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In this thesis we investigate three problems involving the control and dynamics

of complex systems.

(a) We first address the problem of controlling spatiotemporally chaotic sys-

tems using a forecast-based feedback control technique. As an example, we suppress

turbulent spikes in simulations of the two-dimensional complex Ginzburg-Landau

equation in the limit of small dissipation.

(b) In our second problem we examine the dynamical evolution of the one-

dimensional self-organized forest fire model, when the system is far from its sta-

tistically steady-state. In particular, we investigate situations in which conditions

change on a time-scale that is faster than, or of the order of the typical system

relaxation time.

(c) Finally, we provide a mean field theory for a discrete time-step model of

epidemic spreading on uncorrelated networks. The effect of degree distribution, time

delays, and infection rate on the stability of oscillating and fixed point solutions is

examined through analysis of discrete time mean-field equations.
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Chapter 1

Introduction

The study of complex systems has become increasingly important and active

in many scientific disciplines, partly because of its broad range of potential applica-

tions. In this thesis we examine the control and dynamics of a variety of complex

systems.

In Chapter 2 we address the problem of using feedback control for the purpose

of suppressing unwanted rare intense events in spatially extended systems. As an

example, we investigate the use of control to suppress turbulent spikes in simulations

of the two-dimensional complex Ginzburg-Landau equation in the limit of small

dissipation. We explore how information obtained by forecasting can be used to

implement spatially and temporally localized control parameter changes and how

control strength and cost are related to effectiveness in this framework. The effects

of model error and imperfect state measurement are also considered. The main

advantage of our approach is that it requires very small changes in the control

parameters to achieve the desired effect. Our purpose is to eliminate the potentially

harmful part of spatiotemporal chaos, rather than eliminating chaos itself, making

the method particularly suitable for potential applications e.g., weather control.

In the remaining two Chapters we study the behavior of systems defined by

cellular automata. In cellular-automata-based models simple dynamical rules can
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result in very complicated and potentially meaningful global behavior, illustrat-

ing that complex global behavior does not necessarily require complicated rules as

building blocks.

In Chapter 3 we examine the dynamical evolution of the one-dimensional self-

organized forest fire model (FFM), when the system is far from its statistically

steady-state. In particular, we investigate situations in which external conditions

change on a time-scale that is faster than, or of the order of the typical time needed

for relaxation. An analytical approach is introduced based on a hierarchy of first-

order nonlinear differential equations. This hierarchy can be closed at any level,

yielding a sequence of successively more accurate descriptions of the dynamics. It is

found that our approximate description can yield a faithful description of the FFM

dynamics, even when a low order truncation is used. Employing both full simulations

of the FFM and our approximate descriptions, we examine the time scales and

cluster-size-dependent dynamics of relaxation to the statistical equilibrium. As an

example of changing external conditions in a natural forest, the effects of a time-

dependent lightning frequency are considered.

Finally, in Chapter 4 we examine properties of disease spreading on uncor-

related networks. In particular, we provide a mean field theory for the discrete

time-step SIRS (Susceptible, Infected, Recovered, Susceptible) model on uncorre-

lated networks with arbitrary degree distributions. The effect of network structure,

time delays, and infection rate on the stability of oscillating and fixed point solutions

is examined through analysis of discrete time, mean field equations. Consideration

of two scenarios for disease contagion demonstrates that the manner in which conta-
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gion is transmitted from an infected individual to a contacted susceptible individual

is of primary importance. In particular, the manner of contagion transmission de-

termines how the degree distribution affects model behavior. We find excellent

agreement between our theoretical results and numerical simulations on networks

with large average connectivity.

The thesis is based on the following publications:

• Chapter 2: V. Nagy and E. Ott, Control of rare intense events in spatiotem-

porally chaotic systems, Phys. Rev. E 066206 76 (2007)

• Chapter 3: V. Nagy and E. Ott, Dynamics of the one-dimensional self-organized

forest fire model, Phys. Rev. E 021113 78 (2008)

• Chapter 4: V. Nagy, Mean-field theory of a recurrent epidemiological model,

submitted to Phys. Rev. E (2009)
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Chapter 2

Control of Rare Intense Events in Spatiotemporally Chaotic Systems

2.1 Introduction

There are numerous examples of rare intense events in spatiotemporal chaotic

systems [1], some of which have great practical importance. Atmospheric events like

tornados and hurricanes can be particularly harmful and capable of causing serious

loss. Another example is the occurrence of large height ocean waves [2] (so-called

rogue waves). An example of a nicely controllable laboratory model exhibiting rare

intense event behavior is that of parametrically forced surface waves on water which

intermittently produce high amplitude spatially localized upward jetting [3]. For

cases in which such intense events are destructive, it would be highly desirable to

find effective methods for suppressing them.

Synchronization and control of spatially extended systems has attracted con-

siderable attention during the last two decades partly because of the broad range of

its potential applications, e.g, [4, 5, 6, 7]. The first approaches to control spatiotem-

poral chaos where extensions of the algorithm in Ref. [8]. Subsequently Pyragas

suggested a delayed continuous feedback control method [9] which was extended

to spatiotemporal systems to suppress turbulence in the complex Ginzburg-Landau

equation [4] and to control chaos in an optical system by Lu et al.[6]. As simple

models for spatially extended systems, coupled map lattice systems have attracted

4



considerable attention where so-called ‘pinning control’ techniques have been inves-

tigated [10, 11]. In the context of low dimensional chaos, control for the suppression

of rare intense events (e.g., associated with parameters putting the system slightly

past a ‘crisis’ [12]) has been addressed in Refs. [13].

Our purpose is to address the problem of controlling rare intense events in

spatiotemporally chaotic systems. We often refer to such rare intense events as

‘bursts’. We take an approach in which we first forecast the future occurrence of an

unwanted burst event in the uncontrolled system. We then use this information for

planning a control to eliminate this burst event. We summarize the requirements of

our control set-up as follows:

• A good model of the system dynamics.

• Measurements of the state of the system.

• A means of using the previous two to predict the future system state and in

particular the occurrence of bursts.

• Available control variables that can be physically changed to influence the

system evolution.

• A strategy for deciding how to program these control variables.

Thus our considerations here are not applicable to examples of rare intense

events (e.g., earthquakes) where the system is so complex that reliable prediction

has so far proved unattainable. On the other hand, weather and hurricane prediction

5



is rapidly advancing and may, in the future, provide an example, where our consid-

erations are of interest. For the case of hurricanes, one possibility [14] is to deposit

surfactant on the ocean surface in the region of an incipient hurricane to reduce

the evaporation that powers the storm. Our purpose is to illustrate and examine

the feasibility and limitations of burst elimination control for appropriate spatio-

temporally chaotic systems. For this purpose we employ a specific simple model

which will allow us to address many of the more basic issues raised by the above

program. In particular, we use as our basic model system the complex Ginzburg-

Landau (CGL) equation with parameter values chosen so that the equation exhibits

large spatially and temporally localized bursts that occur in a highly intermittent

manner.

As background, in Sec. 2.2 we discuss the properties of the uncontrolled CGL

equation in the regime of interest. In Sec. 2.3 we consider a ‘perfect scenario’ in

which it is assumed that the following conditions hold:

• We are able to exactly sense the entire system state.

• We are in possession of an exact model for the system being controlled and

we can integrate this model with arbitrarily fine precision.

By examining this ‘perfect scenario’ we are able to address several issues illustrating

the best possible results that could be expected. For example, how far do we need

to predict into the future, and how does this prediction horizon influence the size

and strength of the needed control? Can controls of fairly small size, if strategically

applied and programmed, eliminate large, potentially catastrophic events? Can

6



the control to eliminate a spatially localized burst itself be localized in space and

time? We find that potentially favorable results can often be obtained. Thus the

results from our ‘perfect scenario’ tests motivate further study to investigate non-

ideal effects. This will be done in Sec. 2.4 in which we consider the effects of the

following practically important factors.

• Estimation of the current system state from noisy observations at a finite

number of spatial locations.

• Model error (i.e., the model used to forecast bursts does not precisely corre-

spond to the true dynamics of the system to be controlled).

In Sec. 2.5 we summarize our conclusions.

2.2 The Complex Ginzburg-Landau Equation as a Model for Rare

Intense Events

The Complex Ginzburg-Landau (CGL) equation,

∂tu = Ru− (γ − iα)|u|2u + (µ + iβ)∇2u, (2.1)

is a generic amplitude equation that describes the slow modulation of physical fields

in space and time near the threshold of an instability (e.g., see Ref. [15]). It has been

studied as a model for such diverse situations as fluid dynamics (Rayleigh-Bernard

convection[16], Taylor-Couette flow [17] and Poiseuille flow [18]), and nonlinear

chemical oscillation [19]. The CGL equation can also be viewed as a dissipative

extension of the nonlinear Schrodinger (NLS) equation which corresponds to Eq.

7



(2.1) with R, γ and µ set to zero. For real positive (R, γ, α, µ, β) solutions of the

CGL equation are global in time [20, 21], while, in contrast, the NLS equation can

exhibit finite-time singularities in which the field approaches infinity (‘blow-up’) at

some point in space as the time approaches a singularity time from below [23, 24, 25].

Here we consider the CGL equation on a two dimensional domain (denoted Ω) with

periodic boundary conditions. Furthermore, we consider a parameter region where

the CGL equation is close the NLS limit:

α = β = 40 À γ = R = µ = 1 (2.2)

In this regime the CGL solution intermittently develops high-amplitude, spatially

localized, intense bursts [26, 27, 28] which can be considered as dissipative versions of

the finite-time blow-up solutions of the NLS equation. Due to dissipation (nonzero γ

and µ) the amplitude of these CGL bursts (in contrast to the NLS blow-up solutions)

never reaches infinity [20, 21]. We consider such CGL bursts as a generic model for

rare intense events.

In our numerical solution of Eq. (2.1) we employ periodic boundary conditions

on a square with sidelength l = 60. We use a 512 × 512 grid and a second-order

accurate operator splitting method in time (e.g., Ref. [22]) with adaptively changing

time-step. The accuracy of our numerical simulations is most restricted by the

limited spatial resolution as bursts exhibit large amplitude variations within small

distances. In order to check the accuracy of the selected method, we performed

our numerical integration for finer resolutions in space and time and found good

quantitative agreement between the results.
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Figure 2.1: 3D view of a CGL burst.

We start our numerical integration from random initial conditions and inte-

grate the system forward in time until transients related to the initial conditions

seem to be absent (i.e., the solution approaches the compact global attractor [21]).

We use the resulting state (labeled t = 0) as an initial condition for the following

calculations. Figure 2.1 shows a snapshot of the spatial dependence of |u| in a re-

gion containing a burst at the snapshot time. Figure 2.2 shows |u| evaluated at the

spatial location of the maximum of |u| in Fig.2.1 versus time. As seen in Fig.2.2,

this quantity initially fluctuates showing both increasing and decreasing behavior.

Subsequently, when conditions are favorable to lead to formation of a burst, the

amplitude starts to increase rapidly. When bursts finally reach their maximum am-

plitude, to within a good approximation, they are circularly symmetric around their
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Figure 2.2: |u|max versus time for an individual burst. Solution of Eq. (2.1) with
parameters as given in (2.2).

maxima and differ only in an appropriate scaling,

u′ (r/|u′|max)

|u′|max

' u (r/|u|max)

|u|max

eiφ, (2.3)

where u(r) and u′(r) denote solutions of a CGL equation at the time where two

independent bursts reach their amplitude, with r denoting the spatial distance from

the burst maximum. Self similarity first appears close to the spatial location of

the maximum amplitude and, as the increase continues, extends to larger r. Thus,

despite the complexity of the underlying system, we have to control objects that

are becoming quite similar as they approach their maximum amplitudes. The ob-

served approximate similarity of CGL bursts is inherited from the the well-studied

asymptotic self-similarity of the blow-up solutions of the NLS equation [29, 30, 31].

Figure 2.3 shows the global spatial maximum of the amplitude,

Umax = max
x∈Ω

|u(x, t)|, (2.4)
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Figure 2.3: Umax versus time for Eq. (2.1) with periodic boundary conditions on a
square with sidelength l = 60.

as a function of time resulting from a typical numerical integration of (2.1) with

parameters (2.2).

We note that for this simulation the spatially averaged amplitude over the

periodic area Ω,

Uav(t) =
1

|Ω|
∫

Ω

|u(x, t)|d2x, (2.5)

is about Uav ' 0.3 and fluctuates less then 10% with time. This average amplitude of

∼ 0.3 is to be contrasted with the much larger values sometimes attained by Umax(t);

e.g., the largest Umax in Fig.2.3 is Umax ' 7.5, and an integration somewhat longer

yields a value of Umax above 13. Bursting also occurs on a very fast timescale; the

usual time needed for a burst to develop from |u| = 1 to |u|max is typically smaller

than 0.1. Integrating the solution for a sufficiency long time, we can determine the

11



conditional empirical probability P (v) of maximum burst amplitudes,

P (v) =
# of bursts with (|u|max ≥ v)

# of bursts with (|u|max ≥ 1)
, (2.6)

Thus, we consider the distribution only for those bursts whose maximum amplitude

exceeds 1. P (v) is shown in Fig. 2.4(a), and it illustrates that, although extremely

high amplitudes occur frequently, because of their fast timescale, their contribution

to the distribution is relatively small. As we will discuss later, these large amplitude

bursts make a significant contribution to the overall average dissipation in the sys-

tem. Figure 2.4(b) shows a log-linear plot of the same data as in Fig. 2.4(a). From

its approximately linear form we see that P (x) ∼ exp(−cx) for x ∈ [2, 10], i.e., P (v)

has an exponential event tail. For further details on statistics of the CGL equation

see [26, 32]. The characteristics of CGL bursts seen in Figs. 2.1-2.4 make them

particularly suitable as a model for rare intense events in spatiotemporally chaotic

systems.

