisya T Ay H, 2 j0+Y2 H, 412, j1/2 (6.4-4)
i n+1/2 At/z ( n+1/2 n+1/2 )

Yl j+y/2 Ty i, j+/2 - &AX Z|i+]/2,j+]/2 - Z|i—]/2,j+]/2 (64_5)
n+1 _ n+1/2 At/Z( n+1 n+1 )

HZ‘i+1/2,j+1/2 = Hz‘i+]/2,j+1/2 + LAy Ex‘i+1/2,j+1 - Ex‘i+1/2,j
B At/2 E ‘n+1/2 _E ‘n+1/2 (6.4-6)
LIAX Yli+, j+1/2 Yli,j+1/2

As we see, equations (6.4-2) and (6.4-3) are implicit. We substitute (6.4-2)
into (6.4-3) and it results in (6.4-3)". Therefore, in the first procedure, Ey, H,, and E,

are updated consecutively using (6.4-1), (6.4-3)", and (6.4-2).

At? n+y/2 At n+1/2
_( JHZil/z,jH/zJ{lJrz 2 HZ‘i+1/2,j+1/2

A p1enX? A116AX
- At? H ‘n+1/2 _H ‘n (6.4-3)
Aughx? | L2022, g '

At n n At ( n n )
- 2 LAX (Eyi+1,j+1/2 B Eyi,j+]/2j+ 2 uhy EX‘i+1/2,j+1_ EX‘i+1/2,j

In the second procedure, (6.4-4) and (6.4-6) are implicit. We substitute (6.4-4)
into (6.4-6) and it results (6.4-6)". Therefore, in the second procedure, Ey, H;, and E,

are updated consecutively using (6.4-5), (6.4-6)", and (6.4-4).

At? n+1 At? n+1
_(4ﬂgAy2jHZi+1/2,j—l/2+ 1+24,ugAy2 HZ‘i+l/2,j+1/2

2
AT w2 (6.4-6)
4,u£Ay2 Z1i+1/2, j+3/2 Zli+1/2, j+1/2
3 At E ‘n+1/2 B ‘n+1/2 N At (E ‘n+1/2 _E ‘n+1/2 )
2uAx \ itz Yl jey2 ) Ay VIR0 X2,

Next, we suppose the grid size changes from Ay to Ay’ at j=jo (Fig. 6.4-1).
Except for the following equations, the same updating equations as uniform grids

should be used.
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First Procedure (uniform grid in the x-direction, non-uniform grid in the y-direction

without CDM)
1- Equation (6.4-1) at j=jo should be modified to

n+y2 n At/2 ( n H n )
X|i+]/2,j0 - X|i+]/2,j0 + 5(Ay+Ay’)/2 Z|i+1/2,jo+]/2 - Z|i+]/2,j0—]/2 (6.4-7)

Second Procedure (uniform grid in the x-direction, non-uniform grid in the y-direction

without CDM)
1- Equation (6.4-4) at j=jo should be modified to

n+l

| _ |n+:l/2 n At/2 ( |n+l H n+l ) 6.4-8
X1i+1/2,jo X1i+1/2,jo 5(Ay+Ay')/2 z i+1/2,jo-1/2 ( i )

i+1/2,jory2 2

2- Equation (6.4-6)" at j=jo-1 should be modified to

(A ), et P S At? [
4u€Ay2 Zli+1/2,jo-3/2 4,ugAy2 4ygAy(Ay+Ay’)/2 Zli+1/2, jo-Y2

Atz n+1 _ n+1/2 6.4.9

_£4y8Ay(Ay+Ay')/2JHZi+1/2,j0+1/2 _Hz‘i+1/2’j0_1/2 ( . )
At 2 ey At ( Y2 o 2 )
_ZyAx(Eym,Jo—vz Eyi,jo—vzj+2uAy Exlivyz,ip = Exlicaz o1

3- Equation (6.4-6)" at j=jo should be modified to

_ Atz H ‘n+1
Aushy'(Ay +ay')/2 | HiH2 012

At? At?

