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Nearly all engineering design problems have multiple objectives with parameters 

that have uncontrollable variations due to noise or uncertainty. Such variations can 

significantly degrade performance of design solutions or can even make them infeasible. 

The variations can also adversely affect customer’s preferences for a product design 

alternative and its success in the market. 

This dissertation presents two multi-objective optimization approaches for 

obtaining robustly optimal design solutions. The two approaches use the same method to 

obtain a feasibly robust solution: one that does not violate any constraint due to 

uncontrollable variations. However, each approach uses a different method to obtain 

multi-objectively robust solutions. Approach 1 obtains a multi-objectively robust solution 

in which, with respect to a target point and under uncontrollable variations, the distance 

between worst case and target design points and the distance between worst and best case 

design points are minimized. Approach 2 obtains a multi-objectively robust solution 



  

which is optimal for nominal values of parameters and at the same time maintains an 

acceptable range of variability with respect to individual objective functions. Approach 2 

is used within an integrated design and marketing framework to facilitate the generation 

of a robustly optimal set of single product design alternatives and a robustly optimal 

product line design alternative. By way of this framework, in the design domain, 

Approach 2 evaluates performance and robustness of design alternatives. While in the 

marketing domain, it considers designs that are robust with respect to customer 

preferences for variations propagated from the design domain as well as inherent 

variations due to the fit of a preference model to sampled marketing data. 

The applicability and differences of the two robust optimization approaches are 

demonstrated and explored with a numerical and an engineering example.  In particular, 

since Approach 2 is more flexible and less conservative than Approach 1, it has been 

applied and demonstrated with a real-word case study in single product and product line 

engineering of a power tool with both design and marketing considerations. 
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CHAPTER 1  

INTRODUCTION 

1.1. MOTIVATION AND OBJECTIVE 

The existing research has shown that an effective integration of engineering 

design and marketing domains can have a positive impact in the success and performance 

of a product design (e.g., [Griffin and Hauser, 1992]). It is no surprise that the specifics 

of such an integration have been the focus of research in the last decade or so, e.g., the 

quality function deployment approach [Griffin and Hauser, 1993], decision-based design 

[Hazelrigg, 1998], and integration of customer requirements into product design [Bailetti 

and Litva, 1995].   

The key characteristic in the integration of engineering design and marketing 

domains is that it provides the means for consideration of a large number of factors, some 

of which are specific and unique to one domain and some are common across both 

domains. Examples of such factors are ambient temperature, power source voltage, 

brand, and price. Often, some of these factors are interrelated and affect the decisions that 

fall under either of design or marketing domains. An effective and efficient method for 

considering and integrating these factors is critical for reducing the time and cost in 

product design.   

An important step in the design domain is the generation of a set of product 

design alternatives. A product design alternative is generated by identifying its factors 

and features in both design and marketing domains. For instance, a corded power tool 

design can be generated partly by a set of engineering design factors (later referred to as 
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design variables), e.g., choice of motor type, gear type, gear ratio, switch type. There are 

also other factors that more fully define the product design from a marketing perspective, 

e.g., choice of brand, price. A modification of such factors in either domain can result in 

a different product design alternative. In this regard, several researchers have developed 

methods such as combinatorial permutation of design characteristics and multi-objective 

design optimization methods for generation of design alternatives (e.g., [Fuhita and Ishii, 

1997] [Shi and Schmidt, 2003] [Deb and Jain, 2003]). However, these and other similar 

design generation methods are developed based on engineering design aspects of a 

product and neglect the marketing aspects of the problem.  

More importantly, a product design process has to accommodate uncontrollable 

variations (or uncertainties) that occur due to different operation conditions and usage 

situations of a product that affect its performance (e.g., [McAllister and Simpson, 2003]). 

For a power tool such as a grinder, the uncontrollable variations in power source voltage, 

current, and ambient temperature are examples of uncontrollable parameter variations in 

operation conditions. The changes in the load bias (i.e., the force that user imposes on a 

tool), different application material (e.g., wood or concrete) are examples of 

uncontrollable parameters in usage situations. All of these are just a few examples of 

parameters with uncontrollable variations that can play a major role in engineering design 

performance of a product design. Note that parameters that are the source of 

uncontrollable variations in design performance can also cause variations in consumer 

preferences and thus affect marketing success of a product. For instance, power tool 

products that are very sensitive to voltage variations, or those that malfunction shortly 

after they are subject to a user’s load bias cannot sustain in the marketplace. As a result, it 
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is quite important to account for the variations in both engineering design attributes (e.g., 

maximum no-load motor speed, motor temperature) as well as the marketing attributes 

(e.g., retail price, life of the product). In other words, any new product that is designed 

should be “robustly” optimum to these variations. A robust optimum design alternative is 

one that has (i) the best possible (engineering and market) performance under the worst 

case variations, and (ii) the least possible (or acceptable) variability in its performance 

under uncontrollable variations of parameters.  

Figure 1.1 encapsulates the main elements of the problem that will be considered 

in this dissertation. In this problem, the product design process is focused on two 

domains: engineering design and marketing. In the engineering design domain, the focus 

is on the performance, feasibility, and robustness of a product design alternative. In this 

regard, a simulation tool is used to obtain and measure the performance and feasibility of 

a product design alternative. In the marketing domain, to the focus is on capturing the 

customers’ needs and preferences with respect to the performance and features of a 

product design alternative. The competition has also been accounted for since a product 

cannot be successful in the market if the characteristics in the competitive products are 

not taken into account. There is also variability or uncertainty involved in parameters in 

both design and marketing domain. The robust product design optimization presented in 

this dissertation is the pivotal element that provides a link between the design and 

marketing domains and generates a solution for this integrated design and marketing 

problem. The solution can be in the form of a single product or a family of products 

hereafter referred to as a product line.  
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Figure 1.1: Problem Definition: Robust Product Design Optimization 

Although the effect of uncontrollable variations of design parameters in 

performance attributes have been the subject of research investigations for more than a 

decade (e.g., [Taguchi et al, 1989] [Parkinson et al 1993]), these investigations neglect to 

consider the effect of variations of design parameters in customer preferences. All of the 

above-mentioned discussions have direct implications on a single product design 

problem, where the assumption is that the manufacturer launches only one product to the 

market. However, the issue of variability and its effects on both design and marketing 

domains can be extended to include a product line (i.e., a set of products or variants that 

share the same attributes).  

The overall objective of this dissertation is to develop an approach that takes into 

account variability in a number of design and marketing parameters, and obtain a set of 

“best” possible single product design or product line design alternatives for launching 

into the market. 
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1.2. RESEARCH THRUSTS: PROBLEM DEFINITIONS AND 
OBJECTIVES 

To achieve the above mentioned overall objective, three research thrusts have 

been identified and pursued in this dissertation. These are: (i) Research Thrust 1: Multi-

Objective Robust Design Optimization, (ii) Research Thrust 2: Single Product Robust 

Optimization, and (iii) Research Thrust 3: Product Line Robust Optimization.  

A brief description of the motivation and objective behind each research thrust is 

given in the next three Sections: Sections 1.2.1 to 1.2.3.  

1.2.1. Research Thrust 1: Multi-Objective Robust Optimization 

A multi-objective optimization problem is one that has several design objectives 

that are at least partly conflicting, and has constraints. For such a problem, due to 

variations in parameters that are not under a designer’s control (i.e., uncontrollable 

parameters), there may exist unacceptable variations in design objectives and/or 

constraints. This research thrust is aimed at obtaining solutions to a multi-objective 

optimization problem that are not only feasible and optimal but also their objective and 

constraint functions are allowed to have acceptable (or minimal) variations caused by 

uncontrollable parameters. 

The objective of this research thrust is to develop some measures that will help 

assess the robustness of a design alternatives, and to incorporate these measures in a 

multi-objective design optimization methodology.  

1.2.2. Research Thrust 2: Single Product Robust Optimization 

A successful product design alternative needs to satisfy the requirements of both 

engineering design and marketing domains. The engineering design domain deals with 

factors of a product design which are crucial to its performance and feasibility. The 
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marketing domain is concerned with customers’ inputs and their perceptions with respect 

to the product. The requirements of both design and marketing domains need to be 

concurrently accounted for. The advantage of using the marketing information during 

(and not after) the design is to ensure that potentially desirable design alternatives in the 

market are not eliminated during the design stage.  

The objective of this research thrust is to develop an approach that accounts for 

variations in design domain, marketing attributes, and customer preferences to generate 

a set of robust optimum product alternatives that not only satisfy the requirements in the 

design domain but also show a good performance in the marketing domain where several 

competitive products are present.   

 

1.2.3. Research Thrust 3: Product Line Robust Optimization 

Since customer needs across a market is often diverse, in many cases, introducing 

a single product may not satisfy the requirements of all segments in the market. In 

particular, when there are competitive products in the market, customers might switch to 

the competition resulting in a low market share for a producer. To address this problem, 

product manufacturers launch more than one variant of a product (or a product line) to 

the market in order to gain a higher market share. However, a product line comes at a 

cost and in order to reduce the cost, the variants in the product line are made to share 

common components. The third research thrust is concerned with a framework that 

generates a set of robust and optimum product line designs and then select a product line 

design from this set while taking into account customers input from all market segments 

and competitive products. 
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The objective of this research thrust is to develop an approach for robust 

optimization of product line alternatives that preserves robustness of variants in a set of 

product line designs, as much as possible, while taking into account customers 

preferences and market competition. 

1.3. ORGANIZATION OF DISSERTATION 

The organization of the rest of the dissertation is as follows. Chapter 2 provides 

definitions and terminology used throughout the dissertation, as well as a review of 

related work in the literature. In Chapter 3, the robustness measures and two approaches 

for multi-objective robust design optimization are developed. Next, in Chapter 4, an 

approach to integrate the engineering design and marketing aspects of a product design 

within a multi-objective robust optimization scheme is presented. Chapter 5 is devoted to 

an extension of the approach in Chapter 4 to a product line robust optimization. To 

demonstrate the applications of the proposed method, an engineering design example as 

well as a numerical example is provided in Chapter 3. The case study presented in 

Chapter 4 and Chapter 5 is based on a real-world design simulation and marketing data.  

Finally, the dissertation is concluded with some remarks as well as discussions on the 

contributions of the dissertation along with suggestions for future research directions. 
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CHAPTER 2 

DEFINITIONS AND PREVIOUS WORK 

2.1. INTRODUCTION 

The purpose of this chapter is to provide definitions and terminologies that are 

used throughout this dissertation. In addition, a review of previous work in robust 

optimization and those in integration of engineering design with marketing for both 

single product and product line design is presented.  

In Section 2.2, the related definitions and terminology are presented. Next, 

Section 2.3 is devoted to a literature review for the three research thrusts. In particular, 

Section 2.3.1 covers the previous work in robust optimization techniques, Section 2.3.2 

discusses the literature on single product robust optimization methods, and Section 2.3.3 

is devoted to the literature review of robust product line optimization methods. Finally, 

Section 2.4 provides a summary of the chapter. 

2.2. DEFINITIONS AND TERMINOLOGY 

 
The formulation of a multi-objective optimization problem can be written as 

shown in Eq. (1).  

Jjg

Iif

j

i

,,1             0),(  :subject to

,,1                    ),(    minimize

K

K

=≤

=

px

px
x     (2.1) 

where fi is the ith objective function, gj is the jth inequality constraint function, and x = 

(x1,…, xN) is the vector of design variables, p = (p1,…, pV) is the vector of design 

parameters. It is assumed that design variables, x, can be changed by the optimizer, while 
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design parameters, p, are fixed to their nominal value, to generate different design 

alternatives. Note that in Eq.(2.1), it is generally assumed that some of the p components 

have uncontrollable variations with their range of variation presumed to be known. Note 

also that some of the x components can have uncontrollable variations too, in which case 

the set p also includes these x components. Some researchers prefer to differentiate 

between variations in design variables and variations in design parameters, the so-called 

type-1 and type-2 variations [Chen et al., 1996] and [Kalsi et al., 2001]. For simplicity, in 

this dissertation, that distinction is not made.  

 The following are a few definitions of the concepts and terminology that are used 

throughout the dissertation. 

Design Variable Space: The N-dimensional space whose coordinates are the components 

of the design variable vector x. Every point in this space represents a design alternative. 

In this space, design alternatives can be generated by manipulating design variables. For 

instance, a particular choice of a motor, gearbox, housing, etc., forms a power tool design 

alternative. 

Design Objective Space: The I-dimensional space whose coordinates are design objective 

functions (i.e., f1,…, fI). The performance attributes of a design alternative are evaluated 

in this space. 

Design Parameter Space: The V-dimensional space whose coordinates are the elements of 

the design parameter vector p. Corresponding to every design candidate (i.e., a point in 

the design variable space), there exists a point in the design parameter space. Design 

parameters affect the design performance attributes (i.e., objective functions and 
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constraints). In general, the designer does not have control over variations in design 

parameters. 

Design Constraint Space: The J-dimensional space formed by the inequality constraints is 

referred to as design constraint space. 

Design Attributes: The outputs of a design simulation model represent a set of 

performance attributes that are also called: design attributes. It should be noted that the 

outputs of the design simulation can be used to form design objective and constraint 

functions.  

Marketing Attributes: The set of product design attributes that are specific to a marketing 

study is called marketing attributes. It should be noted that purely marketing attributes do 

not play a role in engineering design performance of a product.  

Common Attributes: These are a set of attributes that are common in both engineering 

design and marketing domains. Weight of a product is an example of a common attribute. 

Design alternatives: The collection of design variables (xis), when fixed to a certain value 

or level, forms a design alternative. In other words, each design alternative can be 

represented by a vector of design variables.  

Product Alternatives: Each design alternative can be enumerated over marketing attribute 

levels, and generate several product alternatives. For instance, a single design alternative 

of a corded power tool can be offered at several different price (which is a marketing 

attribute) levels, each representing a product alternative. Note that, there is a difference 

between a product alternative and a design alternative. 
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Product Line: A product line (or product family) refers to a set of product alternatives 

that have the same basic function, but each alternative has a different combination of 

attribute levels. Each alternative within a product line is referred to as a variant. 

Multi-objective Dominance: A product design alternative multi-objectively dominates 

another design alternative, if and only if it is strictly dominant (i.e., is better) in terms of 

at least one objective function and at the same time not inferior (i.e., is not worse) in 

terms of remaining objective functions. Figure 2.1 depicts a two-dimensional objective 

space in which both objectives are minimized. Design alternative A dominates design 

alternative B (i.e., A is better than B in terms of both objective functions). Also, design A 

dominates design C (i.e., A is better in terms of f1, and is not worse in term of f2). 

However, design A and design D are non-dominated with respect to one another. The 

shaded region shows the region where all designs in that region are dominated by design 

A.  

 

Figure 2.1: Multi-objective dominance 

Tradeoff Set: A set of design alternatives (i.e., points in objective space) forms a tradeoff 

set if all of the points are non-dominated with respect to each other. For instance, in 

Figure 2.1 designs B and C form a tradeoff set. 

A C 

D 

f1 

f2 

B 
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Pareto Set, Pareto Frontier: The design alternatives that are not dominated (or are non-

dominated) by any other design point in the feasible region (i.e., set of all feasible design 

alternatives) form a set which is called a Pareto set. The plot of Pareto set in the objective 

space is referred to as Pareto frontier. The feasible region of a two dimensional 

minimization problem along with the corresponding Pareto frontier is shown in Figure 

2.2. 

 

Figure 2.2: The design objective space 

 

Dominance Number: The dominance number for each design alternative is defined as the 

number of design alternatives that dominates it in the objective space. The lower the 

magnitude of the dominance number, the better the design is. As an example, the 

dominance number of Pareto design alternatives is zero. 

Good and Bad Reference Points: A designer can provide a good (i.e., target) value as well 

as a bad value for each objective function. These good and bad points are an estimate of 

the ideal and nadir points, respectively [Miettinen, 1999]. These values are used to 

normalize the objective and constraint functions so that they have the same order of 

magnitude. They are also used as a reference in the proposed robust optimization method. 

Good 

f1 

f2 

Feasible Region 

Pareto Frontier 

Bad
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An example of these reference points, i.e., the good and bad points, in a two-objective 

minimization problem is shown in Figure 2.2. 

Normalization: The design objectives are normalized to have the same order of 

magnitude. To do the normalization, it is assumed that for each objective the designer 

provides a target value g
if  (an estimate of a desired target or good design) and a bad 

value b
if  (an estimate of an undesired design). The normalization is shown in Eq. (2.2) 

with the quantity N
if  representing the normalized function value.  

b
i

g
i

b
iiN

i ff
ff

f
−
−

= ,    Ii ,,1K=         (2.2) 

Objective Robustness: The objective robustness is a property of a design alternative 

whose objective functions (i.e., performance attributes) are “insensitive” to variations 

caused by uncontrollable design parameters. In other words, the objective function values 

for a design that is objectively robust show minimum (or limited) change in their value 

under uncontrollable parameters’ variations. 

Feasibility Robustness: The feasibility robustness is a property of a design alternative 

whose inequality constraints are always satisfied regardless of the variations in 

uncontrollable design parameters. 

Robust Design: It refers to a design alternative that has both objective robustness and 

feasibility robustness. 

Nominal Pareto Set: It is the Pareto set of a multi-objective optimization problem where 

the design parameters are fixed at their nominal values.  

Robust Pareto Set: A trade-off set whose elements are non-dominated in the objective 

space and also posses both objective robustness and feasibility robustness. 
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2.3. OVERVIEW OF PREVIOUS WORK 

Robust design optimization methods have become very popular and many 

researchers have investigated the effect of changes in uncontrollable design parameters in 

the context of engineering design (e.g., [Taguchi et al., 1989] [Parkinson et al., 1993] 

[Badhrinath and Rao, 1994] [Chen and Yuan, 1999] [Gunawan and Azarm, 2005]). The 

performance and robustness of a product design plays an important role in its success in 

the marketplace too. The success requirement of a product in the market has also 

triggered the need for incorporation of customers’ inputs into the design process. In that 

regard, a number of design-marketing integration schemes have been introduced in the 

literature (e.g., [Urban and Hauser, 1980] [Li and Azarm, 2000] [Michalek et al., 2005]). 

Such approaches are introduced for both single product design (e.g., [Li and Azarm, 

2000] [Chen and Yuan, 1999]) and product line design (e.g., [Li and Azarm, 2002] 

[Simpson, 2003]) problems. In particular, the approach introduced by Li and Azarm [Li 

and Azarm, 2000] addresses the design performance and marketing performance of a 

product in two separate and sequential stages, and that the effect of uncontrollable design 

parameters to the marketing performance of a product has not been addressed. Other 

approaches (e.g., [Michalek et al., 2005] [Simpson, 2003]) have not addressed the effect 

of uncontrollable design parameters (i.e., engineering design domain) in the overall 

performance of a product design, and particularly ignored the marketing performance 

(i.e., marketing domain) of a product.  

In the next three subsections, a detailed review of literature for robust 

optimization techniques, single product robust optimization, and product line robust 

optimization are provided. 
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2.3.1. Literature Review of Robust Optimization Techniques 

Most the existing robust optimization techniques are exclusively focused on 

single objective design optimization problems (e.g., [Taguchi et al, 1989] [Sundaresan et 

al, 1992] [Parkinson et al, 1993] [Badhrinath and Rao 1994] [Chen and Yuan, 1999]). 

The work by Taguchi [Taguchi, 1978] is perhaps one of the earliest publications that 

address the robustness issue. Taguchi [Taguchi et al., 1989] defined robustness as: “The 

state where the technology, product, or process performance is minimally sensitive to 

factors causing variability (either in manufacturing or in the user’s environment) and 

aging at the lowest manufacturing cost”. In an attempt to categorize robustness concepts, 

the paper by [Parkinson et al, 1993] has classified robustness for a design alternative to 

two classes: 1) “feasibility robustness” that implies maintaining constraint satisfaction 

under the uncontrollable parameter variations, and 2) “objective robustness” that implies 

maintaining least objective function sensitivity under the uncontrollable parameter 

variations. The majority of the robust optimization methods in the literature are either 

probabilistic (e.g., [Chen and Yuan, 1999] [DeLaurentis and Mavris, 2000]) or 

deterministic (e.g., [Su and Renaud, 1997] [Roy and Parmee, 1996] [Zhu and Ting, 

2001]). Some of the deterministic methods obtain a robust optimum design by computing 

its sensitivity using first-order derivative of design attributes and then incorporate these 

measures when optimizing the design (e.g., [Sundaresan et al., 1992] [Badhrinath and 

Rao, 1994]). Probabilistic methods, on the other hand, use statistical concepts and 

techniques to estimate performance (i.e., objective functions) and/or feasibility sensitivity 

[Parkinson et al., 1993] [Du et al., 2004] of a design and then try to obtain an optimized 

solution that has the least amount of sensitivity with respect to the variations. One of the 

assumptions in probabilistic methods is that the probability distribution of uncontrollable 
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parameters is known or can be obtained upfront (e.g., [Chen and Yuan, 1999] [Choi and 

Youn, 2002] [Jung and Lee, 2002] [Teich, 2001] [Hughes, 2001]). The reliability-based 

design optimization (RBDO) methods are part of probabilistic methods that focus on the 

feasibility of a design under variation (e.g., [Youn et al., 2004]). Overall, the probabilistic 

methods such as RBDO tend to be more effective when the probability distribution 

function for uncontrollable parameters is available. In the absence of the probability 

distributions, possibility-based design optimization (e.g., [Choi et al., 2004]) or 

deterministic methods can be used. Unfortunately, a major difficulty in applying 

probabilistic methods is that the probability distribution for parameter variations may not 

be available or if available, it may not be valid [Haimes, 1998]. Furthermore, 

probabilistic methods for robust optimization often use the expected value of the 

objective functions or constraints which could lead to misleading results and 

interpretations [Haimes, 1998]. On the other hand, the main shortcoming of current 

deterministic methods is that the approximations used in these methods (e.g., [Yu and 

Ishii, 1989]) are generally valid only for a small range around the nominal or they are not 

applicable when the objective/constraint functions have discontinuity with respect to 

design parameters. One of the deterministic methods that did not have the limitations of 

approximation of functions within a small region of the nominal was recently developed 

[Gunawan and Azarm, 2005]. However, the approach by [Gunawan and Azarm, 2005] 

was based on the assumption that the objective and/or constraint functions are continuous 

but not necessarily differentiable with respect to uncontrollable parameters. The 

deterministic approach by [Li et al., 2005] does not have some of the limitations (e.g., 

continuity of objective functions / constraints with respect to design parameters) of the 



 

 17

approach by [Gunawan and Azarm, 2005]. However, both approaches: [Gunawan and 

Azarm, 2005] and [Li et al., 2005], require a presumed acceptable range of variations for 

objective functions for which solution existence cannot be guaranteed. Among the other 

deterministic approaches, a few methods take design performance at the worst case 

scenario of design parameters into consideration (e.g., [Shimizu et al, 1997] [Kouvelis 

and Yu, 1997]). In particular, Kouvelis and Yu have used a min-max approach to address 

robustness for single objective problems. Kouvelis and Yu’s single objective robust 

optimization approach has been extended to problems with multiple objectives using a 

min-max approach [Shimizu et al, 1997]. While a min-max approach seems to address 

multi-objective problems, relying only on a min-max approach can yield very 

conservative results  

Two deterministic robust optimization approaches will be proposed and 

implemented in this dissertation. The first approach (Approach 1) was inspired by the 

method of Kouvelis and Yu [Kouvelis and Yu, 1997]. However, the first approach is 

applicable to problems with multiple objectives. Furthermore, the first approach is 

guaranteed to obtain robust solutions that have the best multi-objective performance 

under the worst case scenario and at the same time show minimum variability in their 

objective function values. The proposed second robust optimization approach (Approach 

2) is tailored for problems where the variability of some objective functions needs to be 

limited (and not minimized). Both approaches, as developed in this dissertation, do not 

need the probability distribution of the uncontrollable parameters, and can be applied to 

problems in which the range of uncontrollable parameter variations is large.  
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2.3.2. Literature Review of Single Product Robust Optimization 

There are several published methodologies in the engineering design literature for 

generation of design alternatives. Among those, the design concept generation methods 

based on grammar rules (e.g., [Schmidt and Cagan, 1997] [Hsu and Woon, 1998] 

[Schmidt et al., 2005] [Jin et al., 2005] ) or functions (e.g., [Pahl and Beitz, 1984] [Hirtz 

et al., 2002]) are widely used in the literature. Another class of design generation 

methods, particularly applicable at the detailed design stage, are based on design 

optimization with multiple objectives (e.g., [Narayanan and Azarm, 1999] [Deb and Jain, 

2003] [McAllister et al., 2005]), and are those that use permutations over multiple levels 

of attributes (e.g., [Li and Azarm, 2000]). Majority of the design optimization methods 

for product alternative generation address the optimality and feasibility of the generated 

alternatives. An important drawback of the majority of the above-mentioned approaches 

is that they are developed based on design factors or “design attributes” and may 

overlook other major factors such as “marketing attributes” that impact customer 

preferences and eventual success of a product.  

Extant research in marketing and management science literature has shown that 

an effective integration of engineering design and marketing factors can have positive 

impact on product development cycle time [Griffin, 1997] [Sherman et al., 2000] [Urban 

et al., 1997], project performance [Griffin and Hauser, 1992] [Olson et al., 2001], and 

overall company and market performance [Gemser and leenders, 2001] [Griffin and 

Hauser, 1996] [Tatikonda and Montoya-Weiss, 2001]. The specifics of integrated design-

marketing approaches have been the focus of research in the last decade: e.g., quality 

function deployment approach [Griffin, 1992] [Griffin and Hauser, 1993] [Hauser and 

Clausing, 1988], lead user analysis [Urban and Von Hippel, 1988], and integrating 
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customer requirements into product designs [Bailetti and Litva, 1995] [Urban et al., 

1997] have received particular attention. Nevertheless, most of the above-mentioned 

approaches in the literature are focused on the effect of market characteristics [Urban and 

Hauser, 1980] or customer-oriented attributes [Wassenaar et al., 2005] of the products.  

In summary, the previous methods are focused on either engineering design 

factors or marketing aspects of a product, and the interaction of design factors with 

marketing factors in the presence of uncontrollable parameters in both domains has not 

been addressed fully in the literature. There are a few reported integrated design-

marketing approaches that have limitations. For instance, the approach developed by [Li 

and Azarm, 2000] handles the design and marketing domains in two separate and 

sequential stages. On the other hand among other works on the integrated design and 

marketing optimization (e.g., [Michalek et al., 2005]) the issue of the design performance 

variability (design robustness) and its effect in the marketing performance of the product 

has not been explored.  

2.3.3. Literature Review of Product Line Robust Optimization 

The problem of designing successful product lines has received particular 

attention in the engineering, marketing and management science literature for the last two 

decades (e.g., [Green and Kreiger, 1985], [Chen and Hausman, 2000], [Simpson et al, 

2001], [Balakrishnan and Gupta, 2004]). Manufacturers often launch variants of a 

product (or a product line) to meet customer requirements in different segments of a 

market. As [Pine, 1993] writes, “The customers can no longer be lumped together into a 

huge homogenous market, but are individuals whose individual wants and needs can be 
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ascertained and fulfilled”. Identifying the needs of customers in different segments of the 

market is vital to the success of a product line in the market. 

In the marketing and management science literature, the focus of the research has 

been to obtain a product line that not only satisfies heterogeneous customers’ preferences, 

but also achieves an economy of scale (i.e., reduction per unit cost by mass production) 

(e.g., [Green and Kreiger, 1985] [McBride and Zufryden, 1988] [Ramdas and Sawhney, 

2001]. Also several methods in the literature have discussed the issue of market 

segmentation. For instance, [Desai et al, 2001] have characterized the market by two 

segments (high and low valuation) and assumed the manufacturer produces two products 

each aimed at each segment. Assuming that the market is structured (e.g., [Kannan and 

Wright, 1991]), the product manufacturers can use the platform-based designs to create 

the product lines that have sufficient variety for different segments, while maintaining 

lower cost within their manufacturing processes. For instance, Black and Decker have 

built a line of products around a scalable motor platform [Meyer and Lehnerd, 1997]. 

Furthermore, these designs share components that reduces the overall manufacturing 

costs across the product line ([Ramdas and Sawhney, 2001], [Fisher et al, 1999], [Gupta 

and Krishnan, 1999]). Most of the research in this area has been focused on the revenue 

maximization aspect of the product line design. The cost aspect of the product line design 

has been simplified to fixed cost only (e.g. [Dobson and Kalish, 1988] and [McBride and 

Zufryden, 1988]). One exception is the work of Ramdas and Sawhney. [Ramdas and 

Sawhney, 2001]. In particular Ramadas and Sawhney [Ramadas and Sawhney, 2001] 

have developed a model to account for the fact that firms can save money on 

development costs when components can be shared by variants in a product line. There 
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are many factors that are involved in determining the overall production cost of a product 

design, some of which have been explored by researchers in both engineering design and 

management areas (e.g., [Taylor, G.D., 1997] [Park and Simpson, 2003] ). The 

commonality among the variants in a product line and its effect on the overall production 

cost of the product family has also been investigated by several researchers (e.g., 

[Morgan et al.., 2001], [Park and Simpson, 2005]). A comparison between several 

commonality measures can be found in [Thevenot and Simpson, 2004].  

