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1 Introduction

Signal deconvolution is a fundamental problem related to a variety of scien-
tific and engineering disciplines. The traditional problem formulation can be
stated as follows: we observe the output of a Linear Time Invariant system
modelled by a convolution operator with known kernel (or convoluter) and
wish to synthesize the input signal based on output observations. This is
generally an ill-posed problem, and it does not admit a unique solution un-
less certain a priori assumptions are made. These assumptions can severely
narrow the range of applications. Any physical device is band limited and
thus high frequency information is lost whenever an input signal is observed
through the device.

An alternative approach is to use a family of suitably chosen Linear Time
Invariant convolution operators and attempt to reconstruct the input signal
by combining the outputs of all available devices.

1) — [Zry]~ D)

= | Lsn(y| = Dml)

Figure 1: Multiple convolutional operators operating on a single input

Consider the system of figure 1. The f]s are distributions of compact
support defined over R™ and Ly, denotes convolution with kernel f;. The
natural question that comes up is: what is the minimum possible m and what
conditions should the f;’s satisfy so that we can uniquely determine I(-) from
the D;(-)?7 We are specifically interested in obtaining linear estimates of the
input signal based on output observations from the bank of available devices.
Mathematically the problem can be formulated as a convolution equation.
We are looking for a family of deconvolvers hi(+), i = 1,-++,m such that:

Dyshy+--++Dmnshn=1I (1)

Alternatively, we need a family of entire analytic functions E,’('), i=1,---,m



such that:

Buhyt ot Dol = 1 @)
Here ~ denotes Fourier Transform. Now observe that:
Di=If,i=1,...m (3)
Therefore equation 2 above is equivalent to:
Ahi4 ot frbm =1 (4)
The later equation is known as the Analytic Bezout Equation (ABE). It is a
well-known fact that the existence of a family of deconvolvers, {hl, . hm}

that solves the Bezout Equation is completely equivalent to a coprimeness
condition on the part of the f;’s. Let us formalize by introducing some
necessary definitions and presenting a number of important results.

Definition 1 Let 8;2,, denote the space of all distributions with compact
support defined over R™. For convenience we drop the indez R™ when the
underlying space is obvious from the contexzt.

Let:

g

Ffw) & <fiet> (5)
o) = [ feyeiar (©)

Definition 2 Letw = (w1, ,wn) € C*. Then: Imw = (Imwy, - -, Imw,),
and define the function p(w) as follows:

p(w) £ |Imw]| + log(1 + |w]) (7)

Definition 3 (Paley- Wiener Space). Let g;zn denote the space of all func-
tions f which are analytic in C™ and have the property that for some con-
stants A, B > O the following inequality holds:

|f(w)] < AePPE) (8)

Theorem 1 (Paley - Wiener) [14, page 21]. The mapping Eqn ?Rn
given by equation (5) for all f € Enn, is 1-1 and onto the Paley-Wiener
Space ER,, For convenience we drop the indez R™ at all instances where the
underlying space is clear from contezt.



Theorem 1 enables us to work with entire analytic functions and equation
(4) instead of distributions of compact support and equation (1).

Theorem 2 [13] There exists a family of functions {hy,- - e hm} in & that
solves the Bezout Equation iff the family of entire functions {fl vee, fm} in
£ is strongly coprime, i.e. iff: Py IJ‘;(w)P > e~?W) Yw € C", for some
constant c. The function p(w) is the one in Definition 2.

Thus the problem of recovering the input signal reduces to the problem
of finding suitable distributions {fi,-:-, fm} or, alternatively, entire func-
tions {fl, .- -,fm} in £ such that the coprimeness condition is satisfied for
the smallest possible m. The reason why we are interested in the small-
est possible m is that these distributions translate to actual devices, and
it is usually desired to achieve reconstruction using the minimum possible
number of devices.

Our approach is based on the work of C. Berenstein and A. Yger [1,2,5,
6,7,8] and [19]. The core of their research results, restricted to our present
scope, is summarized in a theorem that we will introduce shortly, but before
that let us give a number of definitions:

Definition 4 Let K be a compact subset of R™. Define the supporting
function of K as follows:

Hi(£) & maz{z -z € K} (9)
where - denotes inner product and £ € R™.

