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Over the last two centuries, the Human System went from having a small

impact on the Earth System to becoming dominant, because both population and

per capita consumption have grown extremely fast, especially since about 1950. We

therefore argue that Human System Models must be included into Earth System

Models through bidirectional couplings with feedbacks. In particular, population

should be modeled endogenously, rather than exogenously as done currently in most

Integrated Assessment Models. The growth of the Human System threatens to

overwhelm the Carrying Capacity of the Earth System, and may be leading to

collapse. Earth Sciences should be involved in the exploration of potential mitigation

strategies including education, regulatory policies, and technological advances.

We describe a human population dynamics model developed by adding accu-

mulated wealth and economic inequality to a predator-prey model of humans and

nature. The model structure, and simulated scenarios that offer significant impli-



cations, are discussed. Four equations describe the evolution of Elites, Commoners,

Nature, and Wealth. The model shows Economic Stratification or Ecological Strain

can independently lead to collapse, in agreement with the historical record.

The measure “Carrying Capacity” is developed and its estimation is shown to

be a practical means for early detection of a collapse. Mechanisms leading to two

types of collapses are discussed. The new dynamics of this model can also reproduce

the irreversible collapses found in history. Collapse can be avoided, and population

can reach a steady state at maximum carrying capacity, if the rate of depletion of

nature is reduced to a sustainable level, and if resources are distributed equitably.

Finally we present a Coupled Human-Climate-Water Model (COWA). Policies

are introduced as drivers of the model so that the long-term effect of each policy on

the system can be seen as we change its level. We have done a case study for the

Phoenix AMA Watershed. We show that it is possible to guarantee the freshwater

supply and sustain the freshwater sources through a proper set of policy choices.
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Preface

This dissertation is essentially a collection of three of the papers that I have

coauthored in my research on Coupled Human-Earth System Models. One of these

papers is published and two are under preparation.

In the first paper, we focus on the importance of Coupling Human System

Models and Earth System Models through “bidirectional” feedbacks. We empha-

size on including Population as an endogenous variable in the models. Then we

present the first generation of our minimal model for the Human And Nature Dy-

namics (HANDY). This model helps us better understand the underlying feedback

processes, and develop the notion of “Carrying Capacity”. This concept plays a

central role in understanding sustainability of various societies. Generalizing this

concept to various systems is discussed in the first paper. Results of the HANDY1

model and study are published in the second paper by Motesharrei et al. [2014b].

And finally, we discuss and show the results from our Coupled Human-Climate-

Water Model (COWA), subject of the COWA working paper.

I hope that the presented papers can trigger an increasing interest in adopt-

ing multidisciplinary approaches to address various socio-environmental problems.

There is a huge void in this area, and therefore, a tremendous potential for novel

research that produces actionable science.
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Chapter 1: Introduction

This chapter gives a brief introduction to the general type of problems that we

will consider in this thesis. We start with a description of the issues, then propose a

general framework to tackle the problem, and end with a description of the progress

until now —presented in the following chapters of this dissertation

1.1 Problem Statement

The first decade of the twenty first century has been characterized by an in-

creased awareness of global challenges for humanity and for our planet. On the

human side, our world is facing serious social and economic problems. Increasing

social inequality appears to exacerbate existing conditions of poverty, hunger, and

unrest in many countries. Rising energy prices have resulted in increased food prices,

a major topic of discussion during meetings of world leaders, e.g., the 2008 G8 Sum-

mit in Tokyo and the 2012 Rio+20 conference in Brazil. Long lasting droughts

in northeast Africa have caused a humanitarian crisis in Somalia; sudden drought

conditions in Latin America (most notably Mexico in 2011 and Argentina in 2008-9

and 2012-13) have yielded significant economic impacts due to losses in agricul-

tural productivity. Rapidly growing population and high fertility rates is a major
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factor behind youth unemployment, which is as high as 30% in some Middle East

and African countries. Even the United States and the European Union struggle

with record level unemployment and other symptoms of long-lasting financial and

economic critical conditions.

Overall, drought, famine, poverty, terrorism, disease, conflict, social unrest,

and economic state failure are just a few of these challenges, which we must over-

come as regions around the world are constrained by factors such as availability

of natural resources, a changing climate and population growth. Over-exploitation

of natural resources, mostly non-renewable or very slowly renewable such as water

and soil, has become a critical problem. Climate change has increased both the

frequency and severity of extreme weather events, including floods, droughts, and

storm surges. Many of these challenges and driving factors are often intertwined, and

understanding their coupling and dynamics is limited to commonly used cause-effect

analyses, which are insufficient. This will continue to be the case until transforma-

tive approaches are developed and implemented to positively affect stable and secure

social, economic and political environments internationally. This proposal attempts

to embody such an approach.

Various governments, research institutes and international organizations have

attempted to address several of the above-mentioned challenges over the past decades.

However, not only are they not being solved, but many of them have actually wors-

ened. For the most part, approaches in academia and research institutes have been

single discipline, i.e., with the focus solely placed on specific branches of science,

engineering, economics, or another single aspect of the larger problem. Govern-

2



ments and international organizations, i.e., development banks, think tanks, and

NGOs, tend to concentrate on a particular socioeconomic “sector” such as water,

energy, agriculture, and biodiversity, often ignoring the connections (resources and

constraints) between such sectors. Integrated, multi-disciplinary approaches and

innovative methods are needed to tackle these global challenges. Finding solutions

for these challenges that are effective and sustainable requires a new paradigm that

considers apparent and hidden connections between the natural and human systems.

1.2 Project Framework

We will work within the global Human-Earth System framework we have devel-

oped that models the interactive dynamics of the five key sub-systems of the human-

nature system: population, climate, water, energy/resources, and food/agriculture.

The last three subsystems will include an input/output economic module. This will

be done through combining data collection, analysis techniques, modeling, and data

assimilation. We will develop, and optimize measures and policies that can be imple-

mented in practice for use in early detection of critical and/or collapsing conditions.

We also aim to recognize parameters and externalities (such as inadequate measures

or policies) that can play a significant role in occurrence of catastrophes and col-

lapses. By adjusting the values of those parameters found to be influential through

numerical experiments and simulations, we will generate short-term and long-term

policy recommendations that can keep the system within sustainable development

targets (e.g., Millennium Development Goals or OECD targets).

3



1.3 Progress to Date

We have developed prototype models for the five sub-systems of the Human-

Earth System. The population, water, and climate sectors are already programmed

and coupled with each other. The Earth System model (UMD-ICTP), developed

originally by Ning Zeng and Fred Kucharski, has an interactive dynamical vegeta-

tion model (VEGAS), and produces simulations of climate evolution with simulated

temperature and precipitation fields that agree well with observations. It also has a

coupled River Routing Module (RRM) that, together with the UMD-ICTP GCM,

feeds into the Coupled Water model (COWA) through precipitation, evaporation,

and river inflow/outflow rates. As a case study, we apply COWA to the Phoenix

AMA Watershed.

We have also built a minimal, 4-variable model for conceptual developments

and thought experiments, called Human And Nature Dynamics (HANDY) [Mote-

sharrei et al., 2014b]. The variables of HANDY represent “elite” and “commoner”

population groups, natural resources, and accumulated wealth. The model develops

and defines the concept of “Carrying Capacity”, and shows that Carrying Capacity

is a practical means for the early estimation of a collapse. HANDY shows how rapid

depletion, as well as high inequality in consumption, can each independently lead

to a full collapse of the society —similar to those observed many times throughout

history. It also shows that Collapse can be avoided, and population can reach a

steady state at the maximum carrying capacity, if the rate of depletion of nature is

reduced to a sustainable level, and if resources are distributed equitably.
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Chapter 2 of this thesis gives a more in-depth description of the existing in-

teractions between the Human System and the Earth System. It then explains the

framework proposed above in greater details, and gives a review of the several well-

known Human-Earth System models, focusing on the missing bidirectional feedbacks

between model components. In particular, an argument is made that the population

should be included in the models as an endogenous variable, fully coupled to other

sectors of the Human-Earth System. A set of practical solutions is proposed in-

cluding education, regulatory policies, and technological advancement. Role of the

fully-coupled models in evaluating and developing such solutions is discussed. The

material presented in chapter 2 is a journal publication that I coauthored with Jorge

Rivas, Eugenia Kalnay, Robert Cahalan, Mark Cane, Klaus Hubacek, Fernando

Miralles-Wilhelm, Takemasa Miyoshi, Margaret Palmer, Matthias Ruth, Jagadish

Shukla, and Victor Yakovenko.

Chapter 3 covers the HANDY1 model: its structure, experiments, and re-

sults, all presented in the journal article I coauthored with Jorge Rivas and Eugenia

Kalnay.

Chapter 4 covers our Coupled Human-Climate-Water model (COWA). Ex-

periment results for the Phoenix AMA watershed are discussed. The work pre-

sented in this chapter is the subject of a working paper I am coauthoring with Cort-

ney Gustafson, Fang Zhao, Jorge Rivas, Huan Wu, Ning Zeng, Fernando Miralles-

Wilhelm, and Eugenia Kalnay.
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Chapter 2: Population and the Earth System

Over the last two centuries, the Human System has grown from having a small

impact on the Earth System to becoming dominant. Both population and per capita

consumption have grown extremely fast, especially since about 1950. We argue that

the Human System Models must be coupled with the Earth System Models through

bidirectional feedbacks. In particular, population should be modeled endogenously,

rather than exogenously as in most Integrated Assessment Models. The growth

of the Human System threatens to overwhelm the Carrying Capacity of the Earth

System, and may be leading to collapse. The Earth Sciences can, and should be,

involved in the exploration of mitigation strategies including education, regulatory

policies, and technological advances.

2.1 The Dominance of the Human System in the Earth System

Planet Earth has been the habitat of the human population for millions of

years. Our life depends on the resources provided to us by the Earth System (ES).

We breathe the air from the Earth’s atmosphere; we drink the water from rivers,

lakes, and wells; we eat the fruits from the trees and the meat and dairy from the

animals; over the past 8,000 years we have used the land for agriculture, and we mine

6



the Earth’s crust for metals and other minerals. Until about 200 years ago, we used

renewable biomass as the major source of energy, but over the course of the past two

centuries, we have become heavily dependent on fossil fuels (coal, oil, and natural

gas), which made possible both the Industrial Revolution and the Green Revolution.

Our relationship with our planet is not limited to consuming its resources. Waste

is an inevitable outcome of any production process; what is produced must return

to the ES in some form. Trash goes back to the landfills; polluted water goes back

to the rivers, streams, lakes, oceans, or into the ground; and greenhouse and other

toxic gases go into the atmosphere and the ocean.

Humans thus impact the ES by extracting its resources and by returning waste

and pollution back to the system. The level of this impact is determined by the ex-

traction and pollution rates, which in turn, are determined by the total consumption

rate. Total consumption equals population multiplied by the average consumption

per capita. Using Gross Domestic Product (GDP) per capita as a rough measure

of consumption per capita, the extent of the impact of the Human System (HS) on

the ES can be estimated from the total population and the average consumption

per capita.

World population remained below 5 million for tens of thousands of years.

After the Agricultural Revolution, it took the world population 10,000 years to reach

one billion around 1804. It only took about a century to reach the second billion,

around 1922. Then, in less than a century, five billion more humans were added

[Christenson, 2002]. The peak in the rate of growth occurred in the 1960s, but due

to the higher population, the peak in absolute growth was in the 1990s [Christenson,
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Figure 2.1: From Maddison [2001]

2002]. Even the recent decline in the rate of growth has not significantly reduced

the absolute number currently added every year (∼75 million, equivalent to the

population size of Germany). A similar pattern is true for GDP/capita, with the

growth acceleration occurring even more recently (see Fig. 2.1). Thus, until the

last century, both population and GDP/capita were so low that the Human System

was a negligible component of the Earth System. However, both population and

GDP/capita experienced explosive growth after ∼1950, and their product —total

impact— has grown “super-exponentially” from being almost negligible to becoming

dominant in the ES. Despite the widespread belief that population growth is no

longer an issue, these trends continue. We are currently adding a billion people every

13–15 years, and are projected to do so for decades to come. Global GDP/capita
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growth is also not projected to decline significantly.

Two major factors enabled this population explosion. First, advances in san-

itation and medicine significantly reduced mortality rates and lengthened average

life-span [Dyson, 2010; Preston, 1980]. Second, the efficient and large-scale exploita-

tion of fossil fuels [Krausmann et al., 2009] —a vast stock of nonrenewable resources

accumulated by Nature over hundreds of millions of years that we are drawing down

in a few centuries— and the invention of the Haber-Bosch process to use natural gas

to produce nitrogen fertilizer [Erisman et al., 2008; Smil, 2004], enabled increasingly

higher levels of food and energy production, allowing for this fast growing popula-

tion. For example, between 1950 and 1984, the production of grains increased by

250% due to the use of fossil fuels for fertilization, mechanization, irrigation, and

pesticides [Kendall and Pimentel, 1994]. These advances, together with the devel-

opment of new seed varieties, are referred to as the “Green Revolution” that allowed

global population to double in that period [Ramankutty et al., 2002].

The rapidly growing size of the Human System has come to dominate the

Earth System in many ways. The majority of the global net primary production

(vegetation) is appropriated by Humans[Rojstaczer et al., 2001]. Most cultivatable

land is converted to agriculture [Tilman et al., 2002]. Largest portion of large

mammals is comprised of domesticated animals [Kareiva et al., 2007; Lyons et al.,

2004]. Soils worldwide are eroded, fisheries exhausted, forests denuded, and aquifers

drawn down, while desertification due to overgrazing, deforestation, and soil erosion

is spreading [Scholes and Scholes, 2013; Vitousek et al., 1997]. Since climate change

is expected to make subtropical regions drier, desertification will increase, especially
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when bidirectional albedo-vegetation feedback is accounted for [Zeng and Yoon,

2009].

At the same time, the outputs of fossil fuel use and land-use changes have be-

come the major drivers of global climate change [Hansen et al., 2013; Tilman et al.,

2001]. Atmospheric levels of carbon dioxide, methane, and nitrous oxide not only

exceed pre-industrial concentrations by about 40%, 150%, and 20%, respectively,

but are now substantially above their maximum ranges of fluctuation over the past

800,000 years, while total carbon dioxide emissions continue to grow at a rapid rate

[Ciais et al., 2013]. Arctic sea ice, Antarctic and Greenland ice sheets, global glacier

mass, permafrost area, and Northern Hemisphere snow cover are all decreasing sub-

stantially, while ocean surface temperatures, sea level, and ocean acidification are

rising. The Human System now dominates the global nitrogen cycle, having pro-

duced a 20% rise of nitrous oxide (N2O) in the atmosphere, now the third largest

contributor to global warming, and a tripling of ammonia (NH3) in the atmosphere

due to human activities [Galloway et al., 2004]. In total, human processes produce

about as much reactive nitrogen as all natural processes combined. Human activities

also dominate many regional hydrological cycles [Vrsmarty et al., 2000] to such an

extent that major rivers such the Colorado, the Nile, and the Yellow River no longer

reach the sea for significant parts of the year. Human processes also play a major

role in virtually every major metal’s cycle. While the exact causes are difficult to

establish, current rates of animal and plant species extinction rates are estimated

to be at least 100 times the natural background rate [Regan et al., 2001].