2.3 Perfect Control Scenario

We assume that in real physical situations the most violent rare events are

of primary concern. Thus, in our model experiments using the CGL equation our

intention is to deal with the highest amplitude bursts. We choose an amplitude uc

past which we assume a burst becomes particularly destructive. Thus we wish our

control to prevent bursts of amplitude larger than uc, which we suppose to be much

larger than the average amplitude, uc À Uave. We refer to uc as the control limit.

Assume that at any given time t0 we have an estimate of the system state

12
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computer experiment of duration t = 40 for Eq. (2.1) with parameters as given in
(2.2) (# of bursts with (|u|max ≥ 1)' 5000).

ue(x, t0) and a model M ′
τ for advancing the uncontrolled system state forward in

time by the amount τ . Then our forecast is:

uf (x, t) = M ′
τ [ue(x, t0)] , t > t0 (2.7)

We note that in general ue(x, t0) may differ from the true system state u(x, t0),

(i.e., |ue(x, t0) − u(x, t0)| > 0), and M ′
τ may differ from the true system dynamics,

Mτ , (i.e., |M ′
τ [u(x, t0)]−Mτ [u(x, t0)] | > 0). In the ideal case, or ‘perfect scenario’,

we assume that such differences are absent. In particular u(x, t0) = ue(x, t0), and

Mτ = M ′
τ , where Mτ and M ′

τ are integrations of (2.1) using the same numerical

algorithms (including space and time gridding) for both Mτ and M ′
τ . (In Sec. 2.4

we consider what happens when these ideal conditions do not hold.)
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2.3.1 Control Strategy

We introduce the following definitions:

• Let Cr(x) be the circular region in the doubly periodic domain Ω that is within

a distance r of the point x,

Cr(x) = {the set of y for which |(y − x) modulo l| < r}, (2.8)

where l is the periodicity length.

• Define a burst b as a local space-time maximum of |u| that satisfies |u| > uc

and denote its coordinates by (xb, tb), where xb and tb are the spatial location

and time of burst b.

• Define cycle times tn = t0 + n4T , where t0 is the time at which we start our

control procedure, n is a positive integer, and 4T is a fixed time interval.

• Define a list L of burst coordinates.

• The act of making a forecast is defined as taking an estimate of the current

state of the system, integrating a copy of this current state forward in time

via a forecasting system model, and monitoring the result.

Our control procedure is as follows.

1. Start with n = 0 and the list L empty.

2. At time tn estimate the current state of the system to be controlled.

14



3. Using the state estimate ue(x, tn) obtained in step 2, do a forecast to determine

the burst coordinates that occur between cycle times tn+1 and tn+2. For the

purpose of making this forecast, the forecast model is integrated with control

applied at (x, t) if x is in Cr(xb) and t ∈ [tb −4T, tb +4T ], where (xb, tb) is

one of the entries of the list L.

4. Add the newly determined (step 3) burst coordinates to the list L.

5. As the real system (as distinct from the forecast model) evolves from the time

tn to the time tn+1, apply control at those points x and times t satisfying

x ∈ Cr(xb), t ∈ [tb −4T, tb +4T ] where (xb, tb) are bursts on the list L.

6. Remove burst coordinates (xb, tb) from the list L, if tb < tn−1.

7. Increase n by one and go to step 2.

We emphasize that at cycle time tn we determine bursts in the time interval [tn+1, tn+2]

(see step 3) not in [tn, tn+1]. The reason why we choose sequencing this way is that

we found it to be more effective compared to other types of sequencings that we

have tried. A reason for this that control, particularly if it is limited in strength,

needs a sufficient amount of time to take effect, and our setup specified above pro-

vides us with at least 4T time units before the occurrence of a burst. (Our control

algorithm also implies that there is no control between t0 and t1.)

Figures 2.5 and 2.6 give a schematic illustration of the steps involving the

list L and its updating. For the purpose of this schematic, we represent the two-

dimensional circular region Cr(x) [Eq.(2.8)] as a one dimensional interval; i.e, as

15



l
x

t

nt

1+nt

2+nt

)(a

x

t

nt

1+nt

2+nt

)(i

)(b

time
 stoppingcurrent 

bursts forecasted

l

forecast

time
stoppingcurrent 

bursts

r r

T∆

T∆)(ii

)(iii
)(iv

)(i

)(ii

)(iii
)(iv

)(v

)(vi
T∆

T∆

T∆

T∆
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[x − r, x + r] where x denotes the (schematically one-dimensional) spatial location

of the burst. Figure 2.5 (a) shows the situation at the end of step 7 (i.e, before

application of step 2) in which the only points on the list L are those that were on

the list L and whose time coordinate is greater than tn−1. As illustrated in Fig.

2.5 (b), the forecast made in step 3 is done with the control applied in the shaded

regions. The resulting newly forecasted bursts with tn+1 ≤ tb ≤ tn+2 are labeled (v)

and (vi) in this figure. As illustrated in Fig. 2.6 (c), the bursts determined in step 3

(bursts (v) and (vi)) are added to the list (step 4), and the real system is controlled

in the shaded region as it evolves from time tn to time tn+1 (step 5). Figure 2.6 (d)

shows those points that are still on the list after step 6 [in which bursts whose time

coordinates smaller than tn (labeled (i) in Figs. 2.5 and 2.6) are removed from the

list].

2.3.2 Numerical Experiments

In all our numerical experiments we use the parameter α appearing in the

CGL equation, Eq.(2.1), as our control variable. In a real experiment this would be

analogous to assuming that there is some physical means by which α can be changed

through external intervention. In particular, our control consists in lowering the

value of α. That is, with reference to Fig. 2.6 (c) we replace α in Eq.2.1 by a value

α′ < α for those (x, t) in the shaded region of Fig. 2.6 (c). The specific form of

the control that we have chosen to implement depends on two positive parameters

m,uc. If |u(x, t)| < 1 for x ∈ Cr(xb) then we keep α unchanged. If on the other

18



hand, if |u(x, t)| > 1 for x ∈ Cr(xb), then we lower the value of α to α′,

α′(x, t) =
α

1 + m(|u(x, t)| − 1)
, for |u(x, t)| > 1, (2.9)

α′(x, t) = α, for |u(x, t)| ≤ 1. (2.10)

The parameter m and can be regarded as characterizing the strength of the control,

with m = 0 corresponding to no control. Our choice is somewhat arbitrary and

efficient control can also be achieved by using other choices [33].

Our spatially and temporarily localized changes in the control parameter α will

modify the system dynamics, and the system consequently evolves differently than

predicted in the forecast stage. This difference could conceivably lead to bursts that

were not predicted during the forecast or to non-negligible changes in the timing

and position of those bursts for which we already have information. This difficulty

can be overcome by choosing 4T sufficiently small that the difference due to control

will not compromise our predictions. Choosing 4T too small, however, can leave us

with insufficient time to make significant changes in the amplitudes. We have found

that the best selection of 4T does not depend strongly on the particular choice of

the parameters m,uc for their tested ranges in our numerical experiments. Thus in

what follows we use a constant value, namely 4T = 0.1.

Considering the entire periodic box of our simulation Ω, we define the ‘expense’

of control as the fractional space-time averaged change in α:

δ =
1

|Ω|T
∫ T

0

dt

∫

Ω

|α′(x, t)− α|
α

d2x, (2.11)

where t = 0 corresponds to the time at which we start monitoring and controlling

bursts, and t = T is the time at the end of our computer experiment. We will regard
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our method as effective if we can significantly lower the probability of bursts with

amplitudes exceeding uc at low expense δ. We use r0 = 2, in all cases, as we have

found that the results are insensitive to deviations from this value. With 4T and

r0 fixed, we choose a ‘standard case’ for the remaining two parameters,

msd = 1/4, usd
c = 3. (2.12)

This ‘standard case’ serves as a point of reference for exploring the effects of varying

m,uc. In particular, we will change the value of one of the parameters, e.g, m,

while fixing the other at its standard value, e.g, uc = usd
c . For each such selection

we determine the time averaged expense of control δ, and the empirical probability

P (v) (P (v) is shown in Fig. 2.4 in the uncontrolled case).

We performed a series of numerical experiments where we calculate P (v) using

data collected from experiments with increasing durations of time t = 20, 40, 80 to

determine the rate of convergence. We found that the results for t = 40 and t = 80

are in good agreement. Therefore we chose the time of integration to be t = 40

in all perfect scenario cases. Using P0 = 2 × 10−4 we can also define the ‘effective

largest amplitude’ that the controlled system reaches as U(P0),

P (U(P0)) = P0 (2.13)

We numerically define this U(P0) to be the ‘effective upper limit’ of |u| with our

control. A typical time series of Umax(t) versus t for a controlled run using our

standard parameter set is shown in Fig. 2.7 by the full black curve. For comparison

an uncontrolled run is also shown in this figure as the dotted curve. Large bursts

are apparently strongly suppressed by the control. This later conclusion is also
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Figure 2.7: Umax versus time without control (dotted curve) and with control (solid
curve) using the standard control parameters given in (2.12).

reflected in the substantially lower value obtained for U(P0) in the controlled case,

U(P0) = 4.7, as compared to U(P0) = 12.5 in the uncontrolled case. It is significant

that this improvement is obtained at a relatively small expense, δ = 2.7×10−4. The

reason why the control expense can be kept at such a low level is because the area

where burst amplitudes exceed the control limit uc is relatively small compared to

the system size and because the burst events (|u| > uc) are of short duration.

Imposing control on the system will result in its departure from its original

dynamics which is accompanied by an observable quantitative change in the space-

time average of |u|2 denoted 〈|u|2〉. Starting with a long uncontrolled run and then

activating our control, we observe that after the initial transients relax, the value

〈|u|2〉 settles down to a new level, that is somewhat larger than before the control

was activated. We attribute this effect to the fact that the amount of dissipation

in a burst event increases with its amplitude. Thus the total dissipation due to
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c .

bursts can be much larger than would be expected on the basis of the relatively

small fraction of the available space-time in which they are active. We believe that

this lowering of the burst contribution to the space-time average dissipation is what

causes the increase of 〈|u|2〉. With our ‘standard case’ parameter set we observed a

control induced increase of 〈|u|2〉 from a value of 0.13 to 0.16.

2.3.3 Dependence on the Control Parameters m, uc

A comparison of P (v) for different m values is shown in Fig. 2.8. Figure 2.9

shows the expense of control δ as a function of m on a log-log plot. We can see that

the dependence of δ on m is approximately a power law,

δ(m) ' amb (2.14)

22



−4 −3 −2 −1 0
−12

−10

−8

−6

ln(m)

ln
(δ

)

 

 

Figure 2.9: Expense of control ln(δ) as a function of ln(m) with uc = usd
c .

with a ' 1.6 × 10−3, b ' 1.27. These figures illustrate that increasing m decreases

the probability of high amplitude bursts for an increasing expense δ. We also notice

that, while we suppress high intensity bursts, there is an increased probability P (v)

for the ones whose amplitudes are below the control limit uc. Figure 2.10 shows the

the ‘effective largest amplitude’ U(P0) as a function of m on a log-log plot. The

parameters of the power law dependence,

U(P0) ' cm−d (2.15)

are c ' 3.42, d ' 0.25. As shown in Fig. 2.11 on a log-linear plot, δ has an

approximately exponential dependence the on control limit uc,

δ(uc) ' ge−huc (2.16)

with parameters g ' 1.57× 10−3, h ' 0.6.

Finally, in order to illustrate the benefit of our forecast driven approach, we

consider what happens when we apply the control (2.9) and (2.10) everywhere and

for all times (i.e., not just in the forecast-determined shaded regions of Fig. 2.4).
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Figure 2.11: ln(δ) versus uc with m = msd.

Generally, we find that to achieve a similar level of burst suppression, not making

use of forecasts leads to much greater cost. For example, using m = 1/16 and

applying (2.9) for all x and t suppresses bursts with |u|max > 7 at a cost δ ' 10−4

. In contrast, using a forecast-based method with the parameters m = 1/16, uc = 7

the cost is more than twenty times less that without forecast.
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2.4 Imperfect control Scenario

In the previous section we implemented our control strategy for the case in

which we possess a perfect model of the controlled system and we are able to sense

the state of the system with arbitrary precision. In any real situation, however,

these ideal conditions will not be met. When implementing forecasting in practice,

one typically estimates the state of the system using noisy observations made at a

limited number of spatial locations and makes forecast predictions using this esti-

mate as the initial condition in the forecast model integration. In addition to the

limitations imposed by the accuracy and limited number of measurements, errors in

the forecast model also contribute significantly to prediction inaccuracy. If a control

strategy is to be applied to practical situations, it has to show sufficient robustness

under less than perfect conditions. In this section we investigate the effects both

of an imperfect model and of imperfect state estimation using our standard control

parameters (2.12).

2.4.1 Imperfect model

To assess the effect of using an imperfect forecasting system model we use Eq.