Definition 5 A family of n distributions { f1,..., fn} with compact support
in R™ is well behaved if there ezist positive constants A,B,N,K,C and
two supporting functions H,, Hy, such that 0 < H, < Hy, and such that
the common zero set, Z, of the functions {f1,+--, fn} is almost real i.e.
Vw € Z : |Imw| < Clog(2 + |w]), and the number of zeros in Z included
in an open ball of radius r grows like 4 : n(Z,r) = O(r*). Furthermore,
denoting:

- n 1/2
1F(2)| & Sl )P (10)
the following inequality holds:

Bd(z, Z)KeHeImz)
(1+1D¥

|F()l 2 (11)



where d(z, Z) is the Euclidean distance of the point 2 from the set Z. It can
be shown that under these conditions the set Z is discrete, i.e. the points
¢ € Z are isolated.

Definition 6 A well-behaved family {f1,---, fn} is very well behaved if
there ezist constants M,Cy > O such that ¥{€ Z we have that:

7012 e 2011 > i+ 1M (12

This last condition guarantees that the points in Z ( the set of com-
mon Zzeros of the family { Fiyeee, fn}) are well seperated, i.e. there exist
constants M',Cy > 0 such that for any ¢ € Z there exists r = r({) such

that
Q)2 —2
(1+1¢D)
and such that the open ball B,({) contains no other points in Z. We now
give a restricted version of a Theorem of C. Berenstein and A. Yger that is
sufficient for our purposes and is simpler in the sense that it does not involve
cumbersome notation, thus helping to keep things in perspective: Suppose

n = 2 (i.e. we have distributions defined over R?) and m = n+1 = 3 (i.e.
we use 3 convolvers).

Theorem 3 [8, Theorem 1 p.57] Let { f1, f2, f3} be a strongly coprime fam-
ily of compactly supported distributions over R2. Suppose that the subfamily
{f1, f2} is very well behaved. Suppose f3 is the “best” kernel in the sense that
it has the smallest support of all three. Let Hy, Hy be as in definition 5 for
the subfamily {f1, f2}. Define

Hy(0) = mazicjcamaz{z -0 :z € suppf;}, 0 € R?

and suppose Hy < 2H,. Furthermore suppose 3 r, > Osuchthatr,|f| <
4H,(8) — 2H1(6) — H(6) (these conditions control the support of f3 vs. the
support of f1, f2). Then for any u € C®°(R?) compactly supported and with
“small” support:

supp u C{z€ R™ : |z| £ 7o }, one can write:

A(C) gl(z C) gl(z C) gl(zv C)

2W2)= 3 ——2t—| g}(2:0) 6i(=,0) (= () (13)
(ez:Z'](C)fé(C) fl(z) fz(z) f3(Z)
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where z = (21, 23), (= (¢1,C2), both in C?, and:

ﬁ(zlv C?) - ﬁ(Ch C?)

2 -G

e

9i(2,¢)

(14)

g;(z, C) fi(zlv zzz : Z.Z(ZI, C?) (15)

and J(¢) = det(M(2))|:=¢, where the Jacobian matriz M(z) is defined as:

>

o o
M(z) & [ gﬁ %fi} (16)

and: R A
Z={2€C: fi(z) = fa(2) = 0} (17)

Remarks: The result obviously extends to higher-dimensional spaces,
see (8]. Equation (13) is an interpolation formula since it constructs the
entire function %(-) based on distinct point values of 4(-) at a discrete set
of well seperated points in the plane. The significance of Theorem 3 can
be demonstrated by a simple manipulation of equation (13), which can be
rewritten in the form:

i(2) = h1(2)f1(2) + ha(2) fa(2) + ha(2) fa(2) (18)

And since u(z) is of sufficiently small support (we can certainly shrink
the support of u below r,) then %(2) 2 1 and:

12 hy(2)fi(2) + ha(2) F2(2) + ha(2) Fa(2)

i.e. {R1(2),Ra(2), h3} give an approximate solution to the ABE. In principle
we can set u = § thus getting () = 1 and obtain ezact deconvolvers. Notice
that u(.) is not compactly supported (because u is compactly supported).
Observe that since a realistic computation will truncate the sum over Z in
equation (13) to make it finite, it will force %(-) to be zero on the discrete
set ZN{¢:||¢]| > (o}, for some finite (5. We will discuss this point in detail
later on. For the moment let us consider a specific model problem.



