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Abstract

Many modern software systems are designed to
be highly configurable, which makes testing them
a challenge. One popular approach is combinato-
rial configuration testing, which, given an interaction
strength ¢, computes a set of configurations to test
such that_all t-way combinations of option settings
appear at least once. Basically, this approach assumes
that interactions are complete in the sense that any
combination oft options can interact and therefore
must be tested. We conjecture, however, that in practi-
cal systems interactions are limited. If our conjecture
is true, then new techniques might be developed to
identify or approximate infeasible interactions, greatly
reducing the number of configurations that must be
tested. We evaluated this conjecture with an initial
empirical study of several configurable software sys-
tems. In this study we used symbolic evaluation to
analyze how the settings of run-time configuration
options affected a test suite’s line coverage. Our results
strongly suggest that for these subject programs, test
suites and configuration options, at least at the level
of line coverage, interactions between configuration
options are not complete.

1. Introduction

Many modern software systems include numer-
ous user-configurable options. For example, network
servers typically let users configure the active port, the
maximum number of connections, what commands are
available, and so on. While this flexibility helps make
software systems extensible, portable, and achieve
good quality of service, it can often yield an enormous
number of possible system configurations. Moreover,
failures can and do manifest themselves in some con-
figurations but not in others, and so configurability can
greatly magnify testing obligations. We call this the
software configuration space explosiproblem.

Researchers and practitioners have developed sev-
eral strategies to cope with this problem. One popular
approach is combinatorial testing [1], [2], [3], [4],
which, given arinteraction strengtht, computes &ov-
ering array, a small set of configurations such that all
possiblet-way combinations of option settings appear
in at least one configuration. The subject program is
then tested under each configuration in the covering ar-
ray, which will have very few configurations compared
to the full configuration space of the program.

Several studies to date suggest that even low inter-
action strength (2- or 3-way) covering array testing
can yield good line coverage while higher strengths
may be needed for edge or path coverage or fault
detection [2], [5], [6]. However, as far as we are aware,
all of these studies have taken a black box approach
to understanding covering array performance. Thus it
is unclear how and why covering arrays work. On the
one hand, a-way covering array contains all possible
t-way interactions, but not all combinations of options
may be needed for a given program or test suite. On the
other hand, a&-way covering array must contain many
combinations of more thanoptions, making it difficult
to tell whethert-way interactions, or larger ones, are
responsible for a given covering array’s coverage. We
wish to obtain a better understanding of what level of
interaction, and what specific interactions, truly control
configuration spaces.

We conjecture that in practice configuration options
often have quite incomplete interaction patterns. That
is, we think that software systems are often structured
in such a way that different options or groups of
options interact only for some settings, if they interact
at all. If true and if we can identify or approximate a
system’s actual interaction patterns, then testing and
analysis effort could be directed in less expensive
and/or more effective ways, saving a great deal of time
and money throughout the software industry.

In this paper, we perform a whitebox investigation of
the configuration spaces of three configurable software
systems: vsftpd, ngIRCd, and grep. Our study relies on



symbolic evaluation [7], [8], [9], which allows us to in-
troducesymbolic valuednto a program and then track
how they affect program execution. A symbolic value
represents an unknown that can take on any value.
When the symbolic evaluator encounters a branch that
depends on a symbolic value, it conceptually forks
execution and explores both possible branches.

In our study, we marked the initial values of selected
run-time configuration options as symbolic, and then
we ran test suites for the subject programs under
Otter, a symbolic evaluator we developed. As Otter
runs it also records line coverage information. We

the covering arrays.

Finally, we used Otter to discover what lines of code
are guaranteed to be covered under certain combina-
tions of option settings. For example, dfand b are
options, we can compute what lines will always be
covered ifa=0 and b=2. Based on this information
we examined if and how configuration options actually
interact in our subject programs. We found that rela-
tively few options interact and, where they do, those
interactions often do not involve all possible values of
the options. As a result, exercising all combinations of
all ¢t-tuples of configuration options is unnecessary for

opted to measure line coverage because it is a simple maximizing coverage.

and popular metric. Using Otter we were able to
exhaustively calculate all possible program paths, for
all possible settings of selected configuration options
for these programs. This would have been impossible
had we naively enumerated all configurations. We also
generated 1-, 2-, and 3-way covering arrays for our

subject programs and ran the test suites under those

configurations.
Using this data, we discovered a number of interest-

In summary, our results strongly support our
main hypothesis—that in practical systems, interaction
among configuration options is not complete.

2. Configurable Software Systems

For our purposes, a configurable system is a generic
code base and a set of mechanisms for implement-
ing pre-planned variations in the system’s structure

ing results about configuration options and line cover- and behavior. In practice, these variations are wide-
age for our subject programs. To determine how many ranging, including choices among hardware and op-
configurations were actually necessary for maximum erating system platforms (e.g., Windows vs Linux),
coverage, we used the symbolic evaluator results to software versions (e.g., which version of a source
compute a minimal set of configurations that yield the code file to include in a system), run-time features
same coverage as all runs. We found that the sizes of (e.g., enable/disable debugging output), among others.

these sets were relatively small—9 for vsftpd, 18 for
ngIRCd, and 10 for grep. These sets are significantly
smaller than the 3-way covering arrays for the same
programs (41 for vsftpd, 131 for ngIRCd, 42 for grep),
and yet they achieve slightly more coverage for vsftpd
and grep. This suggests covering arrays are testing
both more and fewer configurations than they need for
maximum line coverage.