(2.1) but with an incorrect value of the parameter β denoted βf for our forecast

model. For this purpose we will assume that we can determine the initial conditions

with arbitrary precision, so that the only source of error is our imperfect model. We

find that, using the imperfect forecast model in our control procedure, the maximum

amplitude of bursts is rather sensitive to variations of βf while the accuracy of the
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predicted burst time and location remains good. Figure 2.12 shows a comparison

of P (v) for the uncontrolled and controlled systems. In the controlled case we

plotted the results both for the perfect βf = β and imperfect model scenarios βf =

0.9β, 1.1β, 1.3β. The apparent difference in P (v) between the cases βf = 1.1β and

βf = 0.9β is partly due to the fact that for βf > β the predicted amplitudes are

larger than for βf = β and similarly a selection of βf below β results in a decrease

of the predicted height of bursts. As a consequence, for βf < β, it is more likely

that the predicted amplitude is smaller than the control limit uc and that it remains

unnoticed and uncontrolled despite being above uc in the perfect model. Our results

illustrate that, in spite of substantial error in one of the parameters of Eq. (2.1),

the method still delivers significant suppression of unwanted bursts at reasonably

low expense: δ = 1.9× 10−4 for β = 1.1β and δ = 3.3× 10−4 for β = 0.9β.
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2.4.2 Imperfect state estimation

We implement our imperfect state estimation scenario by placing a uniformly

spaced sparse square ‘observational grid’ on the entire periodic box of our simulation

Ω with the observational grid points being our measuring locations. We define a

measurement location density ρ as the distance between our measurement points in

our observational grid (recall that our model uses a 512 × 512 grid on a periodic

box of sidelength l = 60). Simulated measurements at these locations are ‘observed’

at the discrete ‘cycle times’ tn = t0 + n4T , with n integer, and measurements

are generated by adding noise to the ‘true’ value of u at each observation point.

The noise simulates measurement error and is taken to be ε
√

< |u|2 >0 (rr + iri),

where < |u|2 >0 denotes the mean squared time-space average of u in the absence

of control, rr and ri are real, zero mean, independent, Gaussian random variables

with variance one, and ε is a parameter characterizing the strength of the noise. We

then reconstruct the system state at each ‘cycle time’ using the Whittaker-Shannon

sampling theorem in two dimensions. Prerequisites for avoiding the effect of aliasing

with this method are that the signal be bandlimited and that the sampling rate be at

least twice the bandwidth. As observed both numerically and verified theoretically

[34], at sufficiently large wavenumbers, the spatial Fourier coefficients of solutions

of the CGL equation decay exponentially with increasing wavenumber. From our

numerical investigations, we find that this exponential decay is also valid for the

controlled system and that the assumption that the system is bandlimited is a good

approximation. If we denote our sample points by u[i, j], the reconstructed state
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by u(x, y), and the sampling grid by GL = {(iL, jL)|i, j ∈ 0..512/L}, where L =

512 × ρ/l, then the Whittaker-Shannon interpolation formula yields the following

estimate for the reconstructed system state,

u(x, y) =
∑

(i,j)∈GL

u[i, j]
sin (π(x− iL)/L) sin (π(y − jL)/L)

π2(x− iL)(y − jL)/L2
.

We found that this approximation gives good results for ρ = l/32 with the exception

of locations where the amplitude is large (i.e., near bursts). A significant point is

that, even though ρ = l/32 is not fine enough to resolve high amplitude bursts,

it can still be used to accurately predict such bursts. This is because the initial

conditions leading to a burst are much smoother than the burst itself, and it is

only such initial conditions that we need to approximate in order to make our

predictions. Comparison of P (v) for controlled runs with different values of the

observation density ρ are shown on Fig. 2.13 for ε = 0 (no observational noise).

Results comparing the effect of different noise levels for ρ = l/512 and ρ = l/32 are

shown on Fig. 2.14. Figure 2.13 indicates that the observation density ρ = l/32

without noise gives results that are somewhat worse than in the ρ = l/512 case,

while ρ = l/16 is too sparse and gives only slight improvement over the uncontrolled

system. Figure 2.14 indicates that increase of observational noise ε makes control

increasingly less effective as shown for ε = 0.3, 0.5.

2.5 Conclusion

We have investigated an approach to the control of rare intense events in

spatiotemporally chaotic systems. The approach has several prerequisites:
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• A sufficiently accurate model of system dynamics.

• Access to measurements of the system state that are of sufficient accuracy and

spatial and temporal resolution.

• The ability to physically make local control perturbations to the system.

Given that these prerequisites are satisfied, our numerical experiments suggest that

it may, in some cases, be feasible to effectively control physical systems exhibiting

rare intense events at low expense. In particular, we have shown how the informa-

tion obtained from a forecast can be applied to formulate and implement spatially

and temporally localized control. This is to be contrasted with previous work where

spatiotemporal chaos was controlled either globally [4, 6, 35] or locally with con-

trollers located at fixed spatial locations e.g, [36, 37]. Furthermore, while several

studies, e.g, [4, 6, 35, 37], focused on forcing the controlled system to a non-chaotic

region, e.g, towards plane wave solutions, our goal is not to significantly eliminate

the chaotic nature of the dynamics, but rather to eliminate only its potentially most

harmful part. This feature results in a potentially cost efficient control. We have

found that time sequencing of control is a key issue for implementation of our con-

trol strategy, and we have investigated how control strength and cost are related to

effectiveness. Moreover, model error and imperfect state measurement can impose

important limitations.

We emphasize that our results may be limited in their applicability because

of the simple ‘toy model’ we have employed (the CGL equation, Eq.(2.1)), and that

many additional issues can arise when a program of this type is attempted for a real
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physical system. We, nevertheless, hope that our results may provide some useful

insight to real applications.
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Chapter 3

Dynamics of a one dimensional self-organized model

3.1 Introduction

Over the last two decades, systems exhibiting self-organized behavior have at-

tracted considerable attention. The term self-organized criticality (SOC), refers to

extended dissipative systems that are driven into a critical, self-similar, and statisti-

cally stationary state independent of initial conditions, without the need to fine-tune

the system parameters. Their common features can be characterized by slow driving

energy input, with rare intense dissipation events, whose size distribution obeys a

power law. Illustrating the versatility and applicability of SOC in nature, several

examples have been identified. Sandpile models, which provide simple models for

avalanches, have been investigated both numerically [38, 39] and analytically [40].

Additional examples are earthquake models [41], diffusion-limited aggregation [42],

and invasion percolation models [43]. Many properties of SOC systems compare

favorably to experimental data. For instance, good quantitative agreement was

found between the interoccurence time statistics of solar flares and the Bak-Tang-

Wiesenfeld sandpile model [44].

Our focus is the self-organized forest-fire model (FFM), originally was intro-

duced as a possible realization of SOC [45]. This model was later modified by

introducing a lighting parameter to provide proper scaling behavior [46]. Computer
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simulations [47, 46, 48] and analytical considerations [49] confirm that sufficient sep-

aration of time scales leads to SOC in the FFM. Mean field-theory approximations

[50], an inverse-cascade model [51], and a renormalization group technique [52] were

proposed as analytical approaches to understand the equilibrium of the FFM.

Previous work on the FFM has focused on understanding the statistically

steady behavior. However, it is also of interest to examine situations where changes

in the external conditions in these systems occur on a time-scale that is faster than,

or of the order of the typical time needed for relaxation to the statistically steady

state. As examples, we mention the following situations of interest.

• The forest system on a large island might be destroyed or otherwise globally

effected by the occurrence of some major disaster such as a large volcanic

eruption. In such a case one might be interested in the time evolution of

the regrowing forest including the effect of forest fires. Thus one might be

interested in the FFM dynamics starting from an initial condition far from

the statistically steady state.

• The global conditions of a forest might be affected by climate changes. If

these changes occur on a time scale shorter than, or of the same order as, the

relaxation time to the FFM statistically stationary state, then consideration

of dynamical processes away from the relaxed state is required.

• Normal seasonal weather changes can occur on a time scale that is comparable

to the frequency of large snow avalanches.

• Self organized criticality also arises in scale-free networks [53] from local inter-
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actions of large numbers of individuals. For instance, one might be interested

in the dynamics of a computer network in the case of sudden introduction of

a new technology or of sudden introduction of new connections and nodes to

the system.

• One might be interested in reducing the number of rare and particularly de-

structive large forest fires by controlling the system dynamics, e.g., by pre-

venting the formation of large connected patches of forest through controlled

burns. In such a case, intermittent application of controls can place the state

away from the statistical equilibrium towards which it subsequently begins to

relax. This is a problem we intend to address in the future.

Here we investigate the dynamical behavior of the self-organized forest-fire model in

one dimension, in the simplest case when burning of trees occurs instantaneously.

The one-dimensional FFM is defined on a linear grid of L sites, which for simplicity

is taken to be periodic. Each site can be in either of two states: empty (no tree on

the site) or occupied (there is a tree on the site). The state of the system is updated

in discrete steps using the positive real parameters p ¿ 1, f ¿ 1. In each step a

tree is placed on the empty sites with probability p. If a site is occupied, then we

‘hit it with a lightning bolt’ with probability f which makes it ‘burn down’ turning

it into an empty site. If we denote the time needed to burn down the largest clusters

by Tmax (a cluster is a group of contiguous trees), then critical behavior in the FFM

arises in the presence of double time scale separation, Tmax ¿ p−1 ¿ f−1 [56]. The

condition Tmax ¿ p−1 is most easily realized when fire spreads instantaneously to
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every site that is part of the cluster containing a burning tree, which is the situation

that we consider in the rest of this Chapter. A key parameter of the model is the

ratio

γ = f/p, (3.1)

which is assumed to be much less than one. Because the FFM is self-organized,

it can be expected that any substantial departure from its equilibrium state will

be followed by a relaxation process. Our goal is to understand how the dynamical

behavior of the self organized forest fire model can be understood. As we shall see

later, the time scale for relaxation to the statistically steady state is of the order of

1/p time-steps. Thus our object is to study the FFM dynamical process on the 1/p

timestep scale. A hierarchy of steady-state equations for correlation functions of

the FFM was proposed in [54]; and solved, as an approximation, with a mean-field

closure scheme. An inverse cascade model was examined in [51], which reproduces

several characteristics of the FFM. Here, we develop a hierarchy of equations that

describes the dynamics of the FFM and can be closed to produce a set of self-

consistent equations at any arbitrary level, thus producing a sequence of successively

more accurate approximate descriptions of the dynamics. We use these equations

along with numerical simulations to examine the relaxation properties of the FFM

and the effect of non-steady external parameters of the model.

In Sec. II we present a discussion of the dynamics and examine an analytical

approach for describing the non-equilibrium behavior of the one-dimensional FFM.

In Sec. III we compare our analytical results with numerical simulations and discuss
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the their validity. Finally, in Sec. IV we summarize our results and give conclusions.

3.2 Dynamics of the forest-fire model in one dimension

3.2.1 Framework

The one-dimensional model we consider is defined on a grid consisting of L

sites with periodic boundary conditions. We now define what we mean by a ‘cluster’.

In Fig. 3.1 each box represents a site. There are L = 32 sites shown, arranged on a

circle, where the circular topology corresponds to the periodic boundary conditions

of our model. An example of state is shown, where a symbol T labels a site occupied

by a tree, and a symbol E labels an empty site. A cluster is a sequence of sites that

are bounded by exactly one empty site on each side, and that has no empty sites in

its interior. If there are two consecutive empty sites, we say that there is a cluster

of size zero between them. Otherwise, the size of a cluster is defined as the number

of trees between its bounding empty sites. For every x ≤ L we define

Sx = # of clusters of size x. (3.2)

For example in Fig. 3.1 cluster sizes are indicated by the numbers shown outside

the circle of sites, and S5 = 1, S4 = 1, S2 = 4, S1 = 1, S0 = 7. In general, since each

empty site bounds two clusters (one on each side), and each cluster bounds two

empty sites, the number of empty sites, denoted Ne, equals the number of clusters,

Ne =
L∑

x=0

Sx, (3.3)
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Figure 3.1: A state of the FFM for L = 32.

and the total number of sites can be expressed as

L = Ne +
∞∑

x=0

xSx. (3.4)

As shown in Ref. [49] the statistically stationary Sx follows a simple power law

distribution Sx ∼ x−2 for γx ¿ 1. As discussed in Sec. III A, statistical fluctuations

of Sx in time are always present in the FFM, but become smaller as L increases.

We define an ‘n-cluster configuration’ as a string of n clusters that occur con-

secutively (say in the clockwise direction in Fig. 3.1). We can describe such a config-

uration by giving the sizes of consecutive clusters using the notation (x1, x2, . . . , xn).

For instance, corresponding to the six clusters bracketed by the arrowheads drawn in-

side the circle of sites in Fig. 3.1, we have the 6-cluster configuration (0, 0, 2, 0, 5, 0).
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Given a n-cluster (x1, . . . , xn) and a fixed value of i = 1, . . . , n − 1 we define

Pn(x1, . . . , xn) for n ≥ 2 as the probability that a randomly chosen empty site

is the one separating the clusters xi and xi+1 in the configuration (note that this

probability is the same for any choice of i = 1, . . . , n − 1). For the special case

n = 1, we define P1(x) to be the probability that a randomly chosen empty site has

a cluster of size x on its clockwise side, which is the same as the probability that it

has a cluster of size x on its counterclockwise side. P1(x) is given by the number of

clusters of size x divided by the number of empty sites, i.e.,

P1(x) = Sx/Ne. (3.5)

P2(x, y) is the probability that a randomly chosen empty site separates the clusters

of the 2-cluster configuration (x, y). For example, for the state shown in Fig. 3.1,

we have P1(5) = 1/14 and P2(0, 2) = 4/14 . The probability distribution for an

n − 1 cluster configuration, Pn−1, can be calculated as the marginal probability of

Pn,

L∑
xn=0

Pn(x1, . . . , xn) = Pn−1(x1, . . . , xn−1). (3.6)

In particular for n = 2 we have

L∑
y=0

P2(x, y) = P1(x) = Sx/Ne. (3.7)

Assuming statistical isotropy for L À 1, we postulate that Pn(x1, . . . , xn) is invariant

to reflections of the grid, which implies that Pn(x1, . . . , xn) = Pn(xn, . . . , x1) .
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3.2.2 Continuous time approximation

Our goal is to understand how Pn evolves in time in situations far from the

stationary state. We start with the following observations. When placing a tree on

an empty site between a cluster of size x and a cluster of size y (i.e., a 2-cluster

configuration (x, y)), a new cluster of size x + y + 1 is created by coalescing the two

neighbors. In the special case when an empty site is surrounded by empty sites on

both sides (i.e., x = 0, y = 0), addition of a tree will create a cluster of size one.