Another major focus of the marketing and management science literature has been 

on the optimization-based approaches to obtain the optimal product line. In particular, 

these approaches are based on two classes of problem formulations. There are either 

maximization of producer’s profit (i.e., sellers return) or customer utility (i.e., buyer’s 

welfare) (e.g., [Green and Kreiger, 1985], [McBride and Zufryden, 1988]).  

In the engineering design literature on product line design, the focus has been on 

cost reduction due to commonality among the variants in a product line and platform 

management (e.g., [Morgan et al.., 2001], [Park and Simpson, 2005]). In that regards 

many measures for degree of commonality for product families (or lines) have been 

developed (e.g., [Martin and Ishii, 1997] [Kota et al., 2000]), and Thevenot et al. have 

compared many of these measures [Thevenot et al., 2004]. Recently, many researchers in 

engineering design disciplines have investigated this problem from a profit maximizing 

perspective (e.g., [Li and Azarm, 2002] [Michalek et al., 2005]). 

The researchers in both engineering design and marketing and management 

science disciplines have used a wide variety of optimization methods to obtain an optimal 

product line. For instance, the method of integer programming [McBride and Zufryden, 
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1988], and genetic algorithms (e.g., [Alexouda and Paparrizos, 2001] [D’Souza and 

Simpson, 2003]) are among the frequently used approaches to find an optimal product 

line. Due to the complexity of product line optimization problems, several researchers 

have developed heuristics to obtain near optimal solutions. Among these, the dynamic 

programming heuristic approach [Kohli and Sukumar, 1990], beam heuristic search 

approach (e.g., [Nair et al, 1995]), [Thakur et al., 2000]) are used to obtain a product line 

that maximizes either the seller’s return or buyers’ welfare. However, the heuristic 

approaches may not converge to true optimum solution. 

Finally a number of researchers have taken steps to develop integrated approaches 

where the criteria for both engineering design and marketing disciplines are taken into 

account. Among them, the approach developed by [Li and Azarm, 2002] performs a 

product line design generation (taking only engineering design objectives into account) 

and evaluation (taking marketing and business goals into account). As a result of the 

separation of engineering design objectives and marketing attributes, some of the 

promising product line candidates (from the marketing perspective) may be eliminated 

during the design optimization. In another integrated approach [D’Souza and Simpson, 

2003], the design generation and evaluation stages are performed simultaneously using a 

genetic algorithm technique to obtain the final product. However, the criterion used for 

the fitness assignment is entirely based on the manufacturing cost. In addition, the 

approach by [Morgan, et al., 2001] has some simplifications such as hypothesizing a 

market with only one competitive product. 

One of the important issues that has not been addressed in the both engineering 

design and marketing and management science literature is the effect of variations in 



 

 23

uncontrollable design parameters to both engineering performance attributes of the 

variants in the product line as well as the customer utilities. Furthermore, in most of the 

engineering-based approaches the relationship of the market segmentation to the product 

line alternative generation has not been addressed. Here, an integrated design-marketing 

approach will be presented that takes the issues of variations in both design and 

marketing domains. The approach is divided into two stages to ease the computational 

complexity of the problem. However, unlike some of the previous work (e.g., [Li and 

Azarm, 2002]) any elimination scheme in the approach in this dissertation is geared to 

remove product designs that are unacceptable for either of the two engineering design 

and marketing disciplines.  The details of the proposed approach are presented in Chapter 

5 of this dissertation. 

 

2.4. SUMMARY 

In this chapter, the definitions and terminology used throughout this dissertation 

are presented.  A literature review for each of the research thrusts is presented. The 

shortcomings of the previous works in each of the proposed research thrusts are 

summarized as in the following. 

• The majority of methods of robust optimization in the literature handle single 

objective optimization problems. Those that account for multiple objectives either 

require the probability distribution of uncontrollable design parameters or majority of 

them (i.e., deterministic approaches) are based on the assumption that the objective 

functions and/or constraints are continuous and differentiable with respect to 

uncontrollable design parameters. Unlike some of the existing methods in the 
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literature, both approaches in this dissertation do not have the above-mentioned 

limitations. In particular, Approach 1 is guaranteed to obtain robust optimal solutions 

that show best performance under worst case scenario, with minimum variability in 

objective function values, and Approach 2 works for problems where the designer 

requires an acceptable range of variation for each objective function, and obtains a 

robust Pareto set. However, there is a computational complexity issue that is 

associated with each approach.  

• The majority of the approaches for integration of engineering design and marketing in 

the literature are focused on engineering design aspects of a product design and the 

marketing aspects are either not considered or simplified. The methods in the 

marketing literature do not address the problem beyond the marketing performance of 

a product and the possible implications of design domain and the interactions between 

design and marketing domains have not been accounted for. On the other hand, the 

extant literature on integration of engineering design optimization and marketing 

(e.g., [Michalek et al., 2005]) has not yet addressed the issue of design robustness and 

its impact on the customers’ choice of a product design. The approach in this 

dissertation integrates the engineering design requirements (including design 

robustness) and marketing implications of each within a framework that generates an 

optimal and robust set of product design alternatives.  

• One of the important issues that has not been addressed in the literature is the effect 

of variations in uncontrollable design parameters to engineering performance 

attributes of the variants in the product line as well as the customer utilities. In the 

engineering-based approaches, the relationship of the market segmentation to the 
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product line alternative generation has not been addressed. To overcome these 

shortcomings, a robust product line optimization approach is developed that generates 

an optimal product line that is desirable in the engineering design as well as the 

marketing domains and accounts for variability in both domains. 

In the next chapter, the first research thrust of this dissertation, Multi-Objective 

Robust Optimization is presented. 
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CHAPTER 3 

MULTI-OBJECTIVE ROBUST OPTIMIZATION 

3.1. INTRODUCTION 

Engineering design optimization problems in general have parameters with 

variations (due to noise or uncertainty) that a designer cannot control. As a result of such 

variations, the performance (the value of objective functions) of an optimized design 

solution might degrade significantly and/or its feasibility might be violated. 

Uncontrollable design parameter variations can occur, for instance, in material properties 

such as density and modulus of elasticity, in part dimensions due to manufacturing errors, 

and in usage conditions such as ambient temperature and humidity.  

The purpose of this chapter is to introduce two deterministic approaches for 

robust multi-objective optimization based on a sensitivity estimation of a design 

alternative in the objective and/or constraint space. The reason to introduce two robust 

optimization approaches in this chapter is that there are different types of design 

optimization problems where a unique approach may not be as effective to obtain 

robustly optimal solutions. As will be shown in this chapter, both approaches can handle 

problems in which the objective and/or constraint functions are discontinuous with 

respect to uncontrollable design parameters and/or variables. Moreover, both of the 

approaches do not require a presumed probability distribution for uncontrollable 

variations in parameters and are applicable when parameter variations are large. As will 

be shown, based on a feasibility robustness measure, the approach can also obtain design 

solutions that are guaranteed to be feasible when uncontrollable variations in parameters 
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occur. Furthermore, based on objective robustness measures in either of the approaches, 

the obtained solutions have limited (or minimal) performance variability in the objective 

space. 

The organization of this chapter is as follows. An overview of the concepts used 

in the first robust optimization approach is provided in Section 3.2. Then in Section 3.3 

the details of the robust measures, namely feasibility robustness and multi-objective 

robustness are given. Next, the first robust optimization method is presented. Section 3.4 

is devoted to an alternative robust optimization method. Depending upon the problem and 

the designer’s requirements, either of the two methods can be used. Both of the 

approaches are demonstrated by an application of both methods to a numerical and an 

engineering design example in Section 3.5. A comparison between the two robust 

optimization methods is given in Section 3.6. Finally, this chapter is concluded with a 

summary in Section 3.7. 

 

3.2. ROBUSTNESS MEASURES 

In this section, two alternative robustness measures are introduced that can be 

used to capture either the sensitivity (i.e., variability) in performance or the worst case 

scenario performance for a design alternative. These measures are later used in the first 

robustness assessment approach for evaluation of every design alternative during robust 

optimization. The reason for developing two different methods for objective robustness 

assessment is that each of these methods is suitable for a different problem setting and 

designer’s inputs. In particular, one group of problems may require minimum variability 

for the objective function values (e.g., precision devices with minimum tolerance) and at 
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the same time the worst case performance may have to be taken into account. In such a 

case, it is assumed that a designer can provide a target and a bad value for each objective 

function. The robust optimization approach 1 can handle these problems. In another 

group of design problems the variability of some of the objective functions need to be 

limited (and not minimized), and a designer can provide the specific limits for the 

variability of each objective function. The robust optimization approach 2 is suitable for 

this class of design problems. The details of these methods and their differences are given 

later in this chapter.  

But first it is necessary to describe how the sensitivity of each design alternative 

in terms of the objective functions and constraints can be obtained, as discussed next.  

3.2.1. Sensitivity Region 

The performance attributes (i.e., objective and constraint functions) of design 

alternatives, as discussed before in Eq. (2.1), are generally sensitive to variations due to 

uncontrollable design parameters (i.e., p). In order to capture the sensitivity it is 

necessary to map every point in the design parameter space, as the uncontrollable 

parameters change for a design alternative, to a corresponding point in the design 

objective and/or constraint space. In other words, an objective sensitivity region for each 

design alternative can be obtained by a mapping from the parameter space, p2 vs. p1 

space, onto the design objective space, f2 vs. f1 space, as shown in Figure 3.1. Similarly, a 

constraint sensitivity region can be obtained by a mapping from the parameter space to 

constraint space. The mappings can be performed using design simulation software. 

Figure 3.1 shows an example of such a mapping for a design alternative A. The solid 

point in the parameter space (left side of Figure 3.1) corresponds to the nominal values of 
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each uncontrollable design parameter. The solid point in the objective space (right side of 

Figure 3.1) corresponds to the design alternative’s objective values at the nominal levels 

for uncontrollable design parameters. The box (or the hyper-box in more than 3 

dimensions) in the design parameter space represents the known ranges of variation for 

design parameters. Every point in this box is mapped onto a corresponding point in the 

objective space. As shown in the right side of Figure 3.1, the region that is formed by 

these mappings is called a sensitivity region 

p1 

p2 

Nominal 
Design 

Simulation 

f1 

f2 Sensitivity 
Region 

 

Figure 3.1: Sensitivity region 

Again, it should be noted that the region shown on the right side of Figure 3.1 

only represents the sensitivity of a design alternative in the objective space. However, as 

it will be shown in Section 3.2.3, the feasibility of each design alternative is also sensitive 

to the variations in uncontrollable design parameters. Hence, in a similar fashion, the 

sensitivity region for a design can be obtained in the design constraint space where the 

constraint functions are used to perform the mappings from design parameter space. 

Briefly, three robustness measures are derived in the following subsections for 

approach 1. The first two measures are for multi-objective robustness (i.e., “worst case 

scenario distance from target” and “multi-objective variability”). The third measure is for 

feasibility robustness, which is used in both approach 1 and approach 2. 
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3.2.2. Objective Robustness Measure for Approach 1- Worst Case Scenario Distance 
from Target 

One of the important issues in robustness evaluation of a design alternative is to 

examine how a design performs under a worst case scenario of design parameters. In 

single objective design optimization problems obtaining the worst case scenario is 

straightforward. For instance in a problem where the objective is to minimize the stress in 

a component, the worst case scenario for a design alternative can be obtained for a set of 

uncontrollable parameters (e.g., loading condition, ambient temperature, manufacturing 

tolerance, etc) so that it gives the highest level of stress. In multi-objective optimization, 

however, the worst case scenario must be obtained considering all objective functions. 

One possible method to determine the worst case, as proposed here, is based on a 

distance metric. In this method, the designer selects two levels for each objective 

function; one desirable or good level and one undesirable or bad level. The corresponding 

point in the objective space to the good level of each objective function is called the 

target point. In a similar fashion the corresponding level for the bad level for each 

objective function in the objective space is called the bad point. The target and bad points 

are shown in Figure 3.2(a).  

The proposed first metric is intended to capture the worst case scenario 

performance of each design based on the distance of the farthest point of its sensitivity 

region to a target point. In other words, the Worst Case Scenario Distance (WCSD) from 

target is obtained based on how far a design point is from a target in the objective space 

under worst case values of parameters, see Figure 3.2. Eq. (3.1) calculates, based on an 

Lq norm (see [Miettinen, 1999] for a definition of this norm). The worst case parameter 

value is shown by pW (See Figure 3.2), for which a design x is farthest from a target: 
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where p∈[pL, pU], and pL and pU are the vectors of known lower and upper bounds of 

uncontrollable design parameters. An appropriate global optimization method could be 

used to find the WCSD from the target for each design point. 

3.2.3. Objective Robustness Measure for Approach 1- Multi-Objective Variability 

To obtain a measure of multi-objective variability, first the WCSD value is 

obtained by Eq. (3.1) and then the maximization in Eq. (3.1) is converted to a 

minimization form to find the Best Case Scenario Distance (BCSD) (closest point to the 

target, as shown in Figure 3.2). Multi-objective variability is defined as the distance 

between the WCSD and BCSD points, as shown by the dashed line in Figure 3.2. The 

measure for variability has several components as follows. Firstly, the metric must 

account for the wideness of the sensitivity region. A distance metric seems to fit this quite 

naturally. Secondly, the variability metric must account for the location of the target (and 

the bad point for the scaling purpose) so that the variability could represent the change in 

performance in terms of all objective function values. Finally, the metric must account 

for all objective function values at once in order to reduce the computational cost of the 

method. 
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Figure 3.2: Multi-objective variability using L2 norm 

 

The mathematical formulation for the multi-objective variability measure is given 

in Eq. (3.2) 
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where pW and pB represent the worst case scenario and the best case scenario parameter 

sets, respectively. Also, fi(x,pW) and fi(x,pB) are for the worst case and best case scenarios 

(or values) of the ith objective function, respectively.  
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Figure 3.3: Multi-objective variability using L1 norm 

 

 The multi-objective variability can also be obtained using an L1 norm (i.e., q = 1 

in Eq. 3.2). It should be noted that the location of the worst case and best case points can 

be altered using different norms. Figure 3.3 shows the multi-objective variability when 

the L1 norm metric is used in Eq. (3.2). Furthermore, it is also shown that the multi-

objective variability when an L∞ norm is used instead, see Figure 3.4. 
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Figure 3.4: Multi-objective variability using L∞ norm 
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3.2.4. Feasibility Robustness Measure for Approaches 1 and 2  

The variations in uncontrollable design parameters not only affects the objective 

function values which represent the performance of a design point, but also have a direct 

impact on the constraint values which ensure feasibility of each design. The main purpose 

of feasibility robustness is to check if a design maintains its feasibility under parameter 

variation. To determine if a design is feasibly robust, it is examined whether the 

inequality constraints are violated under the worst case scenario of parameters, i.e., 

                     (3.3) 

 

 

where gj is the jth constraint. Figure 3.5 shows the constraint space with two constraint 

functions g1 and g2. It should be noted again that the above inequality has to be examined 

by a global optimization method. Two design alternatives and their corresponding 

constraint sensitivity region are shown. The light shaded area represents the feasible 

region (generated for nominal uncontrollable parameter values) where both constraints 

are less than or equal to zero. Any point from the sensitivity region that goes beyond the 

feasible region makes the design feasibly non-robust.  
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Figure 3.5: Feasibility robustness comparison for two design candidates 

 

Clearly both designs shown in Figure 3.5 do not violate constraints for nominal 

parameter values (i.e., the solid points) and therefore are (nominally) feasible. However, 

the sensitivity region of design alternatives B is extended outside the feasible region and 

therefore B is not feasibly robust. On the other hand, design A is feasibly robust. 

 

3.3. MULTI-OBJECTIVE ROBUST OPTIMIZATION: APPROACH 1 

Figure 3.6 encapsulates the approach 1. Beginning from the top block, a design 

point x is passed on to the middle level block to check for its feasibility robustness. If it 

does not pass the feasibility robustness (as verified by the middle block), then it will be 

eliminated and the next design x is chosen by an optimizer in the top block and passed on 

to the middle level block. The selection of the next design is done by the upper level (i.e., 

main) optimization scheme. If the design x satisfies the feasibility robustness, it will be 

passed on to the bottom level block in which the WCSD and Variability measures are 

calculated (using Eqs. 3.1 and 3.2) implemented within a global optimization technique 

g2 
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(with respect to p) and their values for the current design are returned to the top level 

block. The top level block has the main multi-objective optimization model that creates 

the set of points that have minimum WCSD and minimum multi-objective variability. 

Therefore it is expected that the solutions that are obtained using this method perform 

better under the worst case scenario of uncontrollable design parameters, and at the same 

time their objective function values are not “sensitive”, based on the measure defined, to 

the parameter variations 
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Figure 3.6: Robust multi-objective optimization approach 1 
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3.3.1. Steps in Robust Optimization for Approach 1 

A step by step procedure of the approach described on section 3.3 is shown in 

Figure 3.7, as described as the following steps.  

Step 1:  Select initial values for design variables x. Choose nominal values and ranges of 

uncontrollable parameters. Select target and bad points in the design objective 

space.  

Step 2: Pass the initial (or current) design variables as well as the values of uncontrollable 

parameters to the design simulation to compute the objective and constraint 

functions. The search for the worst case constraint values as well as parameters 

corresponding to minimum and maximum distance from the target in design 

objective space is performed (see Eqs. (3.1) and (3.2)). 

Step 3: Based on the worst case values of constraints, feasibility robustness for design x 

can be examined (see Eq. (3.3)). The procedure eliminates any design x that 

violates the feasibility robustness and goes to Step 6. The procedure continues, 

with any design x that passes the feasibility robustness, to Step 4. 

Step 4: Each feasibly robust design point x will be evaluated based on WCSD and multi-

objective variability robustness measures. Depending on the optimization 

technique, an improvement of the design is performed. 

Step 5: If the optimizer is converged, the procedure will end; otherwise, it goes to Step 6.  

Step 6: Select the values for the next set of design variables x, via the optimizer, and go 

to Step 2. 

 



 

 38

 

Initialize design x with nominal parameters  

Select parameters within the given range  

Check feasibility 
robustness 

Evaluate WCSD and Variability and improve design 

End 

Pick the next design through optimization 

Converged? 

Fail

Pass

Yes

No

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

Perform design simulation 

Start 

 

Figure 3.7: The flowchart of robust optimization approach 1 

 

3.4. MEASURES AND APPROACH 2 FOR MULTI-OBJECTIVE 
ROBUST OPTIMIZATION 

 
While there are many advantages in using the approach 1 with worst case scenario 

performance and variability, for some engineering problems, the results can become 

unnecessarily too conservative. Furthermore, in many problems, a designer is interested 

to limit the amount of variations for certain objectives without necessarily minimizing 
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them. In other words, approach 1 can potentially converge to designs that have extremely 

low variability and poor performance in a nominal case of design parameters (see Section 

3.6.2.1, for an example). In order to allow for the designer to have control over limiting 

the variations, approach 2 has been developed to assess the multi-objective robustness of 

design alternatives. The description of the approach 2 and its details are given in Sections 

3.4.1 and 3.4.2. A computational cost comparison of these two robust optimization 

approaches are given in Section 3.5, followed by two examples in Section 3.6. 

 

3.4.1. Multi-objective Robustness for Approach 2 

Approach 2 allows the designer to control the sensitivity of each objective 

function with respect to uncontrollable design parameters separately. A design is defined 

to be multi-objectively robust if the variation in each of its objective function values is 

bounded within a pre-specified acceptable range. In order to formulate the multi-

objective robustness, a measure for multi-objective variability needs to be introduced. 

Here, the multi-objective variability for each design alternative is based on the maximum 

variation of the objective function values from the nominal values, Δfi
W : 

 

),(),(max 0pxpx
p ii

W
i fff −=Δ     i=1,…,I      (3.4) 

 

where 0p is the vector of nominal parameter values for design x, and p is between pL and 

pU, the known lower and upper bounds on design parameters, respectively. An 

appropriate optimization technique could be used to find Δfi
W for each design alternative 

x. 
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To assess the multi-objective robustness of each design, first the designer needs to 

provide the maximum acceptable range from nominal for each objective function. The 

maximum acceptable variation for the ith objective function value is shown as Δfi
D in 

Figure 3.8. One needs to solve for the Δfi
W using Eq. (3.4) to obtain the maximum 

observed variation of an objective function from its nominal value as shown in Figure 

3.8. Based on this approach, the observed maximum variations of every objective 

function from its nominal value (e.g., Δfi
W) should be smaller than an acceptable range 

(e.g., Δfi
D) provided by the designer. It should be noted that both hyper-boxes are 

generated symmetrically with respect to the nominal point. Schematically, as shown in 

Figure 3.8, a design has multi-objective robustness, if its sensitivity region does not go 

beyond the dashed box (created by ranges provided by the designer). The above-

mentioned statement can also be verified by ensuring that the dotted box (which is 

obtained by solving for the maximum variation from the nominal) remains inside the 

dashed box. 

 

Figure 3.8: Multi-objective robustness 
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Figure 3.9 displays an example with two design alternatives A and B with their 

nominal objective values. The sensitivity region for each design alternative is also 

displayed. It can be observed that while the nominal design A outperforms nominal 

design B (when both objectives are being minimized), design B maintains multi-objective 

robustness according to the acceptable ranges (i.e., Δfi
D ). On the other hand, design A 

violates the acceptable range, particularly with respect to objective function f2. The 

approach eliminates any design such as design A that does not satisfy the acceptable 

range for robustness.  

 

Figure 3.9: Multi-objective robustness comparison of two design candidates 

 

3.4.2. Objective Robustness Measure for Approach 2- Robust Design Optimization 

The robust design optimization for approach 2 is shown in Figure 3.10. It should 

be mentioned that the feasibility robustness assessment in the approach 2 is the same as 

that in approach 1. The main multi-objective optimization is performed in the upper block 

of the flowchart. In the upper block, the original constraints are revised to ensure the 

f1 

f2 

A 
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feasibility robustness. To evaluate the second constraint (i.e., multi-objective robustness), 

each design point x is passed on to the lower block of the flowchart, where the maximum 

variation from the nominal value for each objective function is calculated and returned to 

the upper block. This procedure continues until the optimization stopping criteria are met. 

 

Figure 3.10: Robust optimization approach 

 

3.4.3. Steps in Robust Optimization for Approach 2 

Similarly to approach 1, a step by step procedure for the approach 2 has been 

developed, Figure 3.11, as described in the following steps.  

Step 1:  Select initial values for design variables x, and choose the nominal values of 

uncontrollable design parameters.  

Step 2:  Pass the initial design variables as well as uncontrollable design parameters 

(within the given range) to design simulation to compute the objective and 

constraint functions. The search for worst case constraint values as well as 

maximum deviation from the nominal objective function values in the design 

objective space is performed in this step (see Eq. (3.4)). 
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Figure 3.11: The flowchart of robust optimization approach 2 

 

Step 3: Based on the worst case values of constraints, feasibility robustness for design x 

can be examined (see Eq. (3.3)). The procedure eliminates any design x that 

violates the feasibility robustness and goes to Step 6. The procedure continues, 

with any design x that passes the feasibility robustness, to Step 4. 
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Step 4: Each feasibly robust design point x will be evaluated to identify whether or not its 

maximum deviation of objective function values is within the designer’s 

acceptable range. Any design that violates the objective robustness criteria is 

eliminated in this step and the procedure continues to Step 6. In this step, 

depending on the optimization technique, the feasibly and multi-objectively 

robust designs are improved. 

Step 5: If the optimizer is converged, the procedure will end; otherwise, it goes to Step 6.  

Step 6: Select the values for the next set of design variables x, via the optimizer, and go 

to Step 2. 

 

3.5. COMPUTATIONAL COST 

Both of the robust optimization approaches, given in Sections 3.3 and 3.4, are 

composed of a top level optimization problem and a number of sub-level optimizations. 

Both approaches require one sub-level optimization for feasibility robustness assessment. 

Approach 1 requires two sub-level optimizations for calculating multi-objective 

robustness measures. However, approach 2 requires I sub-level optimizations, where I is 

the number of objective functions.  

An estimate the computational cost for both approaches is given next.  

 

3.5.1. Computational cost of the approach 1 

Assume that the top level optimization problem requires nD number of function 

calls (i.e., for nD number of design alternatives) to converge. Each of the nD design 

alternatives that is passed from the top level optimization model needs to be evaluated for 
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feasibility robustness. Among the nD designs, suppose nF design alternatives do not meet 

the requirement for feasibility robustness and the rest, nD – nF, are evaluated for multi-

objective robustness. The number of function calls required for verifying feasibility 

robustness of each design is assumed to be NF, and the number of function calls to obtain 

the worst case and the best case scenario points for each design is NW and NB, 

respectively. Hence, Eq. (3.5) can be used to compute the total number of function calls n 

required to run the robust optimization approach. 

)()( BWFDFD NNnnNnn +⋅−+⋅=                (3.5) 

The maximum (or worst case) number of function calls occurs when all of the 

design alternatives that are evaluated in the top block of Figure 3.7 (i.e., nD) satisfy the 

feasibility robustness, in that case the number of function calls will be: 

)( BWFD NNNnn ++⋅= . 

 

3.5.2. Computational cost of the approach 2 

Similar to the approach 1, it can be assumed that the top level optimization 

problem requires nD number of function calls to converge. Since the feasibility robustness 

method for both approaches is the same, similar to the first approach suppose each of the 

nD design alternatives that is passed from the top level optimization can be divided into  

nF design alternatives that do not meet the requirement for feasibility robustness and the 

rest, nD – nF, are evaluated for multi-objective robustness. Furthermore, the number of 

function calls required for verifying feasibility robustness of each design is assumed to be 

NF.  In this case however the number of function calls to examine the feasibility 

robustness with respect to the ith objective function for each design is assumed to be NI. 
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Hence, Eq. (3.6) can be used to compute the total number of function calls n required to 

run the robust optimization approach. 

∑
=

⋅−+⋅=
II

i
IFDFD NnnNnn

1
)()(                (3.6) 

where, II represents the number of objective functions that designer wishes to consider 

for multi-objective robustness. One of the strength of the second approach is that it is not 

necessary to have limits on variations for all objective functions. 

Similarly to the approach 1, the maximum (or worst case) number of function 

calls occurs when all of the design alternatives that are evaluated in the top block of 

Figure 3.11 (i.e., nD) satisfy the feasibility robustness, and at the same time all of the 

objective functions need to be considered for objective robustness. In that case the 

number of function calls will be: ))((
1
∑
=

+⋅=
I

i
IFD NNnn . 

A quantitative comparison of the Eqs (3.5) and (3.6) reveals that the objective 

robustness in the first approach is computationally more efficient than that of the second 

approach. The first approach requires only two sub-level optimizations (i.e., one to obtain 

the WCSD and one to obtain the BCSD and therefore Variability). However, the number 

of sub-level optimizations for the second approach can be as high as the total number of 

objective functions. 

3.6. DEMONSTRATION EXAMPLES 

As a demonstration, both approaches are applied to a numerical example and an 

engineering design problem. Both examples have two objective functions and have 

parameter variations. The numerical example is an optimization problem which has a 

discrete parameter among its uncontrollable design parameters, while the engineering 
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design example has a discrete variable among its design variables. The purpose of the 

numerical example is to provide a step-by-step description for each of the two 

approaches. The engineering design example is an application to a real world design 

problem.  

Both approaches are implemented with a Multi-Objective Genetic Algorithm 

(MOGA) [Fonseca and Fleming, 1993] optimizer with Kurapati et al.’s constraint 

handling technique [Kurapati et al., 2002]. The corresponding MOGA parameter values 

are provided in Table 3.1. 

 

Parameter Value
Length of Chromosomes 10
Population Size 100
Population Replacement 10
Crossover Probability 90%
Mutation Probability 5%
Selection Type Stochastic Universal Selection
Number of Generations 300

Table 3.1: MOGA parameters 
 

3.6.1. Numerical Example 

 This is a numerical test example which was originally formulated and solved by 

Poloni et al. [Poloni et al., 2000] and others [Deb, 2001] to demonstrate approaches 1 and 

2. However, two uncontrollable design parameters (one continuous and the other 

discrete) are added to the original formulation. As defined originally [Poloni et al., 2000] 

there are two continuous design variables x1 and x2 that are bounded in the range: [–π, π], 

and two objective functions. Here, the optimization problem is revised as in Eq. (3.7). 
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Figure 3.12 shows the feasible domain in the design objective space (showed in 

gray), and the Pareto frontier (shown in black) which is disconnected. The feasible 

domain in Figure 3.12 is generated exhaustively to clarify the shape of the objective 

space. 

Nominal 
Pareto 

f1 

f2 

 

Figure 3.12: The nominal Pareto set in the objective space 
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It is assumed that p1 and p2 are the two uncontrollable design parameters. The 

parameter p1 is a continuous parameter and its variation range is within [-0.2, 0.2], and p2 

is a discrete parameter with values taken from {-0.2, -0.1, 0, 0.1, 0.2}. In addition, the 

nominal values for both p1 and p2 are assumed to be zero.  