Investigating this gap further, we discovered that,
for each program, there were some option settings
that, while valid, would mask the effects of other
options. For example, if thehow_version option of
grep is set, the other options are ignored, and grep
exits after printing version information. Finding this
kind of information typically requires insight into the
program, but in this case we discovered it via the
symbolic evaluator.

Next, to investigate interactions hidden by masking
effects, we fixed the values of certain options to

In this paper, we limit our attention to configuration
options selected at run time, e.g., in configuration files
or as command-line parameters.

Figure 1 illustrates several ways that run-time con-
figuration options can be used, and explains why
understanding their usage requires fairly sophisticated
technology. All of these examples come from our
experimental subject programs, which are written in
C. In this figure, variables containing configuration
options are shown in boldface.

The example in Figure 1(a) shows a section of vs-
ftpd’'s command loop, which receives a command and
then uses a long sequence of conditionals to interpret
the command and carry out the appropriate action.
The example shows two such conditionals that also
depend on configuration options (all of which begin
with tunable_ in vsftpd). In this case, the configuration
options enable certain commands, and the enabling
condition can either be simply the current setting of the

prevent the masking and ran the test suites under newly option (as on lines 1-2) or may involve an interaction

generated covering arrays. This time we found that,
for all three programs, 3-way covering arrays yielded
full line coverage. We also recomputed the minimal
covering sets with the same options fixed, and found
that the minimal covering sets were still smaller than

between multiple options (as on lines 6-7).

Not all options need be booleans, of course. Fig-
ure 1(b) shows an example from ngIRCd, in which
the optionConf_MaxJoins is an integer that, if positive
(line 13), specifies the maximum number of channels a
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... else if (tunable _pasv_enable &&
str_equal_text(&p_sess— >ftp_cmd_str, "EPSV"))

handle_pasv(p_sess, 1);
}
... else if (tunable _write _enable &&
(tunable _anon _mkdir _write _enable ||
Ip_sess—>is_anonymous) &&
(str_equal_text(&p_sess—>ftp_cmd_str, "MKD") ||
str_equal_text(&p_sess— >ftp_cmd_str, "XMKD")))
handle_mkd(p_sess);

}

(a) Boolean configuration options (vsftpd)

if ((Conf_MaxJoins > 0) &&
(Channel_CountForUser(Client) >= Conf_MaxJoins ))
return IRC_WriteStrClient(Client,
ERR_TOOMANYCHANNELS_MSG,
Client_ID(Client), channame);

(b) Integer-valued configuration options (ngIRCd)

else if (Conf_OperCanMode ) {
/% IRC—Operators can use MODE as well x/
if (Client_OperByMe(Origin)) {
modeok = true;
if (Conf_OperServerMode )
use_servermode = true; /+ Change Origin to Server =/

}
}

if (use_servermode)
Origin = Client_ThisServer();

(c) Nested conditionals (ngIRCd)

not_text =
(((binary _files == BINARY_BINARY_FILES && !out_quiet)
|| binary _files == WITHOUT_MATCH_BINARY_FILES)
&& memchr (bufbeg, eol ? "\0’" : "\200’, buflim — bufbeg));
if (not_text &&
binary _files
return 0;
done_on_match += not_text;
out_quiet += not_text;

== WITHOUT_MATCH_BINARY_FILES)

(d) Options being passed through the program (grep)

Figure 1. Example uses of configuration variables
(bolded) in subjects.

user can join (line 14). In this example, error process-
ing occurs if the user tries to join too many channels.
Figure 1(c) shows a different example in which two
configuration options are tested in nested conditionals.
This illustrates that it is insufficient to look at tests
of configuration options in isolation; we also need
to understand how they may interact based on the
program’s structure. Moreover, in this example, if both
options are enabled themse_servermode is set on

line 23, and its value is then tested on line 27. This
shows that the values of configuration options can be
indirectly carried through the state of the program.

Figure 1(d) shows another example in which con-
figuration options are used indirectly. Hemet_text is
assigned the result of a complex test involving con-
figuration options, and is then used in the conditional
(lines 33-34) and to change the current setting of two
other configuration options (lines 36-37).

Definitions. We define a configuration as a set
{(W1,C1), (Va,Cs), ..., (Vn,Cn) }, where eaclV; is

an option and”; is its value, drawn from the allowable
settings ofV;. In practice not all configurations make
sense, e.g., feature X is not supported under option
Y, and in this case we say there is amer-option
constraintbetween X and Y.

We say that a set of configuration optiowis . .., V;
interact if some behavior only occurs if théd/’s
take specific settings. For purposes of our study, the
behavior we are interested in is a set of lines being
executed under a configuration. We dagptions in-
teractstronglyif they interact for all possible settings;
otherwise, they interacveaklyif they interact for at
least one setting, but not all.

3. Symbolic Evaluation

To understand how configuration options interact,
we have to capture their effect on a system’s run-
time behavior. As we saw above, configuration options
can be used in quite complex ways, and so simple
approaches such as searching through code for option
names will be insufficient. Instead, we use symbolic
evaluation to capture all execution paths a program
can take under any configuration.

The idea of enhancing testing with symbolic evalu-
ation has been around for more than 30 years [7]. Re-
cent advances in Satisfiability Modulo Theory (SMT)
solvers, however, have enabled the technology to scale
to practical problems.