2 Model Problem

Let xx denote the characteristic function of the compact set X C R™ and
consider the following family of convolution kernels:

At 1) = Xvavax-vavaltn t2) (19)
falti,te) = Xyavaxi-vava(tnt2) (20)
fa(ti,te) = Xpo1,1x(-1.11(t1, t2) (21)

with Fourier transforms given by

Az, z) = f;z- sin(v/3z1) sin(v/32;) (22)
Falzr, ) = ;1% sin(v/2z1 ) sin(v/22;) | (23)
Falz1,22) = -z—:%;; sin(z1) sin(z2) (24)

Then it is easy to verify that {fi, fo, fa} satisfy all conditions of theorem 3.
Here

() rimman () - sn)

4sm(\/—Cz)7. (&) 45112( Cz(z) 2(C)
JO=| _ (26)
45112!2\515('1 ) TI(C2) 4 sxxz(;(/f(l ) TZ(CZ)

with
r1(z) £ V3 cos(v/3z) — sin(+v/3z) (27)
ro(z) = £ Vo cos(v2z) — sin(v/2z) (28)

and after a series of transformations we can rewrite equation (13) in the form
of equation (18) and then read out the expressions for A1, k2, k3. These are
given by the infinite sums:



ﬁi(Zl,zg) = Z a(g) Ci(% ()

by J(O) f2(C) (a1~ ) (z2 - G2) (29)
with
Ci(z,¢) 2 fo(z1,G2) [ﬁ(zl,zz) - .?13((1,(2)] -
Fa(z1,22) [E(Zh G2) — J?a(ChCz)] (30)
Co(,¢0) & Az, m) [J%(ZI’@) - J%(CI:CZ)] -
Az, G) [J?s(Ci, C2) = falz1, Zz)] (31)
C3(z,¢) = Az, Q) falzr, 22) ~ Filzn, 22) fa(21, Ga) (32)

Definition 7 The function F(-,.) is symmetric iff
.7:(21, 22) = f(—zl,zg), Vzl,zz € c?
and
f(Zl,Zg) = }-(2‘1, —Zz), V21,22 = C2.

Definition 8 The function F(-,-) is § rotation-invariant ( § —ri ) iff
F(z1,22) = F(z2,21), V21,22 € C2.

Notice that fi, f2, f3 are all Z-ti. Nevertheless the C;’s are not; for
example Cy(z1,22) # Ci1(22,21). Hence, in general, every finite approxima-
tion to Ay will not be Z-ri. In the limiting case we expect this bias to die
out because of cancellations. Similar remarks hold for 712,33. This fact will
prove annoying for applications. A final remark is in order: The distribu-
tions h; = F.T.71{h;} i = 1,2,3, where the hls are those obtained using
theorem 3 , are compactly supported (in fact of support comparable to that
of the kernels f;) . Thus, once obtained, they are easily realized ezactly with
finite delay (exactly refers to the fact that there is no need for truncation
of their duration; sampling and finite word length arithmetic errors can be
controlled to meet the design goals {21]). This property of these deconvolvers
is their most desirable feature when compared to Wiener deconvolvers [1].



2.1 Exploitation of symmetries in the frequency domain

We are interested in ways to exploit inherent problem symmetry in order
to reduce the computational complexity and improve arithmetic error per-
formance. Consider the result obtained in equation (29) , which we rewrite
here making the number of frequency variables explicit:

a(€17€2) . Cl(zly227C17C2) 33
(cxgez J(1,6) AL, e) (1—G) (22— G) (33)

Assume that %((y, (2) is an even function of both its arguments. We will
use the following notation to denote this: %((3,{2) ~ ({1, (2). Similarly odd
functions are denoted by ~ o(-). We are interested in symmetries in terms
of (C1,{2) of the summation terms in equation (33) .