There are two possible ways for a cluster to change its size. It can either burn

down or a tree can be added at its boundary. The probability that a cluster of size

x burns down in one step is 1− (1− f)x. We assume in what follows that xf ¿ 1

so that

1− (1− f)x ' xf. (3.8)

Addition of a tree at one of the two empty sites on the cluster’s boundary occurs

with probability

1− (1− p)2 ' 2p, (3.9)

where we assume p ¿ 1. Since p and xf are small, the probability that both of

these events happen simultaneously (i.e., a tree is added to a cluster which burns

down) is negligible compared to p and xf . Similarly, the probability that we add

two trees to the same cluster is of order p2 and also can be neglected. According to

Eqs. (3.8) and (3.9) the expected number of clusters of size x that either become
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larger or burn down in one step is

Sx(xγ + 2)p (for p ¿ 1, γ = f/p). (3.10)

On the other hand, Sx can grow if two neighboring clusters of sizes x1, x2 with

x = x1 +x2 +1 coalesce, by addition of a tree to the empty site that separates them.

The expected number of such empty sites is Ne

∑
a+b+1=x P2(a, b), which combined

with (3.10) gives the dynamical equation,

Sx,m+1 − Sx,m = pmNe,m

∑

a+b+1=x

P2(a, b; m)− pm(2 + γmx)Sx,m.

where x > 0 and m denotes the model time step with Sx,m, Ne,m, and P2(a, b; m) the

value of Sx, P2(a, b), and Ne at timestep m, and we now allow for time variation of

p and γ via the replacements p → pm, γ → γm. We approximate (3.11) for pm ¿ 1

by a continuous time description using a scaled time variable,

t =
m∑

k=1

pk, (3.11)

and introducing the following notations, Sx,m = Sx(t), Ne,m = Ne(t), pm = p(t),

γm = γ(t), Pn(x1, . . . , xn; m) = Pn(x1, . . . , xn; t), dSx(t)/dt = (Sx,m+1 − Sx,m) /p.

Thus (3.11) (which applies for x > 0) becomes

dSx(t)

dt
= Ne(t)

∑

a+b+1=x

P2(a, b; t)− [2 + γ(t)x] Sx(t). (3.12)

S0(t) grows because clusters burn down and becomes smaller because empty sites

become occupied,

dS0(t)

dt
= −2S0(t) + γ(t)

L∑
y=1

y(y + 1)Sy(t). (3.13)
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Summing Sx(t) for all x’s according to (3.3) gives

dNe(t)

dt
= −Ne(t) + γ(t)

∑
y

y2Sy(t). (3.14)

As a check, we note that Eqs. (3.12) and (4.38) are consistent with the requirement

of site conservation, which using (3.4) can be expressed as

d

dt
(Ne(t) +

∑
y

ySy(t)) = 0. (3.15)

Using P1(x; t) = Sx(t)/Ne(t), Eq. (3.12) can be rewritten in terms of probabilities,

d (Ne(t)P1(x; t))

dt
= Ne(t)

∑

a+b+1=x

P2(a, b; t)− [2 + γ(t)x] Ne(t)P1(x; t),

which is the first step in a hierarchy of equations for Pn’s, to be discussed in the

following subsection. Equations (3.12) and (4.38) describe the evolution of Sx(t) if

P2(a, b; t) is known. As we intend to give a general description of the model, we

cannot assume P2(a, b; t) to be in its equilibrium form. In what follows we explain

how a sequence of approximations can be obtained, with each step providing a more

accurate description of the model.

3.2.3 Estimation of P2(a, b; t)

As a motivating example, we first consider the case where we start t = 0 with

a completely empty grid, i.e., Ne(0) = S0(0) = L and Sx(0) = 0 for all x > 0. We

begin by assuming that the time elapsed since the start of the experiment is short

enough that large clusters have not yet formed and that burning does not have a

significant impact, i.e., xγ ¿ 1. If the effect of fire is negligible, then the probabilities

that any two sites are occupied are uncorrelated, and thus the probabilities of an
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Figure 3.2: S10/L versus time t for γ = 5×10−3 and L = 106 with empty grid initial
conditions. The dash-dotted curve is the result from a full numerical simulation,
while the solid curve is from the solution of (3.14) and (3.17).

empty site having a cluster of size x on its left and a cluster of size y on its right

are independent. Hence

P2(x, y; t) = P1(x; t)P1(y; t). (3.16)

If we assume Eq. (3.16) to hold, then Eq. (3.12) takes the form,

dSx(t)

dt
=

1

Ne(t)

∑

a+b+1=x

Sa(t)Sb(t)− [2 + γ(t)x] Sx(t). (3.17)

The time dependent solution of (3.17) for L À 1 and γ
∑

y y2S(y, t) ¿ 1 can be

expressed explicitly as a function of Ne(t) using a generating function technique

as shown in the Appendix. Equation (3.17) combined with (3.14) determines the

dynamics when P2(a, b; t) is approximately in the form (3.16). Eventually, clusters

will grow so large that the assumed conditions under which (3.17) is valid will no

longer be satisfied. To understand why this happens consider the situation when
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Figure 3.3: 2-clusters are created by coalescing 3-cluster configurations.

a large forest cluster burns down. This creates a long string of adjacent empty

sites, that will change the uniform distribution created by the slow driving input

of tree growth, and (3.16) will no longer hold. At large time this effect will be

more pronounced as we decrease the value of γ, since lowering γ leads to larger

time-asymptotic correlation length ξc ∼ γ−ν , see Ref. [55]. Figure 3.2 shows S10

versus time with γ = 5× 10−3 and L = 106 from a full numerical simulation of the

FFM system (dotted curve) and from the solution of the approximating system Eq.

(3.17) and (3.14) (solid curve). From such plots we find that the accuracy of (3.17)

is relatively good for γ = 5 × 10−3, if t < 2.5. We will examine this in more detail

in Sec. III.

We now turn to describe the dynamics of P2(x, y; t). The number of empty sites

on the grid that separates the x and y clusters of the 2-cluster (x, y) is Ne(t)P (x, y; t).
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A 2-cluster (x, y) can be created in one step by adding a tree to appropriate 3-

clusters: As shown in Fig. 3.3, the two cluster (x, y) will be created from (a, b, y)

or (x, a, b) if a tree is grown in the empty site separating the a and b clusters and if

a + b + 1 = x in the first case or if a + b + 1 = y in the second case. According to

its definition P3(u, v, w; t) is the probability that a randomly chosen empty site is

the one separating the u and v clusters (which is the same as the probability that it

separates the v and w clusters) in the 3-cluster (u, v, w). Accordingly, the expected

number of configurations of type (x, y) created by tree growth in one step is

∑

a+b+1=y

p(t)Ne(t)P3(x, a, b; t) +
∑

a+b+1=x

p(t)Ne(t)P3(a, b, y; t) (3.18)

On the other hand, the number of 2-cluster configurations (x, y) decreases if either a

tree is added to any of the three empty sites bounding x and/or y (these three empty

sites are: the one to the left of x-cluster, the one between the x and y clusters, and

the one to the right of the y-cluster). As a result, the expected number of 2-clusters

of type (x, y) destroyed because of addition of trees is 3p(t)Ne(t)P2(x, y; t). Finally,

fires can destroy either x or y in a configuration (x, y) which decreases the number

of (x, y) 2-clusters by p(t)γ(t)Ne(t)P2(x, y; t)(x + y). Summarizing, we have

d (Ne(t)P2(x, y; t))

dt
= − [3 + γ(t) (x + y)] Ne(t)P2(x, y; t)+ (3.19)

+
∑

a+b+1=x

Ne(t)P3(a, b, y; t) +
∑

a+b+1=y

Ne(t)P3(x, a, b; t),

for (x > 0, y > 0). Thus the solution of P2 depends on P3 (similar to the dependence

of the evolution of P1 on P2 in Eq. (3.18)). We have to consider the case when

either x = 0 or y = 0 separately, because clusters of type (0, x) will have positive
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contribution from all clusters of type (a, x), a > 0 if a, burns down. If x = 0 and

y > 0 then we have to add
∑

a Ne(t)P2(a, x; t)aγ(t) to the right side of (3.19) which

yields,

d (Ne(t)P2(0, y; t))

dt
= − [3 + γ(t)y] Ne(t)P2(0, y; t)+ (3.20)

+
∑

a+b+1=y

Ne(t)P3(0, a, b; t) +
∑

a

Ne(t)P2(a, y; t)aγ(t).

The equation for Ne(t)P2(0, 0; t) can be obtained if we combine (3.19) and (3.20)

with the normalizing condition
∑

x,y P2(x, y; t) = 1. It can be shown that Eqs.

(3.19) and (3.20) are consistent with our previous dynamical equation Eq. (3.12)

using (3.6).

We can similarly continue this sequence of equations, e.g., the dynamics of

NePn for xi > 0, (i = 1, 2, . . . , n) is given by,

(3.21)

d (Ne(t)Pn(x1, . . . , xn))

dt
= −

[
n + 1 + γ(t)

(
n∑

i=1

xi

)]
Ne(t)Pn(x1, . . . , xn; t)+

+ Ne(t)
n∑

j=1

∑

a+b=xj

Pn+1(x1, . . . , xj−1, a, b, xj+1, . . . , xn; t),

where in the sum over j we define the first and last terms of the sum (j = 1 and j =

n) so that the argument of Pn+1 is (a, b, x2, . . . , xn) for j = 1 and (x1, . . . , xn−1, a, b)

for j = n. Thus we obtain a sequence of descriptions in which the evolution of

Pn(x1, x2, . . . , xn; t) depends on the higher order probability functions

Pn+1(x1, x2, . . . , xn+1; t). We can truncate the resulting equation for a given

Pn(x1, x2, . . . , xn; t) by making the assumption that for an (n + 1)-cluster configu-

ration of type (x1, . . . , xn+1) the probability distribution of x1 does not depend on
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xn+1 which can be stated in terms of conditional probabilities,

P̃n+1(x1|x2, . . . , xn+1; t) ∼= P̃n(x1|x2, . . . , xn; t). (3.22)

This supposition is equivalent to assuming a limited correlation length and is sup-

ported by the numerical observation that, in the statistically steady state, the cor-

relation function decays exponentially with the distance [55]. Relationship (3.22)

along with Bayes’ theorem can be used to obtain

Pn+1(x1, .., xn+1; t) = P̃n+1(x1|x2, .., xn+1; t)Pn(x2, . . . , xn+1; t) ≈ (3.23)

≈ P̃n(x1|x2, .., xn; t)Pn(x2, . . . , xn+1; t),

where we have used (3.22) to approximate P̃n+1 by P̃n. Now again using Bayes’

theorem we have P̃n(x1|x2, . . . , xn; t)Pn−1(x2, . . . , xn) = Pn(x1, . . . , xn; t), which we

use to eliminate P̃n in (3.23), resulting in

Pn(x1, .., xn; t)Pn(x2, .., xn+1; t)

Pn−1(x2, .., xn; t)
, (3.24)

and Pn−1 can be expressed in terms of Pn by use of Eq. (3.6), Pn−1(x2, . . . , xn; t) =

∑
x1

Pn(x1, . . . , xn; t). The importance of (3.24) is that it expresses Pn+1 as a func-

tion of lower-order probabilities Pn and Pn−1, which combined with the dynamical

equations, e.g., (3.21), gives a closed set of first-order ordinary differential equations.

The highest-order approximation we will examine in the following section is given

by Eqs. (3.19) and (3.20). In this case we close our hierarchy of equations with

P3(a, b, c; t) =
P2(a, b; t)P2(b, c; t)

P1(b; t)
. (3.25)
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3.3 Numerical experiments

3.3.1 Relaxation time

We introduce a measure characterizing the difference between two cluster size

distributions, Sx and S∗x,

∆(Sx, S
∗
x) =

(
|Ne −N∗

e |+
L∑

x=0

|Sx − S∗x| x
)

/(2L). (3.26)

By (3.4) we have that 0 ≤ ∆ ≤ 1. As an indication of how the system relaxes to

its time asymptotic steady state when γ is time-independent, Fig. 3.4 shows plots

of ∆(Sx(t), Sx(∞)) versus t, where Sx(t) is calculated from the FFM with different

initial conditions, and Sx(∞) is calculated as an average over a long time interval

[t1, t2] where t1 is large. In particular, as initial conditions for calculating Sx(t) we

took the steady-state solution Sx(∞) of the FFM and eliminated clusters that were

larger then a chosen cutoff value xmax. I.e., if an occupied site belongs to a cluster

of size x ≥ xmax, we replace that occupied site by an empty site.

We see from Fig. 3.4 that for a fixed γ, a broad range of perturbations agree in

the order of magnitude in their relaxation timescales as measured by ∆. Because ∆

involves an average over all x, we refer to the relaxation of ∆ as a ‘global relaxation’.

Later (in subsection C) we will examine the relaxation of Sx as a function of x, and

will find x-dependent ‘local’ time-scales. Again referring to Fig. 3.4, we note that,

because of statistical fluctuations, none of the curves converge to exactly zero. For

the chosen γ and system size of L = 106 used in Fig. 3.4, the statistical fluctuation

between the time-asymptotic Sx(t) and Sx(∞) is around ∆ ≈ 8 × 10−2. As a
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Figure 3.4: Difference between the perturbed and time-asymptotic distributions for
different initial conditions with γ = 5× 10−3 and L = 106.

comparison, L = 105 results in ∆ = 0.13 and L = 107 leads to ∆ = 2.2 × 10−2.