The feasibility robustness of every point in the design objective space is examined 

and Figure 3.13 is generated. Before proceeding with either of the robust optimization 

approach, and in particular the objective robustness issues, from Figure 3.13 it can be 

observed that the effect of parameter variations causes a portion (i.e., the dark points) of 

the design variable space to become infeasible. In this example, to ensure the feasibility 

robustness, as shown in Eq. (3.7) both x1+p1 and x2+p2 should stay in the range of [-π, π]. 

Figure 3.13 also shows the points that do not satisfy the feasibility robustness 

requirement. The dark region is formed by the points that violate the feasibility 

robustness criterion and are eliminated during the process of the robust multi-objective 

optimization approach 1. 
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Figure 3.13: The portion of the objective space that is feasibly non-robust 

 

3.6.1.1. The Solution Using Robust Optimization in Approach 1: 

To obtain the WCSD and multi-objective variability measures, first the location of 

target and bad points needs to be identified: (f1, f2) = (0, 0) and (f1, f2) = (70, 60), 

respectively. For every point (f1,f2) in the objective space, a corresponding (WCSD and 

multi-objective variability) point can be obtained. Initially, the L2 norm (i.e., q = 2 in Eqs. 

(3.3) and (3.4)) is used to obtain WCSD and multi-objective variability for each design. 

The region created by these points is shown in Figure 3.14. The region created already 

accounts for feasibly robustness. Finally, the solutions to the problem of minimizing 

WCSD and minimizing multi-objective variability, as illustrated in Figure 3.6, form a set 
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of  robustly (feasibly and multi-objectively) non-dominated points, as identified in two 

clusters of A and B in Figure 3.14.  

Cluster A 

Cluster B

Feasibly robust designs

 

Figure 3.14: Robust optimal non-dominated points 

Clusters of A and B solution points are also shown in the design objective space 

in Figure 3.15. It can be observed that the points in cluster A are very close to the set of 

nominal Pareto optimal points which were shown in Figure 3.12. However, the points in 

cluster B are marginally better in terms of the multi-objective variability (see Figure 3.14) 

but are farther away from the target (see Figure 3.15). To examine the feasibility 

robustness of the obtained solutions, a snapshot of Figure 3.13 is shown in Figure 3.15. It 

can be observed that the designs on the bottom left boundary of the design objective 

space are not feasibly robust. However, all of the designs in cluster A are objectively 

robust and satisfy the feasibility robustness criteria. It is difficult to visually examine the 

feasibility robustness of designs in cluster B since these designs are located behind the 
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feasibly non-robust points given in Figure 3.13 (or its snapshot in Figure 3.15). Indeed, 

the design alternatives corresponding to both clusters satisfy the feasibility robustness 

criteria. 

Cluster A

Cluster B

f1 

f2 

Target 

 

Figure 3.15: Robustly non-dominated optimal points in the objective space 

 

To investigate the effect of using different norms in approach 1, the numerical 

example is also solved with L1 and L∞ norms. Figure 3.16 shows the solution obtained by 

different norms in the design objective space. 
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L1 
L2 
L∞ 

f1 

f2 

 

Figure 3.16: Solutions obtained by different norms 

As shown in Figure 3.16, all of the norms generate solutions at the bottom corner 

(like cluster A in Figure 3.15). However, the L1 norm generates more solutions around 

cluster A.  Furthermore, L1 or L2 norms generate somewhat similar results. However the 

L∞ norm also generates a solution that is to right of the design objective space, as marked 

in Figure 3.16. 

 

3.6.1.2. The Solution Using the Robust Optimization in Approach 2: 

The approach 2 described in Section 3.4 is used here to obtain solutions to this 

numerical problem. The feasibility robustness criteria for both approaches are identical. 

Therefore the non-feasibly robust points in both Figures 3.11 and 3.13 are being 

eliminated in the approach 2 as well. However, for the second approach, one needs to 

specify the maximum acceptable variability of each objective function. It is assumed that 
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the Δf1
D = 3 and Δf2

D = 2. It should be noted that by increasing the maximum acceptable 

variation values, a larger number of designs pass the objective robustness criteria for the 

approach 2. The variation of the objective functions for feasibly robust designs are shown 

in Figure 3.17. The variability of solutions in Figure 3.17 is within the acceptable ranges 

specified above. The dark region shows designs that basically do not violate the objective 

robustness criteria using the approach 2. 

 

Objectively and 
feasibly robust 

Feasibly robust 

max Δf1 

max Δf2 

 

Figure 3.17: The feasibly robust vs. feasibly/objectively robust points 

 

Every gray point in Figure 3.17 represents the maximum observed variability in 

terms of both design objective functions. After setting the criteria for maximum 

acceptable variability, only a subset of the feasibly robust solution satisfied those criteria. 
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The objectively and feasibly robust points are identified as dark points in Figure 3.17. In 

order to visualize and compare the dark points from Figure 3.17 in the design objective 

space, every point was mapped back to the objective space and the result is shown in 

Figure 3.18. 

 

Objectively and 
feasibly robust 

f1 

f2 

 

Figure 3.18: The feasibly robust vs. feasibly/objectively robust points in 

objective space 

Now, the Pareto points among the feasibly and objectively robust designs shown 

in Figure 3.18 are obtained. The final results of the robust optimization approach 2 are 

given in Figure 3.19.  
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Robust Pareto points 

f1 

f2 

 

Figure 3.19: The robust Pareto set of designs 

3.5.1.3. Comparison Study: 

To investigate the results obtained by each of the two approaches, and make a 

comparison, six points are selected and identified in the design objective space. Point 1 is 

selected from the obtained robust results of both approaches (i.e., common between both 

of the approaches). Point 2 is selected from the robustly non-dominated optimal set using 

either L1 or L2 norms (i.e., Figure 3.15) from the approach 1. Points 3 and 4 are selected 

from the nominal Pareto set (i.e., Figure 3.12), point 5 is selected arbitrarily from the 

objective space, and finally point 6 is selected from the robustly non-dominated optimal 

set using L∞ norm.  These points are selected to quantitatively compare the performance 
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and robustness of nominal vs. robust optimum solutions. The sensitivity regions for these 

six points are created and shown (dark shaded) in Figure 3.20. 

1
2

3

4 5

Target 

Bad 
Point 

f1 

f2 

6 

 

Figure 3.20: Sensitivity region for selected points 

 

Points 1 and 2 are selected from the obtained robust solutions using approach 1. 

By examining the results shown in Table 3.2, it can be observed that both points 1 and 2 

have a small WCSD and/or that their sensitivity regions along the direction of target are 

narrower than the other three points. This is a very satisfactory result for approach 1. 

However, in particular point 2 which is not a result of the approach 2 shows a relatively 

large variation in terms of the objective function f1. Point 1 is among the results of both 

approaches and has a low (i.e., acceptable) variation in terms of both objectives. Point 3 
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and 4 that belong to the nominal Pareto set show a larger amount of variability compared 

to points 1 and 2. Point 5 that does not belong to any Pareto set happens to have the 

highest WCSD and variability among the rest of the points. Finally point 6 which is the 

result of the approach 1 using L∞ norm, shows relatively low variability in terms of both 

objective functions. However, design 6 has a very large value of objective function f1. It 

is interesting to observe that design 6 is acceptable for the approach 2 (see Figure 3.18). 

However, due to poor performance in the nominal case it is eliminated by approach 2. A 

quantitative comparison of these six points is shown in Table 3.2.  

 

Point x1 x2 f1 f2 Δf1
W Δf2

W WCSD Variability 
1 -2.90 0.78 2.520 3.172 1.75 0.83 0.077 0.025 
2 -0.18 1.38 10.562 13.600 3.66 2.16 0.284 0.024 
3 1.13 1.76 1.058 24.674 0.60 2.83 0.459 0.092 
4 -2.93 0.12 6.558 1.258 4.57 0.56 0.160 0.110 
5 -1.07 -2.2 40.257 5.165 7.15 1.72 0.672 0.194 
6 -0.66 -1.06 61.63 5.47 1.60 1.04 0.8804 0.0229 

Table 3.2: Optimality and robustness comparison of selected points 

 

The total number of function calls using approach 1 is determined as follows. The 

top level problem requires about 1000 function calls, and the feasibility robustness, 

WCSD, and BCSD calculations, require 100, 200, and 200, respectively. In the worst case 

(see Section 3.5.1), the number of function calls for this example using approach 1 is 

estimated to be about 500,000 using a genetic algorithm based technique for the 

optimizer. The total number of function calls for this example using approach 2 can be 

determined as follows. Similar to approach 1, the number of function calls for the top 

level optimization is about 1000, the feasibility robustness, objective robustness for f1 and 
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objective robustness for f2 require 100, 300, and 300 respectively. Therefore, in the worst 

case, the number of function calls for approach 2 implemented with a genetic algorithm 

based technique for this example is about 700,000. 

For this particular example, since there are only two objective functions, approach 

2 is not dramatically less efficient than approach 1. However, for the cases that the 

number of objective functions is large, approach 1 is computationally more efficient (i.e., 

only two sub-optimization problems to assess the objective robustness). 

 

3.6.1.3. Verification: 

To verify the robustness of results obtained by each of the approaches, the design 

parameter, p1, was randomly perturbed 10000 times around its nominal values within the 

given range between -0.2 and 0.2 Also, it is randomly chosen any of the possible discrete 

combination given in the problem description for design parameter p2, 10000 times. Then 

the new objective function values are calculated. In other words, a Monte Carlo 

simulation using a uniform distribution is performed to examine the robustness of each of 

the above-mentioned five design points. It is also assumed that the parameters p1 and p2 

are statistically independent. The histograms of the output of the simulation for each 

design are provided in Figure 3.21 (a) – (l). 
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Δf1 Δf2  
  (a) Design 1 – Δf1         (b) Design 1 – Δf2  

 

Δf1 Δf2  

           (c) Design 2 – Δf1        (d) Design 2 – Δf2  

Δf1 Δf2  
  (e) Design 3 – Δf1        (f) Design 3 – Δf2 
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Δf1 Δf2  
  (g) Design 4 – Δf1       (h) Design 4 – Δf2 

Δf1 Δf2  
  (i) Design 5 – Δf1        (j) Design 5 – Δf2 

Δf1 Δf2  

  (k) Design 6 – Δf1        (l) Design 6 – Δf2 

 

Figure 3.21: Histogram of simulation output for selected designs 
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For each of the histograms, the maximum absolute deviation form nominal (i.e., 

ΔfW) for both objective functions are obtained and the results are shown in Table 3.3.  

 

Point Δf1
W Δf2

W 
1 1.7469 0.8319 
2 3.6641 2.1600 
3 0.5983 2.8354 
4 4.5720 0.5557 
5 7.1536 1.7190 
6 1.6022 1.0400 

Table 3.3: Comparison of individual objective function variation for selected designs 

 

Recall that the acceptable range of variations from nominal performance was 

defined as Δf1
D = 3 and Δf2

D = 2. All of the points in Table 3.3 except point 1 and point 6 

exceed these acceptable limits, and hence are not multi-objectively robust (using 

approach 2). Point 6 is an exception among the results obtained by approach 1. Point 6 is 

obtained using L∞ norm in approach 1 and it satisfy the objective robustness criteria of 

the approach 2. 

 

3.6.2. Engineering Example: Design of a Vibrating Platform 

This problem was originally modeled by [Messac, 1996] and later reformulated as 

a multi-objective design optimization problem by [Narayanan and Azarm, 1999]. The 

objective functions are to maximize the fundamental frequency of the system and to 

minimize the material cost. The platform consists of five layers from three materials as 
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shown in Figure 3.22. The material properties are given in Table 3.4. The outer layer, two 

inner layers and the center layer are assumed to be made of different materials. 

 

 

Figure 3.22: Vibrating platform 

 

There are five design variables, L, b, d1, d2, and d3, as shown in Figure 3.22. Also, 

there are six possible combinations for assigning three materials to the three layers since 

adjacent layers are not allowed to have the same material. 

 

 Material A Material B Material C 
ρ (Kg/m3) 100 2770 7780 
E (GPa) 1.6 70 200 
c ($/m3) 500 1500 800 

Table 3.4: Material properties (nominal values)  

 

The optimization formulation for this problem is given in Eq. (3.8). 

Motor

L d1 d2 d3 

b 
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where, 

 

 

There are several uncontrollable design parameters in this problem that can be 

subject to variations. The density and cost per m3 of material A (ρA and cA, respectively) 

are chosen to be varying within 5% of the nominal values given in Table 3.4. Therefore 

the density of material A is varied in the range: [95, 105] Kg/m3, and its cost per volume 

in the range: [$475, $525]. It should be noted that since none of the constraints are a 

function of density or cost of material A, then the feasibility robustness of every design 

solution is guaranteed. 

 

3.6.2.1. The Solution Using Robust Optimization Approach 1: 

 An implementation of MOGA [Fonseca and Fleming, 1993] is used in 

conjunction with the approach 1 to obtain the results. It is assumed that the objective 

function values of the target point are 500Hz and $20 respectively. The coordinates of the 

bad point are 0Hz and $1000 respectively.  The results are shown in Figure 3.23. 
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As shown in Figure 3.23, the robustly non-dominated optimal solutions are 

inferior to the nominal Pareto solutions. This implies that sometimes, to achieve 

robustness, the optimality may have to be sacrificed. It can be observed that several 

points in robust optimal non-dominated set are very close to the nominal Pareto points, 

and one can choose either of those designs to preserve the performance. However, these 

designs show more variability in performance than the ones that are farther from the 

nominal Pareto set. 

 

Design 1 

Design 3 
Design 2 

Design 4 

Design 5 

 

Figure 3.23. Nominal Pareto and robustly non-dominated optimal set for vibrating 

platform example 
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To demonstrate the robustness of solutions, five design alternatives are selected, 

as shown in Figure 3.23 and their sensitivity regions are obtained. The WCSD from the 

target and variability for each alternative is calculated. The purpose of selection of these 

points is entirely for demonstration purposes, and in many cases where the objective 

space is not two dimensional, the visual comparison may not be possible.  Three of the 

designs are from robust optimal non-dominated set and design 4 and 5 are from the 

nominal Pareto set. The results are shown in Table 3.5 and Figure 3.23 (gray sensitivity 

regions). 

 

Design f1 f2 WCSD Variability 
1 150.710 355.782 0.779 0.001 
2 284.988 143.156 0.455 0.007 
3 138.484 186.044 0.744 0.002 
4 271.462 125.895 0.487 0.011 
5 384.392 205.861 0.315 0.015 

 

Table 3.5: Optimality and robustness comparison of selected points 

 

Again, to investigate the effect of the choice of different norms on the obtained 

results, the problem is solved using L1 and L∞ norms as well. The comparison is given in 

Figure 3.24. It can be observed that the obtained results using L2 norm, for this particular 

example, include more solutions that are close to the nominal Pareto. In general, the 

results obtained from the approach 1 depend upon the choice of the norm used and are 

problem-dependent. 
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Nominal Pareto
Robustly non-dominated optimal (L2) 
Robustly non-dominated optimal (L1) 
Robustly non-dominated optimal (L∞) 

Design 7 
Design 6 

 

Figure 3.24: Comparison of results obtained by different norms 

 

The design 6 and design 7 are selected from the robustly non-dominated points 

obtained by approach 1. In particular design 6 is obtained using L1 norm and design 7 is 

obtained using L2 norm within approach 1. 

 
 
3.6.2.2. The Solution Using Robust Optimization Approach 2: 

The approach 2 described in Section 3.4 is used to obtain the solutions to the 

vibrating platform problem. As mentioned before, the feasibility robustness criteria in 

this example is always guaranteed. Therefore multi-objective robustness assessment 

should be carried out. First it is necessary to specify the maximum acceptable variability 
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of each objective function. It is decided to let the maximum Δfn
D = 5 Hz and maximum 

ΔCostD = $5. The robust Pareto optimal results are shown in Figure 3.25. In addition to 

five previously selected designs, two designs from the robust Pareto set (obtained using 

approach 2) are selected.  

Design 8 

Design 9 

 
Figure 3.25: Nominal Pareto, robust non-dominated set, and robust Pareto points 

 

As shown in Figure 3.25, the robust Pareto points obtained by approach 2 are 

generally closer to the nominal Pareto (i.e., have better performance) comparing to the 

robustly non-dominated optimal set obtained by approach 1 (except a few points that are 

obtained using other norms). The corresponding design variables for all nine designated 

designs are given in Table 3.6.  
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Design d1 d2 d3 b L m1 m2 m3 

1 0.305 0.365 0.367 0.365 3.10 B A C 
2 0.313 0.354 0.359 0.387 3.01 A C B 
3 0.148 0.269 0.277 0.360 3.53 A B C 
4 0.327 0.339 0.340 0.353 3.00 A C B 
5 0.401 0.487 0.492 0.372 3.00 A C B 
6 0.426 0.482 0.485 0.385 3.08 A B C 
7 0.394 0.455 0.462 0.411 3.09 A C B 
8 0.255 0.293 0.295 0.369 3.03 A C B 
9 0.239 0.327 0.336 0.394 3.07 A B C 

Table 3.6: Design variable values of selected designs 

 

As depicted in Figure 3.23, design 2 that is very close to the nominal Pareto 

frontier shows relatively larger variability (particularly in terms of cost) compared to the 

design 1 and 3 that are farther from the nominal Pareto set. For instance, design 1 has the 

lowest variability among all of the points shown in Figure 3.23. However, design 1 is the 

only design that has material B in the center layer and this has contributed to a significant 

degradation in its objective function values. This can be intuitively justified since 

material B is the most expensive material and the variations come from the material A’s 

properties.  It is quite interesting to compare design 2 from the robustly non-dominated 

optimal set (using L2 norm) to design 4 from the nominal Pareto set. Although both 

designs show little difference in their performance (i.e., objective function values), design 

2 has smaller variability and better WCSD from target. Again, this can be quickly 

identified in design variable space because both designs use material A in the center layer 

but the center layer of design 2 is thinner than design 4. This makes the resulting 

variability relatively smaller in design 2 compared to design 4. Similar analogy can be 

applied to design 5 which uses material A in its center layer and has the highest thickness 

for the center layer among all of the five selected designs. Design 6 and 7 are obtained by 
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approach 1 but using L1 and L∞ respectively. Both of them are relatively close to nominal 

Pareto. However, both of them, similar to design 4 have thicker center layer of material 

A, resulting in higher variability particularly in terms of their cost.  Design 8 and design 9 

are generated using the approach 2. In particular, design 8, is almost a part of the nominal 

Pareto in terms of the nominal performance. If one compares designs 2,4, and, 8, while 

they are almost non-dominated with respect to each other in terms of  nominal 

performance, design 8 has much lower variability (from nominal) in terms of both 

objective functions (see Table 3.7). Also, design 9 which is not close to the nominal 

Pareto, performs better than design 1 (and is non-dominated with respect to design 3). 

Nevertheless, the purpose of obtaining an optimal robust design is not to minimize the 

variability but to limit the adverse effects of variability in performance to a limited 

amount. Hence, the results of approach 2 while satisfy this criterion, are performing 

better in nominal cases. In order to have a quantitative comparison and to verify the 

robustness of the obtained solutions, a verification study on the selected design points is 

performed in the following sub-section. 

Again, it is estimated that the total number of function calls required for this 

example using both of the robust optimization approaches. The top level problem in both 

approaches requires about 3000, and for the feasibility robustness for both approaches 

need to have 500 function calls. The approach 1 needs about 1000, and 1000 function 

calls for WCSD and BCSD respectively. The approach 2 requires around 1000 and 1000 

calls for obtaining maximum deviation from nominal values for first and second objective 

functions.  In the worst case, for this example, the number of function calls using both 

approaches is estimated to be equal to 7,500,000 using a genetic algorithm based 
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technique for the optimizer. Again, since the number of objective functions for this 

example is only two, both approaches have approximately same computational 

efficiency. 

 
 
3.6.2.3. Verification Study: 

To verify the robustness of the results obtained by each of the approaches, design 

parameters p1 and p2 are randomly perturbed for 10000 times around their nominal values 

within the given ranges of variation. Then the new objective function values are 

calculated (i.e., a Monte Carlo simulation using uniform distribution similar to that of 

numerical example). The histograms of the output of the simulation for each of the 

selected designs are provided in Figure 3.26 (a) – (n). The solutions that their variability 

is within the ranges specified above, are also identified.   

 

 Δf1 Δf2  
(a) Design 1 – Δf1    (b) Design 1 – Δf2 
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Δf1 Δf2  
(c) Design 2 – Δf1    (d) Design 2 – Δf2 

Δf1 Δf2  
(e) Design 3 – Δf1    (f) Design 3 – Δf2 

Δf1 Δf2  
(g) Design 4 – Δf1    (h) Design 4 – Δf2 
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Δf1 Δf2  
(i) Design 5 – Δf1    (j) Design 5 – Δf2 

 

Δf1 Δf2  
(k) Design 6 – Δf1    (l) Design 6 – Δf2 

 

Δf1 Δf2  
(m) Design 7 – Δf1    (n) Design 7 – Δf2 
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Δf1 Δf2  
(o) Design 8 – Δf1    (p) Design 8 – Δf2 

Δf1 Δf2  
(q) Design 9 – Δf1    (r) Design 9 – Δf2 

Figure 3.26: Histogram of the output for selected vibrating platform designs 

Similar to that of the numerical example, the maximum absolute deviation form 

nominal (i.e., ΔfW) for f1 and f2 are obtained and the results are shown in Table 3.7. Also, 

in order to be able to make a quantitative performance comparison among the selected 

designs the nominal objective function values are provided in the first two columns of 

Table 3.7. 
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Point f1 f2 Δf1
W Δf2

W 
1 150.7108 355.7819 0.0260 1.0960 
2 284.9879 143.1559 0.8940 6.3346 
3 138.4839 186.0439 0.1245 2.6597 
4 271.4622 125.8953 0.9005 5.5117 
5 384.3916 205.8603 0.5380 7.4621 
6 351.6329 222.0769 0.6388 8.1077 
7 344.4149 204.2766 0.8065 8.1914 
8 229.9232 114.1587 0.4520 4.7013 
9 240.7242 199.2154 0.4288 4.7100 

Table 3.7: Comparison of objective function variation from nominal values 

 

As expected the selected designs from robust Pareto (i.e., designs 8 and 9) exhibit 

variability within the designer’s requirements (i.e., Δf1 ≤ 5 and Δf2 ≤ 5) while their multi-

objective performance is often better than the solutions obtained by the approach 1 (e.g., 

compare design 8 with design 1 or design 3). In particular, the designs 6 and 7 which are 

obtained by the approach 1 using L1 and L∞ norms respectively, show much higher (and 

unacceptable) variations with respect to the second objective function. 

 

3.7. COMPARISON OF THE TWO ROBUST OPTIMIZATION 
APPROACHES 

Two different approaches for multi-objective robust optimization were developed 

in Sections 3.3 and 3.4 and demonstrated with two examples in Section 3.6. While both 

approaches use the same measure for feasibility robustness assessment, the procedure for 

multi-objective robustness assessment in each approach is different. In the following, the 

differences are reviewed and the advantages and shortcomings of each approach are 

discussed.  



 

 76

The approach 1 needs two reference (i.e., target and bad) points in the design 

objective space and uses a distance metric (Lq norm) to locate multi-objective worst case 

scenario for each design. Another similar distance metric is used to calculate the 

variability of a design along the direction for target (i.e. distance between worst case and 

best case points in the objective space with respect to target).  

There are a few advantages in using the approach 1. As discussed in Section 3.5, 

the approach 1 is computationally more efficient especially for problems where the 

number of objective functions is large. For any multi-objective robust optimization 

problem with I objective functions, approach 1 needs to solve only two optimization sub-

problems in order to calculate the objective robustness measures. Moreover, since the 

approach 1 takes the worst case performance as one of the objectives into account, the 

acceptable performance of the solutions at the worst case scenario is guaranteed. These 

facts can be observed by the examples. The solutions obtained by approach 1 have a 

lower variability and WCSD measure compared to the nominal Pareto solutions or those 

solutions obtained by approach 2 (e.g., see designs 1 and 6 in the first example or designs 

2, 6, and, 7 in the second example). 

The approach 1 despite its strengths has a number of shortcomings. Optimizing 

the worst case value of the objective function(s) can be very conservative, and most of 

the obtained solutions are likely to perform poorly in the nominal case of design 

parameters. Furthermore, a variability measure in the direction of a target point can 

overlook a large variability of one objective function which is not in the direction of 

target (for instance, see design 2 in Figure 3.20). Also, approach 1 is not applicable to 

cases where a designer is interested to limit the variability of some (not all) of the 
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objective functions. Finally, the obtained solutions can be sensitive to the location of the 

reference points (i.e., target and bad points). 

The approach 2 (discussed in Section 3.4) does not use a distance metric to assess 

the multi-objective robustness of a design alternative. It also does not require any 

reference point in the objective space. The solutions obtained by approach 2 are much 

less conservative compared to those obtained by approach 1, because only those designs 

that exhibit unacceptable variability are eliminated. Since the variability is calculated for 

any individual objective function separately (and not in any particular direction) it does 

not overlook non-robust designs. Also, the designer has the flexibility to limit the 

variability of all or only a selected number of objective functions. The main drawback of 

the approach 2 is its computational complexity. As discussed in Section 3.5, it requires I 

sub-optimization problems to assess the objective robustness of any solution where there 

are I-objective functions (assuming the designer has limits on variability for all objective 

functions). 

 Overall, each presented robust approach can be used with any robust multi-

objective design optimization problem, and depending on the problem a designer can 

choose either of the discussed approaches to obtain robust solutions. Due to its flexibility, 

it is decided to use robust optimization approach 2 to address the robust single product 

and robust product line design optimization problems that are discussed in Chapters 4 and 

5 respectively. 

3.8. SUMMARY 

This chapter has presented two different deterministic approaches for robust 

multi-objective design optimization problems. First, the idea of design sensitivity in more 
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than one dimension is explored using the sensitivity region concept. Both approaches 

utilized this concept for robustness assessment. The approach 1 used an Lq norm distance 

metric to obtain two measures, namely, the worst case scenario distance from target and 

the variability of each design alternative. The approach 2 examined whether or not the 

variability in the objective function values for each design alternative is within an 

acceptable range.  For both approaches, in order to examine the feasibility of each design 

under variation of uncontrollable design parameters, the worst case value of each design 

constraint was obtained and checked for feasibility. If any constraint was violated under 

variation of design parameters, then the corresponding design alternative was identified 

as one that does not have a feasibility robustness property. The robust multi-objective 

design optimization approach 1 was formulated based on the above-mentioned measures 

and the feasibility robustness criterion (see Figure 3.6). In order to avoid some of the 

limitations of the approach 1, approach 2 to robust multi-objective design optimization 

was introduced. The approach 2 utilized the same feasibility robustness assessment 

module, while the objective robustness was used as additional constraints to the original 

problem. While it was less conservative and more flexible, in reality it is computationally 

more expensive than the approach 1. 

To demonstrate each of the robust optimization approaches, each approach is 

applied to a numerical and an engineering design optimization problem (i.e., design of a 

vibrating platform). The results were compared and the advantages and the shortcomings 

of each method were illustrated by comparing a few selected solutions. To perform a 

verification study, a sensitivity analysis was carried out using Monte Carlo simulation to 
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verify and compare the robustness of selected solutions. Finally, a detailed comparison 

between both of the robust multi-objective design optimization approaches is provided. 

In the next chapter a bi-disciplinary (i.e., engineering design-marketing) 

framework is developed that applies robust optimization approach 2 to design of a single 

product (a power tool). The results of the implementation of this framework are designs 

that are robustly optimum in both design and marketing domains.    
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CHAPTER 4 

SINGLE PRODUCT ROBUST OPTIMIZATION 

4.1. INTRODUCTION 

In product design, both design and marketing related attributes are likely to have 

variability.  The source of this variability is parameters that the designer does not have 

control over. Such variations can cause unwanted changes in product performance that in 

turn may affect customers’ preferences for a product. For instance, in a corded power 

tool, design attributes that might have variability include engineering specifications of the 

tool such as armature temperature and output torque at a specified motor speed. The 

marketing attribute of the power tool such as life may also vary due to changes in 

parameters in the design domain. Variability in marketing attributes can also arise due to 

variances inherent in marketing parameters when marketing researchers estimate 

customer preferences for such attributes [McFadden, 1986]. 

From an engineering design perspective, a design alternative should maintain its 

feasibility under variations from uncontrollable parameters, have variations in its 

performance that are within an acceptable range, and most importantly, also exhibit the 

best possible performance. 

From a marketing perspective, one should also consider the uncertainties in the 

preference estimation due to the fact that there is never a perfect fit between the 

preference elicitation model and the collected marketing survey data. In the proposed 

approach in this chapter, the “preference robustness” is considered as a criterion that 

accounts for: 1) the impact of variations in the design domain on the values of marketing 
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attributes; and 2) the variations inherent in the marketing (conjoint) model parameter 

estimates. 

The purpose of this chapter is to present an integrated design-marketing approach 

that takes all of the above mentioned issues in both design and marketing domains. The 

single product design solutions obtained by the proposed approach are optimum and 

robust in both domains.   

The organization of this chapter is as follows. Section 4.2 gives a general 

overview of the approach. Section 4.3 presents details of the robustness assessment 

modules in both design and marketing discipline. First, a description of the design 

robustness model followed by the marketing preference robustness model will be 

provided. Details of the overall integrated approach are presented in Section 4.4 followed 

by an example in Section 4.5. Finally, the chapter is concluded in Section 4.6 with a 

summary. 