While population has stabilized in some countries, population growth contin-
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ues to be more than 1% per year in 130 out of about 230 countries in the world

[United Nations, 2007]. For example, the United States is projected to grow at a

rate of about 1%. With very high consumption and emissions per capita, these

developed country population increases have a disproportionate impact. But pop-

ulation growth is not just a problem in the developed countries. One often hears

that the continued very high levels of population growth in many of the world’s

poorest countries is not relevant because they have much lower impact per capita,

but it is actually poor populations who have the largest potential to increase their

consumption and emissions per capita [Lawrence et al., 2013]. Until the currently

wealthy countries can produce a large decline in their emissions per capita, there

is no reason to project that the population of the less developed countries will not,

in decades to come, be emitting as much per capita as currently wealthy countries

do today (China’s recent dramatic rise in emissions per capita has confirmed this

future path for the developing world). To argue otherwise requires assuming that

today’s developing countries will remain in desperate poverty.

Herman Daly (one of the founders of the field of Ecological Economics) has

pointed out that this path is not sustainable: “We are drawing down the stock of

natural capital as if it was infinite” [Daly and Farley, 2003b]. Contrary to standard

economic theory, physical laws place real constraints on the way in which materials

and energy can be used and discharged in the Human Economy [Georgescu-Roegen,

1971; Ruth, 1993]. To be sustainable, human consumption must remain at or below

what can be renewed and processed by the Earth System.

Economic theories that endorse limitless growth are based on a model of the
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economy that does not account for the resource inputs and waste outputs, i.e.,

essentially the model of a perpetual motion machine. But in the real world, economic

activity both consumes physical material and energy inputs and produces physical

waste outputs. The Earth System performs the functions (“ecosystem services”)

of providing both the Sources of these material and energy inputs to the human

economy, as well as the Sinks which absorb and process the pollution and waste

outputs of the human economy. Since the scale of the human economy has grown

dramatically relative to Earth System’s ability to provide these ecosystem services,

the problems of depletion and pollution have grown dramatically [Daly, 1996b].

It is often suggested technology will solve environmental sustainability prob-

lems [Nordhaus et al., 1973; Simon, 1981; Solow, 1974]. However, while technolog-

ical change can increase resource-use efficiency, it also raises the scale of resource

extraction and per capita resource consumption, such that, absent policy effects,

the increases in consumption associated with the “Rebound Effect” often compen-

sate for the increased efficiency of resource-use [Greening et al., 2000b; Polimeni

et al., 2008b; Ruth, 2009b]. Technological advances that appear to be increases in

productivity are often due to greater resource throughput, accompanied by greater

waste output. Thus, despite tremendous technological advances, resource-use per

capita as well as waste and emissions per capita continue to increase. Technolog-

ical advances could and should be a part of the solutions to environmental and

sustainability problems, but these technological solutions will not just happen by

themselves; they require policies based on scientific knowledge to guide and support

their development and adoption.
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Figure 2.2: Relationship of Human System and Earth System, after Daly and Farley
[2003b]. When the human economy was very small relative to the Earth System,
it could be modeled alone. The Human System has grown so large relative to the
Earth System that both must now be modeled coupled to each other.

Modern society is built on the consumption of the solar capital accumulated

over hundreds of millions of years (i.e., fossil fuels) which cannot be replenished

on a human timescale [Meyers, 2012]. If we consume these fossil fuels over a few

hundred years, we would be using up this capital in one millionth of the time it took

to accumulate. Therefore, by definition, modern civilization’s energy consumption

will not be sustainable until it comes from energy sources other than fossil fuels.

An important concept for the study of sustainability is Carrying Capacity, the

population level that the resources of a particular environment can maintain over
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the long term [Catton, 1980b; Cohen, 1995b; Daly and Farley, 2003b]. A population

overshooting the Carrying Capacity is exposed to collapse, as has happened many

dozens of times in the last 5000 years. A recent study focusing on the many collapses

that took place in Europe has excluded climate forcing, war, and disease as the root

cause of such collapses, leading to the conclusion that overrunning Carrying Capacity

—the level of population that the ecological system can sustain— has been the root

cause of collapses [Shennan et al., 2013b].

In order to study the mechanisms behind such collapses, we built a human

population dynamics model, HANDY1 [Motesharrei et al., 2014b], by adding accu-

mulated wealth and economic inequality to a predator-prey model of human-nature

interaction. The model shows Economic Stratification and Ecological Strain both

play a role in collapse, in agreement with the historical record. Although the Car-

rying Capacity (CC) is defined mathematically within HANDY1, experiments from

HANDY1 show that it can also be estimated empirically as the level of popula-

tion at the time accumulated wealth starts declining. Experiments presented in the

HANDY1 paper for different kinds of societies show that as long as population does

not overshoot the Carrying Capacity by too much, it is possible to converge to a

sustainable level. However, if the overshoot is too large, a full collapse becomes in-

evitable. One can generalize the definition of Carrying Capacity (CC) to subsystems

with different types of natural resources coupled with population. For example, the

subsystems water, energy, and land each coupled bidirectionally to population result

in Water CC, Energy CC, and Land CC. Water CC can be defined as the level of

population that can be sustained given the level of water sources and supply in the
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area under study. In general, this level depends on both human and natural factors.

For example, Water CC is determined by the natural flow rate of water into and

out of the area, precipitation and evaporation, withdrawal rate from water sources,

dispensing technology, recycling capacity, etc. Moreover, Water, Energy, or Land

CC in a certain area can be improved through imports from other regions [Feng

et al., 2011; Rees, 1996; Wrtenberger et al., 2006].

2.2 The Need for Bidirectional Coupling of the Human System and

the Earth System Models

In the 1960s atmospheric scientists developed the first mathematical models to

understand the dynamics of the Earth’s climate, starting with atmospheric models

coupled to simple surface models (e.g., Manabe et al. [1965]). In the following

decades new components such as land, ocean, sea-ice, clouds, vegetation, carbon,

and other chemical constituents were added to make Earth System Models (ESM)

more physically complete. These couplings needed to be bidirectional in order to

include feedbacks [Manabe et al., 1965].

The importance of accounting for bidirectional feedbacks is shown by the phe-

nomenon of El Niño-Southern Oscillation (ENSO), which results from the coupled

dynamics of the ocean-atmosphere subsystem. Until the 1980s, atmospheric and

ocean models were coupled in a simple, one-way mode: the atmospheric models

were affected by the sea surface temperature (SST) but could not change it, and the

ocean models were driven by the atmospheric wind stress and surface heat fluxes, but
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could not change them. Such unidirectional coupling could not represent the posi-

tive, negative, and delayed feedbacks that take place in nature and which produce

the ENSO episodes. Cane et al. [1986] developed the first prototype of a bidirectional

coupled ocean atmosphere model, and this model for the first time allowed Zebiak

and Cane [1987] for the prediction of El Niño several seasons in advance. Most cur-

rent climate models have since switched to fully coupled atmosphere-ocean-land-ice

submodels. This example shows that we can miss very important possible outcomes

if the model fails to consider the bidirectional feedbacks between different coupled

components of the model. Since the Human System (HS) is currently so dominant,

in order to simulate its interaction with the Earth System it is essential to fully

couple the the two.

This process has taken place to a certain extent but the coupling does not

include bidirectional feedbacks. Energy and Agriculture sectors have been added

to ESMs creating “Integrated Assessment Models” (IAMs). There are now several

IAMs, including MIT’s IGSM, DOE’s GCAM, IIASA’s MESSAGE, the Nether-

lands EAA’s IMAGE, etc [Bouwman et al., 2006; Calvin et al., 2013; Edmonds

et al., 1994; Nakicenovic and Riahi, 1990; Prinn et al., 1999; Sokolov et al., 2005].

In order to estimate the future demand in the IAMs, population information is

usually obtained from a demographic projection like the United Nations Popula-

tion Data. These tables of estimated population determine the changes in resource

and pollution/emission levels, which in turn can determine other variables such as

atmospheric temperature. However, the changes in resource levels, pollution, tem-

perature, precipitation, etc estimated by the IAMs cannot in turn impact the level of
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population because the model population is estimated independently of the IAMs.

In other words, there is no feedback onto population, so that the coupling between

population and ES in most current IAMs is unidirectional , whereas in reality, this

coupling is bidirectional.
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Figure 2.3: Prototype schematic of our proposed Human-Earth System Model

To address the above issues, we propose a global Human-Earth System frame-

work (see Fig. 2.3) that models the interactive dynamics of the key subsystems

of the human-nature system: population, climate, water, energy/resources, and

food/agriculture. The last three subsystems include an input/output economic

module. This should be done through combining data collection, analysis tech-

niques, modeling, and data assimilation. This framework allows developing and
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optimizing measures and policies that can be implemented in practice for use in

early detection of critical and/or collapsing conditions. Moreover, parameters and

externalities (such as inadequate measures or policies) that may play a significant

role in occurrence of catastrophes and collapses can be detected. By adjusting the

values of those parameters found to be influential through numerical experiments

and simulations, short-term and long-term policy recommendations that can keep

the system within sustainable development targets (e.g., Millennium Development

Goals or OECD targets) can be designed and tested.

The policies to be modeled should include government policies that have been

proven to be successful. For example the province of Misiones, Argentina, whose

protection of the forest maximizes both the local vegetation and the income of the

population, stands out in satellite measurements of leaf density [Izquierdo et al.,

2008]. The state of Kerala, India, despite a GDP per capita of just $300, through

access to education and medical care, enjoys higher life expectancy, lower birth

rate, and superior education compared to the rest of India [Jeffrey, 1992; Thama-

ramangalam, 1998]. Education itself can be rendered in different forms. Education

through mass media can be influential for changing long-term cultural trends and

social norms, as can be seen, for example, from the impact of soap operas on fertility

rates in Brazil [La Ferrara et al., 2012]. Formal education in K–12 and College can

reduce societal inequalities and improve economic productivity [Lutz and Samir,

2011]. There are also extremely successful non-coercive population policies, e.g., in

Thailand, Mexico, and Iran [Potts, 1997; Potts and Marsh, 2010; Pritchett, 1994;

Wikipedia, 2014]. A study by Wire [2009] shows family planning is four times as
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efficient as adopting low carbon technologies in reducing carbon in the atmosphere

and ocean. Efficient policies are also needed for the other four sectors of the human-

earth system described above. A dynamical model of such system should be capable

of testing the effects of various policy choices on the long-term sustainability of the

system. We have developed prototype models for the five subsystems of the Human-

Earth System. The population, water, and climate sectors are already programmed

and coupled with each other. The Earth System model (UMD-ICTP) has an inter-

active dynamical vegetation model (VEGAS), and produces simulations of climate

evolution with simulated temperature and precipitation fields that agree fairly well

with observations [Kucharski et al., 2013]. It also has a coupled River Routing

Module (RRM) that, together with the UMD-ICTP GCM, feeds into the Coupled

Water model (COWA) through precipitation, evaporation, and river inflow/outflow

rates [Motesharrei et al., 2014a]. Data assimilation techniques such as the Local

Ensemble Transform Kalman Filter [Hunt et al., 2007] can be efficiently employed

to tune the models to fit past data. The importance and imminence of sustainability

problems at local and global scales and the key role that the Earth System plays

calls for a strong involvement of Earth Scientists in corresponding studies. To be

successful, such works require collaborations across disciplines that aim to synthe-

size knowledge, models, methods, and data. We will need appropriate mitigating

policies, education that raises collective awareness, and investment in building new

and improving existing technologies to combat potential socio-environmental chal-

lenges. It would be only through well-informed decisions that we can leave a planet

for future generations in which they can prosper.
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Chapter 3: Human and Nature Dynamics (HANDY):

Modeling Inequality and Use of Resources in the Collapse

or Sustainability of Societies

There are widespread concerns that current trends in resource-use are unsus-

tainable, but possibilities of overshoot/collapse remain controversial. Collapses have

occurred frequently in history, often followed by centuries of economic, intellectual,

and population decline. Many different natural and social phenomena have been

invoked to explain specific collapses, but a general explanation remains elusive.

In this paper, we build a human population dynamics model by adding accu-

mulated wealth and economic inequality to a predator-prey model of humans and

nature. The model structure, and simulated scenarios that offer significant implica-

tions, are explained. Four equations describe the evolution of Elites, Commoners,

Nature, and Wealth. The model shows Economic Stratification or Ecological Strain

can independently lead to collapse, in agreement with the historical record.

The measure “Carrying Capacity” is developed and its estimation is shown to

be a practical means for early detection of a collapse. Mechanisms leading to two

types of collapses are discussed. The new dynamics of this model can also reproduce

the irreversible collapses found in history. Collapse can be avoided, and population
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can reach a steady state at maximum carrying capacity if the rate of depletion of

nature is reduced to a sustainable level and if resources are distributed equitably.

3.1 Introduction

There are widespread concerns that current trends in population and resource-

use are unsustainable, but the possibilities of an overshoot and collapse remain

unclear and controversial. How real is the possibility of a societal collapse? Can

complex, advanced civilizations really collapse? It is common to portray human his-

tory as a relentless and inevitable trend toward greater levels of social complexity,

political organization, and economic specialization, with the development of more

complex and capable technologies supporting ever-growing population, all sustained

by the mobilization of ever-increasing quantities of material, energy, and informa-

tion. Yet this is not inevitable. In fact, cases where this seemingly near-universal,

long-term trend has been severely disrupted by a precipitous collapse —often lasting

centuries— have been quite common. A brief review of some examples of collapses

suggests that the process of rise-and-collapse is actually a recurrent cycle found

throughout history, making it important to establish a general explanation of this

process [Chase-Dunn and Hall, 1997; Goldstein, 1988; Meadows et al., 1972; Mod-

elski, 1987; Tainter, 1988; Turchin and Nefedov, 2009; Yoffee and Cowgill, 1988].

The Roman Empire’s dramatic collapse (followed by many centuries of popula-

tion decline, economic deterioration, intellectual regression, and the disappearance

of literacy) is well known, but it was not the first rise-and-collapse cycle in Eu-
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rope. Prior to the rise of Classical Greco-Roman civilization, both the Minoan and

Mycenaean Civilizations had each risen, reached very advanced levels of civilization,

and then collapsed virtually completely [Morris, 2006; Redman, 1999]. The history

of Mesopotamia —the very cradle of civilization, agriculture, complex society, and

urban life— presents a series of rise-and-declines including the Sumerians, the Akka-

dian, Assyrian, Babylonian, Achaemenid, Seleucid, Parthian, Sassanid, Umayyad,

and Abbasid Empires [Redman et al., 2004; Yoffee, 1979]. In neighboring Egypt,

this cycle also appeared repeatedly. In both Anatolia and in the Indus Valley, the

very large and long-lasting Hittite and Harrapan civilizations both collapsed so com-

pletely that their very existence was unknown until modern archeology rediscovered

them. Similar cycles of rise and collapse occurred repeatedly in India, most no-

tably with the Mauryan and the Gupta Empires [Edwards et al., 1971, 1973; Jansen

et al., 1991; Kenoyer, 1998; Thapar, 2004]. Southeast Asia similarly experienced

“multiple and overlapping histories of collapse and regeneration” over 15 centuries,

culminating in the Khmer Empire based in Angkor, which itself was depopulated

and swallowed by the forest during the 15th Century [Stark, 2006]. Chinese history

is, very much like Egypt’s, full of repeated cycles of rises and collapses, with each of

the Zhou, Han, Tang, and Song Empires followed by a very serious collapse of polit-

ical authority and socioeconomic progress [Chu and Lee, 1994; Lee, 1931; Needham

and Wang, 1956].