Our symbolic evaluator, Ottér,is essentially a C
source code interpreter, with one key difference. We
allow the programmer to designate some values as
symboli¢ meaning they represent unknowns that may
take on any value. Otter tracks these values as they flow
through the program, and conceptually forks execution
if a conditional depends on a symbolic value. Thus,
if it runs to completion, Otter will simulate all paths

1. DART [8] and EXE [10] are two well known symbolic evalu-
ators. By coincidence, Dart and Exe are the names of two rivers in
Devon, England. The others are the Otter, the Tamar, the Taw, the
Teign, and the Torridge.



through the program that are reachable for any values
that the symbolic data can take. The key insight is that

other constraints placed on the symbolic valugmth
condition In this case, path (A) covers statement 1,

the number of paths executed is based on the branchesand so any configuration that setss1 on line 1
in the program source code, rather than the much larger (corresponding tex being true), with arbitrary choices

space of possible values for symbolic data.

To illustrate how Otter works, consider the example
C source code in Figure 2(a). This program includes
five variables that are inputs to the program:b, c,

d, andinput. The first four are intended to represent
run-time configuration options, and so we initialize
them on lines 1-2 wittsymbolic valuesy, /3, v, and

0, respectively. (In the implementation, the content
of a variablev is made symbolic with a special call
__SYMBOLIC(&v).) The last variableinput, is intended

to represent program inputs other than configuration
options. Thus we leave it as concrete, and it must be
supplied by the user (e.g., as partaogv (not shown)).

The program continues by initializing local variable
x (line 4) and then entering a series of conditionals and
assignment statements. We have indicated five lines,

numbered 1-5, whose coverage we are interested in.

The execution path taken, and consequently which of

for the values ofs3, v, and 4, will cover statement 1.
This is what makes symbolic evaluation so powerful:
With a single predicate we characterized the behavior
of many possible concrete choices of symbolic inputs
(in this case, there would b2® possibilities for all
combinations ob, ¢, andd).

Otter continues by returning to the last place it
forked and trying to explore the other path. In this case,
it returns to the conditional on line 5, assumess
false by adding-« to the path condition, and continues
exploring the execution tree. Each time Otter encoun-
ters a conditional, it actually calls an SMT solver
to determine which branches of the conditional are
possible based on the current path condition. pbe
the current path condition, and suppose Otter reaches a
branch with guard;. Then ifp A g is satisfiable, Otter
explores the true branch, andpiin —g is satisfiable, it
explores the false branch. Execution splits if both are

those five lines are covered, depends on the settings of satisfiable. Otter continues in this manner until it has

the symbolic values and concrete inputs.

Given a setting foinput, Otter will exercise all the
execution paths that are possible for any valuesof
B, v, andd. Figure 2(b) shows these sets of paths as
execution treedor two concrete “test cases” for this
program: the tree fomput=1 is on the left, and the
tree forinput=0 is on the right. Nodes in these graphs

explored all possible paths. In theory this might not
terminate in any reasonable amount of time, but in our
experiments, we were able to achieve termination even
when setting many configuration options as symbolic,
perhaps because configuration options tend to be used
in fairly restricted ways.

There are a few other interesting things to notice

correspond to statements in the program, and branchesabout these execution trees. First, consider the execu-
represent places where Otter has a choice and hencetion paths labeled (B) and (C). Notice that because

“forks,” exploring both possible paths.

For example, consider the tree withput=1. All
executions begin by setting to 0 and then testing
the value ofa, which at this program point contains
Since there are no constraints anboth branches are
possible. For the sake of simplicity we will assume
below thata: and the other symbolic values may only
represent 0 and 1, but Otter fully models symbolic
integers as arbitrary 32-bit quantities.

Otter then splits its execution at the test afor,
more precisely, it makes a choice and explores one
branch, and then comes back and tries the other. First it
assumes that is true and reaches statement 1 (shown
as the left branch). It then falls through to line 14
(the assignment tg) and performs the test on line 15
(x && input). This test is false, since was set to 0 on
line 4, hence there is no branch. We label this path
through the execution tree as (A).

Notice that as we explored path (A), we made
some decisions about the settings of symbolic val-
ues, specifically thatv is true. We call this and any

we have choserg to be true on this path, we set
x=1, and hence && input is true, allowing us to reach
statements 4 and 5. This is analogous to the example
in Figure 1(c), in which a configuration option choice
resulted in a change to the program state (settiig

that allowed us to cover some additional code.

Also, notice that ifinput=1, there is no way to reach
statement 3, no matter how we set the symbolic values.
Hence coverage depends on choices of both symbolic
values and concrete inputs.

In total, there are four paths that can be explored
wheninput=1, and three paths whenput=0. However,
there are2* possible assignments to the symbolic
valuesa, 3, v, andd. Hence using symbolic evaluation
for these test cases enables us to gather full coverage
information with only 7 paths, rather than the 32 runs
required if we had tried all possible combinations of
symbolic and concrete inputs. This is what makes the
results in this paper even possible—we can effectively
get the same result as if we had tried all possible
combinations of configuration options with far fewer
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(a) Example program

(b) Full execution trees

Figure 2. Example symbolic evaluation.

paths than that would entail if done concretely.