+] 1+ 2 + ' ' Hz‘n+12 j 2
Aushy’®  dushy'(Ay +Ay')/2 ) HiV2 00y

(6.4-10)
At? n+1

- 4ﬂeAy’2szi+1/2,jo+3/z -

At n+1/2 B n+1/2 At ( n+1/2 e Y2 )
_ZﬂAX(EVi+1,j0+1/2 Eyi,jo+1/2j+2,uAy' Ex‘i+1/2,jo+1 Ex‘i+1/2,jo

n+12
i+1/2, jo+1/2

H,|
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Next, we apply the CDM for updating the e, values. Except for the following
equations, the same updating equations as uniform grids should be used.

First Procedure (uniform grid in the x-direction, non-uniform grid in the y-direction

with CDM)

1- Equation (6.4-1) at j=jo should be modified to

n+1/2 n
Exlivyz,io ~ Exlivaaig _
At/2
n n n n
Hz‘i+1/2,j0+(2k1—1)/2 B Hz‘i+1/2,jo—1/2 N Hz‘i+1/2,jo+(2k2 -1)2 Hz‘i+1/2,jo—1/2
Ay Ay’ Ay Ay’
—+(2ky -1)—/ == +(2k, —-1)—
Y+ (2 -1 Y+ (2 -1)
2
or
n+y2
X‘M/Z,J'o B

Ex‘i+]/2,jo 5 Ay Ay’ (Hz‘i+]/2,jo+(2k1—1)/2 - Hz‘i+]/2,jo—]/2)+
&£ 7 + (Zkl — l) 2

(6.4-11)

1 At/2
2 (Ay Ay’
= +(2k, -1
5(2 (2, 1)

n n
) (HZ‘i+1/2,j0+(2k271)/2 B Hz‘i+1/2,1071/2)

Second Procedure (uniform grid in the x-direction, non-uniform grid in the y-direction

with CDM)

1- Equation (6.4-4) at j=jo should be modified to
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n+1 n+1/2
Exlicva.io ~ Exlivyzgg _
At/2
n+1 n+1 n+1 n+1
HZ‘i+1/2,j0+(2k171)/2 B Hz‘i+1/2,jo—1/2 N HZ‘i+1/2,jo+(2k271)/2 B HZ‘i+1/2,j0—1/2
Ay Ay’ Ay Ay’
— +(2k; -1 —+(2k, -1
Y (2 -1)2 Y (21
2
or
n+l _ n+1/2 1 At/2 ( n+l H |n+1 )+
livyz,jo — —*lisy2jo T o , zlivy/2, jo+(2k-1)2 ~ ' zlisy2,jo-1/2
’ P2 A ok —1) Y S ’
: g 6.4-12
1 At/2 ( |n+1 |n+1 ) ( al )
P) ' zlivy2,jpr(2ko-1)y2 ~  zlivy2,jg-1/2
2 A (ok, —1)Y
2 2
2- Equation (6.4-6)" at j=jo-1 should be modified to
[ at? e N P S L p ne1
Auehy? | HH/200-32 4 ushy? 2 uAy 2uAy | *lH2i0-Y2
At n+l At n+1
—(a 2ﬂijHZ i+1/2, jo+(2ky -1)/2 _(ﬂ ZyAy]HZ i+1/2, jo+(2kp-1)2 (6.4-13)
n+1/2 _ At n+/2 _ n+1/2 At ( n+/2 n+1/2 )
z2li+y2,jo-Y2 2 LAX (Ey i+1 jo-1/2 Ey i,jo—1/2)+ 2 LAy E, i+1/2,jo Ex|i+1/271'071
3- Equation (6.4-6)" at j=jo should be modified to
2
ca B p AU g g AUy e
zluAyr zluAyr i+1/2,jo-1/2 4/,18Ay’ i+1/2,jo+1/2
At? i At ””
- 4 A 12 Z‘i+]/2,j0+3/2+a 2 Ayr z
ueny H i+1/2, jo+(2k,-1)/2 (6 4_14)
n+l ’
At n+1/2
+ﬂ oz = Z‘i+ jo+
2,uAy i+1/2, jo+(2k,-1)/2 Ve oz
At ( n+1/2 n+1/2 ) At ( n+1/2 n+1/2 )
- By ooz ~ Byl Eieya o~ Exliyas
ZﬂAX Loty o+ ZﬂAy
where
1 At
o =—
(6.4-15)
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1 At
2 25(A23’+(2k2 —1)A2y J (6.4-16)