According to our observations, for a fixed gridsize L, the lower γ, the higher the

level of statistical fluctuations. In particular, if γ is too small, e.g., γ < 10−4 for

L = 106, the effect of fluctuations of Sx(t) becomes so large that it is comparable in

magnitude to Sx(t) itself.

3.3.2 Accuracy of our approximate descriptions of FFM dynamics

To asses the accuracy of our analytical considerations, we now compare the

dynamics predicted by (3.19)-(3.20), and (3.17) with time-independent γ to full

numerical simulations of the FFM. For the solution of the full FFM we used a grid-

size L = 106, with p = 5× 10−4 and f = pγ, with γ = 5× 10−2, 10−2, 5× 10−3, 2×

10−3, 5×10−5. For the numerical solution of (3.19) and (3.20) we proceed as follows.

Equations (3.19) and (3.20) determine the time evolution of the probability function
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Figure 3.5: The accuracy parameter ∆ versus time with L = 106 and γ = 5 ×
10−2, 5× 10−3, 2× 10−3 for the second-order approximation (3.19) and (3.20).

P2(x, y; t), which at each time t depends on the variables x and y. Thus we have to

solve the equations on a two-dimensional grid of size L × L. However, it is known

from the statistically steady solution of the full FFM [46], that for a given γ there

exists a size limit above which forest clusters are extremely rare. Therefore, instead

of solving (3.19) and (3.20) for all clusters sizes, between 0 and L = 106, we restrict

our attention to the most frequently occurring ones and solve the Eqs. (3.19) and

(3.20) on a two dimensional grid (x, y) of size 500× 500.

Equation (3.12) is the first in our hierarchy of equations and therefore from

now on we will refer to it as the first-order approximation. Similarly, the dynamics

determined by Eqs. (3.19) and (3.20) will be called the second-order approximation.

Figure 3.5 shows ∆(Sx(t), S
∗
x(t)) versus t for three different values of γ versus t, where

Sx(t) is obtained from the second-order approximation and S∗x(t) is the result from

numerical solution of the FFM. For both, the initial condition was an empty grid

(i.e., Ne(0) = S0(0) = L and Sx(0) = 0 for x ≥ 1). It is seen that, if ∆(t) at large

time (denoted ∆∞) is larger for one value of γ than for another, then this is generally
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Figure 3.6: The accuracy parameter ∆∞ versus the forest-fire intensity γ, for the
second-order model given by (3.19) and (3.20) (solid curve) and for the first-order
model given by (3.17) (dashed curve). L = 106.
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Figure 3.7: S10 versus time t for γ = 5× 10−3 and L = 106 with empty grid initial
conditions. The dotted curves are the results from a full numerical simulation of
the FFM, while the solid curves in (a) and (b) correspond respectively to the first
and second-order approximation.
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Figure 3.8: The time-asymptotic ln(Sx) versus ln(x). The dotted curve is the result
from a full numerical simulation of the FFM, while the solid curve is from the
second-order approximation. The parameter values are γ = 5× 10−3, L = 106.

also true for ∆ at other times. Thus we characterize the overall accuracy by ∆∞.

Figure 3.6 shows ∆∞ versus γ for the first and second order approximations. We

note that statistical fluctuations account for some of the difference between the Sx

and S∗x. It is apparent that the second-order approximation performs significantly

better than the first-order approximation. Our results also indicate that decreasing

γ increases ∆∞. The log-log plot shown in Fig. 3.6 demonstrates that ∆∞ versus γ

is consistent with a power law dependence,

∆∞ ∼ γ−a. (3.27)

for both the second-order approximation, a ' 0.38, and the first-order approxima-

tion, a ' 0.31. Figure 3.7 compares the time dependence of S10(t) from the full

FFM with the time dependence obtained from the first-order approximation (solid

curve in Fig. 3.7 (a)) and from the second-order approximation (solid curve in Fig.

3.7 (b)). The second-order method predicts the time dependence of the evolution
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Figure 3.9: Sx versus time t for γ = 5× 10−3, L = 106, and x = 10, 14, 18, 26 for the
second-order approximation with empty grid initial conditions.

(Fig. 3.7 (b)) and the time-asymptotic form of Sx very well. Figure 3.8 shows the

time asymptotic cluster size distribution Sx(∞) versus x obtained from solution of

our second-order equations (solid curve) and from a numerical calculation of the full

FFM (dots). Again we see very good agreement.

3.3.3 Cluster-size dependent dynamics

We now examine how the relaxation dynamics of Sx(t) for time-independent

γ depends on the cluster size x. Figure 3.9 shows Sx(t) from the second-order

approximation with empty grid initial conditions for cluster sizes x = 10, 14, 18, 24.

When the FFM evolves, starting with a completely empty grid as initial condition,

the first maximum that Sx(t) reaches will also be its global maximum in time, as

shown in Fig. 3.7. From Fig. 3.9 it is apparent that larger clusters reach this

maximum later in time. This can be interpreted as being due to the extra time
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Figure 3.10: tmax(x) versus x for γ = 5 × 10−3, L = 106. The dots are the results
from a full numerical simulation of the FFM, while the solid curve is the analytical
result form the first-order approximation, i.e., tmax(x) = ln(x/2 + 1) (Eq. (4.47)).

taken by the coalescence process that creates larger clusters form smaller ones. In

the absence of forest fires, i.e., γ = 0, Sx(t) would relax to Sx(t) = 0 for x < L,

after this maximum is reached, as seen from the analytical solution presented in the

Appendix. In the presence of forest fires, however, Sx(t) oscillates around its time

asymptotic value until complete relaxation is achieved.

We examine the accuracy of the first-order approximation’s ability to predict

the time of the first maximum of Sx(t). For every cluster size x we define tmax(x)

to be the time instant when Sx reaches its first maximum value. An approximate

analytical expression tmax ≈ ln(x/2 + 1) is obtained in Appendix A. Thus the char-

acteristic time scale for evolution of Sx as characterized by tmax is predicted to be

longer for larger x (i.e., larger cluster sizes). Figure 3.10 compares the calculated and

the analytical tmax(x) data for γ = 5× 10−3. We see that the full FFM simulation

results for tmax are in good agreement with our first-order approximation.
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Figure 3.11: S10/L versus t for γ0 = 5 × 10−3, L = 106, ω = 1, and A = 0.5.
The dotted curve is the result from the FFM, while the solid curve is from the
second-order approximation.

3.3.4 Dynamics for time dependent γ(t)

As a final experiment we examine the ability of our second-order approximation

to describe the behavior of the FFM when γ(t) depends on time. For our experiment

we chose

γ(t) = γ0 (1 + A sin(ωt)) with A < 1, (3.28)

with γ0 = 5 × 10−3. We explore the dependence of our results on the driving

amplitude A and frequency ω. Consistent with our expectation, we found that, after

the transients related to initial conditions relax, Sx(t) shows temporally periodic

oscillatory behavior at the frequency ω, Sx(t) = Sx(t + 2π/ω), as shown in Fig.

3.11. Sx(t) has an approximately sinusoidal time dependence for sufficiently small

amplitudes and large frequencies, e.g., if A = 0.5, and ω = 1, as shown in Fig.

3.11. With the increase of the driving amplitude and lowering of the frequency, this
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Figure 3.12: The amplitude of oscillation a(x) versus the cluster size x for γ0 =
5× 10−3, L = 106, ω = 1, and A = 0.5.

sinusoidal waveform is distorted. For cases where Sx(t) is approximately sinusoidal,

we find that the amplitude of the oscillation of Sx, denoted a(x), has an approximate

power law dependence on the cluster size x, i.e., a(x) ∼ x−α, with an exponent

α ' 1.56 (see Fig. 3.12), and the midpoint of the oscillation is, to within our

available accuracy, the same as for the equilibrium solution of the FFM with γ(t)

set to a steady value γ0. The dependence of a(1) on the driving frequency ω is shown

in Fig. 3.14. The maximum amplitude of a(x) for each cluster size x is attained

at the resonant frequency ω0 ' 1.14. In the limit ω → 0 the system adiabatically

oscillates among steady state solutions corresponding to different constant γ values.

I.e., if we denote the steady state solution corresponding to a fixed value of γ by

Sx(∞, γ) then Sx(t) ' Sx(∞, γ(t)) for ω ¿ ω0, which for A = 0.5 and γ0 = 5×10−3

leads to a non-vanishing oscillation amplitude a(1) = 2.5× 10−3.

The existence of the resonant frequency is due to the presence of a character-
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istic time-scale in the steady state, denoted T , which is defined as the average time

needed for an empty site to become occupied and and empty again. In order to

give an estimate for T , consider the following. The probability that an empty site

becomes occupied after time t equals 1 − e−t, leading to an average time for tree

growth 1. If Ne denotes the number of empty sites in the steady state, then the

number of trees grown on the grid in one timestep is Nep, which equals the num-

ber of trees destroyed. Therefore, the fraction of trees destroyed in one timestep is

pNe/(L−Ne). Assuming a constant rate of destruction for all trees, the probability

that a tree burns down after time t equals 1 − exp (−tNe/(L−Ne)), leading to an

average lifetime (L−Ne)/Ne. As a result, we have T = 1+(L−Ne)/Ne = 1/(Ne/L),

which corresponds to the frequency ω = 2πNe/L ≈ 1.07, using the measured result

Ne/L ' 0.17 for γ = 5 × 10−3. Resonance occurs when we drive the system at a

frequency corresponding the characteristic timescale.

We define a phase shift ∆φ(x) by which the oscillation of Sx(t) lags that

of γ(t). Figure 3.13 shows ∆φ(x) versus the cluster size x, with the solid curve

corresponding to the second-order approximation and the dots to the full FFM.

Burning of large clusters simultaneously creates many zero size clusters, therefore

zero size clusters oscillate close in phase to larger ones seen illustrated in Fig. 3.13

(note that ∆φ = 0 and ∆φ = 2π are equivalent). Furthermore in the region of large

burns, small size clusters begin to form through tree growth and coalesce in time

to form larger clusters, leading to the decrease of ∆φ with increasing x (seen in

Fig. 3.13). Figure 3.15 shows ∆φ as a function of clustersize x, obtained from the

second-order approximation, for the frequencies ω = 1, 2, 4. An important point is
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that for ω > 1.5 the phase difference ∆φ(x) has a local minimum. Figure 3.16 shows

S10 versus S6 starting from empty grid initial conditions as obtained from the second

order approximation (Fig.3.16 (a)) and from the full FFM (Fig.3.16 (b)). From both

we see the effect of the difference between ∆φ(10) and ∆φ(6) as manifested by the

elliptical shape of the trajectory S10(t) versus S6(t), and that the oscillation of S6(t)

leads that of S10(t), ∆φ(10) > ∆φ(6) consistent with Fig. 3.13.

3.4 Conclusion

We examined dynamical behavior of the self-organized forest-fire model in one

dimension, on a time scale that is faster than, or of the order of the time needed for

relaxation of the system to the statistically steady-state. We found that, similarly

to the statistically steady state behavior, the parameter γ plays a crucial role in

determining the dynamics. From a computational point of view, we found that

for a given grid size L, decreasing γ increases the effect of statistical fluctuations,

which makes the study of the dynamical behavior via solution of the full FFM

less effective. This becomes even more pronounced for larger cluster sizes. As an

alternative, we introduced an analytical approach, based on a hierarchy of equations,

which correspond to the L → ∞ limit of the FFM. The closure scheme for this

hierarchy, which is equivalent to assuming a limited correlation length, gives a set

of self-consistent, successively more accurate approximations to the dynamics. The

agreement between our hierarchy of equations and the numerical solutions of the

full FFM depends on the forest fire intensity γ. Since decrease of γ leads to larger
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correlation length [55], in order to accurately treat smaller lighting intensities γ, one

would have to go to higher order approximations in our hierarchy. We found very

good agreement between our second-order approximation and numerical simulations

of the FFM for γ ≥ 2× 10−3.

The relaxation of the FFM to its time-asymptotic value, measured by the

distance between distributions (in the sense (3.26)), can be characterized by a single

relaxation time scale over a range of initial conditions (for a fixed γ). Relaxation

measured by (3.26) characterizes the process in a global sense. On the other hand,

locally for each individual cluster size, a cluster-size-dependent time-scale exists. We

examined this effect, starting from empty grid initial conditions, and found that the

time at the occurrence of the first maximum of Sx(t), has an approximate logarithmic

dependence on the cluster size. This is due to the fact that larger clusters are created

through a cascading process from smaller ones, leading to a time delay.