Let
) W{(z1, 22, (1, (2) 2 LEHOMAIC I Y (34)

TG, G) - (G, G)

’};1(2‘1, z'Z) =

and recalling that

observe that
(n1,m2) € 2 — (=n1,n2), (ny,—n2), (—n1,—nz) € Z

Now, for z fixed Ci(z1,22,(1,62) ~ €(C1,C2) and J((1,$2) ~ o(C1)o((2)-
Furthermore f3({1,¢2) ~ e({1)e(¢2). Thus

W(z1, 22, (1,C2) ~ 0(C1)o(¢2)
Therefore, for fixed z, the pointwise contribution of the four zeros:
(nh 77,2), (—'TL1, n2)7 (TL]_, —n2), (_n17 ""nZ)

can be combined as follows:

1 1
Wz, z2,m1,m2) - [(zl -ny)- (22 — ng) B (z1 4+ n1) (22 — ng)] -

[(Zl - nl)]-.(zz + ny) B (z1 + n1)?(22 + nz)] =

W ) 4.ny-19
= (21722,77'1,77'2 (Z]Q. _ n%) . (Z% _ n%)

Wz, z2,n1,n2)

8



Therefore we can combine the four individual contributions into a single
term. Furthermore, notice that since for fixed z, Cy(z1, 22, (1, (2) ~ e(z1, 22)
this implies that W(zleg, €1,C2) ~ e(z1, z2), thus the combined term above
is ~ e(z1,2;). Hence hy(z1,27) ~ e(z1,22), as the sum of even functions
of both 2z; and z;. Therefore we only need to compute the upper right
quadrant of the Fourier transform plane. Notice that we have achieved
combined savings ( in the number of terms that need to be computed by
any digital approximation scheme) of 1/16. This can make an enormous
difference in any practical computation.

2.2 Windowing and Averaging

Our goal is the pointwise evaluation of the F.T. of approximate deconvo-
lution kernels over a suitably chosen finite grid. For ease of reference we
reproduce the formula obtained earlier (c.f. equation (29)):

Z Iﬂ(CI’Ez) . C{(Z]_, 29, Cl, C?)
(€1.42)eZ J(Ch CZ) : f3(c1, C2) (21 - Cl) . (Zz — CZ)

E{(21,2'2) = (36)

Clearly this involves the pointwise (in z) computation of an infinite sum.
Therefore, one way or another, we will have to truncate this sum at some
point. This is equivalent to forcing %(¢) to be zero on aset ZN{¢ : ||[¢]] > (o}
for some finite {p. Since each term of the sum in equation (36) is the Fourler
transform of a compactly supported kernel this amounts to approximating
h; with a kernel k; that is compactly supported but of wider support than
h;. Hence, we must strike a balance between computational feasibility and
the size of the support of h; in order to obtain meaningful results. Notice
that in principle u(t) can by anything as long as it is sufficiently compactly
supported. Also note that u(t) is the impulse response of the overall system
that is realized and thus %(z) is the frequency response of the overall system.
Clearly we would like u(t) to be as close to §(t) as possible (in the sense
of distributions) or, equivalently, %#(z) to be as close to unity as possible.
This means that we would like to include as many terms as possible in
(36). Observe that for fixed z the summation term corresponding to the
point { € Z, that is closest (in Euclidean distance) to z, is of significant
magnitude. Therefore we should include all terms corresponding to points
¢ € Z located within the desired bandwidth (and in fact many more). On
the other hand, noise considerations dictate a smooth choice of u(t) which in
turn implies a fast decay of 4(z) at infinity. Thus we have to accommodate



conflicting interests. We seek a compromise in the choice of @(z) that will
account for the following requirements:

1. u(?) is sufficiently compactly supported (i.e. the condition of Theorem
3 is approximately satisfied).