3.1. Minimal Covering Sets

One of our basic hypotheses is that many options do
not interact, and we can still get good coverage even if
we run our test cases under fewer configurations than
suggested by covering arrays. As we just saw, given a
set of symbolic values for configuration options, Otter
finds all possible program paths that can be visited by
setting those options. Thus, we can test our hypothesis
by using Otter to find a minimal set of configurations
such that, if we run all the test cases under just those
configurations, we will achieve the same coverage as
the full set of configurations. We call such a set a
minimal covering setand if it is small, this will lend
support to our hypothesis.

For example, Figure 2(c) summarizes the path con-
ditions for all seven paths of our example program,
gives an initial configuration that will yield that path
(i.e., that satisfies the path condition), and lists which
(specially marked) lines each path covers. Since this
example is small, we can easily find a minimal cov-
ering set: Condition (F) is the only one that covers
statement 3, so we need a configuration that satisfies
it. If we pick a configuration that also satisfies (B), then
we can cover lines 2-5 with just that one configuration.
In this case, we can set0, b=c=1, andd=anything.
Now only statement 1 remains to be covered, which
we can do by satisfying path condition (A) (which is
the same as (E)). In this case, we canastet 1, and all
other options to anything. Thus, here is one minimal

covering set:

Config Paths Coverage
a=d=0b=c=1|(B),(F)|23,4,5
a=1lb=c=d=0]|(4),(F) |1

This is a simple example, but finding a precise
minimal covering set is intractable in general, for two
reasons. First, above we determined (B)'s and (F)’'s
path conditions were simultaneously satisfiable, and
hence those paths could be covered by one configu-
ration. Scaling this up to all sets of path conditions
would require numerous calls to the SMT solver, which
would likely be computationally impractical. Second,
computing an optimal covering set is NP-hard [11],
and our subject programs have a multitude of paths.

Instead we compute an approximate answer that may
be larger than the actual minimal covering set. Our al-
gorithm begins by calling the SMT solver on each path
condition to find a partial configuration satisfying that
condition. The partial configuration contains settings
only for options referenced in the path conditions, and
the other options are omitted (as in Figure 2(c)).

Next, we process the list of partial configurations,
checking if each one izompatiblewith any other
seen so far. Two partial configurations are compatible
if they assign the same values to options on which they
overlap. We merge compatible configurations (replace
each by the union of their settings) and record their
coverage as the union of the coverage of the original
configurations. Note this may be suboptimal, both
because we merge greedily and because two config-
urations may be incompatible even if their underlying

(c) Path conditions and configurations



path conditions are simultaneously satisfiable.

Finally, we use a greedy algorithm to search the
combined configurations for a covering set. We begin
by picking a configuration that covers the largest
number of lines (ties broken arbitrarily). Then we
pick a configuration that covers the largest number
of lines that have not been covered so far, and so
on until we achieve full coverage. For example, using
the configurations in Figure 2(c), the following chart
shows one sequence our algorithm may pick if (C)’'s
and (F)'s configurations were merged.

Path| Config | Covered so far

(B)|a=d=0,b=c=1]{2,4,5}
(A),(B) |a=1 (1,2,4,5)
(C),(F)|a=c=d=0,b=1]{1,2,3,4,5}

Notice that our algorithm determines that three con-
figurations are necessary for full coverage, whereas
the optimal solution requires only two configurations.
Nevertheless, we have found our approach yields small
covering sets in practice.

3.2. Guaranteed coverage

Beyond finding a minimal covering set, we also use
Otter to compute thguaranteed coveragef a pred-
icate. We defineCov(p) to be the set of lines always
covered in an execution whose symbolic values satisfy
p. From this, we can discover useful information about
configuration option interactions.

For example,S, = CoMtrue) is the set of lines
covered in all program executions, regardless of the
configuration options. Similarly, if a program in-
cludes only boolean-valued options, then S; =
U, (Comz;) UCou—z;)) is the set of lines guaranteed
covered if we pick all 1-way covering arrays ail
valuesof the options. We can go still further, and define

Sy = UH@(COV(ZZ AN .’Ej) @] COV((ﬂl A _‘l'j) U
COV(_L’EZ' A LEj) @] COV(_\ZL'Z' AN _|.’L‘j))

to be the set of lines guaranteed covered by all 2-way
covering arrays, and so on. Thus, us@@gvp), we can
distinguish what is guaranteed to be covered-way
interactions in a covering array, and what is covered
by happenstance.

We can also us€ov(p) to find interactions among
configuration options. Let; andx, be symbolic val-
ues used to initialize two options. Thendbv(z; Axs)
is a strict superset ofCou(z1) U CoVzs)), there is
some code that is only covered if bath andzy are
true, and thus we can conclude thatandx, interact.

We computeCov(p) by first finding Covr(p), the
lines guaranteed to be hit underby test caseT’,

for each test case; theovp) = U Covwr(p). To
computeCovr(p), let p; be the path conditions from
T's symboalic evaluation, and ldt(p;) be the lines that
occur in that path. The@ovr(p) is

{pi | SATp; Ap)}
ﬂp]' € Compat(p) L(pJ)

Compat(p)
Covr(p)

In other words, first we compute the set of predicates
p; such thatp andp; are simultaneously satisfiable. If
this holds forp;, the lines inL(p;) may be executed
if p is true. Since our symbolic evaluator explores all
possible program paths, the intersection of these sets
for all suchp; is the set of lines guaranteed to be
covered ifp is true.