Collapses are not restricted to the “Old World”. The collapse of Maya Civiliza-

tion is well known and evokes widespread fascination, both because of the advanced

nature of Mayan society and because of the depth of the collapse [Demerest et al.,

22



2004; Webster, 2002]. As Diamond [2005] puts it, it is difficult to ignore “the disap-

pearance of between 90 and 99% of the Maya population after A.D. 800 . . . and the

disappearance of kings, Long Count calendars, and other complex political and cul-

tural institutions.” In the nearby central highlands of Mexico, a number of powerful

states also rose to high levels of power and prosperity and then rapidly collapsed,

Teotihuacan (the sixth largest city in the world in the 7th C) and Monte Alban

being just the largest of these to experience dramatic collapse, with their popula-

tions declining to about 20-25% of their peak within just a few generations [Tainter,

1988].

We know of many other collapses including Mississippian Cultures such as

Cahokia, South West US cultures such as the Pueblo and Hohokam, Andean civi-

lizations such as Tiwanaku, Sub-Saharan civilizations such as Great Zimbabwe, and

many collapses across the Pacific Islands, such as Easter Island. It is also likely

other collapses have also occurred in societies that were not at a sufficient level of

complexity to produce written records or archeological evidence. Indeed, a recent

study [Shennan et al., 2013a] of the Neolithic period in Europe has shown that

“in contrast to the steady population growth usually assumed, the introduction of

agriculture into Europe was followed by a boom-and-bust pattern in the density of

regional populations”. Furthermore “most regions show more than one boom-bust

pattern”, and in most regions, population declines “of the order of the 30–60%”

can be found. The authors also argue that, rather than climate change or diseases,

the timing and evidence point to endogenous causes for these collapses in 19 out of

23 cases studied, suggesting the possibility of “rapid population growth driven by
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farming to unsustainable levels”. Moreover, through wavelet analysis of the archeo-

logical data, S. Downey [personal communication] has shown that the average length

of such boom-and-bust cycles is about 300–500 years.

In summary, despite the common impression that societal collapse is rare, or

even largely fictional, the “picture that emerges is of a process recurrent in history,

and global in its distribution” [Tainter, 1988]. See also Goldstein [1988]; Ibn Khaldun

[1958]; Kondratieff [1984]; Parsons [1991]; Yoffee and Cowgill [1988]. As Turchin

and Nefedov [2009] contend, there is a great deal of support for “the hypothesis

that secular cycles — demographic-social-political oscillations of a very long period

(centuries long) are the rule, rather than an exception in the large agrarian states

and empires.”

This brings up the question of whether modern civilization is similarly sus-

ceptible. It may seem reasonable to believe that modern civilization, armed with

its greater technological capacity, scientific knowledge, and energy resources, will

be able to survive and endure whatever crises historical societies succumbed to.

But the brief overview of collapses demonstrates not only the ubiquity of the phe-

nomenon, but also the extent to which advanced, complex, and powerful societies

are susceptible to collapse. The fall of the Roman Empire, and the equally (if not

more) advanced Han, Mauryan, and Gupta Empires, as well as so many advanced

Mesopotamian Empires, are all testimony to the fact that advanced, sophisticated,

complex, and creative civilizations can be both fragile and impermanent.

A large number of explanations have been proposed for each specific case of

collapse, including one or more of the following: volcanoes, earthquakes, droughts,
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floods, changes in the courses of rivers, soil degradation (erosion, exhaustion, salin-

ization, etc), deforestation, climate change, tribal migrations, foreign invasions,

changes in technology (such as the introduction of ironworking), changes in the

methods or weapons of warfare (such as the introduction of horse cavalry, armored

infantry, or long swords), changes in trade patterns, depletion of particular mineral

resources (e.g., silver mines), cultural decline and social decadence, popular upris-

ings, and civil wars. However, these explanations are specific to each particular

case of collapse rather than general. Moreover, even for the specific case where

the explanation applies, the society in question usually had already experienced the

phenomenon identified as the cause without collapsing. For example, the Minoan

society had repeatedly experienced earthquakes that destroyed palaces, and they

simply rebuilt them more splendidly than before. Indeed, many societies experience

droughts, floods, volcanoes, soil erosion, and deforestation with no major social

disruption [Tainter, 1988].

The same applies to migrations, invasions, and civil wars. The Roman, Han,

Assyrian, and Mauryan Empires were, for centuries, completely militarily hege-

monic, successfully defeating the neighboring “barbarian” peoples who eventually

did overrun them. So external military pressure alone hardly constitutes an explana-

tion for their collapses. With both natural disasters and external threats, identifying

a specific cause compels one to ask, “yes, but why did this particular instance of this

factor produce the collapse?” Other processes must be involved, and, in fact, the po-

litical, economic, ecological, and technological conditions under which civilizations

have collapsed have varied widely. Individual collapses may have involved an array
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of specific factors, with particular triggers, but a general explanation remains elu-

sive. Individual explanations may seem appropriate in their particular case, but the

very universal nature of the phenomenon implies a mechanism that is not specific

to a particular time period of human history, nor a particular culture, technology,

or natural disaster [Tainter, 1988; Turchin, 2003; Yoffee and Cowgill, 1988].

In this paper we attempt to model collapse mathematically in a more general

way. We propose a simple model, not intended to describe actual individual cases,

but rather to provide a general framework that allows carrying out “thought exper-

iments” for the phenomenon of collapse and to test changes that would avoid it.

This model (called HANDY, for Human and Nature DYnamics) advances beyond

existing biological dynamic population models by simultaneously modeling two sep-

arate important features which seem to appear across societies that have collapsed:

(1) the stretching of resources due to the strain placed on the ecological carrying

capacity [Abel, 1980; Catton, 1980a; Kammen, 1994; Ladurie, 1987; Ponting, 1991;

Postan, 1966; Redman, 1999; Redman et al., 2004; Wood, 1998; Wright, 2004], and

(2) the economic stratification of society into Elites and Masses (or “Commoners”)

[Brenner, 1985; Diamond, 2005; Goldstone, 1991; Ibn Khaldun, 1958; Parsons, 1991;

Turchin, 2005, 2006; Turchin and Nefedov, 2009]. In many of these historical cases,

we have direct evidence of Ecological Strain and Economic Stratification playing

a central role in the character or in the process of the collapse [Culbert, 1973;

Diamond, 2005; Goldstone, 1991; Lentz, 2000; Mitchell, 1990]. For these empiri-

cal reasons, and the theoretical ones explained in section 3, our model incorporates

both of these two features. Although similar to the Brander and Taylor [1998] model
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(hereafter referred to as “BT”) in that HANDY is based on the classical predator-

prey model, the inclusion of two societal classes introduces a much richer set of

dynamical solutions, including cycles of societal and ecological collapse, as well as

the possibility of smoothly reaching equilibrium (the ecological carrying capacity).

We use Carrying Capacity in its biological definition: the population level that the

resources of a particular environment can sustain over the long term [Catton, 1980a;

Cohen, 1995a; Daly and Farley, 2003a]. In this paper, we call these environment

resources “Nature”.

The paper is organized as follows: section 3.2 gives a brief review of the

Predator-Prey model; section 3.3 includes the mathematical description of HANDY;

section 3.4 covers a theoretical analysis of the model equilibrium and possible so-

lutions; section 3.5 presents examples of scenarios within three distinct types of

societies; section 3.6 gives an overall discussion of the scenarios from section 3.5;

and section 3.7 offers a short summary of the paper and a discussion of future work.

3.2 Predator-Prey Model

The Predator-Prey model, the original inspiration behind HANDY, was de-

rived independently by two mathematicians, Alfred Lotka and Vitto Volterra, in the

early 20th century [Lotka, 1925; Volterra, 1926]. This model describes the dynamics

of competition between two species, say, wolves and rabbits. The governing system

of equations is
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
ẋ = (ay)x− bx

ẏ = cy − (dx)y

(3.1)

In the above system, x represents the predator (wolf) population; y represents the

prey (rabbit) population; a determines the predator’s birth rate, i.e., the faster

growth of wolf population due to availability of rabbits; b is the predator’s death

rate; c is the prey’s birth rate; d determines the predation rate, i.e., the rate at

which rabbits are hunted by wolves.

Rather than reaching a stable equilibrium, the predator and prey populations

show periodic, out-of-phase variations about the equilibrium values


xe = c/d

ye = b/a

(3.2)

Note consistency of the units on the left and right hand sides of (3.1) and (3.2). A

typical solution of the predator-prey system can be seen in figure 3.1.
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2,000 rabbits
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1,000 rabbits

0 wolves
0 rabbits

0 150 300 450 600 750 900
Timem(year)

Predator
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Figure 3.1: A typical solution of the predator-prey system (see equation (3.1)

This typical solution can be obtained by running the system with the following

parameter values and initial conditions:



a = 3.0× 10−5 (rabbits.years)−1 b = 2.0× 10−2 years−1

c = 3.0× 10−2 years−1 d = 2.0× 10−4 (wolves.years)−1

x(0) = 1.0× 10+2 wolves y(0) = 1.0× 10+3 rabbits

(3.3)

Predator population is measured in units of wolves, Prey population is measured in

units of rabbits, and Time is measured in units of years.
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3.3 HANDY

As indicated above, Human And Nature DYnamics (HANDY) was originally

built based on the predator-prey model. We can think of the human population as

the “predator”, while nature (the natural resources of the surrounding environment)

can be taken as the “prey”, depleted by humans. In animal models, carrying ca-

pacity is an upper ceiling on long-term population. When the population surpasses

the carrying capacity, mechanisms such as starvation or migration bring the popu-

lation back down. However, in the context of human societies, the population does

not necessarily begin to decline upon passing the threshold of carrying capacity,

because, unlike animals, humans can accumulate large surpluses (i.e., wealth) and

then draw down those resources when production can no longer meet the needs of

consumption. This introduces a different kind of delay that allows for much more

complex dynamics, fundamentally altering the behavior and output of the model.

Thus, our model adds the element of accumulated surplus not required in animal

models, but which we feel is necessary for human models. We call this accumulated

surplus “wealth”.

Empirically, however, this accumulated surplus is not evenly distributed through-

out society, but rather has been controlled by an elite. The mass of the population,

while producing the wealth, is only allocated a small portion of it by elites, usually at

or just above subsistence levels. Based on this, and on the historical cases discussed

in the introduction, we separated the population into “Elites” and “Commoners”,

and introduced a variable for accumulated wealth. For an analysis of this two-class
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structure of modern society, see Banerjee and Yakovenko [2010]; Drăgulescu and

Yakovenko [2001]. This adds a a different dimension of predation whereby Elites

“prey” on the production of wealth by Commoners. As a result, HANDY consists

of four prediction equations: two for the two classes of population, Elites and Com-

moners, denoted by xE and xC , respectively; one for the natural resources or Nature,

y; and one for the accumulated Wealth, w, referred to hereafter as “Wealth”. This

minimal set of four equations seems to capture essential features of the human-

nature interaction and is capable of producing major potential scenarios of collapse

or transition to steady state.

A similar model of population and renewable resource dynamics based on the

predator-prey model was developed in the pioneering work of Brander and Taylor

[1998] demonstrating that reasonable parameter values can produce cyclical “feast

and famine” patterns of population and resources. Their model showed that a

system with a slow-growing resource base will exhibit overshooting and collapse,

whereas a more rapidly growing resource base will produce an adjustment of popu-

lation and resources toward equilibrium values. They then applied this model to the

historical case of Easter Island, finding that the model provides a plausible explana-

tion of the population dynamics known about Easter Island from the archeological

and scientific record. They thus argue that the Polynesian cases where population

did collapse were due to smaller maximum resource bases (which they call “carry-

ing capacity”) that grew more slowly, whereas those cases which did not experience

such a collapse were due to having a larger resource base (i.e., a larger carrying

capacity). They then speculate that their model might be consistent with other his-
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torical cases of collapse, such as the ancient Mesopotamian and Maya civilizations

or modern Rwanda.

However, the BT approach only models Population and Nature and does not

include a central component of these historical cases: economic stratification and the

accumulation of wealth. Thus, despite clear evidence for a stratified class structure

in Easter Island’s history prior to the collapse (as well as for Mesopotamia, the an-

cient Maya, and modern Rwanda), the BT model does not include class stratification

as a factor. In their model, society produces and consumes as a single homogeneous

unit. We feel that a historically realistic modeling of the evolution of human-nature

dynamics in these stratified complex societies cannot be achieved without including

this class stratification in the model. Brander and Taylor recognize that their model

is simple, and that application to more complex scenarios may require further de-

velopment of the structure of the model. We have found that including economic

stratification, in the form of the introduction of Elites and Commoners, as well as

accumulated Wealth, results in a much richer variety of solutions, which may have

a wider application across different types of societies. HANDY’s structure also al-

lows for “irreversible” collapses, without the need to introduce an explicit critical

depensation mechanism into the model as other models need to do. Thus while

the Brander-Taylor model has only two equations, HANDY has four equations to

predict the evolution of the rich and poor populations (Elites and Commoners),

Nature, and accumulated Wealth. (We examine other differences in section 3.6.4 of

the paper.) The HANDY equations are given by:
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

ẋC = βCxC − αCxC

ẋE = βExE − αExE

ẏ = γy(λ− y)− δxCy

ẇ = δxCy − CC − CE

(3.4)

It is to be noted that αC , αE, CC , and CE are all functions of w, xC , and xE. See

equations (3.5) and (3.7) and figures 3.2 and 3.3.

3.3.1 Model Description

The total population is divided between the two variables, xC and xE, repre-

senting the population of commoners and of elites. The population grows through

a birth rate β and decreases through a death rate α. β is assumed to be constant

for both Elites and Commoners but α depends on Wealth as explained below.

In reality, natural resources exist in three forms: nonrenewable stocks (fossil

fuels, mineral deposits, etc), regenerating stocks (forests, soils, animal herds, wild

fish stocks, game animals, aquifers, etc), and renewable flows (wind, solar radiation,

precipitation, rivers, etc). Future generations of the model will disaggregate these

forms. We have adopted a single formulation intended to represent an amalgama-

tion of the three forms, allowing for a clear understanding of the role that natural

resources play in collapse or sustainability of human societies.