2. U(z) is close to the identity over some bounded region of interest (i.e.
bandwidth requirements are being met).

3. u(?) is sufficiently smooth (Noise averaging)

These requirements are clearly interrelated. It is not at all clear what is
a proper choice for %. We have used functions of the form:

2 sin(%2;) N
() = (H-——_{Y——-) po(2) (37)

=1 N&

where N is a small positive integer and €, € are small positive reals. The
function p.(z) is defined as follows:

)L IZ{[ST,i=1,2
pr(2) = { g, elsewhere (38)

The first factor is a two dimensional sinc-like function. This approach comes
from experimentation and an attempt to control the residue in equation (36)
due to the widening of the support of h;. Here the parameter r (forced cutoff
in rads/sec) is to be chosen sufficiently large to include all main features of
the first factor (the main lobe and the principal sidelobes at least) , while
keeping the size of the computation reasonable. If we fix ¢ and increase
N then u gets smoother and its peak gets taller while its support remains
fixed and. the main lobe of ¥ gets wider. An undesirable result is that the
amplitude within the main lobe of % flattens out. On the other hand if we
fix N and decrease € the support of u narrows, its peak gets taller, and the
main lobe of & widens. Furthermore the main lobe amplitudes are pushed up
towards unity. Simulation results are given at the end of this section . For
the case €; = €2 = € we observe a high degree of energy concentration along
a ribbon-like neighborhood of the z; axis, while amplitudes everywhere else
are attenuated by at least an order of magnitude. This is not suprising
because we have noted that any finite approximation to the deconvolution
kernels is not § — rotation invariant. Since we achieve better bandwidth

10



characteristics along 2z; we should choose €, smaller than ¢, (observe that
the magnitude of the main lobe is ~ ). This will partially compensate for
the problem by essentially spreading out the energy originally concentrated
along the neighborhood of z;.

The simulation results make clear that the bias against one frequency
variable resulting from finite approximations of the proposed deconvolution
kernels actually manifests itself in a profound way and can severely distort
the overall system spectrum even at frequencies in the vicinity of the ori-
gin. There exists no a priori reason for the appearance of such a bias (for
the particular model at hand is symmetric and %-ri) but rather the cause
can be traced back to a somewhat arbitrary choice between two distinct
possibilities in writing down interpolation formulas. Before we discuss this
very important point let us give a partial “a posteriori” solution: if the
transforms of the convolvers are symmetric and Z-rotation invariant then a
simple solution would be the following:

Let ﬁg,n(zl,z2), 1 = 1,2,3 denote the obtained approximations of the
Fourier transforms of the deconvolution kernels, where n denotes the cardi-
nality of the nullset, Z, , over which we sum. Next for { = 1,2, 3 define

-~ A o~
h%,,n(zla 22) = hf,n(227 21) (39)
= Binon,22) 4 Bhy(21, )
T A hi,n(zl’ ry] + hi, Z1422
hin(21,22) = 5 (40)
By definition ’ﬁ’{yn(-, +) is % rotation invariant since
e A hin(z2,n) + 71,{',,(22, z1)
h; n(z2’ 21) =
’ 2
_ (a1, 2) + Rin(a, 2)
- 2
= Ri,(21,22) (41)

Let Tz;, 1 = 1,2, 3 denote the Fourier transforms of the exact deconvolu-
tion kernels. Then by theorem 3 we have that:

-

hip — 77,,-, asn — 00, fori=1,2,3 (42)

11



Thus, by symmetry and 7 rotation invariance of the solution:
ﬁfn —_ Tzf‘ =h;, asn —s 0, fori=1,23 (43)

Hence the same is true for their average, i.e. the family {ﬁ;" 1 =1,2,3}
constitutes a converging solution. Furthermore for all finite n the later
family behaves better because it acquires bandwidth in a radially increasing
fashion. Simulation results for this averaged solution are given at the end
of this section.

We now turn to the general case where the Fourier transforms of the
convolvers are not symmetric and % - rotation invariant. In this case it is
not necessarily true that 71{' = 7&,- and the remedy above fails. In fact we
ezpect the exact solutions to be asymmetric and/or biased. Nevertheless
we have to account for spurious responses introduced by the need to come
up with a finite computation because otherwise the results will be severely
distorted. We now investigate the cause of these problems and proceed
to propose a definitive solution. Consider the determinant involved in the
interpolation formula (13) of Theorem 3 .