Continuing with our running example, here is the
coverage guaranteed by some predicates:

p | Compat(p) | Compat(p) | Covp)
(input = 1) (input = 0)
) (B) M
—a | (B),(C),(D) | (F),(G) |0
~ang| (BL(C) | (F) {2,3,4}
_‘CV/\ﬁ/\'Y (B) (F) {2737475}

Note that we cannot guarantee covering line 5 without
setting three symbolic values (although we could have
picked ¢ instead ofy).

As with our algorithm for minimal covering sets,
our computation ofCov(p) is an approximation. The
precision of this approximation warrants further study,
but based on manual examination for our data, it
appears accurate and gives us considerable insight into
the configuration spaces of our subjects.

3.3. Implementation

Otter is written in OCaml, and it uses CIL [12] as
a front end to parse C programs and transform them
into an easier-to-use intermediate representation.

The general approach used by Otter mimics
KLEE [9]. A symbolic value in Otter represents a
sequence of untyped bits, e.g., a 32-bit symbolic
integer is treated as a vector with 32 symbolic bits
in Otter. This low-level representation is important
because many C programs perform bit manipulations
that must be modeled accurately. When a symbolic
expression has to be evaluated (e.g., at branches), Otter
invokes STP [13], an SMT solver optimized for bit
vectors and arrays.

Otter supports all the features of C we found neces-
sary for our subject programs, including pointer arith-
metic, function pointers, variadic functions, and type
casts. Otter currently does not handle multi-threading,
dereferencing symbolic pointer values, floating-point



vsftpd | ngIRCd | grep

Version 2.0.7 0.12.0| 2.4.2
LoC (sloccount) 10,482 | 13,601 8,456
LoC (executable) 4,384 4,421 | 3,498
# Test cases 58 59 70
# Analyzed conf. opts. a7 13 19
Boolean 33 5 16
Integer 14 8 3

# Excluded conf. opts. 75 16 0

Figure 3. Subject program statistics.

arithmetic, or inline assembly. Multithreading is used
in vsftpd’'s standalone mode and in ngIRCd, but we
handle this by interpretinfprk() as driving the program
to the subprocess that provides the main functionality,
and ignoring the other process (which performs little
or no critical work for our purposes). The other un-
supported features either do not appear in our subject
programs or do not affect the results of our study; we
leave the handling of these features as future work.
All of our subject programs interact with the operat-
ing system in some way. Thus, we developed “mock”
libraries that simulate a file system, network, and other
needed OS components. Our libraries also allow us to
control the contents of files, data sent over the network,
and so on as part of our test cases. Our mock library
functions are mostly written in C and are executed
by Otter just like any other program. For example,
we simulate a file with a character array, and a file
descriptor points to some file and keeps the current
position at which the file is to be read or written.

4. Subject Programs

The subject programs for our study are vsftpd, a
widely-used secure FTP daemon; ngIRCd, the “next
generation IRC daemon”; and grep, a popular text
search utility. All of our subject programs are written
in C. Each has multiple configuration options that can
be set either in system configuration files or through
command-line parameters.

Figure 3 gives descriptive statistics for each sub-
ject program. We list each program’s version number,
source lines of code as computed dlyccount [14],
and the number of executable lines of code in the
CIL representation of the program. In our study, we
measure coverage with respect to this latter count. Note
that about 6% of the total executable lines of vsftpd
are devoted to a two-process mode. However, as Otter
does not support multiprocess symbolic evaluation, we
forced our tests to run in single-process mode.

Next, we list the number of test cases. Vsftpd does
not come with its own test suite, so we developed tests

vsftpd | ngIRCd grep

# Paths| 107,456| 22,904| 270,393

Coverage (%) 49.2 62.2 64.7

# Examined opts/tot  20/47 13/13 16/19

Figure 4. Summary of symbolic evaluation.

to exercise functionality such as logging in; uploading,
downloading, and renaming files; and asking for sys-
tem information. ngIRCd also does not come with its
own test suite, and we created tests based on the IRC
functionality defined in RFCs 1459, 2812 and 2813.
Our tests cover most of the client-server commands
(e.g., client registration, channel join/part, messaging
and queries) and a few of the server-server commands
(e.g., connection establishment, state exchange). Grep
comes with a test suite consisting of hundreds of
tests. We symbolically evaluated these tests in Otter to
determine their maximum line coverage. Then, without
sacrificing line coverage, we selected a subset of test
cases and did all further analyses on this sample.
Finally, we list the number of configuration op-
tions treated as symbolic, including the breakdown
of boolean and integer options, and the number of
configuration options left as concrete. Our decision to
leave some options concrete was primarily driven by
two criteria: whether the option was likely to expose
meaningful behaviors and our desire to limit total
analysis effort. This approach allowed us to run Otter
numerous times on each program, to explore different
scenarios, and to experiment with different kinds of
analysis techniques. We used default values for the
concrete configuration options, except the one used to
force single-process mode in vsftpd. Grep includes a
three-valued string option to control which functions
execute the search; for simplicity, we introduced a
three-valuedinteger configuration optionexe_index
and set the string based on this value.