To examine the effect of temporally changing external conditions on the FFM,

we investigated the effect of a time-dependent forest fire intensity γ(t). We found

that for a sinusoidal γ(t), that (i) the numbers of clusters of size x, Sx(t), oscillates

at the same frequency as γ(t); (ii) the amplitude of the oscillation is a power-law

function of the cluster size; and (iii) there is a cluster-size-dependent phase lag.
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Figure 3.13: ∆φ(x) versus x. The solid curve is for the second-order approximation,
dots correspond to the full FFM. Parameter values are γ = 5×10−3, L = 106, ω = 1,
and A = 0.5.
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Figure 3.14: a(1)/L versus ω for the second-order approximation (ω0 ≈ 1.14). Pa-
rameter values are γ = 5× 10−3, L = 106, and A = 0.5.
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Figure 3.15: ∆φ(x) versus x for the second-order approximation. Parameter values
are γ0 = 5× 10−3, L = 106, ω = 1, 2, 4, and A = 0.5.
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Figure 3.16: S10 versus S6 for γ0 = 5 × 10−3, L = 106, ω = 1, and A = 0.5 for
the second order approximation (a) and the FFM (b). The dotted curve in (b)
corresponds to the second order approximation.
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Chapter 4

Mean-field theory of a recurrent epidemiological model

4.1 Introduction

The effect of social connectivity structure on the behavior of infectious diseases

[57] has been of great interest. An important goal of epidemiology is to reveal the

connection between the network structure of social connections, the spreading rate

of the disease, and the possibility of large epidemic outbreaks [58] [59]. In particular,

the degree distribution Pk, defined as the fraction of individuals having k connec-

tions to other individuals, is a key factor in determining the properties of epidemic

spreading. A signature of epidemiological models is the presence of phase transi-

tions, i.e., qualitative changes in behavior, as the degree distribution or spreading

rate is changed [58] [59]. For the intensively studied susceptible-infected-susceptible

(SIS) and susceptible-infected-recovered (SIR) epidemiological models, the phase

transitions between prevalence and extinction of the disease can be analytically

understood, for instance, by using methods of percolation theory [59]. Surprising

consequence of these results is the lack of an epidemic threshold [60] and virtually

instantaneous spread of the disease [61] for heavy tailed degree distributions.

The purpose of the present Chapter is to provide both analytical and numerical

results on the discrete time-step susceptible-infected-recovered-susceptible (SIRS)

network model [62]. In particular, our aim is to reveal the connection between
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model behavior and the underlying network structure. The SIRS model applies to

diseases where individuals cannot obtain permanent resistance against the disease as

a result of frequent mutations of the pathogen, e.g., influenza. The discrete time-step

approach is justified because, on one hand, it is an approximation to the continuous

time case, while on the other hand, our every day life has a certain periodicity,

e.g., seasonal changes. For the discrete time-step SIRS model Kuperman et al. [62]

illustrated the importance of network structure by implementing the model in the

Watts-Strogatz framework [63]. It was found that for a regular network, (i.e., a

topological ring, where each node has a fixed coordination number), the stationary

state of the system is a stable fixed point. As network connections are rewired

and random network structure is approached, the fixed point becomes unstable

leading to the appearance of self-sustained oscillations. It was also conjectured that

on uncorrelated networks the model leads to oscillatory behavior in most cases.

In [64] the effect of community structure on the synchronization properties of the

SIRS model was studied numerically. The presence of oscillatory states makes the

SIRS model particularly interesting, as it provides an example of synchronization

phenomena on networks. Qualitatively, similar phase transitions can be observed,

for instance, in the well-known Kuramoto model [65].

To account for adaptive behavior in social interactions, recent work [66] pro-

posed a model where the connection structure of the network and the disease itself

evolve simultaneously in time. Using adaptive connection structure, susceptible in-

dividuals are able to avoid contact with infected ones by rewiring their network

connections. Adaptive rewiring leads to regions of bistability, where either a preva-
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lent, disease-free, or oscillatory phase can exist as illustrated for both SIR [66] and

SIRS models [67].

In a previous theoretical work on the SIRS model, Girvan, et al. [68] ap-

plied Cooke’s discrete time-delay analysis [69] to model epidemics. Synchronization

between coupled communities was examined in [70].

In the present Chapter, as an extension of previous numerical [62] and theo-

retical [68] work, we investigate the discrete time-step SIRS model on uncorrelated

networks with arbitrary degree distributions and provide analytical and numerical

results on the role of time delays, infection rate, and network structure. We intend

to provide a better theoretical basis for the numerous simulation results [62][64]. It

is demonstrated that the role of applied contagion scheme is of primary importance

and that the model exhibits rich dynamical behavior, with oscillating solutions and

fixed points. In particular, the contagion scheme determines the connection between

network structure and model behavior. Moreover, while our theoretical results ap-

ply for an annealed case, assuming a well mixed population, we find good agreement

with the numerical simulations for a fixed network structure, provided the average

connectivity of the network is sufficiently large.

The outline of the Chapter is the following. In Sec. II, we provide a framework

for the following theoretical discussion. In Sec. III. and Sec. IV, we examine the

analytical properties of the two most commonly used contagion schemes. In Sec.

V, we compare the obtained results with numerical simulations of the model on

a network with fixed connection structure. Finally, in Sec. V we summarize our

results and give conclusions.
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4.2 Framework

We study a model of infectious disease that has three stages: susceptible S,

infected I, and recovered R [62]. Each individual of the population is represented

by a node of the network categorized into one of these three stages. Interactions

between elements of the population are described by the network connections, and

infection can proceed through them. Each element i in the network is characterized

by a discrete time counter τi = 0, 1, . . . , τI + τR, describing the phase of the disease.

Movement between the classes is governed by the following rules. A susceptible

(S) element i, whose time counter is by definition τi = 0, can become infected if

connected to an infected (I) individual. Once infected, the node deterministically

goes through a cycle that lasts τI + τR time-steps. In the first τI time-steps i is

infected and can transmit the disease to its susceptible neighbors. In the following

τR time-steps, infected individuals pass to the recovered state (R) where individuals

are not contagious and are also immune to the disease. The cycle is finally completed

when individuals return to the susceptible state and their time counter is set to zero.

Our next step is to specify how infection spreads from an infected to a suscep-

tible individual along network connections. In the present paper we consider two

scenarios for disease contagion. The motivation behind this is that the given frame-

work can be applied to a variety of situations, e.g., epidemic dynamics in the human

population or computer virus spreading on networks. It is a realistic assumption

that local interaction structure in these cases can be quite different. It is essential

to understand both the common features and differences arising from implementing
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different spreading schemes.

For definition of contagion schemes [62], we consider a susceptible node with

connectivity k and kinf infected neighbors. Furthermore, we assume that infection

probability can be characterized by a positive spreading rate 0 < µ ≤ 1. In the

first scenario, which is referred to as linear, the probability that the susceptible

node becomes infected in a single time-step is µkinf/k. Specifically, a node becomes

infected with probability µ if all of its neighbors are infected. (Previous work [62]

for this scheme does not involve the parameter µ, which is equivalent to taking

µ = 1.) In the second scenario, referred to nonlinear, we assume that each infected

node spreads the disease to its susceptible neighbors with probability µ. Thus, the

probability of infection of the susceptible node by its infected neighbors at a given

time-step is 1− (1− µ)kinf .

The time dependence of network structure is a crucial problem that needs to

be addressed. Within the framework of uncorrelated networks, we can visualize two

fundamentally different approaches. One possibility is when the network connections

are fixed in time. This situation is relevant when the timescale of disease spreading

is much faster than the timescale that characterizes the creation and destruction of

new network connections. This situation, for instance, can describe the spread of

computer viruses on the internet. Another option is to consider annealed connection

structure, i.e., the network connections are randomly rewired in every time-step,

while keeping the coordination number of each node constant. This assumption is

justified if the social interaction structure of the population is dominated by random

encounters. In reality, every person has a number of fixed connections, e.g., family
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members, colleagues, but also interacts randomly with the rest of the population,

e.g., while using public transportation. Connectivity of an individual characterizes

both fixed connections and random interactions, where in the annealed approach

the latter is assumed to be more significant.

In the following theoretical discussion we use annealed approach, assuming

that random encounters dominate. While the annealed network structure is mean-

ingful in itself, it also provides a mean-field approximation to the fixed case. In Sec

V. we will show that the differences arising from these two approaches disappear,

provided that the average connectivity of the network is larger than a threshold.

Every uncorrelated network can be fully characterized by its degree distribu-

tion Pk, where Pk is the fraction of nodes with connectivity k. The state of the

system is updated in discrete time-steps. In each time-step a fraction of suscepti-

ble individuals can become infected. The fraction of nodes that have connectivity

k and become infected at time-step t is denoted ik(t). As each infected individual

spends exactly τI time-steps in the infected state, and τR time-steps in the recovered

state, the number of infected, recovered, and susceptible nodes with connectivity k,

denoted Ik, Rk, and Sk respectively, equals

Ik(t) =

τI−1∑

t′=0

ik(t− t′), (4.1)

Rk(t) =

τI+τR−1∑

t′=τI

ik(t− t′), (4.2)

Sk(t) = Pk − Ik −Rk = Pk −
τI+τR−1∑

t′=0

ik(t− t′). (4.3)

By definition of uncorrelated networks, when we follow a randomly chosen edge to
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one of its endpoints, the probability that we get to node with connectivity k is simply

kPk/〈k〉, independent of the node the edge started from. Here we used the notation

〈k〉 =
∑

h hPh. This is an expression of the fact that high-degree vertices have more

edges attached to them than low-degree ones. In annealed networks, infected nodes

also form an uncorrelated network, which implies that, if one follows a randomly

chosen edge to one of its endpoints, then the probability that the chosen edge goes

to an infected node with connectivity k is kIk(t)/〈k〉. For convenience, we introduce

the following notations,

〈k〉i(t) =
∑

k

kik(t), (4.4)

〈k〉I(t) =
∑

k

kIk(t) =

τI−1∑

t′=0

〈k〉i(t− t′). (4.5)

Thus, 〈k〉i(t) is the average degree of nodes that first become infected at time t and

〈k〉I(t) is the average degree the population of all nodes in the infected state at time

t. Obviously we have 〈k〉i(t) ≤ 〈k〉I(t) and 〈k〉I(t) ≤ 〈k〉. The probability that a

given endpoint of a random edge is connected to an infected neighbor,

q(t) =
∑

k

kIk(t)/〈k〉 = 〈k〉I(t)/〈k〉. (4.6)

The probability that a node with connectivity k has exactly x infected neighbors is

given by the binomial distribution

(
k

x

)
q(t)x(1− q(t))k−x. (4.7)

If a susceptible node has exactly x infected neighbors, then the probability of in-

fection is by definition µx/k in the linear and 1 − (1 − µ)x in the nonlinear case.
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Taking the expectation value of µx/k with respect to the above defined binomial

distribution yields the result that a susceptible node with connectivity k is infected

with probability µq(t) in one time-step. For the nonlinear contagion scheme this

probability is 1− (1− µq(t))k. We can now formulate our discrete time dynamical

equations. The fraction of nodes infected at time-step t + 1 equals the fraction of

susceptible nodes multiplied by the probability of infection,

ik(t + 1) = µ
〈k〉I(t)
〈k〉 Sk(t), (4.8)

for the linear contagion scheme, and

ik(t + 1) =

(
1−

(
1− µ

〈k〉I(t)
〈k〉

)k
)

Sk(t), (4.9)

for the nonlinear contagion scheme, where 〈k〉I(t) and Sk(t) are given by Eqs. (4.3)

and (4.5). Equations (4.8-4.9) define discrete dynamical systems for the variables

ik(t). Note that if 〈k〉 diverges then the disease disappears after at most τI + τR

steps. It is also worth noting that if only one connectivity is present in the degree

distribution, i.e., P [k] = δk,k0 for some k0, and we choose τI = 1, τR = 0, then

Eq. (4.8) simplifies to the logistic map. Equations (4.8) and (4.9), similarly to the

logistic map, show chaotic behavior in certain parameter regions, period doubling

etc. Here, however, we restrict our attention to study the transition from fixed point

solutions to time-dependent solutions.

In the present Chapter, our main interest is to understand the interplay be-

tween network structure and the statistically steady state of the disease. From this

perspective, we distinguish three qualitatively different long time scenarios: (i) The

disease can die out, resulting in every node becoming susceptible; (ii) the disease
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can become prevalent resulting in the average number of infected individuals be-

coming constant in time; or (iii), the disease can become prevalent with sustained

oscillations. The first two scenarios correspond to fixed points of the maps (4.8-4.9),

trivial ik(t) = 0 and non trivial ik(t) > 0 respectively, while oscillating solutions are

characterized by the instability of both fixed points.

In the following two sections, we examine the existence and the linear stabil-

ity of solutions for both contagion schemes. The boundary that encompasses the

stability regions of the two fixed points will be a curve, where the system undergoes

a Neimark-bifurcation.

4.3 Linear contagion scheme

4.3.1 Fixed Points

Our purpose is to understand how the degree distribution (Pk), time delays

(τI , τR), and infection probability µ affect the stability of prevalent, extinct, and

oscillating solutions of the discrete dynamical system (4.8). The first step in the

following analysis is to determine the fixed points corresponding to the map (4.8).

Insertion of Eqs.(4.1) and (4.3) into Eq.(4.8) yields,

ik(t + 1) = µ

∑τI−1
t′=0 〈k〉i(t− t′)

〈k〉

(
Pk −

τI+τR−1∑

t′=0

ik(t− t′)

)
, (4.10)

where 〈k〉i(t) =
∑

h hik(t). Fixed points of the system, denoted i∗k, are time-

independent and fulfil the equation,

i∗k =
µτI〈k〉∗i
〈k〉 [Pk − (τR + τI) i∗k] . (4.11)
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The trivial solution i∗k = 0 always exits and is the only solution if the infection rate

µ equals zero. We have the self-consistency relation,

〈k〉∗i =
∑

k

ki∗k =
µτI〈k〉〈k〉∗i

〈k〉+ µ (τI + τR) τI〈k〉∗i
, (4.12)

which for 〈k〉∗i 6= 0 can be solved explicitly to yield,

〈k〉∗i =
〈k〉

τI + τR

(
1− 1

µτI

)
, (4.13)

i∗k =
Pk

τI + τR

(
1− 1

µτI

)
. (4.14)

According to Eqs.(4.13) and (4.14) the distribution of infected nodes is proportional

to Pk. Ik and Sk are related to i∗k via the relationships Ik = τIi
∗
k and Rk = τIi

∗
k.