91z, ¢0) ¢i(z,¢) (=)
d=|93(z,0 60 (20 (44)
f(z)  f(2)  f(z)

where the g;:(z, ¢), 1=1,2,3, 7 =1,2 are holomorphic functions given by

Filz,6) = FG, G)

9i(z,0) = = (45)
31 1

g;(z’ C) — E(zla 2:) : fi(zl, CQ) (46)
2 — (2

Now consider the first column of d. The idea is to write [8]

AGL=) - A(GLG) = (21— G) 6z O+ (2 - ) -g3(2,()  (47)
Quite clearly this can also be achieved via

Alzn2) = A(GL,6) = (21— Q) - 31(5 O+ (22 - () - 33(2,C)  (48)
Where §i(z,¢) and §i(z,() are defined as follows:

i) & Doz 2 i) (49)

12



_ a A(¢,2) — fi(¢,6)
92(27 C) - 29 — C2

There is no a priori reason for choosing any particular holomorphic form;
either will do. Nevertheless some choice has to be made. In the limit this
choice makes no difference, but for all finite n = #Z, since etther expansion
pair of holomorphic functions is biased, the overall system response is biased
towards one of the two frequency variables. Therefore we can define:

R EAC I HCANN H{ENY
d=|gi(=¢) 33(z¢) F3(%0) (51)
AG) Rz fa(2)

with 32, 33, 35, §5 defined as follows

falz1,22) — ACED

(50)

gi(=,0) = pa—o (52)
) = E(cl,z;z = ﬁ(cl,cz) (53)
gi(e,0) = D)= Sl (54)
e 0) = fs(cl,zi = Cf};.(cl,cz) (55)

So we need to use equation (13) to obtain two sets of solutions: one using
the original d, and one using d in place of d. Again since both solutions
converge to the exact deconvolvers as n — oo the same is true for their
average. Furthermore, the bias is canceled out and does not appear in the
overall system spectrum. Observe that if the transforms of the convolvers
are symmetric and §- rotation invariant this approach reduces to the much
simpler a posteriori remedy discussed earlier, which requires about half as
much computation.

Simulation results are presented in the sequence of figures that follows.
A nullset cardinality n = #Z = 3200 points, a frequency step of 0.1718
rads/sec and a frequency resolution of 256 x 256 points is adopted through-
out the whole sequence of simulations. The parameter t denotes threshold
value. The magnitude of the Fourier transform of the convolution kernels

13



for the model problem is plotted in figures 2, 3, 4. The magnitude of the
Fourier ransform of the overall system (i.e. bank of convolvers followed by
bank of associated deconvolvers whose outputs are summed up to produce
the overall system output) using the %(z) given by equation (37) with pa-
rameters €; = €2 = € = 0.1, N = 3 is plotted in figures 3, 6, 7 for various
threshold levels. The following three figures, 8, 9, 10 depict the magni-
tude of the Fourier transform of the overall system using the u(z) given by
equation (37) with parameters ¢ = 0.1, e = 0.5, N = 3. The last four
figures, 11,12, 13, 14 depict the magnitude of the Fourier transform of
the overall system using frequency averaging of the resulting deconvolution
kernels depicted in figures 8 up to 10.

14
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Figure 3: Magnitude of ¥'T of convolver 2, t=0.1
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Magnitude of FT of overall system, ¢ = 0.1, N =3, t =0.1
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Figure 7: Magnitude of FT of overall system, e = 0.1, N =3, t = 5.0
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Figure 10: Magnitude of FT of overall system, e; = 0.1, 2 = 0.5, N =

3,t=5.0
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Figure 12: Magnitude of FT of overall system, ¢ = 0.1, e = 0.5, N

3, averaged, t = 0.1
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Figure 13: Magnitude of FT of overall system, ¢; = 0.1, ¢ = 0.5, N =
3, averaged, t = 0.5 :
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3 Efficient Computation

A very important issue (at least from the point of view of applications) is
how efficiently can "reasonably good” approximate deconvolution kernels be
computed from raw data such as samples of the frequency response of the
convolvers, or, ideally, analytic expressions for the convolution kermels or
their Fourier transforms. There are several complex issues involved, includ-
ing the basic questions of modeling, data availability, accuracy of measure-
ments (resolution) and others. We will not discuss these issues here but we
will assume that a sufficiently accurate model of the convolvers is available.
Since we will work with samples of the Fourier transforms of the convolution
kernels the data set will eventually be discrete. We remark however that
the algorithm requires precise knowledge of the common zeros of the very
well behaved subfamily (and is in fact sensitive to errors in the location of
these common zeros).