The marketing conjoint model and the associated data analysis presented in 

Section 4 are borrowed from papers co-authored with marketing colleagues (i.e., 

[Besharati et al., 2004] [Luo et al., 2005]).    

4.2. THE OVERALL APPROACH 

Figure 4.1 gives a flowchart of the overall approach. It is assumed that initial 

exploratory studies have already been conducted by a product development team 

(consisting of marketing and design experts) in identifying general dimensions along 

which the product is expected to do better compared to existing products in the market. 

These dimensions form the basis for the selection of design and marketing attributes 

considered in the approach.  
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The approach has two main components: Engineering design model (left column 

of Figure 4.1) and marketing model (right column of Figure 4.1). In the design model, 

first, the nominal values and the range of variations for uncontrollable design parameters 

are identified. For example, for a corded power tool, such as a grinder, these design 

parameters could be ambient temperature, source voltage and current, for which the 

ranges of variations are specified. Next, in the design model, a set of design inputs (i.e., 

design variables, nominal values and ranges of variations of design parameters) is 

selected.  Design inputs are fed into design simulation software that calculates an 

estimate of design attributes (or performance) for each design alternative under 

consideration. Some design attributes are expected to show little or no variation while 

others may exceed beyond an acceptable range. Depending upon how performance and/or 

feasibility of a design responds to such variations, two measures for design robustness, 

namely multi-objective robustness and feasibility robustness, are developed and used to 

measure “engineering robustness”, as shown in the flowchart. (Details of the design 

robustness measures are given in Chapter 3.) 

Some product attributes not only reflect engineering design performance of a 

product but also are key elements to a customer’s purchase decision (e.g., product life, 

maximum output power, in the case of a power tool). In the proposed approach, this type 

of product attribute is designated as a “common attribute”. Such an attribute is common 

in both marketing and engineering design models. Some common attributes, such as 

number of operations per battery charge for a cordless power tool, are derived from the 

design simulation and can be used directly in the marketing module. Others are mapped 

(or converted) to marketing attributes for capturing the preferences of consumers. For 
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example, in the case study in Section 4.6, the design attribute “maximum output power” 

of a product is mapped to the marketing attribute “amp rating”, an attribute that power 

tool customers usually recognize1. The notion of common attributes is introduced to 

ensure that design alternatives that have potential appeal in the market are not eliminated 

during a robust design optimization process. On the other hand, there may be product 

attributes that are not common to both marketing and engineering models.  For example, 

in a corded power tool, attributes like brand, switch type, and girth size, which do not 

affect product design performance, are quite important to the market performance of a 

product and hence appear purely as marketing attributes. The proposed approach takes 

into account the variability in customers’ preferences (or utilities) for common attributes 

(such as life and amp rating) that come from both design and marketing domains. It 

should be noted that only common attributes are relevant to measuring simultaneous 

robustness in design and marketing. 

In the marketing model (initiated and developed by the colleagues in marketing 

[Luo et al., 2005] [Besharati et al., 2004]) (right column of Figure 4.1), the most 

important customer needs are first identified based on an a priori exploratory market 

study. Important customer needs can be marketing attributes such as retail price, brand 

name, power (e.g., amp rating), and product life. Once these attributes and their possible 

levels are identified, a marketing technique known as “finite mixture conjoint analysis” is 

used (see Section 4.4) to estimate customer utilities for different levels of attributes. In a 

typical conjoint experiment, consumer’s preferences are estimated through their 

evaluations of a set of hypothetical product profiles (or alternatives) specified in terms of 

                                                 
1 This is based on the discussions with the industrial partner. In working with industrial users of their 
grinders they have found “amp rating” being used as an indicator for power by the users. 
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a combination of levels of different product attributes. Estimated attribute-level utilities 

are then used to calculate potential market shares of the proposed product alternatives 

against existing competitors’ products. The proposed approach also accounts for 

variability in the market share estimates. Hence, the output of the marketing model 

includes estimates of market share and its variation which can be used to measure 

preference robustness. The preference robustness measures together with the engineering 

design robustness criteria are used in the optimizer to generate a set robust product design 

alternatives, each of which not only performs well from both engineering design and 

marketing performance points of view but also exhibits low variation with respect to its 

performance levels under uncontrollable parameter variations. The ranking rules used in 

the proposed bi-disciplinary optimizer are given later on in Section 4.5. The optimizer 

continues to iterate until a stopping criterion is reached. The output of the optimization 

includes a set of product designs. These products are not only optimal in both design and 

marketing domains, but also their performance is ensured not to fluctuate beyond an 

acceptable range.   
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Figure 4.1: Overall approach 

In the final stage of the proposed product design development process, one may 

need to make a selection among the generated robust product design alternatives (see, 

e.g., [Fuhita et al, 1997] [Li and Azarm, 2000] [Besharati et al., 2004]). For instance, the 

producer can develop these designs further into prototypes and conduct additional 

performance evaluation in the field to select the final product for mass-production. Also, 

the managers can make a selection decision based upon the market positions of 

competitive products to maximize the new product’s competitive advantage. Finally, the 

optimal product can be chosen based on the long-term profit that it will provide. For 
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example, a technique such as the life-cycle product cost-benefit analysis [Ramdas and 

Sawhney, 2001] can be used to map out the most profitable product based on the 

combination of production cost and life-cycle operating cost incurred over the product’s 

life cycle.  The issue of product design selection is beyond the scope of this dissertation. 

However, a copy of a proposed approach for product design selection under uncertainty is 

provided in Appendix I [Besharati et al., 2005]. 

4.3. ROBUSTNESS ASSESSMENT 

As mentioned in Section 4.2, the goal in robustness assessment is to determine if a 

product design satisfies the robustness requirements in both design and marketing 

domains. Two separate modules, namely design robustness and preference robustness, 

are used to examine the robustness of each product design. The design robustness module 

is built based upon the assumption that the simulation software is deterministic and that it 

receives a set of design variables and uncontrollable design parameters and computes a 

corresponding set of design attributes (e.g., maximum output power, weight). The design 

performance attributes can be used as objective functions and/or constraints in the robust 

design optimization approach. The details of the proposed robustness assessment module 

were already provided in Chapter 3 (see approach 2 in that chapter).  

As highlighted earlier, there are several attributes that are specific to marketing 

domain and do not play a role in design performance (e.g., brand, price).  However, the 

attributes that are common to both design and marketing domain (such as product life) do 

have a role in the design module. In this chapter, the marketing attributes (excluding the 

common attributes) are all discrete. Each design alternative can be enumerated over 
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marketing attribute levels, and thus generate several product alternatives (that are based 

on the same design alternative).  

Since the marketing information is not considered in the robust design 

optimization methods of Chapter 3, the proposed robust design optimization approach 

(see Figure 3.8) may overlook design candidates that are good alternatives from a 

marketing performance viewpoint. Therefore, it is important to also take the marketing 

aspects of the product into account during the design process, as discussed next.  

4.3.1. Marketing Model with Preference Variation  

A successful product design should not only satisfy engineering design 

requirements but should also perform well in the market. In order to assess the marketing 

performance of a product, a marketing model is developed. Specifically, a finite mixture 

conjoint model is used to capture the customers’ preferences and determine a product’s 

impact on the market.  

The details of such a model are given in Section 4.3.1.1. Section 4.3.1.2 covers 

the sources of variability in customers’ preferences and the approach for modeling such 

variations. Finally, Section 4.3.1.3 is devoted to the proposed robust marketing 

optimization approach. 

4.3.1.1. Finite Mixture Conjoint Model 

An important goal in product design development is to respond optimally to 

customer needs in order to obtain higher profits and/or market shares for the 

manufacturer. There are many methods in the literature to model and measure customer 

preferences and utilities. Among these methods, conjoint analysis is very popular in the 

marketing literature [Green and Srinivasan, 1990].  
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In a typical conjoint-based method, customers’ utilities for different levels of 

marketing attributes are estimated through customers’ evaluations of a set of hypothetical 

product profiles (or alternatives). The simple premise in conjoint models is that 

customers evaluate the overall utility of a product by combining the separate utility value 

(i.e., part-worth) of specific levels of marketing attributes that define the product. 

Estimated part-worth utilities are then used to calculate the utility of each proposed 

product against alternative products and existing competitors’ products. Since consumers 

generally have heterogeneous preferences towards the products, a finite mixture 

multinomial logit model is commonly used to capture the preferences of different market 

segments ([Kamakura and Russell, 1989] [Vriens et al., 1996]). In such a model, it is 

assumed that there are several segments in the market. Across different market segments, 

consumers have different preferences towards products. Within each market segment, the 

consumers are assumed to have identical preferences. Finite mixture model provides a 

way to segment the market based on consumers’ responses to the conjoint experiment, 

and the number of segments is determined by the Akaike’s Information Criterion 

[Akaike, 1973]. Akaike’s Information Criterion is commonly used in the comparison of 

competing models in order to identify a model that best explains the observed data, 

penalized by the additional complexity of the model [Kamakura and Russell, 1989]. The 

details of the marketing model are presented as follows. 

A choice model for a conjoint choice experiment starts with J individuals 

(consumers), each evaluating K different sets of product alternatives (called choice sets). 

Each of the K choice sets contains M product alternatives. Each product alternative is 

defined by the combination of different levels of marketing attributes. A customer 
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chooses a profile from each of the K choice sets based on his preference for the products. 

Assuming the existence of s =1,…,S market segments with segment size SSs,  the utility u 

of an individual c for product m in choice set k, given that this individual belongs to 

segment s, is defined as follows [McFadden, 1986]: 

     ( ) csmkspmksymkmkmkcs PPu ε++= ββyy ),(      (4.1) 

In this case, all marketing attributes are coded as dummy variables. Therefore, ymk 

is an α×1 vector of zeros and ones with ones representing the corresponding marketing 

attribute levels of product m.  Because of the linear dependency nature of these dummy 

variables within each marketing attribute, in order for this model to be identified, one 

level for each attribute is omitted in the estimation. Furthermore, a value that is equal to 

the negative of the sum of the utility estimates of all other levels is used as the utility for 

the missing level. Assuming that the random component εcsmk follows an independent 

identical double exponential distribution, the probability that product m is chosen from 

choice set k, subject to consumer c being a member of segment s, can be expressed as 

follows: 
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Based on the conditional probability in Eq. (4.2), if sθ  represents the likelihood 

that a consumer is a member of market segment s, the unconditional probability of 

consumer c choosing product m from choice set k can be computed as ([Kamakura and 

Russell, 1989]): 
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Based on Eq. (4.3), the log-likelihood of observing all the choices in all the choice 

sets for all the customers in the sample can be written as [Kamakura and Russell, 1989]:   

∑∑∑
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1 1 1
)ln(Pr      (4.4) 

Using maximum likelihood estimation method on Eq. (4.4), a set of estimates of 

part-worth utilities for each level of marketing attributes can be identified that are most 

likely leading to the choices observed in this case.  

The above estimation procedure is conducted for each model (scenario) as defined 

by the number of segments in the market (one segment through five segments). Finally, 

Akaike’s information criterion (AIC) is used to determine the optimal number of 

segments in the market. The model (scenario) with the smallest AIC value is the one that 

best explains the observed choices without overfitting the data (see [Vriens,1996] 

[Akaike, 1973]).  Akaike Information Criterion is defined as in Eq. (4.5) where LL is the 

log-likelihood value from Eq. (4.4), q is the number of part-worth utilities estimated in 

the model (scenario) and SS is the sample size (number of customers times the number of 

choice sets). 

SS
qLLAIC )(2 −

−=                              (4.5) 

The estimation procedure, thus, provides the estimates of the number of segments 

in the market, part-worth utilities for each level of the marketing attributes for each 

segment, and the asymptotic variance-covariance matrix of part-worth utilities [Luo et al., 

2005] [Carrol and Green, 1995]. In addition, the posterior probability that a customer is a 

member of a particular segment s can be estimated by updating in a Bayesian fashion the 
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prior probability of membership sθ  using the observed choices of the consumer as a 

conditioning event.   

4.3.1.2. Construction of Preference Variation 

Based on the outputs of the estimation procedure outlined in Section 4.3.1.1, one 

is able to obtain not only the point estimates of the part-worth utilities of each level of 

marketing attributes but also a variance and co-variance matrix of the part-worth utility 

estimates. In the context of preference robustness, the proposed methodology integrates 

the following types of variations in consumer preference. First, variation from the 

engineering domain in attributes that are common between the engineering design 

module and the marketing module (e.g., the actual amp rating of the product may vary 

when used in different seasons of the year, say between 6 and 7 amps). Second, variations 

inherent in the conjoint part-worth estimation because of the imperfect model-data fit. 

According to [Ben-Akiva and Lerman, 1985], choice-based conjoint part-worth utility 

estimates can be considered as asymptotically normal when the sample size is sufficiently 

large [Ben-Akiva and Lerman, 1985]. Therefore, the method described in the following 

paragraphs can be used to construct the interval estimates of the part-worth utilities for 

various design alternatives considered in the design process.   

The following paragraphs explain the procedure to calculate the interval estimate 

of the conjoint part-worths at a segment level. For continuous product attributes (such as 

price and amp rating), the standard procedure of pair-wise linear interpolation is used to 

calculate the point estimates in between specified conjoint levels. Next, the segment-level 

interval conjoint estimates are used to construct the interval estimate of market share of 

each hypothesized product design given a set of competitors.   
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For discrete product attributes (such as brand, switch type, and girth type in the 

case of a power tool design), the interval estimate (95% two-sided confidence level) of 

the conjoint part-worth utilities can be constructed as follows2: 

]96.1,96.1[],[ zuzuuu UL +−=               (4.6) 

where uL represents the lower bound of the utility estimate and uU represents the upper 

bound of the utility estimate; u represents the point estimate of the conjoint part-worth 

utility; and z represents the standard error of the point estimate of the conjoint part-worth 

utility, which is basically the square-root of the variance measure associated with the 

specific part-worth utility in the asymptotic variance-covariance matrix.  

For continuous and non-common product attributes (such as price), the standard 

procedure of pair-wise linear interpolation (See Sawtooth Chioce-Based Conjoint User 

Manual, 2001) is used to calculate the point estimate and the lower and upper bounds of 

the 95% simultaneous confidence levels for utilities of price that are in between specified 

levels.  For example, for a price (P) that is in between two specified price levels (P1 and 

P2) in the conjoint study, the point estimate of the conjoint part-worth utility can be 

calculated as follows: 
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where u(P1) represents the point estimate of the conjoint part-worth utility at price level 

P1 and u(P2) represents the point estimate of the conjoint part-worth utility at price level 

P2. And the interval estimate of the conjoint part-worth utility for this price can be 

calculated as: 

                                                 
2 95% confidence level is used here because this is the most commonly criterion in statistics literature 
[Greene, 2000]. This percentage can be adjusted based on the product manager’s preference and in this 
regard the essence of the proposed approach will not be affected. 
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where, var(u), the variance of the utility, can be obtained using Eq. (4.9) [Greene, 2000]: 
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where z1 represents the standard error of the point estimate of the conjoint part-worth 

utility at price level P1; z2 represents the standard error of the point estimate of the 

conjoint part-worth utility at price level P2; and z12 represents the covariance of the two 

conjoint part-worth utility estimates. 

In equations (4.6) – (4.9), only one component of the preference robustness is 

addressed that accounts for the uncertainties in customer choices in the preference 

ranking process.  The second component of the preference robustness in the marketing 

model comes from the variation in the performance of the product in the engineering 

domain.  For example, when the tool is used in different usage situations and under 

different conditions, the actual amp rating of the power tool may vary ±0.5 amps from the 

nominal value.  This variation will also have impact on consumer’s preferences for the 

tool.  In the proposed model, the impact of such variation on the consumer’s preference is 

accounted for. First, the ranges of utility variation are calculated for the lower and the 

upper bounds of the power amps variation using Eq. (4.7) – (4.9). Next, the lower and the 

upper bounds of the conjoint utility for one nominal value of power rating are constructed 

by considering both components of the preference robustness. Figure 4.2 plots the lower 

and the upper bounds of conjoint utilities when amp rating changes. For each point that is 

in-between levels, Eq. (4.7) is used to calculate the point utility estimate and Eqs. (4.8) – 

(4.9) are used to calculate the upper and lower bounds. For simplification, only the upper 
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and lower bounds of the utility estimates are highlighted and the point utility estimates 

are not shown in Figure 4.2.  

 
Figure 4.2: Variability calculation for common attributes  

 

Once the interval estimates of conjoint part-worth utilities for each level of the 

marketing attributes are obtained at the segment level, the upper and lower bounds of the 
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after testing the competing products in different usage situations and under different 

conditions, it is found that the actual amp rating of the competing product 1 varies from 

8.3 to 9.5 amps while its nominal value of the amp rating is 9 amps. Such information is 

used to calculate the interval conjoint part-worth utility estimates of the common 

attributes for the competing products. The calculation procedure is the same as the one 

described in Figure 4.2.  

Thus, when calculating the upper and lower bounds of market shares for product 

alternatives being designed, one should consider not only the worst and best possible 

market performance of the alternative being designed but also those of the competing 

products.  

The lower bound of conjoint utility for the own product in sth segment is denoted 

as Ulower_bound,s, the upper bound of conjoint utility for own product in sth segment is 

denoted as Uupper_bound,s. For competing products (cp1, …, cpR), the lower bound of 

conjoint utility for rth product in sth segment is denoted as sboundlowercpr
U ,_, , the upper 

bound of conjoint utility for rth product in sth segment is denoted as sbounduppercpr
U ,_, . A 

measure of Market Share Variation (MSV) is defined as follows: 

boundlowerboundupper MSMSMSV __ −=                              (4.10) 

where boundupperMS _ and boundlowerMS _ are upper bound and lower bound of market share for 

a product respectively and defined as: 
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4.3.1.3. Robust Marketing Optimization 

Figure 4.3 provides the flowchart of the proposed marketing approach which is 

used to obtain a set of robust product design alternatives. The approach has two starting 

points. From the marketing end, market researchers first conduct focus group study to 

decide the most important product attributes for the end users and the set of competitors 

in the marketplace.  Based on this, a conjoint study is designed and conducted in the 

field. Next, the finite mixture conjoint model as outlined in Section 4.3.1.1 is used to 

calculate the conjoint part-worth utilities and variance-covariance matrix of these 

estimates. Another starting point of Figure 4.3 is from the engineering end. It starts with a 

design alternative whose design attributes are calculated by a design simulation. The 

common attributes are either derived directly (e.g., total weight of a product) or through 

appropriate mapping functions (e.g., product amp rating as a function of the maximum 

motor output power). For each design alternative, several different product alternatives 

can be created by enumeration over the marketing attributes (e.g., price, switch type). 

Given the specification of these product design alternatives and their variations, the 

market share and its variation (MSV) for every product alternative are calculated within 

the preference robustness procedure as descried above. The optimizer obtains the set of 

products that not only has a high market share value but also has small variations in 

market share. The optimum set is obtained among all design alternatives provided by 

design simulation at their optimum levels of marketing attributes. 
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Figure 4.3: Robust marketing approach 
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within the optimizer. An optimization technique can be used within the framework to 

perform the search.  Each design is enumerated over the marketing attributes (excluding 

brand) to produce corresponding product alternatives that can be evaluated from the 

marketing point of view. In the marketing model, after estimating customer utilities from 

the conjoint analysis model, the overall customer utility and market share for that design 

is computed and passed on to the optimizer. The marketing objectives are to maximize 

the market share and to minimize its variability. Even though past research mainly 

focuses on market share maximization, one may argue that it is also important for product 

designers to weight between market share and its variability. When two product 

alternatives have comparable market shares, the product with smaller market share 

variability should be favored because there is a less amount of uncertainty associated 

with how this product will perform in the marketplace. The details of the proposed 

ranking algorithm are given in Section 4.4.1. This procedure continues until the stopping 

criterion, such as a maximum number of iterations, is reached. The approach ends after 

identifying a set of robust design alternatives.  

4.4.1. Design-Marketing Evaluation of Product Alternatives 

The optimizer used in the proposed approach (Figure 4.4) should evaluate and 

compare products based on their engineering design as well as market performance. The 

performance measures in both domains (disciplines) were defined in previous sections. 

Here the product evaluation is performed at the domain level (i.e., marketing or 

engineering design domain), and the optimizer obtains the product designs that show 

superior performance in both domains.  
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In the engineering design domain, robust products are considered (from both 

feasibility and multi-objective robustness points of view) and their performance and 

feasibility is evaluated using the design objective and constraint functions. In the 

marketing domain, both market share and its variations (MSV) are considered to assess 

the marketing performance and robustness of the products (maximize market share and 

minimize variation, given a set of competitive products). The rank ordering rule, which is 

used in the optimizer, is as follows: product X dominates product Y if it dominates (i.e., 

has a better performance) in at least one of the domains (i.e., design or marketing) while 

not dominated in the other. Alternatively, product X is dominated by Y if it does not 

dominate Y in any domain while being dominated by Y in at least one domain. If neither 

of these conditions holds, then products X and Y are non-dominated.  
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Figure 4.4: Integrated design-marketing approach 

Figure 4.5 shows an example in which three product designs A, B, and C are 

being rank ordered. The left hand figure depicts the engineering design domain in which 

output speed is minimized while mass removed is maximized. The right hand side figure 

shows the marketing domain in which the market share of the product is maximized 

while the variation in market share estimates is minimized.  In order to rank order the 

products, it is necessary to compare each pair separately. B dominates A in both design 

and marketing domains, and therefore, overall B dominates A. However, A dominates C 

in the design domain, but is dominated by C in the marketing domain. Such a conflict 

leads to declaring both A and C to be non-dominated products. Furthermore, between B 
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and C, B dominates C in the design domain. However in the marketing domain, B and C 

are non-dominated. Therefore, based on the above-mentioned ranking rule, B dominates 

C. In short, considering both design and marketing domains, B gets the highest (i.e., first) 

rank (no product dominates it), while both A and C are non-dominated with respect to 

each other, and are ranked second. 

 

Figure 4.5: Rank ordering under uncertainty:  
               (a) design domain, and (b) marketing domain 

4.5. EXAMPLE 

This section demonstrates the proposed approach with an example: design of a 

corded power tool; a small angle grinder. The data and definitions (or preliminaries) for 

the example are given in Section 4.5 .1 followed by the robust design model in Section 

4.5.2 and robust marketing model in Section 4.5.3. The set of robust product design 

alternatives is presented in Section 4.5.4. 

4.5.1. Preliminaries 

To begin with, it is necessary to survey the market for corded power tools to 

identify key attributes of the product that are important to customers and then establish a 
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set of common attributes between engineering design and marketing disciplines. Working 

as a team with an industrial partner, several focus group studies are conducted to first 

identify a set of attributes that are considered as the most critical by the end users. Six 

marketing attributes have been identified for this product: brand, price, amp rating, 

switch type, life, and girth size. The engineering design attributes (i.e., output from the 

design simulation) are maximum output power, output speed, armature temperature, and 

brush temperature. Among these attributes, amp rating and life of the product are 

common attributes between the design and marketing domains. Amp rating is obtained 

using maximum motor output power, and an estimate of product life can also be obtained 

by a heuristic that takes motor output speed and armature temperature. The application 

(i.e., type of material and the duration of use) is assumed to be the same for all design 

alternatives. However, depending on the motor used, the average application current is 

different for each design alternative. The set of design variables are: choice of motor (xm) 

which is a discrete variable between 1 to 10, choice of speed reduction unit or gearbox 

(xg), a discrete variable between 1 and 6, the gear ratio (xr) which is a continuous variable 

between 3.5 and 5.0. There are 5 design parameters that affect the performance of each 

design alternative. The design parameters’ with their uncontrollable variability 

information is given at Table 4.1. The values in Table 4.1 are obtained by examining the 

experimental (or historical) values for each design parameter. In some cases an expert or 

designer can provide these values. 
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Design Parameter Nominal Lower bound Upper bound 
Source Voltage (V) 110 95 125 
Ambient Temperature (C) 25 -10 50 
User Load Bias (lb) 6 3 9 
Fan CFM Degradation (%) 20 0 80 
Application Torque Adjustment (%) 0 -20 20 

Table 4.1: Design parameters’ information 

 

The variability in the marketing is discussed in Section 4.5.3. It is assumed that in 

the market for this power tool, there are 3 competitive products.  Their specifications in 

terms of marketing attributes (including the common attributes) are given in Table 4.2 

below.   

 

Competitive Product  Price Amp rating Switch type Life Girth size 
Brand 1 $99 9 Side Slider 120hrs Large 
Brand 2 $129 12 Paddle 150hrs Small 
Brand 3 $79 6 Paddle 80hrs Small 

Table 4.2: Competitive products specifications 

 The set of robust design alternatives considering only engineering design 

robustness aspects are discussed in the next Section. 

4.5.2. Robust Designs using Engineering Design Robustness 

To ensure performance and efficiency of the product and reduce the effects of 

vibration to the user, the engineering design objectives are defined as follows. The 

product’s output motor speed is minimized while the amount (i.e., mass) of material 

removed is maximized. To guarantee that the product does not fail (i.e., burn out) under 

demanding application conditions, a design constraint is imposed to keep the motor 

temperature (which is the larger of armature temperature and field temperature) less than 



 

 104

220°C [Medinger, 2005]. Given these two objectives and constraint, without considering 

the effects of parameter variations on them, a Multi-Objective Genetic Algorithm 

(MOGA) [Narayanan and Azarm, 1999] with Kurapati et al.’s constraint handling 

technique [Kurapati et al., 2002] was used as an optimizer to obtain the set of (nominal) 

Pareto designs. The reason for choosing an optimizer based on Genetic Algorithm is that 

this case study involves both discrete and continuous variables. Figure 4.6 shows the 

results. Nominal Pareto design points are highlighted by diamond symbols in Figure 4.6. 

There are gaps among the clusters of design alternatives as depicted in Figure 4.6. The 

primary reason for these gaps is due to dramatic changes in performance based on the 

choice of available components in the database. The parameters used for MOGA are the 

same of those values given Table 3.1. 

At this point, for expositional purposes, the marketing module is not considered.  
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Figure 4.6: Set of nominal and robust Pareto design alternatives 

Using the model provided in Section 3.4, with a genetic algorithm as the 

optimizer, the maximum variation from nominal values of motor speed and the mass of 
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removed material are calculated for every design alternative. In this example, the 

variation from nominal value for motor speed must be less than 8,000 rpm. In addition, 

the variation in the mass of removed material in one application (of the tool on a steel 

plate) must be less than 5 grams. The robust designs are those that satisfy these 

requirements as well as the feasibility robustness requirement. Likewise, the model of 

Section 3.4.2 is used to identify feasibly robust design alternatives. For a power tool 

design, to operate for long and intensive applications, the motor temperature should not 

exceed a certain level. There are several parameters that can influence motor temperature 

in a power tool. Among those, the ambient temperature, user load bias, and power supply 

voltage and current can have considerable effects on the motor temperature. The design 

alternatives that are not feasibly robust are eliminated during the optimization. 

The robust Pareto design alternatives are obtained following the framework given 

in Figure 3.8. Again, MOGA with parameters in Table 4.3 is used as the optimizer. The 

robust Pareto points for this example are also shown in Figure 4.6 along with the nominal 

Pareto points. It can be observed that in this example almost all of the robust Pareto 

points are inferior (in terms of performance) to the nominal Pareto points. However, it 

was verified that none of the robust designs show unacceptable variation in performance 

which can lead to failure of the product.  

In the next section, the effect of customer preferences is studied (without using 

engineering design objectives and constraints mentioned above) in the generation of 

product design alternatives. 
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4.5.3. Robust Design using Preference Robustness  

Based on some exploratory research, four different brands (one of which is the 

producer’s own brand) are chosen along with three levels of price, three levels of amp 

ratings, four types of switch, three levels for product life, and two levels for girth size. 

Respondents for this study include metal workers and construction workers (who make 

up 80% of the user base for the tool) recruited from job sites and construction sites. The 

interviews were conducted with 249 respondents. Each respondent was given 18 choice 

scenarios (16 were used for conjoint estimations and 2 for verification).  Each choice 

scenario included two product design alternatives and a no-choice option with verbal 

descriptions indicating the levels of marketing attributes (brand, price, amp rating, switch 

type, life, and girth size). Respondents were asked to consider different usage situations 

when making their choices. The data was collected, coded and analyzed using Sawtooth 

Software. The finite mixture module of the Sawtooth Software was used to obtain the 

part-worth estimates, standard errors, and the variances and co-variances associated with 

each attribute level at the segment level. The scenarios of 1, 2, 3, 4, and 5 market 

segments are examined. The number of market segments is determined by choosing the 

segment with the minimal AIC value (see Eq. (4.5)), which turned out to be four 

segments. Therefore, four market segments are formed. For each segment, its segment 

size estimate, conjoint part-worth utility estimates, and the variance-covariance matrix of 

the conjoint part-worth utility estimates are known. Using the approach outlined in the 

marketing model, 95% Simultaneous Confidence Interval (SCI) for the utility estimate of 

each attribute level are calculated. Table 4.3 below provides the part-worth utility 

estimates associated with each attribute level and the utility estimate for “no-choice” in 

each market segment. In this table, the values of segment sizes are also provided. In 
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addition, a 14×14 variance and co-variance matrix of the conjoint estimates for each 

market segment is obtained. The diagonal elements of the matrices are all positive 

numbers and they represent the variances of the conjoint estimates. The off-diagonal 

elements describe the co-variances of the conjoint estimates.  