5. Data and Analysis

To calculate the execution paths coverable by our
subject programs, we ran each one’s test cases in Otter,
with the configuration options treated as symbolic as
discussed above. To do this we used the Skoll system
and infrastructure developed and housed at the Univ.
of MD [15]. Skoll allows users to define configurable
QA tasks and run them across large virtual computing
grids. For this work we used-40 client machines to
run our analyses. The final results reported here, in-
cluding substantial post-processing, required about 5—6
days of elapsed time. From these runs we derived line
coverage and other information, presented in Figure 4.
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Figure 5. Number of paths per test case. Figure 6. Coverage at each step of minimal cover-

ing set algorithm.

The first row of the figure counts the number of
execution paths through these programs. While Ot-
ter found many thousands of paths, recall that these
are actuallyall possible paths for any settings of
the symbolic configuration options. Had we instead
opted to naively run each test case under all possi-
ble configuration option combinations, it would have
required1.5 x 10'® executions for vsftpd, 15 million
for ngIRCd, and 124 million for grep.

The second row of the figure shows the coverage

cumulativgly. achieved .by all these paths_. In other ;e of the configuration space for each program.
words, this is the maximum coverage achievable for  \\a can see that each subject program follows the
these test suites considering all poss@le co.nﬁgura.tlons. same general trend, with most coverage achieved early
The last row shows hqw many configuration options Grep is the most extreme example, getting much
are actually evaluated in at least one path, compared ot jts maximum possible coverage with the first two
to the total number of options. We can see that many cqnfigurations. Investigating further, we found this
vsftpd options are never evaluated in these runs, while .\ ;rs because grep has a lot of common code that
all or almost all options for ngIRCd and grep are. runs in most configurations, and this code is covered
Figure 5 shows the number of (.axecutlon.pgths bro- - early. The remaining configurations cover variations in
ken down by individual test cases; the x-axis is sorted  grep's functionality that are localized in small sections

from the fewest to the most paths. Here we see that s code. In ngIRCd and vsftpd, there are larger pieces
different test cases can exercise very different numbers of code that depend on configuration options, and

of paths, though they appear to cluster into a handful g4 coverage increases more gradually. The first few
of groups. On further examination we discovered that configurations for ngIRCd and vsftpd drive tests to
the clustering occurs because each cluster of test casesgyecute the normal paths in the program, which cover
exercises code that depend on the same combinations ot of the code. In contrast, the last configurations for
of configuration options. ngIRCd and vsftpd cover only a few new lines each,
typically for paths that correspond to error conditions.

we run the tests under them, we get the same coverage
as if we run under all configurations.

Figure 6 graphs the progression of the greedy al-
gorithm as it covers the lines of each subject pro-
gram. The position value of the rightmost point on
an arc indicates the minimal covering set’s size. In
total, vsftpd needed 9 configurations to achieve full
coverage, nglRCd needed 18, and grep needed 10.
Clearly, these numbers are far smaller than the total

5.1. Minimal Covering Sets
5.2. Comparison to Covering Arrays
Using the line coverage data, we computed a min-
imal covering set for each program. As mentioned Next, for each subject program we computed éne
earlier this is a (small) set of configurations such that, if way covering array for each value ofe {1,2,3}.



vsfipd [ ngIRCd [ grep
# configs, coverage (%)
lway | 3 26 7 56.2| 3 626
2-way | 12 40.1| 28 62.0| 13 64.1
3-way | 41 44.8| 131 62.2| 42 64.3
Min. 9 49.2| 18 62.2| 10 64.7
(a) Full configuration space
vsftpd | ngIRCd | grep
# configs, coverage(%)
l-way | 3 435 7 615 3 632
2-way | 12 48.9| 28 616| 12 64.0
3-way | 40 489|119 61.6| 37 64.2
Min. 6 48.9 8 61.6| 10 64.2

(b) Refined configuration space

Figure 7. Coverage obtained with covering arrays.

To build the covering arrays we had to discretize

the values of all integer-valued configuration options.

This step normally requires developer input, either

based on their knowledge of the system or their use
of a structured analysis technique such as category-
partition analysis [16]. As a surrogate for developer

insight, we examined the path conditions that led

to maximum coverage and derived concrete option
settings consistent with the path conditions. This may
be overly optimistic, in the sense that the symbolic

evaluator could discover information that may not be

known to the tester in practice.

We then ran Otter on each test case for each covering
array configuration. This time, however, instead of
making the configuration options symbolic we used
the concrete settings dictated by the covering array. We
could, of course, have done these runs outside of the
symbolic evaluator, but this would have required us to
construct separate instrumentation chains for concrete
and symbolic evaluation.

Figure 7(a) summarizes coverage information for
different strength covering arrays. On each line we list
the number of configurations in the covering array and
the line coverage. The last line repeats the minimal
covering set information from Section 5.1 for compar-
ison. We see that vsftpd has very poor coverage with
the 1-way covering array, but its coverage increases
sharply with the 2-way covering array. In contrast,
nglRCd and grep both start with high coverage and
quickly get near maximal coverage with the 2-way
covering array.

Examining this data, we can draw several initial
observations. First, compared to minimal covering sets,
the covering arrays for all 3 programs required running
many more configurations than necessary to achieve

individual configurations in the covering array are
redundant in the sense that they add no unique line
coverage over other configurations in the covering
array. Finally, these data also highlight the practical
difficulty of knowing which strengtht to use. For
nglRCd a 3-way covering array was enough, but for
the other programs it was not.