Thus, the equation for Nature includes a regeneration term, γy(λ− y), and a
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depletion term, −δxCy. The regeneration term has been written in the form of a

logistic equation, with a regeneration factor, γ, exponential regrowth for low values

of y, and saturation when y approaches λ, Nature’s capacity — maximum size of

Nature in absence of depletion. As a result, the maximum rate of regeneration takes

place when y = λ/2. Production is understood according to the standard Ecological

Economics formulations as involving both inputs from, and outputs to, Nature (i.e.,

depletion of natural sources and pollution of natural sinks) [Daly, 1996a; Daly and

Farley, 2003a]. This first generation of HANDY models the depletion side of the

equation as if it includes the reduction in Nature due to pollution.

The depletion term includes a rate of depletion per worker, δ, and is propor-

tional to both Nature and the number of workers. However, the economic activity

of Elites is modeled to represent executive, management, and supervisory functions,

but not engagement in the direct extraction of resources, which is done by Com-

moners. Thus, only Commoners produce.

It is frequently claimed that technological change can reduce resource depletion

and therefore increase carrying capacity. However, the effects of technological change

on resource use are not unidirectional. Technological change can raise the efficiency

of resource use, but it also tends to raise both per capita resource consumption

and the scale of resource extraction, so that, absent policy effects, the increases in

consumption often compensate for the increased efficiency of resource use. These

are associated with the phenomena referred to as the Jevons Paradox, and the

“Rebound Effect” [Greening et al., 2000a; Polimeni et al., 2008a; Ruth, 2009a]. For

example, an increase in vehicle fuel efficiency tends to enable increased per capita
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vehicle miles driven, heavier cars, and higher average speeds, which then negate

the gains from the increased fuel-efficiency. In addition, technological advances can

enable greater resource extraction and throughput, which then appears as increases

in the productivity of other factors of production. As Daly points out, much of the

increase in productivity in both agriculture and industry in the last two centuries

has actually come from increased (rather than decreased) resource throughput [Daly,

1991]. A decline in the price of a resource is usually thought to reflect an increase

in the abundance of that resource, but in fact, it often reflects that the resource

is simply being extracted more rapidly. Rather than extend carrying capacity, this

reduces it. Over the long-term, per capita resource-use has tended to rise over time

despite dramatic technological advances in resource efficiency. Thus, the sign and

magnitude of the effect of technological change on resource use varies and the overall

effect is difficult to predict. Therefore, in this generation of HANDY, we assume

that the effects of these trends cancel each other out. The model will be developed

further to allow the rates of these technology-induced trends to be adjusted in either

direction.

Finally, there is an equation for accumulated Wealth, which increases with

production, δxCy, and decreases with the consumption of the Elites and the Com-

moners, CC and CE, respectively. The consumption of the Commoners (as long

as there is enough wealth to pay them) is sxC , a subsistence salary per capita, s,

multiplied by the working population. The Elites pay themselves a salary κ times

larger, so that the consumption of the Elites is κsxE. However, when the wealth

becomes too small to pay for this consumption, i.e., when w < wth, the payment is

35



reduced and eventually stopped, and famine takes place, with a much higher rate

of death. κ is meant to represent here the factors that determine the division of

the output of the total production of society between elites and masses, such as the

balance of class power between elites and masses, and the capacity of each group to

organize and pursue their economic interests. We recognize the inherent limitations,

in this initial generation of our model, of holding that balance (κ) constant in each

scenario, but we expect to develop κ further in later generations of HANDY so that

it can be endogenously determined by other factors in the model.

CC and CE, the consumption rates for the Commoner and the Elite respec-

tively, are given by the following equations:



CC = min

(
1,

w

wth

)
sxC

CE = min

(
1,

w

wth

)
κsxE

(3.5)

Wealth threshold, wth, is a threshold value for wealth below which famine

starts. It depends on the “minimum required consumption per capita”, ρ:

wth = ρxC + κρxE. (3.6)

Even when Commoners start experiencing famine, i.e., when w ≤ wth , the Elites

continue consuming unequally as indicated by the factor κ in the second term on

the right hand side of (3.6). A graphical representation of the consumption rates
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are given in figure 3.2.
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Figure 3.2: Consumption rates for Elites and Commoners as a function of Wealth.
Famine starts when C

sx
≤ 1. Therefore, Commoners start experiencing famine when

w
wth
≤ 1, while Elites do not experience famine until w

wth
≤ 1

κ
.

The death rates for the Commoner and the Elite, αC and αE, are functions of

consumption rates:



αC = αm + max

(
0, 1− CC

sxC

)
(αM − αm)

αE = αm + max

(
0, 1− CE

sxE

)
(αM − αm)

(3.7)

The death rates vary between a normal (healthy) value, αm, observed when there

is enough food for subsistence, and a maximum (famine) value, αM that prevails
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when the accumulated wealth has been used up and the population starves. There

are a variety of mechanisms which can reduce population when it exceeds carry-

ing capacity, including everything from emigration, increased disease susceptibility,

and outright starvation to breakdowns in social order and increased social violence,

such as banditry, riots, rebellions, revolutions, and wars. These mechanisms are

described in detail in Turchin [2003] but the net effect of all of them is a reduction

in population, and that is what the dynamics of our model is meant to represent

when we say “population decline” or “famine”. Note also that an increase in the

death rates (α) is equivalent to an equal decrease in the birth rates (β). The death

rates αC and αE can be expressed in terms of w
wth

, a graphical representation of

which is given in figure 3.3.
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Figure 3.3: Death rates for Elites and Commoners as a function of Wealth. Elites
experience famine with a delay due to their unequal access to Wealth.
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3.3.2 A Note on Units and Dimensions

There are three dimensions for quantities in HANDY:

1. Population (either Commoner or Elite), in units of people.

2. Nature/Wealth, in units of “eco-Dollars”.

3. Time, in units of years.

The structure of the model requires Nature and Wealth to be measured with the

same units, therefore we created the unit eco-dollar. Other parameters and functions

in the model carry units that are compatible with the abovementioned dimensions

following (3.4). For example, Carrying Capacity, χ, and the Maximum Carrying

Capacity, χM , defined in section 3.4.1, are both expressed in units of people.

3.4 Equilibrium Values and Carrying Capacity

We can use the model to find a sustainable equilibrium and maximum carrying

capacity in different types of societies. In order for population to reach an equilib-

rium, we must have αm ≤ βE ≤ βC ≤ αM . We define a dimensionless parameter,

η:

η =
αM − βC
αM − αm

(3.8)

Since we assume αm ≤ βC ≤ αM , η will always be bounded by 0 ≤ η ≤ 1.
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3.4.1 Equilibrium when xE = 0 (No Elites): Egalitarian Society

Assuming xE ≡ 0, we can find the equilibrium values of the system (subscript

“e” denotes the equilibrium values):



xC,e =
γ

δ

(
λ− ηs

δ

)

ye = η
s

δ

we = ηρxC,e

(3.9)

We define χ, the Carrying Capacity for the population, to be equal to xC,e in

(3.9), i.e., the equilibrium value of the population in the absence of Elites:

χ =
γ

δ

(
λ− ηs

δ

)
(3.10)

Carrying Capacity can be maximized if Nature’s regeneration rate is maximal,

i.e., if ye = λ
2
. This requires δ to be set equal to a value δ∗ that can result in a steady

state with the maximum (sustainable) Population, which in this paper we call the

“optimal” value of δ. From the second equation in (3.9), it can be seen that δ∗ is

given by:

δ∗ =
2ηs

λ
(3.11)
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The Maximum Carrying Capacity, χM , is thus given by:

χM =
γ

δ∗

λ

2
=

γ

ηs

(
λ

2

)2

(3.12)

3.4.2 Equilibrium when xE ≥ 0 and κ = 1 (No Inequality): Equitable

Society

If we set κ ≡ 1 and βE ≡ βC ≡ β, we can reach an equilibrium state for which

xE ≥ 0. This case models an equitable society of “Workers” and “Non-Workers”.

We need a dimensionless free parameter ϕ that sets the initial ratio of the Non-

Workers to Workers:

ϕ =
xE(0)

xC(0)
(3.13)

The equilibrium values of the system can then be expressed as follows:



xC,e =
γ

δ

(
λ− ηs

δ
(1 + ϕ)

)

xE,e = ϕxC,e

ye = η
s

δ
(1 + ϕ)

we = ηρ(1 + ϕ)xC,e

(3.14)
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The total population xe = xC,e + xE,e can still be maximized by choosing δ

appropriately:

δ∗∗ =
2ηs

λ
(1 + ϕ) (3.15)

This δ∗∗ is larger than the optimal depletion factor given by (3.11). The difference

arises because Workers have to produce more than they need just for themselves in

order to support Non-Workers. For this choice of δ, total population is given by:

xe,M = (1 + ϕ)
γ

δ∗∗

λ

2
=

γ

ηs

(
λ

2

)2

(3.16)

As can be seen from (3.16), maximum total population in equilibrium is independent

of ϕ and conforms to the maximum carrying capacity given above by (3.12).

3.4.3 Equilibrium when xE ≥ 0 and κ > 1: Unequal Society

It is possible to attain equilibrium in an unequal society if we can satisfy the

following condition:

αM − βE
κ(αM − αm)

=
αM − βC
αM − αm

= η. (3.17)

(The general condition αm ≤ βE ≤ βC ≤ αM must hold in all cases for an equilibrium

to be feasible.)

The equilibrium values in this general case can be expressed as follows:
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

xC,e =
γ

δ

(
λ− ηs

δ
(1 + κψ)

)

xE,e = ψxC,e

ye = η
s

δ
(1 + κψ)

we = ηρ(1 + κψ)xC,e

(3.18)

The free parameter, ψ, is the equilibrium ratio xE,e/xC,e, apparent from the second

equation in (3.18). As opposed to ϕ, ψ cannot be easily related to the initial

conditions; rather, it can be determined from the result of a simulation.

Again, the total population xe = xC,e + xE,e can be maximized by choosing δ

appropriately:

δ∗∗∗ =
2ηs

λ
(1 + κψ) (3.19)

This required depletion rate δ∗∗∗ can be even larger than the optimal δ given by

(3.15) depending upon the values of κ and ψ. In the presence of inequality, the

maximum total population is no longer independent of κ and ψ and is smaller than

the maximum carrying capacity given by equations (3.12) and (3.16):

xe,M = (1 + ψ)
γ

δ∗∗∗

λ

2
=

γ

ηs

(
λ

2

)2(
1 + ψ

1 + κψ

)
(3.20)

43



3.5 Scenarios

We discuss three sets of scenarios:

1. Egalitarian society (No-Elites): Scenarios in which xE = 0.

2. Equitable society (with Workers and Non-Workers): Scenarios in which xE ≥ 0

but κ ≡ 1.

3. Unequal society (with Elites and Commoners): Scenarios in which xE ≥ 0 and

κ > 1.

For all of these scenarios, we start the model with the typical parameter values

and initial conditions given in table 3.1, unless otherwise stated. As indicated above,

the values of κ and xE(0) determine the type of the society. Within each type of

society, we obtain different scenarios by varying the depletion factor, δ.

In this section, we will show that HANDY is capable of modeling three distinct

types of societies by changing κ and xE(0). A sustainable equilibrium can be found

for each society by controlling δ. An appropriate choice of δ can make this equilib-

rium optimal, i.e., with maximum total population. Increasing δ above its optimal

value makes the approach toward equilibrium oscillatory. Such an equilibrium is

suboptimal, and the Carrying Capacity is below its maximum value, χM . It is also

possible to reach a suboptimal equilibrium (a less than maximum, but sustainable

population) by making δ lower than its optimal value. However, in the latter case,

the approach toward equilibrium would be a soft landing rather than oscillatory.
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Parameter Symbol Parameter Name Typical Value(s)

αm Normal (Minimum) Death rate 1.0× 10−2

αM Famine (Maximum) Death rate 7.0× 10−2

βC Commoner Birth rate 3.0× 10−2

βE Elite Birth rate 3.0× 10−2

s Subsistence Salary per Capita 5.0× 10−4

ρ Threshold Wealth per Capita 5.0× 10−3

γ Regeneration rate of Nature 1.0× 10−2

λ Nature Carrying Capacity 1.0× 10+2

κ Inequality factor 1, 10, 100

δ Depletion (Production) Factor None

(a) List of parameters in HANDY. κ and δ take different values for different scenarios.

Variable Symbol Variable Name Typical Initial Value(s)

xC Commoner Population 1.0× 10+2

xE Elite Population 0, 1, 25

y Nature λ

w Accumulated Wealth 0

(b) List of state variables in HANDY. xE(0) takes different values for different scenarios.

Table 3.1: Description of parameters and state variables used in HANDY. κ, δ, and
xE are varied to study various scenarios in three different types of societies. xE = 0
defines an Egalitarian society with no Elites. κ = 1 defines an Equitable society
with Workers and Non-Workers, represented by xC and xE in this case, respectively.
xE ≥ 0 and κ > 1 define an unequal society with Elites and Commoners (xE and
xC). As a reference, all other variables and functions in HANDY are also listed
above. Subscript e denotes equilibrium value everywhere in this paper.
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Variable Symbol Variable Name Defining Equation

wth Threshold Wealth (3.6)

ω Normalized Wealth w/wth

CC Commoner Consumption (3.5) (figure 3.2)

CE Elite Consumption (3.5) (figure 3.2)

αC Commoner Death Rate (3.7) (figure 3.3)

αE Elite Death Rate (3.7) (figure 3.3)

η η (3.8)

χ Carrying Capacity (CC) (3.10)

δ∗ Egalitarian Optimal δ (3.11)

χM Maximum Carrying Capacity (Max CC) (3.12)

ϕ Ratio of Non-Workers to Workers (Equitable) (3.13)

δ∗∗ Equitable Optimal δ (3.15)

ψ Elite to Commoner Equilibrium Ratio (Unequal) xE,e/xC,e

δ∗∗∗ Unequal Optimal δ (3.19)

Table 3.2: As a reference, all other variables and functions in HANDY are listed in
this table. Subscript e denotes equilibrium value everywhere in this paper.
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When δ is increased even further, the society goes into cycles of prosperity and col-

lapse. Increasing δ beyond a certain point will result in an irreversible Type-N (full)

collapse, examples of which are presented in sections 3.5.1.4, 3.5.2.4, and 3.5.3.2.

We give a full categorization of collapses in the next two paragraphs.

Running the model in different scenarios produces two kinds of collapses, either

due to scarcity of labor (following an inequality-induced famine) or due to scarcity

of Nature (depletion of natural resources). We categorize the former case as a

Type-L (Disappearance of Labor) Collapse and the latter as a Type-N collapse

(Exhaustion of Nature). In a Type-L collapse, growth of the Elite Population strains

availability of resources for the Commoners. This causes decline of the Commoner

Population (which does the labor), and consequently, decline of Wealth. Finally,

Elite Population plummets since its source of subsistence, i.e., Wealth, has vanished.

See figure 3.13 for an example of a Type-L collapse. This could represent a historical

case such as the disappearance of the Mayan civilization in the Yucatan. Note that

this type of collapse can only happen in an unequal society, because the major cause

behind it is inequality.