The information provided in Table 4.3 can be used to illustrate how the utility of a 

product is calculated. For a product with own brand, $79 retail price, amp rating of 9, 110 

hours of product life, top slider switch, and small girth, its utility for consumers in 

segment 1 is 1.3 (i.e. (-.54)+(-.11)+.13+1.33+(-1.01)+1.5=1.3). For consumers in 

segment 2, its utility is -1.47 (i.e. .45+ (-0.09)+(-1.42)+(-.47)+(-.65)+.71= -1.47). 

Similarly, this product’s utility for consumers in segment 3 can be calculated as -5.79 and 

for consumers in segment 4 as -.99. Similar approach can be used to calculate the lower 

and upper bound utility for each product alternative and the competitor products. 

 To assess the face validity of the model estimates, the estimated market shares 

for the existing products with actual market share data obtained from Power Tool 

Institute (PTI) are compared. PTI is an organization that provides its member companies 

with market level data such as the market shares of different power tool products. It is 

found that the discrepancies between the estimated market shares from the conjoint 

experiment and the actual shares are within 5-7%. As a result, it can be implied that the 

proposed model estimates are reasonably in line with the actual market share values. 
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  Segment 1 Segment 2 Segment 3 Segment 4 

Segment Size 0.378 0.248 0.121 0.253 

  Part-worth Part-worth Part-worth Part-worth

Brand 0 (own) -0.54 0.45 2.21 -0.16 

Brand 1 0.18 1.06 -2.37 -0.2 

Brand 2 0.83 0.11 -1.5 1.15 

Brand 3 -0.46 -1.61 1.66 -0.79 

Price $79 -0.11 -0.09 0 -0.01 

Price $99 -0.89 -1.15 1.91 -0.24 

Price $129 1 1.23 -1.91 0.25 

Amp 6 1.25 0.45 -1.48 -0.45 

Amp 9 0.13 -1.42 -0.65 -2.38 

Amp 12 -1.38 0.97 2.13 2.82 

Life 80 -0.86 -0.12 -4.71 0.8 

Life 110 1.33 -0.47 -5.82 0.74 

Life 150 -0.47 0.6 10.53 -1.54 

Paddle 0.42 0.29 -3.29 -0.65 

Top Slider -1.01 -0.65 -3.04 0.41 

Side Slider 2.39 -0.07 2.46 0.56 

Trigger -1.8 0.42 3.87 -0.31 

SmallGirth 1.5 0.71 1.51 0.41 

LargeGirth -1.5 -0.71 -1.51 -0.41 

No-Choice -0.02 -0.02 -0.02 -0.02 

Table 4.3: Conjoint part-worth estimates 

Based on the outputs from the conjoint estimation and the procedure described in 

Section 4.3, the interval utility estimates for all the product alternatives are calculated.  

These interval utility estimates were used to calculate an upper and lower bound of 

market share for each design alternative, based on Eqs. (4.6) – (4.11). The variation 
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between the upper and lower bound of the market share is used as a measure of 

preference robustness. 

Next, using the approach described in Section 4.3, design alternatives are 

generated through passing numerous combinations of design variables using the 

optimizer to the corded power tool simulation. The output generated by the design 

simulation is used to obtain (directly or via mappings) the common attributes. As 

mentioned before, two common attributes are mapped from design simulation output, 

namely, amp rating and life of the product. Next, there are three non-common marketing 

attributes that contribute towards the generation of the set of product alternatives. These 

attributes are price, switch type and girth size. Due to the fact that brand name is 

generally fixed for any particular manufacturer, the brand name is fixed to “own brand” 

for all the product alternatives in the MOGA. By enumerating each design alternative 

attributes over these non-common attributes, numerous product alternatives can be 

generated. For each generated product alternative, using the information provided in 

Table 4.3 and Eqs. (4.7) – (4.11) the market share and its variation can be estimated. 

MOGA is used with similar parameters as those in Section 4.5.2 to obtain the set of 

robust product alternatives that have maximum market share and minimum variation in 

market share. In the initial population, the market share variability ranges from 5% to 

20%. The optimization results are shown in Figure 4.7. Every product design point in 

Figure 4.7 is obtained by mapping from design simulation results to marketing related 

attributes. For instance, for product design A, the common attribute values are 5.71 Amps 

and 119 hours for amp rating and life, respectively, under continuous application of the 

tool on a steel plate. The maximum deviation from the nominal design objectives values 
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are 3.7 grams and 7,654 rpms which both satisfy the designer’s acceptable ranges. Since 

the nominal market share value and its variation for product A (i.e., 22.8% and 3.68%) is 

among the best possible values, product A appears in the marketing Pareto products set. 

Similar to the results in Figure 4.6, there are gaps and clusters in the obtained solutions 

because of dramatic changes in performance of a product design due to discrete choice of 

components such as a motor.  
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Figure 4.7: Set of robust marketing Pareto product alternatives   

As shown in Figure 4.7, 53 product alternatives form the robust marketing Pareto 

products, all of which have less than 7% of market share variations. It should be noted 

that in calculating of market share and its variation only pure marketing attributes such as 

price and switch type along with common attributes (life and amp rating) are considered. 

Therefore, several other critical engineering aspects of the designs are not accounted for. 

For instance, two products in the upper right side of the Figure 4.7 are indicated as 

infeasible from engineering design aspects. Both of the products violate the constraint on 

motor temperature and therefore are not good candidates for the prototyping stage. 
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Similarly, the product alternatives in the bottom left corner of Figure 4.7 are infeasible 

from the marketing perspective. Even though the market performance of these product 

alternatives does not vary much, the market shares of these products are all less than 5%. 

Such low market shares are considered as infeasible because these product alternatives 

cannot generate requisite revenue to recover the fixed costs needed for the development 

of these products. 

4.5.4. Robust Design using Integrated Design and Marketing Approach  

The integrated robust design and marketing approach given in Section 4.4 is now 

applied to the example. Similar to the discussion for Figure 4.4, each corded power tool 

design alternative is evaluated for performance and robustness. After obtaining the 

product alternatives, the market share and its variation are calculated for each product 

alternative. The evaluation is performed at a discipline level according to the rules given 

in Section 4.4.1. The final set of robust products based on the proposed integrated 

approach is shown in Figure 4.8.  
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Figure 4.8:  Final set of robust design and product alternatives: 
          (a) engineering design domain, and (b) marketing domain 

There are 18 design alternatives in the design objective space that are identified as 

robust in design objective space (Figure 4.8a). As mentioned before, every design 

alternative is enumerated over non-common marketing attributes to produce several 

product alternatives. In this example, there are three non-common attributes, namely, 

switch type, price and girth size that overall create 24 possible product alternatives for 

A

Infeasible (for Marketing)
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each design. It should be noted that not all of the possible generated combinations for 

each design have optimum performance in both design and marketing domain. In this 

example, corresponding to the 18 designs in the design domain (Figure 4.8a), there exist 

62 product alternatives in the marketing domain (Figure 4.8b). For example, design 

alternative A in Figure 4.8a corresponds to the five optimum products in Figure 4.8b. 

Table 4.4 tabulates the properties of these products.  

 

Product  Motor 
no. 

Gear 
no. 

Gear 
ratio Price Switch 

type 
Girth 
size 

Market 
share 

Var. of 
market 
share  

1 6 4 4.9 $129 Top Slider Small 0.144 0.032 

2 6 4 4.9 $129 Trigger Small 0.164 0.049 

 3 6 4 4.9 $129 Top Slider Large 0.173 0.051 

4 6 4 4.9 $129 Trigger Large 0.203 0.060 

5 6 4 4.9 $129 Side Slider Small 0.201 0.058 

Table 4.4: List of product alternatives corresponding to design A 

  

Furthermore, among the 18 design alternatives in design objective space (i.e., 

Figure 4.8a), only 4 of them also belong to the robust set obtained through robust design-

only approach (i.e., Figure 4.6). On the other hand, the comparison of marketing domain 

in final robust products with marketing-only approach (i.e., Figure 4.7) reveals that only 

14 products are common between two sets. Such comparisons could help the designer in 

making a selection among the generated set of product alternatives.  

Overall, the integrated approach in this chapter obtains solutions (as shown in 

Figure 4.8) that are superior in terms of design performance, marketing performance or 

both. The next step in the product development process is to make a selection among the 
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products and then the selected products can be carried forward for the prototyping stage. 

Using Figure 4.8 and locating products in both domains, it would allow a product design 

manager to evaluate each product from both design performance (and robustness) as well 

as it market performance. Since it may not be feasible to carry forward 62 products to the 

prototyping stage, the design and marketing teams may decide to reduce the number of 

the final products. First, some of these alternatives can be eliminated through a more 

stringent criteria for robustness (for example, by reducing the acceptable range of 

variability in the design and/or marketing dimensions), which can reduce the number in 

the Pareto set. Second, as mentioned before, the marketing team may decide to eliminate 

solutions that have a low level of predicted market share (e.g., below 5%). This will 

reduce the number of robust products to 48. Third, the marketing team may prefer to 

target at a particular price point for the new product after accounting for retailers’ 

existing assortments and their preferences. As a result, the only product alternatives with 

this price point will be considered. Finally, a similar procedure can be carried out in 

design domain and the design team can eliminate the designs that have higher production 

costs (when offered at the same price) to increase the projected profit. While there are 

many techniques to aid in making a selection among the final product alternatives, the 

discussion of such techniques is beyond the scope of this dissertation. The main focus 

here is to present an integrated design-marketing robust optimization approach to identify 

a robust optimal set of product alternatives for the new product development team facing 

a complex design problem with interdisciplinary objectives and infinite number of design 

alternatives. 
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4.6. SUMMARY 

In this chapter an integrated approach for a single product robust optimization is 

presented. Engineering design and marketing are two major domains (or disciplines) that 

are covered in the approach. The performance and robustness of a single product 

alternative in each domain were also evaluated, and the relation between the design and 

marketing attributes were established by identifying a set of common attributes. The 

approach 2 to robust design optimization described in Section 3.4 was used along with a 

preference robustness approach based on a finite mixture conjoint model. The essentials 

of the preference robustness measures and their relation with variability due to 

uncontrollable design parameters were provided in details.  

A bi-disciplinary (i.e., marketing-design) optimization criterion was used to 

generate and rank order a set of product design alternatives, which could then be taken to 

the prototype development stage. This assured that the prototypes being tested are robust 

not only from a design perspective but also from a customer preference perspective. In 

this regard, it is important to note that the integrated approach was not a sequential 

elimination scheme. Instead every product was evaluated in both design and marketing 

domains. Only those products that may become infeasible or have inferior performance in 

at least one domain were eliminated in the process.  

To demonstrate the integrated design and marketing robust optimization 

framework, the presented approach is applied to a design problem, design of a small 

angle grinder. The results are obtained in three different cases; first when only design 

robustness is taken into account, second when only preference robustness is taken into 
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account and third, when both design robustness and preference robustness are considered 

simultaneously.  

In the next chapter the proposed approach for single product robust optimization 

is extended to product line design where instead of just one product a set of variants are 

to be selected to target different segments of a market. 
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CHAPTER 5 

 

PRODUCT LINE ROBUST OPTIMIZATION 

5.1. INTRODUCTION 

In Chapter 4, a method for robust optimization in single product design was 

presented. There, the main assumption was that the product manufacturer is able to 

achieve a reasonable market share and profit by launching only a single product to the 

market. This chapter is focused on product line design. A product line refers to a 

collection of single products that essentially have the same function but with different 

attribute levels. Each individual product in a product line is called a variant. Product 

manufacturers often want to develop a product line in order to meet the needs of different 

market segments and thus obtain a broad market for their products.  

The purpose of this chapter is to develop an approach for robust product line 

optimization. From Engineering design point of view, the variants in a product line must 

be robust (See Chapter 3), and from a marketing point of view, the variants should be 

robust and collectively produce maximum possible profit for the product manufacturer.  

The organization of this chapter is as follows.  Section 5.2 provides an overview 

of the robust product line design optimization problem. Section 5.3 gives a description 

for a two-stage approach for obtaining a robustly optimum product line design. Next, 

Section 5.4 illustrates the approach with an example for robust optimal product line 

design of a corded power tool. Finally the chapter is concluded by a summary in Section 

5.5. 
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5.2. OVERVIEW OF ROBUST PRODUCT LINE DESIGN PROBLEM 

The product line design optimization problem here is to obtain a set of N product 

alternatives (or variants) from a large number of product candidates and then select K 

single products out of the obtained finite set of N single product candidates to form a 

profit maximizing product line. Usually there is a maximum number of variants in a 

product line (i.e., K ≤ Kmax). This set of N product alternatives is either pre-determined by 

the product designer (e.g. [Chen and Hausman, 2000] [Ramdas and Sawhney, 2001]) or 

obtained by permutation of all possible combinations of attribute levels in a conjoint 

study, e.g., [Nair et al., 1995]. From a product manufacturer’s perspective, however, the 

set of technologically and economically feasible product alternatives, from design 

perspective, can be very large. In fact, the size of this set of feasible product design 

alternatives can theoretically be infinite when some attributes are continuous (e.g., weight 

and product price). A subjective selection of some “good” product alternatives from such 

a large number of feasible product alternatives generally results in a suboptimal product 

line [Nair et al., 1995]. Furthermore, for most products, the product design space has a 

dimension which goes beyond that of the space defined for marketing attributes. Hence, 

similarly to the single product design method, as discussed in Chapter 4, the process for 

product line design also relies on the integration of engineering design and marketing 

domains.  

The optimal product line design is carried out in a sequential two-stage approach, 

as shown in Figure 5.1: Stage I is for robustly optimal single product alternative 

generation, and Stage II is for product line design optimization.  
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Figure 5.1: Overview of product line robust optimization approach 

 

In Stage I, the focus is on generating a set of single product design alternatives 

that are individually robust. In contrast to the approach in Chapter 4, as well as previous 

research in single product optimization (e.g. [Balakrishnan and Jacob 1996] [Besharati et 

al., 2004] [Luo et al., 2005] and [Michalek et al., 2005]), the main focus in Stage I is to 

just eliminate “undesirable” product alternatives. The undesirable alternatives refer to 

those that do not satisfy the design robustness requirements (see Chapter 3). The 

approach in Stage I is geared to reduce the number of product design alternatives from 

very large to a finite number.  This set of generated robust product design alternatives 

from Stage I is then used as variants for the creation of product line alternatives in Stage 

II. 

In Stage II, a set of product line design alternatives are generated, from the robust 

optimal single product designs produced in Stage I. In Stage II, a Genetic Algorithm 

(GA) based combinatorial optimization approach (e.g., [Deb, 2001]) is used to obtain an 
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optimal product line. The details of the optimization problem for Stage II are provided in 

Section 5.3. Next, based upon the previous work (e.g., [Ramdas and Sawhney, 2001] a 

cost model for platform-based products is introduced with the assumption that the 

product manufacturer buys components off The shelf from outside vendors and conducts 

the assembly in house.  

In the following sections it is attempted to bridge the gap between the marketing 

and the engineering literature by developing a model that accounts for different aspects of 

product line profit maximization problem such as competitive products offerings and the 

cost savings associated with component sharing among variants.  

5.3. APPROACH FOR PRODUCT LINE DESIGN PROBLEM 

The robust product line design problem is viewed as an optimization problem 

with two stages; Stage I: robustly optimal single product alternative generation (Figure 

5.2), and Stage II: product line design optimization (Figure 5.5). The details of the 

approach in Stage I and Stage II are provided in Sections 5.3.1 and 5.3.2 respectively. 

 

5.3.1. Stage I: Robustly Optimal Single Product Design - Alternative Generation 

As shown in Figure 5.2, Stage I considers both engineering design and marketing 

domains. The purpose of the Stage I approach is to select a set of robust and optimal 

product design alternatives in each market segment. Starting with a large number of 

product candidates, a GA based approach is used to reduce the number of product 

alternatives. In the engineering design domain (bottom block, left column of Figure 5.2), 

a set of design inputs is identified.   
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Figure 5.2: The approach for Stage I of product line optimization 
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Design inputs include both design variables and uncontrollable design parameters. 

The set of design variables define a design alternative. Similar to the approach in Chapter 

4, a deterministic design simulation software tool is used to receive the value of design 

inputs and obtain corresponding design attribute values (e.g., armature temperature and 

maximum output power). 

From the marketing domain (bottom block, right column of Figure 5.2), the most 

important attributes for consumers are identified through an exploratory marketing 

research study. Similarly to the approach for single product robust optimization of 

Chapter 4, some of the common attributes such as amp rating and product life are 

obtained by a mapping function from the engineering design domain. Next, the levels of 

each attribute are decided. Once the attribute levels are known, a choice-based conjoint 

questionnaire (see, e.g., [Kamakura and Russell, 1989]) is developed for consumer 

preference elicitation. A finite mixture conjoint model (e.g., [Vriens et al., 1996]) is used 

to address consumer heterogeneity. This model can be used with Akaike Information 

Criterion (AIC) [Akaike, 1973] to obtain the optimal number of market segments. The 

finite mixture conjoint model is then applied to calculate the utility of the attribute levels 

for each market segment. The utility of a product alternative in each segment is also 

calculated in this block (recall Section 4.3.1.1).  

In the top block of Figure 5.2, the effects of uncertainties in both engineering and 

marketing domains are considered. In particular, similar to that in Chapter 4, the design 

robustness box determines whether or not each single product design candidate satisfies 

the requirements for feasibility robustness and objective robustness.  
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To generate the initial product population in GA, the design inputs and the 

marketing attributes (excluding brand) are used. It should be noted that design input form 

a design alternative and combination of design inputs and marketing attributes form the 

product alternatives. Initially a set of product alternatives is randomly generated for each 

market segment. Then in the top block each product alternative is evaluated, and a fitness 

value is assigned to each product in the population. The product alternatives that do not 

satisfy design robustness or design constraints are penalized, and those that are not 

penalized, are evaluated based on an expected utility dominance measure for consumer 

utilities. The definition and details of the measure are given in Section 5.3.1.1. 

The GA procedures including population generation, fitness assignment, and 

genetic operations are repeated in several iterations till the stopping criterion is satisfied. 

The stopping criterion is defined as follows. When there is no significant change in the 

expected utility dominance value of a certain portion of the best individuals in the 

population, the procedure stops.  The result of the GA optimization in Stage I is a set of 

robust products for each market segment. In the next few sections the specifics of the 

expected utility dominance measure, the optimization problem, and, the fitness 

assignment procedure are discussed. 

 

5.3.1.1. Stochastic dominance 

Stochastic dominance is used to compare two alternatives under uncertainty (i.e., 

when the distributions are known) [Mislevy et al., 1992] [Clemen and Reilly, 2001]. 

Figure 5.3 gives an example where the cumulative distribution function (CDF) of the 

utility for three product alternatives is given. Product H3 stochastically dominates product 



 

 124

H1 because the CDF for H3 in entirely on the right side of CDF for H1. However, product 

H2 neither dominates nor is dominated by the other two alternatives. 

 By definition, a product alternative H1 stochastically dominates product H2, if for 

any given utility value, U, product H1 gives a higher probability than does product H2. 

Let H1 and H2 denote two single product design alternatives. Suppose the utility 

distribution of product H1 in segment s is 
1HU and that of product H2 is 

2HU . In a 

comparison of the conjoint utilities of these two products: 

[ ]0)(Pr)Pr(
2121 >−= HH UUsHH f     (5.1) 

 
 where the symbol ‘f ’ is used for stochastic domination of an alternative over the other. 
 

CDF 

Utility 

H1 

H2 

H3 

 

Figure 5.3: Stochastic dominance comparison of three single products 
 

For the product design alternative rH in a population of size R, the expected 

dominance value in market segment s is defined: 
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This measure is used in the GA approach in Stage I as an objective which needs to 

be maximized. In the following subsection, a proposed integrated fitness assignment 

approach is given in detail. 

 

5.3.1.2. Stage I Optimization Model 

The optimization formulation for Stage I is shown in Figure 5.4. 

 

Figure 5.4: The robust optimization approach for stage I 

 As shown in Figure 5.4, vector Hr represents the rth product alternative, and its 

components are composed of design attributes and marketing attributes. The symbol s 

represents the sth market segment. The expected dominance or ED function is calculated 

using the obtained utility distributions for a set of R product alternatives. The fi represents 

the ith performance attribute whose variability must be limited. W
ifΔ and D

ifΔ are the 

maximum deviation and acceptable deviation from nominal value of ith performance 

attribute respectively. Also gj represents the jth design constraint which must remain 

feasible. It should be noted that there is a difference between the flowchart in Figure 5.4 

and Figure 3.8. Here the objective function is the expected utility dominance (i.e., ED) of 
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each product and the performance attributes, fis are not being treated as objective 

functions and therefore are not being optimized. The details of the expected dominance 

function are provided in Section 5.3.1.1.  

 The optimization in the Stage I is carried out at the segment level. Note that in 

this stage, optimization is not conducted at the entire market-level, consisting of all 

segments at the same time. This is because a market-level analysis generally multiplies 

the segment size by the segment-level conjoint utility to obtain the weighted average 

market-level utility. As a result, such an analysis will always favor product alternatives 

appealing to the largest segment. This approach is against the basic principle of product 

line design in providing a variety of products to satisfy consumers in different market 

segments. In contrast, the proposed segment-level based approach is more appropriate 

because it can guarantee that product design alternatives that might be appealing to 

smaller market segments are not eliminated. The outcomes of the Stage I optimization is 

a set of robust products with high conjoint utilities in each market segment under the 

uncertainties. To evaluate each product design alternative during the GA optimization, a 

fitness value needs to be assigned to each alternative. The details of fitness assignment 

procedure are provided in the following section. 

 

5.3.1.3. Integrated Fitness Assignment Approach and Implementation 
 

The motivation behind the proposed integrated fitness assignment is (1) to ensure 

that products that are not generated from robust design alternatives are penalized; and (2) 

to generate a set of single product alternatives that have higher ranks in terms of expected 

conjoint utility dominance among the rest of the individuals in a GA population. 
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The fitness assignment approach used in Non-Dominated Sorting Genetic 

Algorithm (NSGA) [Deb, 2001] is tailored to address the problem here. Three criteria are 

examined to assign a fitness value to each product alternative in a population. First each 

product is examined to identify whether it corresponds to a feasibly robust design. If it 

does not come from a design that satisfies the feasibility robustness defined in Eq.(3.3), a 

negative value, FFR is added to its fitness value. In a similar fashion, a negative value, FPR 

is added to any product that corresponds to a design that does not satisfy the objective 

robustness criteria define in Figure 3.8. The following procedure can be used to assign 

the fitness to each product in a population: 

 

Step 1. Choose a sharing parameter, shareσ , and a small positive number, ε, and let Fmin = 

N + ε. Here, N is the number of products in the initial population and Fmin is the 

initial fitness assigned to every individual. There are certain methods to obtain a 

value for shareσ (e.g., Press, et al., 1988). In this case the following is used: 

 ( )LH
share EDED

N
−

−
=

1
1σ       (5.3) 

where the EDH and EDL are the highest and lowest values for expected dominance 

number for the current population. Also, set counter r = 1. 

 

Step 2. Rank order population based on the expected dominance value as described in 

Section 5.3.1.1. For instance a population size of N can be sorted as (P1, P2,…, 

Ps), where, P1 represents a subset of the population with highest expected 

dominance number, and Ps is the subset of the population with the lowest 
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dominance number. It should be noted that each subset can comprise of as little as 

only one product alternative. Also, each product within the population is checked 

for feasibility robustness and objective robustness. Any product, q, that violates 

feasibility robustness is set to: FFR
(q) = -αN; otherwise it is set to: FFR

(q) = 0. 

Likewise, for any product q that violates the objective robustness: FPR
(q) = -βN; 

otherwise: FPR
(q) = 0. The quantity α and β are the robustness penalty coefficients 

that designer can choose depending upon the importance of each feasibility and 

objective robustness criteria. 

 

Step 3. For each product alternative q in subset Pr, perform the following procedure: 

Step 3a: Assign fitness as Fr
(q) = Fmin - ε. 

Step 3b: Calculate niche count (a measure for diversity) among the products in 

subset Pr as: 

∑
=

=
N

i
qiq dShnc

1
)(      (5.4) 
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σ         (5.5) 

where dqi is the difference between the expected dominance value of 

product alternative q from the ith product alternative in subset Pr.  

Step 3c: Calculate the shared fitness as  

q
q

r
q

r ncFF /)()( =′ .      (5.6) 
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Step 4. Set ⎟
⎠
⎞

⎜
⎝
⎛ ∈′= r

q

r PqFF :min
)(

min , then set the overall shared fitness of product 

alternative q as: 

 )()(
)()(

q
PR

q
FR

q

r

q

r FFFF ++′=′     (5.7) 

and set counter r = r +1. 

Step 5. If sr ≤  go to Step 3. Otherwise, the fitness assignment for the current population 

is complete. 

 

5.3.2. STAGE II OPTIMIZATION MODEL 

The Stage I optimization produces a set of robust products in each market 

segment. The sets of robust single products across different market segments can be 

combined to form a pool of variants for candidate product line alternatives. In Stage II, 

the goal is to find an optimal product line that maximizes the product manufacturer’s 

profit. Figure 5.5 depicts Stage II of the approach. Stage II starts with a set of robustly 

optimal single products obtained from Stage I. As shown in the middle block of Figure 

5.5, in order to estimate the product manufacturer’s profit, it is necessary to calculate the 

product line cost and the product manufacturer’s revenue. The cost of each product line 

candidate has two main components; fixed cost and variable cost. The fixed cost is 

mainly determined by factory setup cost and equipment cost. The variable cost comprises 

component cost, assembly cost, maintenance cost, salvage cost.  It is also important to 

consider the cost savings due to commonality of parts/features among variants in product 

line. Moreover, the product manufacturer’s revenue is obtained considering the current 

competitive product offerings, heterogeneous customers’ preferences, and the 
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composition of a product line. In the top block of Figure 5.5 the optimization problem is 

provided. The objective is to maximize the product line profit. There are also two 

constraints: an upper bound on the maximum production capacity and an upper bound on 

the number of variants in a product line.  

 

Figure 5.5: The approach for Stage II of product line optimization 
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It should be noted that the rest of the variants in the product line are treated as 

competitive products to account for cannibalization effect. Given the competitive 

products information the finite mixture conjoint is used to estimate the market share of 

each product alternative in the product line. The optimization model for the Stage II is 

provided in Eq. (5.8): 
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                 (5.8) 

The objective function π is to maximize the product line profit. The first 

constraint ensures that the number of products in the product line does not exceed a pre-

specified upper limit. The second constraint is based on production volume for each 

product (e.g., [Bradley, 2004]). In equation (5.8), the index H denotes the thH variant in a 

product line with Nv variants, HMS , HP , and HVC  stand for the market share, price, and 

variable cost of product H, Nm is the market size in units of potential purchase, 

FC represents the fixed cost of product line, vN  is the maximum number of variants in a 

product line, and W denotes the production capacity constraint for each variant.  

In the following, the details of the calculation for two components of product line 

profit; product line cost and revenue are provided. 
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5.3.2.1. Product Line Market Share and Revenue Calculation 
 

The revenue calculation for a product line requires the market share values of 

each variant in the line, price of each variant, and the market size (Nm). The product line 

revenue ‘rev’ can be calculated by: 

mH

N

H
H NPMSrev

v

⋅⋅= ∑
=1

    (5.9)  

In order to calculate the market share, one needs to identify a set of competitor 

product offerings, if exist. In the absence of competitive products, the variants within the 

product line compete with one another. Once the competitive set is determined, the 

market share of a product H is calculated as: 

Hs

S

s
sH MSMS ⋅= ∑

=1
θ      (5.10) 

Also, similar to the approach in Chapter 4 (recall Section 4.3.1.2), the market share of 

each variant in a particular segment s is calculated as: 

 

⎥
⎦

⎤
⎢
⎣

⎡
++

=

∑ ∑
= =

′

v

q

N

H

Q

q
scpslH

Hs
Hs

consUU

UMS

1 1
)exp()exp()exp(

)exp(         (5.11) 

In Eq. (5.11), the market share of product H is the weighted average of this 

product’s market shares in different market segments with sθ  representing the 

corresponding segment size. In particular, product H’s market share in segment s 

(denoted as HsMS ) can be calculated using the segment-level conjoint part-worth 

estimates from the finite mixture conjoint analysis. In the calculation of HsMS , the set of 

nominal product attribute values for both own and competitive products is used. These 

values are used for calculation of market shares because consumers generally base their 
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purchase decisions according to these directly accessible attribute values. In addition, for 

attributes that are continuous in nature (such as price and amp rating), a pair-wise linear 

interpolation procedure is used to calculate the conjoint utility associated with any 

attribute whose value is in between levels. Finally, it should be pointed out that for a 

variant H in a product line, the rest of the variants are considered as competitor products 

in order to account for cannibalization effects, as shown as the first component in the 

denominator of the expression for HsMS  in Eq. (5.11). The competitive products outside 

the product line are indexed by q  with Qq ,...,1= , as the second component in the 

denominator of HsMS in Eq. (5.11). It can be shown that the proposed model is flexible 

enough to accommodate the cases in which one or more competitors have more than one 

product offerings in the market, as will be illustrated in the example section (see Section 

5.4). Similarly to the approach for single product in Chapter 4, the option of “no-choice” 

is included as the last component in the denominator of HsMS . This component is 

included here to capture market expansion in that the share of “no-choice” can expand or 

shrink based on the overall attractiveness of the product offerings in the marketplace. 