As soon as a sufficient model has been established the actual computa-
tion seems quite straightforward; one basically needs to calculate pointwise
approximations to an infinite sum, that is, approximate an infinite sum for
every point over a finite two-dimensional grid of frequencies. For reasonable
resolution and degree of approximation this computation can simply be over-
whelming! A typical set-up for simulations throughout this work has been
as follows: 256 X 256 individual frequencies and 3200 terms/point for each
frequency. The computation of each term requires a relatively large number
of floating point operations by itself. Therefore the task becomes time-
consuming for an ordinary sequential machine, especially since one usually
needs to apply a trial-and-error approach to optimize various parameters in
order to meet design goals. Quite fortunately the problem at hand is inher-
ently parallel in nature and renders itself for efficient implementation using a
special machine architecture that exists commercially. The key observation
is that the computation for each frequency point is independent from the
corresponding computation for any other point.

3.1 The Data Parallel Architecture

The data parallel architecture is a combination of data parallel software and
hardware that supports parallel data-element-wise processing of large uni-
form data structures, such as arrays or fields. Simply put, Data Parallel
computing associates one processor with each data element. Upon instruc-
tion from the supervising central control unit, each processor operates on
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its associated data element, i.e. all processors execute the same sequence
of operations each on iis own data element in a synchronous fashion. This
computing style exploits the natural computational parallelism inherent in
many data-intensive problems.

The particular machine used throughout this work has been the Thinking
Machines Corp. Connection Machine CM-2 system. This is an advanced,
highly sophisticated machine that supports the Data Parallel Computing
model. Data parallel operations are implemented directly in hardware. In its
full configuration the CM-2 system parallel processing unit contains 635,536
data processors, logically subdivided into four clusters of 16,384 processors
each. Each data processor contains a separate Arithmetic and Logic Unit
(ALU), 256 Kbits of bit-addressable local memory, an optional floating point
accelerator, an I/0 interface as well as a number of interprocessor commu-
nication interfaces. Arbitrary point-to-point communications are permitted
by means of special-purpose hardware, called The Router. Message pass-
ing can occur in parallel; all processors can simultaneously send and receive
messages via mailboxes that reside in their local memories. A finer sys-
tem called The NEWS Grid implements a nearest-neighbor communication
scheme that is much more efficient than the general router mechanism. The
NEWS Grid is realized in hardware too. The Grid operates via a permuta-
tion circuit. This permutation circuit has another mode of operation, known
as Direct Hypercube Access that facilitates the design of rather complex but
quite regular communication patterns.

The data structure to be operated upon is uniformly spread over the data
processor grid of one, two or four clusters. Each data element of the structure
resides in the local memory of a data processor. If the data structure is
bigger than the actual number of processors available (which is the normal
case), a virtual processor mechanism becomes active. As a result each data
processor is timeshared between two or more tasks and its associated local
memory is sliced into a proportional number of equal-length segments. From
the user point of view this process is transparent. Parallel extensions of the
popular programming languages C, Fortran and Lisp are supported. The
actual language extensions are minimal, depending on context to distinguish
scalar from parallel operations. "Loaded” versions of all familiar functions
and constructs are provided. These enable the use of a rather abstract
programming style that does not require explicit identification of parallel
operations.
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3.2 Optimizing the computation of the deconvolution kernels
- Grid Layouts

With the Connection Machine Data Parallel Architecture in mind, the next
task is to optimize the target computation with respect to various efficiency
considerations. Next we stress the most important facts that need to be
taken into account, based on our model problem.

1. Symmetry of Deconvolution kernels in the transform domain. As a re-
sult we only need to compute the pointwise values of the corresponding
Fourier transforms in the upper-right frequency quadrant.

2. For each frequency pair, (21, 2;), careful reshuffling of summation terms
(over the nullset Z£) can result in a reduced number of required floating
point operations.