A Type-N collapse, on the other hand, starts with an exhaustion of Nature,

followed by a decline of Wealth that in turn, causes a fall of the Commoners and then

the Elites. Depending on the depletion rate, Type-N collapses can be “reversible”

or “irreversible”. After a reversible collapse, regrowth of nature can trigger another

cycle of prosperity, examples of which can be seen in figures 3.6 and 3.10. This could

represent historical cases such as the Greek and Roman collapses.
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When depletion is pushed beyond a certain limit, Nature fully collapses and

the whole system completely collapses after that. This is why we call an irreversible

Type-N collapse a “full” collapse. Examples of such collapses can be seen in figures

3.7, 3.11, and 3.14. This could represent a historical case such as the exhaustion of

Nature on Easter Island. Type-N collapses can arise because of excessive depletion

only (figures 3.7 and 3.11), or both excessive depletion and inequality (figure 3.14).

It is important to understand the inter-relation of the depletion factor, δ, and

the Carrying Capacity, χ. The further δ is taken away from its optimal value, the

further χ moves down from its maximum value, χM . An equilibrium can be reached

if and only if χ is not too far away from χM , which means δ cannot be too far

away from its optimal value, given by equations (3.11), (3.15), and (3.19) in the

three types of societies under consideration. Note that in all of the scenario outputs

presented below (for the three types of societies under consideration), Carrying

Capacity (χ) and the Maximum Carrying Capacity (χM) are calculated from their

defining equations (3.10) and (3.12), respectively.

Important note about the units of the vertical axis of all the sub-

sequent graphs: Populations, xC and xE, and the Carrying Capacity, χ, are all

normalized to the Maximum Carrying Capacity, χM . Nature and Wealth are both

shown in units of Nature’s capacity, λ. The top scale of the vertical axis of the graph

pertains to Population(s) and Carrying Capacity; the middle scale pertains to Na-

ture, which (normally) stays bounded by 1λ; and the bottom scale is for Wealth.

Note: All the simulations below use the Euler integration method with a time-

step of 1 year and single precision.
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3.5.1 Egalitarian Society (No-Elites): xE = 0

In the four following scenarios, κ does not play any role since we set xE ≡

0. We start the depletion rate from δ = δ∗, the optimal equilibrium value that

maximizes the Carrying Capacity, and increase it slowly to get additional scenarios.

The horizontal red line in the graphs for the four scenarios of this section represents

the zero population of Elites.

3.5.1.1 Egalitarian Society: Soft Landing to Equilibrium
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Figure 3.4: Soft landing to the optimal equilibrium when Elite population (marked
in red) equals zero. Final population reaches the carrying capacity, which is at its
maximum value, χM , in this scenario.

For the scenario in figure 3.4, δ = δ∗ = 6.67 × 10−6. Therefore, the carrying

capacity, χ, is at its maximum level, χM . Notice that Nature also settles to ye = λ/2,

which is the value that results in the maximum regeneration rate. This maximal
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regeneration can in turn support a maximum sustainable depletion and population.

If we set δ < δ∗, we still see a soft landing to the carrying capacity, χ. However,

χ would be at a lower level than χM because a lower-than-optimal δ does not cor-

respond to the maximum regeneration of nature, which is a necessity if we want to

have the maximum sustainable population. The advantage of a lower-than-optimal

δ is a higher equilibrium level (compared to λ/2) for Nature.

Choosing a depletion rate, δ, that is too small to produce enough to feed the

population would result in a collapse, and thus make any equilibrium impossible

even though Nature stays at its maximum capacity. Of course, this would not occur

in the real world as the urge for survival guarantees humans extract their basic needs

from nature.
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3.5.1.2 Egalitarian Society: Oscillatory Approach to Equilibrium

Egalitarian7Society:7Oscillatory7Approach7to7Equilibrium
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Figure 3.5: Oscillatory approach to equilibrium when Elite population (marked in
red) equals zero. Final population converges to the carrying capacity, which is lower
than its maximum value, χM , in this scenario.

For the scenario in figure 3.5, δ is increased to δ = 2.5δ∗ = 1.67 × 10−5. As

can be seen from figure 3.5, the carrying capacity, χ, is lower than its maximum

value, χM . Population initially overshoots the carrying capacity, then oscillates, and

eventually converges to it since the amount of overshoot is not too large, just about

the order of χ. Note that at the time the (total) population overshoots the Carrying

Capacity, the Wealth also reaches a maximum and starts to decline.
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3.5.1.3 Egalitarian Society: Cycles of Prosperity, Overshoot, Col-

lapse, and Revival

Egalitarian3Society:3Cycles3of3Prosperity3and3Reversibleu3TypeWN3Collapses
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Figure 3.6: Cycles of prosperity, overshoot, (reversible Type-N) collapse, and revival
when Elite population (marked in red) equals zero.

For the scenario in figure 3.6, δ is increased to δ = 4δ∗ = 2.67× 10−5. As can

be seen, Population, Nature and Wealth all collapse to a very small value. However,

after depletion becomes small due to very low number of workers, Nature gets a

chance to grow back close to its capacity, λ. The regrowth of Nature kicks off

another cycle of prosperity which ends with another collapse. Simulation results

show that these cycles, ending in Type-N collapses (i.e., those that start due to

scarcity of Nature), repeat themselves indefinitely. Therefore, such cycles represent

“reversible” Type-N collapses. This reversibility is possible as long as δ stays within

a “safe” neighborhood of δ∗.
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3.5.1.4 Egalitarian Society: Irreversible Type-N Collapse (Full Col-

lapse)

Egalitarian2Society:2Irreversibleh2Type-N2mFullY2Collapse
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Figure 3.7: Irreversible Type-N collapse (full collapse) when Elite population
(marked in red) equals zero. All the state variables collapse to zero in this sce-
nario due to over-depletion.

For the scenario in figure 3.7, δ is increased further to δ = 5.5δ∗ = 3.67E − 5.

The overshoot is so large that it forces Population, Nature and Wealth into a full

collapse, after which there is no recovery. This is a generic type of collapse that can

happen for any type of society due to over-depletion. See sections 3.5.2.4 and 3.5.3.2

for examples of irreversible Type-N collapses in equitable and unequal societies,

respectively. We include further discussion of these two types of collapses in section

3.6.

We observe that the accumulated Wealth delays a decline of the population

even after Nature has declined well below its capacity, λ. Therefore, population
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keeps growing and depleting Nature until Nature is fully exhausted. At that in-

stance, i.e., when y = 0, Wealth cannot grow any further; indeed, it starts plummet-

ing, causing a sharp fall of the population level, and eventually its full, irreversible

collapse.

3.5.2 Equitable Society (with Workers and Non-Workers): κ = 1

We take the parameter values and the initial conditions to be the same as in

table 3.1, except that this time we set xE(0) = 25 (ϕ = 0.25) and κ = 1. We start

with the optimal depletion per capita δ = δ∗∗, which will sustain the maximum

population (see (3.15)), and will gradually increase it in order to get the additional

scenarios in this subsection. Notice that in these cases, xC describes the Working

Population, while xE describes the Non-Working Population. Everybody consumes

at the same level, since we set κ = 1, i.e., we assume there is no inequality in

consumption level for Workers and Non-Workers.
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3.5.2.1 Equitable Society: Soft Landing to Optimal Equilibrium
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Figure 3.8: Equilibrium in the presence of both Workers and Non-Workers can be
attained with slow growth and equitable salaries.

For the scenario in figure 3.8, δ = δ∗∗ = 8.33× 10−6. Notice that this is larger

than the optimal value in the absence of Non-Workers δ∗ = 6.67×10−6 even though

all the other parameters are identical to those in section 3.5.1.1. This difference

arises because xE 6= 0, which in turn forces the Workers to produce extra in order to

support the Non-Workers. Now, χ < χM because δ = δ∗∗ 6= δ∗. However, by setting

δ = δ∗∗, the optimal value of δ in the presence of Non-Workers, the total population,

xC + xE still reaches the maximum Carrying Capacity, χM , the same as in section

3.5.1. See equation (3.16) and section 3.4.2 for a mathematical description.

Similar comments as in section 3.5.1.1 apply here when we choose a lower-

than-optimal δ.
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3.5.2.2 Equitable Society: Oscillatory Approach to Equilibrium
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Figure 3.9: Oscillatory approach to equilibrium in the presence of both Workers and
Non-Workers is possible when the overshoot is not too large.

For the scenario in figure 3.9, δ = 2.64δ∗∗ = 2.20 × 10−5. The total popula-

tion is equal to the actual Carrying Capacity (smaller than the maximum Carrying

Capacity).
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3.5.2.3 Equitable Society: Cycles of Prosperity, Overshoot, Collapse,

and Revival
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Figure 3.10: Cycles of prosperity, overshoot, (reversible Type-N) collapse, and re-
vival in the presence of Workers and Non-Workers.

For the scenario in figure 3.10, δ = 3.46δ∗∗ = 3.00 × 10−5. The result is

analogous to figure 3.6 which corresponds to section 3.5.1.3. As before, the time at

which the total population overshoots the actual Carrying Capacity is indicated by

the fact that Wealth starts to decrease. After each cycle of prosperity, there is a

partial, reversible Type-N collapse.
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3.5.2.4 Equitable Society: Full Collapse
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Figure 3.11: Irreversible Type-N collapse (full collapse) happens after a period of
very fast growth.

For the scenario in figure 3.11, δ = 5δ∗∗ = 4.33 × 10−5. Once again, we can

see how an irreversible Type-N (full) collapse of Population, Nature, and Wealth

can occur due to over-depletion of natural resources as a result of high depletion per

capita.
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3.5.2.5 Equitable Society: Preventing a Full Collapse by Decreasing

Average Depletion per Capita

Equitable7Society:7Preventing7a7Full7Collapse
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Figure 3.12: The full collapse that happened in the previous scenario, figure 3.11
of section 3.5.2.4, can be prevented by reducing the average depletion per capita.
This can be achieved by either increasing the ratio of the Non-Working to Working
population (high δ, high ϕ) or decreasing the average workload per worker, i.e.,
decreasing total work hours per week (low δ, low ϕ).

The case in figure 3.12 is similar to the previous case (see section 3.5.2.4 and

figure 3.11), except that we raised the ratio of Non-Workers to Workers, ϕ, from 0.25

to 6. This corresponds to changing xE(0) from 25 to 600, while keeping xC(0) = 100.

By increasing the ratio of non-workers to workers, a sustainable equilibrium can

be reached due to lower average depletion per capita —an equivalent δ if everyone

contributed equally to labor. This could also be interpreted as modeling a reduction

in the average workload per worker.
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3.5.3 Unequal Society (with Elites and Commoners): xE ≥ 0 and

κ > 1

In our examples of an unequal society, the Elites (per capita) consume κ ∼ 10

to 100 times more than the Commoners. Their population, plotted in red, is multi-

plied by κ to represent their equivalent impact because of their higher consumption.

That is why we use the label “Equivalent Elites” on the graphs in this section, 3.5.3.

In the first two cases, we discuss two distinct, but generic types of collapse in

an unequal society. In these two scenarios, κ = 100. Then we will show possibility

of reaching an equilibrium by reducing κ to 10 and adjusting the birth rates βE

and βC independently. These two κ = 10 scenarios show that in order to reach a

sustainable equilibrium in an unequal society, it is necessary to have policies that

limit inequality and ensure birth rates remain below critical levels.
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3.5.3.1 Unequal Society: Type-L Collapse (Labor Disappears, Na-

ture Recovers)
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Figure 3.13: Population collapse following an apparent equilibrium due to a small
initial Elite population when κ = 100. This scenario also shows a different route to
a collapse, in which, although Nature eventually recovers, population does not.

This scenario, presented in figure 3.13, is precisely the same as the equilibrium

without Elites case presented in section 3.5.1.1 (figure 3.4) except that here we set

xE(0) = 1.0 × 10−3. This is indeed a very small initial seed of Elites. The two

scenarios look pretty much the same up until about t = 500 years after the starting

time of the simulation. The Elite population starts growing significantly only after

t = 500, hence depleting the Wealth and causing the system to collapse. Under this

scenario, the system collapses due to worker scarcity even though natural resources

are still abundant, but because the depletion rate is optimal, it takes more than
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400 years after the Wealth reaches a maximum for the society to collapse. In this

example, Commoners die out first and Elites disappear later. This scenario shows

that in a society that is otherwise sustainable, the highly unequal consumption of

elites will still cause a collapse.

This scenario is an example of a Type-L collapse in which both Population and

Wealth collapse but Nature recovers (to its maximum capacity, λ, in the absence of

depletion). Scarcity of workers is the initial cause of a Type-L collapse, as opposed

to scarcity of Nature for a Type-N collapse.

3.5.3.2 Unequal Society: Irreversible Type-N Collapse (Full Collapse)
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Figure 3.14: A fast full collapse due to both over-depletion and inequality (κ = 100).

The typical scenario in figure 3.14 for a full collapse is the result of running the

model with the parameter values and initial conditions given by table 3.1. Examples
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of irreversible Type-N (full) collapses in the egalitarian and equitable societies are

presented in sections 3.5.1.4 (figure 3.7) and 3.5.2.4 (figure 3.11).

We set a small initial seed of xE(0) = 0.20, κ = 100, and a large depletion

δ = 1.0 × 10−4, so that both the depletion δ = 15δ∗ and the inequality coefficient

κ = 100 are very large. This combination results in a full collapse of the system

with no recovery. The Wealth starts declining as soon as the Commoner’s population

goes beyond its carrying capacity, and then the full collapse takes only about 250

additional years. The declining Wealth causes the fall of the Commoner’s population

(workers) with a time lag. The fast reduction in the number of workers combined

with scarcity of natural resources causes the Wealth to decline even faster than

before. As a result, the Elites —who could initially survive the famine due to their

unequal access to consumable goods (κ = 100)— eventually also die of hunger. Note

that because both depletion and inequality are large, the collapse takes place faster

and at a much lower level of population than in the previous case (see section 3.5.3.1,

figure 3.5.3.1) with a depletion rate of δ = δ∗.
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3.5.3.3 Unequal Society: Soft Landing to Optimal Equilibrium
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0 100 200 300 400 500 600 700 800 900 1000
Time6.YearN

1
1
4

0C5
0C5

2

0
0
0

6λ 6
λ6

χ
M 6
λ 6
λ6

χ
M 6
λ 6
λ6

χ
M 6

Nature
Wealth

.EquivalentN6Elites6

Commoners

Carrying6Capacity

Figure 3.15: With moderate inequality (κ = 10), it is possible to attain an optimal
equilibrium by controlling the birth rates.

The following parameter values and initial values can produce the current

scenario (the rest are exactly the same as in table 3.1):



βC = 6.5× 10−2 βE = 2.0× 10−2

xC(0) = 1.0× 10+4 xE(0) = 3.0× 10+3

κ = 10 δ = 6.35× 10−6

(3.21)

The value for δ used in this scenario is δ∗∗∗ given by equation (3.19). It must

be remembered that ψ = 0.65 is not a parameter that we can choose. However, it

can be read from the result of the simulation since it is the equilibrium ratio of the
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Elite to Commoner population. See the second equation in (3.18). On the other

hand, η = 1
12

is determined by the death and birth rates as well as the inequality

coefficient. These parameters are chosen in order to satisfy (3.17), the necessary

condition for attaining an equilibrium in an unequal society.