 

5.3.2.2. Product Line Cost Assessment 

The product line cost assessment method consists of two parts; (i) calculation of 

variable cost, and (ii) obtaining the fixed cost. The approach for the variable cost of each 

variant in the product line is built upon the previous work of Ramdas and Sawhney 

[Ramadas and Sawhney, 2001] and Morgan et al. [Morgan et al., 2001]. The proposed 

approach here somewhat differs from that of Ramdas and Sawhney by the fact that the 

cost model here focuses on platform-based product categories in which the manufacturer 
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purchases the components (or building blocks) of the variant from outside vendors and 

assembles the components into a final product. Given the fact that more and more U.S. 

manufacturers are adopting this model [Meyer and Lehnerd, 1997], the proposed cost 

model provides a useful guide in the examination of the component sharing effect for 

such products. Here, a simplified cost model has been used that takes the cost savings 

corresponding to the commonality of components (across variants) and manufacturing 

(e.g., assembly) costs into account. The variable cost of product H in product line is 

calculated as follows: 

sHmHaH

R

r
rtHrtH CCCCVC +++⋅−=∑

=1
)1( λ         (5.12) 

In equation (5.12), the variable cost HVC  is jointly determined by the unit cost of 

the rth component rtHC  scaled down by a discount factor rtλ . The quantity r is the index 

for component label (e.g., motor, switch), and t  is the index for the type of the 

component (e.g. motor #1, paddle switch), the assembly cost aHC , the maintenance cost 

mHC , and the salvage cost sHC . In other words, the main assumption behind the cost 

model is that the product (in this case consumer durable) manufacturer purchases the 

components from outside vendors, assembles the components into the final products, and 

sells the products to end users. The product manufacturer provides after-sale maintenance 

support such as replacement of malfunctioned products during the warranty period. 

Finally, at the end of product life cycle, the product manufacturer may be required to 

salvage the products. Many states have adopted regulations that require the product 

manufacturers to salvage their products at the end of their life cycle. While the salvage 

process can be costly to a product manufacturer, the salvage/disposal of a product does 
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not necessarily incur extra cost to a product manufacturer. In some cases reused parts or 

their refurbishment can actually make the salvage cost a benefit and therefore the 

incurred salvage cost to the product manufacturer can be negative. 

 Due to the fact that different products within a product line can share the same 

types of components, the cost associated with acquiring the shared components is 

commonly scaled down due to a high purchase volume and the economy of scale in 

working with fewer vendors. In the proposed cost model, a discount factor rtλ is 

considered to account for this effect. In particular, this discount factor is defined as 

follows: 

⎪⎩
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⎨
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                 (5.13) 

When there is no sharing of component r among the variants in the product line, the 

discount factor rtλ  is set to be zero. When there is component sharing, rtρ (called 

“commonality significance factor”) represents the degree of cost benefit by sharing the 

tht type of component r in the product line. As discussed by Morgan et al., [Morgan et al., 

2001] and Ramdas and Sawhney [Ramadas and Sawhney, 2001], rtρ  is generally 

evaluated from historical data on a case-by-case basis. When all the variants in the 

product line use the same component type, rtρ  is equal to the discount factor rtλ . 

Otherwise, the discount factor rtλ is a proportion of rtρ depending on the degree of 

component sharing in the product line. The idea behind identifying a measure for 

component sharing is inspired by the prior literature on the effect of design commonality 

and its effect on a product family cost and performance (e.g., [Collier, 1981] [Martin and 

No commonality among the variants 

Otherwise 
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Ishii, 1997] [Kota et al., 2000]). As shown in equation (5.13), proportion is defined as the 

number of products sharing the tht type of component r (denoted as shrtvN ) divided by the 

number of variants in the line (i.e., 
v

shrtv

N
N

). It should be emphasized that in many product 

development projects, the proportion of the cost saving due to component sharing may 

differ from the above-mentioned proportion. In the proposed approach, it is assumed that 

the unit cost of assembling the components into the final product H (denoted as aHC ) is 

determined by the specific selection of the component type (such as housing type) and/or 

the specific combination of product components. Since certain equipment is used to 

assemble similar components, there is a cost saving associated with it.  

The maintenance cost of product H in the approach (denoted as mHC ) is negatively 

proportional to the product life under uncertainty. As discussed earlier in Chapters 3 and 

4, the uncertainty from the uncontrollable design parameters (e.g., different usage 

situations and operations conditions) affects the life of a product. The WCS of product 

life represents the lower bound of the product life variation, which is estimated earlier in 

the first stage optimization. In particular, the maintenance cost in equation (5.14) is 

defined with kCmCmCm >>> ...21  and kLLL <<< ...21 . The values of kCmCm ,...,1  

and the cutoff life estimate points of kLL ,...,1 can be estimated through an examination of 

the historical data on servicing the products after sales. 
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Finally, the salvage cost sHC  is obtained through a look-up table for a product H. 

Besides the variable cost, another important element of the product line cost is the fixed 

cost. The fixed cost is calculated as the sum of the equipment cost and the factory setup 

cost. As the breadth of the product line increases, the associated fixed cost of 

manufacturing the product line also increases. Based on the required equipment costs and 

factory setup costs, the firm can estimate the fixed costs of making one product, two 

products, till vN products. 

In the next section, the proposed two-stage approach is applied to a product line 

design example. 

 

5.4. EXAMPLE 

In this section, the proposed two-stage approach with an example is demonstrated: 

design of a corded grinder product line. The data and definitions for the example are 

given in Section 5.4.1 followed by the Stage I analysis; robust product line design 

generation model in Section 5.4.2 and the Stage II; robust product line optimization 

model in Section 5.4.3. The set of robust product line alternatives is presented in Section 

5.4.4. 

5.4.1. Preliminaries 

Several focus group studies were conducted to first identify a set of attributes that 

are considered as the most critical by the end users. Six marketing attributes have been 

identified for this product: brand, price, amp rating, switch type, life, and girth size. The 

engineering design attributes (i.e., output from the design simulation) are maximum 

output power, output speed, field armature and brush temperature values, and mass of 
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removed material. All of these attributes are shared among the variants within a product 

line. In this example, among the above-mentioned attributes, amp rating and life of the 

product are common attributes between the design and marketing domains. Amp rating is 

obtained using maximum motor output power, and an estimate of product life can also be 

obtained by a heuristic that takes motor output speed and motor temperature. The 

application (i.e., type of material and the duration of use) is assumed to be the same for 

all product design alternatives. However, depending on the motor used, the average 

application current is different for each design alternative. The set of design variables are: 

choice of motor (xm) which is a discrete variable between 1 to 10, choice of speed 

reduction unit or gearbox (xg), a discrete variable between 1 and 6, the gear ratio (xr) 

which is a continuous variable between 3.5 and 5.0. There are 5 design parameters that 

affect the performance of each design alternative. The design parameters’ with their 

uncontrollable variability information are the same as the single product robust 

optimization example given at Table 4.1 in Chapter 4.  

It is assumed that in the market for this family of power tool product, there are 3 

competitive brands and 5 competitive products. Their specifications in terms of 

marketing attributes (including the common attributes) are given in Table 5.1 below.   

 

Competitive Product  Price Amp rating Switch type Life Girth size
Competitor 1, Product 1 $99 9 Side Slider 110hrs Large 
Competitor 1, Product 2 $59 5.5 Top Slider 90hrs Small 
Competitor 2, Product 1 $129 12 Paddle 150hrs Small 
Competitor 2, Product 2 $89 8.5 Side Slider 105hrs Large 
Competitor 3, Product 1 $79 6 Paddle 80hrs Small 

Table 5.1: Competitive products specifications 
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The market study also concluded that there are three market segments for the 

intended product line, and there are already five competitive product offerings from three 

competitive brands available in the market. The corresponding utility values for every 

competitive product in each segment are provided in Table 5.2. The last row in Table 5.2 

represents the “No-Choice” option. 

 

Competitive Product  Segment 1 Segment 2 Segment 3 
Competitor 1, Product 1 6.50 -0.17 0.18 
Competitor 1, Product 2 -3.26 -0.09 0.92 
Competitor 2, Product 1 7.35 1.10 1.60 
Competitor 2, Product 2 6.26 -1.32 0.95 
Competitor 3, Product 1 -0.73 -0.08 0.34 
No-Choice 3.17 -0.08 0.70 

Table 5.2: Competitive products utilities 
 

 
The conjoint model and the associated data analysis are borrowed from the 

literature (i.e., [Luo et al., 2005] [Besharati et al., 2004]). Respondents for this study 

included users from different trades such as metal and concrete. The conjoint study was 

conducted with 740 respondents across the US market.  Each respondent was given 18 

choice scenarios (16 were used for conjoint estimations and 2 for validation). Sawtooth 

Software [Sawtooth Manual, 2001] was used to create a fractional factorial design with 

over 80% efficiency. Each choice scenario included two alternative designs and a no-

choice option. Respondents were asked to consider different usage situations when 

making their choices. The finite mixture choice-based conjoint model provides an 

estimation of the number of market segments along with the segment sizes. In the Table 

5.3 below, the part-worth utility estimates associated with each attribute level and the 

utility estimate for “no-choice” in each market segment are provided.  
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  Segment 1 Segment 2 Segment 3 

Segment Size 0.16 0.22 0.62 

  Part-worth Part-worth Part-worth 

Brand 0 (own) 1.56 0.12 0.36 

Brand 1 -3.89 -0.27 -0.22 

Brand 2 1.99 -0.02 0.40 

Brand 3 0.35 0.17 -0.54 

Price $79 -0.28 0.03 -0.08 

Price $99 -0.64 -0.65 0.32 

Price $129 0.93 0.62 -0.24 

Amp 6 1.17 -0.49 -0.33 

Amp 9 -1.89 0.52 -0.03 

Amp 12 0.73 -0.03 0.36 

Life 80 -5.01 0.26 -0.38 

Life 110 1.71 -0.32 0.11 

Life 150 3.30 0.06 0.27 

Paddle -1.96 0.26 -0.66 

Top Slider 1.94 0.24 0.71 

Side Slider 4.16 -0.55 0.38 

Trigger -4.14 0.05 -0.43 

SmallGirth -1.54 0.23 0.1 

LargeGirth 1.54 -0.23 -0.1 

No-Choice 3.17 -0.08 0.7 
Table 5.3: Conjoint part-worth estimates 

 

In the next Section the results from Stage I of the proposed approach are 

presented in which a set of robust single product candidates are generated. 

 



 

 141

5.4.2. Stage I: Robust Optimal Single Product Generation 

  
As mentioned before, the objective of Stage I is to eliminate single product design 

alternatives that are not robust from the engineering design point of view and only keep 

those alternatives that yield higher expected dominance values of utilities in each market 

segment. To ensure a sustained acceptable performance of the power tool, two design 

attributes are considered for objective robustness; the output motor speed and the amount 

of mass removal. On the other hand an engineering design constraint is identified that 

ensures that the product does not fail to operate under different usage situations and 

conditions. The imposed constraint is defined as the motor temperature (which is the 

larger of armature temperature and field temperature) must be maintained at less than 

200°C. Given these design attributes (i.e., objectives and constraints), the feasibility and 

objective robustness for each product design alternative can be evaluated using the 

approach 2 in Chapter 3, and in particular by examining the Equation in Figure 3.8. 

A GA technique with a fitness assignment scheme as described in Section 5.3.1.2 

is used to obtain the results for each of the three market segments. The reason for 

choosing an optimizer based on GA for this example is that problems of this nature 

involve both discrete and continuous variables and parameters. The parameters used for 

the GA are similar to those in Table 4.3 in Chapter 4. In particular, since the feasibility 

robustness aspect of the products is of more importance to the designer, the feasibility 

robustness penalty coefficients (i.e., α) is assigned to be 3 and the objective robustness 

penalty coefficient (i.e., β) is assigned to be 2 (recall Section 5.3.1.3).  

 The optimization is performed with respect to each individual market segment. 

For segments 1, 2, and 3, the Stage I approach has obtained 50, 53, and 48 robust product 
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candidate solutions, respectively. These robust product candidate solutions together form 

a set of 151 single product design alternatives that need to be evaluated in Stage II of the 

approach. The design information of a subset of these products is provided in Table 5.4. 

Alt. No. Motor G. Ratio Life Switch Girth Price Gear Type 
1 2 4.2 121.81 hr 3 Large $129 Helical 

10 3 3.8 130.68 hr 3 Large $79 Helical 
49 3 4.9 127.26 hr 3 Large $79 Helical 
16 3 3.9 130.58 hr 2 Large $99 Helical 
51 2 4.2 121.81 hr 1 Small $129 Helical 
62 2 4.5 121.33 hr 4 Small $129 Helical 
82 3 4.0 129.86 hr 1 Small $129 Helical 
95 3 4.6 128.78 hr 2 Small $129 Helical 

110 2 4.8 120.82 hr 2 Large $99 Helical 
127 3 4.2 129.97 hr 3 Small $99 Helical 
135 3 4.5 129.10 hr 2 Large $99 Helical 
151 3 5.0 127.26 hr 3 Small $99 Helical 

Table 5.4: Specifications of a subset of single product results for stage I 

 Next, 12 single product alternatives are arbitrarily selected from the set of 151 

robust optimal products obtained using Stage I approach and are shown in Table 5.4. In 

particular the first 4 products in Table 5.4 are selected from the obtained results for 

segment 1, and the next 4 products are selected from the optimal results corresponding to 

segment 2 and the last 4 products are optimal for the third market segment. Among the 

available motors, only motor 2 and 3 performed satisfactory under different usage 

situations and uncontrollable parameters, and products that have utilized motor 3 have a 

lightly higher life compared to those utilizing motor 2. In the next section the product line 

alternatives composed of combination of the obtained 151 single products are evaluated. 

Again, it should be noted that the above 12 selected points are just a snapshot of the 

overall 151 single product designs obtained in stage I and the optimization in stage II is 

actually performed on all 151 single product designs. 

 



 

 143

5.4.3. Stage II: Robust product line optimization 

In Stage II, the product line alternatives that can be generated using the obtained 

solutions in Stage I are evaluated. The cost and commonality issue among the variants of 

a product line as well as the performance of product line candidates in the market (e.g., 

overall profit) is being used to select the robust optimal product line design. It should be 

noted that the cost information provided here is camouflaged to safe guard the proprietary 

information of the industrial partner. 

The cost information related to this example is as follows. The fixed cost of 

manufacturing consists of the equipment cost and factory setup cost. Both elements are 

dependent on the production capacity. The maximum number of variants within a product 

line is assumed to be specified by a product manufacturer. For production of a single 

variant, two-variant, and three-variant product lines, the corresponding fixed cost is 

determined to be $15M, $18M, and $25M. 

The variable cost elements associated with a product line in this example are the 

cost associated with purchasing components (i.e., parts), cost of assembly, salvage cost, 

maintenance cost. The following tables provide the specifics of each variable cost 

element. 

The single product results obtained in Stage I have either of the motor number 2 

or 3. The corresponding cost and commonality significance factor of motors, switch types 

and housings are provided in Table 5.5. 
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Part / 
Feature 

Unit 
Cost

Commonality              
significance factor 

Motor 2 $15 0.2 

Motor 3 $10 0.3 

Switch 1 $10 0.05 

Switch 2 $20 0.1 

Switch 3 $15 0.12 

Switch 4 $10 0.08 

Housing A $10 0.1 

Housing B $15 0.06 

Table 5.5: Unit cost and commonality significance factor for parts/features 

The salvage cost for each product is assumed to be $3. The maintenance cost (see 

Eq. (5.13)) is assumed to be obtained from the following formula. 
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Furthermore, the market size is assumed to be 1,800,000. The production capacity 

constraint is also determined as the following. 

Number of Variants in Product Line Production Capacity (# of products)
1 1,700,000 
2 1,200,000 
3 1,000,000 

Table 5.6: Production capacity constraint 

Now, using the information provided above along with the competitive products 

information and utilities given in Table 5.2 and 5.3., Stage II of the proposed approach is 

run to obtain the optimal product line solution.  
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 The second stage optimization is carried out. As mentioned before the maximum 

number of variants within the product line (i.e., vN ) is set to 3. Among the 151 variants to 

be considered for a product line, the following is obtained as the final optimum product 

line: 

Variant Motor Gear ratio Life Switch Girth Price Gear type 
13 3 3.8 130.7 hr 3 Large $79 Helical 
79 3 3.9 130.7 hr 2 Small $129 Helical 

Table 5.7: The optimum product line solution 

The corresponding profit for the solution is estimated as $13,068,122. 

In order to make some comparison, the solution is obtained using the following 

constraints; (i) only one variant in the product line, (ii) only three variants in the product 

line. The corresponding results are shown in Tables 5.9 and 5.10. 

 

Variant Motor Gear ratio Life Switch Girth Price Gear type 
13 3 3.8 130.7 hr 3 Large $79 Helical 

Table 5.8: The product line solution – single variant 

The corresponding profit for the best product line with one variant in this example 

is calculated as $9,396,698. 

Variant Motor Amp rating Life Switch Girth Price Gear type 
13 3 11.46 A 130.7 hr 3 Large $79 Helical 
79 3 11.46 A 130.7 hr 2 Small $129 Helical 
81 3 11.46 A 127.3 hr 2 Small $99 Helical 

Table 5.9: The product line solution – three variants 

The corresponding profit for the best product line with three variants in this 

example is calculated as $8,075,881. 

Tables 5.7 - 5.9 provide the optimal solutions when there are 1, 2, or 3 variants in 

the product line. As mentioned at the end of the first stage, only two motors could satisfy 

objective/feasibility robustness when the product is used under varying usage situations. 
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Hence, all product alternatives obtained in Stage I have either of these two motors. As 

shown in Table 5.7, the optimal product line is composed of two differentiated products 

with a few common product components. However, motor number 3 costs less and at the 

same time the product motor (as one of the major parts of the product) has the highest 

commonality significance factor among the components (see Table 5.5). Therefore it is of 

no surprise that all variants in the optimal product line share motor 3. Using the same 

motor in variants in a product line causes somewhat similar life for each variant (i.e., in 

majority of cases the product life is over when the motor fails to operate).  

It should be noted that the variants in the optimal product line have different 

switch types and girth sizes to satisfy the heterogeneous consumer preferences. Given the 

existing competitive products and the current cost structure, the product line shown in 

Table 5.7 yields the highest profit for the product manufacturer. In the following section, 

the effect of a few parameters on the final optimal product line solution is discussed. 

5.4.4. Post-optimality analysis and verification 

In order to examine the stability of the obtained solutions, two factors (i.e., fixed 

cost and production capacity) are identified. A stable solution would not change when 

these factors vary. These factors play a role in determination of the number of variants in 

a product line. A product line with more variants can potentially capture larger market 

share. However, in order to produce higher profit, one should consider the fixed cost as 

well as the feasibility of the production for product manufacturer. In the following, the 

effect of each of these factors to the final solutions is discussed. 
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5.4.4.1. Fixed cost 

The fixed cost difference between the one variant and two variant lines is $3M, 

and the difference for two-variant and three variant product lines is $7M. By comparing 

the product line alternatives presented in Tables 5.7 – 5.9, the following observations can 

be made. 

The optimal product line with two variants produces about $3.6M more profit 

than that of the single variant line. Therefore, if the fixed cost difference (which is 

currently $3M) becomes more than $3.6M (i.e., the fixed cost for two variant line is more 

than $21.6M) then the optimal product line will become the single variant alternative 13 

shown in Table 5.8. In order for a three variant product line alternative to incur a higher 

profit than the one in Table 5.7, its corresponding fixed cost must become over $23M, 

and the fixed cost of the single variant lines should become over $16.4). In that case the 

alternative shown in Table 5.9 will become the optimal product line. 

The composition of the optimal product line alternatives in Tables 5.7 – 5.9 does 

not change under fixed cost variations. The effect of another parameter (i.e., production 

capacity) on the result is discussed in the following.  

 

5.4.4.2. Production capacity constraint 

 The production capacity W in Eq. (5.8) has a direct impact on the revenue and 

therefore the profit of the product manufacturer. When the number of variants increases, 

the volume of the manufactured products for each variant will decrease. The data for 

production capacity in this example is provided in Table 5.6. The difference in 

production for a single variant product line or a two-variant product line is 500,000, and 
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the difference between two-variant lines and three-variant lines is 200,000. The change in 

these values has an impact on the final product line result. To show the sensitivity of the 

profit values for each of the single-variant, two-variant, or three-variant product lines 

with respect to changes in the production capacity, each of the values (i.e., W) in Table 

5.6 are varied within a range of [W-500,000, W+500,000]. The following figure depicts 

the change in the optimal product line profit values when the production capacity varies.   

 

Figure 5.6: Effect of production capacity on overall profit 

As shown in Figure 5.6 for the given ranges of product capacity, the incurred 

profit for two-variant and three-variant product lines is always higher the that of a single 

variant line. However, if the production capacity for the three-variant product line case 
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goes above 1,000,000 the optimal product line will have three variants as shown in Table 

5.9. Again regardless of the changes in production capacity, the composition of the 

obtained optimal product lines does not change. 

There are other parameters that can impact the composition of variants in the 

optimal product line. The competitor products information and the customers’ responses 

to the questionnaires (and therefore the partworth utility values) are two examples of such 

parameters.  

The results of Stage II of the example have been verified by an exhaustive search 

approach to ensure the accuracy of the solutions. The obtained solutions match those 

obtained by the GA shown in Tables 5.7 – 5.9. 

  

5.5. SUMMARY 

In this chapter an approach for robust product line design optimization is 

presented. As reported in the literature, a product line optimization problem is 

computationally expensive, and therefore, the robust optimization approach for a product 

line problem becomes computationally prohibitive. A two-stage approach to alleviate the 

computational burden is developed. Similar to the single product robust optimization in 

chapter 4, two domains are covered; engineering design and marketing.  Unlike some of 

the previous two-stage approaches in this area, the presented method was tailored to 

eliminate only those product alternatives that are non-robust (i.e., perform 

unsatisfactorily under different usage situations and environments). 

The second approach to robust design optimization in chapter 3 is used to 

determine whether or not each design alternative is robust. Stage I of the approach uses a 
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GA technique to obtain a promising set of robust product design alternatives. An 

integrated fitness assignment technique for the GA is adopted that considers engineering 

design robustness measures (e.g., feasibility and objective robustness) as well as a 

stochastic dominance measure for the conjoint utilities. Such fitness assignment 

technique provides a GA with the necessary means to obtain product alternatives that are 

not only robust in design domain, but have higher utility values under uncertainties. 

These products yield higher market share values, and are passed onto the second stage of 

the approach.  

The second stage of the approach performs the combinatorial optimization on the 

results obtained by the first stage to obtain the optimal product line. The product 

offerings of the competitors, the obtained revenue, the overall incurred cost, the effects of 

component sharing on the overall variable cost of a product, production capacity are 

among the factors that are considered for the profit maximizing approach in the second 

stage. 

To demonstrate the two- stage approach to robust product line optimization, a 

product line design problem is used. The marketing data for this example is obtained 

through an online survey of power tool users. The results for three cases are obtained; (i) 

only one variant in the product line, (ii) two variants in the product line, and, (iii) three 

variants in the product line. The optimum result was the case in which there were only 

two variants in the product line. In the next chapter, the concluding remarks for this 

dissertation are provided. 
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CHAPTER 6 

CONCLUSION 

6.1. INTRODUCTION 

This dissertation has presented three research thrusts. In the first research thrust, 

which is for multi-objective robust optimization, two different approaches are developed 

to assess the robustness of a design alternative. In the second research thrust, which is for 

single product robust optimization, an integrated robust optimization approach is 

developed for single product engineering with design and marketing considerations. 

Finally, in the third research thrust, which is for product line robust optimization, the 

approach for single product robust optimization has been extended to product line robust 

optimization.  

The balance of this chapter is as follows. In Sections 6.1.1 – 6.1.3, a discussion on 

each research thrust together with advantages and disadvantages of the proposed methods 

and models are provided. Section 6.2 highlights the contributions of this dissertation, and 

Section 6.3 provides some ideas for future research directions. 

 

6.1.1. Discussion for Research Thrust 1: Multi-Objective Robust Optimization 

The two approaches for multi-objective robust optimization can be applied to a 

wide variety of engineering design optimization problems. They have the following 

advantages and disadvantages. 



 

 152

6.1.1.1. Advantages 

• Both approaches are deterministic and hence do not require the probability 

distribution for uncontrollable parameters. Also, both approaches are applicable 

beyond a small range where a linear approximation scheme is valid. 

• Approach 1 can handle problems in which the objective and/or constraint 

functions are discontinuous with respect to uncontrollable parameters. 

Furthermore, Approach 1 guarantees the existence of robust solutions that have 

minimal variability and best performance under worst case scenario.  

• Approach 2 provides a means to limit the acceptable range of variability for each 

objective function.  

6.1.1.2. Disadvantages 

• Approach 1 requires the location of target and bad points in the design objective 

space. The results obtained by Approach 1 can be sensitive to the location of these 

points. 

• The robustness measures in Approach 1 are intended to estimate variability along 

the direction of target and bad points in the objective space, and ignore variability 

in terms of individual objective functions.  

• Both approaches can be computationally expensive especially when the objective 

and/or constraint functions are expensive to compute.  

6.1.2. Discussion for Research Thrust 2: Single Product Robust Optimization 

The design robustness measures for Approach 2 are used to assess the robustness 

of a product design alternative. The single product robust optimization methodology from 

this research thrust accounts for the requirements from both design and marketing 
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domains. In this approach, the effects of variations in design performance are mapped to 

the marketing domain to evaluate variability in customer’s preferences. The set of 

product alternatives generated by the methodology consists of products that not only are 

optimum and robust from engineering design point of view, but also yield higher market 

share for the manufacturer. The methodology has the following advantages and 

disadvantages. 

 
 
6.1.2.1. Advantages 

• The solutions obtained are a set of single product designs that show the best 

possible performance and maintain feasibility even if they are subject to 

applications and environments that are different from their standard laboratory 

conditions. 

• The uncertainty in estimating customer utilities due to sampling errors, which is 

an important factor, is considered.  

• The bi-disciplinary rules, discussed in Section 4.4, rank orders product 

alternatives based on their performance and robustness in both design and 

marketing discipline, and can be easily extended beyond these two disciplines. 

 
6.1.2.2. Disadvantages 

• The single product robust optimization approach can generate a large set of 

optimal robust product design alternatives. Making a selection from such a large 

set may not be an easy task. One possible remedy is to perform design robustness 

prior to the integration with the marketing model, i.e., in a sequential process. 

However, such a sequential process may eliminate potentially good design 
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alternatives. Another remedy is to tighten the acceptable range for each objective 

function. Finally, a selection approach can be used, such as that provided in 

Appendix I.  

• The proposed approach is limited to design and marketing and ignores disciplines 

such as manufacturing and retail channel. In particular, the approach ignores to 

account for the concept of a “powerful” channel such as Home Depot and Wal-

Mart. 

6.1.3. Discussion for Research Thrust 3: Product Line Robust Optimization 

The product line robust optimization approach is an integrated sequential two-

stage design-marketing technique. This technique significantly reduces the computational 

cost. Since the robustness is a property of a single product, the same design robustness 

assessment technique used in Chapters 3 and 4, i.e., Approach 2, is used in the first stage. 

The customer utilities across market segments are used in Approach 2 to obtain product 

alternatives that are robust under design parameter variations and also their conjoint 

utility estimates dominate the rest of the alternatives. In the second stage, combinatorial 

optimization is used to obtain a product line that yields the maximum profit for the 

manufacturer. The advantages and disadvantages of the robust product line optimization 

approach are provided as follows. 

 
6.1.3.1. Advantages 

• The approach examines each product design alternative at the first stage in terms 

of engineering design robustness (i.e., feasibility and objective robustness) as well 

as its market performance (i.e., the customers’ utility) to identify the most 

promising product design candidates. 
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• The first stage of the approach reduces the size of potential product design 

candidates to a manageable size so that the second stage optimization can be 

performed. 

• The optimization at the first stage is performed at the market segment level, rather 

than the entire market level. This tactic ensures that the product alternatives that 

are appealing to the smaller market segments are not eliminated during the first 

stage optimization. 

• The second stage approach takes into account the overall manufacturer’s profit. In 

particular, the cost saving due to components among variants in a product line has 

been addressed. 

 
6.1.3.2. Disadvantages 

• Although the first stage of the approach accounts for both design and marketing 

considerations, it is still possible that some promising single product candidates 

be eliminated during the first stage of the approach. 

• In spite of the reduction in the computational cost, the two stages can still be 

computationally expensive. In particular, in the first stage during the fitness 

assignment step, every product design alternative needs to be evaluated in terms 

of design robustness and the stochastic utility dominance (within a generation). 