p=

The ey values in the first procedure are solved explicitly. Hence, implementing
the CDM does not increase the computational load of the first procedure. In the
second procedure of the ADI-FDTD method, when the CDM is not implemented, the
h, values are updated implicitly using the inverse of a tri-diagonal matrix. However,
when the CDM is applied in the second procedure, the linear system of equations of
(6.4-6)" can not be written in a tri-diagonal form and the computational efficiency of
the ADI-FDTD method is not preserved. The Sherman-Morrison formula may be
used to retain the computational efficiency of the ADI scheme [6-6].

The entire system of linear equations (6.4-6)" when the CDM is applied can be
written in the form of
[A]xh, =¢ (6.4-17)
where [A] is not a tri-diagonal matrix. [A] can be considered as a perturbed version of
the tri-diagonal matrix [B], which we can express as
[A]=[B]-v,v; (6.4-18)
where [B] is a tri-diagonal matrix

all a12

[B]= Qo) ok Ay (jorn) (6.4-19)

a(n—l)(n—Z) a(n—l)(n—l) a(n—l)n
an(n—l) ann

and [A] is the perturbed matrix
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CT A ]
a1 Ay 2y
a . . a: . o ag; . T f
Al= (jio-1io-2)  “(jo-1)io-1) (jo-2)(jo+k1-1) (io-1)(jo+k2-1) 4-2
[ ] Bo(io-1)  Rioio Riolio+t) = Rjoliorky-1) 8jo(jo+ko-1) (6 O)
An-1)n-2)  n-1)n-1) An-an
Ay (n-1) Ay, 1
and vy and v, are two vectors of the form
_ 0 _
0
Vlm 1 = ?
v, = I (6.4-21)
v, =—
Io Ay
0
(. 0 .
T At At
VZ = |:0 .. 0 V210+k171 = aﬂ 0 .. 0 Vziu+szl = ﬂa 0 .. O:| (64-22)

Matrix [A] has four more entries than the tri-diagonal matrix [B], which lie on
the jo™, and jo-1" rows, and are associated with the complementary derivatives used in
calculating the h,.

Using the Sherman-Morrison formula, [A]™ can be written in terms of [B]™ as

- e B RL (6.4-23)

To solve the linear system in (6.4-23), we first solve for the following linear

systems
[B]h, =¢ (6.4-24)
[B]h, =V, (6.4-25)

When we obtain h; and h,, the total h can be written as
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h=h +ah, (6.4-26)

a=—=— 6.4-27
1-V, h ( )

Instead of solving (6.4-17), the auxiliary problems in (6.4-24) and (6.4-25)
can be efficiently solved. Since V; is a constant vector, we solve (6.4-25) once and
store the solution for future usage. In each implicit update, only (6.4-24) needs to be
solved and this requires (5n-4) operations. By noticing the form of V,, evaluating
(6.4-27) requires eight arithmetic operations. The operation count, in addition to
Gaussian elimination, which is introduced by (6.4-26) and (6.4-27), is (2n + 8).
Therefore, for each implicit update the total operation count of the ADI-FDTD
method with CDM is 7n+4. Therefore, the efficiency of the ADI-FDTD method is

well preserved.

6.4.1 Numerical Experiments

Here, we apply the CDM in the ADI-FDTD method to simulate a two-
dimensional structure having dimensions of 60mmx60mm. First, we consider a
uniform grid in the entire computational domain with the grid size of Ax=Ay=1mm
(Fig. 6.4.1-1). A z-polarized current source is positioned at (30mm,28mm) and the
monitor point is selected at (30mm,30mm). Since we look at a very short time interval
to extract the reflection from the interface and to remove the complexity of
implementing of ABC, we used perfect electric conductor (PEC) as the terminating

planes. The temporal excitation is a Gaussian pulse, given by
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f(t):exp(_ﬁ—r#j

with t,=250ps and 7=50ps. The numerical results obtained for this case will be

considered as the reference solution (H,"™).
)
Ay
jot1—
Ay [ [ [ [
wlaededesed
wAoAeOAOAoA
jrl— T L 4 L 4 L 4
Ay
yL
AX Ax | Ax, AX
X -1 i o+l

AE ¢ E ®H,
Fig. 6.4.1-1 Simulated structure as reference. The grid size is uniform

(Ax=Ay=1mm) throughout the computational domain.