The same comments as in section 3.5.1.1 hold here if we choose a lower-than-

optimal δ.

3.5.3.4 Unequal Society: Oscillatory Approach to Equilibrium
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Figure 3.16: With δ ? δ∗∗∗, it is still possible to oscillate and converge to an
equilibrium (κ = 10).

The parameter values and initial conditions in the scenario presented in fig-

ure 3.16 are exactly the same as the previous scenario, presented in figure 3.15,

except for δ. It is increased to 1.3×10−5, almost 2δ∗∗∗. This results in a much lower

Carrying Capacity compared to 3.5.3.3, as can be seen from a comparison of figures
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3.15 and 3.16. Therefore, the total final population in the present scenario is much

less than the total final population in the previous scenario, 3.5.3.3 (figure 3.15).

3.6 Discussion of Results

We conducted a series of experiments with the HANDY model, considering first

an egalitarian society without Elites (xE = 0), next an equitable society (κ = 1)

where Non-Workers and Workers are equally paid, and finally an unequal society

whose Elites consume κ times more than the Commoners. The model was also used

to find a sustainable equilibrium value and the maximum carrying capacity within

each of these three types of societies.

3.6.1 Unequal Society

The scenarios most closely reflecting the reality of our world today are found

in the third group of experiments (see the scenarios for an unequal society in section

3.5.3), where we introduced economic stratification. Under such conditions, we find

that collapse is difficult to avoid, which helps to explain why economic stratification

is one of the elements consistently found in past collapsed societies. Importantly,

in the first of these unequal society scenarios, 3.5.3.1, the solution appears to be

on a sustainable path for quite a long time, but even using an optimal depletion

rate (δ∗) and starting with a very small number of Elites, the Elites eventually

consume too much, resulting in a famine among Commoners that eventually causes

the collapse of society. It is important to note that this Type-L collapse is due to
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an inequality-induced famine that causes a loss of workers, rather than a collapse

of Nature. Despite appearing initially to be the same as the sustainable optimal

solution obtained in the absence of Elites, economic stratification changes the final

result: Elites’ consumption keeps growing until the society collapses. The Mayan

collapse —in which population never recovered even though nature did recover— is

an example of a Type-L collapse, whereas the collapses in the Easter Island and the

Fertile Crescent —where nature was depleted— are examples of a Type-N collapse.

In scenario 3.5.3.2, with a larger depletion rate, the decline of the Commoners

occurs faster, while the Elites are still thriving, but eventually the Commoners

collapse completely, followed by the Elites. It is important to note that in both

of these scenarios, the Elites —due to their wealth— do not suffer the detrimental

effects of the environmental collapse until much later than the Commoners. This

buffer of wealth allows Elites to continue “business as usual” despite the impending

catastrophe. It is likely that this is an important mechanism that would help explain

how historical collapses were allowed to occur by elites who appear to be oblivious

to the catastrophic trajectory (most clearly apparent in the Roman and Mayan

cases). This buffer effect is further reinforced by the long, apparently sustainable

trajectory prior to the beginning of the collapse. While some members of society

might raise the alarm that the system is moving towards an impending collapse and

therefore advocate structural changes to society in order to avoid it, Elites and their

supporters, who opposed making these changes, could point to the long sustainable

trajectory “so far” in support of doing nothing.

The final two scenarios in this set of experiments, 3.5.3.3 and 3.5.3.4, are
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designed to indicate the kinds of policies needed to avoid this catastrophic outcome.

They show that, in the context of economic stratification, inequality must be greatly

reduced and population growth must be maintained below critical levels in order to

avoid a societal collapse [Daly, 2008].

3.6.2 Egalitarian Society

In order to further understand what conditions are needed to avoid collapse,

our first set of experiments model a society without economic stratification and start

with parameter values that make it possible to reach a maximum carrying capacity

(scenario 3.5.1.1). The results show that in the absence of Elites, if the depletion

per capita is kept at the optimal level of δ∗, the population grows smoothly and

asymptotes the level of the maximum carrying capacity. This produces a soft-landing

to equilibrium at the maximum sustainable population and production levels.

Increasing the depletion factor slightly (scenario 3.5.1.2) causes the system

to oscillate, but still reach a sustainable equilibrium, although, importantly, at a

lower carrying capacity. Population overshoots its carrying capacity, but since the

overshoot is not by too much —of the order of the carrying capacity— the population

experiences smaller collapses that can cause it to oscillate and eventually converge

to a sustainable equilibrium. Thus, while social disruption and deaths would occur,

a total collapse is avoided.

A further increase in the depletion factor (scenario 3.5.1.3) makes the system

experience oscillatory periods of growth, very large overshoots and devastating col-
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lapses that almost wipe out society, but the eventual recovery of Nature allows for

the cycle to be repeated.

Increasing the depletion factor even further (scenario 3.5.1.4) results in a com-

plete collapse of the system. This shows that depletion alone, if large enough, can

result in a collapse — even in the absence of economic stratification.

3.6.3 Equitable Society (with Workers and Non-Workers)

As the second set of experiments (presented in section 3.5.2) show, HANDY

allows us to model a diverse range of societal arrangements. In this set of exper-

iments, choosing xE ≥ 0 and κ = 1 has allowed us to model a situation that can

be described as having Workers and Non-Workers with the same level of consump-

tion, i.e., with no economic stratification. The Non-Workers in these scenarios could

represent a range of societal roles from students, retirees, and disabled people, to

intellectuals, managers, and other non-productive sectors. In this case, the Workers

have to deplete enough of Nature to support both the Non-Workers and themselves.

The first scenario, 3.5.2.1, shows that even with a population of Non-Workers,

the total population can still reach a sustainable equilibrium without a collapse.

In scenario 3.5.2.2, we find that increasing the depletion factor induces a series

of overshoots and small collapses where population eventually converges to a lower

sustainable equilibrium. Like in an egalitarian society, scenario 3.5.2.3 shows us that

increasing the depletion parameter further results in cycles of large overshooting,

major collapses, and then eventual recovery of Nature. Scenario 3.5.2.4 shows us
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that increasing depletion per capita further can produce an irreversible Type-N

collapse.

Finally, scenario 3.5.2.5, which is a replication of 3.5.2.4 with a much higher

ratio of Non-Workers to Workers, shows that a collapse in an equitable society could

be avoided by reducing the average depletion per capita. We note that this scenario

could also represent a situation where, rather than having paid Non-Workers, the

workload per capita is reduced, with the whole population working “fewer days a

week”. Such a “work-sharing” policy has been successfully implemented in Germany

over the past few years for reducing unemployment [Baker and Hasset, 2012; Hasset,

2009]. Moreover, Knight et al. [2013] show, through a panel analysis of data for 29

high-income OECD countries from 1970 to 2010, that reducing work hours can

contribute to sustainability by reducing ecological strain. This conclusion agrees

with our comparison of the two scenarios, 3.5.2.5 and 3.5.2.4, presented above.

3.6.4 HANDY and Brander-Taylor Model

As previously mentioned, a similar use of the predator-prey approach was

applied in the pioneering work of Brander and Taylor [1998] (BT ) to study the

historical rise and fall of the Easter Island population. In comparison to their

model, with just two equations for Population and Nature, the introduction of Elites

and Commoners, and accumulated Wealth, results in a greater variety and broader

spectrum of potential solutions. Moreover, the collapse scenario presented in BT is

somewhat different from the ones presented above. As a matter of fact, the collapse
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scenario presented in figure 3 of BT seems to be more of an oscillatory approach to

equilibrium, similar to the one shown in our figure 3.5, and not a collapse in the

sense that we define in this paper. Furthermore, the carrying capacity, in the sense

we define in this paper, is also different from what Brander and Taylor [1998] call

carrying capacity. Indeed, their carrying capacity (K) is our Nature’s capacity, λ,

which is the maximum size Nature can reach, whereas Carrying Capacity in HANDY

is the population level that can be supported by a given level of natural resources.

Furthermore, BT’s carrying capacity is a constant, whereas Carrying Capacity in

HANDY adjusts according to the level of depletion of Nature.

While sharing certain similarities with the Brander and Taylor model, our

more complex model structure and the use of different assumptions, allows our

model to apply to multiple types of societies with varying socioeconomic structures.

Thus, unlike works that tend to study further implications of the two-dimensional

model of BT [Anderies, 2000], the model we have developed introduces a more

complex set of possible feedbacks and nonlinear dynamics, and a greater spectrum

of potential outcomes. This allows HANDY to model a different and wider set of

thought experiments.

An important feature of HANDY that distinguishes it from Predator-Prey, BT,

and other similar models [Anderies, 1998; Dalton et al., 2005; Erickson and Gowdy,

2000; Reuveny and Decker, 2000] is its native capability for producing irreversible

collapses due to the structure for accumulation of wealth. Our approach also differs

from models like D’Alessandro [2007] that can produce irreversible collapses but only

through explicit introduction of a critical depensation mechanism into the model.
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The dynamics produced by HANDY offer the possibility of irreversible collapses

without having to introduce such an additional mechanism into the model. See

section 3.5.1.4 for an explanation of irreversible collapses in HANDY. 1

3.7 Summary

Collapses of even advanced civilizations have occurred many times in the past

five thousand years, and they were frequently followed by centuries of population

and cultural decline and economic regression. Although many different causes have

been offered to explain individual collapses, it is still necessary to develop a more

general explanation. In this paper we attempt to build a simple mathematical model

to explore the essential dynamics of interaction between population and natural

resources. It allows for the two features that seem to appear across societies that

have collapsed: the stretching of resources due to strain placed on the ecological

carrying capacity, and the division of society into Elites (rich) and Commoners

(poor).

The Human And Nature DYnamical model (HANDY) was inspired by the

Predator and Prey model, with the human population acting as the predator and

nature being the prey. When small, Nature grows exponentially with a regeneration

coefficient γ, but it saturates at a maximum value λ. As a result, the maximum

regeneration of nature takes place at λ/2, not at the saturation level λ. The Com-

moners produce wealth at a per capita depletion rate δ, and the depletion is also

1We wish to acknowledge and thank reviewer No. 1 for highlighting these very important points
to us.
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proportional to the amount of nature available. This production is saved as accumu-

lated wealth, which is used by the Elites to pay the Commoners a subsistence salary,

s, and pay themselves κs, where κ is the inequality coefficient. The populations of

Elites and Commoners grow with a birth rate β and die with a death rate α which

remains at a healthy low level when there is enough accumulated food (wealth).

However, when the population increases and the wealth declines, the death rate

increases up to a famine level, leading to population decline.

We show how the carrying capacity —the population that can be indefinitely

supported by a given environment [Catton, 1980a]— can be defined within HANDY,

as the population whose total consumption is at a level that equals what nature can

regenerate. Since the regrowth of Nature is maximum when y = λ/2, we can find

the optimal level of depletion (production) per capita, δ∗ in an egalitarian society

where xE ≡ 0, δ∗∗(≥ δ∗) in an equitable society where κ ≡ 1, and δ∗∗∗ in an unequal

society where xE ≥ 0 and κ > 1.

In sum, the results of our experiments, discussed in section 3.6, indicate

that either one of the two features apparent in historical societal collapses —over-

exploitation of natural resources and strong economic stratification— can indepen-

dently result in a complete collapse. Given economic stratification, collapse is very

difficult to avoid and requires major policy changes, including major reductions in

inequality and population growth rates. Even in the absence of economic stratifica-

tion, collapse can still occur if depletion per capita is too high. However, collapse

can be avoided and population can reach equilibrium if the per capita rate of deple-

tion of nature is reduced to a sustainable level, and if resources are distributed in a
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reasonably equitable fashion.

In the upcoming generations of HANDY, we plan to develop several exten-

sions including: (1) disaggregation of Nature into nonrenewable stocks, regenerating

stocks, and renewable flows, as well as the introduction of an investment mechanism

in accessibility of natural resources, in order to study the effects of investment in

technology on resource choice and production efficiency; (2) making inequality (κ)

endogenous to the model structure; (3) introduction of “policies” that can modify

parameters such as depletion, the coefficient of inequality, and the birth rate; and,

(4) introduction of multiple coupled regions to represent countries with different

policies, trade of carrying capacity, and resource wars.

Those interested in obtaining the model code can contact the authors.
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Chapter 4: Exploring Water Management Options with COWA:

A Coupled Human-Water-Climate Model

Water is, and has always been, a critical resource for survival of civilizations

and a key to prosperity of societies. Over the past several decades, demand for

freshwater has increased significantly due to growth of both population and con-

sumption. Such soaring demands have put serious strain on freshwater sources at

many regions of the world, and climate change can only worsen the uncertainty in

availability of needed freshwater. Therefore, it is essential to study the water system

in conjunction with the Earth system and the Human system. Most importantly,

we need to understand effectiveness of various managerial decisions on the water

system, since efficient policy making is the only viable solution for sustaining water

sources and supply (reservoir) at any water-scarce region of the world.

We have developed a COupled WAter model (COWA) that is integrated with

the human system and the earth system through bidirectional feedbacks. Policies

are introduced as drivers of the model so that the effect of each policy on the system

can be measured as we change its level. We have applied our model to a data-rich

watershed in the United States: Phoenix AMA watershed, which is a dry region. The

model is trained with the data from 1900–2010, and then projections are made for
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the next several decades. Historical data were recovered from the records at the US

National Archives. We have also used remotely sensed satellite data in conjunction

with data from local municipalities. Response of the system to six different short

and long term policies are presented. We show that it is possible to guarantee the

freshwater supply and sustain the freshwater sources through a proper set of policy

choices for even a dry region.

4.1 Statement of the (regional, interstate, or multi-state) water prob-

lem

With a changing climate and intensified hydrological cycle, the importance

of water resources is very likely to increase in the near future. Potential droughts,

floods, and storms can have adverse impacts on availability of water supply for

agricultural, industrial, and residential usages. We construct a minimal, Coupled

Human-Climate-Water Model (COWA) in order to explore the effectiveness of dif-

ferent policies on mitigation of, as well as adaptation to, the water-related problems.

In this paper, we apply the model to the Phoenix Active Management Area (AMA)

Watershed Region (from here on, Phoenix Region) as a case study.

Water is a critical resource for use in energy production, agriculture, industry,

and households. The imbalance between water availability and demand becomes

larger as population and consumption rate grow. With the changing climate and

the associated intensification of the hydrological cycle, we are likely to see more

regions adversely affected by extreme precipitation events, and the Phoenix Region
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will not be an exception. Extreme climatic events can lead to several types of

disasters, including droughts, floods, and storm surges. Each of these can endanger

water quality and availability. Therefore, their potential damage to the water system

needs to be studied.

Water shortage problems due to a drought may result in a regional conflict,

even a humanitarian crisis, depending upon its severity. For example, the drought in

Somalia has caused “the worst humanitarian disaster”, as stated by the U.N. refugee

agency [United Nations News Service, 2011]. At the domestic level, the serious water

shortage in metro Atlanta has fueled a legal battle among Georgia, Alabama, and

Florida over Lake Lanier water sharing [Feldman, 2008; Wortzel, 2009]. As another

example of regional water shortage, the Potomac River Basin region has experienced

two series of droughts, first 1930-32 and then 1958-71 [James, 2012]. The former

drought caused major losses for agriculture in the area and severe shortage of food

besides outbreak of epidemics and significant hardship due to shortage of water.