These evaluations can add a significant computational complexity to the proposed 

approach, as discussed in the next section. 

6.2. Remarks on Computational Costs  

The majority of methods and procedures discussed in this dissertation are based 

on the two robust optimization approaches discussed in Chapter 3. These two approaches 
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are structured as an outer-inner optimization problem. In the outer level, a multi-objective 

optimization is performed, and in the inner level, several single objective optimization 

problems are solved to help in robustness assessment of solution candidates in the upper 

level problem. This bi-level structure contributes significantly to the computational 

complexity of the approach especially when the inner level optimizer needs large number 

of function calls to converge to a solution.  It should be noted that the inner level single 

objective optimizations have to be solved using a global optimization technique. If for 

any case the range of design parameter variations is not wide or if the objective functions 

or constraints are convex or monotonic and differentiable with respect to the design 

parameters, then a traditional optimization technique can be used, and that reduces the 

computational cost of the proposed approach significantly. Most of the traditional 

gradient based optimization techniques converge to a solution in about 102 order of 

magnitude function calls. However, since the approaches are intended to address a wide 

variety of real-world engineering design problems, a global optimization technique such 

as a genetic algorithm has been used. 

As mentioned in Chapter 3, a few observations are made with respect to the 

number of function calls required for each approach: 

• For Approach 1, the WCSD and variability measures need to be obtained in the 

bottom level block of Figure 3.4. Moreover, the feasibility robustness for each 

design alternative passed from the upper level optimization is determined in the 

middle level block of Figure 3.4. The number of function calls required in 

Approach 1 was provided in Eq. (3.5). An estimate of the actual number of 

function calls for both numerical and engineering examples were also provided in 
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Chapter 3. In particular, the numerical example required about 500,000 function 

calls to obtain robust optimal solutions, and the engineering example required 

about 7,500,000. 

• Approach 2 (See Figure 3.8) needs to obtain the maximum variation from the 

nominal value for all objective functions to assess the objective robustness of each 

design alternative. This means that the number of inner optimization problems for 

objective robustness assessment is equal to the number of objective functions. The 

feasibility robustness in this method is the same as that in Approach 1. The total 

number of function calls required for both objective robustness and feasibility 

robustness using Approach 2 has also been provided in Eq. (3.6). Again, an 

estimate of the actual number of function calls for the numerical case examples 

using Approach 2 was about 700,000. Also, the total number of function calls for 

the engineering example using the approach 2 was estimated to be about 

7,500,000. 

• Although the actual number of function calls of both Approach 1 and Approach 2 

was comparable for the two examples in Chapter 3, it should be noted that, 

generally speaking, Approach 2 is computationally more expensive than 

Approach 1. The main reason that the number of function calls was close or were 

about the same was that both examples had only two objective functions. If the 

number of objective functions increases, the computational cost for Approach 2 

will be higher than that of Approach 1 (compare Eqs. 3.5 and 3.6).  

In the next section we highlight the main contributions of this dissertation. 
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6.3. Contributions 

The following gives a summary of the contributions for this dissertation: 

• Developed two new approaches for multi-objective robust design optimization. 

Each method can obtain a set of design solutions that are optimally robust with 

respect to uncontrollable parameter variations. Unlike most of the reported robust 

optimization methods in the literature, neither of the approaches requires the 

probability distributions of uncontrollable parameters. Moreover, neither 

approach uses an approximation scheme which could limit applicability to 

problems in which the range of parameters variations is small. Also, both 

approaches can be used for design problems where the objective and constraint 

functions are non-differentiable or discontinues with respect to the uncontrollable 

design parameters. 

• Developed two new measures for multi-objective robustness for Approach 1. 

These measures are based on the concepts of the sensitivity of a design in the 

objective space. The first measure, WCSD, is based upon how far the worst case 

scenario point in that sensitivity region is located from a target point specified by 

designer.  The second measure, variability, is based upon how far the worse case 

scenario and best case scenario points are from each other. 

• Developed a method to assess the feasibility robustness of design solutions. This 

method is used in both robust multi-objective optimization approaches. The 

feasibility robustness method ensures the design alternatives to remain feasible 

under uncontrollable variations of design parameter. 
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• Developed a new method to assess the robustness of multi-objective of design 

solutions for Approach 2. This method is based on the concept of sensitivity of 

the objective function due to uncontrollable parameters. Approach 2 can be 

applied to problems where the designer needs to limit variability of each 

individual objective function. 

• Developed an integrated framework for single product optimization that combines 

the criteria from both engineering design and marketing domains. Unlike most of 

the approaches in the extant literature, the proposed framework takes into account 

the effect of the variations in design parameters from the design domain to the 

marketing performance of a product. The single product solutions obtained are not 

only optimum and robust from engineering design point of view, but also have 

high market share. 

• Developed an integrated two-stage framework that efficiently reduces the size of 

the initial set of single product candidates to a manageable size in the first stage 

and then obtains an optimum and robust product line alternative based on a 

second stage approach. The novel aspect of the proposed product line robust 

optimization approach is that it goes beyond just a profit maximization technique 

and actually accounts for the effect of the uncontrollable parameter variations on 

design performance and feasibility as well as the customers’ preferences.  

Next section provides some suggestions that can be considered for future 

research. 

6.4. Future Research Directions 

This section briefly presents some general research directions.  
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• The proposed robust design optimization approaches are based upon some worst 

case scenarios. Therefore, the solutions obtained by these methods can be very 

conservative. If there is more information about parameter variations (e.g., 

probability distribution is available) then these approaches can be improved to 

produce less conservative solutions. 

• Due to the outer-inner structure, both robust optimization methods are 

computationally expensive especially when the objective and/or constraint 

functions are obtained using a computationally expensive design simulation 

software tool. In this regard, the use of an approximation technique with the 

proposed robust optimization approaches should be explored and expected to 

alleviate the computational burden of both approaches significantly.  

• The integrated robust single product optimization approach currently accounts for 

two disciplines, namely, engineering design and marketing. However, the 

approach can be extended to a multidisciplinary case where other disciplines such 

as manufacturing, finance, retail, etc. are to consider for product design 

development.  

• The number of final product designs obtained by the single product robust 

optimization approach can be large, making the selection among a large number 

of product candidates a non-trivial task. One remedy to this problem is to perform 

the robust optimization for each discipline (i.e. design and marketing) in a 

separate and sequential manner. However, doing so can result in elimination of 

many good product candidates. An appropriate product design selection technique 

can be combined with the approach. An example for such a technique is presented 



 

 161

in Appendix I. However, the approach presented in Appendix I requires known 

probability distribution of design attributes. 

• The proposed product line optimization approach is a two-stage technique and 

may eliminate good product candidates in each stage. Certainly, an integrated 

single stage approach should be able to obtain better solutions. 

• The constraints defined for the multi-objective optimization problems in this 

dissertation must be satisfied at the same time. In other words, the constraints are 

expressions that are linked with a logical ‘AND’ operation. In some cases the 

‘AND’ operation may not characterize the links between the constraints, and other 

Boolean operations (e.g., OR, XOR, etc) may need to be used. The constraint 

evaluation module in the implementation of the approach can be extended to 

allow for such Boolean operations. 

• The ranges of uncontrollable parameters in this dissertation are defined based on 

an assumption that the upper and lower bounds of parameters variations are fixed 

(i.e., known and deterministic). However, in some cases, a designer may not be 

able to provide exact values for these upper and lower bounds of parameter 

variations. Therefore, allowing for ‘fuzzy’ and/or ‘uncertain’ values for these 

bounds can help characterize the cases when the bounds are imprecise and/or 

uncertain. 
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APPENDIX I. 

This appendix provides an approach for a single product design selection under 

uncertainty. The main assumption behind the approach in this appendix is that the 

probability distribution of uncertain design attributes is known. Also it is assumed that 

design and marketing domains have the same set of attributes. 
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Abstract 

 
Selection of a final design for a new product that is to be introduced in the market 

is a very critical step in the new product development process.  The selection needs to 

consider three factors of importance: anticipated market demand for the design, 

designer’s preferences, and uncertainty in achieving predicted design attribute levels 

under different usage conditions and situations. We propose a generalized purchase 

modeling approach that considers all of the above factors and develop a customer based 

expected utility metric that forms the basis for a Decision Support System (DSS) for 

                                                 
* To appear in the journal: Decision Support Systems. 



 

 163

supporting the selection in product design. We illustrate the modeling approach and the 

use of DSS with the help of a case example that highlights the utility of the proposed 

DSS. 

Keywords: Product design selection, selection under uncertainty, multi-attribute 

decision making 

 

A-I.1. Introduction 

The final decision to select a particular design for a given product is perhaps the 

most critical stage in product design development. Obviously, such a decision is 

influenced by many factors, the specifics of which are not known a priori during the 

design stage. As such, a quantitative basis for comparison and selection of the best design 

solution among a host of alternatives could greatly impact the eventual success or failure 

of a product in the market.  The importance of this issue prompts for more sophisticated 

design selection criteria and methods to incorporate all important factors of interest into 

the selection of a single final design.  

There are three main factors that influence a successful product design selection: 

1) market demand based on customers’ preferences; 2) designers’ preferences based on 

his/her knowledge and experience with design issues and market issues; and 3) 

uncertainty in achieving the predicted design attribute levels (or performance). For 

example, a design alternative may fail to become a successful product if it does not gain 

and maintain enough market demand. On the other hand, considering the market demand 

by itself does not secure a successful product in the market. For instance, introducing a 

product at low price into the market might increase the initial product demand 
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significantly. However, it may not be possible to sustain such a demand in the longer run 

(repurchase of the product) due to the poor performance (and reliability) with respect to 

some of the product attributes.  A designer’s knowledge and experience can be very 

useful in predicting product performance if customers’ evaluations are not known a 

priori. As such, the designer’s preferences can be used to specify the product 

performance in terms of its attributes, which customers may not know or consider at the 

point of purchase. Also, a designer can incorporate the specifics of competitive products 

in his/her preference function so that the new design can be appropriately positioned in 

the market relative to competition [22]. Finally, because of the uncertainty in product 

design parameters (such as, manufacturing tolerances and variations in the product usage 

environment), the design attribute levels can deviate from their nominal values and affect 

the product performance. Such uncertainty can make or break a product in the market and 

it is, thus, important to consider these variations in selecting a final product design. 

There are many individual and group decision making techniques in the literature 

that can be used for product design selection, among which Multi-Attribute Utility 

Theory (MAUT) [19], Analytical Hierarchy Process (AHP) [25], and Conjoint Analysis 

[16],[17] are used extensively. While many of these techniques address a subset of the 

above identified factors, none of them address all three factors simultaneously. For 

instance, MAUT employs the von Neumann and Morgenstern (vNM) utility theory to 

model an individual’s (a designer’s or customer’s) preferences [28]. Many applications of 

MAUT that are used for modeling a decision maker’s preferences for rank ordering and 

selection among a set of alternatives can be found in marketing and management science 

literature [4],[9],[11]. However, applications of MAUT for customer elicitation using a 
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lottery technique are mostly limited to highly educated respondents [18], which may be 

applicable to a small segment of the market. While AHP is relatively easier to implement 

for any customer group [15], its simplification and unwanted rank reversal may sacrifice 

its predictive validity especially when the design attributes are significantly correlated. 

Conjoint Analysis (CA) is another approach for multi-attribute decision making problems 

where the focus is preference elicitation at the individual customer level. Two types of 

conjoint models are discussed in the literature: compositional (self explicated) and 

decompositional. In the self explicated methodology, the customers are asked to give the 

importance weight for each attribute followed by the rank ordering of distinct levels for 

each attribute. There are several issues related to the self explicated approaches. First, the 

customers may not be able to provide the accurate information in terms of the weights 

(e.g., due to socially accepted values). Moreover, there is a low chance of detecting 

potential nonlinearity in partworth (e.g., utility) function. Conversely, in decompositional 

approaches the customers are only asked to express their preference or choice among the 

product profiles, and it is the researchers’ responsibility to ensure that relevant attributes 

considered in the profile generation. In most cases, the preference model is presumed to 

be of the same general structure for all individuals in a population sample [17]. As such, 

even by allowing an error term, a CA model might not represent the precise behavior of 

all individuals in the sample. In other words, different segments (or even individuals) in 

the market may have different preference structures.  Therefore, a reasonably accurate 

customer categorization (market segmentation) is perhaps the most critical step in the 

marketing study [24].  
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In addition, in order to overcome preference aggregation problems and account 

for choice uncertainty, a conjoint model can be based on a discrete choice model that 

utilizes an individual’s selection behavior [20]. Among the discrete choice models, the 

probabilistic-based models such as multinomial logit [21], [5], probit [12], mixed logit-

probit [7], and also deterministic models such as the first choice model [26] are based on 

the customers’ utilities. All of the above-mentioned selection models are compensatory, 

and are likely to select the product with the highest customer utility. However one can 

argue that the purchase decision rules can be non-compensatory. In other words, many 

customers may not choose the product with the highest aggregated utility due to 

economic or other considerations (e.g., purchase reservation prices). This issue eventually 

makes the pure compensatory decision rules difficult to implement, especially in 

industrial markets where decision rules are not purely compensatory. Hence, the choice 

model needs to allow for the consumers’ acceptable bounds on each attribute while 

taking into account their interactions. In many situations in industrial markets the 

manufacturers (i.e., product components consumers) set acceptable bounds on the 

product specifications (i.e., clearly explicated decision rules for selection of equipments). 

Our methodology takes into account both compensatory and non-compensatory decision 

rules through our generalized purchase modeling approach. The customers purchase 

decision rules is obtained using a self explicated technique. Moreover, our approach not 

only considers the customers purchase criteria and designer’s preferences in the selection 

of the product design, but also it allows for the uncertainties in attaining the specified 

nominal attribute levels. A decision support system based on the three mentioned factors 
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will, therefore, be market focused and also take into account the realities of the design 

development process. 

There are several market-based DSS methodologies reported in the literature to 

aid product selection [10], [22], single product design selection [2], [3], and product line 

design [1]. The selection criteria in these methods are mostly either based on 

maximization of the market share, the seller’s return or minimization of job completion 

time. Nevertheless, there are uncertainties involved with each of the mentioned problems 

that can affect the results significantly. We propose a generalized purchase function, an 

extension of our approach [6] to model the customer purchase behavior to capture the 

impact of all the above mentioned three factors. The customers purchase criteria 

(captured using a self-explicated approach) can be given as an input to our newly 

developed DSS for final product design selection.  The capability of the new DSS to 

handle sophisticated and realistic decision-making situations is demonstrated with an 

example in industrial market, i.e., product design selection of a power electronic module.  

The organization of the rest of this paper is as follows. In Section A-I.2, a 

description of the Customer-based Expected Utility (CEU) metric is provided, along with 

a generalized DSS to model customer purchase decision. Section A-I.3 is devoted to an 

application of the proposed methodology to an example: product design selection for 

power electronic modules. Finally, the concluding remarks of the paper are provided in 

Section A-I.4. 

A-I.2. Methodology 

As discussed in the previous section, we account for three factors that impact 

product design selection significantly: 1) market demand; 2) uncertainty in achieving 
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nominal attribute levels; and 3) designer's preferences.  The overall framework of our 

approach is shown in Figure A-I.1. A number of product alternatives are generated within 

the design process. The product attributes (both performance and market related) can be 

obtained using design simulation tools and marketing models. The main objective of this 

paper is to present a DSS that aggregates the above factors into a single-valued (scalar) 

metric, one that accounts for the utility function of the designer, the product’s demand 

(based on customers’ preferences), and the uncertainty in attaining a desired attribute 

level. Thus, our DSS can be used to identify the optimal product design from a large set 

of product design alternatives. In the following subsections, each of the factors used in 

our DSS is discussed separately. 

  

Market Demand 

Design Alternatives 

Designer’s Preferences 

Uncertainties Selected Alternative Decision Support 
System 

 

Figure A-I.1: Overall product design selection framework 

A-I.2.1. Normalized Market Demand 

We define the normalized market demand of a product as the percentage of 

customers in a market who decide to purchase a product with a given combination of 

attribute levels. One could predict whether or not a customer buys a certain product with 

a combination of attribute levels. By aggregating such a purchase decision over a 
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representative sample of customers, the demand of a product can then be estimated. Here, 

it is assumed that the customers have prior experiences with similar existing products in 

the market and therefore, they can evaluate the product and make a purchase decision 

based on the product attributes. The non-compensatory choice models do not make 

tradeoffs among the attributes directly such as compensatory models do (e.g., multi 

attribute utility function). The three most important noncompensatory approaches are the 

conjunctive, disjunctive and lexicographic [14]. In the following, we define a generalized 

purchase decision model, and relate it to noncompensatory choice models.  

Generalized Purchase Decision: A customer’s purchase decision function Dp(x) is 

defined as follows: 

 If  customer buys a product at x 

If customer does not buy a product at x ⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

0

1

)(xpD  

 

where x = (x1,…,xn) is the vector of design attributes. 

The above definition does not clearly address the relation between components 

(attributes) of vector x. To address the issue of the interactions between attributes, we 

introduce the noncompensatory customer choice models: 

Conjunctive: In a conjunctive choice model, the customer would purchase the product 

only if all of the attributes of the product are within the customer’s acceptable ranges. If 

any attribute is deficient, the purchase decision function for that design alternative 

becomes zero. 

(A-I.1)

(All attributes are within 

customer’s acceptable range) 

(Otherwise) 

(x is within customer’s acceptable 

ranges) 

(Otherwise) 
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 If  customer buys a product at x

 

If customer does not buy a product at x ⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

0

1

)(xpD  

 

Disjunctive: In a disjunctive model it is sufficient that at least one attribute of the product 

satisfies the customer. For instance, under the conjunctive model, the customer may insist 

on purchasing a light weight and inexpensive product. However under the disjunctive 

model the customer would settle for a product with either low weight or low price.  

 If  customer buys a product at x

 

If customer does not buy a product at x ⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

0

1

)(xpD  

 
 

Lexicographic: In a lexicographic model all attributes of the product are considered in a 

hierarchical manner from the most important to the customer all the way to the least 

important. In other words, the product is evaluated based on the most influential attribute 

first, and if there is a tie, the second most influential attribute is used and so on until there 

is no tie among the products under consideration. 

A customer’s preferences with respect to several attributes may be too 

complicated to be modeled simultaneously by one of the above-mentioned choice 

models. However a combination of noncompensatory models can capture the interactions 

among attributes more naturally. For example, the following customer’s purchase 

scenario cannot be handled with a pure disjunctive or conjunctive choice model:  

(At least one attribute is within 

customer’s acceptable range) 

(Otherwise) 

(A-I.2)

(A-I.3)
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“The price should not be over $100, and the weight needs to be no more than 3 

lbs, but if the product is on sale for less than $60, then I am willing to buy one that is up 

to 5 lbs in weight”.  

By using Boolean expression, we can model the above customer’s purchase 

decision, as shown in Eq. (A-I.4). The binary decision diagram of such a customer is 

depicted in Figure A-I.2. The solid lines in Figure A-I.2 are used when the statement (or 

event) holds, while the dashed lines indicate that the event does not hold.  For a thorough 

description of binary function representations, see [8]. 
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Figure A-I.2: Binary decision diagram representation of a customer choice model 
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The customer purchase decisions can be modeled by a combination of the 

aforementioned noncompensatory choice models. Basically it is possible to represent 

every Boolean expression using a Conjunctive Normal Form (CNF) or Disjunctive 

Normal Form (DNF) and either one can be converted to the other. The CNF can be 

constructed by the conjunction of disjunctive expressions. The general form of CNF is 

shown in Eq. (A-I.5). 
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 Likewise, DNF can be shown as in Eq. (6). 
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The purchase decision of the customer shown in Figure 2 is defined as a DNF. 

However, it can be converted to CNF as shown in Eq. (A-I.7). 
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 (A-I.7)
 

For a given sample of customers, the normalized demand q of a product with a 

vector of attribute x can be calculated by: 

N

D
q

N

i
ip∑

== 1
)(

)(
x

x
                                                                        (A-I.8)

 

where N stands for the total number of customers in the sample, and 
ipD refers to the 

purchase decision of the i-th customer in the sample.  
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In obtaining the normalized demand, the purchase decision rules for each 

customer are captured through a self-explicated approach. Every customer expresses 

his/her purchase decision criteria in one of the above mentioned normal forms. In this 

model, it is assumed that the sampling errors are insignificant (i.e., the sample resembles 

the whole population). In industrial markets, which are the focus of our study, it is quite 

common for sales team to interact with customers to understand client requirements and 

criteria better. In many cases, clients may explicitly provide their specific criteria and 

information on acceptable upper and lower bounds on attributes (arising from 

performance and quality considerations). However, tradeoff information between 

attributes is generally not provided. This information is obtained directly through self-

explicated responses (as in a conjoint study) from the buyers/buyer segments.  

A-I.2.2. Uncertainty in Achieving Nominal Attribute Levels 

In a product design process, it is common to use design simulation tools. These 

tools can help to simulate the performance (design attributes) of a design to the variation 

in input parameters. The uncertainty in an attribute level is generally due to 

uncontrollable randomness in input design parameters (such as manufacturing tolerances, 

deviation in the source voltage and frequency, and changes in the environment 

temperature). As a result, the design attribute levels may deviate from the nominal values. 

When there is enough information (e.g., data) about the uncertainty in input parameters, 

an appropriate probability distribution can be constructed. The variations in the design 

attribute levels can be modeled by mapping from the input design parameters space to the 

design attribute space through the design simulation tools. Monte Carlo simulation is one 

of the common methods for modeling the uncertainties by constructing a design attribute 
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distribution, hereafter referred to as pi.  In Monte Carlo simulation, a sample of possible 

input design parameters (representing an appropriate distribution) is selected and mapped 

into the corresponding attribute levels, which in turn creates a probability distribution for 

the uncertainty in an attribute level. Such mappings can be performed by the functional 

form of the design performance attributes (if available) or by the design simulation 

software (e.g., numerical results of a finite element analysis, computational fluid 

dynamics, etc.). As an example, we can estimate the overall weight of a product (e.g., a 

single chip module) by adding the weight of the chip and the PCB board. Then, the 

variability in the total weight of the module can be estimated by sampling the weight of 

each component (Chip and PCB) and calculate the total weight by adding up the 

component weights. 

It should be noted that many important aspects of a product can be simulated by 

using design simulation software. The performance and quality of a product is then 

directly assessed by examining the impact of product design attributes on product quality 

and performance based on the simulation output results. For example, in power electronic 

device development, the thermal performance of a device (e.g., junction temperature) and 

the development cost (e.g., planning, design, parts, assembly, etc) are two attributes that 

represent the quality and performance of that design alternative. Our methodology uses 

the design simulation software and subsequently takes the performance and quality 

aspects of each design alternative into account during the selection process. 

The proposed design selection approach is able to allow for the uncertainties in 

the design performance attributes and capture the customers’ purchase decisions along 

with the designer’s preference for selecting the optimal product design. 
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A-I.2.3. Designer’s Preference 

The designer's preference is one of the key elements in product design and 

development. It reflects the designer’s experience and expertise of the design and 

knowledge of the market. Moreover, it enables the consideration of potential design 

alternatives that are promising from the designer’s (or producer’s) point of view (for 

example, identifying designs that can have superior performance and reliability or 

designs that can offer better competition along several dimensions, which consumers may 

not have knowledge about). Thus, the designer’s preference in our DSS is used to ensure 

the quality of the product that may not be explicitly known to ordinary customers. This 

issue becomes more demanding when we plan to launch a product that has desired 

performance in long term both in the market and field. We have used a MAUT approach 

[19] to capture the designer’s preferences. As mentioned earlier, MAUT is an effective 

and powerful methodology for preference modeling especially where only a single 

respondent (i.e., the designer) is able to understand and respond to lottery technique 

questions. Although there are several forms of the utility function that can be used to 

model the designer’s preferences, for our DSS we have chosen a multiplicative form that 

is able to handle the interaction among the attributes. Also, with respect to each 

individual attribute a quadratic form of the utility function is used. The general form of a 

multiplicative utility function is shown in Eq. (A-I.9). The details of capturing the 

designer’s utility function (U) and the scaling constants k’s and K are beyond the scope of 

this paper. 
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where K is the scaling constant calculated from Eq. (A-I.10). 
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A-I.2.4. Customer Based Expected Utility Metric 

Suh [27] introduced a metric known as a probability of success in product design 

that combined the uncertainty in each attribute level with a customer’s acceptable range. 

As shown in Figure A-I.3, Suh's metric is defined as the area under the probability 

density function (PDF) that falls within a customer acceptable range for that attribute 

(i.e., the overlap between the design and customer ranges). In essence, Suh's metric 

reflects the probability that the product attribute level will fall in the range that a 

customer deems desirable or acceptable. 

 

Design range 

Customer 
range 

Attribute 

PDF 

Area within 
common range 
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Figure A-I.3: Probability of success [27] 

Using the terminology introduced in this paper, Suh’s probability of success, Ps, 

can be reformulated as: 

∫ ∫ ∫= nps dxdxdxpDP KL 21)()( xx                               (A-I.11) 

where Dp(x) is the purchase decision function, and p(x) is the joint probability 

distribution for design attributes. 

In formulating our metric, we extend Suh’s probability of success measure by 

taking into account not only the uncertainty in the design but also customer’s purchase 

decision and the designer's preference.  We define the Customer-based Expected Utility 

(CEU) metric by weighting Suh’s probability of success measure with the designer’s 

utility over the ranges of attributes that are of interest to the customer. As shown in Eq. 

(A-I.12), CEU is an estimate of the expected designer’s utility under the condition that 

the attribute level falls in the acceptable range of customer. If the designer and customer 

share the same acceptable range for the product attributes (i.e., complete overlap of the 

customer’s range and designer’s range), then the CEU metric turns into the designer’s 

expected utility, and the customer input does not play a role in the utility calculation for 

that particular design. On the other hand, if there is no overlap between the designer’s 

range and customer’s range for a design alternative, then it implies that the design is not 

likely to succeed in the market (i.e., zero probability of success), yielding the lowest 

CEU, which is equal to zero. The reason for incorporating the designer’s preferences in 

the CEU metric is to ensure the consideration of quality and performance of the product 

that may not be explicitly known to ordinary customers. In addition, the appropriate 
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product positioning in the market can also be considered using the designer’s preferences. 

In the case that several design alternatives are within the customer acceptable ranges and 

exhibit acceptable technical performance, the designer can choose to give a higher utility 

to the alternative that is different from the current competitive products in the market. 

There are many real world industrial situations in which the designer’s preference and 

his/her knowledge about the customer requirements play a key role in the success of the 

product development. The new design for Airbus A380 [22] is an example where the 

design project manager could decide on several technical challenges to satisfy conflicting 

customers’ requirements in the presence of competition.  

Basically, the most influential part of the CEU is decided by the customers in 

terms of their acceptable range for each attribute. The successful product design 

candidates are the ones that can accommodate the widest customer range, and among 

those (if there is a tie), the one with the highest designer’s utility is selected by our DSS. 

Next, the application of the CEU metric is discussed for different cases of 

single/multiple market segments. 

Case 1: Market characterized by a single segment 

In this case there is only one segment characterizing the market whose purchase 

decision for a product is captured by function Dp. The uncertainty at a single attribute 

level is given by a probability distribution function p. Figure A-I.4 demonstrates these 

functions along with the designer's utility U in the case of a single attribute x. 
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Figure A-I.4: The components of CEU for a single customer 

 

The CEU of a design alternative can then be defined as follows: 

np dxdxdxUpDCEU KK 21)()()()( xxxx ∫∫∫=         (A-I.12) 

where Dp(x) is purchase decision function, p(x) is the joint probability distribution for 

design attributes, and U(x) is the designer’s utility function. The CEU function reflects 

the expected value of the designer's utility while accounting for the market information 

(i.e., desired range and purchase decision of attributes). According to this metric, a design 

alternative with the set of attribute values that are not able to satisfy the market (i.e., not 

within the range of attributes as wanted by customers) will yield a zero CEU value. On 

the other hand, a design alternative for which the design and the market have the 

maximum common range and at the same time has the highest designer's utility yields the 

highest CEU value. Such an alternative is the one, among all alternatives under 

consideration, which is most likely to satisfy the customers while also being preferred by 

the designer.   



 

 180

However, real-world product design selection usually involves a market with 

numerous customers whose purchase decisions might be different or even conflicting 

with one another. The next subsection focuses on multi-segment market. 

Case 2: Multiple segments 

To account for multiple-segment preferences, the normalized demand of a product 

is used instead of a purchase decision function in formulating the CEU metric. In Figure 

A-I.5, the normalized demand of a product, q(x), is shown as a function of the vector of 

attribute levels. As mentioned before, demand can easily be obtained by aggregating the 

purchase decisions Dp of each customer segment in the market. 

 

Figure A-I.5: The components of CEU for multiple segments (single 

attribute) 

 

Therefore, the CEU of a design alternative can be obtained by replacing the 

individual’s Dp in Eq. (A-I.12) with an estimated normalized demand q(x) obtained from 

Eq. (A-I.8). 
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ndxdxdxUpqCEU KL 21)()()()( xxxx ∫∫ ∫=    (A-I.13) 

Figure A-I.6 shows an example of the most general case for product design 

selection 

U(x) 

q(x) 

p(x) 

xi 
xj 

p, U, q 

 

Figure A-I.6: The components of CEU for multiple segments (two attributes) 

 

The next section describes the general selection (DSS) framework based upon the 

proposed CEU metric. 