5.3. Refining the Configuration Space

As we investigated the covering array behavior more
closely, we found that our subject programs exhibited
masking effects caused by specific configuration option
settings. That is, for each program, a small humber
of options, set in particular ways, completely dictated
program behavior, so that all other option values were
effectively ignored.

One example in grep is thshow_version option,
which, when enabled, causes grep to display version
information and then exit, making all other options
irrelevant. Since covering arrays densely pack option
settings into as few configurations as possible, this
masking behavior can impede coverage.

Along similar lines, when vsftpd is in single-process
mode (as it is in our runs), any configuration that
enables local logins or SSL will encounter code that
shuts down the system immediately. And in ngIRCd,
three configuration options can be set in such a way
that either clients have more difficulty connecting to
the server, or that response timeouts occur frequently
causing clients to drop their connections. These are not
invalid configurations, but their behavior prevents full
exploration of the program.

None of this creates problems for symbolic eval-
uation; Otter essentially works around these configu-
rations to find all possible program paths. However,
to give us a second point for comparison, we fixed the
relevant settings in each program (2 option settings for
grep, 3 for ngIRCd, and 3 for vsftpd) to prevent these
masking effects.

We then conducted a second covering array analysis.
Figure 7(b) details the coverage achievable under these
new models. Not surprisingly, coverage is greatly im-
proved at lower strengths because coverage due to 3 or
more options in the original model is now achievable
with 2 or 3 fewer options. Note that the maximum
coverage is slightly lower than before, because some
lines are now unreachable due to the option settings.
Vsftpd and ngIRCd now reach maximum coverage
with 2-way covering arrays, while grep now does so
with a 3-way covering array. We also recomputed the
minimal coverage sets. Now only 6 configurations are

maximum coverage. We also see that in several cases needed for vsftpd, 8 for ngIRCd, and 10 for grep.



vsftpd nglRCd grep
% O % O % O
O-way | 290 -|336 —-| 69 -
l-way | 40.3 11| 50.0 7| 60.1 7
2-way | 45.7 13| 60.1 10| 63.2 12
Max | 48.9 20| 61.6 13| 64.2 16
% = coverage O = # options

Figure 8. Guaranteed coverage analyses.

Covering arrays sizes are thus still greater than those
of the minimal covering sets, implying that not all
option combinations are needed even for this new
configuration space.

5.4. Understanding Interactions

To better understand which specific configuration
options interact, we used the algorithm from Sec-
tion 3.2 to compute the coverage guaranteed by
various option settings in the refined configuration
spaces. First, we computéib\v(true), which we call
guaranteed 0-way coverag@hese are lines that are
guaranteed to be covered for any choice of options.
Then for every possible option setting= v from the
covering arrays, we computéZiovx = v). The union
of these sets is thguaranteed 1-way coveragand
it captures what lines will definitely be covered by
a l-way covering array. Similarly, we also computed
Covxl = v1Ax2 = v2) for all possible pairs of option
settings, which igguaranteed 2-way coverage

Figure 8 presents the results. Note that higher-level
guaranteed coverage always includes the lower level,
e.g., if aline is covered no matter what the settings are
(O-way), then it is certainly covered under particular
settings (1- and 2-way). We also list, for 1- and 2-
way covering arrays, the number of options involved
in the new coverage at that level. The last line lists
the maximum possible coverage (from the last line
of Figure 7(b)) and the maximum number possible
of configuration options (the count of touched options
from Figure 4).

The figure shows that 1-way covering arrays guar-
antee a significant amount of line coverage, and that
most lines are guaranteed covered by 2-way covering
arrays. However, higher strength covering arrays are
still required to guarantee full coverage. We confirmed
through manual inspection that all our subject pro-
grams have lines that cannot be covered unless 3 or
more options take specific settings. Notice that the
actual n-way covering arrays (Figure 7(b)) achieved

count_matches=1 out_line=1  done_on_match=0

with_filenames=1 out_file=1 done_on_match=1
exe_index=0 exe_index=1 out_invert=0
match_words=" ;
out_invert="
exe_index=" Iist_files{ | ®i|es= -1
match_icase=* match_lines=* out_quiet=0

Figure 9. Interactions between config. options.

identify the specific options and settings that interact,
at least to the level of 2-way interactions. Figure 9
represents grep’s interactions. In this graph, an isolated
nodex=v means that at least one line is guaranteed to
be covered wher=v, and that line was not guaranteed
under 0-way coverage. If noded=vl andx2=v2 are
connected by an edge, then the conjunction of those
settings guarantees some line coverage not guaranteed
under 1-way coverage. Lastly, whenever all possible
settings of an option are equivalent, meaning they are
connected to the same set of nodes in the graph, we
replace them by a single nodex.

We can draw several observations from this graph.
First, many options are missing from the graph because
they guarantee no coverage. From the perspective of
line coverage these options are irrelevant up to 2-
way interactions. We also see that several options dis-
play weak interactions—they guarantee coverage for
some settings, but others are irrelevant. For example,
list_files=1 andlist_files=—1 guarantee some coverage,
butlist_files=0 does not. Importantly, those options that
do interact appear to form disjoint clusters. Essen-
tially, rather than a monolithic entity, the configuration
space of grep is the combination of multiple smaller
configuration subspaces. Next, we observe a small
number of strong interactions, such as those between
exe_index and match_icase and betweenexe_index
andmatch_lines. Although we have not fully confirmed
this, it appears that the size of the minimal covering
sets is in part driven by the number of combinations
in strongly interacting options. Finally, we examine
the specific lines guaranteed covered (analysis not
shown), and find that in many cases the guaranteed
coverage of one option combination subsumes that of
another. Again, this fact partially explains why minimal
covering sets are so much smaller than covering arrays.