Such crises show the importance of studying possible factors and options that can

lead to more efficient water use and reuse practices.

Floods and storms, on the other hand, can not only seriously damage water

infrastructure like pipelines, dams, and reservoirs, but can also deteriorate the qual-

ity of the freshwater resources. A domestic example is the flood in August 2010

in Ames, Iowa. This flood temporarily cut off about 55,000 people from drinking

water due to pipe bursts. The local water and pollution control officials called for

people to stop nonessential water use purposes, and fined those who did not comply.

They also warned people about water contamination due to drainage and dropped
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pressure of the water towers [Crumb, 2010]. It is clear that flood consequences can

be significantly minimized by investing on appropriate preventive measures such

as infrastructure maintenance. Such investments would be also instrumental for

quick recovery of the affected regions. Therefore, it is important to carefully study

how floods and storms can affect the water supply with a model that realistically

simulates the climate variability introduced by anthropogenic emissions and land

use change, such as urbanization. Such studies should help in devising mitiga-

tion/adaptation water policies as well as strategies to deal with the aftermath of

catastrophic events.

4.2 Nature, scope, objectives, and potential benefits of the project

Water-efficient technologies [Western Water, 2009], better pipe quality, water

recycling [Bryck et al., 2008], and rooftop rainwater collection should all be very

useful for sustaining the water supply. However, fully implementing all of these

solutions requires a good deal of investment, which is unlikely to be available under

current economic pressures. Also, the solutions may have different cost-to-benefit

ratios in different regions. For example, if in a certain region the pipelines are in good

condition, so that leakage is not a major concern, available funding might be better

invested in building water recycling facilities. A major goal of this research is to find

the efficiencies of different water-saving strategies under different climate scenarios.

Such information is crucial for determining minimum required investment in various

sectors of the water system that guarantees no sector can become the Achilles heel
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of the system during a catastrophe.

Computer models provide us with a powerful tool to simulate the outcomes

under different sets of conditions. So far, few studies have used computer models to

test the efficiency of different water policies. One example is a recent research on

water use in South Florida, in which Ahmad and Prashar [2010] applied a complex

system dynamics model to study certain factors in the regional water management.

Ahmad and Prashar used only the water levels in one lake from 1980-2005, so their

results may not hold if the precipitation regime changes in future. Furthermore, a

highly complex model with quite a few parameters requires a huge body of data for

tuning that may not be available. Consequently, it may be difficult to replicate such

work for another region. These potential shortcomings motivate us to establish a

framework applicable to different regions, using a minimal, efficient model. Such

a model provides an opportunity to carry out many series of experiments that can

help to understand more efficient ways of conserving water resources.

We have built our coupled model with the following components: The UMD

Earth System Model (ESM), is used to conduct an offline run for the Phoenix

Region with the monthly observational datasets from the Climate Research Unit

(CRU). The River-Routing Module (RRM) is developed and coupled with the UMD

ESM. From the runoff output information for each model grid, total river inflow and

outflow for PAMAWR is calculated. Then the simulated evaporation and river inflow

and outflow rates are fed into COWA. By doing so, the efficiency of different water-

conserving options can be evaluated. These options include migrating to water-

efficient technologies, fixing pipeline leaks, increasing the water recycling capacity,
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and introducing long-term water withdrawal policies.

The Coupled Human-Water-Climate model will be verified with the available

historic data for PAMAWR from several sources, including USGS National Water

Information System, USGS Instantaneous Data Archive, and extracted data from

the records available at the US National Archives. The results can help policymakers

to choose priorities for adaptation/mitigation water policies that can lead to effective

investment of limited funds. In our future works, we will explore the possibility of

applying the model to other regions, such as the State of California, the Potomac

River Basin, the Fertile Crescent (e.g., Iraq, Syria, Lebanon, and Jordan) and eastern

Africa (e.g., Somalia) where water problems are crucial and there is little data

available.

The goal of this research is to model and then study the effectiveness of dif-

ferent investment/policy factors in different sectors of the water system under a

changing climatic, including extreme weather events. The parts of the water system

to be studied include dispensing technologies, transfer infrastructure, and recycling

facilities. We will also study long-term policies for withdrawal of water from water

sources (both Groundwater and Surface Water).

4.3 Methods, procedures, and sources of data

To conduct this research, we coupled the UMD Earth System Model (ESM)

and a River Routing Module (RRM) to the Coupled Human-Climate-Water model

(COWA). The model framework is illustrated in Fig. 4.1. COWA studies various
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effects of the Human System on the Water Resources and Water Supplies. COWA

considers demographic characteristics of the human system, such as population,

growth rate, regional migration, and water demand per capita as well as the influence

of human on the management of the water systems. By coupling the ESM and RRM

to COWA, we can simulate future availability of water supplies under changing

climate and water policies.
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Figure 4.1: A schematic of the Coupled Water Model, including the Earth System
Model (ESM) and the River Routing Module (RRM).

4.3.1 The UMD Earth System Model: Land and vegetation models

The UMD ESM includes a dynamic vegetation model (VEGAS), a simple

land model (SLAND), and several other components. COWA requires as inputs
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precipitation, evaporation and river inflow and outflow rates in the region of study

(in this case, PAMAWR). The river inflow and outflow rates are computed from the

coupled River Routing Module, driven by runoff.

The land surface parameterization scheme is called Simple-Land (SLand). It

has been built at an intermediate level of complexity to simulate the first-order ef-

fects of vegetation on climate variables. For simplicity, there is no diurnal cycle,

and no environmental control on photosynthesis. Therefore, the soil moisture and

seasonal variation of radiation are the main controlling factors. A single soil layer

with different depth for the energy and the water balance is assumed. More infor-

mation on energy balance and water budget equations can be found in Zeng et al.

[2000]

The terrestrial carbon model VEgetation-Global-Atmosphere-Soil (VEGAS)

simulates the dynamics of vegetation growth and competition among four different

plant functional types (PFTs): broadleaf tree, needleleaf tree, cold grass, and warm

grass. The different photosynthetic pathways are distinguished for C4 (warm grass)

and C3 (the other three PFTs) plants. Phenology is dynamically simulated as the

balance between growth and respiration/turnover. Competition is determined by

climatic constraints as well as resource allocation strategies such as temperature

tolerance and height-dependent shading. The relative competitive advantage then

determines fractional coverage of each PFT with possibility of coexistence [Zeng

et al., 2005; Zeng, 2003].
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4.3.2 Environmental Drivers: Bias Correction and Summary

General Circulation Models (GCMs) are important tools in assessing climate

change and in helping decision making to mitigate and adapt to future availability

of water. However, there are inevitable model biases due to inadequate knowl-

edge of key physical processes (e.g., cloud physics) and simplification of the natural

heterogeneity of the climate system that exist at finer spatial scales. For exam-

ple, substantial precipitation biases, especially in the tropics, are common in many

models [Randall et al., 2007].

Traditionally, additive correction is often applied to correct the biases of model

means, that is, to simply add the delta difference between a reference observation

period and the model simulated mean future climatology:

C̄ = Ō +M − M̄, (4.1)

where C is the corrected value, Ō is the observed climatology for the reference

period, M is the simulated value, and M̄ is the simulated climatology. For wet biases

(model simulates higher precipitation climatology than observation), this method

may result in negative rainfall, which is unphysical.

An alternative method is multiplicative correction [Sheffield et al., 2006]:

C̄ = Ō +
Ō

M̄
× (M − M̄) (4.2)

This method scales the perturbation with the ratio of observed to modeled
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climatology. A drawback for this method is when model has large dry bias, this

correction could lead to unrealistically high rainfall.

To avoid the limitations of the two methods above, we implemented a Mixed

Additive-Multiplicative (MAM) correction method to perform bias correction using

rainfall observation from the latest global gridded Climate Research Unit (CRU)

TS3.21 dataset. We chose 1961-1990 as the reference period for climatology:

C̄ =


Ō +M − M̄, when

Ō

M̄
≥ 1

Ō +
Ō

M̄
× (M − M̄), when

Ō

M̄
< 1

(4.3)

As a simple combination of two popular methods, we believe MAM correction is a

conceptually intuitive, easy to implement, yet effective bias correction method.

To create the monthly rainfall scenario for PAMAWR, we chose a represen-

tative ensemble member of the National Center for Atmospheric Research (NCAR)

Community Climate System Model (CCSM) RCP4.5 output. This model is a par-

ticipant in the Intergovernmental Panel on Climate Change (IPCC) Coupled Model

Intercomparison Project Phase 5 (CMIP5). We retrieved the simulated rainfall from

the Earth System Grid Federation (ESGF), an international network of distributed

climate data servers [Williams et al., 2011]. Then we applied the MAM method to

create a combined (1901-2012 CRU and 2013-2100 CCSM) rainfall monthly time

series for the AMA watershed from 1901-2100.

Similarly, for monthly evaporation losses, we combined the simulated results

from the UMD ESM and the CCSM output for PAMAWR with the MAM method.

85



4.3.3 River-Routing Module (RRM)

Based on the principles in Miller et al. [1994], similar to the concept of the

Total Runoff Integrating Pathways (TRIP) developed by Oki and Sud [1998], we

developed a river routing module (RRM) that routes runoff based on river channel

characteristics in the Global Dominant River Tracing (DRT) based Hydrography

Datasets. The recently developed DRT algorithms utilize information on global and

local drainage patterns from baseline fine scale hydrography inputs to determine

upscaled flow directions and other critical variables including upscaled basin area,

basin shape and river lengths. It preserves the original baseline hierarchical drainage

structure by tracing each entire flow path from headwater to river mouth at fine scale

while prioritizing successively higher order basins and rivers for tracing [Wu et al.,

2011, 2012]. We use the 0.5 degree version of flow direction, flow and river channel

slope from the DRT dataset as input to the River Routing Module. We followed the

equations in Miller et al. [1994] for computing river flows, specifically, the equations

are as below.

The rate at which water leaves a grid box, F , mainly depends on the water

storage above the sill depth, S, the flow distance between the grid boxes, d, and

topography gradient.

F = S · u
d

(4.4)

In Eq. (4.4), F (Kg·m−2·s−1) is the river flow flux to the downstream grid; S (kg·m−2)
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represents the free-flowing mass of water (lakes, rivers, and groundwater) above the

sill depth in each grid; d (m) is the meandering flow distance from the DRT dataset

distance (we use the minimum of the meandering flow distance from DRT dataset

and the shortest distance between current and its downstream grid); and u (m·s−1)

is an effective flow speed of water from a grid box to its downstream neighbor.

The value of u depends on local characteristics of the river basin, such as its

morphology and topography gradient:

u = 0.35 (i/i0)
1/2, (4.5)

where i is the river channel slope from the DRT dataset and i0 = 0.004 (median

value of the DRT dataset) is the reference topography gradient we use. We limit u

within a realistic range of 0.15 – 5 m/s. An upper limit on u is necessary to prevent

numerical instabilities in the river routing model. Minimum u is used when the

downstream grid is at a higher elevation than upstream.

Changes in water storage at each grid box is given by:

dS

dt
= R +

∑
FIN − FOUT , (4.6)

where FOUT is the rate at which river mass leaves a grid box,
∑
FIN is the sum of

the water flux entering a grid from all of its neighbors, and R represents the runoff

from the UMD model. At each time step, after computing the river outflow at grid

X, we add it to the inflow of its downstream grid, Y (if Y is also a land grid). Thus
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river inflow at every grid is calculated after looping through all grids.

We found this simple river routing scheme captures a realistic global river flow

pattern, and we believe it is suitable for the purpose of this study, where we simply

sum up river flow entering and exiting PAMAWR each month from 1900-2010.

We assume river inflow and outflow in future shows similar characteristics

as the historical period, and we simply repeat the river inflow and outflow time

series from our River Routing Model as the future river flows for AMA watershed.

Admittedly this is a simple treatment, however, given the purpose of this conceptual

study, and the large uncertainty in evaporation and river flow simulations, we believe

the scenario we used in our study is plausible.

Figure 4.2: Global mean river flow from 1971 to 2000.
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Figure 4.3: Time Series of monthly precipitation, evaporation, and river inflow and
outflow for PAMAWR from 1900 to 2100.

4.3.4 Sources of Data

Sources of data for this work include Bryck et al. [2008]; James [2012]; Kenny

et al. [2009]; Solley et al. [1998]; Western Water [2009], as well as the following online

open-access resources:

• FAO AQUASTAT: http://www.fao.org/nr/water/aquastat/main/index.

stm

• FAO Country Profiles: http://www.fao.org/countryprofiles/en/

• Great Lakes Information Network: http://www.great-lakes.net/

• National Groundwater Association Groundwater facts: http://www.ngwa.

org/gwscience/ground_water_use/faqs.aspx

89

http://www.fao.org/nr/water/aquastat/main/index.stm
http://www.fao.org/nr/water/aquastat/main/index.stm
http://www.fao.org/countryprofiles/en/
http://www.great-lakes.net/
http://www.ngwa.org/gwscience/ground_water_use/faqs.aspx
http://www.ngwa.org/gwscience/ground_water_use/faqs.aspx


• NCDC (National Climatic Data Center, U.S. Dept of Commerce) and NOAA

Satellite and Information Service: http://www.ncdc.noaa.gov/oa/ncdc.html

• United States Geological Survey Instantaneous Data Archive: http://ida.

water.usgs.gov/ida/

• United States Geological Survey Earth Resources Observation and Science

(EROS) Center: http://eros.usgs.gov/publications

• HYDRO1K Database: https://lta.cr.usgs.gov/HYDRO1K

• United States Geological Survey National Water Information System: http:

//waterdata.usgs.gov/nwis

4.4 COWA

COWA (COupled WAter model) is a minimal model for the human-water

system. COWA is coupled to a Global Climate Model (GCM) and a River Rout-

ing Module (RRM). COWA itself has only four stocks: Population, Surface Water

Sources, Groundwater Sources, and Freshwater Supply. In this version of COWA,

consumption of water by different sectors of the economy and society is combined

into a single flow, Consumption. A main feature of COWA is that Population is

endogenously coupled to the water system through bi-directional feedbacks. This

coupling can produce results that would be otherwise be impossible to obtain if

population is treated as an exogenous variable.

One can use COWA to run “thought experiments” on the lifetime of Sources/Supply

90

http://www.ncdc.noaa.gov/oa/ncdc.html
http://ida.water.usgs.gov/ida/
http://ida.water.usgs.gov/ida/
http://eros.usgs.gov/publications
https://lta.cr.usgs.gov/HYDRO1K
http://waterdata.usgs.gov/nwis
http://waterdata.usgs.gov/nwis


under various assumptions for recycling capacity, pipeline leakage, and dispensing

technology.There are certain parameters in the model that are determined through

policies. Therefore, effects of various policies can be studied with COWA.