 

A-I.3. DSS for Design Selection 

The DSS for the design selection process is shown in Figure A-I.7. It is assumed 

that the design input parameters are subject to a random variation (or noise) due to 

environmental and/or other conditions.  The design simulation model receives the values 

of design parameters as input and returns the values of attribute levels as output. A Monte 

Carlo simulation is employed to sample uncertainties in the design parameters and 
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compute the PDF of attribute levels (i.e., p(x)). Next, the designer's utility and also the 

generalized purchase decisions for each market segment are obtained. The normalized 

demand of a design alternative is then estimated by aggregating the purchase decisions. 

Finally the CEU metric is calculated for a given design alternative. This procedure has to 

be performed over all design alternatives under consideration, and the output of the DSS 

is the alternative with the highest CEU value that meets both designer's preferences and 

market demand the best. 
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Figure A-I.7: DSS for design selection 

 

A-I.3.1. Case Example 

The proposed DSS is applied to the design and selection of a power electronic 

device with three performance attributes. The attributes are: manufacturing cost (xc), 

junction temperature (xT), and thermal cycles to failure (xF). As a demonstration of our 

approach, we only consider ten design alternatives (that have tradeoffs with respect to 

one another) for their rank ordering.  
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Three design disciplines are involved to simulate the performance of each design 

alternative given the input design parameters (e.g., the geometry of power chips on the 

module, coolant flow rate, ambient temperature, market prices). A screenshot of the DSS 

user interface is shown in Figure A-I.8. Most of the engineering design simulators do not 

provide a closed functional form for the output responses as a function of inputs (e.g., 

finite element models, computational fluid dynamics simulators). An evolutionary 

algorithm, Multi-Objective Genetic Algorithm (MOGA), is used in our case study to help 

with searching the design space.  (Details of MOGA is beyond the scope of this paper, 

however, for a review of MOGAs and other evolutionary algorithms refer to [13].) The 

solution from a multi-objective optimization problem as stated in this example is a set of 

design alternatives (called a Pareto set). The goal is to use our DSS for selection of the 

most promising design alternative from this set of Pareto alternatives. 

 

Figure A-I.8: DSS user interface - main window 
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Based on historical market data and design laboratory experiments, an appropriate 

distribution is fit to the data collected for input design parameters. Figure 9 shows the 

design alternative generation process. Using the distribution obtained for input design 

parameters, a Monte Carlo simulation is performed. With the Monte Carlo simulation, the 

design alternative generator (i.e., multi-objective genetic algorithm optimizer) is used for 

all sampled input parameters to obtain distributions of the output performance attribute 

levels. It is determined that the normal distribution is the best fit for all three attributes. 

For simplicity, it is also assumed that the probability distributions of the attributes are 

statistically uncorrelated. The nominal values of attribute levels for these alternatives are 

shown in Table A-I.1. The standard deviation for junction temperature is estimated as 

3.5°C, for cycles to failure 100 cycles, and for cost $1.67. It is assumed that there is a 

fixed profit margin of $100 on each product (and it is the same for each design 

alternative.) To enter design attributes information, the user needs to click on Design 

Attribute Definitions and enter the appropriate values for each attribute as shown in 

Figure A-I.10. There are mainly three segments in the market for this power electronic 

device, namely, power vehicles, naval ships, power adaptors. 
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 Figure A-I.9: Design alternative generation process (The distributions shown here 

are only schematic.) 

 

Figure A-I.10: Design definitions 

 

Design # 
Junction temperature 

(°C) 
Cycles to 
failure 

Manufacturing cost     
(US $) 

1 126 22,000 85 
2 105 38,000 99 

3 138 14,000 65 

4 140 13,000 60 

5 147 10,600 52 

6 116 27,000 88 

7 112 32,000 92 

8 132 17,000 75 

9 122 23,500 85 

10 135 15,000 62 

Table A-I.1: Description of design alternatives 
 



 

 186

Next, the utility of the designer over each attribute of the product is captured. In 

this example, we use a linearly additive utility function with utility-independent 

attributes. The designer is assumed to show a slight risk taking behavior towards the cost 

of the product, but his preference behavior towards the failure and also temperature of the 

product is assumed to be risk averse. On the other hand the designer considers that the 

cost of the product is more important than the cycles to failure which is more important 

than the junction temperature. Using the methodology introduced by Keeney and Raiffa 

[19], the scaling constants of the utility function are estimated as (Although it is 

integrated in the DSS, the details of computing the utilities are beyond the scope of this 

paper; see [19].): kc =0.60,   kF =0.25,  kT =0.15  and obtain 

61.0106.7109)(
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where, xc , xT , and xF are the manufacturing cost, junction temperature and cycles to 

failure respectively. kc , kT , and kF are their scaling constants, uc , uT , and uF are the 

single attribute utilities, and U is the multi-attribute utility for design alternative x. 

User can enter the designer’s utility function by clicking on the Designer’s Utility 

Definition button on the main DSS window as depicted in Figure A-I.11. As we 

mentioned in section A-I.2.3., the individual elements of the multiplicative utility 

function (i.e., utility function with respect to each individual attribute) are assumed to be 

of quadratic form. However, one may argue that the quadratic form of individual utilities 

or the multiplicative model may not be able to address the designer’s preferences for all 
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occasions. In that case, our DSS can take a custom utility function simulator. The custom 

utility simulator is an executable program that takes the attribute levels for each product 

from the main DSS software and writes the corresponding overall designer utility into a 

text file (named utility.txt). The schematic framework of this connection between the 

DSS and utility simulator is shown in Figure A-I.12. 

 

Figure A-I.11: Designer’s utility definition with respect to design attributes 
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DSS 
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Utility 

Design 
Alternative 

 

Figure A-I.12: Interaction between the DSS and the custom utility simulator 
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To demonstrate the application of CEU metric, several scenarios with no 

customer information and with different customer’s purchase decisions are illustrated in 

the scenarios below. 

Scenario 1 – No market information: In this scenario, only the designer’s preferences 

are accounted for (i.e., via a utility function) while the customer’s purchase decision is 

ignored as appropriate information is not available. The vNM expected utility (EU) of the 

designer can be calculated for each design attribute and then aggregated as shown below: 
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    (A-I.15) 

 

where μc , σc and μT , σT and μF , σF stand for the means and standard deviations of cost, 

junction temperature and cycles to failure, respectively, and uc(xc), uT(xT) and uF(xF) and 

scaling constants kc, kT and kF are given in Eq. (A-I.14). (It is assumed that the designer’s 

utility is zero outside the design range.) The Expected Multi-Attribute Utility (EU) of 

each design alternative is then calculated from the above equations, as listed in Table A-

I.2. 
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Alternative EUc EUT EUF EU 
1 0.25 0.61 0.64 0.40 
2 0.09 0.95 0.99 0.45 
3 0.61 0.33 0.29 0.49 
4 0.73 0.28 0.23 0.54 
5 0.93 0.09 0.10 0.60 
6 0.21 0.79 0.81 0.45 
7 0.16 0.85 0.93 0.46 
8 0.41 0.48 0.43 0.43 
9 0.25 0.69 0.69 0.43 

10 0.68 0.41 0.34 0.55 
 

Table A-I.2: Designer's expected utilities 

 

The EU ranking of Table A-I.2 can be interpreted as follows: (i) cost is more 

important to the designer than cycles to failure than junction temperature, and (ii) design 

alternatives with lower costs are of more interest to the designer. Therefore, the design 

alternative 5 has the highest EU. 

Scenario 2 - Single segment: In this case, the market information is also accounted for in 

the selection process. Suppose that a segment of the market seeks a device with the 

following specifications: 

• The device has to endure at least 25,000 cycles, or its junction temperature must 

remain less than 130°C 

• The customer is willing to purchase the device if the price is less than $170 (i.e., 

manufacturing cost less than $70), and it lasts at least 20,000 cycles. 

 

This translates into the following purchase decision function (a disjunctive normal 

form): 
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We define: { }000,25≥≡ FxA x ;  { }130≤≡ TxB x ; { }70≤≡ cxC x ; and 

{ }000,20≥≡ FxD x .  The set corresponding to purchase decision of 1 can be written as:  

)( DCBAS ∩∪∪=  

The binary decision diagram of the above-mentioned customer’s purchase 

decision function is depicted in Figure A-I.13. 

 

 

Figure A-I.13: Binary decision diagram for the customer’s purchase decision 

function 

 

We need to keep in mind that the above-mentioned sets are not mutually 

exclusive. In other words, it is necessary to account for the overlaps between the sets and 

subtract the intersections. For instance: 

 

A 

B 

C 

D 

1 0 

Dp



 

 191

∫ ∫∫

∫∫∫ ∫∫

∩∩ ∩∩∩∩∩

∩∩

+−−

−−++=

DCB DCBADCA

BADCBA
p

dpUdpUdpU

dpUdpUdpUdpUdpUD

xxxxxxxxx

xxxxxxxxxxxxxxxx

)()(    )()(    )()(                                     

)()(  )()(  )()(  )()()()()(

 

(A-I.17)

 

 

Now, the CEU of each design alternative can be calculated using Eq. (A-I.12) and 

Eq. (A-I.16) for the two attributes: 

∫ ∫ ∫= FTcp dxdxdxpUDCEU )()()()( xxxx          (A-I.18) 

The results are tabulated in Table A-I.3. 

 

 
Alternative CEU 

1 0.24 
2 0.22 
3 0.05 
4 0.00 
5 0.00 
6 0.33 
7 0.34 
8 0.10 
9 0.31 

10 0.04 
  

Table A-I.3: CEU of design alternatives 

 

According to Table A-I.3, the design alternatives that are less satisfactory to the 

market (i.e., outside the customer range) are ranked lower. Alternatives 4 and 5 are 

completely outside the customer range, yielding a zero CEU value. Alternatives 3, 8 and 

10 have nominal attribute levels outside but close to the boundary of ranges defined by 
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the customer. In other words, they are likely to fall inside the customer ranges yielding 

negligible CEU.   In contrast, alternatives 1, 2, 6, 7, and 9 are in the customer range with 

respect to all attributes. Among them, alternatives 6,7, and 9 have a wider acceptable 

customer range of attribute levels, and therefore have  higher CEU values. Nevertheless, 

the designer's utility value of alternative 7 is higher than that of 6 and 9, and thus, 

alternative 7 is ranked the highest in the set. 

Now, we can quantitatively compare the vNM expected utility metric (EU) with 

our metric (CEU) by evaluating the results in scenario 1 and scenario 2. In scenario 1 

since the low cost is preferred by designer, alternative 5 with a big cost difference (than 

other alternatives) will be the output of the vNM expected utility method. However, in 

presence of the given customer requirements, design alternative 5 fails to satisfy the 

customer technical needs in terms of cycles to failure and is eliminated. Conversely, 

design alternative 7, which is the second most expensive alternative, has the highest CEU 

value because its attribute levels fall in the middle of the customer ranges, and also yields 

a high designer’s utility.   

Scenario 3 - Multiple segments: Assume in this case, there are four customer segments 

involved. The purchase decisions are defined as following: 

• Segment 1: The device needs to tolerate at least 20,000 cycles. Its junction 

temperature should not exceed 130°C. The available budget for this purchase is 

no more than $185 per product item. 
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• Segment 2: The desired device needs to have one of the following criteria: 

endurable more than 35,000 cycles, junction temperature less than 110°C, the 

price less than $160. 

• Segment 3: The budget does not exceed $185 per product item and the eligible 

device needs to satisfy either one of the following criteria: lasting more than 2,000 

cycles, junction temperature less than 130°C. 

• Segment 4: The desired device should tolerate at least 3,000 cycles and its 

junction temperature should not exceed 110°C. 

The user can enter the market segment preference information by clicking on 

Market Segment Data button on main DSS window as shown in Figure A-I.14. 

 

Figure A-I.14: Market segments preference information 

The CEU of each design alternative can be calculated as follows: 

∫ ∫ ∫= FTc dxdxdxpUqCEU )()( )()( xxxx                (A-I.19) 
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and the results of the DSS program are shown in Figure A-I.15. 

 
Figure A-I.15: Final results 

A closer look at the results shown in Figure A-I.15 reveals that those alternatives 

that are within the market acceptable ranges and at the same time yield the highest 

designer's utility are ranked higher by this metric. Alternatives 3, 6, 7, 8, and 10 are 

outside all customers’ ranges yielding zero CEU. Moreover, alternatives 4 and 5 are 

acceptable for only one customer resulting in relatively low CEU. The remaining 

alternatives are acceptable to two customers, and among them alternative 2 gets the 

highest CEU because of its higher designer’s utility value. 

A-I.4. Concluding Remarks 

The customer-based expected utility metric presented in this paper accounts for 

uncertainties associated with design attribute levels as well as the success of the product 

in the market and its desirability to the designer. As demonstrated in the examples, the 
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approach guides the designer to determine which of the alternatives could possibly satisfy 

more customers and thus gain a higher potential demand. The generalized definition of 

the purchase decision function can model the customers’ choice patterns more suitably 

than a pure conjunctive choice model. Such generalized model allows for the interaction 

among attributes from customers’ point of view. It is shown that those alternatives that 

fall outside the customer range have a lower chance of success (i.e., lower CEU value) 

than those within the range. Although the proposed approach is unique in the sense that it 

accounts for both customers’ and designer’s preferences as well as manufacturing 

uncertainties, it has some limitations. The designer and the customers share the same 

attributes. This may be a valid assumption for many cases; however, one could face a 

situation where the designer deals with technical attributes that are not of any interest to a 

customer (or are beyond customer’s knowledge). One way to handle such situations is to 

consider no customer preference for those technical attributes, and proceed with Eq. (A-

I.11) without any bounds for those specific attributes. As we mentioned, the CEU metric 

maps three important factors: product demand, uncertainties, and the designer’s 

preferences, into a single scalar for design selection. However, one may argue that there 

are several other important factors that affect the product development and are not 

considered in the CEU metric. While the engineering design related factors such as 

performance and quality of the product can be modeled as product attributes, some of the 

market related issues such as pricing strategies and advertising may not be directly 

addressed by our metric. 

Also, our purchase decision modeling is based on the buy/no buy decision of each 

customer. In other words, the approach does not address whether or not the customers 
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decide to buy which competitive product (i.e., market share estimate). However, we 

argue that the designer should have good knowledge of the market including the 

competitive products. In general, the designer looks for attributes or dimensions along 

which they can do better with respect to competitive products – this can be captured by 

giving higher weights to the designer’s preferences for attributes that make the new 

product different and better than the competition. In the validation stage, a choice based 

conjoint study could then be conducted to directly evaluate the impact of competitive 

products. Finally, the presented approach is only for introducing a single product in the 

market and the issues of product families and cannibalization effects are among the next 

steps of our future research. 

Overall our approach (or a variation of it) will have value in both academic and 

industrial settings. In industrial design development teams, where there are multiple 

disciplines involved in the product design, there are always tradeoffs among several 

design alternatives with respect to each discipline. Similarly, in academic problems, when 

we deal with a multi-objective optimization case study, there are many design 

alternatives that are equally optimum and feasible with respect to the design objectives 

and constraints. In both situations, selecting a product design (or a family of products) 

from this set is not a trivial task. A decision support tool such as the one that we have 

developed for this research can help the managers and practitioners make such decisions.  
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Appendix II. 

AN INTEGRATED SOFTWARE FOR SINGLE PRODUCT 

ROBUST OPTIMIZATION 

 

A-II.1. Overview of the Software 

This appendix gives an overview of an integrated robust design/marketing 

software package designed and tailored specifically to be used with an executable 

engineering simulation tool and obtain the optimum and/or robust design solutions (i.e., 

from design point of view). Furthermore, the enumeration and cost assessment module 

along with marketing module provide the means of estimating the market share and profit 

of each solution. Ultimately, the final ranking module is used to perform the final 

selected product(s). The schematic relation between the software components and user 

inputs (as text interface files) are shown in Figure A-II.1. 
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Figure A-II.1: Overall schematic view of the software components 
 

The thick arrows show the order of execution of modules in the software. There 

are two ways to run the software. First, the user can run each individual module in the 

order shown in Figure A-II.1, sequentially. The other alternative is to run a loader 

program that calls each module sequentially in the right order. The details for running the 

integrated software are given in Section A-II.3. 

A-II.2. Individual Components (Modules) 

There are four main components (modules) that create the integrated robust 

design/marketing software. Each component is shown by a gray box in Figure A-II.1. In 

the following sections, the detailed description of inputs and outputs for each module is 

given. 
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The robust optimization module can be launched by double clicking the 

optimizer.exe file. In order for optimizer to proceed, the input files listed in section 

A-II.2.1.1 must be present in the same folder as the executable. The optimizer will 

generate results in several output files given in section A-II.2.1.2. 

 

A-II.2.1.1. Required Input Files: 
 
• User.dat This is a text user interface which contains the commands for the 

optimizer to perform its task. The first line of this file contains the name of the 

simulation tool which is used for engineering design simulation. The order and syntax 

format of each command are given at the bottom of the file. The optimizer does NOT 

run if this file is missing or invalid.  

 

• CAsim.exe The common attribute simulator is an executable file which 

calculates the common design/marketing attributes using the output of simulation 

tool. This executable file is called after every call of the simulation, and generates a 

temporary file called “commonAttribute.tmp”. This temporary file contains the 

values of each common attribute. The number of such attributes is given in 

User.dat file. The user can write his/her own executable common attribute 

simulator which reads the design simulation output (e.g., sim.dat) and generates 

the above-mentioned temporary file. The optimizer does NOT run if “CAsim.exe” 

is missing or invalid. 
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• Simulation.exe This file is the simulation tool which is used during the 

optimization. As mentioned above, the name of this file should match the first line of 

“User.dat” file. The optimizer does NOT run if this file is missing or has a 

different name compared to the one defined in “User.dat” file.  

 
A-II.2.1.2. Generated Output Files: 

 

The optimizer generates the following files. The format of all generated output 

files is simple text. The .xls extension is only used to ease viewing the results in 

Microsoft® Excel®. The following are the generated output files: 

 

Population.xls   All generated design alternatives 

FeasiblePopulation.xls All feasible design alternatives 

NominalPareto.xls  Set of Pareto designs among the feasible population 

BCSPopulation.xls  All generated alternatives at Best Case Scenario 

WCSPopulation.xls  All generated alternatives at Worst Case Scenario 

BCSFeasiblyRobust.xls All feasibly robust designs at Best Case Scenario 

WCSFeasiblyRobust.xls All feasibly robust designs at Worst Case Scenario 

WCSPareto.xls   Pareto set among the WCS Feasibly Robust designs  

RobustPareto.xls  Pareto set in terms of WCS objectives & variability 

NominalAndWCSPareto.xls Intersection of Nominal Pareto and WCS Pareto 

NominalAndRobustPareto.xls    Intersection of Nominal Pareto and Robust 

Pareto designs 

 

A-II.2.1.3. Flowchart of Robust Optimization Module: 
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The overall flowchart of the robust optimization module is given in Figure A-II.2. 

The obtained results (output files) are used in the next components to calculate several 

marketing aspects of the product such as overall cost, market share, profit, etc.  

It should be noted that the robust optimizer can be used by itself for engineering 

design or robust design optimization purposes. However, to incorporate the other aspects 

of the design (e.g., marketing) in the selection process, the following results are passed 

onto the next components: Feasible population, Feasibly robust alternatives at their best 

case scenario (design aspect) and Feasibly robust alternatives at their worst case scenario 

(design aspect). 

 

Figure A-II.2: Flowchart of robust optimization module 

 
 
A-II.2.2. Enumeration and Cost Assessment Module 

User 
Interface 

Design 
Simulation  

WCS 
Pareto 

Robust 
Optimizer 

Nominal 
Pareto 

Robust 
Pareto 

WCS-Nominal 
Pareto 

Robust-Nominal 
Pareto 

Feasible Population 

BCS Feasibly Robust 

WCS Feasibly Robust 

To Be Used in 
Conjunction with Other 
Product Assessment 

Tools (e.g., Marketing) 

Robust Optimizer’s Output 

Common Att. 
Simulator 



 

 205

There are several aspects of the product that are beyond the scope of a design 

simulation. Issues such as the pricing of a product, cost assessment of different parts, and 

ergonomic aspects of a product (e.g., switch type, girth size) can have a significant 

impact in the marketing performance of any product. The enumeration and cost 

assessment module is used to perform two main tasks: (i) enumerate each design 

alternative generated by robust optimizer over the marketing non-common attributes such 

as price, switch type, girth size, etc, (2) calculate the total cost of each product by adding 

up the platform cost (obtained from design simulation) and the cost associated with each 

level of marketing non-common attributes. For example each switch type has an 

associated cost with it.  The input and output files used for enumeration and cost 

assessment module, “InterSim.exe” are given in the following subsections. 

 

A-II.2.2.1. Required Input Files: 

 

• MarketInput.dat This is a text user interface which contains the required 

marketing non-common attribute information as well as the cost associated with each 

level of those attributes. The syntax and format of each is given on the bottom of the 

file. The enumeration and cost assessment module does NOT work if this file is not 

present or is invalid. 

 

• User.dat This is a text user interface that was used for the optimizer. The 

number of common attributes and their corresponding labels are read from this file.  

The enumeration and cost assessment module does NOT run if this file is missing or 

invalid.  
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• FeasiblePopulation.xls This file is generated by the robust optimizer 

and contains all feasible design alternatives. Each of these design alternatives is 

enumerated over marketing non-common attributes and creates a product alternative 

to be assessed in marketing module in the next step. The enumeration and cost 

assessment module does NOT run if this file is missing or invalid. 

 

• BCSFeasiblyRobust.xls This file contains all feasibly robust designs at 

Best Case Scenario attribute values. It is used to estimate the BCS values of 

performance attributes and also for variability calculations. The enumeration and cost 

assessment module does NOT run if this file is missing or invalid. 

 

• WCSFeasiblyRobust.xls This file contains all feasibly robust designs at Worst 

Case Scenario attribute values. It is used to estimate the WCS values of performance 

attributes and also for variability calculations. The enumeration and cost assessment 

module does NOT run if this file is missing or invalid. 

 

A-II.2.2.2. Generated Output Files: 

 

• FeasibleProducts.xls All generated feasible products after enumeration 

over non-common attributes and overall cost assessment 

• FeasiblyRobustProducts.xls All feasibly robust products after 

enumeration over non-common attributes and overall cost assessment 
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A-II.2.3. Marketing Assessment Module 

The “marketing_module.exe” is the executable file that once is called 

performs the market share and profit calculation for each product alternative obtained 

from previous steps.  It is important to make sure that the required input files (listed in 

section 2.3.1) are present in the same directory as the executable.  The Output files (listed 

in section 2.3.2) are generated in the same directory as the executable.  Steps that are 

followed if any of the input files are missing is explained within section 2.3.1. 

 

A-II.2.3.1. Required Input Files: 

 

• Bdcbc_lc.lcs This is the output generated by the Sawtooth. The order of 

attributes must be consistent with that in “attribute.txt” and 

“competitor.txt” files.  It is advised that the user refers to this file while 

entering the attribute information in “attribute.txt” and 

“competitor.txt” files. The marketing module will display a message 

“Cannot Open Sawtooth File” and will terminate if this file is missing or invalid. 

 

• Attribute.txt This is a text file that contains information about each 

attribute and levels within each attribute.  This file is necessary to correlate 

“Bdcbc_lc.lcs”, “FeasibleProducts.xls”, and 

“FeasiblyRobustProducts.xls” files. The names of the attributes must be 

consistent with those in “FeasibleProduct.xls” and 

“FeasiblyRobustProducts.xls” files.  The exact file description is present at 

the bottom of the file itself.  If the number of attributes and/or the number of levels 
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within each attribute in “Attribute.txt” is different from the format in the 

Sawtooth output file “Bdcbc_lc.lcs”, the program will display an error message 

“Error in attribute.txt file. Program Terminated”.           If missing, a computer 

interface will ask the user to enter necessary information. 

 

• Competitor.txt A text document having information about each competitor.  

This file is also required to correlate “Bdcbc_lc.lcs”, 

“FeasibleProducts.xls”, and “FeasiblyRobustProducts.xls” files. 

The exact file description is present at the bottom of the file itself.  The order of the 

attributes and attribute levels must be consistent with the format in 

“Bdcbc_lc.lcs” and “Attribute.txt”. This file has an option of including 

one or more own products in the “competitor.txt” file, for the case of line 

extension. Own brand is coded as ‘0’. Competitive brands are coded as ‘1’, ‘2’, and 

as on, with the same order as in “Bdcbc_lc.lcs” and “Attribute.txt” files. 

The values of other discrete product attributes start from ‘1’.  The values of 

continuous and non-common product attributes should be the actual values. With 

regard to continuous and common attributes, we use two columns to represent the 

actual values of these attributes (the first column) and the percentage variation of the 

competitor product on this attribute under various usage situations and conditions (the 

second column). If missing, a computer interface will ask the user to enter necessary 

information. 
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• FeasiblyRobustProducts.xls File containing Feasibly Robust 

Product designs. Name of discrete attributes and Best Case and Worst Case values for 

continuous attributes must be present.  The names of the attributes must be consistent 

with those in “attribute.txt” file. If missing: The software displays a message 

indicating that the file is missing and will terminate. 

 

• FeasibleProducts.xls File containing all the feasible products. It is 

similar to FeasiblyRobostProducts.xls except that here we have only one value for 

both Discrete and Continuous attributes. If missing: The software displays a message 

indicating that the file is missing and will terminate. 

 

A-II.2.3.2. Generated Output Files 
 

• Share.xls This file is the same as “FeasiblyRobustProducts.xls” 

with additional columns for own market share (BCS), own market share (WCS), own 

profit (BCS), own profit (WCS), competitor 1 market share (BCS), competitor 1 

market share (WCS), competitor 2 market share (BCS), competitor 2 market share 

(WCS), and so on. (Note: the calculation of own profit here is based on the 

assumption “market size = 1”). 

 

• Share1.xls This file is the same as “FeasibleProducts.xls” with 

additional columns for own market share, own profit, competitor 1 market share, 

competitor 2 market share, and so on. (Note: the calculation of own profit here is 

based on the assumption “market size = 1”). 
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A-II.2.4. Final Ranking Module 

After obtaining the set of feasible products and feasibly robust products, the last 

component of the software is used to rank order and select desired feasible/feasibly 

robust products. The “Final_Ranking.exe” is called and performs the ranking task. The 

required input files and generated output files are described in the following sub-sections. 

 

A-II.2.4.1. Required Input Files: 

 

• Interface.dat This is a text file that is used to provide the objective 

function information (excluding market share which is always maximized). It also 

provides the market size and minimum desired profit. It should be noted that the 

profit constraint is only applied to the feasible product alternatives. The final 

selection of the feasibly robust product alternatives is based upon the robustness 

measures defined in design and the interval estimates of market share. The order and 

syntax of the information is given at the bottom of the file. The final ranking module 

does NOT run if this file is missing or invalid. 

 

• Share.xls This file contains the set of feasibly robust product alternatives. The 

robust ranking is performed on the contents of this file. The final ranking module 

does NOT run if this file is missing or invalid. 
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• Share1.xls This file contains the set of feasible product and the final ranking 

is performed on the contents of this file. The profit constraint is also taken into the 

account for the ranking and selection of the products from this set. 

 

• User.dat This is the text user interface that was used for the optimizer. The 

number of common attributes is read from this file.  The final ranking module does 

NOT run if this file is missing or invalid. 

 

• MarketInput.dat This is the text user interface that was used for 

enumeration and cost assessment module. The number of simulation software 

arguments and the number of marketing non-common attributes are read from this 

file.  The final ranking module does NOT run if this file is missing or invalid. 

 

• Competitor.txt This is a text user interface that contains the competitor’s 

information. The number of competitors is read from this file.  The final ranking 

module does NOT run if this file is missing or invalid. 

 

A-II.2.4.2. Generated Output Files: 

 

• NominalParetoProducts.xls Set of Pareto products considering 

market share point estimate and objectives given in “Interface.dat” file. The 

market size and its effect on overall profit is taken into account here. 
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• FeasibleParetoProducts.xls Set of Pareto products, same as the 

“NominalParetoProducts.xls” only the constraint on profit is taken into 

account in selection in this file. 

 

• RobustParetoProducts.xls Set of customer-based robust Pareto 

products, where the WCS distance from target, multi-objective variability and the 

market share (and its variation) are taken into account in rank ordering the products. 

A-II.3. The Combined Software 

In the above sections, each component of the integrated robust design/marketing 

software is presented. While a user can run each component one after the other (by 

double clicking the executable files or by calling them in command prompt), a loader is 

created to perform this task. 

 

The “Loader.exe” file can be used to launch the modules of the software 

sequentially in the right order. However, the user should be very cautious about using the 

loader. If any module of the software fails to perform its task (and terminates), the loader 

however does not terminate and proceeds with calling the next module. It is advised that 

the loader be used when the input files are verified and are present in the path of the 

software. The loader does not have any user interface or parameter associated with it. 
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