Next, we solve the same problem, but this time we decrease the grid size in
the y-direction from Ay = 1mm to Ay’ = 0.5, 0.25 and 0.125mm corresponding to
reduction ratios of 1:2, 1:4 and 1:8 as shown in Fig. 6.4.1-2. The grid size in the x-
direction, the locations of the source and monitor point, and the excitation pulse are

left unchanged.

114



Ay'
Jo*l
Ay’*.*.*.*.*
L 4 L 4 L 4 L 4
‘whehredeled
jo‘l \ ‘ ‘ ‘ ‘
Ay
{

y - >l< >
L AX AX AX AX
-1 i i+l
AE ®E ®H,
Fig. 6.4.1-2 Simulated structure with different grid sizes. The grid size in the y-

direction changes from 4dy=1mm to A4y =0.5, 0.25, 0.125mm at j,=32mm.

In Fig. 6.4.1-3, we show the Normalized Error (6.2.2-1) as a function of time
for cases with and without CDM. A significant reduction of error is observed. Most
importantly, it is observed that the error resulting from the application of CDM is

practically independent of the mesh reduction ratio.
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Fig. 6.4.1-3 Normalized error in the H-field as obtained using the ADI-FDTD

method with and without CDM.
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Chapter 7 Conclusions and Future Work

7.1 Conclusions

In this work, first, we studied the stability of high-order Absorbing Boundary
Conditions (ABC) when applied in the Alternating Direction Implicit Finite-
Difference Time-Domain (ADI-FDTD) method. We demonstrated that the high-order
Higdon’s ABCs are unstable. The high-order COM also became unstable when the
Gaussian excitation was applied. Using the Z-transform, we demonstrated that an
excitation with zero frequency content causes instability in the high-order COM.

The Complementary Derivatives Method (CDM) was introduced as a second-
order accurate interpolation scheme applicable to Finite-Difference methods. Several
experiments demonstrated the performance of CDM on reducing the reflection from
boundary of two domains having different grid sizes. Consequently, more accurate
results for resonant frequencies and characteristic impedances of different
experiments were obtained using the CDM. The CDM was applied to calculation of
the reflection coefficient of the advection and wave equations at the grid boundary.
The CDM resulted in significant reduction in the reflection coefficients.

Next, we derived the fundamental modes of propagation in the numerical
solution of the wave equation using the leap-frog scheme. We calculated the
reflection coefficient of the wave equation at the grid boundary when the CDM was
applied and compared it with the reflection coefficient in a standard treatment of grid
boundary. The CDM, again, reduced the reflection coefficient at the grid boundary

considerably.
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Finally, the CDM was applied to the ADI-FDTD method. By employing the
Sherman-Morrison formula, we retained the numerical efficiency of the conventional
ADI-FDTD method when the CDM treatment was applied at the grid boundary.
Numerical experiments using the ADI-FDTD method showed that the CDM can be

effective in reducing spurious reflections at the grid boundary.

7.2 Future Work

The COM is a versatile mesh truncation scheme and simple to implement. The
COM has shown its performance in the absorption of evanescent waves in
waveguides and annihilating artificial reflections arising from the truncation of the
computational domain. The COM must be modified to be implemented as a stable
high-order accurate ABC to terminate open-region problems. The Z-transform can be
used as a practical tool to analyze and improve the stability of the COM.

Also, we calculated the reflection coefficients of the advection and wave
equations at the grid boundary with and without CDM and compared them
numerically. The analytical comparison and demonstration of the better performance
of the CDM treatment of the grid boundary to standard treatment can be the subject of

further investigation.
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