Furthermore, because both i∗k and 〈k〉∗i are necessarily positive quantities, for 0 ≤

µ ≤ 1/τI , only the trivial (ik∗ = 0) solution exists. The critical infection probability,

denoted µ0, marks the epidemic threshold of the disease, and it is independent of

network parameters,

µ0 = 1/τI . (4.15)

Since for µ > µ0 both solutions exist and could be stable simultaneously, stability

analysis is required to determine the system’s behavior. Linear stability of the fixed

points can be obtained by adding a small perturbation, ik(t) = i∗k + δik(t), and

neglecting terms beyond linear order,

(4.16)

δik(t + 1) = µ
Pk − (τI + τR) i∗k

〈k〉
τI−1∑

t′=0

δ〈k〉i(t− t′)− µτI〈k〉∗i
〈k〉

τI+τR−1∑

t′=0

δik(t− t′).
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Due to the presence of the terms δ〈k〉i(t− r), Eqs. (4.16) are not independent. The

analysis, however, can be considerably simplified if we multiply both sides by k and

sum over k,

δ〈k〉i(t + 1) = µ
〈k〉 − (τI + τR) 〈k〉∗i

〈k〉
τI−1∑

t′=0

δ〈k〉i(t− t′) (4.17)

−µτI〈k〉∗i
〈k〉

τI+τR−1∑

t′=0

δ〈k〉i(t− t′).

With the notation

a = µ− µ (τI + τR) 〈k〉∗i /〈k〉, (4.18)

b = −µτI〈k〉∗i /〈k〉, (4.19)

and xt = δ〈k〉i(t) we can rewrite Eq.(4.17),

xt+1 = a

τI−1∑

t′=0

xt−t′ + b

τI+τR−1∑

t′=0

xt−t′ , (4.20)

where a = µ and b = 0 for the trivial and a = 1/τI and b = −(µτI − 1)/(τI + τR) for

the non-trivial solution given by Eqs. (4.13) and (4.14). Surprisingly, both a and b

are independent of Pk. As a result, stability of the fixed points is determined only

by the time delays τI , τR and µ. Hence, for linear contagion the underlying network

structure is unimportant, in contrast with the nonlinear scheme, where the role of

degree distribution is essential, as we will see in Sec V.

4.3.2 Shur Stability

Equation (4.20) defines a linear τI + τR-dimensional discrete time dynamical

system. We devote some time to examine its stability properties for arbitrary a and
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b, because the general results obtained will be used in the rest of the Chapter. In

order to determine the a, b pairs, where the linear system (4.20) is stable we look

for eigen-solutions of Eq.(4.17), in the form, xt = x0λ
t for complex λ, leading to the

algebraic equation

λ = a

τI−1∑
r=0

λ−r + b

τI+τR−1∑
r=0

λ−r. (4.21)

The dynamical system (4.20) is stable if all roots of the polynomial (4.21) have

absolute value smaller than one. Since a ≥ 0 and b ≤ 0, we can restrict our

attention to the lower right quarter of the (a, b) plane. Possible boundaries between

stability and instability can be determined by looking for solutions of Eq. (4.21)

on the complex unit circle λ = eiφ. If φ = 0, we obtain 1 = τIa + (τI + τR) b. If,

however, φ 6= 0, we can sum the trigonometric series in (4.21) to obtain

a (φ) =
sin ((τI + τR + 1) φ/2) sin (φ/2)

sin (τIφ/2) sin (τRφ/2)
, (4.22)

b (φ) = − sin ((τI + 1) φ/2) sin (φ/2)

sin ((τI + τR) φ/2) sin (τRφ/2)
. (4.23)

Equations (4.22) and (4.23) for 0 ≤ φ ≤ 2π represent a discontinuous curve

that divides the (a, b) plane into stable and unstable regions. At this point, however,

we do no know which of these regions correspond to stable (a, b) pairs. An analytical

solution to this problem can be worked out, using Shur’s theorem [72] as given in

Appendix B. Also see [73]. Here, we omit this part and determine the nature of

the relevant regions numerically. Stability regions of Eq. (4.20) in the lower right

quarter plane are shown in Fig. 4.1. The curves encompassing the region of stability

can be easily identified. The line corresponds to 1 = τIa + (τI + τR) b, while the
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Figure 4.1: Stability regions for Eq.(4.21) for τI = 2 and τR = 2. The straight line
starting from point (a, b) = (1/τI , 0) corresponds to the equation aτI +b(τI +τR) = 1,
while the curve is given by Eqs. (4.22) and (4.23).

curve starting at the point (a, b) = (0,−1) is given by φ → (a(φ), b (φ)), as defined

in Eqs. (4.22) and (4.23). The parametric curve intersects the 1 = τIa + (τI + τR) b

line at φ = 0 and the a = 0 axis at φ = 2π/(τI + τR + 1).

4.3.3 Phase Diagram

As the line aτI+b(τI+τR) = 1 intersects the b = 0 axis at a = 1/τI , the stability

criterion for the trivial solution (a = µ, b = 0) is a = µ < 1/τI = µ0, i.e., the trivial

fixed point is unstable whenever the non-zero solution exists. A remarkable feature

of this critical point is that it is determined exclusively by τI . For the nontrivial

solution (4.13-4.14), on the other hand, we have a = 1/τI , b = −(µτI − 1)/(τI + τR),

which defines a vertical line starting at a = 1/τI as shown in Fig. 4.2. The critical

value of µ where this line intersects the unstable region, denoted µ1, marks the

Neimark-bifurcation point where oscillating solutions emerge. If µ1 > 1 for fixed τI

and τR, then oscillations do not occur. We can obtain a simple approximation for
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µ1 by taking the tangent of the parametric curve at φ = 0, point (a0, b0) as shown in

Fig. 4.2, and calculating µ where this tangent intersects the line given by a = 1/τI

and b = −(µτI − 1)/(τI + τR). A simple calculation yields,

µ1 − µ0

µ0

≈ 2 (τI + 1)

τR + 1
, for τR > τI and µ0 =

1

τI

. (4.24)

Details of the derivation are discussed in Appendix C. We note that the accuracy

of Eq.(4.24) improves with increasing τR and it provides an excellent approximate

value for µ1. A simple consequence of Eq.(4.24) is that µ1 converges to µ0 = 1/τI

as τR →∞, and for large τR the region where prevalence exists without oscillations

disappears.

We summarize our results in Fig. 4.3 for τI = 4. Regions corresponding to

prevalence, extinction, and oscillatory solutions are shown as functions of µ and

τR. The solid line separating the oscillatory and prevalent regions represents the

full numerical solution of Eqs.(4.17), while the dashed curve approximation (4.24).

We find excellent quantitative agreement. The infection rate µ1 asymptotically
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while the dotted curve is given by (4.24).

approaches µ0 = 1/τI . Moveover, if τI = 2, then for τR ≤ 4 we do not have an

oscillatory phase for any µ ≤ 1. In general, for a given τI we need a minimum

number of time-steps spent in the recovered phase to observe oscillations, in good

agreement with Eq. (4.24).

4.4 Nonlinear scheme

We have seen in the previous section that emergence of prevalent and oscil-

latory solutions for linear contagion were independent of the degree distribution.

Introduction of nonlinearity, however, leads to explicit dependence on the network

structure. In this section, we first explore the properties of the non-trivial fixed

points, and we then turn to presentation of the analytical characterization of the

oscillatory phase.
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4.4.1 Fixed Points

The discrete-time dynamical system in this case is given by Eq. (4.9). Its

fixed points, denoted i∗k, must satisfy,

i∗k = Pk

1−
(
1− τIµ

〈k〉∗i
〈k〉

)k

1 + (τI + τR)− (τI + τR)
(
1− τIµ

〈k〉∗i
〈k〉

)k
. (4.25)

Equation (4.25) provides solutions in terms of the parameter 〈k〉∗i . With the intro-

duction of f(x),

f(x) =
∑

h

hPh

(
1−

(
1− τIµ

x
〈k〉

)h
)

1 + (τI + τR)− (τI + τR)
(
1− τIµ

x
〈k〉

)h
, (4.26)

the self-consistency requirement,
∑

h hi∗k = 〈k〉∗i , is equivalent to the fixed point

problem f(x∗) = x∗, where x∗ = 〈k〉∗i as shown in Fig. 4.4. f(0) = 0 is always

satisfied, and, for xmax ≡ 〈k〉/µτI , we have the inequality,

f (xmax) =
〈k〉

τI + τR + 1
< xmax, (4.27)

Furthermore, because f(x) is concave (f ′′ < 0), f(x) intersects the x line at a point

x > 0 if and only if f ′(0) > 1, yielding the existence condition f ′(0) = µτI〈k2〉/〈k〉 ≥

1. As a result, for a given degree distribution we obtain the epidemic threshold,

µ0 =
〈k〉

τI〈k2〉 . (4.28)

Equation (4.28) agrees with the result obtained for the SIR model [60], if we choose

specifically τI = 1. An important consequence of Eq. (4.28) is that for diver-

gent 〈k2〉 we get µ0 = 0, e.g., for a power law degree distribution Pk ∼ k−γ,

with exponent γ < 3, any non-zero infection probability leads to an epidemic
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Figure 4.4: Solution of the fixed point problem x = f(x), where f(x) is given by
Eq.(4.26).

outbreak, provided that the network has infinitely many nodes. Since the non-

zero fixed point f(x∗) = x∗ is attractive (f ′(x∗) < 1), successive application of

the map for any x0 6= 0 converges to the solution, x∗ = limn→∞ fn(x0). It is

easy to see that 〈k〉∗i is an increasing function of µ (its derivative is given explic-

itly in Appendix C.) and, under conditions discussed below, it asymptotically ap-

proaches 〈k〉max
i = 〈k〉/ (τR + τI + 1). Indeed, this asymptotic behavior is valid if

|x− f(x)|µ=1 ¿ 1 at x = 〈k〉/ (τR + τI + 1). Using the explicit form of f(x) this

condition is satisfied if
∑

h hPh (τR/ (τR + τI))
h ¿ 〈k〉.

Motivated by the results of the linear case (4.13), we approximate 〈k〉∗i with

〈k〉∗i ' a+b/µ, which, considering the asymptotic behavior of 〈k〉∗i and the condition

〈k〉∗i |µ=µ0 = 0, yields,

〈k〉∗i '
〈k〉

τI + τR + 1

(
1− µ0

µ

)
1

1− µ0

, for µ ≥ µ0. (4.29)
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We will not provide rigorous proof of Eq. (4.29), but note that it agrees with the

exact solution within 5% provided
∑

h hPh (τR/ (τR + τI))
h ¿ 〈k〉. Accordingly, the

fraction of infected individuals can be approximated by

I∗ ' τI

τI + τR + 1

(
1− µ0

µ

)
1

1− µ0

, for µ ≥ µ0. (4.30)

We will compare (4.30) with experimental results in Sec. V.

4.4.2 Stability

After obtaining existence condition for the time-independent solutions of the

discrete time dynamical equations we now turn to examine their stability. Adding a

small perturbation to i∗k, i.e., ik(t) = i∗k + δik(t), and neglecting terms beyond linear

order yields,

δik(t + 1) =

(
τI−1∑

t′=0

δ〈k〉i(t− t′)

)
ak − bk

τI+τR−1∑

t′=0

δik(t− t′). (4.31)

where,

ak =
kµ

〈k〉 (Pk − (τI + τR) i∗k)
(

1− τIµ
〈k〉∗i
〈k〉

)k−1

, (4.32)

bk = 1−
(

1− τIµ
〈k〉∗i
〈k〉

)k

. (4.33)

An important difference between Eq.(4.31) and Eq. (4.17) is that bk’s depend ex-

plicitly on the coordination number k, and, unless Pk = δk,k0 for some k0, we cannot

handle the problem analytically in its full generality. Nevertheless, the trivial case

(〈k〉∗i = 0) can be solved exactly. If 〈k〉∗i = 0, then Eq.(4.31) yields,

δik(t + 1) =

(
τI−1∑
r=0

δ〈k〉i(t− r)

)
kµ

〈k〉Pk, (4.34)
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Multiplying both sides by k and summing, we obtain

δ〈k〉i(t + 1) =

(
τI−1∑
r=0

δ〈k〉i(t− r)

)
〈k2〉µ
〈k〉 , (4.35)

which is Eq. (4.20) with b = 0 and a = µ〈k2〉/〈k〉. As discussed in Sec. III.A, the

condition for stability in this case is a = µ〈k2〉/〈k〉 < 1/τI , or equivalently µ < µ0.

Therefore, the trivial fixed point is unstable whenever the non-zero solution exists.

If δik(t) 6= 0, then we look for eigen-solutions of Eq.(4.31) in the form δik(t) = rkλ
t.