The four state variables in COWA are Population, x, Surface Water Sources,

yS, Groundwater Sources, yG and (stored) Freshwater Supply, z. Population is

controlled by the death rate, α, birth rate, β, and immigration rate, I. Death

rate is not a constant but increases as consumption per capita decreases beneath

a threshold value. Immigration rate is not a constant either. It is proportional to

the consumption per capita, and becomes negative as consumption drops below a

certain threshold. Surface water stock is controlled by several flows: river inflow, Φ,

river outflow, Ψ, precipitation, P , evapotranspiration, E, withdrawal of water from

surface water sources into the supply, WS, groundwater recharge, G, leak to sources,

Λ, flow of non-recycled water to sources, N , and runoff to sources, Ω. Groundwater

stock, on the other hand, has only one incoming flow, groundwater recharge, G,

and one outgoing flow, withdrawal of groundwater into the supply, WG. Freshwater

supply is controlled by three inflows, withdrawals, WS + WG, and recycling, R,

and two outflows, supply collection, K, and leakage, L. Rooftop collection rate,

Γ, is directly available for consumption and therefore, is deducted from the total

precipitation when calculating net inflow of water to (surface water) sources.

While P , E, Γ, Φ, and Ψ are exogenous variables (or time series) for COWA,

WG, WS, K, R, L, Λ, Ω, N , and Σ are all functions of other model parameters and

variables. Model parameters are demand per capita, δ, technology factor, τ , trans-

fer efficiency, η, assurance factor, θ, maximum withdrawal capacity, WM , maximum
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groundwater withdrawal rate, WGM , maximum recycling capacity, RM , and maxi-

mum capacity of supply, zM . There are also three coefficients which are bounded

between 0 and 1: consumptive to sewer, σ, runoff to sources, ω, and non-recycled

to sources, ν. It is assumed that leaked water returns to sources with a time delay

λ.

Total demand, ∆(t) is given by:

∆(t) = δx(t). (4.7)

Effective demand is given by the total demand divided by the technology factor:

D(t) =
∆(t)

τ
=
δ

τ
x(t). (4.8)

It can be seen that τ = 1 represents the base technology, τ > 1 indicates a water

saving technology, and τ < 1 refers to an inefficient water dispensing technology.

Transfer efficiency, η, is defined through the equation:

K(t) = η
(
K(t) + L(t)

)
. (4.9)

This equation essentially shows that only a factor η of the total water withdrawn

from the freshwater supply, K+L, is consumed and the rest is wasted through leaks.

Therefore, leakage rate and consumption rate are directly related through η:

L(t) =
1− η
η

K(t). (4.10)
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Net water that is available for recycling is the sum of the consumption to

sewer rate, Σ(t) = σ(K(t)+Γ(t)). Flows that determine the Supply level, i.e., (two)

withdrawals, consumption, leakage, and recycling can then be expressed as follows:



WS(t) = min

(
θS
yS
∆t
, θO

zM − z
∆t

,WSM

)
×min

(
1,
yS
nD

)

WG(t) = min

(
θG
yG
∆t
, θO

zM − z
∆t

,WGM

)
×min

(
1,
yG
nD

)

K(t) = max

(
0,min

(
D(t), θKη

z(t)

∆t

)
− Γ

)

L(t) =
1− η
η

K(t)

R(t) = min

(
θO
zM − z

∆t
,Σ(t), RM

)

(4.11)

The consumed water that does not go to sewer, (1−σ)(K+Γ), flows to runoff

and a portion of it, Ω, goes to sources. Moreover, a portion of the water that has

gone into the sewer but has not been recycled, N , goes back to the sources. These

three flows are therefore defined by:
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

Λ(t) = L(t− λ)

Ω(t) = ω(1− σ)(K(t) + Γ(t))

N(t) = ν (Σ(t)−R(t))

Σ(t) = σ (K(t) + Γ(t))

(4.12)

Now that we have defined all the components, we can write the equations

governing COWA:



ẋ = βx− αx+ I(t)

ẏS = Φ(t) + P (t)−Ψ(t)− E(t)−W (t) + Ω(t) + Λ(t) +N(t)−G(t)

ẏG = G(t)−WG(t)

ż = WS(t) +WG(t) +R(t)−K(t)− L(t)

(4.13)

A schematic of the variables of COWA and their connections to the ESM and

RRM is shown in Fig. 4.4.
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Figure 4.4: A schematic of the state variables of COWA, including the flows among
them as well as the linkages to ESM and RRM. Red arrows show feedbacks while
black arrows show flow of water.

Below we will present definitions for variables, parameters, and functions used

in COWA in three tables:
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Table 4.1: State Variables (Stocks) used in COWA

Variable Symbol Variable Name Governing Equation

x Population ẋ = βx− αx+ I

yS Surface Water Sources ẏS = P − E + Φ−Ψ−WS + Λ + Ω +N −G

yG Groundwater Sources ẏG = G−WG

z Freshwater Supply ż = WS +WG +R−K − L
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Table 4.2: Definition of Functions used in COWA Equations

Function
Symbol

Function Name Describing Equation

P Precipitation rate Exogenous

E Evapotranspiration rate Exogenous

Φ Net River Inflow rate Exogenous

Ψ Net River Outflow rate Exogenous

Γ Rooftop Collection rate Exogenous

I Immigration rate = Ib

( C

Cth
− 1
)

G Groundwater Recharge rate = max
(
0, f(P − E)

)
WS Surface Water Withdrawal

rate
= min

(
θS
yS
∆t
, θO

zM − z
∆t

,WSM

)
×

min
(

1,
yS
nD

)
WG Groundwater Withdrawal

rate
= min

(
θG
yG
∆t
, θO

zM − z
∆t

,WGM

)
×

min
(

1,
yG
nD

)
K Rate of Collection from

Supply
= max

(
0,min

(
D, θKη

z

∆t

)
− Γ

)
L Leakage rate =

1− η
η

K

R Recycled Water rate = min
(
θO
zM − z

∆t
,Σ, RM

)
∆ Total Demand = δx

D Effective Demand = ∆/τ

C Consumption per Capita = (K + Γ)/x

Cth Threshold Consumption per
Capita

= µ(δ/τ)

α Death rate = max
(
αM − (αM − αm)(C/Cth), αM

)
Λ Leak to Sources = L(t− λ)

Ω Runoff to Sources rate = ω(1− σ)(K + Γ)

N Nonrecycled to Sources rate = ν(Σ−R)

Σ Consumptive to Sewer rate = σ(K + Γ)
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Table 4.3: Description of Parameters used in COWA

Parameter Sym-
bol

Parameter Name

αm Normal (Minimum) Death rate

αM Famine (Maximum) Death rate

β Birth rate

Ib Base Immigration rate

δ Demand per Capita

µ Threshold Consumption per Capita ratio

η Transfer Efficiency

τ Technology factor

zM Maximum Capacity of Freshwater Supply

WSM Maximum Surface Water Withdrawal rate

WGM Maximum Groundwater Withdrawal rate

RM Maximum Recycling Capacity

nS,G Number of Reserve Months (Long-term Policy) for Sur-
face Water and Groundwater

f Infiltration rate

θS,G,K,O Assurance factor (Short-term Policy) for Sur-
face/Ground Water Withdrawal, Collection from
Supply, and Supply Overflow

µ Threshold Consumption per Capita ratio

λ Leak to Sources Time Delay

ω Runoff to Sources ratio

ν Nonrecycled to Sources ratio

σ Consumptive to Sewer ratio
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𝛼𝑀

𝛼

1

Figure 4.5: Death rate as a function of consumption per capita and demand per
capita. Note that Cth is directly proportional to δ.

1

1

𝑊

𝑊𝑀

𝑦/𝑛𝐷

Figure 4.6: Withdrawal rate as a function of available freshwater sources, y, effective
demand, D, and number of reserve months, n. The latter parameter is a strong
policy knob that can have important implication for sustaining water sources. By
choosing a large n, we can insure long-term availability of water, however, it implies
a mandatory reduced consumption for the short-term in the event of a drought.
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Figure 4.7: Immigration rate as a function of consumption per capita. While con-
sumption is above its threshold level, there is immigration into the region. However,
when it drops below the threshold value, people start to emigrate from the region.

4.5 Application to the Phoenix AMA Watershed

Scenarios to be studied are due to changes of RM , τ , η, zm, yG,i, n, and θ.
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4.5.1 Base Run

Phoenix9AMA9Baserun
4C9M ppl

8CC ckm
1 Dmnl

1edCC7 ckmWwmoSpplt

C ppl
C ckm
C Dmnl
C ckmWwmoSpplt

19CC 193C 196C 199C 2C2C 2C5C 2C8C
Time9in9Years

Freshwater9Supply

Groundwater

Population

Surface9Water

Threshold9
Consumption
per9Capita

Consumption
per9Capita

Figure 4.8: Base run for the Phoenix AMA Watershed.

The following parameter values and initial conditions are used for the base run:

Normal death rate αm = 0.0006, normal birth rate β = 0.0016, initial population

xi = 27, 000, initial groundwater yG,i = 660, initial surface water yS,i = 30, initial

supply zi = 3, total reservoir capacity zM = 5, surface water withdrawal capacity

WSM = 1, groundwater withdrawal capacity WGM = 1, surface water reserve months

nS = 60, groundwater reserve months nG = 60, recycling capacity RM = 0, transfer

efficiency η = 0.85, technology factor τ = 1, base immigration Ib = 3, 000, demand

per capita δ = 8.3?10−8 . Time step is 1 month (mo); Unit of volume is cubic

kilometer (ckm); Unit of population is people (ppl). Freshwater Supply z is shown

normalized to zM in all the figures. Units for all the other quantities are chosen to

conform with the basic units mo, ppl, and ckm. Base run can give us a basis for

comparing the impact of different water management options and policies.
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4.5.2 Addition of Recycling

Phoenix*AMA:*Addition*of*Recycling
4G*M ppl

8GG ckm
W Dmnl
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G ppl
G ckm
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W9GG W93G W96G W99G CGCG CG5G CG8G
Time*in*Years

Freshwater*Supply
Groundwater

Population

Surface*Water

Threshold*
Consumption
per*Capita

Consumption
per*Capita

Figure 4.9: Addition of recycling to the base run for the Phoenix AMA Watershed.

By adding a recycling capacity RM of 1 ckm/mo, final population can grow to

a maximum of 23M, compared to 14M without recycling. More importantly, ground-

water ends up at a level of 550 ckm, compared to 300 ckm, which is a significant

improvement.
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4.5.3 Improvement in Technology

Phoenix(AMA:(Improved(Technology
4f(M ppl
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Groundwater
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Figure 4.10: Improvement in technology of the base run for the Phoenix AMA
Watershed.

By increasing the technology factor to τ = 2 (equivalent to reducing effective

demand by half), population can grow to a maximum of 24M, compared to 14M

with no technology improvements. More importantly, groundwater ends up at a

level of 490 ckm, compared to 300 ckm.
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4.5.4 Againg vs. Improved Pipelines

Phoenix6AMA:6Aging6Pipelines
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Figure 4.11: Aging pipelines for the Phoenix AMA Watershed.
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Figure 4.12: Improved pipelines for the Phoenix AMA Watershed.

By reducing the leaks 10% (η = 0.95 to η = 0.95), final population increases

to 15M, compared to 14M. The impact on groundwater is small.
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4.5.5 Higher Reservoir Capacity

Phoenix-AMA:-Higher-Reservoir-Capacity
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Figure 4.13: Higher reservoir capacity for the Phoenix AMA Watershed.

By doubling the reservoir capacity to zM = 10, population can grow to a

maximum of 23M, compared to 14M. However, groundwater ends up at a very low

level of 50 ckm. Stricter groundwater withdrawal policies can improve this.

Phoenix4AMA:4Higher4Reservoir4Capacity)4Stricter4Groundwater4Withdrawal

F24M ppl
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5922 59Y2 5962 5992 T2T2 T2f2 T282
Time4in4Years

Freshwater4Supply

Groundwater

Population

Surface4Water

Threshold4
Consumption
per4Capita

Consumption
per4Capita

Figure 4.14: Higher reservoir capacity with a stricter groundwater withdrawal policy
for the Phoenix AMA Watershed.
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The reservoir capacity is doubled to zM = 10, but at the same time, ground-

water reserve months is increased from nG = 60 to nG = 300. Population grows to

a final level of 21M instead of 23M. However, groundwater ends up at a level of 140

ckm, which is much better than 50ckm, reached when no changes in groundwater

withdrawal policy are implemented.

4.5.6 Uncertainty in Groundwater Estimates
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Figure 4.15: Uncertainty in groundwater estimates for the Phoenix AMA Watershed.

With a 50% error in the estimate of the total groundwater, population could

grow to a maximum of 13M, compared to 14M. However, groundwater ends up at a

much lower level of 5 ckm, which is unacceptable. Stricter groundwater withdrawal

policies could prevent this.
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Figure 4.16: Stricter groundwater withdrawal policy for the Phoenix AMA Water-
shed when there is uncertainty in groundwater estimates.

The initial groundwater is reduced to yG,i = 330, but at the same time, ground-

water reserve months is increased from nG = 60 to nG = 300. Population grows to

a final level of 10M instead of 13M. However, groundwater ends up at a level of 40

ckm, which is much better than 5 ckm, reached when no changes in groundwater

withdrawal policy are implemented.

4.6 Summary

Our main focus in this work is on the societal, economic, management, and

policy implications of the results from the coupled human-water-climate model.

Ahmad and Prashar [2010] developed a complex water model addressing economic

and management issues for the water system in southern Florida. Our goals are

similar to those of Ahmad and Prashar, but we have added some modules and

simplified others, which may have advantages for water decision-making. Since

Ahmad and Prashars model does not include a climate model or a river routing

module, it makes it difficult to assess issues arising from precipitation regime changes
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and more extreme events. Moreover, their model is very complex and requires

much data that may not be available for most regions. The complexity of the

model makes it difficult to communicate the results to the public, or the policy-

makers with little or no technical background. In short, our model combines several

components involved in the water cycle in a simple, efficient, novel model whose

potential outcomes are significant. Nevertheless, COWA can only be considered as a

“thought-experiment” model to guide decision making due to its minimal structure.

Figure 4.17: Summary of the final level of groundwater from different scenarios for
the Pheonix AMA Watershed.
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Figure 4.18: Summary of the final level of groundwater from different scenarios for
the Pheonix AMA Watershed.

Figs. 4.17 and 4.18 give a summary of the results from various scenarios pre-

sented above. Improvements of recycling and dispensing technology are essential for

both increasing the “water carrying capacity” of population and conserving water

sources. Higher reservoir capacity can increase the Water Carrying Capacity of pop-

ulation, but can lead to dangerous depletion of water sources in the absence of strict

withdrawal policies. Such policies are also essential when estimates of water sources

are uncertain. We can also have regional development policies in place which dis-

courage immigration into the region of a particular watershed whenever population

reaches the level of Water Carrying Capacity.

Long term impacts of water management options such as recycling, technology,

transfer infrastructure, and reservoir capacity can be tested. But it is essential

to include bidirectional coupling of water with population.It is important to have

long term policies for water reserves. An economic module will be developed and
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integrated into the human-water model in order to assess economic feasibility and

efficiency of each policy, and the impact on population and the natural system.
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