5.5. Threats to Validity

higher coverage than is guaranteed; in these cases, the

additional lines were in essence covered by chance.

For this work we selected 3 subject programs. Each

We can also use guaranteed coverage analysis tois widely used, but small in comparison to some



industrial applications. Our test suites taken together work, Burr et al. [22], Dunietz et al. [5], and Kuhn
have reasonable, but not complete, line coverage. In- et al. [6] provided more empirical results to show
dividually the test cases tend to be focused on specific that DoE techniques can be effective. Dunietzal.
functionality, rather than combining multiple activities in particular showed that for a single subject system,
in a single test case. In that sense they are more like low strength covering arrays provided code block
a typical regression suite than a customer acceptance coverage of the system, while higher strength arrays
suite. To compute the covering arrays, we had to were needed to achieve high path coverage. Cohen
discretize integer-valued options. We based the choice et al. [23] created covering arrays for input data and
of test values on knowledge taken from our analysis of then ran these over multiple configurations of a web
the code. This may overstate the effectiveness of the browser. They found that changing some configuration

covering array approach in practice. parameters had little effect on block coverage for their
test suite. With the possible exception of Cohen et al,
6. Related Work these studies appear consistent with our findings, but

since each study used black box techniques, none has
Symbolic Evaluation. In the mid 1970’s, King was commented on the code-level mechanisms accounting
one of the first to propose symbolic evaluation as for the observed behavior.
an aid to program testing [7]. However, at that time
theorem provers were much less powerful, limiting the 7. Conclusions and Future Work
approach’s potential. Recent years have seen remark-
able advances in Satisfiability Modulo Theory and SAT We have presented an initial experiment using sym-
solvers, which has enabled symbolic evaluation to scale bolic evaluation to study the interactions among con-
to practical problems. figuration options for three software systems. Keeping

Some recently developed symbolic evaluators in- existing threats to validity in mind, we drew several

clude DART [8], [17], CUTE [18], SPLAT [19], conclusions. All of these conclusions are specific to our
EXE [10], and KLEE [9]. There are important tech-  programs, test suites, and configuration spaces; further
nical differences between these systems, e.g., DART work is clearly needed to establish more general trends.
uses concolic executionwhich mixes concrete and First, the minimal covering sets we computed were
symbolic evaluation, and KLEE uses pure symbolic very small, much smaller in fact than 3-way covering
evaluation. However, at a high level, the basic idea is arrays. Second, covering arrays produced very high
the same for all these tools: the programmer marks val- line coverage, but they still lacked some configurations
ues as symbolic, and the evaluator explores all possible needed for maximum coverage and included many
program paths reachable under arbitrary assignments to configurations that are redundant with respect to line
those symbolic values. As we mentioned earlier, Otter coverage. Third, for up to 2-way interactions, we found

is closest in implementation terms to KLEE. that small groups of options sometimes interacted with
each other, but not with options in other groups. Hence
Software Engineering for Configurable Systems. we conclude that the overall configuration spaces were

Several researchers have explored using design of ex- not monolithic, but were actually a combination of
periments (DoE) theory to generate, select or evaluate disjoint configuration subspaces. Taken together these
test suites. Mandl [3] first used orthogonal arrays, results strongly support our main hypothesis—that in
a special type of covering array in which aHsets practical systems, many configuration options simply
occur exactlyonce, to test enumerated types in ADA do not interact with each other.
compiler software. This idea was extended by Brownlie Based on this work, we plan to pursue several
et al. [2] who developed the orthogonal array testing research directions. First we will extend our studies to
system (OATS). Yilmaz et al. [20] applied covering better understand how configurability affects software
arrays to test configurable systems. They showed that development. Some initial issues we will tackle include
covering arrays were effective not only in detecting increasing the number and types of options; repeating
failures, but also in characterizing the specific failure our study on more and larger subject systems; and
inducing options. expanding our guaranteed coverage analyses to higher
Some of these researchers have empirically demon- strengths. We will also repeat our experiments using
strated that DoE techniques can be effective at fault more complex coverage criteria such as edge, condi-
detection and provide good line or path coverage. Dalal tion, and multiple criteria decision coverage.
et al. [21] argued that testing all pairwise interactions We also plan to enhance our symbolic evaluator
in a software system can find many faults. In further to improve performance, which should enable larger



scale studies. One potential approach is to use path [8] P. Godefroid, N. Klarlund, and K. Sen, “DART: di-

pruning heuristics to reduce the search space, although

we would no longer have complete information.
Finally, we will explore potential applications of our

approach and results. For example we may be able
to use symbolic evaluation to discretize integer-valued

configuration options and to identify option settings

that exhibit masking effects. As our results show that
different test cases depend on different configuration

options, we will investigate how this information can

be used to support a variety of software tasks, such
as test prioritization, configuration-aware regression

testing and impact analysis. Finally, we will investi-

gate how guaranteed coverage information might be
presented to developers in ways that help them better
understand how configuration interactions influence

specific lines of code.
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