Substitution of δik(t) = rkλ
t into (4.31) yields,

rk =
ak

∑
h hrh

λ + bk

∑τI−1
r=0 λ−r

τI+τR−1∑
r=0

λ−r, (4.36)

Multiplying both sides of Eq.(4.36) with k and summing, leads to the self-consistency

relation,

1 =
∑

h

hah

λ + bh

∑τI+τR−1
r=0 λ−r

τI−1∑
r=0

λ−r. (4.37)

In particular, the system is stable if all λ solutions of (4.37) lie inside the complex

unit cycle. Since bk = 0 at µ = µ0 for all k, we can obtain a perturbative solution of

Eq. (4.37) for µ−µ0 ¿ 1, bk ¿ 1, as follows. For bk = 0 we obtain the zeroth-order

expression,

λ∑
h hah

=

τI−1∑
r=0

λ−r, (4.38)

If bk ≈ 0, we take the first-order approximation of the quotient in Eq.(4.37), i.e.,

1/
(
1 + bh

∑τI+τR−1
r=0 λ−r−1

) ' 1− bh

∑τI+τR−1
r=0 λ−r−1, to obtain,

λ =
∑

h

hah

τI−1∑
r=0

λ−r −
∑

h

hahbh

τI+τR−1∑
r=0

λ−r

τI−1∑
r=0

λ−r−1. (4.39)
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Finally, we replace the sum
∑τI−1

r=0 λ−r−1 in the second (perturbative) term with

(4.38),

λ =
∑

h

hah

τI−1∑
r=0

λ−r −
∑

h hahbh∑
h hah

τI+τR−1∑
r=0

λ−r. (4.40)

Note that, Eq. (4.40) is exact if Pk = δk,k0 for some k0. Introducing the notation

a =
∑

h hah and b =
∑

h hahbh/
∑

h hah, the polynomial (4.40) corresponds exactly

to Eq. (4.21), and therefore the results obtained for its stability in Sec. III can be

applied. Since for µ−µ0 ¿ 1 we have bk ∼ k(µ−µ0), we can expect Eq.(4.40) to be

a good approximation if the network has few highly connected nodes. We also find

that the accuracy of (4.40) improves with increasing τR. We have a = 1/τI and b = 0

at µ = µ0, independently of the degree distribution, and the curve µ → (a(µ), b(µ))

intersects the b = 0 axis with a tangent db/da = 2τI , see Appendix C. The infection

probability where the curve µ → (a(µ), b(µ)) enters the instability region of Eq.

(4.40) is the Neimark-bifurcation point µ1. For µ − µ0 ¿ 1, we can substitute a

and b with their first-order Taylor-expansion (given in the Appendix C) and follow

the same argument that lead to Eq. (4.24), (i.e., approximating the boundary of

instability with a line), leading to

µ1 − µ0

µ0

' 2 (τI + 1) (τI + τR)

τR (τI + τR − τ 2
I /2)

, (4.41)

where µ0 is given by Eq.(4.28). In the τR À τI limit,

µ1 − µ0

µ0

≈ 2 (τI + 1)

τR

as τR →∞. (4.42)
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Asymptotically, we obtain the same behavior as in the linear case (4.24). How-

ever, for small τR there is a significant difference between these two systems. Figure

4.5 shows the stability regions for the nonlinear contagion scheme for Pk = δk,10 and

τI = 2. The solid line separating oscillating and fixed point solutions is obtained

from the full numerical solution of Eqs. (4.31), while the dashed curve is given by

Eq. (4.41). We find excellent agreement. However, for τI > τR, from numerical

simulations we find that Eq. (4.41) does not provide accurate results. Therefore, in

this case we chose to determine the occurrence instability numerically. Qualitatively,

the reason for this inaccuracy is that for τI > τR we have µ1 À µ0, and first-order

Taylor-expansion of a and b will no longer provide reliable results. Figure 4.6 shows

regions of stability obtained for a power law degree distribution with variable ex-

ponent γ, i.e., Pk ∼ k−γ, for τI = 4 and τR = 2. We applied an upper cutoff of

Pk at k = 100. The phase portrait is shown as a function of the exponent γ and

infection probability, revealing strong dependence on γ, in particular, oscillations

are completely absent if γ falls below a critical value. We find that this behavior is

typical of fat tailed distributions and can also be observed for Pk ∼ e−αk if α < 0.1.

We note that the numerical solution of Eq. (4.31) requires extra attention when

µ ' 1, because in this region the system is marginally stable, and usually a large

number of time-steps are necessary to determine the stability properties of the fixed

point, (on the order of 106).
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4.5 Numerical results for fixed network structure

To asses how well our annealed results apply to a fixed network structure, we

implemented the SIRS model on a network consisting of 1.5 × 104 nodes for both

contagion schemes. Each node on the network was initialized randomly in either

a susceptible, infected, or recovered state. The time counter of the infected and

refractory nodes was also set randomly between 1, . . . , τI and τI , . . . , τR respectively.

After initialization, we waited 8 × 103 time-steps to allow the transients related

to initial conditions to relax. If we denote the time counter of a node k by τk

(τk ∈ 0, . . . , τI + τR) and the number of nodes by N , then emergence of oscillations

can be well characterized by the synchronization parameter [65]-[62],

σ(t) =

∣∣∣∣∣
1

N

∑

k

eτk2πi/(τI+τR)

∣∣∣∣∣ , (4.43)

where we sum is taken over all nodes of the network except the susceptible ones

(τk = 0). The appearance of persistent oscillations corresponds to synchronization of

elements in the system. Their phases, τk, in the epidemic cycle become synchronized

as the disease process proceeds. This synchronization is captured by σ(t), which

plays the role of an order parameter [62]. After transients relax, we calculate σ(t)

averaged over 200 realizations taken over a period of 2× 103 time-steps.

4.5.1 Linear Contagion

For linear contagion, we demonstrate that the obtained results are indepen-

dent of the degree distribution, as suggested by our annealed theory. On the other

hand, we evaluate how accurately our analytical considerations predict the phase
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transitions between extinction and prevalence (4.13,4.14) and the fixed point solu-

tion and oscillatory phase (4.24). For a given network structure, we fix τI = 4 and

we run a series of simulations for different τR and Pk. We find that the higher the

average coordination number of the network 〈k〉, the better the agreement between

our mean field results and numerical simulations. In general, 〈k〉 ≥ 15 provides

excellent correspondence between theory and experiment. Similarly, increasing τR

improves the reliability of our mean field results. We argue that the reason for

this is that recovered elements in the network do not interact. The longer the re-

covered stage, the fewer individuals are active (susceptible or infected) at a given

time instant, making the network effectively sparse. Thus, large τR has a tendency

to diminish correlations, leading to mean-field behavior. By contrast, for τI > τR

correlations are expected to have more of an effect.

We generate uncorrelated networks for the degree distributions Pk ∼ δk,10,

Pk ∼ δk,15, Pk ∼ e−0.1k, and Pk ∼ k−3. For both the exponential and the power-

law cases we take Pk = 0 for k < 10 and k > 100. We applied the cutoff for

large connectivities to limit finite size effects. Figure 4.7 shows σ versus µ for two

distinct distributions. The solid curve corresponds to an exponential distribution,

while the dashed to a power-law distribution. Apparently, the curves are almost

identical, supporting the mean field result. Figure 4.8 compares the number of

infected individuals as a function of infection rate for the mean field approximation

(4.13-4.14) (solid curve) and numerical simulations (dashed curve). Again we find

excellent agreement. Most importantly, the theoretical epidemic threshold, µ =

1/τI , agrees very well with our numerical results. Figure 4.9 compares µ1 (Neimark-
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bifurcation point) for the mean field results with the experiments for Pk = δk,10

(dotted curve) and Pk = δk,15 (dashed curve) versus the time-delay τR. Figure 4.9

illustrates that with increasing 〈k〉 we approach the mean field results.

4.5.2 Nonlinear Contagion

For nonlinear contagion, we first verify that the approximation given in Eq.(4.30)

accurately gives the fraction of infected nodes. Figure 4.10 compares the experimen-

tal results (dashed curve) with the formula (4.30) for τI = 1, τR = 4, and Pk ∼ k−4,

indicating good agreement. Figure 4.11 compares the experimental results for a

fixed network structure with numerical solution of the annealed mean field equa-

tions (4.31) for µ1 (Neimark-bifurcation point). The curves are almost identical.

However, if τI > τR, the mean field approximation does not agree well with our

numerical simulations. We conjecture that this can be attributed to the increased

presence of correlations. While the epidemic threshold is still well characterized by

(4.28), for the Neimark-bifurcation (µ1) displays considerable disagreement between

the annealed theory and the fixed network simulation. Figure 4.12 shows numerical

results for µ1 and a fixed network structure with τI = 4, τR = 2, and Pk ∼ k−γ for

variable exponent. Comparison of Fig. 4.6 and Figure 4.12 reveals, unlike in mean

field theory, for a fixed network structure, small γ promotes oscillations.
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Figure 4.7: Comparison of experimental results of σ with distributions Pk ∼ e−0.1k

and Pk ∼ k−3 for τI = 4, τR = 7, and N = 1.5× 104. (Linear contagion)
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Figure 4.8: Comparison of experimental (dashed curve) and mean-field results (4.13-
4.14) (continuous curve) for the fraction of infected individuals (I) for τI = 4, τR = 4,
Pk ∼ e−0.1k, and N = 1.5× 104. (Linear contagion)

86



4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

τ
R

µ 1

 

 

mean field
á k ñ = 15
á k ñ = 10

Figure 4.9: Comparison of mean-field results (4.24) (continuous curve) with ex-
perimental results for the Neimark-bifurcation point µ1 as function of τR for the
distributions Pk = δk,15 (dashed curve) and Pk = δk,10 (dotted curve) for τI = 4 and
N = 1.5× 104.(Linear contagion)
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87



4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

τ
R

µ 1

 

 

numerical simulation
mean field
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4.6 Conclusion

In this Chapter we have developed a mean field theory for the discrete time-

step SIRS model for the two most commonly studied contagion schemes. We found

that for linear contagion the stability of prevalent, extinct, and oscillatory solutions

is independent of the network structure, and the model behavior is determined

exclusively by the time-delays and infection probability. Numerical simulations for a

fixed network structure were in excellent agreement with our theoretical predictions.

By contrast, for the nonlinear contagion scheme, the epidemic threshold (µ0) and

occurrence of Neimark-bifurcation (µ1) depend strongly on the underlying network.

However, the asymptotic behavior of the dimensionless quantity (µ1 − µ0) /µ0, is

the same for both schemes as τR → ∞, Eqs.(4.24) and (4.41). We also found that

the importance of the degree distribution is even more pronounced if the duration of

infected stage exceeds τR, i.e., τI > τR. Referring to Fig. 4.6 we see that oscillations

can be completely absent for power-law degree distributions with small exponents.

In the case τI > τR, however, predictions of mean field theory do not agree well

with numerical simulations for a fixed network structure. We attribute this fact to

correlations, which are not incorporated in the mean field approach. In summary, we

have shown that the discrete time SIRS model exhibits rich dynamical behavior even

within the framework of uncorrelated networks, and that the contagion scheme, time

delays, and infection probability play a vital role in determining model behavior.
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4.7 Appendix A

For L À 1, γ constant and γ
∑

y y2S(y, t) ¿ 1 the solution of (3.17) can be

given by introducing F (x, t) = Sx(t)e
−(2+γx)t,

dF (x, t)

dt
=

e−(2−γ)t

Ne(t)

∑

a+b+1=x

F (a, t)F (b, t). (4.44)

Equation (4.44) can be explicitly solved for the generating function G(z, t) =
∑L

y=0 zyF (y, t),

G(z, t) =
G(z, 0)

1− zG(z, 0)
∫ t

0
e−(2−γ)τ/Ne(τ)dτ

. (4.45)

In particular for empty grid initial condition, (i.e., G(z, 0) = L), Eq. (4.45) yields

Sx(t) = L

(
1− e−(1−γ)t

1− γ

)x

e−(2+γx)t, (4.46)

Ne(t) = Le−t.

Accordingly, tmax, defined in Sec. 3.3 (dSx(tmax)/dt = 0), can be approximated as

tmax(x) ≈ ln
(x

2
+ 1

)
, (4.47)

and the the magnitude of the first maximum is

Smax(x) = Sx(tmax) ≈ 4xx

(x + 2)x+2 . (4.48)

4.8 Appendix B

The asymptotic stability of the polynomial (4.21) is strongly connected to

Shur’s theorem [72]. A polynomial is stable if all of its roots have absolute value

smaller than one. In general, it is possible to associate a characteristic polynomial

w(z) = a0z
n + · · ·+ an−1z + an (4.49)
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with the symmetric matrix P = ST
1 S1 − ST

2 S2 where

S1 =




a0 . . . an−2 an−1

0
. . .

... an−2

...
. . .

...

0 0 0 a0




, S2 =




an . . . an−1 a1

0
. . .

... a2

...
. . .

...

0 0 0 an




.

The polynomial w(z) is asymptotically stable if and only if the matrix P is positive

definite. According to Sylvester’s criterion this requirement is satisfied if all deter-

minants associated with the upper left sub-matrices are positive, providing us an

analytical approach to determine the stability regions of Eq.(4.21) as polynomials

of a and b. If we denote the n-th upper left sub-determinant of P with pn, then for

a given (a, b) pair det(pn) > 0 for all n is a necessary and sufficient condition for

stability. The curves corresponding to Eqs. (4.22-4.23) are given by det(pn) = 0.

4.9 Appendix C

The location where the two instability curves intersect is given by (a0, b0) in

Fig.4.2. This position can be calculated by taking the φ → 0 limit of the expressions

(4.22-4.23),

a0 = lim
φ→0

a(φ) =
τI + τR + 1

τIτR

,

b0 = lim
φ→0

b(φ) = − τI + 1

τR (τI + τR)
.
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The derivative db/da|φ=0 is most easily evaluated using a symbolic mathematical

software package,

db

da

∣∣∣∣
φ=0

=
db/dφ

da/dφ

∣∣∣∣
φ=0

= τI
τR − 1

(τI + τR) (τR + 1)
.

For the nonlinear contagion scheme Taylor-expansion of
∑

h hah and
∑

h hahbh with

respect to the parameter µ yields,

a =
∑

h

hah ' 1

τI

+
µ− µ0

µ0

τI

(τI + τR)
, (4.50)

b =
∑

h

hahbh ' −µ− µ0

µ0

2τI

τI + τR

. (4.51)

To obtain formulas (4.50-4.51) we used the identity

d〈k〉∗i
dµ

∣∣∣∣
µ=µ0

=
τI

τI + τR

〈k2〉3
〈k〉〈k3〉 , (4.52)

which is a consequence of Eq. (4.37).
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