3. For each frequency pair, (21, 22), and each nullset point ({1, ¢z) the cor-
responding terms for the Fourier Transforms of the three deconvolvers
share a common factor. Therefore this factor need only be computed
once for all three uses. Recall that for 7 = 1,2, 3 we have

fﬁi B _ ﬁ(C1LCZ) . Ci(z11327C17C2)
(F2) (ngez J(C, ) fa(Gry G2) (a1 = Q)22 = C2) (%0

It is worth noting that this common factor carries out much of the compu-
tation involved. Hence for a given point (21, 2z2) the computations hl(zl, z2),
hz(zl,zz) h3(21,22) are strongly related; this fact can be effectively used to
our advantage.

Fact (1) reduces the complexity by . Fact (2) by a factor close to 1.
Fact (3) can result in reductions of up to , depending on the ﬁoatmg pomt
function library used. Hence the total ga.m is in the order of = 3.

Returning to the specific computing model and assuming “enough” pro-
cessors what would be the most efficient thing to do? One can employ
parallelism at various different levels. A very efficient way to attack the
problem would be as follows: For each pair of frequencies, (2y,22), in the
upper-right transform quadrant assign one data processor to each nullpoint
(¢1,¢2), and use the NEWS GRID nearest neighbor communication facility
to compute partial sums row-wise along the grid. This scheme should be
replicated for all three kernels and for all frequency pairs (21, 22) in the up-
per right transform quadrant. The data processor grid layout would be as
in figure 15, where e denotes a data processor, and + denotes floating point
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addition. This grid configuration is not optimal in terms of time efficiency
because it does not make use of Fact (3). Next we add a fourth comput-

ing layer that calculates the factor ——ul6,%)  for each pair ({1, (2) of
] J{¢1,62) F3(1:€2)
the nullpoint set and feeds the result to the appropriate computing cells.

This scheme makes partial use of Fact (3). This time we need to introduce
vertical cell communications to enable this new type of transaction to take
place. This (type II) grid setup is depicted in figure 16, where ¢ denotes a
data processor, — denotes interprocessor communication, and <+ denotes
floating point addition. The grid operates as follows: While Layer O com-

5 (41:22?}5221,4’2) the cells of Layers 1-3 compute the factors

Z%‘jé?ﬁ}ﬁ——%)) When both computations are completed a column-wise par-
allel fetch transaction, takes place after which each Layer 1-3 cell multiplies
the fetched value with its result and then a row-wise + transaction takes
place. Results rest in the right most column. Both these strategies are highly
efficient but require a very large number of virtual processors. This implies
that each actual processor must be timeshared between a large number of
tasks. Thus the task hopping rate increases and the cummulative overhead
per computation cycle becomes significant. As a result system throughput is
slowed down. Unless the number of actual processors is increased by an or-
der of magnitude one needs to relax the computing power requirements. The
proposed grid configurations, although currently impractical, have demon-
strated the massively parallel nature of the problem. We now turn to a more
modest strategy.

In its full configuration the Connection Machine model CM-2 employs
64K processors. With a frequency resolution of 512 x 512 points we can
simply assign each processor the task of computing one point value for all
three kernels. This requires il—?-’f;-l—"’ = 64K processors. This way no in-
terprocessor communication is needed and the size of the nullset is of little
practical importance, because it does not affect the number of processors
required (only affects the execution time). Thus quite large nullsets can be
easily accommodated. Notice that since each processor computes a specific
point value for all three kernels, Fact (3) can easily be exploited. In a fully
configured Connection Machine with 64K processors the run time (excluding
I/0) is around four minutes (for the upper right hand quadrant only).

putes the factors
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4 Conclusions

We have described results on a specific solution to the two dimensional
Analytic Bezout Equation. We have employed recent methods of complex
analysis to obtain compactly supported deconvolution kernels. This is an
important property for real-time filtering applications. The computability
of reasonably good approximations to these ideal deconvolution kernels has
been verified. These approximations are themselves compactly supported
(but of support which is wider than that of the ideal kernels) and they
permit arbitrarily good reconstruction of the original image. It has to be
noted that these kernels are computed off-line and therefore the computa-
tional load involved is of no significance in so far as the applications are
concerned. Nevertheless, since interactive design requires a trial-and-error
approach the process can become time consuming. To overcome this diffi-
culty we have proposed a number of Data Parallel grid layouts that are very
efficient in performing the required computation and render themselves for
fast implementation on commercially available machines.
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